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Preface

The data processing framework named Spark was first built to prove that, by re-using the
data sets across a number of iterations, it provided value where Hadoop MapReduce jobs
performed poorly. The research paper Mesos: A Platform for Fine-Grained Resource Sharing in
the Data Center talks about the philosophy behind the design of Spark. A very simplistic
reference implementation built to test Mesos by the University of California Berkeley
researchers has grown far and beyond to become a full blown data processing framework
later became one of the most active Apache projects. It is designed from the ground up to
do distributed data processing on clusters such as Hadoop, Mesos, and in standalone mode.
Spark is a JVM-based data processing framework and hence it works on most operating
systems that support JVM-based applications. Spark is widely installed on UNIX and Mac
OS X, platforms and Windows adoption is increasing.

Spark provides a unified programming model using the programming languages Scala,
Java, Python and R. In other words, irrespective of the language used to program Spark
applications, the API remains almost the same in all the languages. In this way,
organizations can adopt Spark and develop applications in their programming language of
choice. This also enables fast porting of Spark applications from one language to another
without much effort, if there is a need. Most of Spark is developed using Scala and because
of that the Spark programming model inherently supports functional programming
principles. The most basic Spark data abstraction is the resilient distributed data set (RDD),
based on which all the other libraries are built. The RDD-based Spark programming model
is the lowest level where developers can build data processing applications.

Spark has grown fast, to cater to the needs of more data processing use cases. When such a
forward-looking step is taken with respect to the product road map, the requirement
emerged to make the programming more high level for business users. The Spark SQL
library on top of Spark Core, with its DataFrame abstraction, was built to cater to the needs
of the huge population of developers who are very conversant with the ubiquitous SQL.

Data scientists use R for their computation needs. The biggest limitation of R is that all the
data that needs to be processed should fit into the main memory of the computer on which
the R program is running. The R API for Spark introduced data scientists to the world of
distributed data processing in their familiar data frame abstraction. In other words, using
the R API for Spark, the processing of data can be done in parallel on Hadoop or Mesos,
growing far beyond the limitation of the resident memory of the host computer.
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In the present era of large-scale applications that collect data, the velocity of the data that is
ingested is very high. Many application use cases mandate real-time processing of the data
that is streamed. The Spark Streaming library, built on top of Spark Core, does exactly the
same.

The data at rest or the data that is streamed are fed to machine learning algorithms to train
data models and use them to provide answers to business questions. All the machine
learning frameworks that were created before Spark had many limitations in terms of the
memory of the processing computer, inability to do parallel processing, repeated read-write
cycles, so on. Spark doesn't have any of these limitations and hence the Spark MLIib
machine learning library, built on top of Spark Core and Spark DataFrames, turned out to
be the best of breed machine learning library that glues together the data processing
pipelines and machine learning activities.

Graph is a very useful data structure used heavily in some special use cases. The algorithms
used to process the data in a graph data structure are computationally intensive. Before
Spark, many graph processing frameworks came along, and some of them were really fast
at processing, but pre-processing the data needed to produce the graph data structure
turned out to be a big bottleneck in most of these graph processing applications. The Spark
GraphX library, built on top of Spark, filled this gap to make data processing and graph
processing as chained activities.

In the past, many data processing frameworks existed and many of them were proprietary
forcing organizations to get into the trap of vendor lock-in. Spark provided a very viable
alternative for a wide variety of data processing needs with no licensing cost; at the same
time, it was backed by many leading companies, providing professional production
support.

What this book covers

Chapter 1, Spark Fundamentals, discusses the fundamentals of Spark as a framework with its
APIs and the libraries that comes with it, along with the whole data processing ecosystem
Spark is interacting with.

Chapter 2, Spark Programming Model, discusses the uniform programming model, based on
the tenets of functional programming methodology, that is used in Spark, and covers the
fundamentals of resilient distributed data sets (RDD), Spark transformations, and Spark
actions.

[2]
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Chapter 3, Spark SQL, discusses Spark SQL, which is one of the most powerful Spark
libraries used to manipulate data using the ubiquitous SQL constructs in conjunction with
the Spark DataFrame API, and and how it works with Spark programs. This chapter also
discusses how Spark SQL is used to access data from various data sources, enabling the
unification of diverse data sources for data processing.

Chapter 4, Spark Programming with R, discusses SparkR or R on Spark, which is the R API
for Spark; this enables R users to make use of the data processing capabilities of Spark using
their familiar data frame abstraction. It gives a very good foundation for R users to get
acquainted with the Spark data processing ecosystem.

Chapter 5, Spark Data Analysis with Python, discusses the use of Spark to do data processing
and Python to do data analysis, using a wide variety of charting and plotting libraries
available for Python. This chapter discusses combining these two related activities together
as a Spark application with Python as the programming language of choice.

Chapter 6, Spark Stream Processing, discusses Spark Streaming, which is one of the most
powerful Spark libraries to capture and process data that is ingested as a stream. Kafka as
the distributed message broker and a Spark Streaming application as the consumer are also
discussed.

Chapter 7, Spark Machine Learning, discusses Spark MLIlib, which is one of the most
powerful Spark libraries used to develop machine learning applications at an introductory
level.

Chapter 8, Spark Graph Processing, discusses Spark GraphX, which is one of the most
powerful Spark libraries to process graph data structures, and comes with lots of algorithms
to process data in graphs. This chapter covers the basics of GraphX and some use cases
implemented using the algorithms provided by GraphX.

Chapter 9, Designing Spark Applications, discusses the design and development of a Spark
data processing application, covering various features of Spark that were covered in the
previous chapters of this book.

What you need for this book

Spark 2.0.0 or above is to be installed on at least a standalone machine to run the code
samples and do further activities to learn more about the subject. For chapter 6, Spark
Stream Processing, Kafka needs to be installed and configured as a message broker with its
command line producer producing messages and the application developed using Spark as
a consumer of those messages.

[3]
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Who this book is for

If you are an application developer, data scientist, or big data solutions architect who is
interested in combining the data processing power of Spark with R, and consolidating data
processing, stream processing, machine learning, and graph processing into one unified and
highly interoperable framework with a uniform API using Scala or Python, this book is for
you.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: " It is a
good idea to customize this property spark.driver.memory to have a higher value."

A block of code is set as follows:

Python 3.5.0 (v3.5.0:374£f501£4567, Sep 12 2015, 11:00:19)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Any command-line input or output is written as follows:

$ python

Python 3.5.0 (v3.5.0:374f501£f4567, Sep 12 2015, 11:00:19)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The shortcuts in this book
are based on the Mac 0S X 10.5+ scheme."

[4]
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0 Warnings or important notes appear in a box like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http: //www.p
acktpub.com. If you purchased this book elsewhere, you can visit http: //www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk N
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Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Apache-Spark-2-for-Beginners. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/downl
oads/ApacheSpark2forBeginners_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information will
appear under the Errata section.

[6]
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Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[7]
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Data is one of the most important assets of any organization. The scale at which data is
being collected and used in organizations is growing beyond imagination. The speed at
which data is being ingested, the variety of the data types in use, and the amount of data
that is being processed and stored are breaking all-time records every moment. It is very
common these days, even in small-scale organizations, that data is growing from gigabytes
to terabytes to petabytes. For the same reason, the processing needs are also growing that
ask for capability to process data at rest as well as data on the move.

Take any organization; its success depends on the decisions made by its leaders and for
making sound decisions, you need the backing of good data and the information generated
by processing the data. This poses a big challenge on how to process the data in a timely
and cost-effective manner so that right decisions can be made. Data processing techniques
have evolved since the early days of computers. Countless data processing products and
frameworks came into the market and disappeared over these years. Most of these data
processing products and frameworks were not general purpose in nature. Most of the
organizations relied on their own bespoke applications for their data processing needs, in a
silo way, or in conjunction with specific products.

Large-scale Internet applications, popularly known as Internet of Things (IoT)
applications, heralded the common need to have open frameworks to process huge
amounts of data ingested at great speed dealing with various types of data. Large-scale web
sites, media streaming applications, and the huge batch processing needs of organizations
made the need even more relevant. The open source community is also growing
considerably along with the growth of the Internet, delivering production quality software
supported by reputed software companies. A huge number of companies started using
open source software and started deploying them in their production environments.
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In a technological perspective, the data processing needs were facing huge challenges. The
amount of data started overflowing from single machines to clusters of huge numbers of
machines. The processing power of the single CPU plateaued and modern computers
started combining them together to get more processing power, known as multi-core
computers. The applications were not designed and developed to make use of all the
processors in a multi-core computer and wasted lots of the processing power available in a
typical modern computer.

Throughout this book, the terms node, host, and machine refer to a
computer that is running in a standalone mode or in a cluster.

In this context, what are the qualities an ideal data processing framework should possess?

e It should be capable of processing the blocks of data distributed across a cluster
of computers

e It should be able to process the data in a parallel fashion so that a huge data
processing job can be divided into multiple tasks processed in parallel so that the
processing time can be reduced considerably

e It should be capable of using the processing power of all the cores or processors
in a computer

e It should be capable of using all the available computers in a cluster
e It should be capable of running on commodity hardware

There are two open source data processing frameworks that are worth mentioning that
satisfy all these requirements. The first is being Apache Hadoop and the second one is
Apache Spark.

We will cover the following topics in this chapter:

e Apache Hadoop
e Apache Spark
e Spark 2.0 installation

[91
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An overview of Apache Hadoop

Apache Hadoop is an open source software framework designed from ground-up to do
distributed data storage on a cluster of computers and to do distributed data processing of
the data that is spread across the cluster of computers. This framework comes with a
distributed filesystem for the data storage, namely, Hadoop Distributed File System
(HDEFS), and a data processing framework, namely, MapReduce. The creation of HDFS is
inspired from the Google research paper, The Google File System and MapReduce is based on
the Google research paper, MapReduce: Simplified Data Processing on Large Clusters.

Hadoop was adopted by organizations in a really big way by implementing huge Hadoop
clusters for data processing. It saw tremendous growth from Hadoop MapReduce version 1
(MRv1) to Hadoop MapReduce version 2 (MRv2). From a pure data processing perspective,
MRv1 consisted of HDFS and MapReduce as the core components. Many applications,
generally called SQL-on-Hadoop applications, such as Hive and Pig, were stacked on top of
the MapReduce framework. It is very common to see that even though these types of
applications are separate Apache projects, as a suite, many such projects provide great
value.

The Yet Another Resource Negotiator (YARN) project came to the fore with computing
frameworks other than MapReduce type to run on the Hadoop ecosystem. With the
introduction of YARN sitting on top of HDFS, and below MapReduce in a component
architecture layering perspective, the users could write their own applications that can run
on YARN and HDFS to make use of the distributed data storage and data processing
capabilities of the Hadoop ecosystem. In other words, the newly overhauled MapReduce
version 2 (MRv2) became one of the application frameworks sitting on top of HDFS and
YARN.

[10]
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Figure 1 gives a brief idea about these components and how they are stacked together:

Other YARN based MapReduce
Applications/Frameworks | |(Data Processing)

MapReduce (Data Processing) YARN (Resource Scheduling/Negotiation)

HDFS (Storage) HDFS (Storage)

Hadoop Distributed Storage and DataB Hadoop Distributed Storage and Datab
Processing Framework version 1 Processing Framework version 2

Figure 1

MapReduce is a generic data processing model. The data processing goes through two
steps, namely, map step and reduce step. In the first step, the input data is divided into a
number of smaller parts so that each one of them can be processed independently. Once the
map step is completed, its output is consolidated and the final result is generated in the
reduce step. In a typical word count example, the creation of key-value pairs with each word
as the key and the value 1 is the map step. The sorting of these pairs on the key, summing
the values of the pairs with the same key falls into an intermediate combine step. Producing
the pairs containing unique words and their occurrence count is the reduce step.

From an application programming perspective, the basic ingredients for an over-simplified
MapReduce application are as follows:

Input location

Output location

Map function implemented for the data processing need from the appropriate
interfaces and classes from the MapReduce library

Reduce function implemented for the data processing need from the appropriate
interfaces and classes from the MapReduce library

[11]
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The MapReduce job is submitted for running in Hadoop and once the job is completed, the
output can be taken from the output location specified.

This two-step process of dividing a MapReduce data processing job to map and reduce tasks
was highly effective and turned out to be a perfect fit for many batch data processing use
cases. There is a lot of Input/Output (I/O) operations with the disk happening under the
hood during the whole process. Even in the intermediate steps of the MapReduce job, if the
internal data structures are filled with data or when the tasks are completed beyond a
certain percentage, writing to the disk happens. Because of this, the subsequent steps in the
MapReduce jobs have to read from the disk.

Then the other biggest challenge comes when there are multiple MapReduce jobs to be
completed in a chained fashion. In other words, if a big data processing work is to be
accomplished by two MapReduce jobs in such a way that the output of the first MapReduce
job is the input of the second MapReduce job. In this situation, whatever may be the size of
the output of the first MapReduce job, it has to be written to the disk before the second
MapReduce could use it as its input. So in this simple case, there is a definite and
unnecessary write operation.

In many of the batch data processing use cases, these I/O operations are not a big issue. If
the results are highly reliable, for many batch data processing use cases, latency is tolerated.
But the biggest challenge comes when doing real-time data processing. The huge amount of
I/O operations involved in MapReduce jobs makes it unsuitable for real-time data
processing with the lowest possible latency.

Understanding Apache Spark

Spark is a Java Virtual Machine (JVM) based distributed data processing engine that
scales, and it is fast compared to many other data processing frameworks. Spark was
originated at the University of California Berkeley and later became one of the top projects in
Apache. The research paper, Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center, talks about the philosophy behind the design of Spark. The research paper states:

“To test the hypothesis that simple specialized frameworks provide value, we identified one
class of jobs that were found to perform poorly on Hadoop by machine learning researchers
at our lab: iterative jobs, where a dataset is reused across a number of iterations. We built a
specialized framework called Spark optimized for these workloads.”

[12]
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The biggest claim from Spark regarding speed is that it is able to “Run programs up to 100x
faster than Hadoop MapReduce in memory, or 10x faster on disk”. Spark could make this claim
because it does the processing in the main memory of the worker nodes and prevents the
unnecessary 1/O operations with the disks. The other advantage Spark offers is the ability to
chain the tasks even at an application programming level without writing onto the disks at
all or minimizing the number of writes to the disks.

How did Spark become so efficient in data processing as compared to MapReduce? It comes
with a very advanced Directed Acyclic Graph (DAG) data processing engine. What it
means is that for every Spark job, a DAG of tasks is created to be executed by the engine.
The DAG in mathematical parlance consists of a set of vertices and directed edges
connecting them. The tasks are executed as per the DAG layout. In the MapReduce case, the
DAG consists of only two vertices, with one vertex for the map task and the other one for the
reduce task. The edge is directed from the map vertex to the reduce vertex. The in-memory
data processing combined with its DAG-based data processing engine makes Spark very
efficient. In Spark's case, the DAG of tasks can be as complicated as it can. Thankfully,
Spark comes with utilities that can give excellent visualization of the DAG of any Spark job
that is running. In a word count example, Spark's Scala code will look something like the
following code snippet . The details of this programming aspects will be covered in the
coming chapters:

val textFile = sc.textFile ("README.md")

val wordCounts = textFile.flatMap(line => line.split (" ")) .map(word =>
(word, 1)) .reduceByKey((a, b) => a + b)

wordCounts.collect ()

[13]
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The web application that comes with Spark is capable of monitoring the workers and
applications. The DAG of the preceding Spark job generated on the fly will look like Figure
2, as shown here:

Stage O Stage 1
textFile reduceByKey
latMap
map

Figure 2

The Spark programming paradigm is very powerful and exposes a uniform programming
model supporting the application development in multiple programming languages. Spark
supports programming in Scala, Java, Python, and R even though there is no functional
parity across all the programming languages supported. Apart from writing Spark
applications in these programming languages, Spark has an interactive shell with Read,
Evaluate, Print, and Loop (REPL) capabilities for the programming languages Scala,
Python, and R. At this moment, there is no REPL support for Java in Spark. The Spark REPL
is a very versatile tool that can be used to try and test Spark application code in an
interactive fashion. The Spark REPL enables easy prototyping, debugging, and much more.

[14]
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In addition to the core data processing engine, Spark comes with a powerful stack of
domain specific libraries that use the core Spark libraries and provide various
functionalities useful for various big data processing needs. The following table lists the
supported libraries:

Library Use Supported Languages

Spark SQL Enables the use of SQL statements or DataFrame |Scala, Java, Python, and R
APl inside Spark applications

Spark Streaming [ Enables processing of live data streams Scala, Java, and Python

Spark MLIib Enables development of machine learning Scala, Java, Python, and R
applications

Spark GraphX [ Enables graph processing and supports a Scala

growing library of graph algorithms

Spark can be deployed on a variety of platforms. Spark runs on the operating systems (OS)
Windows and UNIX (such as Linux and Mac OS). Spark can be deployed in a standalone
mode on a single node having a supported OS. Spark can also be deployed in cluster node
on Hadoop YARN as well as Apache Mesos. Spark can be deployed in the Amazon EC2
cloud as well. Spark can access data from a wide variety of data stores, and some of the
most popular ones include HDFS, Apache Cassandra, Hbase, Hive, and so on. Apart from
the previously listed data stores, if there is a driver or connector program available, Spark
can access data from pretty much any data source.

All the examples used in this book are developed, tested, and run on a
Mac OS X Version 10.9.5 computer. The same instructions are applicable
for all the other platforms except Windows. In Windows, corresponding to
all the UNIX commands, there is a file with a . cmd extension and it has to
be used. For example, for spark-shell in UNIX, there is a spark-
shell.cmd in Windows. The program behavior and results should be the
same across all the supported OS.

[15]
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In any distributed application, it is common to have a driver program that controls the
execution and there will be one or more worker nodes. The driver program allocates the
tasks to the appropriate workers. This is the same even if Spark is running in standalone
mode. In the case of a Spark application, its SparkContext object is the driver program and
it communicates with the appropriate cluster manager to run the tasks. The Spark master,
which is part of the Spark core library, the Mesos master, and the Hadoop YARN Resource
Manager, are some of the cluster managers that Spark supports. In the case of a Hadoop
YARN deployment of Spark, the Spark driver program runs inside the Hadoop YARN
application master process or the Spark driver program runs as a client to the Hadoop
YARN. Figure 3 describes the standalone deployment of Spark:

Worker Node 1

SparkContext SparkMaster

Worker Node n

Figure 3

In the Mesos deployment mode of Spark, the cluster manager will be theMesos Master.
Figure 4 describes the Mesos deployment of Spark:

Worker Node 1

SparkContext

A
A4

Mesos Master

Worker Node n

Figure 4

[16]
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In the Hadoop YARN deployment mode of Spark, the cluster manager will be the Hadoop
Resource Manager and its address will be picked up from the Hadoop configuration. In
other words, when submitting the Spark jobs, there is no need to give an explicit master
URL and it will pick up the details of the cluster manager from the Hadoop configuration.
Figure 5 describes the Hadoop YARN deployment of Spark:

Worker Node 1

Hadoop YARN

SparkContext | Resource Manager

A

Worker Node n

Figure 5

Spark runs in the cloud too. In the case of the deployment of Spark on Amazon EC2, apart
from accessing the data from the regular supported data sources, Spark can also access data
from Amazon S3, which is the online data storage service from Amazon.

Installing Spark on your machines

Spark supports application development in Scala, Java, Python, and R. In this book, Scala,
Python, and R, are used. Here is the reason behind the choice of the languages for the
examples in this book. The Spark interactive shell, or REPL, allows the user to execute
programs on the fly just like entering OS commands on a terminal prompt and it is
available only for the languages Scala, Python and R. REPL is the best way to try out Spark
code before putting them together in a file and running them as applications. REPL helps
even the experienced programmer to try and test the code and thus facilitates fast
prototyping. So, especially for beginners, using REPL is the best way to get started with
Spark.

As a pre-requisite to Spark installation and to do Spark programming in Python and R, both
Python and R are to be installed prior to the installation of Spark.

[17]
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Python installation

Visit https://www.python.org for downloading and installing Python for your computer.
Once the installation is complete, make sure that the required binaries are in the OS search
path and the Python interactive shell is coming up properly. The shell should display some
content similar to the following:

$ python

Python 3.5.0 (v3.5.0:374f501£4567, Sep 12 2015, 11:00:19)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

For charting and plotting, the matplotlib library is being used.

Python version 3.5.0 is used as a version of choice for Python. Even though
Spark supports programming in Python version 2.7, as a forward looking
practice, the latest and most stable version of Python available is used.
Moreover, most of the important libraries are getting ported to Python
version 3.x as well.

Visit http://matplotlib.org for downloading and installing the library. To make sure that
the library is installed properly and that charts and plots are getting displayed properly,
visit the http://matplotlib.org/examples/index.html page to pick up some example
code and see that your computer has all the required resources and components for
charting and plotting. While trying to run some of these charting and plotting samples, in
the context of the import of the libraries in Python code, there is a possibility that it may
complain about the missing locale. In that case, set the following environment variables in
the appropriate user profile to get rid of the error messages:

export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8

R installation

Visit https://www.r-project.org for downloading and installing R for your computer.
Once the installation is complete, make sure that the required binaries are in the OS search
path and the R interactive shell is coming up properly. The shell should display some
content similar to the following;:

S r
R version 3.2.2 (2015-08-14) —-- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing

[18]
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Platform: x86_64—apple-darwinl3.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation() ' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start () ' for an HTML browser interface to help.

Type 'q()' to quit R.

[Previously saved workspace restored]

>

R version 3.2.2 is the choice for R.

Spark installation

Spark installation can be done in many different ways. The most important pre-requisite for
Spark installation is that the Java 1.8 JDK is installed in the system and the JAVA_HOME
environment variable is set to point to the Java 1.8 JDK installation directory. Visit
http://spark.apache.org/downloads.html for understanding, choosing, and downloading
the right type of installation for your computer. Spark version 2.0.0 is the version of choice
for following the examples given in this book. Anyone who is interested in building and
using Spark from the source code should visit:
http://spark.apache.org/docs/latest/building-spark.html for the instructions. By
default, when you build Spark from the source code, it will not build the R libraries for
Spark. For that, the SparkR libraries have to be built and the appropriate profile has to be
included while building Spark from source code. The following command shows how to
include the profile required to build the SparkR libraries:

$ mvn -DskipTests —-Psparkr clean package

Once the Spark installation is complete, define the following environment variables in the
appropriate user profile:

export SPARK_HOME=<the Spark installation directory>
export PATH=$SPARK HOME/bin:$PATH

[19]
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If there are multiple versions of Python executables in the system, then it is better to
explicitly specify the Python executable to be used by Spark in the following environment
variable setting;:

export PYSPARK_PYTHON=/usr/bin/python

In the $SPARK_HOME /bin/pyspark script, there is a block of code that determines the
Python executable to be used by Spark:

# Determine the Python executable to use if PYSPARK_PYTHON or
PYSPARK_DRIVER_PYTHON isn't set:
if hash python2.7 2>/dev/null; then
# Attempt to use Python 2.7, if installed:
DEFAULT_PYTHON="python2.7"
else
DEFAULT_PYTHON="python"
fi

So, it is always better to explicitly set the Python executable for Spark, even if there is only
one version of Python available in the system. This is a safeguard to prevent unexpected
behavior when an additional version of Python is installed in the future.

Once all the preceding steps are completed successfully, make sure that all the Spark shells
for the languages Scala, Python, and R are working properly. Run the following commands
on the OS terminal prompt and make sure that there are no errors and that content similar
to the following is getting displayed. The following set of commands is used to bring up the
Scala REPL of Spark:

$ cd $SPARK_HOME
$ ./bin/spark-shellUsing Spark's default log4j profile:
org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLoglLevel (newLevel) .
16/06/28 20:53:48 WARN NativeCodeloader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
16/06/28 20:53:49 WARN SparkContext: Use an existing SparkContext, some
configuration may not take effect.
Spark context Web UI available at http://192.168.1.6:4040
Spark context available as 'sc' (master = local[*], app id =
local-1467143629623) .
Spark session available as 'spark'.
Welcome to
/ _/__ //__
NN _ N/ _"/ ) '/
/[ __/\_,_/_/ /_/\_\ version 2.0.1
/_/
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Using Scala version 2.11.8 (Java HotSpot (TM) 64-Bit Server VM, Java
1.8.0_66)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

scala>exit

In the preceding display, verify that the JDK version, Scala version, and Spark version are
correct as per the settings in the computer in which Spark is installed. The most important
point to verify is that no error messages are displayed.

The following set of commands is used to bring up the Python REPL of Spark:

$ cd $SPARK_HOME

$ ./bin/pyspark

Python 3.5.0 (v3.5.0:374£501£4567, Sep 12 2015, 11:00:19)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
Using Spark's default log4j profile: org/apache/spark/log4dj-
defaults.properties

Setting default log level to "WARN".

To adjust logging level use sc.setLoglLevel (newLevel) .

16/06/28 20:58:04 WARN NativeCodeloader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
Welcome to

I

N, N\ _ 7 '/

/__ /] .__IN_,_/_/ /_/\\ version 2.0.1
/_/

Using Python version 3.5.0 (v3.5.0:374£501£f4567, Sep 12 2015 11:00:19)
SparkSession available as 'spark'.
>>>exit ()

In the preceding display, verify that the Python version, and Spark version are correct as
per the settings in the computer in which Spark is installed. The most important point to
verify is that no error messages are displayed.

The following set of commands are used to bring up the R REPL of Spark:

$ cd $SPARK_HOME

$ ./bin/sparkR

R version 3.2.2 (2015-08-14) -- "Fire Safety"

Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3.4.0 (64-bit)
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R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start () ' for an HTML browser interface to help.

