The Open Source Solution to SPAV

O,REILLY® Alan Schwartz

[vww allitebooks.cond

http://www.allitebooks.org

Other resources from O'Reilly

Related titles

oreilly.com

WaO REILLY
NETWORK.

Conferences

AIPEQREILLY NETWORK
@ Safari
M Bookshelr.

DNS and Bind Network Security Assessment
TCP/IP Network Network Security Hacks
Administration Network Security with
Essential System OpenSSL
Administration Managing Security with Snort
LDAP System Administration and IDS Tools
Essential SNMP

oreilly.cém is more than a complege éatalog of O’Reilly books.
You'll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

lNM.aI | itebooks.cogl

http://www.allitebooks.org

wvww.allitebooks.cond

http://www.allitebooks.org

SpamAssassin
by Alan Schwartz

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathar Gennick

Production Editor: Darren Kelly

Cover Designer: Ellie Volckhausen

Interior Designer: Melanie Wang

Production Services: Nancy Crumpton

Printing History:
July 2004: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The association between SpamAssassin and the image of a King vulture, and related
trade dress, are trademarks of O’Reilly Media, Inc.

SpamAssassin is a registered trademark of Apache Software Foundation. Many of the designations used
by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover.
%gé This book uses RepKover’; a durable and flexible lay-flat binding.

ISBN: 0-596-00707-8
(M]

lNM.aI I itebooks.cogl

http://www.allitebooks.org

Table of Contents

Preface vii
1. Introducing SpamAssassin 1
How SpamAssassin Works 4
Organization of SpamAssassin 4
Mailers and SpamAssassin 6
The Politics of Scanning 8

2. SpamAssassinBasics 9
Prerequisites 9
Building SpamAssassin 10
Invoking SpamAssassin with procmail 20
Using spamc/spamd 21
Invoking SpamAssassin in a Perl Script 28
SpamAssassin and the End User 30

3. SpamAssassinRules il 33
The Anatomy of a Test 33
Modifying the Score of a Test 35
Writing Your Own Tests 41
The Built-in Tests 50
Whitelists and Blacklists 56

4. SpamAssassinasalearningSysteml 62
Autowhitelisting 62
Bayesian Filtering 68

v

vww.allitebooks.cond

http://www.allitebooks.org

5. Integrating SpamAssassin withsendmail 81

Spam-Checking at Delivery 81

Spam-Checking During SMTP 82

Building a Spam-Checking Gateway 102

6. Integrating SpamAssassinwithPostfix 107

Postfix Architecture 107

Spam-Checking During Local Delivery 108

Spam-Checking All Incoming Mail 109

Building a Spam-Checking G ateway 115

7. Integrating SpamAssassinwithqmail 135

qmail Architecture 135

Spam-Checking During Local Delivery 136

Spam-Checking All Incoming Mail 137

Building a Spam-Checking Gateway 140

8. Integrating SpamAssassinwithExim, 149

Spam-Checking via procmail 150

Spam-Checking All Incoming Mail 151

Using Routers and Transports 152

Using exiscan 158

Using sa-exim 161

Building a Spam-Checking Gateway 174

9. Using SpamAssassinasaProxy 177

Using Pop3proxy 178

Using SAproxy Pro 183

ApPeNdiX 187

Index ..o 191
vi | Table of Contents

vww .allitebooks.conl

http://www.allitebooks.org

Preface

If you use email, it’s likely that you've recently been visited by a piece of spam—an
unsolicited, unwanted message, sent to you without your permission.” If you man-
age an email system, it’s almost certain that you’ve had to help your users avoid the
deluge of unwanted email.

System administrators pay for spam with their time. The Internet’s email system was
designed to make it difficult to lose email messages: when a computer can’t deliver a
message to the intended recipient, it does its best to return that message to the
sender. If it can’t send the message to the sender, it sends it to the computer’s post-
master—because something must be seriously wrong if both the email addresses of
the sender and the recipient of a message are invalid.

The well-meaning nature of Internet mail software becomes a positive liability when
spammers come into the picture. In a typical bulk mailing, anywhere from a few
hundred to tens of thousands of email addresses might be invalid. Under normal cir-
cumstances these email messages would bounce back to the sender. But the spam-
mer doesn’t want them! To avoid being overwhelmed, spammers often use invalid
return addresses. The result: the email messages end up in the mailboxes of the Inter-
net postmasters, who are usually living, breathing system administrators.

System administrators at large sites are now receiving hundreds to thousands of
bounced spam messages each day. Unfortunately, each of these messages has to be
carefully examined, because mixed in with these messages are the occasional
bounced mail messages from misconfigured computers that actually should be fixed.

As the spam problem grows worse and worse, system administrators are increasingly
taking themselves off their computers’ “postmaster” mailing lists. The result is pre-
dictable: they’re deluged with less email, but problems that they would normally dis-

* Spam is also a registered trademark of Hormel Foods, which uses the word to describe a canned luncheon
meat. In this book, the word “spam” is used exclusively to refer to Internet spam and not the meat.

vii

vww.allitebooks.cond

http://www.allitebooks.org

cover by receiving postmaster email are being missed as well. The Internet as a whole
suffers as a result.

Although there are many important ways to reduce spam—including obscuring
email addresses, complaining to spammers’ service providers, and seeking legal and
legislative relief—few remedies are as immediately effective as filtering email mes-
sages on the basis of content and format, and few filtering systems are as widely used
and well maintained as SpamAssassin™.

This book is for mail system administrators, network administrators, and Internet
service providers who are concerned about the growing toll that spam is raking on
their systems and their users and are looking for a way to regain some control or
reduce the burden on their users.

Scope of This Book

This book is divided into nine chapters and one appendix. The first four chapters
deal with core SpamAssassin concepts that are independent of the underlying mail
system.

Chapter 1, Introducing SpamAssassin
Explains what SpamAssassin does, and provides a conceptual overview of its
organization and features.

Chapter 2, SpamAssassin Basics
Covers the installation, testing, and basic operation of SpamAssassin.

Chapter 3, SpamAssassin Rules
Details the configuration of SpamAssassin, and focuses particularly on Spam-
Assassin’s spam-detection rules. It explains how to increase or decrease the
impact of rules, write new rules, and add addresses to blacklists and whitelists.

Chapter 4, SpamAssassin as a Learning System
Reviews the learning features of SpamAssassin: automatic whitelisting and Baye-
sian filtering. It provides the theory behind these features and discusses how to
configure, train, and tune them.

The remaining five chapters detail the integration of SpamAssassin with several
popular mail transport agents (MTAs) to provide sitewide spam-checking. They also
explain how to set up a SpamAssassin gateway to check all incoming mail before
delivery to an internal mail host.

Chapter 5, Integrating SpamAssassin with sendmail
Explains how to integrate SpamAssassin with the sendmail MTA, using the mil-
ter interface. As an example of this approach, the installation and configuration
of MIMEDefang is described.

viii | Preface

vww.allitebooks.conl

http://www.allitebooks.org

Chapter 6, Integrating SpamAssassin with Postfix
Explains how to integrate SpamAssassin with the Postfix MTA, using the
content_filter interface. As an example of this approach, the installation and con-
figuration of amavisd-new, a daemonized content filter, is described.

Chapter 7, Integrating SpamAssassin with gmail
Explains how to integrate SpamAssassin with the gmail MTA.

Chapter 8, Integrating SpamAssassin with Exim
Explains how to integrate SpamAssassin with the Exim MTA using several dif-
ferent popular approaches including custom transports, exiscan, and sa-exim.

Chapter 9, Using SpamAssassin as a Proxy
Explains how to set up a SpamAssassin POP mail proxy to support users who
download their email with POP clients.

The Appendix lists useful resources for more information about SpamAssassin and
other antispam approaches.

Versions Covered in This Book

At the time this book went to press, SpamAssassin 2.63 was the latest released ver-
sion of SpamAssassin and was in wide use. The next-generation release of Spam-
Assassin, SpamAssassin 3.0, was available for beta-testing and is expected to be
released at about the time this book appears in stores. SpamAssassin 3.0 introduces
several important new features and changes parts of the Perl API.

Accordingly, this book covers both versions of SpamAssassin. When a topic or set-
ting is specific to one version, I so note it.

Conventions Used in This Book

The following conventions are used in this book:

Italic
Used for Unix file, directory, user, and group names and for Perl modules,
objects, method names, and method options. It is also used for URLs (uniform
resource locators) and to emphasize new terms and concepts when they are
introduced.

Constant Width
Used for Unix commands, code examples, and system output. It is also used for
scripts, process names, and SpamAssassin directives.

Constant Width Italic
Used in examples for variable input (e.g., a filename you must provide).

Preface | ix

wvww.allitebooks.cond

http://www.allitebooks.org

The Unix Bourne shell or Korn shell prompt.

The Unix superuser prompt. I use this symbol for examples that should be exe-
cuted by root.

A

&0

This icon designates a note, which is an important aside to the nearby
text.

-

)

[
[N

This icon designates a warning related to the nearby text.

Using Code Examples

All the code in this book is available for download from http://www.oreilly.com/
catalog/spamassassin. See the file readme.txt in the download for installation
Instructions.

X
0
.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, and publisher; for example: “SpamAssassin, by Alan Schwartz
(O’Reilly).”

If you feel your use of code examples falls outside fair use or the permission given
previously, feel free to contact us at permissions@oreilly.com.

Comments and Questions

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

x | Preface

[vww . allitebooks.con

http://www.allitebooks.org

O’Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (U.S. and Canada)
(707) 827-7000 (international/local)
(707) 829-0104 (fax)

You can also contact O’Reilly by email. To be put on the mailing list or request a cat-
alog, send a message to:

info@oreilly.com

We have a web page for this book, which lists errata, examples, and additional infor-
mation. You can access this page at:

http://www.oreilly.com/catalog/spamassassin
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about O’Reilly books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://iwww.oreilly.com/

Acknowledgments

Bob Amen, Justin Mason, and Matt Riffle served as technical reviewers for this book.
Any remaining errors, of course, are mine.

I have once again had the pleasure of collaborating with an excellent O’Reilly editor,
Jonathan Gennick. The O’Reilly production crew for this book included Darren
Kelly, Ellie Volckhausen, and Nancy Crumpton.

This book is dedicated to the developers and user community of SpamAssassin, for
their fine work in helping to stem the flood of unwanted email.

Never-ending thanks to M.G. and Ari, who make it all worthwhile.

Preface | xi

CHAPTER 1
Introducing SpamAssassin

The SpamAssassin system is software for analyzing email messages, determining how
likely they are to be spam, and reporting its conclusions. It is a rule-based system
that compares different parts of email messages with a large set of rules. Each rule
adds or removes points from a message’s spam score. A message with a high enough
score is reported to be spam.

A

SpamAssassin was a trademark of Deersoft, and Deersoft has been

acquired by Network Associates. In this book, I won’t write Spam-
& Assassin™ each time I mention it because that would be distracting,
" but you should assume that the trademark symbol is there.

Many spam-checking systems are available. SpamAssassin has become popular for
several reasons:

* It uses a large number of different kinds of rules and weights them according to
their diagnosticity. Rules that have been demonstrated to be more effective at
discriminating spam from non-spam email are given higher weightings.

* It is easy to tune the scores associated with each rule or to add new rules based
on regular expressions.

* SpamAssassin can adapt to each system’s email environment, learning to recog-
nize which senders are to be trusted and to identify new kinds of spam.

* It can report spam to several different spam clearinghouses and can be config-
ured to create spam traps—email addresses that are used only to forward spam
to a clearinghouse.

[t is free software, distributed under either the GNU Public License or the Artis-
tic License. Either license allows users to freely modify the software and redis-
tribute their modifications under the same terms.

Example 1-1 shows a message that has been tagged as spam by SpamAssassin. Ele-
ments added by SpamAssassin appear in bold.

Example 1-1. A message tagged by SpamAssassin

From riverol5380503@jubii.dk Fri Nov 7 18:26:05 2003

Received: from localhost [127.0.0.1] by localhost
with SpamAssassin (2.60 1.212-2003-09-23-exp);
Sun, 09 Nov 2003 12:24:22 -0600

From: "brianj" <riverol5380503@jubii.dk>

To: <Undisclosed.Recipients@mailin-2.priv.cc.uic.edu>

Subject: Live your dream life!! MPNWSTU

Date: Fri, 07 Nov 2003 15:32:41 -0800

Message-Id: <000016646728$00007347$00000042@mail3.mailnara.net>

X-Spam-Status: Yes, hits=12.9 required=5.0 tests=CLICK_BELOW,
FORGED_MUA_EUDORA,FROM_ENDS_IN_NUMS,MISSING_OUTLOOK_NAME,
MSGID_OUTLOOK_INVALID,MSGID SPAM_ZEROES,NORMAL_HTTP_TO_IP,
SUBJ_HAS_SPACES,SUBJ_HAS_UNIQ_ID autolearn=no version=2.60

X-Spam-Flag: YES

X-Spam-Checker-Version: SpamAssassin 2.60 (1.212-2003-09-23-exp)

X'SPaM'LeVCI: koo sk k ok kokok

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="----------=_3FAE8656.371BED4D"

This is a multi-part message in MIME format.

------------= 3FAE8656.371BED4D
Content-Type: text/plain
Content-Disposition: inline
Content-Transfer-Encoding: 8bit

Spam detection software, running on the system has

identified this incoming email as possible spam. The original message
has been attached to this so you can view it (if it isn't spam) or block
similar future email. If you have any questions, see

the administrator of that system for details.

Content preview: Do you owe large sums of money? Are you stuck with high
interest ra{tes? We can help! You can do what tens of thousands of
americans have done, consolidate your high interest bills into one
easy, low interest, monthly payment. [...]

Content analysis details: (12.9 points, 5.0 required)

pts rule name description

1.0 SUBJ_HAS_SPACES Subject contains lots of white space

4.3 MSGID_SPAM_ZEROES Spam tool Message-Id: (12-zeroes variant)
0.9 FROM_ENDS_IN_NUMS From: ends in numbers

0.2 NORMAL_HTTP_TO_IP URI: Uses a dotted-decimal IP address in URL
0.2 SUBJ_HAS_UNIQ_ID Subject contains a unique ID

4.3 MSGID_OUTLOOK_INVALID Message-Id is fake (in Outlook Express format)
0.1 MISSING OUTLOOK NAME Message looks like Outlook, but isn't

1.9 FORGED_MUA_EUDORA Forged mail pretending to be from Eudora

0.0 CLICK_BELOW Asks you to click below

The original message was not completely plain text, and may be unsafe to
open with some email clients; in particular, it may contain a virus,

2 | Chapter1: Introducing SpamAssassin

Example 1-1. A message tagged by SpamAssassin (continued)

or confirm that your address can receive spam. If you wish to view
it, it may be safer to save it to a file and open it with an editor.

------------ = 3FAE8656.371BED4D
Content-Type: message/rfc822; x-spam-type=original
Content-Description: original message before SpamAssassin
Content-Disposition: attachment

Content-Transfer-Encoding: 8bit

Received: (qmail 25515 invoked from network); 7 Nov 2003 18:26:02 -0600
Received: from mailin-2.cc.uic.edu (HELO mailin-2.priv.cc.uic.edu) (128.248.155.213)
by emailo.cc.uic.edu with SMTP; 7 Nov 2003 18:26:02 -0600

Received: from mail3.mailnara.net (c-24-98-136-187.atl.client2.attbi.com [24.98.136.187])
by mailin-2.priv.cc.uic.edu (8.12.10/8.12.9) with ESMTP id hA80Px3k011669;
Fri, 7 Nov 2003 18:26:00 -0600

Message-ID: <000016646728$00007347$00000042@mail3.mailnara.net>

To: <Undisclosed.Recipients@mailin-2.priv.cc.uic.edu>

From: "brianj" <riverols380503@jubii.dk>

Subject: Live your dream life!! MPNWSTU

Date: Fri, 07 Nov 2003 15:32:41 -0800

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="---------- = 1068251164-2528-687"

X-Priority: 3

X-MSMail-Priority: Normal

X-Mailer: QUALCOMM Windows Eudora Version 5.1

X-MimeOLE: Produced By Microsoft MimeOLE V5.00.3018.1300

Content-Length: 2290

Lines: 72

Do you owe large sums of money? Are you stuck with
high interest ra{tes? We can help!

You can do what tens of thousands of americans have
done, consolidate your high interest bills into one
easy, low interest, monthly payment.

By first reducing, and then completely removing your
d+ebts, you will be able to start fresh. Why keep
dealing with the stress, headaches, and wasted money,
when you can consolidate your d+ebt and pay them off
much sooner!

Click below to learn more:

http://61.186.254.9?affiliateid=mailer10

hjeuubnfs

w-----=----= 3FAE8656.371BED4D-

Introducing SpamAssassin |

The SpamAssassin report is revealing. Despite the fact that this message includes sev-
eral tricks to fool spam-checkers, such as random characters at the end and breaking
up the words “rates” and “debt” with symbols, SpamAssassin identifies several suspi-
cious characteristics and assigns a high spam score.

How SpamAssassin Works

There are several ways that SpamAssassin makes up its mind about a message:

* The message headers can be checked for consistency and adherence to Internet
standards (e.g., is the date formatted properly?).

* The headers and body can be checked for phrases or message elements com-
monly found in spam (e.g., “MAKE MONEY FAST” or instructions on how to
be removed from future mailings)—in several languages.

* The headers and body can be looked up in several online databases that track
message checksums of verified spam messages.

* The sending system’s IP address can be looked up in several online lists of sites
that have been used by spammers or are otherwise suspicious.

* Specific addresses, hosts, or domains can be blacklisted or whitelisted. A
whitelist can be automatically constructed based on the sender’s past history of
messages.

» SpamAssassin can be trained to recognize the types of spam that you receive by
learning from a set of messages that you consider spam and a set that you con-
sider non-spam. (SpamAssassin and the spam-filtering community often refer to
non-spam messages as ham.)

* The sending system’s IP address can be compared to the sender’s domain name
using the Sender Policy Framework (SPF) protocol (http://spf.pobox.com) to
determine if that system is permitted to send messages from users at that
domain. This feature requires SpamAssassin 3.0.

* SpamAssassin can privilege senders who are willing to expend some extra com-
putational power in the form of Hashcash (http://www.hashcash.org). Spammers
cannot do these computations and still send out huge amounts of mail rapidly.
This feature requires SpamAssassin 3.0.

Organization of SpamAssassin

At heart, SpamAssassin is a set of modules written in the Perl programming lan-
guage, along with a Perl script that accepts a message on standard input and checks
it using the modules. For higher-performance applications, SpamAssassin also
includes a daemonized version of the spam-checker and a client program in C that
can accept a message on standard input and check it with the daemon.

4 | Chapter1: Introducing SpamAssassin

Other Antispam Approaches

SpamAssassin combines message format validation, content-filtering, and the ability to
consult network-based blacklists. Filtering systems require little user intervention and
introduce little delay into the process of sending and receiving email. There are other
approaches to preventing spam, each of which comes with its own advantages and dis-
advantages (and many of which can be used in addition to, as well as in place of, Spam-
Assassin).

In a challenge/response system, the system holds all messages from unknown senders
and sends them a reply message with a unique code or set of instructions (the chal-
lenge). The senders must reply to the challenge in some fashion that verifies their email
addresses and (generally speaking) proves that they are human beings, rather than an
automated bulk mail program (the response). After a successful response, the system
allows messages from the sender to be accepted, rather than holding them.

In greylisting systems, the mail server initially returns a temporary SMTP (Simple Mail
Transfer Protocol) failure code to messages from new senders or sending systems. If the
sending system attempts to resend the message after a reasonable time period, the mail
server accepts the message and subsequent messages from the sending host. Because
spammers are likely either to treat the temporary failure as a permanent failure, or to
attempt to deliver messages continually during the greylisting time period, their mes-
sages are not received.

In time-limited address systems, users generate unique variations of their email address
to include in different web forms, email messages, newsgroup postings, etc. Addresses
may be valid only for a limited time or may be valid until revoked by the user. In these
systems, if a user receives spam at one of his addresses, he can usually identify the com-
pany that spammed him (or sold his address to a spammer), and he can quickly inval-
idate the address to prevent further spam.

In micropayment systems, senders must pay a small fee for each message they send,
making large-scale spam runs costly. In some of these systems, the micropayment is
refunded when the recipient determines that the message is in fact non-spam. (Spam-
Assassin 3.0 supports a variation of micropayments in the form of Hashcash, in which
the payment is made in processing time rather than money.)

Most of SpamAssassin’s behavior is controlled through a systemwide configuration
file and a set of per-user configuration files. The per-user configuration can also be
stored in an SQL database.
LR
For a great deal more about Perl, check out Learning Perl, by Randal

L. Schwartz and Tom Phoenix, or Programming Perl, by Larry Wall,
&* Tom Christiansen, and Jon Orwant, both from O’Reilly.

Organization of SpamAssassin | 5

Mailers and SpamAssassin

Although it’s possible to run SpamAssassin manually on a single message, Spam-
Assassin becomes really useful when all incoming messages are scanned automati-
cally. There are several ways that this can be done.

Figure 1-1 shows a typical mail transmission. The sending system connects to the
recipient’s mail transport agent (MTA) and transmits the message. If the message is
destined for a user on the MTA’s system, the MTA hands the message off to the local
mail delivery agent (MDA), which is responsible for storing the message in a user’s
mailbox. Users may log into the system and read their mail directly from their mail-
boxes (as is typical on multiuser Unix systems), or, if the system runs the appropri-
ate servers, users may download their mail using a mail client that supports the POP
(Post Office Protocol) or IMAP (Internet Message Access Protocol) protocols.

Sending host . Receiving host

mail user POP/IMAP §
....... ol MA B »| MIA MDA B > rver '

Mailboxes

v

Recipient workstation
mail user agent

Figure 1-1. A typical mail transmission

SpamAssassin can be run in three fundamental places: at the MTA, at the MDA, and
as a POP proxy. Each has advantages and disadvantages.

Scanning at the MTA

Some MTAs provide a way for incoming messages to be passed through a filter dur-
ing the SMTP transaction; others can pass messages through a filter after the SMTP
transaction is complete. Spam-checking is one kind of filtering that can be usefully
performed at the MTA; virus-checking is another. In many cases, sophisticated filter-
ing daemons have been developed for specific MTAs, and these daemons are capa-
ble of calling SpamAssassin to perform spam checks.

6 | Chapter1: Introducing SpamAssassin

Because all email destined for users on the system must pass through the MTA, it is a
natural place for centralized spam-checking. If you run a gateway MTA that delivers
mail to several internal systems, you can perform spam-checking at the gateway
MTA to limit the amount of spam that any internal server will receive.

In addition to tagging messages that appear to be spam, MTA-based filters can often
take other actions, such as blocking a message (either refusing to complete the SMTP
transaction or discarding it after the SMTP transaction has taken place) or redirect-
ing it to quarantine area. If the MTA is already running a filtering system to do virus-
checking, spam-checking can usually be performed by the same filter and share some
of the overhead associated with filtering.

A disadvantage of scanning at the MTA alone is that the MTA filtering system may
not be able to access per-user preferences for scanning if the filter does not have
access to the recipient information, if the recipient is at another host, or if the mes-
sage is destined for multiple users on the same system.

Scanning at the MDA

On many Unix systems, the mail delivery agent is procmail, which can submit mes-
sages to SpamAssassin and act on the results. This is the most typical way that Spam-
Assassin is installed alone, as it does not require any MTA-specific filter interfaces.

This configuration maximizes flexibility. Systemwide SpamAssassin rules can be
applied to all incoming messages, and users can supplement or modify them with
their own per-user SpamAssassin configuration, because, by definition, the MDA
always knows the recipient to which it is delivering the message. Users who are profi-
cient in writing procmail recipes gain complete control over the disposition of mes-
sages marked as likely spam; procmail can be instructed to discard them, file them in
a separate mailbox, modify message headers, or take many other actions.

The downside of this configuration is that spam-checking is applied only after a mes-
sage has been received by the system and has consumed some system resources.
Another disadvantage is that spam-checking must be set up on every system that has
local recipients, rather than at a single centralized MTA gateway.

Scanning with a POP Proxy

POP mail users who want the benefits of SpamAssassin on mail servers that don’t
provide it can use a proxy to perform spam-checking. The proxy runs on the client
computer and integrates with the POP mail reader to scan messages as they are
downloaded via POP.

The best known POP proxy for SpamAssassin on Windows systems is SAproxy by
Stata Labs. SAproxy Pro is a commercial product, but the source code is freely

Mailers and SpamAssassin | 7

available under the same terms as SpamAssassin itself for administrators who wish to
compile it and provide it to their users.

Proxies are the most decentralized approach to spam-checking and require the mail
server to be liberal in accepting messages so that each user’s proxy can apply their
own standards. This may increase the storage load on the mail server. On the other
hand, proxies completely remove the computational load from the mail server, as all
spam-checking is performed by the client.

Scanning at Multiple Places

It’s entirely possible to run SpamAssassin at two or even all three of the places dis-
cussed in the previous sections. An MTA-based filter could use SpamAssassin with
conservative settings to refuse messages that are highly suspicious. An MDA filter on
the same system could apply a more liberal (and per-user) definition of spam in order
to tag messages for users who read their mail on the server itself. Finally, POP users
could apply their own spam-checking by running SAproxy on their client machines.

The Politics of Scanning

If you’re an ISP that provides email service, many of your users will want—perhaps
even demand—spam-tagging or spam-filtering of their incoming email. Other users,
however, may not want their email tagged or filtered, either because they don’t get
much spam, don’t perceive the spam they receive to be a problem, or are concerned
about the possibility of a real message being mistakenly tagged as spam.

Before you implement systemwide or sitewide spam-checking, consider carefully the
needs of your users and your responsibilities toward them. At minimum, you must
inform users (and would-be users) of any unconditional spam-checking you perform
on their email. Better yet is to provide spam-tagging only for those users who opt to
turn it on. Best of all is to enable each user to configure their own settings and
threshold for how spam is recognized. This is doubly important if you not only tag
messages for users but actually filter or block spam for them.

SpamAssassin is an excellent tool for distinguishing spam and non-spam email, but
only if you’ve determined that your users want you to distinguish the two.

8 | Chapter1: Introducing SpamAssassin

CHAPTER 2
SpamAssassin Basics

This chapter explains how to get and install SpamAssassin and its components, per-
form basic configuration, test the system, and start using it for spam-checking. It
covers the basics of using SpamAssassin from the shell or from procmail, and dis-
cusses the setup of the daemonized version of the spam-checker. The configuration
examples in this chapter provide only the basic functionality. The following chapters
cover rule-tweaking, white- and blacklisting, and learning.

Prerequisites

SpamAssassin is written for a Unix or Unix-like environment that includes Perl Ver-
sion 5, preferably 5.6.1 or later. Perl is now standard on most Unix systems, but if you
don’t have it, the source code for Perl can be downloaded at http://www.cpan.org.

SpamAssassin requires several Perl modules to be installed. If you install SpamAssas-
sin using CPAN (the Comprehensive Perl Archive Network), as described in the next
section, these modules will be automatically downloaded and installed as well. If you
install SpamAssassin manually, you’ll need to be sure that you also have up-to-date
versions of the Perl modules ExtUtils::MakeMaker, File::Spec, Pod::Usage, HTML.::
Parser, Sys::Syslog, DB_File, Digest::SHA1, and Net::DNS. You may also want Net:
Ident and IO::Socket::SSL if you plan to use the daemonized checker (spamd) and its
client (spamc) and you will allow remote clients to access your daemon.

SpamAssassin can consult several spam checksum clearinghouses. A spam clearing-
house is a server (or a distributed network of servers) that gathers spam messages
reported by thousands of users around the world and provides a mechanism for a cli-
ent to check a new message to see if it matches a message in the clearinghouse. These
clearinghouses are known as checksum-based clearinghouses because rather than
transmit and store complete email messages, they work with cryptographic check-
sums of messages. A cryptographic checksum is a much smaller data string (typically
no more than 256 bits) that is, for all practical purposes, unique to the message from
which it is computed.

As of version 3.0, SpamAssassin can consult three clearinghouses: Vipul’s Razor
(http://razor.sourceforge.net), Pyzor (http://pyzor.sourceforge.net), and DCC (http://
www.rhyolite.com/anti-spam/dcc/). SpamAssassin can also be used to report spam to
the clearinghouses. Each clearinghouse uses its own client software, and you should
install these clients before you install SpamAssassin. In most cases, each Spam-
Assassin user will have to manually run the clearinghouse’s client program to initial-

ize it before SpamAssassin can use it.

oA
In many sitewide SpamAssassin configurations, you will create a dedi-
cated special user account to run SpamAssassin. If you do and you
& intend to use spam clearinghouses, be sure that you follow the client
* software instructions for initialization and that you do so as the dedi-
cated user, rather than as root.

Building SpamAssassin

The easiest way to download and install SpamAssassin is through CPAN
what a CPAN-install of SpamAssassin looks like:

$ su
Password: XXXXXXX
perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.61)
ReadLine support enabled

cpan> o conf prerequisites_policy ask
prerequisites policy ask

cpan> install Mail::SpamAssassin

CPAN: Storable loaded ok

CPAN: LWP::UserAgent loaded ok

Fetching with LWP:
ftp://ftp.perl.org/pub/CPAN/authors/0olmailrc. txt.gz

Running install for module Mail::SpamAssassin
Running make for J/JM/JMASON/Mail-SpamAssassin-2.60.tar.gz
Fetching with LWP:

. Here’s

ftp://ftp.perl.org/pub/CPAN/authors/id/3/IM/IMASON/Mail-SpamAssassin-2.60.tar.gz

CPAN: Digest::MDS loaded ok
Fetching with LWP:
ftp://ftp.perl.org/pub/CPAN/authors/id/J1/IM/IMASON/CHECKSUMS

Checksum for /root/.cpan/sources/authors/id/J/IM/IMASON/Mail-SpamAssassin-2.60.tar.gz

ok

Scanning cache /root/.cpan/build for sizes
Mail-SpamAssassin-2.60/
Mail-SpamAssassin-2.60/ninjabutton.png

Mail-SpamAssassin-2.60/sample-spam. txt

10 | Chapter2: SpamAssassin Basics

CPAN.pm: Going to build J/JM/IMASON/Mail-SpamAssassin-2.60.tar.gz

What email address or URL should be used in the suspected-spam report
text for users who want more information on your filter installation?
(In particular, ISPs should change this to a local Postmaster contact)
default text: [the administrator of that system] postmaster@example.com

Checking if your kit is complete...

Looks good

Writing Makefile for Mail::SpamAssassin

Makefile written by ExtUtils::MakeMaker 6.03

/usr/bin/perl build/preprocessor -Mconditional -Mbytes -DPERL_VERSION=5.8.0 -Mvars -
DVERSION=2.60 -DPREFIX=/usr <lib/Mail/SpamAssassin/AutoWhitelist.pm >blib/lib/Mail/
SpamAssassin/AutoWhitelist.pm

gcc -g -02 spamd/spamc.c spamd/libspamc.c spamd/utils.c \
-0 spamd/spamc -1dl

Manifying blib/man3/Mail::SpamAssassin::PerMsglearner.3pm
/usx/bin/make -- OK
Running make test
PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "test_harness(0,
'blib/1ib', 'blib/axch')" t/*.t
17/5A81E_TiEe o 0 560k o oo dnboah ok

/72 EEE Do 060500059005000 ok

All tests successful, 1 test skipped.

Files=40, Tests=301, 426 wallclock secs (238.53 cusr + 14.19 csys = 252.72 CPU)
/usx/bin/make test -- OK

Running make install

Installing /usr/lib/perls/site perl/5.8.0/Mail/SpamAssassin.pm

Installing /usr/lib/perl5/site_perl/5.8.0/Mail/SpamAssassin/PerMsglearner.pm

Installing /usr/bin/spamc

Installing /usr/bin/spamd

Installing /usr/bin/sa-learn

Installing /usx/bin/spamassassin

Writing /usx/lib/perls/site_perl/5.8.0/1586-1inux-thread-multi/auto/Mail/
SpamAssassin/.packlist

Appending installation info to /usr/lib/perl5/5.8.0/i586-1linux-thread-multi/
perllocal.pod

/usr/bin/perl "-MExtUtils::Command" -e mkpath /etc/mail/spamassassin

/usr/bin/make install -- OK

cpan> quit

It is also possible to install SpamAssassin manually by downloading the code as a
gzipped tar archive from http://www.spamassassin.org and following these steps from
the directory where you keep local source code (/usr/local/src on many systems):

$ gunzip -c Mail-SpamAssassin-2.60.tar.gz | tar xf -

$ cd Mail-SpamAssassin-2.60
$ perl Makefile.PL

Building SpamAssassin | 11

What email address or URL should be used in the suspected-spam report
text for users who want more information on your filter installation?
(In particular, ISPs should change this to a local Postmaster contact)
default text: [the administrator of that system] postmaster@example.com

Checking if your kit is complete...
Looks good

Writing Makefile for Mail::SpamAssassin
$ make

...compilation mesages...

$ su

Password: XXXXXXXX

make install

...installation messages...

If you install SpamAssassin manually, remember that you may need to
install or update other Perl modules listed in the “Prerequisites” sec-
s tion, earlier in this chapter, prior to installing SpamAssassin.

FreeBSD users can install SpamAssassin from the ports collection, where it is avail-
able both as a traditional port (in which it downloads the source code and compiles
it) and as a precompiled package. For example, SpamAssassin 2.63 is included in the
collection as p5-Mail-SpamAssassin-2.63.

Finally, Linux users can install SpamAssassin in one of several packaged formats.
SpamAssassin is available in the Debian GNU/Linux and Gentoo Linux packaging
systems as the “spamassassin” and “Mail-SpamAssassin” packages, respectively.
Many other distributions of Linux bundle SpamAssassin (although not always the
latest version). The latest version of SpamAssassin is also distributed as a source rpm
by one of its developers. The source rpm is used to build three platform-specific rpms
that are then installed in the usual way. Example 2-1 shows the process on a RedHat
Linux system.

Example 2-1. Building SpamAssassin from source rpm

(download spamassassin-2.60-1.src.rpm from http;//w:w.spamassassin.org)
rpm -Uvh spamassassin-2.60-1.src.rpm

1:spamassassin SHEEEHHHHHHEHHHHE R [100%)
cd /usr/src/redhat/SPECS
rpm -bb spamassassin.spec
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.57624

cd ../RPMS/i386

#1s -1

perl-Mail-SpamAssassin-2.60-1.i386.rpm spamassassin-tools-2.60-1.1386.xpm
spamassassin-2.60-1.1386.rpm

rpm -Uvh Perl-Mail-Spam*rpm spamassassin*2.6.0*.rpm

...installation messages...

12 | Chapter2: SpamAssassin Basics

Installing SpamAssassin for Personal Use

If you do not have superuser access on your mail server, but do have a shell account, it
is possible to install SpamAssassin into private directories in your account.

Follow the instructions for manual installation and indicate the directory structure
you’d like to use for the installation of the program and libraries, and for the configu-
ration files. For example, if you have personal bin, share, lib, and etc directories under
your home directory, you might use this build process:

$ perl Makefile.PL PREFIX=~ SYSCONFDIR="/etc

$ make

$ make install
Note that you must still have the prerequisite Perl modules installed systemwide or you
must install them into your private directories as well.

To use a personal installation of SpamAssassin, you will need to make sure that
<PREFIX>/bin is on your PATH.

What Gets Installed

An installation of SpamAssassin includes the following components:

Perl modules

SpamAssassin’s core functions are in a set of Perl modules. The most important
of these are Mail::SpamAssassin, the top-level module that includes most of the
others, and Mail::SpamAssassin::Conf, the module that includes documentation
of the configuration files for SpamAssassin. These modules are usually installed
under a directory with a name like /usr/lib/perl5/site_perl/5.8.1, but you do not
need to know their location, as the Perl installer will ensure that they are
installed in a path that Perl will search when loading modules.

SpamAssassin 3.0 introduced a distinction between core SpamAssassin modules
and plug-ins, modules that may be written for SpamAssassin by third parties and
loaded in rulesets. Plug-in modules will have names in the Mail::SpamAssassin::
Plugin hierarchy (e.g., Mail::SpamAssassin::Plugin::URIDNSBL).

Rulesets
The rules that SpamAssassin uses to help decide whether or not a message is
spam are kept in a set of configuration files that are usually installed in /usr/
share/spamassassin. You can find the default location of these files by running
spamassassin --local --debug, but you can always specify alternative loca-
tions.

A systemwide configuration file
The systemwide configuration file controls the default behavior of the
spamassassin (and spamd) programs when not overridden by per-user prefer-
ences. The file is called local.cf and is installed in /etc/mail/spamassassin. Other

Building SpamAssassin | 13

applications that use the Mail::SpamAssassin modules often put their system-
wide configuration files in this directory as well. You can find the default loca-
tion of these files by running spamassassin --local --debug, but you can always
specify alternative locations.

Spamassassin
The spamassassin program is a Perl script that accepts a message on standard
input, applies the functions of Mail::SpamAssassin, and returns the message on
standard output with spam scores, reports, or other modifications added as war-
ranted. It has several other functions as well, which are described in detail later
in this chapter. It is usually installed in /usr/bin.

spamd and spamc

On sites that receive large amounts of mail, invoking the spamassassin script for
each message is costly, due to the overhead associated with starting a new pro-
cess and running the Perl interpreter. spamd is a daemon that is started once (at
system boot) and remains in memory to perform spam-checking. It listens on
either a Unix domain socket or a TCP port to receive requests to check mes-
sages, and performs checks; it returns the (possibly modified) messages to the
client.

spamc is the client program for sites that run the spamd daemon. It accepts a mes-
sage on standard input, transmits it to spamd, and returns the response on stan-
dard output. Like spamassassin, it is invoked for each message, but it is written
in C and compiled, and thus avoids the overhead associated with invoking Perl.
It provides the most important functionality of spamassassin.

spamc and spamd are usually installed in /ust/bin. They are described in greater
detail later in this chapter.

sa-learn
The sa-learn script is used to train SpamAssassin’s Bayesian spam classification
system. It teaches SpamAssassin which messages you consider spam and which
you consider non-spam. Eventually, SpamAssassin can use this information to
make better judgments of whether or not you want a message marked as spam.
SpamAssassin’s learning systems are described in detail in Chapter 4.

Basic Configuration

Once SpamAssassin has been installed, it’s a good idea to adjust the basic system-
wide configuration before testing. A complete guide to the configuration directives is
given in Chapter 3; only the most commonly adjusted systemwide directives are
described here.

Configuration is usually controlled by the file /etc/mail/spamassassinflocal.cf.
Example 2-2 shows a typical local.cf that might be used with SpamAssassin 2.63.

14 | Chapter2: SpamAssassin Basics

Example 2-2. A typical local.cf file

This is the right place to customize your installation of SpamAssassin.

#

See 'perldoc Mail::SpamAssassin::Conf' for details of what can be

tweaked.

#

FHHEHHHE R A S

How high a score is considered spam?
required hits 5

How should spam reports be inserted into the message?
report_safe 1

Should we tag the subject of spam messages?
rewrite_subject 1

By default, SpamAssassin will run RBL checks. If your ISP already
does this, set this to 1.
skip rbl checks o

Blank lines and lines beginning with a number sign (#) are ignored in configuration
files. Other lines begin with a configuration directive (e.g., required_score), fol-

lowed by whitespace and then the value for the directive (e.g., 5).
The directives you will most want to adjust are:

required_hits (SpamAssassin 2.63) or required_score (SpamAssassin 3.0)

Each SpamAssassin rule that matches a message adds (or subtracts) points from
the message’s total spam score. When the total score reaches the value of this
directive, SpamAssassin reports the message as spam. The default value, 5, is
suitable for most installations. If you are particularly worried about false posi-
tives, you can increase this value, which will also have the effect of reducing the
number of true positives (i.e., some spam will be missed).

report_safe

This directive determines how SpamAssassin modifies messages that it deter-
mines are spam.

No matter how report_safe is set, SpamAssassin adds three headers to spam
mail: X-Spam-Level (set to a number of asterisks representing the spam score),
X-Spam-Status (set to a one-line description of the spam score and matching
tests), and X-Spam-Flag (set to Yes).

When report_safe is set to 0, the message body is kept intact, and the header
X-Spam-Report is added with a detailed description of the rules that matched.
When report_safe is set to 1, a new MIME message is created with the spam
report as an attachment and the original spam message as an attachment with
content-type message/rfc822. When report_safe is set to 2, SpamAssassin

Building SpamAssassin | 15

behaves similarly, but the original spam message is attached with content-type
text/plain.

rewrite_subject(SpamAssassin 2.x only)
If this directive is set to 1, SpamAssassin will prepend “****SPAM™**” to the
message subject in the Subject header if the message is considered spam. This is
useful when users have mail clients that can filter only on standard headers.

rewrite_header(SpamAssassin 3.0 only)
This directive can be used to rewrite the Subject, From, or To headers of mes-
sages that SpamAssassin considers spam. Rewriting the Subject header prepends
a given string to the message subject. For example, to prepend “*****SPAM™***”
to a spam message’s subject, use the following:
rewrite_header subject **¥¥*SpAmtiiick
Rewriting From or To headers adds the given string to the email address as a par-
enthetical comment.

skip_rbl checks

SpamAssassin typically looks up a sender’s IP address in a set of Domain Name
System (DNS)-based real-time blacklists (DNSBLs or RBLs) to determine
whether they have been listed as known spam source, open proxy or relay,
dialup host, etc. Many ISPs perform these checks in the MTA itself in order to
reject connections from such hosts at the earliest possible point. If you do that,
you can prevent SpamAssassin from doing its own lookups by setting this direc-
tive to 1; the default is 0. It is also possible to perform lookups against one set of
DNSBLs at the MTA and a different set in SpamAssassin.

Testing SpamAssassin

Once the basic systemwide configuration is in place, it’s a good idea to test Spam-
Assassin to ensure that it can correctly distinguish a known non-spam message from
a known spam message. To facilitate this, the SpamAssassin source code includes
two files, sample-nonspam.txt and sample-spam.txt. The former contains an email
message that has very few hallmarks of spam; the latter contains an email message
that includes the GTUBE (Generic Test for Unsolicited Bulk Email) string, a special
test string that is used to validate spam-checkers.

L)

If you installed SpamAssassin using CPAN, you'll find the sample-

nonspam.txt and sample-spam.txt files in whichever directory CPAN
s* performs its builds. Often that will be a subdirectory of root’s home
" directory named .cpan/build/Mail-Spamassassin-2.63.

To test the spamassassin script, run it in test mode by using the --test-mode com-
mand-line argument and provide one of the sample files on its standard input. In test

16 | Chapter2: SpamAssassin Basics

mode, spamassassin will produce a spam score at the bottom of the message whether
or not the message meets the required score for spam. Example 2-3 shows a test of
spamassassin on the sample-nonspam.txt file, which produces a final score of 0.0.

Example 2-3. Testing spamassassin with sample-nonspam.txt

$ cd Mail-SpamAssassin-2.63

$ spamassassin --test-mode < sample-nonspam.txt

Return-Path: <tbtf-approval@world.std.com>

Delivered-To: foo@foo.com

Received: from europe.std.com (europe.std.com [199.172.62.20])
by mail.netnoteinc.com (Postfix) with ESMTP id 392E1114061
for <foo@foo.com>; Fri, 20 Apr 2001 21:34:46 +0000 (Eire)

Content preview: ----- BEGIN PGP SIGNED MESSAGE----- TBTF ping for
2001-04-20: Reviving TastyBitsfromtheTechnolog
yFront[...]

Content analysis details: (0.0 points, 5.0 required)

pts rule name description

0.0 LINES_OF_YELLING BODY: A WHOLE LINE OF YELLING DETECTED

Example 2-4 shows the same test using sample-spam.txt, which produces a final
score of 1000.

Example 2-4. Testing spamassassin with sample-spam.txt

$ spamassassin --test-mode < sample-spam.txt

Received: from localhost [127.0.0.1] by tala.mede.uic.edu
with SpamAssassin (2.60 1.212-2003-09-23-exp);
Sun, 16 Nov 2003 21:38:03 -0600

Content preview: This is the GTUBE, the Generic Test for Unsolicited
Bulk Email. If your spam filter supports it, the GTUBE provides a test
by which you can verify that the filter is installed correctly and is
detecting incoming spam. You can send yourself a test mail containing
the following string of characters (in uppercase and with no white
spaces and line breaks): [...]

Content analysis details: (1000.0 points, 5.0 required)
pts rule name description

1000 GTUBE BODY: Generic Test for Unsolicited Bulk Email

If these tests succeed, you might try testing with a few real spam and non-spam mes-
sages from your mailbox to get a feel for how the scoring works.

Building SpamAssassin | 17

SpamAssassin Options

The spamassassin script has a large number of command-line options that control its
behavior. Some of the most commonly used for spam-checking are detailed here;
others are featured in Chapter 3 and Chapter 4. A complete list of options can be
found in the man page for spamassassin.

Locating configuration files

SpamAssassin expects to find its rulesets in /usr/share/spamassassin, its systemwide
configuration file at /etc/mail/spamassassin, and per-user preferences in
~/.spamassassin/user_prefs. If you've installed SpamAssassin in different locations,
you may need to use these command-line options to help the spamassassin script
locate these files.

--configpath /path/to/ruleset/directory
Specifies the path to the directory containing the SpamAssassin ruleset configu-
ration files. This option also can be called as --config-file or --config-dir.

--siteconfigpath /path/to/sitewide/directory
Specifies the path to the directory containing the sitewide configuration file
local.cf.

--prefspath /path/to/user_prefs
Specifies the path to the file containing user preferences for the user running
spamassassin. --prefs-file can also be used.

Scripting and testing options
Two spamassassin options are useful in scripting.

--exit-code [integer]
When this option is used, the spamassassin script will exit with a nonzero exit
code if the message it checked was determined to be spam, and a zero exit code
if it was not. The default spam exit code is 5, but you can specify one as an argu-
ment to this option. If spamassassin exits due to a program error, it returns exit
code 64 (if bad arguments were given to spamassassin) or 70 (for other errors).

This option provides a useful way for a calling script to determine if a message is
considered spam.

--log-to-mbox /path/to/mbox/file (SpamAssassin 2.x only)
This option causes copies of all of the messages processed by spamassassin to
be logged to the given file in mbox format. The messages are logged in the form
in which spamassassin receives them, with no spam-tagging. This option can be
used to preserve pristine copies of email, but such a function is probably better
performed by the MTA itself, rather than by SpamAssassin.

18 | Chapter2: SpamAssassin Basics

M.al I itebooks.cogi

http://www.allitebooks.org

Untagging

No spam-checking system is perfect. If SpamAssassin mistakenly tags a non-spam
message as spam, it will add several message headers and reformat the message to
include its report as the first MIME attachment and the original message as a second
attachment. To remove these headers and restore the message to a near-original
state, pipe the message to spamassassin with the - -remove-markup option, as shown in
Example 2-5.

Example 2-5. Removing SpamAssassin markup

$ spamassassin < sample-spam.txt > marked-message

$ spamassassin --remove-markup < marked-message > unmarked-message
$ diff -s sample-spam.txt unmarked-message

Files sample-spam.txt and unmarked-message are identical

oA

Messages that have been tagged and then untagged via --remove-

markup may differ in minor ways from the original message. For exam-
L)« .

048, ple, headers that may have included line breaks in the original mes-

sage may be concatenated into one long line.

Reporting

If you’ve installed clients for spam checksum clearinghouses, you can report spam to
those clearinghouses by piping a message to spamassassin --report. The message will
be untagged before being reported. In SpamAssassin 2.63, if you also provide the
--warning-from=emailaddress option, the sender of the spam will receive an email
(apparently from the provided emailaddress) warning her that her message has been
reported as spam. This is rarely useful (because most spam forges or obfuscates the
sender’s address), and this option has been removed in SpamAssassin 3.0.

You can also use SpamAssassin’s reporting capability to set up spam traps. A spam
trap is an email address that has never been used by a real recipient and never
requests email from anyone. People who set up spam trap addresses often include
the addresses on web pages or in Usenet postings with instructions that people
should not send mail to the addresses—instructions that spammers’ address-harvest-
ing programs will ignore. Because any email that’s sent to the spam trap address can
be safely assumed to be spam, you can report it as such to spam clearinghouses. To
set up a spam trap with SpamAssassin, create an email alias that pipes messages to
spamassassin --report. For most clearinghouse systems, you will need to determine
which user your mail system will invoke spamassassin --report as and set up
some files in that user’s home directory to control how it will interact with the clear-
inghouse client. See your clearinghouse documentation for details.

Building SpamAssassin | 19

Never report spam sent to a legitimate address that you have not veri-
fied with your own eyes. The clearinghouse systems rely on these spam
‘e -t reports, and their effectiveness is diminished when non-spam mes-
sages are reported as spam. If you do accidentally report a non-spam
message, you can revoke your report by piping the message to
spamassassin --revoke. Not all clearinghouses support message revo-
cation. As of SpamAssassin 3.0, only Vipul’s Razor does.

Invoking SpamAssassin with procmail

Running spamassassin from a shell is a handy way to test the system, but for daily
use you’d like to have it automatically run on every incoming email message that’s
being delivered to your system’s mailboxes. One easy way to do this is to have your
system’s MDA program filter all messages through SpamAssassin as part of the deliv-
ery process.

procmail is a mail-processing program that accepts messages on standard input and
applies a set of rules or actions (a “recipe”) for the disposition of the message.
Because the default message disposition is “append to the user’s mailbox,” and
because procmail is written to be very safe in its handling of messages, it makes
an excellent MDA. Indeed, many Unix systems use the procmail program as their
default local MDA. If procmail is available and isn’t the system MDA, it’s usually
easy for users to configure the message-forwarding feature of the system’s MTA
to filter messages through procmail. In either environment, procmail can be a
good place to pass messages through SpamAssassin. Figure 2-1 illustrates this con-
figuration.

Mail server

User max!hoxes

Figure 2-1. Invoking SpamAssassin with procmail

The easiest way to use SpamAssassin with procmail is to call it in the systemwide
procmail recipe file, which is usually /etc/procmailrc. Example 2-6 shows a com-
plete /etc/procmailre.

20 | Chapter2: SpamAssassin Basics

Example 2-6. A complete /etc/procmailrc

DROPPRIVS=yes
PATH=/bin:/usr/bin:/usr/local/bin
SHELL=/bin/sh

Spamassassin

:0fw

* <300000

| /usr/bin/spamassassin

In this example, the SpamAssassin recipe comprises the three lines beneath the com-
ment # Spamassassin. The first line tells procmail that the message should be fil-
tered (f) and that procmail should wait (w) for the filter’s successful exit before
considering the message filtered. The second line indicates that this recipe should be
applied to messages less than 300,000 bytes in length and serves to prevent a lengthy
SpamAssassin invocation on a long message that is unlikely to be spam. The third
line directs procmail to pipe the message to spamassassin. (For more information
about procmail recipes, see the man pages for procmail, procmailrc, and proc-
mailex.)

By placing this recipe in the systemwide procmail configuration file, it will be acti-
vated every time procmail is invoked, either as the default MDA or by a user. If you
don’t have access to the systemwide procmail configuration file, you can still invoke
SpamAssassin for your own messages in your account’s per-user procmail recipe file,
which is usually ~/.procmailrc. This might also be useful if you wish to run Spam-
Assassin a second time with a different set of command-line arguments.

L

If your system doesn’t provide procmail, it may provide another mail-

filtering system. Any mail filter that can pass a message to a program
N B .

oi8. on standard input and read back the (modified) message from the pro-
gram’s standard output can use SpamAssassin in this way.

Using spamc/spamd

If you are filtering a lot of incoming mail, the processing time required to invoke a
new spamassassin script (and starting the Perl interpreter) for each message can
become prohibitive. An alternative approach is to run the SpamAssassin daemon,
spamd. spamd is started once at system boot and loads the SpamAssassin Perl mod-
ules to perform spam-checking. Instead of running the spamassassin script on each
message, messages are piped to the spamc program. spamc is a lightweight client,
written in C and compiled to an executable that simply takes messages, relays them
to spamd, and returns the results.

spamd has several important command-line arguments that control its operation.
Once it’s properly set up, however, using spamc is simple.

Using spam¢/spamd | 21

Setting up spamd

By default, spamd is installed in /ust/bin. It is typically started by root from a system
boot script but can also be started by root from the shell for testing. The simplest
invocation of spamd is:

/usr/bin/spamd --daemonize --pidfile /var/run/spamd.pid

The --daemonize command-line option directs spamd to operate as a daemon in the
background. The --pidfile command-line option specifies the file to which spamd
will write its process ID number. This option is important because spamd must be
signaled with a HUP signal to its process ID whenever the systemwide SpamAssassin
configuration is changed (you’ll find an example later in this chapter).

When spamd receives a connection, it forks a child process to handle the connection.
Typically, the child process reads a request to perform spam-checking from the client
(including the account name of the user making the request, the message to check,
and other data), performs the requested check, returns the (possibly tagged) message
back to the client, and exits.

Several options are used with spamd in many environments. The most common are
detailed in the following sections.

Connection type

spamd can accept connections from spamc clients either by listening on a TCP port or
a Unix domain socket. By default, spamd binds TCP port 783 on the local 127.0.0.1
[P address, which should prevent remote users from connecting to it. You can
change how it listens with these command-line options:

--socketpath /path/to/socket
Listen on a Unix domain socket at the specified path instead of a TCP port.
Using a Unix domain socket is more efficient than a TCP port and ensures that
only local users can access the daemon.

--listen-ip ip-address
Listen on a TCP port on the specified IP address. This can be used to override
the default 127.0.0.1 IP address and allow spamd to receive connections from
remote machines. This might be useful if you wanted to dedicate a single
machine in a LAN to spam-checking in order to manage the processing load or
to let many client machines share a well-tuned daemon.

--port port-number
Listen on a TCP port other than the default port (783).

--allowed-ips ip-address, ip-address, . ..
Specify a comma-separated list of IP addresses from which connections will be
accepted. Although this provides a measure of access control for a daemon that

22 | Chapter2: SpamAssassin Basics

accepts remote connections, it should be supplemented with host-based firewall
rules for greater security.

--ssl
Require connections from clients to use the SSL/TLS (Secure Sockets Layer/
Transport Layer Security) protocol. This provides for encryption of the data
between client and server and potentially for authentication of the server to the
client, although SpamAssassin’s spamc does not attempt to verify the server cer-
tificate.

--server-key keyfile
Specifies the file containing the SSL private key for spamd, if SSL connections are
to be required.

--server-cert certfile
Specifies the file containing the SSL certificate for spamd, if SSL connections are
to be required.

If you want to provide secure remote access to spamd, the SSL support in spamd/spamc
is not sufficient, as it provides no mechanism for spamd to authenticate spamc clients.
An alternative approach would be to wrap the server and client connections in an
SSL tunnel with a program like stunnel that does provide two-way authentication.

