
www.allitebooks.com

http://www.allitebooks.org

Spark for Data Science

Analyze your data and delve deep into the world of
machine learning with the latest Spark version, 2.0

Srinivas Duvvuri

Bikramaditya Singhal

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Spark for Data Science

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1270916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78588-565-5

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Srinivas Duvvuri
Bikramaditya Singhal

Copy Editors
Safis Editing

Reviewers
Daniel Frimer
Priyansu Panda
Yogesh Tayal

Project Coordinator
Kinjal Bari

Commissioning Editor
Dipika Gaonkar

Proofreader
Safis Editing

Acquisition Editors
Tushar Gupta
Nikhil Karkal

Indexer
Pratik Shirodkar

Content Development Editor
Rashmi Suvarna

Graphics
Kirk D'Penha

Technical Editor
Deepti Tuscano

Production Coordinator
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

Foreword
Apache Spark is one of the most popular projects in the Hadoop ecosystem and possibly the
most actively developed open source project in big data. Its simplicity, performance, and
flexibility have made it popular not only among data scientists but also among engineers,
developers, and everybody else interested in big data.

With its rising popularity, Duvvuri and Bikram have produced a book that is the need of
the hour, Spark for Data Science, but with a difference. They have not only covered the
Spark computing platform but have also included aspects of data science and machine
learning. To put it in one word—comprehensive.

The book contains numerous code snippets that one can use to learn and also get a jump
start in implementing projects. Using these examples, users also start to get good insights
and learn the key steps in implementing a data science project—business understanding,
data understanding, data preparation, modeling, evaluation and deployment.

Venkatraman Laxmikanth

Managing Director

Broadridge Financial Solutions India (Pvt) Ltd

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Srinivas Duvvuri is currently Senior Vice President Development, heading the
development teams for Fixed Income Suite of products at Broadridge Financial Solutions
(India) Pvt Ltd. In addition, he also leads the Big Data and Data Science COE and is the
principal member of the Broadridge India Technology Council. He is self learnt Data
Scientist. The Big Data /Data Science COE in the past 3 years, has successfully completed
multiple POC’s and some of the use cases are moving towards production deployment. He
has over 25+ years of experience in software product development. His experience spans
predominantly in product development in, multiple domains Financial Services,
Infrastructure Management, OLAP, Telecom Billing and Customer Care, CAD/CAM. Prior
to Broadridge, he’s held leadership positions at a Startup and leading IT majors such as CA,
Hyperion (Oracle), Globalstar. He has a patent in Relational OLAP.

Srinivas loves to teach and mentor budding Engineers. He has established strong Academic
connect and interacts with a host of educational institutions, He is an active speaker in
various conferences, summits and meetups on topics such as Big data, Data Science

Srinivas is a B.Tech in Aeronautical Engineering and M.Tech in Computer Science, from IIT,
Madras.

At the outset I would like to thank VLK our MD and Broadridge India for supporting me in this
endeavor. I would like to thank my parents, teachers, colleagues and extended family who have
mentored and motivated me. My thanks to Bikram who agreed me to be the co-author when proposal
to author the book came up. My special thanks to my wife Ratna, sons Girish and Aravind who have
supported me in completing this book.

I would also like to sincerely thank the editorial team from Packt Arshriya, Rashmi, Deepti and all
those, though not mentioned here, who have contributed in this project. Finally last but not the least
our publisher Packt.

www.allitebooks.com

http://www.allitebooks.org

Bikramaditya Singhal is a data scientist with about 7 years of industry experience. He is an
expert in statistical analysis, predictive analytics, machine learning, Bitcoin, Blockchain, and
programming in C, R, and Python. He has extensive experience in building scalable data
analytics solutions in many industry sectors. He also has an active interest on industrial IoT,
machine to machine communication, decentralized computation through Blockchain and
Artificial Intelligence.

Bikram currently leads the data science team of ‘Digital Enterprise Solutions’ group at Tech
Mahindra Ltd. He also worked in companies such as Microsoft India, Broadridge, Chelsio
Communications and also cofounded a company named ‘Mund Consulting’ which focused
on Big Data analytics.

Bikram is an active speaker in various conferences, summits and meetups on topics such as
big data, data science, IIoT and Blockchain.

I would like to thank my father, my brothers Manoj Agrawal and Sumit Mund for their mentorship.
Without learning from them, there is not a chance I could be doing what I do today, and it is because
of them and others that I feel compelled to pass my knowledge on to those willing to learn. Special
thanks to my mentor and coauthor Srinivas Duvvuri, and my friend Priyansu Panda, without their
efforts this book quite possibly would not have happened.

My deepest gratitude to his holiness Sri Sri Ravi Shankar for building me to what I am today. Many
thanks and gratitude to my parents and my wife Yashoda for their unconditional love and support.

I would also like to sincerely thank all those, though not mentioned here, who have contributed in this
project directly or indirectly.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers
Daniel Frimer has been involved in a vast exposure of industries across Healthcare, Web
Analytics, Transportation. Across these industries has developed ways to optimize the
speed of data workflow, storage, and processing in the hopes of making a highly efficient
department. Daniel is currently a Master’s candidate at the University of Washington in
Information Sciences pursuing a specialization in Data Science and Business
Intelligence. She worked on Python Data Science Essentials

I’d like to thank my grandmother Mary. Who has always believed in mine and everyone’s potential
and respects those whose passions make the world a better place.

Priyansu Panda is a research engineer at Underwriters Laboratories, Bangalore, India. He
worked as a senior system engineer in Infosys Limited, and served as a software engineer in
Tech Mahindra.

His areas of expertise include machine-learning, natural language processing, computer
vision, pattern recognition, and heterogeneous distributed data integration. His current
research is on applied machine learning for product safety analysis. His major research
interests are machine-learning and data-mining applications, artificial intelligence on
internet of things, cognitive systems, and clustering research.

Yogesh Tayal is a Technology Consultant at Mu Sigma Business Solutions Pvt. Ltd. and has
been with Mu Sigma for more than 3 years. He has worked with the Mu Sigma Business
Analytics team and is currently an integral part of the product development team. Mu
Sigma is one of the leading Decision Sciences companies in India with a huge client base
comprising of leading corporations across an array of industry verticals i.e. technology,
retail, pharmaceuticals, BFSI, e-commerce, healthcare etc.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w . p a c k t p u b . c o m / m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Big Data and Data Science – An Introduction 8

Big data overview 9
Challenges with big data analytics 10

Computational challenges 10
Analytical challenges 11

Evolution of big data analytics 12
Spark for data analytics 14
The Spark stack 15

Spark core 16
Spark SQL 17
Spark streaming 17
MLlib 18
GraphX 18
SparkR 19

Summary 19
References 19

Chapter 2: The Spark Programming Model 20

The programming paradigm 21
Supported programming languages 21

Scala 22
Java 22
Python 22
R 23

Choosing the right language 23
The Spark engine 24

Driver program 24
The Spark shell 25
SparkContext 25
Worker nodes 26
Executors 26
Shared variables 26
Flow of execution 27

The RDD API 28

www.allitebooks.com

http://www.allitebooks.org

[ii]

RDD basics 28
Persistence 29

RDD operations 30
Creating RDDs 30
Transformations on normal RDDs 34

The filter operation 35
The distinct operation 35
The intersection operation 36
The union operation 36
The map operation 37
The flatMap operation 37
The keys operation 38
The cartesian operation 38

Transformations on pair RDDs 39
The groupByKey operation 39
The join operation 40
The reduceByKey operation 41
The aggregate operation 42

Actions 43
The collect() function 44
The count() function 44
The take(n) function 44
The first() function 44
The takeSample() function 44
The countByKey() function 45

Summary 46
References 46

Chapter 3: Introduction to DataFrames 47

Why DataFrames? 48
Spark SQL 49

The Catalyst optimizer 49
The DataFrame API 50

DataFrame basics 51
RDDs versus DataFrames 51

Similarities 52
Differences 52

Creating DataFrames 53
Creating DataFrames from RDDs 54
Creating DataFrames from JSON 56
Creating DataFrames from databases using JDBC 57
Creating DataFrames from Apache Parquet 58
Creating DataFrames from other data sources 59

[iii]

DataFrame operations 60
Under the hood 67

Summary 67
References 68

Chapter 4: Unified Data Access 69

Data abstractions in Apache Spark 70
Datasets 72

Working with Datasets 72
Creating Datasets from JSON 75

Datasets API's limitations 76
Spark SQL 76

SQL operations 77
Under the hood 79

Structured Streaming 79
The Spark streaming programming model 83
Under the hood 86
Comparison with other streaming engines 87

Continuous applications 88
Summary 89
References 89

Chapter 5: Data Analysis on Spark 90

Data analytics life cycle 91
Data acquisition 93
Data preparation 94

Data consolidation 95
Data cleansing 96

Missing value treatment 97
Outlier treatment 100
Duplicate values treatment 103

Data transformation 105
Basics of statistics 111

Sampling 112
Simple random sample 113
Systematic sampling 113
Stratified sampling 114

Data distributions 115
Frequency distributions 115
Probability distributions 117

Descriptive statistics 118
Measures of location 118

[iv]

Mean 118
Median 119
Mode 119

Measures of spread 120
Range 120
Variance 120
Standard deviation 120

Summary statistics 122
Graphical techniques 123

Inferential statistics 124
Discrete probability distributions 124

Bernoulli distribution 124
Binomial distribution 125

Sample problem 126
Poisson distribution 127

Sample problem 127
Continuous probability distributions 128

Normal distribution 128
Standard normal distribution 129
Chi-square distribution 132

Sample problem 133
Student's t-distribution 135
F-distribution 136

Standard error 137
Confidence level 137
Margin of error and confidence interval 138
Variability in the population 138
Estimating sample size 139
Hypothesis testing 139

Null and alternate hypotheses 140
Chi-square test 140
F-test 142

Problem: 142
Correlations 143

Summary 144
References 144

Chapter 6: Machine Learning 146

Introduction 148
The evolution 148
Supervised learning 148
Unsupervised learning 149

MLlib and the Pipeline API 150
MLlib 150

[v]

ML pipeline 156
Transformer 157
Estimator 157

Introduction to machine learning 163
Parametric methods 165
Non-parametric methods 165

Regression methods 165
Linear regression 166

Loss function 170
Optimization 171

Regularizations on regression 171
Ridge regression 172
Lasso regression 173
Elastic net regression 174

Classification methods 175
Logistic regression 176

Linear Support Vector Machines (SVM) 178
Linear kernel 181
Polynomial kernel 181
Radial Basis Function kernel 181
Sigmoid kernel 181

Training an SVM 181
Decision trees 183

Impurity measures 184
Gini Index 184
Entropy 185
Variance 185

Stopping rule 186
Split candidates 186

Categorical features 186
Continuous features 186

Advantages of decision trees 187
Disadvantages of decision trees 187
Example 187

Ensembles 192
Random forests 192

Advantages of random forests 193
Gradient-Boosted Trees 193

Multilayer perceptron classifier 199
Clustering techniques 202

K-means clustering 202
Disadvantages of k-means 203
Example 204

[vi]

Summary 205
References 205

Chapter 7: Extending Spark with SparkR 206

SparkR basics 207
Accessing SparkR from the R environment 208
RDDs and DataFrames 209
Getting started 210

Advantages and limitations 211
Programming with SparkR 212

Function name masking 213
Subsetting data 214
Column functions 215
Grouped data 216

SparkR DataFrames 217
SQL operations 218
Set operations 219
Merging DataFrames 220

Machine learning 222
The Naive Bayes model 222
The Gaussian GLM model 224

Summary 225
References 225

Chapter 8: Analyzing Unstructured Data 226

Sources of unstructured data 227
Processing unstructured data 228

Count vectorizer 231
TF-IDF 234
Stop-word removal 235
Normalization/scaling 237
Word2Vec 237
n-gram modelling 239

Text classification 241
Naive Bayes classifier 241

Text clustering 249
K-means 249

Dimensionality reduction 250
Singular Value Decomposition 251

Principal Component Analysis 252

[vii]

Summary 253
References: 253

Chapter 9: Visualizing Big Data 254

Why visualize data? 255
A data engineer's perspective 256
A data scientist's perspective 256
A business user's perspective 257

Data visualization tools 257
IPython notebook 258
Apache Zeppelin 258
Third-party tools 258

Data visualization techniques 259
Summarizing and visualizing 259
Subsetting and visualizing 263
Sampling and visualizing 267
Modeling and visualizing 270

Summary 272
References 273

Data source citations 273

Chapter 10: Putting It All Together 274

A quick recap 275
Introducing a case study 276
The business problem 277
Data acquisition and data cleansing 277
Developing the hypothesis 283
Data exploration 284
Data preparation 286

Too many levels in a categorical variable 287
Numerical variables with too much variation 289

Missing data 289
Continuous data 290
Categorical data 290
Preparing the data 291

Model building 293
Data visualization 300
Communicating the results to business users 300
Summary 301
References 301

Chapter 11: Building Data Science Applications 302

[viii]

Scope of development 303
Expectations 303
Presentation options 304

Interactive notebooks 304
References 304

Web API 305
References 305

PMML and PFA 305
References 306

Development and testing 306
References 307

Data quality management 308
The Scala advantage 308
Spark development status 310

Spark 2.0's features and enhancements 310
Unifying Datasets and DataFrames 310
Structured Streaming 311
Project Tungsten phase 2 311

What's in store? 312
The big data trends 312
Summary 314
References 315

Index 316

Preface
In this smart age, data analytics is the key to sustaining and promoting business growth.
Every business is trying to leverage their data as much possible with all sorts of data science
tools and techniques to progress along the analytics maturity curve. This sudden rise in
data science requirements is the obvious reason for scarcity of data scientists. It is very
difficult to meet the market demand with unicorn data scientists who are experts in
statistics, machine learning, mathematical modelling as well as programming.

The availability of unicorn data scientists is only going to decrease with the increase in
market demand, and it will continue to be so. So, a solution was needed which not only
empowers the unicorn data scientists to do more, but also creates what Gartner calls as
 “Citizen Data Scientists”. Citizen data scientists are none other than the developers,
analysts, BI professionals or other technologists whose primary job function is outside of
statistics or analytics but are passionate enough to learn data science. They are becoming
the key enabler in democratizing data analytics across organizations and industries as a
whole.

There is an ever going plethora of tools and techniques designed to facilitate big data
analytics at scale. This book is an attempt to create citizen data scientists who can leverage
Apache Spark’s distributed computing platform for data analytics.

This book is a practical guide to learn statistical analysis and machine learning to build
scalable data products. It helps to master the core concepts of data science and also Apache
Spark to help you jump start on any real life data analytics project. Throughout the book, all
the chapters are supported by sufficient examples, which can be executed on a home
computer, so that readers can easily follow and absorb the concepts. Every chapter attempts
to be self-contained so that the reader can start from any chapter with pointers to relevant
chapters for details. While the chapters start from basics for a beginner to learn and
comprehend, it is comprehensive enough for a senior architects at the same time.

What this book covers
Chapter 1, Big Data and Data Science – An Introduction, this chapter discusses briefly about
the various challenges in big data analytics and how Apache Spark solves those problems
on a single platform. This chapter also explains how data analytics has evolved to what it is
now and also gives a basic idea on the Spark stack.

Preface

[2]

Chapter 2, The Spark Programming Model, this chapter talks about the design considerations
of Apache Spark and the supported programming languages. It also explains the Spark core
components and covers the RDD API in details, which is the basic building block of Spark.

Chapter 3, Introduction to DataFrames, this chapter explains about the DataFrames, which
are the most handy and useful component for the data scientists to work at ease. It explains
about Spark SQL and the Catalyst optimizer that empowers DataFrames. Also, various
DataFrames operations are demonstrated with code examples.

Chapter 4, Unified Data Access, this chapter talks about the various ways we source data
from different sources, consolidate and work in a unified way. It covers the streaming
aspect of real time data collection and operating on them. It also talks about the under-the-
hood fundamentals of these APIs.

Chapter 5, Data Analysis on Spark, this chapter discuss about the complete data analytics
lifecycle. With ample code examples, it explains how to source data from different sources,
prepare the data using data cleaning and transformation techniques, and perform
descriptive and inferential statistics to generate hidden insights from data.

Chapter 6, Machine Learning, this chapter explains various machine learning algorithms,
how they are implemented in the MLlib library and how they can be used with the pipeline
API for a streamlined execution. This chapter covers the fundamentals of all the algorithms
covered so it could serve as a one stop reference.

Chapter 7, Extending Spark with SparkR, this chapter is primarily intended for the R
programmers who want to leverage Spark for Data Analytics. It explains how to program
with SparkR and how to use the machine learning algorithms of R libraries.

Chapter 8, Analyzing Unstructured Data, this chapter discusses only about unstructured
data analysis. It explains how to source unstructured data, process it and perform machine
learning on it. It also covers some of the dimension reduction techniques which were not
covered in the “Machine Learning” chapter.

Chapter 9, Visualizing Big Data, in this chapter, readers learn various visualization
techniques that are supported on Spark. It explains the different kinds of visualization
requirements of data engineers, data scientists and business users; and also suggests right
kinds of tools and techniques. It also talks about leveraging IPython/Jupyter notebook and
Zeppelin, an Apache project for data visualization.

Preface

[3]

Chapter 10, Putting It All Together, till now the book has discussed about most of the data
analytics components in different chapters separately. This chapter is an effort to stich
various steps on a typical data science project and demonstrate a step-by-step approach to a
full blown analytics project execution.

Chapter 11, Building Data Science Applications, till now the book has mostly discussed about
the data science components along with a full blown execution example. This chapter
provides a heads up on how to build data products that can be deployed in production. It
also gives an idea on the current development status of the Apache Spark project and what
is in store for it.

What you need for this book
Your system must have following software before executing the code mentioned in the
book. However, not all software components are needed for all chapters:

Ubuntu 14.4 or, Windows 7 or above
Apache Spark 2.0.0
Scala: 2.10.4
Python 2.7.6
R 3.3.0
Java 1.7.0
Zeppelin 0.6.1
Jupyter 4.2.0
IPython kernel 5.1

Who this book is for
This book is for anyone who wants to leverage Apache Spark for data science and machine
learning. If you are a technologist who wants to expand your knowledge to perform data
science operations in Spark, or a data scientist who wants to understand how algorithms are
implemented in Spark, or a newbie with minimal development experience who wants to
learn about Big Data Analytics, this book is for you!

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "When a
program is run on a Spark shell, it is called the driver program with the user's main method
in it."

A block of code is set as follows:

Scala> sc.parallelize(List(2, 3, 4)).count()
res0: Long = 3
Scala> sc.parallelize(List(2, 3, 4)).collect()
res1: Array[Int] = Array(2, 3, 4)
Scala> sc.parallelize(List(2, 3, 4)).first()
res2: Int = 2
Scala> sc.parallelize(List(2, 3, 4)).take(2)
res3: Array[Int] = Array(2, 3)

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "It also allows users to
source data using Data Source API from the data sources that are not supported out of the
box (for example, CSV, Avro HBase, Cassandra, and so on.)"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / S p a r k - f o r - D a t a - S c i e n c e. We also have other code bundles from our rich catalog
of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them
out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
http://www.packtpub.com/sites/default/files/downloads/SparkforDataScience_Color

Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/Spark-for-Data-Science
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Big Data and Data Science –

An Introduction
Big data is definitely a big deal! It promises a wealth of opportunities by deriving hidden
insights in huge data silos and by opening new avenues to excel in business. Leveraging big
data through advanced analytics techniques has become a no-brainer for organizations to
create and maintain their competitive advantage.

This chapter explains what big data is all about, the various challenges with big data
analysis and how Apache Spark pitches in as the de facto standard to address
computational challenges and also serves as a data science platform.

The topics covered in this chapter are as follows:

Big data overview – what is all the fuss about?
Challenges with big data analytics – why was it so difficult?
Evolution of big data analytics – the data analytics trend
Spark for data analytics – the solution to big data challenges
The Spark stack – all that makes it up for a complete big data solution

Big Data and Data Science – An Introduction

[9]

Big data overview
Much has already been spoken and written about what big data is, but there is no specific
standard as such to clearly define it. It is actually a relative term to some extent. Whether
small or big, your data can be leveraged only if you can analyze it properly. To make some
sense out of your data, the right set of analysis techniques is needed and selecting the right
tools and techniques is of utmost importance in data analytics. However, when the data
itself becomes a part of the problem and the computational challenges need to be addressed
prior to performing data analysis, it becomes a big data problem.

A revolution took place in the World Wide Web, also referred to as Web 2.0, which changed
the way people used the Internet. Static web pages became interactive websites and started
collecting more and more data. Technological advancements in cloud computing, social
media, and mobile computing created an explosion of data. Every digital device started
emitting data and many other sources started driving the data deluge. The dataflow from
every nook and corner generated varieties of voluminous data, at speed! The formation of
big data in this fashion was a natural phenomenon, because this is how the World Wide
Web had evolved and no explicit efforts were involved in specifics. This is about the past! If
you consider the change that is happening now, and is going to happen in future, the
volume and speed of data generation is beyond what one can anticipate. I am propelled to
make such a statement because every device is getting smarter these days, thanks to the
Internet of Things (IoT).

The IT trend was such that the technological advancements also facilitated the data
explosion. Data storage had experienced a paradigm shift with the advent of cheaper
clusters of online storage pools and the availability of commodity hardware with bare
minimal price. Storing data from disparate sources in its native form in a single data lake
was rapidly gaining over carefully designed data marts and data warehouses. Usage
patterns also shifted from rigid schema-driven, RDBMS-based approaches to schema-less,
continuously available NoSQL data-store-driven solutions. As a result, the rate of data
creation, whether structured, semi-structured, or unstructured, started accelerating like
never before.

Big Data and Data Science – An Introduction

[10]

Organizations are very much convinced that not only can specific business questions be
answered by leveraging big data; it also brings in opportunities to cover the uncovered
possibilities in businesses and address the uncertainties associated with this. So, apart from
the natural data influx, organizations started devising strategies to generate more and more
data to maintain their competitive advantages and to be future ready. Here, an example
would help to understand this better. Imagine sensors are installed on the machines of a
manufacturing plant which are constantly emitting data, and hence the status of the
machine parts, and a company is able to predict when the machine is going to fail. It lets the
company prevent a failure or damage and avoid unplanned downtime, saving a lot of
money.

Challenges with big data analytics
There are broadly two types of formidable challenges in the analysis of big data. The first
challenge is the requirement for a massive computation platform, and once it is in place, the
second challenge is to analyze and make sense out of huge data at scale.

Computational challenges
With the increase in data, the storage requirement for big data also grew more and more.
Data management became a cumbersome task. The latency involved in accessing the disk
storage due to the seek time became the major bottleneck even though the processing speed
of the processor and the frequency of RAM were up to the mark.

Fetching structured and unstructured data from across the gamut of business applications
and data silos, consolidating them, and processing them to find useful business insights was
challenging. There were only a few applications that could address any one area, or just a
few areas of diversified business requirement. However, integrating those applications to
address most of the business requirements in a unified way only increased the complexity.

To address these challenges, people turned to the distributed computing framework with
distributed file system, for example, Hadoop and Hadoop Distributed File System
(HDFS). This could eliminate the latency due to disk I/O, as the data could be read in
parallel across the cluster of machines.

Big Data and Data Science – An Introduction

[11]

Distributed computing technologies had existed for decades before, but gained more
prominence only after the importance of big data was realized in the industry. So,
technology platforms such as Hadoop and HDFS or Amazon S3 became the industry
standard. On top of Hadoop, many other solutions such as Pig, Hive, Sqoop, and others
were developed to address different kinds of industry requirements such as storage,
Extract, Transform, and Load (ETL), and data integration to make Hadoop a unified
platform.

Analytical challenges
Analyzing data to find some hidden insights has always been challenging because of the
additional intricacies involved in dealing with huge datasets. The traditional BI and OLAP
solutions could not address most of the challenges that arose due to big data. As an
example, if there were multiple dimensions to a dataset, say 100, it got really difficult to
compare these variables with one another to draw a conclusion because there would be
around 100C2 combinations for it. Such cases required statistical techniques such as
correlation and the like to find the hidden patterns.

Though there were statistical solutions to many problems, it got really difficult for data
scientists or analytics professionals to slice and dice the data to find intelligent insights
unless they loaded the entire dataset into a DataFrame in memory. The major roadblock
was that most of the general-purpose algorithms for statistical analysis and machine
learning were single-threaded and written at a time when datasets were usually not so huge
and could fit in the RAM on a single computer. Those algorithms written in R or Python
were no longer very useful in their native form to be deployed on a distributed computing
environment because of the limitation of in-memory computation.

To address this challenge, statisticians and computer scientists had to work together to
rewrite most of the algorithms that would work well in a distributed computing
environment. Consequently, a library called Mahout for machine learning algorithms was
developed on Hadoop for parallel processing. It had most of the common algorithms that
were being used most often in the industry. Similar initiatives were taken for other
distributed computing frameworks.

Big Data and Data Science – An Introduction

[12]

Evolution of big data analytics
The previous section outlined how the computational and data analytics challenges were
addressed for big data requirements. It was possible because of the convergence of several
related trends such as low-cost commodity hardware, accessibility to big data, and
improved data analytics techniques. Hadoop became a cornerstone in many large,
distributed data processing infrastructures.

However, people soon started realizing the limitations of Hadoop. Hadoop solutions were
best suited for only specific types of big data requirements such as ETL; it gained popularity
for such requirements only.

There were scenarios when data engineers or analysts had to perform ad hoc queries on the
data sets for interactive data analysis. Every time they ran a query on Hadoop, the data was
read from the disk (HDFS-read) and loaded into the memory – which was a costly affair.
Effectively, jobs were running at the speed of I/O transfers over the network and cluster of
disks, instead of the speed of CPU and RAM.

The following is a pictorial representation of the scenario:

Big Data and Data Science – An Introduction

[13]

One more case where Hadoop's MapReduce model could not fit in well was with machine
learning algorithms that were iterative in nature. Hadoop MapReduce was
underperforming, with huge latency in iterative computation. Since MapReduce had a
restricted programming model with forbidden communication between Map and Reduce
workers, the intermediate results needed to be stored in a stable storage. So, those were
pushed on to the HDFS, which in turn writes into the instead of saving in RAM and then
loading back in the memory for the subsequent iteration, similarly for the rest of the
iterations. The number of disk I/O was dependent on the number of iterations involved in
an algorithm and this was topped with the serialization and deserialization overhead while
saving and loading the data. Overall, it was computationally expensive and could not get
the level of popularity compared to what was expected of it.

The following is a pictorial representation of this scenario:

To address this, tailor-made solutions were developed, for example, Google's Pregel, which
was an iterative graph processing algorithm and was optimized for inter-process
communication and in-memory storage for the intermediate results to make it run faster.
Similarly, many other solutions were developed or redesigned that would best suit some of
the specific needs that the algorithms used were designed for.

www.allitebooks.com

http://www.allitebooks.org

Big Data and Data Science – An Introduction

[14]

Instead of redesigning all the algorithms, a general-purpose engine was needed that could
be leveraged by most of the algorithms for in-memory computation on a distributed
computing platform. It was also expected that such a design would result in faster
execution of iterative computation and ad hoc data analysis. This is how the Spark project
paved its way out at the AMPLab at UC Berkeley.

Spark for data analytics
Soon after the Spark project was successful in the AMP labs, it was made open source in
2010 and transferred to the Apache Software Foundation in 2013. It is currently being led by
Databricks.

Spark offers many distinct advantages over other distributed computing platforms, such as:

A faster execution platform for both iterative machine learning and interactive
data analysis
Single stack for batch processing, SQL queries, real-time stream processing, graph
processing, and complex data analytics
Provides high-level API to develop a diverse range of distributed applications by
hiding the complexities of distributed programming
Seamless support for various data sources such as RDBMS, HBase, Cassandra,
Parquet, MongoDB, HDFS, Amazon S3, and so on

Big Data and Data Science – An Introduction

[15]

The following is a pictorial representation of in-memory data sharing for iterative
algorithms:

Spark hides the complexities in writing the core MapReduce jobs and provides most of the
functionalities through simple function calls. Because of its simplicity, it is able to cater to
wider and bigger audience groups such as data scientists, data engineers, statisticians, and
R/Python/Scala/Java developers.

The Spark architecture broadly consists of a data storage layer, management framework,
and API. It is designed to work on top of an HDFS filesystem, and thereby leverages the
existing ecosystem. Deployment could be as a standalone server or on distributed
computing frameworks such as Apache Mesos or YARN. An API is provided for Scala, the
language in which Spark is written, along with Java, R and Python.

The Spark stack
Spark is a general-purpose cluster computing system that empowers other higher-level
components to leverage its core engine. It is interoperable with Apache Hadoop, in the
sense that it can read and write data from/to HDFS and can also integrate with other storage
systems that are supported by the Hadoop API.

Big Data and Data Science – An Introduction

[16]

While it allows building other higher-level applications on top of it, it already has a few
components built on top that are tightly integrated with its core engine to take advantage of
the future enhancements at the core. These applications come bundled with Spark to cover
the broader sets of requirements in the industry. Most of the real-world applications need to
be integrated across projects to solve specific business problems that usually have a set of
requirements. This is eased out with Apache Spark as it allows its higher level components
to be seamlessly integrated, such as libraries in a development project.

Also, with Spark's built-in support for Scala, Java, R and Python, a broader range of
developers and data engineers are able to leverage the entire Spark stack:

Spark core
The Spark core, in a way, is similar to the kernel of an operating system. It is the general
execution engine, which is fast as well as fault tolerant. The entire Spark ecosystem is built
on top of this core engine. It is mainly designed to do job scheduling, task distribution, and
monitoring of jobs across worker nodes. It is also responsible for memory management,
interacting with various heterogeneous storage systems, and various other operations.

The primary building block of Spark core is the Resilient Distributed Dataset (RDD),
which is an immutable, fault-tolerant collection of elements. Spark can create RDDs from a
variety of data sources such as HDFS, local filesystems, Amazon S3, other RDDs, NoSQL
data stores such as Cassandra, and so on. They are resilient in the sense that they
automatically rebuild on failure. RDDs are built through lazy parallel transformations. They
may be cached and partitioned, and may or may not be materialized.

Big Data and Data Science – An Introduction

[17]

The entire Spark core engine may be viewed as a set of simple operations on distributed
datasets. All the scheduling and execution of jobs in Spark is done based on the methods
associated with each RDD. Also, the methods associated with each RDD define their own
ways of distributed in-memory computation.

Spark SQL
This module of Spark is designed to query, analyze, and perform operations on structured
data. This is a very important component in the entire Spark stack because of the fact that
most of the organizational data is structured, though unstructured data is growing rapidly.
Acting as a distributed query engine, it enables Hadoop Hive queries to run up to 100 times
faster on it without any modification. Apart from Hive, it also supports Apache Parquet, an
efficient columnar storage, JSON, and other structured data formats. Spark SQL enables
running SQL queries along with complex programs written in Python, Scala, and Java.

Spark SQL provides a distributed programming abstraction called DataFrames, referred to
as SchemaRDD before, which had fewer functions associated with it. DataFrames are
distributed collections of named columns, analogous to SQL tables or Python's Pandas
DataFrames. They can be constructed with a variety of data sources that have schemas with
them such as Hive, Parquet, JSON, other RDBMS sources, and also from Spark RDDs.

Spark SQL can be used for ETL processing across different formats and then running ad hoc
analysis. Spark SQL comes with an optimizer framework called Catalyst that can transform
SQL queries for better efficiency.

Spark streaming
The processing window for the enterprise data is becoming shorter than ever. To address
the real-time processing requirement of the industry, this component of Spark was
designed, which is fault tolerant as well as scalable. Spark enables real-time data analytics
on live streams of data by supporting data analysis, machine learning, and graph
processing on them.

It provides an API called Discretised Stream (DStream) to manipulate the live streams of
data. The live streams of data are sliced up into small batches of, say, x seconds. Spark treats
each batch as an RDD and processes them as basic RDD operations. DStreams can be
created out of live streams of data from HDFS, Kafka, Flume, or any other source which can
stream data on the TCP socket. By applying some higher-level operations on DStreams,
other DStreams can be produced.

Big Data and Data Science – An Introduction

[18]

The final result of Spark streaming can either be written back to the various data stores
supported by Spark or can be pushed to any dashboard for visualization.

MLlib
MLlib is the built-in machine learning library in the Spark stack. This was introduced in
Spark 0.8. Its goal is to make machine learning scalable and easy. Developers can seamlessly
use Spark SQL, Spark Streaming, and GraphX in their programming language of choice, be
it Java, Python, or Scala. MLlib provides the necessary functions to perform various
statistical analyses such as correlations, sampling, hypothesis testing, and so on. This
component also has a broad coverage of applications and algorithms in classification,
regression, collaborative filtering, clustering, and decomposition.

The machine learning workflow involves collecting and preprocessing data, building and
deploying the model, evaluating the results, and refining the model. In the real world, the
preprocessing steps take up significant effort. These are typically multi-stage workflows
involving expensive intermediate read/write operations. Often, these processing steps may
be performed multiple times over a period of time. A new concept called ML Pipelines was
introduced to streamline these preprocessing steps. A Pipeline is a sequence of
transformations where the output of one stage is the input of another, forming a chain. The
ML Pipeline leverages Spark and MLlib and enables developers to define reusable
sequences of transformations.

GraphX
GraphX is a thin-layered unified graph analytics framework on Spark. It was designed to be
a general-purpose distributed dataflow framework in place of specialized graph processing
frameworks. It is fault tolerant and also exploits in-memory computation.

GraphX is an embedded graph processing API for manipulating graphs (for example, social
networks) and to do graph parallel computation (for example, Google's Pregel). It combines
the advantages of both graph-parallel and data-parallel systems on the Spark stack to unify
exploratory data analysis, iterative graph computation, and ETL processing. It extends the
RDD abstraction to introduce the Resilient Distributed Graph (RDG), which is a directed
graph with properties associated to each of its vertices and edges.

GraphX includes a decently large collection of graph algorithms, such as PageRank, K-Core,
Triangle Count, LDA, and so on.

Big Data and Data Science – An Introduction

[19]

SparkR
The SparkR project was started to integrate the statistical analysis and machine learning
capability of R with the scalability of Spark. It addressed the limitation of R, which was its
ability to process as much data as fitted in the memory of a single machine. R programs can
now scale in a distributed setting through SparkR.

SparkR is actually an R Package that provides an R shell to leverage Spark's distributed
computing engine. With R's rich set of built-in packages for data analytics, data scientists
can analyze large datasets interactively at scale.

Summary
In this chapter, we briefly covered what big data is all about. We then discussed the
computational and analytical challenges involved in big data analytics. Later, we looked at
how the analytics space in the context of big data has evolved over a period of time and
what the trend has been. We also covered how Spark addressed most of the big data
analytics challenges and became a general-purpose unified analytics platform for data
science as well as parallel computation. At the end of this chapter, we just gave you a heads-
up on the Spark stack and its components.

In the next chapter, we will learn about the Spark programming model. We will take a deep
dive into the basic building block of Spark, which is the RDD. Also, we will learn how to
program with the RDD API on Scala and Python.

References
Apache Spark overview:

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t /

h t t p s : / / d a t a b r i c k s . c o m / s p a r k / a b o u t

Apache Spark architecture:

h t t p : / / l i n t o o l . g i t h u b . i o / S p a r k T u t o r i a l / s l i d e s / d a y 1 _ c o n t e x t . p d f

http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
https://databricks.com/spark/about
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf

2
The Spark Programming Model

Large-scale data processing using thousands of nodes with built-in fault tolerance has
become widespread due to the availability of open source frameworks, with Hadoop being
a popular choice. These frameworks are quite successful in executing specific tasks such as
Extract, Transform, and Load (ETL) and storage applications that deal with web-scale data.
However, developers were left with a myriad of tools to work with, along with the well-
established Hadoop ecosystem. There was a need for a single, general-purpose
development platform that caters to batch, streaming, interactive, and iterative
requirements. This was the motivation behind Spark.

The previous chapter outlined the big data analytics challenges and how Spark addressed
most of them at a very high level. In this chapter, we will examine the design goals and
choices involved in the making of Spark to get a clearer understanding of its suitability as a
data science platform for big data. We will also cover the core abstraction Resilient
Distributed Dataset (RDD) in depth with examples.

As a prerequisite for this chapter, a basic understanding of Python or Scala along with
elementary understanding of Spark is needed. The topics covered in this chapter are as
follows:

The programming paradigm – language support and design benefits
Supported programming languages
Choosing the right language

The Spark Programming Model

[21]

The Spark engine – Spark core components and their implications
Driver program
Spark shell
SparkContext
Worker nodes
Executors
Shared variables
Flow of execution

The RDD API – understanding the RDD fundamentals
RDD basics
Persistence

RDD operations – let's get your hands dirty
Getting started with the shell
Creating RDDs
Transformations on normal RDDs
Transformations on pair RDDs
Actions

The programming paradigm
For Spark to address the big data challenges and serve as a platform for data science and
other scalable applications, it was built with well-thought-out design considerations and
language support.

There are Spark APIs designed for varieties of application developers to create Spark-based
applications using standard API interfaces. Spark provides APIs for Scala, Java, R and
Python programming languages, as explained in the following sections.

Supported programming languages
With built-in support for so many languages, Spark can be used interactively through a
shell, which is otherwise known as Read-Evaluate-Print-Loop (REPL), in a way that will
feel familiar to developers of any language. The developers can use the language of their
choice, leverage existing libraries, and seamlessly interact with Spark and its ecosystem. Let
us see the ones supported on Spark and how they fit into the Spark ecosystem.

The Spark Programming Model

[22]

Scala
Spark itself is written in Scala, a Java Virtual Machine (JVM) based functional
programming language. The Scala compiler generates byte code that executes on the JVM.
So, it can seamlessly integrate with any other JVM-based systems such as HDFS, Cassandra,
HBase, and so on. Scala was the language of choice because of its concise programming
interface, an interactive shell, and its ability to capture functions and efficiently ship them
across the nodes in a cluster. Scala is an extensible (scalable, hence the name), statically
typed, efficient multi-paradigm language that supports functional and object-oriented
language features.

Apart from the full-blown applications, Scala also supports shell (Spark shell) for interactive
data analysis on Spark.

Java
Since Spark is JVM based, it naturally supports Java. This helps existing Java developers to
develop data science applications along with other scalable applications. Almost all the
built-in library functions are accessible from Java. Coding in Java for data science
assignments is comparatively difficult in Spark, but someone very hands-on with Java
might find it easy.

This Java API only lacks a shell-based interface for interactive data analysis on Spark.

Python
Python is supported on Spark through PySpark, which is built on top of Spark's Java API
(using Py4J). From now on, we will be using the term PySpark to refer to the Python
environment on Spark. Python was already very popular amongst developers for data
wrangling, data munging, and other data science related tasks. Support for Python on Spark
became even more popular as Spark could address the scalable computation challenge.

Through Python's interactive shell on Spark (PySpark), interactive data analysis at scale is
possible.

The Spark Programming Model

[23]

R
R is supported on Spark through SparkR, an R package through which Spark's scalability is
accessible through R. SparkR empowered R to address its limitation of single-threaded
runtime, because of which computation was limited only to a single node.

Since R was originally designed only for statistical analysis and machine learning, it was
already enriched with most of the packages. Data scientists can now work on huge data at
scale with a minimal learning curve. R is still a default choice for many data scientists.

Choosing the right language
Apart from the developer's language preference, at times there are other constraints that
may draw attention. The following aspects could supplement your development experience
while choosing one language over the other:

An interactive shell comes in handy when developing complex logic. All
languages supported by Spark except Java have an interactive shell.
R is the lingua franca of data scientists. It is definitely more suitable for pure data
analytics because of its richer set of libraries. R support was added in Spark 1.4.0
so that Spark reaches out to data scientists working on R.
Java has a broader base of developers. Java 8 has included lambda expressions
and hence the functional programming aspect. Nevertheless, Java tends to be
verbose.
Python is gradually gaining more popularity in the data science space. The
availability of Pandas and other data processing libraries, and its simple and
expressive nature, make Python a strong candidate. Python gives more flexibility
than R in scenarios such as data aggregation from different sources, data
cleaning, natural language processing, and so on.
Scala is perhaps the best choice for real-time analytics because this is the closest to
Spark. The initial learning curve for developers coming from other languages
should not be a deterrent for serious production systems. The latest inclusions to
Spark are usually first available in Scala. Its static typing and sophisticated type
inference improve efficiency as well as compile-time checks. Scala can draw from
Java's libraries as Scala's own library base is still at an early stage, but catching
up.

The Spark Programming Model

[24]

The Spark engine
To program with Spark, a basic understanding of Spark components is needed. In this
section, some of the important Spark components along with their execution mechanism
will be explained so that developers and data scientists can write programs and build
applications.

Before getting into the details, we suggest you take a look at the following diagram so that
the descriptions of the Spark gears are more comprehensible as you read further:

Driver program
The Spark shell is an example of a driver program. A driver program is a process that
executes in the JVM and runs the user's main function on it. It has a SparkContext object
which is a connection to the underlying cluster manager. A Spark application is initiated
when the driver starts and it completes when the driver stops. The driver, through an
instance of SparkContext, coordinates all processes within a Spark application.

The Spark Programming Model

[25]

Primarily, an RDD lineage Directed Acyclic Graph (DAG) is built on the driver side with
data sources (which may be RDDs) and transformations. This DAG is submitted to the
DAG scheduler when an action method is encountered. The DAG scheduler then splits the
DAG into logical units of work (for example, map or reduce) called stages. Each stage, in
turn, is a set of tasks, and each task is assigned to an executor (worker) by the task
scheduler. Jobs may be executed in FIFO order or round robin, depending on the
configuration.

Inside a single Spark application, multiple parallel jobs can run
simultaneously if they were submitted from separate threads.

The Spark shell
The Spark shell is none other than the interface provided by Scala and Python. It looks very
similar to any other interactive shell. It has a SparkContext object (created by default for
you) that lets you leverage the distributed cluster. An interactive shell is quite useful for
exploratory or ad hoc analysis. You can develop your complex scripts step by step through
the shell without going through the compile-build-execute cycle.

SparkContext
SparkContext is the entry point to the Spark core engine. This object is required to create
and manipulate RDDs and create shared variables on a cluster. The SparkContext object
connects to a cluster manager, which is responsible for resource allocation. Spark comes
with its own standalone cluster manager. Since the cluster manager is a pluggable
component in Spark, it can be managed through external cluster managers such as Apache
Mesos or YARN.

When you start a Spark shell, a SparkContext object is created by default for you. You can
also create it by passing a SparkConf object that is used to set various Spark configuration
parameters as key value pairs. Please note that there can be only one SparkContext object in
a JVM.

The Spark Programming Model

[26]

Worker nodes
Worker nodes are the nodes that run the application code in a cluster, obeying the driver
program. The real work is actually executed by the worker nodes. Each machine in the
cluster may have one or more worker instances (default one). A worker node executes one
or more executors that belong to one or more Spark applications. It consists of a block
manager component, which is responsible for managing data blocks. The blocks can be
cached RDD data, intermediate shuffled data, or broadcast data. When the available RAM is
not sufficient, it automatically moves some data blocks to disk. Data replication across
nodes is another responsibility of block manager.

Executors
Each application has a set of executor processes. Executors reside on worker nodes and
communicate directly with the driver once the connection is made by the cluster manager.
All executors are managed by SparkContext. An executor is a single JVM instance that
serves a single Spark application. An executor is responsible for managing computation
through tasks, storage, and caching on each worker node. It can run multiple tasks
concurrently.

Shared variables
Normally, the code is shipped to partitions along with separate copies of variables. These
variables cannot be used to propagate results (for example, intermediate work counts) back
to the driver program. Shared variables are used for this purpose. There are two kinds of
shared variables, broadcast variables and accumulators.

Broadcast variables enable the programmers to retain a read-only copy cached on each node
rather than shipping a copy of it with tasks. If large, read-only data is used in multiple
operations, it can be designated as broadcast variables and shipped only once to all worker
nodes. The data broadcast in this way is cached in serialized form and is deserialized before
running each task. Subsequent operations can access these variables along with the local
variables moved along with the code. Creating broadcast variables is not necessary in all
cases, except the ones where tasks across multiple stages need the same read-only copy of
the data.

Accumulators are variables that are always incremented, such as counters or cumulative
sums. Spark natively supports accumulators of numeric types, but allows programmers to
add support for new types. Please note that the worker nodes cannot read the value of
accumulators; they can only modify their values.

The Spark Programming Model

[27]

Flow of execution
A Spark application consists of a set of processes with one driver program and multiple
worker (executor) programs. The driver program contains the application's main function and
a SparkContext object, which represents a connection to the Spark cluster. Coordination
between driver and the other processes happens through the SparkContext object.

A typical Spark client program performs the following steps:

When a program is run on a Spark shell, it is called the driver program with the1.
user's main method in it. It gets executed in the JVM of the system where you are
running the driver program.
The first step is to create a SparkContext object with the required configuration2.
parameters. When you run the PySpark or Spark shell, it is instantiated by
default, but for other applications, you have to create it explicitly. SparkContext is
actually the gateway to Spark.
The next step is to define one or more RDDs, either by loading a file or3.
programmatically by passing an array of items, referred to parallel collection
Then more RDDs can be defined by a sequence of transformations, which are4.
tracked and managed by a lineage graph. These RDD transformations may be
viewed as piped UNIX commands where the output of one command becomes
the input to the next command and so on. Each resulting RDD of a transformation
step has a pointer to its parent RDD and also has a function for calculating its
data. The RDD is acted on only after encountering an action statement. So, the
transformations are lazy operations used to define new RDDs and actions launch a
computation to return a value to the program or write data to external storage.
We will discuss this aspect a little more in the following sections.
At this stage, Spark creates an execution graph where nodes represent the RDDs5.
and edges represent the transformation steps. Spark breaks the job into multiple
tasks to run on separate machines. This is how Spark sends the compute to the
data across the nodes in a cluster, rather than getting all the data together and
computing it.

The Spark Programming Model

[28]

The RDD API
The RDD is a read-only, partitioned, fault-tolerant collection of records. From a design
perspective, there was a need for a single data structure abstraction that hides the
complexity of dealing with a wide variety of data sources, be it HDFS, filesystems, RDBMS,
NOSQL data structures, or any other data source. The user should be able to define the
RDD from any of these sources. The goal was to support a wide array of operations and let
users compose them in any order.

RDD basics
Each dataset is represented as an object in Spark's programming interface called RDD.
Spark provides two ways for creating RDDs. One way is to parallelize an existing collection.
The other way is to reference a dataset in an external storage system such as a filesystem.

An RDD is composed of one or more data sources, maybe after performing a series of
transformations including several operators. Every RDD or RDD partition knows how to
recreate itself in case of failure. It has the log of transformations, or a lineage that is required
to recreate itself from stable storage or another RDD. Thus, any program using Spark can be
assured of built-in fault tolerance, regardless of the underlying data source and the type of
RDD.

There are two kinds of methods available on RDDs: transformations, and actions.
Transformations are the methods that are used to create RDDs. Actions are the methods
that utilize RDDs. RDDs are usually partitioned. Users may choose to persist RDDs that
may be reused in their programs.

RDDs are immutable (read-only) data structures, so any transformation results in the
creation of a new RDD. The transformations are applied lazily, only when any action is
applied on them, and not when an RDD is defined. An RDD is recomputed every time it is
used in an action unless the user explicitly persists the RDD in memory. Saving in memory
saves a lot of time. If the memory is not sufficient to accommodate the RDD fully, the
remaining portion of that RDD will be stored (spilled) on the hard disk automatically. One
advantage of lazy transformations is that it is possible to optimize the transformation steps.
For example, if the action is to return the first line, Spark computes only a single partition
and skips the rest.

The Spark Programming Model

[29]

An RDD may be viewed as a set of partitions (splits) with a list of dependencies on parent
RDDs and a function to compute a partition given its parents. Sometimes, each partition of
a parent RDD is used by a single child RDD. This is called narrow dependency. Narrow
dependency is desirable because when a parent RDD partition is lost, only a single child
partition needs to be recomputed. On the other hand, computing a single child RDD
partition that involves operations such as group-by-keys depends on several parent RDD
partitions. Data from each parent RDD partition in turn is required in creating data in
several child RDD partitions. Such a dependency is called wide dependency. In the case of
narrow dependency, it is possible to keep both parent and child RDD partitions on a single
node (co-partition). But this is not possible in the case of wide dependency because parent
data is scattered across several partitions. In such cases, data should be shuffled across
partitions. Data shuffling is a resource-intensive operation that should be avoided to the
extent possible. Another issue with wide dependency is that all child RDD partitions need
to be recomputed even when a single parent RDD partition is lost.