Type 'q()' to quit R.
[Previously saved workspace restored]

Launching java with spark-submit command /Users/RajT/source-code/spark-—

source/spark-2.0/bin/spark—-submit "sparkr-shell"
/var/folders/nf/trtmyt9534z03kq8p8zgbnxh0000gn/T//RtmphPJkkF /backend_port59
418b49bb6

Using Spark's default log4j profile: org/apache/spark/log4j-—
defaults.properties

Setting default log level to "WARN".

To adjust logging level use sc.setLoglLevel (newLevel) .

16/06/28 21:00:35 WARN NativeCodelLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable

Welcome to

/I / /_
A N _
/

__/\ _/_/ /_/\_\ version 2.0.1
/_/

/___

Spark context is available as sc, SQL context is available as sglContext
During startup - Warning messages:
1: 'SparkR::sparkR.init' is deprecated.
Use 'sparkR.session' instead.
See help ("Deprecated")
2: 'SparkR::sparkRSQL.init' is deprecated.
Use 'sparkR.session' instead.
See help ("Deprecated")
>q()

In the preceding display, verify that the R version and Spark version are correct as per the
settings in the computer in which Spark is installed. The most important point to verify is
that no error messages are displayed.
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If all the REPL for Scala, Python, and R are working fine, it is almost certain that the Spark
installation is good. As a final test, run some of the example programs that came with Spark
and make sure that they are giving proper results close to the results shown below the
commands and not throwing any error messages in the console. When these example
programs are run, apart from the output shown below the commands, there will be lot of
other messages displayed in the console. They are omitted to focus on the results:

$ cd $SPARK_HOME
$ ./bin/run-example SparkPi
Pi is roughly 3.1484
$ ./bin/spark-submit examples/src/main/python/pi.py
Pi is roughly 3.138680
$ ./bin/spark-submit examples/src/main/r/dataframe.R
root
|-— name: string (nullable = true)
|-— age: double (nullable = true)

|--— age: long (nullable = true)
|-— name: string (nullable = true)
name
1 Justin

Development tool installation

Most of the code that is going to be discussed in this book can be tried and tested in the
appropriate REPL. But the proper Spark application development is not possible without
some basic build tools. As a bare minimum requirement, for developing and building Spark
applications in Scala, the Scala build tool (sbt) is a must. Visit http://www.scala-sbt.org
for downloading and installing sbt.

Maven is the preferred build tool for building Java applications. This book is not talking
about Spark application development in Java, but it is good to have Maven also installed in
the system. Maven will come in handy if Spark is to be built from source. Visit
https://maven.apache.org for downloading and installing Maven.

There are many Integrated Development Environments (IDEs) available for Scala as well
as Java. It is a personal choice, and the developer can choose the tool of his/her choice for
the language in which he/she is developing Spark applications.
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Optional software installation

Spark REPL for Scala is a good start to get into the prototyping and testing of some small
snippets of code. But when there is a need to develop, build, and package Spark
applications in Scala, it is good to have sbt-based Scala projects and develop them using a
supported IDE, including but not limited to Eclipse or Intelli] IDEA. Visit the appropriate
website for downloading and installing the preferred IDE for Scala.

Notebook style application development tools are very common these days among data
analysts and researchers. This is akin to a lab notebook. In a typical lab notebook, there will
be instructions, detailed descriptions, and steps to follow to conduct an experiment. Then
the experiments are conducted. Once the experiments are completed, there will be results
captured in the notebook. If all these constructs are combined together and fit into the
context of a software program and modeled in a lab notebook format, there will be
documentation, code, input, and the output generated by running the code. This will give a
very good effect, especially if the programs generate a lot of charts and plots.

For those who are not familiar with notebook style application
development IDEs, there is a very nice article entitled Interactive Notebooks:
Sharing the Code that can be read from
http://www.nature.com/news/interactive-notebooks-sharing-the-cod

8 e-1.16261. As an optional software development IDE for Python, the
IPython notebook is described in the following section. After the

installation, get yourself familiar with the tool before getting into serious
development with it.

IPython

In the case of Spark application development in Python, IPython provides an excellent
notebook-style development tool, which is a Python language kernel for Jupyter. Spark can
be integrated with IPython, so that when the Spark REPL for Python is invoked, it will start
the IPython notebook. Then, create a notebook and start writing code in the notebook just
like the way commands are given in the Spark REPL for Python. Visit http://ipython.org
to download and install the IPython notebook. Once the installation is complete, invoke the
IPython notebook interface and make sure that some example Python code is running fine.
Invoke commands from the directory from where the notebooks are stored or where the
notebooks are to be stored. Here, the IPython notebook is started from a temporary
directory. When the following commands are invoked, it will open up the web interface and
from there create a new notebook by clicking the New drop-down box and picking up the
appropriate Python version.
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The following screenshot shows how to combine a markdown style documentation, a

Python program, and the generated output together in an IPython notebook:

$ cd /Users/RajT/temp
$ ipython notebook

Z Jupyter IpythonSampleNotebook fautosaved)
File Edit View Insert Cell Kernel Help

+| % @B 4+ ¥ W B | C | Code 4 Cell Toolbar:| None

@

Use IPython to combine documentation, code and output

The following sample program is taken from the example programs given in the matplotlib library website
http://matplotlib.org/examples/lines_bars_and_markers/barh_demo.html

In [1]: """
Simple demo of a horizontal bar chart.

import matplotlib.pyplot as plt
plt.rcdefaults()

import numpy as np

import matplotlib.pyplot as plt
fmatplotlib inline

# Example data

people = ('Tom’', 'Dick', 'Harry', 'Slim', 'Jim')
y_pos = np.arange(len(people))

performance = 3 + 10 * np.random.rand(len(people))
error = np.random.rand(len(people))

plt.barh(y_pos, performance, xerr=error, align='center', alpha=0.4)
plt.yticks(y_pos, people)

plt.xlabel('Performance’)

plt.title('How fast do you want to go today?')

plt.show()

How fast do you want to go today?

0 2 4 6 B 10 12 1
Performance

A

| Python 3 ©

Figure 6
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Figure 6 shows how the IPython notebook can be used to write simple Python programs.
The IPython notebook can be configured as a shell of choice for Spark, and when the Spark
REPL for Python is invoked, it will start up the IPython notebook and Spark application
development can be done using IPython notebook. To achieve that, define the following
environment variables in the appropriate user profile:

export PYSPARK DRIVER_PYTHON=ipython
export PYSPARK_DRIVER_PYTHON_OPTS='notebook'

Now, instead of invoking the IPython notebook from the command prompt, invoke the
Spark REPL for Python. Just like what has been done before, create a new IPython notebook
and start writing Spark code in Python:

$ cd /Users/RajT/temp
$ pyspark

Take a look at the following screenshot:

S J u pyte r Spark Notebook Last ch int: an hour ago (au d) P
File Edit View Insert Cell Kernel Help Python3 O
+ x B B 4 + W B C  Code +  Cell Toolbar: None

Use IPython as the Spark REPL for Python

Make sure that the Spark Session is available, it does not give error messages and runs Spark code

In [7): spark

Out[7]: <pyspark.sql.session.SparkSession at 0x106859668>

In [8]: dataFrame = spark.read.json("/Users/RajT/source-code/spark-source/spark-2.0/examples/src/main/resources/people.json")
dataFrame.show()
e #
| age| name|
Fomm o +
|null|Michael]|
30|  andy]|
| 19| Justin]
[ — +
In [ )=
Figure 7

In the standard Spark REPL for any language, it is possible to refer the
files located in the local filesystem with their relative path. When the
IPython notebook is being used, local files are to be referred with their full
path.
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RStudio

Among the R user community, the preferred IDE for R is the RStudio. RStudio can be used
to develop Spark applications in R as well. Visit https://www.rstudio.com to download
and install RStudio. Once the installation is complete, before running any Spark R code, it is
mandatory to include the SparkR libraries and set some variables to make sure that the
Spark R programs are running smoothly from RStudio. The following code snippet does
that:

SPARK_HOME_DIR <- "/Users/RajT/source-code/spark-source/spark-2.0"

Sys.setenv (SPARK_HOME=SPARK_HOME_DIR)
.libPaths (c(file.path (Sys.getenv ("SPARK_HOME"), "R", "1lib"), .libPaths()))

library (SparkR)
spark <—- sparkR.session (master="local[*]")

In the preceding R code, change the SPARK_HOME_DIR variable definition to point to the
directory where Spark is installed. Figure 8 shows a sample run of the Spark R code from
RStudio:

- - & Project: (Nene) =
@) SparkRSample.R Environment  Histary

el i <5 PRun | % ASOUrCe | hies  Plots  Packages Help Viewer

1 # SPARK_HOME settings and SparkR library path settings

2 # When you are running ti cript from your setup, please make sure that it is pointing to your SPARK_HOME directory Install @ Update

3 SPARK_HOME_DIR <- "/Users/RajT/source-code/spark-source/spark-2.0" Mame  Description v

4 Sys.setenv(SPARK_HOME=SPARK_HOME_DIR) User Library

5 .libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"), .libPaths()))

6 library(SparkR) o SparkR R frontend for Spark  2.0.0

7 spark <- sparkR.session(master="local[*]") System Library

: baseB4er Tools for base64 0.1-
encoding 3

9 # Sample Spark Program
10 path < file.path(Sys.getenv("SPARK_HOME™), "examples/src/main/resources/people. json™) T T
11 people < read.json(patn) Files 1
12 createOrReplaceTempView(people, “people”) boot  Bootstrap Functions 1.3
13  teenagers <- sql("SELECT age, name FROM people WHERE age >= 13 AND age <= 13") (Originally by Angelo 17
14 teenogersLocalDF <- collect(teenagers) Canty for )

15 print(teenagersiocalDF) brew  Templating 10-
Framework for Report 6
Generation
12:30  (Top Level) R Script class Functions for 7.3-
Classification 13
Console = cluster  “Finding Groups in 2.0.3
> # SPARK_HOME settings and SparkR library path settings ijlﬁdyst'fi't‘;'r‘dw
> # When you are running this script from your setup, please make sure that it is pointing to your SPARK_HOME directory Riiissabin et 8l
> SPARK_HOME_DIR <- “/Users/RajT/source-code/spark-source/spark-2.0" codetook: Code Analysis Tools 0.2
> Sys.setenv(SPARK_HOME=SPARK_HOME _DIR) fark 14
> .libPaths(c(file. path(Sys.getenv("SPARK_HOME"), "R”, "1ib"), .libPaths())} compiler The R Compiler 322
> library(SparkR) Package
> spark < sparkR. session(master="local[*]") i AModem and 093
> Flexible Web Client
> # Somple Spark Program for R
> path <- file.path(Sys.getenv("SPARK_HOME"), "examples/src/main/resources/people. jsan™) o/ datasets The R Datasets 32.2
> people <- read. json(path) Package
> createOrReplaceTenpVien(people, “people™ devtools Tools to Make 191
> teenagers <- sql("SELECT age, name FROM people WHERE age >= 13 AND age <= 19") Developing R
» teenogersLocalDF < collect(teenagers) Packages Easier
> print(teenagersLocalDF) digest  Create Cryptographic  0.6.8
age name Hash Digests of R
1 19 Justin Objects
evaluate Parsing and 0.8

Evaluation Tools that

> VienCaDataFrame)
Provide More Details

IS

Figure 8
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Once all the required software is installed, configured, and working as per the details given
previously, the stage is set for Spark application development in Scala, Python, and R.

kernel implementation strategy for various languages. There is a native R
kernel, namely IRkernel, for Jupyter which can be installed as an R

9 The Jupyter notebook supports multiple languages through the custom
package.

Apache Zeppelin

Apache Zeppelin is another promising project that is getting incubated right now. It is a
web-based notebook similar to Jupyter but supporting multiple languages, shells, and
technologies through its interpreter strategy enabling Spark application development
inherently. Right now it is in its infant stage, but it has a lot of potential to become one of
the best notebook-based application development platforms. Zeppelin has very powerful
built-in charting and plotting capabilities using the data generated by the programs written
in the notebook.

Zeppelin is built with high extensibility having the ability to plug in many types of
interpreters using its Interpreter Framework. End users, just like any other notebook-based
system, enter various commands in the notebook interface. These commands are to be
processed by some interpreter to generate the output. Unlike many other notebook-style
systems, Zeppelin supports a good number of interpreters or backends out of the box such
as Spark, Spark SQL, Shell, Markdown, and many more. In terms of the frontend, again it is
a pluggable architecture, namely, the Helium Framework. The data generated by the
backend is displayed by the frontend components such as Angular JS. There are various
options to display the data in tabular format, raw format as generated by the interpreters,
charts, and plots. Because of the architectural separation of concerns such as the backend,
the frontend, and the ability to plug in various components, it is a great way to choose
heterogeneous components for the right job. At the same time, it integrates very well to
provide a harmonious end-user-friendly data processing ecosystem. Even though there is
pluggable architecture capability for various components in Zeppelin, the visualizations are
limited. In other words, there are only a few charting and plotting options available out of
the box in Zeppelin. Once the notebooks are working fine and producing the expected
results, typically, the notebooks are shared with other people and for that, the notebooks are
to be persisted. Zeppelin is different again here and it has a highly versatile notebook
storage system. The notebooks can be persisted to the filesystem, Amazon S3, or Git, and
other storage targets can be added if required.
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Platform as a Service (PaaS) has been evolving over the last couple of years since the
massive innovations happening around Cloud as an application development and
deployment platform. For software developers, there are many PaaS platforms available
delivered through Cloud, which obviates the need for them to have their own application
development stack. Databricks has introduced a Cloud-based big data platform in which
users can have access to a notebook-based Spark application development interface in
conjunction with micro-cluster infrastructure to which the Spark applications can be
submitted. There is a community edition as well, catering to the needs of a wider
development community. The biggest advantage of this PaaS platform is that itis a
browser-based interface and users can run their code against multiple versions of Spark and
on different types of clusters.
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® https://github.com/IRkernel/IRkernel
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Spark Fundamentals

Summary

Spark is a very powerful data processing platform supporting a uniform programming
model. It supports application development in Scala, Java, Python, and R, providing a stack
of highly interoperable libraries used for various types of data processing needs, and a
plethora of third-party libraries that make use of the Spark ecosystem covering various
other data processing use cases. This chapter gave a brief introduction to Spark and setting
up the development environment for the Spark application development that is going to be
covered in forthcoming chapters of the book.

The next chapter is going to discuss the Spark programming model, the basic abstractions
and terminologies, Spark transformations, and Spark actions, in conjunction with real-
world use cases.
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Extract, Transform, and Load (ETL) tools proliferated along with the growth of the data in
organizations. The need to move data from one source to one or more destinations,
processing it on the fly before it reaches its destination, were all the requirements of the
time. Most of the time, these ETL tools were supporting only a few types of data, only a few
types of data sources and destinations, and were closed to extension to allow them to
support new data types and new sources and destinations. Because of these stringent
limitations on the tools, sometimes even a one-step transformation process had to be done
in multiple steps. These convoluted approaches mandated the need to have unnecessary
wastage in terms of manpower, as well as other computing resources. The main argument
from the commercial ETL vendors all the time remained the same, one size doesn't fit all. So
use our suite of tools instead of the point products available on the market. Many
organizations got into vendor lock-in because of the profuse need to process data. Almost
all the tools introduced before the year 2005 did not make use of the real power of the multi-
core architecture of the computers if they supported running their tools on the commodity
hardware. So, simple but voluminous data processing jobs took hours and sometimes even
days to complete with these tools.

Spark became an instant hit in the market because of its ability to process a huge amount of
data types and a growing number of data sources and data destinations. The most
important and basic data abstraction Spark provides is the resilient distributed dataset
(RDD). As discussed in the previous chapter, Spark supports distributed processing on a
cluster of nodes. The moment there is a cluster of nodes, there is a good chance that when
the data processing is going on, some of the nodes can die. When such failures happen, the
framework should be capable of coming out of such failures. Spark is designed to do that
and that is what the resilient part in the RDD signifies. If there is a huge amount of data to
be processed and there are nodes available in the cluster, the framework should have the
capability to split the big dataset into smaller chunks and distribute them to be processed on
more than one node in a cluster, in parallel. Spark is capable of doing that and that is what
the distributed part in the RDD signifies. In other words, Spark is designed from the ground
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up to have its basic dataset abstraction capable of getting split into smaller pieces
deterministically and distributed to more than one node in the cluster for parallel
processing, while elegantly handling the failures in the nodes.

We will cover the following topics in this chapter:

¢ Functional programming with Spark
Spark RDD
Data transformations and actions

Spark monitoring

Spark programming basics

Creating RDDs from files

Spark libraries

Functional programming with Spark

The mutation of objects at run time, and the inability to get consistent results from a
program or function because of the side effect that the program logic creates makes many
applications very complex. If the functions in programming languages start behaving
exactly like mathematical functions in such a way that the output of the function depends
only on the inputs, that gives lots of predictability to applications. The computer
programming paradigm giving lots of emphasis to the process of building such functions
and other elements based on that, and using those functions just in the way that any other
data types are being used, is popularly known as the functional programming paradigm.
Out of the JVM-based programming languages, Scala is one of the most important ones that
has very strong functional programming capabilities without losing any object orientation.
Spark is written predominantly in Scala. Because of that itself, Spark has taken lots of very
good concepts from Scala.

Understanding Spark RDD

The most important feature that Spark took from Scala is the ability to use functions as
parameters to the Spark transformations and Spark actions. Quite often, the RDD in Spark
behaves just like a collection object in Scala. Because of that, some of the data
transformation method names of Scala collections are used in Spark RDD to do the same
thing. This is a very neat approach and those who have expertise in Scala will find it very
easy to program with RDDs. We will see a few important features in the following sections.
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Spark RDD is immutable

There are some strong rules based on which an RDD is created. Once an RDD is created,
intentionally or unintentionally, it cannot be changed. This gives another insight into the
construction of an RDD. Because of that, when the nodes processing some part of an RDD
die, the driver program can recreate those parts and assign the task of processing it to
another node, ultimately, completing the data processing job successfully.

Since the RDD is immutable, splitting a big one to smaller ones, distributing them to
various worker nodes for processing, and finally compiling the results to produce the final
result can be done safely without worrying about the underlying data getting changed.

Spark RDD is distributable

If Spark is run in a cluster mode where there are multiple worker nodes available to take the
tasks, all these nodes will have different execution contexts. The individual tasks are
distributed and run on different JVMs. All these activities of a big RDD getting divided into
smaller chunks, getting distributed for processing to the worker nodes, and finally,
assembling the results back, are completely hidden from the users.

Spark has its own mechanism for recovering from the system faults and other forms of
errors which occur during the data processing and hence this data abstraction is highly
resilient.

Spark RDD lives in memory

Spark does keep all the RDDs in the memory as much as it can. Only in rare situations,
where Spark is running out of memory or if the data size is growing beyond the capacity, is
it written to disk. Most of the processing on RDD happens in the memory, and that is the
reason why Spark is able to process the data at a lightning fast speed.

Spark RDD is strongly typed

Spark RDD can be created using any supported data types. These data types can be
Scala/Java supported intrinsic data types or custom created data types such as your own
classes. The biggest advantage coming out of this design decision is the freedom from
runtime errors. If it is going to break because of a data type issue, it will break during
compile time.
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The following table captures the structure of an RDD containing tuples of a retail bank
account data. It is of the type RDD[(string, string, string, double)]:

AccountNo | FirstName | LastName | AccountBalance
SB001 John Mathew |250.00
SB002 Tracy Mason 450.00
SB003 Paul Thomson |560.00
SB004 Samantha |Grisham |650.00
SB005 John Grove 1000.00

Suppose this RDD is going through a process to calculate the total amount of all these
accounts in a cluster of three nodes, N1, N2, and N3; it can be split and distributed for
something such as parallelizing the data processing. The following table contains the
elements of the RDD[(string, string, string, double)] distributed to node N1 for processing:

AccountNo | FirstName | LastName | AccountBalance
SB001 John Mathew |250.00
SB002 Tracy Mason 450.00

The following table contains the elements of the RDD[(string, string, string, double)]

distributed to node N2 for processing;:

AccountNo | FirstName | LastName | AccountBalance
SB003 Paul Thomson |560.00
SB004 Samantha |Grisham |650.00
SB005 John Grove 1000.00

On node N1, the summation process happens and the result is returned to the Spark driver
program. Similarly, on node N2, the summation process happens, the result is returned to
the Spark driver program, and the final result is computed.

Spark has very deterministic rules on splitting a big RDD into smaller chunks for
distribution to various nodes and because of that, even if something happens to, say, node
N1, Spark knows how to recreate exactly the chunk that was lost in the node N1 and
continue with the data processing operation by sending the same payload to node N3.
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Figure 1 captures the essence of the process:

SBOO1.... Worker Node
SB0O2.... N1
Q@

SB0O03....

Spark Driver Cluster Manager Sh004.... work;'QNOde
SB005....
SBOO1.... Worker Node
SB002.... N3

Figure 1

Spark does a lot of processing in its driver memory and in the executor
memory on the cluster nodes. Spark has various parameters that can be
configured and fine-tuned so that the required resources are made
available before the processing starts.

Data transformations and actions with RDDs

Spark does the data processing using the RDDs. From the relevant data source such as text
files and NoSQL data stores, data is read to form the RDDs. On such an RDD, various data
transformations are performed and finally, the result is collected. To be precise, Spark
comes with Spark transformations and Spark actions that act upon RDDs. Let us take the
following RDD capturing a list of retail banking transactions, which is of the type
RDD|(string, string, double)]:

AccountNo | TranNo | TranAmount
SB001 TR001 |250.00
SB002 TRO04 |450.00
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AccountNo [ TranNo | TranAmount
SB003 TR010 |[120.00

SB001 TRO12 (-120.00

SB001 TRO15 |[-10.00

SB003 TR020 [100.00

To calculate the account level summary of the transactions from the RDD of the form
(AccountNo, TranNo, TranAmount):

1. First it has to be transformed to the form of key-value pairs
(AccountNo, TranAmount), where AccountNo is the key but there will be
multiple elements with the same key.

2. On this key, do a summation operation on TranAmount, resulting in another
RDD of the form (AccountNo,TotalAmount),where every AccountNo will have
only one element and Total Amount is the sum of all the TranAmount for the
given AccountNo.

3. Now sort the key-value pairs on the AccountNo and store the output.

In the whole process described, all are Spark transformations except the storing of the
output. Storing of the output is a Spark action. Spark does all these operations on a need-to-
do basis. Spark does not act when a Spark transformation is applied. The real act happens
when the first Spark action in the chain is called. Then it diligently applies all the preceding
Spark transformations in order, and then does the first encountered Spark action. This is
based on the concept called Lazy Evaluation.

In the programming language context of declaring and using variables,
Lazy Evaluation means that a variable is evaluated only when it is first used
in the program.

Apart from this action of storing the output to disk, there are many other possible Spark
actions including, but not limited to, some of the ones given in the following list:

¢ Collecting all the contents in the resultant RDD to an array residing in the driver
program

¢ Counting the number of elements in the RDD

¢ Counting the number of elements for each key in the RDD element

[36]



Spark Programming Model

e Taking the first element in the RDD

e Taking a given number of elements from the RDD commonly used for top N
reports

¢ Taking a sample of elements from the RDD
o Iterating through all the elements in the RDD

In this example, many transformations are done on various RDDs that get created on the fly
till the process is completed. In other words, whenever a transformation is done on an RDD,
anew RDD gets created. This is because RDDs are inherently immutable. These RDDs that
are getting created at the end of each transformation can be saved for future reference, or
they will go out of scope eventually.

To summarize, the process of creating one or more RDDs and applying transformations and
actions on them is a very common usage pattern seen ubiquitously in Spark applications.

The table referred in the preceding data transformation example contains
the values in an RDD of type the RDD|[(string, string, double)]. In this
RDD, there are multiple elements, and each one is a tuple of the type
(string, string, double). It is very common among programmers and the
user community, for easy reference and conveying ideas, that the term
record is being used to refer one to element in the RDD. In Spark RDD
there is no concept of records, rows and columns. In other words the term
record is mistakenly used synonymously to an element in the RDD,
which may be a complex data type such as a tuple or a non-scalar data
type. In this book, this practice is highly refrained to use the correct terms.

In Spark there are a good amount of Spark transformations available. These are really
powerful because most of these take functions as input parameters to do the transformation.
In other words, these transformations act on the RDD based on the functions that are
defined and supplied by the user. This becomes even more powerful with Spark's uniform
programming model. Whether the programming language of choice is Scala, Java, Python,
or R, the way Spark transformations and Spark actions are used is similar. This lets the
organizations choose their programming language of choice.

In Spark, even though the number of Spark actions are limited in number, they are really
powerful, and users can write their own Spark actions if there is a need. There are many
Spark connector programs that are available in the market, mainly to read and write data
from various data stores. These connector programs are designed and developed either by
the user community or by the data store vendors themselves to have connectivity to Spark.
In addition to the available Spark actions, they may define their own actions to supplement
existing sets of Spark actions. For example, the Spark Cassandra Connector is used to
connect to Cassandra from Spark. This has an action saveToCassandra.
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Monitoring with Spark

The previous chapter covered the details of the installation and development tool setup that
is required for developing and running data processing applications using Spark. In most of
the real-world applications, the Spark applications can become very complex with a really
huge directed acyclic graph (DAG) of Spark transformations and Spark actions. Spark
comes with really powerful monitoring tools for monitoring the jobs that are running in a
given Spark ecosystem. The monitoring doesn't start automatically.

Note that this is a completely optional step for running Spark applications.
If enabled, it will give a very good insight into the way the Spark
applications are run. Discretion has to be used to enable this in production
environments, as it can affect the response time of the applications.