Running as a non-root user

You must start spamd as root so that it can bind its TCP port or open its socket for
connections. By default, spamd continues to run as root. When it receives a connec-
tien from spamc, it drops privileges and runs as the user that spamc claims to be run-
ning as. This enables it to access private, per-user configuration files.

Many system administrators are uncomfortable running spamd as root. A bug in
spamd could provide an attacker with root privileges; a local attacker could also spoof
spamc and claim to be a different user (which can be ameliorated with the --auth-
ident option discussed later).

To provide additional security, spamd can be instructed to run as a non-root user.
After binding its TCP port or Unix socket, spamd gives up root privileges and runs as
the specified user. Ideally, you should create a new user (e.g., spamd) with its own
group (spamd) and a private home directory (/home/spamd). All systemwide con-
figuration files should be made readable by the new user, and the pid file given to the
--pidfile command-line option should be in a directory writable by the new user
(perhaps its home directory). If spamd is using a Unix domain socket, the socket will
automatically have its owner set to the new user, so no changes to this path are nec-
essary, but the directory in which the socket will be created must be writable by the
user.

After creating your new user, start spamd like this, as root:

/usr/bin/spamd --daemonize --username spamd --pidfile /home/spamd/spamd.pid

Using spamc/spamd | 23

The --username command-line option specifies the name of the user that spamd will
run as.

If you want to allow per-user configuration, users’ home directories and
.spamassassin subdirectories will have to be searchable by the new user (which typi-
cally means they must be world-searchable), and files in their .spamassassin directo-
ries will have to be readable by the new user. Alternatively, you can turn off per-user
configuration with the —-nouser-config command-line option (or store per-user
configuration in an SQL database, as discussed in Chapter 3).

&
\J

You can also run spamd as a non-root user simply by starting it as a
non-root user. In this case, the user running spamd must be able to read
0 a' all of the relevant system configuration files, and you must specify a
port number higher than 1024 (or a Unix domain socket in a directory
the spamd user can write in).

Other security features

Three command-line options provide additional assurances that spamd will operate
only when the user running spamc is actually the user that spamc claims to be run-
ning for.

--auth-ident
This option causes spamd to perform an ident (RFC 1413) lookup on the connec-
tion. If the client’s system is running a (trustworthy) ident server, the lookup will
return the username of the user running spamc. spamd will confirm that this user-
name matches the username provided by spamc and will refuse to respond if it
does not.

--ident-timeout number-of-seconds
Specify the number of seconds to wait for the ident server to respond. If the
response doesn’t come after this number of seconds, spamd will refuse to per-
form spam-checking for the connection.

--paranoid
Specify that spamd should report an error and exit if it finds itself still running as
root after it should have changed to a non-root user ID (either the one given by
--username or the user running spamc), or if it cannot look up a given user’s
name. Without this option, spamd continues running as the nobody user.

One command-line option can protect spamd from being used to commit a denial-of-
service attack against its server.

--max-children number
Specifies the maximum number of child processes that spamd will fork. When
this maximum is reached, connections will be queued until the number of chil-
dren drops below the maximum again (or until the operating system can no

24 | Chapter2: SpamAssassin Basics

longer queue connections). If max-children is used, spamd must open pipes to
communicate with each child.

In SpamAssassin 3.0, the --max-children option defaults to 5, but in

ﬁ SpamAssassin 2.x, the default number of children is unlimited. I highly
recommend explicitly setting --max-children to a reasonable value for
your system.

Here’s what a typical invocation of spamd might look like for a system that is only
performing spam-checking for local users and that runs an ident server:

/usr/bin/spamd --daemonize --username spamd --pidfile /home/spamd/spamd.pid --auth-
ident --paranoid --max-children=25

Locating configuration files

Like SpamAssassin, spamd looks for rulesets in /usr/share/spamassassin and system-
wide configuration files in /etc/mail/spamassassin. If you’ve installed SpamAssassin in
different locations, you can use the --configpath and --siteconfigpath command-
line options to help spamd locate these files. These options work just as they do for
the spamassassin script and were described earlier.

Testing spamc

Once spamd is running, use spamc instead of the spamassasin script to check a mail
message. You can test spamc/spamd much as you would test spamassassin:

$ cd Mail-SpamAssassin-2.63

$ spamc -c < sample-nonspam.txt

0.0/5.0

$ spamc -c < sample-spam.txt

1000.0/5.0
The -c command-line option instructs spamc to produce only the score (and the spam
threshold score) that spamd computes for each message. It also causes the spamc pro-
cess to return an exit code of 1 for messages judged to be spam and 0 for messages
judged not to be spam, which can be useful in scripting.

spamc Options

Like the spamassassin script, spamc takes several command-line options that modify
its behavior. Here are some of the most useful (see the manpage for spamc for a com-
plete list).

Using spamc/spamd | 25

Connection type

By default, spamc attempts to connect to spamd at TCP port 783 on localhost. If you
run spamd on a different IP address (perhaps on a different machine altogether) or
listening on a Unix domain socket, spamc must be told where to connect.

spamc can take advantage of multiple spamd servers at different hosts to increase reli-
ability or balance the processing load. In addition to specifying the proper command-
line options to spamc (descriptions follow), you must designate a hostname in DNS
with multiple A records, each listing the IP address of a spamd server host.

These command-line options control the spamc connection to spamd.

-d host
Connect to the spamd server on host, instead of localhost. If host is a hostname
that resolves to multiple IP addresses, each one will be tried in turn until a
successful connection can be made.

-p port
Specify the TCP port number to connect to spamd on. If multiple servers are used,
all servers must use the same port number.

=H
When multiple spamd servers are used, try servers in random order instead of the
order in which they are returned by the DNS server. This promotes load-
balancing across the servers.

Make connections to spamd with SSL. If multiple spamd servers are used, all serv-
ers must support SSL connections.

-U /path/to/socket
Specify a Unix domain socket to connect to spamd on, instead of using TCP.

Handling problems

By default, if spamc is unable to contact a spamd server, it returns the message unpro-
cessed. This ensures that mail will not be lost due to problems with spamd but means
that spam may be accepted without tagging. Two command-line options modify this
behavior.

-t number-of-seconds
Specifies the number of seconds that spamc should wait for a reply from spamd
before considering the spamd server unreachable. It defaults to 600 seconds
(10 minutes), which may be too long to wait on a busy mail server. Setting the
number-of-seconds to O disables the timeout altogether—spamc will wait as long
as it takes (and potentially forever).

26 | Chapter2: SpamAssassin Basics

This option prevents spamc from returning messages unprocessed when it can’t
contact a spamd server. Instead, spamc will exit with an error code. Ideally, what-
ever process is calling spamc will interpret this error code properly, and the mes-
sage will be queued for later retry. This option requires great care.

spamc’s options are different than those accepted by spamassassin, so it
is not generally possible to simply substitute spamc for spamassasin in
scripts without reviewing each option. Some of the options to
spamassassin are instead given as options to spamd when it is started.

Invoking spamc with procmail

Just as spamc is run manually in place of the spamassassin script, it can also be run in
a procmail recipe. Example 2-7 shows a typical /etc/procmailrc recipe for a system
using spamd:

Example 2-7. A complete /etc/procmailrc for spamd

DROPPRIVS=yes
PATH=/bin:/usxr/bin:/usr/local/bin
SHELL=/bin/sh

Spamassassin
:0fw

* <300000

| /usx/bin/spamc

Changing SpamAssassin Configuration Files

To increase efficiency, spamd caches the spam-checking rules in memory when it
starts up. Therefore, when spamd is in use, the daemon must be signaled whenever
you make changes to the SpamAssassin rulesets or systemwide configuration file.
Changes in user preferences do not require a signal because user preference files, if
they are used, are reread each time they are needed.

spamd reloads configuration files when it receives a HUP signal. To send a process a
HUP signal, read the process ID from the pidfile and use the kill command to send
the signal:

kill -HUP "“cat /home/spamd/spamd.pid”
If you can’t find the pidfile, use the ps command to locate the process ID:

ps auxw | grep spamd (On SysV systems, ps elf)

spamd 30124 0.0 0.6 22200 1596 ? S Nov22 0:02 usr/bin/spamd --
daemonize --username spamd --pidfile /home/spamd/spamd.pid

alansz 30521 0.0 0.1 1520 508 pts/1 S 15:44 0:00 grep -E spamd

kill -HUP 30124

Using spamc/spamd | 27

After reloading, spamd will have a new process ID.

Invoking SpamAssassin in a Perl Script

Because the heart of the SpamAssassin system is a set of Perl modules, it’s fairly
straightforward to call SpamAssassin from a Perl script to perform spam-checking of
an email message. The Mail::SpamAssassin module (and its submodules) provide an
object-oriented interface to the spam-checking and message-tagging logic. Many
MTA-based filtering systems are written in Perl, and use the SpamAssassin modules
to perform spam-checking on messages without invoking a separate program.

Examples 2-8 and 2-9 show Perl scripts that work like simple versions of the
spamassassin script, accepting a message on standard input, checking it, and produc-
ing the (possibly rewritten) message on standard output. Example 2-8 illustrates the
process for SpamAssassin 2.63.

Example 2-8. Using Mail::SpamAssassin 2.63 in Perl
#!/usr/bin/perl

use Mail::SpamAssassin;

my @lines = <STDIN>;

my $mail = Mail::SpamAssassin::NoMailAudit->new(data => \@lines);
my $spamtest = Mail::SpamAssassin->new();

my $status = $spamtest->check($mail);

$status->rewrite mail() if $status->is_spam();

print $status->get full message as_text();

Before any SpamAssassin objects can be created, the script must use the Mail:
SpamAssassin module. The message is read from standard input and saved to the
array @lines. Then, the new() method of Mail::SpamAssassin::NoMailAudit is called,
with a reference to the array provided as the value of the data parameter.” This
method returns a Mail::SpamAssassin::Message object encapsulating the email mes-
sage, which I call $mail in the example.

A new Mail::SpamAssassin object called $spamtest is then created, and its check()
method is called, passing in the message as an argument. check() returns a Mail::
SpamAssassin::PerMsgStatus object, called $status in the script, that contains a copy
of the message as well as the results of the spam check. In particular, the is_spam()
method of $status returns 1 if the message was judged to be spam, and 0 otherwise.

* On systems with the Mail::Audit module, Mail::SpamAssassin 2.x can be used as a plug-in for Mail::Audit.
See the documentation for both modules for details. SpamAssassin 3.0 no longer supports Mail::Audit, how-
ever; so this approach should be avoided for new installations.

28 | (Chapter2: SpamAssassin Basics

If the message was spam, the rewrite_mail() method of the $status object is called
and performs the complete SpamAssassin tagging process on the message, including
adding relevant headers and MIME-encapsulating a spam report and the original
message. Finally, the script prints the message to standard output by calling the get
full message as_text() method of $status and printing the result.

Example 2-9 illustrates the process for SpamAssassin 3.0.

Example 2-9. Using Mail::SpamAssassin 3.0 in Perl
#!/usr/bin/perl

use Mail::SpamAssassin;

my @lines = <STDIN>;

my $spamtest = Mail::SpamAssassin->new();
my $mail = $spamtest->parse(\@lines);

my $status = $spamtest->check($mail);
print $status->rewrite mail();

Before any SpamAssassin objects can be created, the script must use the Mail:
SpamAssassin module. The message is read from standard input and saved to the
array @lines. Then, the new() method of Mail::SpamAssassin is called to create a new
Mail::SpamAssassin object named $spamtest.

The parse() method on $spamtest is invoked and passed a reference to the array of
message lines. This method returns a Mail::SpamAssassin::Message object encapsulat-
ing the email message, which I call $mail in the example.

Next, $spamtest’s check() method is called, passing in the message as an argument.
check() returns a Mail::SpamAssassin::PerMsgStatus object, called $status in the
script that contains a copy of the message as well as the results of the spam check.

Finally, the rewrite_mail() method of the $status object is called, which performs
the complete SpamAssassin tagging process on the message, including adding rele-
vant headers and, if the message is spam, MIME-encapsulating a spam report and the
original message. The return value of rewrite_mail() is the rewritten message, so the
script prints it to standard output.

As these scripts illustrate, simple spam-checking is easily added to Perl scripts that
process email messages. The options to the spamassassin script are all available
through Perl either as arguments that can be passed to the Mail::SpamAssassin con-
structor (e.g., to specify the location of the sitewide configuration file) or as methods
of the Mail::SpamAssassin::PerMsgStatus object (e.g., to get the spam score or the
specific tests that were triggered). The manual (or perldoc) pages for Mail:
SpamAssassin, and Mail::SpamAssassin::PerMsgStatus provide complete details.
Other SpamAssassin modules support SpamAssassin’s advanced features, such as
learning, and are also documented with perldoc.

Invoking SpamAssassin ina Perl Saript | 29

SpamAssassin and the End User

The discussion so far in this chapter has focused on getting SpamAssassin to analyze
incoming mail and mark spam by modifying the message before delivery. For end
users who read their email on the server or download it with a POP or IMAP client,
the final step is to take action on messages. Messages processed through Spam-
Assassin fall into one of the categories described in the next four sections.

True Negatives (ham)

True negatives are messages that both you and SpamAssassin agree are non-spam, or
ham, messages. SpamAssassin does not modify these messages much. It adds an
X-Spam-Status header beginning with the word “No,” and an X-Spam-Checker-
Version header giving the version of SpamAssassin in use. These messages look just
as they should to a user’s mail reader.

True Positives (spam)

True positives are messages that both you and SpamAssassin agree are spam. These
messages are tagged by SpamAssassin. At minimum, SpamAssassin adds X-Spam-
Level, X-Spam-Status, and X-Spam-Flag headers. If rewrite subject is on, Spam-
Assassin also changes the subject of the message to begin with ****SPAM*™***,
Example 2-10 shows these headers.

Example 2-10. Headers added to spam by SpamAssassin

Subject: *¥*kESpAM**EE* | jve your dream life!! MPNWSTU

X-Spam-Status: Yes, hits=12.9 required=5.0 tests=CLICK_BELOW,
FORGED_MUA_EUDORA, FROM_ENDS_IN_NUMS,MISSING_OUTLOOK NAME,
MSGID_OUTLOOK_INVALID,MSGID SPAM ZEROES,NORMAL_HTTP_TO IP,
SUBJ_HAS_SPACES,SUB]_HAS_UNIQ ID autolearn=no version=2.60

X-Spam-Flag: YES

X-Spam-Checker-Version: SpamAssassin 2.60 (1.212-2003-09-23-exp)

X_Spam_ LeVel . ok ok sk ok ok ok ok ok ok k-

Most people will want either to complain about spam to the spammer’s ISP or to dis-
card it. In the former case, simply being able to quickly identify spam messages on
sight is usually sufficient, and the modified Subject header makes that simple. If the
user is reading his mail on a system with the spamassassin script and applica-
tions for distributed spam clearinghouses, he can pipe the message to
spamassassin --report to report the message to the clearinghouses.

In the latter case, that of wanting to discard spam, users can set up their personal
mail filters to delete spam or save it to a “spam” mailbox that they can check now
and then. Users on shell accounts with procmail might use the following recipes in
their ~/.procmailrc file:

30 | Chapter2: SpamAssassin Basics

:0
* AX-Spam-Level: VEVK\F\K\FKEFHNKE K EH\ K\ F
/dev/null

:0
* AX-Spam-Flag: YES

spambox
The first recipe checks to see if the message has at least 15 asterisks in the X-Spam-
Level header. These messages are very likely to be true positives and are discarded by
delivering them to /dev/null. The second recipe catches all other messages that Spam-
Assassin considers spam (e.g., with scores between 5.0 and 14.99) and saves them to
a separate mailbox file called spambox.

Users of POP mail clients can use their client’s filtering capabilities. Nearly all mod-
ern POP mail clients provide the ability to filter messages based on strings contained
in the Subject header, so spam can be redirected by checking the Subject for
****SPAM™***. Some POP clients provide greater control over filtering and allow
checking arbitrary headers; these clients can do the equivalent of the preceding proc-
mail recipes.

False Positives

False positives are the bane of all spam-checkers. A false positive occurs when Spam-
Assassin incorrectly marks a message as spam that you actually wanted to receive.
Because of the potential for false positives, it’s a good idea to encourage users to
think of SpamAssassin’s tags as advisory and to avoid discarding messages unseen on
the basis of a spam classification by SpamAssassin. Instead, as illustrated in the ear-
lier section on true positives, spam can be filtered to a special spam mailbox that the
user can check periodically to ensure that it does not contain any false positives.

If you're reading email on a system that has the spamassassin script and you find a
false positive, you can pipe the message through spamassassin --remove-markup to
remove the SpamAssassin report and restore the message to its untagged state.

Identifying false positives and reporting them to SpamAssassin is key to improving
SpamAssassin’s Bayesian classifier. The Bayesian classifier is discussed in detail in
Chapter 4.

False Negatives

A false negative is a missed spam. It occurs when SpamAssassin fails to tag a mes-
sage as spam that you actually consider spam. The more false negatives you get, the
less effective the spam-checking is in saving you time. You can reduce false negatives
by lowering SpamAssassin’s threshold score, but you will increase false positives at
the same time. Keeping track of false negatives can help you find patterns that may
let you tweak SpamAssassin’s rules to match your environment more closely.

SpamAssassin and the End User | 31

As with true positives, if the user is reading her mail on a system with the
spamassassin script and applications for distributed spam clearinghouses, she can
pipe the message to spamassassin --report to report the message to the clearing-
houses.”

Identifying false negatives and reporting them to SpamAssassin is key to improving
SpamAssassin’s Bayesian classifier. The Bayesian classifier is discussed in detail in
Chapter 4.

Measuring SpamAssassin’s Performance

One of the ways that SpamAssassin’s developers measure SpamAssassin’s performance
is by running SpamAssassin on large corpora of messages that are known to be spam
or non-spam and measuring the rate of true and false positives and negatives at differ-
ent thresholds (from —4 to 20) and with different features enabled. The results of these
tests are distributed in the rules directory in files STATISTICS.txt (statistics without
network or Bayesian tests), STATISTICS-set1.txt (statistics with network tests but no
Bayesian tests), STATISTICS-set2.txt (statistics with Bayesian tests but no network
tests), and STATISTICS-set3.txt (statistics with both network and Bayesian tests).

Here’s an example of the contents of STATISTICS-set3.txt showing performance with
a spam threshold of 5.0:

SUMMARY for threshold 5.0:
Correctly non-spam: 15550 46.59% (99.90% of non-spam corpus)

Correctly spam: 17648 52.87% (99.08% of spam corpus)
False positives: 15 0.04% (0.10% of nonspam, 1133 weighted)
False negatives: 164 0.49% (0.92% of spam, 437 weighted)

TCR: 74.527197 SpamRecall: 99.079% SpamPrec: 99.915% FP: 0.04% FN: 0.49%

With those features and that threshold, SpamAssassin had a true positive rate of 99.
08%, a true negative rate of 99.9%, a false positive rate of 0.1%, and a false negative
rate of 0.92%.

32 | Chapter2: SpamAssassin Basics

CHAPTER 3
SpamAssassin Rules

SpamAssassin performs its spam-checking by applying a series of tests to an email
message. Most tests examine the message headers or body for patterns that are sug-
gestive of spam; others perform Internet lookups against network-based blacklists of
IP addresses or checksums of spam messages. Each positive test yields a score, and
the sum of the scores is the total spam score of the message.

This chapter describes the SpamAssassin pattern-based and network-based tests:
how they are written and scored, and how you can modify the score of a built-in test
or write your own custom tests. This chapter also covers whitelist and blacklist rules,
which can override SpamAssassin’s usual determination of whether or not a message
1S spam.

The tests described in this chapter are all static testss—they don’t change over time as
SpamAssassin analyzes messages. Chapter 4 explains learning tests, which use infor-
mation from messages seen in the past to improve decisions in the future.

The Anatomy of a Test

Most SpamAssassin tests consist of the same basic components:

* A test name, consisting of up to 22 uppercase letters, numbers, or underscores.
Names that begin T_ refer to rules in testing.

* A more verbose description of the test, which is used in the reports generated by
SpamAssassin. Typically, descriptions are up to 50 characters long.

* An indication of where to look. Tests can be applied to the message headers
only, the message body only, uniform resource identifiers (URIs) in the message
body, or the complete message. When testing the message body, the body can be
analyzed in its raw state, after MIME-decoding the text, or after MIME-
decoding, stripping of HTML, and removal of all line breaks.

33

* A description of what to look for. Tests can specify a header to check for exis-
tence, a Perl regular expression pattern to match, a DNS-based blacklist to
query, or a SpamAssassin function to evaluate.

* Optional test flags that control the conditions under which the test is applied or
other exceptional features.

* A score or scores for the test. Tests can have a single score that is always used, or
they can have separate scores for messages that test positive under each of four
conditions:

* When the Bayesian classifier and network tests are not in use
* When the Bayesian classifier is not in use, but network tests are
* When the Bayesian classifier is in use, but network tests are not

* When the Bayesian classifier and network tests are both in use

Example 3-1 shows the complete definition of a test that matches when a message’s
From address begins with at least two numbers. This test is defined in the file /ust/

share/spamassassin/20_head_tests.cf (although its score appears in the 50_scores.cf
file).

Example 3-1. A test definition and score

header FROM_STARTS_WITH_NUMS From =~ /"\d\d/
describe FROM STARTS WITH_NUMS From: starts with nums

score FROM_STARTS_WITH_NUMS 0.390 1.574 1.044 0.579

How does this test work? The header directive defines it as a test that will be applied
to the message headers and gives the test name (FROM_STARTS WITH _NUMS) and the
test itself, a match of the From header against the regular expression /*\d\d/. That
regular expression denotes a string that begins with two digits.
L
For information about how to read and write regular expressions, see

the Perl manual page perlre, or Jeffrey Friedl’s book Mastering Regular
%:‘ Expressions (O’Reilly).

The describe directive provides a human-readable description of the test that Spam-
Assassin will insert in reports when the test matches. The score directive determines
how many points SpamAssassin will add to the spam score of a message if the test
matches. Higher scores mean that a message that matches the test is more likely to be
spam. In this example, SpamAssassin will add 0.39 points to the spam score of a
matching message if network and Bayesian tests are not in use, 1.574 points if net-
work tests are in use but Bayesian tests are not, 1.044 points if Bayesian tests are in
use but network tests are not, and 0.579 points if both network and Bayesian tests
are in use.

34 | Chapter3: SpamAssassin Rules

The tests distributed with SpamAssassin are typically stored in files in /usr/share/
spamassassin. Tests are stored in a set of ruleset files based on the type of test being
performed, and scores for all tests are stored together in one file. These tests are dis-
cussed in detail later in this chapter. Following are some other examples of test defi-
nitions from the distributed tests, along with their scores.

Testing for a To, From, or Cc header that mentions friend@public.com (this test is
distributed disabled):

header FRIEND PUBLIC ALL =~ /~(?:to|cc|from):.*friend\@public\.com/im
describe FRIEND_PUBLIC sent from or to friend@public.com
score FRIEND_PUBLIC 0
Testing for the existence of the X-PMFLAGS header:
header X _PMFLAGS_PRESENT exists:X-PMFLAGS
describe X_PMFLAGS_PRESENT Message has X-PMFLAGS header
score X_PMFLAGS_PRESENT 2.900 2.800 2.800 2.700

Testing for long lines of hexadecimal code in the message body:

body LARGE_HEX /[0-9a-fA-F]{70,}/
describe LARGE_HEX Contains a large block of hexadecimal code
score LARGE_HEX 0.633 1.595 1.193 1.160

Testing for a Subject header in all capital letters, by evaluating a SpamAssassin func-
tion:

header SUBJ_ALL_CAPS eval:subject_is all caps()
describe SUBJ_ALL_CAPS Subject is all capitals
score SUBJ_ALL_CAPS 0.550 0.567 0 0

Testing for a message that includes HTML to open a new window with JavaScript
(disabled by default):

body HTML WIN OPEN eval:html test('window_open')
describe HTML_WIN_OPEN Javascript to open a new window
score HTML_WIN_OPEN 0

Testing for an HTTP (Hypertext Transfer Protocol) URI anywhere in the message
that uses a numeric IP address (e.g., http:// 3502894884):

uri NUMERIC_HTTP_ADDR /~https?\:\/\/\d{7,}/is
describe NUMERIC_HTTP_ADDR Uses a numeric IP address in URL
score NUMERIC_HTTP_ADDR 2.899 2.800 2.696 0.989

Modifying the Score of a Test

You may find some tests more indicative of spam than SpamAssassin does by
default. If SpamAssassin already provides a test that you value but doesn’t assign it a
high enough score (higher scores are more indicative of spam), you can easily mod-
ify the score of the test. Similarly, if one of SpamAssassin’s tests is giving you too

Modifying the Score of aTest | 35

many false positives, you can reduce its score or disable the test entirely by setting its
score to 0. SpamAssassin will not attempt to run a test with a score of 0.

Modifying Scores Systemwide

Make systemwide score adjustments in the systemwide configuration file, typically
/etc/mail/spamassassin/local.cf. To modify the score of a test, you must first deter-
mine its test name, either by reading the ruleset files or by examining the spam report
from a message. To get a spam report on a message that doesn’t score high enough
for SpamAssassin to generate a report, you can use spamassassin --test-mode, as
described in Chapter 2.

To change the score of a test, simply add a new score directive to the configuration
file, like this:

score HTML_WIN OPEN 2

This will enable the HTML_WIN_OPEN test and add two points to the score of
messages that test positive on this test.

You can use the same approach to modify the descriptions of tests by adding new
describe directives. For example, the default description for the HOT_NASTY test is
“Possible porn - Hot, Nasty, Wild, Young”. To shorten that to “Possible porn”, add
this directive to the configuration file:

describe HOT NASTY Possible porn

Modifying Scores on a Per-User Basis

Users can use the score directive in per-user preference files to change the scoring of
a test for an individual user. To do so, a user edits the .spamassassin/user_prefs file in
her home directory and adds score directives. This approach to customizing scores
is the simplest, but it requires users to have accounts on the system and access to
files in their accounts.

Storing Scores in an SQL Database

When users do not have accounts or shell access (e.g., on a system that is an IMAP
or webmail server), per-user scores can be stored in an SQL database and spamd can
be configured to look up scores in the database. To store scores in SQL, you must
install the DBI Perl module and an appropriate driver module for your SQL database
server. Common choices are DBD-mysql (for the MySQL server), DBD-Pg (for the
PostgreSQL server), and DBD-ODBC (for connection to an ODBC-compliant
server).’

* “ODBC” stands for Open Database Connectivity.

36 | Chapter3: SpamAssassin Rules

You should create a database and a user with privileges to access it. You must then
create a table in the database to store the user scores. The SpamAssassin source code
includes a schema for a MySQL table in the sql subdirectory, which is shown in
Example 3-2. SpamAssassin 3.0 also includes a schema for a PostgreSQL table.

Example 3-2. A MySQL table for user scores

CREATE TABLE userpref (
username varchar(100) NOT NULL,
preference varchar(30) NOT NULL,
value varchar(100) NOT NULL,
prefid int(11) NOT NULL auto_increment,
PRIMARY KEY (prefid),
INDEX (username)

) TYPE=MyISAM;

You can use a different name for the table. The name given in Example 3-2 is the
default, however, and using it will require the least amount of SpamAssassin configu-
ration effort.

Each row in this table specifies the score for a single test for an individual user.
SpamAssassin expects the columns to contain the following information:

username
Gives the username or email address of the user (the latter is more useful in vir-
tual hosting environments). The special username @GLOBAL can be used to
define global values in SQL that will be applied to all users.

preference
Gives the name of the test to modify the score of. The column can also be used
with other directives (e.g., required_hits, auto_report threshold, and the
whitelisting and blacklisting directives described later in this chapter) but can-
not define new rules or modify administrative settings.

value
Gives the new score for the test or a new value for one of the other directives
(e.g., number of hits required to call a message spam or an email address to add
to the whitelist). SpamAssassin does not provide any tools for adding data to
these tables.

The prefid column and the PRIMARY KEY and INDEX clauses are useful but not
necessary. prefid defines a primary key for the table, and an index is built on the
username column to speed up queries.

To configure SQL support for user scores, set the following configuration parame-
ters in your systemwide configuration file (local.cf):

Modifying the Scoreof aTest | 37

user_scores_dsn DSN
This directive defines the data source name (DSN) for the SQL database. It tells
spamd how it will connect to the database server. A typical DSN, for the Perl DBI
module, is written like this:
DBI:databasetype:databasename: hostname:port
For example, to use a MySQL database named sascores running on a database
server on the SpamAssassin host, the DSN would read:

DBI:mysql:sascores:localhost:3306
If the server were running PostgreSQL, the DSN would read:

dbi:Pg:dbname=sascores;host=1ocalhost;port=5432;

user_scores_sql_username username
This directive defines the username that will be used to connect to the database
server. This user must have permission to issue SELECT queries against the table
but need not be permitted to modify the data or database structure.

user_scores_sql_password password
This directive defines the password associated with the username that will be
used to connect to the server.

user_scores_sql_table tablename
This directive defines the name of the table that contains user preferences. The
default tablename is “userpref”.

user_scores_sql _custom query query (SpamAssassin 3.0)
This directive specifies the SQL query that SpamAssassin will use to look up user
preferences. The query must be specified on a single (long) line in the configura-
tion file. The default query is:

SELECT preference, value FROM _TABLE_
WHERE username = USERNAME_ OR username = '@GLOBAL'
ORDER BY username ASC

This is read as “return the preference and value fields from the configured table

TABLE) for those rows with the specified username (_ USERNAME_) or with
the @GLOBAL username, in ascending lexicographic order.” Because Spam-
Assassin will use the value of each matching preference it encounters in order,
and because @GLOBAL sorts before all usernames, user-specific preferences will
effectively override global preferences.

You can use this directive to construct your own custom queries. Custom que-
ries must also return the preference and value columns (in that order). Queries
may use the special symbols _TABLE_ (replaced by the name of the table where
user preferences are stored), USERNAME_ (replaced by the user’s username),
MAILBOX (replaced by the portion of the username before an at sign [@] or the
whole username if there is no at sign), and _DOMAIN_ (replaced by the portion of
the username after an at sign or a null value if there is none). The manpage for
Mail::SpamAssassin::Conf provides a few interesting examples of default queries.
To support individual, domain, and global settings, add rows to the table with

38 | Chapter3: SpamAssassin Rules

[vww.allitebooks.cond

http://www.allitebooks.org

usernames of @ domain (which will sort after @GLOBAL but before real usernames)
and use this query:

SELECT preference, value FROM _TABLE_

WHERE username = USERNAME_ OR username = ‘@GLOBAL'

OR username = '@'||_DOMAIN_
ORDER BY username ASC

If you prefer to have some global preferences that cannot be overridden by users
and others that can, you can add rows to the table for the unchangeable prefer-
ences with username ~GLOBAL (which will sort after all usernames) and rows for
the changeable preferences with username @GLOBAL and use this query:

SELECT preference, value FROM _TABLE_

WHERE username = USERNAME_ OR username = ‘@GLOBAL’
OR username = ‘'~GLOBAL’

ORDER BY username ASC

Finally, you’ll need to start spamd with the --nouser-config command-line option and
either the --sql-config or --setuid-with-sql option to enable SQL-based configura-
tion (and disable the use of ~/.spamassassin/user_prefs files, which cannot be used by
spamd together with SQL). If spamd runs as a non-root user, or if your users don’t have
home directories, use --sql-config; if spamd runs as root and users have home direc-
tories, using --setuid-with-sql will enable spamd’s usual practice of changing uid to
the user running spamc so that it can access the user’s autowhitelist files.

Storing Scores in an LDAP Database

Another way to store per-user preferences in SpamAssassin 3.0 is in an LDAP (Light-
weight Directory Access Protocol) database. This approach may appeal particularly
to sites that already store their user account configuration in LDAP. To store scores
in LDAP, you must install the Net::LDAP and URI Perl modules.

LDAP objects (like those that represent users) and their attributes (such as user-
name, password, email address, etc.) are defined by one or more LDAP schemas. To
add SpamAssassin preferences to your users, extend the objectClass that repre-
sents a user to allow an additional, optional spamassassin attribute, which you

should define like this:

spamassassin
see http://SpamAssassin.org/ .
attributetype (2.16.840.1.113730.3.1.217
NAME 'spamassassin’
DESC 'SpamAssassin user preferences settings'
EQUALITY caseExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

The attribute SYNTAX must be multivalued (as in the example, which specifies the
DirectoryString syntax with object identifier (OID) 1.3.6.1.4.1.1466.115.121.1.15),
because a user object will have multiple spamassassin attributes, one for each prefer-
ence setting.

Modifying the ScoreofaTest | 39

The attributes themselves should be stored in the database. A spamassassin LDAP
attribute should be set to the name of a SpamAssassin configuration directive fol-
lowed by the value for the directive, separated by a space. SpamAssassin 3.0 includes
an example of what such user definitions might look like in LDIF (LDAP Inter-
change Format) format. The spamassassin attribute added to this user’s LDAP entry
is emphasized:

dn: cn=Curley Anderson,ou=MemberGroupB,o=stooges
ou: MemberGroupB

o: stooges

cn: Curley Anderson

objectClass: top

objectClass: person

objectClass: organizationalPerson
objectClass: inetOrgPerson

mail: CAnderson@isp.com

givenname: Curley

sn: Anderson

uid: curley

initials: Joe

homePostalAddress: 14 Cherry Ln.$Plano TX 78888
postalAddress: 15 Fitzhugh Ave.
spamassassin: add_header all Foo LDAP read
1: Dallas

st: TX

postalcode: 76888

pager: 800-555-1319

homePhone: 800-555-1313

telephoneNumber: (800)555-1214

mobile: 800-555-1318

title: Developemnt Engineer
facsimileTelephoneNumber: 800-555-3318
userPassword: curleysecret

To configure LDAP support for user scores, set the following configuration parame-
ters in your systemwide configuration file (local.cf):

user_scores_dsn DSN
Defines the data source name for the LDAP database. It tells spamd how it will
connect to the LDAP server. LDAP DSNs are specified as URLs according to
RFC 2255, like this:
ldap://host:port/basedn?attr?scope?filter

For example, to use the LDAP server on the SpamAssassin host to search for
objects under the base DN of dc=example,dc=com and to return the spamassassin
attributes for those in which the uid attribute matches the username that Spam-
Assassin is running for, the DSN would be:

1dap://localhost:389/dc=example,dc=com?spamassassin?sub?uid=__USERNAME_ _

40 | Chapter3: SpamAssassin Rules

user_scores_ldap_username bind_dn
Provides the DN that SpamAssassin should use to bind to the LDAP server. This
DN must have sufficient privileges to perform the query defined in the DSN.

user_scores_ldap_password password
Provides the password that SpamAssassin should use to authenticate itself when
binding to the LDAP server with the specified bind _dn.

Finally, you’ll need to start spamd with the --nouser-config command-line option and
either the --1dap-config or --setuid-with-1dap option to enable LDAP-based config-
uration (and disable the use of ~/.spamassassin/user_prefs files, which cannot be used
by spamd together with LDAP). If spamd runs as a non-root user, or if your users
don’t have home directories, use --ldap-config; if spamd runs as root and users
have home directories, using --setuid-with-ldap will enable spamd’s usual prac-
tice of changing uid to the user running spamc so that it can access the user’s
autowhitelist files.

Writing Your Own Tests

When none of the existing tests does what you’d like, you can write a custom test of
your own. Custom tests are just like the distributed tests, except that you install
them in the systemwide configuration file or in a per-user preference file.

L)

Users can write their own tests in their per-user preference files, but
for security reasons these tests will not be used when spamd is perform-
t48: ing spam-checking, unless the allow_user_rules option is set to 1 in
" the systemwide configuration. However, setting this option is danger-
ous because spamd runs as root and a malicious or inexperienced user
can construct a custom test that causes the system to hang or to invoke
an arbitrary command as nobody or as spamd’s uid. Users who want
their own tests on a system that uses spamd should reinvoke the
spamassassin script on their incoming mail (probably in their
.procmailrc). Chapter 2 illustrates this approach.

The first step in writing a custom test is to choose a symbolic test name and write a
meaningful test description with the describe directive. For now, do not begin any of
your names with a double underscore (__). Test names that begin with two under-
scores are not listed in test hit reports, nor are they added to the spam score on their
own; such names are used for creating sets of subtests that should be applied in com-
bination. SpamAssassin calls these combinations meta tests, and they are discussed
later in this section.

Second, determine what part of the message you wish to test. Table 3-1 summarizes
the directives used to test different portions of a message. Each is covered in greater
detail in the following sections.

Writing Your Own Tests | 41

Table 3-1. Message portions and associated test directives

Message part Directive Possible tests

Headers header TESTNAME Match a regexp
Don't match a regexp
Exists

Evaluate Perl code
Check Received headers against DNSBL

Message subject and text of message body, decoding body TESTNAME Match a regexp
all textual MIME parts, with HTML tags and line Evaluate Perl code
breaks removed
Text of message body, decoding all textual MIME rawbody TESTNAME Match a regexp
parts, with HTML tags and line breaks retained Evaluate Perl code
Undecoded message body including all MIME parts full TESTNAME Match a regexp
Evaluate Perl code
URIs in the message body uri TESTNAME Match a regexp
URIs in the message body uridnsbl TESTNAME (SpamAssassin 3.0) Check for address

in a DNS-based blacklist

Third, decide if your test requires any special test flags. Test flags are used to inform
SpamAssassin that your test may apply only under certain conditions or may do
something unusual. Use the tflags TESTNAME flaglist directive to indicate test flags.
The flaglist is a space-separated list of flags. Table 3-2 lists the available flags in
SpamAssassin and their effects.

Table 3-2. Test flags

Flag Meaning

net A network-based test that will not be run when SpamAssassin is directed to run local tests only

learn A test that requires training before use (e.g., the Bayesian tests)

userconf A test that requires user configuration before use (e.g., a test that expects the user to provide a list
of addresses)

nice A test that will be given a negative score

noautolearn (Spamassassin 3.0) A test that will not be applied in the spam score when determining whether

the message should be automatically learned as spam or non-spam

For example, the RCVD_IN_BL_SPAMCOP_NET test, which checks the message’s
Received headers against the DNS-based blacklist at bl.spamcop.net is defined in
20_dnsbl_tests.cf like this:"

header ~ RCVD_IN BL_SPAMCOP_NET eval:check _rbl txt('spamcop', 'bl.spamcop.net.")

* The upcoming “Header Tests” section explains the details of how DNS-based blacklist-checking is per-
formed.

42 | Chapter3: SpamAssassin Rules

describe RCVD_IN_BL_SPAMCOP_NET Received via a relay in bl.spamcop.net

tflags RCVD_IN BL_SPAMCOP_NET net
Finally, after adding or modifying a test, you should run spamassassin --lint to
check your new rules for correct syntax. This command will attempt to parse all of
the rules and configuration files in the ruleset directory and systemwide configura-
tion directory. It exits quietly if no errors are found.

Versioning Your Rules

If you plan to create an extensive set of new rules, and especially if you plan to distrib-
ute them to other SpamAssassin users, you should use the version_tag configuration
option to set a string that will denote your version of the rules. This string will appear
in the X-Spam-Status header, after SpamAssassin’s version number.

For example, set version_tag like this:
version_tag example.com
to produce the following in the header:

X-Spam-Status: No, hits=0.9 required=5.0 tests= FROM_NO_LOWER autolearn=no

version=3.0.0-example.com
If your rules rely on a particular version of SpamAssassin, include the require_version
directive, followed by the required version number. When SpamAssassin sees this
directive when parsing a file, it skips the rest of the file unless the version number is an
exact match for the running version. For example, to ensure that custom rules you
wrote for SpamAssassin 2.63 won'’t be used in SpamAssassin 3.0, add this line to the
top of the file containing your rules:

require_version 2.63

Header Tests

Use the header directive to define a header test. Header tests can test for the exis-
tence of a header or check to see if a header matches (or fails to match) a regular
expression.

To check for the existence of a header, use the following syntax:
header TESTNAME exists:headername

Regular expression tests can be applied to any single header in a message, both the
To and Cc headers, all Message-Id headers, or all headers. Use the following form to
match a header to a Perl regular expression:

header TESTNAME headername =~ /regexp/modifiers
Use this next syntax to test whether a header does not match a regular expression:

header TESTNAME headername !~ /regexp/modifiers

Writing Your Own Tests | 43

In these tests, the headername can be the name of a single header, or can be ToCc (to
match in the To or Cc header), MESSAGEID (to match in any Message-Id header), or
ALL (to match in any header). SpamAssassin 3.0 also supports headername
EnvelopeFrom to match against the address supplied in the SMTP MAIL FROM command
if the MTA provides this information to SpamAssassin.

A header that does not exist will not match any regular expression. To handle the
possibility of a nonexistent header, you can add an optional [if-unset: STRING]
after the regular expression and modifiers, and STRING will be tested against the regu-
lar expression if the header does not exist. For example, to look for a Reply-To
header that either contains @localhost or is missing, you could use this rule:

header LOCAL_OR_NO REPLY reply-to =~ /@localhost/ [if-unset: @localhost]

Many of the methods available in the Mail::SpamAssassin::EvalTests module test
headers. This module is not documented, but you can learn about its methods by
reading the rules distributed with SpamAssassin. For example, the subject_is all_
caps() method matches when the Subject header contains all capital letters. This test
is the basis of the SUBJ_ALL_CAPS rule distributed with SpamAssassin:

header SUBJ_ALL CAPS eval:subject_is_all caps()

Configurable header tests (SpamAssassin 3.0)

Some of the header tests in SpamAssassin 3.0 that use Mail::SpamAssassin::EvalTests
methods have configurable parameters that control their operation. These parame-
ters should be defined in sitewide or user configuration files.

The check_for_from dns() method performs a DNS lookup on the address in the
message’s Reply-To or From header to ensure that an MX record listing a host will-
ing to receive mail for the message sender’s host exists. Because DNS lookups can be
slow, two configuration file options, check_mx_attempts and check_mx_delay are pro-
vided so you can adjust these lookups. Set check mx_attempts to the number of
lookup attempts you are willing to have SpamAssassin make (the default is 2). Set
check_mx_delay to the number of seconds to wait between attempts in case the
domain name server is temporarily down (the default is 5).

The check_hashcash_value() and check_hashcash_double_spend() methods imple-
ment Hashcash verification (http://www.hashcash.org). If a message includes an
X-Hashcash header, SpamAssassin can quickly verify that the sender spent the
required processing time to produce a valid header and reduces the message’s spam
score in proportion to how difficult it was for the sender to produce the header. To
control SpamAssassin’s use of Hashcash, define the following configuration
variables:

use_hashcash
If this variable is set to 1 (the default), Hashcash headers in messages will be
checked. To disable Hashcash-checking, set this variable to 0.

44 | Chapter3: SpamAssassin Rules

hashcash_accept address(es)
In order for SpamAssassin to perform a Hashcash check, it must know all of the
valid addresses that could receive mail with Hashcash headers. Set this variable
to provide those addresses.

You can use multiple hashcash_accept directives or multiple addresses in a sin-
gle directive to list several addresses. You can also use an asterisk (*) as a wild-
card for zero or more characters and the question mark (?) as a wildcard for zero
or one character, much as you would to specify filename patterns in a shell.
Finally, you can use %u to represent the current user’s username in a sitewide
configuration file. For example, a sitewide configuration file for users at example.
com might include:

hashcash_accept %u@example.com %u@*.example.com

hashcash_doublespend_path /path/to/file
Set this variable to the path at which SpamAssassin will create and maintain a
(Berkeley DB format) database of previously seen Hashcash headers to prevent a
sender from reusing a header. The default file is ~/.spamassassin/hashcash_seen.
For a shared sitewide database, the user SpamAssassin runs as must have permis-
sion to write to this file and its directory.

hashcash_doublespend_file_mode mode
The file mode, in octal, for the Hashcash double-spend database. The defaulr file
mode is 0700. The file mode should include execute bits so that SpamAssassin
can create directories, if necessary; i.e., use 0700 rather than 0600.

check_rbl()

A set of methods that can be the basis for new tests are the check_rbl(), check_rbl_
txt(), and check rbl sub() methods. These methods extract IP addresses from a
message’s Received headers, discard those that are known to be reserved addresses or
on trusted networks, and query a DNS-based blacklist for each address. If any of the
addresses are listed in the blacklist, the test matches. Rules using these methods are
written like other eval rules:

header A_NEW BLACKLIST eval:check rbl('nasties’, 'new.blacklist.zone")

Call check_rbl() with two arguments. The first argument is the zone ID, a string
that’s used to identify the blacklist. It’s primarily useful when you’re querying a
blacklist that’s composed of many different lists, and you later want to evaluate the
query result by which sublists the addresses were on (this topic is discussed later in
this chapter).

If you append -notfirsthop to the name of the zone ID, the originating IP address will
be excluded from RBL lookups unless it is the only IP address. This is useful when
querying blacklists of dialup or DSL (Digital Subscriber Line) hosts that are expected
to relay all their email through an ISP’s mail server. If new.blacklist.zone was this
kind of blacklist, you might have written the test like this:

Writing Your Own Tests | 45

header A_NEW_BLACKLIST eval:check_rbl('nasties-not-firsthop', ‘new.blacklist.zone")

Similarly, you can append -firsttrusted to check the IP address that appears in the
Received header that was added by the most remote trusted server (IP addresses in
Received headers added by more remote relays cannot be trusted). This is useful for
querying a DNS-based whitelist to determine whether the server that first relayed the
email to a trusted server appears on the whitelist. By appending -untrusted, you will
check only the untrusted IP addresses (those more remote than the most remote
trusted server). Here’s a definition for a test of a DNS-based whitelist:
header A_NEW WHITELIST eval:check rbl('friends-firsttrusted', ‘new.whitelist.zone"')
tflags A_NEW WHITELIST nice
(Remember, as Table 3-2 points out, when defining a test that will lower the spam
score, you must set the nice test flag.)

The second argument is the DNS zone for the blacklist. SpamAssassin checks the
blacklist by performing a DNS query for a hostname in this zone. SpamAssassin
determines the hostname by reversing the IP address that it’s trying to check (e.g.,
128.0.10.0 becomes 0.10.0.128) and prepending it to the zone name (e.g., creating
0.10.0.128.new.blacklist.zone). It then issues a query for a DNS A record associated
with that hostname. Typically, if an address is blacklisted, the DNS query will be
successful—it will return an IP address (usually 127.0.0.1). If the address is not on
the blacklist, the DNS query will fail (returning an NXDOMAIN response).

check_rbl_txt()

Some blacklists are based on DNS TXT records instead of DNS A records. (Blacklist
operators should indicate which kind of lookup is appropriate for their blacklist.)
Use the check_rbl txt() method to perform lookups using a blacklist based on
TXT records. check_rbl txt() accepts the same arguments as check rbl() and
works analogously. SpamAssassin reverses the IP address that it’s trying to check
(e.g., 128.0.10.0 becomes 0.10.0.128) and prepends it to the zone name (e.g., creat-
ing 0.10.0.128.new.blacklist.zone). It then issues a query for a DNS TXT record
associated with that hostname. If the address is blacklisted, the TXT query will
return a string explaining why the address is blacklisted. If the address is not on the
blacklist, the DNS query will fail (returning an NXDOMAIN response).

check_rbl_sub()

Some DNSBLs are aggregations of many different blacklists. These DNSBLs typically
return different IP addresses in response to a successful A lookup to indicate on
which sublist(s) the blacklisted address appears (e.g., the query returns 127.0.0.1 for
addresses on sublist 1, 127.0.0.2 for addresses on sublist 2, etc.).

Use the check_rbl_sub() method to query a combined DNSBL and determine if the
IP address is on a specific sublist. This method also takes two arguments: the first is a
zone ID, and the second indicates which response is associated with the desired

46 | Chapter3: SpamAssassin Rules

Trusted and Untrusted Servers

Some mail servers are more trustworthy than others. In many organizations, email is
received at an SMTP (Simple Mail Transfer Protocol) gateway on the Internet, checked
for viruses, and then relayed through a firewall to an internal SMTP gateway that is
responsible for delivering mail to individual machines on the internal network. In such
a configuration, messages received by internal machines will have Received headers
added by the internal SMTP gateway and the external SMTP gateway. The organiza-
tion may also maintain (or contract with) off-site machines that serve as backup mail
exchangers if the main SMTP gateway is unreachable. All of these machines are under
the organization’s control (or the control of a trusted provider), and the information in
their headers can be trusted. Received headers added by other machines may be forged.

SpamAssassin doesn’t check the IP addresses of trusted relays against DNS-based
blacklists. By default, SpamAssassin works backward through the Received headers,
beginning with the one added by the MTA on its own system (which is always trusted),
and decides whether or not the addresses in each header are trusted. SpamAssassin
treats Received lines that show messages being received from the local host, from a host
on the same /16 subnet, from a host with a private IP address, or by a host with a pri-
vate IP address as accurate and uses them to infer trusted relays.

When these simple inferences are not sufficient, you can manually define a set of
trusted relays or networks using the trusted_networks configuration option, like this:

trusted_networks 10/8 127/8 209.58.173.10

This specifies that all hosts in the 10.*.*.* range, all hosts in the 127.*.*.* range, and the
single host 209.58.173.10 are to be trusted. Multiple trusted_networks directives can
be used.

SpamAssassin 3.0 adds the internal networks configuration option. Set internal
networks to the list of relays or networks that you trust because you manage them (or
they are within your organization or are mail exchangers for your organization).
trusted_networks may include other hosts that you trust but that are not part of your
mail organization. Separating these concepts allows SpamAssassin 3.0 to do a better
job of detecting spam from dialup hosts being routed around their ISP’s designated
outgoing mail server, while still allowing messages from trusted sites to skip blacklist-
testing.

sublist. For example, if the new.blacklist.zone blacklist is composed of sublists that
return 127.0.0.1 and 127.0.0.2, you could check IP addresses against only the sec-
ond sublist:

header A_NEW_BLACKLIST eval:check_rbl('nasties’, 'new.blacklist.zone")
header NEW BLACKLIST 2 eval:check _rbl sub('nasties','127.0.0.2")

Less commonly, composite lists may return a single A record whose IP address is to

be interpreted as a bitmask of matching sublists. To check a sublist in this case,

provide a bitmask (as a positive decimal number) as the second argument to check_
rbl sub().

Writing Your Own Tests | 47

Note that you must have a rule that uses check_rbl() or check_rbl_txt() to associ-
ate a zone ID string with the blacklist in order to check the result against a sublist.

Body Tests

The body, rawbody, and full directives define tests on the body of an email mes-
sage. Two basic kinds of tests are provided. Message bodies can be tested against a
regular expression pattern, and message bodies can be submitted to an eval test
defined in Mail::SpamAssassin::Evaltests.

The body directive defines a test to be applied to the text of a message, as it would be
likely to appear to a person reading the message in a text-based mail client. The
Subject header is considered to be the first paragraph of the message body. All tex-
tual MIME components of the message are decoded, and HTML tags are removed.
The message is reformatted into paragraphs (text separated by multiple newlines),
and newlines within paragraphs are removed. The test is then applied to each mes-
sage paragraph. Here’s an example of a body test distributed with SpamAssassin that
matches if the word “remove” appears in quotes in the body:

body REMOVE_IN_QUOTES /\"remove\"/1i

The rawbody directive defines a test to be applied to the text of a message, as it
would be likely to appear to a person reading the message in an HTML-based mail
client. The Subject header is not included. All textual MIME components of the mes-
sage are decoded, and the message is split into lines based on the line breaks in the
message. The test is then applied to each message line. Here’s an example of a raw-
body test distributed with SpamAssassin that’s designed to find a JavaScript state-
ment that’s common in spam:

rawbody HIDE_WIN_STATUS /<[*>]+onMouseOver=[*>]+window\.status=/1

Note that this test could not be written as a body test because this JavaScript appears
inside an HTML tag.

The full directive defines a test to be applied to the full text of a message. All head-
ers are included, along with all textual MIME components of the message body, but
no decoding is performed. The message is split into lines based on the line breaks in
the message, and the test is then applied to each header and message line. Spam-
Assassin does not distribute any full tests that match regular expressions; it reserves
full for eval tests that must submit the raw message to external spam clearinghouses
(which are discussed later in this chapter).

Body tests are powerful but slow. Be especially careful when defining
@ regular expressions to test message bodies, as these expressions will be

applied to large amounts of text. Consult Jeffrey Friedl’s book Master-
ing Regular Expressions (O’Reilly) for important tips on optimizing
regular expression processing.

48 | Chapter3: SpamAssassin Rules

URI Tests

The uri directive defines a test on all URIs that appear in an email message. Spam-
Assassin creates a list of http, https, ftp, mailto, javascript, and file URIs and trans-
forms bare hostnames starting with www or ftp into appropriate URIs. The test is
applied to each URI in the message.

URIs can be matched against a regular expression pattern. Here’s an example of a
distributed URI test that checks for a mailto URI with the string “remove” in the
address portion:

uri MAILTO_TO REMOVE /"mailto:.*?remove/is

SpamAssassin 3.0 includes a plug-in called Mail::SpamAssassin::Plugin::URIDNSBL.
When loaded, this plug-in enables the uridnsbl directive, which takes each URI in
the message, extracts the name of the host in the URI, looks up its IP address in
DNS, and then checks the IP address against a specified DNSBL. These tests catch
spam that is relayed through innocent (or temporary) mail servers but that advertise
web sites on spammer servers. Here’s a portion of SpamAssassin 3.0’s 25_rules.cf file
that defines a uridnsbl test called URIBL_SBLXBL:

loadplugin Mail::SpamAssassin::Plugin: :URIDNSBL

uridnsbl URIBL_SBLXBL sbl-xbl.spamhaus.org. TXT
header URIBL_SBLXBL eval:check_uridnsbl('URIBL_SBLXBL')
describe URIBL_SBLXBL Contains a URL listed in the SBL/XBL blocklist

Meta Tests

A meta test is a test that combines the results of several other tests using Boolean
logic. For example, a meta test might be positive if either of two subtests are posi-
tive, or might specify that both subtests must be positive. A meta test can combine
several tests using Boolean operators for and (88), or (][), and not (!), along with
parentheses to modify the precedence in the expression.

When using meta tests, you will often want some or all of the subtests to contribute
only to the meta test and not to be separately scored. To achieve this effect, give the
subtests names that begin with two underscores. This prevents SpamAssassin from
scoring them separately. You can then assign a single score to the meta test. Because
non-scoring subtests will never be listed in a SpamAssassin report, you need not
include a describe directive for these tests.

Example 3-3 shows the CLICK_BELOW meta test in SpamAssassin.