Persistence
RDDs are computed on the fly every time they are acted upon through an action method.
The developer has the ability to override this default behavior and instruct to persist or cache
a dataset in memory across partitions. If this dataset is required to participate in several
actions, then persisting saves a significant amount of time, CPU cycles, disk I/O, and
network bandwidth. The fault-tolerance mechanism is applicable to the cached partitions
too. When any partition is lost due to node failure, it is recomputed using a lineage graph. If
the available memory is insufficient, Spark gracefully spills the persisted partitions on to the
disk. The developer may remove unwanted RDDs using unpersist. Nevertheless, Spark
automatically monitors the cache and removes old partitions using Least Recently Used
(LRU) algorithms.

Cache() is the same as persist() or persist (MEMORY_ONLY). While
the persist() method can have many other arguments for different
levels of persistence, such as only memory, memory and disk, only disk,
and so on, the cache() method is designed only for persistence in the
memory.

The Spark Programming Model

[30]

RDD operations
Spark programming usually starts by choosing a suitable interface that you are comfortable
with. If you intend to do interactive data analysis, then a shell prompt would be the obvious
choice. However, choosing a Python shell (PySpark) or Scala shell (Spark-Shell) depends on
your proficiency with these languages to some extent. If you are building a full-blown
scalable application then proficiency matters a great deal, so you should develop the
application in your language of choice between Scala, Java, and Python, and submit it to
Spark. We will discuss this aspect in more detail later in the book.

Creating RDDs
In this section, we will use both a Python shell (PySpark) and a Scala shell (Spark-Shell) to
create an RDD. Both of these shells have a predefined, interpreter-aware SparkContext that
is assigned to a variable sc.

Let us get started with some simple code examples. Note that the code assumes the current
working directory is Spark's home directory. The following code snippet initiates the Spark
interactive shell, reads a file from the local filesystem, and prints the first line from that file:

Python:

> bin/pyspark // Start pyspark shell
>>> _ // For simplicity sake, no Log messages are shown here

>>> type(sc) //Check the type of Predefined SparkContext object
<class 'pyspark.context.SparkContext'>

//Pass the file path to create an RDD from the local file system
>>> fileRDD = sc.textFile('RELEASE')

>>> type(fileRDD) //Check the type of fileRDD object
<class 'pyspark.rdd.RDD'>

>>>fileRDD.first() //action method. Evaluates RDD DAG and also returns
the first item in the RDD along with the time taken
took 0.279229 s
u'Spark Change Log'

The Spark Programming Model

[31]

Scala:

> bin/Spark-Shell // Start Spark-shell
Scala> _ // For simplicity sake, no Log messages are shown here

Scala> sc //Check the type of Predefined SparkContext object
res1: org.apache.spark.SparkContext =
org.apache.spark.SparkContext@70884875

//Pass the file path to create an RDD from the local file system

Scala> val fileRDD = sc.textFile("RELEASE")

Scala> fileRDD //Check the type of fileRDD object
res2: org.apache.spark.rdd.RDD[String] = ../ RELEASE
MapPartitionsRDD[1] at textFile at <console>:21

Scala>fileRDD.first() //action method. Evaluates RDD DAG and also returns
the first item in the RDD along with the time taken
0.040965 s
res6: String = Spark Change Log

In both the preceding examples, the first line has invoked the interactive shell. The
SparkContext variable sc is already defined as expected. We have created an RDD by the
name fileRDD that points to a file RELEASE. This statement is just a transformation and
will not be executed until an action is encountered. You can try giving a nonexistent
filename but you will not get any error until you execute the next statement, which happens
to be an action statement.

We have completed the whole cycle of initiating a Spark application (shell), creating an
RDD, and consuming it. Since RDDs are recomputed every time an action is executed,
fileRDD is not persisted in the memory or hard disk. This allows Spark to optimize the
sequence of steps and execute intelligently. In fact, in the previous example, the optimizer
would have just read one partition of the input file because first() does not require a
complete file scan.

Recall that there are two ways to create an RDD: one way is to create a pointer to a data
source and the other is to parallelize an existing collection. The previous examples covered
one way, by loading a file from a storage system. We will now see the second way, which is
parallelizing an existing collection. RDD creation by passing in-memory collections is
simple but may not work very well for large collections, because the input collection should
fit completely in the driver node's memory.

The Spark Programming Model

[32]

The following example creates an RDD by passing a Python/Scala list with the
parallelize function:

Python:

// Pass a Python collection to create an RDD
>>> numRDD = sc.parallelize([1,2,3,4],2)
>>> type(numRDD)
<class 'pyspark.rdd.RDD'>
>>> numRDD
ParallelCollectionRDD[1] at parallelize at PythonRDD.scala:396
>>> numRDD.first()
1
>>> numRDD.map(lambda(x) : x*x).collect()
[1,4,9,16]
>>> numRDD.map(lambda(x) : x * x).reduce(lambda a,b: a+b)
30

A lambda function is an unnamed function, typically used as function
arguments to other functions. A Python lambda function can be a single
expression only. If your logic requires multiple steps, create a separate
function and use it in the lambda expression.

Scala:

// Pass a Scala collection to create an RDD
Scala> val numRDD = sc.parallelize(List(1,2,3,4),2)
numRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at
parallelize at <console>:21

Scala> numRDD
res15: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at
parallelize at <console>:21

Scala> numRDD.first()
res16: Int = 1

Scala> numRDD.map(x => x*x).collect()
res2: Array[Int] = Array(1, 4, 9, 16)

Scala> numRDD.map(x => x * x).reduce(_+_)
res20: Int = 30

The Spark Programming Model

[33]

As we saw in the previous example, we were able to pass a Scala/Python collection to create
an RDD and we also had the liberty to specify the number of partitions to cut those
collections into. Spark runs one task for each partition of the cluster, so it has to be carefully
decided to optimize the computation effort. Though Spark sets the number of partitions
automatically based on the cluster, we have the liberty to set it manually by passing it as a
second argument to the parallelize function (for example, sc.parallelize(data,
3)). The following is a diagrammatic representation of an RDD which is created with a
dataset with, say, 14 records (or tuples) and is partitioned into 3, distributed across 3 nodes:

www.allitebooks.com

http://www.allitebooks.org

The Spark Programming Model

[34]

Writing a Spark program usually consists of transformations and actions. Transformations
are lazy operations that define how to build an RDD. Most of the transformations accept a
single function argument. All these methods convert one data source to another. Every time
you perform a transformation on any RDD, a new RDD will be generated, even if it is a
small change as shown in the following diagram:

This is because the RDDs are immutable (read-only) abstractions by design. The resulting
output from an action can either be written back to the storage system or it can be returned
to the driver program for local computation if needed to produce the final output.

So far, we have seen some simple transformations that define RDDs and some actions to
process them and generate some output. Let us go on a quick tour of some handy
transformations and actions followed by transformations on pair RDDs.

Transformations on normal RDDs
The Spark API includes a rich set of transformation operators, and developers can compose
them in arbitrary ways. Try out the following examples on the interactive shell to gain a
better understanding of these operations.

The Spark Programming Model

[35]

The filter operation
The filter operation returns an RDD with only those elements that satisfy a filter
condition, similar to the WHERE condition in SQL.

Python:

a = sc.parallelize([1,2,3,4,5,6], 3)
b = a.filter(lambda x: x % 3 == 0)
b.collect()
[3,6]

Scala:

val a = sc.parallelize(1 to 10, 3)
val b = a.filter(_ % 3 == 0)
b.collect

res0: Array[Int] = Array(3, 6, 9)

The distinct operation
The distinct ([numTasks]) operation returns an RDD with a new dataset after eliminating
duplicates:

Python:

c = sc.parallelize(["John", "Jack", "Mike", "Jack"], 2)
c.distinct().collect()

['Mike', 'John', 'Jack']

Scala:

val c = sc.parallelize(List("John", "Jack", "Mike", "Jack"), 2)
c.distinct.collect
res6: Array[String] = Array(Mike, John, Jack)

val a = sc.parallelize(List(11,12,13,14,15,16,17,18,19,20))
a.distinct(2).partitions.length //create 2 tasks on two partitions of
the same RDD for parallel execution

res16: Int = 2

The Spark Programming Model

[36]

The intersection operation
The intersection operation takes another dataset as input. It returns a dataset that contains
common elements:

Python:

x = sc.parallelize([1,2,3,4,5,6,7,8,9,10])
y = sc.parallelize([5,6,7,8,9,10,11,12,13,14,15])
z = x.intersection(y)
z.collect()

[8, 9, 10, 5, 6, 7]

Scala:

val x = sc.parallelize(1 to 10)
val y = sc.parallelize(5 to 15)
val z = x.intersection(y)
z.collect

res74: Array[Int] = Array(8, 9, 5, 6, 10, 7)

The union operation
The union operation takes another dataset as input. It returns a dataset that contains
elements of itself and the input dataset supplied to it. If there are common values in both
sets, then they will appear as duplicate values in the resulting set after union:

Python:

a = sc.parallelize([3,4,5,6,7], 1)
b = sc.parallelize([7,8,9], 1)
c = a.union(b)
c.collect()

[3, 4, 5, 6, 7, 7, 8, 9]

Scala:

val a = sc.parallelize(3 to 7, 1)
val b = sc.parallelize(7 to 9, 1)
val c = a.union(b) // An alternative way is (a ++ b).collect

res0: Array[Int] = Array(3, 4, 5, 6, 7, 7, 8, 9)

The Spark Programming Model

[37]

The map operation
The map operation returns a distributed dataset formed by executing an input function on
each of the elements in the input dataset:

Python:

a = sc.parallelize(["animal", "human", "bird", "rat"], 3)
b = a.map(lambda x: len(x))
c = a.zip(b)
c.collect()

[('animal', 6), ('human', 5), ('bird', 4), ('rat', 3)]

Scala:

val a = sc.parallelize(List("animal", "human", "bird", "rat"), 3)
val b = a.map(_.length)
val c = a.zip(b)
c.collect

res0: Array[(String, Int)] = Array((animal,6), (human,5), (bird,4),
(rat,3))

The flatMap operation
The flatMap operation is similar to the map operation. While map returns one element per
input element, flatMap returns a list of zero or more elements for each input element:

Python:

a = sc.parallelize([1,2,3,4,5], 4)
a.flatMap(lambda x: range(1,x+1)).collect()
 // Range(1,3) returns 1,2 (excludes the higher boundary element)
[1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]

sc.parallelize([5, 10, 20], 2).flatMap(lambda x:[x, x, x]).collect()
[5, 5, 5, 10, 10, 10, 20, 20, 20]

The Spark Programming Model

[38]

Scala:

val a = sc.parallelize(1 to 5, 4)
a.flatMap(1 to _).collect
res47: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5)

//One more example
sc.parallelize(List(5, 10, 20), 2).flatMap(x => List(x, x, x)).collect
res85: Array[Int] = Array(5, 5, 5, 10, 10, 10, 20, 20, 20)

The keys operation
The keys operation returns an RDD with the key of each tuple:

Python:

a = sc.parallelize(["black", "blue", "white", "green", "grey"], 2)
b = a.map(lambda x:(len(x), x))
c = b.keys()
c.collect()

[5, 4, 5, 5, 4]

Scala:

val a = sc.parallelize(List("black", "blue", "white", "green", "grey"), 2)
val b = a.map(x => (x.length, x))
b.keys.collect

res2: Array[Int] = Array(5, 4, 5, 5, 4)

The cartesian operation
The cartesian operation takes another dataset as argument and returns the Cartesian
product of both datasets. This can be an expensive operation, returning a dataset of size m x
n where m and n are the sizes of input datasets:

The Spark Programming Model

[39]

Python:

x = sc.parallelize([1,2,3])
y = sc.parallelize([10,11,12])
x.cartesian(y).collect()

[(1, 10), (1, 11), (1, 12), (2, 10), (2, 11), (2, 12), (3, 10), (3, 11),
(3, 12)]

Scala:

val x = sc.parallelize(List(1,2,3))
val y = sc.parallelize(List(10,11,12))
x.cartesian(y).collect

res0: Array[(Int, Int)] = Array((1,10), (1,11), (1,12), (2,10), (2,11),
(2,12), (3,10), (3,11), (3,12))

Transformations on pair RDDs
Some Spark operations are available only on RDDs of key value pairs. Note that most of
these operations, except counting operations, usually involve shuffling, because the data
related to a key may not always reside on a single partition.

The groupByKey operation
Similar to the SQL groupBy operation, this groups input data based on the key and you can
use aggregateKey or reduceByKey to perform aggregate operations:

Python:

a = sc.parallelize(["black", "blue", "white", "green", "grey"], 2)
b = a.groupBy(lambda x: len(x)).collect()
sorted([(x,sorted(y)) for (x,y) in b])

[(4, ['blue', 'grey']), (5, ['black', 'white', 'green'])]

The Spark Programming Model

[40]

Scala:

val a = sc.parallelize(List("black", "blue", "white", "green", "grey"), 2)
val b = a.keyBy(_.length)
b.groupByKey.collect

res11: Array[(Int, Iterable[String])] = Array((4,CompactBuffer(blue,
grey)), (5,CompactBuffer(black, white, green)))

The join operation
The join operation takes another dataset as input. Both datasets should be of the key value
pairs type. The resulting dataset is yet another key value dataset having keys and values
from both datasets:

Python:

a = sc.parallelize(["blue", "green", "orange"], 3)
b = a.keyBy(lambda x: len(x))
c = sc.parallelize(["black", "white", "grey"], 3)
d = c.keyBy(lambda x: len(x))
b.join(d).collect()
[(4, ('blue', 'grey')), (5, ('green', 'black')), (5, ('green', 'white'))]

//leftOuterJoin
b.leftOuterJoin(d).collect()
[(6, ('orange', None)), (4, ('blue', 'grey')), (5, ('green', 'black')), (5,
('green', 'white'))]

//rightOuterJoin
b.rightOuterJoin(d).collect()
[(4, ('blue', 'grey')), (5, ('green', 'black')), (5, ('green', 'white'))]

//fullOuterJoin
b.fullOuterJoin(d).collect()
[(6, ('orange', None)), (4, ('blue', 'grey')), (5, ('green', 'black')), (5,
('green', 'white'))]

The Spark Programming Model

[41]

Scala:

val a = sc.parallelize(List("blue", "green", "orange"), 3)
val b = a.keyBy(_.length)
val c = sc.parallelize(List("black", "white", "grey"), 3)
val d = c.keyBy(_.length)
b.join(d).collect
res38: Array[(Int, (String, String))] = Array((4,(blue,grey)),
(5,(green,black)), (5,(green,white)))

//leftOuterJoin
b.leftOuterJoin(d).collect
res1: Array[(Int, (String, Option[String]))] = Array((6,(orange,None)),
(4,(blue,Some(grey))), (5,(green,Some(black))), (5,(green,Some(white))))

//rightOuterJoin
b.rightOuterJoin(d).collect
res1: Array[(Int, (Option[String], String))] = Array((4,(Some(blue),grey)),
(5,(Some(green),black)), (5,(Some(green),white)))

//fullOuterJoin
b.fullOuterJoin(d).collect
res1: Array[(Int, (Option[String], Option[String]))] =
Array((6,(Some(orange),None)), (4,(Some(blue),Some(grey))),
(5,(Some(green),Some(black))), (5,(Some(green),Some(white))))

The reduceByKey operation
The reduceByKey operation merges the values for each key using an associative reduce
function. This will also perform the merging locally on each mapper before sending results
to a reducer and producing hash-partitioned output:

Python:

a = sc.parallelize(["black", "blue", "white", "green", "grey"], 2)
b = a.map(lambda x: (len(x), x))
b.reduceByKey(lambda x,y: x + y).collect()
[(4, 'bluegrey'), (5, 'blackwhitegreen')]

a = sc.parallelize(["black", "blue", "white", "orange"], 2)
b = a.map(lambda x: (len(x), x))
b.reduceByKey(lambda x,y: x + y).collect()
[(4, 'blue'), (6, 'orange'), (5, 'blackwhite')]

The Spark Programming Model

[42]

Scala:

val a = sc.parallelize(List("black", "blue", "white", "green", "grey"), 2)
val b = a.map(x => (x.length, x))
b.reduceByKey(_ + _).collect
res86: Array[(Int, String)] = Array((4,bluegrey), (5,blackwhitegreen))

val a = sc.parallelize(List("black", "blue", "white", "orange"), 2)
val b = a.map(x => (x.length, x))
b.reduceByKey(_ + _).collect
res87: Array[(Int, String)] = Array((4,blue), (6,orange), (5,blackwhite))

The aggregate operation
The aggregrate operation returns an RDD with the keys of each tuple:

Python:

z = sc.parallelize([1,2,7,4,30,6], 2)
z.aggregate(0,(lambda x, y: max(x, y)),(lambda x, y: x + y))
37
z = sc.parallelize(["a","b","c","d"],2)
z.aggregate("",(lambda x, y: x + y),(lambda x, y: x + y))
'abcd'
z.aggregate("s",(lambda x, y: x + y),(lambda x, y: x + y))
'ssabsscds'
z = sc.parallelize(["12","234","345","56789"],2)
z.aggregate("",(lambda x, y: str(max(len(str(x)), len(str(y))))),(lambda x,
y: str(y) + str(x)))
'53'
z.aggregate("",(lambda x, y: str(min(len(str(x)), len(str(y))))),(lambda x,
y: str(y) + str(x)))
'11'
z = sc.parallelize(["12","234","345",""],2)
z.aggregate("",(lambda x, y: str(min(len(str(x)), len(str(y))))),(lambda x,
y: str(y) + str(x)))
'01'

The Spark Programming Model

[43]

Scala:

val z = sc.parallelize(List(1,2,7,4,30,6), 2)
z.aggregate(0)(math.max(_, _), _ + _)
res40: Int = 37

val z = sc.parallelize(List("a","b","c","d"),2)
z.aggregate("")(_ + _, _+_)
res115: String = abcd

z.aggregate("x")(_ + _, _+_)
res116: String = xxabxcd

val z = sc.parallelize(List("12","234","345","56789"),2)
z.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x
+ y)
res141: String = 53

z.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x
+ y)
res142: String = 11

val z = sc.parallelize(List("12","234","345",""),2)
z.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x
+ y)
res143: String = 01

Note that in the preceding aggregate examples, the resultant strings (for
example, abcd, xxabxcd, 53, 01) you get need not match the output
shown here exactly. It depends on the order in which the individual tasks
return their output.

Actions
Once an RDD has been created, the various transformations get executed only when an
action is performed on it. The result of an action can either be data written back to the
storage system or returned to the driver program that initiated this for further computation
locally to produce the final result.

We have already covered some of the action functions in the previous examples of
transformations. The following are a few more, but there are a lot more that you have to
explore.

The Spark Programming Model

[44]

The collect() function
The collect() function returns all the results of an RDD operation as an array to the
driver program. This is usually useful for operations that produce sufficiently small
datasets. Ideally, the result should easily fit in the memory of the system that's hosting the
driver program.

The count() function
This returns the number of elements in a dataset or the resulting output of an RDD
operation.

The take(n) function
The take(n) function returns the first (n) elements of a dataset or the resulting output of an
RDD operation.

The first() function
The first() function returns the first element of the dataset or the resulting output of an
RDD operation. It works similarly to the take(1) function.

The takeSample() function
The takeSample(withReplacement, num, [seed]) function returns an array with a
random sample of elements from a dataset. It has three arguments as follows:

withReplacement/withoutReplacement: This indicates sampling with or
without replacement (while taking multiple samples, it indicates whether to
replace the old sample back to the set and then take a fresh sample or sample
without replacing). For withReplacement, argument should be True and False
otherwise.
num: This indicates the number of elements in the sample.
Seed: This is a random number generator seed (optional).

The Spark Programming Model

[45]

The countByKey() function
The countByKey() function is available only on RDDs of type key value. It returns a table
of (K, Int) pairs with the count of each key.

The following are some example code snippets on Python and Scala:

Python:

>>> sc.parallelize([2, 3, 4]).count()
3

>>> sc.parallelize([2, 3, 4]).collect()
[2, 3, 4]

>>> sc.parallelize([2, 3, 4]).first()
2

>>> sc.parallelize([2, 3, 4]).take(2)
[2, 3]

Scala:

Scala> sc.parallelize(List(2, 3, 4)).count()
res0: Long = 3

Scala> sc.parallelize(List(2, 3, 4)).collect()
res1: Array[Int] = Array(2, 3, 4)

Scala> sc.parallelize(List(2, 3, 4)).first()
res2: Int = 2

Scala> sc.parallelize(List(2, 3, 4)).take(2)
res3: Array[Int] = Array(2, 3)

The Spark Programming Model

[46]

Summary
In this chapter, we touched upon the supported programming languages, their advantages
and when to choose one language over the other. We discussed the design of the Spark
engine along with its core components and their execution mechanism. We saw how Spark
sends the data to be computed across many cluster nodes. We then discussed some RDD
concepts. We learnt how to create RDDs and perform transformations and actions on them
through both Scala and Python. We also discussed some advanced operations on RDDs.

In the next chapter, we will learn about DataFrames in detail and how they justify their
suitability for all sorts of data science requirements.

References
Scala language:

h t t p : / / w w w . s c a l a - l a n g . o r g

Apache Spark architecture:

h t t p : / / l i n t o o l . g i t h u b . i o / S p a r k T u t o r i a l / s l i d e s / d a y 1 _ c o n t e x t . p d f

The Spark programming guide is the primary resource for concepts; refer to the language-
specific API documents for a complete list of operations available:

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / p r o g r a m m i n g - g u i d e . h t m l

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing by Matei Zaharia and others is the original source for RDD basics:

https://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-12.pdf

Spark Summit, the official event series of Apache Spark, has a wealth of the latest
information. Check out past events' presentations and videos:

https://spark-summit.org/2016/

http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://www.scala-lang.org
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://lintool.github.io/SparkTutorial/slides/day1_context.pdf
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html

3
Introduction to DataFrames

To solve any real-world big data analytics problem, access to an efficient and scalable
computing system is definitely mandatory. However, if the computing power is not
accessible to the target users in a way that's easy and familiar to them, it will barely make
any sense. Interactive data analysis gets easier with datasets that can be represented as
named columns, which was not the case with plain RDDs. So, the need for a schema-based
approach to represent data in a standardized way was the inspiration behind DataFrames.

The previous chapter outlined some design aspects of Spark. We learnt how Spark enabled
distributed data processing on distributed collections of data (RDDs) through in-memory
computation. It covered most of the points that revealed Spark as a fast, efficient, and
scalable computing platform. In this chapter, we will see how Spark introduced the
DataFrame API to make data scientists feel at home to carry out their usual data analysis
activities with ease.

This topic is going to serve as a foundation for many upcoming chapters and we strongly
recommend you to understand the concepts covered in here very well. As a prerequisite for
this chapter, a basic understanding of SQL and Spark is needed. The topics covered in this
chapter are as follows:

Why DataFrames?
Spark SQL

Catalyst optimizer
DataFrame API

DataFrame basics
RDD versus DataFrame

Introduction to DataFrames

[48]

Creating DataFrames
From RDDs
From JSON
From JDBC sources
From other data sources

Manipulating DataFrames

Why DataFrames?
Apart from massive, scalable computing capability, big data applications also need a mix of
a few more features, such as support for a relational system for interactive data analysis
(simple SQL style), heterogeneous data sources, and different storage formats along with
different processing techniques.

Though Spark provided a functional programming API to manipulate distributed
collections of data, it ended up with tuples (_1, _2, …). Coding to operate on tuples was a
little complicated and messy, and was slow at times. So, a standardized layer was needed,
with the following characteristics:

Named columns with a schema (higher-level abstraction than tuples) so that
manipulating and tracking them would be easy
Functionality to consolidate data from various data sources such as Hive,
Parquet, SQL Server, PostgreSQL, JSON, and also Spark's native RDDs, and unify
them to a common format
Ability to take advantage of built-in schemas in special file formats such as Avro,
CSV, JSON, and so on.
Support for simple relational as well as complex logical operations
Elimination of the need to define column objects based on domain-specific tasks
for the ML algorithms to work on, and to serve as a common data layer for all
algorithms in MLlib
A language-independent entity that can be passed between functions of different
languages

To address the above requirements, the DataFrame API was built as one more level of
abstraction on top of Spark SQL.

Introduction to DataFrames

[49]

Spark SQL
Executing SQL queries for basic business needs is very common and almost every business
does it using some kind of database. So Spark SQL also supports the execution of SQL
queries written using either a basic SQL syntax or HiveQL. Spark SQL can also be used to
read data from an existing Hive installation. Apart from these plain SQL operations, Spark
SQL also addresses some tough problems. Designing complex logic through relational
queries was cumbersome and almost impossible at times. So, Spark SQL was designed to
integrate the capabilities of relational processing and functional programming so that
complex logics can be implemented, optimized, and scaled on a distributed computing
setup. There are basically three ways to interact with Spark SQL, including SQL, the
DataFrame API, and the Dataset API. The Dataset API is an experimental layer added in
Spark 1.6 at the time of writing this book so we will limit our discussions to DataFrames
only.

Spark SQL exposes DataFrames as a higher-level API and takes care of all the complexities
involved and also performs all the background tasks. Through the declarative syntax, users
can focus on what the program should accomplish and not bother about the control flow,
which will be taken care of by the Catalyst optimizer, built inside Spark SQL.

The Catalyst optimizer
The Catalyst optimizer is the fulcrum of Spark SQL and DataFrame. It is built with the
functional programming constructs of Scala and has the following features:

Schema inference from various data formats:
Spark has built-in support for JSON schema inference. Users can
just create a table out of any JSON file by registering it as a table
and simply query it with SQL syntaxes.
RDDs that are Scala objects; the type information is extracted from
Scala's type system, that is, case classes, if they contain case classes.
RDDs that are Python objects; the type information is extracted
with a different approach. Since Python is not statically typed and
follows a dynamic type system, the RDD can contain multiple
types. So, Spark SQL samples the dataset and infers the schema
using an algorithm similar to JSON schema inference.
In future, built-in support for CSV, XML, and other formats will be
provided.

Introduction to DataFrames

[50]

Built-in support for a wide range of data sources and query federation for
efficient data import:

Spark has a built-in mechanism to fetch data from some external
data sources (for example, JSON, JDBC, Parquet, MySQL, Hive,
PostgreSQL, HDFS, S3, and so on) through query federation. It can
accurately model the sourced data by using out-of-the-box SQL
data types and other complex data types such as Struct, Union,
Array, and so on.
It also allows users to source data using the Data Source API from
the data sources that are not supported out of the box (for example,
CSV, Avro HBase, Cassandra, and so on).
Spark uses predicate pushdown (pushes filtering or aggregation
into external storage systems) to optimize data sourcing from
external systems and combine them to form the data pipeline.

Control and optimization of code generation:
Optimization actually happens very late in the entire execution
pipeline.
Catalyst is designed to optimize all phases of query execution:
analysis, logical optimization, physical planning, and code
generation to compile parts of queries to Java bytecode.

The DataFrame API
Excel spreadsheets like data representation, or output from a database projection (select
statement's output), the data representation closest to human being had always been a set of
uniform columns with multiple rows. Such a two-dimensional data structure that usually
has labelled rows and columns is called a DataFrame in some realms, such as R DataFrames
and Python's Pandas DataFrames. In a DataFrame, typically, a single column has the same
kind of data, and rows describe data points about that column that mean something
together, be it data about a person, a purchase, or a baseball game outcome. You can think
of it as a matrix, or a spreadsheet, or an RDBMS table.

DataFrames in R and Pandas are very handy in slicing, reshaping, and analyzing data -
essential operations in any data wrangling and data analysis workflow. This inspired the
development of a similar concept on Spark, called DataFrames.

Introduction to DataFrames

[51]

DataFrame basics
The DataFrame API was first introduced in Spark 1.3.0, released in March 2015. It is a
programming abstraction of Spark SQL for structured and semi-structured data processing.
It enables developers to harness the power of the DataFrames, data structure through
Python, Java, Scala, and R. Like RDDs, a Spark DataFrame is a distributed collection of
records organized into named columns, similar to an RDBMS table or the DataFrames of R
or Pandas. Unlike RDDs, however, they keep track of schemas and facilitate relational
operations as well as procedural operations such as map. Internally, DataFrames store data
in columnar format, but construct row objects on the fly when required by the procedural
functions.

The DataFrame API brings two features with it:

Built-in support for a variety of data formats such as Parquet, Hive, and JSON.
Nonetheless, through Spark SQL's external data sources API, DataFrames can
access a wide array of third-party data sources such as databases and NoSQL
stores.
A more robust and feature-rich DSL with functions designed for common tasks
such as:

Metadata
Sampling
Relational data processing – project, filter, aggregation, join
UDFs

The DataFrame API builds on the Spark SQL query optimizer to automatically execute code
efficiently on a cluster of machines.

RDDs versus DataFrames
RDDs and DataFrames are two different types of fault-tolerant and distributed data
abstractions provided by Spark. They are similar to an extent but greatly differ when it
comes to implementation. Developers need to have a clear understanding of their
differences to be able to match their requirements to the right abstraction.

Introduction to DataFrames

[52]

Similarities
The following are the similarities between RDDs and DataFrames:

Both are fault-tolerant, partitioned data abstractions in Spark
Both can handle disparate data sources
Both are lazily evaluated (execution happens when an output operation is
performed on them), thereby having the ability to take the most optimized
execution plan
Both APIs are available in all four languages: Scala, Python, Java, and R

Differences
The following are the differences between RDDs and DataFrames:

DataFrames are a higher-level abstraction than RDDs.
The definition of RDD implies defining a Directed Acyclic Graph (DAG)
whereas defining a DataFrame leads to the creation of an Abstract Syntax Tree
(AST). An AST will be utilized and optimized by the Spark SQL catalyst engine.
RDD is a general data structure abstraction whereas a DataFrame is a specialized
data structure to deal with two-dimensional, table-like data.

The DataFrame API is actually SchemaRDD-renamed. The renaming was to signify that it is
no longer inherited from RDD and to comfort data scientists with a familiar name and
concept.

Introduction to DataFrames

[53]

Creating DataFrames
Spark DataFrame creation is similar to RDD creation. To get access to the DataFrame API,
you need SQLContext or HiveContext as an entry point. In this section, we are going to
demonstrate how to create DataFrames from various data sources, starting from basic code
examples with in-memory collections:

Introduction to DataFrames

[54]

Creating DataFrames from RDDs
The following code creates an RDD from a list of colors followed by a collection of tuples
containing the color name and its length. It creates a DataFrame using the toDF method to
convert the RDD into a DataFrame. The toDF method takes a list of column labels as an
optional argument:

Python:

 //Create a list of colours
>>> colors = ['white','green','yellow','red','brown','pink']
//Distribute a local collection to form an RDD
//Apply map function on that RDD to get another RDD containing colour,
length tuples
>>> color_df = sc.parallelize(colors)
 .map(lambda x:(x,len(x))).toDF(["color","length"])

>>> color_df
DataFrame[color: string, length: bigint]

>>> color_df.dtypes //Note the implicit type inference
[('color', 'string'), ('length', 'bigint')]

>>> color_df.show() //Final output as expected. Order need not be the same
as shown
+------+------+
| color|length|
+------+------+
| white| 5|
| green| 5|
|yellow| 6|
| red| 3|
| brown| 5|
| pink| 4|
+------+------+

Scala:

//Create a list of colours
Scala> val colors = List("white","green","yellow","red","brown","pink")
//Distribute a local collection to form an RDD
//Apply map function on that RDD to get another RDD containing colour,
length tuples
Scala> val color_df = sc.parallelize(colors)
 .map(x => (x,x.length)).toDF("color","length")

Scala> color_df

Introduction to DataFrames

[55]

res0: org.apache.spark.sql.DataFrame = [color: string, length: int]

Scala> color_df.dtypes //Note the implicit type inference
res1: Array[(String, String)] = Array((color,StringType),
(length,IntegerType))

Scala> color_df.show()//Final output as expected. Order need not be the
same as shown
+------+------+
| color|length|
+------+------+
white	5
green	5
yellow	6
red	3
brown	5
pink	4
+------+------+

As you can see from the preceding example, the creation of a DataFrame is similar to that of
an RDD from a developer's perspective. We created an RDD here and then transformed that
to tuples which are then sent to the toDF method. Note that toDF takes a list of tuples
instead of scalar elements. You need to pass tuples even to create single-column
DataFrames. Each tuple is akin to a row. You can optionally label the columns; otherwise,
Spark creates obscure names such as _1, _2. Type inference of the columns happens
implicitly.

If you already have the data as RDDs, Spark SQL supports two different methods for
converting existing RDDs into DataFrames:

The first method uses reflection to infer the schema of an RDD that contains
specific types of object, which means you are aware of the schema.
The second method is through a programmatic interface that lets you construct a
schema and then apply it to an existing RDD. While this method is more verbose,
it allows you to construct DataFrames when the column types are not known
until runtime.

Introduction to DataFrames

[56]

Creating DataFrames from JSON
JavaScript Object Notation, or JSON, is a language-independent, self-describing, lightweight
data-exchange format. JSON has become a popular data exchange format and has become
ubiquitous. In addition to JavaScript and RESTful interfaces, databases such as MySQL have
accepted JSON as a data type and MongoDB stores all data as JSON documents in binary
form. Conversion of data to and from JSON is essential for any modern data analysis
workflow. The Spark DataFrame API lets developers convert JSON objects into DataFrames
and vice versa. Let's have a close look at the following examples for a better understanding:

Python:

//Pass the source json data file path
>>> df = sqlContext.read.json("./authors.json")
>>> df.show() //json parsed; Column names and data types inferred
implicitly
+----------+---------+
|first_name|last_name|
+----------+---------+
| Mark| Twain|
| Charles| Dickens|
| Thomas| Hardy|
+----------+---------+

Scala:

//Pass the source json data file path
Scala> val df = sqlContext.read.json("./authors.json")
Scala> df.show() //json parsed; Column names and data types inferred
implicitly
+----------+---------+
|first_name|last_name|
+----------+---------+
Mark	Twain
Charles	Dickens
Thomas	Hardy
+----------+---------+

Spark infers schemas automatically from the keys and creates a DataFrame accordingly.

Introduction to DataFrames

[57]

Creating DataFrames from databases using JDBC
Spark allows developers to create DataFrames from other databases using JDBC, provided
you ensure that the JDBC driver for the intended database is accessible. A JDBC driver is a
software component that allows a Java application to interact with a database. Different
databases require different drivers. Usually, database providers such as MySQL supply
these driver components to access their databases. You have to ensure that you have the
right driver for the database you want to work with.

The following example assumes that you already have a MySQL database running at the
given URL, a table called people in the database called test with some data in it, and
valid credentials to log in. There is an additional step of relaunching the REPL shell with the
appropriate JAR file:

If you do not already have the JAR file in your system, download it from
the MySQL site at the following link:
h t t p s : / / d e v . m y s q l . c o m / d o w n l o a d s / c o n n e c t o r / j /.

Python:

//Launch shell with driver-class-path as a command line argument
pyspark --driver-class-path /usr/share/ java/mysql-connector-java.jar
 //Pass the connection parameters
>>> peopleDF = sqlContext.read.format('jdbc').options(
 url = 'jdbc:mysql://localhost',
 dbtable = 'test.people',
 user = 'root',
 password = 'mysql').load()
 //Retrieve table data as a DataFrame
>>> peopleDF.show()
+----------+---------+------+----------+----------+---------+
|first_name|last_name|gender| dob|occupation|person_id|
+----------+---------+------+----------+----------+---------+
| Thomas| Hardy| M|1840-06-02| Writer| 101|
| Emily| Bronte| F|1818-07-30| Writer| 102|
| Charlotte| Bronte| F|1816-04-21| Writer| 103|
| Charles| Dickens| M|1812-02-07| Writer| 104|
+----------+---------+------+----------+----------+---------+

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Introduction to DataFrames

[58]

Scala:

//Launch shell with driver-class-path as a command line argument
spark-shell --driver-class-path /usr/share/ java/mysql-connector-java.jar
 //Pass the connection parameters
scala> val peopleDF = sqlContext.read.format("jdbc").options(
 Map("url" -> "jdbc:mysql://localhost",
 "dbtable" -> "test.people",
 "user" -> "root",
 "password" -> "mysql")).load()
peopleDF: org.apache.spark.sql.DataFrame = [first_name: string, last_name:
string, gender: string, dob: date, occupation: string, person_id: int]
//Retrieve table data as a DataFrame
scala> peopleDF.show()
+----------+---------+------+----------+----------+---------+
|first_name|last_name|gender| dob|occupation|person_id|
+----------+---------+------+----------+----------+---------+
Thomas	Hardy	M	1840-06-02	Writer	101
Emily	Bronte	F	1818-07-30	Writer	102
Charlotte	Bronte	F	1816-04-21	Writer	103
Charles	Dickens	M	1812-02-07	Writer	104
+----------+---------+------+----------+----------+---------+

Creating DataFrames from Apache Parquet
Apache Parquet is an efficient, compressed columnar data representation available to any
project in the Hadoop ecosystem. Columnar data representations store data by column, as
opposed to the traditional approach of storing data row by row. Use cases that require
frequent querying of two to three columns from several columns benefit greatly from such
an arrangement because columns are stored contiguously on the disk and you do not have
to read unwanted columns in row-oriented storage. Another advantage is in compression.
Data in a single column belongs to a single type. The values tend to be similar, and
sometimes identical. These qualities greatly enhance compression and encoding efficiency.
Parquet allows compression schemes to be specified on a per-column level and allows
adding more encodings as they are invented and implemented.

Introduction to DataFrames

[59]

Apache Spark provides support for both reading and writing Parquet files that
automatically preserves the schema of the original data. The following example writes the
people data loaded into a DataFrame in the previous example into Parquet format and then
re-reads it into an RDD:

Python:

//Write DataFrame contents into Parquet format
>>> peopleDF.write.parquet('writers.parquet')
//Read Parquet data into another DataFrame
>>> writersDF = sqlContext.read.parquet('writers.parquet')
writersDF: org.apache.spark.sql.DataFrame = [first_name: string,
last_name: string, gender: string, dob: date, occupation: string,
person_id: int]

Scala:

//Write DataFrame contents into Parquet format
scala> peopleDF.write.parquet("writers.parquet")
//Read Parquet data into another DataFrame
scala> val writersDF = sqlContext.read.parquet("writers.parquet")
writersDF: org.apache.spark.sql.DataFrame = [first_name: string,
last_name: string, gender: string, dob: date, occupation: string,
person_id: int]

Creating DataFrames from other data sources
Spark provides built-in support for multiple data sources such as JSON, JDBC, HDFS,
Parquet, MYSQL, Amazon S3, and so on. In addition, it provides a Data Source API that
provides a pluggable mechanism for accessing structured data through Spark SQL. There
are several libraries built on top of this pluggable component, for example, CSV, Avro,
Cassandra, and MongoDB, to name a few. These libraries are not part of the Spark code
base. These are built for individual data sources and hosted on a community site, Spark
packages.

Introduction to DataFrames

[60]

DataFrame operations
In the previous section of this chapter, we learnt many different ways of creating
DataFrames. In this section, we will focus on various operations that can be performed on
DataFrames. Developers chain multiple operations to filter, transform, aggregate, and sort
data in the DataFrames. The underlying Catalyst optimizer ensures efficient execution of
these operations. These functions you find here are similar to those you commonly find in
SQL operations on tables:

Python:

//Create a local collection of colors first
>>> colors = ['white','green','yellow','red','brown','pink']
//Distribute the local collection to form an RDD
//Apply map function on that RDD to get another RDD containing colour,
length tuples and convert that RDD to a DataFrame
>>> color_df = sc.parallelize(colors)
 .map(lambda x:(x,len(x))).toDF(['color','length'])
//Check the object type
>>> color_df
DataFrame[color: string, length: bigint]
//Check the schema
>>> color_df.dtypes
[('color', 'string'), ('length', 'bigint')]

//Check row count
>>> color_df.count()
6
//Look at the table contents. You can limit displayed rows by passing
parameter to show
color_df.show()
+------+------+
| color|length|
+------+------+
| white| 5|
| green| 5|
|yellow| 6|
| red| 3|
| brown| 5|
| pink| 4|
+------+------+

//List out column names
>>> color_df.columns
[u'color', u'length']

//Drop a column. The source DataFrame color_df remains the same. //Spark

Introduction to DataFrames

[61]

returns a new DataFrame which is being passed to show
>>> color_df.drop('length').show()
+------+
| color|
+------+
| white|
| green|
|yellow|
| red|
| brown|
| pink|
+------+
//Convert to JSON format
>>> color_df.toJSON().first()
u'{"color":"white","length":5}'
//filter operation is similar to WHERE clause in SQL
//You specify conditions to select only desired columns and rows
//Output of filter operation is another DataFrame object that is usually
passed on to some more operations
//The following example selects the colors having a length of four or five
only and label the column as "mid_length"
filter

>>> color_df.filter(color_df.length.between(4,5))
 .select(color_df.color.alias("mid_length")).show()
+----------+
|mid_length|
+----------+
| white|
| green|
| brown|
| pink|
+----------+

//This example uses multiple filter criteria
>>> color_df.filter(color_df.length > 4)
 .filter(color_df[0]!="white").show()
+------+------+
| color|length|
+------+------+
| green| 5|
|yellow| 6|
| brown| 5|
+------+------+

//Sort the data on one or more columns
sort

Introduction to DataFrames

[62]

//A simple single column sorting in default (ascending) order
>>> color_df.sort("color").show()
+------+------+
| color|length|
+------+------+
| brown| 5|
| green| 5|
| pink| 4|
| red| 3|
| white| 5|
|yellow| 6|
+------+------+
//First filter colors of length more than 4 and then sort on multiple
columns
//The Filtered rows are sorted first on the column length in default
ascending order. Rows with same length are sorted on color in descending
order
>>> color_df.filter(color_df['length']>=4).sort("length",
'color',ascending=False).show()
+------+------+
| color|length|
+------+------+
|yellow| 6|
| white| 5|
| green| 5|
| brown| 5|
| pink| 4|
+------+------+

//You can use orderBy instead, which is an alias to sort
>>> color_df.orderBy('length','color').take(4)
[Row(color=u'red', length=3), Row(color=u'pink', length=4),
Row(color=u'brown', length=5), Row(color=u'green', length=5)]

//Alternative syntax, for single or multiple columns.
>>> color_df.sort(color_df.length.desc(), color_df.color.asc()).show()
+------+------+
| color|length|
+------+------+
|yellow| 6|
| brown| 5|
| green| 5|
| white| 5|
| pink| 4|
| red| 3|
+------+------+
//All the examples until now have been acting on one row at a time,
filtering or transforming or reordering.

Introduction to DataFrames

[63]

//The following example deals with regrouping the data
//These operations require "wide dependency" and often involve shuffling.
groupBy

>>> color_df.groupBy('length').count().show()
+------+-----+
|length|count|
+------+-----+
| 3| 1|
| 4| 1|
| 5| 3|
| 6| 1|
+------+-----+
//Data often contains missing information or null values. We may want to
drop such rows or replace with some filler information. dropna is provided
for dropping such rows
//The following json file has names of famous authors. Firstname data is
missing in one row.
dropna

>>> df1 = sqlContext.read.json('./authors_missing.json')
>>> df1.show()
+----------+---------+
|first_name|last_name|
+----------+---------+
| Mark| Twain|
| Charles| Dickens|
| null| Hardy|
+----------+---------+

//Let us drop the row with incomplete information
>>> df2 = df1.dropna()
>>> df2.show() //Unwanted row is dropped
+----------+---------+
|first_name|last_name|
+----------+---------+
| Mark| Twain|
| Charles| Dickens|
+----------+---------+

Scala:

//Create a local collection of colors first
Scala> val colors = List("white","green","yellow","red","brown","pink")
//Distribute a local collection to form an RDD
//Apply map function on that RDD to get another RDD containing color,
length tuples and convert that RDD to a DataFrame
Scala> val color_df = sc.parallelize(colors)

Introduction to DataFrames

[64]

 .map(x => (x,x.length)).toDF("color","length")
//Check the object type
Scala> color_df
res0: org.apache.spark.sql.DataFrame = [color: string, length: int]
//Check the schema
Scala> color_df.dtypes
res1: Array[(String, String)] = Array((color,StringType),
(length,IntegerType))
//Check row count
Scala> color_df.count()
res4: Long = 6
//Look at the table contents. You can limit displayed rows by passing
parameter to show
color_df.show()
+------+------+
| color|length|
+------+------+
white	5
green	5
yellow	6
red	3
brown	5
pink	4
+------+------+	
//List out column names	
Scala> color_df.columns	
res5: Array[String] = Array(color, length)	
//Drop a column. The source DataFrame color_df remains the same.	
//Spark returns a new DataFrame which is being passed to show	
Scala> color_df.drop("length").show()	
+------+	
color	
+------+	
white	
green	
yellow	
red	
brown	
pink	
+------+
//Convert to JSON format
color_df.toJSON.first()
res9: String = {"color":"white","length":5}

//filter operation is similar to WHERE clause in SQL
//You specify conditions to select only desired columns and rows
//Output of filter operation is another DataFrame object that is usually

Introduction to DataFrames

[65]

passed on to some more operations
//The following example selects the colors having a length of four or five
only and label the column as "mid_length"
filter

Scala> color_df.filter(color_df("length").between(4,5))
 .select(color_df("color").alias("mid_length")).show()
+----------+
|mid_length|
+----------+
| white|
| green|
| brown|
| pink|
+----------+

//This example uses multiple filter criteria. Notice the not equal to
operator having double equal to symbols
Scala> color_df.filter(color_df("length") > 4).filter(color_df(
"color")!=="white").show()
+------+------+
| color|length|
+------+------+
green	5
yellow	6
brown	5
+------+------+
//Sort the data on one or more columns
sort

//A simple single column sorting in default (ascending) order
Scala> color_df..sort("color").show()
+------+------+
| color|length|
+------+------+
brown	5
green	5
pink	4
red	3
white	5
yellow	6
+------+------+
//First filter colors of length more than 4 and then sort on multiple
columns
//The filtered rows are sorted first on the column length in default
ascending order. Rows with same length are sorted on color in descending
order

Introduction to DataFrames

[66]

Scala> color_df.filter(color_df("length")>=4).sort($"length",
$"color".desc).show()
+------+------+
| color|length|
+------+------+
pink	4
white	5
green	5
brown	5
yellow	6
+------+------+	
//You can use orderBy instead, which is an alias to sort.	
scala> color_df.orderBy("length","color").take(4)	
res19: Array[org.apache.spark.sql.Row] = Array([red,3], [pink,4],	
[brown,5], [green,5])	
//Alternative syntax, for single or multiple columns	
scala> color_df.sort(color_df("length").desc, color_df("color").asc).show()	
+------+------+	
color	length
+------+------+	
yellow	6
brown	5
green	5
white	5
pink	4
red	3
+------+------+
//All the examples until now have been acting on one row at a time,
filtering or transforming or reordering.
//The following example deals with regrouping the data.
//These operations require "wide dependency" and often involve shuffling.
groupBy

Scala> color_df.groupBy("length").count().show()
+------+-----+
|length|count|
+------+-----+
3	1
4	1
5	3
6	1
+------+-----+
//Data often contains missing information or null values.
//The following json file has names of famous authors. Firstname data is
missing in one row.
dropna

Scala> val df1 = sqlContext.read.json("./authors_missing.json")

Introduction to DataFrames

[67]

Scala> df1.show()
+----------+---------+
|first_name|last_name|
+----------+---------+
Mark	Twain
Charles	Dickens
null	Hardy
+----------+---------+	
//Let us drop the row with incomplete information	
Scala> val df2 = df1.na.drop()	
Scala> df2.show() //Unwanted row is dropped	
+----------+---------+	
first_name	last_name
+----------+---------+	
Mark	Twain
Charles	Dickens
+----------+---------+

Under the hood
You already know by now that the DataFrame API is empowered by Spark SQL and that
the Spark SQL's Catalyst optimizer plays a crucial role in optimizing the performance.

Though the query is executed lazily, it uses the catalog component of Catalyst to identify
whether the column names used in the program or expressions exist in the table being used
and the data types are proper, and also takes many other such precautionary actions. The
advantage to this approach is that, instead of waiting till program execution, an error pops
up as soon as the user types an invalid expression.

Summary
In this chapter, we explained the motivation behind the development of the DataFrame API
in Spark and how development in Spark has become easier than ever. We briefly covered
the design aspect of the DataFrame API and how it is built on top of Spark SQL. We
discussed various ways of creating DataFrames from different data sources such as RDDs,
JSON, Parquet, and JDBC. At the end of this chapter, we just gave you a heads-up on how
to perform operations on DataFrames. We will discuss DataFrame operations in the context
of data science and machine learning in more detail in the upcoming chapters.

In the next chapter, we will learn how Spark supports unified data access and discuss on
Dataset and Structured Stream components in details.