First of all, there are some configuration changes to be made. The event logging mechanism
should be turned on. For this, take the following steps:

$ cd $SPARK_HOME
$ cd conf
$ cp spark-defaults.conf.template spark-defaults.conf

Once the preceding steps are completed, edit the newly created spark-defaults.conf file
to have the following properties:

spark.eventLog.enabled true
spark.eventLog.dir <give a log directory location>

Once the preceding steps are completed, make sure that the previously
used log directory exists in the filesystem.

Apart from the preceding configuration file changes, there are many properties in that
configuration file that can be changed to fine tune the Spark runtime. The most important
among them that is used frequently is the Spark driver memory. If the applications are
dealing with a huge amount of data, it is a good idea to customize this property
spark.driver.memory to have a higher value. Then run the following commands to start
the Spark master:

$ cd $SPARK_HOME
$ ./sbin/start-master.sh

Once the preceding steps are completed, make sure that the Spark web user interface (UI)
is starting up by going to http://localhost:8080/. The assumption here is that there is
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no other application running in the 8080 port. If for some reason, there is a need to run this
application on a different port, the command line option ——webui-port <PORT> can be
used in the script while starting the web user interface.

The web Ul should look something similar to that shown in Figure 2:

Spofkﬂf srsuraor  SPark Master at spark://Rajanarayanans-MacBook-Pro.local:7077

URL: spark://Rajanarayanans-MacBook-Pro.local:7077

REST URL: spark://Rajanarayanans-MacBook-Pro.local:6066 (ciuster mode,
Alive Workers: 0

Cores in use: 0 Total, 0 Used

Memory in use: 0.0 B Total, 0.0 B Used

Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id Address State Cores Memory

Running Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Completed Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Figure 2

The most important information to be noted in the preceding figure is the fully-qualified
Spark master URL (not the REST URL). It is going to be used again and again for many of
the hands-on exercises that are going to be discussed in this book. The URL can change
from system to system and the DNS settings. Also note that throughout this book, for all the
hands-on exercises, Spark standalone deployment is used, which is the easiest among the
deployments to get started with a single computer.

These Spark application monitoring steps are given now to make the
readers familiar with the toolset that Spark provides. Those who are
familiar with these tools or those who are very confident of the application
behavior need not need the help of these tools. But to understand the
concepts, debugging, and some visualizations of the processes, these tools
definitely provide immense help.

From the Spark web UI that is given in Figure 2, it can be noted that there are no worker
nodes available to do any task, and there are no running applications. The following steps
capture the instructions to start the worker nodes. Note how the Spark master URL is being
used while starting the worker node:

$ cd $SPARK_HOME
$ ./sbin/start-slave.sh spark://Rajanarayanans—-MacBook-Pro.local:7077
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Once the worker node is started, in the Spark web UI, the newly started worker node is
displayed. The

$SPARK_HOME/conf/slaves.template template captures the default worker nodes that
will be started with the invocation of the preceding command.

If additional worker nodes are required, copy the slaves.template file
to name it to

slaves and have the entries captured in there. When a spark-shell,
pyspark, or sparkR

is started, instructions can be given to it to use a given Spark master. This
is useful when there is a need to run Spark applications or statements on a
remote Spark cluster or against a given Spark master. If nothing is given,
the Spark applications will run in the local mode.

$ cd $SPARK_HOME
$ ./bin/spark-shell --master spark://Rajanarayanans-MacBook-Pro.local:7077

The Spark web Ul will look similar to that shown in Figure 3 once a worker node is started
successfully. After this, if an application is run with the preceding Spark master URL, even
that application's details will be displayed in the Spark web Ul. A detailed coverage of the
applications is to follow in this chapter. Use the following scripts to stop the workers and
master processes:

$ cd $SPARK_HOME
$ ./sbin/stop-all.sh

sﬁaﬁg sorsuesior SPArk Master at spark://Rajanarayanans-MacBook-Pro.local:7077

URL: spark://Rajanarayanans-MacBook-Pro.local: 7077

REST URL: spark://Rajanarayanans-MacBook-Pro.local:6066 (cluster mode)
Alive Workers: 1

Cores in use: & Total, 0 Used

Memory in use: 7.0 GB Total, 0.0 B Used

Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id Address State Cores Memory

worker-20160707203120-192.168.0.11-50405 1982 .168.0.11:50405 ALIVE 8 (0 Usad) 7.0 GB (0.0 B Used)

Running Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Completed Applications

Application ID Name Cores Memory per Node Submitted Time User State Duration

Figure 3
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The basics of programming with Spark

Spark programming revolves around RDDs. In any Spark application, the input data to be
processed is taken to create an appropriate RDD. To begin with, start with the most basic
way of creating an RDD, which is from a list. The input data used for this hello world
kind of application is a small collection of retail banking transactions. To explain the core
concepts, only some very elementary data items have been picked up. The transaction
records contain account numbers and transaction amounts.

In these use cases and all the upcoming use cases in the book, if the term
record is used, that will be in the business or use case context.

The use cases selected for elucidating the Spark transformations and Spark actions here are
given as follows:

1. The transaction records are coming as comma-separated values.

2. Filter out only the good transaction records from the list. The account number
should start with sB and the transaction amount should be greater than zero.

3. Find all the high value transaction records with a transaction amount greater than
1000.

Find all the transaction records where the account number is bad.

S

Find all the transaction records where the transaction amount is less than or equal
to zero.

Find a combined list of all the bad transaction records.
Find the total of all the transaction amounts.
Find the maximum of all the transaction amounts.

o X N

Find the minimum of all the transaction amounts.
10. Find all the good account numbers.

The approach that is going to be followed throughout the book for any application that is
going to be developed begins with the Spark REPL for the appropriate language. Start the
Scala REPL for Spark and make sure that it starts without any errors and the prompt is seen.
For this application, we will enable monitoring to learn how to do that and use it along with
the development process. Other than explicitly starting the Spark master and the slaves
separately, Spark comes with a script that will start both of these together using a single
script. Then, fire up the Scala REPL with the Spark master URL:

$ cd $SPARK_HOME
$ ./sbin/start-all.sh
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$ ./bin/spark-shell --master spark://Rajanarayanans-MacBook-Pro.local:7077

At the Scala REPL prompt, try the following statements. The output of the statements is
given in bold. Note that scala> is the Scala REPL prompt:

scala> val acTranslList = Array("SB10001,1000", "SB10002,1200",
"SB10003,8000", "SB10004,400", "sSB10005,300", "sSB10006,10000",
"sB10007,500", "sB10008,56", "SB10009,30","sSB10010,7000", "CR10001,7000",
"SB10002,-10")

acTransList: Array[String] = Array(SB10001,1000, SB10002,1200,
SB10003,8000, sSB10004,400, sSB10005,300, SB10006,10000, SB10007, 500,
SB10008,56, SB10009,30, SB10010,7000, CR10001,7000, SB10002,-10)

scala> val acTransRDD = sc.parallelize (acTransList)

acTransRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at
parallelize at <console>:23

scala> val goodTransRecords = acTransRDD.filter(_.split(",") (1) .toDouble >
0) .filter(_.split (", ") (0) .startsWith("SB"))

goodTransRecords: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at
filter at <console>:25

scala> val highValueTransRecords =

goodTransRecords.filter (_.split(",") (1) .toDouble > 1000)
highValueTransRecords: org.apache.spark.rdd.RDD[String] =
MapPartitionsRDD[3] at filter at <console>:27

scala> val badAmountLambda = (trans: String) =>
trans.split (", ") (1) .toDouble <= 0

badAmountLambda: String => Boolean = <functionl>

scala> val badAcNolLambda = (trans: String) =>
trans.split (", ") (0) .startsWith ("SB") == false

badAcNoLambda: String => Boolean = <functionl>

scala> val badAmountRecords = acTransRDD.filter (badAmountLambda)
badAmountRecords: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[4] at
filter at <console>:27

scala> val badAccountRecords = acTransRDD.filter (badAcNoLambda)
badAccountRecords: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[5]
at filter at <console>:27

scala> val badTransRecords = badAmountRecords.union (badAccountRecords)
badTransRecords: org.apache.spark.rdd.RDD[String] = UnionRDD[6] at union at
<console>:33

All the preceding statements fall into one category except the first RDD creation and two
function value definitions. They are all Spark transformations. Here is the step-by-step
detail capturing what has been done so far:

e The value acTransList is the array containing the comma separated transaction
records.
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e The value acTransRDD is the RDD created out of the array where sc is the Spark
context or the Spark driver and the RDD is created in a parallelized way so that
the RDD elements can form a distributed dataset. In other words, an instruction
is given to the Spark driver to form a parallel collection or RDD from the given
collection of values.

e The value goodTransRecords is the RDD created from acTransRDD after
filtering the conditions transaction amount is > 0 and the account number starts
with sB.

e The value highvValueTransRecords is the RDD created from
goodTransRecords after filtering the conditions transaction amount is > 1000.

¢ The next two statements are storing the function definitions in a Scala value for
easy reference later.

e The values badAmountRecords and badAccountRecords are RDDs created
from acTransRDD to filter the bad records containing the wrong transaction
amount and invalid account number, respectively.

e The value badTransRecords contains the union of the elements of both of the
badAmountRecords and badAccountRecords RDDs.

The Spark web UI for this application so far will not show anything at this point because
only Spark transformations have been executed. The real activity will start only after the
first Spark action is executed.

The following statements are the continuation of the already executed statements:

scala> acTransRDD.collect ()

res0: Array[String] = Array(SB10001,1000, SB10002,1200, SB10003,8000,
SB10004, 400, sSB10005,300, sB10006,10000, SB10007,500, sSB10008, 56,
SB10009, 30, SB10010,7000, CR10001,7000, SB10002,-10)

scala> goodTransRecords.collect ()

resl: Array[String] = Array(SB10001,1000, SB10002,1200, SB10003,8000,
SB10004, 400, SB10005,300, sB10006,10000, SB10007,500, sSB10008, 56,
SB10009,30, SB10010,7000)

scala> highValueTransRecords.collect ()

res2: Array[String] = Array(SB10002,1200, SB10003,8000, SB10006,10000,
SB10010,7000)

scala> badAccountRecords.collect ()

res3: Array[String] = Array(CR10001,7000)

scala> badAmountRecords.collect ()

res4: Array[String] = Array(SB10002,-10)

scala> badTransRecords.collect ()

res5: Array[String] = Array(SB10002,-10, CR10001,7000)
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All the preceding statements did one thing, which is execute a Spark action on the RDDs
defined earlier. All the evaluations of the RDDs happened only when a Spark action was
called on those RDDs. The following statements are doing some of the calculations on the
RDDs:

scala> val sumAmount = goodTransRecords.map (trans =>
trans.split (", ") (1) .toDouble) .reduce (_ + _)

sumAmount: Double = 28486.0

scala> val maxAmount = goodTransRecords.map (trans =>
trans.split (", ") (1) .toDouble) .reduce((a, b) => if (a > b) a else b)
maxAmount: Double = 10000.0

scala> val minAmount = goodTransRecords.map (trans =>
trans.split (", ") (1) .toDouble) .reduce((a, b) => if (a < b) a else b)
minAmount: Double = 30.0

The preceding numbers calculated the sum, maximum and minimum, of all transaction
amounts from the good records. In all the preceding transformations, the transaction
records are processed one at a time. From those records, the account number and
transaction amount are extracted and processed. It was done like that because the use case
requirement was like that. Now the comma-separated values in each transaction record are
split without looking at whether it is an account number or a transaction amount. The
resulting RDD will contain a collection with all these mixed up. Out of that, if the elements
starting with SB are picked up, that will result in good account numbers. The following
statements are going to do that:

scala> val combineAllElements = acTransRDD.flatMap (trans =>
trans.split (", "))

combineAllElements: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[10]
at flatMap at <console>:25

scala> val allGoodAccountNos =

combineAllElements.filter (_.startsWith("SB"))

allGoodAccountNos: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11]
at filter at <console>:27

scala> combineAllElements.collect ()

resl0: Array[String] = Array(SB10001, 1000, SB10002, 1200, SB10003, 8000,
SB10004, 400, sSB10005, 300, SB10006, 10000, SB10007, 500, sSB10008, 56,
SB10009, 30, SB10010, 7000, CR10001, 7000, SB10002, -10)

scala> allGoodAccountNos.distinct () .collect ()

resld: Array[String] = Array(SB10006, SB10010, SB10007, SB10008, SB10009,
SB10001, SB10002, sSB10003, SB10004, SB10005)

Now at this point, if the Spark web Ul is opened, unlike what is seen in Figure 3, one
difference can be noticed. Since some Spark actions have been done, an application entry
will show up. Since the Scala REPL of Spark is still running, it is shown in the list of
applications that are still running. The following Figure 4 captures that:
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Alive Workers: 1
Cores in use: 8 Total, 8 Used

Memory in use: 7.0 GB Total, 1024.0 MB Used
Applications: 1 Running, 0 Completed
Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

Worker Id
worker-20180707204051-192.168.0.11-50478

Running Applications

Application ID
app-20160707204107-0000

Completed Applications

Application ID Name

URL: spark://Rajanarayanans-MacBook-Pro.local: 7077
REST URL: spark://Rajanarayanans-MacBook-Pro.local:6066 (cluster mode)

sp'dffzf sorsuesnor  SP@rk Master at spark://Rajanarayanans-MacBook-Pro.local:7077

Address State Cores Memory

192.168.0.11:50478 ALIVE 8 (8 Used) 7.0 GB (1024.0 MB Used)

Name Cores Memory per Node Submitted Time User State Duration

(kill) Spark shell 8 1024.0 MB 2016/07/07 20:41:07 RajT RUNNING 10s

Cores Memory per Node Submitted Time User State Duration

Figure 4

Navigate by clicking on the application ID to see all the metrics related to the running
applications including the DAG visualizations and many more.

These statements covered all the use cases discussed, and it is worth going through the
Spark transformations covered so far. These are some of the basic but very important
transformations that will be used in most of the applications again and again:

Spark
transformation

What it does

filter (fn)

Iterates through all the elements of the RDD, applies the function
that is passed, and picks up the elements that return true as
evaluated by the function on the element.

map (fn)

Iterates through all the elements of the RDD, applies the function that
is passed, and picks up the output returned by the function.

flatMap (fn)

Iterates through all the elements of the RDD, applies the function that
is passed, and picks up the output returned by the function. The big
difference here as compared to the Spark transformation map (£fn) is
that the function acts on a single element and returns a flat collection of
elements. For example, it takes one banking transaction record and
splits it into multiple fields, resulting in a collection from a single
element.

union (other)

Takes the union of all the elements of this RDD and the other RDD.
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It is also worth going through the Spark actions covered so far. These are some of the basic
ones, but more actions will be covered in due course.

Spark action | What it does

collect () Collects all the elements in the RDD to an array in the Spark driver.

reduce (fn) | Applies the function fn on all the elements of the RDD and the final result is
calculated as defined by the function. It should be a function that takes two
parameters and returns one, which is also commutative and associative.

foreach (fn) | Applies the function fn on all the elements of the RDD. This is mainly used for
side effects. The Spark transformation map (fn) applies the function to all the
elements of the RDD and returns another RDD. But the foreach (£n) Spark
transformation does not return an RDD. For example, foreach (println)
will take each element from the RDD and print it onto the console. Even
though it is not used in the use cases covered here, it is worth mentioning.

The next step in the Spark learning process is to try the statements in the Python REPL,
covering exactly the same use case. The variable definitions have been maintained as similar
as possible in both the languages to have easy assimilation of ideas. There may be minor
variations in the way they are used here as compared to the Scala way; conceptually, it is
independent of the language of choice.

Start the Python REPL for Spark and make sure that it starts without any errors and the
prompt is seen. While playing around with Scala code, the monitoring was already enabled.
Now fire up the Python REPL with the Spark master URL:

$ cd $SPARK_HOME
$ ./bin/pyspark —--master spark://Rajanarayanans—-MacBook-Pro.local:7077

At the Python REPL prompt, try the following statements. The output of the statements is
given in bold. Note that >>> is the Python REPL prompt:

>>> from decimal import Decimal

>>> acTransList = ["SB10001,1000", "sSB10002,1200", "SB10003,8000",
"SB10004, 400", "sB10005,300", "sSB10006,10000", "SB100O7,500", "sSB10008,56",
"sB10009,30","SB10010,7000", "CR10001,7000", "SB10002,-10"]

>>> acTransRDD = sc.parallelize (acTransList)

>>> goodTransRecords = acTransRDD.filter (lambda trans:

Decimal (trans.split (",") [1]) > O0).filter (lambda trans:
(trans.split (", ") [0]) .startswith('SB') == True)

>>> highValueTransRecords = goodTransRecords.filter (lambda trans:

Decimal (trans.split (",") [1]) > 1000)

>>> badAmountLambda = lambda trans: Decimal (trans.split(",")[1]) <= 0

>>> badAcNoLambda = lambda trans: (trans.split(",")[0]).startswith('SB') ==
False
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>>> badAmountRecords = acTransRDD.filter (badAmountLambda)

>>> badAccountRecords = acTransRDD. filter (badAcNoLambda)

>>> badTransRecords = badAmountRecords.union (badAccountRecords)

>>> acTransRDD.collect ()

['sB10001,1000', 'sSB10002,1200', 'sSB10003,8000', 'SB10004,400°',
'SB10005,300', 'sB10006,10000', 'sSB10007,500', 'sSB10008,56', 'sSB10009,30',
'SB10010,7000', 'CR10001,7000', 'SB10002,-10']

>>> goodTransRecords.collect ()

['sB10001,1000', 'sSB10002,1200', 'sSB10003,8000', 'SB10004,400°',
'SB10005,300', 'sB10006,10000', 'sSB10007,500', 'sSB10008,56', 'sSB10009,30',
'SB10010,7000']

>>> highValueTransRecords.collect ()

['sB10002,1200', 'sB10003,8000', 'sB10006,10000', 'sSB10010,7000']

>>> badAccountRecords.collect ()

['CR10001,7000"']

>>> badAmountRecords.collect ()

['SB10002,-10"]

>>> badTransRecords.collect ()

['SB10002,-10', 'CR10001,7000']

>>> sumAmounts = goodTransRecords.map (lambda trans:

Decimal (trans.split (", ") [1])) .reduce(lambda a,b : a+b)

>>> sumAmounts

Decimal ('28486"')

>>> maxAmount = goodTransRecords.map (lambda trans:

Decimal (trans.split (", ") [1])) .reduce(lambda a,b : a if a > b else b)

>>> maxAmount

Decimal ('10000")

>>> minAmount = goodTransRecords.map (lambda trans:

Decimal (trans.split (", ") [1])) .reduce(lambda a,b : a if a < b else b)

>>> minAmount

Decimal ('30"')

>>> combineAllElements = acTransRDD.flatMap(lambda trans: trans.split(","))
>>> combineAllElements.collect ()

['sB1000O1', '1000', 'sSB10002', '1200', 'sSB10003', '8000', 'SB10004', '400°',
'sSB10005', '300', 'sB1000O6', '10000', 'sB1000O7', '500', 'sSB10008', '56',

'sB10009', '30', 'sB10010', '7000', 'CR10001', '7000', 'sSB10002', '-10']
>>> allGoodAccountNos = combineAllElements.filter (lambda trans:
trans.startswith('SB') == True)

>>> allGoodAccountNos.distinct () .collect ()
['sSB10005', 'sSB10006', 'SB10008', 'sSB10002', 'sSB10003', 'SB10009',
'SB10010', 'SB10004', 'sSB10001', 'sSB10007']

The real power of the uniform programming model of Spark is very clearly visible if both
the Scala and Python code sets are compared. The Spark transformations and Spark actions
are the same in both the language implementations. The way functions are passed into these
are different because of the programming language syntax differences.
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Before running the Python REPL for Spark, the Scala REPL was closed and this was done on
purpose. Then the Spark web UI should look something similar to that shown in Figure 5.
Since the Scala REPL was closed, that is getting listed under the completed applications list.
Since the Python REPL is still open, that is getting listed under the running applications list.
Note the application names of both the Scala REPL and Python REPL of Spark in the Spark
web UL These are standard names. When custom applications are run from files, there are
ways to assign custom names while defining the Spark context object for the applications to
facilitate monitoring of the applications and for logging purposes. These details will be
covered later in this chapter.

It is a good idea to spend time with the Spark web Ul, getting familiar with all the metrics
that are being captured, and how the DAG visualization is given in the UI. It will help a lot
while debugging complex Spark applications.

s“)“oﬁ\g sorsussnor  OP@rk Master at spark://Rajanarayanans-MacBook-Pro.local:7077

URL: spark://Rajanarayanans-MacBook-Pro.local:7077

REST URL: spark://Rajanarayanans-MacBook-Pro.local:6086 (cluster mods)
Alive Workers: 1

Cores in use: 8 Total, 8 Used

Memory in use: 7.0 GB Total, 1024.0 MB Used

Applications: 1 Running, 1 Completed

Drivers: 0 Running, 0 Gompleted

Status: ALIVE

Workers
‘Worker Id Address State Cores Memory
worker-20160707204051-192.168.0.11-50478 192.168.0.11:50478 ALIVE 8 (8 Used) 7.0 GB (1024.0 MB Used)

Running Applications
Application ID Name Cores Memory per Node Submitted Time User State Duration

app-20160707211005-0001 (kill) PySparkShell 8 1024.0 MB 2016/07/07 21:10:05 RajT RUNNING 4s

Completed Applications
Application ID Name Cores Memory per Node Submitted Time User State Duration
app-20160707204107-0000 Spark shell 8 1024.0 MB 2016/07/07 20:41:07 RajT FINISHED 27 min

Figure 5

MapReduce

Since day one, Spark has been placed as the replacement for Hadoop MapReduce programs.
In general, data processing jobs are done in MapReduce style if that job can be divided into
multiple tasks and they can be executed in parallel, and the final results can be computed
after collecting the results from all these distributed pieces. Unlike Hadoop MapReduce,
Spark can do this even if the DAG of activities is more than the two stages, such as Map and
Reduce. Spark is designed to do that and that is one of the biggest value propositions that
Spark highlights.
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This section is going to continue with the same retail banking application and pick up some
of the use cases that are ideal candidates for the MapReduce kind of data processing.

The use cases selected for elucidating the MapReduce kind of data processing here are
given as follows:

1. The retail banking transaction records come with account numbers and the
transaction amounts in comma-separated strings.

2. Pair the transactions to have key/value pairs such as (AccNo, TranAmount).
3. Find an account level summary of all the transactions to get the account balance.

At the Scala REPL prompt, try the following statements:

scala> val acTransList = Array("SB10001,1000", "SB10002,1200",
"sB10001,8000", "sSB10002,400", "sSB10003,300", "sSB10001,10000",
"sB10004,500", "sSB10005,56", "sSB10003,30","sSB10002,7000", "sSB10001,-100",
"SB10002,-10")

acTransList: Array[String] = Array(SB10001,1000, SB10002,1200,
SB10001,8000, sSB10002,400, SB10003,300, SB10001,10000, SB10004, 500,
SB10005,56, SB10003,30, sSB10002,7000, SB10001,-100, SB10002,-10)

scala> val acTransRDD = sc.parallelize (acTransList)

acTransRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at
parallelize at <console>:23

scala> val acKeyVal = acTransRDD.map (trans => (trans.split(",") (0),
trans.split (",") (1) .toDouble))

acKeyVal: org.apache.spark.rdd.RDD[ (String, Double)] = MapPartitionsRDD[1]
at map at <console>:25

scala> val accSummary = acKeyVal.reduceByKey(_ + _) .sortByKey()
accSummary: org.apache.spark.rdd.RDD[ (String, Double)] = ShuffledRDD[5] at
sortByKey at <console>:27

scala> accSummary.collect ()

res0: Array|[ (String, Double)] = Array((SB10001,18900.0), (SB10002,8590.0),
(SB10003,330.0), (SB10004,500.0), (SB10005,56.0))

Here is the step-by-step detail capturing what has been done so far:

1. The value acTransList is the array containing the comma-separated transaction
records.

2. The value acTransRDD is the RDD created out of the array, where sc is the Spark
context or the Spark driver and the RDD is created in a parallelized way so that
the RDD elements can form a distributed dataset.

3. Transform the acTransRDD to acKeyVal to have key-value pairs of the form
(KV), where the account number is chosen as the key. In this set of elements in
the RDD, there will be multiple elements with the same key.
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4. In the next step, the key-value pairs are grouped by the key and a reduction
function has been passed, which will add the transaction amount to form key-
value pairs containing one element for a specific key in the RDD and the total of
all the amounts for the same key. Then sort the elements on the key before

producing the final result.