Example 3-3. A meta test and its subtests

body CLICK_BELOW_CAPS /CLICK\s.{0,30}(?:HERE |BELOW)/s
describe CLICK_BELOW_CAPS Asks you to click below (in capital letters)

body __CLICK_BELOW /click\s.{0,30}(?:here|below)/is

Writing Your Own Tests | 49

Example 3-3. A meta test and its subtests (continued)

meta CLICK_BELOW (__CLICK BELOW &3 !CLICK_BELOW_CAPS)
describe CLICK_BELOW Asks you to click below

The CLICK_BELOW_CAPS test is standard body test that is positive if the words
“CLICK BELOW?” or “CLICK HERE” appear in the message in uppercase. Although
it is a standard test that is used and scored on its own, SpamAssassin also uses it as a
subtest in a meta test. The __CLICK_BELOW test is a nonscoring subtest that is
positive if the same phrases appear in any combination of upper- and lowercase let-
ters. The CLICK_BELOW meta test is positive when _ _CLICK_BELOW is positive
and CLICK_BELOW_CAPS is not positive—that is, when the phrase appears in any-
thing except all uppercase. Typically, a mixed or lowercase occurrence is assigned a
lower score than the uppercase version.

In addition to using Boolean logic operators, it’s also possible to use arithmetic oper-
ators (+, -, *, /) and comparisons (>, >=, <, <=, !=, =). When you combine tests with
arithmetic operators, the values of subtests are 1 if they are positive and O if they are
negative. One such meta test in SpamAssassin is MULTI_FORGED, which counts
the number of positive tests for different kinds of Received header forgery and is posi-
tive when two or more forgeries appear in the same message. This test is shown in
Example 3-4.

Example 3-4. The MULTI_FORGED meta test

meta MULTI_FORGED ((FORGED AOL_RCVD + FORGED HOTMAIL RCVD + FORGED EUDORAMAIL RCVD +
FORGED_YAHOO_RCVD + FORGED_JUNO_RCVD + FORGED_GWo5_RCVD) > 1)

The Built-in Tests

SpamAssassin is distributed with over 700 test rules defined for English-language
spam. SpamAssassin 2.63 includes another 2,900 rules for spam in other languages.
(Language support in SpamAssassin 3.0 is currently available only for French and
German, but language support is likely to increase as SpamAssassin gets into wider
release.) Reading the rules distributed with SpamAssassin is an excellent way to learn
to write your own rules.

SpamAssassin’s rules are defined in a set of files typically installed in /usr/share/
spamassassin:

10_misc.cf
The 10_misc.cf file defines templates for the spam report that SpamAssassin
attaches to spam messages, definitions of headers that SpamAssassin adds to
messages, and default settings for the most common configuration options. This
file is described in more detail later in this chapter.

50 | Chapter3: SpamAssassin Rules

rF

10_plugins.cf (SpamAssassin 3.0)
This file provides a convenient place to load SpamAssassin plug-in modules with
the loadplugin directive. Plug-ins extend SpamAssassin’s features.

20_fake_helo_tests.cf
This file defines a set of rules used to test for forged HELO hostnames. This file
is also described in more detail later in this chapter.

20_body_tests.cf
This file defines most tests against message bodies, spam clearinghouses, mes-
sage languages, and message locales. It’s described in more detail later.

20_dnsbl_tests.cf
This file defines tests against many different DNS blacklists, using the check_
rbl(), check_rbl sub(), and check_rbl_txt() eval tests described earlier in this
chapter. These blacklists include NJABL (http://www.dnsbl.njabl.org/), SORBS
(http://'www.dnsbl.sorbs.net/), OPM (http://opm.blitzed.org/), Spamhaus
(http://sbl.spamhaus.org), DSBL (http://dsbl.org), Spamcop (http://bl.spamcop.net),
MAPS (http://www.mail-abuse.org), and several others.

20_ratware.cf and 20_anti_ratware.cf
The 20_ratware.cf file contains tests that look for tell-tale signs of specialized
mail programs known to be used by spammers (ratware or spamware). Most of
them are tests of message headers. The 20_anti_ratware.cf file is designed to
contain tests that look for signs of non-spam mail programs that might be
mistaken for spamware, but it doesn’t contain any active tests as of Spam-
Assassin 3.0.

20_head_tests.cf
This file contains most of the tests that SpamAssassin performs against message
headers. This includes tests for blacklisted and whitelisted addresses in the From
and To headers (discussed in greater detail in Chapter 4).

20_porn.cf (all SpamAssassin versions) and 20_drugs.cf (SpamAssassin 3.0)
These files contain body tests that look for common indicators of pornographic
spam and online pharmacy spam, respectively.

20_phrases.cf
This file contains body tests that look for common phrases that appear in spam.
Most of them are either instructions for how you can be removed from the mail-
ing list or claims that the message conforms to a bill that putatively regulates
unsolicited email.

20_uri_tests.cf
This file contains most of the tests that SpamAssassin performs against URIs that
appear in messages.

20_compensate.cf
Tests in this file are intended to compensate for common false positives in
header tests and are “nice” tests (with negative spam scores).

The Built-inTests | 51

20_html_tests.cf
This file contains body tests that target messages that contain HTML markup.
Certain types of markup are very commonly seen in spam, and several of these
tests make for interesting reading.

20_meta_tests.cf
This file contains meta tests. Meta tests are tests that combine other tests, and
are described earlier in this chapter.

23_bayes.cf
This file contains tests that act on the results of the Bayesian classifier. The Baye-
sian system and these tests are described in greater detail in Chapter 5.

25_head_tests_es.cf, 25_body_tests_es.cf, 25_head_tests_pl.cf, 25_body_tests_pl.cf
(SpamAssassin 2.6x)
These files contain header and body tests for Spanish (es) and Polish (pl) mes-
sages.

25_uribl.cf (SpamAssassin 3.0)
This file loads the URIDNSBL plug-in and defines URI tests against DNS black-
lists.

30_text_".cf (de,es,fr,it,pl,sk)
These files don’t define any new tests but provide translations of test descrip-
tions and report templates into different languages, such as German (de), Span-
ish (es), French (fr), Italian (it), Polish (pl), and Slovak (sk). SpamAssassin 3.0
includes only German and French tests at the time of this writing.

50_scores.cf
This file defines the scores associated with all of the tests defined in the other
files. The scores are separated into a single file because they are generated by an
algorithm that applies each test to a large corpus of spam and non-spam mes-
sages and adjusts the scores to minimize false positives and false negatives.

60_whitelist.cf
The rules in this file set up default whitelists for several large well-known
addresses and companies, such as Amazon.com.

Because these files are overwritten whenever SpamAssassin is upgraded, they should
not be changed. All local rules or changes to the scoring of distributed rules should
be performed in the systemwide configuration file (or in per-user preference files)
rather than in these files. Reading these files, however, provides the most informa-
tion about how SpamAssassin rules are designed.

The following sections describe some of the more important rule files in greater
detail.

52 | (Chapter3: SpamAssassin Rules

10_misc.cf

The 10_misc.cf file defines special rules that are not spam tests. These include tem-
plates for the spam report that SpamAssassin attaches to spam messages, definitions
of headers that SpamAssassin adds to messages, and default settings for the most
common configuration options (such as those described in Chapter 2).

Templates are defined with the report, unsafe_report, and spamtrap directives,
and the corresponding utility directives clear_report_template, clear_unsafe_
report_template, and clear_spamtrap_template. Use the report template to
design the report that SpamAssassin attaches to spam messages. Use the unsafe_
report template to design the report that SpamAssassin attaches to messages that
contain potentially executable code. Use the spamtrap template to design the mes-
sage that SpamAssassin sends back to senders who email a spam trap address that
calls the spamassassin script with the --report and --warning-from options
(spam-reporting is discussed in Chapter 2).

Each time it encounters a template directive, SpamAssassin appends new text to the
template. Accordingly, to ensure that you're starting with a clean slate when you
define a new template, you must first clear the template and then add your desired
text. Here’s how the spam report might be defined in SpamAssassin:

clear_report_template

report Spam detection software, running on the system " HOSTNAME ", has
report identified this email as possible spam. The original message
report is attached to this so you can view it (if it isn't spam) or block
report similar future email. If you have any questions, see

report _CONTACTADDRESS_ for details.

report

report Content preview: _PREVIEW_

report

report Content analysis details: (_HITS_ points, _REQD_ required)
report

report " pts rule name description”

TEPOYT === mmmmmmm e eee e e eeeeecececeeeeeeee
report _SUMMARY_

HOSTNAME, _CONTACTADDRESS , PREVIEW , HITS , REQD , and SUMMARY_ are variables
that are replaced by their values when the template is generated for each message.
The complete list of variables, which appears in the Mail::SpamAssassin::Conf
manpage, is given in Table 3-3.

Table 3-3. Variables for use in report and header templates

Variable Value

Variables that depend on the

message

YESNOCAPS "YES” if message is spam; “NO” if message is not spam.
YESNO “YES” if message is spam; “NO” if message is not spam.

The Built-inTests | 53

Table 3-3. Variables for use in report and header templates (continued)

Variable Value

HITS Spam score for message.

BAYES Bayesian classifier score.

AUTOLEARN “spam” if message was auto-learned as spam by the Bayesian classifier; "ham” if auto-
learned as non-spam; “NO” if the message was not auto-learned.

AWL Autowhitelist score modifier.

DATE Date and time of SpamAssassin scan in RFC 2822 format.

STARS A string containing one asterisk for each point of spam score (up to 50).

STARS(character) A string containing one of character for each point of spam score (up to 50).

_RELAYSTRUSTED _ List of relays found in the message and deemed to be trusted. The list includes the IP
address, reverse DNS lookup, and HELO address for each relay.

RELAYSUNTRUSTED List of relay IP addresses found in the message and deemed to be untrusted.

_TESTS, Comma-separated list of tests matched, or tests matched and their associated scores.

TESTSSCORES

TESTS(character), Asin _TESTS_, _TESTSSCORES_ but separated by character instead of comma.

TESTS—SCORES(character)

LANGUAGES List of languages that SpamAssassin thinks a message is written in.

PREVIEW Preview of message content.

SUMMARY Multiline list of tests matched and their scores and descriptions.

REPORT One line list of tests matched.

RBL Results of positive DNSBL queries.

DCB, DCCR_ Checking host and results of DCC check of message.

PYZ0R Results of Pyzor check of message.

Variables that don't depend on

the message

REQD SpamAssassin’s threshold score for calling a message spam.

VERSION, _SUBVERSION_ Version and subversion of SpamAssassin.

HOSTNAME Hostname of SpamAssassin host.

CONTACTADDRESS The value of the report_contact directive (typically, the email address of the

postmaster).

The variables in Table 3-3 can also be added to customized message headers for mes-
sages processed by SpamAssassin by using the add_header directive, which takes the
following form:

add_header messagetype headername string

The messagetype can be spam, ham (non-spam), or all and determines which kind of
messages will have the header added. The new header will be named X-Spam-
headername, and string, which should be enclosed in double quotes, will be the value
of the header. For example, the following directive, which appears in the distributed

54 | Chapter3: SpamAssassin Rules

10_misc.cf file, adds an X-Spam-Status header to all messages—spam or not—that
shows whether or not each message is spam, the spam score, the spam threshold
score, the tests that were matched, whether the message is being automatically
learned (see Chapter 5), and the version of SpamAssassin:
add_header all Status "_YESNO_, hits=_HITS_ required=_ REQD_ tests=_TESTS_ autolearn=_
AUTOLEARN_ version=_VERSION "
If you want to change or remove a default header, you can use the remove header
directive:

remove_header messagetype headername

You can remove all headers with the clear_headers directive.

20 fake helo_tests.cf

This file defines a set of rules that use the eval test check_for_rdns_helo_mismatch().
This test takes two arguments: a regular expression pattern to match against the
reverse DNS lookup of the connecting client’s IP address, and a regular expression
pattern to match against the hostname provided by the client during in the SMTP
HELO command. Spammers often use mail programs that forge the HELO host-
name, and these tests look for such forgeries when the clients have hostnames that
match those of major commercial ISPs. Here’s an example of a test from this file:

header FAKE HELO AOL eval:check for rdns helo mismatch(“aol\.com","aol\.com")
describe FAKE HELO AOL Host HELO did not match rDNS: aol.com

This test matches if the client connects from an IP address that reverse-resolves to an
aol.com hostname but claims in the HELO to have a hostname that does not match

“aol.com”. These tests are applied to all of the Received headers from untrusted
relays.

You can use this eval test to reject messages that claim, in their HELO, to be from
your own host. If your hostname is myhost.example.com, and you know that your IP
address reverse-resolves to the same hostname, you could add a rule like this (to the
systemwide configuration file):

header FAKE_MY HELO eval:check for rdns_helo _mismatch("(?!myhost\.example\.com).

{18}$", "myhost\.example\.com")

describe FAKE_MY HELO Host HELO faked my hostname
score FAKE_MY_HELO 5.0

The regular expression (?!myhost\.example\.com).{18}$ matches any hostname con-
taining at least 18 characters that does not end in myhost.example.com, which should
match the reverse DNS lookup of any untrusted relay host other than your own. If

any such host claims in their HELO to be myhost.example.com, it is forging your
hostname.

TheBuilt-inTests | 55

20_body_ tests.cf

This file contains most of the tests that SpamAssassin performs against message
bodies. In addition to tests for regular expressions in the body, this file defines tests
against spam clearinghouses and tests of message language and locale.

A spam clearinghouse is a server that maintains a database of checksums of mes-
sages reported as spam and allows clients to test a message against the checksum
database. SpamAssassin supports three spam clearinghouses: Vipul’s Razor (http://
razor.sf.net/), Pyzor (http://pyzor.sf.net), and the Distributed Checksum Clearing-
house, or DCC (http://rhyolite.com/anti-spam/dcc/). Special client software must be
installed on the system in order for SpamAssassin to use these tests. The
spamassassin --report command can be used to report confirmed spam to these
clearinghouses as well.

In SpamAssassin 3.0, the pyzor_options configuration directive can be set to a string
of additional options to be passed to the Pyzor client on the command line when
SpamAssassin invokes it. Similarly, the dcc_options directive can be set to provide
additional options to the DCC client.

Whitelists and Blacklists

Although SpamAssassin generally does a good job of avoiding false positives, you
may find that some mail that you want to receive contains enough spamlike charac-
teristics that SpamAssassin regularly tags them as spam. You may want to be sure
that SpamAssassin will never mistake email from an important user, client, vendor,
or other sender for spam. You may even have users who don’t like spam-filtering.
SpamAssassin allows you to set up systemwide or user-specific lists of senders whose
mail should not be considered spam, and (systemwide) lists of users who don’t want
their email filtered. Such lists are called whitelists.

On the other hand, you may regularly receive unwanted mail from a particular
sender that doesn’t get tagged reliably by SpamAssassin. You may know ahead of
time that you don’t want to receive mail from certain organizations or senders.
SpamAssassin also allows you to set up system-wide or user-specific lists of senders
whose mail should be tagged as spam. Such lists are called blacklists.

This chapter discusses how to set up whitelists and blacklists. It begins by examin-
ing the SpamAssassin directives for systemwide whitelisting and blacklisting, and
then explores two different ways to manage user-specific lists. A related feature,
autowhitelists, is covered in Chapter 4.

Systemwide Whitelists

SpamAssassin whitelists reduce the spam scores of messages when the sender or
recipient appears on the whitelist. Whitelists are most commonly used to ensure that

56 | Chapter3: SpamAssassin Rules

messages from important senders are not marked as spam, but they can also be used
to change the spam threshold for recipients or enable recipients to effectively opt out
of spam-tagging.

Whitelisting senders

Use the whitelist from directive to whitelist a sender’s address. The sender’s address
is the address that appears in the Resent-From header, if that header exists, or in any
of the headers: From, Envelope-Sender, Resent-Sender, or X-Envelope-From. If a
sender’s address matches a whitelist_from address, the spam score of the message is
reduced by 100 points, which makes it nearly impossible for the message to be
tagged as spam.

For example, if you receive important messages from boss@mybigclient.com, you can
ensure that they won’t be tagged as spam by using this line in the systemwide config-
uration file:

whitelist from boss@mybigclient.com

You can use multiple whitelist_from directives or multiple addresses in a single
directive to whitelist several addresses. You can also use an asterisk (*) as a wildcard
for zero or more characters and a question mark (?) as a wildcard for zero or one
character, much as you would to specify filename patterns in a shell. For example,
you could whitelist all mail from mybigclient.com and from all hosts in the example.
com domain with these lines:

whitelist_from *@mybigclient.com

whitelist_from example.com *.example.com
A whitelist entry can be removed with the unwhitelist from directive. Because Spam-
Assassin is distributed with several default whitelist entries (in the 60_whitelist.cf
file), you may find that you want to remove some of them. The unwhitelist_from
directive is also useful in per-user configuration files, to remove one of the system-
wide whitelist entries. To remove a whitelist entry, the address in the unwhitelist_
from directive must exactly match the one given to whitelist_from.

Whitelisting senders by relay

Sometimes whitelisting by the sender’s address alone isn’t sufficient. For example,
the sender’s address might be one that’s easily guessed or likely to be spoofed by
spammers. For example, a spammer might try to ensure that you read his message by
forging the sender’s address to hostmaster@internic.net or billing@amazon.com.

SpamAssassin offers more control over whitelisted senders with the whitelist from
rcvd directive. This directive associates a sender’s email address with the hostname
or domain name of the last trusted relay. SpamAssassin uses DNS to do a reverse-

Whitelists and Blacklists | 57

lookup of the IP address of the last trusted relay; the reverse-lookup yields one or
more hostnames associated with the IP address. Here’s how you would whitelist
boss@mybigclient.com only if the last trusted relay reverse-resolves to a hostname in
the mybigclient.com domain:

whitelist_from_rcvd boss@mybigclient.com mybigclient.com

Messages that match a whitelist from_rcvd directive have their spam scores low-
ered by 100.

A

In order for SpamAssassin to distinguish trusted and untrusted relays,
you may need to set the trusted_networks option, which was described

& earlier. If your mail topology is relatively simple—you or your ISP con-

" trol all of the IP addresses in the class B network that includes your
mail server’s public IP address—SpamAssassin can usually make a rea-
sonable guess.

SpamAssassin is distributed with several, default, relay-based whitelist entries in the
60_whitelist.cf file. These entries are defined with the def_whitelist_from rcvd direc-
tive, which works just like whitelist from_rcvd but lowers the spam score by only 15
when a message matches.

As you might expect, whitelist entries based on relays can be removed with the
unwhitelist_from_rcvd address directive. The address must exactly match the
address defined in a whitelist from rcvd or def whitelist from rcvd directive. If
the whitelist_from_rcvd directive uses wildcards, the unwhitelist_from_rcvd direc-
tive must specify those same wildcards.

Whitelisting recipients

SpamAssassin provides three levels of whitelisting for message recipients. Whitelist-
ing a recipient lowers the spam score on all messages addressed to the recipient. Use
recipient-whitelisting to prevent any spam-checking from being performed on behalf
of a recipient. You can also use recipient-whitelisting as a crude mechanism for
increasing the spam threshold—lowering the false positive rate at the cost of more
false negatives—for a recipient.

A recipient’s address may appear in several headers. If Resent-To and/or Resent-Cc
headers are present, the address is checked against only those headers. Otherwise,
the address may be matched in the last three Received headers or the headers
To, Apparently-To, Delivered-To, Envelope-Recipients, Apparently-Resent-To,
X-Envelope-To, Envelope-To, X-Delivered-To, X-Original-To, X-Rcpt-To,
X-Real-To, or Cc.

58 | (Chapter3: SpamAssassin Rules

The three levels of recipient-whitelisting are configured with the directives
whitelist_to (lower spam score by 6), more_spam_to (lower spam score by 20), and
all_spam_to (lower spam score by 100). For example, to ensure that no messages to
root or postmaster are tagged as spam, you could use the following lines:

all_spam_to root@*

all_spam_to postmaster@*
No unwhitelist_to directive is provided because whitelisting by recipient is really
useful only in systemwide configuration. Individual users can just change their
required hits setting in their .spamassassin/user_prefs file instead.

Systemwide Blacklists

SpamAssassin has only two blacklist directives (and two directives to unblacklist
addresses). You can blacklist sender addresses or recipient addresses.

The blacklist from directive is used to specify a sender’s address to blacklist. The
sender’s address is the address that appears in the Resent-From header, if that header
exists, or in any of the headers From, Envelope-Sender, Resent-Sender, or X-Envelope-
From. If the sender’s address matches a blacklist_from address, the spam score of
the message is increased by 100 points, which makes it almost certain that the mes-
sage will be tagged as spam.

For example, a spammer might send messages from support@microsofts.com in the
hope that you’ll think it’s an important message from an operating system vendor. If
you never expect to receive legitimate messages from support@microsofts.com, you
can ensure that any message from that address will be tagged as spam by using this
line in the systemwide configuration file:

blacklist_from support@microsofts.com

You can use multiple blacklist_from directives or multiple addresses in a single
directive to blacklist several addresses. You can also use an asterisk (*) as a wildcard
for zero or more characters and a question mark (?) as a wildcard for zero or one
character, much as you would to specify filename patterns in a shell. For example,
you could blacklist all mail from public.com and from all hosts in the example.com
domain with these lines:

blacklist_from *@public.com

blacklist_from example.com *.example.com
You can remove a blacklist entry with the unblacklist_from directive. To remove a
blacklist entry, the address in the unblacklist_from directive must exactly match the
one given to blacklist_from.

Whitelists and Blacklists | 59

The blacklist_to directive performs blacklisting based on recipient address. As with
whitelisting, a recipient’s address may appear in several headers. If Resent-To and/or
Resent-Cc headers are present, the address is checked only against those headers.
Otherwise, the address may be matched in the last three Received headers or the
headers To, Apparently-To, Delivered-To, Envelope-Recipients, Apparently-Resent-To,
X-Envelope-To, Envelope-To, X-Delivered-To, X-Original-To, X-Rept-To, X-Real-To,
or Cc. If a recipient address matches a blacklist_to entry, the spam score of the mes-
sage is increased by 10 points.

Blacklisting by recipient is most useful when spammers use software that sends mail
with recognizably forged To headers (specifying the real recipient in the SMTP trans-
action, of course). For example, it used to be popular to send spam with a To header
of friend@public.com. Although SpamAssassin already includes a special test for this
address in headers, you could also use the blacklist_to configuration directive to
increase the spam score for such messages by 10 points:

blacklist_to friend@public.com

No unblacklist to directive is provided. Simply don’t blacklist a recipient who
should continue to receive mail.

W‘\

It’s possible, but silly, for the same address to be both blacklisted and

whitelisted. In this case, both lists are applied and, if the blacklist adds
#* 100 to the spam score and the whitelist subtracts 100, cancel one
" another out.

N
[}

Per-User Whitelists and Blacklists

Email from a given address may be welcomed by one user and shunned by another.
Although systemwide whitelists and blacklists are useful antispam tools, in many
cases, each user will want her own individual whitelist and blacklist entries.

SpamAssassin provides two mechanisms for per-user whitelists and blacklists. The
first mechanism is the simplest: add the appropriate configuration directives to the
per-user configuration file for the user’s account (typically ~/.spamassassinfuser_
prefs). The disadvantage of this approach is that it requires users to have accounts
and access to their home directories.The second mechanism is to configure spamd to
look up per-user test scores and whitelists and blacklist entries in an SQL or LDAP
database, as described earlier in this chapter.

If users want to remove systemwide whitelist or blacklist entries, they can use the
unwhitelist from or unblacklist_from directives described earlier in this chapter.

60 | Chapter3: SpamAssassin Rules

Whitelists and Blacklists Without SpamAssassin

If SpamAssassin is not run on a systemwide basis on all messages, users can also imple-
ment whitelists and blacklists by carefully organizing the filters they use to run Spam-
Assassin on their messages.

For example, on a Unix system that uses procmail for message delivery, a user could
whitelist boss@mybigclient.com and blacklist support@microsofts.com with procmail
recipes before the recipe that runs SpamAssassin. The user’s .procmailrc might contain:

:0

* ~From:.*boss@mybigclient.com

$DEFAULT

:0
* AFrom:.*support@microsofts.com
/dev/null

:0fw
* <300 000
|/usx/bin/spamassassin

Whitelists and Blacklists | 61

CHAPTER 4
SpamAssassin as a Learning System

SpamAssassin provides many rules that have proven useful in distinguishing spam
from non-spam messages, and these rules are updated at each new release. But
SpamAssassin provides more than just generic rules; it has the capability of learning
about your email environment and adapting its detection behavior to maximize its
accuracy in that environment.

SpamAssassin includes two adaptive systems that can be used in concert: autowhite-
listing and Bayesian filtering. This chapter discusses the principles, configuration,
and operation of both systems.

Autowhitelisting

SpamAssassin’s autowhitelisting algorithm learns each sender’s history of sending
spam or non-spam messages and modifies the spam score of their subsequent mail-
ings on the basis of this history. The primary goal of autowhitelisting is to reduce
false positives—to make it less likely that a non-spam message will be tagged as
spam—by assuming that people who send you non-spam messages will not begin to
spam you. It can also reduce false negatives if a spammer consistently sends email
from the same email address, but this happens infrequently enough that
autowhitelisting rarely has a significant effect on false negatives.

Principles

When autowhitelisting is enabled, SpamAssassin maintains a database keyed on
message senders’ email addresses and the IP addresses of their nearest untrusted
relay (if any). Each time a message from a given sender is received, the message’s
spam score is added to the sender’s total score in the database, and a count of the
number of messages received from that sender is updated.

The average sender score—the total score divided by the number of messages
received—is used to modify the spam score of new messages from that sender.

62

Specifically, the difference between the average score and the new message’s score is
multiplied by a configurable factor, and the result is added to the new message’s
spam score. The effect is that when the new message has a higher spam score than
average, its spam score is adjusted downward; when the new message has a lower
spam score than average, its spam score is adjusted upward.

As you might expect from this explanation, the autowhitelist tests are the last ones
performed by SpamAssassin. All other tests must be run first in order to have the
most accurate spam score for a message before comparing it to the sender’s histori-
cal average. In addition, the sender’s historical average is updated with the spam
score of a new message before the autowhitelist modifier is applied.

Configuration

The most important decisions to make in autowhitelisting are how much weight
SpamAssassin should put on a sender’s history of sending spam or non-spam mes-
sages and how much weight it should put on the spam score of the message it is
checking.

Use the auto_whitelist_factor directive to set the multiplier that is applied to the
difference between a message’s spam score and the sender’s historical average score.
It can range from O to 1. The default factor is 0.5, which causes the final spam score
to be halfway between the message’s spam score and the sender’s average score.

To put more weight on the historical average, increase the auto whitelist factor.
When the auto whitelist factor is set to 1, the historical average alone will be the
new message’s spam score (recall, however, that the score before autowhitelisting is
performed is fed back into the system and becomes part of the new historical
average).

To put less weight on the historical average, decrease the auto_whitelist_factor.
When the auto_whitelist_factor is set to 0, the historical average is ignored, and the
current message’s spam score will not be modified based on the sender’s past mes-
sages.

Table 4-1 illustrates the impact of several different settings for auto_whitelist_
factor. Each row of the table represents a new message from the same sender. Table
columns show the spam score of each message before applying an autowhitelist
modifier, the sender’s historical average score, and the spam score after applying an
autowhistelist modifier. In this example, the sender sends several non-spam mes-
sages and then sends a message that looks like spam to SpamAssassin (a false posi-
tive). As you can see, with autowhitelisting using factors of 0.5, 0.75, or 1, the
message will not reach the usual spam threshold of 5 because of the sender’s history
of non-spam messages. Without autowhitelisting (i.e., with an factor of 0), the mes-
sage receives a score of 6.

Autowhitelisting | 63

Table 4-1. The impact of auto_whitelist_factor (AWF)

Message Message score

number (before autowhitelist) Sender average score Score after autowhitelist with given AWF
0 5 15 1

1 2 (none) 2 2 2 2

2 1 2 1 15 1.75 2

3 1 15 1 1.25 1375 15

4 0 1.33 0 0.67 1.00 1.33

5 2 1.0 2 1.5 1.25 1.0

6 6 6 36 24 1.2

1.2

SpamAssassin stores its autowhitelist data in database files. SpamAssassin lets Perl’s
AnyDBM module choose which database format will be used, based on which
system libraries are available. In SpamAssassin 3.0, you can control this choice by
setting the auto_whitelist_db_modules option to a space-separated list of Per] data-
base modules to be tried in order; the first module that loads successfully will be
used. For example, the default module order is specified like this:

auto_whitelist_db_modules DB_File GDBM_File NDBM File SDBM_File

How you configure autowhitelisting also depends on whether you want each user to
have his own whitelist database, or whether you want to use one database in com-
mon across all users.

Configuring per-user autowhitelists

By default, SpamAssassin maintains a separate autowhitelist for each user on the
system. SpamAssassin stores the autowhitelist database for a user in the auto-
whitelist file in the .spamassassin subdirectory of each user’s home directory. Spam-
Assassin uses one of several database formats for this file, depending on what data-
base libraries are available on the system; the Berkeley DB format is chosen when it’s
available.

SpamAssassin 3.0 can also store autowhitelists in an SQL database, which is useful
when users don’t have accounts on the mail server. To store addresses in SQL, you
must install the DBI Perl module and an appropriate driver module for your SQL
server. Common choices are DBD-mysql (for the MySQL server), DBD-Pg (for the
PostgreSQL server), and DBD-ODBC (for connection to an ODBC-compliant
server).

You should create a database and a user with privileges to access it. You must then
create a table in the database to store the user autowhitelist. The SpamAssassin
source code includes schemas for MySQL and PostgreSQL tables in the sql subdirec-
tory. Here is the MySQL schema:

64 | Chapter4: SpamAssassin asa Learning System

CREATE TABLE awl (
username varchar(100) NOT NULL default "',
email varchar(200) NOT NULL default ',
ip varchar(10) NOT NULL default '°,
count int(11) default ‘o',
totscore float default '0',
PRIMARY KEY (username,email,ip)
) TYPE=MyISAM;
Each row in this table specifies an autowhitelist entry for a single sender for an indi-
vidual SpamAssassin user. SpamAssassin uses the columns to store the following

information:

username
Stores the username or email address of the user (the latter is more useful in vir-
tual hosting environments).

email
Stores the email address of a sender whose messages’ spam scores are being
tracked.

ip
Stores the IP address of the sender.

count
Stores the total number of messages received from the sender.

totscore
Stores the total spam score of messages received from the sender.

To configure SQL support for autowhitelists, set the following configuration parame-
ters in your systemwide configuration file (local.cf):

auto_whitelist_factory Mail::SpamAssassin::SQLBasedAddrlList
Configures SpamAssassin to use SQL-based autowhitelists instead of file-based
autowhitelists.

user_awl dsn DSN
Defines the data source name for the SQL database, telling spamd how it will con-
nect to the database server. A typical DSN for the Perl DBI module is written like
this:
DBI:databasetype:databasename : hostname: port

For example, to use a MySQL database named saaw! running on a database
server on the SpamAssassin host, the DSN would read:

DBI:mysql:saawl:localhost:3306
If the server were running PostgreSQL, the DSN would read:
dbi:Pg:dbname=saawl;host=1ocalhost;port=5432;

Autowhitelisting | 65

user_awl_sql_username username
Defines the username that will be used to connect to the database server. This
user must have permission to modify the data in the table (including inserting
and deleting rows).

user_awl_sql password password
Defines the password associated with the username that will be used to connect
to the server.

user_awl sql_table tablename
Defines the name of the table that contains autowhitelist data. The default
tablename is awl.

Configuring a system-wide autowhitelist

It is often desirable to maintain a single autowhitelist for all users of a system. When
users don’t have home directories, such an approach is not just desirable but may be
necessary if autowhitelisting is to be used. You can configure a systemwide
autowhitelist by setting the auto_whitelist_path directive to the full path of the
autowhitelist database file. Set auto whitelist path in the systemwide configuration
file. For example, to set up a systemwide autowhitelist in the file /etc/mail/
spamassassinfauto-whitelist, use the following directive:

auto_whitelist_path /etc/mail/spamassassin/auto-whitelist

If SpamAssassin encounters this directive, it checks to be sure the database file exists.
If the file does not exist, SpamAssassin attempts to create it. You may not want to
give SpamAssassin write access to the directory you specify. One way around that is
to create the file as root, change its ownership to the SpamAssassin user, and set the
mode to allow read/write access, all before you add the auto_whitelist_path to your
configuration file.

However you create it, the systemwide autowhitelist database file should be read-
able and writable by the user running SpamAssassin. Depending on your configura-
tion, SpamAssassin may be running as root, as one of several users on the system, or
as a default unprivileged user such as nobody. If you let SpamAssassin create the sys-
temwide autowhitelist database file, you can use the auto whitelist file mode direc-
tive to specify the file’s mode. It defaults to 0700 but may need to be set to 0770 or
0777 depending on your configuration, when multiple users must access the file.

Using a systemwide autowhitelist with mode 0777 (or 0770 and an
V'@ inappropriate group) will enable a curious local user to learn the email

addresses of message senders and their average spam scores or to mod-
ify those scores. A malicious user could modify the database to give
legitimate senders a false history of spamming. In general, file modes
other than 0700 should be avoided.

66 | Chapterd: SpamAssassin asa Learning System

Using an Autowhitelist

Once the autowhitelisting system is configured, you must instruct SpamAssassin to
use it. In SpamAssassin 2.63, if you invoke SpamAssassin with the spamassassin
script, add the --auto-whitelist option to direct the script to consult your
autowhitelist. If you invoke SpamAssassin with the spamc client, you should start
spamd (the daemon) with the --auto-whitelist option to direct it to consult user
autowhitelists.

SpamAssassin 3.0 contains no --auto-whitelist command-line options. Instead,
autowhitelists are always used when the use_auto_whitelist configuration option is
set in a user’s (or a systemwide) configuration file.

Using Autowhitelists in Perl

If you’ve written a Perl application that uses Mail::SpamAssassin to checks messages,
you can take advantage of autowhitelists, but it requires a little additional setup. You
must create an address list factory, an object that generates objects to store
autowhitelisted addresses, and you must associate the address list factory with your
Mail::SpamAssassin object. Here is sample code that does this:

#!/usx/bin/perl
use Mail::SpamAssassin;

my $spamtest = Mail::SpamAssassin->new();

my $awl = Mail::SpamAssassin::DBBasedAddrList->new;
$spamtest->set_persistent_address_list factory($awl);
Now go on to use $spamtest as usual.

Mail::SpamAssassin also provides methods for adding and removing addresses from
the autowhitelist. See the manpage for more information.

You can use the spamassassin script to manipulate the contents of your
autowhitelist. The following command-line options to spamassassin operate on your
autowhitelist:

--add-addr-to-whitelist=emailaddress
Adds emailaddress to the autowhitelist with an initial score of —100. Spam-
Assassin will forget any past history associated with the address.

--add-addr-to-blacklist=emailaddress
Adds emailaddress to the autowhitelist with an initial score of 100. Spam-
Assassin will forget any past history associated with the address.

Autowhitelisting | 67

--remove-addr-from-whitelist=emailaddress
Removes emailaddress from the autowhitelist. SpamAssassin will forget any past
history associated with the address.

--add-to-whitelist
When you pipe an email message to spamassassin --add-to-whitelist, Spam-
Assassin adds all email addresses found in the To, From, Cc, Reply-To, Sender,
Errors-To, and Mail-Followup-To headers or in the body of the message to the
autowhitelist with initial scores of —100. SpamAssassin will forget any past his-
tory associated with these addresses.

--add-to-blacklist
When you pipe an email message to spamassassin --add-to-blacklist, Spam-
Assassin adds all email addresses found in the To, From, Cc, Reply-To, Sender,
Errors-To, and Mail-Followup-To headers or in the body of the message to the
autowhitelist with initial scores of 100. SpamAssassin will forget any past his-
tory associated with these addresses. Because this behavior will probably result
in the blacklisting of your own email address, this option is usually useless.

--remove-from-whitelist
When you pipe an email message to spamassassin --remove-from-whitelist,
SpamAssassin removes all email addresses found in the To, From, Cc, Reply-To,
Sender, Errors-To, and Mail-Followup-To headers or in the body of the message
from the autowhitelist and forgets any past history associated with these
addresses.

Be careful with --add-to-blacklist. A malicious spammer could send
“'@ you HTML email with friendly addresses (including your own)
embedded in invisible mailto: tags. Piping this message to
spamassassin --add-to-blacklist causes SpamAssassin to add all of
those addresses to the autowhitelist as likely spammers! Using --add-
addr-to-blacklist with individual email addresses is safer.

Bayesian Filtering

SpamAssassin’s Bayesian classifier learns to distinguish the features that characterize
spam from those that characterize non-spam in the messages that you receive. Prop-
erly trained, the Bayesian classifier can reduce both false positives and false nega-
tives.

Principles

Bayesian filtering is based on Bayes’ Theorem, a statement of probability theory
propounded by the Reverend Thomas Bayes in 1763. Bayes’ Theorem is important
in many fields where classifying data is essential, including computer vision,
psychophysics, and diagnostic decision-making in health care. SpamAssassin’s

68 | Chapterd: SpamAssassin asa Learning System

implementation is mostly based on the work of Paul Graham (archived at
http:/fwww.paulgraham.com) and Gary Robinson (http://www.garyrobinson.net).

Conceptually, Bayes’ Theorem states that the probability of some event (such as a
message being spam) given a test result (such as matching a spam-checking rule)
depends on the baseline probability of the event before the test result is known and
on the discriminating power of the test. A corollary is that the discriminating power
of a test can be measured by comparing the probability of the event given a known
test result to the baseline probability before the result is known. The more the test
result can increase (or decrease) the probability from baseline, the stronger the test.

WA

Actually, SpamAssassin’s “Bayesian” system doesn’t really compute

the baseline probability or frequency of spam versus non-spam mes-
a* sages—which some have argued means it’s not strictly Bayesian at all.
" Instead it assumes values that seem reasonable and useful.

In the context of spam-checking, a Bayesian approach amounts to developing poten-
tial rules and asking how much each rule, if matched, should change the system’s
perception of the likelihood that a message is spam. Very strong rules come in two
forms. Some are patterns that only occur in spam (and never in non-spam), thus
yielding a high probability that a message that matches one of the patterns is spam.
Others are patterns that only occur in non-spam (and never in spam), thus yielding a
low probability that a message that matches the pattern is spam. Weaker rules—pat-
terns found in both spam and non-spam messages but with ditferent frequencies—
result in less extreme probabilities.

To use Bayesian filtering successtully, you must have a corpus of messages that you
have decided are definitely spam, a corpus of messages that you have decided are
definitely non-spam, and an algorithm for analyzing the two sets of messages to
develop rules and test their strength. SpamAssassin provides the algorithm and a
script that you can use to identify messages as spam or non-spam in order to train
the filter. It also provides a mechanism for training itself with messages that are very
likely to be spam or non-spam.

The results of the SpamAssassin learning process are a set of databases. One data-
base contains tokens (strings of 3—15 characters) that have been seen, how often each
has been seen in spam and non-spam messages, and the date and time that each
token last proved useful in classifying a message. During learning, tokens are derived
from both the message headers (with several commonly misleading headers ignored)
and message body. Tokens that haven’t been useful in a long time may be removed
from the database to increase efficiency. Another database keeps track of which mes-
sages have been learned, so SpamAssassin doesn’t waste time relearning old mes-
sages.

Bayesian Filtering | 69

During spam-checking, a message to be checked is split into tokens. SpamAssassin
then looks up each token in the token database. Up to 150 of the most diagnostic
tokens in the message are identified, and their associated predictive values are com-
bined using one of two mathematical functions to yield a final prediction of the prob-
ability that the message is spam. This predicted probability is matched by special
SpamAssassin rules that associate probability ranges with spam score modifiers.

Configuration

SpamAssassin’s Bayesian classifier is controlled by more than a dozen configuration
directives, though only a few are regularly modified by system administrators. These
are the most useful:

use_bayes
This directive controls whether the Bayesian classifier is used at all. It defaults to
1 (use Bayesian filtering). By setting it to 0, Bayesian filtering is disabled
completely.

bayes_auto_learn, bayes auto learn_threshold nonspam, bayes auto_learn_

threshold_spam
These directives configure the automatic learning system, which automatically
feeds messages with very high or very low spam scores to the Bayesian classifier.
The bayes_auto learn directive enables (1) or disables (0) this feature; it is
enabled by default. The threshold directives determine which messages will be
automatically learned as spam or non-spam. Messages with spam scores lower
than bayes_auto_learn_threshold_nonspam are learned as non-spam; this value
defaults to 0.1. Messages with spam scores higher than bayes_auto_learn_
threshold_spam are learned as spam; this value defaults to 12 and cannot be set
lower than 6. The spam score used for making this determination does not
include modifiers for the Bayesian system itself, for the autowhitelist, or for user-
configured whitelists or blacklists.

bayes_ignore_header headername
This directive tells the Bayesian classifier to ignore the given header when learn-
ing or classifying messages. It is most often used when another spam-tagging
system adds headers before SpamAssassin receives the message, in order to
prevent the classifier from learning the other spam tag instead of the features of
the actual message.

bayes_ignore_from address (SpamAssassin 3.0)
This directive prevents Bayesian classification and learning from being per-
formed on messages sent from address and is a form of whitelisting. It’s most
useful when you want to receive messages from a few senders and the messages
may include tokens that would otherwise suggest spam.

You can use multiple bayes_ignore_from directives or multiple addresses in a sin-
gle directive to whitelist several addresses. You can also use as asterisk (*) as a

70 | Chapterd: SpamAssassin asa Learning System

wildcard for zero or more characters and a question mark (?) as a wildcard for
zero or one character, much as you would to specify filename patterns in a shell.

bayes_ignore_to address (SpamAssassin 3.0)
This directive prevents Bayesian classification and learning from being per-
formed on messages sent to address, and is a form of whitelisting recipients. It’s
useful in sitewide Bayesian filtering to prevent any learning from being per-
formed from messages sent to postmaster, for example, who is likely to receive
forwarded spam, non-spam messages discussing spam, etc. Specify addresses as
you would to the bayes_ignore_from directive discussed previously.

bayes learn_during report
When this directive is enabled (1), messages that are reported to clearinghouses
as spam with the spamassassin --report command are also learned as spam by
the Bayesian classifier. This saves you an extra learning step. Set the directive to
0 to disable this feature. It is enabled by default.

bayes_path and bayes_file mode
By default, SpamAssassin maintains separate Bayesian databases for each user on
the system. The databases for a user are stored in the .spamassassin subdirectory
of the user’s home directory and their names begin bayes_, such as bayes_seen
and bayes_toks. These files are kept in one of several possible database formats
(Berkeley DB format is generally preferred when it’s available to SpamAssassin).

Separate databases for each user are ideal for Bayesian learning because different
users may receive different kinds of spam and non-spam messages. However, it
is often necessary to maintain a single Bayesian database for all users of a sys-
tem, either to save on disk space or because users don’t have home directories.
You can configure a systemwide Bayesian database set by setting the bayes_path
directive to the full path of the Bayesian database file prefix. For example, to set
up systemwide Bayesian databases in the files /etc/mail/spamassassin/bayes_”, use
the following directive:

bayes_path /etc/mail/spamassassin/bayes
By default, the Bayesian databases are created with mode 0700. The bayes_file_
mode directive can be used to set a different file mode (e.g., 0770) if you need to
share the databases among a group. This might be necessary if SpamAssassin can
be invoked with the privileges of different users. Care should be taken with this
directive, as a malicious user with access to the Bayesian databases can cause
legitimate email to be mistagged as spam.

The following directives influence the internal workings of the Bayesian classifier.
For the most part, they can be left to the default settings.

bayes_min_ham_num and bayes_min_spam_num
These directives set the minimum number of ham (non-spam) and spam mes-
sages that must be learned by SpamAssassin before it will use the predictions of
the Bayesian classifier to score new messages. They default to 200 each; until

Bayesian Filtering | 71

200 ham and 200 spam messages have been learned, the SpamAssassin rules that
rely on the Bayesian classifier will not be applied to email.

bayes_use_hapaxes
Hapaxes are tokens that have been seen only once during learning so far.
Accordingly, SpamAssassin’s concept of whether a hapax is associated with
spam or ham is based on limited data and may not be reliable. On the other
hand, SpamAssassin can learn hundreds or thousands of hapaxes, and using
hapaxes seems to provide better accuracy, so this setting defaults to 1 (enabled).

bayes_use_chi2_combining
This directive controls which of the two mathematical functions are used to
combine token probabilities into an overall message probability. When enabled
(1), the approach is based on the distribution of the chi-squared statistic; when
disabled (0), a so-called “naive Bayesian” function combines the probabilities
using the assumption that errors in classification from each token are indepen-
dent of one another. SpamAssassin’s maintainers have found the chi-squared
method more useful, and it is the default.

bayes_auto_expire and bayes_expiry max_db_size
When bayes auto_expire is enabled (1), SpamAssassin will automatically
attempt to remove old tokens during learning when the token database exceeds
bayes_expiry max_db_size tokens. This is the default. When disabled (0), token
expiration must be performed manually. Automatic expiration occurs no more
than once every 12 hours.

bayes_learn_to_journal and bayes journal max_size

When bayes_learn to journal is enabled (1), SpamAssassin will store newly
learned data in a journal file, rather than directly into the Bayesian databases.
The journal file will be synchronized into the databases at least daily, or when
the journal exceeds bayes_journal max_size bytes (102,400 by default). Using
journaling reduces disk contention for the databases, which must be exclusively
locked while being updated, but results in a delay between the time a message is
learned and the time the learned tokens can be used to classify further messages.
Journaling might be particularly useful if the journal could be kept in a different
location than the databases (e.g., on a RAM disk), but this directive is not
supported as of SpamAssassin 3.0. bayes learn to journal is disabled by
default.

Training

There are two main strategies for training a Bayesian classifier: train everything and
train-on-error. In the train everything strategy, you train the classifier with every mes-
sage that you receive. This strategy is highly responsive to changes in spam patterns
but may change too quickly in response to unrelated variability in messages. In addi-
tion, it is resource intensive to scan every message. In the train-on-error strategy,

72 | Chapter4: SpamAssassin as a Learning System

you train the classifier only with messages that it has previously classified incor-
rectly (i.e., false positives and false negatives). This strategy is resource efficient but
may not train the classifier as quickly when spam patterns change.

Based on experiments conducted by Greg Louis (and described at http://www.bgl.nu/
bogofilter/), the train everything strategy appears to be more efficient for initial train-
ing. Once a suitable number of messages have been learned, however, switching to a
train-on-error approach saves resources, because many fewer messages must be
trained. Louis suggests that switching to train-on-error after 10,000 spam and 10,000
non-spam message have been learned may be reasonable. You can train SpamAssas-
sin’s Bayesian classifier with either strategy.

The sa-learn script is your primary interface for training the Bayesian classifier. The
first step in using Bayesian filtering is collecting a corpus of messages you've received
that you have verified are spam and a corpus that you’ve verified are non-spam. The
easiest and best way to do so is to simply start saving spam you receive to one folder
and any non-spam messages that you would ordinarily delete to another. The two
collections of messages can either be in maildir format (in which each file contains a
single message) or mbox format (in which a single file contains multiple messages).

It’s important that the messages be from the same time period; if you train Spam-
Assassin with a set of spam messages from 2003 and a set of non-spam messages
from 2004, it will quickly learn that an effective way to detect spam is to look for
messages in 2003! Similarly, forwarded spam, or messages discussing spam in your
corpus (“Hey, look at this spam I just got; it’s really strange. Here it is...”) can result
in the classifier learning artificial rules that will degrade its accuracy with normal
messages.

Next, run sa-learn on each corpus, using either the --spam or --ham command-line
options to specify what each corpus represents. Example 4-1 shows the process for a
set of mbox files—a file of saved spam, a file of saved (non-spam) messages related to
a project, and the user’s mail spool. The project files and mail spool files together
form a corpus of known good messages. This example assumes that each user main-
tains her own Bayesian databases, so sa-learn is run by each user on her own
messages.

Example 4-1. Learning from a set of mbox files

$ 1s -F Mail

spam myproject

$ sa-learn --mbox --spam Mail/spam

$ sa-learn --mbox --ham mail/myproject

$ sa-learn --mbox --ham /var/spool/mail/$LOGNAME

Example 4-2 shows the process for a set of maildirs, again assuming that each user
has his own Bayesian databases. The commands in the example are those that would
be executed by each individual user. Providing a directory as an argument to sa-

Bayesian Filtering | 73

learn causes it to learn from every file in that directory. The example also illustrates
the use of the --no-rebuild option to defer rebuilding of the databases until the
--rebuild option is used. When performing learning on a large set of small files (the
very essence of a maildir), deferring the expensive database-rebuilding step is more
efficient than rebuilding after each file.

Example 4-2. Learning from a set of maildirs

$ 1s -F mail

INBOX/ spam/ myproject/

$ sa-learn --no-rebuild --spam mail/spam

$ sa-learn --no-rebuild --ham mail/INBOX

$ sa-learn --no-rebuild --ham mail/myproject
$ sa-learn --rebuild

If you’re the sort who likes to see the progress of the training (or who worries when
you run a command that takes longer than a few seconds to finish), you can add the
--showdots option to cause sa-learn to print a period for each message it processes.

You can also call sa-learn on an individual file containing a mail message, or you
can pipe a mail message to sa-learn’s standard input. Finally, you can put the names
of mailboxes, files, or directories into a file and run sa-learn with the --folders=filename
option, and it will read the file and directory names from the filename file and learn
from each.

I 4 A

E The Bayesian classifier is most effective when trained on large collec-

tions of both spam and non-spam messages. In particular, training
a* using many spam messages and fewer non-spam messages is likely to
" produce an ineffective filter. Aim for a couple thousand messages of

each type, collected prospectively from your personally received mail.

If you mistakenly train the Bayesian classifier that a message is spam, simply direct
sa-learn to relearn it as ham; if you mistakenly learn a message as ham, you can
direct sa-learn to relearn it as spam. This process is also how you later train the clas-
sifier on errors. You can also cause SpamAssassin to forget a message entirely by run-
ning sa-learn --forget on the message.

sa-learn also accepts the same --configpath /path/to/ruleset/directory, --prefs-
path /path/to/user prefs, and --siteconfigpath /path/to/sitewide/directory direc-
tives that the spamassassin script does. They are described in Chapter 2.

Daily Use

When you first enable the Bayesian classifier in SpamAssassin, you will initially
notice little change in the way messages are checked for spam. Once you’ve trained
the classifier with enough messages, however, your spam scores for messages will
begin to change substantially in two ways:

74 | Chapter4: SpamAssassin asa Learning System

What's Being Learned?

Once your Bayesian classifier has been trained and is contributing to spam-checking,
you might be curious to find out which tokens are actually being used. The sa-1learn
--dump type command displays that information. type can be one of these choices:

* data will cause sa-learn to display all of the tokens it has learned, with their
associated spam probabilities, number of occurrences in spam and ham mes-
sages, and last time used.

* magic will cause sa-learn to display “magic” tokens. Although they’re stored in
the database, these tokens don’t represent parts of email messages. They include
such information as the number of spam and ham messages in the databases, the
last time a token was used, etc.

* all will cause sa-1learn to display tokens of both types.

Here are the first and last five lines of sa-1learn --dump data | sort -n as executed on

one system:
0.000 0 110 1072880922 discussion
0.000 0 112 1071162080 HMBOX-Line:2002
0.000 0 112 1072907632 modify
0.000 0 113 1072915324 H*u:Windows
0.000 0 115 1072900545 Sender
1.000 310 0 1071162080 N:HEADER_NBITS
1.000 316 0 1072026198 8-bit
1.000 323 0 1071162080 HEADER 8BITS
1.000 328 0 1072026198 N:N-bit
1.000 394 0 1072910571 Forged

The first five lines show tokens that have only exclusively appeared in non-spam mes-
sages. The last five show tokens that have exclusively appeared in spam messages.
Tokens starting with H were found in headers; some headers are abbreviated with spe-
cial codes starting with an asterisk (*)—so H*u: means the User-Agent header. Tokens
starting with N: indicate that Ns that appear in the token should match any sequence
of digits.

You can restrict which tokens are shown by sa-learn --dump by adding the --regexp
regexp command-line option and providing a regular expression pattern regexp. Only
tokens that match regexp will be displayed. This option is useful when you want to see
the spam probability associated with specific tokens.

* Messages will show that they are hitting SpamAssassin rules with names like
BAYES_44 or BAYES_80. These rules, which can be found in the 23_bayes.cf
file, are triggered when the Bayesian classifier assigns a given probability of spam
to a message. For example, the BAYES_44 rule is matched when a message has a
probability of spam between 0.44 and 0.4999; the BAYES_80 rule is triggered
when a message has a probability of spam between 0.80 and 0.90. Rules that

BayesianFiltering | 75

match on probabilities less than 0.5 lower spam scores, and those that match on
probabilities greater than 0.5 raise spam scores.

* Most of the non-Bayesian rules assign different scores when the classifier is
trained and in use than when it is not. In many cases, non-Bayesian rules produce
less extreme scores, which reflects the supposition that the Bayesian classifier
should be better than static rules at distinguishing spam from non-spam.

Ongoing training

Ongoing training is essential to maintaining the performance of a Bayesian filter. As
in initial training, you must continue to provide examples of both spam and non-
spam messages.

As you receive messages, check each message classified as spam to be sure that it is
really spam and not a false positive. If the message’s spam score is higher than the
threshold for automatic learning, the message should have already been fed back
into the classifier to train it. You can determine if this has happened by looking
at the autolearn= section of the X-Spam-Status header added by SpamAssassin. If
the message’s spam score wasn’t high enough for automatic learning, submit it to
sa-learn --spam yourself. If you come across a false positive, submit it to
sa-learn --ham instead.

Similarly, you can submit your non-spam messages to sa-learn --ham if their spam
scores are too high for the automatic learning threshold for ham. Any spam Spam-
Assassin misses should definitely be submitted to sa-1learn --spam.

You can make the ongoing training process more convenient using one of two com-
mon ways. If you read your email with an email client that allows you to bind com-
mands to keys, you could define keystrokes to invoke sa-learn --ham or sa-learn --
spam on the current message. Another approach is to save all spam messages into a
single mail folder and all non-spam messages that you plan to delete into a second
folder, and then run sa-learn on each folder (and possibly on your inbox if you keep
many undeleted messages there) at the end of your mail-reading session. Users or
system administrators can set up cron jobs to automate this process.

Expiration and importing

Expiration and importing are two other functions of sa-learn that you will use infre-
quently. Expiration removes old tokens from the database, and importing updates
the database if a new SpamAssassin release changes database formats.

As discussed earlier in this chapter, when bayes_auto_expire is enabled (the default),
SpamAssassin’s Bayesian classifier regularly reviews its database of tokens to deter-
mine if any should be expired. Expiration is always skipped when fewer than
100,000 tokens are in the database. The automatic expiration process runs no more

76 | Chapter4: SpamAssassin as a Learning System

than once every 12 hours and only when the number of tokens exceeds bayes
expiry_max_db_size.