Introduction to DataFrames

[68]

References
DataFrame reference on the SQL programming guide of Apache Spark official resource:

h t t p s : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / s q l - p r o g r a m m i n g - g u i d e . h t m l # c r e a
t i n g - d a t a f r a m e s

Databricks: Introducing DataFrames in Apache Spark for Large Scale Data Science:

https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large
-scale-data-science.html

Databricks: From Pandas to Apache Spark's DataFrame:

https://databricks.com/blog/2015/08/12/from-pandas-to-apache-sparks-dataframe.
html

API reference guide on Scala for Spark DataFrames:

h t t p s : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / a p i / s c a l a / i n d e x . h t m l # o r g . a p a c h e
. s p a r k . s q l . D a t a F r a m e

A Cloudera blogpost on Parquet – an efficient general-purpose columnar file format for
Apache Hadoop:

http://blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for
-apache-hadoop/

https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#creating-dataframes
https://spark.apache.org/docs/1.5.1/api/java/org/apache/spark/sql/DataFrame.html
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/1.5.1/api/java/org/apache/spark/sql/DataFrame.html
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame

4
Unified Data Access

Data integration from disparate data sources had always been a daunting feat. The three V's
of big data and ever-shrinking processing time frames have made the task even more
challenging. Delivering a clear view of well-curated data in near real time is extremely
important for business. However, real-time curated data along with the ability to perform
different operations such as ETL, ad hoc querying, and machine learning in a unified
fashion is what is emerging as a key business differentiator.

Apache Spark was created to offer a single general-purpose engine that can process data
from a variety of data sources and support large-scale data processing for various different
operations. Spark enables developers to combine SQL, Streaming, graphs, and machine
learning algorithms in a single workflow!

In the previous chapters, we discussed Resilient Distributed Datasets (RDDs) as well as
DataFrames. In Chapter 3, Introduction to DataFrames, we introduced Spark SQL and the
Catalyst optimizer. This chapter builds on this foundation and delves deeper into these
topics to help you realize the real essence of unified data access. We'll introduce new
constructs such as Datasets and Structured Streaming. Specifically, we'll discuss the
following:

Data abstractions in Apache Spark
Datasets

Working with Datasets
Dataset API limitations

Spark SQL
SQL operations
Under the hood

Unified Data Access

[70]

Structured Streaming
Spark streaming programming model
Under the hood
Comparison with other streaming engines

Continuous applications
Summary

Data abstractions in Apache Spark
The MapReduce framework and its popular open source implementation Hadoop enjoyed
widespread adoption in the past decade. However, iterative algorithms and interactive ad-
hoc querying are not well supported. Any data sharing between jobs or stages within an
algorithm is always through disk writes and reads as against in-memory data sharing. So,
the logical next step would be to have a mechanism that facilitates reuse of intermediate
results across multiple jobs. RDD is a general-purpose data abstraction that was developed
to address this requirement.

RDD is the core abstraction in Apache Spark. It is an immutable, fault-tolerant distributed
collection of statically typed objects that are usually stored in-memory. RDD API offer
simple operations such as map, reduce, and filter that can be composed in arbitrary ways.

DataFrame abstraction is built on top of RDD and it adds “named” columns. So, a Spark
DataFrame has rows of named columns similar to relational database tables and
DataFrames in R and Python (pandas). This familiar higher level abstraction makes the
development effort much easier because it lets you perceive data like an SQL table or an
Excel file. Moreover, the Catalyst optimizer, under the hood, compiles the operations and
generates JVM bytecode for efficient execution. However, the named columns approach
gives rise to a new problem. Static type information is no longer available to the compiler,
and hence we lose the advantage of compile-time type safety.

Dataset API was introduced to combine the best traits from both RDDs and DataFrames
plus some more features of its own. Datasets provide row and column data abstraction
similar to the DataFrames, but with a structure defined on top of them. This structure may
be defined by a case class in Scala or a class in Java. They provide type safety and lambda
functions like RDDs. So, they support both typed methods such as map and groupByKey as
well as untyped methods such as select and groupBy. In addition to the Catalyst
optimizer, Datasets leverage in-memory encoding provided by the Tungsten execution
engine, which improves performance even further.

Unified Data Access

[71]

The data abstractions introduced so far form the core abstractions. There are some more
specialized data abstractions that work on top of these abstractions. Streaming APIs are
introduced to process real-time streaming data from various sources such as Flume and
Kafka. These APIs work together to provide data engineers a unified, continuous
DataFrame abstraction that can be used for interactive and batch queries. Another example
of specialized data abstraction is a GraphFrame. This enables developers to analyze social
networks and any other graphs alongside Excel-like two-dimensional data.

Now with the basics of the available data abstractions in mind, let's understand what we
exactly mean by a unified data access platform:

The intention behind this unified platform is that it not only lets you combine the static and
streaming data together, but also allows various different kinds of operations on the data in
a unified way! From the developer's perspective, a Dataset is the core abstraction to work
with, and Spark SQL is the main interface to the Spark functionality. A two-dimensional
data structure coupled with a SQL declarative programming interface had been a familiar
way of dealing with data, thereby shortening the learning curve for the data engineers. So,
understanding the unified platform translates to understanding Datasets and Spark SQL.

Unified Data Access

[72]

Datasets
Apache Spark Datasets are an extension of the DataFrame API that provide a type-safe
object-oriented programming interface. This API was first introduced in the 1.6 release.
Spark 2.0 version brought out unification of DataFrame and Dataset APIs. DataFrame
becomes a generic, untyped Dataset; or a Dataset is a DataFrame with an added structure.
The term “structure” in this context refers to a pattern or an organization of underlying data,
more like a table schema in RDBMS parlance. The structure imposes a limit on what can be
expressed or contained in the underlying data. This in turn enables better optimizations in
memory organization as well as physical execution. Compile-time type checking leads to
catching errors earlier than during runtime. For example, a type mismatch in a SQL
comparison does not get caught until runtime, whereas it would be caught during compile
time itself if it were expressed as a sequence of operations on Datasets. However, the
inherent dynamic nature of Python and R implies that there is no compile-time type safety,
and hence the concept Datasets does not apply to those languages. The unification of
Datasets and DataFrames applies to Scala and Java API only.

At the core of Dataset abstraction are the encoders. These encoders translate between JVM
objects and Spark's internal Tungsten binary format. This internal representation bypasses
JVM's memory management and garbage collection. Spark has its own C-style memory
access that is specifically written to address the kind of workflows it supports. The resultant
internal representations take less memory and have efficient memory management.
Compact memory representation leads to reduced network load during shuffle operations.
The encoders generate compact byte code that directly operates on serialized objects
without de-serializing, thereby enhancing performance. Knowing the schema early on
results in a more optimal layout in memory when caching Datasets.

Working with Datasets
In this section, we will create Datasets and perform transformations and actions, much like
DataFrames and RDDs.

Unified Data Access

[73]

Example 1-creating a Dataset from a simple collection:

Scala:

//Create a Dataset from a simple collection
scala> val ds1 = List.range(1,5).toDS()
ds1: org.apache.spark.sql.Dataset[Int] = [value: int]
//Perform an action
scala> ds1.collect()
res3: Array[Int] = Array(1, 2, 3, 4)

//Create from an RDD
scala> val colors = List("red","orange","blue","green","yellow")
scala> val color_ds = sc.parallelize(colors).map(x =>
 (x,x.length)).toDS()
//Add a case class
case class Color(var color: String, var len: Int)
val color_ds = sc.parallelize(colors).map(x =>
 Color(x,x.length)).toDS()

As shown in the last example in the preceding code, case class adds structure
information. Spark uses this structure to create the best data layout and encoding. The
following code shows us the structure and the plan for execution:

Scala:

//Examine the structure
scala> color_ds.dtypes
res26: Array[(String, String)] = Array((color,StringType),
(len,IntegerType))
scala> color_ds.schema
res25: org.apache.spark.sql.types.StructType =
StructType(StructField(color,StringType,true),
StructField(len,IntegerType,false))
//Examine the execution plan
scala> color_ds.explain()
== Physical Plan ==
Scan ExistingRDD[color#57,len#58]

The preceding example shows the structure and the implementation physical plan as
anticipated. If you want to get a more detailed execution plan, you have to pass explain
(true), which prints extended information, including the logical plan as well.

Unified Data Access

[74]

We have examined Dataset creation from simple collections and RDDs. We have already
discussed that DataFrames are just untyped Datasets. The following examples show
conversion between Datasets and DataFrames.

Example 2-converting the Dataset to a DataFrame

Scala:

//Convert the dataset to a DataFrame
scala> val color_df = color_ds.toDF()
color_df: org.apache.spark.sql.DataFrame = [color: string, len: int]

scala> color_df.show()
+------+---+
| color|len|
+------+---+
red	3
orange	6
blue	4
green	5
yellow	6
+------+---+

This example looks very much like the examples we have seen in Chapter 3, Introduction to
DataFrames. These conversions become very handy in the real world. Consider adding a
structure (aka case class) to imperfect data. You may first read that data into a DataFrame,
perform cleansing, and then convert it to a Dataset. Another use case could be that you
want to expose only a subset (rows and columns) of the data based on some runtime
information, such as user_id. You could read the data into a DataFrame, register it as a
temporary table, apply conditions, and expose the subset as a Dataset. The following
example creates a DataFrame first and then converts it into Dataset. Note that the
DataFrame column names must match the case class.

Example 3-convert a DataFrame to a Dataset

//Construct a DataFrame first
scala> val color_df = sc.parallelize(colors).map(x =>
 (x,x.length)).toDF("color","len")
color_df: org.apache.spark.sql.DataFrame = [color: string, len: int]
//Convert the DataFrame to a Dataset with a given structure
scala> val ds_from_df = color_df.as[Color]
ds_from_df: org.apache.spark.sql.Dataset[Color] = [color: string, len: int]
//Check the execution plan
scala> ds_from_df.explain
== Physical Plan ==
WholeStageCodegen

Unified Data Access

[75]

: +- Project [_1#102 AS color#105,_2#103 AS len#106]
: +- INPUT
+- Scan ExistingRDD[_1#102,_2#103]

The explain command response shows WholeStageCodegen, which fuses multiple
operations into a single Java function call. This enhances performance due to reduction in
multiple virtual function calls. Code generation had been around in Spark engine since 1.1,
but at that time it was limited to expression evaluation and a small number of operations
such as filter. In contrast, whole stage code generation from Tungsten generates code for the
entire query plan.

Creating Datasets from JSON
Datasets can be created from JSON files, similar to DataFrames. Note that a JSON file may
contain several records, but each record has to be on one line. If your source JSON has
newlines, you have to programmatically remove them. The JSON records may have arrays
and may be nested. They need not have uniform schema. The following example file has
JSON records with one record having an additional tag and an array of data.

Example 4-creating a Dataset from JSON

Scala:

//Set filepath
scala> val file_path = <Your path>
file_path: String = ./authors.json
//Create case class to match schema
scala> case class Auth(first_name: String, last_name: String,books:
Array[String])
defined class Auth

//Create dataset from json using case class
//Note that the json document should have one record per line
scala> val auth = spark.read.json(file_path).as[Auth]
auth: org.apache.spark.sql.Dataset[Auth] = [books: array<string>,
firstName: string ... 1 more field]

//Look at the data
scala> auth.show()
+--------------------+----------+---------+
| books|first_name|last_name|
+--------------------+----------+---------+
null	Mark	Twain
null	Charles	Dickens
[Jude the Obscure...	Thomas	Hardy

Unified Data Access

[76]

+--------------------+----------+---------+

//Try explode to see array contents on separate lines

scala> auth.select(explode($"books") as "book",
 $"first_name",$"last_name").show(2,false)
+------------------------+----------+---------+
|book |first_name|last_name|
+------------------------+----------+---------+
|Jude the Obscure |Thomas |Hardy |
|The Return of the Native|Thomas |Hardy |
+------------------------+----------+---------+

Datasets API's limitations
Even though the Datasets API is created using the best of both RDDs and DataFrames, it
still has some limitations as of its current stage of development:

While querying the dataset, the selected fields should be given specific data types
as in the case class, or else the output will become a DataFrame. An example is
auth.select(col("first_name").as[String]).
Python and R are inherently dynamic in nature, and hence typed Datasets do not
fit in.

Spark SQL
Spark SQL is a Spark module for structured data processing that was introduced in Spark
1.0. This module is a tightly integrated relational engine that inert-operates with the core
Spark API. It enables data engineers to write applications that load structured data from
disparate sources and join them as a unified, and possibly continuous, Excel-like data
frames; and then they can implement complex ETL workflows and advanced analytics.

The Spark 2.0 release brought in significant unification of APIs and expanded the SQL
capabilities, including support for subqueries. The Dataset API and DataFrames API are
now unified, with DataFrames being a “kind” of Datasets. The unified APIs build the
foundation for Spark's future, spanning across all libraries. Developers can impose
“structure” onto their data and can work with high-level declarative APIs, thereby
improving performance as well as their productivity. The performance gains come as a
result of the underlying optimization layer. DataFrames, Datasets, and SQL share the same
optimization and execution pipeline.

Unified Data Access

[77]

SQL operations
SQL operations are most widely used constructs for data manipulation. Some of most used
operations are, selecting all or some of the columns, filtering based on one or more
conditions, sorting and grouping operations, and computing summary functions such as
average on GroupedData. The JOIN operations on multiple data sources and set
operations such as union, intersect and minus are some other operations that are widely
performed. Furthermore, data frames are registered as temporary tables and passed
traditional SQL statements to perform the aforementioned operations. User-Defined
Functions (UDF) are defined and used with and without registration. We'll be focusing on
window operations, which have been just introduced in Spark 2.0. They address sliding
window operations. For example, if you want to report the average peak temperature every
day in the past seven days, then you are operating on a sliding window of seven days until
today. Here is an example that computes average sales per month for the past three months.
The data file contains 24 observations showing monthly sales for two products, P1 and P2.

Example 5-window example with moving average computation

Scala:

scala> import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.expressions.Window
//Create a DataFrame containing monthly sales data for two products
scala> val monthlySales =
spark.read.options(Map({"header"->"true"},{"inferSchema" -> "true"})).
 csv("<Your Path>/MonthlySales.csv")
monthlySales: org.apache.spark.sql.DataFrame = [Product: string, Month: int
... 1 more field]

//Prepare WindowSpec to create a 3 month sliding window for a product
//Negative subscript denotes rows above current row
scala> val w =
Window.partitionBy(monthlySales("Product")).orderBy(monthlySales("Month")).
rangeBetween(-2,0)
w: org.apache.spark.sql.expressions.WindowSpec =
org.apache.spark.sql.expressions.WindowSpec@3cc2f15

//Define compute on the sliding window, a moving average in this case
scala> val f = avg(monthlySales("Sales")).over(w)
f: org.apache.spark.sql.Column = avg(Sales) OVER (PARTITION BY Product
ORDER BY Month ASC RANGE BETWEEN 2 PRECEDING AND CURRENT ROW)
//Apply the sliding window and compute. Examine the results
scala> monthlySales.select($"Product",$"Sales",$"Month",
bround(f,2).alias("MovingAvg")).
 orderBy($"Product",$"Month").show(6)
+-------+-----+-----+---------+

Unified Data Access

[78]

|Product|Sales|Month|MovingAvg|
+-------+-----+-----+---------+
P1	66	1	66.0
P1	24	2	45.0
P1	54	3	48.0
P1	0	4	26.0
P1	56	5	36.67
P1	34	6	30.0
+-------+-----+-----+---------+

Python:

 >>> from pyspark.sql import Window
 >>> import pyspark.sql.functions as func
 //Create a DataFrame containing monthly sales data for two products
 >> file_path = <Your path>/MonthlySales.csv"
 >>> monthlySales = spark.read.csv(file_path,header=True,
inferSchema=True)
 //Prepare WindowSpec to create a 3 month sliding window for a product
 //Negative subscript denotes rows above current row
 >>> w =
Window.partitionBy(monthlySales["Product"]).orderBy(monthlySales["Month"]).
rangeBetween(-2,0)
 >>> w
 <pyspark.sql.window.WindowSpec object at 0x7fdc33774a50>
 >>>
 //Define compute on the sliding window, a moving average in this case
 >>> f = func.avg(monthlySales["Sales"]).over(w)
 >>> f
 Column<avg(Sales) OVER (PARTITION BY Product ORDER BY Month ASC RANGE
BETWEEN 2 PRECEDING AND CURRENT ROW)>
 >>>
 //Apply the sliding window and compute. Examine the results
 >>>
monthlySales.select(monthlySales.Product,monthlySales.Sales,monthlySales.Mo
nth,
 func.bround(f,2).alias("MovingAvg")).orderBy(
 monthlySales.Product,monthlySales.Month).show(6)
 +-------+-----+-----+---------+
 |Product|Sales|Month|MovingAvg|
 +-------+-----+-----+---------+
 | P1| 66| 1| 66.0|
 | P1| 24| 2| 45.0|
 | P1| 54| 3| 48.0|
 | P1| 0| 4| 26.0|
 | P1| 56| 5| 36.67|
 | P1| 34| 6| 30.0|
 +-------+-----+-----+---------+

Unified Data Access

[79]

Under the hood
When a developer is writing programs using RDD API, efficient execution for the workload
on hand is his/her responsibility. The data types and computations are not available for
Spark. In contrast, when a developer is using DataFrames and Spark SQL, the underlying
engine has information about the schema and operations. In this case, the developer can
write less code while the optimizer does all the hard work.

The Catalyst optimizer contains libraries for representing trees and applying rules to
transform the trees. These tree transformations are applied to create the most optimized
logical and physical execution plans. In the final phase, it generates Java bytecode using a
special feature of the Scala language called quasiquotes. The optimizer also enables
external developers to extend the optimizer by adding data-source-specific rules that result
in pushing operations to external systems, or support for new data types.

The Catalyst optimizer arrives at the most optimized plan to execute the operations on
hand. The actual execution and related improvements are provided by the Tungsten engine.
The goal of Tungsten is to improve the memory and CPU efficiency of Spark backend
execution. The following are some salient features of this engine:

Reducing the memory footprint and eliminating garbage collection overheads by
bypassing (off-heap) Java memory management.
Code generation fuses across multiple operators and too many virtual function
calls are avoided. The generated code looks like hand-optimized code.
Memory layout is in columnar, in-memory parquet format because that enables
vectorized processing and is also closer to usual data access operations.
In-memory encoding using encoders. Encoders use runtime code generation to
build custom byte code for faster and compact serialization and deserialization.
Many operations can be performed in-place without deserialization because they
are already in Tungsten binary format.

Structured Streaming
Streaming is a seemingly broad topic! If you take a closer look at the real-world problems,
businesses do not just want a streaming engine to make decisions in real time. There has
always been a need to integrate both batch stack and streaming stack, and integrate with
external storage systems and applications. Also, the solution should be such that it should
adapt to dynamic changes in business logic to address new and changing business
requirements.

Unified Data Access

[80]

Apache Spark 2.0 has the first version of the higher level stream processing API called the
Structured Streaming engine. This scalable and fault-tolerant engine leans on the Spark
SQL API to simplify the development of real-time, continuous big data applications. It is
probably the first successful attempt in unifying the batch and streaming computation.

At a technical level, Structured Streaming leans on the Spark SQL API, which extends
DataFrames/Datasets, which we already discussed in the previous sections. Spark 2.0 lets
you perform radically different activities in a unified way, such as:

Building ML models and applying them on streaming data
Combining streaming data with other static data
Performing ad hoc, interactive, and batch queries
Changing queries at runtime
Aggregating data streams and serving using Spark SQL JDBC

Unlike other streaming engines, Spark lets you combine real-time Streaming Data
withStatic data and lets you perform the preceding operations.

Unified Data Access

[81]

Fundamentally, Structured Streaming is empowered by Spark SQL's Catalyst optimizer. So,
it frees up the developers from worrying about the underlying plumbing of making queries
more efficient while dealing with static or real-time streams of data.

As of this writing, Structured Streaming of Spark 2.0 is focused on ETL, and later versions
will have more operators and libraries.

Let us look at a simple example. The following example listens to System Activity Report
(sar) on Linux on a local machine and computes the average free memory. System Activity
Report gives system activity statistics and the current example collects memory usage,
reported 20 times at a 2-second interval. The Spark stream reads this streaming output and
computes average memory. We use a handy networking utility netcat (nc) to redirect the
sar output onto a given port. The options l and k specify that nc should listen for an
incoming connection and it has to keep listening for another connection even after its
current connection is completed.

Scala:

Example 6-Streaming example

//Run the following command from one terminal window
sar -r 2 20 | nc -lk 9999

//In spark-shell window, do the following
//Read stream
scala> val myStream = spark.readStream.format("socket").
 option("host","localhost").
 option("port",9999).load()
myStream: org.apache.spark.sql.DataFrame = [value: string]

//Filter out unwanted lines and then extract free memory part as a float
//Drop missing values, if any
scala> val myDF = myStream.filter($"value".contains("IST")).
select(substring($"value",15,9).cast("float").as("memFree")).
 na.drop().select($"memFree")
myDF: org.apache.spark.sql.DataFrame = [memFree: float]

//Define an aggregate function
scala> val avgMemFree = myDF.select(avg("memFree"))
avgMemFree: org.apache.spark.sql.DataFrame = [avg(memFree): double]

//Create StreamingQuery handle that writes on to the console
scala> val query = avgMemFree.writeStream.
 outputMode("complete").
 format("console").
 start()

Unified Data Access

[82]

query: org.apache.spark.sql.streaming.StreamingQuery = Streaming Query -
query-0 [state = ACTIVE]

Batch: 0

+-----------------+
| avg(memFree)|
+-----------------+
|4116531.380952381|
+-----------------+
....

Python:

 //Run the following command from one terminal window
 sar -r 2 20 | nc -lk 9999
 //In another window, open pyspark shell and do the following
 >>> import pyspark.sql.functions as func
 //Read stream
 >>> myStream = spark.readStream.format("socket"). \
 option("host","localhost"). \
 option("port",9999).load()
 myStream: org.apache.spark.sql.DataFrame = [value: string]
 //Filter out unwanted lines and then extract free memory part as a
float
 //Drop missing values, if any
 >>> myDF = myStream.filter("value rlike 'IST'"). \
 select(func.substring("value",15,9).cast("float"). \
 alias("memFree")).na.drop().select("memFree")
 //Define an aggregate function
 >>> avgMemFree = myDF.select(func.avg("memFree"))
 //Create StreamingQuery handle that writes on to the console
 >>> query = avgMemFree.writeStream. \
 outputMode("complete"). \
 format("console"). \
 start()
 Batch: 0

 +------------+
 |avg(memFree)|
 +------------+
 | 4042749.2|
 +------------+

Unified Data Access

[83]

The preceding example defined a continuous data frame (also known as stream) to listen to
a particular port, perform some transformations, and aggregations and show continuous
output.

The Spark streaming programming model
As demonstrated earlier in this chapter, there is just a single API to take care of both static
and streaming data. The idea is to treat the real-time data stream as a table that is
continuously being appended, as shown in the following figure:

www.allitebooks.com

http://www.allitebooks.org

Unified Data Access

[84]

So whether for static or streaming data, you just fire up the batch-like queries as you would
do on static data tables, and Spark runs it as an incremental query on the unbounded input
table, as shown in the following figure:

So, the developers define a query on the input table, in the same way for both static-
bounded as well as dynamic-unbounded table. Let us understand the various technical
jargons for this whole process to understand how it works:

Input: Data from sources as an append-only table
Trigger: When to check the input for new data
Query: What operation to perform on the data, such as filter, group, and so on
Result: The resultant table at every trigger interval
Output: Choose what part of the result to write to the data sink after every
trigger

Let's now look at how the Spark SQL planner treats the whole process:

Unified Data Access

[85]

Courtesy: Databricks

The preceding screenshot is very simply explained in the structured programming guide at
the official Apache Spark site, as indicated in the References section.

Unified Data Access

[86]

At this point, we need to know about the supported output models. Every time the result
table is updated, the changes need to be written to an external system, such as HDFS, S3, or
any other database. We usually prefer to write output incrementally. For this purpose,
Structured Streaming provides three output modes:

Append: In the external storage, only the new rows appended to the result table
since the last trigger will be written. This is applicable only on queries where
existing rows in the result table cannot change (for example, a map on an input
stream).
Complete: In the external storage, the entire updated result table will be written
as is.
Update: In the external storage, only the rows that were updated in the result
table since the last trigger will be changed. This mode works for output sinks that
can be updated in place, such as a MySQL table.

In our example, we used complete mode, which was straightaway writing to the console.
You may want to write into some external file such as Parquet to get a better understanding.

Under the hood
If you look at the “behind the screen” execution mechanism of the operations performed on
DataFrames/Datasets, it would appear as the following figure suggests:

Unified Data Access

[87]

Please note here that the Planner knows apriori how to convert a streaming Logical Plan to
a continuous series of Incremental Execution Plans. This can be represented by the
following figure:

The Planner can poll the data sources for new data to be able to plan the execution in an
optimized way.

Comparison with other streaming engines
We have discussed many unique features of Structured Streaming. Let us now have a
comparative view with other available streaming engines:

Courtesy: Databricks

Unified Data Access

[88]

Continuous applications
We discussed how unified data access is empowered by Spark. It lets you process data in a
myriad of ways to build end-to-end continuous applications by enabling various analytic
workloads, such as ETL processing, ad hoc queries, online machine learning modeling, or to
generate necessary reports… all of this in a unified way by letting you work on both static
as well as streaming data using a high-level, SQL-like API. In this way, Structured
Streaming has substantially simplified the development and maintenance of real-time,
continuous applications.

Courtesy: Databricks

Unified Data Access

[89]

Summary
In this chapter, we discussed what is really meant by unified data access and how Spark
serves this purpose. We took a closer look at the Datasets API and how real-time streaming
is empowered through it. We learned the advantages of Datasets and also their limitations.
We also looked at the fundamentals behind continuous applications.

In the following chapter, we will look at the various ways in which we can leverage the
Spark platform for data analysis operations at scale.

References
http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf: Spark SQL:
Relational Data Processing in Spark
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-da
taframes-and-datasets.html: A Tale of Three Apache Spark APIs: RDDs,
DataFrames, and Datasets – When to use them and why
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html:
Introducing Apache Spark Datasets
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimi
zer.html: Deep Dive into Spark SQL's Catalyst Optimizer
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billi
on-rows-per-second-on-a-laptop.html: Apache Spark as a Compiler: Joining a
Billion Rows per Second on a Laptop
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-
bare-metal.html: Bringing Spark closer to baremetal
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.ht
ml: Structured Streaming API details
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.ht
ml: Spark Structured Streaming Programming Guide
https://spark-summit.org/east-2016/events/structuring-spark-dataframes-datasets
-and-streaming/: Structuring Apache Spark SQL, DataFrames, Datasets, and
Streaming by Michael Armbrust
https://databricks.com/blog/2016/06/22/apache-spark-key-terms-explained.html:
Apache Spark Key terms explained

5
Data Analysis on Spark

The field of data analytics at scale has been evolving like never before. Various libraries and
tools were developed for data analysis with a rich set of algorithms. On a parallel line,
distributed computing techniques were evolving with time, to process huge datasets at
scale. These two traits had to converge, and that was the primary intention behind the
development of Spark.

The previous two chapters outlined the technology aspects of data science. It covered some
fundamentals on the DataFrame API, Datasets, streaming data and how it facilitated data
representation through DataFrames that R and Python users were familiar with. After
introducing this API, we saw how operating on datasets became easier than ever. We also
looked at how Spark SQL played a background role in supporting the DataFrame API with
its robust features and optimization techniques. In this chapter, we are going to cover the
scientific aspect of big data analysis and learn various data analytics techniques that can be
executed on Spark.

As a prerequisite for this chapter, a basic understanding of the DataFrame API and statistics
fundamentals is good to have. However, we have tried to make the content as simple as
possible and covered some important fundamentals in detail so that anyone can get started
with statistical analysis on Spark. The topics covered in this chapter are as follows:

Data analytics life cycle
Data acquisition
Data preparation

Data consolidation
Data cleansing
Data transformation

Data Analysis on Spark

[91]

Basics of statistics
Sampling
Data distributions

Descriptive statistics
Measures of location
Measures of spread
Summary statistics
Graphical techniques

Inferential statistics
Discrete probability distributions
Continuous probability distributions
Standard error
Confidence level
Margin of error and confidence interval
Variability in population
Estimating sample size
Hypothesis testing
Chi-square test
F-test
Correlations

Data analytics life cycle
For most real-world projects, there is some defined sequence of steps to be followed.
However, there are no universally agreed upon definitions or boundaries for data analytics
and data science. Generally, the term “data analytics” encompasses the techniques and
processes involved in examining data, discovering useful insights, and communicating
them. The term “data science” can be best treated as an interdisciplinary field drawing from
statistics, computer science, and mathematics. Both terms deal with processing raw data to
derive knowledge or insights, usually in an iterative fashion, and some people use them
interchangeably.

Data Analysis on Spark

[92]

Based on diverse business requirements, there are different ways of approaching problems
but there is no unique standard process that fits in well with all possible scenarios. A typical
process workflow can be summarized as a cycle of formulating a question, exploring,
hypothesizing, validating the hypothesis, analyzing the results, and starting all over again.
This is depicted in the following figure with the thick arrows. From a data perspective, the
workflow consists of data acquisition, preprocessing, exploring the data, modeling, and
communicating the results. This is shown in the figure as circles. Analysis and visualization
happen at every stage, right from data collection to results communication. The data
analytics workflow encompasses all the activities shown in both views:

The most important thing in the entire life cycle is the question at hand. Data that might
contain an answer (relevant data!) to that question comes next. Depending on the question,
the first task is to collect the right data from one or more data sources as needed.
Organizations often maintaindata lakes, which are humongous repositories of data in their
original format.

Data Analysis on Spark

[93]

The next step is to clean/transform the data to the desired format. Data cleansing is also
called data munging, data wrangling, or data dredging. This involves activities such as
missing value treatment and outlier treatment upon assessing the quality of the data at
hand. You may also have to aggregate/plot the data for better understanding. This process
of formulating the final data matrix to work with is touted as the most time-consuming
step. This also happens to be an underestimated component that is considered to be part of
preprocessing, along with other activities such as feature extraction and data
transformation.

The crux of data science, that is, training models and extracting patterns, comes next, which
requires heavy use of statistics and machine learning. The final step is publishing the
results.

The remaining sections in this chapter delve deeper into each of these steps and how they
can be implemented using Spark. Some basics of statistics are also included so as to enable
the reader to follow the code snippets with ease.

Data acquisition
Data acquisition, or data collection, is the very first step in any data science project. Usually,
you won't find the complete set of required data in one place as it is distributed across line-
of-business (LOB) applications and systems.

The majority of this section has already been covered in the previous chapter, which
outlined how to source data from different data sources and store the data in DataFrames
for easier analysis. There is a built-in mechanism in Spark to fetch data from some of the
common data sources and the Data Source API is provided for the ones not supported out of
the box on Spark.

To get a better understanding of the data acquisition and preparation phases, let us assume
a scenario and try to address all the steps involved with example code snippets. The
scenario is such that employee data is present across native RDDs, JSON files, and on a SQL
server. So, let's see how we can get those to Spark DataFrames:

Python

// From RDD: Create an RDD and convert to DataFrame
>>> employees = sc.parallelize([(1, "John", 25), (2, "Ray", 35), (3,
"Mike", 24), (4, "Jane", 28), (5, "Kevin", 26), (6, "Vincent", 35), (7,
"James", 38), (8, "Shane", 32), (9, "Larry", 29), (10, "Kimberly", 29),
(11, "Alex", 28), (12, "Garry", 25), (13, "Max",
31)]).toDF(["emp_id","name","age"])
>>>

Data Analysis on Spark

[94]

// From JSON: reading a JSON file
>>> salary = sqlContext.read.json("./salary.json")
>>> designation = sqlContext.read.json("./designation.json")

Scala

// From RDD: Create an RDD and convert to DataFrame
scala> val employees = sc.parallelize(List((1, "John", 25), (2, "Ray", 35),
(3, "Mike", 24), (4, "Jane", 28), (5, "Kevin", 26), (6, "Vincent", 35), (7,
"James", 38), (8, "Shane", 32), (9, "Larry", 29), (10, "Kimberly", 29),
(11, "Alex", 28), (12, "Garry", 25), (13, "Max",
31))).toDF("emp_id","name","age")
employees: org.apache.spark.sql.DataFrame = [emp_id: int, name: string ...
1 more field]
scala> // From JSON: reading a JSON file
scala> val salary = spark.read.json("./salary.json")
salary: org.apache.spark.sql.DataFrame = [e_id: bigint, salary: bigint]
scala> val designation = spark.read.json("./designation.json")
designation: org.apache.spark.sql.DataFrame = [id: bigint, role: string]

Data preparation
Data quality has always been a pervasive problem in the industry. The presence of incorrect
or inconsistent data can produce misleading results of your analysis. Implementing better
algorithm or building better models will not help much if the data is not cleansed and
prepared well, as per the requirement. There is an industry jargon called data engineering
that refers to data sourcing and preparation. This is typically done by data scientists and in
a few organizations, there is a dedicated team for this purpose. However, while preparing
data, a scientific perspective is often needed to do it right. As an example, you may not just
do mean substitution to treat missing values and look into data distribution to find more
appropriate values to substitute. Another such example is that you may not just look at a
box plot or scatter plot to look for outliers, as there could be multivariate outliers which are
not visible if you plot a single variable. There are different approaches, such as Gaussian
Mixture Models (GMMs) and Expectation Maximization (EM) algorithms that
use Mahalanobis distance to look for multivariate outliers.

Data Analysis on Spark

[95]

The data preparation phase is an extremely important phase, not only for the algorithms to
work properly, but also for you to develop a better understanding of your data so that you
can take the right approach while implementing an algorithm.

Once the data has been acquired from different sources, the next step is to consolidate them
all so that the data as a whole can be cleaned, formatted, and transformed to the format
needed for your analysis. Please note that you might have to take samples of data from the
sources, depending on the scenario, and then prepare the data for further analysis. Various
sampling techniques that can be used are discussed later in this chapter.

Data consolidation
In this section, we will take a look at how to combine data acquired from various data
sources:

Python

// Creating the final data matrix using the join operation
>>> final_data = employees.join(salary, employees.emp_id ==
salary.e_id).join(designation, employees.emp_id ==
designation.id).select("emp_id", "name", "age", "role", "salary")
>>> final_data.show(5)
+------+-----+---+---------+------+
|emp_id| name|age| role|salary|
+------+-----+---+---------+------+
| 1| John| 25|Associate| 10000|
| 2| Ray| 35| Manager| 12000|
| 3| Mike| 24| Manager| 12000|
| 4| Jane| 28|Associate| null|
| 5|Kevin| 26| Manager| 120|
+------+-----+---+---------+------+
only showing top 5 rows

Scala

// Creating the final data matrix using the join operation
scala> val final_data = employees.join(salary, $"emp_id" ===
$"e_id").join(designation, $"emp_id" === $"id").select("emp_id", "name",
"age", "role", "salary")
final_data: org.apache.spark.sql.DataFrame = [emp_id: int, name: string ...
3 more fields]

Data Analysis on Spark

[96]

After integrating data from those sources, the final dataset (in this case it is final_data)
should be of the following format (just example data):

emp_id name age role salary

1 John 25 Associate 10,000 $

2 Ray 35 Manager 12,000 $

3 Mike 24 Manager 12,000 $

4 Jane 28 Associate null

5 Kevin 26 Manager 12,000 $

6 Vincent 35 Senior Manager 22,000 $

7 James 38 Senior Manager 20,000 $

8 Shane 32 Manager 12,000 $

9 Larry 29 Manager 10,000 $

10 Kimberly 29 Associate 8,000 $

11 Alex 28 Manager 12,000 $

12 Garry 25 Manager 12.000 $

13 Max 31 Manager 12,000 $

Data cleansing
Once you have the data consolidated in one place, it is extremely important that you spend
enough time and effort in cleaning it before analyzing it. This is an iterative process because
you have to validate the actions you have taken on the data and continue till you are
satisfied with the data quality. It is advisable that you spend time analyzing the causes of
anomalies you detect in the data.

Some level of impurity in data usually exists in any dataset. There can be various kinds of
issues with data, but we are going to address a few common cases, such as missing values,
duplicate values, transforming, or formatting (adding or removing digits from a number,
splitting a column into two, merging two columns into one).

Data Analysis on Spark

[97]

Missing value treatment
There are various ways of handling missing values. One way is dropping rows containing
missing values. We may want to drop a row even if a single column has missing value, or
may have different strategies for different columns. We may want to retain the row as long
as the total number of missing values in that row are under a threshold. Another approach
may be to replace nulls with a constant value, say the mean value in case of numeric
variables.

In this section, we will not be providing some examples in both Scala and Python and will
try to cover various scenarios to give you a broader perspective.

Python

// Dropping rows with missing value(s)
>>> clean_data = final_data.na.drop()
>>>
// Replacing missing value by mean
>>> import math
>>> from pyspark.sql import functions as F
>>> mean_salary =
math.floor(salary.select(F.mean('salary')).collect()[0][0])
>>> clean_data = final_data.na.fill({'salary' : mean_salary})
>>>
//Another example for missing value treatment
>>> authors = [['Thomas','Hardy','June 2, 1840'],
 ['Charles','Dickens','7 February 1812'],
 ['Mark','Twain',None],
 ['Jane','Austen','16 December 1775'],
 ['Emily',None,None]]
>>> df1 = sc.parallelize(authors).toDF(
 ["FirstName","LastName","Dob"])
>>> df1.show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Thomas| Hardy| June 2, 1840|
| Charles| Dickens| 7 February 1812|
| Mark| Twain| null|
| Jane| Austen|16 December 1775|
| Emily| null| null|
+---------+--------+----------------+

// Drop rows with missing values
>>> df1.na.drop().show()
+---------+--------+----------------+
|FirstName|LastName| Dob|

Data Analysis on Spark

[98]

+---------+--------+----------------+
Thomas	Hardy	June 2, 1840
Charles	Dickens	7 February 1812
Jane	Austen	16 December 1775
+---------+--------+----------------+

// Drop rows with at least 2 missing values
>>> df1.na.drop(thresh=2).show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Thomas| Hardy| June 2, 1840|
| Charles| Dickens| 7 February 1812|
| Mark| Twain| null|
| Jane| Austen|16 December 1775|
+---------+--------+----------------+

// Fill all missing values with a given string
>>> df1.na.fill('Unknown').show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Thomas| Hardy| June 2, 1840|
| Charles| Dickens| 7 February 1812|
| Mark| Twain| Unknown|
| Jane| Austen|16 December 1775|
| Emily| Unknown| Unknown|
+---------+--------+----------------+

// Fill missing values in each column with a given string
>>> df1.na.fill({'LastName':'--','Dob':'Unknown'}).show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Thomas| Hardy| June 2, 1840|
| Charles| Dickens| 7 February 1812|
| Mark| Twain| Unknown|
| Jane| Austen|16 December 1775|
| Emily| --| Unknown|
+---------+--------+----------------+

Scala

//Missing value treatment
// Dropping rows with missing value(s)
scala> var clean_data = final_data.na.drop() //Note the var declaration
instead of val
clean_data: org.apache.spark.sql.DataFrame = [emp_id: int, name: string ...

Data Analysis on Spark

[99]

3 more fields]
scala>

// Replacing missing value by mean
scal> val mean_salary = final_data.select(floor(avg("salary"))).
 first()(0).toString.toDouble
mean_salary: Double = 20843.0
scal> clean_data = final_data.na.fill(Map("salary" -> mean_salary))

//Reassigning clean_data
clean_data: org.apache.spark.sql.DataFrame = [emp_id: int, name: string ...
3 more fields]
scala>

//Another example for missing value treatment
scala> case class Author (FirstName: String, LastName: String, Dob: String)
defined class Author
scala> val authors = Seq(
 Author("Thomas","Hardy","June 2, 1840"),
 Author("Charles","Dickens","7 February 1812"),
 Author("Mark","Twain",null),
 Author("Emily",null,null))
authors: Seq[Author] = List(Author(Thomas,Hardy,June 2, 1840),
 Author(Charles,Dickens,7 February 1812), Author(Mark,Twain,null),
 Author(Emily,null,null))
scala> val ds1 = sc.parallelize(authors).toDS()
ds1: org.apache.spark.sql.Dataset[Author] = [FirstName: string, LastName:
string ... 1 more field]
scala> ds1.show()
+---------+--------+---------------+
|FirstName|LastName| Dob|
+---------+--------+---------------+
Thomas	Hardy	June 2, 1840
Charles	Dickens	7 February 1812
Mark	Twain	null
Emily	null	null
+---------+--------+---------------+
scala>

// Drop rows with missing values
scala> ds1.na.drop().show()
+---------+--------+---------------+
|FirstName|LastName| Dob|
+---------+--------+---------------+
| Thomas| Hardy| June 2, 1840|
| Charles| Dickens|7 February 1812|
+---------+--------+---------------+
scala>

Data Analysis on Spark

[100]

//Drop rows with at least 2 missing values
//Note that there is no direct scala function to drop rows with at least n
missing values
//However, you can drop rows containing under specified non nulls
//Use that function to achieve the same result
scala> ds1.na.drop(minNonNulls = df1.columns.length - 1).show()
//Fill all missing values with a given string
scala> ds1.na.fill("Unknown").show()
+---------+--------+---------------+
|FirstName|LastName| Dob|
+---------+--------+---------------+
Thomas	Hardy	June 2, 1840
Charles	Dickens	7 February 1812
Mark	Twain	Unknown
Emily	Unknown	Unknown
+---------+--------+---------------+
scala>

//Fill missing values in each column with a given string
scala> ds1.na.fill(Map("LastName"->"--",
 "Dob"->"Unknown")).show()
+---------+--------+---------------+
|FirstName|LastName| Dob|
+---------+--------+---------------+
Thomas	Hardy	June 2, 1840
Charles	Dickens	7 February 1812
Mark	Twain	Unknown
Emily	--	Unknown
+---------+--------+---------------+

Outlier treatment
Understanding what an outlier is also important to treat it well. To put it simply, an outlier
is a data point that does not share the same characteristics as the rest of the data points.
Example: if you have a dataset of schoolchildren and there are a few age values in the range
of 30-40 then they could be outliers. Let us look into a different example now: if you have a
dataset where a variable can have data points only in two ranges, say, in the 10-20 or 80-90
range, then the data points (say, 40 or 55) with values in between these two ranges could
also be outliers. In this example, 40 or 55 do not belong to the 10-20 range, nor do they
belong to the 80-90 range, and are outliers.

Also, there can be univariate outliers and there can be multivariate outliers as well. We will
focus on univariate outliers in this book for simplicity's sake as Spark MLlib may not have
all the algorithms needed at the time of writing this book.

Data Analysis on Spark

[101]

In order to treat the outliers, you have to first see if there are outliers. There are different
ways, such as summary statistics and plotting techniques, to find the outliers. You can use
the built-in library functions such as matplotlib of Python to visualize your data. You can
do so by connecting to Spark through a notebook (for example, Jupyter) so that the visuals
can be generated, which may not be possible on a command shell.

Once you find outliers, you can either delete the rows containing outliers or impute the
mean values in place of outliers or do something more relevant, as applicable to your case.
Let us have a look at the mean substitution method here:

Python

// Identify outliers and replace them with mean
//The following example reuses the clean_data dataset and mean_salary
computed in previous examples
>>> mean_salary
20843.0
>>>
//Compute deviation for each row
>>> devs = final_data.select(((final_data.salary - mean_salary) **
2).alias("deviation"))

//Compute standard deviation
>>> stddev = math.floor(math.sqrt(devs.groupBy().
 avg("deviation").first()[0]))

//check standard deviation value
>>> round(stddev,2)
30351.0
>>>
//Replace outliers beyond 2 standard deviations with the mean salary
>>> no_outlier = final_data.select(final_data.emp_id, final_data.name,
final_data.age, final_data.salary, final_data.role,
F.when(final_data.salary.between(mean_salary-(2*stddev),
mean_salary+(2*stddev)),
final_data.salary).otherwise(mean_salary).alias("updated_salary"))
>>>
//Observe modified values
>>> no_outlier.filter(no_outlier.salary !=
no_outlier.updated_salary).show()
+------+----+---+------+-------+--------------+
|emp_id|name|age|salary| role|updated_salary|
+------+----+---+------+-------+--------------+
| 13| Max| 31|120000|Manager| 20843.0|
+------+----+---+------+-------+--------------+
>>>

Data Analysis on Spark

[102]

Scala

// Identify outliers and replace them with mean
//The following example reuses the clean_data dataset and mean_salary
computed in previous examples
//Compute deviation for each row
scala> val devs = clean_data.select(((clean_data("salary") - mean_salary) *
 (clean_data("salary") - mean_salary)).alias("deviation"))
devs: org.apache.spark.sql.DataFrame = [deviation: double]

//Compute standard deviation
scala> val stddev = devs.select(sqrt(avg("deviation"))).
 first().getDouble(0)
stddev: Double = 29160.932595617614

//If you want to round the stddev value, use BigDecimal as shown
scala> scala.math.BigDecimal(stddev).setScale(2,
 BigDecimal.RoundingMode.HALF_UP)
res14: scala.math.BigDecimal = 29160.93
scala>

//Replace outliers beyond 2 standard deviations with the mean salary
scala> val outlierfunc = udf((value: Long, mean: Double) => {if (value >
mean+(2*stddev)
 || value < mean-(2*stddev)) mean else value})

//Use the UDF to compute updated_salary
//Note the usage of lit() to wrap a literal as a column
scala> val no_outlier = clean_data.withColumn("updated_salary",
 outlierfunc(col("salary"),lit(mean_salary)))

//Observe modified values
scala> no_outlier.filter(no_outlier("salary") =!= //Not !=
 no_outlier("updated_salary")).show()
+------+----+---+-------+------+--------------+
|emp_id|name|age| role|salary|updated_salary|
+------+----+---+-------+------+--------------+
| 13| Max| 31|Manager|120000| 20843.0|
+------+----+---+-------+------+--------------+

Data Analysis on Spark

[103]

Duplicate values treatment
There are different ways of treating the duplicate records in a dataset. We will demonstrate
those in the following code snippets:

Python

// Deleting the duplicate rows
>>> authors = [['Thomas','Hardy','June 2,1840'],
 ['Thomas','Hardy','June 2,1840'],
 ['Thomas','H',None],
 ['Jane','Austen','16 December 1775'],
 ['Emily',None,None]]
>>> df1 = sc.parallelize(authors).toDF(
 ["FirstName","LastName","Dob"])
>>> df1.show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Thomas| Hardy| June 2, 1840|
| Thomas| Hardy| June 2, 1840|
| Thomas| H| null|
| Jane| Austen|16 December 1775|
| Emily| null| null|
+---------+--------+----------------+

// Drop duplicated rows
>>> df1.dropDuplicates().show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Emily| null| null|
| Jane| Austen|16 December 1775|
| Thomas| H| null|
| Thomas| Hardy| June 2, 1840|
+---------+--------+----------------+

// Drop duplicates based on a sub set of columns
>>> df1.dropDuplicates(subset=["FirstName"]).show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Emily| null| null|
| Thomas| Hardy| June 2, 1840|
| Jane| Austen|16 December 1775|
+---------+--------+----------------+
>>>

Data Analysis on Spark

[104]

Scala:

//Duplicate values treatment
// Reusing the Author case class
// Deleting the duplicate rows
scala> val authors = Seq(
 Author("Thomas","Hardy","June 2,1840"),
 Author("Thomas","Hardy","June 2,1840"),
 Author("Thomas","H",null),
 Author("Jane","Austen","16 December 1775"),
 Author("Emily",null,null))
authors: Seq[Author] = List(Author(Thomas,Hardy,June 2,1840),
Author(Thomas,Hardy,June 2,1840), Author(Thomas,H,null),
Author(Jane,Austen,16 December 1775), Author(Emily,null,null))
scala> val ds1 = sc.parallelize(authors).toDS()
ds1: org.apache.spark.sql.Dataset[Author] = [FirstName: string, LastName:
string ... 1 more field]
scala> ds1.show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
Thomas	Hardy	June 2,1840
Thomas	Hardy	June 2,1840
Thomas	H	null
Jane	Austen	16 December 1775
Emily	null	null
+---------+--------+----------------+
scala>

// Drop duplicated rows
scala> ds1.dropDuplicates().show()
+---------+--------+----------------
+
|FirstName|LastName| Dob|
+---------+--------+----------------+
Jane	Austen	16 December 1775
Emily	null	null
Thomas	Hardy	June 2,1840
Thomas	H	null
+---------+--------+----------------+
scala>

// Drop duplicates based on a sub set of columns
scala> ds1.dropDuplicates("FirstName").show()
+---------+--------+----------------+

|FirstName|LastName| Dob|
+---------+--------+----------------+

Data Analysis on Spark

[105]

Emily	null	null
Jane	Austen	16 December 1775
Thomas	Hardy	June 2,1840
+---------+--------+----------------+

Data transformation
There can be various kinds of data transformation needs and every case is mostly unique.
We are going to cover some basic types of transformations, as follows:

Merging two columns into one
Adding characters/numbers to the existing ones
Deleting or replacing characters/numbers from the existing ones
Changing date formats

Python

// Merging columns
//Create a udf to concatenate two column values
>>> import pyspark.sql.functions
>>> concat_func = pyspark.sql.functions.udf(lambda name, age: name + "_" +
str(age))

//Apply the udf to create merged column
>>> concat_df = final_data.withColumn("name_age",
concat_func(final_data.name, final_data.age))
>>> concat_df.show(4)
+------+----+---+---------+------+--------+
|emp_id|name|age| role|salary|name_age|
+------+----+---+---------+------+--------+
| 1|John| 25|Associate| 10000| John_25|
| 2| Ray| 35| Manager| 12000| Ray_35|
| 3|Mike| 24| Manager| 12000| Mike_24|
| 4|Jane| 28|Associate| null| Jane_28|
+------+----+---+---------+------+--------+
only showing top 4 rows
// Adding constant to data
>>> data_new = concat_df.withColumn("age_incremented",concat_df.age + 10)
>>> data_new.show(4)
+------+----+---+---------+------+--------+---------------+
|emp_id|name|age| role|salary|name_age|age_incremented|
+------+----+---+---------+------+--------+---------------+
| 1|John| 25|Associate| 10000| John_25| 35|
| 2| Ray| 35| Manager| 12000| Ray_35| 45|
| 3|Mike| 24| Manager| 12000| Mike_24| 34|

Data Analysis on Spark

[106]

| 4|Jane| 28|Associate| null| Jane_28| 38|
+------+----+---+---------+------+--------+---------------+
only showing top 4 rows
>>>

//Replace values in a column
>>> df1.replace('Emily','Charlotte','FirstName').show()
+---------+--------+----------------+
|FirstName|LastName| Dob|
+---------+--------+----------------+
| Thomas| Hardy| June 2, 1840|
| Charles| Dickens| 7 February 1812|
| Mark| Twain| null|
| Jane| Austen|16 December 1775|
|Charlotte| null| null|
+---------+--------+----------------+

// If the column name argument is omitted in replace, then replacement is
applicable to all columns
//Append new columns based on existing values in a column
//Give 'LastName' instead of 'Initial' if you want to overwrite
>>> df1.withColumn('Initial',df1.LastName.substr(1,1)).show()
+---------+--------+----------------+-------+
|FirstName|LastName| Dob|Initial|
+---------+--------+----------------+-------+
| Thomas| Hardy| June 2, 1840| H|
| Charles| Dickens| 7 February 1812| D|
| Mark| Twain| null| T|
| Jane| Austen|16 December 1775| A|
| Emily| null| null| null|
+---------+--------+----------------+-------+

Scala:

// Merging columns
//Create a udf to concatenate two column values
scala> val concatfunc = udf((name: String, age: Integer) =>
 {name + "_" + age})
concatfunc: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function2>,StringType,Some(List(StringType,
IntegerType)))
scala>

//Apply the udf to create merged column
scala> val concat_df = final_data.withColumn("name_age",
 concatfunc($"name", $"age"))
concat_df: org.apache.spark.sql.DataFrame =
 [emp_id: int, name: string ... 4 more fields]

Data Analysis on Spark

[107]

scala> concat_df.show(4)
+------+----+---+---------+------+--------+
|emp_id|name|age| role|salary|name_age|
+------+----+---+---------+------+--------+
1	John	25	Associate	10000	John_25
2	Ray	35	Manager	12000	Ray_35
3	Mike	24	Manager	12000	Mike_24
4	Jane	28	Associate	null	Jane_28
+------+----+---+---------+------+--------+
only showing top 4 rows
scala>

// Adding constant to data
scala> val addconst = udf((age: Integer) => {age + 10})
addconst: org.apache.spark.sql.expressions.UserDefinedFunction =
 UserDefinedFunction(<function1>,IntegerType,Some(List(IntegerType)))
scala> val data_new = concat_df.withColumn("age_incremented",
 addconst(col("age")))
data_new: org.apache.spark.sql.DataFrame =
 [emp_id: int, name: string ... 5 more fields]
scala> data_new.show(4)
+------+----+---+---------+------+--------+---------------+
|emp_id|name|age| role|salary|name_age|age_incremented|
+------+----+---+---------+------+--------+---------------+
1	John	25	Associate	10000	John_25	35
2	Ray	35	Manager	12000	Ray_35	45
3	Mike	24	Manager	12000	Mike_24	34
4	Jane	28	Associate	null	Jane_28	38
+------+----+---+---------+------+--------+---------------+
only showing top 4 rows

// Replace values in a column
//Note: As of Spark 2.0.0, there is no replace on DataFrame/ Dataset does
not work so .na. is a work around
scala> ds1.na.replace("FirstName",Map("Emily" -> "Charlotte")).show()
+---------+--------+---------------+
|FirstName|LastName| Dob|
+---------+--------+---------------+
Thomas	Hardy	June 2, 1840
Charles	Dickens	7 February 1812
Mark	Twain	null
Charlotte	null	null
+---------+--------+---------------+
scala>

// If the column name argument is "*" in replace, then replacement is
applicable to all columns
//Append new columns based on existing values in a column

Data Analysis on Spark

[108]

//Give "LastName" instead of "Initial" if you want to overwrite
scala> ds1.withColumn("Initial",ds1("LastName").substr(1,1)).show()
+---------+--------+---------------+-------+
|FirstName|LastName| Dob|Initial|
+---------+--------+---------------+-------+
Thomas	Hardy	June 2, 1840	H
Charles	Dickens	7 February 1812	D
Mark	Twain	null	T
Emily	null	null	null
+---------+--------+---------------+-------+

Now that we are familiar with basic examples, let us put together a somewhat complex
example. You might have noticed that the date column in Authors data has different date
formats. In some cases, month is followed by day, and vice versa. Such anomalies are
common in the real world, wherein data might be collected from different sources. Here, we
are looking at a case where the date column has data points with many different date
formats. We need to standardize all the different date formats into one format. To do so, we
first have to create a user-defined function (udf) that can take care of the different formats
and convert those to one common format.