5. Collect the elements to an array at the driver level.

Assuming that the RDD acKeyVal is partitioned into two parts and distributed to a cluster

for processing, Figure 6 captures the essence of the processing:

(5810001, 1000)
(SB10002, 1200)
(5810001, 8000)
(SB10002, 400)
(SB10003, 300)
(5B10001, 10000)

Group by the
key

(SB10004, 500)
(SB10005, 56)
(SB10003, 30)
(SB10002, 7000)
(SB10001, -100)
(SB10002, -10")

(5B10001, 1000) (5810002, 1200)
(SB10001, 8000) (SB10002, 400)
(5B10001, 10000) (5B10002, 7000)
(5B10001, -100) (5B10002, -102)

(SB10003, 300)
(SB10003, 30)

(SB10004, 500)

(SB10005, 56)

Apply the reduce by
key function and
sort by key

(SB10001, 18900)
(SB10002, 8590)
(SB10003, 330)
(SB10004, 500)

(SB10005, 56)

Figure 6
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The following table captures the Spark actions that are introduced in this use case:

Spark action What it does?

reduceByKey (fn, [noOfTasks]) Applies the function fn on the RDD of the
form (K,V) and is reduced to remove
duplicate keys and apply the function passed
as the parameter to be acted on the values at
the key level.

sortByKey ([ascending], [numTasks]) |Sortsthe RDD elements if the RDD is of the
form (K,V) by its key K

The reduceByKey action deserves a special mention. In Figure 6, the grouping of the
elements by the key is a well-known operation. But in the next step, for the same key, the
function passed to as a parameter takes two parameters and returns one. It is not very
intuitive to get this right and you may be wondering from where the two inputs are coming
while iterating through the values of the (K,V) pair for each key. This behavior takes the
concept from the Scala collection method reduceLeft. The following Figure 7, with the
values of the key SB10001 doing the reduceByKey (_ + _) operation, is an attempt to
explain the concept. This is just for the elucidation purposes of this example and the actual
Spark implementation to do the same may be different:

((SB10001, 1000), (SB10001, 8000), (SB10001, 10000), +
(SB10001, -100)).reduceByKey(_+ )
-100
A 4 E
(SB10001, Array(1000, 8000, 10000, -100).reducelLeft(_+ ))
10000
+
v
(SB10001, 18900) 8000
1000
((1000+8000)+10000)-100=18900

Figure 7
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On the right-hand side of Figure 7, the reduceLeft operation of the Scala collection
method is illustrated. That is an attempt to give some insight into from where the two
parameters are coming for the reduceLeft function. As a matter of fact, many of the
transformations that are being used on Spark RDD are adapted from Scala collection
methods.

At the Python REPL prompt, try the following statements:

>>> from decimal import Decimal

>>> acTransList = ["SB10001,1000", "sB10002,1200", "SB10001,8000",
"SB10002, 400", "sB10003,300", "sB10001,10000", "SB10004,500", "sB10005,56",
"sB10003,30","sSB10002,7000", "sSB10001,-100", "SB10002,-10"]

>>> acTransRDD = sc.parallelize (acTransList)

>>> acKeyVal = acTransRDD.map (lambda trans:

(trans.split (", ") [0],Decimal (trans.split (", ") [1])))

>>> accSummary = acKeyVal.reduceByKey(lambda a,b : a+b).sortByKey()

>>> accSummary.collect ()

[('SB10001', Decimal('18900')), ('SB10002', Decimal('8590')), ('sB10003',
Decimal('330')), ('SB10004', Decimal('500')), ('SB10005', Decimal('56'))]

The reduceByKey took an input parameter, which is a function. Similar to this, there is
another transformation that does the key-based operation in a slightly different way. It is
groupByKey (). This gathers all the values of a given key and forms the list of values from
all the individual elements.

If there is a need to do multiple levels of processing with the same value elements as a
collection for each key, this is the suitable transformation. In other words, if there are many
(K)V) pairs, this transformation returns (K, Iterable<V>) for each key.

The only thing the developer needs to be cognizant about is to make sure
that the number of such (K, V) pairs is not really huge so that the operation
doesn't create performance problems. There is no hard and fast rule to find
this out and it rather depends on the use case.

In all the preceding code snippets, for extracting account numbers or any other field from
the comma-separated transaction record, split(, ) is used multiple times within the map ()
transformation. This is to demonstrate the use of array elements within map (), or any other
transformation or method. A better way of extracting the fields of the transaction record is
to transform them as a tuple containing the required fields and then use the fields from the
tuple to employ them in some of the following code snippets. In this way, there is no need
to call split (, ) repeatedly for each field extraction.
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Joins

In the Relational Database Management Systems (RDBMS) world, joining multiple tables
rows based on a key is a very common practice. When it comes to the NoSQL data stores,
joining multiple tables became a real problem because many of the NoSQL data stores don't
have support for the table joins. In the NoSQL world, redundancy is allowed. Whether a
technology supports table joins or not, business use cases mandate joins of datasets based
on keys all the time. Because of this, it is imperative to have the joins done in a batch mode
in many of the use cases.

Spark provides transformations to join multiple RDDs based on a key. This supports many
use cases. These days there are many NoSQL data stores having connectors to talk to Spark.
When working with such data stores, it is very simple to construct RDDs of data from
multiple tables, do the join from Spark, and store the results back into the data stores in
batch mode or even in near-to-real-time mode. Spark transformations are available for left
outer join and right outer join, as well as full outer join.

The use cases selected for elucidating the join of multiple datasets using a key are given as
follows.

The first dataset contains a retail banking master records summary with an account
number, first name, and last name. The second dataset contains the retail banking account
balance with an account number, and balance amount. The key on both of the datasets is the
account number. Join the two datasets and create one dataset containing the account
number, full name, and balance amount.

At the Scala REPL prompt, try the following statements:

scala> val acMasterList = Array("SB10001,Roger,Federer",
"SB10002, Pete, Sampras", "SB10003,Rafael,Nadal", "SB10004,Boris,Becker",
"SB10005, Ivan, Lendl")

acMasterList: Array[String] = Array(SB10001,Roger, Federer,
SB10002, Pete, Sampras, SB10003,Rafel,Nadal, SB10004,Boris, Becker,
SB10005, Ivan, Lendl)

scala> val acBallist = Array("SB10001,50000", "sSB10002,12000",
"sSB10003,3000", "sSB10004,8500", "SB10005,5000")

acBallist: Array[String] = Array(SB10001,50000, SB10002,12000,
SB10003,3000, SB10004,8500, SB10005,5000)

scala> val acMasterRDD = sc.parallelize (acMasterList)

acMasterRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at
parallelize at <console>:23

scala> val acBalRDD = sc.parallelize (acBalList)

acBalRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[1l] at
parallelize at <console>:23

scala> val acMasterTuples = acMasterRDD.map (master =>
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master.split (",")) .map (masterList => (masterList (0), masterList (1) + "

masterList (2)))

acMasterTuples: org.apache.spark.rdd.RDD[ (String, String)] =
MapPartitionsRDD[3] at map at <console>:25

scala> val acBalTuples = acBalRDD.map (trans =>
trans.split (", ")) .map(transList => (transList(0), transList(1l)))
acBalTuples: org.apache.spark.rdd.RDD[ (String, String)] =
MapPartitionsRDD[5] at map at <console>:25

scala> val acJoinTuples =

acMasterTuples. join (acBalTuples) .sortByKey () .map{case (accno, (name,

amount)) => (accno, name, amount) }

acJoinTuples: org.apache.spark.rdd.RDD[ (String, String, String)] =

MapPartitionsRDD[12] at map at <console>:33
scala> acJoinTuples.collect ()
res0: Array[(String, String, String)] = Array((SB10001,Roger

+

Federer, 50000), (SB10002,Pete Sampras,12000), (SB10003,Rafael Nadal, 3000),

(SB10004, Boris Becker,8500), (SB10005,Ivan Lendl,b 5000))

All the statements given previously must be familiar by now, except the Spark
transformation

join. Similar to this transformation, the leftOuterJoin, rightOuterJoin, and
fullOuterJoin are also available with the same usage pattern:

all the pairs of each key.

Spark transformation What it does
join (other, Joins this RDD with the other RDD, and the elements are joined
[numTasks]) together based on the key. Suppose the original RDD is of the

form (K,V1) and the second RDD is of the form (K,V2), then the
join operation will produce tuples of the form (K, (V1,V2)) with

At the Python REPL prompt, try the following statements:

>>> acMasterList = ["SB10001,Roger,Federer", "SB10002,Pete, Sampras",
"SB10003,Rafael,Nadal", "SB10004,Boris,Becker", "SB10005,Ivan, Lendl"]

>>> acBallist = ["SB10001,50000", "sSB10002,12000", "sSB10003,3000",
"SB10004,8500", "SB10005,5000"]

>>> acMasterRDD = sc.parallelize (acMasterList)

>>> acBalRDD = sc.parallelize (acBalList)

>>> acMasterTuples = acMasterRDD.map (lambda master:

master.split (",")) .map(lambda masterList: (masterList[0], masterList[1]

" + masterList([2]))

4+ "

>>> acBalTuples = acBalRDD.map (lambda trans: trans.split(",")) .map(lambda

transList: (transList[0], transList[1]))

>>> acJoinTuples = acMasterTuples.join (acBalTuples) .sortByKey () .map (lambda

tran: (tran[0], tran[1][O0],tran[1][1]))
>>> acJdoinTuples.collect ()
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[('SB10001', 'Roger Federer', '50000'), ('SB10002', 'Pete Sampras',
'12000'), ('sB10003', 'Rafael Nadal', '3000'), ('sB10004', 'Boris Becker',
'8500'), ('sSB10005', 'Ivan Lendl', '5000')]

More actions

So far, the focus was mainly on Spark transformations. Spark actions are also important. To
get insight into some more important Spark actions, take the following use cases,
continuing from where it was stopped in the preceding section's use cases:

e From the list containing account numbers, names, and account balances, get the
one that has the highest account balance

From the list containing account numbers, names, and account balances, get the
top three having the highest account balance

Count the number of balance transaction records at an account level

Count the total number of balance transaction records

Print the name and account balance of all the accounts

Calculate the total of the account balance

It is a very common requirement to iterate through the elements in a
collection, do some mathematical calculation on each of the elements, and
at the end of it, use the result. The RDD is partitioned and distributed
across worker nodes. If any normal variable is used for storing the
cumulative result while iterating through the RDD elements, it may not
yield the correct result. In such situations, instead of using regular
variables, use Spark provided accumulators.

At the Scala REPL prompt, try the following statements:

scala> val acNameAndBalance = acJoinTuples.map{case (accno, name,amount) =>
(name, amount) }

acNameAndBalance: org.apache.spark.rdd.RDD[ (String, String)] =
MapPartitionsRDD[46] at map at <console>:35

scala> val acTuplesByAmount = acBalTuples.map{case (accno, amount) =>
(amount . toDouble, accno) }.sortByKey (false)

acTuplesByAmount: org.apache.spark.rdd.RDD[ (Double, String)] =
ShuffledRDD[50] at sortByKey at <console>:27

scala> acTuplesByAmount. first ()

resl9: (Double, String) = (50000.0,SB10001)

scala> acTuplesByAmount.take (3)

res20: Array|[ (Double, String)] = Array((50000.0,SB10001),
(12000.0,SB10002), (8500.0,SB10004))

scala> acBalTuples.countByKey ()
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res2l: scala.collection.Map[String,Long] = Map(SB10001 -> 1, SB10005 -> 1,

SB10004 -> 1, SB10002 -> 1, SB10003 -> 1)

scala> acBalTuples.count ()

res22: Long = 5

scala> acNameAndBalance. foreach (println)

(Boris Becker, 8500)

(Rafel Nadal, 3000)

(Roger Federer, 50000)

(Pete Sampras,12000)

(Ivan Lendl, 5000)

scala> val balanceTotal = sc.accumulator (0.0, "Account Balance Total")
balanceTotal: org.apache.spark.Accumulator[Double] = 0.0

scala> acBalTuples.map{case (accno, amount) => amount.toDouble}.foreach (bal

=> balanceTotal += bal)
scala> balanceTotal.value
res8: Double = 78500.0)

The following table captures the Spark actions that are introduced in this use case:

Spark action What it does

first() Returns the first element in the RDD.

take (n) Returns an array of the first n elements from the RDD.

countByKey () | Returns the count of elements by the key. If the RDD contains (K, V) pairs,
this will return a dictionary of (K, numOfValues).

count () Returns the number of elements in the RDD.

foreach (fn) | Applies the function fn to each element in the RDD. In the preceding use
case, Spark Accumulator is being used with foreach (fn).

At the Python REPL prompt, try the following statements:

>>> acNameAndBalance = acJoinTuples.map(lambda tran: (tran[l],tran[2]))
>>> acTuplesByAmount = acBalTuples.map(lambda tran: (Decimal (tran[1]),
tran[0])) .sortByKey (False)

>>> acTuplesByAmount. first ()

(Decimal ('50000'), 'SB10001'")

>>> acTuplesByAmount.take (3)

[ (Decimal ('50000'), 'SB10001'), (Decimal('12000'), 'SB10002'),
(Decimal ('8500'), 'SB10004')]

>>> acBalTuples.countByKey ()

defaultdict (<class 'int'>, {'SB10005': 1, 'SB10002': 1, 'SB10003': 1,
'SB10004': 1, 'SB10001': 1})

>>> acBalTuples.count ()

5

>>> acNameAndBalance. foreach (print)
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('Pete Sampras', '12000')

('Roger Federer', '50000')

('Rafael Nadal', '3000')

('Boris Becker', '8500')

('Ivan Lendl', '5000')

>>> balanceTotal = sc.accumulator (0.0)

>>> balanceTotal.value 0.0

>>> acBalTuples.foreach(lambda bals: balanceTotal.add(float (bals[1])))

>>> balanceTotal.value
78500.0

Creating RDDs from files

So far, the focus of the discussion was on the RDD functionality and programming with
RDDs. In all the preceding use cases, the RDD creation was done from the collection objects.
But in the real-world use cases, the data will come from files stored in the local filesystems,
and HDEFS. Quite often, the data will come from NoSQL data stores such as Cassandra. It is
possible to create RDDs by reading the contents from these data sources. Once RDD is
created, then all the operations are uniform, as given in the preceding use cases. The data
files coming out of the filesystems may be fixed width, comma-separated, or any other
format. But the common pattern used for reading such data files is to read the data line by
line and split the line to have the necessary separation of data items. In the case of data
coming from other sources, the appropriate Spark connector program is to be used and the
appropriate API for reading data is to be used.

Many third-party libraries are available to read the contents from various types of text files.
For example, the Spark CSV library available from GitHub is a very useful one for creating
RDDs from CSV files.

The following table captures the way text files are read from various sources, such as local
filesystems, HDFS, and so on. As discussed earlier, the processing of the text file is up to the
use case requirements:

[57]



Spark Programming Model

File location |RDD creation What it does
Local val textFile = Creates an RDD by reading the
filesystem sc.textFile ("README .md") contents of the file named

README . md from the directory
from where the Spark shell is
invoked. Here, the RDD is of the
type RDD[string] and the
elements will be lines from the

file.
HDEFS Creates an RDD by reading the
val textFile = sc.textFile contents of the file specified in the
("hdfs://<location in HDFS>") HDFS URL

The most important aspect while reading the files from the local filesystem is that the file
should be available in all the nodes of the Spark worker nodes. Apart from these two file
locations given in the preceding table, any supported filesystem URI may be used.

Just like reading the contents from files in various filesystems, it is also possible to write the
RDD onto files using the saveAsTextFile(path) Spark action.

All the Spark application use cases discussed here are run on the
appropriate language's REPL of Spark. When writing applications, they
will be written in proper source code files. In the case of Scala and Java,
the application code files have to be compiled, packaged, and run with
proper library dependencies, and are typically built using maven or sbt.
This will be covered in detail when designing data processing applications
using Spark, in the last chapter of this book.

Understanding the Spark library stack

Spark comes with a core data processing engine and a stack of libraries working on top of
the core engine. It is very important to understand the concept of stacking libraries on top of
the core framework.

All these libraries that are making use of the services provided by the core framework
support the data abstractions offered by the core framework and much more. Before Spark
came onto market, there were lots of independent open source products doing what the
library stack in discussion here is now doing. The biggest disadvantage with these point
products was their interoperability. They don't stack together well. They were implemented
in different programming languages. The programming language of choice supported by
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these products, and the lack of uniformity in the APIs exposed by these products, were
really challenging to get one application done with two or more such products. That is the
relevance of the stack of libraries that work on top of Spark. They all work together with the
same programming model. This helps organizations to standardize on the data processing
toolset without vendorlock-in.

Spark comes with the following stack of domain-specific libraries, and Figure 8 gives a
comprehensive picture of the whole ecosystem as seen by a developer:

e Spark SQL

¢ Spark Streaming
e Spark MLIib

e Spark GraphX

Application
Scala Programming
Language Support

Scala, Java,
Python and R

Scala, Java
and Python

Scala, Java,
Python and R

Spark SQL Spark Streaming Spark MLIib Spark GraphX Domi:grjgec'f'c
Apache Spark Core

Figure 8

In any organization, structured data is still very widely used. The most ubiquitous data
access mechanism with structured data is SQL. Spark SQL provides the capability to write
SQL-like queries on top of the structured data abstraction called the DataFrame API.
DataFrame and SQL go very well and support data coming from various sources, such as
Hive, Avro, Parquet, JSON, and many more. Once the data is loaded into the Spark context,
they can be operated as if they are all coming from the same source. In other words, if
required, SQL-like queries can be used to join data coming from different sources, such as
Hive and JSON. Another big advantage that Spark SQL and the DataFrame API bring onto
the developers table is the ease of use and no need-to-know functional programming
methods, which is a requirement to do programming with RDDs.
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Using Spark SQL and the DataFrame API, data can be read from various
data sources and processed as if it is all coming from a unified source.
Spark transformations and Spark actions support uniform programming
interfaces. So the data source unification, API unification, and ability to
use multiple programming languages to write data processing
applications help the organizations to standardize on one data processing
framework.

The data ingestion into the organizational data sinks is increasing every day. At the same
time, the velocity at which data is getting ingested is also increasing. Spark Streaming
provides the library to process the data that is ingested from various sources at a very high
velocity.

In the past, data scientists had the challenge of building their own implementations of the
machine learning algorithms and utilities in their programming language of choice. Quite
often, such programming languages don't interoperate with the data processing toolset of
the organization. Spark MLIib provides the unification process, where it comes with a lot of
machine learning algorithms and utilities working on top of the Spark data processing
engine.

The IoT applications, especially the social media applications, mandated the need to have
data processing capabilities where the data fits into a graph-like structure. For example, the
connections in LinkedIn, relationship between friends in Facebook, workflow applications,
and many such use cases, make use of the graph abstraction extensively. Using the graph to
do various computations requires very high data processing capabilities and employment
of sophisticated algorithms. Spark GraphX library comes with an API for graphs and makes
use of Spark's parallel computing paradigm.

There are many Spark libraries available that are developed by the
community for various purposes. Many such third-party library packages
are featured in the site http://spark-packages.org/. The number of
packages is growing day by day as the Spark user community is growing.
When developing data processing applications in Spark, if there is a need
to have a domain-specific library, it would be a good idea to check this site
first and see whether anybody has already developed it.
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Reference

For more information plese visit:https://github.com/databricks/spark-csv

Summary

This chapter discussed the basic programming model of Spark with its primary dataset
abstraction RDDs. The creation of RDDs from various data sources, and processing of the
data in RDDs using Spark transformations and Spark actions, were covered using Scala and
Python APIs. All the important features of the Spark programming model were covered
with the help of real-world use cases. This chapter also discussed the library stack that
comes with Spark and what each one is doing. In summary, Spark comes with a very user-
friendly programming model and in turn provides a very powerful data processing toolset.

The next chapter will discuss the Dataset API and the DataFrame APIL The Dataset API is
going to be the new way of programming with Spark, while the DataFrame API deals with
more structured data. Spark SQL is also introduced to manipulate structured data and show
how that can be intermixed with any Spark data processing application.
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Most businesses deal with quite a lot of structured data all the time. Even if there are too
many ways to deal with unstructured data, many application use cases still have to have
structured data. What is the major difference between processing structured data and
unstructured data? If the data source is structured, and if the data processing engine knows
the data structure a priori, the data processing engine can do lots of optimizations while
processing the data, or even beforehand. This is very crucial when the data processing
volume is huge and the turn around time is very critical.

Proliferation of enterprise data mandated the need to empower the end users to query and
process the data in simple and easy to use application user interfaces. The RDBMS vendors
united and the structured query language (SQL) came about as a solution for this. Over the
last couple of decades, everyone who deals with data became familiar with SQL if not
power users.

The large scale Internet applications in the social networking and microblogging spaces, to
name a few, produced data beyond the consumption of many traditional data processing
tools. When dealing with such a sea of data, picking and choosing the right piece of data
from it became even more important. Spark was a highly prevalent data processing
platform and its RDD-based programming model reduced the data processing effort as
compared to the Hadoop MapReduce data processing framework. But, the initial versions
of Spark's RDD-based programming model remained elusive on making end users, such as
data scientists, data analysts, and business analysts from using Spark. The main reason why
they could not make use of RDD based Spark programming model is because it requires
some amount of functional programming. The solution to this problem is Spark SQL. Spark
SQL is a library built on top of Spark. It exposes SQL interface and DataFrame APIL
DataFrame API supports programming languages Scala, Java, Python, and R.

If the structure of the data is known in advance, if the data fits into the model of rows and
columns, it doesn't matter from where the data is coming and Spark SQL can use all of it
together and process it as if all the data is coming from a single source. Moreover, the
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querying dialect is the ubiquitous SQL.
We will cover the following topics in this chapter:

e Structure of data
Spark SQL
Aggregations

Multi-datasource joins
Dataset
Data catalog

Understanding the structure of data

The structure of the data that is being discussed here needs some more elucidation. What
do we mean by the structure of the data? The data stored in RDBMS has a way of storing
the data in rows/columns or records/fields. Every field has a data type and every record is a
collection of fields of the same or different data types. In the early days of RDBMS, the data
types of the fields were scalar and in the recent versions, it expanded to include collection
data types or composite data types as well. So, whether the record contains scalar data
types or composite data types, the important point to note here is that there is a structure to
the underlying data. Many of the data processing paradigms have adopted the concept of
mirroring the underlying data structure persisted in the RDBMS or other stores in memory
to make the data processing easy.

In other words, if the data in an RDBMS table is being processed by a data processing
application, if the same table-like data structure is available in memory to the programs, for
the end users and programmers it is easy to model the applications and query the data. For
example, suppose there is a set of comma-separated data items with a fixed number of
values in each row having a specific data type for the values coming in the specific position
in all the rows. This is a structured data file. It is a data table and is very similar to an
RDBMS table.

In programming languages such as R, there is a data frame abstraction used to store data
tables in memory. The Python data analysis library, named Pandas, also has a similar data
frame concept. Once that data structure is available in memory, the programs can extract
the data and slice and dice it as per the need. The same data table concept is extended to
Spark, known as DataFrame, built on top of RDD, and there is a very comprehensive API
known as DataFrame API in Spark SQL to process the data in the DataFrame. A SQL-like
query language is also developed on top of the DataFrame abstraction, catering to the needs
of the end users to query and process the underlying structured data. In summary,
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DataFrame is a distributed data table organized in rows and columns and having names for
each column.

The Spark SQL library built on top of Spark is developed based on the research paper titled
“Spark SQL: Relational Data Processing in Spark”. It talks about four goals for Spark SQL and
they are reproduced verbatim as follows:

¢ Support relational processing both within Spark programs (on native RDDs) and
on external data sources using a programmer-friendly API

e Provide high performance using established DBMS techniques

¢ Easily support new data sources, including semi-structured data and external
databases amenable to query federation

¢ Enable extension with advanced analytics algorithms such as graph processing
and machine learning

DataFrame holds structured data, and it is distributed. It allows selection, filtering, and
aggregation of data. Sounding very similar to RDD? The key difference between RDD and
DataFrame is that DataFrame stores much more information about the structure of the data,
such as the data types and names of the columns, than RDD. This allows the DataFrame to
optimize the processing much more effectively than Spark transformations and Spark
actions doing processing on RDD. The other most important aspect to mention here is that
all the supported programming languages of Spark can be used to develop applications
using the DataFrame API of Spark SQL. For all practical purposes, Spark SQL is a
distributed SQL engine.

SchemaRDD, and the concept of DataFrame is exactly built on top of

Those who have worked earlier to Spark 1.3 must be familiar with
8 SchemaRDD with API-level compatibility.

Why Spark SQL?

There is no doubt that SQL is the lingua franca for doing data analysis and Spark SQL is the
answer from the Spark family of toolsets to do data analysis. So, what does it provide? It
provides the ability to run SQL on top of Spark. Whether the data is coming from CSV,
Avro, Parquet, Hive, NoSQL data stores such as Cassandra, or even RDBMS, Spark SQL can
be used to analyze data and mix in with Spark programs. Many of the data sources
mentioned here are supported intrinsically by Spark SQL and many others are supported
by external packages. The most important aspect to highlight here is the ability of Spark
SQL to deal with data from a very wide variety of data sources. Once it is available as a
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DataFrame in Spark, Spark SQL can process data in a completely distributed way,
combining the DataFrames coming from various data sources to process and query as if the
entire dataset were coming from a single source.

In the previous chapter, the RDD was discussed in detail and introduced as the Spark
programming model. Is the DataFrames API and the usage of SQL dialects in Spark SQL
replacing RDD-based programming model? Definitely not! The RDD-based programming
model is the generic and the basic data processing model in Spark. RDD-based
programming requires the use of real programming techniques. The Spark transformations
and Spark actions use a lot of functional programming constructs. Even though the amount
of code that is required to be written in the RDD-based programming model is less
compared to Hadoop MapReduce or any other paradigm, there is still a need to write some
amount of functional code. This is a barrier for many data scientists, data analysts, and
business analysts, who may perform major exploratory kinds of data analysis or do some
prototyping with the data. Spark SQL completely removes those constraints. Simple and
easy-to-use domain specific language (DSL) based methods to read and write data from
data sources, SQL-like language to select, filter, and aggregate, and the capability to read
data from a wide variety of data sources, make it easy for anybody who knows the data
structure to use it.

What is the best use case to use RDD and which is the best use case to use
Spark SQL? The answer is very simple. If the data is structured, if it can be
arranged in tables, and if each column can be given a name, then use
Spark SQL. This doesn't mean that the RDD and DataFrame are two
disparate entities. They interoperate very well. Conversions from RDD to
DataFrame and vice versa are very much possible. Many of the Spark
transformations and Spark actions that are typically applied on RDDs can
also be applied on DataFrames.