If you do not use bayes_auto_expire, or if you want to expire tokens manually, you
can force an expiration attempt by running sa-learn --force-expire. Doing so may
not actually expire any tokens; for example, when fewer than 100,000 tokens or all
tokens have been recently used, no tokens will be expired.

The sa-learn --import command is used to update the Bayesian databases from their
format in an older version of SpamAssassin to the current format. The release notes
for new versions of SpamAssassin should tell you when running sa-learn --import is
necessary. In many cases, SpamAssassin will perform importation when it automati-
cally learns a new message, so this command may not be necessary.

The import process can be both CPU and disk intensive, especially
' with a large database of tokens. It is best run during off-hours or times

of low system load.

Storing Bayesian Data in SQL

SpamAssassin 3.0 can optionally store per-user Bayesian data in an SQL database,
which is useful when users don’t have accounts on the mail server. To store Baye-
sian data in SQL, you must install the DBI Perl module and an appropriate driver
module for your SQL server. Common choices are DBD-mysql (for the MySQL
server), DBD-Pg (for the PostgreSQL server), and DBD-ODBC (for connection to an
ODBC-compliant server).

You should create a database and a user with privileges to access it. You must then
create a set of tables in the database to store the Bayesian data. The SpamAssassin
source code includes schemas for MySQL, PostgreSQL, and SQLite tables in the sq!
subdirectory. Here is the MySQL schema:

CREATE TABLE bayes_expire (
username varchar(200) NOT NULL default '',
runtime int(11) NOT NULL default '0°’,
KEY bayes_expire_idx1 (username)

) TYPE=MyISAM;

CREATE TABLE bayes_global vars (
variable varchar(30) NOT NULL default '‘,
value varchar(200) NOT NULL default ',
PRIMARY KEY (variable)

) TYPE=MyISAM;

INSERT INTO bayes_global vars VALUES ('VERSION','2');
CREATE TABLE bayes_seen (

username varchar(200) NOT NULL default '',
msgid varchar(200) binary NOT NULL default '',

Bayesian Filtering | 77

flag char(1) NOT NULL default '‘,

PRIMARY KEY (username,msgid),

KEY bayes_seen_idx1 (username,flag)
) TYPE=MyISAM;

CREATE TABLE bayes token (
username varchar(200) NOT NULL default '',
token varchar(200) binary NOT NULL default '',
spam_count int(11) NOT NULL default ‘o',
ham_count int(11) NOT NULL default 'o°,
atime int(11) NOT NULL default ‘o',
PRIMARY KEY (username,token)

) TYPE=MyISAM;

CREATE TABLE bayes_vars (
username varchar(200) NOT NULL default ',
spam_count int(11) NOT NULL default ‘'0',
ham_count int(11) NOT NULL default ‘o',
last_expire int(11) NOT NULL default ‘o',
last_atime_delta int(11) NOT NULL default ‘o',
last_expire reduce int(11) NOT NULL default 'o0',
PRIMARY KEY (username)
) TYPE=MyISAM;
For each user, these tables maintain information about token expiration (bayes
expire), messages seen (bayes_seen), tokens seen (bayes_token), and per-user config-
uration variables (bayes vars). A table for global configuration variables (bayes_
global _vars) is also available. The names of rows in these tables are similar to the

corresponding SpamAssassin configuration variables and indicate the data they store.

To configure SQL support for Bayesian data, set the following configuration parame-
ters in your systemwide configuration file (local.cf):

bayes_store_module Mail::SpamAssassin::BayesStore::SQL
Configures SpamAssassin to use SQL-based storage for Bayesian data instead of
file-based (DBM) storage.

bayes_sql_dsn DSN
Defines the data source name for the SQL database. See the earlier definition of
bayes_awl_dsn for examples of how to define a DSN.

bayes_dsn_sql_username username
Defines the username that will be used to connect to the database server. This
user must have permission to modify the data in the table (including inserting
and deleting rows).

bayes_dsn_sql_password password
Defines the password associated with the username that will be used to connect
to the server.

78 | Chapterd: SpamAssassin asa Learning System

SpamAssassin will now store Bayesian data learned from messages (either automati-
cally or via sa-learn) in the SQL database and will look up tokens in this database
when checking messages for a user.

SpamAssassin provides one additional configuration variable for SQL storage of
Bayesian data:

bayes_sql_override_username someusername

When this directive is set, the SQL query for Bayesian data will use someusername
in place of the current user’s name when adding new message data or retrieving
data for message-checking. Generally, this directive should only be used in per-
user configuration files so that most users have their own personal Bayesian
data. In principle, you could also use it in the site-wide configuration file to cre-
ate a sitewide Bayesian database, and then use it in per-user configuration files to
exclude certain users from the sitewide data.

A Sitewide Bayesian Classifier

Bayesian filtering is most effective when each user maintains his own set of token
databases trained from his own email. By learning about the peculiar characteristics
of spam and non-spam messages received by an individual user, the Bayesian classi-
fier becomes an effective test for future messages to that user. A pharmacist might
receive a lot of legitimate email about sildenafil citrate, and having all of these mes-
sages tagged as spam (or worse) could be a serious problem.

Many sites, however, prefer to have a single set of databases for all users at the site,
either to save disk space or because users do not have home directories and setting
up SpamAssassin 3.0’s SQL storage is infeasible. Setting up a sitewide Bayesian clas-
sifier is possible with SpamAssassin. Perform the following steps:

1. Set bayes_path and bayes_file mode in the systemwide configuration file. Be sure
the directory specified in bayes_path is readable, writable, and searchable by the
user that SpamAssassin will be running as, so that it can create the proper files.
The bayes_file_mode should be as strict as possible, typically 0700, which is the
default setting. It’s a good idea to set it explicitly, rather than rely on the default.

2. Provide a mechanism for users or administrators to submit messages for train-
ing. This step is the most difficult part of a sitewide Bayesian classifier. Because
the database files will be owned by the user that SpamAssassin runs as, even
local users typically will not be able to run sa-learn with the proper permissions
to update the databases.

One solution for enabling users to submit spam messages for training is to ask users
to bounce any spam they receive to a central mailbox that can be processed by a priv-
ileged script. For example, set up an email alias of spamtrap on the SpamAssassin
system that pipes incoming messages to a script like that shown in Example 4-3. As
an extra benefit, you can publicize the spamtrap address on public web pages or in

Bayesian Filtering | 79

Usenet postings and actually use it as a spam trap—spammers who harvest the
address and send spam to it will find their spam fed into your learning and reporting
systems.

Example 4-3. A sitewide script for learning spam

#!/bin/sh

#

This script accepts an email message on its standard input

and feeds it to SpamAssassin's learning and/or reporting systems
It is meant to be run as root or as the user who owns the

SpamAssassin Bayesian databases

PATH=/bin:/usr/bin:/sbin:/usx/sbin

Three choices:

1. Uncomment the following line to use --report if
you have bayes learn during report enabled.
spamassassin --report

2. Uncomment the following line to use sa-learn and
spamassassin --report when you don't have

bayes_learn_during_report enabled

sa-learn --spam | spamassassin --report

3. Uncomment the following line to use sa-learn
alone.
#sa-learn --spam

If you ask users to use a centralized spamtrap address, it is crucial that

they bounce or redirect their messages, rather than forward their mes-

sages. A forwarded message’s headers will show the message as being
sent by the forwarding user, which is not what you want the Bayesian
classifier to learn! Most mail clients provide a function for redirecting
a message to a new address so that it still appears to be coming from
the original sender. If your mail clients add extra headers when they
do this, these headers are good candidates for bayes_ignore_header.
You have to test to determine which, if any, headers your mail clients
add and to be sure SpamAssassin is ignoring them.

A similar solution for non-spam messages is much more difficult—for social, rather
than technical, reasons. Users may well be reluctant to forward their legitimate email
to any central address. Unfortunately, without a good corpus of non-spam mes-
sages, the Bayesian filter will not perform well. One possible approach is to raise the
bayes_auto_learn_threshold nonspam slightly (e.g., to 0.5 or 1.0) so that much legiti-
mate email will be auto-learned.

80 | Chapter4: SpamAssassin asa Learning System

CHAPTER 5

Integrating SpamAssassin with
sendmail

sendmail has long been the most widely used mail transport agent in the world. It
was routing mail before the Internet existed as such and continues to form the back-
bone of many of the largest mail servers on the Net today. This chapter explains how
to integrate SpamAssassin into a sendmail-based mail server to perform spam-
checking for local recipients or to create a spam-checking mail gateway.

sendmail is a complex piece of software and can have several security
@ implications for systems on which it runs. You should always run the

most up-to-date version of sendmail and keep track of new bug reports
and security advisories. This chapter assumes that you are running the
latest release of sendmail—Version 8.12—and does not cover how to
securely install, configure, or operate sendmail itself. For that informa-
tion, see the sendmail documentation and the book sendmail by Bryan
Costales and Eric Allman (O’Reilly).

Spam-Checking at Delivery

The easiest way to add SpamAssassin to a sendmail system is to configure sendmail
to use procmail as its local delivery agent, and to add a procmail recipe for spam-
tagging to /etc/procmailrc. The advantages of this approach are

* It’s very easy to set up.

* You can run spamd, and the procmail recipe can use spamc for faster spam-
checking.

* User preference files, autowhitelists, and Bayesian databases can be used.
There are also some disadvantages:

* sendmail must complete the SMTP transaction and accept an email message for
local delivery before spam-checking takes place. Accordingly, you can’t save
bandwidth or mailbox space by rejecting spam during the SMTP transaction.

81

* sendmail only runs the local delivery agent for email destined for a local recipi-
ent. You cannot create a spam-checking gateway with this approach.

To configure sendmail to use procmail as its local delivery agent, add the following
line to your sendmail.mc file (before the MAILER(*local') line) and regenerate
sendmail.cf from it:

FEATURE (" local procmail',’ /path/to/procmail')dnl

When you restart sendmail, it will use procmail instead of the system’s default local
MDA (e.g., /bin/mail) for mail delivery.

Next, configure procmail to invoke SpamAssassin. If you want to invoke SpamAssas-
sin on behalf of every user, do so by editing the /etc/procmailrc file. Example 5-1
shows an /etc/procmailrc that invokes SpamAssassin.

Example 5-1. A complete /etc/procmailrc

DROPPRIVS=yes
PATH=/bin:/usr/bin:/usr/local/bin
SHELL=/bin/sh

Spamassassin

:0fw

* <300 000

| /usr/bin/spamassassin

If you run spamd, replace the call to spamassassin in procmailrc with a call to spamc
instead. Using spamc/spamd will significantly improve performance on most systems,
but makes it more difficult to allow users to write their own rules.

Spam-Checking During SMTP

If you want to refuse spam before it reaches your recipients, or set up a spam-check-
ing gateway to an internal email server, you need a way to perform spam-checking
during the SMTP transaction. If a message is found to be spam, you may want to
refuse it and end the SMTP session, or accept it and add headers that users can use in
their mail client filters. sendmail provides a general-purpose filtering interface, called
milter, for use during the SMTP transaction.

The Milter Interface

In sendmail’s parlance, milter refers to several things. Milter is an application pro-
gramming interface (API) for writing filters for sendmail, and a protocol for commu-
nication between sendmail and a filter. A milter is also a filter program written using
this API that listens for connections from a sendmail process and defines functions
to call at different points of the SMTP transaction to accept, reject, discard, tempo-
rarily refuse, or modify a message. The milter library, libmilter, provides most of the

82 | Chapter5: Integrating SpamAssassin with sendmail

code required to set up a milter and manage the work of calling your filtering func-
tions during an SMTP transaction.

A milter can provide functions that sendmail will call at the following points in an
SMTP transaction:

* When a mail client connects to sendmail

* After the SMTP HELO or EHLO commands

* After the SMTP MAIL FROM command

* After the SMTP RCPT T0 command

* After each message header is transmitted during the DATA step

* After all message headers are transmitted

* After each piece of the message body is transmitted

* At the end of the DATA step, after the entire message has been transmitted
* When the SMTP transaction is aborted

* When the client connection is closed
Milter functions can perform the following operations on a message:

* Add, change, or delete a header

* Add or remove a recipient

* Replace the message body

* Reject a connection, message, or recipient

* Temporarily fail a connection, message, or recipient

* Accept and discard a message

* Accept a message
Milters operate as daemons. They are typically started before sendmail during sys-
tem startup and listen for connections from a sendmail process on a TCP or Unix

domain socket. Milters do not have to be run as root. For more information about
writing milters, visit http://lwww.milter.org.

You configure sendmail to use a milter by adding an INPUT_MAIL_FILTER() macro to
the sendmail.mc configuration file and generating a new sendmail.cf file. Example 5-2
shows parts of a sendmail.mc file that includes a milter.

Example 5-2. A sendmail-mc file with a milter

divert(0)dnl

VERSIONID(example mc')dnl
OSTYPE(1inux)dnl
DOMAIN(generic)dnl

INPUT_MAIL_FILTER(mymilter', "S=unix:/var/run/mymilter.sock, F=T, T=5:60s;R:60s;E:
5m')dnl

Spam-Checking During SMTP | 83

Example 5-2. A sendmail.mc file with a milter (continued)

MAILER(smtp)dnl
MAILER(local)dnl
MAILER(procmail)dnl

The INPUT_MAIL_FILTER macro takes two arguments. The first provides the name of
the milter (mymilter in Example 5-2), and the second tells sendmail how to interact
with the milter. The second argument in turn consists of several instructions, sepa-
rated by commas:

S=socket description
This argument describes how sendmail should connect to the milter. The socket
description consists of a protocol (unix for a Unix domain socket, inet for a
TCP/IP socket, inet6 for a TCP/IPv6 socket), a colon, and a protocol-specific
address. For Unix domain sockets, the address is the path to the socket file. For
TCP sockets, the address is in the form port@host.

F=failure mode
This argument determines how sendmail will behave if it fails to connect to the
milter process. Use F=T to cause sendmail to temporarily refuse email when it
can’t contact the milter. Use F=R to cause sendmail to reject connections when it
can’t contact the milter. Omit an F= argument to cause sendmail to accept mes-
sages without filtering when it can’t contact the milter.

T=timeout list

This argument determines how long sendmail should wait for the milter to
respond before treating the connection attempt as a failure. It consists of a set of
states and the amount of time to allow for each, separated by semicolons. In
Example 5-1, sendmail uses a 60-second timeout for sending data to the milter
(S:60s), a 60-second timeout for reading replies from the milter (R:60s), and a 5-
minute timeout for waiting for the milter’s final acknowledgment after sending
the message (E:5m). There is also a C timeout for connecting to the milter. If you
leave any timeouts unspecified, sendmail uses its default timeouts: 10 seconds
for sending and reading, and 5 minutes for connecting and final acknowledg-
ment.

The INPUT_MAIL_FILTER macro results in the following lines being added to the
sendmail.cf file when you generate it:

0 InputMailFilters=mymilter

Xmymilter, S=unix:/var/run/mymilter.sock, F=T, T=S:60s;R:60s;E:5m

SpamAssassin itself is not a milter. However, several milters have been written that
invoke SpamAssassin on messages and then take action during the SMTP trans-
action.

84 | (Chapter5: Integrating SpamAssassin with sendmail

Milter in sendmail 8.11

The milter interface was formally announced in sendmail 8.12 but is available as an
experimental feature in sendmail 8.11. To use milter in sendmail 8.11, add the follow-
ing line to your sendmail.mc file:

define(*_FFR_MILTER')dnl
Milter support in sendmail 8.11 is not as complete as in sendmail 8.12, however, and

I strongly encourage you to upgrade to sendmail 8.12 or later rather than use sendmail
8.11’s milter subsystem.

Older versions of sendmail do not provide milter. If you must use one of these versions,
you are limited to integrating SpamAssassin through procmail.

MIMEDefang

MIMEDefang is one of the most popular sendmail milters. It provides a general
framework for performing milter functions in Per]l and comes with a default configu-
ration that performs several functions:

* Messages can be checked with a virus scanner, and messages carrying viruses can
be refused, discarded, or quarantined.

* MIME attachments can be examined, and messages can be refused, discarded,
or quarantined if they contain attached files with given filename extensions
(e.g., extensions that denote executable Windows files).

* The HTML attachment in a message of type multipart/alternative (containing
both text and HTML versions of the same message) can be dropped.

* SpamAssassin can be invoked on the message, and spam can be refused, dis-
carded, quarantined, or tagged.

MIMEDefang is developed by Roaring Penguin Software and is available as free soft-
ware at http://www.mimedefang.org. Roaring Penguin also produces commercial
products, Canlt and Canlt-PRO, which are based on MIMEDefang and Spam-
Assassin and add several other features including web-based interfaces for adminis-
trators and users.

The rest of this section details the installation, operation, and customization of
MIMEDefang 2.42 as an example of a full-scale, milter-based approach to using
SpamAssassin. MIMEDefang’s other functions, such as virus-checking, are men-
tioned but not covered in detail; read the MIMEDefang documentation for more
information.

Spam-Checking During SMTP | 85

Use the latest available version of MIMEDefang. In particular, only
: versions 2.42 and later support SpamAssassin 3.0.

Installing MIMEDefang

MIMEDefang is written in Perl and invokes SpamAssassin through the Mail::
SpamAssassin Perl modules. Because MIMEDefang itself is a daemon, you do not
need to run spamd. It’s easiest to install SpamAssassin (and your antivirus software)
first and then install MIMEDefang.

A good way to begin a MIMEDefang installation is to verify that you have the prereq-
uisite Perl modules on hand. MIMEDefang requires sendmail 8.12 (or later). MIME-
Defang also requires several Perl modules, including: MIME::Tools, IO::Stringy,
MIME::Base64, MailTools, Digest::SHA1, and HTML::Parser. Most of them can be
installed using CPAN.

MIMEDefang will not work correctly with the standard version of

‘-—@ MIME::Tools 5.411a. Either install MIME::Tools 6 or later, or install

the special version of MIME::Tools 5.411a available from Roaring Pen-
guin’s web site.

You should create a new user account and group for running MIMEDefang; the
usual name for both the user and group is defang. This user will own MIMEDefang’s
files, and the user (or group) must have access to SpamAssassin’s configuration and
database files as well.

MIMEDefang uses two important directories. It uses /var/spool/MIMEDefang as a
working directory for unpacking email messages and scanning them. For optimal
performance, place this directory on a fast disk—even a RAM disk if your operating
system supports it and you have enough memory to spare. MIMEDefang stores quar-
antined email messages in /var/spool/MD-Quarantine. Speed is not so critical with
this directory, and it should never be located on a RAM disk because you will want
to be sure that you can access quarantined files. Create these directories before you
install MIMEDefang. The directories should be owned by user and group defang and
should not be world-readable or world-searchable.

Next, download the MIMEDefang source code from http://www.roaringpenguin.com,
unpack it, run the configure script, make, and perform a make install as root.
Example 5-3 shows this process from the point of running the configure script:

Example 5-3. Compiling MIMEDefang

$./configure
creating cache ./config.cache

86 | Chapter5: Integrating SpamAssassin with sendmail

Example 5-3. Compiling MIMEDefang (continued)

creating config.h

**% yirus scanner detection results:
H+BEDV 'antivir' NO (not found)

Vexira 'vexira' NO (not found)
NATL 'uvscan' NO (not found)
BDC 'bdc’ NO (not found)
Sophos 'sweep' NO (not found)
TREND 'vscan' NO (not found)
CLAMSCAN ‘clamav’ YES - /usr/bin/clamscan
AVP ‘AvpLinux' NO (not found)
FSAV 'fsav’ NO (not found)

FPROT 'f-prot' NO (not found)
SOPHIE 'sophie' NO (not found)

NVCC ‘nvcc’ NO (not found)
CLAMD ‘clamd’ YES - /usr/sbin/clamd
File::Scan NO (not found)

TROPHIE ‘trophie’ NO (not found)

Found Mail::SpamAssassin. You may use spam_assassin_* functions
Did not find Anomy::HTMLCleaner. Do not use anomy clean_html()
Found HTML::Parser. You may use append_html_boilerplate()

Note: SpamAssassin, File::Scan, HTML::Parser and Anomy::HTMLCleaner are

detected at run-time, so if you install or remove any of those modules, you

do not need to re-run ./configure and make a new mimedefang.pl.

$ make

gcc -g -02 -Wall -Wstrict-prototypes -pthread -D_POSIX PTHREAD_SEMANTICS -DPERL_PATH=\"/
usr/local/bin/perl\" -DMIMEDEFANG PL=\"/usr/local/bin/mimedefang.pl\" -DRM=\"/bin/rm\" -
DVERSION=\"2.42\" -DSPOOLDIR=\"/var/spool/MIMEDefang\" -DODIR=\"/var/spool/MD-Quarantine\
" -DCONFDIR=\"/etc/mail\" -I../sendmail-8.12.11/include -c -o mimedefang.o mimedefang.c
$ su

Password: XXXXXX

make install

mkdir -p /etc/mail && chmod 755 /etc/mail

Please create the spool directory, '/var/spool/MIMEDefang',

if it does not exist. Give it mode 700, and make

it owned by the user you intend to run MIMEDefang as.

Please do the same with the quarantine directory, '/var/spool/MD-Quarantine’.
#

The following programs and files are installed:

mimedefang
The milter itself. This program receives requests from sendmail to filter mes-
sages and pass them on to mimedefang-multiplexor to perform the checks. It
then communicates the results back to sendmail.

Spam-Checking During SMTP | 87

mimedefang-multiplexor
A program to receive requests from mimedefang and farm them out to a pool of
mimedefang.pl Perl processes for scanning. It is responsible for maintaining the
process pool, creating and destroying processes as necessary. This approach
minimizes the time and CPU overhead required in starting new processes for
each scan.

mimedefang.pl
A Perl script to perform all of the message-checking functions of MIMEDefang.
During the several stages of checking a message, this script calls functions
defined in /etc/mail/mimedefang-filter.

md-mx-ctrl
A command-line tool for viewing the status of the multiplexor or for ordering it
to reload its slave processes.

watch-mimedefang
A graphical interface based on Tcl/Tk.

letc/mail/spamassassin/sa-mimedefang.cf
A sitewide configuration file used by MIMEDefang. By default, MIMEDefang’s
install process generates a simple file, with few options.

letc/mail/mimedefang-filter

A file containing Perl subroutines called by mimedefang.pl at different stages of
message-processing. These subroutines check messages or message parts, and
direct MIMEDefang to accept, quarantine, discard, or bounce a message. MIME-
Defang installs a default mimedefang-filter that invokes SpamAssassin to add an
X-Spam-Score header and a SpamAssassin report to all messages. To implement
more complex spam-checking behavior, you’ll edit mimedefang-filter. This file is
discussed in greater detail in the “MIMEDefang Configuration” section, later in
this chapter.

Starting the MIMEDefang multiplexor

To run MIMEDefang, you must start two processes: the multiplexor (mimedefang-
multiplexor) and the milter (mimedefang). You should start the multiplexor first
because the milter process will connect to it. Start each process as root; each changes
its uid to the defang user after startup.

mimedefang-multiplexor has over a dozen command-line options, but you will typi-
cally need to use only a few of them. The most common are described here; for com-
plete information, see the manpage.

-Uuser
Instructs mimedefang-multiplexor to run as the given user (e.g., defang). Run-
ning as a non-root user is an important security measure.

88 | Chapter5: Integrating SpamAssassin with sendmail

vww .allitebooks.conl

http://www.allitebooks.org

-s /path/to/socket
Specifies the path to the Unix domain socket that the multiplexor will use to lis-
ten for requests from the milter process. It defaults to /var/spool/MIMEDefang/
mimedefang-multiplexor.sock.

-p filename
Causes the multiplexor to write its process ID to the specified file. You can use
this ID to signal the multiplexor to reread the filter when you change it or to stop
the multiplexor (these operations are discussed later in this section).

-m number-of-slaves
Specifies the minimum number of slave, mimedefang.pl processes that should be
running at any given time. This value defaults to 0, but on most systems, you
want to have at least two slave processes running at all times to minimize startup
overhead.

-X number-of-slaves
Specifies the maximum number of slave, mimedefang.pl processes that should be
running at any given time. This value defaults to 2, but busy mail servers will
require more than two processes to be available at any given time. You should
plan to increase this value to 5, 10, or higher, depending on your needs.

-q number-of-requests
Causes the multiplexor to queue an incoming request when a multiplexor is not
immediately available to service that request. By default, the multiplexor causes
sendmail to temporarily fail a message when all slave processes are busy (return-
ing a 4xx SMTP status code to the sending MTA, which should retain the mes-
sage in its queue and try to deliver it again later).

Causes the multiplexor to run in the foreground, for debugging purposes. With-
out this option, the multiplexor detaches from the terminal and runs in the back-
ground.

A typical invocation of mimedefang-multiplexor might be:

/usr/local/bin/mimedefang-multiplexor -U defang -p /var/run/mimedefang-multiplexor.
pid -m 2 -x 10

Checking multiplexor status

Once the multiplexor is running, use the md-mx-ctrl command to examine its status.
md-mx-ctrl status provides a human-readable status report on the multiplexor’s
slave processes; md-mx-ctrl msgs shows the total number of messages processed by
the multiplexor. If you’re using a nondefault socket for the multiplexor, you can
specify that socket to md-mx-ctrl using the —s /path/to/socket command-line option.
Example 5-4 shows these md-mx-ctrl invocations and their output. On the system in
the example, the multiplexor has been configured with a minimum of two slaves
(both of which are idle) and a maximum of ten, and has processed 17,366 messages.

Spam-Checking During SMTP | 89

Example 5-4. Invoking md-mx-ctrl

md-mx-ctrl status
Max slaves: 10
Slave 0: stopped

Slave 1: stopped
Slave 2: idle

Slave 3: stopped
Slave 4: stopped
Slave 5: stopped
Slave 6: idle

Slave 7: stopped
Slave 8: stopped

Slave 9: stopped
md-mx-ctxl msgs
17366

Starting the MIMEDefang milter

mimedefang performs a simpler task than the multiplexor. Its job is to receive filtering
requests from sendmail and pass them on to the multiplexor to handle. Accordingly,
it has fewer command-line options. Here are the most commonly used options.

-p /path/to/socket
Specifies the path to the Unix domain socket that the milter process will listen
on for requests from sendmail. This path must match the path you specify in
sendmail’s INPUT MAIL FILTER() macro. A typical choice is /var/spool/
MIMEDefang/mimedefang.sock, which is a required option.

-m /path/to/multiplexor/socket
Specifies the Unix domain socket on which the multiplexor is listening for
requests. mimedefang sends requests to the multiplexor on this socket. This
option is required, and the value should match that of the multiplexor’s —s
option (typically /var/spool/MIMED efang/mimedefang-multiplexor.sock).

-Uuser
Instructs mimedefang to run as the given user (e.g., defang). You must provide
the same user to mimedefang-multiplexor and mimedefang.

-P filename
Directs mimedefang to write its process ID to the specified file. Note that this
option uses a capital P.

A typical invocation of mimedefang might be:

/usr/local/bin/mimedefang -U defang -P /var/run/mimedefang.pid \
-p /var/spool/MIMEDefang/mimedefang.sock \
-m /var/spool/MIMEDefang/mimedefang-multiplexor.sock

A sample boot script for automatically starting and stopping MIMEDefang can be
found in the examples directory of MIMEDefang’s source code. Editing this script
and installing it with your other system boot scripts is an easy way to properly

90 | ChapterS: Integrating SpamAssassin with sendmail

configure MIMEDefang, as it lists all of the multiplexor and milter process options as
shell variables. Ideally, the script should run before sendmail’s startup script so that
the milter socket is in place before sendmail starts. Likewise, you should stop send-
mail before you stop MIMEDefang’s process.

Verifying the MIMEDefang processes

You can use the ps command to verify that all your MIMEDefang processes are run-
ning. Example 5-5 shows the process listing and the contents of /var/spool/
MIMEDefang and /var/spool/MD-Quarantine on a typical system running sendmail
and MIMEDefang. MIMEDefang’s processes include one mimedefang-multiplexor
process, three slave mimedefang.pl processes started by the multiplexor for scanning
messages, and four mimedefang milter processes started by sendmail. All processes are
running as user defang. The /var/spool/MIMEDefang directory contains working
directories used temporarily by MIMEDefang (names starting with “mdefang”), as
well as Unix domain sockets and pid files. The /var/spool/MD-Quarantine directory
includes subdirectories holding quarantined messages.

Example 5-5. Processes and layout of a typical MIMEDefang system

ps auxw | egrep 'mime’

defang 27145 0.0 0.0 1312 688 ? S Jan15 0:42 /usr/local/bin/mimedefang-
multiplexor -p /var/spool/MIMEDefang/mimedefang-multiplexor.pid -m 2 -x 10 -U defang -b
300 -1 -T -s /var/spool/MIMEDefang/mimedefang-multiplexor.sock

defang 27162 0.0 0.1 2552 856 ? S Jan15 0:00 /usr/local/bin/mimedefang

-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.

/var/spool/MIMEDefang/mimedefang-
sock

defang 20548 1.0 2.8 23464 22416 ? S 12:05 1:43 perl -w /usr/local/bin/
mimedefang.pl -server
defang 25089 0.0 0.1 2552 856 ? S 13:57 0:00 /usr/local/bin/mimedefang

-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.
184

defang 25142 0.0 0.1 2552 856 ? S
-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.
14:

defang 25589 0.0 0.1 2552 856 ? S
-P /var/spool/MIMEDefang/mimedefang.pid -U defang -m

multiplexor.sock -p /var/spool/MIMEDefang/mimedefang.

/var/spool/MIMEDefang/mimedefang-
sock

59 0:00 /usr/local/bin/mimedefang
/var/spool/MIMEDefang/mimedefang-
sock

11 0:00 /usr/local/bin/mimedefang
/var/spool/MIMEDefang/mimedefang-
sock

defang 26616 0.3 2.6 21588 20572 ? S 14:35 0:04 perl -w /usr/local/bin/
mimedefang.pl -server

defang 26617 0.2 2.6 21492 20492 ? S 14:35 0:03 perl -w /usr/local/bin/
mimedefang.pl -server

1s -1 /var/spool/MIMEDefang

drwx------ 3 defang defang 149 Jan 28 14:47 mdefang-i0SKkoMD027104
drwx------ 3 defang defang 149 Jan 28 14:48 mdefang-i0SK1wMB027198
~TW-i===-=-= 1 defang defang 6 Jan 15 10:40 mimedefang-multiplexor.pid
STW--=-n-- 1 defang defang 0 Jan 15 10:40 mimedefang-multiplexor.sock
~TW------- 1 defang defang 6 Jan 15 10:40 mimedefang.pid

STWX------ 1 defang defang 0 Jan 15 10:40 mimedefang.sock

Spam-Checking During SMTP | 91

Example 5-5. Processes and layout of a typical MIMEDefang system (continued)

1s -1 /var/spool/MD-Quarantine
drwx------ 2 defang defang 212 Dec 27 10:37 qdir-2004-01-28-10.37.35-001
drwx------ 2 defang defang 212 Dec 27 16:25 qdir-2004-01-28-16.25.03-001

Customizing MIMEDefang

Use the mimedefang-filter file to configure the actions that MIMEDefang takes when
filtering messages. The file is written in Perl. MIMEDefang distributes and installs a
working sample file, typically in /etc/mail, but you will need to modify several set-
tings in the file for your local environment. Example 5-6 shows the configuration
settings near the beginning of this file. You should always change $AdminAddress,
$AdminName, and $DaemonAddress. Generally, $AddWarningsInline and md_graphdefang
log_enable() can be left unchanged, and $MaxMIMEParts should be uncommented to
prevent denial-of-service attacks.

Example 5-6. Configuration section of mimedefang-filter
#***

Set administrator's e-mail address here. The administrator receives

quarantine messages and is listed as the contact for site-wide

MIMEDefang policy. A good example would be 'defang-admin@mydomain.com'
#***
$AdminAddress = 'postmaster@localhost’;

$AdminName = "MIMEDefang Administrator's Full Name";

#***

Set the e-mail address from which MIMEDefang quarantine warnings and
user notifications appear to come. A good example would be

'mimedefang@mydomain.com'. Make sure to have an alias for this

address if you want replies to it to work.
#***

$DaemonAddress = ‘mimedefang@localhost';

FpAkok ok ok skokok ok okokok s skok ok ook sk kb ok skok ok ok ko sk okok sk sk sk ok kok sk ok skok ok sk okok ok skok sk kokskok k&

If you set $AddWarningsInline to 1, then MIMEDefang tries *very* hard
to add warnings directly in the message body (text or html) rather

than adding a separate “WARNING.TXT" MIME part. If the message

has no text or html part, then a separate MIME part is still used.
FRRokokok ok dokokofokkokok ook dokokokok skokokkok skokok ook kokok ok ok oksk o sk okook skok sk sk okok sk kookok skokokokok skokokok ok

$AddWarningsInline = 0;

FhAROok ko okokok ok sk ok ok ok sk o ok sk ok ok ook skook ok ok sk sk ok ok ok ok ok sk sk ok skok sk ok sk ok sk ok ok sk sk ok ok sk ok ok ok ok ok skok ok ok ok sk ok ok k

To enable syslogging of virus and spam activity, add the following

to the filter:

md_graphdefang_log_enable();

You may optionally provide a syslogging facility by passing an

argument such as: md_graphdefang log enable('local4'); If you do this, be
sure to setup the new syslog facility (probably in /etc/syslog.conf).

An optional second argument causes a line of output to be produced

92 | Chapter5: Integrating SpamAssassin with sendmail

Example 5-6. Configuration section of mimedefang-filter (continued)

for each recipient (if it is 1), or only a single summary line
for all recipients (if it is 0.) The default is 1.

Comment this line out to disable logging.
fksokskokskok ook skokokskokakok ok koK Rk ko ok kKoK ok ok kKK Kok KKKk Rk ok kR ok ook Kok k koK ook ok o

md_graphdefang_log enable('mail’, 1);

Rk Rk k kR kR KRRk KRR KRR KRR KKK KR KR KRR KRR KR Kk ok

Uncomment this to block messages with more than 50 parts. This will
NOT work unless you're using Roaring Penguin's patched version

of MIME tools, version MIME-tools-5.411a-RP-Patched-02 or later.

#

WARNING: DO NOT SET THIS VARIABLE unless you're using at least

MIME-tools-5.411a-RP-Patched-02; otherwise, your filter will fail.
#***

$MaxMIMEParts = 50;

The remainder of the mimedefang-filter file is a set of Perl functions that mimedefang.
pl will call when checking a message. You can modify these functions to customize
MIMEDefang’s behavior. The functions include:

filter_begin()
Called with no arguments at the start of filtering. Suitable for setting variables
that you expect to use throughout the filter, or for performing whole-message
checks like virus-scanning immediately.

filter multipart(entity,name,extension, type)
Called for each MIME part of the message that contains other MIME parts
within it. The entity is a MIME::Entity object, name is the suggested filename of
the part, extension is the file extension, and type is the MIME type. Suitable for
validating MIME parts or refusing specific multipart types (e.g., message/
partial).

filter(entity,name,extension, type)
Called for each MIME part of the message that does not contain other MIME
parts within it. Arguments are the same as for filter_multipart(). Suitable for
validating filenames, virus-scanning individual MIME parts, or refusing specific
MIME types.

filter end(entity)
Called at the end of filtering with the MIME::Entity object representing the entire
message to be returned to sendmail. Suitable for checking variables that you set
elsewhere in the filter and performing computationally expensive whole-message
checks like spam-tagging if necessary.

These functions can make decisions about the disposition or modification of individ-
ual message parts by calling one of the MIMEDefang action functions. In most cases,
actions should be taken only by the filter() or filter multipart() functions.
The most commonly used action functions are:

Spam-Checking During SMTP | 93

action_accept(), action_accept_with warning(string)
Accept the current message part, possibly adding a warning to the message.

action_drop(), action_drop with_warning(string)
Drop the current message part, possibly adding a warning to the message.

action_replace with_warning(string)
Replace the current message part with a warning message.

action_quarantine(entity, string)
Drop and quarantine the current message part, and add a warning to the
message.

action_quarantine_entire message(string)
Quarantine the entire message, and add a warning to the administrator notifi-
cation if one is generated. This action only quarantines; it does not also discard
or bounce the message. You must call action_discard() or action_bounce()
afterward.

action_bounce(string[,SMTP reply code[,DSN code]])
Instruct sendmail to reject the message with string returned to the sender as the
reason for rejection. You can optionally specify an SMTP reply code (which
defaults to 554) and a DSN code (which defaults to 5.7.1). Bouncing a message
does not stop MIMEDefang from continuing to process other message parts; the
bounce occurs after all parts have been processed.

action_tempfail(string[,SMTP reply code[,DSN code]])
Instruct sendmail to temporarily reject the message with string returned to the

sender as the reason for rejection. You can optionally specify an SMTP reply
code (which defaults to 450) and a DSN code (which defaults to 4.7.1).

action_discard()
Discard the entire message silently once all parts have been processed.

action_notify_sender(string)
Generate an email notification back to the message sender containing the given
string, which may consist of multiple lines.

action_notify administrator(string)
Generate an email notification back to the MIMEDefang administrator contain-
ing the given string, which may consist of multiple lines.

action_add_part(entity, type,encoding,data, fname,disposition[,offset])
Add a new MIME part to the message represented by entity. The new part will
have a MIME content-type of type and content-encoding of encoding. The new
part itself should be stored in data and its associated filename in fname. The
MIME content-disposition is given by disposition. The optional offset speci-
fies where to add the part; it defaults to ~1 (add at end). This action may be per-
formed in filter end().

94 | Chapter5: Integrating SpamAssassin with sendmail

action_add_header(header, value)
Add a new header to the message. The header’s name is given in header, without
a trailing colon, and the value to set the header to is given in value. It is possible
to add multiple headers with the same name.

action_change_header (header,value[, index])
Change a header in the message. The header’s name is given in header, without a
trailing colon, and the new value to set the header to is given in value. If index is
given, changes the index’th header with that name. Changing a header that does
not exist will add a new header.

action_delete_header(header(, index])
Delete a header in the message. The header’s name is given in header, without a
trailing colon. If index is given, deletes the index’th header with that name
instead of the first one.

action_delete_all headers(header)
Deletes all headers in the message with a given name. The header’s name is given
in header, without a trailing colon.

oA

If you call one of the notification functions (e.g., action_notify_
sender), MIMEDefang creates a notification message and sends it by
s invoking sendmail in its deferred mode; sendmail will enqueue the
" notification message in its client mail queue rather than sending it
immediately. You must run a sendmail process that periodically sends
messages in the client queue. One way to do so is to issue the follow-
ing command at system boot (via a boot script):

/usxr/sbin/sendmail -Ac -q5m

See the sendmail documentation for more information about deferred
mode and client queue runners.

By calling these functions, you can configure MIMEDefang to suit nearly any email
management policy you wish to institute.

When you make changes to the mimedefang-filter script, you must signal
mimedefang-multiplexor to reread the configuration and restart its slave processes.
The easiest way to signal the multiplexor is to use the md-mx-ctrl reread command.
Another way is to use the kill -INT process-id command to send a SIGINT signal to
the multiplexor process; you can identify the process ID from ps output or by exam-
ining the pid file if the multiplexor was started with the —p option.

SpamAssassin Integration

MIMEDefang expects to find a SpamAssassin configuration file called sa-
mimedefang.cf in your sitewide configuration directory (usually /etc/mail/
spamassassin). If it doesn’t, it will also look for local.cf in the same directory. This

Spam-Checking During SMTP | 95

gives you the flexibility of creating different SpamAssassin configurations to be used
when SpamAssassin is invoked by MIMEDefang and when SpamAssassin is invoked
by local users or scripts.

oA

If you’re going to be invoking SpamAssassin only through MIMEDe-

fang, or if there should be no differences in the configuration file based

oks: on how MIMEDefang is invoked, consider making a hard or symbolic

" link from local.cf to sa-mimedefang.cf. MIMEDefang will find the con-
figuration file it first looks for, and you will avoid the possibility of
later creating two different configurations.

When running SpamAssassin via MIMEDefang, you may not use any of Spam-
Assassin’s configuration directives that modify a mail message. Attempting to mod-
ify the Subject header or add new headers using SpamAssassin directives will not
work. All such changes must be performed by MIMEDefang in the mimedefang-
filter script.

If you want SpamAssassin to perform network-based tests (such as DNSBL look-
ups), you must add a line to mimedefang-filter (just after the $AdminName setting
works well) to set the $SALocalTestsOnly variable to O, like this:

$SALocalTestsOnly = 0;

The section of the default mimedefang-filter that handles spam-tagging appears in
the filter end() function and is agreeably easy to read. It is presented in
Example 5-7.

Example 5-7. Spam-tagging section of mimedefang-filter

Spam checks if SpamAssassin is installed
if ($Features{"SpamAssassin"}) {
if (-s "./INPUTMSG" < 300*1024) {
Only scan messages smaller than 300kB. Larger messages
are extremely unlikely to be spam, and SpamAssassin is
dreadfully slow on very large messages.
my($hits, $req, $names, $report) = spam_assassin_check();
my ($score);
if ($hits < 40) {
$score = "*" x int($hits);
} else {
$score = "*" x 40;
}

We add a header which looks like this:
X-Spam-Score: 6.8 (******) NAME OF TEST,NAME_OF_TEST
The number of asterisks in parens is the integer part
of the spam score clamped to a maximum of 40.
MUA filters can easily be written to trigger on a
minimum number of asterisks...
action_change_header("X-Spam-Score”, "$hits ($score) $names");
if ($hits >= $req) {
md_graphdefang_log('spam', $hits, $RelayAddr);

96 | Chapter5: Integrating SpamAssassin with sendmail

Example 5-7. Spam-tagging section of mimedefang-filter (continued)

If you find the SA report useful, add it, I guess...
action_add_part($entity, "text/plain“, "-suggest",
"$report\n”,
"SpamAssassinReport.txt”, "inline");
} else {
Delete any existing X-Spam-Score header?
action_delete header("X-Spam-Score");

}

First, the code checks to be sure that MIMEDefang detected SpamAssassin on the
system when it started. It then checks to be sure that the INPUTMSG file, which
contains the message to scan, is smaller than 300 kilobytes. If that’s the case, the
code calls MIMEDefang’s spam_assassin_check() function, which uses Mail::
SpamAssassin to check the message and returns the number of hits, number of
required hits for tagging, names of tests hit, and the text of SpamAssassin’s spam
report for the message. The code creates a $score variable containing one asterisk for
each hit (up to 40).

Next, the code in Example 5-7 calls the MIMEDefang action_change_header() func-
tion to change (or add) the X-Spam-Score header. The header will include the num-
ber of hits (expressed numerically and as a line of asterisks) and the names of tests
that matched.

If the number of hits is greater than or equal to the required number to declare the
message spam, the code calls MIMEDefang’s md_graphdefang log() function to
make a log entry and then adds the SpamAssassin report text to the message as an
additional MIME part using the action_add part() function. If the number of hits is

less than the required number for tagging, the script removes the X-Spam-Score
header.

You might customize this code in filter_end() in several easy ways to suit your
needs. By commenting out the action_delete header() line, you can have the X-
Spam-Score header added to all messages, spam or not. If you want to modify the
Subject header of spam messages as SpamAssassin does, add the following code
before the action_add_part() line:

action_change header("Subject”, "*ikk*SpAMErikE ¢Sybject™);
The $Subject variable will already contain the message subject.

)
m Remember that you must signal the MIMEDefang milter to reread
mimedefang-filter whenever you change it or any Perl modules on
a* which it depends—including SpamAssassin and its configuration. If
" you update SpamAssassin or modify settings in /etc/mail/spamassassin/
sa-mimedefang.cf, you should signal the milter.

Spam-Checking During SMTP | 97

Adding sitewide Bayesian filtering

Adding a sitewide Bayesian filter for use with MIMEDefang is relatively easy. Use the
usual SpamAssassin use_bayes and bayes_path directives in sa-mimedefang.cf, and
ensure that the defang user has permission to create the databases in the directory
named in bayes_path. One way to do this is to create a directory for the databases
that is owned by defang, such as /var/spool/MD-Bayes. Another option is to locate
the databases in a directory owned by another user but to create them ahead of time
and chown them to defang. If local users need access to the databases (e.g., they will
be running sa-learn), you may have to make the databases readable or writable by a
group other than defang and adjust the bayes_file_mode, or make them world-
readable or world-writable. Doing so, however, puts the integrity of your spam-
checking at the mercy of the good intentions and comprehension of your users.

Adding sitewide autowhitelisting

In SpamAssassin 3.0, autowhitelisting is easy to enable. You need only add the usual
autowhitelist directives to sa-mimedefang.cf to determine where and how the
autowhitelist database will be stored. Be sure to enable the use_auto_whitelist con-
figuration option to turn on autowhitelisting.

Using a sitewide autowhitelist database in SpamAssassin 2.63 requires just a bit more
effort. In addition to adding the SpamAssassin autowhitelist directives to sa-
mimedefang.cf, you must modity mimedefang.pl to provide SpamAssassin with an
address list factory, as discussed in Chapter 4. Example 5-8 shows the spam_
assassin_init() function in mimedefang.pl. Add the emphasized lines to support
autowhitelisting. Don’t forget to signal mimedefang-multiplexor to reread its configu-
ration after making these changes.

Example 5-8. Adding an address list factory to mimedefang.pl

sub spam_assassin_init (;$) {

unless ($Features{"SpamAssassin”}) {
md_syslog('err', "$MsgID: Attempt to call SpamAssassin function, but SpamAssassin
is not installed.");
return undef;
}

if (!defined($SASpamTester)) {
my $config = shift;
unless ($config)
{
if (-r "/etc/mail/spamassassin/sa-mimedefang.cf") {
$config = "/etc/mail/spamassassin/sa-mimedefang.cf";
} elsif (-r "/etc/mail/spamassassin/local.cf") {
$config = "/etc/mail/spamassassin/local.cf";
} else {

98 | Chapter5: Integrating SpamAssassin with sendmail

Example 5-8. Adding an address list factory to mimedefang.pl (continued)

$config = "/etc/mail/spamassassin.cf";

}

$SASpamTester = Mail::SpamAssassin->new({
local _tests_only => $SAlocalTestsOnly,
dont_copy_prefs => 1,
userprefs_filename => $config});

require Mail::SpamAssassin::DBBasedAddrlist;
my $awl = Mail::SpamAssassin::DBBasedAddrList->new();
$SASpamTester->set_persistent_address_list_factory ($awl);

}

return $SASpamTester;

}

Adding per-domain or per-user streaming

By default, MIMEDefang processes each message once and applies SpamAssassin’s
spam determination to the message. This process works well if you run a small mail
server for a single domain, but it presents a problem for mail gateways, virtual hosts,
and larger servers. What should be done when an email message is received for mul-
tiple recipients—possibly at multiple domains? MIMEDefang provides two functions
that you can use to implement solutions to this problem, stream_by recipient() and
stream by domain(). Each works in the same way.

If you add a call to stream_by recipient() to the filter_begin() function, stream_
by_recipient() checks to see if a message has only a single recipient. If so, it returns
0, and the filter should continue to work on the message. If the message has multiple
recipients, stream_by recipient() reinjects the message by connecting to sendmail
and resubmitting the message as a series of new messages, one for each recipient of
the original message. Figure 5-1 illustrates this process. In this case, stream_by_
recipient() returns 1, and the original, multirecipient message should be dis-
carded. When the new single-recipient messages arrive at the filter, they will pass
through stream_by recipient() and continue on to the rest of the filter, which can
now safely perform per-recipient functions (such as using personal whitelists and
blacklists or other user preferences).

stream_by_domain() works similarly but only reinjects one new copy of a message for
each recipient domain in the original message. The rest of the filter can behave differ-
ently for different recipient domains, which permits virtual hosting providers to
apply different spam criteria for different domains they host.

Spam-Checking During SMTP | 99

How many
recipients?

One
\

Ramaining MIMEDefang

Many—L>

Email Message for | Message for
message | recipient#1 recipient #2
MiMiDefang

Message for
recipient #4

tmail

and SpamAssassin tests

sendmail

Message for 1
recipient#3 |

message

_ | Mail delivery agent f

(e.g. procmail)

Figure 5-1. Streaming by recipients

-

Although some MIMEDefang features will work with sendmail 8.11,
stream by domain() and stream by recipient() require sendmail 8.12.
Moreover, locally submitted messages must be sent via SMTP for these

functions to work (sendmail must be running as user smmsp rather

than as user root).

Example 5-9 shows how you could use stream by domain() to offer different policies
to different recipient domains. Policies are stored in a Berkeley database file /etc/mail/
spampolicy.db that is generated from a text file /etc/mail/spampolicy using the stan-
dard sendmail makemap program. Each line of the text file should contain a domain
name, white space, and a policy, which should be either TAG (tag spam at Spam-
Assassin’s default level), TAGn (tag messages with over n hits), BLOCK (reject spam at
SpamAssassin’s default level), BLOCKn (reject messages with over n hits), or IGNORE

(do no spam-checking). spampolicy.db must be owned by defang.

Example 5-9. Using stream_by_domain()

use DB_File;

sub getpolicy {

Where do we find the policy db?
my $policydb = '/etc/mail/spampolicy.db’;
If a domain isn't listed, what's the default policy?

my $default_policy = 'TAG';
my $host = shift;

100 |

Chapter5: Integrating SpamAssassin with sendmail

Example 5-9. Using stream_by_domain() (continued)

tie %policy, 'DB_File', $policydb, O_RDONLY, 0640, $DB_HASH;
my $policy = $policy{"\L$host"};

untie %policy;

return defined($policy) ? "\U$policy" : $default_policy;

}

sub

sub

filter begin () {

if ($SuspiciousCharsInHeaders) {
md_graphdefang_log('suspicious_chars');
return action_discard();

}

Per-domain streaming is turned on here so we get the $Domain var
set later on.
return if stream_by_domain();

filter end ($) {
my($entity) = @ ;
send_quarantine notifications();

No sense doing any extra work
return if message_rejected();

Spam checks if SpamAssassin is installed
if ($Features{"SpamAssassin"}) {
if (-s "./INPUTMSG" < 100*1024) {
Spam policy selection, based on $Domain, using a Berkeley db lookup
my $spampolicy = getpolicy($Domain);
action_add_header("X-Spam-Policy", “$spampolicy $Domain");
if ($spampolicy ne "IGNORE") {
my($hits, $req, $names, $report) = spam_assassin_check();
$req = $1 if ($spampolicy =~ /(\d+)/);
if ($hits >= $req) {
md_graphdefang_log('spam’, $hits, $RelayAddr);
if ($spampolicy =~ /BLOCK/) {
action_bounce("Message rejected by SpamAssassin");
return;
}
my($score);
if ($hits < 40) {
$score = "*" x int($hits);
} else {
$score = "*" x 40;
}

action_change_header("X-Spam-Score", "$hits ($score) $names");
action_add_part($entity, "text/plain“, "-suggest",
“$report\n",
"SpamAssassinReport.txt", "inline");
} else {
action_delete_header("X-Spam-Score");

Spam-Checking During SMTP

101

Example 5-9. Using stream_by_domain() (continued)

}
}
}

}

You could similarly use stream by recipient() in an environment where you want
to read SpamAssassin user preferences for each recipient from an SQL database. The
Mail::SpamAssassin object used in mimedefang-filter is named $SASpamTester. A sim-
ple approach is to call the load scoreonly sql() method on that object, passing the
recipient’s email address as an argument, like this:

@Recipients in mimedefang-filter is an array of recipient emails,

but if you're using stream by recipient, there should only be a single

recipient at this point.

my $recip = $Recipient[0];

If your SQL database uses usernames rather than email addresses, uncomment:

$recip =~ s/@.%//;

$SASpamTester->load_scoreonly sql($recip);
This approach creates a new database connection for each mail message. A more
complicated, but more efficient approach would be to set up a database connection
in filter begin() and write SQL queries by hand in filter_end(). On the other
hand, using SpamAssassin’s own functions, like load_scoreonly sql(), ensures that
your code will be compatible with future SpamAssassin releases that might change
the database format.

Although stream by recipient() and stream_by domain() solve an important prob-
lem, they do so at a cost in performance. Messages that arrive for multiple recipients
(or domains) will have to be split up and reinjected, considerably increasing the over-
all load on the mail server.

Building a Spam-Checking Gateway

By combining sendmail, MIMEDefang, and SpamAssassin, you can build a complete
spam-checking gateway. Such systems are increasingly popular as external mail
exchangers, receiving messages from the Internet and relaying them to internal mail
servers that don’t perform their own spam-checking (either for performance reasons
or because they run operating systems that don’t provide cost-effective antispam
solutions). I assume that users relay outgoing mail through an internal mail server,
rather than through the spam-checking gateway. Figure 5-2 illustrates this topology.

The example gateway in this section is based on actual gateways in operation on the
Internet. Although I provide complete configuration files for the example, I discuss
only those aspects of configuration directly relevant to spam-checking.

102 | Chapter5: Integrating SpamAssassin with sendmail

Firewall/router Spam-checking gateway Internal mail host

1 . mail.example.com |
Internet p» w 192.168.10.1

internal.example.com §
192.168.10.55 |

; Reading mail
. Y
Mail [jf D, ¥
clients . o [jf

éSending mail

... @

Outgding
SMTP server

Figure 5-2. Spam-checking gateway topology

sendmail Configuration

In our scenario, the spam-checking gateway should accept messages for our
domains, check them for spam, and relay them to an internal mail server. Accord-
ingly, I include the following in our sendmail configuration:

* The mailertable feature, which we may use to indicate the internal server to
which we’ll relay checked messages.

* A one-hour timeout before sending a warning message about delayed delivery,
and a seven-day timeout before bouncing messages. If the internal server should
fail and need to be replaced, senders will quickly know that their messages have
been delayed, but messages won’t be bounced unless you can’t replace the inter-
nal server within a week.

* Several configuration options to limit sendmail’s resource usage. We limit send-
mail to 60 forked child processes and 10 connections per second. We limit mes-
sages to 10Mb and 500 recipients each.

* An INPUT_MAIL_FILTER definition for MIMEDefang.

Example 5-10 is the sendmail.mc configuration file for the gateway and is used to
generate /etc/mail/sendmail.cf.