// Date conversions
//Create udf for date conversion that converts incoming string to YYYY-MM-
DD format
// The function assumes month is full month name and year is always 4
digits
// Separator is always a space or comma
// Month, date and year may come in any order
//Reusing authors data
>>> authors = [['Thomas','Hardy','June 2, 1840'],
 ['Charles','Dickens','7 February 1812'],
 ['Mark','Twain',None],
 ['Jane','Austen','16 December 1775'],
 ['Emily',None,None]]
>>> df1 = sc.parallelize(authors).toDF(
 ["FirstName","LastName","Dob"])
>>>

// Define udf
//Note: You may create this in a script file and execute with
execfile(filename.py)
>>> def toDate(s):
 import re
 year = month = day = ""
 if not s:
 return None
 mn = [0,'January','February','March','April','May',
 'June','July','August','September',

Data Analysis on Spark

[109]

 'October','November','December']

 //Split the string and remove empty tokens
 l = [tok for tok in re.split(",| ",s) if tok]

//Assign token to year, month or day
 for a in l:
 if a in mn:
 month = "{:0>2d}".format(mn.index(a))
 elif len(a) == 4:
 year = a
 elif len(a) == 1:
 day = '0' + a
 else:
 day = a
 return year + '-' + month + '-' + day
>>>

//Register the udf
>>> from pyspark.sql.functions import udf
>>> from pyspark.sql.types import StringType
>>> toDateUDF = udf(toDate, StringType())

//Apply udf
>>> df1.withColumn("Dob",toDateUDF("Dob")).show()
+---------+--------+----------+
|FirstName|LastName| Dob|
+---------+--------+----------+
| Thomas| Hardy|1840-06-02|
| Charles| Dickens|1812-02-07|
| Mark| Twain| null|
| Jane| Austen|1775-12-16|
| Emily| null| null|
+---------+--------+----------+
>>>

Scala

//Date conversions
//Create udf for date conversion that converts incoming string to YYYY-MM-
DD format
// The function assumes month is full month name and year is always 4
digits
// Separator is always a space or comma
// Month, date and year may come in any order
//Reusing authors case class and data
>>> val authors = Seq(
 Author("Thomas","Hardy","June 2, 1840"),

Data Analysis on Spark

[110]

 Author("Charles","Dickens","7 February 1812"),
 Author("Mark","Twain",null),
 Author("Jane","Austen","16 December 1775"),
 Author("Emily",null,null))
authors: Seq[Author] = List(Author(Thomas,Hardy,June 2, 1840),
Author(Charles,Dickens,7 February 1812), Author(Mark,Twain,null),
Author(Jane,Austen,16 December 1775), Author(Emily,null,null))
scala> val ds1 = sc.parallelize(authors).toDS()
ds1: org.apache.spark.sql.Dataset[Author] = [FirstName: string, LastName:
string ... 1 more field]
scala>

// Define udf
//Note: You can type :paste on REPL to paste multiline code. CTRL + D
signals end of paste mode
def toDateUDF = udf((s: String) => {
 var (year, month, day) = ("","","")
 val mn = List("","January","February","March","April","May",
 "June","July","August","September",
 "October","November","December")
 //Tokenize the date string and remove trailing comma, if any
 if(s != null) {
 for (x <- s.split(" ")) {
 val token = x.stripSuffix(",")
 token match {
 case "" =>
 case x if (mn.contains(token)) =>
 month = "%02d".format(mn.indexOf(token))
 case x if (token.length() == 4) =>
 year = token
 case x =>
 day = token
 }
 } //End of token processing for
 year + "-" + month + "-" + day=
 } else {
 null
 }
})
toDateUDF: org.apache.spark.sql.expressions.UserDefinedFunction
scala>

//Apply udf and convert date strings to standard form YYYY-MM-DD
scala> ds1.withColumn("Dob",toDateUDF(ds1("Dob"))).show()
+---------+--------+----------+
|FirstName|LastName| Dob|
+---------+--------+----------+
| Thomas| Hardy| 1840-06-2|

Data Analysis on Spark

[111]

Charles	Dickens	1812-02-7
Mark	Twain	null
Jane	Austen	1775-12-16
Emily	null	null
+---------+--------+----------+

That lines up the date of birth strings neatly. We can keep fine-tuning the udf as we
encounter more varieties of date formats.

At this stage, before getting started with data analysis, it is extremely important that you
should pause for a moment and re-evaluate the actions you have taken from starting data
acquisition to cleaning and transforming it. There have been a lot of cases where
tremendous time and effort involved went for a toss and led to project failure because of
incorrect data being analyzed and modeled. Such cases became perfect examples of a
famous computer adage – Garbage In, Garbage Out (GIGO).

Basics of statistics
The field of statistics is all about using mathematical procedures to summarize the raw facts
and figures of a dataset in some meaningful way so that it makes sense to you. This
includes, and is not limited to: gathering data, analyzing it, interpreting it, and representing
it.

The field of statistics exists mainly because it is usually impossible to collect data for the
entire population. So using statistical techniques, we estimate the population parameters
using the sample statistics by addressing the uncertainties.

In this section, we will cover some basic statistics and analysis techniques on which we are
going to build up our complete understanding of the concepts covered in this book.

The study of statistics can be broadly categorized into two main branches:

Descriptive statistics
Inferential statistics

Data Analysis on Spark

[112]

The following diagram depicts these two terms and shows how we estimate the population
parameters from samples:

Before we get started on these, it is important to get some familiarity with sampling and
distributions.

Sampling
Through sampling techniques, we just take a portion of the population dataset and work on
it:

Data Analysis on Spark

[113]

But why do we sample? The following are various reasons for sampling:

Difficult to get the entire population's data; for example, the heights of the
citizens of any country.
Difficult to process the entire dataset. When we talk about big data computing
platforms such as Spark, the scope of this challenge nearly disappears. However,
there can be scenarios where you have to treat the entire data at hand as a sample
and extrapolate your analysis result to a future time or to a larger population.
Difficult to plot voluminous data to visualize it. There can be technical limitations
to it.
For validation of your analysis or validation of your predictive models –
especially when you are working with small datasets and you have to rely on
cross-validation.

For effective sampling, there are two important constraints: one is determining the sample
size and the other is the technique to choose for sampling. The sample size greatly
influences the estimation of population parameters. We will cover this aspect later in this
chapter after covering some of the prerequisite basics. In this section, we will focus on
sampling techniques.

There are various probability-based (the probability of each sample being selected is
known) and non-probability-based (the probability of each sample being selected is not
known) sampling techniques available, but we are going to limit our discussion to
probability-based techniques only.

Simple random sample
The simple random sample (SRS) is the most basic type of probability sampling method,
where every element has the same probability of being chosen. This means that every
possible sample of n elements has an equal chance of selection.

Systematic sampling
Systematic sampling is probably the simplest of all probability-based sampling techniques,
where every kth element of the population is sampled. So this is otherwise known as
interval sampling. It starts with a fixed starting point chosen at random and then an interval
is estimated (the kth element, where k = (population size)/(sample size)). Here, the progression
through the elements is circled to start from the beginning when it reaches the end till your
sample size is reached.

Data Analysis on Spark

[114]

Stratified sampling
This sampling technique is preferred when the subgroups or subpopulations within the
population vary, because other sampling techniques might not help extract a sample that is
a good representative of the population. Through stratified sampling, the population is
divided into homogeneous subgroups called strata and a sample is taken by randomly
selecting the subjects from those strata in proportion to the population. So, the stratum size
to population size ratio is maintained in the sample as well:

Python

/* ”Sample” function is defined for DataFrames (not RDDs) which takes three
parameters:
withReplacement - Sample with replacement or not (input: True/False)
fraction - Fraction of rows to generate (input: any number between 0 and 1
as per your requirement of sample size)
seed - Seed for sampling (input: Any random seed)
*/
>>> sample1 = data_new.sample(False, 0.6) //With random seed as no seed
value specified
>>> sample2 = data_new.sample(False, 0.6, 10000) //With specific seed value
of 10000

Scala:

scala> val sample1 = data_new.sample(false, 0.6) //With random seed as no
seed value specified
sample1: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [emp_id:
int, name: string ... 5 more fields]
scala> val sample2 = data_new.sample(false, 0.6, 10000) //With specific
seed value of 10000
sample2: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [emp_id:
int, name: string ... 5 more fields]

We only looked at sampling on DataFrames; there are MLlib library
functions such as sampleByKey and sampleByKeyExact to do stratified
sampling on RDDs of key-value pairs. Check out spark.util.random
package for Bernoulli , Poisson or Random samplers.

Data Analysis on Spark

[115]

Data distributions
Understanding how your data is distributed is one of the primary tasks you need to
perform to turn data into information. Analyzing the distributions of the variables helps
detect the outliers, visualize the trends in the data, and can also shape up your
understanding for the data at hand. This helps in thinking right and taking the right
approaches in solving a business problem. Plotting the distributions makes it visually more
intuitive and we will cover this aspect in the Descriptive statistics section.

Frequency distributions
Frequency distribution explains which values a variable takes and how often it takes those
values. It is usually represented with a table with each possible value with its
corresponding number of occurrences.

Let's consider an example where we roll a six-sided die 100 times and observe the following
frequencies:

Frequency Table

Data Analysis on Spark

[116]

Similarly, you might observe different distributions on every set of 100 rolls of the die
because it would depend on chance.

At times, you might be interested in the proportions of occurrences instead of just
occurrences. In the preceding die roll example, we rolled the die 100 times in total, so the
proportionate distribution or the relative frequency distribution would appear as follows:

Relative Frequency Table

Data Analysis on Spark

[117]

Probability distributions
In the same example of die rolling, we know that a total probability of 1 is distributed across
all faces of the die. This means that a probability of 1/6 (approximately 0.167) is associated
with face 1 through face 6. Irrespective of the number of times you roll a die (a fair die!), the
same probability of 1/6 would be distributed evenly on all sides of the die. So, if you plot
this distribution, it would appear as follows:

Probability Distribution

We looked at three kinds of distributions here – frequency distributions, relative frequency
distribution, and probability distribution.

This probability distribution is actually the distribution of the population. In real-world
cases, at times we have prior knowledge of the population distribution (in our example, it is
the probability of 0.167 on all six sides of a fair die) and at times we don't. In scenarios
where we don't have the population distribution, finding the distribution of the population
itself becomes part of your inferential statistics. Also, unlike the fair die example, where the
same probability is associated with all the sides, there can be different probabilities
associated with the values a variable can take and they can follow a particular type of
distribution as well.

Data Analysis on Spark

[118]

Now it's time to reveal the secret! The relation between the relative frequency distribution
and the probability distribution is the basis of statistical inference. The relative frequency
distributions are also called empirical distributions based on what we observe in the
samples we take (here, it is a sample of 100). As discussed earlier, the empirical
distributions of every 100 rolls of the die would differ depending on chance. Now, the
larger the number of rolls, the closer will be the relative frequency distribution to the
probability distribution. So, the relative frequencies of an infinite number of die rolls is the
probability distribution, which in turn is the population distribution.

There are various kinds of probability distributions, which are again categorized into two,
based on the type of variable – categorical or continuous. We will cover these distributions
in detail in the subsequent sections of this chapter. However, we should know what these
categories imply! Categorical variables can take on only a few categories; for example,
pass/fail, zero/one, cancer/malignant are examples of categorical variables with two
categories. Similarly, a categorical variable can have more categories, such as
red/green/blue, type1/type2/type3/type4, and so on. Continuous variables can take on any
value in a given range and measured on a continuous scale, for example, age, height, salary,
and so on. Theoretically, there can be an infinite number of possible values between any
two values of a continuous variable. For example, between 5'6″ and 6'4″ height values (foot
and inch scale), there can be many fractional values possible. The same holds true when
measured in a centimeter scale as well.

Descriptive statistics
In the previous section, we learnt how distributions are formed. In this section, we will
learn how to describe them through descriptive statistics. There are two important
components of a distribution that can help describe it, which are its location and its spread.

Measures of location
A measure of location is a single value that describes where the center of the data lies. The
three most common measures of location are mean, median, and mode.

Mean
By far the most common and widely used measure of central tendency is the mean, which is
otherwise known as the average. Whether it is a sample or a population, the mean or
average is the summation of all the elements divided by the total number of elements.

Data Analysis on Spark

[119]

Median
The median is the middle value of a series of data when sorted in any order so that half of
the data is greater than the median and the other half smaller. When there are two middle
values (with an even number of data items), the median is the average of those middle two.
Medians are better measures of location when the data has outliers (extreme values).

Mode
The mode is the most frequent data item. It can be determined for both qualitative and
quantitative data.

Python

//Reusing data_new created in duplicated value treatment

>>> mean_age = data_new.agg({'age': 'mean'}).first()[0]
>>> age_counts = data_new.groupBy("age").agg({"age":
"count"}).alias("freq")
>>> mode_age = age_counts.sort(age_counts["COUNT(age)"].desc(),
age_counts.age.asc()).first()[0]
>>> print(mean_age, mode_age)
(29.615384615384617, 25)
>>> age_counts.sort("count(age)",ascending=False).show(2)
+---+----------
+
|age|count(age)|
+---+----------+
| 28| 3|
| 29| 2|
+---+----------+
only showing top 2 rows

Scala

//Reusing data_new created
scala> val mean_age = data_new.select(floor(avg("age"))).first().getLong(0)
mean_age: Long = 29
scala> val mode_age = data_new.groupBy($"age").agg(count($"age")).
 sort($"count(age)".desc, $"age").first().getInt(0)
mode_age: Int = 28
scala> val age_counts = data_new.groupBy("age").agg(count($"age") as
"freq")
age_counts: org.apache.spark.sql.DataFrame = [age: int, freq: bigint]
scala> age_counts.sort($"freq".desc).show(2)
+---+----

Data Analysis on Spark

[120]

+
|age|freq|
+---+----+
| 35| 2|
| 28| 2|
+---+----+

Measures of spread
Measures of spread describe how close or scattered the data is for a particular variable or
data item.

Range
The range is the difference between the smallest and largest values of a variable. One
disadvantage to it is that it does not take into account every value in the data.

Variance
To find the variability in the dataset, we can subtract each value from the mean, square
them up so it gets rid of the negative signs (also scales up the magnitude), and then sum
them all and divide by the total number of values:

If the data is more spread out, the variance will be a large number. One disadvantage to it is
that it gives undue weight to the outliers.

Standard deviation
Like variance, standard deviation is also a measure of dispersion within the data. Variance
had the limitation that the unit of data was also squared along with the data, so it was
difficult to relate the variance with the values in the dataset. So, standard deviation is
calculated as the square root of the variance:

Data Analysis on Spark

[121]

Python

//Reusing data_new created before
import math
>>> range_salary = data_new.agg({'salary': 'max'}).first()[0] -
data_new.agg({'salary': 'min'}).first()[0]
>>> mean_salary = data_new.agg({'salary': 'mean'}).first()[0]
>>> salary_deviations = data_new.select(((data_new.salary - mean_salary) *
 (data_new.salary - mean_salary)).alias("deviation"))
>>> stddev_salary = math.sqrt(salary_deviations.agg({'deviation' :
'avg'}).first()[0])
>>> variance_salary =
salary_deviations.groupBy().avg("deviation").first()[0]
>>> print(round(range_salary,2), round(mean_salary,2),
 round(variance_salary,2), round(stddev_salary,2))
(119880.0, 20843.33, 921223322.22, 30351.66)
>>>

Scala

//Reusing data_new created before
scala> val range_salary = data_new.select(max("salary")).first().
 getLong(0) - data_new.select(min("salary")).first().getLong(0)
range_salary: Long = 119880
scala> val mean_salary =
data_new.select(floor(avg("salary"))).first().getLong(0)
mean_salary: Long = 20843
scala> val salary_deviations = data_new.select(((data_new("salary") -
mean_salary)
 * (data_new("salary") -
mean_salary)).alias("deviation"))
salary_deviations: org.apache.spark.sql.DataFrame = [deviation: bigint]
scala> val variance_salary = { salary_deviations.select(avg("deviation"))
 .first().getDouble(0) }
variance_salary: Double = 9.212233223333334E8
scala> val stddev_salary = { salary_deviations
 .select(sqrt(avg("deviation")))
 .first().getDouble(0) }
stddev_salary: Double = 30351.660948510435

Data Analysis on Spark

[122]

Summary statistics
The summary statistics of a dataset is extremely useful information that gives us a quick
insight into the data at hand. Using the function colStats available in statistics, we can
obtain a multivariate statistical summary of RDD[Vector] which contains column-wise
max, min, mean, variance, number of non-zeros, and the total count. Let us explore this
through some code examples:

Python

>>> import numpy
>>> from pyspark.mllib.stat import Statistics
// Create an RDD of number vectors
//This example creates an RDD with 5 rows with 5 elements each
>>> observations =
sc.parallelize(numpy.random.random_integers(0,100,(5,5)))
// Compute column summary statistics.
//Note that the results may vary because of random numbers
>>> summary = Statistics.colStats(observations)
>>> print(summary.mean()) // mean value for each column
>>> print(summary.variance()) // column-wise variance
>>> print(summary.numNonzeros())// number of nonzeros in each column

Scala

scala> import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors
scala> import org.apache.spark.mllib.stat.{
 MultivariateStatisticalSummary, Statistics}
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary,
Statistics}
// Create an RDD of number vectors
//This example creates an RDD with 5 rows with 5 elements each
scala> val observations =
sc.parallelize(Seq.fill(5)(Vectors.dense(Array.fill(5)(
 scala.util.Random.nextDouble))))
observations:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
ParallelCollectionRDD[43] at parallelize at <console>:27
scala>
// Compute column summary statistics.
//Note that the results may vary because of random numbers
scala> val summary = Statistics.colStats(observations)
summary: org.apache.spark.mllib.stat.MultivariateStatisticalSummary =
org.apache.spark.mllib.stat.MultivariateOnlineSummarizer@36836161
scala> println(summary.mean) // mean value for each column
[0.5782406967737089,0.5903954680966121,0.4892908815930067,0.456807017992348

Data Analysis on Spark

[123]

35,0.6611492334819364]
scala> println(summary.variance) // column-wise variance
[0.11893608153330748,0.07673977181967367,0.023169197889513014,0.08882605965
192601,0.08360159585590332]
scala> println(summary.numNonzeros) // number of nonzeros in each column
[5.0,5.0,5.0,5.0,5.0]

Apache Spark MLlib RDD-based API is in maintenance mode starting
Spark 2.0. They are expected to deprecated in 2.2+ and removed in Spark
3.0.

Graphical techniques
To understand the behavior of your data points, you may have to plot them and see. You
need a platform, however, to visualize your data in terms of box plots, scatter plots, or
histograms, to name a few. The iPython/Jupyter notebook or any other third-party notebook
supported by Spark can be used for data visualization in your browser itself. Databricks
provides their own notebook. Visualization is covered in its own chapter and this chapter
focuses on the complete life cycle. However, Spark provides histogram data preparation out
of the box so that bucket ranges and frequencies may be transferred to the client machine as
against the complete dataset. The following example shows the same.

Python

//Histogram
>>>from random import randint
>>> numRDD = sc.parallelize([randint(0,9) for x in xrange(1,1001)])
// Generate histogram data for given bucket count
>>> numRDD.histogram(5)
([0.0, 1.8, 3.6, 5.4, 7.2, 9], [202, 213, 215, 188, 182])
//Alternatively, specify ranges
>>> numRDD.histogram([0,3,6,10])
([0, 3, 6, 10], [319, 311, 370])

Scala:

//Histogram
scala> val numRDD = sc.parallelize(Seq.fill(1000)(
 scala.util.Random.nextInt(10)))
numRDD: org.apache.spark.rdd.RDD[Int] =
 ParallelCollectionRDD[0] at parallelize at <console>:24
// Generate histogram data for given bucket count
scala> numRDD.histogram(5)
res10: (Array[Double], Array[Long]) = (Array(0.0, 1.8, 3.6, 5.4, 7.2,

Data Analysis on Spark

[124]

9.0),Array(194, 209, 215, 195, 187))
scala>
//Alternatively, specify ranges
scala> numRDD.histogram(Array(0,3.0,6,10))
res13: Array[Long] = Array(293, 325, 382)

Inferential statistics
We saw that descriptive statistics were extremely useful in describing and presenting data,
but they did not provide a way to use the sample statistics to infer the population
parameters or to validate any hypothesis we might have made. So, the techniques of
inferential statistics surfaced to address such requirements. Some of the important uses of
inferential statistics are:

Estimation of population parameters
Hypothesis testing

Please note that a sample can never represent a population perfectly because every time we
sample, it naturally incurs sampling errors, hence the need for inferential statistics! Let us
spend some time understanding the various types of probability distributions that can help
infer the population parameters.

Discrete probability distributions
Discrete probability distributions are used to model data that is discrete in nature, which
means that data can only take on certain values, such as integers. Unlike categorical
variables, discrete variables can take on only numeric data, especially count data from a set
of distinct whole values. Also, the sum of probabilities of all possible values of a random
variable is one. The discrete probability distributions are described in terms of probability
mass function. There can be various types of discrete probability distributions. The
following are a few examples.

Bernoulli distribution
Bernoulli distribution is a type of distribution that describes the trials having only two
possible outcomes, such as success/failure, head/tail, the face value of a six-sided die is 4 or
not, the message sent was received or not, and so on. Bernoulli distribution can be
generalized for any categorical variable with two or more possible outcomes.

Data Analysis on Spark

[125]

Let's take the example of “students' pass rate for an exam” where 0.6 (60 percent) is the
probability P of the students passing the exam and 0.4 (40 percent) is the probability (1-P)
for the students to fail in the exam. Let us denote fail as and pass as 1:

Such distributions cannot answer questions such as the expected pass rate of a student,
because the expected value (μ) is going to be some fraction that this distribution cannot
take. It can only mean that if you sample 1,000 students, then 600 would pass and 400
would fail.

Binomial distribution
This distribution can describe a series of Bernoulli trials (each with only two possible
outcomes). Also, it assumes that the outcome of one trial does not affect the subsequent
trials and that the probability of any event occurring is the same on every trial. An example
of binomial distribution is tossing a coin five times. Here, the outcome of the first toss does
not influence the outcome of the second toss, and the probability associated with each
outcome is the same on all tosses.

If n is the number of trials and p is the probability of success in every trial, then the mean (μ)
of this binomial distribution would be given by:

μ = n * p

The variance (σ2x) would be given by:

σ2x = n*p*(1-p).

Data Analysis on Spark

[126]

In general, a random variable X that follows binomial distribution with parameters n and p,
we can write as X ~ B(n, p). For such a distribution, the probability of getting exactly k
successes in n trials can be described by the probability mass function as follows:

here, k = 0, 1, 2, …, n

Sample problem
Let us assume a hypothetical scenario. Suppose 24 percent of companies in a city
announced they would provide support to the tsunami-affected areas of the country as part
of their CSR activity. In a sample of 20 companies chosen at random, find the probability of
the number of companies that have announced they will help tsunami-affected areas:

Exactly three
Less than three
Three or more

Solution:

The sample size = n = 20.

The probability that a company chosen at random has announced it will help = P = 0.24.

a) P(x = 3) = 20C3 (0.24)3 (0.76) 17 = 0.15

b) P(x < 3) = P(0) + P(1) + P(2)

= (0.76) 20 + 20C1 (0.24) (0.76)19 + 20C2 (0.24)2 (0.76)18

= 0.0041 + 0.0261 + 0.0783 = 0.11

c) P(x >= 3) = 1 – P(x <= 2) = 1- 0.11 = 0.89

Note that binomial distribution is widely used in scenarios where you want to model the
success rate in a sample of size n drawn from a population of size N, with replacement. If it
is done without replacement then the draws will no longer be independent and hence will
not follow binomial distribution rightly. However, such scenarios do exist and can be
modeled using different types of distributions, such as hypergeometric distributions.

Data Analysis on Spark

[127]

Poisson distribution
Poisson distribution can describe the probability of a given number of independent events
that occur with a known average rate in a fixed interval of time or space. Please note that
the events should only have binary outcomes such as success or failure, for example, the
number of phone calls you receive per day or the number of cars passing a signal per hour.
You need to carefully take a closer look at these examples. Please note here that you do not
have the opposite half of this information, that is, how many phone calls you did not
receive per day or how many cars did not pass that signal. Such data points do not have the
other half of the information. On the contrary, if I say that 30 out of 50 students passed in an
exam, you can easily infer that 20 students have failed! You have this other half of the
information.

If µ is the mean number of events occurring (a known average rate in a fixed interval of
time or space) then the probability of k events occurring at the same interval can be
described by the probability mass function:

here, k = 0, 1, 2, 3…

The preceding equation describes the Poisson distribution.

For a Poisson distribution, mean and variance are the same. Also, the Poisson distribution
tends to be more symmetric as its mean or variance increases.

Sample problem
Suppose you knew that the mean number of calls to a fire station on a weekday is eight.
What is the probability that on a given weekday there would be 11 calls? This problem can
be solved using the following formula based on the Poisson distribution:

Data Analysis on Spark

[128]

Continuous probability distributions
Continuous probability distributions are used to model data that is continuous in nature,
which means that data can only take on any value within a specified range. So we deal with
probabilities associated with intervals and not with any particular value as it is zero.
Continuous probability distributions are the theoretical models of experiments; it is a
relative frequency distribution built from an infinite number of observations. This means
that when you reduce the interval, the number of observations increases, and as the number
of observations increases more and more and approaches infinity, it forms a continuous
probability distribution. The total area under the curve is one and to find the probability
associated with any particular range, we have to find the area under the curve. Therefore,
continuous distributions are normally described in terms of probability density function
(PDF) which is of the following type:

P(a ≤ X ≤ b) = a∫b f(x) dx

There can be various types of continuous probability distributions. The following sections
are a few examples.

Normal distribution
A normal distribution is a simple, straightforward, yet very important continuous
probability distribution. It is otherwise known as a Gaussian distribution or bell curve
because of its appearance when plotted. Also, for a perfect normal distribution, the mean,
median, and mode are all the same.

Many naturally occurring phenomena follow a normal distribution (they may follow a
different distribution as well!), such as the heights of people, errors in measurement, and so
on. However, normal distributions are not suitable to model variables that are highly
skewed or are inherently positive (for example, share prices or students' test scores where
the difficulty level was minimal). Such variables may be better described by different
distributions or by the normal distribution after a data transformation (like logarithmic
transformation).

Normal distributions can be described using two descriptors: mean for the location of the
center and standard deviation for the spread (height and width). The probability density
function that represents a normal distribution is as follows:

Data Analysis on Spark

[129]

One of the reasons this normal distribution tops the chart for popularity is because of
the Central Limit Theorem (CLT). It states that, regardless of the population distribution,
the mean of samples independently drawn from same population distribution is distributed
almost normally and this normality increases more and more with the increase in sample
size. This behavior is actually the basis of statistical hypothesis testing.

Additionally, every normal distribution, irrespective of its mean and standard deviation,
follows an empirical rule (68-95-99.7 rule) which states that about 68 percent of the area
under the curve falls within one standard deviation of the mean, 95 percent of the area
under the curve falls within two standard deviations of the mean, and around 99.7 percent
of the area under the curve falls within three standard deviations of the mean.

Now, to find the probability of an event, you can either use integral calculus or transform
the distribution into a standard normal distribution as explained in the next section.

Standard normal distribution
A standard normal distribution is a type of normal distribution with mean and standard
deviation 1. Such a distribution is rarely found naturally. It is designed mainly to find the
area under the curve of a normal distribution (instead of integrating using calculus) or to
normalize the data points.

Suppose a random variable X is normally distributed with mean (μ) and standard deviation
(σ), then the random variable Z will have a standard normal distribution with mean and
standard deviation 1. The value of Z can be found as:

Since data can be standardized in this manner, the data points can be represented and
interpreted as how many standard deviations away from the mean they lie in the distribution. It
helps in comparing two distributions with different scales.

You can find the applications of a normal distribution in scenarios where one wants to find
what percent would fall under a specified range – assuming that the distribution is
approximately normal.

Data Analysis on Spark

[130]

Consider the following example:

If the time a shopkeeper operates the shop on a given day follows the normal distribution
with μ = 8 hours and σ = 0.5 hours, what is the probability that he stays at the shop for less
than 7.5 hours?

The probability distribution would look as follows:

Data distribution

Data Analysis on Spark

[131]

Standard normal distribution

So the probability that the shopkeeper stays at the shop for less than 7.5 hours is given by:

P(z = -1) = 0.1587 = 15.87

This was figured out using the Z-table.

Please note that normality in a dataset is mostly an approximation. You first need to check
the normality of the data and then proceed further if your analysis is based on the
assumption of normality in data. There are various different ways to check for normality:
you can opt for techniques such as histogram (with a curve fitted with the mean and
standard deviation of the data), normal probability plot, or QQ plot.

Data Analysis on Spark

[132]

Chi-square distribution
Chi-square distribution is one of the most widely used distributions in statistical inference.
It is a special case of gamma distribution, which is useful in modeling skewed distributions
of the variables that are not negative. It states that, if a random variable X is normally
distributed and Z is one of its standard normal variables, then Z2 will have a X2 distribution
with one degree of freedom. Similarly, if we take many such random independent standard
normal variables from the same distribution, square them and add them up, then that will
also follow X2 distribution as follows:

Z12 + Z22 + … + Zk2 will have X2 distribution with k degrees of freedom.

Chi-square distribution is mainly used for the inference of population variance or
population standard deviation given the sample variance or standard deviation. This is
because X2 distribution is defined in an alternative way, in terms of the ratio of sample
variance to population variance.

To justify this point, let us take a random sample (x1, x2,…,xn) from a normal distribution

with variance

The sample mean would be given by:

However, the sample variance is given by:

Considering the preceding mentioned facts, we can define the chi-square statistic as follows:

(Remember and Z2 will have X2 distribution.)

So ,

Data Analysis on Spark

[133]

Therefore, the sampling distribution of the chi-square statistic will follow a chi-square
distribution with (n-1) degrees of freedom.

The probability density function of a chi-square distribution with n degrees of freedom and
gamma function Г is given by:

For a χ2 distribution withk degrees of freedom, mean (µ) = k and variance (σ2) = 2k.

Please note that chi-square distributions are positively skewed, but the degree of skewness
decreases with the increase in the degree of freedom and approaches a normal distribution.

Sample problem
Find the 90 percent confidence interval for the variance and standard deviation for the price
in dollars for adult single movie tickets. The data given represents a selected sample of
nationwide movie theaters. Assume the variable is normally distributed.

Given sample (in $): 10, 08, 07, 11, 12, 06, 05, 09, 15, 12

Solution:

N = 10

Mean of sample:

Variance of sample:

Standard deviation of sample:

S = sqrt(9.61)

Degree of freedom:

10-1 = 9

Data Analysis on Spark

[134]

Now we need to find the 90 percent confidence interval, which means that 10 percent of the
data will be left over in the tails.

Now, let us use the formula:

Then we can either find the chi-square value using a table or a computer program.

To find the middle 90 percent confidence interval, we can consider the left 95 percent and
right 5 percent.

So after substituting the numbers, we get:

Data Analysis on Spark

[135]

So, we can conclude that we are 90 percent confident that the standard deviation for the
price of a single movie ticket of the population (all tickets in the nation) is between $2.26
and $5.10 based on a sample of 10 nationwide movie ticket prices.

Student's t-distribution
Student's t-distribution is used in estimating the mean of a normally distributed population
in the case where the population standard deviation is not known or the sample size is too
small. In such cases, both μ and σ are unknown and population parameters are estimated
only through the sample.

This distribution is bell-shaped and symmetric like normal distribution, but has heavier
tails. The t-distribution becomes a normal distribution when the sample size is large.

Let us take a random sample (x1, x2,…,xn) from a normal distribution with mean μ and
variance σ2.

The sample mean would be and sample variance

Considering the above-mentioned facts, the t-statistic can be defined as:

The sampling distribution of the t-statistic will follow a t-distribution with (n-1)degrees of
freedom (df). The higher the degree of freedom, the closer will be the t-distribution to the
standard normal distribution.

The mean of a t-distribution (μ) = and variance (σ2) = df/df-2

Now, just to make things clearer, let us look back for a moment and consider the scenario
where the population σ is known. When the population is normally distributed, the sample
mean x̄ is mostly normally distributed regardless of the sample size and any linear

transformation of x̄ such as will also follow a normal distribution.

Data Analysis on Spark

[136]

What if the population is not normally distributed? Even then, the distribution of x̄ (which

is the sampling distribution) or will follow a normal distribution as per CLT when the
sample size is large enough!

The other scenario is that the populationσ is unknown. With this, if the population is
normally distributed, the sample mean x̄ is mostly normally distributed, but the random

variable will not follow a normal distribution; it follows a t-distribution with (n-1)
degrees of freedom. The reason is because of the randomness of S in the denominator, it is
different for different samples.

In the above case, if the population is not normally distributed, the distribution of will
follow a normal distribution as per CLT with sufficiently large sample sizes (and not with

the small sample size!). So, with the large sample size, the distribution of follows a
normal distribution, and it is safe to assume that it follows t-distribution because t-
distribution approaches normality with an increase in the sample size.

F-distribution
In statistical inference, F-distribution is used to study the variance of two normally
distributed populations. It states that the sampling distribution of the sample variances
from two independent normally distributed populations with the same population variance
follow F-distribution.

If the sample variance of sample 1 is and if the sample variance of sample

2 is then, will have F-distribution (σ12 = σ22).

From the above fact, we can also say that will also follow F-distribution.

In the previous section of chi-square distribution, we can also say that

 will also follow F-distribution with n1-1 and n2-1 degrees of freedom. For each
combination of these degrees of freedoms, there would be different F-distributions.

Data Analysis on Spark

[137]

Standard error
The standard deviation of the sampling distribution of a statistic (such as mean or variance)
is called the standard error (SE), a measure of variability. In other words, the standard error
of the mean (SEM) can be defined as the standard deviation of the sample mean's estimate
of a population mean.

As you increase the sample sizes, the sampling distribution of the mean gets more and more
normal and the standard deviation gets smaller. It is proved that:

(n being the sample size)

The smaller the standard error, the more representative the sample will be of the overall
population. Also, the larger the sample size, the smaller the standard error.

SE is very important in other measures of statistical inference, such as margin of error and
confidence interval.

Confidence level
It is a measure of how certain you would like to be (the probability) in estimating the
population parameter through sample statistics so that the expected values would fall
within a desired range or confidence interval. It is calculated by subtracting the significance
level (α) from 1 (that is, confidence level = 1 – α). So, if α = 0.05, the confidence level would be
1-0.05 = 0.95

Usually, the higher the confidence level, the higher the sample size required. However,
there are often trade-offs and you have to decide on how confident you would like to be so
that you can estimate the sample size needed for your confidence level.

Data Analysis on Spark

[138]

Margin of error and confidence interval
As discussed already, since a sample can never be a 100 percent representative of the
population, estimating the population parameter through inference will always have some
margin of error due to sampling errors. Usually, the bigger the sample size, the smaller the
margin of error. However, you have to decide on how much error to allow, and estimating
a proper sample size required would depend on that.

So, the range of values below and above the sample statistic based on the margin of error is
called the confidence interval. In other words, a confidence interval is a range of numbers
within which we believe the true population parameter to fall a certain percentage of the
time (confidence level).

Please note here that a statement such as “I am 95 percent confident that the confidence
interval contains the true value” could be misleading! The right way of stating this could be
“If I take an infinite number of samples of the same size, then 95 percent of the time the confidence
interval would contains the true value”.

For example, when you put the confidence level as 95 percent and the confidence interval as
4 percent for a sample statistic 58 (here, 58 is any sample statistic such as mean, variance, or
standard deviation), you can say that you are 95 percent sure that the true percentage of the
population is between 58 – 4 = 54 percent and 58 + 4 = 62 percent.

Variability in the population
The variability in the population is one of the most important factors we should consider in
our inferential statistics. It plays an important role in estimating the sample size. No matter
what sampling algorithm you choose that can best represent the population, the sample size
still plays a crucial role – and this is obvious!

If the variation in the population is more, then the sample size required would also be more.

Data Analysis on Spark

[139]

Estimating sample size
We already covered sampling techniques in the previous sections. In this section, we will
discuss how to estimate the sample size. Assume you have to prove a concept or to assess
the result of some action, then you take some relevant data and try to prove your point.
However, how would you ensure you have enough data? Samples that are too big waste
time and resources, and samples that are too small may lead to misleading results.
Estimating the sample size depends majorly on factors such as the margin of error or
confidence interval, confidence level, and variability in the population.

Consider the following example:

The college president asks the statistics teacher to estimate the average age of the students
at their college. How large a sample is necessary? The statistics teacher would like to be 99
percent confident that the estimate should be accurate within 1 year. From a previous study,
the standard deviation of the ages is known to be 3 years.

Solution:

Hypothesis testing
Hypothesis testing is about testing the assumptions made for the population parameters.
This helps in determining whether a result is statistically significant or has occurred by
chance. It is the most important instrument of statistical research. We will discuss some of
the testing to see how variables are related to each other in the population.

Data Analysis on Spark

[140]

Null and alternate hypotheses
The null hypothesis (denoted as H0) is often the initial claim about the population
parameter, and it is mostly indicative of no effect or no relation. In our hypothesis testing, our
aim is to invalidate and reject the null hypothesis to be able to accept the alternate
hypothesis (denoted as H1). The alternate hypothesis is indicative of some effect in your
experiment. While experimenting, please note here that you either reject the null hypothesis
or fail to reject the null hypothesis. If you are successful in rejecting the null hypothesis then
the alternate hypothesis is to be considered and if you fail to reject the null hypothesis then
the null hypothesis is considered (though it may not be true!).

So, we usually hope to get a very small P-value (lower than the defined significance level
alpha) to be able to reject the null hypothesis. If the P-value is greater than alpha, then you
fail to reject the null hypothesis.

Chi-square test
Most of the statistical inference techniques are used to estimate the population parameters
or to test a hypothesis using the sample statistics such as mean. However, the chi-square
statistic takes a completely different approach by examining the whole distribution or the
relationship between two distributions. In the field of inferential statistics, many test
statistics resemble a chi-square distribution. The most common tests using this distribution
are the chi-square test of goodness of fit (one-way tables) and chi-square test of
independence (two-way tables). The goodness of fit test is done when you want to see if the
sample data follows the same distribution in the population and the independence test is
done when you want to see if two categorical variables are related to each other in the
population.

The input data types determine whether to conduct a goodness of fit or independence test
without specifying them as switches explicitly. So, if you provide a vector as input, then the
goodness of fit test is conducted and if you provide a matrix as input, then the independence
test is conducted. In either case, a vector of frequencies of events or a contingency matrix is
provided as input which you need to compute first. Let us explore these through examples:

Python

 //Chi-Square test
>>> from pyspark.mllib.linalg import Vectors, Matrices
>>> from pyspark.mllib.stat import Statistics
>>> import random
>>>
//Make a vector of frequencies of events
>>> vec = Vectors.dense(random.sample(xrange(1,101),10))

Data Analysis on Spark

[141]

>>> vec
DenseVector([45.0, 40.0, 93.0, 66.0, 56.0, 82.0, 36.0, 30.0, 85.0, 15.0])
// Get Goodnesss of fit test results
>>> GFT_Result = Statistics.chiSqTest(vec)
// Here the ‘goodness of fit test’ is conducted because your input is a
vector
//Make a contingency matrix
>>> mat = Matrices.dense(5,6,random.sample(xrange(1,101),30))\
//Get independense test results\\
>>> IT_Result = Statistics.chiSqTest(mat)
// Here the ‘independence test’ is conducted because your input is a vector
//Examine the independence test results
>>> print(IT_Result)
Chi squared test summary:
method: pearson
degrees of freedom = 20
statistic = 285.9423808343265
pValue = 0.0
Very strong presumption against null hypothesis: the occurrence of the
outcomes is statistically independent..

Scala

scala> import org.apache.spark.mllib.linalg.{Vectors, Matrices}
import org.apache.spark.mllib.linalg.{Vectors, Matrices}

scala> import org.apache.spark.mllib.stat.Statistics

scala> val vec = Vectors.dense(Array.fill(10)(
scala.util.Random.nextDouble))vec: org.apache.spark.mllib.linalg.Vector =
[0.4925741159101148,....]

scala> val GFT_Result = Statistics.chiSqTest(vec)GFT_Result:
org.apache.spark.mllib.stat.test.ChiSqTestResult =Chi squared test summary:
method: pearson
degrees of freedom = 9
statistic = 1.9350768763253192
pValue = 0.9924531181394086
No presumption against null hypothesis: observed follows the same
distribution as expected..
// Here the ‘goodness of fit test’ is conducted because your input is a
vector
scala> val mat = Matrices.dense(5,6,
Array.fill(30)(scala.util.Random.nextDouble)) // a contingency matrix
mat: org.apache.spark.mllib.linalg.Matrix =.....
scala> val IT_Result = Statistics.chiSqTest(mat)
IT_Result: org.apache.spark.mllib.stat.test.ChiSqTestResult =Chi squared
test summary:

Data Analysis on Spark

[142]

method: pearson
degrees of freedom = 20
statistic = 2.5401190679900663
pValue = 0.9999990459111089
No presumption against null hypothesis: the occurrence of the outcomes is
statistically independent..
// Here the ‘independence test’ is conducted because your input is a vector

F-test
We have already covered how to calculate the F-statistic in the previous sections. Now we
will solve a sample problem.

Problem:
You want to test the belief that the income of Master's degree holders shows greater
variability than the income of Bachelor's degree holders. A random sample of 21 graduates
and a random sample of 30 Masters were taken. The standard deviation of the graduates
sample was $180 and that of the Masters sample was $112.

Solution:

The null hypothesis is: H : σ1
2 =σ2

2

Given that S1 = $180, n1 = 21, and S2 = $112, n2 = 30

Considering the level of significance to be α = 0.05

F = S1
2 /S2

2 = 1802/1122 = 2.58

From the F-table with the significance level 0.05, df1=20 and df2=29, we can see that the F-
value is 1.94

Since the computed value of F is greater than the table value of F, we can reject the null
hypothesis and conclude that σ1

2 >σ2
2 .

Data Analysis on Spark

[143]

Correlations
Correlations provide a way to measure the statistical dependence between two random
variables that are numeric in nature. This shows the extent to which the two variables
change with each other. There are basically two types of correlation measures: Pearson and
Spearman. Pearson is more appropriate for interval scale data, such as temperature, height,
and so on. Spearman is more appropriate for ordinal scale, such as a satisfaction survey
where 1 is less satisfied and 5 is most satisfied. Also, Pearson is calculated based on true
values and is useful in finding linear relationships whereas Spearman is based on rank
order and is useful in finding monotonic relationships. The monotonic relationship means
that the variables do change together, but not at a constant rate. Please note that both of
these correlation measures can only measure linear or monotonic relationships and are not
capable of depicting any other kind of relationships such as non-linear relationships.

In Spark, both of these are supported. If you input two RDD[Double], the output is a Double
and if you input an RDD[Vector], the output is a Correlation Matrix. In both Scala and
Python implementations, if you do not provide the type of correlation as input, then the
default considered is always Pearson.