Typically, during the application design phase, business analysts generally do lots of
analysis with the application data using SQL, and that is fed to the application requirements
and testing artifacts. While designing big data applications, the same thing is needed, and in
such situations, apart from business analysts, data scientists will also be there in the team.
In a Hadoop-based ecosystem, Hive is used extensively for data analysis with big data.
Now Spark SQL brings that capability to any platform with support for a whole lot of data
sources. If there is a standalone Spark installation on commodity hardware, lots of these
kinds of activities can be done to analyze the data. A basic Spark installation deployed in
standalone mode on commodity hardware is enough to play around with a whole lot of
data.

The SQL-on-Hadoop strategy has introduced many applications, such as Hive and Impala
to name a few, providing a SQL-like interface to the underlying big data stored in the
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Hadoop Distributed File System (HDFS). Where does Spark SQL fit in that space? Before
jumping into that, it is a good idea to touch upon Hive and Impala. Hive is a MapReduce-
based data warehousing technology and, because of the use of MapReduce to process
queries, Hive queries require lots of I/O operations before completing a query. Impala came
up with a brilliant solution by doing the in-memory processing while making use of the
Hive meta store that describes the data. Spark SQL uses SQLContext to do all the operations
with data. But it can also use HiveContext, which is much more feature rich and advanced
than SQLContext. HiveContext can do all that SQLContext can do and, on top of that, it can
read from Hive meta store and tables, and can access Hive user-defined functions as well.
The only requirement to use HiveContext is obviously that there should be an already
existing Hive setup readily available. In this way, Spark SQL can easily co-exist with Hive.

From Spark 2.0 onwards, SparkSession is the new starting point for Spark
SQL-based applications, which are a combination of SQLContext and
HiveContext while supporting backward compatibility with SQLContext
and HiveContext.

Spark SQL can process the data from Hive tables faster than Hive using its Hive Query
Language. Another very interesting feature of Spark SQL is that it can read data from
different versions of Hive, which is a great feature enabling data source consolidation for
data processing.

The library that exposes Spark SQL and DataFrame API provides
interfaces that can be accessed through JDBC/ODBC. This opens up a
whole new world of data analysis. For example, a business intelligence
(BI) tool that connects to data sources using JDBC/ODBC can use a whole
lot of data sources supported by Spark SQL. Moreover, the BI tools can
push down the processor intensive join aggregation operations to a huge
cluster of worker nodes in the Spark infrastructure.

Anatomy of Spark SQL

Interaction with Spark SQL library is done mainly through two methods. One is through
SQL-like queries and the other is through DataFrame API. Before getting into the details of
how DataFrame-based programs work, it is a good idea to see how the RDD-based
programs work.

The Spark transformations and Spark actions are converted into Java functions and they act
on top of RDDs, which are nothing but Java objects acting upon data. Since RDD is a pure
Java object, there is no way, at compile time or at run time, to know about what data is
going to process. There is no metadata available to the execution engine beforehand to

[66]



Spark SQL

optimize the Spark transformations or Spark actions. There are no multiple execution paths
or query plans available in advance to process that data and so, evaluation of the efficacy of
various paths of execution is not available.

Here, there is no optimized query plan executed because there is no schema associated,
with data. In the case of DataFrame, the structure is well-known in advance. Because of this
the queries can be optimized and data cache can be built beforehand.

The following Figure 1 gives an idea about the same:

ODBC/JDBC Console DataFrame API

— 1 —

Spark SQL Library oc;ft?rlnyzsér

Spark Core

Data Sources

Figure 1

The SQL-like queries and DataFrame API calls made against DataFrame are converted to
language-neutral expressions. The language-neutral expression corresponding to a SQL
query or DataFrame APl is called an unresolved logical plan.

The unresolved logical plan is converted to a logical plan by doing validations on column
names from the metadata of the DataFrame. The logical plan is further optimized by
applying standard rules such as simplification of expressions, evaluations of expressions,
and other optimization rules, to form an optimized logical plan. The optimized logical plan
is converted to multiple physical plans. The physical plans are created by using Spark-
specific operators in the logical plan. The best physical plan is chosen and the resultant
queries are pushed down to RDDs to act on the data. Because the SQL queries and
DataFrame API calls are converted to language-neutral query expressions, the performance
of these queries is consistent across all the supported languages. That is the same reason
why the DataFrame API is supported by all the Spark supported languages such as Scala,
Java, Python, and R. In the future, there is a good chance that many more languages are
going to be supporting DataFrame API and Spark SQL because of this reason.
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The query planning and optimizations of Spark SQL are worth mentioning here too. Any
query operation done on a DataFrame through SQL queries or through DataFrame API is
highly optimized before the corresponding operations are physically applied on the
underlying base RDD. There are many processes in between before the real action
happening on the RDD.

Figure 2 gives some idea about the whole query optimization process:

DataFrame API Calls SQL Queries

\/

Analysis

A 4

Otimization

y

Physical Planning

A 4

Cost Model
Application

y

Physical Plan
Selection

Y

Optimized Code
Generation

Figure 2
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Two types of queries can be called against a DataFrame. They are SQL queries or
DataFrame API calls. They go through a proper analysis to come up with a logical query
plan of execution. Then, optimizations are applied on the logical query plans to arrive at an
optimized logical query plan. From the final optimized logical query plan, one or more
physical query plans are made. For each of the physical query plans, cost models are
worked out, and based on the optimal cost, an appropriate physical query plan is selected,
and highly optimized code is generated and run against the RDDs. This is the reason
behind the consistent performance of queries of any type on DataFrame. This is the same
reason why the DataFrame API calls from all these different languages, Scala, Java, Python,
and R, give consistent performance.

Let's revisit the bigger picture once again, as given in Figure 3, to set the context and see
what is being discussed here before getting into and taking up the use cases:

Applicati
Scala, Java, Scala, Java Scala, Java, Scal Prggr;cnir:r?i:g
Python and R and Python Python and R cala Language Support
. Domain Specific
Spark SQL Spark Streaming Spark MLlib Spark GraphX Library
<
Apache Spark Core
\_ J

Figure 3

The use cases that are going to be discussed here will demonstrate the ability to mix SQL
queries with Spark programs. Multiple data sources will be chosen, data will be read from
those sources using DataFrame, and uniform data access will be demonstrated. The
programming languages used to demonstrate are still Scala and Python. The usage of R to
manipulate DataFrames is on the agenda of the book and a whole chapter is dedicated to
the same.
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DataFrame programming

The use cases selected for elucidating the Spark SQL way of programming with DataFrame
are given as follows:

e The transaction records come as comma-separated values.

e Filter out only the good transaction records from the list. The account number
should start with SB and the transaction amount should be greater than zero.

e Find all the high-value transaction records with a transaction amount greater
than 1000.

e Find all the transaction records where the account number is bad.

e Find all the transaction records where the transaction amount is less than or equal
to zero.

¢ Find a combined list of all the bad transaction records.
¢ Find the total of all the transaction amounts.

¢ Find the maximum of all the transaction amounts.

¢ Find the minimum of all the transaction amounts.

e Find all the good account numbers.

This is exactly the same set of use cases that were used in the previous chapter as well, but
here the programming model is totally different. Using this set of use cases, two types of
programming models are demonstrated here. One is using the SQL queries and the other is
using DataFrame APIs.

Programming with SQL
At the Scala REPL prompt, try the following statements:

scala> // Define the case classes for using in conjunction with DataFrames
scala> case class Trans(accNo: String, tranAmount: Double)

defined class Trans

scala> // Functions to convert the sequence of strings to objects defined
by the case classes

scala> def toTrans = (trans: Seq[String]) => Trans(trans(0),

trans(l) .trim.toDouble)

toTrans: Seq[String] => Trans

scala> // Creation of the list from where the RDD is going to be created
scala> val acTransList = Array("SB10001,1000", "sSB10002,1200",
"sSB10003,8000", "sSB10004,400", "SB10005,300", "SB10006,10000",
"sB10007,500", "sB100O8,56", "sSB10009,30","sSB10010,7000", "CR10001,7000",
"SB10002,-10")

[70]




Spark SQL

acTransList: Array[String] = Array(SB10001,1000, SB10002,1200,
SB10003,8000, sSB10004,400, SB10005,300, SB10006,10000, SB10007,500,
SB10008,56, SB10009,30, sSB10010,7000, CR10001,7000, SB10002,-10)
scala> // Create the RDD
scala> val acTransRDD =
sc.parallelize (acTransList) .map(_.split (", ")) .map(toTrans(_))
acTransRDD: org.apache.spark.rdd.RDD[Trans] = MapPartitionsRDD[2] at map at
<console>:30
scala> // Convert RDD to DataFrame
scala> val acTransDF = spark.createDataFrame (acTransRDD)
acTransDF: org.apache.spark.sql.DataFrame = [accNo: string, tranAmount:
double]
scala> // Register temporary view in the DataFrame for using it in SQL
scala> acTransDF.createOrReplaceTempView ("trans")
scala> // Print the structure of the DataFrame
scala> acTransDF.printSchema
root

|-— accNo: string (nullable = true)

|-— tranAmount: double (nullable = false)
scala> // Show the first few records of the DataFrame
scala> acTransDF.show

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0|
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002| -10.0]

scala> // Use SQL to create another DataFrame containing the good
transaction records

scala> val goodTransRecords = spark.sql ("SELECT accNo, tranAmount FROM
trans WHERE accNo like 'SB%' AND tranAmount > 0")

goodTransRecords: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]

scala> // Register temporary view in the DataFrame for using it in SQL
scala> goodTransRecords.createOrReplaceTempView ("goodtrans")

scala> // Show the first few records of the DataFrame

scala> goodTransRecords.show

+ + 1
T T T
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| accNo|tranAmount |

+ + 1
T T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007 | 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]

| SB10010| 7000.0]

scala> // Use SQL to create another DataFrame containing the high value
transaction records

scala> val highValueTransRecords = spark.sql ("SELECT accNo, tranAmount FROM
goodtrans WHERE tranAmount > 1000")

highValueTransRecords: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> highValueTransRecords.show

+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10006 | 10000.0]

| SB10010| 7000.0]

scala> // Use SQL to create another DataFrame containing the bad account
records

scala> val badAccountRecords = spark.sql ("SELECT accNo, tranAmount FROM
trans WHERE accNo NOT like 'SB%'")

badAccountRecords: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> badAccountRecords.show

I 1
T T

accNo | tranAmount |

I
T

I I 1
T T T
+
T

CR10001 | 7000.0]

T T

scala> // Use SQL to create another DataFrame containing the bad amount
records

scala> val badAmountRecords = spark.sql ("SELECT accNo, tranAmount FROM
trans WHERE tranAmount < 0")

badAmountRecords: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]
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scala> // Show the first few records of the DataFrame
scala> badAmountRecords.show

T T

accNo | tranAmount |

|
| SB10002 | -10.0]

T T

scala> // Do the union of two DataFrames and create another DataFrame
scala> val badTransRecords = badAccountRecords.union (badAmountRecords)
badTransRecords: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[accNo: string, tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> badTransRecords.show

+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

|CR10001 | 7000.0]|

| SB10002 | -10.0]|

scala> // Calculate the sum

scala> val sumAmount = spark.sql ("SELECT sum(tranAmount) as sum FROM
goodtrans")

sumAmount: org.apache.spark.sql.DataFrame = [sum: double]

scala> // Show the first few records of the DataFrame

scala> sumAmount.show

tmm—————— +
I sum|
tmm—————— +
|28486.0|
tmm—————— +

scala> // Calculate the maximum

scala> val maxAmount = spark.sql ("SELECT max (tranAmount) as max FROM
goodtrans")

maxAmount : org.apache.spark.sql.DataFrame = [max: double]

scala> // Show the first few records of the DataFrame

scala> maxAmount.show

s +
| max |
s +
|]10000.0]|
s +

scala> // Calculate the minimum

scala> val minAmount = spark.sql ("SELECT min (tranAmount) as min FROM
goodtrans")

minAmount: org.apache.spark.sql.DataFrame = [min: double]

scala> // Show the first few records of the DataFrame

scala> minAmount.show

+———t
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| min|

+———t

130.0]

+———t

scala> // Use SQL to create another DataFrame containing the good account
numbers

scala> val goodAccNos = spark.sql ("SELECT DISTINCT accNo FROM trans WHERE
accNo like 'SB%' ORDER BY accNo")

goodAccNos: org.apache.spark.sql.DataFrame = [accNo: string]

scala> // Show the first few records of the DataFrame

scala> goodAccNos.show

| SB10001 |
| SB10002 |
| SB10003 |
| SB10004 |
| SB10005 |
| SB10006 |
| SB10007 |
| SB10008 |
| SB10009 |
| SB10010|

scala> // Calculate the aggregates using mixing of DataFrame and RDD like
operations

scala> val sumAmountByMixing = goodTransRecords.map (trans =>
trans.getAs[Double] ("tranAmount")) .reduce(_ + _)

sumAmountByMixing: Double = 28486.0

scala> val maxAmountByMixing = goodTransRecords.map (trans =>
trans.getAs[Double] ("tranAmount")) .reduce((a, b) => if (a > b) a else b)
maxAmountByMixing: Double = 10000.0

scala> val minAmountByMixing = goodTransRecords.map (trans =>
trans.getAs[Double] ("tranAmount")) .reduce((a, b) => if (a < b) a else b)
minAmountByMixing: Double = 30.0

The retail banking transaction records come with account number, transaction amount and
are processed using SparkSQL to get the desired results of the use cases. Here is the
summary of what the preceding script did:

e A Scala case class is defined to describe the structure of the transaction record to
be fed into the DataFrame.

e An array is defined with the necessary transaction records.
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¢ An RDD is made from the array, split the comma-separated values, mapped it to
create objects using the Scala case class that was defined as the first step in the
scripts, and the RDD is converted to a DataFrame. This is one use case of
interoperability between RDD and DataFrame.

e A table is registered with the DataFrame with a name. This registered name of the
table can be used in SQL statements.

e Then, all the other activities are just issuing SQL statements using the spark.sql
method. Here the object spark is of type the SparkSession.

e The result of all these SQL statements is stored as DataFrames and, just like the
RDD's collect action, DataFrame's show method is used to extract the values to
the Spark driver program.

¢ The aggregate value calculations are done in two different ways. One is in the
SQL statement way, which is the easiest way. The other is using the regular RDD-
style Spark transformations and Spark actions. This is to show that even
DataFrame can be operated like an RDD, and Spark transformations and Spark
actions can be applied on top of DataFrame.

e At times, it is easy to do some data manipulation activities through the functional
style operations using functions. So, there is a flexibility here to mix SQL, RDD,
and DataFrame to have a very convenient programming model to process data.

¢ The DataFrame contents are displayed in table format using the show method of
the DataFrame.

¢ A detailed view of the structure of the DataFrame is displayed using the
printSchema method. This is akin to the describe command of the database
tables.

At the Python REPL prompt, try the following statements:

>>> from pyspark.sql import Row
>>> # Creation of the list from where the RDD is going to be created
>>> acTransList = ["SB10001,1000", "sSB10002,1200", "SB10003,8000",
"SsB10004, 400", "sSB10005,300", "sSB10006,10000", "SB10007,500", "sSB10008,56",
"sB10009,30","sB10010,7000", "CR10001,7000", "SB10002,-10"]
>>> # Create the DataFrame
>>> acTransDF = sc.parallelize (acTransList) .map(lambda trans:
trans.split (",")) .map(lambda p: Row(accNo=p[0],
tranAmount=float (p[1]))) .toDF ()
>>> # Register temporary view in the DataFrame for using it in SQL
>>> acTransDF.createOrReplaceTempView ("trans")
>>> # Print the structure of the DataFrame
>>> acTransDF.printSchema ()
root

|-— accNo: string (nullable = true)
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| -— tranAmount: double (nullable = true)
>>> # Show the first few records of the DataFrame
>>> acTransDF.show ()

T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002 | -10.0]

>>> # Use SQL to create another DataFrame containing the good transaction
records

>>> goodTransRecords = spark.sql ("SELECT accNo, tranAmount FROM trans WHERE
accNo like 'SB%' AND tranAmount > 0")

>>> # Register temporary table in the DataFrame for using it in SQL

>>> goodTransRecords.createOrReplaceTempView ("goodtrans")

>>> # Show the first few records of the DataFrame

>>> goodTransRecords.show ()

+ 1
T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0|

| SB10010 | 7000.0]

>>> # Use SQL to create another DataFrame containing the high value
transaction records

>>> highValueTransRecords = spark.sql ("SELECT accNo, tranAmount FROM
goodtrans WHERE tranAmount > 1000")

>>> # Show the first few records of the DataFrame

>>> highValueTransRecords. show ()

+ + 1
T T T
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| accNo|tranAmount |

+ + 1
T T T

| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10006 | 10000.0]

| SB10010| 7000.0]

>>> §# Use SQL to create another DataFrame containing the bad account
records

>>> badAccountRecords = spark.sql ("SELECT accNo, tranAmount FROM trans
WHERE accNo NOT like 'SB%'")

>>> # Show the first few records of the DataFrame

>>> badAccountRecords.show ()

+ 1
T T

accNo | tranAmount |

+
T

+ + 1
T T T
+
T

CR10001 | 7000.0]

T T

>>> # Use SQL to create another DataFrame containing the bad amount records
>>> badAmountRecords = spark.sql ("SELECT accNo, tranAmount FROM trans WHERE
tranAmount < 0")

>>> # Show the first few records of the DataFrame

>>> badAmountRecords.show ()

+ 1
T T

accNo | tranAmount |

+ 1
T T

SB10002| -10.0]

T T

>>> # Do the union of two DataFrames and create another DataFrame
>>> badTransRecords = badAccountRecords.union (badAmountRecords)
>>> # Show the first few records of the DataFrame

>>> badTransRecords.show ()

I 1
T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

|CR10001 | 7000.0]|

| SB10002 | -10.0]

>>> # Calculate the sum

>>> sumAmount = spark.sql ("SELECT sum(tranAmount)as sum FROM goodtrans")
>>> # Show the first few records of the DataFrame

>>> sumAmount . show ()

tmm—————— +
I sum|
tmm—————— +
|28486.0|
tmm—————— +

>>> # Calculate the maximum
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>>> maxAmount = spark.sql ("SELECT max (tranAmount) as max FROM goodtrans")
>>> # Show the first few records of the DataFrame
>>> maxAmount . show ()

e +
| max |
e +
|]10000.0]|
e +

>>> # Calculate the minimum

>>> minAmount = spark.sql ("SELECT min (tranAmount)as min FROM goodtrans")
>>> # Show the first few records of the DataFrame

>>> minAmount .show ()

+——t

| min|

+——t

130.0]

+———t

>>> # Use SQL to create another DataFrame containing the good account
numbers

>>> goodAccNos = spark.sql ("SELECT DISTINCT accNo FROM trans WHERE accNo
like 'SB%' ORDER BY accNo")

>>> # Show the first few records of the DataFrame

>>> goodAccNos.show ()

| SB10001 |
| SB10002 |
| SB10003 |
| SB10004 |
| SB10005 |
| SB10006 |
| SB10007 |
| SB10008 |
| SB10009 |
| SB10010|

>>> §# Calculate the sum using mixing of DataFrame and RDD like operations
>>> sumAmountByMixing = goodTransRecords.rdd.map (lambda trans:
trans.tranAmount) .reduce (lambda a,b : a+b)

>>> sumAmountByMixing

28486.0

>>> # Calculate the maximum using mixing of DataFrame and RDD like
operations

>>> maxAmountByMixing = goodTransRecords.rdd.map (lambda trans:
trans.tranAmount) .reduce (lambda a,b : a if a > b else b)

>>> maxAmountByMixing

10000.0
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>>> # Calculate the minimum using mixing of DataFrame and RDD like
operations

>>> minAmountByMixing = goodTransRecords.rdd.map (lambda trans:
trans.tranAmount) .reduce (lambda a,b : a if a < b else b)

>>> minAmountByMixing

30.0

In the preceding Python code snippet, except for a few language-specific constructs such as
importing libraries and the definition of lambda functions, the style of programming is
almost the same, most of the time, as the Scala code. This is the advantage of Spark's
uniform programming model. As discussed earlier, when business analysts or data analysts
provide the SQL for data access, it is very easy to integrate that along with the data
processing code in Spark. This uniform programming style of coding is very useful for
organizations to use the language of their choice for developing data processing
applications in Spark.

On DataFrames, if applicable Spark transformations are applied, then a
Dataset is returned instead of a DataFrame. The concept of Dataset is
introduced toward the end of this chapter. There is a very strong
relationship between DataFrame and Dataset, and that is explained in the
section covering Datasets. While developing applications, caution must be
used in this kind of situation. For example, in the preceding code snippets,
if the following transformation is tried in Scala REPL, it will return a

dataset: val amount = goodTransRecords.map (trans =>
trans.getAs[Double] ("tranAmount") ) amount:
org.apache.spark.sqgl.Dataset [Double] = [value: double]

Programming with DataFrame API

In this section, the code snippets will be run in the appropriate language REPLs as a
continuation of the previous section so that the setup of the data and other initializations
are not repeated. Like the preceding code snippets, initially, some DataFrame-specific basic
commands are given. These are used regularly to see the contents and for doing some
sanity tests on the DataFrame and its contents. These are commands that are typically used
in the exploratory stage of the data analysis, quite often to get more insight into the
structure and contents of the underlying data.
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At the Scala REPL prompt, try the following statements:

scala> acTransDF.show

+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002 | -10.0]

scala> // Create the DataFrame using API for the good transaction records
scala> val goodTransRecords = acTransDF.filter("accNo like

'SB%'") .filter ("tranAmount > 0")

goodTransRecords: org.apache.spark.sql.Dataset [org.apache.spark.sql.Row] =
[accNo: string, tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> goodTransRecords.show

+ 1
T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0|

| SB10010| 7000.0]

T T T

scala> // Create the DataFrame using API for the high value transaction

records

scala> val highValueTransRecords = goodTransRecords.filter ("tranAmount >
1000")

highValueTransRecords:

org.apache.spark.sql.Dataset [org.apache.spark.sql.Row] = [accNo: string,

tranAmount: double]
scala> // Show the first few records of the DataFrame
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scala> highValueTransRecords.show

+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10006 | 10000.0]

| SB10010| 7000.0]|

scala> // Create the DataFrame using API for the bad account records

scala> val badAccountRecords = acTransDF.filter("accNo NOT like 'SB%'")
badAccountRecords: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[accNo: string, tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> badAccountRecords.show

+ 1
T T

accNo | tranAmount |

+
T

+ + 1
T T T
+
T

CR10001 | 7000.0]

T T

scala> // Create the DataFrame using API for the bad amount records

scala> val badAmountRecords = acTransDF.filter ("tranAmount < 0")
badAmountRecords: org.apache.spark.sql.Dataset [org.apache.spark.sql.Row] =
[accNo: string, tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> badAmountRecords.show

+ 1
T T

accNo | tranAmount |

+
T

I I 1
T T T
I
T

SB10002| -10.0]

T T

scala> // Do the union of two DataFrames

scala> val badTransRecords = badAccountRecords.union (badAmountRecords)
badTransRecords: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] =
[accNo: string, tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> badTransRecords.show

I 1
T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

|CR10001 | 7000.0]

| SB10002 | -10.0]

scala> // Calculate the aggregates in one shot

scala> val aggregates = goodTransRecords.agg(sum("tranAmount"),

max ("tranAmount"), min("tranAmount"))
aggregates: org.apache.spark.sql.DataFrame = [sum(tranAmount): double,
max (tranAmount) : double ... 1 more field]
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scala> // Show the first few records of the DataFrame
scala> aggregates.show

+ I I I
T T T T

| sum (tranAmount) |max (tranAmount) |min (tranAmount) |

+ I I I
T T T

| 28486.0] 10000.0]| 30.0]

scala> // Use DataFrame using API for creating the good account numbers
scala> val goodAccNos = acTransDF.filter ("accNo like

'SB%'") .select ("accNo") .distinct () .orderBy ("accNo")

goodAccNos: org.apache.spark.sql.Dataset[org.apache.spark.sqgl.Row] =
[accNo: string]

scala> // Show the first few records of the DataFrame

scala> goodAccNos.show

| SB10001 |
| SB10002 |
| SB10003 |
| SB10004 |
| SB10005 |
| SB10006 |
| SB10007 |
| SB10008 |
| SB10009 |
| SB10010|

scala> // Persist the data of the DataFrame into a Parquet file

scala> acTransDF.write.parquet ("scala.trans.parquet")

scala> // Read the data into a DataFrame from the Parquet file

scala> val acTransDFfromParquet = spark.read.parquet ("scala.trans.parquet")
acTransDFfromParquet: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]

scala> // Show the first few records of the DataFrame

scala> acTransDFfromParquet.show

I 1

T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10008 | 56.0|
| SB10009| 30.0]
|CR10001 | 7000.0]
| SB10002 | -10.0]
| SB10001 | 1000.0]
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| SB10004 | 400.0]
| SB10007| 500.0]

| SB10010| 7000.0]

T

T T

Here is the summary of what the preceding script did from a DataFrame API perspective:

The DataFrame containing the superset of data used in the preceding section is
used here.

Filtering of the records is demonstrated next. Here, the most important aspect to
notice is that the filter predicate is to be given exactly like the predicates in the
SQL statements. Filters can be chained.

The aggregation methods are calculated in one go as three columns in the
resultant DataFrame.

The final statements in this set are doing the selection, filtering, choosing distinct
records, and ordering in one single chained statement.