Example 5-10. sendmail.mc file for a spam-checking gateway

divert(-1)

#

Spam-checking gateway configuration
#

Building a Spam-Checking Gateway | 103

Example 5-10. sendmail.mc file for a spam-checking gateway (continued)

divert(o)dnl

VERSIONID(Spam-checking gateway')

OSTYPE(1linux)dnl

DOMAIN(generic)dnl

FEATURE(virtusertable)dnl

FEATURE(mailertable)dnl

FEATURE (access_db)dnl

FEATURE (always_add domain)dnl

FEATURE (nouucp, " reject ')dnl

FEATURE(relay based_on_MX')dnl

define(confDEF_USER_ID', "8:12"'')dnl

define(confPRIVACY_FLAGS', goaway,noreceipts,restrictmailq,restrictqrun,noetrn’
dnl Since this is for a gateway MX, we keep the queue around for a long
dnl time without bouncing messages, but we warn about delivery delay
dnl rather quickly

define(" confTO_QUEUERETURN', 7d')dnl

define(confTO_QUEUEWARN_NORMAL"', 1h')dnl

dnl Options to prevent denial-of-service

define(" confMAX_DAEMON_CHILDREN', 60')dnl

define(” ConfMAX_MESSAGE SIZE', 10000000)dnl

define(confMAX_CONNECTION_RATE_THROTTLE', 10")dnl

define(" confMAX_RCPTS PER_MESSAGE', 500")dnl

INPUT_MAIL_FILTER(mimedefang’, ~S=unix:/var/spool/MIMEDefang/mimedefang.sock, T
MAILER(smtp)dnl

MAILER(local)dnl

MAILER(procmail)dnl

Because mail destined for the example.com domain should not be delivered locally on
the external gateway, do not include example.com as one of the gateway’s local host-
names in the /etc/mail/local-host-names (/etc/mail/sendmail.cw on some systems) file.

SpamAssassin Configuration

Store the SpamAssassin configuration for a gateway in /etc/mail/sa-mimedefang.cf. In
addition to setting the typical options, it’s a wise idea to use the trusted networks
(and, in SpamAssassin 3.0, internal networks) directive to define the boundary
between trusted and untrusted networks. Example 5-11 shows the sa-mimedefang.cf
file on a system configured to use a sitewide Bayesian database.

Example 5-11. sa-mimedefang.cf file for a spam-checking gateway

required_hits 5

These are hosts that we control
internal networks 192.168.10/24

This is a backup MX that's offsite
trusted networks 111.222.333.444

bayes_path /var/spool/MD-Bayes/bayes

104 | Chapter5: Integrating SpamAssassin with sendmail

MIMEDefang Configuration

After installing MIMEDefang, set up three directories:

/var/spool/MIMEDefang
To contain MIMEDefang’s working directories, and to hold the socket and pid
files. Mount this directory on a RAM disk for increased performance.

/var/spool/MD-Quarantine
To contain quarantine directories.

/var/spool/MD-Bayes
To hold the Bayesian database files.

Each of these directories should be owned by the user under which MIMEDefang
runs (typically, defang).

Edit mimedefang-filter to configure it for your gateway. Example 5-12 shows the first
portion of a mimedefang-filter script corresponding to the example gateway I'm
describing in this chapter. Each of the key variables in the file is defined.

Example 5-12. mimedefang-filter configuration for a spam-checking gateway
kR kkkok ok ok sk otk ok kokokok kokok ok skok ko ok ok koo kbR ko koo ok ok bk ko koo ook o

Set administrator's e-mail address here. The administrator receives
quarantine messages and is listed as the contact for site-wide

MIMEDefang policy. A good example would be 'defang-admin@mydomain.com’
FRARAAK AR KKK KKK KKK KA KK FA KKK A A KKK KKK KKK KK KA K KR KKK KK KK KA KK KA KKK K KKK K

$AdminAddress = 'postmaster@example.com';
$AdminName = "Example.com Postmaster";

FHAoRRRkR Kok skokok ok ok kokokofokok sokokok skokok ok kokok kool sk okokofokokok kofokofokokokok ok okokokok ok ok sk kok ok ok okokokok ok ok

Set the e-mail address from which MIMEDefang quarantine warnings and
user notifications appear to come. A good example would be
'mimedefang@mydomain.com’. Make sure to have an alias for this

address if you want replies to it to work.
#***

$DaemonAddress = 'mimedefang@example.com';

Allow SpamAssassin to use network-based tests
$SALocalTestsOnly = 0;

Routing Email

Mail from the Internet for example.com should be sent to the spam-checking gate-
way mail.example.com. To accomplish that, add a DNS mail exchanger (MX) record
for the example.com domain that points to mail.example.com.

Once received by mail.example.com, messages will be spam-checked and should then
be relayed to internal.example.com. You can accomplish that relaying in one of two
ways:

Building a Spam-Checking Gateway | 105

Using DNS

Provide mail.example.com with an MX record for example.com pointing to
internal.example.com and having a lower preference value (more preferred) than
the mail.example.com MX record. This requires that you provide different results
to DNS queries from Internet hosts versus queries from mail.example.com. Do so
by running so-called split DNS, or by using BIND 9’s view directives. Internet
hosts should see only the mail.example.com MX record, but mail.example.com
(and probably all internal hosts and clients) should see the internal.example.com
MX record.

Using mailertable
Add FEATURE("mailertable') to the sendmail.mc file, and create a /etc/mail/
mailertable file that instructs sendmail where to forward messages destined for
example.com:

example.com esmtp:internal.example.com
or:

example.com esmtp:[192.168.10.55]
After editing mailertable, be sure to use makemap to build the mailertable.db data-
base from the mailertable file.

Internal Server Configuration

Once the external mail gateway is in place, you can configure the internal mail server
to accept only SMTP connections from the gateway (for incoming Internet mail). If
you don’t have a separate server for outgoing mail, the internal mail server should
also accept SMTP connections from hosts on the internal network. This restriction is
usually enforced by limiting access to TCP port 25 using a host-based firewall or a
packet-filtering router.

Testing

You should now have a complete, spam-checking gateway. Test the gateway by
sending spam and non-spam messages to user@example.com. Messages should
arrive at internal.example.com with Received headers that show that they were first
received by mail.example.com and then by internal.example.com, and X-Scanned-By
headers that mention MIMEDefang. Spam messages should have X-Spam-Status
headers added as well.

106 | Chapter5: Integrating SpamAssassin with sendmail

CHAPTER 6

Integrating SpamAssassin
with Postfix

Postfix is a mail transport agent written by security researcher Wietse Venema. Not
surprisingly, Postfix is designed from the ground up to be a highly secure system. It
consists of several components, each of which runs with least privilege and none of
which trust data from the other without validating it themselves. Despite the exten-
sive security emphasis in the system’s architecture, Postfix is capable of very good
performance in normal conditions; because of architectural decisions, it is also fault
tolerant and capable of good performance under adverse conditions such as resource
starvation. It has become a popular replacement for sendmail because it provides a
compatible command-line interface.

This chapter explains how to integrate SpamAssassin into a Postfix-based mail server
to perform spam-checking for local recipients or to create a spam-checking mail
gateway.

Postfix is a complex piece of software, and, like most MTAs, offers
' scores of configuration options. This chapter assumes that you are
running Postfix 1.1 or 2.x (recommended) and does not cover how to
securely install, configure, or operate Postfix itself. For that informa-

tion, see the Postfix documentation and the book Postfix: The
Definitive Guide by Kyle D. Dent (O’Reilly).

Postfix Architecture

Several different Postfix components play roles in receiving messages from the Inter-
net. The master daemon is responsible for the coordination of the components. Mes-
sages from the Internet typically enter the mail server via the smtpd daemon, which
listens on port 25 and conducts the SMTP transaction with the remote sender. smtpd
passes each message to the cleanup daemon, which performs sanity checks, fixes
missing headers, and (with the help of the trivial-rewrite program) rewrites
addresses. cleanup then deposits each message in the incoming mail queue and alerts
the qmgr daemon. gmgr moves messages from the incoming queue to the active queue,

107

and then calls local for delivery to local recipients (or smtp for relaying to remote
recipients by SMTP). Figure 6-1 illustrates the flow of email through Postfix com-
ponents.

Queue manager

Figure 6-1. The Postfix architecture during message receipt

Most systems keep Postfix’s configuration files in /etc/postfix. The most important
files are main.cf, which contains nearly all of the configuration directives for Postfix,
and master.cf, which configures the master daemon and determines how the various
Postfix components will be run. After you make changes to either of these files, you
should issue the postfix reload command to cause Postfix to re-read the files.

Spam-Checking During Local Delivery

The easiest way to add SpamAssassin to a Postfix system is to configure Postfix to
use procmail as its local delivery agent, rather than the Postfix local program. Then
add a procmail recipe for spam-tagging to /etc/procmailrc.

The advantages of this approach are:

* It’s very easy to set up.

* You can run spamd, and the procmail recipe can use spamc for faster spam-
checking.

¢ User preference files, autowhitelists, and Bayesian databases can be used.

However, Postfix runs a local delivery agent only for email destined for a local recipi-
ent. You cannot create a spam-checking gateway with this approach.

Instructions for configuring procmail for spam-checking can be found in
Example 2-6 in Chapter 2. To configure Postfix to use procmail as the local delivery
agent, use the mailbox_command directive in main.cf:

mailbox_command = procmail -a "$EXTENSION"

108 | Chapter6: Integrating SpamAssassin with Postfix

If you configure Postfix to use procmail as the local delivery agent, you

‘\'@ must be sure that you have an alias for root in your aliases file (typi-
cally in /etc or /etx/postfix). The alias should point to another local
user. Without such an alias, Postfix may be unable to deliver mail to
root using procmail.

Spam-Checking All Incoming Mail

If you want to set up a spam-checking gateway for all recipients, local or not, you
need a way to perform spam-checking as mail is received, before final delivery. Post-
fix provides a general-purpose filtering directive called content_filter.

The content_filter directive specifies a mail transport that Postfix will invoke after
receiving a message. The mail transport hands the message to a filtering program.
The filter checks the message and then either refuses it (which will cause Postfix to
generate a bounce message), discards it, or reinjects the (possibly modified) message
into Postfix for further delivery. Messages that pass the filter are reinjected so that
Postfix can operate on them almost as if they were new messages; this allows Postfix
to behave properly if the content filter rewrites message headers. You can use the
content_filter directive in main.cf, in which case the directive will be used by both
smtpd (for email received via SMTP) and pickup (for email received locally). You can
also specify content_filter as an invocation option to smtpd or pickup, which is use-
ful when you only want to filter email received from outside (or inside) the system.

Content filters can be programs that are invoked for each message. They read a mes-
sage on standard input and reinject filtered messages via the sendmail program. They
can also be daemons that listen on a local TCP port, receiving messages via SMTP or
LMTP (Local Mail Transfer Protocol), and reinjecting filtered messages via SMTP by
communicating with a second instance of smtpd listening on a local port.

LY

Don’t confuse Postfix’s sendmail program with sendmail. sendmail is
an entirely different MTA that also uses an executable named sendmail
tys: to perform nearly all of its functions. Postfix’s sendmail program is
" much more limited bur is designed to serve as a replacement for send-
mail’s to facilitate converting systems from sendmail to Postfix.

SpamAssassin itself is not suitable for use as a content filter, because it doesn’t know
how to reinject a tagged message. However, SpamAssassin can be invoked by a con-
tent filter in several ways.

Using a Program as a Content Filter

The simplest content filters are programs that accept messages on standard input,
perform spam-checking, and either exit with an error status code or reinject the mes-
sage to Postfix. When you use a program as a content filter, you do not need to run

Spam-Checking All Incoming Mail | 109

any additional daemons—Postfix invokes the program for each message. If your sys-
tem receives a lot of mail, you are likely to get better performance by using a dae-
monized content filter, which is discussed in the next section.

To use a program as a content filter requires a series of steps:

1. Create a new system user that Postfix will use to run the filter program or shell

script. SpamAssassin will use this user’s SpamAssassin preferences (in the
.spamassassin/user_prefs file in their home directory) when checking messages
that have multiple recipients. In the following steps, assume the user is named
spamfilt.

. Create a program (or shell script) that can accept an email message on standard

input, perform filtering, and pass the modified message to sendmail’s standard
input. The filter should also return an appropriate status code, usually the exit
code from sendmail, which Postfix will understand. Your program (or shell
script) should expect to receive command-line arguments consisting of the
sender’s email address and a space-separated list of recipient email addresses.

Here’s an example of a filter script called pf-spamfilt that calls SpamAssassin
using spamc. If the message being checked has only a single recipient, spamc’s -u
option is used to load the per-user preferences. When the message has multiple
recipients, the script runs spamc without -u, and, because the script will be run-
ning as the spamfilt user, spamc will use spamfilt’s preferences file.

#1/bin/sh

#
pf-spamfilt: An example spam filtering script for postfix
#
sender=$1
shift
recip="$@"
if ["$#" -eq 1]; then
/usx/bin/spamc -u $recip
else
/usx/bin/spamc
fi | /usr/sbin/sendmail -i -f $sender -- $recip
exit $?

Because this filter uses the spamc client, you must be running a spamd server. Save

the filter somewhere publicly accessible (e.g., /usr/local/bin/pf-spamfilt) and set
its permissions to allow anyone to read and execute it.

. Define a new mail transport in master.cf that invokes the filter you created in

step 2. The following example shows how you add a transport called spamcheck,
defined as a Unix service. By defining the transport as shown, you specify that
the mail transport will use Postfix’s pipe command to run /ust/local/bin/pf-
spamfilt as user spamfilt, and will pass the email address of the sender and the
email addresses of recipients as command-line arguments to pf-spamfilt. The flag

110

| Chapter6: Integrating SpamAssassin with Postfix

argument includes the R flag (add a Return-Path header) and the q flag (quote the
sender and recipient addresses for use in the command line).

______ E=— ==== =

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

e et =
spamcheck unix - n n - - pipe

flags=Rq user=spamfilt argv=/usr/local/bin/pf-spamfilt ${sender} ${recipient}
4. Direct Postfix to use the new mail transport as a content filter for the smtpd dae-
mon. Replace this line in master.cf:
smtp inet n = - - - smtpd
with these two lines:
smtp inet n - - - - smtpd
-0 content_filter=spamcheck:

5. If you always want to use per-user preferences, instruct Postfix to call the
spamcheck transport with only a single recipient per message by adding this line
to main.cf:

spamcheck_destination_recipient_limit = 1

6. Run postfix reload to re-read the configuration files. Test the system by send-
ing an email from the Internet and see whether SpamAssassin is called to check
the message.

Using a Daemon as a Content Filter

Although it’s more complicated to run a daemonized content filter, most larger sites
will want to do so in order to avoid the overhead associated with starting the con-
tent filter for each email and running sendmail for reinjection. In the daemonized
approach, the filter listens on a TCP port bound to the loopback address (127.0.0.1).
On receiving a message from the Internet, Postfix connects to the filter daemon and
relays the message using the SMTP or LMTP protocol.

The daemon can reject the message during the SMTP/LMTP transaction, which will
cause Postfix to bounce the message, or the daemon can accept the message, modify
it, and reinject it by SMTP. To prevent mail loops, Postfix must run a second smtpd
daemon, bound to another TCP port on the loopback address. The second smtpd is
configured to accept messages without rerunning the filter (or performing the checks
that would normally be performed on a message received from the Internet).

To use a daemon as a content filter requires five steps:

1. Install a daemon that performs content-filtering in the fashion that Postfix
expects. The section later in this chapter titled “Building a Spam-Checking G
ateway” provides an example. Typically, you will need to know or configure:

* The port on which the daemon accepts incoming messages to check (e.g.,
10024).

Spam-Checking All Incoming Mail | 111

* The protocol (SMTP or LMTP) by which the daemon expects to receive an
Incoming message.

* The port to which the daemon will connect to reinject a message to Postfix
(e.g., 10025).

* The user that will run the daemon. Ideally, you should run daemons under a
single-purpose, non-root user.

2. Define a new mail transport in master.cf that sends mail to the daemon. In the

following example, the transport is called spamcheck and is defined as a Unix ser-
vice that will use Postfix’s smtp command. You can use the disable_dns_lookups
option to save overhead, as you know that the transport will be configured to
relay mail to your loopback IP address, so the daemon will never need to per-
form a DNS MX lookup. The example uses the maxproc feature in master.cf to
limit the number of messages that can use this mail transport at one time to two.

=== ESESESSSESSEESS S EEESSEESSSS==================== ====
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
=== B e e e e e et S E R R D B B B e et s ==
spamcheck unix - - n - 2 smtp
-0 disable_dns_lookups=yes
LA

If you are using Postfix 2.0 or later, you can define the spamcheck trans-
port to use Postfix’s lmtp command instead of smtp. The LMTP proto-
o: col has some advantages over SMTP—notably, LMTP servers
" (including amavisd) can return individual accept/refuse codes for each
message recipient during an LMTP transaction. Postfix’s lmtp client
can also cache connections to an LMTP server for greater per-
formance. Bugs in the lmtp client existed in Postfix versions earlier
than 2.0 so using smtp is recommended with these versions.

3. Define a new mail transport that receives mail from the daemon in master.cf.
This transport will use Postfix’s smtpd daemon and is defined by the IP address
and port number on which it will listen (127.0.0.1 and 10025, respectively).
smtpd is an inet service, and many option parameters are provided to prevent
further filtering and to restrict access to this mail transport to the local host only.
Here is an example of such a definition in master.cf:

4P W = . 8 _Se
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
E===s=ss========== S ======= e
127.0.0.1:10025 inet n - n - - smtpd
-0 content_filter=
-0 myhostname=1ocalhost. yourdomain
-0 local _recipient_maps=
-0 relay recipient maps=
-0 smtpd_restriction_classes=
-0 smtpd client restrictions=
112 | Chapter6: Integrating SpamAssassin with Postfix

-o smtpd_helo_restrictions=

-0 smtpd_sender_restrictions=

-o smtpd_recipient_restrictions=permit_mynetworks,reject
-0 mynetworks=127.0.0.0/8

-0 strict_rfc821_envelopes=yes

-0 smtpd_error_sleep time=0

-o smtpd_soft_error limit=1001

-0 smtpd_hard _error 1imit=1000

The -0 myhostname=1localhost.yourdomain option is important if the
i content filter issues the SMTP HELO command with the same host-
name that it originally received from Postfix. If Postfix sees a HELO from

itself, it rejects the connection to avoid a mail loop. By telling the new
smtpd that its hostname is something else, you prevent this problem.

4. Direct Postfix to the use the daemon’s mail transport as a content filter for mail
received by the primary smtpd daemon. Replace this line in master.cf:

smtp inet n - - - - smtpd
with these two lines:

smtp inet n -

- - 2 smtpd
-0 content_filter=spamcheck:[127.0.0.1]:10024

The primary smtpd daemon will filter incoming messages by passing them to the
spamcheck mail transport that is listening on port 10024 of the loopback address
127.0.0.1.

5. Run postfix reload to re-read the configuration files. Test the system by send-
ing email from the Internet.

Figure 6-2 illustrates this configuration.

Postfix
onsg‘ot?tdz s cleanup feeeceeeeee - Content filter
_ daemon on port 10024
: - (invokes SpamAssassin) f

v o
Delivery smtpd B 5
agents on port 10025 |

Figure 6-2. Postfix with a daemonized content filter

Filtering Before Address-Rewriting

The Postfix queue manager invokes content filters once it has queued a message. A
potential problem with the simple content-filtering approaches outlined earlier is

Spam-Checking All Incoming Mail | 113

that the messages to be filtered have passed through the cleanup service on their way
to the queue, and cleanup performs virtual address lookups and address canonical-
ization—that is, cleanup may rewrite addresses in message headers. Accordingly, the
message that Postfix sends to the content filter (and thus to SpamAssassin) to check
is not exactly the same as the message that Postfix received. The changes to addresses
may rob SpamAssassin’s rules (or the Bayesian classifier) of useful determinants of
spam.

If you are running Postfix 2.0 or later, you can fix this problem by setting up a sepa-
rate, pre-cleanup service that does not perform address canonicalization. Messages
received by Postfix’s smtpd and pickup can be routed through the pre-cleanup and
then to the queue. Filter-checked messages received by the second smtpd instance can
then be routed through the standard cleanup service for address-rewriting before
returning to the queue for further delivery processing.

To use a two-cleanup design, set up a daemonized filter configuration as described in
the previous section and then make the following configuration changes:

1. Add a new pre-cleanup service to /etc/postfix/master.cf that calls the cleanup dae-
mon but turns off address canonicalization:

pre-cleanup unix n - n - 0 cleanup
-0 canonical_maps=
-0 sender_canonical_maps=
-0 recipient_canonical_maps=
-0 masquerade_domains=
-0 virtual alias_maps=

2. Configure smtpd and pickup to use the pre-cleanup service in /etc/postfix/master.cf
by changing their entries from

smtp inet n - - - - smtpd
pickup fifo n - - 60 1 pickup
to
smtp inet n - - - - smtpd
-0 cleanup_service_name=pre-cleanup
pickup fifo n - - 60 1 pickup

-0 cleanup_service name=pre-cleanup

3. To improve performance, modify the entry for cleanup so that it does not per-
form some of the message checks that will have already been handled by pre-
cleanup. You can turn off any checks that would have already been performed on
message headers (via the Postfix header_checks, mime_header_checks, or nested_
header_checks options) or bodies (via the Postfix body checks options) by defin-
ing each option to be empty:

cleanup unix n - n - 0 cleanup
-0 header_checks=
-0 mime_header_checks=

-0 nested_header_checks=
-0 body_checks=

114 | Chapter6: Integrating SpamAssassin with Postfix

Figure 6-3 illustrates this configuration.

Postfix

smtpd K. > '
on port 25 Content filter ,
‘ : - daemon on port 10024

(invokes SpamAssassin)

cleanup

delivery SMPd B
agents on port 10025

Figure 6-3. Postfix with a daemonized content filter and two cleanup services

Building a Spam-Checking Gateway

Several content-filtering daemons that call SpamAssassin are available for Postfix.
This section provides a complete sample installation of amavisd-new, a particularly
efficient filter that supports both spam-checking and virus-checking. amavisd-new is
written in Perl and available at http://www.ijs.si/software/amavisd/. The version used
in this chapter’s example is 20030616-p9, which supports both SpamAssassin 2.63
and SpamAssassin 3.0.

amavisd-new is based on amavis, another virus-scanning package that is also actively
developed and widely used. Although amavisd-new’s most important program is also
named amavisd, amavisd-new has developed separately and is a significantly differ-
ent package. Some of amavisd-new’s features include:

avisd-new was specifically developed and tested for Postfix as a daemonized con-
tent filter.

Messages can be rejected based on MIME type or extensions of attached file-
names.

Messages can be checked with multiple virus scanners, and messages carrying
viruses can be refused, discarded, or quarantined.

SpamAssassin can be invoked on a message, and spam can be refused, dis-
carded, quarantined, or tagged.

Per-user configuration of amavisd-new is possible through an SQL or LDAP
database.

Building a Spam-Checking Gateway | 115

The rest of this chapter details the installation, configuration, and operation of
amavisd-new as an example of a full-scale, daemonized, content filter approach to
using SpamAssassin with Postfix. amavisd-new’s other functions, such as virus-
checking, are mentioned but not covered in detail; read the documentation to learn
more about these other amavisd-new features.

Installing amavisd-new

amavisd-new is written in Perl, and invokes SpamAssassin through the Mail:
SpamAssassin Perl modules. Because amavisd-new itself is a daemon, you do not
need to run spamd. It’s easiest to install SpamAssassin (and your antivirus software)
first, and then install amavisd-new. amavisd-new also requires several other Perl
modules, including: Archive::Tar, Archive::Zip, Compress::Zlib, Convert: TNEF,
Convert::UUlib, MIME::Base64, MIME::Tools, Mail::Internet, Net::Server, Net::
SMTP, Digest::MDS5, [0::Stringy, Time::Hires, and Unix::Syslog. If you plan to do
per-user configuration of amavisd-new through SQL or LDAP, you’ll need appropri-
ate Perl modules for database access (DBI and a DBD:: module for SQL, or Net::
LDAP for LDAP). You can install most of these Perl modules using CPAN as
described in Chapter 2.

The standard version of MIME::Tools 5.411a has bugs. Install MIME::
- Tools 6 or later from http://search.cpan.org/dist/MIME-tools.

Begin the install process by creating a new user account and group for running
amavisd-new; the usual name for both the user and group is amavis. This user will
own amavisd-new’s files, and the user (or group) must have access to SpamAssas-
sin’s configuration and database files as well. The user’s home directory is tradition-
ally /var/famavis, but you can create it anywhere that fits your system’s needs.

amavisd-new uses several important directories. It keeps two files in its home direc-
tory, one containing its current process ID, and the other used for locking. It uses a
working directory for unpacking email messages and scanning them; by default, this
is the home directory or the tmp subdirectory of the home directory. For optimal per-
formance, this directory should be on a fast disk—even a RAM disk if your operat-
ing system supports it and you have enough memory to spare. amavisd-new stores
quarantined email messages in /var/virusmails by default, but you can select any
directory for this purpose. Speed is not so critical with this directory, and it should
never be located on a RAM disk because you will often want to be sure that you can
access quarantined files. If you plan to physically locate these directories somewhere
unusual (e.g., to mount new disk partitions or a RAM disk as /var/amavis/tmp), you
should do so before you install amavisd-new. The directories should be owned by
user and group amavis and should not be world-readable or world-searchable.

116 | Chapter6: Integrating SpamAssassin with Postfix

Next, download the amavisd-new source code from http://www.ijs.si/software/amavisd/
and unpack it. As root, copy the amavisd script to a suitable directory for executable
daemons (e.g., /ust/bin, /usr/local/sbin, etc.), chown it to root, and use chmod to set its
permissions to 0755 (readable and executable by all users, writable only by root).

Copy the amavisd.conf file to a suitable directory for configuration files (e.g., /etc,
letc/amavis, /usr/localletc, etc.). By default, amavisd expects to find this file in
/etc, and if you locate it anywhere else, you will have to add an extra command-
line option (-c filename) when invoking amavisd to tell it the new location. The
amavisd.conf file should also be owned by root and should have permissions 0644
(readable by all, writable only by root).

Configuring amavisd-new

amavisd-new is configured through the amavisd.conf file. amavisd.conf is parsed as a
Perl script and can contain any legal Perl code. Because it is parsed as Perl, you must
escape any at sign (@), question mark ($), or backslash (\) characters that appear in
double-quoted strings by prepending a backslash. For example:

$some_email = “"sample\@example.com";

Email addresses must be specified without surrounding brackets and without RFC
2821 quoting.

Edit amavisd.conf to set the (many) available configuration options to control
amavisd. The file is organized in logical sections; the most important options are in
Section I, but you’ll need to read through the entire file to customize the system com-
pletely. The following sections explain commonly modified portions of the configu-
ration file in the order that you’ll encounter them.

Essential options

Example 6-1 shows the first portion of the configuration file and the settings of the
essential options. Set $MYHOME to the amavis user’s home directory. Set $mydomain to
your domain name. Set $daemon_user and $daemon_group to name of the amavis user
and group. Set $TEMPBASE to the directory to use for unpacking messages; for
improved performance, this directory should be a mounted RAM disk.

Example 6-1. Essential settings in amavisd.conf

Section I - Essential daemon and MTA settings
#

$MYHOME serves as a quick default for some other configuration settings.

More refined control is available with each individual setting further down.
$MYHOME is not used directly by the program. No trailing slash!

$MYHOME = '/var/amavis'; # (default is '/var/amavis')

$mydomain serves as a quick default for some other configuration settings.

Building a Spam-Checking Gateway | 117

Example 6-1. Essential settings in amavisd.conf (continued)

More refined control is available with each individual setting further down.
$mydomain is never used directly by the program.
$mydomain = 'example.com'; # (no useful default)

Set the user and group to which the daemon will change if started as root

(otherwise just keeps the UID unchanged, and these settings have no effect):
$daemon_user = ‘amavis'; # (no default; customary: vscan or amavis)
$daemon_group = 'amavis'; # (no default; customary: vscan or amavis)

Runtime working directory (cwd), and a place where

temporary directories for unpacking mail are created.

(no trailing slash, may be a scratch file system)

#$TEMPBASE = $MYHOME; # (must be set if other config vars use is)
$TEMPBASE = "$MYHOME/tmp"; # prefer to keep home dir /var/amavis clean?

MTA options

Example 6-2 shows the settings of the MTA options. Set $forward method to the
method you will use to reinject checked mail to the MTA. For Postfix, this method
should be of the form smtp:ipaddress:portnumber, where ipaddress is the IP address
of the Postfix system (usually 127.0.0.1) and portnumber is the TCP port number on
which the second smtpd instance is running. Because amavisd-new was designed with
Postfix in mind, you may not need to change this section at all.

Example 6-2. MTA options in amavisd.conf

MTA SETTINGS, UNCOMMENT AS APPROPRIATE,
both $forward method and $notify method default to ‘smtp:127.0.0.1:10025'

POSTFIX, or SENDMAIL in dual-MTA setup, or EXIM V4

(set host and port number as required; host can be specified

as IP address or DNS name (A or CNAME, but MX is ignored)
$forward_method = 'smtp:127.0.0.1:10025'; # where to forward checked mail
$notify _method = $forward_method; # where to submit notifications

Daemon process options

Example 6-3 shows the daemon process settings. The most important setting is $max_
servers, which you should set to the same number of smtp processes you have
configured Postfix to use concurrently to send messages to amavisd-new.

Example 6-3. Daemon process settings in amavisd.conf

Net::Server pre-forking settings
You may want $max_servers to match the width of your MTA pipe
feeding amavisd, e.g. with Postfix the 'Max procs' field in the

master.cf file, like the '2' in the: smtp-amavis unix - - n - 2 smtp
#
$max_servers = 2; # number of pre-forked children (default 2)

118 | Chapter6: Integrating SpamAssassin with Postfix

Distinguishing local domains

amavisd-new distinguishes local domains from remote domains. Recipients at local
domains can take advantage of several per-user features that are not directly avail-
able to remote recipients, including local customization of SpamAssassin settings.
Example 6-4 shows that part of amavisd.conf that bears on per-user customization.

You can provide your local domain information in several ways. You can set the
@local domains_acl array to a list of domain names that should be considered local.
You can set the %local_domains hash instead, providing local domain names as keys
and 1 as their values, or use the read_hash function to read in a list of local domain
names from an external file. Finally, you can define local domain names by invoking
the new_RE function with a regular expression that matches the local domain names
and assigning the result to $local_domains_re. No matter which method you use,
adding a period (.) to the beginning of a domain name means that the domain and
any subdomains should all be considered local.

Example 6-4 shows this section of the configuration file, using the @local_domains_
acl variable to define local domains.

Example 6-4. Setting local domains in amavisd.conf

Lookup list of local domains (see README.lookups for syntax details)

#

NOTE:

For backwards compatibility the variable names @local_domains (old) and
@local_domains_acl (new) are synonyms. For consistency with other lookups
the name @local_domains_acl is now preferred. It also makes it more
obviously distinct from the new %local_domains hash lookup table.

local_domains* lookup tables are used in deciding whether a recipient
is local or not, or in other words, if the message is outgoing or not.
This affects inserting spam-related headers for local recipients,
limiting recipient virus notifications (if enabled) to local recipients,
in deciding if address extension may be appended, and in SQL lookups
for non-fqdn addresses. Set it up correctly if you need features

that rely on this setting (or just leave empty otherwise).

With Postfix (2.0) a quick reminder on what local domains normally are:
a union of domains specified in: $mydestination, $virtual_alias_domains,
$virtual mailbox_domains, and $relay_domains.

HOH R HH R H R R R R R IR R

#@local_domains_acl = (".$mydomain"); # $mydomain and its subdomains

@local_domains_acl = qw(); # default is empty, no recipient treated as local
@local_domains_acl = qw(.example.com);

@local_domains_acl = gqw(.example.com !host.sub.example.net .sub.example.net);
@local domains_acl = (".$mydomain", '.example.com', 'sub.example.net');
@local_domains_acl = qw/

example.com

example.net

example.org

/3

Building a Spam-Checking Gateway | 119

Example 6-4. Seiting local domains in amavisd.conf (continued)

or alternatively(A), using a Perl hash lookup table, which may be assigned
directly, or read from a file, one domain per line; comments and empty lines
are ignored, a dot before a domain name implies its subdomains:

#

#read_hash(\%local_domains, '/var/amavis/local domains');

#or alternatively(B), using a list of regular expressions:
$local_domains_re = new RE(qr'[@.]example\.com$'i);

Postfix-specific options

Section II of amavsid.conf specifies options that differ by MTA and is shown in
Example 6-5. Because amavisd-new was designed with Postfix in mind, you need to
modify relatively few options. Set the $inet_socket_port variable to the TCP port
number on which amavisd should listen for SMTP connections from Postfix. To
prevent this port from being accessed by remote hosts, set $inet_socket bind to
'127.0.0.1', which will cause amavisd to listen only on the loopback interface and
not on other network interfaces. If you want to allow access by a set of remote hosts
(if, for example, you want to run amavisd on a different host than your Postfix MTA),
don’t set $inet_socket bind but do set @inet_acl to a list of IP addresses for hosts
that should be permitted to connect. This list is checked in order; the first match
wins. You may specify these IP addresses as single addresses or as CIDR-style
address/netmask (e.g., 192.168.1/255.255.255.0) or address/bits (e.g., 192.168.1/24)
ranges.” You may prepend an IP address with an exclamation point (!) to disallow
connections from that address, even if a larger range that contains the address is per-
mitted (e.g., 1192.168.0/24 192.168/16 to allow all 192.168.*.* addresses except 192.
168.0.* addresses).

Example 6-5. Postfix-specific options in amavisd.conf

SMTP SERVER (INPUT) PROTOCOL SETTINGS (e.g. with Postfix, Exim v4, ...)
(used when MTA is configured to pass mail to amavisd via SMTP or LMTP)
$inet_socket_port = 10024; # accept SMTP on this local TCP port
(default is undef, i.e. disabled)
multiple ports may be provided: $inet_socket port = [10024, 10026, 10028];

SMTP SERVER (INPUT) access control

- do not allow free access to the amavisd SMTP port !!!

#

when MTA is at the same host, use the following (one or the other or both):

$inet_socket_bind = '127.0.0.1"; # limit socket bind to loopback interface
(default is '127.0.0.1')

@inet_acl = qw(127.0.0.1); # allow SMTP access only from localhost IP
(default is qw(127.0.0.1))

*

“CIDR?” stands for Classless Interdomain Routing.

120 | Chapter6: Integrating SpamAssassin with Postfix

Logging options

Section III of amavisd.conf deals with logging and is shown in Example 6-6. amavisd
can log using syslog, or it can log to a file. Set $D0_SYSLOG to 1 to instruct amavisd to
use syslog for logging; you can change the syslog facility and priority using the
$SYSLOG_LEVEL variable. Set $D0_SYSLOG to O to instruct amavisd to log to a file; set
$LOGFILE to specify the filename. The log file must be in a directory the amavis user
can write to.

The $log_level variable controls the amount of detail that amavisd logs. A log level of
0 results in minimal logging; a log level of 5 produces highly verbose logging.

Example 6-6. Logging options

Section III - Logging
#

true (e.g. 1) => syslog; false (e.g. 0) => logging to file
$D0_SYSLOG = 1; # (defaults to false)
#$SYSLOG_LEVEL = 'user.info'; # (defaults to 'mail.info')

Log file (if not using syslog)
$LOGFILE = "$MYHOME/amavis.log"; # (defaults to empty, no log)

#NOTE: levels are not strictly observed and are somewhat arbitrary
0: startup/exit/failure messages, viruses detected

1: args passed from client, some more interesting messages

2: virus scanner output, timing

3: server, client

4: decompose parts

5: more debug details

$log level = 1; # (defaults to 0)

Spam-handling options

Most of Section IV of amavisd.conf focuses on detailed configuration of how amavisd
will handle detected viruses and spam. Only those options related to spam handling
are discussed in detail here.

When amavisd detects a spam email, it logs a message to its log file by default. It can
also quarantine the email and/or notify an administrator. It can then generate a
bounce message to the sender. Finally, it can either accept and deliver the message,
or discard the message. Many different configuration variables are involved in these
decisions. Unfortunately, the order of the variables in the file is largely the reverse of
the order in which they are checked during the spam-handling process.

Enable a spam quarantine by setting the following two variables:

$QUARANTINEDIR
Set this variable to the directory or mailbox file in which to store the quaran-
tined messages.

Building a Spam-Checking Gateway | 121

$spam_qguarantine_method
Set this variable to "local:spam-%b-%i-%n", to specify the filename format for
quarantined spam messages. In that format, %b expands to a digest of the mes-
sage body, %i expands to the date and time, and %n expands to the amavisd mes-
sage identifier.

To control the spam quarantine on a per-recipient basis, set the $spam_quarantine_to
variable to a reference to a hash, keyed by the recipient’s address, like this:

$local _delivery aliases{'sam-spam'} = '/home/sam/mail/spam’;

$spam_quarantine_to =
{ 'example.net' => undef
'jane@example.com' => 'spam@jane.example.com’,
‘sam@example.com' => ‘sam-spam',
"example.com' => 'spam-quarantine’,
b
If the hash value is undefined or empty, spam is not quarantined. In this example,
spam sent to example.net will not be quarantined at all. If the hash value contains an
asterisk (@), spam will be forwarded. Spam sent to jane@example.com will be for-
warded to spam@jane.example.com. Otherwise, the hash value is looked up in the
%local_delivery aliases hash, and the spam is quarantined in the file or directory
returned from that lookup. If the lookup fails, amavisd logs a warning and doesn’t
quarantine the message. Several default local delivery aliases are defined in amavisd,
including spam-quarantine, which quarantines a message in $QUARANTINEDIR. In the
preceding example, spam to sam@example.com will be quarantined in the /home/
sam/mail/spam mailbox (or mail directory), and other spam to example.com will be
quarantined in the default directory.

You can also write your $spam_quarantine_to policies with regular expressions:

$spam_quarantine to = new RE(
[gr/~sam@example\.com$/i => 'sam-spam'],
[qr/*jane@example\.com$/i => 'spam@jane.example.com'],
[qr/@example\.com$/i => 'spam-quarantine'],
[qr/@example\.net$/i => undef]

);
Because regular expressions are matched in the order that you list them, you must
put the most specific matches first (/*sam@example\.com/ before /@example\.com/).
Because regular expression matches are case sensitive, you should generally include
the i (case-insensitive) modifier to the qr// operator.

Spam to recipients that don’t match any entry in $spam_quarantine_to will not be
quarantined, so if you want to quarantine all spam by default, you should either pro-
vide a rule for each domain you receive mail for, or use the regular expression
approach and include a rule for the regular expression qr/.*/ at the end.

122 | (Chapter6: Integrating SpamAssassin with Postfix

amavisd-new is smart about per-recipient policies like $spam_quarantine to. If some
message recipients choose to quarantine spam and some do not, amavisd-new will
honor those preferences. If multiple recipients choose the same quarantine destina-
tion, a message sent to two or more of those recipients is written only once to the
quarantine destination .

You can also make quarantine decisions based on a spam’s sender in an analogous
way using $spam_quarantine_bysender_to, but this alternative is rarely useful, as
spammers often falsify their sending addresses or use throwaway accounts.

To notify an administrator when spam is received, set $spam_admin to the address of
the administrator. These notifications are disabled by default. Consider carefully
before setting $spam_admin to the email address of a real person; given the amount of
spam on the Internet today, it’s easy to get hundreds of notifications or more, and
difficult to know what to do about them. An alternative that might be useful for ser-
vice providers is to set $spam admin to a reference to a hash based on the spam
sender’s address, in order to detect outgoing spam from customers. For example, to
notify the security staff about spam being sent from the example.com domain but
nowhere else, use:
$spam_admin =
{ '.example.com' => ‘security@example.com',
".' => undef

};
The $final spam_destiny variable controls the final disposition of spam recognized
by amavisd. Although this variable appears first in this section of the configuration
file, it is consulted last during spam-handling. When using amavisd-new with Post-
fix, there are three useful settings for $final _spam destiny:

* Set $final spam_destiny to D_PASS to accept and deliver all spam. Use this strat-
egy when your goal is simply to tag spam and let clients do their own filtering. If
you set $warnspamsender to 1, you will also generate a bounce message to the
sender. I don’t recommend this, however, as spammers often falsify return
addresses.

* Set $final_spam_destiny to D_DISCARD to discard spam that scores above a “kill
level” (specified in Section VII of amavisd.conf); spam below the kill level will be
tagged and accepted. Use this strategy when your goal is to reduce bandwidth or
storage space by dropping messages that are very likely to be spam and tagging
others.

* Set $final_spam destiny to D_BOUNCE to generate a bounce message to the sender
and then discard the message. Because spammers often falsify their return
addresses, you will rarely want to use this setting.

Building a Spam-Checking Gateway | 123

Recipient whitelists

Section V of the amavisd.conf file focuses on spam policy controls for individual
recipients or recipient domains. Its function is analogous to SpamAssassin’s
whitelist_to feature. You can prevent any spam-checking at all, or you can continue
to perform spam-checking but prevent spam-handling actions for detected spam.

To prevent any spam-checking at all for email sent to a recipient, set the @bypass_
spam_checks_acl, %bypass_spam_checks, or $bypass_spam_checks_re variables. You
may use domain names instead of recipient addresses to whitelist all mail sent to a
given domain. Here’s how you’d set the @bypass_spam_checks_acl array to a list of
recipients that want to opt out of spam-checking:

@bypass_spam_checks_acl = qw(chris@example.com robin@example.com);

To use the %bypass_spam_checks hash instead, provide recipient addresses as keys and
1 as their values. You might prefer this approach to using @bypass_spam_checks_acl if
you have a very long list of recipients, because searching a hash is much faster than
searching a long list. You can also use the read_hash function to read in a list of recip-
ients from an external file and assign them to %bypass_spam checks. This is useful
when you want to keep a long list of recipients separate from the amavisd.conf file.
For example:

read_hash(\%bypass_spam_checks, '/var/amavis/bypass_spam');

Finally, you can define recipients to opt out by providing a list of regular expressions

that match recipient addresses to the new RE function and assigning the result to

$bypass_spam_checks. This method is useful when you can parsimoniously specify

your whitelisted recipients with a regular expression or two. For example:
$bypass_spam_checks = new _RE(qr'”*(chris|robin)@example\.com'i);

oA

Spam checks are bypassed only if all of the recipients of a message
have been added to one of these variables. If even one recipient is not
& listed, spam-checking will still be performed. To ensure that spam is
" still delivered to whitelisted recipients in such cases, use the “spam_
lovers” features discussed next.

If spam checks are bypassed, SpamAssassin’s Bayesian classifier will
not have an opportunity to learn from a message, whether or not it is
spam.

To prevent spam-handling (e.g., tagging or quarantine) from being performed for a
recipient when a message has been checked and designated as spam, set the @spam_
lovers_acl, %spam_lovers, or $spam_lovers_re variables. These variables are set analo-
gously to the @bypass_spam_checks acl, %bypass_spam_checks, and $bypass_spam_
checks_re variables.

In Example 6-7, jane@example.com always receives every message, spam or not, and
spam-tagging is skipped when messages are addressed to her alone. In addition, if a

124 | (Chapter6: Integrating SpamAssassin with Postfix

message is destined for a domain other than example.com (i.e., it’s outgoing mail
from our domain), spam-tagging is skipped. postmaster@example.com also receives
every message, but spam-checking is still performed.

Example 6-7. Whitelisting by recipient

Avoid running a spam check if jane is the only recipient, or if
all recipients are outside of example.com
@bypass_spam_checks_acl = ('jane@example.com', '!.example.com');

Even if we run a check, don't act on the results for jane or postmaster
@spam_lovers_acl = ('jane@example.com', 'postmaster@example.com');

Sender whitelists and blacklists

amavisd can maintain whitelists and blacklists of message senders. It uses a mes-
sage’s envelope address (the one provided in the SMTP MAIL FROM command) as the
sender address. Whitelisting ensures that amavisd will allow mail from a whitelisted
sender to continue to its intended recipients; blacklisting ensures that amavisd will
treat mail from a blacklisted sender as spam.

amavisd’s whitelist and blacklist features do not interact in the same
manner as SpamAssassin’s. For example, if an address is both
a: whitelisted and blacklisted in SpamAssassin, neither takes effect. If an
" address is both whitelist and blacklisted in amavisd, both take effect—
the message is marked as spam and also allowed to pass to the recipi-
ent.

As with other amavisd address-matching features, you can specify addresses to glo-
bally whitelist by an array, keys of a hash, or by a set of regular expressions. Set the
@whitelist_sender_acl array to a list of sender addresses to whitelist. To use the
%whitelist_sender hash instead, provide sender addresses as keys and 1 as their val-
ues, or use the read_hash function to read in a list of senders from an external file.
Finally, you can specify senders to whitelist by providing a list of regular expressions
that match the sender addresses to the new_RE function and assigning the result to
$whitelist_sender_re. You may use domain names instead of sender addresses to
whitelist all mail sent from a given domain.

You can use a similar set of variables for globally blacklisting senders. The array is
@blacklist_sender_acl, the hash is %blacklist sender, and the regular expression
version is $blacklist sender re.

The default amavisd.conf defines $blacklist_sender_re and %whitelist sender as
shown in Example 6-8. Many username patterns typical of spammers are black-
listed, such as investments; many addresses of well-known security and vendor mail-
ing lists are whitelisted. You can modify these definitions or use one of the other
variables to add additional sender addresses to the whitelist or blacklist.

Building a Spam-Checking Gateway | 125

Example 6-8. Default blacklist and whitelist entries in amavisd.conf

$blacklist_sender_re = new RE(
qr'~(bulkmail|offers|cheapbenefits|earnmoney|foryou|greatcasino)@'i,
qr'(investments|lose weight today|market.alert|money2you|MyGreenCard)@'i,
qr’~(new\.tld\.registry|opt-out|opt-in|optin|saveonlsmoking2002k)@'i,
qr'~(specialoffer|specialoffers|stockalert|stopsnoring|wantsome)@'i,
qr'~(workathome|yesitsfree|your friend|greatoffers)e'i,
qr'*(inkjetplanet|marketopt |MakeMoney)\d*@'1,

);

map { $whitelist sender{lc($_)}=1 } (qu(
cert-advisory-owner@cert.org
owner-alert@iss.net
slashdot@slashdot.org
bugtrag@securityfocus.com
NTBUGTRAQ@LISTSERV.NTBUGTRAQ. COM
security-alerts@linuxsecurity.com
amavis-user-admin@lists.sourceforge.net
notification-return@lists.sophos.com
mailman-announce-admin@python.org
owner-postfix-users@postfix.org
owner-postfix-announce@postfix.org
owner-sendmail-announce@Lists.Sendmail.ORG
owner -technews@postel.ACM.ORG
lvs-users-admin@LinuxVirtualServer.org
ietf-123-owner@loki.ietf.org
cvs-commits-1ist-admin@gnome.org
rt-users-admin@lists.fsck.com
clp-request@comp.nus.edu.sg
surveys-errors@lists.nua.ie
emailNews@genomeweb.com
owner-textbreakingnews@CNNIMAIL12.CNN.COM
spamassassin-talk-admin@lists.sourceforge.net
yahoo-dev-null@yahoo-inc.com
returns.groups.yahoo.com

));

amavisd-new also supports per-recipient blacklists and whitelists of senders. Per-
recipient lists override the global lists. Use the $per_recip blacklist_sender_lookup_
tables and $per recip whitelist sender lookup tables variables to specify these
lists. Each variable is a reference to a hash keyed by the recipient’s address (or
domain). The hash value should be a reference to an array of sender addresses, a ref-
erence to a hash keyed on sender addresses (with hash values of 1), a call to the read_
hash function to read the addresses from a file, or a call to new_RE with a list of regu-
lar expressions to match sender addresses against. For example, you could add the
following code to amavisd.conf to maintain a list of whitelisted senders for
jane@example.com in the file /etc/mail/jane-whitelist:
$per_recip_whitelist sender_ lookup_tables =
{ 'jane@example.com' => read hash('/etc/mail/jane-whitelist")

e

126 | Chapter6: Integrating SpamAssassin with Postfix

SpamAssassin settings

Several variables in amavisd.conf atfect the way that amavisd invokes SpamAssassin or
the actions it takes based on a message’s score from SpamAssassin:

$sa_local_tests_only
Set this variable to 1 if you want SpamAssassin to skip network-based tests. It
defaults to 0 (perform network-based tests).

$sa_auto whitelist
Set this variable to 1 to enable SpamAssassin’s autowhitelist feature. It defaults
to 0 (no autowhitelist). Specify the location of the autowhitelist database in
SpamAssassin’s sitewide configuration file, local.cf. Be sure that the amavis user
has permission to read from and write to the database.

$sa_mail body size limit
If you set this variable to a size (in bytes), messages larger than the given size will
not be checked for spam. This conserves system resources, as SpamAssassin can
take a long time to check large messages, and large messages are rarely spam.
The variable is undefined by default, which implies no limit. A reasonable value
might be 65536 (64Kb) or 102400 (100Kb).

$sa_tag_level deflt
This variable determines the spam score at or above which X-Spam-Status and
X-Spam-Level headers will be added to the message to show the spam status and
level of the message. The default is 3, which is suitable for seeing which tests are
and are not being triggered for suspicious messages. If you like to see the spam
status of all messages, set this value to —10 or so.

This variable can be defined on a per-recipient basis much like $per_recip_
blacklist_sender_lookup_tables. Set $sa_tag level deflt to a reference to a
hash keyed on recipient addresses, with the tag level as the hash value.

$sa_tag2 level deflt
This variable determines the spam score at or above which amavisd adds an X-
Spam-Flag: YES header and an X-Spam-Report header to the message. It may
also modify the Subject header to tag the message as spam. The default is 6.3.

This variable can be defined on a per-recipient basis much like $per_recip_
blacklist_sender_lookup_tables. Set $sa_tag2_level deflt to a reference to a
hash keyed on recipient addresses, with the tag2 level as the hash value.

$sa_kill level deflt
This variable determines the spam score at or above which amavisd will perform
spam-handling on the message, such as quarantining the message, discarding i,
notifying administrators, etc. By default, this variable is set to the value of $sa_
tag2_level deflt so spam-handling is performed on all spam detected. If you
want to discard messages that are extremely likely to be spam and tag messages

Building a Spam-Checking Gateway | 127

that are less likely to be spam, set this variable to a higher score (e.g., 12), and
only messages above that level will be subject to special handling.

The variable can be defined on a per-recipient basis much like $per recip_
blacklist_sender_lookup_tables. Set $sa_kill level deflt to a reference to a
hash keyed on recipient addresses, with the kill level as the hash value.
$sa_spam_modifies_subj
If this variable is set to 1, amavisd may modify the Subject header of messages
with spam scores above the $sa_tag2 level dflt setting. You can also set this
variable to a reference to a list of recipients who should have their Subject head-
ers modified, a reference to a hash table keyed on recipients who should have
their headers modified (with hash values of 1), or the return value of a new RE()
call on a list of regular expressions to match against recipients who should have
their headers modified. This variable is not defined by default.
$sa_spam_subject_tag
Set this variable to the string to prepend to the Subject header of spam messages
when $sa_spam_modifies_subj is true. If you do not define this, Subject headers
will never be modified. It is not defined by default; a common definition would
be '*kkkkGpamFkkKkK !

Storing recipient preferences in external databases

It’s possible to store amavisd-new recipient preferences in an SQL or LDAP data-
base. This can be useful if you want to permit users to modify their own preferences,
particularly if you already use an SQL- or LDAP-based user directory. SQL and
LDAP lookups override variables defined in amavisd.conf.

Database entries indicate user preferences, including whether a user has opted out of
spam-checking, whether amavisd should modify the Subject of spam messages, and
user spam tag levels (tag, tag2, kill). Database entries may also specify sender
addresses that the recipient wants to blacklist or whitelist.

To enable SQL lookups, define the variable @lookup_sql dsn in amavisd.conf. This
variable should contain a list of references to three-element arrays that represent
database connections. The first element of each array is a Perl DBI DSN that defines
the database driver to use, the database name, and the name of the database server
host. The second element is a database username that amavisd will provide for identi-
fication to the database server, and the third element is the associated password for
authentication. The distributed amavisd.conf file provides the following commented-
out example:

@lookup_sql_dsn =

(['DBI:mysql:database=mail;host=127.0.0.1;port=3306", 'useri', 'passwdi'],

['DBI:mysql:database=mail;host=host2', 'username2', ‘password2']);
In this example, amavisd will first attempt to connect to the MySQL database server
on port 3306 of the local host in order to access the mail database. It will log into the

128 | Chapter6: Integrating SpamAssassin with Postfix

database server as user1 with password passwd1. If this connection fails, amavisd will
try the next database server, a MySQL server running on host2, using user username2
and password password2.

The file README_FILES/README.lookups in the amavisd-new source code pro-
vides definitions for a set of SQL tables that are suitable for configuring user policies
and whitelists and blacklists in amavisd. You can add these tables to your SQL data-
base and follow the instructions in README.lookups to add appropriate database
queries to amavisd.conf.

¥ A

amavisd-new’s SQL support should not be confused with SpamAssas-
sin’s SQL support. Each controls different aspects of mail-processing.
a

~

The amavisd-new source code includes an LDAP schema for an auxiliary class
(amavisAccount) that can be added to user accounts. The class defines attributes that
determine whether a user has opted out of spam-checking, whether amavisd should
modify the Subject of spam messages, a user’s desired spam tag levels (tag, tag2, kill),
and sender addresses to blacklist or whitelist for a user.

To enable LDAP lookups, set the $enable_ldap variable in amavisd.conf to 1, and
provide LDAP server information in the $default_ldap variable as a reference to a

hash:

$default_ldap = {
hostname => 'ldap-server-hostname',
tls => 1,
base => 'base DN for ldap searches',
query_filter => '(&(objectClass=amavisAccount)(mail=%m))"}

)

For each preference for which amavisd can perform an LDAP query, you must define
additional query parameters to specify (at minimum) the result attribute to be
returned from the LDAP database to amavisd. Parameters left undefined will prevent
LDAP queries from being performed for that preference. The amavisd source code
provides the examples in Example 6-9.

Example 6-9. Defining LDAP query parameters for user preferences

$bypass_spam_checks_ldap = {res_attr => 'amavisBypassSpamChecks'};
$spam_tag level ldap = {res_attr => 'amavisSpamTaglevel'};
$spam_kill level ldap = {res_attr => 'amavisSpamKilllLevel'};
$spam_whitelist_sender_ ldap = {

query filter => '(&(objectClass=amavisAccount)(mail=%m)

(amavisWhitelistSender=%s))',

res_filter => '0K'};
$spam_blacklist_sender ldap = {

query filter => '(&(objectClass=amavisAccount)(mail=%m)

Building a Spam-Checking Gateway | 129

Example 6-9. Defining LDAP query parameters for user preferences (continued)
(amavisBlacklistSender=%s))",
res_filter => '0K'};

See the file README_FILES/README.lookups in the source code for more infor-
mation.

Basic Operations

Once you’ve configured the options in amavisd.conf, you're ready to test amavisd.
Start amavisd either as the amavis user or as root (in which case it will change its UID
and GID to that of amavis during startup).