Python

>>> from pyspark.mllib.stat import Statistics
>>> import random
// Define two series
//Number of partitions and cardinality of both Ser_1 and Ser_2 should be
the same
>>> Ser_1 = sc.parallelize(random.sample(xrange(1,101),10))
// Define Series_1>>> Ser_2 =
sc.parallelize(random.sample(xrange(1,101),10))
// Define Series_2
>>> correlation = Statistics.corr(Ser_1, Ser_2, method = "pearson")
//if you are interested in Spearman method, use “spearman” switch instead
>>> round(correlation,2)-0.14
>>> correlation = Statistics.corr(Ser_1, Ser_2, method ="spearman")
>>> round(correlation,2)-0.19//Check on matrix//The following statement
creates 100 rows of 5 elements each
>>> data = sc.parallelize([random.sample(xrange(1,51),5) for x in
range(100)])
>>> correlMatrix = Statistics.corr(data, method = "pearson")
//method may be spearman as per you requirement
>>> correlMatrix
array([[1. , 0.09889342, -0.14634881, 0.00178334,
0.08389984], [0.09889342, 1. , -0.07068631, -0.02212963,
-0.1058252], [-0.14634881, -0.07068631, 1. , -0.22425991,
0.11063062], [0.00178334, -0.02212963, -0.22425991, 1. ,
-0.04864668], [0.08389984, -0.1058252 , 0.11063062, -0.04864668,

Data Analysis on Spark

[144]

1.
]])
>>>

Scala

scala> val correlation = Statistics.corr(Ser_1, Ser_2,
"pearson")correlation: Double = 0.43217145308272087
//if you are interested in Spearman method, use “spearman” switch instead
scala> val correlation = Statistics.corr(Ser_1, Ser_2,
"spearman")correlation: Double = 0.4181818181818179
scala>
//Check on matrix
//The following statement creates 100 rows of 5 element Vectors
scala> val data =
sc.parallelize(Seq.fill(100)(Vectors.dense(Array.fill(5)(
scala.util.Random.nextDouble))))
data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
ParallelCollectionRDD[37] at parallelize at <console>:27
scala> val correlMatrix = Statistics.corr(data, method="pearson")
//method may be spearman as per you requirement
correlMatrix: org.apache.spark.mllib.linalg.Matrix =1.0
-0.05478051936343809 ... (5 total)-0.05478051936343809
1.0

Summary
In this chapter, we briefly covered the steps involved in the data science life cycle, such as
data acquisition, data preparation, and data exploration through descriptive statistics. We
also learnt to estimate the population parameters through sample statistics using some
popular tools and techniques.

We explained the basics of statistics from both theoretical and practical aspects by going
deeper into the fundamentals in a few areas to be able to solve business problems. Finally,
we learnt a few examples on how statistical analysis can be performed on Apache Spark,
leveraging the out-of-the-box features, which was basically the objective behind this
chapter.

We will discuss more details of the machine learning part of data science in the next chapter
as we have already built statistical understanding in this chapter. Learnings from this
chapter should help connect to the machine learning algorithms in a more informed way.

Data Analysis on Spark

[145]

References
Supported statistics by Spark:

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / m l l i b - s t a t i s t i c s . h t m l

Plotting features of Databricks:

https://docs.cloud.databricks.com/docs/latest/databricks_guide/04%20Visualizations/4%20
Matplotlib%20and%20GGPlot.html

Detailed information on OOTB library functions of MLLIB stats:

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / a p i / s c a l a / i n d e x . h t m l # o r g . a p a c h e . s p a r k . m l
l i b . s t a t . S t a t i s t i c s $

http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.Statistics%24

6
Machine Learning

We are the consumers of machine learning every day, whether we notice or not. E-mail
providers such as Google automatically push some incoming mails into the Spam folder and
online shopping sites such as Amazon or social networking sites such as Facebook jump in
with unsolicited recommendations that are surprisingly useful. So, what enables these
software products to reconnect long lost friends? These are just a few examples of machine
learning in action.

Formally, machine learning is a part of Artificial Intelligence (AI) which deals with a class
of algorithms that can learn from data and make predictions. The techniques and
underlying concepts are drawn from the field of statistics. Machine learning exists at the
intersection of computer science and statistics and is considered one of the most important
components of data science. It has been around for quite some time now, but its complexity
has only increased with increase in data and scalability requirements. Machine learning
algorithms tend to be resource intensive and iterative in nature, which render them a poor
fit for MapReduce paradigm. MapReduce works very well for single pass algorithms but
does not cater so well for multi-pass counterparts. The Spark research program was started
precisely to address this challenge. Apache Spark is equipped with efficient algorithms in
its MLlib library that are designed to perform well even in iterative computational
requirements.

The previous chapter outlined the data analytics' life cycle and its various components such
as data cleaning, data transformation, sampling techniques, and graphical techniques to
visualize the data, along with concepts covering descriptive statistics and inferential
statistics. We also looked at some of the statistical testing that could be performed on the
Spark platform. Further to the basics we built up in the previous chapter, we are going to
cover in this chapter most of the machine learning algorithms and how to use them to build
models on Spark.

Machine Learning

[147]

As a prerequisite for this chapter, basic understanding of machine learning algorithms and
computer science fundamentals are nice to have. However, we have covered some
theoretical basics of the algorithms with right set of practical examples to make those more
comprehendible and easy to implement. The topics covered in this chapter are:

Introduction to machine learning
The evolution
Supervised learning
Unsupervised learning

MLlib and the Pipeline API
MLlib
ML pipeline

Introduction to machine learning
Parametric methods
Non-parametric methods

Regression methods
Linear regression
Regularization on regression

Classification methods
Logistic regression
Linear Support Vector Machines (SVMs)

Decision trees
Impurity measures
Stopping rule
Split canditate
Advantages of decision tress
Example

Ensembles
Random forests
Gradient boosted trees

Multilayer perceptron classifier
Clustering techniques

K-means clustering
Summary

Machine Learning

[148]

Introduction
Machine learning is all about learning by example data; examples that produce a particular
output for a given input. There are various business use cases for machine learning. Let us
look at a few examples to get an idea of what exactly it is:

A recommendation engine that recommends users what they might be interested
in buying
Customer segmentation (grouping customers who share similar characteristics)
for marketing campaigns
Disease classification for cancer – malignant/benign
Predictive modeling, for example, sales forecasting, weather forecasting
Drawing business inferences, for example, understanding what effect will change
the price of a product have on sales

The evolution
The concept of statistical learning was existent even before the first computer system was
introduced. In the nineteenth century, the least squares technique (now called linear
regression) had already been developed. For classification problems, Fisher came up with
Linear Discriminant Analysis (LDA). Around the 1940s, an alternative to LDA, known as
logistic regression, was proposed and all these approaches not only improved with time,
but also inspired the development of other new algorithms.

During those times, computation was a big problem as it was done using pen and paper. So
fitting non-linear equations was not quite feasible as it required a lot of computations. After
the 1980s, with improvements in technology and the introduction of computer systems,
classification/regression trees were introduced. Slowly, with further advancements in
technology and computing systems, statistical learning in a way converged with what is
now known as machine learning.

Supervised learning
As discussed in the previous section, machine learning is all about learning by example
data. Based on how the algorithms understand data and get trained on it, they are broadly
divided into two categories: supervised learning and unsupervised learning.

Machine Learning

[149]

Supervised statistical learning involves building a model based on one or more inputs for a
particular output. This means that the output that we get can supervise our analysis based
on the inputs we supply. In other words, for each observation of the predictor variables (for
example, age, education, and expense variables), there is an associated response
measurement of the outcome variable (for example, salary). Refer to the following table to
get an idea of the example dataset where we are trying to predict the Salary based on the
Age, Education, and Expense variables:

Supervised algorithms can be used for predicting, estimating, classifying, and other similar
requirements which we will cover in the following sections.

Unsupervised learning
Unsupervised statistical learning involves building a model based on one or more inputs
but with no intention to produce a specific output. This means that there is no
response/output variable to predict explicitly; but the output is usually the groups of data
points that share some similar characteristics. Unlike supervised learning, you are not
aware of the groups/labels to classify the data points into, per say, and you leave it to the
algorithm to decide by itself.

Here, there is no concept of a training dataset that is used to relate the outcome variable
with the predictor variables by building a model and then validate the model using the
test dataset. The output of unsupervised algorithm cannot supervise your analysis based
on the inputs you supply. Such algorithms can learn relationships and structure from data.
Clustering and Association rule learning are examples of unsupervised learning techniques.

Machine Learning

[150]

The following image depicts how clustering is used to group the data items that share some
similar characteristics:

MLlib and the Pipeline API
Let us first learn some Spark fundamentals to be able to perform the machine learning
operations on it. We will discuss the MLlib and the pipeline API in this section.

MLlib
MLlib is the machine learning library built on top of Apache Spark which homes most of
the algorithms that can be implemented at scale. The seamless integration of MLlib with
other components such as GraphX, SQL, and Streaming provides developers with an
opportunity to assemble complex, scalable, and efficient workflows relatively easily. The
MLlib library consists of common learning algorithms and utilities including classification,
regression, clustering, collaborative filtering, and dimensionality reduction.

MLlib works in conjunction with the spark.ml package which provides a high level
Pipeline API. The fundamental difference between these two packages is that MLlib
(spark.mllib) works on top of RDDs whereas the ML (spark.ml) package works on top
of DataFrames and supports ML Pipeline. Currently, both packages are supported by Spark
but it is recommended to use the spark.ml package.

Machine Learning

[151]

Fundamental data types in this library are vectors and matrices. Vectors are local, and may
be dense or sparse. Dense vectors are stored as an array of values. Sparse vectors are stored
as two arrays; the first array stores the non-zero value indices and the second array stores
the actual values. All element values are stored as doubles and indices are stored as integers
starting from zero. Understanding the fundamental structures goes a long way in effective
use of the libraries and it should help code up any new algorithm from scratch. Let us see
some example code for a better understanding of these two vector representations:

Scala

//Create vectors
scala> import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.linalg.{Vector, Vectors}

//Create dense vector
scala> val dense_v: Vector = Vectors.dense(10.0,0.0,20.0,30.0,0.0)
dense_v: org.apache.spark.ml.linalg.Vector = [10.0,0.0,20.0,30.0,0.0]
scala>

//Create sparse vector: pass size, position index array and value array
scala> val sparse_v1: Vector = Vectors.sparse(5,Array(0,2,3),
 Array(10.0,20.0,30.0))
sparse_v1: org.apache.spark.ml.linalg.Vector = (5,[0,2,3],[10.0,20.0,30.0])
scala>

//Another way to create sparse vector with position, value tuples
scala> val sparse_v2: Vector = Vectors.sparse(5,
 Seq((0,10.0),(2,20.0),(3,30.0)))
sparse_v2: org.apache.spark.ml.linalg.Vector = (5,[0,2,3],[10.0,20.0,30.0])
scala>

Compare vectors

cala> sparse_v1 == sparse_v2
res0: Boolean = true
scala> sparse_v1 == dense_v
res1: Boolean = true //All three objects are equal but…
scala> dense_v.toString()
res2: String = [10.0,0.0,20.0,30.0,0.0]
scala> sparse_v2.toString()
res3: String = (5,[0,2,3],[10.0,20.0,30.0]) //..internal representation
differs
scala> sparse_v2.toArray
res4: Array[Double] = Array(10.0, 0.0, 20.0, 30.0, 0.0)

Interchangeable

Machine Learning

[152]

scala> dense_v.toSparse
res5: org.apache.spark.mllib.linalg.SparseVector = (5,[0,2,3]
[10.0,20.0,30.0])
scala> sparse_v1.toDense
res6: org.apache.spark.mllib.linalg.DenseVector = [10.0,0.0,20.0,30.0,0.0]
scala>

A common operation

scala> Vectors.sqdist(sparse_v1,
 Vectors.dense(1.0,2.0,3.0,4.0,5.0))
res7: Double = 1075.0

Python:

//Create vectors
>>> from pyspark.ml.linalg import Vector, Vectors
//Create vectors
>>> dense_v = Vectors.dense(10.0,0.0,20.0,30.0,0.0)
//Pass size, position index array and value array
>>> sparse_v1 = Vectors.sparse(5,[0,2,3],
 [10.0,20.0,30.0])
>>>

//Another way to create sparse vector with position, value tuples
>>> sparse_v2 = Vectors.sparse(5,
 [[0,10.0],[2,20.0],[3,30.0]])
>>>

Compare vectors

>>> sparse_v1 == sparse_v2
True
>>> sparse_v1 == dense_v
True //All three objects are equal but…
>>> dense_v
DenseVector([10.0, 0.0, 20.0, 30.0, 0.0])
>>> sparse_v1
SparseVector(5, {0: 10.0, 2: 20.0, 3: 30.0}) //..internal representation
differs
>>> sparse_v2
SparseVector(5, {0: 10.0, 2: 20.0, 3: 30.0})

Interchangeable

//Note: as of Spark 2.0.0, toDense and toSparse are not available in
pyspark

Machine Learning

[153]

A common operation

>>> Vectors.squared_distance(sparse_v1,
 Vectors.dense(1.0,2.0,3.0,4.0,5.0))
1075.0

Matrices may be local or distributed, dense or sparse. A local matrix is stored on a single
machine as a single dimensional array. A dense local matrix is stored in column major order
(column members are contiguous) whereas a sparse matrix values are stored in
Compressed Sparse Column (CSC) format in column major order. In this format, the
matrix is stored in the form of three arrays. The first array contains row indices of non-zero
values, the second array has the beginning value index for each column, and the third one is
an array of all the non-zero values. Indices are of type integer starting from zero. The first
array contains values from zero to the number of rows minus one. The third array has
elements of type double. The second array requires some explanation. Every entry in this
array corresponds to the index of the first non-zero element in each column. For example,
assume that there is only one non-zero element in each column in a 3 by 3 matrix. Then the
second array would contain 0,1,2 as its elements. The first array contains row positions and
the third array contains three values. If none of the elements in a column are non-zero, you
will note the same index repeating in the second array. Let us examine some example code:

Scala:

scala> import org.apache.spark.ml.linalg.{Matrix,Matrices}
import org.apache.spark.ml.linalg.{Matrix, Matrices}

Create dense matrix

//Values in column major order
Matrices.dense(3,2,Array(9.0,0,0,0,8.0,6))
res38: org.apache.spark.mllib.linalg.Matrix =
9.0 0.0
0.0 8.0
0.0 6.0

Create sparse matrix

//1.0 0.0 4.0
0.0 3.0 5.0
2.0 0.0 6.0//
val sm: Matrix = Matrices.sparse(3,3,
 Array(0,2,3,6), Array(0,2,1,0,1,2),
 Array(1.0,2.0,3.0,4.0,5.0,6.0))
sm: org.apache.spark.mllib.linalg.Matrix =
3 x 3 CSCMatrix
(0,0) 1.0

Machine Learning

[154]

(2,0) 2.0
(1,1) 3.0
(0,2) 4.0
(1,2) 5.0
(2,2) 6.0

Sparse matrix, a column of all zeros

//third column all zeros
Matrices.sparse(3,4,Array(0,2,3,3,6),
 Array(0,2,1,0,1,2),values).toArray
res85: Array[Double] = Array(1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0,
4.0, 5.0, 6.0)

Python:

//Create dense matrix
>>> from pyspark.ml.linalg import Matrix, Matrices

//Values in column major order
>>> Matrices.dense(3,2,[9.0,0,0,0,8.0,6])
DenseMatrix(3, 2, [9.0, 0.0, 0.0, 0.0, 8.0, 6.0], False)
>>>

//Create sparse matrix
//1.0 0.0 4.0
0.0 3.0 5.0
2.0 0.0 6.0//
>>> sm = Matrices.sparse(3,3,
 [0,2,3,6], [0,2,1,0,1,2],
 [1.0,2.0,3.0,4.0,5.0,6.0])
>>>

//Sparse matrix, a column of all zeros
//third column all zeros
>>> Matrices.sparse(3,4,[0,2,3,3,6],
 [0,2,1,0,1,2],
 values=[1.0,2.0,3.0,4.0,5.0,6.0]).toArray()
array([[1., 0., 0., 4.],
 [0., 3., 0., 5.],
 [2., 0., 0., 6.]])
>>>

Distributed matrices are the most sophisticated ones and choosing the right type of
distributed matrix is very important. A distributed matrix is backed by one or more RDDs.
The row and column indices are of the type long to support very large matrices. The basic
type of distributed matrix is a RowMatrix, which is simply backed by an RDD of its rows.

Machine Learning

[155]

Each row in turn is a local vector. This is suitable when the number of columns is very low.
Remember, we need to pass RDDs to create distributed matrices, unlike the local ones. Let
us look at an example:

Scala:

scala> import org.apache.spark.mllib.linalg.{Vector,Vectors}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
scala> import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix

scala>val dense_vlist: Array[Vector] = Array(
 Vectors.dense(11.0,12,13,14),
 Vectors.dense(21.0,22,23,24),
 Vectors.dense(31.0,32,33,34))
dense_vlist: Array[org.apache.spark.mllib.linalg.Vector] =
Array([11.0,12.0,13.0,14.0], [21.0,22.0,23.0,24.0], [31.0,32.0,33.0,34.0])
scala>

//Distribute the vector list
scala> val rows = sc.parallelize(dense_vlist)
rows: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
ParallelCollectionRDD[0] at parallelize at <console>:29
scala> val m: RowMatrix = new RowMatrix(rows)
m: org.apache.spark.mllib.linalg.distributed.RowMatrix =
org.apache.spark.mllib.linalg.distributed.RowMatrix@5c5043fe
scala> print("Matrix size is " + m.numRows()+"X"+m.numCols())
Matrix size is 3X4
scala>

Python:

>>> from pyspark.mllib.linalg import Vector,Vectors
>>> from pyspark.mllib.linalg.distributed import RowMatrix

>>> dense_vlist = [Vectors.dense(11.0,12,13,14),
 Vectors.dense(21.0,22,23,24), Vectors.dense(31.0,32,33,34)]
>>> rows = sc.parallelize(dense_vlist)
>>> m = RowMatrix(rows)
>>> "Matrix size is {0} X {1}".format(m.numRows(), m.numCols())
'Matrix size is 3 X 4'

An IndexedRowMatrix stores a row index prefixed to the row entry. This is useful in
executing joins. You need to pass IndexedRow objects to create an IndexedRowMatrix. An
IndexedRow object is a wrapper with a long Index and a Vector of row elements.

Machine Learning

[156]

A CoordinatedMatrix stores data as tuples of row, column indexes, and element value. A
BlockMatrix represents a distributed matrix in blocks of local matrices. Methods to
convert matrices from one type to another are provided but these are expensive operations
and should be used with caution.

ML pipeline
A real life machine learning workflow is an iterative cycle of data extraction, data cleansing,
pre-processing, exploration, feature extraction, model fitting, and evaluation. ML Pipeline
on Spark is a simple API for users to set up complex ML workflows. It was designed to
address some of the pain areas such as parameter tuning, or training many models based on
different splits of data (cross-validation), or different sets of parameters. Writing scripts to
automate this whole thing is no more a requirement and can be taken care of within the
Pipeline API itself.

The Pipeline API consists of a series of pipeline stages (implemented as abstractions such as
transformers and estimators) to get executed in a desired order.

In the ML Pipeline, you can invoke the data cleaning/transformation functions as discussed
in the previous chapter and call the machine learning algorithms that are available in the
MLlib. This can be done in an iterative fashion till you get the desired performance of your
model.

Machine Learning

[157]

Transformer
A transformer is an abstraction which implements the transform() method to convert one
DataFrame into another. If the method is a feature transformer, the resulting DataFrame
might contain some additional transformed columns based on the operation you
performed. However, if the method is a learning model, then the resulting DataFrame
would contain an extra column with predicted outcomes.

Estimator
An Estimator is an abstraction that can be any learning algorithm which implements the
fit() method to get trained on a DataFrame to produce a model. Technically, this model is
a transformer for the given DataFrame.

Example: Logistic regression is a learning algorithm, hence an estimator. Calling fit()
trains a logistic regression model, which is a resultant model, and hence a transformer
which can produce a DataFrame containing a predicted column.

The following example demonstrates a simple, single stage pipeline.

Scala:

//Pipeline example with single stage to illustrate syntax
scala> import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.Pipeline
scala> import org.apache.spark.ml.feature._
import org.apache.spark.ml.feature._

//Create source data frame
scala> val df = spark.createDataFrame(Seq(
 ("Oliver Twist","Charles Dickens"),
 ("Adventures of Tom Sawyer","Mark Twain"))).toDF(
 "Title","Author")

//Split the Title to tokens
scala> val tok = new Tokenizer().setInputCol("Title").
 setOutputCol("words")
tok: org.apache.spark.ml.feature.Tokenizer = tok_2b2757a3aa5f

//Define a pipeline with a single stage
scala> val p = new Pipeline().setStages(Array(tok))
p: org.apache.spark.ml.Pipeline = pipeline_f5e0de400666

//Run an Estimator (fit) using the pipeline
scala> val model = p.fit(df)

Machine Learning

[158]

model: org.apache.spark.ml.PipelineModel = pipeline_d00989625bb2

//Examine stages
scala> p.getStages //Returns a list of stage objects
res1: Array[org.apache.spark.ml.PipelineStage] = Array(tok_55af0061af6d)

// Examine the results
scala> val m = model.transform(df).select("Title","words")
m: org.apache.spark.sql.DataFrame = [Title: string, words: array<string>]
scala> m.select("words").collect().foreach(println)
[WrappedArray(oliver, twist)]
[WrappedArray(adventures, of, tom, sawyer)]

Python:

//Pipeline example with single stage to illustrate syntax
//Create source data frame
>>> from pyspark.ml.pipeline import Pipeline
>>> from pyspark.ml.feature import Tokenizer
>>> df = sqlContext.createDataFrame([
 ("Oliver Twist","Charles Dickens"),
 ("Adventures of Tom Sawyer","Mark Twain")]).toDF("Title","Author")
>>>

//Split the Title to tokens
>>> tok = Tokenizer(inputCol="Title",outputCol="words")

//Define a pipeline with a single stage
>>> p = Pipeline(stages=[tok])

//Run an Estimator (fit) using the pipeline
>>> model = p.fit(df)

//Examine stages
>>> p.getStages() //Returns a list of stage objects
[Tokenizer_4f35909c4c504637a263]

// Examine the results
>>> m = model.transform(df).select("Title","words")
>>> [x[0] for x in m.select("words").collect()]
[[u'oliver', u'twist'], [u'adventures', u'of', u'tom', u'sawyer']]
>>>

The above example showed pipeline creation and execution although with a single stage, a
Tokenizer in this context. Spark provides several “feature transformers” out of the box.
These feature transformers are quite handy during data cleaning and data preparation
phases.

Machine Learning

[159]

The following example shows a real world example of converting raw text into feature
vectors. If you are not familiar with TF-IDF, read this short tutorial from h t t p : / / w w w . t f i d f

. c o m.

Scala:

scala> import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.Pipeline
scala> import org.apache.spark.ml.feature._
import org.apache.spark.ml.feature._
scala>

//Create a dataframe
scala> val df2 = spark.createDataset(Array(
 (1,"Here is some text to illustrate pipeline"),
 (2, "and tfidf, which stands for term frequency inverse document
frequency"
))).toDF("LineNo","Text")

//Define feature transformations, which are the pipeline stages
// Tokenizer splits text into tokens
scala> val tok = new Tokenizer().setInputCol("Text").
 setOutputCol("Words")
tok: org.apache.spark.ml.feature.Tokenizer = tok_399dbfe012f8

// HashingTF maps a sequence of words to their term frequencies using
hashing
// Larger value of numFeatures reduces hashing collision possibility
scala> val tf = new
HashingTF().setInputCol("Words").setOutputCol("tf").setNumFeatures(100)
tf: org.apache.spark.ml.feature.HashingTF = hashingTF_e6ad936536ea
// IDF, Inverse Docuemnt Frequency is a statistical weight that reduces
weightage of commonly occuring words
scala> val idf = new IDF().setInputCol("tf").setOutputCol("tf_idf")
idf: org.apache.spark.ml.feature.IDF = idf_8af1fecad60a
// VectorAssembler merges multiple columns into a single vector column
scala> val va = new
VectorAssembler().setInputCols(Array("tf_idf")).setOutputCol("features")
va: org.apache.spark.ml.feature.VectorAssembler = vecAssembler_23205c3f92c8
//Define pipeline
scala> val tfidf_pipeline = new Pipeline().setStages(Array(tok,tf,idf,va))
val tfidf_pipeline = new Pipeline().setStages(Array(tok,tf,idf,va))
scala> tfidf_pipeline.getStages
res2: Array[org.apache.spark.ml.PipelineStage] = Array(tok_399dbfe012f8,
hashingTF_e6ad936536ea, idf_8af1fecad60a, vecAssembler_23205c3f92c8)
scala>

//Now execute the pipeline

http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com
http://www.tfidf.com

Machine Learning

[160]

scala> val result =
tfidf_pipeline.fit(df2).transform(df2).select("words","features").first()
result: org.apache.spark.sql.Row = [WrappedArray(here, is, some, text, to,
illustrate,
pipeline),(100,[0,3,35,37,69,81],[0.4054651081081644,0.4054651081081644,0.4
054651081081644,0.4054651081081644,0.4054651081081644,0.4054651081081644])]

Python:

//A realistic, multi-step pipeline that converts text to TF_ID
>>> from pyspark.ml.pipeline import Pipeline
>>> from pyspark.ml.feature import Tokenizer, HashingTF, IDF,
VectorAssembler, \
 StringIndexer, VectorIndexer

//Create a dataframe
>>> df2 = sqlContext.createDataFrame([
 [1,"Here is some text to illustrate pipeline"],
 [2,"and tfidf, which stands for term frequency inverse document
frequency"
]]).toDF("LineNo","Text")

//Define feature transformations, which are the pipeline stages
//Tokenizer splits text into tokens
>>> tok = Tokenizer(inputCol="Text",outputCol="words")

// HashingTF maps a sequence of words to their term frequencies using
hashing

// Larger the numFeatures, lower the hashing collision possibility
>>> tf = HashingTF(inputCol="words", outputCol="tf",numFeatures=1000)

// IDF, Inverse Docuemnt Frequency is a statistical weight that reduces
weightage of commonly occuring words
>>> idf = IDF(inputCol = "tf",outputCol="tf_idf")

// VectorAssembler merges multiple columns into a single vector column
>>> va = VectorAssembler(inputCols=["tf_idf"],outputCol="features")

//Define pipeline
>>> tfidf_pipeline = Pipeline(stages=[tok,tf,idf,va])
>>> tfidf_pipeline.getStages()
[Tokenizer_4f5fbfb6c2a9cf5725d6, HashingTF_4088a47d38e72b70464f,
IDF_41ddb3891541821c6613, VectorAssembler_49ae83b800679ac2fa0e]
>>>

//Now execute the pipeline
>>> result =

Machine Learning

[161]

tfidf_pipeline.fit(df2).transform(df2).select("words","features").collect()
>>> [(x[0],x[1]) for x in result]
[([u'here', u'is', u'some', u'text', u'to', u'illustrate', u'pipeline'],
SparseVector(1000, {135: 0.4055, 169: 0.4055, 281: 0.4055, 388: 0.4055,
400: 0.4055, 603: 0.4055, 937: 0.4055})), ([u'and', u'tfidf,', u'which',
u'stands', u'for', u'term', u'frequency', u'inverse', u'document',
u'frequency'], SparseVector(1000, {36: 0.4055, 188: 0.4055, 333: 0.4055,
378: 0.4055, 538: 0.4055, 597: 0.4055, 727: 0.4055, 820: 0.4055, 960:
0.8109}))]
>>>

This example has created and executed a multi-stage pipeline that has converted text to a
feature vector that can be processed by machine learning algorithms. Let us see a few more
features before we move on.

Scala:

scala> import org.apache.spark.ml.feature._
import org.apache.spark.ml.feature._
scala>

//Basic examples illustrating features usage
//Look at model examples for more feature examples
//Binarizer converts continuous value variable to two discrete values based
on given threshold
scala> import scala.util.Random
import scala.util.Random
scala> val nums = Seq.fill(10)(Random.nextDouble*100)
...
scala> val numdf =
spark.createDataFrame(nums.map(Tuple1.apply)).toDF("raw_nums")
numdf: org.apache.spark.sql.DataFrame = [raw_nums: double]
scala> val binarizer = new Binarizer().setInputCol("raw_nums").
 setOutputCol("binary_vals").setThreshold(50.0)
binarizer: org.apache.spark.ml.feature.Binarizer = binarizer_538e392f56db
scala> binarizer.transform(numdf).select("raw_nums","binary_vals").show(2)
+------------------+-----------+
| raw_nums|binary_vals|
+------------------+-----------+
|55.209245003482884| 1.0|
| 33.46202184060426| 0.0|
+------------------+-----------+
scala>

//Bucketizer to convert continuous value variables to desired set of
discrete values
scala> val split_vals:Array[Double] = Array(0,20,50,80,100) //define
intervals

Machine Learning

[162]

split_vals: Array[Double] = Array(0.0, 20.0, 50.0, 80.0, 100.0)
scala> val b = new Bucketizer().
 setInputCol("raw_nums").
 setOutputCol("binned_nums").
 setSplits(split_vals)
b: org.apache.spark.ml.feature.Bucketizer = bucketizer_a4dd599e5977
scala> b.transform(numdf).select("raw_nums","binned_nums").show(2)
+------------------+-----------+
| raw_nums|binned_nums|
+------------------+-----------+
|55.209245003482884| 2.0|
| 33.46202184060426| 1.0|
+------------------+-----------+
scala>

//Bucketizer is effectively equal to binarizer if only two intervals are
given
scala> new Bucketizer().setInputCol("raw_nums").
 setOutputCol("binned_nums").setSplits(Array(0,50.0,100.0)).
 transform(numdf).select("raw_nums","binned_nums").show(2)
+------------------+-----------+
| raw_nums|binned_nums|
+------------------+-----------+
|55.209245003482884| 1.0|
| 33.46202184060426| 0.0|
+------------------+-----------+
scala>

Python:

//Some more features
>>> from pyspark.ml import feature, pipeline
>>>

//Basic examples illustrating features usage
//Look at model examples for more examples
//Binarizer converts continuous value variable to two discrete values based
on given threshold
>>> import random
>>> nums = [random.random()*100 for x in range(1,11)]
>>> numdf = sqlContext.createDataFrame(
 [[x] for x in nums]).toDF("raw_nums")
>>> binarizer = feature.Binarizer(threshold= 50,
 inputCol="raw_nums", outputCol="binary_vals")
>>> binarizer.transform(numdf).select("raw_nums","binary_vals").show(2)
+------------------+-----------+
| raw_nums|binary_vals|
+------------------+-----------+

Machine Learning

[163]

| 95.41304359504672| 1.0|
|41.906045589243405| 0.0|
+------------------+-----------+
>>>

//Bucketizer to convert continuous value variables to desired set of
discrete values
>>> split_vals = [0,20,50,80,100] //define intervals
>>> b =
feature.Bucketizer(inputCol="raw_nums",outputCol="binned_nums",splits=split
vals)
>>> b.transform(numdf).select("raw_nums","binned_nums").show(2)
+------------------+-----------+
| raw_nums|binned_nums|
+------------------+-----------+
| 95.41304359504672| 3.0|
|41.906045589243405| 1.0|
+------------------+-----------+

//Bucketizer is effectively equal to binarizer if only two intervals are
given
>>> feature.Bucketizer(inputCol="raw_nums",outputCol="binned_nums",
 splits=[0,50.0,100.0]).transform(numdf).select(
 "raw_nums","binned_nums").show(2)
+------------------+-----------+
| raw_nums|binned_nums|
+------------------+-----------+
| 95.41304359504672| 1.0|
|41.906045589243405| 0.0|
+------------------+-----------+
>>>

Introduction to machine learning
In the previous sections of the book, we learnt how the response/outcome variable is related
to the predictor variables, typically in a supervised learning context. There are various
different names for both of those types of variables that people use these days. Let us see
some of the synonymous terms for them and we will use them interchangeably in the book:

Input variables (X): Features, predictors, explanatory variables, independent
variables
Output variables (Y): Response variable, dependent variable

Machine Learning

[164]

If there is a relation between Y and X where X=X1, X2, X3,…, Xn (n different predictors) then
it can be written as follows:

Here is a function that represents how X describes Y and is unknown! This is what we
figure out using the observed data points at hand. The term is a random error term with
mean zero and is independent of X.

There are basically two types of errors associated with such an equation – reducible errors
and irreducible errors. As the name suggests, a reducible error is associated with the
function and can be minimized by improving the accuracy of by using a better
learning algorithm or by tuning the same algorithm. Since Y is also a function of , which is
independent of X, there would still be some error associated that cannot be addressed. This
is called an irreducible error (). There are always some factors which influence the outcome
variable but are not considered in building the model (as they are unknown most of the
time), and contribute to the irreducible error term. So, our approaches discussed throughout
this book will only be focused on minimizing the reducible error.

Most of the machine learning models that we build can be used for either prediction or for
inference, or a combination of both. For some of the algorithms, the function can be
represented as an equation which tells us how the dependent variable Y is related to the
independent variables (X1, X2,…, Xn). In such cases, we can do both inference and
prediction. However, some of the algorithms are black box, where we can only predict and
no inference is possible, because how Y is related to X is unknown.

Note that the linear machine learning models can be more apt for an inference setting
because they are more interpretable to business users. However, on a prediction setting,
there can be better algorithms providing more accurate predictions but they are less
interpretable. When inference is the target, we should prefer the restrictive models such as
linear regression for better interpretability, and when only prediction is the goal, we may
choose to use highly flexible models such as Support Vector Machines (SVM) that are less
interpretable and more accurate (this may not hold true in all cases, however). You need to
be careful in choosing an algorithm based on the business requirement, by accounting for
the trade-off between interpretability and accuracy. Let us dive deeper into understanding
the fundamentals behind these concepts.

Basically, we need a set of data points (training data) to build a model to estimate (X) so
that Y = (X). Broadly, such learning methods can be either parametric or non-parametric.

Machine Learning

[165]

Parametric methods
Parametric methods follow a two-step process. In the first step, you assume the shape of ().
For example, X is linearly related to Y, so the function of X, which is (X), can be
represented with a linear equation as shown next:

After the model is selected, the second step is to estimate the parameters β0, β1,…, βn by
using the data points at hand to train the model, so that:

The one disadvantage to this parametric approach is that our assumption of linearity for ()
might not hold true in real life situations.

Non-parametric methods
We do not make any assumptions about the linear relation between Y and X as well as data
distributions of variables, and hence the form of () in non-parametric. Since it does not
assume any form of (), it can produce better results by fitting well with data points, which
could be an advantage.

So, the non-parametric methods require more data points compared to parametric methods
to estimate () accurately. Note however, it can lead to overfitting problems if not handled
properly. We will discuss more on this as we move further.

Regression methods
Regression methods are a type of supervised learning. If the response variable is
quantitative/continuous (takes on numeric values such as age, salary, height, and so on),
then the problem can be called a regression problem regardless of the explanatory variables'
type. There are various kinds of modeling techniques to address the regression problems. In
this section, our focus will be on linear regression techniques and some different variations
of it.

Machine Learning

[166]

Regression methods can be used to predict any real valued outcomes. Following are a few
examples:

Predict the salary of an employee based on his educational level, location, type of
job, and so on
Predict stock prices
Predict buying potential of a customer
Predict the time a machine would take before failing

Linear regression
Further to what we discussed in the previous section Parametric methods, after the
assumption of linearity is made for (X), we need the training data to fit a model that would
describe the relation between explanatory variables (denoted as X) and the response
variable (denoted as Y). When there is only one explanatory variable present, it is called
simple linear regression and when there are multiple explanatory variables present, it is
called multiple linear regression. The simple linear regression is all about fitting a straight
line in a 2-D setting, and when there are say two predictor variables, it would fit a plane in a
3-D setting, and so on for higher dimensional settings when there are more than two
variables.

The usual form of a linear regression equation can be represented as:

Y' = (X) +

Here Y' represents the predicted outcome variable.

A linear regression equation with only one predictor variable can be given as:

A linear regression equation with multiple predictor variables can be given as:

Here is the irreducible error term independent of X and has a mean of zero. We do not
have any control over it, but we can work towards optimizing (X). Since none of the
models can achieve a 100 percent accuracy, there would always be some error associated
with it because of the irreducible error component ().

Machine Learning

[167]

The most common approach of fitting a linear regression is called least squares, also known
as, the Ordinary Least Squares (OLS) approach. This method finds the regression line that
best fits the observed data points by minimizing the sum of squares of the vertical
deviations from each data point to the regression line. To get a better understanding on how
the linear regression works, let us look at a simple linear regression of the following form
for now:

Where, is the Y-intercept of the regression line and defines the slope of the line.

What it means is that is the average change in Y for every one unit change in X. Let us
take an example with X and Y:

X Y

1 12

2 20

3 13

4 38

5 27

If we fit a linear regression line through the data points as shown in the preceding table,
then it would appear as follows:

Machine Learning

[168]

The red vertical lines in the preceding figure indicate the error of prediction which can be
defined as the difference between the actualY value and the predicted Y' value. If you
square these differences and sum them up, it is called the Sum of Squared Error (SSE),
which is the most common measure that is used to find the best fitting line. The following
table shows how to calculate the SSE:

X Y Y' Y-Y' (Y-Y') 2

1 12 12.4 0.4 0.16

2 20 17.2 2.8 7.84

3 13 22 -9 81

4 38 26.8 11.2 125.44

5 27 31.6 -4.6 21.16

SUM 235.6

In the above table, the term (Y-Y') is called the residual. The Residual Sum of Squares
(RSS) can be represented as:

RSS = residual1
2 + residual2

2 + residual3
2 + ……+ residualn

2

Note that regression is highly susceptible to outliers and can introduce huge RSS error if not
handled prior to applying regression.

After a regression line is fit into the observed data points, you should examine the residuals
by plotting them on the Y-Axis against explanatory the variable on the X-Axis. If the plot is
nearly a straight line, then your assumption about linear relationship is valid, or else it may
indicate the presence of some kind of non-linear relationship. In case of the presence of
nonlinear relationships, you may have to account for the non-linearity. One of the
techniques is by adding higher order polynomials to the equation.

We saw that RSS was an important characteristic in fitting the regression line (while
building the model). Now, to assess how good your regression fit is (once the model is
built), you need two other statistics – Residual Standard Error (RSE) and R2 statistic.

Machine Learning

[169]

We discussed the irreducible error component ε, because of which there would always be
some level of error with your regression (even if your equation exactly fits your data points
and you have estimated the coefficients properly). RSE is an estimate of standard deviation
of ε which can be defined as follows:

This means that the actual values would deviate from the true regression line by a factor of
RSE on an average.

Since RSE is actually measured in the units of Y (refer to how we calculated RSS in the
previous section), it is difficult to say that it is the only best statistic for the model accuracy.

So, an alternative approach was introduced, called the R2 statistic (also known as the
coefficient of determination). The formula to calculate R2 is as follows:

The Total Sum of Squares (TSS) can be calculated as:

Note here that TSS measures the total variance inherent in Y even before performing the
regression to predict Y. Observe that there is no Y' in it. On the contrary, RSS represents the
variability in Y that is unexplained after regression. This means that (TSS – RSS) is able to
explain the variability in response after regression is performed.

The R2 statistic usually ranges from 0 to 1, but can be negative if the fit is worse than fitting
just a horizontal line, but that is rarely the case. A value close to 1 indicates that the
regression equation could explain a large proportion of the variability in the response
variable and is a good fit. On the contrary, a value close to 0 indicates that the regression
did not explain much of the variance in the response variable and is not a good fit. As an
example, an R2 of 0.25 means that 25 percent of the variance in Y is explained by X and is
indicating to tune the model for improvement.

Machine Learning

[170]

Let us now discuss how to address the non-linearity in the dataset through regression. As
discussed earlier, when you find nonlinear relations, it needs to be handled properly. To
model a non-linear equation using the same linear regression technique, you have to create
the higher order features, which will be treated as just another variable by the regression
technique. For example, if salary is a feature/variable that is predicting the buying potential,
and we find that there is a non-linear relationship between them, then we might create a
feature called (salary3) depending on how much of the non-linearity needs to be addressed.
Note that while you create such higher order features, you also have to keep the base
features. In this example, you have to use both (salary) and (salary3) in the regression
equation.

So far, we have kind of assumed that all the predictor variables are continuous. What if
there are categorical predictors? In such cases, we have to dummy-code those variables (say
1 for male and 0 for female) so that the regression technique generates two equations, one
for gender = male (the equation will have the gender variable) and the other for gender =
female (the equation will not have the gender variable as it will be dropped as coded 0). At
times, with very few categorical variables, it may be a good idea to divide the dataset based
on the levels of categorical variables and build separate models for them.

One major advantage of the least squares linear regression is that it explains how the
outcome variable is related to the predictor variables. This makes it very interpretable and
can be used to draw inferences as well as to do predictions.

Loss function
Many machine learning problems can be formulated as a convex optimization problem. The
objective of this problem is to find the values of the coefficients for which the squared loss is
minimum. This objective function has basically two components – regularizer and the loss
function. The regularizer is there to control the complexity of the model (so it does not
overfit) and the loss function is there to estimate the coefficients of the regression function
for which squared loss (RSS) is minimum.

The loss function used for least squares is called squared loss, as shown next:

Machine Learning

[171]

Here Y is the response variable (real valued), W is the weight vector (value of the

coefficients), and X is the feature vector. So gives the predicted values which we
equate with the actual values Y to find the squared loss that needs to be minimized.

The algorithm used to estimate the coefficients is called gradient descent. There are
different types of loss functions and optimization algorithms for different kinds of machine
learning algorithms which we will cover as and when needed.

Optimization
Ultimately, the linear methods have to optimize the loss function. Under the hood, linear
methods use convex optimization methods to optimize the objective functions. MLlib has
Stochastic Gradient Descent (SGD) and Limited Memory – Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) supported out of the box. Currently, most algorithm APIs support SGD
and a few support L-BFGS.

SGD is a first-order optimization technique that works best for large scale data and
distributed computing environment. Optimization problems whose objective function (loss
function) is written as a sum are best suited to be solved using SGD.

L-BFGS is an optimization algorithm in the family of quasi-Newton methods to solve the
optimization problems. L-BFGS often achieves a rapider convergence compared with other
first-order optimization techniques such as SGD.

Some of the linear methods available in MLlib support both SGD and L-BFGS. You should
choose one over the other depending on the objective function under consideration. In
general, L-BFGS is recommended over SGD as it converges faster but you need to evaluate
carefully based on the requirement.

Regularizations on regression
With large weights (coefficient values), it is easier to overfit the model. Regularization is a
technique used mainly to eliminate the overfitting problem by controlling the complexity of
the model. This is usually done when you see a difference between the model performance
on training data and test data. If the training performance is more than that of the test data,
it could be a case of overfitting (high variance case).

Machine Learning

[172]

To address this, a regularization technique was introduced that would penalize the loss
function. It is always recommended to use any of the regularizations techniques, especially
when the training data has a small number of observations.

Before we discuss further on the regularization techniques, we have to understand what
bias and variance mean in a supervised learning setting and why there is always a trade-off
associated. While both are related to errors, a biased model means that it is biased towards
some erroneous assumption and may miss the relation between the predictor variables and
the response variable to some extent. This is a case of underfitting! On the other hand, a high
variance model means that it tries to touch every data point and ends up modelling the
random noise present in the dataset. It represents the case of overfitting.

Linear regression with the L2 penalty (L2 regularization) is called ridge regression and with
the L1 penalty (L1 regularization) is called lasso regression. When both L1 and L2 penalties
are used together, it is called elastic net regression. We will discuss them one by one in the
following section.

L2 regularized problems are usually easy to solve compared to L1 regularized problems
due to smoothness, but the L1 regularized problems can cause sparsity in weights leading
to smaller and more interpretable models. Because of this, lasso is at times used for feature
selection.

Ridge regression
When we add the L2 penalty (also known as the shrinkage penalty) to the loss function of
least squares, it becomes the ridge regression, as shown next:

Here λ (greater than 0) is a tuning parameter which is determined separately. The second
term in the preceding equation is called the shrinkage penalty and can be small only if the
coefficients (β0, β1…and so on) are small and close to 0. When λ = 0, the ridge regression
becomes least squares. As lambda approaches infinity, the regression coefficients approach
zero (but are never zero).

Machine Learning

[173]

The ridge regression generates different sets of coefficient values for each value of λ. So, the
lambda value needs to be carefully selected using cross-validation. As we increase the
lambda value, the flexibility of the regression line decreases, thereby decreasing variance
and increasing bias.

Note that the shrinkage penalty is applied to all the explanatory variables except the
intercept term β0.

The ridge regression works really well when the training data is less or even in the case
where the number of predictors or features are more than the number of observations. Also,
the computation needed for ridge is almost the same as that of least squares.

Since ridge does not reduce any coefficient value to zero, all the variables will be present in
the model which can make it less interpretable if the number of variables is high.

Lasso regression
Lasso was introduced after ridge. When we add the L1 penalty to the loss function of least
squares, it becomes lasso regression, as shown next:

The difference here is that instead of taking the squared coefficients, it takes the mod of the
coefficient. Unlike ridge, it can force some of its coefficients to be exactly zero which can
result in elimination of some of the variables. So, lasso can be used for variable selection as
well!

Lasso generates different sets of coefficient values for each value of lambda. So lambda
value needs to be carefully selected using cross-validation. Like ridge, as you increase
lambda, variance decreases and bias increases.

Lasso produces better interpretable models compared to ridge because it usually has a
subset of the total number of variables. When there are many categorical variables, it is
advisable to choose lasso over ridge.

In reality, neither ridge nor lasso is always better over the other. Lasso usually performs
well with a small number of predictor variables that have substantial coefficients and the
rest have very small coefficients. Ridge usually performs better when there are many
predictors and almost all have substantial yet similar coefficient sizes.

Machine Learning

[174]

Ridge is good for grouped selection and can also address multicollinearity problems. Lasso,
on the other hand, cannot do grouped selection and tends to pick only one of the predictors.
Also, if a group of predictors are highly correlated amongst themselves, Lasso tends to pick
only one of them and shrink the others to zero.

Elastic net regression
When we add both L1 and L2 penalties to the loss function of least squares, it becomes
elastic net regression, as shown next:

Following are the advantages of elastic net regression:

Enforces sparsity and helps remove least effective variables
Encourages grouping effect
Combines the strengths of both ridge and lasso

The Naive version of elastic net regression incurs a double shrinkage problem which leads
to increased bias and poorer prediction accuracy. To address this, one approach could be
rescaling the estimated coefficients by multiplying (1+ λ2) with them:

Scala

import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
scala> import
org.apache.spark.ml.regression.{LinearRegression,LinearRegressionModel}
import
org.apache.spark.ml.regression.{LinearRegression,LinearRegressionModel}
// Load the data
scala> val data =
spark.read.format("libsvm").load("data/mllib/sample_linear_regression_data.
txt")
data: org.apache.spark.sql.DataFrame = [label: double, features: vector]

// Build the model
scala> val lrModel = new LinearRegression().fit(data)

Machine Learning

[175]

//Note: You can change ElasticNetParam, MaxIter and RegParam
// Defaults are 0.0, 100 and 0.0
lrModel: org.apache.spark.ml.regression.LinearRegressionModel =
linReg_aa788bcebc42

//Check Root Mean Squared Error
scala> println("Root Mean Squared Error = " +
lrModel.summary.rootMeanSquaredError)
Root Mean Squared Error = 10.16309157133015

Python:

>>> from pyspark.ml.regression import LinearRegression,
LinearRegressionModel
>>>

// Load the data
>>> data =
spark.read.format("libsvm").load("data/mllib/sample_linear_regression_data.
txt")
>>>

// Build the model
>>> lrModel = LinearRegression().fit(data)

//Note: You can change ElasticNetParam, MaxIter and RegParam
// Defaults are 0.0, 100 and 0.0
//Check Root Mean Squared Error
>>> print "Root Mean Squared Error = ",
lrModel.summary.rootMeanSquaredError
Root Mean Squared Error = 10.16309157133015
>>>

Classification methods
If the response variable is qualitative/categorical (takes on categorical values such as
gender, loan default, marital status, and such), then the problem can be called a
classification problem regardless of the explanatory variables' type. There are various types
of classification methods, but we will focus on logistic regression and Support Vector
Machines in this section.

Following are a few examples of some implications of classification methods:

A customer buys a product or does not buy it
A person is diabetic or not diabetic

Machine Learning

[176]

An individual applying for a loan would default or not
An e-mail receiver would read the e-mail or not

Logistic regression
Logistic regression measures the relation between the explanatory variables and the
categorical response variable. We do not use linear regression for the categorical response
variable because the response variable is not on a continuous scale and hence the error
terms are not normally distributed.