Finally, the transaction records are persisted in Parquet format, read from the
Parquet store and create a DataFrame. More details on the persistence formats is
coming in the following section.

In this code snippet, the Parquet format data is stored in the current directory
from where the corresponding REPL is invoked. When it is run as a Spark
program, the directory again will be the current directory from where the Spark
submit is invoked.

At the Python REPL prompt, try the following statements:

>>> acTransDF.show ()

I

I 1

+

T T

| accNo|tranAmount |

I

I 1

+

T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002 | -10.0]

+

T T

>>> # Print the structure of the DataFrame
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>>> acTransDF.printSchema ()
root
|-— accNo: string (nullable = true)
| -— tranAmount: double (nullable = true)
>>> # Create the DataFrame using API for the good transaction records
>>> goodTransRecords = acTransDF.filter ("accNo like
'SB%'") .filter ("tranAmount > 0")
>>> # Show the first few records of the DataFrame
>>> goodTransRecords.show ()
| accNo|tranAmount |

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]

| SB10010 | 7000.0]

>>> # Create the DataFrame using API for the high value transaction records
>>> highValueTransRecords = goodTransRecords.filter ("tranAmount > 1000")
>>> # Show the first few records of the DataFrame

>>> highValueTransRecords.show ()

+ 1
T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10006 | 10000.0]

| SB10010| 7000.0]|

>>> # Create the DataFrame using API for the bad account records
>>> badAccountRecords = acTransDF.filter ("accNo NOT like 'SB%'")
>>> # Show the first few records of the DataFrame

>>> badAccountRecords.show ()

I 1
T T

accNo | tranAmount |

I
T

+ + 1
T T T
+
T

CR10001 | 7000.0]

T T

>>> §# Create the DataFrame using API for the bad amount records
>>> badAmountRecords = acTransDF.filter ("tranAmount < 0")

>>> # Show the first few records of the DataFrame

>>> badAmountRecords.show ()
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+ 1
T T

accNo | tranAmount |

+ 1
T T

SB10002| -10.0]

T T

>>> # Do the union of two DataFrames and create another DataFrame
>>> badTransRecords = badAccountRecords.union (badAmountRecords)
>>> # Show the first few records of the DataFrame

>>> badTransRecords.show ()

+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

|CR10001 | 7000.0]

| SB10002 | -10.0]

>>> # Calculate the sum

>>> sumAmount = goodTransRecords.agg({"tranAmount": "sum"})
>>> # Show the first few records of the DataFrame

>>> sumAmount . show ()

I
T

sum (tranAmount) |

+
T
+ I
T T
+
T

28486.0]

T

>>> # Calculate the maximum

>>> maxAmount = goodTransRecords.agg({"tranAmount": "max"})
>>> # Show the first few records of the DataFrame

>>> maxAmount . show ()

I
T

max (tranAmount) |

I
T
I I
T T
I
T

10000.0]|

T

>>> # Calculate the minimum

>>> minAmount = goodTransRecords.agg({"tranAmount": "min"})
>>> # Show the first few records of the DataFrame

>>> minAmount .show ()

I
T

min (tranAmount) |

I
T
I I
T T
+
T

30.0]

T

>>> # Create the DataFrame using API for the good account numbers
>>> goodAccNos = acTransDF.filter ("accNo like

'SB%'") .select ("accNo") .distinct () .orderBy ("accNo")

>>> # Show the first few records of the DataFrame

>>> goodAccNos.show ()
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| SB10001 |
| SB10002 |
| SB10003 |
| SB10004 |
| SB10005 |
| SB10006 |
| SB10007 |
| SB10008 |
| SB10009 |
| SB10010|

>>> §# Persist the data of the DataFrame into a Parquet file

>>> acTransDF.write.parquet ("python.trans.parquet")

>>> # Read the data into a DataFrame from the Parquet file

>>> acTransDFfromParquet = spark.read.parquet ("python.trans.parquet")
>>> # Show the first few records of the DataFrame

>>> acTransDFfromParquet.show ()

| accNo|tranAmount |

+ 1
T T

| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10008 | 56.0|
| SB10009| 30.0|
|CR10001 | 7000.0]
| SB10002 | -10.0]
| SB10001 | 1000.0]
| SB10004 | 400.0]
| SB10007| 500.0]

| SB10010| 7000.0]

I
T T T

In the preceding Python code snippet, except for a very few variations in the aggregation
calculations, the programming constructs are almost similar to its Scala counterpart.

The last few statements of the preceding Scala and Python sections are about the persisting
of the DataFrame contents into the media. The writing and reading operations are very
much required in any kind of data processing operations, but most of the tools don't have a
uniform way of writing and reading. Spark SQL is different. The DataFrame API comes
with a rich set of persistence mechanisms. It is very easy to write contents of a DataFrame
into many supported persistence stores. All these writing and reading operations have very
simple DSL style interfaces. Here are some of the built-in formats in which DataFrames can
be written to and read from.
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Apart from these, there are so many other external data sources supported through third-
party packages:

e JSON

e Parquet

¢ Hive
MySQL
PostgreSQL
HDFS
Plain Text
Amazon S3
e ORC

JDBC

The write and read of DataFrame into and from Parquet has been demonstrated in the
preceding code snippets. All the preceding inherently supported data stores have very
simple DSL style syntax for persistence and reading back, which makes the programming
style uniform once again. The DataFrame API reference is a great source to know about the
details of dealing with each of these data stores.

The sample code in this chapter persists data in Parquet and JSON formats. The data store
location names chosen are python.trans.parquet, scala.trans.parquet, and so on.
This is just to give an indication of which programming language is used and which is the
format of the data. This is not a proper convention but a convenience. When one run of the
program is completed, these directories would have been created. Next time the same
program is run, it will try to create the same and will result in an error. The workaround is
to remove the directories manually, before the subsequent runs, and proceed. Proper error
handling mechanisms and other nuances of fine programming are going to dilute the focus
and hence are deliberately left out of this book.

Understanding Aggregations in Spark SQL

In SQL, aggregation of data is very flexible. The same thing is true in Spark SQL too. Instead
of running SQL statements on a single data source located in a single machine, here Spark
SQL can do the same on distributed data sources. In the previous chapter, a MapReduce use
case was discussed to do data aggregation and the same is being used here to demonstrate
the aggregation capabilities of Spark SQL. In this section also, the use cases are approached
in the SQL query way as well as in the DataFrame API way.
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The use cases selected for elucidating the MapReduce kind of data processing here are
given as follows:

¢ The retail banking transaction records come with account number and
transaction amount in comma-separated strings

¢ Find an account level summary of all the transactions to get the account balance

At the Scala REPL prompt, try the following statements:

scala> // Define the case classes for using in conjunction with DataFrames
scala> case class Trans (accNo: String, tranAmount: Double)

defined class Trans

scala> // Functions to convert the sequence of strings to objects defined
by the case classes

scala> def toTrans = (trans: Seq[String]) => Trans(trans(0),

trans(l) .trim.toDouble)

toTrans: Seq[String] => Trans

scala> // Creation of the list from where the RDD is going to be created
scala> val acTranslList = Array("SB10001,1000",

"sB10002,1200", "sB10001,8000", "sB10002,400", "sSB10003,300",
"sSB10001,10000","SB10004,500","sSB10005,56",

"sB10003,30","sB10002,7000", "sSB10001,-100", "sSB10002,-10")

acTransList: Array[String] = Array(SB10001,1000, SB10002,1200,
SB10001,8000, sB10002,400, SB10003,300, SB10001,10000, SB10004, 500,
SB10005,56, SB10003,30, SB10002,7000, SB10001,-100, SB10002,-10)

scala> // Create the DataFrame

scala> val acTransDF =

sc.parallelize (acTransList) .map(_.split (", ")) .map(toTrans(_)) .toDF ()
acTransDF: org.apache.spark.sql.DataFrame = [accNo: string, tranAmount:
double]

scala> // Show the first few records of the DataFrame

scala> acTransDF.show

+ 4
T T

| accNo|tranAmount |

+ 4
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10001 | 8000.0]
| SB10002 | 400.0]
| SB10003| 300.0]
| SB10001 | 10000.0]
| SB10004 | 500.0]
| SB10005| 56.0]|
| SB10003| 30.0]
| SB10002 | 7000.0]
| SB10001 | -100.0]
| SB10002 | -10.0]|
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+ + 1
T T T

scala> // Register temporary view in the DataFrame for using it in SQL
scala> acTransDF.createOrReplaceTempView ("trans")

scala> // Use SQL to create another DataFrame containing the account
summary records

scala> val acSummary = spark.sql ("SELECT accNo, sum(tranAmount) as
TransTotal FROM trans GROUP BY accNo")

acSummary: org.apache.spark.sql.DataFrame = [accNo: string, TransTotal:
double]

scala> // Show the first few records of the DataFrame

scala> acSummary.show

+ 1
T T

| accNo|TransTotall|

+ 1
T T

| SB10005 | 56.0|
| SB10004 | 500.0]
| SB10003| 330.0]
| SB10002 | 8590.0]

| SB10001 | 18900.0]

scala> // Create the DataFrame using API for the account summary records
scala> val acSummaryViaDFAPI =

acTransDF .groupBy ("accNo") .agg (sum("tranAmount") as "TransTotal")
acSummaryViaDFAPI: org.apache.spark.sql.DataFrame = [accNo: string,
TransTotal: double]

scala> // Show the first few records of the DataFrame

scala> acSummaryViaDFAPI.show

+ 1
T T

| accNo|TransTotall|

I 1
T T

| SB10005 | 56.0|
| SB10004 | 500.0]
| SB10003| 330.0]
| SB10002 | 8590.0]

| SB10001 | 18900.0]

T T T

In this code snippet, everything is very similar to the preceding section's code. The only
difference is that, here, aggregations are used in the SQL queries as well as in the
DataFrame API.

At the Python REPL prompt, try the following statements:

>>> from pyspark.sql import Row

>>> # Creation of the list from where the RDD is going to be created
>>> acTransList = ["SB10001,1000", "sB10002,1200",

"SB10001,8000", "SB10002,400", "SB10003,300",
"SB10001,10000","SB10004,500","SB10005,56", "sB10003,30", "SB10002, 7000",
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"sB10001,-100", "SB10002,-10"]

>>> # Create the DataFrame

>>> acTransDF = sc.parallelize (acTransList) .map(lambda trans:
trans.split (", ")) .map(lambda p: Row(accNo=p[0],
tranAmount=£float (p[1]))) .toDF ()

>>> # Register temporary view in the DataFrame for using it in SQL

>>> acTransDF.createOrReplaceTempView ("trans")

>>> # Use SQL to create another DataFrame containing the account summary
records

>>> acSummary = spark.sql ("SELECT accNo, sum(tranAmount) as transTotal FROM
trans GROUP BY accNo")

>>> # Show the first few records of the DataFrame

>>> acSummary.show ()

+ 1
T T

| accNo|transTotal|

+ 1
T T

| SB10005 | 56.0|
| SB10004 | 500.0]
| SB10003| 330.0]
| SB10002 | 8590.0]

| SB10001 | 18900.0]

>>> §# Create the DataFrame using API for the account summary records
>>> acSummaryViaDFAPI = acTransDF.groupBy ("accNo") .agg ({"tranAmount":
"sum"}) .selectExpr ("accNo", " sum(tranAmount)’ as transTotal")

>>> # Show the first few records of the DataFrame

>>> acSummaryViaDFAPI.show ()

+ 1

T T

| accNo|transTotall|

I 1
T T

| SB10005 | 56.0|
| SB10004 | 500.0]
| SB10003| 330.0]
| SB10002 | 8590.0]

| SB10001 | 18900.0]

T T T

In the DataFrame API for Python, there are some minor syntax differences as compared to
its Scala counterpart.
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Understanding multi-datasource joining with
SparkSQL

In the previous chapter, the joining of multiple RDDs based on the key has been discussed.
In this section, the same use case is implemented using Spark SQL. The use cases selected
for elucidating the joining of multiple datasets using a key are given here.

The first dataset contains a retail banking master records summary with account number,
first name, and last name. The second dataset contains the retail banking account balance
with account number and balance amount. The key on both of the datasets is account
number. Join the two datasets and create one dataset containing account number, first
name, last name, and balance amount. From this report, pick up the top three accounts in
terms of the balance amount.

In this section, the concept of joining data from multiple data sources is also demonstrated.
First the DataFrames are created from two arrays. They are persisted in Parquet and JSON
formats. Then they are read from the disk to form the DataFrames, and they are joined
together.

At the Scala REPL prompt, try the following statements:

scala> // Define the case classes for using in conjunction with DataFrames
scala> case class AcMaster (accNo: String, firstName: String, lastName:
String)

defined class AcMaster

scala> case class AcBal (accNo: String, balanceAmount: Double)

defined class AcBal

scala> // Functions to convert the sequence of strings to objects defined
by the case classes

scala> def toAcMaster = (master: Seq[String]) => AcMaster (master (0),
master (1), master(2))

toAcMaster: Seq[String] => AcMaster

scala> def toAcBal = (bal: Seq[String]) => AcBal(bal(0),

bal(l) .trim.toDouble)

toAcBal: Seq[String] => AcBal

scala> // Creation of the list from where the RDD is going to be created
scala> val acMasterlList =

Array ("SB10001, Roger,Federer", "SB10002, Pete, Sampras",
"SB10003,Rafael,Nadal", "SB10004, Boris,Becker", "SB10005,Ivan,Lendl")
acMasterList: Array[String] = Array(SB10001,Roger, Federer,
SB10002, Pete, Sampras, SB10003,Rafael,Nadal, SB10004,Boris, Becker,
SB10005, Ivan, Lendl)

scala> // Creation of the list from where the RDD is going to be created
scala> val acBallist = Array("SB10001,50000",
"sB10002,12000","SB10003,3000", "sSB10004,8500", "SB10005,5000")
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acBallist: Array[String] = Array(SB10001,50000, SB10002,12000,
SB10003,3000, sSB10004,8500, sSB10005,5000)

scala> // Create the DataFrame

scala> val acMasterDF =

sc.parallelize (acMasterList) .map(_.split (",")) .map (toAcMaster(_)) .toDF ()
acMasterDF: org.apache.spark.sql.DataFrame = [accNo: string, firstName:
string ... 1 more field]

scala> // Create the DataFrame

scala> val acBalDF =

sc.parallelize (acBallist) .map(_.split(",")) .map(toAcBal(_)) .toDF ()
acBalDF: org.apache.spark.sql.DataFrame = [accNo: string, balanceAmount:
double]

scala> // Persist the data of the DataFrame into a Parquet file

scala> acMasterDF.write.parquet ("scala.master.parquet")

scala> // Persist the data of the DataFrame into a JSON file

scala> acBalDF.write.json("scalaMaster.json")

scala> // Read the data into a DataFrame from the Parquet file

scala> val acMasterDFFromFile = spark.read.parquet ("scala.master.parquet")
acMasterDFFromFile: org.apache.spark.sql.DataFrame = [accNo: string,
firstName: string ... 1 more field]

scala> // Register temporary view in the DataFrame for using it in SQL
scala> acMasterDFFromFile.createOrReplaceTempView ("master")

scala> // Read the data into a DataFrame from the JSON file

scala> val acBalDFFromFile = spark.read.json("scalaMaster.json")
acBalDFFromFile: org.apache.spark.sql.DataFrame = [accNo: string,
balanceAmount: double]

scala> // Register temporary view in the DataFrame for using it in SQL
scala> acBalDFFromFile.createOrReplaceTempView ("balance")

scala> // Show the first few records of the DataFrame

scala> acMasterDFFromFile.show

I I 1
T T T

| accNo|firstName|lastName|

I I 1
T T T

| SB10001 | Roger| Federer|
| SB10002 | Pete| Sampras|
| SB10003| Rafael| Nadal|
| SB10004 | Boris| Becker|

| SB10005 | Ivan| Lendl|

I 1
T T T T

scala> acBalDFFromFile.show

I I
T T

accNo |balanceAmount |

+ I
T T

| SB10001 | 50000.0]
| SB10002 | 12000.0]
| SB10003| 3000.0]
| SB10004 | 8500.0]
| SB10005 | 5000.0]
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+ + I
T T T

scala> // Use SQL to create another DataFrame containing the account detail
records

scala> val acDetail = spark.sql ("SELECT master.accNo, firstName, lastName,
balanceAmount FROM master, balance WHERE master.accNo = balance.accNo ORDER
BY balanceAmount DESC")

acDetail: org.apache.spark.sql.DataFrame = [accNo: string, firstName:
string ... 2 more fields]

scala> // Show the first few records of the DataFrame

scala> acDetail.show

+ I 1 1
T T T T

| accNo|firstName|lastName|balanceAmount |

+ I 1 1
T T T T

|SB10001 | Roger| Federer| 50000.0]
|SB10002 | Pete| Sampras| 12000.0]
| SB10004 | Boris| Becker| 8500.0|
| SB10005 | Ivan| Lendl| 5000.0]|

|SB10003| Rafael| Nadal| 3000.0]

I 1
T T T T T

Continuing from the same Scala REPL session, the following lines of code get the same
result through the DataFrame API:

scala> // Create the DataFrame using API for the account detail records
scala> val acDetailFromAPI = acMasterDFFromFile.join(acBalDFFromFile,
acMasterDFFromFile ("accNo") === acBalDFFromFile ("accNo"),

"inner") .sort ($"balanceAmount" .desc) .select (acMasterDFFromFile ("accNo"),
acMasterDFFromFile ("firstName"), acMasterDFFromFile ("lastName"),
acBalDFFromFile ("balanceAmount"))

acDetailFromAPI: org.apache.spark.sql.DataFrame = [accNo: string,
firstName: string ... 2 more fields]

scala> // Show the first few records of the DataFrame

scala> acDetailFromAPI.show

| accNo|firstName|lastName|balanceAmount |

+ I 1 1
T T T T

|SB10001 | Roger| Federer| 50000.0]
|SB10002 | Pete| Sampras| 12000.0]
| SB10004 | Boris| Becker| 8500.0]|
| SB10005 | Ivan| Lendl| 5000.0]|

|SB10003| Rafael| Nadal| 3000.0]

I 1
T T T T T

scala> // Use SQL to create another DataFrame containing the top 3 account
detail records

scala> val acDetailTop3 = spark.sql ("SELECT master.accNo, firstName,
lastName, balanceAmount FROM master, balance WHERE master.accNo =
balance.accNo ORDER BY balanceAmount DESC") .limit (3)

acDetailTop3: org.apache.spark.sql.Dataset [org.apache.spark.sql.Row] =
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[accNo: string, firstName: string ... 2 more fields]
scala> // Show the first few records of the DataFrame
scala> acDetailTop3.show

+ I 1 1

T T T T

| accNo|firstName|lastName|balanceAmount |

+ I 1 1
T T T T

|SB10001 | Roger| Federer| 50000.0]
|SB10002 | Pete| Sampras| 12000.0]

|SB10004 | Boris| Becker| 8500.0]|

I 1
T T T T T

The join type selected in the preceding section of the code is inner join. Instead of that, any
other type of join can be used, either through the SQL query way or through the DataFrame
API way. In this particular use case, it can be seen that the DataFrame API is becoming a bit
clunky, while the SQL query looks very straightforward. The point here is that depending
on the situation, in the application code, the SQL query way and the DataFrame API way
can be mixed to produce the desired result. The DataFrame acDetailTop3 given in the
following scripts is an example of that.

At the Python REPL prompt, try the following statements:

>>> from pyspark.sql import Row

>>> # Creation of the list from where the RDD is going to be created
>>> AcMaster = Row('accNo', 'firstName', 'lastName')

>>> AcBal = Row('accNo', 'balanceAmount')

>>> acMasterList = ["SB10001,Roger,Federer", "SB10002,Pete, Sampras",
"SB10003,Rafael,Nadal", "SB10004,Boris, Becker", "SB10005,Ivan,Lendl"]
>>> acBallist = ["SB10001,50000", "sSB10002,12000","SB10003,3000",
"SB10004,8500", "SB10005,5000"]

>>> # Create the DataFrame

>>> acMasterDF = sc.parallelize (acMasterList) .map(lambda trans:
trans.split (", ")) .map(lambda r: AcMaster(*r)) .toDF()

>>> acBalDF = sc.parallelize(acBallist) .map(lambda trans:
trans.split (",")) .map(lambda r: AcBal(r[0], float(r[1]))).toDF()

>>> # Persist the data of the DataFrame into a Parquet file

>>> acMasterDF.write.parquet ("python.master.parquet")

>>> # Persist the data of the DataFrame into a JSON file

>>> acBalDF.write.json ("pythonMaster.json")

>>> # Read the data into a DataFrame from the Parquet file

>>> acMasterDFFromFile = spark.read.parquet ("python.master.parquet")
>>> # Register temporary table in the DataFrame for using it in SQL
>>> acMasterDFFromFile.createOrReplaceTempView ("master")

>>> # Register temporary table in the DataFrame for using it in SQL
>>> acBalDFFromFile = spark.read.json("pythonMaster.json")

>>> # Register temporary table in the DataFrame for using it in SQL
>>> acBalDFFromFile.createOrReplaceTempView ("balance")

>>> # Show the first few records of the DataFrame

[94]



Spark SQL

>>> acMasterDFFromFile.show ()

+ I 1
T T T

| accNo|firstName|lastName|

+ I 1
T T T

| SB10001 | Roger| Federer|
| SB10002 | Pete| Sampras|
| SB10003| Rafael| Nadal|
| SB10004 | Boris| Becker|

| SB10005 | Ivan| Lendl |

I 1
T T T T

>>> # Show the first few records of the DataFrame
>>> acBalDFFromFile.show ()

+ I
T T

\
+
| accNo|balanceAmount |
R
+

+ I
T T

| SB10001 | 50000.0]
| SB10002 | 12000.0]
| SB10003| 3000.0]
| SB10004 | 8500.0]

| SB10005 | 5000.0]|

>>> # Use SQL to create another DataFrame containing the account detail
records

>>> acDetail = spark.sql ("SELECT master.accNo, firstName, lastName,
balanceAmount FROM master, balance WHERE master.accNo = balance.accNo ORDER
BY balanceAmount DESC")

>>> # Show the first few records of the DataFrame

>>> acDetail.show()

I I 1 1
T T T T

| accNo|firstName|lastName|balanceAmount |

I I 1 1
T T T T

|SB10001 | Roger| Federer| 50000.0]
|SB10002 | Pete| Sampras| 12000.0]
| SB10004 | Boris| Becker| 8500.0|
| SB10005 | Ivan| Lendl| 5000.0]|

|SB10003| Rafael| Nadal| 3000.0]

I 1
T T T T T

>>> # Create the DataFrame using API for the account detail records
>>> acDetailFromAPI = acMasterDFFromFile.join(acBalDFFromFile,
acMasterDFFromFile.accNo ==
acBalDFFromFile.accNo) .sort (acBalDFFromFile.balanceAmount,
ascending=False) .select (acMasterDFFromFile.accNo,
acMasterDFFromFile.firstName, acMasterDFFromFile.lastName,
acBalDFFromFile.balanceAmount)

>>> # Show the first few records of the DataFrame

>>> acDetailFromAPI.show ()

+ + I 1 1
T T T T T

| accNo|firstName|lastName|balanceAmount |
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+ + I 1 1
T T T T T

|SB10001 | Roger| Federer| 50000.0]
|SB10002 | Pete| Sampras| 12000.0]
| SB10004 | Boris| Becker| 8500.0|
| SB10005 | Ivan| Lendl | 5000.0]|

|SB10003| Rafael| Nadal| 3000.0]

I 1
T T T T T

>>> # Use SQL to create another DataFrame containing the top 3 account
detail records

>>> acDetailTop3 = spark.sql ("SELECT master.accNo, firstName, lastName,
balanceAmount FROM master, balance WHERE master.accNo = balance.accNo ORDER
BY balanceAmount DESC") .limit (3)

>>> # Show the first few records of the DataFrame

>>> acDetailTop3.show()

+ I 1 1
T T T T

| accNo|firstName|lastName|balanceAmount |

+ I 1 1
T T T T

|SB10001 | Roger| Federer| 50000.0]
|SB10002 | Pete| Sampras| 12000.0]

|SB10004 | Boris| Becker| 8500.0]|

I 1
T T T T T

In the preceding sections, application of the RDD operations on DataFrame has been
demonstrated. This shows the capability of Spark SQL to interoperate with the RDDs and
vice versa. In the same way, SQL queries and the DataFrame API can be mixed in to have
flexibility to use the easiest method of computation when solving real-world use cases in
the applications.

Introducing datasets

The Spark programming paradigm has many abstractions to choose from when it comes to
developing data processing applications. The fundamentals of Spark programming start
with RDDs that can easily deal with unstructured, semi-structured, and structured data.
The Spark SQL library offers highly optimized performance when processing structured
data. This makes the basic RDDs look inferior in terms of performance. To fill this gap, from
Spark 1.6 onwards, a new abstraction, named Dataset, was introduced that complements
the RDD-based Spark programming model. It works pretty much the same way as RDD
when it comes to Spark transformations and Spark actions, and at the same time, it is highly
optimized like the Spark SQL. Dataset API provides strong compile-time type safety when
it comes to writing programs and, because of that, the Dataset API is available only in Scala
and Java.
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The transaction banking use case discussed in the chapter covering the Spark programming
model is taken up again here to elucidate the dataset-based programming model, because
this programming model has a very close resemblance to RDD-based programming. The
use case mainly deals with a set of banking transaction records and various processing done
on those records to extract various information from it. The use case descriptions are not
repeated here and it is not difficult to understand by looking at the comments and the code.