During your first test, start amavisd with the debug argument. This causes amavisd to
run in the foreground and produce debugging information that you can watch to be
sure that it’s working correctly. Example 6-10 shows a debug startup for a properly
functioning configuration:

Example 6-10. Starting amavisd with the debug arguments

amavisd debug

Feb 7 16:58:16 tala amavisd[924]: starting. amavisd at tala amavisd-new-20030616-p7
Feb 7 16:58:16 tala amavisd[924]: Perl version 5.006001

Feb 7 16:58:16 tala amavisd[924]: Module Amavis::Conf 1.15

Feb 7 16:58:16 tala amavisd[924]: Module Archive::Tar 1.08

Feb 7 16:58:16 tala amavisd[924]: Module Archive::Zip 1.09

Feb 7 16:58:16 tala amavisd[924]: Module Compress::Zlib 1.32

Feb 7 16:58:16 tala amavisd[924]: Module Convert::TNEF 0.17

Feb 7 16:58:16 tala amavisd[924]: Module Convert::UUlib 1.0

Feb 7 16:58:16 tala amavisd[924]: Module MIME::Entity 6.109

Feb 7 16:58:16 tala amavisd[924]: Module MIME::Parser 6.108

Feb 7 16:58:16 tala amavisd[924]: Module MIME::Tools 6.110

Feb 7 16:58:16 tala amavisd[924]: Module Mail::Header 1.60

Feb 7 16:58:16 tala amavisd[924]: Module Mail::Internet 1.60

Feb 7 16:58:16 tala amavisd[924]: Module Mail::SpamAssassin 2.63

Feb 7 16:58:16 tala amavisd[924]: Module Net::Cmd 2.24

Feb 7 16:58:16 tala amavisd[924]: Module Net::DNS 0.45

Feb 7 16:58:16 tala amavisd[924]: Module Net::SMTP 2.26

Feb 7 16:58:16 tala amavisd[924]: Module Net::Server 0.86

Feb 7 16:58:16 tala amavisd[924]: Module Time::HiRes 1.54

Feb 7 16:58:16 tala amavisd[924]: Module Unix::Syslog 0.99

Feb 7 16:58:16 tala amavisd[924]: Found myself: /usr/local/sbin/amavisd -c /etc/amavisd.
conf

Feb 7 16:58:16 tala amavisd[924]: Lookup::SQL code NOT loaded

Feb 7 16:58:16 tala amavisd[924]: Lookup::LDAP code NOT loaded

Feb 7 16:58:16 tala amavisd[924]: AMCL-in protocol code NOT loaded

Feb 7 16:58:16 tala amavisd[924]: SMTP-in protocol code loaded

Feb 7 16:58:16 tala amavisd[924]: ANTI-VIRUS code loaded

Feb 7 16:58:16 tala amavisd[924]: ANTI-SPAM code loaded

Feb 7 16:58:16 tala amavisd[924]: Net::Server: 2004/02/07-16:58:16 Amavis (type Net::

Server: :PreForkSimple) starting! pid(924)

130 | Chapter6: Integrating SpamAssassin with Postfix

Example 6-10. Starting amavisd with the debug arguments (continued)

Feb 7 16:58:16 tala amavisd[924]: Net::Server: Binding to TCP port 10024 on host 127.0.
0.1

Feb 7 16:58:16 tala amavisd[924]: Net::Server: Setting gid to "110 110"
Feb 7 16:58:16 tala amavisd[924]: Net::Server: Setting uid to "2013"
Feb 7 16:58:16 tala amavisd[924]: Net::Server: Setting up serialization via flock
Feb 7 16:58:16 tala amavisd[924]: Found $file at /usr/bin/file
Feb 7 16:58:16 tala amavisd[924]: No $arc, not using it

Feb 7 16:58:16 tala amavisd[924]: Found $gzip at /bin/gzip

Feb 7 16:58:16 tala amavisd[924]: Found $bzip2 at /usr/bin/bzip2
Feb 7 16:58:16 tala amavisd[924]: Found $lzop at /bin/lzop

Feb 7 16:58:16 tala amavisd[924]: Found $lha at /usr/bin/lha

Feb 7 16:58:16 tala amavisd[924]: Found $unarj at /usr/bin/arj

Feb 7 16:58:16 tala amavisd[924]: Found $uncompress at /bin/uncompress
Feb 7 16:58:16 tala amavisd[924]: No $unfreeze, not using it

Feb 7 16:58:16 tala amavisd[924]: Found $unrar at /usr/bin/unrar
Feb 7 16:58:16 tala amavisd[924]: Found $zoo at /usr/bin/zoo
Feb 7 16:58:16 tala amavisd[924]: Found $cpio at /bin/cpio

Feb 7 16:58:16 tala amavisd[924]: Using internal av scanner code for (primary) Clam
Antivirus-clamd

Feb 7 16:58:16 tala amavisd[924]: No primary av scanner: KasperskylLab AVP - aveclient
...many other messages about detecting av scanners...

Feb 7 16:58:16 tala amavisd[924]: SpamControl: initializing Mail::SpamAssassin

Feb 7 16:58:16 tala amavisd[924]: SpamControl: turning on SA auto-whitelisting
Feb 7 16:58:23 tala amavisd[924]: SpamControl: done

Feb 7 16:58:23 tala amavisd[924]: Net::Server: Beginning prefork (2 processes)
Feb 7 16:58:23 tala amavisd[924]: Net::Server: Starting "2" children

Feb 7 16:58:23 tala amavisd[924]: Net::Server: Parent ready for children.

Feb 7 16:58:23 tala amavisd[929]: Net::Server: Child Preforked (929)

Feb 7 16:58:23 tala amavisd[930]: Net::Server: Child Preforked (930)

After the startup messages, you should begin to see amavisd processing incoming
messages (which will produce a copious amount of debugging information). When
you are satisfied that messages are being properly delivered back to Postfix, hit Curl-
C to stop amavisd debug and run amavisd with no arguments to start the daemon in
the background.

L)

. If you've chosen to locate your configuration file somewhere other

than /etc, you should either make a symbolic link to /etc/famavisd.conf
-

i3, or use the -c /path/to/amavisd. conf command-line option to amavisd.

Once amavisd is running and you confirm that ordinary email is being delivered cor-
rectly, test the SpamAssassin functions by sending a copy of the GTUBE string to
yourself from a remote system. Because SpamAssassin assigns GTUBE a spam score
of 1000, which should be higher than your spam kill level, you should see the mes-
sage handled by amavisd’s spam-handling options.

If amavisd appears to work, but SpamAssassin does not, you can enable Spam-
Assassin debugging by editing amavisd.conf and setting the $sa_debug variable to 1.

Building a Spam-Checking Gateway | 131

This variable appears at the end of amavisd.conf. You must stop amavisd and restart it
with the debug argument for SpamAssassin debugging to be performed.

L)
Py

Anytime you make a change to amavisd.conf, you must inform amavisd

by issuing the command amavisd reload (or stopping and restarting
-

s the daemon).

The amavisd-new distribution includes a script named amavisd_init.sh that you can
use as a boot script for systems based on RedHat Linux. With a little modification, it
makes a suitable boot script for other Unix systems to automatically start and stop
amavisd.

Adding Sitewide Bayesian Filtering

You can easily add sitewide Bayesian filtering to amavisd-new. Use the usual Spam-
Assassin use_bayes and bayes_path directives in local.cf, and ensure that the amavis
user has permission to create the databases in the directory named in bayes_path.
One way to do this is to use a directory for the databases that is owned by amavis,
such as /var/amavis. Another option is to locate the databases in a directory owned
by another user but to create them ahead of time and chown them to amavis. If local
users need to have access to the databases (e.g., they will be running sa-learn), you
might have to make the databases readable or writable by a group other than amavis
and adjust the bayes_file_mode, or make them world readable or writable. Doing so,
however, puts the integrity of your spam-checking at the mercy of the good inten-
tions and comprehension of your users.

If users have shell accounts on the system, you can use per-user Bayesian filtering
with amavisd-new instead. Configure SpamAssassin for per-user databases as usual,
but ensure that each user’s databases are group-owned by the amavis group and have
group read/write permissions so that amavisd-new can use them. Doing so allows
users to run sa-learn themselves to train their databases, while still permitting
amavisd-new to access them. With SpamAssassin 3.0, you could also store per-user
Bayesian data in an SQL database.

Adding Sitewide Autowhitelisting

amavisd knows how to use autowhitelisting (see the discussion of $sa_auto_
whitelist earlier in this chapter). Just add the usual SpamAssassin auto_whitelist_
path and auto_whitelist_file_mode directives to local.cf. As with the Bayesian data-
bases, the amavis user must have permission to create the autowhitelist database and
read and write to it.

132 | (Chapter6: Integrating SpamAssassin with Postfix

Routing Email Through the Gateway

Once Postfix and amavisd-new are receiving messages for the local host and perform-
ing SpamAssassin checks on them, you can start accepting email for your domain
and routing it to an internal mail server after spam-checking. Figure 6-4 illustrates
this topology.

Firewall/router Spam-checking gateway Internal mail host
' mail.example.com internal.example.com
N ~ 192.168.10. 192.168.10.55
- @ | Reading mail
I v
’ iy, i e,
: v (Y L L
i dients ; y _ "\jz" ‘\l:’
~)/ Rt / N w= 'v.’
i Sending mail
(ﬁ
Outgoing
SMTP server

Figure 6-4. Spam-checking gateway topology

Postfix changes

To configure Postfix to relay incoming mail for example.com to internal.example.com,
add the following line to /etc/postfix/main.cf:

transport_maps=hash:/etc/postfix/transport

Then, create the /etc/postfix/transport file, and add either:
example.com smtp:internal.example.com

or, if mail.example.com cannot resolve the name internal.example.com, you could use
example.com smtp:[129.168.10.55]

Run the command postmap /etc/postfix/transport to build the transport map from
letc/postfix/transport, and run postfix reload to reload Postfix’s configuration.

Routing changes

Mail from the Internet for example.com should be sent to the spam-checking gate-
way mail.example.com. Add a DNS MX record for the example.com domain that
points to mail.example.com.

Building a Spam-Checking Gateway | 133

Once received by mail.example.com, messages will be spam-checked and should then
be relayed to internal.example.com by Postfix. No DNS records for internal.example.
com need be published to the Internet, but it’s useful if mail.example.com can resolve
internal.example.com.

Internal server configuration

Once the external mail gateway is in place, you can configure the internal mail server
to accept SMTP connections only from the gateway (for incoming Internet mail). If
you don’t have a separate server for outgoing mail, the internal mail server should
also accept SMTP connections from hosts on the internal network. These restric-
tions are usually enforced by limiting access to TCP port 25 using a host-based fire-
wall or a packet-filtering router.

134 | Chapter6: Integrating SpamAssassin with Postfix

CHAPTER 7
Integrating SpamAssassin with gmail

gmail is a mail transport agent written by cryptography researcher Dan Bernstein and
designed to provide a highly secure mail system. It consists of several components,
each of which runs with least privilege and none of which trusts data from the other
without validating it itself. qmail works best in concert with several other systems
designed by Bernstein that take over other functions traditionally performed by stan-
dard system utilities.

This chapter explains how to integrate SpamAssassin into a qmail-based mail server
to perform spam-checking for local recipients or to create a spam-checking mail gate-
way.

qmail is a complex piece of software and, like most MTAs, offers
E scores of configuration choices. This chapter assumes that you are run-

ning the netqmail 1.05 version of qmail 1.03 and does not cover how
to securely install, configure, or operate qmail itself. For that informa-
tion, see the qmail documentation, David Sill’s Life with gmail web site
(http:/fwww lifewithqmail.org) and The gmail Handbook by David Sill
(Apress) or gmail by John Levine (O’Reilly).

This chapter assumes that you have set up your gmail system as
described in Life with gmail and that you are using the recommended
daemontools and ucspi-tcp packages.

gmail Architecture

Several different qmail components play roles in receiving messages from the Inter-
net. Messages from the Internet typically enter the mail server via the gmail-smtpd
daemon, which listens on port 25 and conducts the SMTP transaction with the
remote sender. gmail-smtpd passes the messages to the gmail-queue program, which
stores them in an outgoing queue for further processing. The gmail-send daemon
reads the messages in the outgoing queue and attempts to deliver them using either
the gqmail-lspawn daemon (which passes it to the gmail-local program for local

135

delivery) or the qmail-rspawn daemon (which passes them to the gmail-remote pro-
gram for relaying to remote hosts). Figure 7-1 illustrates the flow of email through

gmail components.
. Called from the SMTP daemon,
g qmail-queue ' sendmail, list manager, etc.
gmail-send h

Al A

Y lv

gmail-Ispawn

gmail-rspawn

gmail-local qmail-remote

Figure 7-1. gmail architecture during message receipt

Most systems keep all of qmail’s files in /var/qmail. Configuration files reside in /var/
qmail/control.

Spam-Checking During Local Delivery

The easiest way to add SpamAssassin to a qmail system is to configure qmail to pipe
messages through SpamAssassin during local delivery.

The advantages of this approach are:

* It’s easy to set up.
* You can run spamd and can use spamc for faster spam-checking.

* User preference files, autowhitelists, and Bayesian databases can be used,
because qmail will invoke SpamAssassin as the user to whom it is delivering a
message.

However, qmail runs a local delivery agent only for email destined for a local recipi-
ent. You cannot create a spam-checking gateway with this approach.

If you’re using the installation described in the Life with gmail web site, the /var/
qmail/control/defaultdelivery file contains a line that specifies either a directory (e.g.,
/Maildir/) or a filename (e.g., ./Mailbox). The /var/gmail/rc script passes the con-
tents of defaultdelivery to qmail-start, and thence to gmail-1spawn and gmail-local.

136 | Chapter7: Integrating SpamAssassin with gmail

If you deliver to a maildir directory, change the line in your defaultdelivery file to
read:

| /usr/bin/spamc | maildir ./Maildir/
In this case, be sure you've installed the safecat package, which includes the maildir script.
You can get safecat at http://www.pobox.com/~lbudney/linux/software/safecat.html.
If you deliver to a mailbox file in each user’s home directory, install procmail and
change the line in defaultdelivery to read:

| preline procmail

In this case, the system’s /etc/procmailrc tile should have a default recipe that looks
like this:

:0fw
* ¢300000
| /usx/bin/spamc

o8
$HOME /Mailbox

u’h‘

The default delivery method is used only when users don’t have their
own .gmail files. This permits users to override spam-checking. Con-
* %k versely, if you don’t do spam-checking by default during local deliv-
" ery, any user can add the preceding lines to her .gmail file and have her
messages checked.

Spam-Checking All Incoming Mail

If you want to set up a spam-checking gateway for all recipients, local or not, you
need a way to perform spam-checking as mail is received, before final delivery. qmail
provides this capability through the QMAILQUEUE patch, which is included in the
netqmail distribution of qmail (and most packaged qmail distributions).

oA

E You can find out if your qmail installation has the QMAILQUEUE

patch applied by executing the following commands:
' # cd /var/qmail/bin
strings qmail-smtpd | grep OMAILQUEUE
QMATLQUEUE

If you don’t see QMAILQUEUE in response to the strings command, the
patch has not been applied. You will have to recompile qmail from the
netqmail source code.

With the QMAILQUEUE patch applied, the gmail-smtpd daemon checks to see if the
environment variable QMAILQUEUE has been set. If so, gqmail-smtpd hands the message
off to the program specified in that variable instead of to the default gmail-queue

Spam-Checking All Incoming Mail | 137

program. The new program can call SpamAssassin and then pass the (possibly
tagged) message to qmail-queue. Figure 7-2 illustrates this arrangement.

Without
OMAILQUEUE

gmail_smtpd

QMAILQUEUE

»| gmail_gueue

New program

Figure 7-2. gmail configuration to check all incoming email for spam

SpamAssassin includes a small C program called gmail-spamc by John Peacock, with
its source code (in the gmail subdirectory in SpamAssassin 2.63, and in the spamc
subdirectory in SpamAssassin 3.0). When compiled, gmail-spamc is suitable for use
as a QMAILQUEUE program; it invokes spamc on an incoming message and pipes the
result to gmail-queue. Because it’s written in C and is a very simple program, it runs
quickly. To set up gmail-spamc, perform the following steps:

1.

Compile gmail-spamc.c. On most systems, issue a command like the following in
the directory containing gmail-spamc.c:

cc -0 -o gmail-spamc qmail-spamc.c

. As root, install gmail-spamc in an appropriate location on your system (e.g., /var/

gmail/bin or /usr/local/bin). Make it executable. For example:

install -m 755 gmail-spamc /var/qmail/bin

. Ensure that gmail-queue is on the system’s default path. The easiest way to do so

is usually to create a symbolic link from /var/gmail/bin/gmail-queue to /usr/bin/
qmail-queue. Do the same for spamc if it is not already installed in /usr/bin. For
example:

1n -s /var/gmail/bin/gqmail-queue /usr/bin/gmail-queue

Ensure that spamd is running.

. Ensure that gmail-smtpd has enough memory available to allow it to run gmail-

spamc and spamc. Edit /var/qmail/supervise/qmail-smtpd/run and modify the -m
and/or -a arguments of softlimit to increase the number of bytes available to
gmail-smtpd and its child processes to an amount sufficient to allow all of the
processes to execute completely on a large message. A setting of 10MB (roughly
10,000,000) is usually sufficient, but you may have to vary the setting and keep
an eye on your logs to find the right amount. If the setting is too low, you will

138

| Chapter7: Integrating SpamAssassin with qmail

see errors such as the following at the end of the DATA step during SMTP trans-
actions:

fatal: qq temporary problem (#4.3.0)
. Edit /Jetc/tcp.smtp. This file controls access to the SMTP service when you're
using ucspi-tcp. Add or modify the line shown in bold:

127.:allow,RELAYCLIENT=""
:allow,OMAILQUEUE="/var/qmail/bin/gmail-spamc"

This change causes the QMAILQUEUE environment variable to be set when gqmail-
smtpd is invoked by a connection from hosts outside the 127. network (i.e.,
spam-checking will be performed on email from remote hosts, but not from the
local host).

With the version of gqmail-spamc distributed with SpamAssassin 3.0, you can cus-
tomize the way spamc is invoked by adding additional environment variables to
the list in /etc/tcp.smtp, including:

SPAMDSOCK="/path/to/socket"
Direct spamc to use the given path to a Unix socket for connecting to spamd.

SPAMDHOST="hostname"
Direct spamc to connect to spamd at the given host.

SPAMDPORT="port-number"
Direct spamc to connect to spamd at the given TCP port number.

SPAMDSSL="1"
Direct spamc to connect to spamd using SSL.

SPAMDSIZE="number-of-bytes"
Direct spamc not to perform spam-checking on messages that exceed number-
of-bytes in size.

SPAMDUSER="username"
Direct spamc to supply the given username to spamd.

. Update the TCP rules database by running the command gmailctl cdb, which is
found in your /var/gmail/bin/ directory. At this point, all incoming remote SMTP
connections should have their messages passed through gmail-spamc.

oA

You can emulate the QMAILQUEUE approach without the QMAIL-
QUEUE patch by renaming gmail-queue to gmail-queue.orig and writ-
s'ing a new gmail-queue script that pipes the message through
" SpamAssassin and then to qmail-queue.orig, like this:
#1/bin/sh
PATH=/var/gmail/bin:$PATH
| spamc | gmail-queue.orig
However, this approach is less flexible than using QMAILQUEUE and

more prone to causing trouble later when you want to queue mes-
sages without spam-checking them.

Spam-Checking All Incoming Mail | 139

Building a Spam-Checking Gateway

Several content-filtering daemons that call SpamAssassin are available for qmail. This
section provides a complete sample installation of qmail-scanner, a particularly flexi-
ble filter that supports both spam-checking and virus-checking. gmail-scanner is
written in Perl and available at http://qmail-scanner.sourceforge.net/. The version used
in this section’s example is 1.21. Some of qmail-scanner’s features include:

* The filter was specifically developed and tested for qmail.

* Messages can be rejected based on MIME type or extensions of attached file-
names.

* Messages can be rejected based on invalid formatting.

* Messages can be checked with multiple virus scanners, and messages carrying
viruses can be refused, discarded, or quarantined.

* SpamAssassin can be invoked on a message, and spam can be refused, dis-
carded, quarantined, or tagged.

The rest of this chapter details the installation, configuration, and operation of
qmail-scanner as an example of a full-scale approach to using SpamAssassin with
qmail. gmail-scanner’s other functions, such as virus-checking, are mentioned but
not covered in detail; read the documentation to learn more about these features.

Installation

gmail-scanner is written in Perl and invokes SpamAssassin by running spamc, so you
must run spamd to use gmail-scanner. You should set up spamd before you install
gmail-scanner. Install SpamAssassin (and your antivirus software) first, then install
gmail-scanner. gmail-scanner also requires some other Perl modules, including:
Time::HiRes, DB_File, and Sys::Syslog. You can install these Perl modules using
CPAN as described in Chapter 2. You must also install the Maildrop software pack-
age (http://lwww.courier-mta.org/download.php), and if you plan to perform virus-
checking, TNEF (http://sourceforge.net/projects/tnef/).

A

gmail-scanner requires the 5.005_03 version of Perl or later. Perl must
be compiled to allow setuid Perl scripts; often this means that a sepa-
ot rate suidperl program is available on the system. If your system’s Perl
" does not support setuid Perl scripts, you may be able to find a package
for your system that does, you may build Perl from source code and
enable support, or you may compile a setuid wrapper program in C
(described later in this chapter).

Begin the install process by creating a new user account and group for running
qmail-scanner; the usual name for both the user and group is gscand. The new user
will own gmail-scanner’s files, and the user (or group) must have access to Spam-

140 | Chapter7: Integrating SpamAssassin with qmail

Assassin’s configuration and database files as well. The user’s home directory is
traditionally /home/gscand, but you can create it anywhere that fits your system’s
needs.

gmail-scanner uses several important directories and files in /var/spool/gmailscan. For
example, quarantined messages are stored in /var/spool/qmailscan/quarantine, and
gmail-scanner logs its operations in /var/spool/qmailscan/qmail-queue.log. The direc-
tories /var/spool/qmailscan/tmp and /var/spool/qmailscan/working are temporary
directories used for unpacking and processing messages. For optimal performance,
these directories should be on a fast disk—even a RAM disk if your operating system
supports it and you have enough memory to spare. In contrast, the quarantine direc-
tory should never be located on a RAM disk because you will often want to be sure
that you can access quarantined files.

Next, download the gmail-scanner source code, unpack it, and build it. You must be
root to configure and build gmail-scanner. The gmail-scanner build process uses the
familiar configure command to configure and build gmail-scanner’s components,
which you then install.

gmail-scanner Configuration Options

gmail-scanner has only a few configure options related to SpamAssassin. If you don’t
specify any options, gmail-scanner will use spamc -c for spam-checking and will add
X-Spam-Status and X-Spam-Level headers to messages, but will not modify the Subject
header of spam messages.

If you specify the --scanners 'fast_spamassassin=string' command-line option to
configure, gmail-scanner will also modify the Subject header of spam messages by
prepending a string. A typical choice for string might be SPAM. If you plan to use other
virus-scanners, you must specify thom in this command-line option as well or gmail-
scanner will not use them. (If you’ve already installed gmail-scanner and want to start
adding a Subject header tag, you can also edit the /var/qmail/bin/qmail-scanner-queue.pl
file itself; search for the line that defines the $spamc_subject variable, and modify it to
set your subject prefix.)

If you specify the --scanners verbose spamassassin command-line option to
configure, gmail-scanner will use spamc without the -c option. This alternative runs
more slowly, because the entire spam-checked message is read back from spamc instead
of just the spam scores. The advantage of this configuration, however, is that messages
will be tagged exactly as defined in the SpamAssassin rules and report templates. For
example, you’ll get the SpamAssassin headers that report which spam tests matched,
any custom headers you’ve defined, and full MIME-rewriting of messages. If you plan
to use other virus scanners, you must specify them in this command-line option as well
or gmail-scanner will not use them.

Building a Spam-Checking Gateway | 141

To configure gmail-scanner, use the commands shown in Example 7-1. The exam-
ple also reproduces the output you should expect.

Example 7-1. Building gmail-scanner

$ tar xfz qmail-scanner-1.21.tar.gz
$ cd gmail-scanner-1.21

$ su

Password: XXXXXXXX

./configure --install

Building Omail-Scanner 1.21...

This script will search your system for the virus scanners it knows
about, and will ensure that all external programs
gmail-scanner-queue.pl uses are explicitly pathed for performance
reasons.

It will then generate gmail-scanner-queue.pl - it is up to you to install it
correctly.

Continue? ([Y]/N) Y
/usr/bin/uudecode works as expected on system...
The following binaries and scanners were found on your system:

mimeunpacker=/usr/local/bin/reformime
uudecode=/usr/bin/uudecode
unzip=/usr/bin/unzip

Content/Virus Scanners installed on your System

fprot=/usr/local/bin/f-prot
fast_spamassassin=/usr/local/bin/spamc

Omail-Scanner details.

log-details=0

fix-mime=2

ignore-eol-check=0

debug=1

notify=psender,nmlvadm

redundant-scanning=no

virus-admin=postmaster@example.com

local-domains="example.com'

silent-

viruses="klez"', 'bugbear', 'hybris', 'yaha', 'braid', 'nimda’, 'tanatos’, 'sobig", 'winevar', 'pal
yh','fizzer', 'gibe’,'cailont’, 'lovelorn’,'swen', 'dumaru’,'sober','hawawi', 'holar-
i', 'mimail’, 'poffer', 'bagle’, 'worm.galil', 'mydoom', 'worm.sco', 'tanx’, 'novarg','@mm'

scanners="fprot_scanner","fast_spamassassin”

If that looks correct, I will now generate gmail-scanner-queue.pl
for your system...

142 | (Chapter7: Integrating SpamAssassin with qmail

Example 7-1. Building gmail-scanner (continued)

Continue? ([Y]/N) Y

Finished. Please read README(.html) and then go over the script to
check paths/etc, and then install as you see fit.

Remember to copy quarantine-attachments.txt to /var/spool/qmailscan and then
run "gmail-scanner-queue.pl -g" to generate DB version.

Please log into an unpriviledged account and run
/var/qmail/bin/qmail-scanner-queue.pl -g

If you see the error "Can't do setuid", or "Permission denied", then
refer to the FAQ.

(e.g. "setuidgid gmaild /var/qmail/bin/gmail-scanner-queue.pl -g")

That's it! To report success:

% (echo 'First M. Last'; cat SYSDEF)|mail jhaar-s4vstats@crom.trimble.co.nz
Replace First M. Last with your name.

As with gmail-spamc, ensure that qmail-smtpd has enough memory available to allow
it to run gmail-scanner-queue.pl, any virus checkers you have configured, and spamc.
Edit /var/qgmail/supervise/qmail-smtpd/run and modify the -m and/or -a arguments of
softlimit to increate the number of bytes available to gmail-smtpd and its child pro-
cesses to an amount sufficient to allow all of the processes to execute completely on a
large message.

To enable qmail-scanner, edit /etc/tcp.smtp. Add or modify lines such as those shown
in bold:

127.:allow,RELAYCLIENT=""
192.168.:allow,RELAYCLIENT="",0MAILQUEUE="/var/qmail/bin/qmail-scanner-queue.pl"
10.:allow,RELAYCLIENT="",0S SPAMASSASSIN="on",OMAILQUEUE="/var/qmail/bin/qmail-
scanner-queue.pl”
:allow,OQMAILQUEUE="/var/qmail/bin/qmail-scanner-queue.pl”
When you invoke gmail-scanner with qmail’s RELAYCLIENT variable set, as in the line
for connections from the 192.168/16 network, only virus-checking is performed,
unless you also include QS_SPAMASSASSIN="on", as in the line for connections from the
10/8 network. When you invoke it without setting RELAYCLIENT, as in the line for
default connections, both virus-checking and spam-checking are performed.

Be sure to run /var/qmail/bin/qmailctl cdb after updating /etc/tcp.smip.

Building a Spam-Checking Gateway | 143

No setuid Perl

When gmail-scanner’s configure script can’t find a suitable version of Perl for running
setuid scripts, it prints out an error like this:
Testing suid nature of /usr/bin/suidperl...

Whoa - broken perl install found.
Cannot even run a simple script setuid

Installation of Qmail-Scanner FAILED
If you can’t (or don’t want to) install a Perl that runs setuid scripts, you can use a setuid
wrapper in C instead. Follow these steps as root:

1. Install gmail-scanner with ./configure --skip-setuid-test --install. This will
produce an error at the end of the installation.

2. Compile and install the C wrapper with (cd contrib; make install). If you're
not using the default gscand user and group and /var/qmail/bin directory for
installation, you’ll have to edit contrib/Makefile first.

3. Remove the setuid bit from /var/gmail/bin/gmail-scanner-queue.pl with chmod
0755 /var/gmail/bin/gqmail-scanner-queue.pl.

4. Edit lvar/gmail/bin/qmail-scanner-queue.pl and change the first line from #!/usx/
bin/suidperl -T to #!/usx/bin/perl -T.

5. Use gmail-scanner-queue (the compiled C wrapper) in place of gmail-scanner-
queue.pl in the rest of the qmail-scanner setup process.

Initialization

The first time you install gmail-scanner, you must direct it to initialize its databases.
As the gscand user, run these commands:

$ /var/qmail/bin/qmail-scanner-queue.pl -z

$ /var/qmail/bin/qmail-scanner-queue.pl -g

perlscanner: generate new DB file from /var/spool/qmailscan/quarantine-attachments.

txt
perlscanner: total of 9 entries.

Basic Operations

qmail-scanner comes with a shell script called test_installation.sh that can be used
to exercise an installation. Example 7-2 shows how to run the script, along with its
output.

Example 7-2. Testing gmail-scanner

cd contrib
QMAILQUEUE="/var/qmai/bin/qmail-scanner-queue.pl" ./test_installation.sh -doit

144 | Chapter7: Integrating SpamAssassin with qmail

Example 7-2. Testing qmail-scanner (continued)

Sending standard test message - no viruses...
done!

Sending eicar test virus - should be caught by perlscanner module...
done!

Sending eicar test virus with altered filename - should only be caught by commercial
anti-virus modules (if you have any)...

Sending bad spam message for anti-spam testing - In case you are using SpamAssassin...
Done!

Finished test. Now go and check Email for root

If gmail-scanner’s spam-checking is operating properly, root (or the user that receives
root’s email) should receive a non-spam message like this:

From MAILER-DAEMON Tue Mar 23 05:03:28 2004
From: Qmail-Scanner Test <example.com@example.com>
Received: from by example.com by uid 0 with gmail-scanner-1.21
(f-prot: 3.11/. spamassassin: 2.63. Clear:RC:1(127.0.0.1):SA:0(0.0/5.0):.
Processed in 5.577981 secs); 23 Mar 2004 05:03:28 -0000
To: Root Account <root@example.com>
Subject: Qmail-Scanner test (1/4): inoffensive message
Date: 23 Mar 2004 05:03:22 -0000
Delivered-To: root@example.com
X-Spam-Status: No, hits=0.0 required=5.0

Message 1/4

This is a test message. It should arrive unaffected.
The same user should also receive a spam message like this:

From MAILER-DAEMON Tue Mar 23 05:03:41 2004
Received: from by example.com by uid 0 with gmail-scanner-1.21
(f-prot: 3.11/. spamassassin: 2.63. Clear:RC:1(127.0.0.1):SA:1(16.7/5.0):.
Processed in 5.129358 secs); 23 Mar 2004 05:03:40 -0000
X-Spam-Status: Yes, hits=16.7 required=5.0
X-Spam-Level: +++++++++++++4+4
Delivery-Date: Mon, 19 Feb 2001 13:57:29 +0000
Delivered-To: jm@netnoteinc.com
Received: from webnote.net (mail.webnote.net [193.120.211.219])
by mail.netnoteinc.com (Postfix) with ESMTP id 09C18114095
for <jm7@netnoteinc.com>; Mon, 19 Feb 2001 13:57:29 +0000 (GMT)
Received: from netsvr.Internet (USR-157-050.dr.cgocable.ca [24.226.157.50] (may
+be forged))
by webnote.net (8.9.3/8.9.3) with ESMTP id IAA29903
for <jm7@netnoteinc.com>; Sun, 18 Feb 2001 08:28:16 GMT
From: sb55sb55@yahoo.com
Received: from ROOUGS18S (maxi-45.losangeles.corecomm.net [216.214.106.173]) by
+netsvr.Internet with SMTP (Microsoft Exchange Internet Mail Service Version
+5.5.2653.13)
id 1429NTL5; Sun, 18 Feb 2001 03:26:12 -0500

Building a Spam-Checking Gateway | 145

DATE: 18 Feb 01 12:29:13 AM

Message-ID: <9PS291LhupY>

Subject: Omail-Scanner anti-spam test (4/4): checking SpamAssassin [if present]
+(There yours for FREE!)

To: undisclosed-recipients: ;

Congratulations! You have been selected to receive 2 FREE 2 Day VIP Passes to
Universal Studios!

Click here http://209.61.190.180

As an added bonus you will also be registered to receive vacations discounted 25%-
75%!

CEEEECECELECEECEERFEEREREREEREEERER

This mailing is done by an independent marketing co.

We apologize if this message has reached you in error.

Save the Planet, Save the Trees! Advertise via E mail.

No wasted paper! Delete with one simple keystroke!

Less refuse in our Dumps! This is the new way of the new millennium

To be removed please reply back with the word "remove" in the subject line.

CRECREEEAERPREPRECERPEPPRACRECRREERR
Note the bold lines in the messages. These are headers demonstrating that the mes-

sages were processed by gmail-scanner, and in the case of the spam message, that
qmail-scanner can recognize spam.

qmail-scanner uses /var/spool/gmailscan as a working directory and quarantine area
for viruses. By default, gmail-scanner’s operations are logged to the /var/spool/
gmailscan/gmail-queue.log file, which should be added to your log rotation schedule.
Errors are also reported to qmail’s log files.

When an SMTP session is dropped partway, temporary files may remain in /var/
spool/gmailscan. These messages can be cleared out by running /var/qmail/bin/
gmail-scanner-queue.pl -z. Set up a cron job to execute this command once a day to
delete older files in this directory.

Per-User Spam Preferences

qmail-scanner invokes spamc with the -u recipient argument when a message has a
single recipient. Accordingly, in this case, per-user spam-checking preferences (either
from users’ .spamassassinf/user_prefs files or from an SQL or LDAP database if spamd
is so configured) will be applied when qmail-scanner checks messages. When a mes-
sage has multiple recipients, qmail-scanner uses the default preferences.

Although there is no way to configure gmail to force senders to send messages with
one recipient at a time, qmail itself always breaks up a multirecipient message when
it is sending and sends copies of the message to single recipients. Ron Culler pointed
out in a December 2003 message to the gmail-scanner-general mailing list that one

146 | Chapter7: Integrating SpamAssassin with qmail

way to ensure that every message has only a single recipient is to run a pair of qmail
gateways. The first gateway receives messages from the Internet and can perform
some general scanning (e.g., refusing viruses) before forwarding messages on to the
second gateway for spam-checking. Because the first qmail server will always split up
multirecipient messages before sending them, the second qmail server will always
receive messages with a single recipient and can apply per-user spam preferences.

LY
o If you built gmail-scanner using the default fast_spamassassin config-
f‘,‘ uration (described in the earlier “gmail-scanner Configuration
e Options” sidebar), spamc is invoked with the -c option. This limits
* which per-user spam preferences are applied: spam thresholds and
score modifications will work, but preferences that affect the way mes-
sages or headers are rewritten will not (because spamc -c returns only a
spam score, not a rewritten message). Use the verbose_spamassassin
configuration if you need to enable these preferences.

Sitewide Bayesian Filtering

You can easily add sitewide Bayesian filtering to gmail-scanner. Use the usual Spam-
Assassin use_bayes and bayes_path directives in local.cf, and ensure that the spamd
user has permission to create the databases in the directory named in bayes_path.

Sitewide Autowhitelisting

Adding autowhitelisting is just as easy. Add the usual SpamAssassin auto_whitelist_
path directive to local.cf, and if you're using SpamAssassin 2.63, invoke spamd with
the --auto-whitelist option (which is unnecessary in SpamAssassin 3.0). As with the
Bayesian databases, the spamd user must have permission to create the autowhitelist
database and read and write to it.

Routing Email Through the Gateway

Once you have gmail and gmail-scanner receiving messages for the local host and
performing SpamAssassin checks on them, you can start accepting email for your
domain and routing it to an internal mail server after spam-checking. Figure 7-3 illus-
trates this topology.

The following sections describe the changes you need to make to implement the
topology shown in Figure 7-3.

gmail changes

To configure gmail to relay incoming mail for example.com to internal.example.com,
add the following line to /var/qmail/control/rcpthosts:

example.com

Building a Spam-Checking Gateway | 147

Hrewall/routar Spam-checking gateway Internal mail host

' mail.example.com ’
Internet > w 192.168.10.1 i

=9 IT— '» ;........‘;.\;Readmgm"
Ja g O O

T Y <=

éSending mail

...................

internal.example.com
192.168.10.55

Outging
SMTP server

Figure 7-3. Spam-checking gateway topology

Then, create the /var/qmail/control/smtproutes file, and add either:
example.com:internal.example.com

or, if mail.example.com can look up an (internal) MX record for example.com that
points to internal.example.com (and possibly other internal mail servers), you could
use

example.com:

Routing changes

Mail from the Internet for example.com should be sent to the spam-checking gate-
way mail.example.com. Add a DNS MX record for the example.com domain that
points to mail.example.com.

Once received by mail.example.com, messages will be spam-checked and should then
be relayed to internal.example.com by qmail. No DNS records for internal.example.
com need be published to the Internet, but it’s necessary that mail.example.com can
resolve internal.example.com.

Internal server configuration

Once the external mail gateway is in place, you can configure the internal mail server
to accept SMTP connections only from the gateway (for incoming Internet mail). If
you don’t have a separate server for outgoing mail, the internal mail server should
also accept SMTP connections from hosts on the internal network. These restric-
tions are usually enforced by limiting access to TCP port 25 using a host-based fire-
wall or a packet-filtering router.

148 | Chapter7: Integrating SpamAssassin with qmail

CHAPTER 8
Integrating SpamAssassin with Exim

Exim is an MTA developed by Philip Hazel at the University of Cambridge. Exim is
designed for Internet mail hosts and provides flexibility, performance, and strong
access controls. It has become a popular replacement for sendmail because it pro-
vides a compatible command-line interface.

This chapter explains how to integrate SpamAssassin into an Exim-based mail server
to perform spam-checking for local recipients or to create a spam-checking mail gate-
way.

Exim is a complex piece of software and, more than most MTAs, has

‘*@ an extensive and complicated set of configuration options. This chap-
ter assumes that you are running Exim 4 and does not cover how to
securely install, configure, or operate Exim itself. For that informa-
tion, see the Exim documentation, the web site http://www.exim.org,
and the book The Exim SMTP Mail Server: Official Guide for Release 4
by Philip Hazel (UIT Cambridge).

Exim consists primarily of a single setuid executable, exim, that performs different
functions depending on its command-line arguments. These functions include listen-
ing on the SMTP port and receiving and enqueuing incoming messages, adding
locally generated messages to the queue, and processing the queue to transmit outgo-
ing messages. When compiled from source code, exim is installed in /usr/exim/bin,
and the examples in this chapter assume that directory is used.

Exim’s configuration file defaults to /usr/exim/configure. The configuration file deter-
mines the behavior of Exim and defines three important logical entities: access con-
trol lists (ACLs), routers, and transports. ACLs define tests that can be performed
during incoming SMTP sessions to determine whether Exim will accept a message.
Routers determine how messages to a given address should be delivered (or rewrit-
ten to new addresses) and queue them up for transports. Transports define delivery
mechanisms—methods by which a message can be copied from Exim’s queue to a

149

local mailbox, a remote host, or elsewhere. Each of these entities has its own section
in the configuration file.

7 A

While you can define ACLs and transports in any order, you must
define routers in the order in which they are to run. In the default con-
* 98¢ figuration, the router order is dnslookup (look up remote hostnames
" and route messages via SMTP), system_aliases (redirect messages on
the basis of the /etc/aliases file), userforward (redirect messages on the
basis of user .forward files), and localuser (route message via the local
delivery agent).

Spam-Checking via procmail

One easy way to add SpamAssassin to an Exim system is to configure Exim to use
procmail as its local delivery agent. Then add a procmail recipe for spam-tagging to
letc/procmailre.

The advantages of this approach are

* It’s very easy to set up.

* You can run spamd, and the procmail recipe can use spamc for faster spam-
checking.

* User preference files, autowhitelists, and Bayesian databases can be used.

However, Exim runs a local delivery agent only for email destined for a local recipi-
ent. You cannot create a spam-checking gateway with this approach.

To configure Exim to use procmail for local delivery, add the following transport to
the Exim configuration file (in the transports section):

procmail pipe:
driver = pipe
command = /usr/local/bin/procmail -d $local part
return_path_add
delivery date_add
envelope_to_add
check_string = "From
escape_string = ">From
user = $local part
group = mail

Ensure that you provide the proper path to procmail and an appropriate group for
running procmail in the definition of the procmail pipe transport.

Next add a new router to direct messages to the procmail_pipe transport. This router
should be added to the routers section of the configuration file before (or in place of)
the localuser router, which is usually the last router.

procmail:
driver = accept

150 | Chapter8: Integrating SpamAssassin with Exim

check_local_user

transport = procmail_pipe
cannot_route_message = Unknown user
no_verify

no_expn

Local addresses that reach the procmail router will be accepted and delivered via the
procmail pipe transport, which invokes procmail in its role as a local delivery agent.

After any change to the Exim configuration file, you must send a
i SIGHUP signal to the Exim daemon to cause it to reread the configura-

tion file. You can test configuration changes before you do this by run-
ning exim -bV.

Next, configure procmail to invoke SpamAssassin. If you want to invoke Spam-
Assassin on behalf of every user, do so by editing the /etc/procmailrc file.
Example 8-1 shows an /etc/procmailrc that invokes SpamAssassin.

Example 8-1. A complete /etc/procmailrc

DROPPRIVS=yes
PATH=/bin: /usr/bin:/usr/local/bin
SHELL=/bin/sh

Spamassassin

:0fw

* ¢300000

| /usr/bin/spamassassin

If you run spamd, replace the call to spamassassin in procmailrc with a call to spamc
instead. Using spamc/spamd significantly improves performance on most systems but
makes it more difficult to enable users to write their own rules.

Spam-Checking All Incoming Mail

If you want to set up a spam-checking gateway for all recipients, local or not, you
need a way to perform spam-checking as mail is received, before final delivery. Exim
provides three different ways to do this: via routers, via exiscan, and via defining a
local_scan() function.

In a router-based configuration, SpamAssassin is invoked after Exim has received a
message during the process of routing each delivery address in the message. If the
message is destined for a local user, SpamAssassin can use per-user preference files; if
the message will be relayed to a remote user, SpamAssassin still checks the message
using sitewide settings. In this configuration, SpamAssassin may be invoked several
times for each message received (once for each message recipient). Figure 8-1 illus-
trates this configuration.

Spam-Checking All Incoming Mail | 151

For each message
recipient

Other
routers

Router,
should we check for spam
for this recipient?

Transport:
filter message through
SpamAssassin, mar
as checked, and reinject

NO

Other
routers

Delivery

Figure 8-1. A router-based configuration for spam-checking in Exim

In an exiscan configuration, Exim invokes SpamAssassin during the SMTP transac-
tion by means of a new ACL. Messages that SpamAssassin considers spam can be
rejected before the SMTP transaction is complete, or accepted and tagged. However,
you cannot use per-user preferences in this configuration without negatively impact-
ing performance. Figure 8-2 illustrates this approach.

In a configuration using local_scan(), Exim invokes SpamAssassin during the SMTP
transaction when it calls the local scan() function for the incoming message. The
message can be accepted or rejected in the SMTP transaction; if local scan()
accepts the message, tagging headers can be added. Other interesting effects, includ-
ing teergrubing—responding very slowly during the SMTP transaction when spam is
detected in order to tie up the spammer’s MTA—are possible with this approach,
but it is difficult to use per-user preferences in this configuration. Figure 8-3 illus-
trates this approach.

Each of these methods is described in detail in the following sections.

Using Routers and Transports

You can configure Exim to pass all incoming mail through SpamAssassin by writing
a transport that pipes messages to SpamAssassin and then reinjects them into Exim,
and a router that directs messages to the transport. To prevent the reinjected mes-
sages from being spam-checked again, you can set their $received protocol to
indicate they’ve been checked when you reinject them, and use the $received_
protocol value as a condition to determine whether or not the router will send them
for checking.

152 | Chapter8: Integrating SpamAssassin with Exim

Exim

HELO spamhost.com

acl_smtp_helo

\ 4

250 example.com Hello spamhost.com

MAIL FROM: <spam@spam.host.com> Coe =

\ 4

250 0K

Spammer

RCPT T0: <user@example.com>

ad_smtp_rept

\ 4

250 accepted

DATA (and message transmission)

acl_smtp_data

\/

550 spam not accepted here

Figure 8-2. An exiscan-based configuration for spam-checking in Exim

Exim

HELO spamhost.(om‘

250 example.com Hello spamhost.com

Spammer

RCPTTO: <user@example.com>

250 accepted

..

DATA (and message transmission)

local_scan()
550 spam not accepted here

Figure 8-3. A local_scan()-based configuration for spam-checking in Exim

Using Routers and Transports |

153

Configuring the Transport

Example 8-2 shows the configuration of the transport in /usr/exim/configure.

Example 8-2. A transport for spam-checking
spamassassin:
driver = pipe
use_bsmtp = true
command = /usr/exim/bin/exim -bS -oMr sa-checked
transport_filter = /usr/bin/spamc -f
home_directory = "/tmp"
current_directory = "/tmp"
user = exim
group = exim
log_output = true
return_fail_output = true
return_path_add = false

The spamassassin transport in Example 8-2 uses Exim’s pipe driver to deliver a mes-
sage to a command. The example specifies that Exim should use the batched SMTP
(BSMTP) format to transmit the message. The command is another invocation of
exim itself, with the -bS option to accept BSMTP input and the -oMr sa-checked
option to set the $received protocol variable to sa-checked. Before Exim pipes the
message to the command, it filters the message through the program specified by
transport_filter—in this case, spamc—and uses the output of the filter as the mes-
sage to deliver. The other transport options provide home and working directories
for running the command, specify that the command should be run as user and
group exim, cause command output to be logged and any failure messages to be
included in a bounce message, and indicate that a Return-Path header should not be
added (because this transport is not performing final delivery).

You must specify that the exim command used in the transport will be run as one of
Exim’s trusted users in order for the -oMr sa-checked option to work. The Exim user
(specified during Exim’s installation) is always trusted. You can add other trusted
users in the configuration file with the trusted users or trusted groups directives.

Configuring the Router

The transport provides a mechanism for Exim to filter messages through Spam-
Assassin and reinject them. You must also define a router that will invoke this trans-
port during delivery. Example 8-3 displays a definition for such a router in /usr/exim/
configure.

Example 8-3. A spam-checking router in Exim

spamassassin_router:
driver = accept
transport = spamassassin

154 | Chapter8: Integrating SpamAssassin with Exim

Example 8-3. A spam-checking router in Exim (continued)
condition = "${if {!eq {$received protocol}{sa-checked}} {1} {0}}"
no_verify
no_expn

The spamassassin_router in Example 8-3 uses the accept driver, which simply deliv-
ers a message to a transport. The transport directive specifies our spamassassin
transport. The condition directive prevents a spam-checking loop when messages are
reinjected by insuring that the value of $received_protocol is not sa-checked. The no_
verify and no_expn directives instruct Exim to skip this router when performing
address verification or expansion.

Add the router definition from Example 8-3 to the section of /usr/exim/configure that
lists routers. The order of the router definitions is significant. Where you add the
spamassassin_router router in the list determines which messages will be checked, as
shown in Table 8-1. Most sites will probably want to add the router between system
aliases and userforward (or possibly between userforward and a procmail router),
but spam-checking gateways are likely to need the router before dnslookup as nearly
all of their mail will be destined for remote sites.

Table 8-1. Effect of the position of spamassassin_router in the Exim router list

Position Effect

Firstin the list (before dns1ookup) SpamAssassin invoked on all messages, including local deliveries, out-
going messages, and messages relayed to remote hosts.

Between dnslookup and system_aliases SpamAssassin invoked on messages with addresses in locally hosted
domains. System aliases and user .forward files will receive messages
already spam-checked (and can act on tagging).

Between system_aliases anduserforward SpamAssassin invoked on messages with addresses in locally hosted
domains, unless system alias file redirected them to aremote host. User
forward files will receive messages already spam-checked (and can act
on tagging).

Between userforward and localuser SpamAssassin invoked only on messages that will be delivered locally.
User .forward files will receive messages without spam-checking.
Spam-checked messages will be delivered to local mailbox.

After localuser

Too late! Messages will already have been delivered.

Using Per-User Spam-Checking Preferences

Because Exim routes each delivery address separately, you can configure it to behave
differently for messages that will be delivered locally and messages that will be
relayed to remote hosts. You can take advantage of this flexibility to direct Spam-
Assassin to use per-user preferences when checking a message that is destined for a
local user and to use sitewide preferences when checking a message that is destined
for a remote user. This approach requires a second transport and a second router.

Using Routers and Transports | 155

Add another transport such as that shown in Example 8-4 to your Exim configura-
tion file.

Example 8-4. Transport for local spam-checking in Exim

spamassassin_local:
driver = pipe
use_bsmtp = true
command = /usr/exim/bin/exim -bS -oMr sa-checked
transport_filter = /usr/bin/spamc -f -u $local_part
home_directory = "/tmp"
current_directory = "/tmp"
user = exim
group = exim
log output = true
return_fail output = true
return_path_add = false

The key addition in the spamassassin_local transport is the use of spamc’s -u user
command-line option to specify the user on whose behalf spamc is running. spamc will
convey the username to spamd, which will examine the user’s .spamassassinfuser_
prefs file for preferences.

For this transport to work, spamd must be able to read users’ prefer-
ence files. Because you should run spamd under a dedicated user and
group, this user or group must be able to search the .spamassassin sub-
directory of each user’s home directory and read the user_prefs file.

(You may instead run spamd as root, but using a dedicated user is a bet-
ter security practice.)

You must not invoke spamd with the --nouser-config or --auth-ident
options when using this transport. If you use --nouser-config, spamd
will ignore spamc’s -u argument, and user preferences will not be exam-
ined. If you use --auth-ident, spamd will attempt to confirm that spamc
is being run by the user given in its -u argument. Because Exim runs as
its own user, the authentication will fail and spamd will refuse to look
up user preferences.

Next, add a router that uses the spamassassin_local transport, as shown in
Example 8-5.

Example 8-5. A spam-checking router with user preferences in Exim

spamassassin_local_router:
driver = accept
transport = spamassassin_local
condition = "${if {!eq {$received_protocol}{sa-checked}} {1} {0}}"
no_verify
no_expn

156 | Chapter8: Integrating SpamAssassin with Exim

You should also modify spamassassin_router to limit its use to non-local domains.
This modification is shown in Example 8-6.

Example 8-6. A spam-checking router for non-local domains in Exim

spamassassin_router:
driver = accept
transport = spamassassin

domains = ! +local_domains

condition = "${if {leq {$received protocol}{sa-checked}} {1} {0}}"
no_verify

no_expn

Arrange the routers in the following order:

1. spamassassin_router, to perform spam-checking for messages addressed to
remote domains

2. dnslookup, to route messages addressed to remote domains via SMTP
3. system_aliases, to redirect messages with addresses in /etc/aliases

4. spamassassin_local _router, to perform spam-checking for messages addressed
to local users with the per-user preferences of the local user (who may, however,
choose to forward the tagged message elsewhere)

5. userforward, to redirect messages with addresses in user .forward files

6. localuser, to route messages via the local delivery agent

To illustrate how this approach functions, consider an Exim system running on
mail.example.com and configured to relay messages for example.com to an internal
mail server. On mail.example.com, postmaster is an alias for the local user
chris. When a spammer sends a message addressed to sam@example.com and
postmaster@mail.example.com, Exim passes each address through its list of rout-
ers. sam@example.com is routed by spamassassin_router, so a copy of the message
is tagged by SpamAssassin using its sitewide configuration and then reinjected. The
reinjected message bypasses spamassassin_router and is routed by dnslookup, which
queues it for remote delivery. Meanwhile, postmaster@mail.example.com is des-
tined for a local domain and bypasses both spamassassin_router and dnslookup.
The system_aliases router rewrites the address to chris@mail.example.com, which
Exim then begins routing. This address bypasses spamassassin_router, dnslookup,
and system_alias and is routed by spamassassin_local_router, which tags a copy of
the message using chris’s SpamAssassin preferences and reinjects it. The reinjected
message bypasses spamassassin_router, dnslookup, system_ alias, and spamassassin_
local_router, and assuming chris does not have a .forward file, Exim delivers it to
chris’s local mailbox. Figure 8-4 illustrates this process.

Using Routers and Transports | 157

To:sam@example.com,
postmaster@mail.example.com

»n.
>

sam@example.com

Spamassassin_router

sa_checked=1

postmaster@mail.example.com

NO
NO

chris@mail.example.com chris@mail.example.com

NO
NO

Spamassassin
transport

YES

spamassassin_local| _ . spamc-u
transport ~“ 7 $local po

\ 4

Remote
delivery

spamassassin_local_router

0
NO

Local
delivery

Figure 8-4. Exim router lookups during delivery

Using exiscan

One of Exim’s most powerful and flexible features is its ACL system. Each ACL is a
set of rules or tests that Exim performs when receiving a message; for example, an
ACL is available for each stage of the SMTP transaction (start of connection, after
HELO, after MAIL FROM, etc.). Rules are evaluated in order until one matches, and
the associated action is then performed. Actions can include allowing the transac-
tion to proceed, deferring the transaction, rejecting the transaction, ignoring the
transaction, adding warning headers to the message, or dropping the connection
altogether. If no rule matches, the ACL rejects the corresponding portion of the
SMTP transaction.

158 | Chapter8: Integrating SpamAssassin with Exim

exiscan is a set of patches for Exim that introduces the ability to invoke SpamAssas-
sin in the acl_smtp_data ACL that Exim consults after the DATA step of an SMTP
transaction. You can download exiscan from http://duncanthrax.net/exiscan-acl/;
many precompiled versions of Exim (e.g., in Linux distributions) have the patch
already applied. exiscan’s new ACL actions also include blocking MIME attach-
ments, virus-checking, and checking headers against regular expressions.

Installing exiscan

If you're not using a version of Exim that has exiscan already compiled in, you
should download the exiscan patch file and apply it to your Exim source code with
the GNU patch program. Example 8-7 shows the patch process, assuming that both
the Exim source code and the patch are in /usr/local/src. Stop and restart Exim after
you install the patched version.

Example 8-7. Patching the Exim source code with exiscan

$ c¢d /usr/local/src/exim-4.30

$ patch -p1 -s < ../exiscan-acl-4.30-14.patch
$ rm -rf build-*

$ make

...Compilation messages...