So logistic regression is a classification algorithm. Instead of modelling the response
variable Y directly, logistic regression models the probability distribution of P(Y|X) that Y
belongs to a particular category. The conditional distribution of (Y|X) is a Bernoulli
distribution rather than a Gaussian distribution. The logistic regression equation can be
represented as follows:

For a two class classification, the output of the model should be restricted to only one of the
two classes (say either 0 or 1). Since logistic regression predicts probabilities and not classes
directly, we use a logistic function (also known as the, sigmoid function) to restrict the output
to a single class:

Solving for the preceding equation gives us the following:

It can be further simplified as:

Machine Learning

[177]

The quantity on the left P(X)/1-P(X) is called the odds. The value of odds ranges from 0 to
infinity. The values close to 0 indicate very less probability and the ones bigger in numbers
indicate high probability. At times odds are used directly instead of probabilities,
depending on the situation.

If we take the log of the odds, it becomes log-odd or logit and can be shown as follows:

You can see from the previous equation that logit is linearly related to X.

In the situation where there are two classes, 1 and 0, then we predict Y = 1 if p >= 0.5 and Y =
0 when p < 0.5. So logistic regression is actually a linear classifier with decision boundary at
p = 0.5. There could be business cases where p is just not set to 0.5 by default and you may
have to figure out the right value using some mathematical techniques.

A method known as maximum likelihood is used to fit the model by computing the
regression coefficients, and the algorithm can be a gradient descent like in a linear
regression setting.

In logistic regression, the loss function should address the misclassification rate. So, the loss
function used for logistic regression is called logistic loss, as shown next:

Note that logistic regression is also prone to overfitting when you use
higher order polynomial to better fit a model. To solve this, you can use
regularization terms like you did in linear regression. As of this writing,
Spark does not support regularized logistic regression so we will skip this
part for now.

Machine Learning

[178]

Linear Support Vector Machines (SVM)
Support Vector Machines (SVM) is a type of supervised machine learning algorithm and
can be used for both classification and regression. However, it is more popular in
addressing the classification problems, and since Spark offers it as an SVM classifier, we
will limit our discussion to the classification setting only. When used as a classifier, unlike
logistic regression, it is a non-probabilistic classifier.

The SVM has evolved from a simple classifier called themaximal margin classifier. Since
the maximal margin classifier required that the classes be separable by a linear boundary, it
could not be applied to many datasets. So it was extended to an improved version called
the support vector classifier that could address the cases where the classes overlapped and
there were no clear separation between the classes. The support vector classifier was further
extended to what we call an SVM to accommodate the non-linear class boundaries. Let us
discuss the evolution of the SVM step by step so we get a clear understanding of how it
works.

If there are p dimensions (features) in a dataset, then we fit a hyperplane in that p-
dimensional space whose equation can be defined as follows:

This hyperplane is called the separating hyperplane that forms the decision boundary. The
result will be classified based on the result; if greater than 0, then on one side and if less
than 0, then on the other side, as shown in the following figure:

Machine Learning

[179]

Observe in the preceding figure that there can be multiple hyperplanes (they can be
infinite). There should be a reasonable way to choose the best hyperplane. This is where we
select the maximal margin hyperplane. If you compute the perpendicular distance of all
data points to the separating hyperplane, then the smallest distance would be called as the
margin. So, for the maximal margin classifier, the hyperplane should have the highest
margin.

The training observations that are close yet equidistant from the separating hyperplane are
known as support vectors. For any slight change in the support vectors, the hyperplane
would also get reoriented. These support vectors actually define the margin. Now, what if
the two classes under consideration are not separable? We would probably want a classifier
that does not perfectly separate the two classes and has a softer boundary that allows some
level of misclassification as well. This requirement led to the introduction of the support
vector classifier (also known as the soft margin classifier).

Mathematically, it is the slack variable in the equation that allows for misclassification.
Also, there is a tuning parameter in the support vector classifier which should be selected
using cross-validation. This tuning parameter is the one that trades off between bias and
variance and should be handled with care. When it is large, the margin is wider and
includes many support vectors, and has low variance and high bias. If it is small, then the
margin will have fewer support vectors and the classifier will have low bias but high
variance.

The loss function for the SVM can be represented as follows:

As of this writing, Spark supports only linear SVMs. By default, linear SVMs are trained
with an L2 regularization. Spark also supports alternative L1 regularization.

Machine Learning

[180]

So far so good! But how would the support vector classifier work when there is a non-linear
boundary between the classes, as shown in the following image:

Any linear classifier, such as a support vector classifier, would perform very poorly in the
preceding situation. If it draws a straight line through the data points, then the classes
would not be separated properly. This is a case of non-linear class boundaries. A solution to
this problem is the SVM. In other words, when a support vector classifier is fused with a
non-linear kernel, it becomes an SVM.

Similar to the way we introduced higher order polynomial terms in the regression equation
to account for the non-linearity, something can also be done in the SVM context. The SVM
uses something called kernels to take care of different kinds of non-linearity in the dataset;
different kernels for different kinds of non-linearity. Kernel methods map the data into
higher dimensional space as the data might get well separated if it does so. Also, it makes
distinguishing different classes easier. Let us discuss a few of the important kernels so as to
be able to select the right one.

Machine Learning

[181]

Linear kernel
This is one of the most basic type of kernels that allows us to pick out only lines or
hyperplanes. It is equivalent to a support vector classifier. It cannot address the non-
linearity if present in the dataset.

Polynomial kernel
This allows us to address some level of non-linearity to the extent of the order of
polynomials. This works well when the training data is normalized. This kernel usually has
more hyperparameters and therefore increases the complexity of the model.

Radial Basis Function kernel
When you are not really sure of which kernel to use, Radial Basis Function (RBF) can be a
good default choice. It allows you to pick out even circles or hyperspheres. Though this
usually performs better than linear or polynomial kernel, it does not perform well when the
number of features is huge.

Sigmoid kernel
The sigmoid kernel has its roots in neural networks. So, an SVM with a sigmoid kernel is
equivalent to a neural network with a two layered perceptron.

Training an SVM
While training an SVM, the modeler has to take a number of decisions:

How to pre-process the data (transformation and scaling). The categorical
variables should be converted to numeric ones by dummifying them. Also,
scaling the numeric values is needed (either 0 to 1 or -1 to +1).
Which kernel to use (check using cross-validation if you are unable to visualize
the data and/ or conclude on it).
What parameters to set for the SVM: penalty parameter and the kernel parameter
(find using cross-validation or grid search)

If needed, you can use an entropy based feature selection to include only the important
features in your model.

Machine Learning

[182]

Scala:

scala> import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}
import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}
scala> import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
scala> import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.util.MLUtils
scala>

// Load training data in LIBSVM format.
scala> val data = MLUtils.loadLibSVMFile(sc,
"data/mllib/sample_libsvm_data.txt")
data:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] =
MapPartitionsRDD[6] at map at MLUtils.scala:84
scala>

// Split data into training (60%) and test (40%).
scala> val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
splits:
Array[org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoi
nt]] = Array(MapPartitionsRDD[7] at randomSplit at <console>:29,
MapPartitionsRDD[8] at randomSplit at <console>:29)
scala> val training = splits(0).cache()
training:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] =
MapPartitionsRDD[7] at randomSplit at <console>:29
scala> val test = splits(1)
test:
org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] =
MapPartitionsRDD[8] at randomSplit at <console>:29
scala>

// Run training algorithm to build the model
scala> val model = SVMWithSGD.train(training, numIterations=100)
model: org.apache.spark.mllib.classification.SVMModel =
org.apache.spark.mllib.classification.SVMModel: intercept = 0.0,
numFeatures = 692, numClasses = 2, threshold = 0.0
scala>

// Clear the default threshold.
scala> model.clearThreshold()
res1: model.type = org.apache.spark.mllib.classification.SVMModel:
intercept =
0.0, numFeatures = 692, numClasses = 2, threshold = None
scala>

Machine Learning

[183]

// Compute raw scores on the test set.
scala> val scoreAndLabels = test.map { point =>
 val score = model.predict(point.features)
 (score, point.label)
 }
scoreAndLabels: org.apache.spark.rdd.RDD[(Double, Double)] =
MapPartitionsRDD[213] at map at <console>:37
scala>

// Get evaluation metrics.
scala> val metrics = new BinaryClassificationMetrics(scoreAndLabels)
metrics: org.apache.spark.mllib.evaluation.BinaryClassificationMetrics =
org.apache.spark.mllib.evaluation.BinaryClassificationMetrics@3106aebb
scala> println("Area under ROC = " + metrics.areaUnderROC())
Area under ROC = 1.0
scala>

mllib has already entered maintenance mode and SVM is still not
available under ml so only Scala code is provided for illustration.

Decision trees
A decision tree is a non-parametric supervised learning algorithm which can be used for
both classification and regression. Decision trees are like inverted trees with the root node at
the top and leaf nodes forming downwards. There are different algorithms to split the
dataset into branch-like segments. Each leaf node is assigned to a class that represents the
most appropriate target values.

Decision trees do not require any scaling or transformations of the dataset and work as the
data is. They can handle both categorical and continuous features, and also address non-
linearity in the dataset. At its core, a decision tree is a greedy algorithm (it considers the best
split at the moment and does not take into consideration the future scenarios) that performs
a recursive binary partitioning of the feature space. Splitting is done based on information
gain at each node because information gain measures how well a given attribute separates
the training examples as per the target class or value. The first split happens for the feature
that generates maximum information gain and becomes the root node.

Machine Learning

[184]

The information gain at a node is the difference between the parent node impurity and the
weighted sum of two child node impurities. To estimate information gain, Spark currently
has two impurity measures for classification problems and one impurity measure for
regression, as explained next.

Impurity measures
Impurity is a measure of homogeneity and the best criteria for recursive partitioning. By
calculating the impurity, the best split candidate is decided. Most of the impurity measures
are probability based:

Probability of a class = number of observations of that class / total number of observations

Let us spend some time on different types of important impurity measures that are
supported by Spark.

Gini Index
The Gini Index is mainly intended for the continuous attributes or features in a dataset. If
not, it would assume that all the attributes and features are continuous. The split makes the
child nodes more purer than the parent node. Gini tends to find the largest class – the class
of response variable that has got the maximum observations. It can be defined as follows:

If all observations of a response belong to a single class, then probability P of that class j,
that is (Pj), will be 1 as there is only one class, and (Pj)2 would also be 1. This makes the
Gini Index to be zero.

Machine Learning

[185]

Entropy
Entropy is mainly intended for the categorical attributes or features in a dataset. It can be
defined as follows:

If all observations of a response belong to a single class, then the probability of that class
(Pj) will be 1, and log(P) would be zero. This makes the entropy to be zero.

The following graph depicts the probability of a fair coin toss:

Just to explain the preceding graph, if you toss a fair coin, the probability of a head or a tail
would be 0.5, so there will be maximum observations at a probability of 0.5.

If the data sample is completely homogeneous then the entropy will be zero, and if the
sample can be equally divided into two, then the entropy will be one.

It is a little slower to compute than Gini because it has to compute the log as well.

Variance
Unlike the Gini Index and entropy, variance is used for calculating information gain for
regression problems. Variance can be defined as:

Machine Learning

[186]

Stopping rule
The recursive tree construction is stopped at a node when one of the following conditions is
met:

The node depth is equal to the maxDepth training parameter
No split candidate leads to an information gain greater than minInfoGain
No split candidate produces child nodes, each of which have at least a
minInstancesPerNode training instances

Split candidates
A dataset typically has a mixture of categorical and continuous features. How the features
get split further into split candidates is something we should understand because we at
times need some level of control over them to build a better model.

Categorical features
For a categorical feature with M possible values (categories), one could come up with
2(M-1)-1 split candidates. Whether for binary classification or regression, the number of
split candidates can be reduced to M-1 by ordering the categorical feature values by the
average label.

For example, consider a binary classification (0/1) problem with one categorical feature that
has three categories A, B, and C, and their corresponding proportions of label-1 response
variables are 0.2, 0.6, and 0.4 respectively. In this case, the categorical features can be
ordered as A, C, B. So, the two split candidates (M-1 = 3-1 = 2) can be A | (C, B) and A, (C |
B) where '|' denotes the split.

Continuous features
For a continuous feature variable, there can be a chance that no two values are the same (at
least we can assume so). If there are n observations, then n split candidates might not be a
good idea, especially in a big data setting.

In Spark, it is done by performing a quantile calculation on a sample of data, and binning
the data accordingly. You can still have control over the maximum bins that you would like
to allow, using the maxBins parameter. The maximum default value for maxBins is 32.

Machine Learning

[187]

Advantages of decision trees
They are simple to understand and interpret, so easy to explain to business users
They works for both classification and regression
Both qualitative and quantitative data can be accommodated in constructing the
decision trees

Information gains in decision trees are biased in favor of the attributes with more levels.

Disadvantages of decision trees
They do not work that greatly for effectively continuous outcome variables
Performance is poor when there are many classes and the dataset is small
Axis parallel split reduces the accuracy
They suffer from high variance as they try to fit almost all data points

Example
Implementation – wise there are no major differences between classification and regression
trees. Let us have a look at the practical implementation of it on Spark.

Scala:

//Assuming ml.Pipeline and ml.features are already imported
scala> import org.apache.spark.ml.classification.{
 DecisionTreeClassifier, DecisionTreeClassificationModel}
import org.apache.spark.ml.classification.{DecisionTreeClassifier,
DecisionTreeClassificationModel}
scala>
/prepare train data
scala> val f:String = "<Your path>/simple_file1.csv"
f: String = <your path>/simple_file1.csv
scala> val trainDF = spark.read.options(Map("header"->"true",
 "inferSchema"->"true")).csv(f)
trainDF: org.apache.spark.sql.DataFrame = [Text: string, Label: int]

scala>

 //define DecisionTree pipeline
//StringIndexer maps labels(String or numeric) to label indices

Machine Learning

[188]

//Maximum occurrence label becomes 0 and so on
scala> val lblIdx = new StringIndexer().
 setInputCol("Label").
 setOutputCol("indexedLabel")
lblIdx: org.apache.spark.ml.feature.StringIndexer = strIdx_3a7bc9c1ed0d
scala>

// Create labels list to decode predictions
scala> val labels = lblIdx.fit(trainDF).labels
labels: Array[String] = Array(2, 1, 3)
scala>

//Define Text column indexing stage
scala> val fIdx = new StringIndexer().
 setInputCol("Text").
 setOutputCol("indexedText")
fIdx: org.apache.spark.ml.feature.StringIndexer = strIdx_49253a83c717

// VectorAssembler
scala> val va = new VectorAssembler().
 setInputCols(Array("indexedText")).
 setOutputCol("features")
va: org.apache.spark.ml.feature.VectorAssembler = vecAssembler_764720c39a85

//Define Decision Tree classifier. Set label and features vector
scala> val dt = new DecisionTreeClassifier().
 setLabelCol("indexedLabel").
 setFeaturesCol("features")
dt: org.apache.spark.ml.classification.DecisionTreeClassifier =
dtc_84d87d778792

//Define label converter to convert prediction index back to string
scala> val lc = new IndexToString().
 setInputCol("prediction").
 setOutputCol("predictedLabel").
 setLabels(labels)
lc: org.apache.spark.ml.feature.IndexToString = idxToStr_e2f4fa023665
scala>

//String the stages together to form a pipeline
scala> val dt_pipeline = new Pipeline().setStages(
 Array(lblIdx,fIdx,va,dt,lc))
dt_pipeline: org.apache.spark.ml.Pipeline = pipeline_d4b0e884dcbf
scala>
//Apply pipeline to the train data
scala> val resultDF = dt_pipeline.fit(trainDF).transform(trainDF)

//Check results. Watch Label and predictedLabel column values match

Machine Learning

[189]

resultDF: org.apache.spark.sql.DataFrame = [Text: string, Label: int ... 6
more
fields]
scala>
resultDF.select("Text","Label","features","prediction","predictedLabel").sh
ow()
+----+-----+--------+----------+--------------+
|Text|Label|features|prediction|predictedLabel|
+----+-----+--------+----------+--------------+
A	1	[1.0]	1.0	1
B	2	[0.0]	0.0	2
C	3	[2.0]	2.0	3
A	1	[1.0]	1.0	1
B	2	[0.0]	0.0	2
+----+-----+--------+----------+--------------+
scala>

//Prepare evaluation data
scala> val eval:String = “<Your path>/simple_file2.csv"
eval: String = <Your path>/simple_file2.csv
scala> val evalDF = spark.read.options(Map("header"->"true",
 "inferSchema"->"true")).csv(eval)
evalDF: org.apache.spark.sql.DataFrame = [Text: string, Label: int]
scala>

//Apply the same pipeline to the evaluation data
scala> val eval_resultDF = dt_pipeline.fit(evalDF).transform(evalDF)
eval_resultDF: org.apache.spark.sql.DataFrame = [Text: string, Label: int
... 7
more fields]

//Check evaluation results
scala>
eval_resultDF.select("Text","Label","features","prediction","predictedLabel
").sh
w()
+----+-----+--------+----------+--------------+
|Text|Label|features|prediction|predictedLabel|
+----+-----+--------+----------+--------------+
A	1	[0.0]	1.0	1
A	1	[0.0]	1.0	1
A	2	[0.0]	1.0	1
B	2	[1.0]	0.0	2
C	3	[2.0]	2.0	3
+----+-----+--------+----------+--------------+
//Note that predicted label for the third row is 1 as against Label(2) as
expected

Machine Learning

[190]

Python:

//Model training example
>>> from pyspark.ml.pipeline import Pipeline
>>> from pyspark.ml.feature import StringIndexer, VectorIndexer,
VectorAssembler,
IndexToString
>>> from pyspark.ml.classification import DecisionTreeClassifier,
DecisionTreeClassificationModel
>>>

//prepare train data
>>> file_location = "../work/simple_file1.csv"
>>> trainDF = spark.read.csv(file_location,header=True,inferSchema=True)

 //Read file
>>>

//define DecisionTree pipeline
//StringIndexer maps labels(String or numeric) to label indices
//Maximum occurrence label becomes 0 and so on
>>> lblIdx = StringIndexer(inputCol = "Label",outputCol = "indexedLabel")

// Create labels list to decode predictions
>>> labels = lblIdx.fit(trainDF).labels
>>> labels
[u'2', u'1', u'3']
>>>

//Define Text column indexing stage
>>> fidx = StringIndexer(inputCol="Text",outputCol="indexedText")

// Vector assembler
>>> va = VectorAssembler(inputCols=["indexedText"],outputCol="features")

//Define Decision Tree classifier. Set label and features vector
>>> dt =
DecisionTreeClassifier(labelCol="indexedLabel",featuresCol="features")

//Define label converter to convert prediction index back to string
>>> lc = IndexToString(inputCol="prediction",outputCol="predictedLabel",
 labels=labels)

//String the stages together to form a pipeline
>>> dt_pipeline = Pipeline(stages=[lblIdx,fidx,va,dt,lc])
>>>
>>>

Machine Learning

[191]

//Apply decision tree pipeline
>>> dtModel = dt_pipeline.fit(trainDF)
>>> dtDF = dtModel.transform(trainDF)
>>> dtDF.columns
['Text', 'Label', 'indexedLabel', 'indexedText', 'features',
'rawPrediction',
'probability', 'prediction', 'predictedLabel']
>>> dtDF.select("Text","Label","indexedLabel","prediction",
"predictedLabel").show()
+----+-----+------------+----------+--------------+
|Text|Label|indexedLabel|prediction|predictedLabel|
+----+-----+------------+----------+--------------+
| A| 1| 1.0| 1.0| 1|
| B| 2| 0.0| 0.0| 2|
| C| 3| 2.0| 2.0| 3|
| A| 1| 1.0| 1.0| 1|
| B| 2| 0.0| 0.0| 2|
+----+-----+------------+----------+--------------+

>>>

>>> //prepare evaluation dataframe
>>> eval_file_path = "../work/simple_file2.csv"
>>> evalDF = spark.read.csv(eval_file_path,header=True, inferSchema=True)

//Read eval file
>>> eval_resultDF = dt_pipeline.fit(evalDF).transform(evalDF)
>>> eval_resultDF.columns
['Text', 'Label', 'indexedLabel', 'indexedText', 'features',
'rawPrediction', 'probability', 'prediction', 'predictedLabel']
>>> eval_resultDF.select("Text","Label","indexedLabel","prediction",
"predictedLabel").show()
+----+-----+------------+----------+--------------+
|Text|Label|indexedLabel|prediction|predictedLabel|
+----+-----+------------+----------+--------------+
| A| 1| 1.0| 1.0| 1|
| A| 1| 1.0| 1.0| 1|
| A| 2| 0.0| 1.0| 1|
| B| 2| 0.0| 0.0| 2|
| C| 3| 2.0| 2.0| 3|
+----+-----+------------+----------+--------------+
>>>

Accompanying data files:
simple_file1.csv
Text,Label
A,1
B,2

Machine Learning

[192]

C,3
A,1
B,2simple_file2.csv
Text,Label
A,1
A,1
A,2
B,2
C,3

Ensembles
As the name suggests, ensemble methods use multiple learning algorithms to obtain a more
accurate model in terms of prediction accuracy. Usually these techniques require more
computing power and make the model more complex, which makes it difficult to interpret.
Let us discuss the various types of ensemble techniques available on Spark.

Random forests
A random forest is an ensemble technique for the decision trees. Before we get to random
forests, let us see how it has evolved. We know that decision trees usually have high
variance issues and tend to overfit the model. To address this, a concept called bagging (also
known as bootstrap aggregating) was introduced. For the decision trees, the idea was to
take multiple training sets (bootstrapped training sets) from the dataset and create separate
decision trees out of those, and then average them out for regression trees. For the
classification trees, we can take the majority vote or the most commonly occurring class
from all the trees. These trees grew deep and were not pruned at all. This definitely reduced
the variance though the individual trees might have high variance.

One problem with the plain bagging approach was that for most of the bootstrapped
training sets, the strong predictors took their positions at the top split which almost made
the bagged trees look similar. This meant that the prediction also looked similar and if you
averaged them out, then it did not reduce the variance to the extent expected. To address
this, a technique was needed which would take a similar approach as that of bagged trees
but eliminate the correlation amongst the trees, hence the random forest.

In this approach, you build bootstrapped training samples to create decision trees, but the
only difference is that every time a split happens, a random sample of P predictors are
chosen from a total of say K predictors. This is how a random forest injects randomness to
this approach. As a thumb rule, we can take P as the square root of Q.

Machine Learning

[193]

Like in the case of bagging, in this approach you also average the predictions if your goal is
regression and take the majority vote if the goal is classification. Spark provides some
tuning parameters to tune this model, which are as follows:

numTrees: You can specify the number of trees to consider in the random forest.
If the numbers are high then the variance in prediction would be less, but the
time required would be more.
maxDepth: You can specify the maximum depth of each tree. An increased depth
makes the trees more powerful in terms of prediction accuracy. Though they tend
to overfit the individual trees, the overall output is still good because we average
the results anyway, which reduces the variance.

subsamplingRate: This parameter is mainly used to speed up training. It is used
to set the bootstrapped training sample size. A value less than 1.0 speeds up the
performance.
featureSubsetStrategy: This parameter can also help speed up the execution.
It is used to set the number of features to use as split candidates for every node. It
should be set carefully as too low or too high a value can impact the accuracy of
the model.

Advantages of random forests
They run faster as the execution happens in parallel
They are less prone to overfitting
They are easy to tune
Prediction accuracy is more compared to trees or bagged trees
They work well even when the predictor variables are a mixture of categorical
and continuous features, and do not require scaling

Gradient-Boosted Trees
Like random forests, Gradient-Boosted Trees (GBTs) are also an ensemble of trees. They
can be applied to both classification and regression problems. Unlike bagged trees or
random forests, where trees are built in parallel on independent datasets and are
independent of each other, GBTs are built sequentially. Each tree is grown using the result
of the previously grown tree. Note that GBTs do not work on bootstrapped samples.

Machine Learning

[194]

On each iteration, GBTs use the current ensemble at hand to predict the labels for the
training instances and compares them with true labels and estimates the error. The training
instances with poor prediction accuracy get relabeled so that the decision trees get corrected
in the next iteration based on the error rate for the previous mistakes.

The mechanism behind finding the error rate and relabeling the instances is based on the
loss function. GBTs are designed to reduce this loss function for every iteration. The
following types of loss functions are supported by Spark:

Log loss: This is used for classification problems.

Squared error (L2 loss): This is used for regression problems and is set by
default. It is the summation of the squared differences between the actual and
predicted output for all the observations. Outliers should be treated well for this
loss function to perform well.
Absolute error (L1 loss): This is also used for regression problems. It is the
summation of the absolute differences between the actual and predicted output
for all the observations. It is more robust to outliers compared to squared error.

Spark provides some tuning parameters to tune this model, which are as follows:

loss: You can pass a loss function as discussed in the previous section,
depending on the dataset you are dealing with and whether you intend to do
classification or regression.
numIterations: Each iteration produces only one tree! If you set this very high,
then the time needed for execution will also be high as the operation would be
sequential and can also lead to overfitting. It should be carefully set for better
performance and accuracy.
learningRate: This is not really a tuning parameter. If the algorithm's behavior
is unstable then reducing this can help stabilize the model.
algo: Classification or regression is set based on what you want.

GBTs can overfit the models with a greater number of trees, so Spark provides the
runWithValidation method to prevent overfitting.

As of this writing, GBTs on Spark do not yet support multiclass
classification.

Machine Learning

[195]

Let us look at an example to illustrate GBTs in action. The example dataset contains average
marks and attendance of twenty students. The data also contains result as Pass or Fail,
which follow a set of criteria. However, a couple of students (ids 1009 and 1020) were
“granted” Pass status event though they did not really qualify. Now our task is to check if
the models pick up these two students are not.

The Pass criteria are as follows:

Marks should be at least 40 and Attendance should be at least “Enough”
If Marks are between 40 and 60, then attendance should be “Full” to pass

The following example also emphasizes on reuse of pipeline stages across multiple models.
So, we build a DecisionTree classifier first and then a GBT. We build two different pipelines
that share stages.

Input:

// Marks < 40 = Fail
// Attendence == Poor => Fail
// Marks >40 and attendence Full => Pass
// Marks > 60 and attendence Enough or Full => Pass
// Two exceptions were studentId 1009 and 1020 who were granted Pass
//This example also emphasizes the reuse of pipeline stages
// Initially the code trains a DecisionTreeClassifier
// Then, same stages are reused to train a GBT classifier

Scala:

scala> import org.apache.spark.ml.feature._
scala> import org.apache.spark.ml.Pipeline
scala> import org.apache.spark.ml.classification.{DecisionTreeClassifier,
 DecisionTreeClassificationModel}
scala> case class StResult(StudentId:String, Avg_Marks:Double,
 Attendance:String, Result:String)
scala> val file_path = "../work/StudentsPassFail.csv"
scala> val source_ds = spark.read.options(Map("header"->"true",
 "inferSchema"->"true")).csv(file_path).as[StResult]
source_ds: org.apache.spark.sql.Dataset[StResult] = [StudentId: int,
Avg_Marks:
double ... 2 more fields]
scala>
//Examine source data
scala> source_ds.show(4)
+---------+---------+----------+------+
|StudentId|Avg_Marks|Attendance|Result|
+---------+---------+----------+------+

Machine Learning

[196]

1001	48.0	Full	Pass
1002	21.0	Enough	Fail
1003	24.0	Enough	Fail
1004	4.0	Poor	Fail
+---------+---------+----------+------+

scala>
//Define preparation pipeline
scala> val marks_bkt = new Bucketizer().setInputCol("Avg_Marks").
 setOutputCol("Mark_bins").setSplits(Array(0,40.0,60.0,100.0))
marks_bkt: org.apache.spark.ml.feature.Bucketizer = bucketizer_5299d2fbd1b2
scala> val att_idx = new StringIndexer().setInputCol("Attendance").
 setOutputCol("Att_idx")
att_idx: org.apache.spark.ml.feature.StringIndexer = strIdx_2db54ba5200a
scala> val label_idx = new StringIndexer().setInputCol("Result").
 setOutputCol("Label")
label_idx: org.apache.spark.ml.feature.StringIndexer = strIdx_20f4316d6232
scala>

//Create labels list to decode predictions
scala> val resultLabels = label_idx.fit(source_ds).labels
resultLabels: Array[String] = Array(Fail, Pass)
scala> val va = new
VectorAssembler().setInputCols(Array("Mark_bins","Att_idx")).
 setOutputCol("features")
va: org.apache.spark.ml.feature.VectorAssembler = vecAssembler_5dc2dbbef48c
scala> val dt = new DecisionTreeClassifier().setLabelCol("Label").
 setFeaturesCol("features")
dt: org.apache.spark.ml.classification.DecisionTreeClassifier =
dtc_e8343ae1a9eb
scala> val lc = new IndexToString().setInputCol("prediction").
 setOutputCol("predictedLabel").setLabels(resultLabels)
lc: org.apache.spark.ml.feature.IndexToString = idxToStr_90b6693d4313
scala>

//Define pipeline
scala>val dt_pipeline = new
Pipeline().setStages(Array(marks_bkt,att_idx,label_idx,va,dt,lc))
dt_pipeline: org.apache.spark.ml.Pipeline = pipeline_95876bb6c969
scala> val dtModel = dt_pipeline.fit(source_ds)
dtModel: org.apache.spark.ml.PipelineModel = pipeline_95876bb6c969
scala> val resultDF = dtModel.transform(source_ds)
resultDF: org.apache.spark.sql.DataFrame = [StudentId: int, Avg_Marks:
double ...
10 more fields]
scala> resultDF.filter("Label !=
prediction").select("StudentId","Label","prediction","Result","predictedLab
el").show()

Machine Learning

[197]

+---------+-----+----------+------+--------------+
|StudentId|Label|prediction|Result|predictedLabel|
+---------+-----+----------+------+--------------+\
| 1009| 1.0| 0.0| Pass| Fail|
| 1020| 1.0| 0.0| Pass| Fail|
+---------+-----+----------+------+--------------+

//Note that the difference is in the student ids that were granted pass

//Same example using Gradient boosted tree classifier, reusing the pipeline
stages
scala> import org.apache.spark.ml.classification.GBTClassifier
import org.apache.spark.ml.classification.GBTClassifier
scala> val gbt = new GBTClassifier().setLabelCol("Label").
 setFeaturesCol("features").setMaxIter(10)
gbt: org.apache.spark.ml.classification.GBTClassifier = gbtc_cb55ae2174a1
scala> val gbt_pipeline = new
Pipeline().setStages(Array(marks_bkt,att_idx,label_idx,va,gbt,lc))
gbt_pipeline: org.apache.spark.ml.Pipeline = pipeline_dfd42cd89403
scala> val gbtResultDF = gbt_pipeline.fit(source_ds).transform(source_ds)
gbtResultDF: org.apache.spark.sql.DataFrame = [StudentId: int, Avg_Marks:
double ... 8 more fields]
scala> gbtResultDF.filter("Label !=
prediction").select("StudentId","Label","Result","prediction","predictedLab
el").show()
+---------+-----+------+----------+--------------+
|StudentId|Label|Result|prediction|predictedLabel|
+---------+-----+------+----------+--------------+
| 1009| 1.0| Pass| 0.0| Fail|
| 1020| 1.0| Pass| 0.0| Fail|
+---------+-----+------+----------+--------------+

Python:

>>> from pyspark.ml.pipeline import Pipeline
>>> from pyspark.ml.feature import Bucketizer, StringIndexer,
VectorAssembler, IndexToString
>>> from pyspark.ml.classification import DecisionTreeClassifier,
DecisionTreeClassificationModel
>>>

//Get source file
>>> file_path = "../work/StudentsPassFail.csv"
>>> source_df = spark.read.csv(file_path,header=True,inferSchema=True)
>>>

//Examine source data
>>> source_df.show(4)

Machine Learning

[198]

+---------+---------+----------+------+
|StudentId|Avg_Marks|Attendance|Result|
+---------+---------+----------+------+
1001	48.0	Full	Pass
1002	21.0	Enough	Fail
1003	24.0	Enough	Fail
1004	4.0	Poor	Fail
+---------+---------+----------+------+

//Define preparation pipeline
>>> marks_bkt = Bucketizer(inputCol="Avg_Marks",
 outputCol="Mark_bins", splits=[0,40.0,60.0,100.0])
>>> att_idx = StringIndexer(inputCol = "Attendance",
 outputCol="Att_idx")
>>> label_idx = StringIndexer(inputCol="Result",
 outputCol="Label")
>>>

//Create labels list to decode predictions
>>> resultLabels = label_idx.fit(source_df).labels
>>> resultLabels
[u'Fail', u'Pass']
>>>
>>> va = VectorAssembler(inputCols=["Mark_bins","Att_idx"],
 outputCol="features")
>>> dt = DecisionTreeClassifier(labelCol="Label", featuresCol="features")
>>> lc = IndexToString(inputCol="prediction",outputCol="predictedLabel",
 labels=resultLabels)
>>> dt_pipeline = Pipeline(stages=[marks_bkt, att_idx, label_idx,va,dt,lc])
>>> dtModel = dt_pipeline.fit(source_df)
>>> resultDF = dtModel.transform(source_df)
>>>

//Look for obervatiuons where prediction did not match
>>> resultDF.filter("Label != prediction").select(
 "StudentId","Label","prediction","Result","predictedLabel").show()
+---------+-----+----------+------+--------------+
|StudentId|Label|prediction|Result|predictedLabel|
+---------+-----+----------+------+--------------+
| 1009| 1.0| 0.0| Pass| Fail|
| 1020| 1.0| 0.0| Pass| Fail|
+---------+-----+----------+------+--------------+

//Note that the difference is in the student ids that were granted pass
>>>
//Same example using Gradient boosted tree classifier, reusing the pipeline
stages
>>> from pyspark.ml.classification import GBTClassifier

Machine Learning

[199]

>>> gbt = GBTClassifier(labelCol="Label",
featuresCol="features",maxIter=10)
>>> gbt_pipeline = Pipeline(stages=[marks_bkt,att_idx,label_idx,va,gbt,lc])
>>> gbtResultDF = gbt_pipeline.fit(source_df).transform(source_df)
>>> gbtResultDF.columns
['StudentId', 'Avg_Marks', 'Attendance', 'Result', 'Mark_bins', 'Att_idx',
'Label', 'features', 'prediction', 'predictedLabel']
>>> gbtResultDF.filter("Label !=
prediction").select("StudentId","Label","Result","prediction","predictedLab
el").show()
+---------+-----+------+----------+--------------+
|StudentId|Label|Result|prediction|predictedLabel|
+---------+-----+------+----------+--------------+
| 1009| 1.0| Pass| 0.0| Fail|
| 1020| 1.0| Pass| 0.0| Fail|
+---------+-----+------+----------+--------------+

Multilayer perceptron classifier
A multilayer perceptron classifier (MLPC) is a feedforward artificial neural network with
multiple layers of nodes connected to each other in a directed fashion. It uses a supervised
learning technique called backpropagation for training the network.

Nodes in the intermediary layer use the sigmoid function to restrict the output between 0
and 1, and the nodes in the output layer use the softmax function, which is a generalized
version of the sigmoid function.

Scala:

scala> import
org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
scala> import
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
scala> import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.util.MLUtils

// Load training data
scala> val data = MLUtils.loadLibSVMFile(sc,
"data/mllib/sample_multiclass_classification_data.txt").toDF()
data: org.apache.spark.sql.DataFrame = [label: double, features: vector]

//Convert mllib vectors to ml Vectors for spark 2.0+. Retain data for
previous versions

Machine Learning

[200]

scala> val data2 = MLUtils.convertVectorColumnsToML(data)
data2: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label:
double, features: vector]

// Split the data into train and test
scala> val splits = data2.randomSplit(Array(0.6, 0.4), seed = 1234L)
splits: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] =
Array([label: double, features: vector], [label: double, features: vector])
scala> val train = splits(0)
train: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label:
double, features: vector]
scala> val test = splits(1)
test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label:
double, features: vector]

// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4 and
output of size 3 (classes)
scala> val layers = Array[Int](4, 5, 4, 3)
layers: Array[Int] = Array(4, 5, 4, 3)

// create the trainer and set its parameters
scala> val trainer = new MultilayerPerceptronClassifier().
 setLayers(layers).setBlockSize(128).
 setSeed(1234L).setMaxIter(100)
trainer: org.apache.spark.ml.classification.MultilayerPerceptronClassifier
= mlpc_edfa49fbae3c

// train the model
scala> val model = trainer.fit(train)
model:
org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
= mlpc_edfa49fbae3c

// compute accuracy on the test set
scala> val result = model.transform(test)
result: org.apache.spark.sql.DataFrame = [label: double, features: vector
... 1 more field]
scala> val predictionAndLabels = result.select("prediction", "label")
predictionAndLabels: org.apache.spark.sql.DataFrame = [prediction: double,
label: double]
scala> val evaluator = new
MulticlassClassificationEvaluator().setMetricName("accuracy")
evaluator: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
= mcEval_a4f43d85f261
scala> println("Accuracy:" + evaluator.evaluate(predictionAndLabels))
Accuracy:0.9444444444444444

Machine Learning

[201]

Python:
>>> from pyspark.ml.classification import MultilayerPerceptronClassifier
>>> from pyspark.ml.evaluation import MulticlassClassificationEvaluator
>>> from pyspark.mllib.util import MLUtils
>>>

 //Load training data
>>> data = spark.read.format("libsvm").load(
"data/mllib/sample_multiclass_classification_data.txt")

//Convert mllib vectors to ml Vectors for spark 2.0+. Retain data for
previous versions
>>> data2 = MLUtils.convertVectorColumnsToML(data)
>>>

 // Split the data into train and test
>>> splits = data2.randomSplit([0.6, 0.4], seed = 1234L)
>>> train, test = splits[0], splits[1]
>>>

 // specify layers for the neural network:
 // input layer of size 4 (features), two intermediate of size 5 and 4 and
output of size 3 (classes)
>>> layers = [4,5,4,3]

// create the trainer and set its parameters
>>> trainer = MultilayerPerceptronClassifier(layers=layers, blockSize=128,
 seed=1234L, maxIter=100)
// train the model
>>> model = trainer.fit(train)
>>>

// compute accuracy on the test set
>>> result = model.transform(test)
>>> predictionAndLabels = result.select("prediction", "label")
>>> evaluator =
MulticlassClassificationEvaluator().setMetricName("accuracy")
>>> print "Accuracy:",evaluator.evaluate(predictionAndLabels)
Accuracy: 0.901960784314
>>>

Machine Learning

[202]

Clustering techniques
Clustering is an unsupervised learning technique where there is no response variable to
supervise the model. The idea is to cluster the data points that have some level of similarity.
Apart from exploratory data analysis, it is also used as a part of a supervised pipeline where
classifiers or regressors can be built on the distinct clusters. There are a bunch of clustering
techniques available. Let us look into a few important ones that are supported by Spark.

K-means clustering
K-means is one of the most common clustering techniques. The k-means problem is to find
cluster centers that minimize the intra-class variance, that is, the sum of squared distances
from each data point being clustered to its cluster center (the center that is closest to it). You
have to specify in advance the number of clusters you want in the dataset.

Since it uses the Euclidian distance measure to find the differences between the data points,
the features need to be scaled to a comparable unit prior to using k-means. The Euclidian
distance can be better explained in a graphical way as follows:

Machine Learning

[203]

Given a set of data points (x1, x2, …, xn) with as many dimensions as the number of
variables, k-means clustering aims to partition the n observations into k (less than n) sets
where S = {S1, S2, …, Sk}, so as to minimize the within-cluster sum of squares (WCSS). In
other words, its objective is to find:

Spark requires the following parameters to be passed to this algorithm:

k: This is the number of desired clusters.
maxIterations: This is the maximum number of iterations to run.
initializationMode: This specifies either random initialization or initialization
via k-means||.
runs: This is the number of times to run the k-means algorithm (k-means is not
guaranteed to find a globally optimal solution, and when run multiple times on a
given dataset, the algorithm returns the best clustering result).
initializationSteps: This determines the number of steps in the k-means||
algorithm.
epsilon: This determines the distance threshold within which we consider k-
means to have converged.
initialModel: This is an optional set of cluster centers used for initialization. If
this parameter is supplied, only one run is performed.

Disadvantages of k-means
It works only on the numeric features
It requires scaling before implementing the algorithm
It is susceptible to local optima (the solution to this is k-means++)

Machine Learning

[204]

Example
Let us run k-means clustering on the same students data.

scala> import org.apache.spark.ml.clustering.{KMeans, KMeansModel}
import org.apache.spark.ml.clustering.{KMeans, KMeansModel}
scala> import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.linalg.Vectors
scala>

//Define pipeline for kmeans. Reuse the previous stages in ENSEMBLES
scala> val km = new KMeans()
km: org.apache.spark.ml.clustering.KMeans = kmeans_b34da02bd7c8
scala> val kmeans_pipeline = new
Pipeline().setStages(Array(marks_bkt,att_idx,label_idx,va,km,lc))
kmeans_pipeline: org.apache.spark.ml.Pipeline = pipeline_0cd64aa93a88

//Train and transform
scala> val kmeansDF = kmeans_pipeline.fit(source_ds).transform(source_ds)
kmeansDF: org.apache.spark.sql.DataFrame = [StudentId: int, Avg_Marks:
double ... 8 more fields]

//Examine results
scala> kmeansDF.filter("Label != prediction").count()
res17: Long = 13

Python:

>>> from pyspark.ml.clustering import KMeans, KMeansModel
>>> from pyspark.ml.linalg import Vectors
>>>

//Define pipeline for kmeans. Reuse the previous stages in ENSEMBLES
>>> km = KMeans()
>>> kmeans_pipeline = Pipeline(stages = [marks_bkt, att_idx,
label_idx,va,km,lc])

//Train and transform
>>> kmeansDF = kmeans_pipeline.fit(source_df).transform(source_df)
>>> kmeansDF.columns
['StudentId', 'Avg_Marks', 'Attendance', 'Result', 'Mark_bins', 'Att_idx',
'Label', 'features', 'prediction', 'predictedLabel']
>>> kmeansDF.filter("Label != prediction").count()
4

Machine Learning

[205]

Summary
In this chapter, we explained various machine learning algorithms, how they are
implemented in the MLlib library and how they can be used with the pipeline API for a
streamlined execution. The concepts were covered with Python and Scala code examples for
a ready reference.

In the next chapter, we will discuss how Spark supports R programming language focusing
on some of the algorithms and their executions similar to what we covered in this chapter.

References
Supported algorithms in MLlib:

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / m l l i b - g u i d e . h t m l

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / m l l i b - d e c i s i o n - t r e e . h t m l

Spark ML Programming Guide:

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / m l - g u i d e . h t m l

Advanced datascience on spark.pdf from June 2015 summit slides:

https://databricks.com/blog/2015/07/29/new-features-in-machine-learning-pipelin
es-in-spark-1-4.html
https://databricks.com/blog/2015/06/02/statistical-and-mathematical-functions-wit
h-dataframes-in-spark.html
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mll
ib.html

http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/mllib-decision-tree.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html

7
Extending Spark with SparkR

Statisticians and data scientists have been using R to solve challenging problems in almost
every field, ranging from bioinformatics to election campaigns. They prefer R due to its
powerful visualization capabilities, strong community, and rich package ecosystem for
statistics and machine learning. Many academic institutions around the world teach data
science and statistics using the R language.

R was originally created by and for statisticians in around the mid-1990s with a goal to
deliver a better and more user-friendly way to perform data analysis. R was initially used in
academics and research. As businesses became increasingly aware of the role of data science
in their business growth, the number of data analysts using R in the corporate sector started
growing as well. The R language user base is considered to be more than two million
strong, after being in existence for two decades.

One of the driving factors behind all this success is the fact that R is designed to make the
life of the analyst easier but not that of the computer. R is inherently single-threaded and it
can only process datasets that completely fit in a single machine's memory. But nowadays,
R users are working with increasingly larger datasets. Seamless integration of modern-day
distributed processing power underneath the well-established R language allows data
scientists to leverage the best of both worlds. They can keep up with their ever-increasing
business demands and continue to benefit from the flexibility of their favorite R language.

Extending Spark with SparkR

[207]

This chapter introduces SparkR, an R API to Spark for R programmers so that they can
harness the power of Spark, without learning a new language. Since prior knowledge of R,
R Studio, and data analysis skills are already assumed, this chapter does not attempt to
introduce R. A very brief overview of the Spark compute engine is provided as a quick
recap. The reader should go through the first three chapters of this book to gain a deeper
understanding of the Spark programming model and DataFrames. This knowledge is
extremely important because the developer has to understand which part of his code is
executing in the local R environment and which part is being handled by the Spark
compute engine. The topics covered in this chapter are as follows:

SparkR basics
Advantages of R with Spark and its limitations
Programming with SparkR
SparkR DataFrames
Machine learning

SparkR basics
R is a language and environment for statistical computing and graphics. SparkR is an R
package that provides a lightweight frontend to enable Apache Spark access from R. The
goal of SparkR is to combine the flexibility and ease of use provided by the R environment
and the scalability and fault tolerance provided by the Spark compute engine. Let us recap
the Spark architecture before discussing how SparkR realizes its goal.

Apache Spark is a fast, general-purpose, fault-tolerant framework for interactive and
iterative computations on large, distributed datasets. It supports a wide variety of data
sources as well as storage layers. It provides unified data access to combine different data
formats, streaming data and defining complex operations using high-level, composable
operators. You can develop your applications interactively using Scala, Python, or R shell
(or Java without a shell). You can deploy it on your home desktop or you can run it on large
clusters of thousands of nodes crunching petabytes of data.

Extending Spark with SparkR

[208]

SparkR originated in the AMPLab (h t t p s : / / a m p l a b . c s . b e r k e l e y . e d u /)
to explore different techniques to integrate the usability of R with the
scalability of Spark. It was released as an alpha component in Apache
Spark 1.4, which was released in June 2015. The Spark 1.5 release had
improved R usability and introduced the MLlib machine learning package
with Generalized Linear Models (GLMs). The Spark 1.6 release that
happened in January 2016 added some more features, such as model
summary and feature interactions. The Spark 2.0 release that happened in
July 2016 brought several important features, such as UDF, improved
model coverage, DataFrames Window functions API, and so on.

Accessing SparkR from the R environment
You can start SparkR from R shell or R Studio. The entry point to SparkR is the
SparkSession object, which represents the connection to the Spark cluster. The node on
which R is running becomes the driver. Any objects created by the R program reside on this
driver. Any objects created via SparkSession are created on the worker nodes in the cluster.
The following diagram depicts the runtime view of R interaction with Spark running on a
cluster. Note that R interpreter exists on every worker node in the cluster. The following
figure does not show the cluster manager and it does not show the storage layer either. You
could use any cluster manager (for example, Yarn or Mesos) and any storage option, such
as HDFS, Cassandra, or Amazon S3:

Source: http://www.slideshare.net/Hadoop_Summit/w-145p210-avenkataraman.

https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/

Extending Spark with SparkR

[209]

A SparkSession object is created by passing information such as application name, memory,
number of cores, and the cluster manager to connect to. Any interaction with the Spark
engine is initiated via this SparkSession object. A SparkSession object is already created for
you if you use SparkR shell. You have to explicitly create it otherwise. This object replaces
SparkContext and SQLContext objects that existed in Spark 1.x releases. These objects still
exist for backward compatibility. Even the preceding figure depicts SparkContext, which
you should treat as SparkSession post Spark 2.0.

Now that we have understood how to access Spark from the R environment, let us examine
the core data abstractions provided by the Spark engine.

RDDs and DataFrames
At the core of the Spark engine is its main data abstraction, called a Resilient Distributed
Dataset (RDD). An RDD is composed of one or more data sources and is defined by the
user as a series of transformations (aka lineage) on one or more stable (concrete) data
sources. Every RDD or RDD partition knows how to recreate itself on failure using the
lineage graph, thereby providing fault tolerance. RDD is an immutable data structure,
implying that it is sharable between threads without synchronization overheads and hence
amenable for parallelization. Operations on RDDs are either transformations or actions.
Transformations are individual steps in the lineage. In other words, they are operations that
create RDDs because every transformation is getting data from a stable data source or
transforming an immutable RDD and creating another RDD. Transformations are simply
declarations; they are not evaluated until an action operation is applied on that RDD.
Actions are the operations that utilize the RDDs.

Spark optimizes RDD computation based on the action on hand. For example, if the action
is to read the first line, only one partition is computed, skipping the rest. It automatically
performs in-memory computation with graceful degradation (spills it to disk when memory
is insufficient) and distributes processing across all the cores. You may cache an RDD if it is
frequently accessed in your program logic, thereby avoiding recomputing overhead.

The R language provides a two-dimensional data structure called a DataFrame which makes
data manipulation convenient. Apache Spark comes with its own DataFrames that are
inspired by the DataFrame in R and Python (through Pandas). A Spark DataFrame is a
specialized data structure that is built on top of the RDD data structure abstraction. It
provides distributed DataFrame implementation that looks very similar to R DataFrame
from the developer perspective and at the same time can support very large datasets. The
Spark dataset API adds structure to DataFrames and this structure provides information for
more optimization under the hood.