The following code snippet demonstrates the methods used to create Dataset, along with its
usage, conversion of RDD to DataFrame, and conversion of DataFrame to dataset. The RDD
to DataFrame conversion has already been discussed, but is captured here again to to keep
the concepts in context. This is mainly to prove that various programming models in Spark
and the data abstractions are highly interoperable.

At the Scala REPL prompt, try the following statements:

scala> // Define the case classes for using in conjunction with DataFrames
and Dataset

scala> case class Trans (accNo: String, tranAmount: Double)

defined class Trans

scala> // Creation of the list from where the Dataset is going to be
created using a case class.

scala> val acTranslList = Seq(Trans("SB10001", 1000), Trans("SB10002",1200),
Trans ("SB10003", 8000), Trans("SB10004",400), Trans("SB10005",300),
Trans ("SB10006",10000), Trans("SB10007",500), Trans("SB10008",56),
Trans ("SB10009", 30) , Trans ("SB10010",7000), Trans("CR10001",7000),
Trans ("SB10002",-10))

acTransList: Seq[Trans] = List (Trans(SB10001,1000.0),

Trans (SB10002,1200.0), Trans(SB10003,8000.0), Trans(SB10004,400.0),
Trans (SB10005,300.0), Trans(SB10006,10000.0), Trans(SB10007,500.0),
Trans (SB10008,56.0), Trans(SB10009,30.0), Trans(SB10010,7000.0),
Trans (CR10001,7000.0), Trans(SB10002,-10.0))

scala> // Create the Dataset

scala> val acTransDS = acTransList.toDS ()

acTransDS: org.apache.spark.sql.Dataset[Trans] = [accNo: string,
tranAmount: double]

scala> acTransDS.show()

+ 4
L T

-3
+
| accNo|tranAmount |
-3
+

+ 4
L T

| SB10001 | 1000.0]
| SB10002| 1200.0]
| SB10003| 8000.0]
| SB10004 | 400.0]
| SB10005| 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0]|
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| SB10009| 30.0|
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002 | -10.0]

scala> // Apply filter and create another Dataset of good transaction
records

scala> val goodTransRecords = acTransDS.filter (_.tranAmount >

0) .filter (_.accNo.startsWith("SB"))

goodTransRecords: org.apache.spark.sql.Dataset[Trans] = [accNo: string,
tranAmount: double]

scala> goodTransRecords.show ()

+ 1

T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]

| SB10010| 7000.0]

scala> // Apply filter and create another Dataset of high value transaction

records

scala> val highValueTransRecords = goodTransRecords.filter(_.tranAmount >
1000)

highValueTransRecords: org.apache.spark.sql.Dataset[Trans] = [accNo:

string, tranAmount: double]
scala> highValueTransRecords.show ()

I 1
T T

\
+
| accNo|tranAmount |
R
+

I 1
T T

| SB10002 | 1200.0]
| SB10003| 8000.0]
| SB10006 | 10000.0]

| SB10010| 7000.0]

scala> // The function that identifies the bad amounts

scala> val badAmountLambda = (trans: Trans) => trans.tranAmount <= 0
badAmountLambda: Trans => Boolean = <functionl>

scala> // The function that identifies bad accounts

scala> val badAcNolLambda = (trans: Trans) => trans.accNo.startsWith("SB")
== false

badAcNoLambda: Trans => Boolean = <functionl>

[98]



Spark SQL

scala> // Apply filter and create another Dataset of bad amount records
scala> val badAmountRecords = acTransDS.filter (badAmountLambda)
badAmountRecords: org.apache.spark.sql.Dataset[Trans] = [accNo: string,
tranAmount: double]

scala> badAmountRecords.show ()

+ 1

| accNo|tranAmount |
| SB10002 | -10.0]

T T

scala> // Apply filter and create another Dataset of bad account records
scala> val badAccountRecords = acTransDS.filter (badAcNoLambda)
badAccountRecords: org.apache.spark.sql.Dataset [Trans] = [accNo: string,
tranAmount: double]

scala> badAccountRecords.show ()

T T

accNo | tranAmount |

+
T

+ + 1
T T T
+
T

CR10001 | 7000.0]

T T

scala> // Do the union of two Dataset and create another Dataset
scala> val badTransRecords = badAmountRecords.union (badAccountRecords)
badTransRecords: org.apache.spark.sql.Dataset[Trans] = [accNo: string,
tranAmount: double]

scala> badTransRecords.show ()

| accNo|tranAmount |

+ 1
T T

| SB10002| -10.0]

|CR10001 | 7000.0]|

scala> // Calculate the sum

scala> val sumAmount = goodTransRecords.map (trans =>
trans.tranAmount) .reduce (_ + _)

sumAmount: Double = 28486.0

scala> // Calculate the maximum

scala> val maxAmount = goodTransRecords.map (trans =>
trans.tranAmount) .reduce((a, b) => if (a > b) a else b)
maxAmount: Double = 10000.0

scala> // Calculate the minimum

scala> val minAmount = goodTransRecords.map (trans =>
trans.tranAmount) .reduce((a, b) => if (a < b) a else b)
minAmount: Double = 30.0

scala> // Convert the Dataset to DataFrame

scala> val acTransDF = acTransDS.toDF ()

acTransDF: org.apache.spark.sql.DataFrame = [accNo: string, tranAmount:
double]

scala> acTransDF.show ()
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+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
| SB10003 | 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0]
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002| -10.0]

scala> // Use Spark SQL to find out invalid transaction records

scala> acTransDF.createOrReplaceTempView ("trans")

scala> val invalidTransactions = spark.sql ("SELECT accNo, tranAmount FROM
trans WHERE (accNo NOT LIKE 'SB%') OR tranAmount <= 0")
invalidTransactions: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]

scala> invalidTransactions.show()

+ 1
T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

|CR10001 | 7000.0]|

| SB10002| -10.0]

scala> // Interoperability of RDD, DataFrame and Dataset

scala> // Create RDD

scala> val acTransRDD = sc.parallelize (acTransList)

acTransRDD: org.apache.spark.rdd.RDD[Trans] = ParallelCollectionRDD[206] at
parallelize at <console>:28

scala> // Convert RDD to DataFrame

scala> val acTransRDDtoDF = acTransRDD.toDF ()

acTransRDDtoDF: org.apache.spark.sql.DataFrame = [accNo: string,
tranAmount: double]

scala> // Convert the DataFrame to Dataset with the type checking
scala> val acTransDFtoDS = acTransRDDtoDF.as|[Trans]

acTransDFtoDS: org.apache.spark.sql.Dataset [Trans] = [accNo: string,
tranAmount: double]

scala> acTransDFtoDS.show()

+ 1

T T

\
+
| accNo|tranAmount |
R
+

+ 1
T T

| SB10001 | 1000.0]
| SB10002 | 1200.0]
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| SB10003| 8000.0]
| SB10004 | 400.0]
| SB10005 | 300.0]
| SB10006 | 10000.0]
| SB10007| 500.0]
| SB10008 | 56.0|
| SB10009| 30.0|
| SB10010| 7000.0]
|CR10001 | 7000.0]

| SB10002 | -10.0]

T T T

It is very clear that the dataset-based programming has good applicability in many of the
data processing use cases; at the same time, it has got high interoperability with other data
processing abstractions within Spark itself.

In the preceding code snippet, the DataFrame was converted to Dataset
with a type specification acTransRDDToDF . as [Trans]. This type of
conversion is really required when reading data from external data
sources such as JSON, Avro, or Parquet files. That is when strong type
checking is needed. Typically, structured data is read into DataFrame, and
that can be converted to DataSet with strong type safety check like this in
one shot: spark.read.json ("/transaction.json") .as[TIrans]

If the Scala code snippets throughout this chapter are examined, when some of the methods
are called on a DataFrame, instead of returning a DataFrame object, an object of type
org.apache.spark.sqgl.Dataset [org.apache.spark.sqgl.Row] is returned. This is
the important relationship between DataFrame and dataset. In other words, DataFrame is a
dataset of type org.apache. spark.sql.Row. If required, this object of type
org.apache.spark.sql.Dataset [org.apache.spark.sqgl.Row] can be explicitly
converted to DataFrame using the toDF () method.

Too many choices confuse everybody. Here in the Spark programming model, the same
problem is seen. But it is not as confusing as in many other programming paradigms.
Whenever there is a need to process any kind of data with very high flexibility in terms of
the data processing requirements and having the lowest API level control such as library
development, the RDD-based programming model is ideal. Whenever there is a need to
process structured data with flexibility for accessing and processing data with optimized
performance across all the supported programming languages, the DataFrame-based Spark
SQL programming model is ideal.
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Whenever there is a need to process unstructured data with optimized performance
requirements as well as compile-time type safety but not very complex Spark
transformations and Spark actions usage requirements, the dataset-based programming
model is ideal. At a data processing application development level, if the programming
language of choice permits, it is better to use dataset and DataFrame to have better
performance.

Understanding Data Catalogs

The previous sections of this chapter covered programming models with DataFrames and
datasets. Both of these programming models can deal with structured data. The structured
data comes with metadata or the data describing the structure of the data. Spark SQL
provides a minimalist API known as Catalog API for data processing applications to query
and use the metadata in the applications. The Catalog API exposes a catalog abstraction
with many databases in it. For the regular SparkSession, it will have only one database,
namely default. But if Spark is used with Hive, then the entire Hive meta store will be
available through the Catalog API. The following code snippets demonstrate the usage of
Catalog API in Scala and Python.

Continuing from the same Scala REPL prompt, try the following statements:

scala> // Get the catalog object from the SparkSession object

scala> val catalog = spark.catalog

catalog: org.apache.spark.sql.catalog.Catalog =
org.apache.spark.sql.internal.CatalogImpl@14b8a751

scala> // Get the list of databases

scala> val dblList = catalog.listDatabases()

dbList: org.apache.spark.sql.Dataset[org.apache.spark.sql.catalog.Database]

= [name: string, description: string ... 1 more field]
scala> // Display the details of the databases
scala> dblList.select ("name", "description", "locationUri") .show()

4 + 4

T L T

name| description| locationUri|

4
T
4 4 +
T
4
T

T L

default |default database|file:/Users/RajT/...

4 +
T L

+ — +

scala> // Display the details of the tables in the database

scala> val tablelist = catalog.listTables()
tablelist: org.apache.spark.sql.Dataset[org.apache.spark.sql.catalog.Table]
= [name: string, database: string ... 3 more fields]

scala> tableList.show()

T T L L T -

| name|database|description|tableType|isTemporary|

4 4 + + + +
T T L L T -
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|trans| null| null|TEMPORARY| true|
scala> // The above list contains the temporary view that was created in
the Dataset use case discussed in the previous section
// The views created in the applications can be removed from the database
using the Catalog API
scala> catalog.dropTempView ("trans")
// List the available tables after dropping the temporary view
scala> val latestTableList = catalog.listTables()

latestTableList:
org.apache.spark.sql.Dataset [org.apache.spark.sql.catalog.Table] = [name:
string, database: string ... 3 more fields]

scala> latestTableList.show()

+ 1 + I I I
T T T T T T

|name | database|description|tableType|isTemporary |

+

+ I I I

Similarly, the Catalog API can be used from Python code as well. Since the dataset example
was not applicable in Python, the table list will be empty. At the Python REPL prompt, try
the following statements:

>>> #Get the catalog object from the SparkSession object

>>> catalog = spark.catalog

>>> #Get the list of databases and their details.

>>> catalog.listDatabases()
[Database (name='default', description='default database', locationUri='
file:/Users/RajT/source-code/spark-source/spark-2.0/spark-warehouse') ]

// Display the details of the tables in the database

>>> catalog.listTables()

>>> [1]

The Catalog APl is very handy when writing data processing applications with the ability
to process data dynamically, based on the contents in the meta store, especially when using
it in conjunction with Hive.

References

For more information you can refer to:

® https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigm
0d2015.pdf

® http://pandas.pydata.org/
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Summary

Spark SQL is a very highly useful library on top of the Spark core infrastructure. This
library makes the Spark programming more inclusive to a wider group of programmers
who are well versed with the imperative style of programming but not as competent in
functional programming. Apart from this, Spark SQL is the best library to process
structured data in the Spark family of data processing libraries. Spark SQL-based data
processing application programs can be written with SQL-like queries or DSL style
imperative programs of DataFrame API. This chapter has also demonstrated various
strategies of mixing RDD and DataFrames, mixing SQL-like queries and DataFrame API.
This gives amazing flexibility for the application developers to write data processing
programs in the way they are most comfortable with, or that is more appropriate to the use
cases, and at the same time, without compromising performance.

The Dataset API is as the next generation of programming model based on dataset in Spark,
providing optimized performance and compile-time type safety.

The Catalog API comes as a very handy tool to process data dynamically, based on the
contents of the meta store.

R is the language of data scientists. Till the support of R as a programming language in
Spark SQL was available, major distributed data processing was not easy for them. Now,
using R as a language of choice, they can seamlessly write distributed data processing
applications as if they are using an R data frame from their individual machines. The next
chapter is going to discuss the use of R to do data processing in Spark SQL.
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Ris a popular statistical computing programming language used by many and freely
available under the General Public License (GNU). R originated from the programming
language S, created by John Chambers. R was developed by Ross Ihaka and Robert
Gentleman. Many data scientists use R for their computing needs. R has inherent support
for many statistical functions and many scalar data types, and has composite data structures
for vectors, matrices, data frames, and more, for statistical computation. R is highly
extensible and for that, external packages can be created. Once an external package is
created, it has to be installed and loaded for any program to use it. A collection of such
packages under a directory forms an R library. In other words, R comes with a set of base
packages and additional packages that can be installed on top of it to form the required
library for the desired computing needs. In addition to functions, datasets can also be
packaged in R packages.

We will cover the following topics in this chapter:

¢ The need for SparkR
Essentials of R

Dataframes

Aggregations

Multi-datasource joins with SparkR
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The need for SparkR

A plain base R installation cannot interact with Spark. The SparkR package exposes all the
required objects and functions for R to talk to the Spark ecosystem. Compared to Scala,
Java, and Python, the Spark programming in R is different and the SparkR package mainly
exposes R API for DataFrame-based Spark SQL programming. At the moment, R cannot be
used to manipulate the RDDs of Spark directly. So for all practical purposes, the R API for
Spark has access to only Spark SQL abstractions. The Spark MLIib can also be programmed
using R because Spark MLIib uses DataFrames.

How is SparkR going to help the data scientists to do better data processing? The base R
installation mandates that all the data to be stored (or accessible) on the computer where R
is installed. The data processing occurs on the single computer on which the R installation is
available. Moreover, if the data size is more than the main memory available on the
computer, R will not be able to do the required processing. With the SparkR package, there
is access to a whole new world of a cluster of nodes for data storage and for doing data
processing. With the help of SparkR package, R can be used to access the Spark DataFrames
as well as R DataFrames.

It is very important to know the distinction between the two types of data frames, R
Dataframes and Spark Dataframes. An R DataFrame is completely local and a data structure
of the R language. A Spark DataFrame is a parallel collection of structured data managed by
the Spark infrastructure.

An R DataFrame can be converted to a Spark DataFrame and a Spark DataFrame can be
converted to an R DataFrame.

When a Spark DataFrame is converted to an R DataFrame, it should fit in the available
memory of the computer. This conversion is a great feature and there is a need to do so. By
converting an R DataFrame to a Spark DataFrame, the data can be distributed and
processed in parallel. By converting a Spark DataFrame to an R DataFrame, a lot of
computations, charting, and plotting that is done by other R functions can be done. In a
nutshell, the SparkR package brings the power of distributed and parallel computing
capabilities to R.

Often, when performing data processing with R, because of the sheer size of the data and
the need to fit it into the main memory of the computer, the data processing is done in
multiple batches and the results are consolidated to compute the final results. This kind of
multi-batch processing can be completely avoided if Spark with R is used to process the
data.
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Often, reporting, charting, and plotting are done on the aggregated and summarized raw
data. The raw data size can be huge and need not fit into one computer. In such cases, Spark
with R can be used to process the entire raw data and finally, the aggregated and
summarized data can be used to produce the reports, charts, or plots.

Because of the inability to process huge amounts of data and for doing data analysis with R,
many times, ETL tools are made to use for doing the pre-processing or transformations on
the raw data, and only in the final stage is the data analysis done using R. Because of
Spark's ability to process data at scale, Spark with R can replace the entire ETL pipeline and
do the desired data analysis with R.

Many R users use the dplyr R package for manipulating datasets in R. This package
provides fast data manipulation capabilities with R DataFrames. Just like manipulating
local R DataFrames, it can access data from some of the RDBMS tables too. Apart from these
primitive data manipulation capabilities, it lacks many of the data processing features
available in Spark. So Spark with R is a good alternative to packages such as dplyr.

The SparkR package is yet another R package, but that is not stopping anybody from using
any of the R packages that are already being used. At the same time, it supplements the
data processing capability of R manifold by making use of the huge data processing
capabilities of Spark.

Basics of the R language

This is not in any way a guide to R programming. But, it is important to touch upon the
basics of R as a language very briefly for the benefit of those who are not familiar with R to
appreciate what is being covered in this chapter. A very basic introduction to the language
features is covered here.

R comes with a few built-in data types to hold numerical values, character values, and
boolean values. There are composite data structures available and the most important ones
are, namely, vectors, lists, matrices, and data frames. A vector consists of ordered collection
of values of a given type. A list is an ordered collection of elements that can be of different
types. For example, a list can hold two vectors, of which one is a vector containing
numerical values and the the other is a vector containing boolean values. A matrix is a two-
dimensional data structure holding numerical values in rows and columns. A data frame is
a two-dimensional data structure containing rows and columns, where columns can have
different data types but a single column cannot hold different data types.
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Code samples of using a variable (a special case of vector), a numeric vector, a character
vector, a list, a matrix, a data frame, and assigning column names to a data frame are as
follows. The variable names are given as self-descriptive as possible for the reader to
understand without the help of additional explanation. The following code snippet run on a
regular R REPL gives an idea of the data structures of R:

$r

R version 3.2.2 (2015-08-14) -- "Fire Safety"

Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64—apple-darwinl3.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and

'citation() ' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start () ' for an HTML browser interface to help.

Type 'q()' to quit R.

Warning: namespace 'SparkR' is not available and has been replaced
by .GlobalEnv when processing object 'goodTransRecords'
[Previously saved workspace restored]

>

> x <- 5

> x

[1]1 5

> aNumericVector <- ¢(10,10.5,31.2,100)

> aNumericVector

[1] 10.0 10.5 31.2 100.0

> aCharVector <- c("apple", "orange", "mango")
> aCharVector
[1] "apple" '"orange" "mango"

> aBooleanVector <— c¢(TRUE, FALSE, TRUE, FALSE, FALSE)
> aBooleanVector

[1] TRUE FALSE TRUE FALSE FALSE

> aList <- list (aNumericVector, aCharVector)

> aList

[[1]]

[1] 10.0 10.5 31.2 100.0

[[2]]

[1] "apple" '"orange" "mango"
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> aMatrix <- matrix(c (100, 210, 76, 65, 34, 45),nrow=3,ncol=2,byrow
> aMatrix
[,11 [,2]
[1,] 100 210
[2,] 76 65
[3,1] 34 45
> bMatrix <- matrix(c (100, 210, 76, 65, 34, 45),nrow=3,ncol=2,byrow
FALSE)
> bMatrix
[,11 [,2]
[1,] 100 65
[2,] 210 34
[3,1] 76 45
> ageVector <- c(21, 35, 52)

> nameVector <- c("Thomas", "Mathew", "John")
> marriedVector <- c(FALSE, TRUE, TRUE)
> aDataFrame <- data.frame (ageVector, nameVector, marriedVector)
> aDataFrame
ageVector nameVector marriedVector
1 21 Thomas FALSE
2 35 Mathew TRUE
3 52 John TRUE
> colnames (aDataFrame) <- c("Age", "Name", "Married")
> aDataFrame

Age Name Married

1 21 Thomas FALSE
2 35 Mathew TRUE
3 52 John TRUE

TRUE)

The main topic of discussion here is going to be revolving around data frames. Some of the

functions that are commonly used with data frames are demonstrated here. All these

commands are to be executed on the regular R REPL as a continuation of the session that

executed the preceding code snippet:

> # Returns the first part of the data frame and return two rows
> head (aDataFrame, 2)
Age Name Married

21 Thomas FALSE

35 Mathew TRUE

N -

v

# Returns the last part of the data frame and return two rows
tail (aDataFrame, 2)
Age Name Married
35 Mathew TRUE
52 John TRUE
# Number of rows in a data frame
nrow (aDataFrame)
1] 3

v

— VvV VvV wbdh
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> # Number of columns in a data frame
> ncol (aDataFrame)
[1] 3
> # Returns the first column of the data frame. The return value is a data
frame
> aDataFrame[1l]

Age
1 21
2 35
3 52
> # Returns the second column of the data frame. The return value is a data
frame
> aDataFrame[2]

Name

1 Thomas
2 Mathew
3 John
> # Returns the named columns of the data frame. The return value is a data
frame
> aDataFrame[c("Age", "Name")]

Age Name
1 21 Thomas
2 35 Mathew
3 52 John
> # Returns the contents of the second column of the data frame as a
vector.
> aDataFrame[[2]]
[1] Thomas Mathew John
Levels: John Mathew Thomas
> # Returns the slice of the data frame by a row
> aDataFrame[2, ]

Age Name Married
2 35 Mathew TRUE
> # Returns the slice of the data frame by multiple rows
> aDataFrame[c(1,2),]

Age Name Married
1 21 Thomas FALSE
2 35 Mathew TRUE

DataFrames in R and Spark

When working with Spark using R, it is very easy to get confused with the DataFrame data
structure. As mentioned earlier, it is there in R and in Spark SQL. The following code
snippet deals with converting an R DataFrame to a Spark DataFrame and vice versa. This is
going to be a very common operation when programming Spark with R. The following
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code snippet is to be executed in the R REPL of Spark. From now on, all the references to the
R REPL are with respect to the R REPL of Spark:

$ cd $SPARK_HOME
$ ./bin/sparkR

R version 3.2.2 (2015-08-14) —-- "Fire Safety"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64—apple—-darwinl3.4.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start () ' for an HTML browser interface to help.

Type 'q()' to quit R.
[Previously saved workspace restored]

Launching java with spark-submit command /Users/RajT/source-code/spark-
source/spark-2.0/bin/spark-submit "sparkr-shell"
/var/folders/nf/trtmyt9534z03kq8p8zgbnxh0000gn/T//RtmpmuRsTC/backend_port2d
12lacef4

Using Spark's default log4j profile: org/apache/spark/log4dj-
defaults.properties

Setting default log level to "WARN".

To adjust logging level use sc.setLoglLevel (newLevel) .

16/07/16 21:08:50 WARN NativeCodeloader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable

Welcome to

N\ _ 7 7 '
IN_,_/_/ /_/\_\ version 2.0.1-SNAPSHOT

Spark context is available as sc, SQL context is available as sglContext
During startup - Warning messages:
1: 'SparkR::sparkR.init' is deprecated.
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Use 'sparkR.session' instead.

See help ("Deprecated")

2: 'SparkR::sparkRSQL.init' is deprecated.
Use 'sparkR.session' instead.

See help ("Deprecated")

>

> # faithful is a data set and the data frame that comes with base R
> # Obviously it is an R DataFrame
> head(faithful)

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
> tail (faithful)

eruptions waiting

267 4.750 75
268 4.117 81
269 2.150 46
270 4.417 920
271 1.817 46
272 4.467 74

> # Convert R DataFrame to Spark DataFrame
> sparkFaithful <- createDataFrame (faithful)
> head(sparkFaithful)

eruptions waiting

3.600 79
1.800 54
3.333 74
2.283 62
4.533 85
2.883 55

showDF (sparkFaithful)

I
T T

eruptions|waiting|

I I
T T

3.6| 79.0]
1.8] 54.0]
3.333] 74.0]|
2.283]| 62.0]|
4.533]| 85.0]
2.883] 55.0]
4.7| 88.0]|
3.6| 85.0]

1.95] 51.0]
4.35| 85.0]
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1.833]| 54.0]
3.917] 84.0]|

4.2] 78.0]|
1.75] 47.0|
4.7| 83.0]

1.75] 62.0]|
4.8] 84.0]|
1.6] 52.0]

4.25| 79.0]

+
T T

|
|
|
|
|
| 2.167| 52.0]
|
|
|
|

only showing top 20 rows
> # Try calling a SparkR function showDF () on an R DataFrame. The following
error message will be shown
> showDF (faithful)
Error in (function (classes, fdef, mtable)
unable to find an inherited method for function 'showDF' for signature
'"data.frame"'
> # Convert the Spark DataFrame to an R DataFrame
> rFaithful <- collect (sparkFaithful)
> head(rFaithful)
eruptions waiting

1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

There is no complete compatibility and interoperability between an R DataFrame and a
Spark DataFrame in terms of the supported functions.

As a good practice, it is better to name the R DataFrame and Spark
DataFrame with agreed conventions in R programs in order to have a
distinction between the two different types. Not all the functions that are
supported on R DataFrames are not supported on Spark DataFrames and
vice versa. Always refer to the right version of the R API for Spark.
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Those who use a lot of charting and plotting have to be extra careful while dealing with R
DataFrames in conjunction with Spark DataFrames. The charting and plotting of R works
with only R DataFrames. If there is a need to produce charts or plots with the data
processed by Spark and available in Spark DataFrame, it has to be converted to an R
DataFrame to proceed with the charting and plotting. The following code snippet will give
an idea this. We will use the faithful dataset again for elucidation purposes in the R REPL of
Spark:

head (faithful)
eruptions waiting

1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

> # Convert the faithful R DataFrame to Spark DataFrame
> sparkFaithful <- createDataFrame (faithful)
> # The Spark DataFrame sparkFaithful NOT producing a histogram
> hist (sparkFaithful$eruptions,main="Distribution of
Eruptions",xlab="Eruptions")
Error in hist.default (sparkFaithful$eruptions, main = "Distribution of
Eruptions",

'x' must be numeric
> # The R DataFrame faithful producing a histogram
> hist (faithful$eruptions,main="Distribution of
Eruptions",xlab="Eruptions")

The figure here is used jut to demonstrate that the Spark DataFrame cannot be used to do
charting and R DataFrame has to be used for the same:
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Figure 1

The charting and plotting library, when used with Spark DataFrame, gave an error because
of the incompatibility of the data types.