$ su

Password: XXXXXXXX

make install

L)

J

The rm -xf build-* command removes any old Exim build directories
that may be present and forces Exim’s Makefile to recreate them and

4‘ repopulate them with symbolic links to source code files. This is
1mportant because exiscan adds new source code files that would oth-
erwise not have links in the build directory.

Writing acl_smtp_data

exiscan extends Exim’s ACL language by adding a new rule, spam, that makes a con-
nection to spamd to request a message check on behalf of a specified user and returns
true if the message would exceed the user’s SpamAssassin spam threshold.
Example 8-8 shows a simple acl_smtp_data that uses the spam condition to add an X-
Spam-Flag: YES header to spam messages.

Example 8-8. Adding an X-Spam-Flag header with exiscan
acl_smtp_data:

warn message = X-Spam-Flag: YES
spam = nobody

Usingexiscan | 159

In this ACL, the condition spam = nobody invokes spamc as the user nobody. If the
message’s spam score exceeds nobody’s threshold, Exim takes the warn action, add-
ing the X-Spam-Flag header. Similarly, the following ACL rule will generate a second
Subject header with a spam tag for spam messages.
warn message = Subject: *SPAM* $h Subject
spam = nobody

A

ACLs can add headers but cannot remove them or modify them in situ.
To replace the Subject header with a tagged version, you must add a
s* new header through the ACL (e.g., X-Spam-Subject) and direct Exim’s
" system filter to replace the message subject with the new header if it’s
present. An example of how to do this is included with the exiscan
documentation.

The spam condition also sets several useful Exim variables as a side effect:

$spam_bar
If SpamAssassin gives a message a positive spam score, exiscan sets this variable
to a string of plus (+) characters, with one plus for each point of spam score, up
to 50. If SpamAssassin gives a message a negative spam score, exiscan sets this
variable to a string of minus characters (=), with one minus for each negative
point of spam score. If SpamAssassin gives a message a zero spam score, exiscan
sets this variable to a slash (/) character.

$spam_report
The full SpamAssassin report on a message.

$spam_score
The score assigned to a message by SpamAssassin.

$spam_score_int
The score assigned to a message by SpamAssassin multiplied by 10. exiscan
stores this variable in the message’s spool file, so Exim can use this value in later
processing (e.g., in routers) to handle high-scoring messages differently than
low-scoring messages.

These variables can be used with warn or deny actions to implement several kinds of
spam policies. Example 8-9, adapted from the exiscan documentation, shows how
you can direct Exim to add an X-Spam-Score header for all messages, to add an X-

Spam-Report header for spam, and to reject a message completely if the spam score is
higher than 12.

Example 8-9. Spam policies with exiscan
warn message = X-Spam-Report: $spam_report
spam = nobody

warn message = X-Spam-Score: $spam_score ($spam_bar)
spam = nobody:true

160 | Chapter8: Integrating SpamAssassin with Exim

Example 8-9. Spam policies with exiscan (continued)

deny message = This message scored $spam_score spam points.
spam = nobody
condition = ${if >{$spam_score_int}{120}{1}{0}}

The first rule performs spam-checking and adds the X-Spam-Report header if a mes-
sage exceeds the spam threshold. exiscan caches the spam-checking results, so future
calls to the spam condition for this message will not actually recheck the message.
The second rule uses the :true option, which causes the condition to be evaluated as
true regardless of the results of the spam check. Accordingly, Exim will add an X-
Spam-Score header to all messages. Finally, Exim executes the deny action (refusing
the message with the given text added to the SMTP rejection response) if the $spam_

score_int is greater than 120 (which corresponds to a SpamAssassin score greater
than 12.0).

Using Per-User Preferences

Because exiscan checks messages for spam just once—at message receipt after the
SMTP DATA command—it’s difficult to use SpamAssassin’s per-user preference
files. Messages may have multiple recipients, some of whom are not local, and exis-
can will not be able to determine whose preferences should be used.

You can continue to use per-user preferences with exiscan in two ways, but each
comes at a performance cost.

* You can ensure that each email message will have only a single recipient by writ-
ing an ACL for the SMTP RCPT TO phase that defers all recipients except the
first one. The sending MTA will retry delivery to the deferred recipients but may
not do so immediately. As a result, some copies of messages with multiple recipi-
ents may be significantly delayed. The exiscan documentation includes an exam-
ple of how to do this.

* You can use exiscan to perform initial spam-checking and refuse messages with
high scores, and then use the router/transport approach described earlier to rein-
voke SpamAssassin on the remaining messages for local recipients. This
approach results in an extra spamd connection for each message with a local
recipient but might be worthwhile if exiscan can refuse enough very obvious
spam sent to multiple recipients.

Using sa-exim

Exim calls its local_scan() function once just before accepting a message (via SMTP
or from a local process). By default, this function does nothing—the implementation
of the function in Exim’s source code simply instructs Exim to accept the message.
What makes local scan() powerful is that you can replace Exim’s version with your

Usingsa-exim | 161

own code to perform custom message-checking. This function can be a good place to
perform spam-checking.

Even better, you don’t have to write a new local_scan() yourself if you want to
invoke SpamAssassin. Marc Merlin has written one for you: sa-exim. sa-exim invokes
spamc in its local scan() function and can thus take advantage of all of spamd’s con-
figuration options. This section describes the installation and configuration of sa-
exim. You can download it at http://sa-exim.sf.net. It requires Exim 4.11 or later.

Buiding sa-exim for Static Integration

Once you’ve unpacked the source code, you can choose one of two approaches to
integrating sa-exim with Exim. This section focuses on static integration, which
embeds sa-exim within Exim at compile time. The examples in this section assume
you have unpacked Exim’s source code in /ust/local/src/exim-4.30 and sa-exim’s
in /usr/local/src/sa-exim-3.1.

A

Whichever approach you choose for integrating sa-exim, be sure that
LOCAL_SCAN_HAS OPTIONS has not been set to yes in Exim’s Local/
ks Makefile (it is not set by default).

To use the static integration approach, you edit sa-exim’s sa-exim.c file, then replace
Exim’s src/local_scan.c file with sa-exim’s sa-exim.c file, copy sa-exim’s sa-exim.h file
to the same location, and recompile (and reinstall) Exim. The local_scan() function
in sa-exim.c replaces the default function.

Two macro definitions in sa-exim.c must be edited. They appear in the code under
the comment “Compile time config values” and provide the location of spamc (by
default, /usr/bin/spamc) and sa-exim’s own configuration file (by default, /etc/exim4/
sa-exim.conf, but you might change this location to /usr/exim/sa-exim.conf or /etc/sa-
exim.conf as suits your system).

$ cd /usr/local/src/sa-exim-3.1

...Edit sa-exim.c in your favorite editor...
$ make sa-exim.h

echo "char *version=\""cat version® (built “date’)\";" > sa-exim.h
$ cp sa-exim.c ../exim-4.30/src/local_scan.c
$ cp sa-exim.h ../exim-4.30/src

$ cd ../exim-4.30

$ make

$ su

Password: XXXXXXXX

make install

The static integration approach is easy but requires you to recompile Exim whenever
you want to update sa-exim.

162 | Chapter8: Integrating SpamAssassin with Exim

Building sa-exim for Dynamic Integration

Using the dynamic integration approach, you patch Exim to allow the local _scan()
function to be dynamically loaded at runtime, and you compile sa-exim as a dynami-
cally loadable executable. Many packaged versions of Exim are distributed with the
dynamic loading patch already applied, but sa-exim includes two versions of the
patches by David Woodhouse that you can apply to your Exim source code yourself.
Use localscan_dlopen_up_to_4.14.patch to patch Exim versions 4.11 to 4.14; use
localscan_dlopen_exim_4.20_or_better.patch to patch Exim 4.20 and later versions.
Example 8-10 illustrates the patch process.

Example 8-10. Patching Exim to support dynamic loading

$ cd /usr/local/sxrc/exim-4.30

$ patch -p1 < ../sa-exim-3.1/localscan_dlopen_exim_4.20_or better.patch
patching file src/EDITME

Hunk #1 succeeded at 505 (offset 117 lines).
patching file src/config.h.defaults

Hunk #1 succeeded at 20 (offset 3 lines).
patching file src/globals.c

Hunk #1 succeeded at 108 (offset 5 lines).
patching file src/globals.h

Hunk #1 succeeded at 72 (offset 5 lines).
patching file src/local_scan.c

patching file src/readconf.c

Hunk #1 succeeded at 224 (offset 42 lines).
$ make

$ su

Password: XXXXXXXX

make install

After installing the patched Exim, compile sa-exim as a dynamically loadable object
file by editing its Makefile. Check that the definitions of CC, CFLAGS, and LDFLAGS are
suitable for building a shared object file with your compiler. Set the following mac-
ros in the Makefile:

SACONF
The path where you will locate sa-exim’s configuration file (e.g., /etc/exim4/sa-
exim.conf, fusrfexim/sa-exim.conf, or whatever suits your system)

SPAMC
The location of spamc (e.g. /usr/bin/spamc)

EXIM_SRC
The path to the Exim source code’s src directory (e.g., /usr/local/src/exim-4.30/
src)

Run make to compile sa-exim; make should produce the shared object files sa-exim-3.1.so
and accept.so. The former is the sa-exim replacement for the local_scan() function.
The latter is a replacement for local_scan() that simply accepts all messages; you

Usingsa-exim | 163

can use accept.so to test that dynamic loading works properly without the complexi-
ties of sa-exim.

Copy these shared object files to an appropriate Exim directory (e.g., /usr/exim or
lusrlexim/libexec), and add the following lines to the beginning of Exim’s configura-
tion file:

local_scan_path = /usr/exim/accept.so

#local_scan_path = /usr/exim/sa-exim-3.1.s0
Restart Exim, and confirm that messages are being received. After you finish config-
uring sa-exim, edit Exim’s configuration file again, comment out the accept.so line,
uncomment the sa-exim.so line, and restart Exim again to activate sa-exim.

Configuring SpamAssassin for sa-exim

sa-exim invokes SpamAssassin using spamc, so you must be running the spamd dae-
mon to use sa-exim.

sa-exim behaves as you’d expect with most of the settings you’d be likely to have in
your sitewide configuration file (typically /etc/mail/spamassassin/local.cf). One that
requires particular care, however, is the report_safe setting.

If you set report_safe to 0, SpamAssassin only adds spam-tagging headers and does
not modify the body of messages. This setting works with sa-exim without any addi-
tional configuration and provides the fastest message-checking performance.

If you prefer to have SpamAssassin modify the body of the message to add its report
and convert the original message into an attachment, you can set report_safe to 1
(include original message as message/rfc822 attachment) or 2 (include original mes-
sage as text/plain attachment). In this case, you have to set the SARewriteBody vari-
able in sa-exim.conf (described in the next section). Because sa-exim must read the
modified body back from SpamAssassin, message-checking will be slightly slower
than with report_safe 0. In addition, if you perform message-archiving, the archives
will contain the SpamAssassin-modified message.

Finally, ensure that spamd is not being invoked with the --create-prefs option, as it
should run as an unprivileged user and be unable to create user preference files any-
way. You may wish to include the --nouser-config option as well.

Configuring sa-exim

You configure sa-exim by editing its sa-exim.conf configuration file. During the build
of sa-exim, you should have specified a location for this file. Begin configuration by
copying the sa-exim.conf file included with the sa-exim source code to this location.
Edit the file to configure sa-exim.

164 | Chapter8: Integrating SpamAssassin with Exim

The sa-exim.conf file is copiously commented. As the first comment describes, sa-
exim is picky about the formatting of options in this file. For example, the following
are examples of valid options in sa-exim.conf:

SApermreject: 12.0

SARewriteBody: 0

The option below is commented out, and thus not set
#SApermrejectsave: /var/spool/exim/SApermreject

But none of this next set of options are valid:

No spaces are allowed before the colon! One and only one is required after!
Sapermreject :12.0

Only thresholds may be floating point numbers!

SARewriteBody: 0.0

This sets the option, with an empty value! Not the way to unset it!
SApermrejectsave:

Later definitions of the same option override earlier ones.

The configuration file determines how sa-exim handles spam: sa-exim can accept
messages (returning a 2xx SMTP code), accept and discard messages, temporarily fail
messages (returning a 4xx SMTP code), reject messages (returning a Sxx SMTP
code), or perform teergrubing during the SMTP connection. For each sa-exim action,
you can control at what spam threshold the action is triggered, whether a message
that triggered the action should be saved to an archive directory, and the location of
the archive directory. sa-exim usually names files in the archive directory by concate-
nating the time (in seconds since 00:00:00 UTC on January 1, 1970) and the value of
the Message-ID header of a given message.

Teergrubing

One interesting strategy that sa-exim provides for dealing with spam is teergrubing.
Teergrube is the German word for “tar pit,” and teergrubing is the practice of identify-
ing spam while an SMTP connection is in progress and slowing down the SMTP con-
nection. The goal is to tie up the spammers’ mail server for as long as possible, reducing
the rate at which they can spam.

If you want to interfere with spammers’ operations, sa-exim’s teergrubing features may
be for you. Note that you also tie up your own SMTP server processes while connec-
tions are maintained, but these processes will consume few resources as they’ll prima-
rily be sleeping.

The following sections examine the options in the sa-exim.conf configuration file.

Usingsa-exim | 165

Choosing messages on which to run SpamAssassin

The SAEximRunCond option specifies an Exim conditional expression that will be eval-
uated to determine whether SpamAssassin should be invoked on a message. To dis-
able SpamAssassin, comment the option out or set its value to 0. To enable
SpamAssassin on all messages, set the option’s value to 1. The configuration file pre-
sents an example of how you can set this variable to check all messages except those
originating from the local host or those with an X-SA-Do-Not-Run: Yes header:

SAEximRunCond: ${if and {{def:sender_host_address} {!eq {$sender_host_address}{127.0.
0.1}} {!eq {$h_X-SA-Do-Not-Run:}{Yes}} } {1}{0}}

Choosing messages on which to take antispam actions

The SAEximRejCond option specifies an Exim conditional expression that will be eval-
uated to determine whether sa-exim should take actions on messages that Spam-
Assassin considers spam. By disabling the option, you can have messages checked by
SpamAssassin (and tagged, if appropriate) but unconditionally accepted. The config-
uration file provides an example in which actions are taken on all spam messages
except those with an X-SA-Do-Not-Rej: Yes header:

X-SA-Do-Not-Rej should be set as a warn header if mail is sent to postmaster

and abuse (in the RCPT ACL), this way you're not bouncing spam abuse reports

sent to you

SAEximRejCond: ${if leq {$h_X-SA-Do-Not-Rej:}{Yes} {1}{0}}
The X-SA-Do-Not-Run and X-SA-Do-Not-Rej headers can be added by the acl_smtp_
rcpt ACL in Exim’s own configuration file, using directives such as these:

warn message = X-SA-Do-Not-Run: Yes
hosts = +relay_from_hosts

warn message = X-SA-Do-Not-Run: Yes
authenticated = *

warn message = X-SA-Do-Not-Rej: Yes

local _parts postmaster:abuse

These ACL directives will add X-SA-Do-Not-Run headers to messages from authen-
ticated senders or from hosts from which Exim should relay messages, and will add
X-SA-Do-Not-Rej headers to messages to postmaster or abuse. The X-SA-Do-Not-
Run header should be removed before messages are relayed to remote hosts; add a
headers_remove directive in the definition of the remote_smtp transport:
remote_smtp:

driver = smtp

headers_remove = "X-SA-Do-Not-Run"
You may wish to use different header names or values to prevent spammers from
guessing your header and adding it to their spam messages to bypass sa-exim.

166 | Chapter8: Integrating SpamAssassin with Exim

Limiting how much of the message is fed to SpamAssassin

SAmaxbody determines how many bytes of a message body sa-exim will feed to Spam-
Assassin for checking; it defaults to 256,000. If SATruncBodyCond evaluates to a false
value, messages larger than SAmaxbody are not scanned at all. If SATruncBodyCond eval-
uates to a true value, such messages are truncated, and the first SAmaxbody bytes are
scanned. This is generally not a good idea because proper MIME message formatting
requires a closing MIME boundary string at the end of a message, and if Spam-
Assassin receives a partial body missing this string, it may complain that the message
is misformatted.

Allowing SpamAssassin to rewrite message bodies

If you set SpamAssassin’s report_safe option to 1 or 2 (asking SpamAssassin to
rewrite message bodies), you must set the SARewriteBody variable to 1.

Archiving messages when actions are taken

Archiving message bodies preserves copies of messages in case they are needed later,
and archived messages can be used as a quarantine system.

The value of SAmaxarchivebody determines the amount of a message (in bytes) to save
when archiving messages after taking action on them. It defaults to 20,971,520
(20MB), which is a reasonable value. Similarly, SAerrmaxarchivebody determines the

number of bytes of a message to save when a message causes an error in sa-exim. It
defaults to 1,073,741,824 (1GB).

If SAPrependArchiveWithFrom is set to 1, sa-exim will add fake From lines to the begin-
ning of archived messages so that the archive file will be in standard mbox format.
This is usually desirable because it’s easy to use most mail readers to examine an
mbox file.

Passing SMTP senders and recipients to SpamAssassin

Because sa-exim is invoked at the end of the SMTP DATA step, it has access to the
list of recipients provided in the SMTP RCPT commands from the sending MTA. If
you set SAmaxrcptlength to a value higher than 0, sa-exim adds an X-SA-Exim-Rcpt-
To header containing the list of recipients as long as the list doesn’t exceed the
smaller of SAmaxrcptlength bytes or 8 KB.

sa-exim also has access to the SMTP MAIL FROM command and adds the SMTP sender
to the message in the X-SA-Exim-Mail-From header

The recipient list can be useful to SpamAssassin, as messages with a large number of
recipients might be more likely to indicate spam, and the true list of recipients may
not appear in the message To and Cc headers. Similarly, knowing the SMTP sender
might help identify a known spammer or a spammer using an invalid sender address.
By setting the SAaddSAEheaderBeforeSA option to 1, you direct sa-exim to add these

Usingsa-exim | 167

headers before invoking SpamAssassin on a message, which is the default. Set
SAaddSAEheaderBeforeSA to O if you prefer SpamAssassin to see messages with no sa-
exim headers added.

Adding the X-SA-Exim-Rcpt-To header will expose recipients who
were blind carbon copied (Bcc) and foil other legitimate strategies to
keep the list of message recipients private. You should remove this
header in your message transports (using the remove_headers direc-
tive) before messages are delivered.

If you allow SpamAssassin to rewrite message bodies, however, the
headers will be encapsulated in the body of spam messages and can-
not be removed. This may be acceptable to you, as these messages are
spam anyway, but the privacy risk in the case of a false positive should
be considered.

Setting a timeout on spamc

sa-exim must wait for spamc to check messages but should not wait forever. By set-
ting SAtimeout to a value in seconds, you ensure that if spamc should fail to check a
message in a reasonable time, the message will be accepted. If you set SAtimeout to 0
(or to more than 300 seconds), Exim itself will interrupt a spamc run after five min-
utes, but it will cause the SMTP connection to return a temporary failure for the mes-
sage, instead of accepting it. I recommend that you set SAtimeout and use a value
between 60 and 240 seconds.

If a message is accepted due to a spamc timeout, and you set SAtimeoutsave to the
absolute path of a directory, the message will be saved in that directory so you can
see the impact of your SAtimeout settings. The directory must be writable by the
Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAtimeoutSavCond to an
Exim conditional expression. When spamc times out checking a message and the con-
ditional expression returns a true value, the message will be saved. The default
SAtimeoutSavCond is 1, which saves all messages when spamc times out.

Handling messages that cause sa-exim errors

Because sa-exim is a robust framework, it considers the possibility that a message
might cause an error in sa-exim itself and provides the ability to handle such mes-
sages. If a message causes an error, and you set SAerrorsave to the absolute path of a
directory, the message will be saved in that directory. The directory must be writable
by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which error-causing messages are saved by defining SAerrorSavCond to
an Exim conditional expression. If an error occurs and the conditional expression
returns a true value, the message will be saved. The default SAerrorSavCond is 1,
which saves all messages that cause sa-exim errors.

168 | Chapter8: Integrating SpamAssassin with Exim

By default, sa-exim will accept messages that cause errors, which prevents mail loss.
An alternative is to have sa-exim instruct Exim to temporarily fail such messages,
which will cause the sending MTA to queue them and retry delivery later. To tem-
porarily fail messages that cause errors, set SAtemprejectonerror to 1. Set the
SAtemprejectonerror variable to change the message that will be returned to the
sending MTA when a message is temporarily failed by setting the SAmsgerror
variable.

Teergrubing

If you want sa-exim to perform teergrubing of a connection when spam is detected,
set the SAteergrube variable to the SpamAssassin spam score at or above which teer-
grubing should take place. If you don’t define this variable, sa-exim will not teer-
grube. See the sidebar “Teergrubing,” earlier in this chapter for an explanation of
that technique.

Set the SAteergrubcond variable to an Exim conditional expression to determine
whether teergrubing should be performed when the spam score exceeds the
SAteergrube threshold; teergrubing will be performed only when the expression eval-
uates to a true value. Use this variable to prevent teergrubing from affecting you or
your secondary mail exchangers. The default sa-exim.conf file includes the following
example, which prevents teergrubing of connections from 127.0.0.1 and 127.0.0.2:

SAteergrubecond: ${if and { {'!eq {$sender host address}{127.0.0.1}} {l!eq {$sender
host_address}{127.0.0.2}} } {1}{0}}

You can configure the teergrube delay—the total amount of time, in seconds, that
you want to try to tie up the sending MTA—Dby setting the SAteergrubetime variable.
The default is 900 (15 minutes). Every ten seconds during the teergrubing period, sa-
exim will transmit SMTP code 451 with the reason given in SAmsgteergrubewait
(which defaults to “wait for more output”). At the end of the teergrubing period, sa-
exim will temporarily fail the message with the reason given in SAmsgteergruberej
(which defaults to “Please try again later”). sa-exim temporarily fails the messages in
the hopes that the sending MTA will later attempt to resend the message and spend
more time in the tar pit.

If a message qualifies a connection for teergrubing, and you set SAteergrubesave to
the absolute path of a directory, the message will be saved in that directory. The
directory must be writable by the Exim user; if it does not exist, sa-exim will attempt
to create 1t.

You can limit which of these messages are saved by defining SAteergrubeSavCond to
an Exim conditional expression. If the conditional expression returns a true value,
the message will be saved. The default SAteergrubeSavCond is 1, which saves all mes-
sages that trigger teergrubing.

Usingsa-exim | 169

Because sa-exim temporarily fails teergrubed mail after the teergrubing period, the
sending MTA is likely to resend the same message. If you are saving messages that
trigger teergrubing, it could lead to repeatedly saving multiple copies of the same
message. To prevent this, set SAteergrubeoverwrite to 1 (which is the default), and
sa-exim will use only the message ID as the filename when saving teergrubed mes-
sages. Because resends should have the same message ID, this will result in a single
copy of the message being kept, as older copies are overwritten by newer copies
assigned the same filename.

Accepting and discarding spam

If you want sa-exim to accept and discard spam, set the SAdevnull variable to the
SpamAssassin spam score at or above which messages should be accepted and dis-
carded. If you don’t define this variable, sa-exim will not take those actions.

If a message is to be discarded, and you set SAdevnullsave to the absolute path of a
directory, the message will be saved in that directory. The directory must be writable
by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAdevnullSavCond to an
Exim conditional expression. If the conditional expression returns a true value, the
message will be saved. The default SAdevnullSavCond is 1, which saves all messages
that are discarded.

Rejecting spam

If you want sa-exim to reject spam during the SMTP connection, set the
SApermreject variable to the SpamAssassin spam score at or above which messages
should be rejected. If you don’t define this variable, sa-exim will not take this action.
You can customize the rejection explanation that is sent along with the SMTP rejec-
tion code by setting SAmsgpermreject.

If a message is to be rejected, and you set SApermrejectsave to the absolute path of a
directory, the message will be saved in that directory. The directory must be writable
by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SApermrejectSavCond to
an Exim conditional expression. If the conditional expression returns a true value,
the message will be saved. The default SApermrejectSavCond is 1, which saves all mes-
sages that are rejected.

Temporarily failing spam

If you want sa-exim to temporarily fail spam during the SMTP connection, set the
SAtempreject variable to the SpamAssassin spam score at or above which messages
should be temporarily failed. If you don’t define this variable, sa-exim will not take

170 | Chapter8: Integrating SpamAssassin with Exim

this action. You can customize the rejection explanation that is sent along with the
SMTP rejection code by setting SAmsgtempreject.

If a message is to be temporarily failed, and you set SAtemprejectsave to the absolute
path of a directory, the message will be saved in that directory. The directory must be
writable by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAtempmrejectSavCond to
an Exim conditional expression. If the conditional expression returns a true value,
the message will be saved. The default SAtemprejectSavCond is 1, which saves all mes-
sages that are temporarily failed.

When sa-exim temporarily fails a message, the sending MTA is likely to resend the
same message. If you are saving messages that trigger temporary rejections, this
could lead to repeatedly saving multiple copies of the same message. To prevent this,
set SAtemprejectoverwrite to 1 (which is the default), and sa-exim will use only the
message ID as the filename when saving temporarily failed messages. Because
resends should have the same message ID, this will result in single copies of mes-
sages being kept, as older copies are overwritten by newer copies assigned the same
filename.

There are few good reasons to temporarily fail spam. If you do not want to receive
spam at all, permanently reject or accept and discard it instead. If you want to tie up
spammer MTAs, teergrube instead. sa-exim includes temporary failing for complete-
ness, but I do not recommend its use.

Archiving accepted spam

When sa-exim receives a message that SpamAssassin tags as spam but that does not
meet any of the sa-exim action thresholds, sa-exim will accept the (tagged) message
and allow it to be delivered to the recipient.

If a message is to be accepted, and you set SAspamacceptsave to the absolute path of a
directory, the message will be saved in that directory. The directory must be writable
by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are archived by defining SAspamacceptSavCond
to an Exim conditional expression. If the conditional expression returns a true value,
a message will be archived. The default SAspamacceptSavCond is 0, which does not
archive any accepted spam messages.

Although this feature is not useful for end users, mail administrators can use it to
help decide whether to lower one of the other action thresholds by examining the
saved messages. If there are no false positives, you might lower the action thresholds.

Usingsa-exim | 171

Archiving non-spam messages

When sa-exim receives a message that SpamAssassin does not consider spam, sa-
exim will (of course) accept the message and allow it to be delivered to the recipient.

If a non-spam message is received, and you set SAnotspamsave to the absolute path of
a directory, the message will be saved in that directory. The directory must be writ-
able by the Exim user; if it does not exist, sa-exim will attempt to create it.

You can limit which of these messages are saved by defining SAnotspamSavCond to an
Exim conditional expression. If the conditional expression returns a true value, the
message will be saved. The default SAnotspamSavCond is O, which does not save any
accepted non-spam messages.

A mail administrator might use this feature to analyze a group of non-spam mes-
sages to determine whether SpamAssassin is making too many false negative judg-
ments, but on a busy mail site, saving extra copies of all legitimate incoming mail is
probably not a good idea. sa-exim includes this feature primarily for completeness.

Debugging sa-exim

Set the SAEximDebug variable to a number between 1 and 9 to enable extra logging;
higher numbers produce more debugging output. The distributed sa-exim.conf file
sets this variable to 1, which will log a notice whenever sa-exim saves a new message
to one of its archive directories, invokes spamc, rewrites message bodies, or evaluates
an Exim conditional expression. Increasing SAEximDebug is a good idea, particularly
when testing new conditional expressions.

Example 8-11 shows a complete sa-exim.conf file (without comments). In this
example, sa-exim is configured to reject (but save) messages with spam scores higher
than 15.

Example 8-11. A complete sa-exim.conf file

Run SpamAssassin unless the message was submitted locally or the

X-SA-Do-Not-Run header is set to 'secret'. We configure Exim elsewhere

to set this header for messages from authenticated senders or hosts

we relay for

SAEximRunCond: ${if and {{def:sender_host_address} {!eq {$sender_host_address}{127.0.0.
1}} {!eq {$h_X-SA-Do-Not-Run:}{secret}} } {1}{0}}

Don't take action on messages if X-SpamAssassin-Do-Not-Rej header is set to
'secret'. We configure Exim to set this header for messages to the postmaster.
SAEximRejCond: ${if leq {$h_X-SA-Do-Not-Rej:}{Yes} {1}{0}}

Feed up to 300Kb to SpamAssassin, and if the message is longer, don't
bother spam checkign

SAmaxbody: 307200

SATruncBodyCond: 0

We don't let SpamAssassin rewrite message bodies, so we don't set this

172 | Chapter8: Integrating SpamAssassin with Exim

Example 8-11. A complete sa-exim.conf file (continued)

SARewriteBody: 0

I prefer to avoid the X-SA-Exim-Rcpt-To header, for privacy reasons.
SAmaxrcptlistlength: 0

Allow spamc 2 minutes for each message. If it times out, don't bother
saving messages, just accept them.

SAtimeout: 120

SAtimeoutsave:

SAtimeoutSavCond: 0

Do save messages that cause an error in sa-exim, but accept them
SAerrorsave: /var/spool/exim/SAerrorsave

SAerrorSavCond: 1

SAtemprejectonerror: 0

Reject messages with SpamAssassin scores of 15 or higher, but save a
copy of them.

SApermreject: 15.0

SApermrejectSavCond: 1

SApermrejectsave: /var/spool/exim/SApermreject

Using Per-User Preferences

Like exiscan, sa-exim checks messages for spam just once—at message receipt after
the SMTP DATA command. And like exiscan, it’s difficult to use SpamAssassin’s per-
user preference files with sa-exim. Messages may have multiple recipients, some of
whom are not local, and sa-exim will not be able to determine whose preferences

should be used.

You can use per-user preferences with sa-exim in the same ways as you can with exis-

can, and with the same performance costs:

* You can ensure that each email message will have only a single recipient by writ-
ing an ACL for the SMTP RCPT TO phase that defers all recipients except the
first one. The sending MTA will retry delivery to the deferred recipients but may
not do so immediately. As a result, some copies of messages with multiple recipi-

ents may be significantly delayed.

* You can use sa-exim to perform initial spam-checking and refuse messages with
high scores, and then use the router/transport approach described earlier to rein-
voke SpamAssassin on the remaining messages for local recipients. This
approach results in an extra spamd connection for each message with a local
recipient but might be worthwhile if sa-exim can refuse enough very obvious

spam sent to multiple recipients.

Using sa-exim

173

Building a Spam-Checking Gateway

Any of the approaches discussed earlier can form the basis for a spam-checking Exim
gateway. exiscan or sa-exim will likely yield better performance than a router/
transport approach, and I recommend using them unless you need per-user prefer-
ences and are prepared to configure spamd to perform SQL-based lookups. The
remainder of this chapter explains how to configure an Exim-based gateway for rout-
ing messages and how to add sitewide Bayesian filtering and autowhitelisting.

Routing Email Through the Gateway

Once you have Exim receiving messages for the local host and performing Spam-
Assassin checks on them using any of the methods outlined earlier, you can start
accepting email for your domain and routing it to an internal mail server after spam-
checking. Figure 8-5 illustrates this topology.

Spam-checking gateway Internal mail host

Firewall/router

: ; mail.example.com § [internal.example.com
Internet ...y y 192168101 192.168.10.55

Mail ‘D/ Q [:1 1
dients iy cO

= - a 4 4
Sending mail
\/

Outgoing
SMTP server

Figure 8-5. Spam-checking gateway topology

Exim domain lists

To configure Exim to relay incoming mail for example.com to internal.example.com,
add the following lines to Exim’s configuration file:

domainlist local domains = @

domainlist relay to_domains = example.com
The key feature of this configuration is that example.com is a domain to which Exim
may relay but is not on the list of local domains (for which mail is to be delivered on
this host). Remember that you must restart Exim after changing its configuration file.

174 | Chapter8: Integrating SpamAssassin with Exim

Routing changes

Mail from the Internet for example.com should be sent to the spam-checking gate-
way mail.example.com. Add a DNS MX record for the example.com domain that
points to mail.example.com.

Once received by mail.example.com, messages will be spam-checked and should then
be relayed to internal.example.com by Exim. There are two ways to get Exim to relay
these messages:

* Set up an internal DNS MX record for example.com pointing to internal.example.
com. When Exim on mail.example.com attempts to deliver messages for example.
com, the dnslookup router will look up this MX record and deliver the messages
to the internal mail host. This configuration may require that you run a “split
DNS” system or use BIND 9’s views feature to ensure that different MX records
for example.com are published to the Internet and to internal hosts.

* Set up a new Exim router using the manualroute driver to manually route incom-
ing messages for example.com to the internal mail host. The router definition,
shown in Example 8-12, should be placed in the list of routers before the
dnslookup router. In this case, mail.example.com need only be able to resolve
internal.example.com (or the IP address for internal.example.com could be substi-
tuted for its name in the router definition).

Example 8-12. Using a manualroute router to relay messages

internal relay:
driver = manualroute
domains = example.com
transport = remote_smtp
route_list = example.com internal.example.com

Internal server configuration

Once the external mail gateway is in place, you can configure the internal mail server
to accept only SMTP connections from the gateway (for incoming Internet mail). If
you don’t have a separate server for outgoing mail, the internal mail server should
also accept SMTP connections from hosts on the internal network. These restric-
tions are usually enforced by limiting access to TCP port 25 using a host-based fire-
wall or a packet-filtering router.

Adding Sitewide Bayesian Filtering

You can easily add sitewide Bayesian filtering to any of the Exim approaches because
they are all based on spamd. Use the usual SpamAssassin use_bayes and bayes_path
directives in local.cf, and ensure that spamd has permission to create the databases in
the directory named in bayes_path. Use a directory for the databases that is owned by
spamd’s user, such as /var/spamd (or perhaps use /etc/mail/spamassassin). If local users

Building a Spam-Checking Gateway | 175

need access to the databases (e.g., they will be running sa-learn), you may have to
make the databases readable or writable by a group other than spamd’s and adjust
bayes_file_mode. Or you can make the databases world-readable or world-writable.
Doing so, however, is unlikely to be necessary on a gateway system and puts the
integrity of your spam-checking at the mercy of the good intentions and comprehen-
sion of your users.

Adding Sitewide Autowhitelisting

Adding sitewide autowhitelisting is very similar to adding a sitewide Bayesian data-
base. Just add the usual SpamAssassin auto_whitelist_path and auto_whitelist_
file_mode directives to local.cf. As with the Bayesian databases, spamd’s user must
have permission to create the autowhitelist database and read and write to it. In
SpamAssassin 2.6x, spamd must be started with the --auto-whitelist option; this
option is not needed (and is deprecated) in SpamAssassin 3.0.

176 | Chapter8: Integrating SpamAssassin with Exim

CHAPTER 9
Using SpamAssassin as a Proxy

In some environments, it makes no sense to install SpamAssassin on the mail server.
For example, the mail server may be underpowered to perform content-checking. Or
perhaps users have widely ranging preferences for how much (or indeed whether)
spam-checking should be performed, and they may not have accounts on the mail
server or any convenient way of configuring their preferences. In these environ-
ments, one way to provide those users who want the power of SpamAssassin with
spam-checking is to help them install a SpamAssassin POP proxy.

L)

Many more POP proxies are available than IMAP proxies, primarily
because IMAP is a much more complex protocol and doesn’t require
s that messages be downloaded to the client. At the time of writing, no
" freely distributed SpamAssassin IMAP proxies for Windows clients
were available.

In addition, most extant proxies call SpamAssassin through the Perl
API to avoid having to run the spamassassin shell script or a persistent
spamd daemon. Because the Perl API will change in SpamAssassin 3.0,
proxies written for SpamAssassin 2.63 are unlikely to continue to work
until they are upgraded.

Proxy software is middleware. A proxy receives connections from a client and relays
them to a server, intercepting all communication in each direction. Application prox-
ies have been used to pierce smart holes in strong firewalls, to cache frequently
accessed data, and to perform a variety of other functions.

Logically, POP proxies sit between a mail client and a POP server. Actually, these
proxies typically run on the same computer as the mail client. The proxies discussed
in this chapter not only relay data (email messages) between the client and server,
but also invoke SpamAssassin to perform spam-checking on the email after it has
been received from the server but before it is relayed to the client. Users continue to
use their favorite POP client; no changes need be made at the POP server.

177

In this chapter, I review two SpamAssassin proxies. The first is the venerable
Pop3proxy, a freely distributed command-line proxy script written in Perl and suit-
able for use on several operating systems. The second is the commercial proxy
SAproxy Pro from Stata Labs.

POP proxies do not offer the complete functionality of POP servers; in
= particular, they may be limited in how they can perform authentica-

tion and secure the transaction. Using a POP proxy may result in send-
ing your email password across the Internet in the clear.

Figure 9-1 illustrates the example topology for this chapter. pop.example.com is a
POP mail server. win.example.com is a Windows-based user workstation that runs a
POP mail client (e.g., Outlook Express, Eudora, Netscape Messenger). The Spam-
Assassin POP proxy will be installed on win.example.com, and the mail client will be
configured to connect to the proxy rather than to the POP server. The proxy will be
configured to connect to the POP server and to run SpamAssassin on messages as
they are downloaded.

win.example.com workstation

op.example.com | POP proxy POP mail client i
f pPOP se?ver Y > | softwareand fegeee-e-e »| software
] SpamAssassin §

Figure 9-1. An example POP mail topology with a client-side proxy

Using Pop3proxy

Pop3proxy, by Dan McDonald, is one of the oldest SpamAssassin POP proxies and,
to its credit, still functions well with SpamAssassin 2.63. It’s a no-fills proxy written
in Perl and requires manual installation and configuration. It does not perform
network-based SpamAssassin tests. Download Pop3proxy (and read the manual) at
http:/imcd.perlmonk.org.

Installing Pop3proxy
Follow these steps to install Pop3proxy:

1. Download pop3proxy.zip and unpack it into a directory of your choice. For this
example, I assume you’ve unpacked it in C:\pop3proxy so a directory listing of
that directory would look like this:

C:\pop3proxy>dir /s

Directory of C:\pop3proxy

178 | (Chapter9: Using SpamAssassin as a Proxy

03/26/2004 09:56p <DIR>

03/26/2004 09:56p <DIR> o

03/26/2004 09:56p <DIR> pop3proxy

08/18/2002 05:40p 60,781 pop3proxy.pl

08/18/2002 05:40p 28,798 pop3proxy.html
2 File(s) 89,579 bytes

Directory of C:\pop3proxy\pop3proxy

03/26/2004 09:56p <DIR>
03/26/2004 09:56p <DIR> ..
08/12/2002 08:19a 6,240 Artistic
08/11/2002 08:45p 567 kill_proxy.pl
08/12/2002 08:30a 536 hostmap.sam

3 File(s) 7,343 bytes

2. Install a version of Perl for Windows that includes the Time::HiRes module. Sev-
eral Perl distributions for Windows are available, but one that is known to work
(and provides a precompiled version of the module) is ActivePerl, available at
http://www.activestate.com/Products/ActivePerl. Either ActivePer]l 5.6.1 or 5.8.3
works well with Pop3proxy. ActivePerl 5.8.3 supports Unicode. ActivePerl 5.6.1
does not support Unicode but has been extensively tested with SpamAssassin. In
this example, [assume you’ve installed ActivePerl in C:\perl.

Time::Hires can be installed through ActivePerl’s Perl Package Manager. After
installing ActivePerl, run the Perl Package Manager, and type install Time::
HiRes at the ppm> prompt. Type quit to exit the Package Manager.

3. Download and unpack SpamAssassin. Copy all of the files and directories in
SpamAssassin’s lib directory to ActivePerl’s C:\perl\site\lib directory. Copy Spam-
Assassin’s rules directory and all its contents to C:\pop3proxy\rules. Copy the
user_prefs.template file from the rules directory to C:\pop3proxy and rename it
user_prefs. The C:\pop3proxy directory should now look like this:

C:\pop3proxy>dir /w /s

Directory of C:\pop3proxy

[.] [..] [pop3proxy] pop3proxy.html
pop3proxy.log pop3proxy.pl [rules] user_prefs
4 File(s) 110,825 bytes

Directory of c:\pop3proxy\pop3proxy

[.] [Artistic hostmap.sam kill proxy.pl
3 File(s) 7,343 bytes

Directory of C:\pop3proxy\rules

[.] [..] 10_misc.cf
20_anti_ratware.cf 20_body_tests.cf 20_compensate.cf
20_dnsbl tests.cf 20_fake_helo_tests.cf 20 _head tests.cf
20_html_tests.cf 20_meta_tests.cf 20_phrases.cf

Using Pop3proxy | 179

20_porn.cf
23_bayes.cf
25_head_tests_es.cf
30_text_es.cf
30_text_pl.cf
60_whitelist.cf
regression_tests.cf
STATISTICS-set3.txt

20_ratware.cf
25_body_tests_es.cf
25_head_tests_pl.cf
30_text_fr.cf
30_text_sk.cf
languages
STATISTICS-setl.txt
STATISTICS. txt

20_uri_tests.cf
25_body_tests_pl.cf
30_text_de.cf
30_text_it.cf
50_scores.cf
local.cf
STATISTICS-set2.txt
triplets.txt

user_prefs.template

4. Edit C:\pop3proxy\user_prefs and set up SpamAssassin preferences. See Chap-
ters 2 and 3 for configuration details.

Starting Pop3proxy

To start Pop3proxy, you must invoke Perl on the pop3proxy.pl script and provide
command-line arguments to identify the POP server. If you allowed ActivePerl to
associate its perl.exe program with .pl file extensions, you should be able to execute
pop3proxy.pl directly. Otherwise, set up a shortcut or batch file containing:

c:\perl\bin\perl c:\pop3proxy\pop3proxy.pl --host pop.example.com

When invoked, the shortcut will open a DOS window and execute the proxy script.
You can stop the proxy by typing CTRL-C in the DOS window. When you’ve con-
firmed that it’s working as you like, you can replace \per\bin\perl with \perl\bin\wperl
in the shortcut. wperl runs the script in the background (without opening a DOS
window); use it when you plan to keep Pop3proxy running all the time. You can stop
the proxy by invoking the kill_proxy.pl script included with Pop3proxy, or by using
the Windows Task Manager to kill the wperl process.

Here is a complete list of Pop3proxy’s command-line arguments:

--host hostname[:port]
Provide the hostname (and optionally, the port number) of the remote POP
server to proxy.

--logfile filename
Provide the name of a file to log connection and status information to. This
defaults to pop3proxy.log. The log file can be useful in debugging problems with
Pop3proxy. Example 9-1 shows a Pop3proxy log of a successful connection in
which Pop3proxy downloaded two messages and classified one as spam.

--maxscan bytes
Specify the largest message, in bytes, that Pop3proxy will invoke SpamAssassin
on. The default is 250,000, which is reasonable. Larger sizes cause more mes-
sages to be scanned, but larger messages scan more slowly.

--nopad
POP servers sometimes provide POP clients with message- and mailbox-size
information. Running SpamAssassin on a message when it’s between server and

180 | Chapter9: Using SpamAssassin as a Proxy

client can change (typically, enlarge) the message size. Most modern clients han-
dle this situation with no problems, but if yours does not, the --nopad option
causes Pop3proxy to overwrite text in existing headers rather than adding new
ones, maintaining a constant size at the cost of obfuscating the message headers
to a small degree.

--allowtop

The POP protocol provides a TOP command that the client uses to request only a
limited amount of a message from the server (deferring the retrieval of the rest of
the message until it’s explicitly asked for). TOP doesn’t interact well with spam-
checking proxies, and Pop3proxy normally prevents the client from using it. If
you want to try it out anyway, use the --allowtop argument.

--exitport portnumber

The kill proxy.pl script works by connecting to a second port that pop3proxy.pl
listens on. Any connections on this port cause pop3proxy.pl to exit. By default, the
port number is 9625, but you can use the --exitport option to change it if you use
that port number for something else. If you change the port number, you must edit

the kill proxy.pl script and change the value of $exitport near the beginning of
the file.

Example 9-1. A log from Pop3proxy

New

connection:

From: 127.0.0.1:2094

To:

192.
+0K

127.
192.
127.
192.
1270
192
12578
192.
127.
192.
127.
192.
127.
192.

192.168.0.4:110
168.0.4:110 (Server) said +0K to none

POP3 Ready pop.example.com

0.0.1:2094 (Client) said CAPA
168.0.4:110 (Server) said -ERR to CAPA
0.0.1:2094 (Client) said USER
168.0.4:110 (Server) said +0K to USER
0.0.1:2094 (Client) said PASS
.168.0.4:110 (Server) said +0K to PASS
0.0.1:2094 (Client) said STAT
168.0.4:110 (Server) said +0K to STAT
0.0.1:2094 (Client) said UIDL
168.0.4:110 (Server) said +0K to UIDL
0.0.1:2094 (Client) said LIST
168.0.4:110 (Server) said +0K to LIST
0.0.1:2094 (Client) said RETR
168.0.4:110 (Server) said +0K to RETR

Snarfing RETR response
Detected end of snarfed multiline
35510 bytes, SPAM, Message-id: <200402062012.116KCGBb015885@example.com>

127.
192.
127.
192.

0.0.1:2094 (Client) said LIST
168.0.4:110 (Server) said +0K to LIST
0.0.1:2094 (Client) said RETR
168.0.4:110 (Server) said +0K to RETR

Snarfing RETR response

Using Pop3proxy | 181

Example 9-1. A log from Pop3proxy (continued)

Detected end of snarfed multiline
2096 bytes, NOT spam, Message-id: <1063926361.20040206152006@0reilly.com>

127.0.0.1:2094 (Client) said QUIT
192.168.0.4:110 (Server) said +OK to QUIT

192.168.0.4:110 - socket close on read
Flushing peer on close
127.0.0.1:2094 - peer gone after write, closing

Pop3proxy can proxy multiple POP servers through the use of a hostmap file. See the
Pop3proxy manual for more information about setting up such a file.

Configuring the POP Client

Finally, you must reconfigure a mail client to connect to localhost (or 127.0.0.1)
instead of the usual POP server. Connections to localhost will be received by
Pop3proxy and proxied to the POP server. Figure 9-2 shows the Eudora 5.1 dialog
box for configuring the incoming POP server for an account.

Account Settings for ms4

Generic Propetties Incoming Mail I

Server.]m

Configuration: (= pgp ¢ IMaP

¥ Leave mail on server

[Delste from server after IU days ; |
I~ Delete from server when emptied from Trash |

I~ Skip messages over 140 ‘ K in size

Authentication style: J
% Passwords { Kerberos ¢ APOP " RPA :
Secure Sockets wheri Recelving——————————

“lfAvaliable STARTILS +] LastSSLInfoI
oK | cocel | Heb |

Figure 9-2. Configuring Eudora to use Pop3proxy

182 | Chapter9: Using SpamAssassin as a Proxy

Using SAproxy Pro

SAproxy Pro, by Stata Labs, began as a commercialized version of Pop3proxy, but it
has been extensively developed with a focus on ease-of-use and access to both Spam-
Assassin and POP client features. It’s available for Windows operating systems. At
the time of this writing, the latest version is 2.5 and is selling for $29.95, which
includes a year of free upgrades. A free 15-day trial is available. You can download
the trial version or purchase the product at http://www.statalabs.com/products/
saproxy!/.

SAproxy Pro 2.5 includes its own Perl library and SpamAssassin 2.63, so you don’t
have to install either of those products separately. When SpamAssassin 3.0 is
released, a future version of SAproxy Pro is likely to distribute SpamAssassin 3.0
instead, and upgrading should be relatively simple.

Installing SAproxy Pro

SAproxy Pro uses a downloadable InstallShield installer. Once you’ve downloaded
the installer, run it. You’ll be prompted to select your mail client; for several of the
most widely used mail clients, the installer includes a training video that demon-
strates how to configure mail accounts to use the proxy. You may be required to
reboot your computer to finish the installation.

Starting SAproxy Pro

After SAproxy Pro is installed, you can start it manually from the Windows Start
menu. The installer also offers to configure SAproxy Pro to start automatically on
system startup. When SAproxy Pro is running, a system tray icon will appear; right-
clicking this icon brings up a menu for configuring or shutting down SAproxy Pro.

Configuring the POP Client

Configuring a POP client to use SAproxy Pro is straightforward. Set the incoming
POP server to localhost or 127.0.0.1. Set the POP login name to your usual POP
account name, followed by a colon and the hostname of the remote POP server.
Figure 9-3 shows an example of this configuration in Microsoft Outlook Express 6.
In the example, Outlook Express will connect to 127.0.0.1 and log in as alansz:pop.
example.com. SAproxy Pro will accept the connection and will proxy for the POP
server pop.example.com, using alansz as the login name.

Stata Labs also distributes an SSL plug-in module for SAproxy Pro at http:/
www.statalabs.com/products/saproxy/ssl/. 1f your POP server supports SSL con-
nections, install the plug-in and add :ssl to the end of the POP login name (e.g.,

Using SAproxyPro | 183

¥ Mail via SAproxy Properties ; 21/

General Servers l Connectionl Secwityl Advancedl

Server Information
My incorming mail server is a IPDP3 server.
Incoming mail (POP3): [127.0.0.1

Outgoing rail (SMTP):]smtp.example. com

Incoming Mail Server

Account hame: lalansz:pop. example.com

Password: [
I~ Remember password

I Log on using Secure Password Authentication

Outgoing Mail Server

I~ My server requires authentication Settings...]

[ok] cancel | Aoy |

Figure 9-3. Configuring Outlook Express 6 to use SAproxy Pro

alansz:pop.example.com:ssl) to direct SAproxy Pro to make an SSL connection to
the POP server.

Configuring SAproxy Pro

SAproxy Pro really shines in its configuration interface, which is available by double-
clicking the SAproxy Pro system tray icon, or by right-clicking the icon and selecting
Configure SAproxy Pro. Most of the configuration options are the same as those
available in Pop3proxy, and through SpamAssassin’s preference files. The graphical
interface makes them much easier for inexperienced users to select. The Configura-
tion dialog box is divided into nine tabs:

Always Spam
Use this section to add blacklist entries. You can blacklist messages by sender
email address, sender domain, or keyword.

Never Spam
Use this section to add whitelist entries. You can whitelist messages by sender
email address or sender domain.

184 | Chapter9: Using SpamAssassin as a Proxy

Spam Training
Use this section to enable use of SpamAssassin’s Bayesian classifier (including
auto-learning). SAproxy Pro can also manually scan email folders that you spec-
ify as containing spam or non-spam messages in order to train the classifier.

Language Settings
Use this section to limit the set of languages that you expect to receive email in;
email in other languages will be treated as spam.
Safety Settings
Use this section to configure the report_safe SpamAssassin directive.
Tagging Options
Use this section to turn on subject-tagging for spam messages and to set the

SpamAssassin threshold score for spam. SAproxy Pro allows thresholds between
3.5and 6.5.

Advanced Settings
Use this section to turn on such options as logging, proxying of the TOP and AUTH
commands, and the use of SpamAssassin’s network tests. DCC, Pyzor, Vipul’s
Razor, and DNSBL tests are available, and you can turn each on or off indepen-
dently. You can use the Host Map part of this section to configure SAproxy Pro
to listen on different local ports to proxy connections to different remote POP
servers.

Statistics
This section displays a line graph comparing the number of spam and non-spam
messages received each day of the last month.

Help
This section provides links to SAproxy Pro help.

Using SAproxyPro | 185

APPENDIX
Resources

This appendix lists useful online resources for further information about spam,
spam-filtering, SpamAssassin, each of the mail transport agents discussed in this
book, and several other SpamAssassin-related software packages.

General Spam Resources

“Help! I've been spammed! What do I do?”—originally written by Chris Lewis and
maintained by Greg Byshenk—is an helpful (if dated) guide to spam and spam-
prevention for the beginner. Find it at http://www.byshenk.net/ive.been.spammed.html.

Internet Request For Comments (RFC) documents describe proposed standards for
the Internet. You can get RFCs from http://'www.rfc-editor.org. Some notable RFCs
related to spam and spam filtering include

RFC 2822: Internet Message Format
The basic document that describes the formatting of email messages.

RFC 2821: Simple Mail Transfer Protocol
Explains SMTP, the protocol used to transfer email from system to system.

RFC 2505: Anti-spam Recommendations for Internet MTAs
Describes a set of best practices for mail servers.

The SPAM-L FAQ, maintained by Doug Muth at http://www.claws-and-paws.com/
spam-l/, provides information about the SPAM-L mailing list, one of the oldest dis-
cussion forums for spam fighters.

http://spam.abuse.net is a long-standing site with information for antispam advocates
and system adminstrators.

The Coalition Against Unsolicited Commercial Email (CAUCE) has a web site at
http://www.cauce.org. CAUCE focuses primarily on advocacy and legislation.

187

The groups in the news.admin.net-abuse Usenet hierarchy are devoted to discussing
and reporting Net abuse, including spam (see particularly news.admin.net-abuse.
email).

Spam-Filtering

http://www.openrbl.org provides a long list of DNSBLs that may be suitable for spam-
filtering. It includes hit rates (but not false positive rates) against its own recently col-
lected spam corpus for each DNSBL.

Vipul’s Razor, Pyzor, and DCC are collaborative spam-filtering clearinghouses that
can be consulted by SpamAssassin. Vipul’s Razor is available at http://razor.
sourceforge.net. Pyzor is at http://pyzor.sourceforge.net. DCC is at http://lwww.
rhyolite.com/anti-spam/dcc/.

DSPAM is a spam-filtering system using statistical-algorithmic hybrid filtering—fil-
ters that are trained like SpamAssassin’s Bayesian classifier. Find it at http:/www.
nuclearelephant.com/projects/dspam/.

CRM114, the Controllable Regex Multilator, is a spam-filtering system based on
learning regular expressions. Download it at http://crm114.sourceforge.net/.

SpamAssassin

The home page for SpamAssassin itself is, of course, http://www.spamassassin.org.
The site contains links to the spamassassin-users and spamassassin-dev mailing lists.

SAProxy Pro, a commercial client-side SpamAssassin proxy, is available from http:/
www.statalabs.com.

Mail Transport Agents

In this book, I describe how to use SpamAssassin in conjunction with several MTAs.
The following sections point you to more information about each of those agents.

Sendmail

Sendmail has two primary web sites. The open source version maintained by the
Sendmail consortium can be found at http://www.sendmail.org. Sendmail’s commer-
cial face is hitp://www.sendmail.com.

Sendmail’s own antispam provisions are documented at http://www.sendmail.org/m4/
anti_spam.html. If you’re not a Sendmail guru, pick up Bryan Costales’ book Send-
mail (O’Reilly), the Sendmail bible. If you are a Sendmail guru, you probably already

188 | Appendix: Resources

have a copy! Another good source is Frederick Avolio and Paul Vixie’s Sendmail:
Theory and Practice (Digital Press).

Sendmail’s filtering architecture, milter, has led to the development of many filtering
tools. The web site http://www.milter.org is the most comprehensive catalog of such
filters.