Extending Spark with SparkR

[210]

Getting started
Now that we have understood the underlying data structures and the runtime view, it is
time to run a few commands. In this section, we assume that you already have R and Spark
successfully installed and added to the path. We also assume that the SPARK_HOME
environment variable is set. Let us see how to access SparkR from R shell or R Studio:

> R // Start R shell
> Sys.getenv("SPARK_HOME") //Confirm SPARK_HOME is set
 <Your SPARK_HOME path>
> library(SparkR, lib.loc =
 c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib")))

Attaching package: 'SparkR'
The following objects are masked from 'package:stats':

 cov, filter, lag, na.omit, predict, sd, var, window

The following objects are masked from 'package:base':

 as.data.frame, colnames, colnames<-, drop, endsWith, intersect,
 rank, rbind, sample, startsWith, subset, summary, transform, union
>

> //Try help(package=SparkR) if you want to more information
//initialize SparkSession object
> sparkR.session()
Java ref type org.apache.spark.sql.SparkSession id 1
>
Alternatively, you may launch sparkR shell which comes with predefined
SparkSession.

> bin/sparkR // Start SparkR shell
> // For simplicity sake, no Log messages are shown here
> //Try help(package=SparkR) if you want to more information
>

This is all you need to do to access the power of Spark DataFrames from within the R
environment.

Extending Spark with SparkR

[211]

Advantages and limitations
The R language has long been the lingua franca of data scientists. Its simple-to-understand
DataFrame abstraction, expressive APIs, and vibrant package ecosystem are exactly what
the analysts needed. The main challenge was with the scalability. SparkR bridges that gap
by providing distributed in-memory DataFrames without leaving the R eco-system. Such a
symbiotic relationship allows users to gain the following benefits:

There is no need for the analyst to learn a new language
The SparkR APIs are similar to R APIs
You can access SparkR from R studio, along with the autocomplete feature
Performing interactive, exploratory analysis of a very large dataset is no longer
hindered by memory limitations or long turnaround times
Accessing data from different types of data sources becomes a lot easier. Most of
the tasks which were imperative before have become declarative. Check Chapter
4, Unified Data Access, to learn more
You can freely mix dplyr such as Spark functions, SQL, and R libraries that are
still not available in Spark

In spite of all the exciting advantages of combining the best of both worlds, there are still
some limitations with this combination. These limitations may not impact every use case,
but we need to be aware of them anyway:

The inherent dynamic nature of R limits the information available for the catalyst
optimizer. We may not get the full advantage of optimizations such as predicate
pushback when compared to statically typed languages such as Scala.
SparkR does not have support for all the machine learning algorithms that are
already available in other APIs such as the Scala API.

In summary, using Spark for data preprocessing and using R for analysis and visualization
seems to be the best approach in the near future.

Extending Spark with SparkR

[212]

Programming with SparkR
So far, we have understood the runtime model of SparkR and the basic data abstractions
that provide the fault tolerance and scalability. We have understood how to access the
Spark API from R shell or R studio. It's time to try out some basic and familiar operations:

>
> //Open the shell
>
> //Try help(package=SparkR) if you want to more information
>
> df <- createDataFrame(iris) //Create a Spark DataFrame
> df //Check the type. Notice the column renaming using underscore
SparkDataFrame[Sepal_Length:double, Sepal_Width:double,
Petal_Length:double, Petal_Width:double, Species:string]
>
> showDF(df,4) //Print the contents of the Spark DataFrame
+------------+-----------+------------+-----------+-------+
|Sepal_Length|Sepal_Width|Petal_Length|Petal_Width|Species|
+------------+-----------+------------+-----------+-------+
| 5.1| 3.5| 1.4| 0.2| setosa|
| 4.9| 3.0| 1.4| 0.2| setosa|
| 4.7| 3.2| 1.3| 0.2| setosa|
| 4.6| 3.1| 1.5| 0.2| setosa|
+------------+-----------+------------+-----------+-------+
>
> head(df,2) //Returns an R data.frame. Default 6 rows
 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
> //You can use take(df,2) to get the same results
//Check the dimensions
> nrow(df) [1] 150 > ncol(df) [1] 5

Extending Spark with SparkR

[213]

The operations look very similar to R DataFrame functions because spark DataFrames are
modeled based on R DataFrames and Python (Pandas) DataFrames. But the similarity may
create confusion if you are not careful. You may accidentally end up choking your local
machine by running a compute-intensive function on an R data.frame, thinking that the
load will be distributed. For example, the intersect function has the same signature in both
packages. You need to pay attention to whether the object is of class SparkDataFrame
(Spark DataFrame) or data.frame (R DataFrame). You also need to minimize back and
forth conversions between local R data.frame objects and Spark DataFrame objects. Let us
get a feel for this distinction by trying out some examples:

>
> //Open the SparkR shell
> df <- createDataFrame(iris) //Create a Spark DataFrame
> class(df) [1] "SparkDataFrame" attr(,"package") [1] "SparkR"
> df2 <- head(df,2) //Create an R data frame
> class(df2)
 [1] "data.frame"
> //Now try running some R command on both data frames
> unique(df2$Species) //Works fine as expected [1] "setosa" >
unique(df$Species) //Should fail Error in unique.default(df$Species) :
unique() applies only to vectors > class(df$Species) //Each column is a
Spark's Column class [1] "Column" attr(,"package") [1] "SparkR" >
class(df2$Species) [1] "character"

Function name masking
Now that we have tried some basic operations, let us digress a little bit. We have to
understand what happens when a loaded library has overlapping function names with the
base package or some other package that was already loaded. This is sometimes referred to
as function name overlapping, function masking, or name conflict. You might have noticed
the messages mentioning the objects masked when the SparkR package is loaded. This is
common for any package loaded into the R environment, and is not specific to SparkR
alone. If the R environment already contains any function that has the same name as a
function in the package being loaded, then any subsequent calls to that function exhibit the
behavior of the function in the latest package loaded. If you want to access the previous
function instead of the SparkR function, you need to explicitly prefix that function with its
package name, as shown:

//First try in R environment, without loading sparkR
//Try sampling from a column in an R data.frame
>sample(iris$Sepal.Length,6,FALSE) //Returns any n elements [1] 5.1 4.9 4.7
4.6 5.0 5.4 >sample(head(iris),3,FALSE) //Returns any 3 columns
//Try sampling from an R data.frame

Extending Spark with SparkR

[214]

//The Boolean argument is for with_replacement
> sample(head
> head(sample(iris,3,TRUE)) //Returns any 3 columns
 Species Species.1 Petal.Width
1 setosa setosa 0.2
2 setosa setosa 0.2
3 setosa setosa 0.2
4 setosa setosa 0.2
5 setosa setosa 0.2
6 setosa setosa 0.4

//Load sparkR, initialize sparkSession and then execute this
> df <- createDataFrame(iris) //Create a Spark DataFrame
> sample_df <- sample(df,TRUE,0.3) //Different signature
> dim(sample_df) //Different behavior [1] 44 5
> //Returned 30% of the original data frame and all columns
> //Try with base prefix
> head(base::sample(iris),3,FALSE) //Call base package's sample
 Species Petal.Width Petal.Length
1 setosa 0.2 1.4
2 setosa 0.2 1.4
3 setosa 0.2 1.3
4 setosa 0.2 1.5
5 setosa 0.2 1.4
6 setosa 0.4 1.7

Subsetting data
Subsetting operations on R DataFrames are quite flexible and SparkR tries to retain these
operations with the same or similar equivalents. We have already seen some operations in
the preceding examples but this section presents them in an ordered fashion:

//Subsetting data examples
> b1 <- createDataFrame(beaver1)
//Get one column
> b1$temp
Column temp //Column class and not a vector
> //Select some columns. You may use positions too
> select(b1, c("day","temp"))
SparkDataFrame[day:double, temp:double]
>//Row subset based on conditions
> head(subset(b1,b1$temp>37,select= c(2,3)))
 time temp
1 1730 37.07
2 1740 37.05
3 1940 37.01

Extending Spark with SparkR

[215]

4 1950 37.10
5 2000 37.09
6 2010 37.02
> //Multiple conditions with AND and OR
> head(subset(b1, between(b1$temp,c(36.0,37.0)) |
 b1$time %in% 900 & b1$activ == 1,c(2:4)),2)
 time temp activ
1 840 36.33 0
2 850 36.34 0

At the time of writing this book (Apache Spark 2.o release), row index
based slicing is not available. You will not be able to get a specific row or
range of rows using the df[n,] or df[m:n,] syntax.

//For example, try on a normal R data.frame
> beaver1[2:4,]
 day time temp activ
2 346 850 36.34 0
3 346 900 36.35 0
4 346 910 36.42 0
//Now, try on Spark Data frame
> b1[2:4,] //Throws error
Expressions other than filtering predicates are not supported in the first
parameter of extract operator [or subset() method.
>

Column functions
You will have already noticed the column functions between in the subsetting data section.
These functions operate on the Column class. As the name suggests, these functions operate
on a single column at a time and are usually used in subsetting DataFrames. There are
several other handy column functions for common operations such as sorting, casting, and
formatting. In addition to working on the values within a column, you can append columns
to a DataFrame or drop one or more columns from a DataFrame. Negative column
subscripts may be used to omit columns, similar to R. The following examples show the use
of Column class functions in subset operations followed by adding and dropping columns:

> //subset using Column operation using airquality dataset as df
> head(subset(df,isNull(df$Ozone)),2)
 Ozone Solar_R Wind Temp Month Day
1 NA NA 14.3 56 5 5
2 NA 194 8.6 69 5 10
>
> //Add column and drop column examples

Extending Spark with SparkR

[216]

> b1 <- createDataFrame(beaver1)

//Add new column
> b1$inRetreat <- otherwise(when(b1$activ == 0,"No"),"Yes")
 head(b1,2)
 day time temp activ inRetreat
1 346 840 36.33 0 No
2 346 850 36.34 0 No
>
//Drop a column.
> b1$day <- NULL
> b1 // Example assumes b1$inRetreat does not exist
SparkDataFrame[time:double, temp:double, activ:double]
> //Drop columns using negative subscripts
> b2 <- b1[,-c(1,4)] > head(b2)
 time temp
1 840 36.33
2 850 36.34
3 900 36.35
4 910 36.42
5 920 36.55
6 930 36.69
>

Grouped data
DataFrame data can be subgrouped using the group_by function similar to SQL. There are
multiple ways of performing such operations. We introduce a slightly complex example in
this section. Moreover, we use %>%, aka the forward pipe operator, provided by the
magrittr library, which provides a mechanism for chaining commands:

> //GroupedData example using iris data as df
> //Open SparkR shell and create df using iris dataset
> groupBy(df,"Species")
GroupedData //Returns GroupedData object
> library(magrittr) //Load the required library
//Get group wise average sepal length
//Report results sorted by species name
>df2 <- df %>% groupBy("Species") %>%
 avg("Sepal_Length") %>%
 withColumnRenamed("avg(Sepal_Length)","avg_sepal_len") %>%
 orderBy ("Species")
//Format the computed double column
df2$avg_sepal_len <- format_number(df2$avg_sepal_len,2)
showDF(df2)
+----------+-------------+

Extending Spark with SparkR

[217]

| Species|avg_sepal_len|
+----------+-------------+
setosa	5.01
versicolor	5.94
virginica	6.59
+----------+-------------+

You can keep chaining the operations using the forward pipe operator. Look at the column
renamed part of the code carefully. The column name argument is the output of previous
operations, which would have completed before commencement of this operation and thus
you can safely assume that the avg(sepal_len) column already exists. The
format_number works as expected, and this is yet another handy Column operation.

The next section has another similar example with GroupedData and its equivalent
implementation using dplyr.

SparkR DataFrames
In this section, we try out some useful, commonly used operations. First, we try out the
traditional R/dplyr operations and then show equivalent operations using the SparkR API:

> //Open the R shell and NOT SparkR shell
> library(dplyr,warn.conflicts=FALSE) //Load dplyr first
//Perform a common, useful operation
> iris %>%
+ group_by(Species) %>% + summarise(avg_length = mean(Sepal.Length),
+ avg_width = mean(Sepal.Width)) %>% +
arrange(desc(avg_length))
Source: local data frame [3 x 3]
 Species avg_length avg_width
 (fctr) (dbl) (dbl)
1 virginica 6.588 2.974
2 versicolor 5.936 2.770
3 setosa 5.006 3.428

//Remove from R environment
> detach("package:dplyr",unload=TRUE)

This operation is very similar to the SQL group and is followed by order. Its equivalent
implementation in SparkR is also very similar to the dplyr example. Look at the following
example. Pay attention to the method names and compare their positioning with respect to
the preceding dplyr example:

> //Open SparkR shell and create df using iris dataset

Extending Spark with SparkR

[218]

> collect(arrange(summarize(groupBy(df,df$Species), + avg_sepal_length
= avg(df$Sepal_Length), + avg_sepal_width = avg(df$Sepal_Width)), +
"avg_sepal_length", decreasing = TRUE))
 Species avg_sepal_length avg_sepal_width
1 setosa 5.006 3.428
2 versicolor 5.936 2.770
3 virginica 6.588 2.974

SparkR is intended to be as close to the existing R API as possible. So, the method names
look very similar to dplyr methods. For example, look at the example which has groupBy
whereas dplyr has group_by. SparkR supports redundant function names. For example, it
has group_by as well as groupBy to cater to developers coming from different
programming environments. The method names in dplyr and SparkR are again very close
to the SQL keyword GROUP BY. But the sequence of these method calls is not the same. The
example also showed an additional step of converting a Spark DataFrame to an R
data.frame using collect. The methods are arranged inside out, in the sense that first
the data is grouped, then summarized, and then arranged. This is understandable because
in SparkR, the DataFrame created in the innermost method becomes the argument for its
immediate predecessor and so on.

SQL operations
If you are not very happy with the syntax in the preceding example, you may want to try
writing an SQL string as shown, which does exactly the same as the preceding but uses the
good old SQL syntax:

> //Register the Spark DataFrame as a table/View
> createOrReplaceTempView(df,"iris_vw")
//Look at the table structure and some rows
> collect(sql(sqlContext, "SELECT * FROM iris_tbl LIMIT 5"))
 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
> //Try out the above example using SQL syntax
> collect(sql(sqlContext, "SELECT Species, avg(Sepal_Length)
avg_sepal_length, avg(Sepal_Width) avg_sepal_width FROM iris_tbl
GROUP BY Species ORDER BY avg_sepal_length desc"))

 Species avg_sepal_length avg_sepal_width

1 virginica 6.588 2.974

Extending Spark with SparkR

[219]

2 versicolor 5.936 2.770
3 setosa 5.006 3.428

The preceding example looks like the most natural way of implementing the operation on
hand, if you are used to fetching data from RDBMS tables. But how are we doing this? The
first statement tells Spark to register a temporary table (or, as the name suggests, a view, a
logical abstraction of a table). This is not exactly the same as a database table. It is
temporary in the sense that it is destroyed when the SparkSession object is destroyed. You
are not explicitly writing data into any RDBMS datastore (you have to use SaveAsTable for
that). But when once you register a Spark DataFrame as a temporary table, you are free to
use SQL syntax to operate on that DataFrame. The next statement is a basic SELECT
statement that displays column names followed by five rows, as dictated by the LIMIT
keyword. The next SQL statement created a Spark DataFrame containing a Species column
followed by two average columns sorted on the average sepal length. This DataFrame is in
turn collected as an R data.frame by using collect. The final result is exactly the same as
the preceding example. You are free to use either syntax. For more information and
examples, check out the SQL section in Chapter 4, Unified Data Access.

Set operations
The usual set operations, such as union, intersection, and minus, are available out of
the box in SparkR. In fact, when SparkR is loaded, the warning message shows intersect
as one of the masked functions. The following examples are based on beaver datasets:

> //Create b1 and b2 DataFrames using beaver1 and beaver2 datasets
> b1 <- createDataFrame(beaver1)
> b2 <- createDataFrame(beaver2)
//Get individual and total counts
> > c(nrow(b1), nrow(b2), nrow(b1) + nrow(b2))
[1] 114 100 214
//Try adding both data frames using union operation
> nrow(unionAll(b1,b2))
[1] 214 //Sum of two datsets
> //intersect example
//Remove the first column (day) and find intersection
showDF(intersect(b1[,-c(1)],b2[,-c(1)]))

+------+-----+-----+
| time| temp|activ|
+------+-----+-----+
|1100.0|36.89| 0.0|
+------+-----+-----+
> //except (minus or A-B) is covered in machine learning examples

Extending Spark with SparkR

[220]

Merging DataFrames
The next example illustrates the joining of two DataFrames using the merge command. The
first part of the example shows the R implementation and the next part shows the SparkR
implementation:

> //Example illustrating data frames merging using R (Not SparkR)
> //Create two data frames with a matching column
//Products df with two rows and two columns
> products_df <- data.frame(rbind(c(101,"Product 1"),
 c(102,"Product 2")))
> names(products_df) <- c("Prod_Id","Product")
> products_df
 Prod_Id Product
1 101 Product 1
2 102 Product 2

//Sales df with sales for each product and month 24x3
> sales_df <- data.frame(cbind(rep(101:102,each=12), month.abb,
 sample(1:10,24,replace=T)*10))
> names(sales_df) <- c("Prod_Id","Month","Sales")

//Look at first 2 and last 2 rows in the sales_df
> sales_df[c(1,2,23,24),]
 Prod_Id Month Sales
1 101 Jan 60
2 101 Feb 40
23 102 Nov 20
24 102 Dec 100

> //merge the data frames and examine the data
> total_df <- merge(products_df,sales_df)
//Look at the column names
> colnames(total_df)
> [1] "Prod_Id" "Product" "Month" "Sales"

//Look at first 2 and last 2 rows in the total_df
> total_df[c(1,2,23,24),]
 Prod_Id Product Month Sales
1 101 Product 1 Jan 10
2 101 Product 1 Feb 20
23 102 Product 2 Nov 60
24 102 Product 2 Dec 10

Extending Spark with SparkR

[221]

The preceding piece of code completely relies on R's base package. We have used the same
names for join columns in both DataFrames for simplicity. The next piece of code
demonstrates the same example using SparkR. It looks similar to the preceding code so look
carefully for the differences:

> //Example illustrating data frames merging using SparkR
> //Create an R data frame first and then pass it on to Spark
> //Watch out the base prefix for masked rbind function
> products_df <- createDataFrame(data.frame(
 base::rbind(c(101,"Product 1"),
 c(102,"Product 2"))))
> names(products_df) <- c("Prod_Id","Product")
>showDF(products_df)
+-------+---------+
|Prod_Id| Product|
+-------+---------+
| 101|Product 1|
| 102|Product 2|
+-------+---------+
> //Create Sales data frame
> //Notice the as.data.frame similar to other R functions
> //No cbind in SparkR so no need for base:: prefix
> sales_df <- as.DataFrame(data.frame(cbind(
 "Prod_Id" = rep(101:102,each=12),
"Month" = month.abb,
"Sales" = base::sample(1:10,24,replace=T)*10)))
> //Check sales dataframe dimensions and some random rows
> dim(sales_df)
[1] 24 3
> collect(sample(sales_df,FALSE,0.20))
 Prod_Id Month Sales
1 101 Sep 50
2 101 Nov 80
3 102 Jan 90
4 102 Jul 100
5 102 Nov 20
6 102 Dec 50
> //Merge the data frames. The following merge is from SparkR library
> total_df <- merge(products_df,sales_df)
// You may try join function for the same purpose
//Look at the columns in total_df
> total_df
SparkDataFrame[Prod_Id_x:string, Product:string, Prod_Id_y:string,
Month:string, Sales:string]
//Drop duplicate column
> total_df$Prod_Id_y <- NULL
> head(total_df)
 Prod_Id_x Product Month Sales

Extending Spark with SparkR

[222]

1 101 Product 1 Jan 40
2 101 Product 1 Feb 10
3 101 Product 1 Mar 90
4 101 Product 1 Apr 10
5 101 Product 1 May 50
6 101 Product 1 Jun 70
> //Note: As of Spark 2.0 version, SparkR does not support
 row sub-setting

You may want to play with different types of joins, such as left outer join and right outer
join, or different column names to get a better understanding of this function.

Machine learning
SparkR provides wrappers on existing MLLib functions. R formulas are implemented as
MLLib feature transformers. A transformer is an ML pipeline (spark.ml) stage that takes a
DataFrame as input and produces another DataFrame as output, which generally contains
some appended columns. Feature transformers are a type of transformers that convert input
columns to feature vectors and these feature vectors are appended to the source DataFrame.
For example, in linear regression, string input columns are one-hot encoded and numeric
values are converted to doubles. A label column will be appended (if not there in the data
frame already) as a replica of the response variable.

In this section, we cover example code for the Naive Bayes and Gaussian GLM models. We
do not explain the models as such or the summaries they produce. Instead, we go straight
away to how it can be done using SparkR.

The Naive Bayes model
The NaÃ¯ve Bayes model is an intuitively simple model that works with categorical data.
We'll be training a sample dataset using the NaÃ¯ve Bayes model. We will not explain how
the model works but move straight away to training the model using SparkR. If you want
more information, please refer to Chapter 6, Machine Learning.

This example takes a dataset with the average marks and attendance of twenty students. In
fact, this dataset has already been introduced in Chapter 6, Machine Learning, for training
ensembles. However, let us revisit its contents.

https://cdp.packtpub.com/sparkfordatascience/Chapter%206

Extending Spark with SparkR

[223]

The students are awarded Pass or Fail based on a set of well-defined rules. Two students
with IDs 1009 and 1020 are granted Pass, even though they would have failed otherwise.
Even though we do not provide the actual rules to the model, we expect the model to
predict these two students' result as Fail. Here are the Pass / Fail criteria:

Marks < 40 => Fail
Poor attendance => Fail
Marks above 40 and attendance Full => Pass
Marks > 60 and attendance at least Enough => PassThe following is an example to
train Naive Bayes model:

//Example to train NaÃ¯ve Bayes model

//Read file
> myFile <- read.csv("../work/StudentsPassFail.csv") //R data.frame
> df <- createDataFrame(myFile) //sparkDataFrame
//Look at the data
> showDF(df,4)
+---------+---------+----------+------+
|StudentId|Avg_Marks|Attendance|Result|
+---------+---------+----------+------+
| 1001| 48.0| Full| Pass|
| 1002| 21.0| Enough| Fail|
| 1003| 24.0| Enough| Fail|
| 1004| 4.0| Poor| Fail|
+---------+---------+----------+------+

//Make three buckets out of Avg_marks
// A >60; 40 < B < 60; C > 60
> df$marks_bkt <- otherwise(when(df$Avg_marks < 40, "C"),
 when(df$Avg_marks > 60, "A"))
> df$marks_bkt <- otherwise(when(df$Avg_marks < 40, "C"),
 when(df$Avg_marks > 60, "A"))
> df <- fillna(df,"B",cols="marks_bkt")
//Split train and test
> trainDF <- sample(df,TRUE,0.7)
> testDF <- except(df, trainDF)

//Build model by supplying RFormula, training data
> model <- spark.naiveBayes(Result ~ Attendance + marks_bkt, data =
trainDF)
> summary(model)
$apriori
 Fail Pass
[1,] 0.6956522 0.3043478

Extending Spark with SparkR

[224]

$tables
 Attendance_Poor Attendance_Full marks_bkt_C marks_bkt_B
Fail 0.5882353 0.1764706 0.5882353 0.2941176
Pass 0.125 0.875 0.125 0.625

//Run predictions on test data
> predictions <- predict(model, newData= testDF)
//Examine results
> showDF(predictions[predictions$Result != predictions$prediction,
 c("StudentId","Attendance","Avg_Marks","marks_bkt",
"Result","prediction")])
+---------+----------+---------+---------+------+----------+
|StudentId|Attendance|Avg_Marks|marks_bkt|Result|prediction|
+---------+----------+---------+---------+------+----------+
| 1010| Full| 19.0| C| Fail| Pass|
| 1019| Enough| 45.0| B| Fail| Pass|
| 1014| Full| 12.0| C| Fail| Pass|
+---------+----------+---------+---------+------+----------+
//Note that the predictions are not exactly what we anticipate but models
are usually not 100% accurate

The Gaussian GLM model
In this example, we try to predict temperature based on the values of ozone, solar radiation,
and wind:

> //Example illustrating Gaussian GLM model using SparkR
> a <- createDataFrame(airquality)
//Remove rows with missing values
> b <- na.omit(a)
> //Inspect the dropped rows with missing values
> head(except(a,b),2) //MINUS set operation
 Ozone Solar_R Wind Temp Month Day
1 NA 186 9.2 84 6 4
2 NA 291 14.9 91 7 14

> //Prepare train data and test data
traindata <- sample(b,FALSE,0.8) //Not base::sample
testdata <- except(b,traindata)

> //Build model
> model <- glm(Temp ~ Ozone + Solar_R + Wind,
 data = traindata, family = "gaussian")
> // Get predictions
> predictions <- predict(model, newData = testdata)
> head(predictions[,c(predictions$Temp, predictions$prediction)],

Extending Spark with SparkR

[225]

 5)
 Temp prediction
1 90 81.84338
2 79 80.99255
3 88 85.25601
4 87 76.99957
5 76 71.75683

Summary
To date, SparkR does not support all algorithms available in Spark, but active development
is happening to bridge the gap. The Spark 2.0 release has improved algorithm coverage,
including NaÃ¯ve Bayes, k-means clustering, and survival regression. Check out the latest
documentation for the supported algorithms. More work is underway in bringing out a
CRAN release of SparkR, with better integration with R packages and Spark packages, and
better RFormula support.

References
SparkR: The Past, Present and Future by Shivaram
Venkataraman: http://shivaram.org/talks/sparkr-summit-2015.pdf
Enabling Exploratory Data Science with Spark and R by Shivaram Venkataraman and
Hossein Falaki: h t t p : / / w w w . s l i d e s h a r e . n e t / d a t a b r i c k s / e n a b l i n g - e x p l o r a t o r
y - d a t a - s c i e n c e - w i t h - s p a r k - a n d - r

SparkR: Scaling R Programs with Spark by Shivaram Venkataraman and others: h t t p :
/ / s h i v a r a m . o r g / p u b l i c a t i o n s / s p a r k r - s i g m o d . p d f

Recent Developments in SparkR for Advanced Analytics by Xiangrui Meng:
http://files.meetup.com/4439192/Recent%20Development%20in%20SparkR%20for
%20Advanced%20Analytics.pdf
To understand RFormula, try out the following links:

h t t p s : / / s t a t . e t h z . c h / R - m a n u a l / R - d e v e l / l i b r a r y / s t a t s / h t m l
/ f o r m u l a . h t m l

h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / m l - f e a t u r e s . h t m l # r f o
r m u l a

http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://www.slideshare.net/databricks/enabling-exploratory-data-science-with-spark-and-r
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
http://shivaram.org/publications/sparkr-sigmod.pdf
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/formula.html
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula
http://spark.apache.org/docs/latest/ml-features.html#rformula

8
Analyzing Unstructured Data

In this Big Data era, the proliferation of unstructured data is overwhelming. Numerous
methods such as data mining, Natural Language Processing (NLP), information retrieval,
and so on, exist for analyzing unstructured data. Due to the rapid growth of unstructured
data in all kinds of businesses, scalable solutions have become the need of the hour. Apache
Spark is equipped with out of the box algorithms for text analytics, and it also supports
custom development of algorithms that are not available by default.

In the previous chapter we have shown how SparkR, an R API to Spark for R programmers
can harness the power of Spark, without learning a new language . In this chapter, we are
going to step into a whole new dimension and explore algorithms and techniques to extract
information out of unstructured data by leveraging Spark.

As a prerequisite for this chapter, a basic understanding of programming in Python or Scala
and an overall understanding of text analytics and machine learning are nice to have.
However, we have covered some theoretical basics with the right set of practical examples
to make those more comprehendible and easy to implement. The topics covered in this
chapter are:

Sources of unstructured data
Processing unstructured data

Count vectorizer
TF-IDF
Stop-word removal
Normalization/scaling
Word2Vec
n-gram modeling

Analyzing Unstructured Data

[227]

Text classification
Naive Bayes classifier

Text clustering
K-means

Dimensionality reduction
Singular value decomposition
Principal component analysis

Summary

Sources of unstructured data
Data analytics has come very far since the spreadsheets and the BI tools in the eighties and
nineties. Tremendous improvements in computing power, sophisticated algorithms, and an
open source culture fueled unprecedented growth in data analytics, as well as in other
fields. These advances in technologies paved the way for new opportunities and new
challenges. Businesses started looking at generating insights from hitherto impossible to
handle data sources such as internal memos, emails, customer satisfaction surveys, and the
like. Data analytics now encompass this unstructured, usually text based data along with
traditional rows and columns of data. Between the highly structured data stored in RDBMS
table and completely unstructured plain text, we have semi-structured data sources in
NoSQL data stores, XML or JSON documents, and graph or network data sources. As per
current estimates, unstructured data forms about 80 percent of enterprise data and is
growing rapidly. Satellite images, atmospheric data, social networks, blogs and other web
pages, patient records and physicians' notes, companies' internal communications, and so
on – all these combined are just a subset of unstructured data sources.

We have already been seeing successful data products that leverage unstructured data
along with structured data. Some of the companies leverage the power of social networks to
provide actionable insights to their customers. New fields such as Sentiment Analysis and
Multimedia Analytics are emerging to draw insights from unstructured data. However,
analyzing unstructured data is still a daunting feat. For example, contemporary text
analytics tools and techniques cannot identify sarcasm. However, the potential benefits
undoubtedly outweigh the limitations.

Analyzing Unstructured Data

[228]

Processing unstructured data
Unstructured data does not lend itself to most of the programming tasks. It has to be
processed in various different ways as applicable, to be able to serve as an input to any
machine learning algorithm or for visual analysis. Broadly, the unstructured data analysis
can be viewed as a series of steps as shown in the following diagram:

Data pre-processing is the most vital step in any unstructured data analysis. Fortunately,
there have been several proven techniques accumulated over time that come in handy.
Spark offers most of these techniques out of the box through the ml.features package.
Most of the techniques aim to convert text data to concise numerical vectors that can be
easily consumed by machine learning algorithms. Developers should understand the
specific requirements of their organizations to arrive at the best pre-processing workflow.
Remember that better, relevant data is the key to generate better insights.

Let us explore a couple of examples that process raw text and convert them into data
frames. First example takes some text as input and extracts all date-like strings whereas the
second example extracts tags from twitter text. First example is just a warm-up, using a
simple, regex (regular expression) tokenizer feature transformer without using any spark-
specific libraries. It also draws your attention to the possibility of misinterpretation. For
example, a product code of the form 1-11-1111 may be interpreted as a date. The second
example illustrates a non-trivial, multi-step extraction process that resulted in just the
required tags. User defined functions (udf) and ML pipelines come in handy in developing
such multi-step extraction processes. Remaining part of this section describes some more
handy tools supplied out of box in apache Spark.

Analyzing Unstructured Data

[229]

Example-1: Extract date like strings from text

Scala:

scala> import org.apache.spark.ml.feature.RegexTokenizer
import org.apache.spark.ml.feature.RegexTokenizer
scala> val date_pattern: String = "\\d{1,4}[/ -]\\d{1,4}[/ -]\\d{1,4}"
date_pattern: String = \d{1,4}[/ -]\d{1,4}[/ -]\d{1,4}
scala> val textDF = spark.createDataFrame(Seq(
 (1, "Hello 1996-12-12 this 1-21-1111 is a 18-9-96 text "),
 (2, "string with dates in different 01/02/89 formats"))).
 toDF("LineNo","Text")
textDF: org.apache.spark.sql.DataFrame = [LineNo: int, Text: string]
scala> val date_regex = new RegexTokenizer().
 setInputCol("Text").setOutputCol("dateStr").
 setPattern(date_pattern).setGaps(false)
date_regex: org.apache.spark.ml.feature.RegexTokenizer =
regexTok_acdbca6d1c4c
scala> date_regex.transform(textDF).select("dateStr").show(false)
+--------------------------------+
|dateStr |
+--------------------------------+
|[1996-12-12, 1-21-1111, 18-9-96]|
|[01/02/89] |
+--------------------------------+

Python:

// Example-1: Extract date like strings from text
>>> from pyspark.ml.feature import RegexTokenizer
>>> date_pattern = "\\d{1,4}[/ -]\\d{1,4}[/ -]\\d{1,4}"
>>> textDF = spark.createDataFrame([
 [1, "Hello 1996-12-12 this 1-21-1111 is a 18-9-96 text "],
 [2, "string with dates in different 01/02/89 formats"]]).toDF(
 "LineNo","Text")
>>> date_regex = RegexTokenizer(inputCol="Text",outputCol="dateStr",
 gaps=False, pattern=date_pattern)
>>> date_regex.transform(textDF).select("dateStr").show(5,False)
+--------------------------------+
|dateStr |
+--------------------------------+
|[1996-12-12, 1-21-1111, 18-9-96]|
|[01/02/89] |
+--------------------------------+

Analyzing Unstructured Data

[230]

The preceding example defined a regular expression pattern to recognize date strings. The
regex pattern and the sample text DataFrame are passed to the RegexTokenizer to extract
matching, date like strings. The gaps=False option picks matching strings and a value of
False would use the given pattern as a separator. Note that 1-21-1111, which is
obviously not a date, is also selected.

Next example extracts tags from twitter text and identifies most popular tags. You can use
the same approach to collect hash (#) tags too.

This example uses a built in function explode, which converts a single row with an array of
values into multiple rows, one value per array element.

Example-2: Extract tags from twitter “text”

Scala:

//Step1: Load text containing @ from source file
scala> val path = "<Your path>/tweets.json"
path: String = <Your path>/tweets.json
scala> val raw_df = spark.read.text(path).filter($"value".contains("@"))
raw_df: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [value:
string]
//Step2: Split the text to words and filter out non-tag words
scala> val df1 = raw_df.select(explode(split('value, " ")).as("word")).
 filter($"word".startsWith("@"))
df1: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [word:
string]
//Step3: compute tag-wise counts and report top 5
scala> df1.groupBy($"word").agg(count($"word")).
 orderBy($"count(word)".desc).show(5)
+------------+-----------
+
| word|count(word)|
+------------+-----------+
@ApacheSpark	15
@SSKapci	9
@databricks:	4
@hadoop	4
@ApacheApex	4
+------------+-----------+

Python:

>> from pyspark.sql.functions import explode, split
//Step1: Load text containing @ from source file
>>> path ="<Your path>/tweets.json"
>>> raw_df1 = spark.read.text(path)

Analyzing Unstructured Data

[231]

>>> raw_df = raw_df1.where("value like '%@%'")
>>>
//Step2: Split the text to words and filter out non-tag words
>>> df = raw_df.select(explode(split("value"," ")))
>>> df1 = df.where("col like '@%'").toDF("word")
>>>
//Step3: compute tag-wise counts and report top 5
>>> df1.groupBy("word").count().sort(
 "count",ascending=False).show(5)
+------------+-----
+
| word|count|
+------------+-----+
@ApacheSpark	15
@SSKapci	9
@databricks:	4
@ApacheApex	4
@hadoop	4
+------------+-----+

Count vectorizer
Count vectorizer extracts vocabulary (tokens) from documents and generates a
CountVectorizerModel model when a dictionary is not available priori. As the name
indicates, a text document is converted into a vector of tokens and counts. The model
produces a sparse representation of the documents over the vocabulary.

You can fine tune the behavior to limit the vocabulary size, minimum token count, and
much more as applicable in your business case.

//Example 3: Count Vectorizer example

Scala

scala> import org.apache.spark.ml.feature.{CountVectorizer,
CountVectorizerModel}
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel}
scala> import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.DataFrame
scala> import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.linalg.Vector
scala> val df: DataFrame = spark.createDataFrame(Seq(
 (0, Array("ant", "bat", "cat", "dog", "eel")),
 (1, Array("dog","bat", "ant", "bat", "cat"))
)).toDF("id", "words")
df: org.apache.spark.sql.DataFrame = [id: int, words: array<string>]

Analyzing Unstructured Data

[232]

scala>
// Fit a CountVectorizerModel from the corpus
// Minimum occurrences (DF) is 2 and pick 10 top words(vocabsize) only
scala> val cvModel: CountVectorizerModel = new CountVectorizer().
 setInputCol("words").setOutputCol("features").
 setMinDF(2).setVocabSize(10).fit(df)
cvModel: org.apache.spark.ml.feature.CountVectorizerModel =
cntVec_7e79157ba561
// Check vocabulary. Words are arranged as per frequency
// eel is dropped because it is below minDF = 2
scala> cvModel.vocabulary
res6: Array[String] = Array(bat, dog, cat, ant)
//Apply the model on document
scala> val cvDF: DataFrame = cvModel.transform(df)
cvDF: org.apache.spark.sql.DataFrame = [id: int, words: array<string> ... 1
more field]
//Check the word count
scala> cvDF.select("features").collect().foreach(row =>
println(row(0).asInstanceOf[Vector].toDense))

[1.0,1.0,1.0,1.0]
[2.0,1.0,1.0,1.0]

Python:

>>> from pyspark.ml.feature import CountVectorizer,CountVectorizerModel
>>> from pyspark.ml.linalg import Vector
>>>
// Define source DataFrame
>>> df = spark.createDataFrame([
 [0, ["ant", "bat", "cat", "dog", "eel"]],
 [1, ["dog","bat", "ant", "bat", "cat"]]
]).toDF("id", "words")
>>>
// Fit a CountVectorizerModel from the corpus
// Minimum occorrences (DF) is 2 and pick 10 top words(vocabsize) only
>>> cvModel = CountVectorizer(inputCol="words", outputCol="features",
 minDF = 2, vocabSize = 10).fit(df)
>>>
// Check vocabulary. Words are arranged as per frequency
// eel is dropped because it is below minDF = 2
>>> cvModel.vocabulary
[u'bat', u'ant', u'cat', u'dog']
//Apply the model on document
>>> cvDF = cvModel.transform(df)
//Check the word count
>>> cvDF.show(2,False)
+---+-------------------------+-------------------------------+

Analyzing Unstructured Data

[233]

|id |words |features |
+---+-------------------------+-------------------------------+
|0 |[ant, bat, cat, dog, eel]|(4,[0,1,2,3],[1.0,1.0,1.0,1.0])|
|1 |[dog, bat, ant, bat, cat]|(4,[0,1,2,3],[2.0,1.0,1.0,1.0])|
+---+-------------------------+-------------------------------+

Input:

 |id | text
 +---+-------------------------+-------------------------------+
 |0 | "ant", "bat", "cat", "dog", "eel"
 |1 | "dog","bat", "ant", "bat", "cat"

Output:

id	text	Vector
0 | "ant", "bat", "cat", "dog", "eel" |[1.0,1.0,1.0,1.0]
1 | "dog","bat", "ant", "bat", "cat" |[2.0,1.0,1.0,1.0]

The preceding example demonstrates how CountVectorizer works as an estimator to
extract the vocabulary and generate a CountVectorizerModel. Note that the features
vector order corresponds to vocabulary and not the input sequence. Let's also look at how
the same can be achieved by building a dictionary a-priori. However, keep in mind that
they have their own use cases.

Example 4: define CountVectorizerModel with a-priori vocabulary

Scala:

// Example 4: define CountVectorizerModel with a-priori vocabulary
scala> val cvm: CountVectorizerModel = new CountVectorizerModel(
 Array("ant", "bat", "cat")).
 setInputCol("words").setOutputCol("features")
cvm: org.apache.spark.ml.feature.CountVectorizerModel =
cntVecModel_ecbb8e1778d5

//Apply on the same data. Feature order corresponds to a-priory vocabulary
order
scala> cvm.transform(df).select("features").collect().foreach(row =>
 println(row(0).asInstanceOf[Vector].toDense))
[1.0,1.0,1.0]
[1.0,2.0,1.0]

Analyzing Unstructured Data

[234]

Python:

Not available as of Spark 2.0.0

TF-IDF
The Term Frequency-Inverse Document Frequency (TF-IDF) is perhaps one of the most
popular measures in text analytics. This metric indicates the importance of a given term in a
given document within a set of documents. This consists two measurements, Term
Frequency (TF) and Inverse Document Frequency (IDF). Let us discuss them one by one
and then see their combined effect.

TF is a measure of the relative importance of a term in a document, which is usually the
frequency of that term divided by the number of terms in that document. Consider a text
document containing 100 words wherein the word apple appears eight times. The TF for
apple would be TF = (8 / 100) = 0.08. So, the more frequently a term occurs in a document, the
larger is its TF coefficient.

IDF is a measure of the importance of a particular term in the entire collection of
documents, that is, how infrequently the word occurs across all the documents. The
importance of a term is inversely proportional to its frequency. Spark provides two separate
methods to perform these tasks. Assume we have 6 million documents and the word apple
appears in 6000 of these. Then, IDF is calculated as IDF = Log(6,000,000 / 6,000) = 3. If you
observe this carefully, the lower the denominator, the higher is the IDF value. This means
that the fewer the number of documents containing a particular word, the higher would be
its importance.

Thus, the TF-IDF score would be TF * IDF = 0.08 * 3 = 0.24. Note that it would penalize the
words that are more frequent across documents and less important, such as the, this, a, and
so on, and give more weight to the ones that are important.

Analyzing Unstructured Data

[235]

In Spark, TF is implemented as HashingTF. It takes a sequence of terms (often the output of
a tokenizer) and produces a fixed length features vector. It performs feature hashing to
convert the terms into fixed length indices. IDF then takes that features vector (the output of
HashingTF) as input and scales it based on the term frequency in the set of documents. The
previous chapter has an example of this transformation.

Stop-word removal
Common words such as is, was, and the are called stop-words. They do not usually add
value to analysis and should be dropped during the data preparation step. Spark provides
StopWordsRemover transformer, which does just that. It takes a sequence of tokens as a
series of string inputs, such as the output of a tokenizer, and removes all the stop words.
Spark has a stop-words list by default that you may override by providing your own stop-
words list as a parameter. You may optionally turn on caseSensitive match which is off
by default.

Example 5: Stopword Remover

Scala:

scala> import org.apache.spark.ml.feature.StopWordsRemover
import org.apache.spark.ml.feature.StopWordsRemover
scala> import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.DataFrame
scala> import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.linalg.Vector
scala> val rawdataDF = spark.createDataFrame(Seq(
 (0, Array("I", "ate", "the", "cake")),
 (1, Array("John ", "had", "a", " tennis", "racquet")))).
 toDF("id","raw_text")
rawdataDF: org.apache.spark.sql.DataFrame = [id: int, raw_text:
array<string>]
scala> val remover = new StopWordsRemover().setInputCol("raw_text").
 setOutputCol("processed_text")
remover: org.apache.spark.ml.feature.StopWordsRemover =
stopWords_55edbac88edb
scala> remover.transform(rawdataDF).show(truncate=false)
+---+---------------------------------+-------------------------+
|id |raw_text |processed_text |
+---+---------------------------------+-------------------------+
|0 |[I, ate, the, cake] |[ate, cake] |
|1 |[John , had, a, tennis, racquet]|[John , tennis, racquet]|
+---+---------------------------------+-------------------------+

Analyzing Unstructured Data

[236]

Python:

>>> from pyspark.ml.feature import StopWordsRemover
>>> RawData = sqlContext.createDataFrame([
 (0, ["I", "ate", "the", "cake"]),
 (1, ["John ", "had", "a", " tennis", "racquet"])
], ["id", "raw_text"])
>>>
>>> remover = StopWordsRemover(inputCol="raw_text",
 outputCol="processed_text")
>>> remover.transform(RawData).show(truncate=False)
+---+---------------------------------+-------------------------+
|id |raw_text |processed_text |
+---+---------------------------------+-------------------------+
|0 |[I, ate, the, cake] |[ate, cake] |
|1 |[John , had, a, tennis, racquet]|[John , tennis, racquet]|
+---+---------------------------------+-------------------------+

Assume that we have the following DataFrame with columns id and raw_text:

id	raw_text
 0 | [I, ate, the, cake]
 1 | [John, had, a, tennis, racquet]

After applying StopWordsRemover with raw_text as the input column and
processed_text as the output column for the preceding example, we should get the
following output:

id	raw_text	processed_text
 0 | [I, ate, the, cake] | [ate, cake]
 1 |[John, had, a, tennis, racquet] |[John, tennis, racquet]

Analyzing Unstructured Data

[237]

Normalization/scaling
Normalization is a common and preliminary step in data preparation. Most of the machine
learning algorithms work better when all features are on the same scale. For example, if
there are two features where the value of one is about 100 times greater than the other,
bringing them to the same scale reflects meaningful relative activity between the two
variables. Any non-numeric values, such as high, medium, and low, should ideally be
converted to appropriate numerical quantification as a best practice. However, you need to
be careful in doing so as it may require domain expertise. For example, if you assign 3, 2,
and 1 for high, medium, and low respectively, then it should be checked that these three
units are equidistant from each other.

The common methods of feature normalization are scaling, mean subtraction, and feature
standardization, just to name a few. In scaling, each numerical feature vector is rescaled such
that its value range is between -1 to +1 or to 1 or something similar. In mean subtraction,
you compute mean of a numerical feature vector and subtract that mean from each of the
values. We are interested in the relative deflection from the mean, while the absolute value
could be immaterial. Feature standardization refers to setting the data to zero mean and
unit (1) variance.

Spark provides a Normalizer feature transformer to normalize each vector to have unit
norm; StandardScaler to have unit norm and zero mean; and MinMaxScaler to rescale
each feature to a specific range of values. By default, min and max are 0 and 1 but you may
set the value parameters yourself as per the data requirement.

Word2Vec
The Word2Vec is a type of PCA (you will find out more about this shortly) that takes a
sequence of words and produces a map (of string, vector). The string is the word and the
vector is a unique fixed size vector. The resulting word vector representation is useful in
many machine learning and NLP applications, such as named entity recognition and
tagging. Let us look at an example.

Example 6: Word2Vec

Scala

scala> import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.ml.feature.Word2Vec

//Step1: Load text file and split to words
scala> val path = "<Your path>/RobertFrost.txt"

Analyzing Unstructured Data

[238]

path: String = <Your path>/RobertFrost.txt
scala> val raw_text = spark.read.text(path).select(
 split('value, " ") as "words")
raw_text: org.apache.spark.sql.DataFrame = [words: array<string>]

//Step2: Prepare features vector of size 4
scala> val resultDF = new Word2Vec().setInputCol("words").
 setOutputCol("features").setVectorSize(4).
 setMinCount(2).fit(raw_text).transform(raw_text)
resultDF: org.apache.spark.sql.DataFrame = [words: array<string>, features:
vector]

//Examine results
scala> resultDF.show(5)
+--------------------+--------------------+
| words| features|
+--------------------+--------------------+
[Whose, woods, th...	[-0.0209098898340...
[His, house, is, ...	[-0.0013444167044...
[He, will, not, s...	[-0.0058525378408...
[To, watch, his, ...	[-0.0189630933296...
[My, little, hors...	[-0.0084691265597...
+--------------------+--------------------+

Python:

>>> from pyspark.ml.feature import Word2Vec
>>> from pyspark.sql.functions import explode, split
>>>

//Step1: Load text file and split to words
>>> path = "<Your path>/RobertFrost.txt"
>>> raw_text = spark.read.text(path).select(
 split("value"," ")).toDF("words")

//Step2: Prepare features vector of size 4
>>> resultDF = Word2Vec(inputCol="words",outputCol="features",
 vectorSize=4, minCount=2).fit(
 raw_text).transform(raw_text)

//Examine results
scala> resultDF.show(5)
+--------------------+--------------------+
| words| features|
+--------------------+--------------------+
[Whose, woods, th...	[-0.0209098898340...
[His, house, is, ...	[-0.0013444167044...
[He, will, not, s...	[-0.0058525378408...

Analyzing Unstructured Data

[239]

|[To, watch, his, ...|[-0.0189630933296...|
|[My, little, hors...|[-0.0084691265597...|
+--------------------+--------------------+

n-gram modelling
An n-gram is a contiguous sequence of n items from a given sequence of text or speech. An
n-gram of size 1 is referred to as a unigram, size 2 is a bigram, and size 3 is a trigram.
Alternatively, they can be referred to by the value of n, for example, four-gram, five-gram,
and so on. Let us take a look at an example to understand the possible outcomes of this
model:

input	1-gram sequence	2-gram sequence	3-gram sequence
 apple | a,p,p,l,e | ap,pp,pl,le | app,ppl,ple

This is an example of words to n-gram letters. The same is the case for sentence (or
tokenized words) to n-gram words. For example, the 2-gram equivalent of the sentence Kids
love to eat chocolates is:

'Kids love', 'love to', 'to eat', 'eat chocolates'.

There are various applications of n-gram modelling in text mining and NLP. One of the
examples is predicting the probability of each word occurring given a prior context
(conditional probability).