The most important aspect to have in mind is that an R DataFrame is an
in-memory resident data structure, while a Spark DataFrame is a parallel
collection of datasets distributed across a cluster of nodes. So, all the
functions that use R DataFrames need not work with Spark DataFrames
and vice versa.
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Let's revisit the bigger picture again, as given in Figure 2, to set the context and see what is
being discussed here before getting into and taking up the use cases. In the previous
chapter, the same subject was introduced by using the programming languages Scala and
Python. In this chapter, the same set of use cases used in the Spark SQL programming will
be implemented using R:

Y

Application
Scala Programming
Language Support

Scala, Java,
Python and R

Scala, Java
and Python

Scala, Java,
Python and R

e /
Domain Specific
Spark SQL Spark Streaming Spark MLIib Spark GraphX Library
Apache Spark Core

Figure 2

The use cases that are going to be discussed here will be demonstrating the ability to mix
SQL queries with Spark programs in R. Multiple data sources will be chosen, data will be
read from those sources using DataFrame, and uniform data access will be demonstrated.

Spark DataFrame programming with R

The use cases selected for elucidating the Spark SQL way of programming with DataFrame
are given as follows:

¢ The transaction records are comma-separated values.

e Filter out only the good transaction records from the list. The account number
should start with sB and the transaction amount should be greater than zero.

e Find all the high value transaction records with a transaction amount greater than
1000.

e Find all the transaction records where the account number is bad.

e Find all the transaction records where the transaction amount is less than or equal
to zero.

e Find a combined list of all the bad transaction records.
¢ Find the total of all the transaction amounts.
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e Find the maximum of all the transaction amounts.
¢ Find the minimum of all the transaction amounts.
¢ Find all the good account numbers.

This is exactly the same set of use cases that were used in the previous chapter, but here, the
programming model is totally different. Here, the programming is done in R. Using this set
of use cases, two types of programming model are demonstrated here. One is using the SQL
queries and other is using DataFrame APIs.

The data files needed for running the following code snippets are available
from the same directory where the R code is kept.

In the following code snippets, data is read from files located in the filesystem. Since all
these code snippets are executed from the R REPL of Spark, all the data files are to be kept
in the $SPARK_HOME directory.

Programming with SQL
At the R REPL prompt, try the following statements:

> # TODO - Change the data directory location to the right location in the
system in which this program is being run

DATA_DIR <- "/Users/RajT/Documents/CodeAndData/R/"

# Read data from a JSON file to create DataFrame

acTransDF <- read.json(paste (DATA_DIR, "TransListl.json", sep = ""))
# Print the structure of the DataFrame

print (acTransDF)

SparkDataFrame [AccNo:string, TranAmount:bigint]

VVVYV VY

> # Show sample records from the DataFrame
> showDF (acTransDF)
| AccNo|TranAmount |
| SB10001 | 1000]|
| SB10002 | 1200
| SB10003| 8000
| SB10004 | 400
| SB10005| 300]
| SB10006 | 10000]|
| SB10007| 500]|
| SB10008| 56|
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| SB10009| 30]

| SB10010| 7000

|CR10001 | 7000

| SB10002 | -10]

> # Register temporary view definition in the DataFrame for SQL queries

> createOrReplaceTempView (acTransDF, "trans")

> # DataFrame containing good transaction records using SQL

> goodTransRecords <- sql ("SELECT AccNo, TranAmount FROM trans WHERE AccNo

like 'SB%' AND TranAmount > 0")
> # Register temporary table definition in the DataFrame for SQL queries

> createOrReplaceTempView (goodTransRecords, "goodtrans")
> # Show sample records from the DataFrame
> showDF (goodTransRecords)

+ 1
T T

| AccNo|TranAmount |

+ 1
T T

| SB10001 | 1000]|
| SB10002 | 1200]
| SB10003 | 8000|
| SB10004 | 400]
| SB10005 | 300]
| SB10006 | 10000]
| SB10007| 500]
| SB10008 | 56|
| SB10009| 301

| SB10010| 7000

> # DataFrame containing high value transaction records using SQL

> highValueTransRecords <- sql ("SELECT AccNo, TranAmount FROM goodtrans
WHERE TranAmount > 1000")

> # Show sample records from the DataFrame

> showDF (highValueTransRecords)

+ 1
T T

AccNo | TranAmount |

+ 1
T T

| SB10002 | 1200]
| SB10003 | 8000|
| SB10006 | 10000]

| SB10010| 7000

> # DataFrame containing bad account records using SQL

> badAccountRecords <- sql ("SELECT AccNo, TranAmount FROM trans WHERE AccNo
NOT like 'SB%'")

> # Show sample records from the DataFrame

> showDF (badAccountRecords)

+ + 1
T T T
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AccNo | TranAmount |

+ 1
T T

CR10001| 7000

T T

I
I
> # DataFrame containing bad amount records using SQL

> badAmountRecords <- sql ("SELECT AccNo, TranAmount FROM trans WHERE
TranAmount < 0")

> # Show sample records from the DataFrame
> showDF (badAmountRecords)

+ 1
T T

AccNo | TranAmount |

+ 1
T T

SB10002| -10]

T T

> # Create a DataFrame by taking the union of two DataFrames

> badTransRecords <- union (badAccountRecords, badAmountRecords)
> # Show sample records from the DataFrame

> showDF (badTransRecords)

+ 1
T T

| AccNo|TranAmount |

+ 1
T T

|CR10001 | 7000

| SB10002 | -10]|

> # DataFrame containing sum amount using SQL

> sumAmount <- sql ("SELECT sum(TranAmount) as sum FROM goodtrans")
> # Show sample records from the DataFrame

> showDF (sumAmount)

+———— +
| sum|
+———— +
|28486|
+———— +

> # DataFrame containing maximum amount using SQL

> maxAmount <- sql ("SELECT max (TranAmount) as max FROM goodtrans")
> # Show sample records from the DataFrame

> showDF (maxAmount)

e +
| max|

e +

110000

e +

> # DataFrame containing minimum amount using SQL

> minAmount <- sql ("SELECT min (TranAmount)as min FROM goodtrans")
> # Show sample records from the DataFrame

> showDF (minAmount)

+——+

|min|

[119]



Spark Programming with R

+———+

| 30]

+———+

> # DataFrame containing good account number records using SQL
> goodAccNos <- sql ("SELECT DISTINCT AccNo FROM trans WHERE AccNo like

'SB%'

ORDER BY AccNo")

> # Show sample records from the DataFrame
> showDF (goodAccNos)

| SB10001 |
| SB10002 |
| SB10003 |
| SB10004 |
| SB10005 |
| SB10006 |
| SB10007 |
| SB10008 |
| SB10009 |
| SB10010|

The retail banking transaction records come with account number, transaction amount are
processed using SparkSQL to get the desired results of the use cases. Here is the summary
of what the preceding script did:

Unlike other programming languages supported with Spark, R doesn't have an
RDD programming capability. So, instead of going with the construction of RDD
from collections, the data is read from the JSON file containing the transaction
records.

A Spark DataFrame is created from the JSON file.

A table is registered with the DataFrame with a name. This registered name of the
table can be used in SQL statements.

Then, all the other activities are issuing SQL statements using the SQL function
from the SparkR package.

The result of all these SQL statements is stored as Spark DataFrames, and
showDF function is used to extract the values to the calling R program.

The aggregate value calculations are also done through the SQL statements.
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e The DataFrame contents are displayed in table format using the the showDF
function of SparkR.

¢ A detailed view of the structure of the DataFrame is displayed using the print
function. This is akin to the describe command of the database tables.

In the preceding R code, the style of programming is different as compared to the Scala
code. That is because it is an R program. Using the SparkR library, the Spark features are
being used. But the functions and other abstractions are not in a really different style.

Throughout this chapter, there will be instances where DataFrames are
used. It is very easy to get confused by which is the R DataFrame and
which is the Spark DataFrame. Hence, care is taken to specifically mention
by qualifying the DataFrame, such as R DataFrame and Spark DataFrame.

Programming with R DataFrame API

In this section, the code snippets will be run in the same R REPL. Like the preceding code
snippets, initially, some DataFrame-specific basic commands are given. These are used
regularly to see the contents and for doing some sanity tests on the DataFrame and its
contents. These are commands that are typically used in the exploratory stage of the data
analysis quite often to get more insight into the structure and contents of the underlying
data.

At the R REPL prompt, try the following statements:

> # Read data from a JSON file to create DataFrame

> acTransDF <- read.json(paste (DATA_DIR, "TransListl.json", sep = ""))
> print (acTransDF)

SparkDataFrame [AccNo:string, TranAmount:bigint]

> # Show sample records from the DataFrame

> showDF (acTransDF)
I

+ +
T T

AccNo | TranAmount |

+ +
T T

+

| SB10001 | 1000]
| SB10002 | 1200]
| SB10003 | 8000
| SB10004 | 400
| SB10005 | 300]
| SB10006 | 10000 |
| SB10007 | 500]
| SB10008 | 56
| SB10009 | 30
| SB10010 | 7000
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|CR10001 | 7000

| SB10002 | -10]|

> # DataFrame containing good transaction records using API

> goodTransRecordsFromAPI <- filter (acTransDF, "AccNo like 'SB%' AND
TranAmount > 0")

> # Show sample records from the DataFrame

> showDF (goodTransRecordsFromAPI)

+ 1
T T

AccNo | TranAmount |

+ 1
T T

| SB10001 | 1000]
| SB10002 | 1200]
| SB10003 | 8000|
| SB10004 | 400]
| SB10005 | 300]
| SB10006 | 10000]
| SB10007| 500]
| SB10008 | 56|
| SB10009| 301

| SB10010| 7000

> # DataFrame containing high value transaction records using API
> highValueTransRecordsFromAPI = filter (goodTransRecordsFromAPI,
"TranAmount > 1000")

> # Show sample records from the DataFrame

> showDF (highValueTransRecordsFromAPI)

+ + 1
T T

| AccNo|TranAmount |

I 1
T T

| SB10002 | 1200]
| SB10003| 8000|
| SB10006 | 10000]

| SB10010| 7000

> # DataFrame containing bad account records using API

> badAccountRecordsFromAPI <- filter (acTransDF, "AccNo NOT like 'SB%'")
> # Show sample records from the DataFrame

> showDF (badAccountRecordsFromAPI)

I 1
T T

AccNo | TranAmount |

+ 1
T T

|CR10001 | 7000

> # DataFrame containing bad amount records using API

> badAmountRecordsFromAPI <- filter (acTransDF, "TranAmount < 0")
> # Show sample records from the DataFrame

> showDF (badAmountRecordsFromAPI)
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+ 1
T T

AccNo | TranAmount |

+ 1
T T

SB10002| -10]

T T

> # Create a DataFrame by taking the union of two DataFrames
> badTransRecordsFromAPI <- union (badAccountRecordsFromAPI,
badAmountRecordsFromAPI)

> # Show sample records from the DataFrame

> showDF (badTransRecordsFromAPI)

+ 1
T T

AccNo | TranAmount |

+ 1
T T

|CR10001 | 7000
| SB10002 | -10]

T T T

> # DataFrame containing sum amount using API

> sumAmountFromAPI <- agg(goodTransRecordsFromAPI, sumAmount =
sum (goodTransRecordsFromAPI$TranAmount) )

> # Show sample records from the DataFrame

> showDF (sumAmountFromAPI)

e +
| sumAmount |
e +
| 28486
e +

> # DataFrame containing maximum amount using API

> maxAmountFromAPI <- agg(goodTransRecordsFromAPI, maxAmount =
max (goodTransRecordsFromAPI$TranAmount) )

> # Show sample records from the DataFrame

> showDF (maxAmountFromAPI)

e +
|maxAmount |
e +
| 10000|
e +

> # DataFrame containing minimum amount using API

> minAmountFromAPI <- agg(goodTransRecordsFromAPI, minAmount =
min (goodTransRecordsFromAPI$TranAmount) )

> # Show sample records from the DataFrame

> showDF (minAmountFromAPI)

e +
|minAmount |
e +
I 30]
e +

> # DataFrame containing good account number records using API
> filteredTransRecordsFromAPI <- filter (goodTransRecordsFromAPI, "AccNo
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like 'SB%'")

+ 1
T T

AccNo | TranAmount |

I 1
T T

> accNosFromAPI <- select (filteredTransRecordsFromAPI, "AccNo")
> distinctAccNoFromAPI <- distinct (accNosFromAPI)

> sortedAccNoFromAPI <- arrange (distinctAccNoFromAPI, "AccNo")
> # Show sample records from the DataFrame

> showDF (sortedAccNoFromAPI)

e +

| AccNo|

e +

| SB10001 |

| SB10002 |

| SB10003|

| SB10004 |

| SB10005|

| SB10006 |

| SB10007|

| SB10008|

| SB10009|

| SB10010|

e +

> # Persist the DataFrame into a Parquet file

> write.parquet (acTransDF, "r.trans.parquet")

> # Read the data from the Parquet file

> acTransDFFromFile <- read.parquet ("r.trans.parquet")
> # Show sample records from the DataFrame

> showDF (acTransDFFromFile)

I

| SB10007 | 500
| SB10008 | 56|
| SB10009 | 30|
| SB10010| 7000
|CR10001 | 7000
| SB10002 | -10|
| SB10001 | 1000
| SB10002 | 1200
| SB10003 | 8000
| SB10004 | 400
| SB10005 | 300

| SB10006 | 10000]

T T T
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Here is the summary of what the preceding script did from a DataFrame API perspective:

e The DataFrame containing the superset of data used in the preceding section is
used here.

e Filtering of the records is demonstrated next. Here, the most important aspect to
notice is that the filter predicate is to be given exactly like the predicates in the
SQL statements. Filters can not be chained.

e The aggregation methods are calculated next.

e The final statements in this set are doing the selection, filtering, choosing distinct
records, and ordering.

e Finally, the transaction records are persisted in Parquet format, read from the
Parquet store, and created a Spark DataFrame. More details on the persistence
formats have been covered in the previous chapter and the concepts remain the
same. Only the DataFrame API syntax is different.

e In this code snippet, the Parquet format data is stored in the current directory,
from where the corresponding REPL is invoked. When it is run as a Spark
program, the directory again will be the current directory from where the Spark
submit is invoked.

The last few statements are about the persisting of the DataFrame contents into the media. If
this is compared with the persistence mechanisms in the previous chapter with Scala and
Python, here also it is done in similar ways.

Understanding aggregations in Spark R

In SQL, aggregation of data is very flexible. The same thing is true in Spark SQL too. Instead
of running SQL statements on a single data source located in a single machine, here, Spark
SQL can do the same on distributed data sources. In the chapter where RDD-based
programming is covered, a MapReduce use case was discussed to do data aggregation and
the same is being used here to demonstrate the aggregation capabilities of Spark SQL. In
this section also, the use cases are approached in the SQL query way as well as in the
DataFrame API way.

The use cases selected for elucidating the MapReduce kind of data processing are given
here:

e The retail banking transaction records come with account number and
transaction amount in comma-separated strings

e Find an account level summary of all the transactions to get the account balance
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At the R REPL prompt, try the following statements:

> # Read data from a JSON file to create DataFrame
> acTransDFForAgg <- read.json(paste(DATA_DIR, "TransList2.json", sep =
llll))

> # Register temporary view definition in the DataFrame for SQL queries
> createOrReplaceTempView (acTransDFForAgg, "transnew")
> # Show sample records from the DataFrame

> showDF (acTransDFForAgg)

| AccNo|TranAmount |

| SB10001 | 1000]

| SB10002 | 1200]

| SB10001 | 8000|

| SB10002 | 400]

| SB10003| 300]

| SB10001 | 10000]

| SB10004 | 500]

| SB10005 | 56|

| SB10003| 301

| SB10002 | 7000

| SB10001 | -100]|

| SB10002| -10]|

> # DataFrame containing account summary records using SQL

> acSummary <- sql("SELECT AccNo, sum(TranAmount) as TransTotal FROM
transnew GROUP BY AccNo")

> # Show sample records from the DataFrame

> showDF (acSummary)

I I 1
T T

| AccNo|TransTotal]

I 1
T T

| SB10001 | 18900]
| SB10002 | 8590
| SB10003| 330]
| SB10004 | 500]

| SB10005 | 56|

> # DataFrame containing account summary records using API
> acSummaryFromAPI <- agg (groupBy (acTransDFForAgg, "AccNo"),
TranAmount="sum")

> # Show sample records from the DataFrame

> showDF (acSummaryFromAPT)

+ I
T T

AccNo | sum (TranAmount) |

+ I
T T

SB10001 | 18900]|

+
T
+
T
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| SB10002 | 8590
| SB10003 | 330]
| SB10004 | 500]

| SB10005 | 56|

T T T

In the R DataFrame AP, there are some syntax differences as compared to its Scala or
Python counterparts, mainly because this is a purely API-based programming model.

Understanding multi-datasource joins with
SparkR

In the previous chapter, the joining of multiple DataFrames based on the key has been
discussed. In this section, the same use case is implemented using R API of Spark SQL. The
use cases selected for elucidating the join of multiple datasets using a key are given in the
following section.

The first dataset contains a retail banking master records summary with the account
number, first name, and last name. The second dataset contains the retail banking account
balance with account number and balance amount. The key on both of the datasets is the
account number. Join the two datasets and create one dataset containing the account
number, first name, last name, and balance amount. From this report, pick up the top three
accounts in terms of the balance amount.

The Spark DataFrames are created from persisted JSON files. Instead of the JSON files, it
can be any supported data files. Then they are read from the disk to form the DataFrames
and they are joined together.

At the R REPL prompt, try the following statements:

# Read data from JSON file

acMasterDF <- read.json(paste (DATA_DIR, "MasterList.json", sep = ""))
# Show sample records from the DataFrame

showDF (acMasterDF)

+ I 1

T T T

AccNo |FirstName | LastName |

+—+VVVYV

+ I 1
T T T

| SB10001 | Roger| Federer|
| SB10002 | Pete| Sampras|
| SB10003| Rafael| Nadal|
| SB10004 | Boris| Becker|
| SB10005 | Ivan| Lendl |

I 1
T T T T
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# Register temporary view definition in the DataFrame for SQL queries
createOrReplaceTempView (acMasterDF, "master")

acBalDF <- read.json(paste (DATA_DIR, "BallList.json", sep = ""))

# Show sample records from the DataFrame

showDF (acBalDF)

+ I
T T

AccNo |BalAmount |

+ I
T T

| SB10001 | 50000]
| SB10002 | 12000]
| SB10003 | 3000]
| SB10004 | 8500
| SB10005 | 5000]|

T T T

+—+ VvV VVVYV

> # Register temporary view definition in the DataFrame for SQL queries

> createOrReplaceTempView (acBalDF, "balance")

> # DataFrame containing account detail records using SQL by joining
multiple DataFrame contents

> acDetail <- sql ("SELECT master.AccNo, FirstName, LastName, BalAmount FROM
master, balance WHERE master.AccNo = balance.AccNo ORDER BY BalAmount
DESC")

> # Show sample records from the DataFrame

> showDF (acDetail)

| AccNo|FirstName |LastName |BalAmount |

|SB10001 | Roger| Federer| 50000

|SB10002 | Pete| Sampras| 12000

|SB10004 | Boris| Becker| 8500

|SB10005| Ivan| Lendl| 5000|

|SB10003| Rafael| Nadal| 3000]|

> # Persist data in the DataFrame into Parquet file
> write.parquet (acDetail, "r.acdetails.parquet")

> # Read data into a DataFrame by reading the contents from a Parquet file

> acDetailFromFile <- read.parquet ("r.acdetails.parquet")
> # Show sample records from the DataFrame

> showDF (acDetailFromFile)

I

+ I 1 1
T T T T

AccNo |FirstName | LastName | BalAmount |

+ I 1 1
T T T T

| SB10002 | Pete| Sampras| 12000
|SB10003| Rafael| Nadal| 3000]|
| SB10005 | Ivan| Lendl| 5000
|SB10001 | Roger| Federer| 50000
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|SB10004 | Boris| Becker| 8500

T T T T T

Continuing from the same R REPL session, the following lines of code get the same result
through the DataFrame API:

> # Change the column names

> acBalDFWithDiffColName <- selectExpr (acBalDF,
"BalAmount")

> # Show sample records from the DataFrame

> showDF (acBalDFWithDiffColName)

+ 1 1
T T T

| AccNoBal | BalAmount |

"AccNo as AccNoBal",

| SB10001] 50000
| SB10002] 12000]
| SB10003| 3000]|
| SB10004| 8500
|

SB10005] 5000

> # DataFrame containing account detail records using API by joining
multiple DataFrame contents

> acDetailFromAPI <- join(acMasterDF, acBalDFWithDiffColName,
acMasterDF$AccNo == acBalDFWithDiffColNameS$AccNoBal)

> # Show sample records from the DataFrame

> showDF (acDetailFromAPI)

| AccNo|FirstName |LastName |AccNoBal |BalAmount |
|SB10001 | Roger| Federer| SB10001| 50000
|SB10002 | Pete| Sampras| SB10002| 12000
| SB10003| Rafael| Nadal| SB10003| 3000
|SB10004 | Boris| Becker| SB10004| 8500 |

Ivan| Lendl |

| SB10005 | SB10005]|

5000]|

T T T T T

T

> # DataFrame containing account detail records using SQL by selecting

specific fields

> acDetailFromAPIRequiredFields <- select (acDetailFromAPI,

"FirstName", "LastName", "BalAmount")

"AccNo",

> # Show sample records from the DataFrame
> showDF (acDetailFromAPIRequiredFields)

| AccNo|FirstName |LastName |BalAmount |
|SB10001 | Roger| Federer| 50000
|SB10002 | Pete| Sampras| 12000
|SB10003| Rafael| Nadal| 3000
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|SB10004 | Boris| Becker| 8500
|SB10005| Ivan| Lendl| 5000|

I 1
T T T T T

The join type selected in the preceding section of the code is inner join. Instead of that, any
other type of join can be used, either through the SQL query way or through the DataFrame
API way. One word of caution before using the join using DataFrame API is that the
column names of both the Spark DataFrames have to be different to avoid ambiguity in the
resultant Spark DataFrame. In this particular use case, it can be seen that the DataFrame
APl is becoming a bit difficult to deal with, while the SQL query way is looking very
straightforward.

In the preceding sections, the R API for Spark SQL has been covered. In general, if possible,
it is better to write the code using the SQL query way as much as possible. The DataFrame
APl is getting better, but it is not as flexible as in the other languages, such as Scala or
Python.

Unlike the other chapters in this book, this is a self-contained one to introduce Spark to R
programmers. All the use cases that are discussed in this chapter are run in the R REPL of
Spark. But in real-world applications, this method is not ideal. The R commands have to be
organized in script files and to be submitted to a Spark cluster to run. The easiest way is to
use the already existing $SPARK_HOME/bin/spark-submit <path to the R script
file> script, where the fully-qualified R filename is given with respect to the current
directory from where the command is being invoked.

References

For more information refer to: https://spark.apache.org/docs/latest/api/R/index.ht
ml
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Spark Programming with R

Summary

A whirlwind tour of the R language was covered in this chapter, followed by a special
mention about the need to have a distinction of understanding the difference between an R
DataFrame and a Spark DataFrame. Then, basic Spark programming with R was covered
using the same use cases of the previous chapters. R API for Spark was covered, and the use
cases have been implemented using the SQL query way and DataFrame API way. This
chapter helps data scientists understand the power of Spark and use it in their R
applications, using the SparkR package that comes with Spark. This opens up the door of
big data processing, using Spark with R to process structured data.

The subject of Spark-based data processing in various languages has been discussed, and it
is time to focus on some data analysis with charting and plotting. Python comes with a lot
of charting and plotting libraries that produce publication quality pictures. The next chapter
will discuss charting and plotting with the data processed by Spark.
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Spark Data Analysis with
Python

The ultimate goal of processing data is to use the results for answering business questions.
It is very important to understand the data that is being used to answer the business
questions. To understand the data better, various tabulation methods, charting, and plotting
techniques are used. Visual representation of the data reinforces the understanding of the
underlying data. Because of this, data visualization is used extensively in data analysis.

There are different terms that are used in various publications to mean the analysis of data
for answering business questions. Data analysis, data analytics, and business intelligence,
are some of the ubiquitous terms floating around. This chapter is not going to delve into the
discussion on the meaning, similarities, or differences of these terms. On the other hand, the
focus is going to be on how to bridge the gap between two major activities typically done by
data scientists or data analysts. The first one being data processing. The second one is the
use of the processed data to do analysis with the help of charting and plotting. Data
analysis is the forte of data analysts and data scientists. This chapter is going to focus on the
usage of Spark and Python to process the data, and produce charts and plots.

In many data analysis use cases, a super-set of data is processed and the reduced resultant
dataset is used for the data analysis. This is specifically valid in the case of big data analysis
where a small set of processed data is used for analysis. Depending on the use case, for
various data analysis needs, appropriate data processing is done as a prerequisite. Most of
the use cases that are going to be covered in this chapter fall into this model, where the first
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