Postfix
The home page for the Postfix MTA is http://www.postfix.org.

Two useful manuals for Postfix are Postfix: The Definitive Guide by Kyle Dent
(O’Reilly) and The Book of Postfix by Ralf Hildebrandt and Patrick Koetter (No
Starch Press).

gmail

The home page for the qmail MTA is http://www.qmail.org. The netqmail distribu-
tion of gmail includes the QMAILQUEUE patch, which is used by most SpamAssas-
sin-integration solutions.

The online book Life with gmail (http://www.lifewithqmail.org) provides excellent
documentation for qmail.

Exim

The home page for the Exim MTA is http://www.exim.org. The site includes a link to
the Exim specification, which serves as the manual for the MTA. Those preferring a
real book should purchase Philip Hazel’s The Exim SMTP Mail Server: Official Guide
for Release 4 (UIT Cambridge).

Related Mail Tools

The following sections point to information about various other mail tools men-
tioned in this book.

procmail

procmail is a popular and powerful Unix filtering program that acts as a full-fea-
tured local email delivery agent. It’s available at http://www.procmail.org.

MIMEDefang

MIMEDefang is a Sendmail milter application written in Perl that provides a frame-
work for mail content scanning, including virus-scanning, spam-checking with

Related Mail Tools | 189

SpamAssassin, and MIME validation. It’s available at http://www.mimedefang.org.
Versions after 2.42 support SpamAssassin 3.0.

amavisd-new

amavisd-new is a high-performance daemonized content scanner, designed for use
with Postfix, but it also supports Sendmail (including a milter version) and Exim. It’s
available at http://www.ijs.si/software/amavisd/. Don’t confuse amavisd-new with
amavis, amavis-perl, amavisd, or amavis-ng, all of which are other content scanners,
most not actively in development, that now share little code in common with
amavisd-new.

sa-exim

sa-exim is a local_scan.c replacement for Exim that provides SpamAssassin message-
scanning during a SMTP transaction. It offers many options for how to handle spam
that it detects, including teergrubing. sa-exim’s home page is http://marc.merlins.org/
linux/exim/sa.html.

exiscan-acl

exiscan-acl is a patch for Exim 4 that adds new content-scanning ACL directives to
Exim. These directives can be used to invoke SpamAssassin on messages during a
SMTP transaction. Some prepackaged Exim distributions already have this patch
added. You can download it at http://duncanthrax.net/exiscan-acl/.

gmail-scanner

qmail-scanner is a content scanner for gmail that can run SpamAssassin on messages
early in the delivery process. It contains its own implementation of spamc for faster
checking. Find it at http://qmail-scanner.sourceforge.net.

190 | Appendix: Resources

Symbols

* (asterisk)
hash value, 122
meta tests, 50
token names, 75
@ (at sign), amavisd.conf, 117
\ (backslash), amavisd.conf, 117
&& (double ampersand), and operator, 49
__ (double underscore)
meta test names, 49
test names, 41
= (equal sign), meta tests, 50
! (exclamation point)
IP addresses, 120
not operator, 49
I= (exclamation point and equal sign), meta
tests, 50
/ (forward slash)
$spam_bar variable, 160
meta tests, 50
>= (greater than and equal), meta tests, 50
> (greater than sign), meta tests, 50
<= (less than and equal), meta tests, 50
< (less than sign), meta tests, 50
— (minus sign)
meta tests, 50
$spam_bar variable, 160
(number sign), configuration files, 15
. (period), domain names, 119
+ (plus sign), meta tests, 50
? (question mark), amavisd.conf, 117
|| (double vertical bar), or operator, 49

Index

Numbers

10_misc.cf file, 53-55
20_body_tests.cf file, 56
20_fake_helo_tests.cf file, 55

A

access control lists (see ACLs)
ACLs (access control lists)

Exim and, 149, 158

writing, 159-161

headers, 160
acl_smtp_data ACL, exiscan, 159
ActivePerl, 179
--add-addr-to-blacklist option, 67
--add-addr-to-whitelist option, 67
add_header directive, 54, 55
--add-to-blacklist option, 68
--add-to-whitelist option, 68
Advanced Settings (SAproxy Pro

Configuration dialog), 185
all option (sa-learn script), 75
--allowed-ips option (spamd), 22
--allowtop option (Pop3proxy), 181
all_spam_to directive, 58
Always Spam (SAproxy Pro Configuration
dialog), 184

amavis user, 116

autowhitelist database, creating, 132
amavisd script, 115
amavisd.conf file, 117

LDAP lookups, enabling, 129

locating, 131

modifying, 132

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

191

amavisd_init.sh script, 132
amavisd-new filter, 115
configuring, 117-130

local domains, distinguishing, 119

options, daemon process, 118

options, essential, 117

options, logging, 121

options, MTA, 118

options, Postfix-specific, 120

options, spam-handling, 121-123

recipient preferences, storing in
external databases, 128

recipient whitelists, 124

sender blacklists/whitelists, 125

SpamAssassin settings, 127

installing, 116-117

resources for further information, 190
sitewide Bayesian filtering, adding, 132

source code, 117
and operator (&&), 49
antispam, approaches to, 4
AnyDBM module, database format for
autowhitelist data, 64
arithmetic operators, meta tests, 50
asterisk (*)
hash value, 122
meta tests, 50
token names, 75
at sign (@), amavisd.conf, 117
AUTH command (POP), turning on
(SAproxy Pro), 185
authentication, POP proxies and, 178
--auth-ident option, 24, 156
auto-whitelist file, 64
--auto-whitelist option (SpamAssassin
2.6.3), 67
autowhitelist tests, 63
auto_whitelist_db_modules directive
(SpamAssassin 3.0), 64
auto_whitelist_factor directive, 63
auto_whitelist_file_mode directive, 66
autowhitelisting, 62—68
configuring, 63-66
file modes, 66
enabling in SpamAssassin 3.0, 98
sitewide, qmail-scanner, 147
(see also autowhitelists; sitewide
autowhitelists)
auto_whitelist_path directive, 66
sitewide autowhitelisting, adding to
gmail-scanner, 147

autowhitelists
modifying, options for, 67
per-user, 64-66
sitewide (see sitewide autowhitelists)
SpamAssassin 2.63, 67
spamassassin script command-line
options, 67

B

batched SMTP (BSMTP), 154
Bayes’ Theorem, 68
bayes_auto_expire directive, 72, 76
bayes_auto_learn directive, 70
bayes_auto_learn_threshold_nonspam
directive, 70
sitewide Bayesian classifier, 80
bayes_auto_learn_threshold_spam
directive, 70
bayes_expiry_max_db_size directive, 72
bayes_file_mode directive, 71
sitewide Bayesian classifier, 79
Bayesian classification system, 68-80
configuring, 70-72
using , 74-77
installing SpamAssassin and, 14
per-user filtering
SAproxy Pro, enabling for, 185
storing per-user data in SQL
databases, 77-79
tests, acting on results of, 52
tokens, 69
training classifier, 72—-77

train everything versus train-on-error

strategies, 72
using large collections, 74
(see also per-user Bayesian filtering;
sitewide Bayesian filtering)
bayes_ignore_from directive, 70
bayes_ignore_header directive, 70
bayes_ignore_to directive, 70
bayes_journal_max_size directive, 72
bayes_learn_during_report directive, 71
bayes_learn_to_journal directive, 72
bayes_min_ham_num directive, 71
bayes_min_spam_num directive, 71
bayes_path directive, 71
amavisd-new, 132
sitewide Bayesian filtering, 79
qmail-scanner, adding to, 147

192 | Index

bayes_use_chi2_combining directive, 72
bayes_use_hapaxes directive, 71
blacklist_from directive, 59
blacklists, 56, 125
DNS TXT records, based on, 46
per-user, 60
SAproxy Pro, adding entries, 184
systemwide, 59-60
blacklist_to directive, 59
blackslash (\), amavisd.conf, 117
body directive, 48
body tests
20_body_tests.cf, 56
common phrases used in spam, 51
HTML markup, 52
pornographic sites and online
pharmacies, 51
Spanish/Polish messages, 52
writing, 48
Boolean operators, meta tests, 49
BSMTP (batched SMTP), 154

C

-c option
amavisd, 117
spamc, 25

C programming language, 4
Canlt and Canlt-PRO programs, 85
CAUCE (Coalition Against Unsolicited
Commercial Email), 187
challenge/response system, 5
check_for_from_dns(), 44
check_hashcash_double_spend(), 44
check_hashcash_value(), 44
check_mx_attempts option, 44
check_mx_delay option, 44
check_rbl(), 45
check_rbl_sub(), 45, 46
check_rbl_txt(), 45, 46
checksum-based clearinghouses
(see clearinghouses)
cleanup daemon (Postfix), 107
clear_headers directive, 55
clearinghouses, 9
clients for, 10
reporting spam to, 19,30
autolearning by Bayesian classifier, 71
message revocation, 20
spam traps and, 19
tests against, 56

clear_report_template directive, 53
clear_spamtrap_template directive, 53
clear_unsafe_report_template directive, 53
client, SpamAssassin (see spamc client)
Coalition Against Unsolicited Commercial
Email (CAUCE), 187
Comprehensive Perl Archive Network
(see CPAN)
condition directive, preventing spam-
checking loops, 155
--configpath option, 18
configuration, 14
amavisd-new, 117-130
local domains, distinguishing, 119
options, daemon process, 118
options, essential, 117
options, logging, 121
options, MTA, 118
options, Postfix-specific, 120
options, spam-handling, 121-123
recipient preferences, storing in
external databases, 128
recipient whitelists, 124
sender blacklists/whitelists, 125
SpamAssassin settings, 127
autowhitelisting system, 63-66
file modes, 66
parameters for SQL support of, 65
autowhitelists
per-user, 64—66
sitewide, 132
Bayesian classification system, 70-72
default delivery, 137
Exim
exiscan, 152
local_scan(), 152
router-based, 151, 154
spamassassin transport, 154
using procmail as local delivery
agent, 150
files (see configuration files)
for SpamAssassin/Exim gateway, 175
internal server
for sendmail/MIMEDefang/
SpamAssassin gateway, 106
for SpamAssassin/Postfix
gateway, 134
for SpamAssassin/qmail gateway, 148
POP client
for Pop3proxy, 182
for SAproxy Pro, 183

Index | 193

configuration (continued)
Postfix
relaying mail to spam-checking
gateway, 133
using procmail as local delivery
agent, 108
gqmail
as local delivery agent, 136
routing mail through spam-checking
gateway, 147
qmail-scanner, 141
sa-exim, 164-172
message-handling options, 166-168
spam-handling options, 170-172
teergrubing, enabling, 169
SAproxy Pro, 184
options, 184
report_safe directive, 185
sendmail
spam-checking gateway, 103
using procmail as local delivery
agent, 81
spam traps, 1
SpamAssassin
MIMEDefang, invoked by, 96
for sa-exim, 164
sitewide autowhitelists, 66
spam-checking gateway, 104
SQL-based, enabling, 39
user accounts, dedicated user, 10
by users, enabling, 24
(see also installation, SpamAssassin)
configuration directives (see directives)
configuration files, 5
changing, 27
custom tests in, 41
directives, 15
documentation for, 13
Exim, 149, 162
SIGHUP signal, sending to
daemon, 151
MIMEDefang, 88
number sign (#) in, 15
options for locating, 18
Postfix, 108
qmail, 136
spam-checking default delivery
method, 137
rulesets, 13
definitions for, 50
locating, 18

sitewide, 13
autowhitelist option, setting, 67
locating, 18
spamd location for, 25
user preferences, 18
(see also local.cf file)
content filters, 109
filtering before address-rewriting, 113
qmail-scanner, 140
using daemon as, 111-113
using program as, 109-111
content_filter directive, 109
Controllable Regex Multilator (CRM114),
spam-filtering system, 188
CPAN (Comprehensive Perl Archive
Network), 9
installing SpamAssassin, 10-12
sample-nonspam. txt/sample-spam.txt
files, 16
--create-prefs option, spamd and, 164
CRM114 (Controllable Regex Multilator),
spam-filtering system, 188
customizing MIMEDefang, 92-95

D

-D option (mimedefang-multiplexor), 89
-d option (spamc), 26
--daemonize option, 22
daemons
as content filters, for spam-
checking, 111-113
filtering, 6
milters as, 83
Postfix, 107
gmail, 135
spamd (see spamd daemon)
daemontools package, 135
DATA command (STMP), exiscan message-
checking, 161
data option (sa-learn script), 75
data source name (DSN), 38
databases
autowhitelist data, 64
Bayesian, 69, 71
single database set for all users, 79
systemwide databases, 71
updating, 77
external, amavisd-new recipient
preferences, 128
test scores in, table for, 37

194 | Index

DBD-mysql module, 36, 64
DBD-ODBC module, 36, 64
DBD-Pg module, 36, 64
DB_File module, 9
gmail-scanner and, 140
DBI module, 36
per-user autowhitelists, configuring, 64
DCC clearinghouse, 10, 56
DCC (Distributed Checksum
Clearinghouse), 56
dcc_options directive (SpamAssassin 3.0), 56
Debian GNU/Linux, installing Spam-
Assassin, 12
debugging
information from amavisd message-
processing, 131
MIMEDefang multiplexor, 89
sa-exim, 172
SpamAssassin spam-checking gateway, 131
defang username/group name, 86
default delivery, configuring, 137
def_whitelist_from_rcvd directive, 58
denial-of-service attacks, preventing, 24
in MIMEDefang, 92
describe directive, test descriptions, 34
modifying systemwide, 36
Digest::SHAL module, 9
directives
Exim, removing, 159
inability to use when running Spam-
Assassin via MIMEDefang, 96
test, message portions associated with, 42
directories
amavisd-new, 116
MIMEDefang, 86
qmail, 136
gmail-queue, 138
gmail-scanner, 141
disable_dns_lookups directive, using content-
filtering daemon, 112
Distributed Checksum Clearinghouse
(DCO), 56
DNS (Domain Name System), 16
routing email through spam-checking
gateway, 106
DNS MX record, adding routing changes to
spam-checking gateway
SpamAssassin/Exim integration, 175
SpamAssassin/Postfix integration, 133
SpamAssassin/qmail integration, 148
SpamAssassin/sendmail integration, 105

DNSBLs (Domain Name System real-time
blacklists), 16
test definitions, 51
writing custom headers, 46
Domain Name System real-time blacklists
(see DNSBLs)
Domain Name System (see DNS)
double ampersand (&&), and operator, 49
double underscore (__)
meta test names, 49
test names, 41
double vertical bar (| [), or operator, 49
DSBL blacklist, 51
DSN (data source name), 38
DSPAM spam-filtering system, 188
--dump option, 75
dynamic integration, 163

E

email addresses, time-limited systems, 5
email (see messages)
end users, processing messages, 30-32
false negatives, 31
false positives, 31
ham, 30
spam, 30
environment variable, QMAILQUEUE, 137
equal sign (=), meta tests, 50
eIrors, programming, spamassassin exit, 18
exclamation point (!)
IP addresses, 120
not operator, 49
exclamation point and equal sign (!=), meta
tests, 50
Exim, 149
configuration files, 162
integrating SpamAssassin with, 149-176
configuring spamassassin
transport, 154
exiscan, 158-161
per-user preferences, 155-157
router, configuring, 154
sa-exim, 161-173
spam-checking all incoming mail, 151
spam-checking gateway,
building, 174-176
spam-checking via procmail, 150
transport, configuring, 154
(see also exiscan)
packaged versions of, 163
resources for further information, 189

Index | 195

Exim 4, 149
exim command, 154
exim executable, 149
(see also Exim)
exiscan, 158-161
ACLs, writing, 159-161
installing, 159
per-user preferences, 161, 173
exiscan-acl patch, resources for further
information, 190
--exit-code option, 18
--exitport option (Pop3proxy), 181
ExtUrtils::MakeMaker module, 9

F

false negatives
end-user processing of, 31
reducing number of (see Bayesian
classification system), 68
false positives
avoiding, 56
end-user processing of, 31
reducing number of (see autowhitelisting;
Bayesian classification system)
testing compensating for, 51
fast_spamassassin option
(gmail-scanner), 141
per-user spam preferences, 147
files
configuration (see configuration files)
journal, Bayesian classification system, 72
modes of
Bayesian databases, 71
systemwide autowhitelisting, 66
gmail-scanner, 141
File::Spec module, 9
filter(), 93
filter_begin(), 93 99
filter_end(), 93 96
filtering
daemons (see daemons, filtering)
at MDA, 7
at MTA, 6
at multiple places, 8
politics of, 8
at POP proxy, 7
resources for further information, 188
during SMTP transaction, 6
whitelists/blacklists, implementing
without SpamAssassin, 61
(see also Bayesian classification system)
filter_multipart(), 93

filcers

content (see content filters)

MTA, 7

resources for further information, 189
flexibility, filtering at MDA, 7
--force-expire option, 76
forward slash (/)

meta tests, 50

$spam_bar variable, 160
FreeBSD, installing SpamAssassin, 12
full directive, 48

G

gateway MTAs, spam-checking at, 7

Generic Test for Unsolicited Bulk Email
(GTUBE), 16

Gentoo Linux, installing SpamAssassin, 12

GNU Public License (GPL), 1

GPL (GNU Public License), 1

greater than and equal sign (>=), meta
tests, 50

greater than sign (>), meta tests, 50

greylisting systems, 5

GTUBE (Generic Test for Unsolicited Bulk
Email), 16

H

-H option (spamc), 26
ham, 4
exit code indication of, 18
user-processing of, 30
--ham option (sa-learn script), 73
hapaxes, 71
Hashcash, 4
configurable header tests in SpamAssassin
3.0, 44
header directive, test definitions, 34, 43
header tests
configurable (SpamAssassin 3.0), 44
Spanish/Polish messages, 52
writing, 43-48
methods providing basis for, 45
headers
ACLs and, 160
custom, 54
default, changing/removing, 55
ignored by Bayesian classifier, 70
matching to regular expressions, 43
rewriting, 16
spam, adding to, 15
testing, 51

196 | Index

Help (SAproxy Pro Configuration dialog), 185

--host option (Pop3proxy), 180

HTML, testing for, 35, 52

HTML::Parser module, 9

HTTP (Hypertext Transfer Protocol), testing
for, 35

HUP signal, sending, 27

Hypertext Transfer Protocol (HTTP)), testing
for, 35

--ident-timeout option, 24
IMAP (Internet Message Access Protocol), 6
proxies, availability of, 177
--import option, 77
initialization, gmail-scanner, 144
INPUT_MAIL_FILTER() macro, 83, 103
arguments and instructions, 84
installation
amavisd-new, 116-117
exiscan, 159
Pop3proxy, 178-180
gmail-scanner, 140, 140-143
qmail-spamc, 138
SAproxy Pro, 183
SpamAssassin (see installation,
SpamAssassin)
installation, SpamAssassin, 9-14
components of, 13
through CPAN, 10-12
sample-nonspam.txt/sample-spam.txt
files, 16
on FreeBSD, 12
on Linux, 12
MIMEDefang, 86-88
prerequisites, 86
for personal use, 13
prerequisites, 9
clearinghouse client installation, 10
InstallShield (Saproxy Pro), 183
internal_networks directive (SpamAssassin
3.0), 47
SpamAssassin configuration for
gateway, 104
Internet Message Access Protocol (see IMAP)
10::Socket::SSL module, 9
IP addresses
autowhitelisting and, 62
connections from, specifying list of, 22
extracting from Received headers, 45
message-processing and, 4
numeric, testing for, 35

K

kill command, 27
signaling mimedefang-multiplexor, 95
kill_proxy.pl script, 180

L

Language Settings (SAproxy Pro
Configuration dialog), 185
LDAP (Lightweight Directory Access
Protocol), 39
database, test scores in, 39-41
lookups, enabling, 129
schemas, 39
learn test flag, 42
learning systems, 62-80
autowhitelisting, 62-68
configuring, 63-66
Bayesian classification (see Bayesian
classification system)
less than and equal sign (<=), meta tests, 50
less than sign (<), meta tests, 50
libmilter library, 83
Lightweight Directory Access Protocol
(see LDAP)
--lint option, 43
Linux, installing SpamAssassin, 12
--listen-ip option, 22
Imtp command (Postfix 2.0), using instead of
smtp, 112
LMTP (Local Mail Transfer Protocol), 109
load-balancing, spamc, 26
local delivery agent
procmail as, configuring Exim to use, 150
procmail as, configuring Postfix to use, 108
procmail as, configuring sendmail to use, 81
gmail as, configuring, 136
local domains, configuring amavisd-new to
distinguish, 119
Local Mail Transfer Protocol (LMTP), 109
local.cf file, 13
LDAP support for test scores,
configuring, 40
locating, 18
report_safe setting, 164
SQL support for test scores,
configuring, 37
SQL support for autowhitelists,
configuring, 65
test scores, modifying systemwide, 36
typical, used with SpamAssassin 2.63, 14

Index | 197

localhost, connections to, Pop3proxy
and, 182
local_scan() (Exim), 152, 161
localscan_dlopen_exim_4.20_or_
better.patch, 163
localscan_dlopen_up_to_4.14.patch, 163
LOCAL_SCAN_HAS_OPTIONS, integrating
sa-exim, 162
--logfile option (Pop3proxy), 180
logging
messages processed by spamassassin, 18
Pop3proxy, 180
Postfix options, 121
SAproxy Pro, 185
--log-to-mbox option, 18

M

-m option
mimedefang, 90
mimedefang-multiplexor, 89
magic option (sa-learn script), 75
mail delivery agents (see MDAs)
mail exchanger (MX), 105
mail gateways (see spam-checking gateway,
building)
mail servers, trusted/untrusted, 47
mail transport agents (see MTAs)
mailbox_command directive, 108
maildir format, training Bayesian
classifier, 73
Maildrop program, qmail installation, 140
mailers, 6-8
(see also MDAs; MTAs)
mailertable file
routing email through spam-checking
gateway, 106
sendmail configuration for spam-checking
gateway, 103
mailing lists
for SpamAssassin users and system
administrators, 188
SPAM-L discussion forum, 187
Mail::SpamAssassin module
amavisd-new and, 116
autowhitelisting, enabling, 67
installing SpamAssassin, 13
as interface to spam-checker, 28
MIMEDefang invoking SpamAssassin, 86
Mail::SpamAssassin::Conf module
default SQL queries, 39
installing SpamAssassin, 13

Mail::SpamAssassin::EvalTests module
configurable header tests in SpamAssassin
3.0, 44
eval test for body tests, 48
Mail::SpamAssassin::NoMailAudit
module, 28
Mail::SpamAssassin::Plugin module, 13
Mail::SpamAssassin::Plugin:: URIDNSBL
module (SpamAssassin 3.0), 49
main.cf file, 108
MAPS blacklists, 51
master daemon (Postfix), 107
master.cf file, 108
--max-children option, 24
--maxscan option (Pop3proxy), 180
mbox format, 18
training Bayesian classifier, 73
MDAs (mail delivery agents), 6
filtering at, 7
procmail, 20
md-mx-ctr]l command, 88
message headers, 4
message language, tests against, 56
message locale, tests against, 56
messages
end-user processing of, 30-32
false negatives, 31
false positives, 31
ham, 30
spam, 30
headers (see headers)
milter functions operations on, 83
MIMEDefang management of, 93
non-spam (see ham)
routing through Exim gateway, 174
domain lists, 174
internal server configuration, 175
routing changes, 175
routing through qmail-scanner
gateway, 147, 148
qmail, changes to, 147
router changes, 148
routing through
sendmail/MIMEDefang/Spam-
Assassin gateway, 105
routing through SpamAssassin/Postfix
gateway, 133
internal server configuration, 134
Postfix changes, 133
routing changes, 133
SpamAssassin processing of, 4

198 | Index

spam-checking (see spam-checking
gateway, building)
untagging options, 19
meta tests, 41,49, 52
micropayment systems, 5
milter interface, 82-84
MIMEDefang, 90
MIMEDefang, 85-102
configuring for spam-checking
gateway, 105
customizing, 92-95
installing, 86-88
prerequisites, 86
integrating SpamAssassin with, 95-102
per-domain or per-user streaming,
adding, 99-102
sitewide autowhitelisting, adding, 98
sitewide Bayesian filtering, adding, 98
message-checking functions, 88
messages, managing, 93
multiple recipients, 99
milter, starting, 90
multiplexor
checking status of, 88
messages processed by, displaying
number of, 89
starting, 88
processes, 91
resources for further information, 189
sendmail, invoking in deferred mode for
notification messages, 95
username/group name, 86
version of, 85
mimedefang program, 87
command-line options for, 90
user, specifying, 90
mimedefang-filter file, 88
changes to, 95
MIMEDefang configuration, 92
for spam-checking gateway, 105
network tests, SpamAssassin
performing, 96
Perl functions in, 93
signaling MIMEDefang milter to reread, 97
SpamAssassin directives, using instead
of, 96
spam-tagging section, 96
mimedefang-multiplexor program, 88
command-line options, 88
incoming requests, queuing, 89
running in foreground for debugging, 89

signaling to restart slave processes, 95
starting, 88
mimedefang.pl script, 88
address list factory, adding to, 98
Perl subroutines called by, 88
slave processes, specifying number of, 89
MIME::Tools module v5.411a, problems
with, 86, 116
MIME::Tools module v6, 116
minus sign (-)
meta tests, 50
$spam_bar variable, 160
modules
Perl
amavisd-new, required by, 116
MIMEDefang, required by, 86
prerequisites for SpamAssassin
installation, 9
plug-in, 51
distinguishing from Perl, 13
more_spam directive, 58
msgs option (md-mc-ctrl), 89
MTAs (mail transport agents), 6
filtering at, 6
gateway, 7
resources for further information, 188
MX (mail exchanger), 105
MySQL server
configuring per-user autowhitelists, 64
test scores in, 36

N

net test flag, 42
Net::DNS module, 9
Net::Ident module, 9
Net::LDAP module, storing test scores, 39
netgmail 1.05, 135
Never Spam (SAproxy Pro Configuration
dialog), 184
new(), 28
nice test flag, 42
NJABL blacklist, 51
noautolearn test flag, 42
no_expn directive, 155
non-root user, running spamd as, 23
non-spam messages (see ham)
--nopad option (Pop3proxy), 180
--no-rebuild option, 73
not operator, 49
--nouser-config option, 156
spamd and, 164

Index | 199

—nouser-config option, 24, 39
no_verify directive, 155
number sign (#), configuration files, 15

0

object identifier (OID), 39
ODBC-compliant server
configuring per-user autowhitelists, 64
test scores in, 36
OID (object identifier), 39
-oMr sa-checked option (Exim), 154
OPM blacklist, 51
options, 18-20
configuration files, locating, 18
reporting, 19
scripting, 18
spamc, 25-27
untagging messages, 19
or operator (||), 49

P

-p option
mimedefang, 90
mimedefang-multiplexor, 89
spamc, 26
-P option (mimedefang), 90
--paranoid option, 24
passwords
test scores in LDAP database, 41
test scores for database-server
connection, 38
PATH variable, installing SpamAssassin for
personal use, 13
performance
body tests, 48
measuring, 32
per-user preferences, exiscan, 161
per-user preferences, sa-exim, 173
stream_by_recipient()/stream_by_
domain(), 102
period (*), domain names, 119
Perl
autowhitelisting in, 67
milter functions in, 85
modules (see Perl modules)
gmail-scanner and, 140
scripts, invoking SpamAssassin from, 28
SpamAssassin installation prerequisites, 9
SpamAssassin organization and, 4
Perl for Windows, Pop3proxy installation, 179

Perl modules
amavisd-new, required by, 116
MIMEDefang, required by, 86
prerequisites for SpamAssassin
installation, 9
Perl Package Manager (ActivePerl), 179
Perl Version 5, 9
perldoc, Mail::SpamAssassin/
Mail::Spam-Assassin::PerMsgStatus
modules, 29
per-user Bayesian filtering,
SpamAssassin 3.0, 132
--pidfile option, 22
plug-in modules, 13, 51
plus sign (+), meta tests, 50
Pod::Usage module, 9
POP clients
configuring
for Pop3proxy, 182
for SAproxy Pro, 183
filtering spam, 31
POP (Post Office Protocol), 6
clients (see POP clients)
proxies (see POP proxies)
POP proxies, 178
availability of, 177
scanning with, 7
Pop3proxy, 178-182
configuring POP client, 182
installing, 178-180
log file, 181
starting, 180-182
pop3proxy.pl script, starting Pop3proxy, 180
--port option, 22
ports collection (FreeBSD), 12
Post Office Protocol (see POP)
Postfix
architecture, 107
configuring, relaying mail to spam-
checking gateway, 133
integrating SpamAssassin with, 107-134
spam-checking during local
delivery, 108
spam-checking gateway,
building, 115-134
spam-checking incoming mail, 109-114
logging options, 121
mail transport, invoking, 109
options, 120
resources for further information, 189
security, 107

200 | Index

Postfix 2.0
filtering before address-rewriting, 114
spam-checking transport, 112
PostgreSQL server
configuring per-user autowhitelists, 64
test scores in, 36
postmaster, protecting messages to, 59
--prefspath option, 18
process ID
locating with ps command, 27
MIMEDefang, 90
spamd, specifying file for, 22
procmail, 7
blacklists and, 61
invoking SpamAssassin, 20
invoking spamc, 27
as local delivery agent
configuring Exim to use, 150
configuring Postfix to use, 108
configuring sendmail to use, 81
gmail configuration as local delivery
agent, 137
recipes (see procmail recipes)
resource for further information, 189
whitelists and, 61
procmail recipes, 20
discarding spam, 30
procmail_pipe transport, 150
procmailrc file, 20
spam-tagging recipe, adding to, 81
programming errors, spamassassin exit, 18
proxy
IMAP, 177
Perl AP], calling SpamAssassin , 177
SpamAssassin as, using
Pop3proxy, 178-182
SAproxy Pro, 183-185
SpamAssassin, using as, 177-185
(see also POP proxies)
ps command, 27
MIMEDefang processes, verifying, 91
Pyzor clearinghouse, 10, 56
pyzor_options directive (SpamAssassin
3.0), 56

Q

-q option (mimedefang-multiplexor), 89
qmail, 135
daemons, 135
installing, QMAILQUEUE patch
and, 137

integrating SpamAssassin with, 135-148
qmail architecture, 135
spam-checking all mail, 137-139
spam-checking at delivery, 136
spam-checking gateway,

building, 140-148

local delivery agent,configuring as, 136

resources for further information, 189

security and, 135

(see also gmail-scanner filter)

gmailctl cdb command, 139
qmail-local program, 135
QMAILQUEUE patch, 137

qmail installation, 137

QMAILQUEUE, emulating, 139

gmail-queue program, 135
QMAILQUEUE variable, 137
gmail-rspawn daemon, 136
qmail-scanner filter, 140

basic operations, 144-146

configuration options, 141

directories/files, 141

initalizing, 144

installing, 140-143

Perl v5.005_03, 140

per-user spam preferences, 146

resources for further information, 190

routing email through gateway, 147
qmail, changes to, 147
routing changes, 148

sitewide autowhitelisting, adding to, 147

sitewide Bayesian filtering, adding to, 147

spamd and, 140

qmail-send daemon, 135
qmail-smtpd daemon, 135
memory requirements, 138
spam-checking all incoming mail, 137
gmail-spamc program, installing, 138
qmgr daemon (Postfix), 107
gscand user, 140
question mark (?), amavisd.conf, 117

R

ratware, testing for, 51
rawbody directive, 48
RBLs (real-time blacklists), 16
(see also DNSBLs)
RedHat Linux
amavisd-new boot script for, 132
source rpm SpamAssassin installation, 12
--regexp option, 75

Index | 201

regular expressions
body tests, testing against, 48
header tests, matching to, 43
uri tests, matching against, 49
relays, distinguishing trusted from
untrusted, 58
reload command, modifying amavisd.conf
and, 132
--remove-addr-from-whitelist option, 67
--remove-from-whitelist option, 68
remove_header directive, 55
--remove-markup option, 19, 31
report directive, 53
--report option, 19, 56
reports
messages with low test scores, 36
options for, 19
templates for, 50, 53
variables, 53
test descriptions in, 33
report_safe directive, 15
local.cf file, 164
SAproxy Pro, configuring in, 185
Request For Comments (RFC), resources
about spam, 187
required_hits directive, configuring
SpamAssassin 2.63, 15
required_score directive, configuring
SpamAssassin 3.0, 15
--revoke option, 20
rewrite_header directive, 16
rewrite_subject directive, 16
RFC (Request for Comments), resources
about spam, 187
rm -1f build-* command, 159
root user
amavisd script, 117
messages to, protecting, 59
MIMEDefang processes, starting as, 88
qmail-scanner source code, building, 141
spamd, running as, 23
routers, configuring in Exim, 149
defining order of, 150, 155
per-user preferences, 155-157
rules, 1,33-60
In custom tests, 43
files defining, 50
10_misc.cf file, 53-55
20_body_tests.cf file, 56
20_fake_helo_tests.cf file, 55
report_safe directive and, 15
sets of (see rulesets)

rulesets, 13
exiscan, 160
spamd location for, 25
test storage, 35
testing forged HELO hostnames, 51

S

-s option
md-mx-ctrl, 89
mimedefang-multiplexor, 89
-S option (spamc), 26
sa-exim, 161-173
configuring, 164-172
message-handling options, 166-168
spam-handling options, 170-172
teergrubing, enabling, 169
debugging, 172
dynamic integration, building for, 163
resources for further information, 190
SpamAssassin, configuring for, 164
static integration, building for, 162
sa-exim.conf file, 164, 172
configuration options, 165-172
Safety Settings (SAproxy Pro Configuration
dialog), 185
sa-learn script, 14,73
expiring tokens, 76
ongoing training of Bayesian classifier, 76
options for displaying tokens, 75
sa-mimedefang.cf file, 88
autowhitelist directives, adding to, 98
MIMEDefang and, 96
SpamAssassin configuration for
gateway, 104
sample-nonspam.txt file, 16
sample-spam.txt file, 16
SAproxy Pro, 8, 183-185, 188
configuring, 184
POP client, 183
installing, 183
SSL module, 183
starting, 183
SAproxy Pro 2.5, 183
--scanners option (qmail-scanner), 141
scanning (see filtering)
score directive
spam scores, 34
test scores, modifying, 36
scripting, options for, 18
Secure Sockets Layer/Transport Layer
Security (SSL/TLS), requiring use
of, 23

202 | Index

security
allowed-ips option, 22
file mode used to create Bayesian
databases, 71
mimedefang-multiplexor and, 88
POP proxies and, 178
Postfix and, 107
gmail and, 135
sendmail and, 81
spamdt, 23
SSL support in spamd/spamc, 23
(see also denial-of-service attacks,
preventing)
Sender Policy Framework (SPF), 4
senders, privileging, 4
sendmail
configuring
milter use, 83
procmail as local delivery agent, 81
for spam-checking gateway, 103
deferred mode, 95
integrating SpamAssassin with, 81-106
spam-checking at delivery, 81
spam-checking during SMTP
transaction, 82-102
spam-checking gateway,
building, 102-106
resources for further information, 188
security and, 81
smmsp user, running as, 100
sendmail 8.11, milter interface in, 85
sendmail 8.12, milter interface in, 85
sendmail.cf file, regenerating from
sendmail.mc file, 82
sendmail.mc file, configuring sendmail
milter use, 83
procmail as local delivery agent, 82
sendmail 8.11 milter, 85
--server-cert option, 23
--server-key option, 23
setuid scripts, gmail-scanner requirement
for, 140, 144
--showdots option, 74
Simple Mail Transfer Protocol (see SMTP)
--siteconfigpath option, 18
sitewide autowhitelists, 66
amavisd-new, 132
MIMEDefang, adding to, 98
sitewide Bayesian filtering, 79
amavisd-new spam-checking gateway, 132
Exim spam-checking gateway, adding, 175
forwarded messages, avoiding, 80

MIMEDefang, adding to, 98
gmail-scanner, 147
skip_rbl_checks directive, 16
smmsp user, 100
SMTP (Simple Mail Transfer Protocol)
filtering messages, 6
greylisting systems and, 5
transactions (see SMTP transactions)
trusted/untrusted mail servers, 47
SMTP transactions
milter functions called by sendmail
during, 83
spam-checking during, 82-102
smtpd daemon (Postfix), 107
--socketpath option, 22
SORBS blacklist, 51
source rpm distribution, 12
spam condition, 159
spam mail, 30
subject-tagging, SAproxy Pro, 185
end-user processing of, 30
exit code indication of, 18
modifying, 15
quarantine, enabling, 121
resources for further information, 187
--spam option (sa-learn script), 73
spam score, 33
autowhitelisting and, 62
average sender score, 62
configuring required_hits/required_score
directives, 15
exiscan and, 160
produced by spamd, 25
in test mode, 16
Spam Training (SAproxy Pro Configuration
dialog), 185
spam traps, 1, 19
SpamAssassin, 1
amavisd-new, settings for, 127
client (see spamc client)
configuring (see configuration;
configuration files; spam-checking
gateways, building)
integrating with Exim, 149-176
exiscan, 158-161
per-user preferences, 155-157
router, configuring, 154
sa-exim, 161-173
spam-checking all incoming mail, 151
spam-checking gateway, 174-176
spam-checking via procmail, 150
transport, configuring, 154

Index | 203

SpamAssassin (continued) Hashcash, 4, 5

integrating with MIMEDefang, 95-102 language support in, 50
per-domain/per-user streaming, 99-102 --max-children option default, 25
sitewide autolisting, adding, 98 message revocation, 20
sitewide Bayesian filtering, adding, 98 Perl modules, distinguishing from

integrating with Postfix, 107-134 plug-ins, 13
spam-checking during local Perl script, invoking with, 29

delivery, 108 per-user Bayesian data, storing in SQL
spam-checking gateway, databases, 132

building, 115-134 proxies for, 177
spam-checking incoming required_score directive, 15

mail, 109-114 rewrite_header directive, 16

integrating with qmail, 135-148 spamc invocation, 139
gmail architecture, 135 spamassassin program
spam-checking all mail, 137-139 consulting autowhitelists, 67
spam-checking at delivery, 136 options, 18-20
spam-checking gateway, sitewide configuration file, 13

building, 140-148 spamc and, 14

integrating with sendmail, 81-106 testing, 16
spam-checking at delivery, 81 spamassassin script, autowhitelist, options, 67
spam-checking during SMTP spamassassin transport, configuring in

transaction, 82-102 Exim, 154
spam-checking gateway, spambox, 31
building, 102-106 spamc client, 9, 21

learning systems (see learning systems) load-balancing, 26

organization of, 4 options, 25-27

as proxy, 177-185 procmail, invoking with, 27
Pop3proxy, 178-182 security and, 23
SAproxy Pro, 183-185 sitewide configuration file, 13

reasons for popularity, 1 SpamAssassin 3.0, invoking in, 139

resources for further information, 188 SpamAssassin installation and, 14

rules (see rules) spamd server, connecting to, 26

sa-exim, configuring for, 164 SSL connections, 26

testing (see testing) testing, 25-27

SpamAssassin 2.63 user running, identifying, 24
invoking with Perl script, 28 spam-checkers

language support in, 50 daemonized (see spamd daemon)

local.cf file, typical example of, 14 validating, 16

options for reporting spam, 19 spam-checking

Pop3proxy and, 178 all incoming mail

proxies for, 177 Exim configurations, 151

required_hits directive, 15 Postfix, 109-114

SAproxy Pro 2.5, 183 gmail configuration, 137-139

sitewide autowhitelisting, enabling, 98 at delivery, 108

spamassassin script, 67 Postfix, configuring to use

SpamAssassin 2.x procmail, 108

logging messages, 18 qmail, 136

--max-children option default, 25 sendmail, configuring to use

rewrite_subject directive, 16 procmail, 81

SpamAssassin 3.0 gateway (see spam-checking gateway,
autowhitelisting, 64, 67, 98 building)

configurable header tests, 44 on LANs, 22

204 | Index

at MTAs, 6
options for, 18-20
configuration files, locating, 18
Perl scripts for, 29
Postfix
content filter, daemon as, 111-113
content filter, program as, 109-111
filtering before address-rewriting, 113
during SMTP transaction, 82-102
milter interface, 82-84
MIMEDefang, 85-102
spam-checking gateway, building
with amavisd-new, 115-134
configuration, 117-130
installation, 116-117
routing email through, 133
sitewide autowhitelisting, 132
testing, 130-132
with Exim, 174-176
routing email through, 174
sitewide Bayesian filtering, 175
with MIMEDefang, adding per-domain or
per-user streaming, 99
with gmail, 140-148
initialization, 144
installation, 140-143
internal server configuration, 148
operations, 144-146
per-user preferences, 146
routing email through, 147
sitewide autowhitelisting, 147
sitewide Bayesian filtering, 147
with sendmail, MIMEDefang, and
SpamAssassin, 102-106
internal server configuration, 106
MIMEDefang configuration, 105
routing email through, 105
sendmail configuration, 103
SpamAssassin configuration, 104
testing, 106
SpamAssassin, configuring for, 104
Spamcop blacklist, 51
spamd daemon, 9, 21
configuring, 27
Exim routers and, 156
connection type, specifying, 22
identifying user running spamc, 24
non-root user, running as, 23
gmail-scanner and, 140
rulesets, locating, 25
security and, 23
options, 24

setting up, 22-25
sitewide configuration files, location of, 25
SpamAssassin installation and, 14
test scores in LDAP database, 41
test scores in SQL database, 39
test-scores in SQL database, 36
whitelists/blacklists and, 60
spamd servers, using multiple, 26
Spamhaus blacklist, 51
SPAM-L FAQ/SPAM-L mailing list, 187
spamtrap directive, 53
spamware, testing for, 51
SPF (Sender Policy Framework), 4
SQL databases
per-user Bayesian data, 77-79
SpamAssassin 3.0, 132
test scores in, 36—39
SQL queries, constructing, 38
SQL server, Perl driver modules for, 36
--ssl option, 23
SSL plug-in module, SAproxy Pro, 183
SSL (Secure Sockets Layer)
spamc-to-spamd connection, 26
spamd certificate, specifying file for, 23
spamd private key, specifying file for, 23
SSL/TLS (Secure Sockets Layer/Transport
Layer Security), 23
static integration, 162
Statistics (SAproxy Pro Configuration dialog),
comparing number of spam to
non-spam messages, 185
STATISTICS.txt files, 32
stream_by_domain(), 99
multiple policies for multiple recipient
domains, 100
sendmail 8.12 requirement, 100
stream_by_recipient(), 99
sendmail 8.12 requirement, 100
SpamAssassin user preferences for each
recipient from SQL database, 102
stunnel program, 23
Subject header
rewriting, 16
testing for, 35
Sys::Syslog module, 9
gmail-scanner and, 140

T

-t option (spamc), 26
Tagging Options (SAproxy Pro Configuration
dialog), 185

Index | 205

Tcl/Tk, MIMEDefang interface based on, 88
TCP port, 22
Sspamc connection, 26
spamd, bound by, 22
tcp.smtp file, 139
teergrubing, 152, 165
test mode, 16
test scores, 34
database table for, 37
specifying name of, 38
definitions of, 52
LDAP database, storing in, 39—41
low, 36
modifying, 35-41
on per-user basis, 36
systemwide, 36
SQL databases, storing in, 36-39
testing
amavisd-new gateway, 130-132
headers, 51
messages, 33
(see also tests)
for ratware/spamware, 51
SAproxy Pro, enabling in, 185
sendmail/MIMEDefang/SpamAssassin
gateway, 106, 130-132
SpamAssassin, 16—-17
spamc, 25-27
--test-mode option, 36
tests
built-in, 50-56
components of, 33-35
definitions of, 51
examples, 35
descriptions, translations of, 52
directory location, 35
flags, 42
for forged HELO hostnames, 55
meta (see meta tests)
scores (see test scores)
writing, 41-50
text/plain content-type, report_safe directive
and, 16
Time::HiRes module
Pop3proxy installation, 179
gmail-scanner and, 140
TNEF program, qmail installation, 140
To headers, forged, blacklisting and, 60
tokens
automatically removing, 72
expiration of, 76
used by Baysian classifier, 75

TOP command (POP), 181

turning on, SAproxy Pro, 185
transport directive, 155
transports, Exim and, 149
true negatives (see ham)
true positives (see spam mail)
trusted_networks directive, SpamAssassin

configuration for gateway, 104

trusted_networks option, 47, 58

U

-U option
mimedefang, 90
mimedefang-multiplexor, 88
spamc, 26
-u option (spamc), 110
ucspi-tcp package, 135
accessing SMTP service, 139
unblacklist_from directive, 60
uniform resource identifiers (see URIs)
Unix, 9
domain socket (see Unix domain socket)
Unix domain socket, 22
MIMEDefang, path to, 90
mimedefang-multiplexor, used by, 89
spamc-to-spamd connection, 26
unsafe_report directive, 53
unwhitelist_from directive, 60
unwhitelist_from_rcvd directive, 58
uri directive, 49
URI module, LDAP database, storing test
scores in, 39
URI tests, 51
DNS blacklists, 52
writing, 49
uridnsbl directive (SpamAssassin 3.0), 49
URIDNSBL plug-in, 52
URIs (uniform resource identifiers), 49
testing for (see URI tests)
use_auto_whitelist option (SpamAssassin
3.0), 67,98
use_bayes directive, 70
amavisd-new, 132
sitewide Bayesian filtering, adding to
qmail-scanner, 147
Usenet resources about spam, 188
user accounts, shell, installing
SpamAssassin, 13
user preferences, configuration file, 18
userconf test flag, 42

206 | Index

--username option, 24
usernames
amavis, 116
autowhitelist database, creating, 132
gscand, 140
smmsp, 100
specifying, 24
test scores, database-server connection, 38
LDAP, 41
user_prefs file, 36
user_scores_dsn directive, 38, 40
user_scores_ldap_password directive, 41
user_scores_ldap_username directive, 41
user_scores_sql_custom_query directive, 38
user_scores_sql_password directive, 38
user_scores_sql_table directive, 38
user_scores_sql_username directive, 38

v

version_spamassassin option
(gmail-scanner), 147
version_tag option, 43
Vipul’s Razor clearinghouse, 10, 56
virtual hosts, per-domain or per-user
stream, 99
virus-checking, 7
at MTAs, 6
gmail-scanner, 143

TNEF and, 140

w

--warning-from option, 19
watch-mimedefang interface, 88
whitelist_from directive, 57
whitelist_from_rcvd directive, 57
whitelists, 56, 125
per-user, 60
of recipients, 124
SAproxy Pro, adding entries, 184
setting up default, 52
systemwide, 57-59
(see also autowhitelisting)
whitelist_to directive, 58
Windows Task Manager, killing wperl
process, 180
wperl file, 180
writing tests, 41-50

X

-X option

mimedefang-multiplexor, 89

spamc, 27
X-PMFLAGS header, testing for, 35
X-Spam-Checker-Version header, setting, 30
X-Spam-Flag header, 30
X-Spam_Flag header, 15
X-Spam-Level header, 15,30
X-Spam-Report header, rules description, 15
X-Spam-Status header, 15, 30

adding to messages, 55

for ham, 30

Index | 207

About the Author

Alan Schwartz is an associate professor of clinical decision making in the depart-
ments of Medical Education and Pediatrics at the University of Illinois at Chicago.
He is the author of Managing Mailing Lists, and coauthor of Stopping Spam and Prac-
tical Unix and Internet Security, Third Edition (O’Reilly). In his spare time, he
develops and maintains the PennMUSH MUD server. He and his wife also develop
and maintain their son. As mail administrator for a number of organizations, he
deals with unsolicited email on a daily basis. Turn-ons for Alan include sailing,
programming in Perl, playing duplicate bridge, and drinking Anchor Porter. Turn-
offs include spam (obviously!) and watery American lagers.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of SpamAssassin is a King vulture. King vultures (Sarcoram-
phus papa) are found in tropical lowland forests from Mexico to Argentina. Vultures
serve a useful purpose in disposing of dead and decaying animal remains.

Their extremely thick and strong bills are well adapted for tearing, as are their long,
thick claws for holding meat. King vultures have a very heavy beak, a necessary asset
for tearing into large, thick-skinned animals. The absence of feathers on a vulture’s
head helps the bird “clean up” after a messy meal.

King vultures do not build nests. The female simply deposits her single egg in the
hollow of a rotten tree trunk or in a crack caused by age or lightning. Both parents
take turns incubating the egg. When hatched, King vulture chicks have no feathers,
but soon are covered with a white down. They do not acquire their adult plumage
until they are 18 months old.

While they have very keen eyesight, King vultures have a poor sense of smell. They
often rely on other vulture species to locate food. Much larger and stronger than
other vultures, the King vulture is useful to the others because it is capable of tearing
open tough skin. When other vultures have found carrion, a King vulture or two
often arrive and immediately dominate the carcass—hence the name “King.”

King vultures will sometimes glide in wide circles for long periods, spying on their
domain below and searching for food. By making perfect use of the air currents,
vultures are able to soar for hours at a time, without once flapping their wings.

Darren Kelly was the production editor, Nancy Crumpton was the copyeditor, and
Jan Fehler was the proofreader for SpamAssassin. Reg Aubry and Claire Cloutier
provided quality control. Nancy Crumpton provided production services and wrote
the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David
Futato. This book was converted by Andrew Savikas to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans
Mono Condensed. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colo-
phon was written by Darren Kelly.

Related Titles Available from O'Reilly

80211°'
W ireless
Networks

Fhe Definiisee truide

O'REELY"

Networking
802.11 Security
802.11 Wireless Networks: The Definitive Guide
BGP
Building Wireless Community Networks, 2nd Edition
Cisco 10S Access Lists
Cisco 10S in a Nutshell
Designing Large-Scale LANs
DNS & BIND Cookbook
DNS & BIND, 4th Edition
Essential SNMP
Hardening Cisco Routers
Internet Core Protocols
IP Routing
[Pv6 Essendals
LDAP System Administration
Managing NFS and NIS, 2nd Edtion
Network Troubleshooting Tools
Networking CD Bookshelf, Version 2.0
Postfix: The Definitive Guide
Practical VoIP Using Vocal
gmail: An Alternadve to sendmail
RADIUS
Samba Pocket Reference, 2nd Edition
sendmail, 3rd Edition
sendmail Cookbook
Solaris 8 Administrator’s Guide
TCP/IP Network Administration, 3rd Edition
Unix Backup and Recovery
Using Samba, 2nd Edition
Using SANs and NAS

O’REILLY*®

Our books are available at most retail and online bookstores.
To order direct: 1-800-998-9938 « order@oreilly.com « www.oreilly.com
Online editions of most OReilly titles are available by subscription at safari.oreilly.com

Keep in touch with O'Reilly

1. Download examples from our books

To find example files for a book, go to:
www.oreilly.com/catalog
select the book, and follow the “Examples” link.

2. Register your 0'Reilly books

Register your book at register.oreilly.com

Why register your books?

Once you've registered your O'Reilly books you can:

e Win OReilly books, T-shirts or discount
coupons in our monthly drawing,

* Get special offers available only to registered
O'Reilly customers.

* Get catalogs announcing new books
(US and UK only).

¢ Get email notification of new editions of the
O'Reilly books you own.

3. Join our email lists

Sign up to get topic-specific email announcements
of new books and conferences, special offers, and
O'Reilly Network technology newsletters at:

elists.oreilly.com

It’s easy to customize your free elists subscription so
you'll get exactly the O'Reilly news you want.

4. Get the latest news, tips, and tools

www.oreilly.com
* “Top 100 Sites on the Web”—PC Magazine
* CIO Magazine’s Web Business 50 Awards

Our web site contains a library of comprehensive
product information (including book excerpts and
tables of contents), downloadable software, back-
ground articles, interviews with technology leaders,
links to relevant sites, book cover art, and more.

5.Work for 0'Reilly

Check out our web site for current employment
opportunities:

jobs.oreilly.com

6. Contact us

O'Reilly & Associates
1005 Gravenstein Hwy North
Sebastopol, CA 95472 USA

TEL: 707-827-7000 or 800-998-9938
(6am to Spm PST)

FAX: 707-829-0104

order@oreilly.com
For answers to problems regarding your order or our
products. To place a book order online, visit:

www.oreilly.com/order_new

catalog@oreilly.com
To request a copy of our latest catalog,

booktech@oreilly.com
For book content technical questions or corrections.

corporate@oreilly.com
For educational, library, government, and
corporate sales.

proposals@oreilly.com
To submit new book proposals to our editors and
product managers.

international@oreilly.com

For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:

international.oreilly.com/distributors.html

adoption@oreilly.com
For information about academic use of O'Reilly

books, visit:

academic.oreilly.com

O’REILLY"

Our books are available at most retail and online bookstores.
To order direct: 1-800-998-9938 « order@oreilly.com « www.oreilly.com
Online editions of most O’Reilly titles are available by subscription at safari.oreilly.com

Network Administration/Email

O’REILLY"

SpamAssassin

Want to work from home and get paid well? Everyday can be payday! Perhaps you'd
x prefer to PROTECT YOUR PET FROM FLEAS AND TICKS? Tired Of Online Dating?

I- Meet Someone Real! Tired with life? Buy Xanax!
S . .
Spam. The scourge of the Internet. It fills our inboxes, burns our bandwidth, brings

raw and licentious images into the sanctity of our homes, and is single-handedly responsible for
almost totally destroying the utility of electronic mail. How do you fight this rising electronic tide of
email sewage? For many, the answer lies in a free and open source tool known as SpamAssassin.

SpamAssassin is perhaps the most widely deployed anti-spam tool on the Internet today. Let Alan
Schwartz, experienced mail administrator, show you how to apply this powerful tool.
You'll learn how to:

e Customize SpamAssassin’s rules, and even create new ones
e Train SpamAssassin’s Bayesian classifier, a statistical engine for detecting spam, to optimize it
for the sort of email that you typically receive

¢ Block specific addresses, hosts, and domains using third-party blacklists like the one main-
tained by Spamcop.net

e Whitelist known good sources of email, so that messages from clients, coworkers, and friends
aren’t inadvertently lost

e Configure SpamAssassin to work with newer spam-filtering methods such as Hashcash
(www.hashcash.org) and Sender Policy Framework (SPF)

Alan also shows how to install SpamAssassin in a variety of different configurations. SpamAssassin
integrates with all major mail transport and delivery agents, including the venerable sendmail, proc-
mail, postfix, gmail, and Exim.

International cell calls for a nickel? Forget that. SpamAssassin is free. And even better, SpamAssassin
has proven to be effective. Buy this book. Install SpamAssassin. Take back your inbox.

“Detailed, accurate, and informative—recommended for spam-filtering beginners
and experts alike.”

—Justin Mason, SpamAssassin development team

US $24.95 Visit 0’Reilly on the Web at www.oreilly.com
ISBN 0-596-00707-8 CAN $36.95

m I\ ‘| lI 9D|H)OO
9 1780596007072 6l|||36920||c!|c!“w7' 4