In Spark, NGram is a feature transformer that converts the input array (for example, the
output of a Tokenizer) of strings into an array of n-grams. Null values in the input array are
ignored by default. It returns an array of n-grams where each n-gram is represented by a
space-separated string of words.

Example 7: NGram

Scala

scala> import org.apache.spark.ml.feature.NGram
import org.apache.spark.ml.feature.NGram
scala> val wordDF = spark.createDataFrame(Seq(
 (0, Array("Hi", "I", "am", "a", "Scientist")),
 (1, Array("I", "am", "just", "learning", "Spark")),
 (2, Array("Coding", "in", "Scala", "is", "easy"))
)).toDF("label", "words")

//Create an ngram model with 3 words length (default is 2)
scala> val ngramModel = new NGram().setInputCol(

Analyzing Unstructured Data

[240]

 "words").setOutputCol("ngrams").setN(3)
ngramModel: org.apache.spark.ml.feature.NGram = ngram_dc50209cf693

//Apply on input data frame
scala> ngramModel.transform(wordDF).select("ngrams").show(false)
+--+
|ngrams |
+--+
|[Hi I am, I am a, am a Scientist] |
|[I am just, am just learning, just learning Spark]|
|[Coding in Scala, in Scala is, Scala is easy] |
+--+

//Apply the model on another dataframe, Word2Vec raw_text
scala>ngramModel.transform(raw_text).select("ngrams").take(1).foreach(print
ln)
[WrappedArray(Whose woods these, woods these are, these are I, are I think,
I think I, think I know.)]

Python:

>>> from pyspark.ml.feature import NGram
>>> wordDF = spark.createDataFrame([
 [0, ["Hi", "I", "am", "a", "Scientist"]],
 [1, ["I", "am", "just", "learning", "Spark"]],
 [2, ["Coding", "in", "Scala", "is", "easy"]]
]).toDF("label", "words")

//Create an ngram model with 3 words length (default is 2)
>>> ngramModel = NGram(inputCol="words", outputCol= "ngrams",n=3)
>>>

//Apply on input data frame
>>> ngramModel.transform(wordDF).select("ngrams").show(4,False)
+--+
|ngrams |
+--+
|[Hi I am, I am a, am a Scientist] |
|[I am just, am just learning, just learning Spark]|
|[Coding in Scala, in Scala is, Scala is easy] |
+--+

//Apply the model on another dataframe from Word2Vec example
>>> ngramModel.transform(resultDF).select("ngrams").take(1)
[Row(ngrams=[u'Whose woods these', u'woods these are', u'these are I',
u'are I think', u'I think I', u'think I know.'])]

Analyzing Unstructured Data

[241]

Text classification
Text classification is about assigning a topic, subject category, genre, or something similar to
the text blob. For example, spam filters assign spam or not spam to an email.

Apache Spark supports various classifiers through MLlib and ML packages. The SVM
classifier and Naive Bayes classifier are popular classifiers, and the former was already
covered in the previous chapter. Let's take a look at the latter now.

Naive Bayes classifier
The Naive Bayes (NB) classifier is a multiclass probabilistic classifier and is one of the best
classification algorithms. It assumes strong independence between every pair of features. It
computes the conditional probability distribution of each feature and a given label, and
then applies Bayes' theorem to compute the conditional probability of a label given an
observation. In terms of document classification, an observation is a document to be
classified into some class. Despite its strong assumptions on data, it is quite popular. It
works with small amount of training data – whether real or discrete. It works very
efficiently because it takes a single pass through the training data; one constraint is that the
feature vectors must be non-negative. By default, ML package supports multinomial NB.
However, you may set the parameter modelType to Bernoulli if bernoulli NB is required.

The laplace smoothing technique may be applied by specifying the smoothing parameters
and is extremely useful in situations where you want to assign a small non-zero probability
to a rare word or new word so that the posterior probabilities do not suddenly drop to zero.

Spark also provides some other hyper parameters such as thresholds also to gain fine
grain control. Here is an example that categorizes twitter text. This example contains some
hand-coded rules that assign a category to the train data. A particular category is assigned if
any of the corresponding words are found in the text. For example, the category is “survey”
if text contains “survey” or “poll”. The model is trained based on this train data and
evaluated on a different text sample collected at a different time:

Example 8: Naive Bayes

Scala:

// Step 1: Define a udf to assign a category
// One or more similar words are treated as one category (eg survey, poll)
// If input list contains any of the words in a category list, it is
assigned to that category
// "General" is assigned if none of the categories matched

Analyzing Unstructured Data

[242]

scala> import scala.collection.mutable.WrappedArray
import scala.collection.mutable.WrappedArray
scala> val findCategory = udf ((words: WrappedArray[String]) =>
 { var idx = 0; var category : String = ""
 val categories : List[Array[String]] = List(
 Array("Python"), Array("Hadoop","hadoop"),
 Array("survey","poll"),
 Array("event","training", "Meetup", "summit",
 "talk", "talks", "Setting","sessions", "workshop"),
 Array("resource","Guide","newsletter", "Blog"))
 while(idx < categories.length && category.isEmpty) {
 if (!words.intersect(categories(idx)).isEmpty) {
 category = categories(idx)(0) } //First word in the category list
 idx += 1 }
 if (category.isEmpty) {
 category = "General" }
 category
 })
findCategory: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,StringType,Some(List(ArrayType(StringType,t
rue))))

//UDF to convert category to a numerical label
scala> val idxCategory = udf ((category: String) =>
 {val catgMap = Map({"General"->1},{"event"->2},{"Hadoop"->3},
 {"Python"->4},{"resource"->5})
 catgMap(category)})
idxCategory: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,IntegerType,Some(List(StringType)))
scala> val labels = Array("General","event","Hadoop","Python","resource")

//Step 2: Prepare train data
//Step 2a: Extract "text" data and split to words
scala> val path = "<Your path>/tweets_train.txt"
path: String = <Your path>../work/tweets_train.txt
scala> val pattern = ""text":"
pattern: String = "text":
scala> val raw_text =
spark.read.text(path).filter($"value".contains(pattern)).
 select(split('value, " ") as "words")
raw_text: org.apache.spark.sql.DataFrame = [words: array<string>]
scala>

//Step 2b: Assign a category to each line
scala> val train_cat_df = raw_text.withColumn("category",

findCategory(raw_text("words"))).withColumn("label",idxCategory($"category"

Analyzing Unstructured Data

[243]

))
train_cat_df: org.apache.spark.sql.DataFrame = [words: array<string>,
category:
string ... 1 more field]

//Step 2c: Examine categories
scala> train_cat_df.groupBy($"category").agg(count("category")).show()
+--------+---------------
+
|category|count(category)|
+--------+---------------+
General	146
resource	1
Python	2
event	10
Hadoop	6
+--------+---------------+

//Step 3: Build pipeline
scala> import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.Pipeline
scala> import org.apache.spark.ml.feature.{StopWordsRemover,
CountVectorizer,
 IndexToString}
import org.apache.spark.ml.feature.{StopWordsRemover, CountVectorizer,
StringIndexer, IndexToString}
scala> import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.classification.NaiveBayes
scala>

//Step 3a: Define pipeline stages
//Stop words should be removed first
scala> val stopw = new StopWordsRemover().setInputCol("words").
 setOutputCol("processed_words")
stopw: org.apache.spark.ml.feature.StopWordsRemover =
stopWords_2fb707daa92e
//Terms to term frequency converter
scala> val cv = new CountVectorizer().setInputCol("processed_words").
 setOutputCol("features")
cv: org.apache.spark.ml.feature.CountVectorizer = cntVec_def4911aa0bf
//Define model
scala> val model = new NaiveBayes().
 setFeaturesCol("features").
 setLabelCol("label")
model: org.apache.spark.ml.classification.NaiveBayes = nb_f2b6c423f12c
//Numerical prediction label to category converter
scala> val lc = new IndexToString().setInputCol("prediction").
 setOutputCol("predictedCategory").

Analyzing Unstructured Data

[244]

 setLabels(labels)
lc: org.apache.spark.ml.feature.IndexToString = idxToStr_3d71be25382c

//Step 3b: Build pipeline with desired stages
scala> val p = new Pipeline().setStages(Array(stopw,cv,model,lc))
p: org.apache.spark.ml.Pipeline = pipeline_956942e70b3f

//Step 4: Process train data and get predictions
//Step 4a: Execute pipeline with train data
scala> val resultsDF = p.fit(train_cat_df).transform(train_cat_df)
resultsDF: org.apache.spark.sql.DataFrame = [words: array<string>,
category:
string ... 7 more fields]

//Step 4b: Examine results
scala> resultsDF.select("category","predictedCategory").show(3)
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
event	event
event	event
General	General
+--------+-----------------+

//Step 4c: Look for prediction mismatches
scala> resultsDF.filter("category != predictedCategory").select(
 "category","predictedCategory").show(3)
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
General	event
General	Hadoop
resource	Hadoop
+--------+-----------------+

//Step 5: Evaluate model using test data
//Step5a: Prepare test data
scala> val path = "<Your path> /tweets.json"
path: String = <Your path>/tweets.json
scala> val raw_test_df =
spark.read.text(path).filter($"value".contains(pattern)).
 select(split('value, " ") as "words"

raw_test_df: org.apache.spark.sql.DataFrame = [words: array<string>]
scala> val test_cat_df = raw_test_df.withColumn("category",

Analyzing Unstructured Data

[245]

findCategory(raw_test_df("words")))withColumn("label",idxCategory($"categor
y"))
test_cat_df: org.apache.spark.sql.DataFrame = [words: array<string>,
category:
string ... 1 more field]
scala> test_cat_df.groupBy($"category").agg(count("category")).show()
+--------+---------------
+
|category|count(category)|
+--------+---------------+
| General| 6|
| event| 11|
+--------+---------------+

//Step 5b: Run predictions on test data
scala> val testResultsDF = p.fit(test_cat_df).transform(test_cat_df)
testResultsDF: org.apache.spark.sql.DataFrame = [words: array<string>,
category: string ... 7 more fields]
//Step 5c:: Examine results
scala> testResultsDF.select("category","predictedCategory").show(3)
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
General	event
event	General
event	General
+--------+-----------------+

//Step 5d: Look for prediction mismatches
scala> testResultsDF.filter("category != predictedCategory").select(
 "category","predictedCategory").show()
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
| event| General|
| event| General|
+--------+-----------------+

Python:

// Step 1: Initialization
//Step1a: Define a udfs to assign a category
// One or more similar words are treated as one category (eg survey, poll)
// If input list contains any of the words in a category list, it is
assigned to that category
// "General" is assigned if none of the categories matched
>>> def findCategory(words):

Analyzing Unstructured Data

[246]

 idx = 0; category = ""
 categories = [["Python"], ["Hadoop","hadoop"],
 ["survey","poll"],["event","training", "Meetup", "summit",
 "talk", "talks", "Setting","sessions", "workshop"],
 ["resource","Guide","newsletter", "Blog"]]
 while(not category and idx < len(categories)):
 if len(set(words).intersection(categories[idx])) > 0:
 category = categories[idx][0] #First word in the category list
 else:
 idx+=1
 if not category: #No match found
 category = "General"
 return category
>>>
//Step 1b: Define udf to convert string category to a numerical label
>>> def idxCategory(category):
 catgDict = {"General" :1, "event" :2, "Hadoop" :2,
 "Python": 4, "resource" : 5}
 return catgDict[category]
>>>
//Step 1c: Register UDFs
>>> from pyspark.sql.functions import udf
>>> from pyspark.sql.types import StringType, IntegerType
>>> findCategoryUDF = udf(findCategory, StringType())
>>> idxCategoryUDF = udf(idxCategory, IntegerType())

//Step 1d: List categories
>>> categories =["General","event","Hadoop","Python","resource"]
//Step 2: Prepare train data
//Step 2a: Extract "text" data and split to words
>>> from pyspark.sql.functions import split
>>> path = "../work/tweets_train.txt"
>>> raw_df1 = spark.read.text(path)
>>> raw_df = raw_df1.where("value like '%"text":%'").select(
 split("value", " ")).toDF("words")

//Step 2b: Assign a category to each line
>>> train_cat_df = raw_df.withColumn("category",\
 findCategoryUDF("words")).withColumn(
 "label",idxCategoryUDF("category"))

//Step 2c: Examine categories
scala> train_cat_df.groupBy("category").count().show()
+--------+---------------
+
|category|count(category)|
+--------+---------------+
| General| 146|

Analyzing Unstructured Data

[247]

resource	1
Python	2
event	10
Hadoop	6
+--------+---------------+

//Step 3: Build pipeline
>>> from pyspark.ml import Pipeline
>>> from pyspark.ml.feature import StopWordsRemover, CountVectorizer,
IndexToString
>>> from pyspark.ml.classification import NaiveBayes
>>>

//Step 3a: Define pipeline stages
//Stop words should be removed first
>>> stopw = StopWordsRemover(inputCol = "words",
 outputCol = "processed_words")
//Terms to term frequency converter
>>> cv = CountVectorizer(inputCol = "processed_words",
 outputCol = "features")
//Define model
>>> model = NaiveBayes(featuresCol="features",
 labelCol = "label")
//Numerical prediction label to category converter
>>> lc = IndexToString(inputCol = "prediction",
 outputCol = "predictedCategory",
 labels = categories)
>>>

//Step 3b: Build pipeline with desired stages
>>> p = Pipeline(stages = [stopw,cv,model,lc])
>>>

//Step 4: Process train data and get predictions
//Step 4a: Execute pipeline with train data
>>> resultsDF = p.fit(train_cat_df).transform(train_cat_df)

//Step 4b: Examine results
>>> resultsDF.select("category","predictedCategory").show(3)
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
| event| event|
| event| event|
| General| General|
+--------+-----------------+

Analyzing Unstructured Data

[248]

//Step 4c: Look for prediction mismatches
>>> resultsDF.filter("category != predictedCategory").select(
 "category","predictedCategory").show(3)
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
| Python| Hadoop|
| Python| Hadoop|
| Hadoop| event|
+--------+-----------------+

//Step 5: Evaluate model using test data
//Step5a: Prepare test data
>>> path = "<Your path>/tweets.json">>> raw_df1 = spark.read.text(path)
>>> raw_test_df = raw_df1.where("va
ue like '%"text":%'").select(
 split("value", " ")).toDF("words")
>>> test_cat_df = raw_test_df.withColumn("category",
 findCategoryUDF("words")).withColumn(
 "label",idxCategoryUDF("category"))
>>> test_cat_df.groupBy("category").count().show()
+--------+---------------
+
|category|count(category)|
+--------+---------------+
| General| 6|
| event| 11|
+--------+---------------+

//Step 5b: Run predictions on test data
>>> testResultsDF = p.fit(test_cat_df).transform(test_cat_df)
//Step 5c:: Examine results
>>> testResultsDF.select("category","predictedCategory").show(3)
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
| General| General|
| event| event|
| event| event|
+--------+-----------------+
//Step 5d: Look for prediction mismatches
>>> testResultsDF.filter("category != predictedCategory").select(
 "category","predictedCategory").show()
+--------+-----------------+
|category|predictedCategory|
+--------+-----------------+
| event| General|
| event| General|

Analyzing Unstructured Data

[249]

+--------+-----------------+

Once this is done, a model can be trained with the output of this step, which can classify a
text blob or file.

Text clustering
Clustering is an unsupervised learning technique. Intuitively, clustering groups objects into
disjoint sets. We do not know how many groups exist in the data, or what might be the
commonality within these groups (clusters).

Text clustering has several applications. For example, an organizational entity may want to
organize its internal documents into similar clusters based on some similarity measure. The
notion of similarity or distance is central to the clustering process. Common measures used
are TF-IDF and cosine similarity. Cosine similarity, or the cosine distance, is the cos product
of the word frequency vectors of two documents. Spark provides a variety of clustering
algorithms that can be effectively used in text analytics.

K-means
Perhaps K-means is the most intuitive of all the clustering algorithms. The idea is to
segregate data points as K different clusters based on some similarity measure, say cosine
distance or Euclidean distance. This algorithm that starts with K random single point
clusters, and each of the remaining data points are assigned to nearest cluster. Then cluster
centers are recomputed and the algorithm loops through the data points once again. This
process continues iteratively until there are no re-assignments or when pre-defined iteration
count is reached.

How to fix the number of clusters (K) is not obvious. Identifying the initial cluster centers is
also not obvious. Sometimes the business requirement may dictate the number of clusters;
for example, partition all existing documents into 10 different sections. But in most of the
real world scenarios, we need to find K through trial and error. One way is to progressively
increase the K value and compute the cluster quality, such as cluster variance. The quality
ceases to improve significantly beyond a certain value of K, which could be your ideal K.
There are various other techniques, such as the elbow method, Akaike information
criterion (AIC), and Bayesian information criterion (BIC).

Likewise, start with different starting points until the cluster quality is satisfactory. Then
you may wish to validate your result using techniques such as Silhouette Score. However,
these activities are computationally intensive.

Analyzing Unstructured Data

[250]

Spark provides K-means from MLlib as well as ml packages. You may specify maximum
iterations or convergence tolerance to fine tune algorithm performance.

Dimensionality reduction
Imagine a large matrix with many rows and columns. In many matrix applications, this
large matrix can be represented by some narrow matrices with small number of rows and
columns that still represents the original matrix. Then processing this smaller matrix may
yield similar results as that of the original matrix. This can be computationally efficient.

Dimensionality reduction is about finding that small matrix. MLLib supports two
algorithms, SVD and PCA for dimensionality reduction on RowMatrix class. Both of these
algorithms allow us to specify the number of dimensions we are interested in retaining. Let
us look at example first and then delve into the underlying theory .

Example 9: Dimensionality reduction

Scala:

scala> import scala.util.Random
import scala.util.Random
scala> import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
scala> import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix

//Create a RowMatrix of 6 rows and 5 columns
scala> var vlist: Array[Vector] = Array()
vlist: Array[org.apache.spark.mllib.linalg.Vector] = Array()
scala> for (i <- 1 to 6) vlist = vlist :+ Vectors.dense(
 Array.fill(5)(Random.nextInt*1.0))
scala> val rows_RDD = sc.parallelize(vlist)
rows_RDD: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] =
ParallelCollectionRDD[0] at parallelize at <console>:29
scala> val row_matrix = new RowMatrix(rows_RDD)
row_matrix: org.apache.spark.mllib.linalg.distributed.RowMatrix =
org.apache.spark.mllib.linalg.distributed.RowMatrix@348a6639

//SVD example for top 3 singular values
scala> val SVD_result = row_matrix.computeSVD(3)
SVD_result:
org.apache.spark.mllib.linalg.SingularValueDecomposition[org.apache.spark.m
lli
.linalg.distributed.RowMatrix,org.apache.spark.mllib.linalg.Matrix] =
SingularValueDecomposition(null,

Analyzing Unstructured Data

[251]

[4.933482776606544E9,3.290744495921952E9,2.971558550447048E9],
-0.678871347405378 0.054158900880961904 -0.23905281217240534
0.2278187940802 -0.6393277579229861 0.078663353163388
0.48824560481341733 0.3139021297613471 -0.7800061948839081
-0.4970903877201546 2.366428606359744E-4 -0.3665502780139027
0.041829015676406664 0.6998515759330556 0.4403374382132576)

scala> SVD_result.s //Show the singular values (strengths)
res1: org.apache.spark.mllib.linalg.Vector =
[4.933482776606544E9,3.290744495921952E9,2.971558550447048E9]

//PCA example to compute top 2 principal components
scala> val PCA_result = row_matrix.computePrincipalComponents(2)
PCA_result: org.apache.spark.mllib.linalg.Matrix =
-0.663822435334425 0.24038790854106118
0.3119085619707716 -0.30195355896094916
0.47440026368044447 0.8539858509513869
-0.48429601343640094 0.32543904517535094
-0.0495437635382354 -0.12583837216152594

Python:

Not available in Python as of Spark 2.0.0

Singular Value Decomposition
The Singular Value Decomposition (SVD) is one of the centerpieces of linear algebra and
is widely used for many real-world modeling requirements. It provides a convenient way of
breaking a matrix into simpler, smaller matrices. This leads to a low-dimensional
representation of a high-dimensional matrix. It helps us eliminate less important parts of
the matrix to produce an approximate representation. This technique is useful in
dimensionality reduction and data compression.

Let M be a matrix of size m-rows and n-columns. The rank of a matrix is the number of
rows that are linearly independent. A row is considered independent if it has at least one
non-zero element and it is not a linear combination of one or more rows. The same rank will
be obtained if we considered columns instead of rows – as in linear algebra.

If the elements of one row are the sum of two rows, then that row is not independent. Then
as a result of SVD, we find three matrices, U, Σ, and V that satisfy the following equation:

M = U ΣVT

Analyzing Unstructured Data

[252]

These three matrices have the following properties:

U: This is a column-orthonormal matrix with m rows and r columns. An
orthonormal matrix implies that each of the columns is a unit vector and the
pairwise dot product between any two columns is 0.
V: This is a column-orthonormal matrix with n rows and r columns.
Σ: This is an r x r diagonal matrix with non-negative real numbers as principal
diagonal values in descending order. In a diagonal matrix, all elements except the
ones on the principal diagonal are zero.

The principal diagonal values in the Σ matrix are called singular values. They are
considered as the underlying concepts or components that connect the rows and columns of
the matrix. Their magnitude represents the strength of the corresponding components. For
example, imagine that the matrix in the previous example contains ratings of five books by
six readers. SVD allows us to split them into three matrices: Σ containing the singular
values representing the strength of underlying topics; U connecting people to concepts; and
V connecting concepts to books.

In a large matrix, we can replace the lower magnitude singular values to zero and thereby
reduce the corresponding rows in the remaining two matrices. Note that if we re-compute
the matrix product on the right hand side and compare the value with the original matrix
on the left hand side, they will be almost similar. We can use this technique to retain the
desired number of dimensions.

Principal Component Analysis
Principal Component Analysis (PCA) is a technique that takes n-dimensional data points
and project onto a smaller (fewer dimensions) subspace with minimum loss of information.
A set of data points in a high dimensional space find the directions along which these tuples
line up best. In other words, we need to find a rotation such that the first coordinate has the
largest variance possible, and each succeeding coordinate in turn has the largest variance
possible. The idea is to treat the set of tuples as a matrix M and find the eigenvectors for
MMT.

If A is a square matrix, e is a column matrix with the same number of rows as A, and λ is a
constant such that Me = λe, then e is called the eigenvector of M and λ is called the
eigenvalue of M. In terms of n-dimensional plane, the eigenvector is the direction and the
eigenvalue is a measure of variance along that direction. We can drop the dimensions with
a low eigenvalue, thereby finding a smaller subspace without loss of information.

Analyzing Unstructured Data

[253]

Summary
In this chapter, we examined the sources of unstructured data and the motivation behind
analyzing the unstructured data. We explained various techniques that are required in pre-
processing unstructured data and how Spark provides most of these tools out of the box.
We also covered some of the algorithms supported by Spark that can be used in text
analytics.

In the next chapter, we will go through different types of visualization techniques that are
insightful in different stages of data analytics lifecycle.

References:
The following are the references:

http://totoharyanto.staff.ipb.ac.id/files/2012/10/Building-Machine-Learning-Syste
ms-with-Python-Richert-Coelho.pdf
h t t p s : / / w w w . c s . n y u . e d u / w e b / R e s e a r c h / T h e s e s / b o r t h w i c k _ a n d r e w . p d f

h t t p s : / / w e b . s t a n f o r d . e d u / c l a s s / c s 1 2 4 / l e c / n a i v e b a y e s . p d f

h t t p : / / n l p . s t a n f o r d . e d u / I R - b o o k / h t m l / h t m l e d i t i o n / n a i v e - b a y e s - t e x t - c l
a s s i f i c a t i o n - 1 . h t m l

h t t p : / / w w w . m m d s . o r g /

http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://arxiv.org/pdf/1404.1100.pdf
h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / m l l i b - d i m e n s i o n a l i t y - r e d u c t i o n . h
t m l

Count Vectorizer:

h t t p s : / / s p a r k . a p a c h e . o r g / d o c s / 1 . 6 . 1 / a p i / j a v a / o r g / a p a c h e / s p a r k / m l / f e a
t u r e / C o u n t V e c t o r i z e r . h t m l

n-gram modeling:

h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / N - g r a m

https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://www.cs.nyu.edu/web/Research/Theses/borthwick_andrew.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://www.mmds.org/
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://spark.apache.org/docs/1.6.1/api/java/org/apache/spark/ml/feature/CountVectorizer.html
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram

9
Visualizing Big Data

Proper data visualization has solved many business problems in the past without much
statistics or machine learning being involved. Even today, with so many technological
advancements, applied statistics, and machine learning, proper visuals are the end
deliverables for business users to consume information or the output of some analyses.
Conveying the right information in the right format is something that data scientists yearn
for, and an effective visual is worth a million words. Also, representing the models and the
insights generated in a way that is easily consumable by the business is extremely
important. Nonetheless, exploring big data visually is very cumbersome and challenging.
Since Spark is designed for big data processing, it also supports big data visualization along
with it. There are many tools and techniques that have been built on Spark for this purpose.

The previous chapters outlined how to model structured and unstructured data and
generate insights from it. In this chapter, we will look at data visualization from two broad
perspectives-one is from a data scientist's perspective—where visualization is the basic need
to explore and understand the data effectively, and the other is from a business user's
perspective, where the visuals are end deliverables to the business and must be easily
comprehendible. We will explore various data visualization tools such as IPythonNotebook
and Zeppelin that can be used on Apache Spark.

As a prerequisite for this chapter, a basic understanding of SQL and programming in
Python, Scala, or other such frameworks, is nice to have. The topics covered in this chapter
are listed as follows:

Why visualize data?
A data engineer's perspective
A data scientist's perspective
A business user's perspective

Visualizing Big Data

[255]

Data visualization tools
IPython notebook
Apache Zeppelin
Third-party tools

Data visualization techniques
Summarizing and visualizing
Subsetting and visualizing
Sampling and visualizing
Modeling and visualizing

Why visualize data?
Data visualization deals with representing data in a visual form so as to enable people to
understand the underlying patterns and trends. Geographical maps, the bar and line charts
of the seventeenth century, are some examples of early data visualizations. Excel is perhaps
a familiar data visualization tool that most of us have already used. All data analytics tools
have been equipped with sophisticated, interactive data visualization dashboards.
However, the recent surge in big data, streaming, and real-time analytics has been pushing
the boundaries of these tools and they seem to be bursting at the seams. The idea is to make
the visualizations look simple, accurate, and relevant while hiding away all the complexity.
As per the business needs, any visualization solution should ideally have the following
characteristics:

Interactivity
Reproducibility
Control over the details

Apart from these, if the solution allows users to collaborate over the visuals or reports and
share with each other, then that would make up an end-to-end visualization solution.

Big data visualization in particular poses its own challenges because we may end up with
more data than pixels on the screen. Manipulating large data usually requires memory- and
CPU-intensive processing and may have long latency. Add real-time or streaming data to
the mix and the problem becomes even more challenging. Apache Spark is designed from
the ground up just to tackle this latency by parallelizing CPU and memory usage. Before
exploring the tools and techniques to visualize and work with big data, let's first
understand the visualization needs of data engineers, data scientists, and business users.

Visualizing Big Data

[256]

A data engineer's perspective
Data engineers play a crucial role in almost every data-driven requirement: sourcing data
from different data sources, consolidating them, cleaning and preprocessing them,
analyzing them, and then the final reporting with visuals and dashboards. Their activities
can be broadly stated as follows:

Visualize the data from different sources to be able to integrate and consolidate it
to form a single data matrix
Visualize and find various anomalies in the data, such as missing values, outliers
and so on (this could be while scraping, sourcing, ETLing, and so on) and get
those fixed
Advise the data scientists on the properties and characteristics of the dataset
Explore various possible ways of visualizing the data and finalize the ones that
are more informative and intuitive as per the business requirement

Observe here that the data engineers not only play a key role in sourcing and preparing the
data, but also take a call on the most suitable visualization outputs for the business users.
They usually work very closely to the business as well to have a very clear understanding
on the business requirement and the specific problem at hand.

A data scientist's perspective
A data scientist's need for visualizing data is different from that of data engineers. Please
note that in some businesses, there are professionals who play a dual role of data engineers
and data scientists.

Data scientists need to visualize data to be able to take the right decisions in performing
statistical analysis and ensure proper execution of the analytics projects. They would like to
slice and dice data in various possible ways to find hidden insights. Let's take a look at
some example requirements that a data scientist might have to visualize the data:

See the data distribution of the individual variables
Visualize outliers in the data
Visualize the percentage of missing data in a dataset for all variables
Plot the correlation matrix to find the correlated variables
Plot the behavior of residuals after a regression
After a data cleaning or transformation activity, plot the variable again and see
how it behaves

Visualizing Big Data

[257]

Please note that some of the things just mentioned are quite similar to the case of data
engineers. However, data scientists could have a more scientific/statistical intention behind
such analyses. For example, data scientists may see an outlier from a different perspective
and treat it statistically, but a data engineer might think of the various options that could
have triggered this.

A business user's perspective
A business user's perspective is completely different from that of data engineers or data
scientists. Business users are usually the consumers of information! They would like to
extract more and more information from the data, and for that, the correct visuals play a
key role. Also, most business questions are more complex and causal these days. The old-
school reports are no longer enough. Let's look at some example queries that business users
would like to extract from reports, visuals, and dashboards:

Who are the high-value customers in so-and-so region?
What are the common characteristics of these customers?
Predict whether a new customer would be high-value
Advertising in which media would give maximum ROI?
What if I do not advertise in a newspaper?
What are the factors influencing a customer's buying behavior?

Data visualization tools
Out of the many different visualization options, choosing the right visual depends on
specific requirements. Similarly, selecting a visualization tool depends on both the target
audience and the business requirement.

Data scientists or data engineers would prefer a more interactive console for quick and dirty
analysis. The visuals they use are usually not intended for business users. They would like
to dissect the data in every possible way to get more meaningful insights. So, they usually
prefer a notebook-type interface that supports these activities. A notebook is an interactive
computational environment where they can combine code chunks and plot data for
explorations. There are notebooks such as IPython/Jupyter or DataBricks, to name a few
available options.

Visualizing Big Data

[258]

Business users would prefer a more intuitive and informative visual that they can share
with each other or use to generate reports. They expect to receive the end result through
visuals. There are hundreds and thousands of tools, including some popular ones such as
Tableau, that businesses use; but quite often, developers have to custom-build specific
types for some unique requirements and expose them through web applications. Microsoft's
PowerBI and open source solutions such as Zeppelin are a few examples.

IPython notebook
The IPython/Jupyter notebook on top of Spark's PySpark API is an excellent combination
for data scientists to explore and visualize the data. The notebook internally spins up a new
instance of the PySpark kernel. There are other kernels available; for example, the Apache
Toree kernel can be used to support Scala as well.

For many data scientists, it is the default choice because of its capability of integrating text,
code, formula, and graphics in one JSON document file. The IPython notebook supports
matplotlib, which is a 2D visualization library that can produce production-quality
visuals. Generating plots, histograms, scatterplots, charts, and so on becomes easy and
simple. It also supports the seaborn library, which is actually built upon matplotlib but is
easy to use as it provides higher level abstraction and hides the underlying complexities.

Apache Zeppelin
Apache Zeppelin is built upon JVM and integrates well with Apache Spark. It is a browser-
based or frontend-based open source tool that has its own notebook. It supports Scala,
Python, R, SQL, and other graphical modules to serve as a visualization solution not only to
business users but also to data scientists. In the following section on visualization
techniques, we will take a look at how Zeppelin supports Apache Spark code to generate
interesting visuals. You need to download Zeppelin (h t t p s : / / z e p p e l i n . a p a c h e . o r g /) in
order to try out the examples.

Third-party tools
There are many products that support Apache Spark as the underlying data processing
engine and are built to fit in the organizational big data ecosystem. While leveraging the
processing power of Spark, they provide the visualization interface that supports a variety
of interactive visuals, and they also support collaboration. Tableau is one such example of a
tool that leverages Spark.

https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/

Visualizing Big Data

[259]

Data visualization techniques
Data visualization is at the center of every stage in the data analytics life cycle. It is
especially important for exploratory analysis and for communicating results. In either case,
the goal is to transform data into a format that's efficient for human consumption. The
approach of delegating the transformation to client-side libraries does not scale to large
datasets. The transformation has to happen on the server side, sending only the relevant
data to the client for rendering. Most of the common transformations are available in
Apache Spark out of the box. Let's have a closer look at these transformations.

Summarizing and visualizing
Summarizing and visualizing is a technique used by many Business Intelligence (BI)
tools. Since summarization will be a concise dataset regardless of the size of the underlying
dataset, the graphs look simple enough and easy to render. There are various ways to
summarize the data such as aggregating, pivoting, and so on. If the rendering tool supports
interactivity and has drill-down capabilities, the user gets to explore subsets of interest from
the complete data. We will show how to do the summarization rapidly and interactively
with Spark through the Zeppelin notebook.

The following image shows the Zeppelin notebook with source code and a grouped bar
chart. The dataset contains 24 observations with sales information of two products, P1 and
P2, for 12 months. The first cell contains code to read a text file and register data as a
temporary table. This cell uses the default Spark interpreter using Scala. The second cell
uses the SQL interpreter which is supported by out-of-the-box visualization options. You
can switch the chart types by clicking on the right icon. Note that the visualization is similar
for either Scala or Python or R interpreters.

Summarization examples are as follows:

The source code to read data and register as a SQL View:1.

Scala (default):

Visualizing Big Data

[260]

PySpark:

R:

Visualizing Big Data

[261]

All three are reading the data file and registering as a temporary SQL view. Note
that minor differences exist in the preceding three scripts. For example, we need
to remove the header row for R and set the column names. The next step is to
produce the visualization, which works from the %sql interpreter. The following
first picture shows the script to produce the quarterly sales for each product. It
also shows the chart types available out of the box, followed by the settings and
their selection. You can collapse the settings after making selections. You can even
make use of Zeppelin's in-built dynamic forms, say to accept a product during
runtime. The second picture shows the actual output.

The script to produce quarterly sales for two products:2.

Visualizing Big Data

[262]

The output produced:3.

We have seen Zeppelin's inbuilt visualization in the preceding example. But we can use
other plotting libraries as well. Our next example utilizes the PySpark interpreter with
matplotlib in Zeppelin to draw a histogram. This example code computes bin intervals and
bin counts using RDD's histogram function and brings in just this summarized data to the
driver node. Frequency is provided as weights while plotting the bins to give the same
visual understanding as a normal histogram but with very low data transfer.

The histogram examples are as follows:

Visualizing Big Data

[263]

This is the generated output (it may come as a separate window):

In the preceding example of preparing histograms, note that the bucket counts could be
parameterized using the inbuilt dynamic forms support.

Subsetting and visualizing
Sometimes, we may have a large dataset but we may be interested only in a subset of it.
Divide and conquer is one approach where we explore a small portion of data at a time.
Spark allows data subsetting using SQL-like filters and aggregates on row-column datasets
as well as graph data. Let us perform SQL subsetting first, followed by a GraphX example.

The following example takes bank data available with Zeppelin and extracts a few relevant
columns of data related to managers only. It uses the google visualization library to
plot a bubble chart. The data was read using PySpark. Data subsetting and visualization are
carried out using R. Note that we can choose any of the interpreters to these tasks and the
choice here was just arbitrary.

Visualizing Big Data

[264]

The data subsetting example using SQL is as follows:

Read data and register the SQL view:1.

Subset managers' data and show a bubble plot:2.

Visualizing Big Data

[265]

The next example demonstrates some GraphX processing that uses data provided by the
Stanford Network Analysis Project (SNAP). The script extracts a subgraph covering a
given set of nodes. Here, each node represents a Facebook ID and an edge represents a
connection between the two nodes (or people). Further, the script identifies direct
connections for a given node (id: 144). These are the level 1 nodes. Then it identifies the
direct connections to these level 1 nodes, which form level 2 nodes to the given node. Even
though a second-level contact may be connected to more than one first-level contact, it is
shown only once thereby forming a connection tree without crisscrossing edges. Since the
connection tree may have too many nodes, the script limits up to three connections at level
1 as well as level 2, thereby showing only 12 nodes under the given root node (one root +
three level 1 nodes + three of each level 2 nodes).

Scala

//Subset and visualize
//GraphX subset example
//Datasource: http://snap.stanford.edu/data/egonets-Facebook.html
import org.apache.spark.graphx._
import org.apache.spark.graphx.util.GraphGenerators
//Load edge file and create base graph
val base_dir = "../data/facebook"
val graph = GraphLoader.edgeListFile(sc,base_dir + "/0.edges")

//Explore subgraph of a given set of nodes
val circle = "155 99 327 140 116 147 144 150 270".split("\t").map(
 x=> x.toInt)
val subgraph = graph.subgraph(vpred = (id,name)
 => circle.contains(id))
println("Edges: " + subgraph.edges.count +
 " Vertices: " + subgraph.vertices.count)
//Create a two level contact tree for a given node
//Step1: Get all edges for a given source id
val subgraph_level1 = graph.subgraph(epred= (ed) =>
 ed.srcId == 144)
//Step2: Extract Level 1 contacts
import scala.collection.mutable.ArrayBuffer
val lvl1_nodes : ArrayBuffer[Long] = ArrayBuffer()
subgraph_level1.edges.collect().foreach(x=> lvl1_nodes+= x.dstId)

//Step3: Extract Level 2 contacts, 3 each for 3 lvl1_nodes
import scala.collection.mutable.Map
val linkMap:Map[Long, ArrayBuffer[Long]] = Map() //parent,[Child]
val lvl2_nodes : ArrayBuffer[Long] = ArrayBuffer() //1D Array
var n : ArrayBuffer[Long] = ArrayBuffer()
for (i <- lvl1_nodes.take(3)) { //Limit to 3
 n = ArrayBuffer()

Visualizing Big Data

[266]

 graph.subgraph(epred = (ed) => ed.srcId == i &&
 !(lvl2_nodes contains ed.dstId)).edges.collect().
 foreach(x=> n+=x.dstId)
 lvl2_nodes++=n.take(3) //Append to 1D array. Limit to 3
 linkMap(i) = n.take(3) //Assign child nodes to its parent
 }
 //Print output and examine the nodes
 println("Level1 nodes :" + lvl1_nodes)
 println("Level2 nodes :" + lvl2_nodes)
 println("Link map :" + linkMap)
 //Copy headNode to access from another cell
 z.put("headNode",144)
 //Make a DataFrame out of lvl2_nodes and register as a view
 val nodeDF = sc.parallelize(linkMap.toSeq).toDF("parentNode","childNodes")
 nodeDF.createOrReplaceTempView("node_tbl")

Note the use of z.put and z.get. This is a mechanism to exchange data
between cells/interpreters in Zeppelin.

Now that we have created a data frame with level 1 contacts and their direct contacts, we
are all set to draw the tree. The following script uses the graph visualization library igraph
and Spark R.

Extract nodes and edges. Plot the tree:

Visualizing Big Data

[267]

The preceding script gets parent nodes from the nodes table, which are the parents of level
2 nodes as well as direct connections to the given head node. Ordered pairs of head nodes
and level 1 nodes are created and assigned to edges1. The next step explodes the array of
level 2 nodes to form one row per each array element. The data frame thus obtained is
transposed and pasted to form edge pairs. Since paste converts data into strings, they are
reconverted to numeric. These are the level 2 edges. The level 1 and level 2 edges are
concatenated to form a single list of edges. These are fed to form the graph as shown next.
Note that the smudge in headNode is 144, though not visible in the following figure:

Connection tree for the given node

Sampling and visualizing
Sampling and visualizing has been used by statisticians for a long time. Through sampling
techniques, we take a portion of the dataset and work on it. We will show how Spark
supports different sampling techniques such as random sampling, stratified sampling, and
sampleByKey, and so on. The following example is created using the Jupyter notebook,
PySpark kernel, and seaborn library. The data file is the bank dataset provided by
Zeppelin. The first plot shows the balance for each education category. The colors indicate
marital status.

Visualizing Big Data

[268]

Read data and take a random sample of 5%:

Render data using stripplot:

Visualizing Big Data

[269]

The preceding example showed a random sample of available data, which is much better
than completely plotting the population. But if the levels in the categorical variable of
interest (in this case, education) are too many, then this plot becomes hard to read. For
example, if we want to plot the balance for job instead of education, there will be too
many strips, making the picture look cluttered. Instead, we can take desired sample of
desired categorical levels only and then examine the data. Note that this is different from
subsetting because we will not be able to specify the sample ratio in normal subsetting
using SQL WHERE clauses. We need to use sampleByKey for that, as shown next. The
following example takes only two jobs and with specific sampling ratios:

Stratified sampling

Visualizing Big Data

[270]

Modeling and visualizing
Modeling and visualizing are possible with Spark's MLLib and ML modules. Spark's
unified programming model and diverse programming interfaces enable combining these
techniques into a single environment to get insights from the data. We have already covered
most of the modeling techniques in the previous chapters. However, here are a few
examples for your reference:

Clustering: K-means, Gaussian Mixture Modeling
Classification and regression: Linear model, Decision tree, Naïve Bayes, SVM
Dimensionality reduction: Singular value decomposition, Principal component
analysis
Collaborative Filtering
Statistical testing: Correlations, Hypothesis testing

The following example takes a model from the Chapter 7, Extending Spark with SparkR,
which tries to predict the students' pass or fail results using a Naïve Bayes model. The idea
is to make use of the out-of-the-box functionality provided by Zeppelin and inspect the
model behavior. So, we load the data, perform data preparation, build the model, and run
the predictions. Then we register the predictions as an SQL view so as to harness inbuilt
visualization:

//Model visualization example using zeppelin visualization
 Prepare Model and predictions

Visualizing Big Data

[271]

The next step is to write the desired SQL query and define the appropriate settings. Note
the use of the UNION operator in SQL and the way the match column is defined.

Define SQL to view model performance:

The following picture helps us understand where the model prediction deviates from the
actual data. Such visualizations are helpful in taking business users' inputs since they do
not require any prior knowledge of data science to comprehend:

Visualizing Big Data

[272]

Visualize model performance

We usually evaluate statistical models with error metrics, but visualizing them graphically
instead of seeing the numbers makes them more intuitive because it is usually easier to
understand a diagram than numbers in a table. For example, the preceding visualization
can be easily understood by people outside the data science community as well.

Summary
In this chapter, we explored most of the widely used visualization tools and techniques
supported on Spark in a big data setup. We explained some of the techniques with code
snippets for better understanding of visualization needs at different stages of the data
analytics life cycle. We also saw how business requirements are satisfied with proper
visualization techniques by addressing the challenges of big data.

The next chapter is the culmination of all the concepts explained till now . We will walk
through the Complete Data Analysis Life Cycle through an example dataset.

Visualizing Big Data

[273]

References
21 Essential Data Visualization Tools:
http://www.kdnuggets.com/2015/05/21-essential-data-visualization-tools.html
Apache Zeppelin notebook home page: h t t p s : / / z e p p e l i n . a p a c h e . o r g /

Jupyter notebook home page: h t t p s : / / j u p y t e r . o r g /

Using IPython Notebook with Apache Spark: h t t p : / / h o r t o n w o r k s . c o m / h a d o o p

- t u t o r i a l / u s i n g - i p y t h o n - n o t e b o o k - w i t h - a p a c h e - s p a r k /
Apache Toree, which enables interactive workloads between applications and
Spark cluster. Can be used with jupyter to run Scala code: h t t p s : / / t o r e e . i n c u b
a t o r . a p a c h e . o r g /

GoogleVis package using R: h t t p s : / / c r a n . r p r o j e c t . o r g / w e b / p a c k a g e s / g o o g l
e V i s / v i g n e t t e s / g o o g l e V i s _ e x a m p l e s . h t m l

GraphX Programming Guide: h t t p : / / s p a r k . a p a c h e . o r g / d o c s / l a t e s t / g r a p h x
- p r o g r a m m i n g - g u i d e . h t m l

Going viral with R's igraph package: h t t p s : / / w w w . r - b l o g g e r s . c o m / g o i n g - v i r a
l - w i t h - r s - i g r a p h - p a c k a g e /

Plotting with categorical data: h t t p s : / / s t a n f o r d . e d u / ~ m w a s k o m / s o f t w a r e / s e a
b o r n / t u t o r i a l / c a t e g o r i c a l . h t m l # c a t e g o r i c a l - t u t o r i a l

Data source citations
Bank data source (citation)

[Moro et al., 2011] S. Moro, R. Laureano and P. Cortez. Using Data Mining for
Bank Direct Marketing: An Application of the CRISP-DM Methodology
In P. Novais et al. (Eds.), Proceedings of the European Simulation and Modelling
Conference – ESM'2011, pp. 117-121, Guimarães, Portugal, October, 2011.
EUROSIS
Available at [pdf] h t t p : / / h d l . h a n d l e . n e t / 1 8 2 2 / 1 4 8 3 8

[bib] http://www3.dsi.uminho.pt/pcortez/bib/2011-esm-1.txt

Facebook data Source (citation)

J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks.
NIPS, 2012.

https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://zeppelin.apache.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
http://hortonworks.com/hadoop-tutorial/using-ipython-notebook-with-apache-spark/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://toree.incubator.apache.org/
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
https://cran.rproject.org/web/packages/googleVis/vignettes/googleVis_examples.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://www.r-bloggers.com/going-viral-with-rs-igraph-package/
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
https://stanford.edu/~mwaskom/software/seaborn/tutorial/categorical.html#categorical-tutorial
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838
http://hdl.handle.net/1822/14838

10
Putting It All Together

Big data analytics is revolutionizing the way businesses are run and has paved the way for
several hitherto unimagined opportunities. Almost every enterprise, individual researcher,
or investigative journalist has lots of data to process. We need a concise approach to start
from raw data and arrive at meaningful insights based on the questions at hand.

We have covered various aspects of data science using Apache Spark in previous chapters.
We started off discussing big data analytics requirements and how Apache spark fits in.
Gradually, we looked into the Spark programming model, RDDs, and DataFrame
abstractions and learnt how unified data access is enabled by Spark datasets along with the
streaming aspect of continuous applications. Then we covered the entire breadth of the data
analysis life cycle using Apache Spark followed by machine learning. We learnt structured
and unstructured data analytics on Spark and explored the visualization aspects for data
engineers and scientists, as well as business users.

All the previously discussed chapters helped us understand one concise aspect per chapter.
We are now equipped to traverse the entire data science life cycle. In this chapter, we shall
take up an end-to-end case study and apply all that we have learned so far. We will not
introduce any new concepts; this will help apply the knowledge gained so far and
strengthen our understanding. However, we have reiterated some concepts without going
into too much detail, to make this chapter self-contained. The topics covered in this chapter
are roughly the same as the steps in the data analytics life cycle:

A quick recap
Introducing a case study
Framing the business problem
Data acquisition and data cleansing
Developing the hypothesis
Data exploration

Putting It All Together

[275]

Data preparation
Model building
Data visualization
Communicating the results to business users
Summary

A quick recap
We already discussed in detail the various steps involved in a typical data science project
separately in different chapters. Let us quickly glance through what we have covered
already and touch upon some important aspects. A high-level overview of the steps
involved may appear as in the following figure:

In the preceding pictorial representation, we have tried to explain the steps involved in a
data science project at a higher level, mostly generic to many data science assignments.
Many more substeps are actually present at every stage, but may differ from project to
project.

Putting It All Together

[276]

It is very difficult for data scientists to find the best approach and steps to follow in the
beginning. Generally, data science projects do not have a well-defined life cycle such as the
Software Development Life Cycle (SDLC). It is usually the case that data science projects
get tramped into delivery delays with repeated hold-ups, as most of the steps in the life
cycle are iterative. Also, there could be cyclic dependencies across teams that add to the
complexity and cause delay in execution. However, while working on big data analytics
projects, it is important as well as advantageous for data scientists to follow a well-defined
data science workflow, irrespective of different business cases. This not only helps in an
organized execution, but also helps us stay focused on the objective, as data science projects
are inherently agile in most cases. Also, it is recommended that you plan for some level of
research on data, domain, and algorithms for any given project.

In this chapter, we may not be able to accommodate all the granular steps in a single flow,
but will address the important areas to give you a heads-up. We will try to look at some
different coding examples that we have not covered in the previous chapters.

Introducing a case study
We will be exploring Academy Awards demographics in this chapter. You can download
the data from the GitHub repository at
https://www.crowdflower.com/wp-content/uploads/2016/03/Oscars-demographics-
DFE.csv.

This dataset is based on the data provided at h t t p : / / w w w . c r o w d f l o w e r . c o m / d a t a - f o r - e v e

r y o n e. It contains demographic details such as race, birthplace, and age. Rows are around
400 and it can be easily processed on a simple home computer, so you can do a Proof of
Concept (POC) on executing a data science project on Spark.

Just start by downloading the file and inspecting the data. The data may look fine but as
you take a closer look, you will notice that it is not “clean”. For example, the date of birth
column does not follow the same format. Some years are in two-digit format whereas some
are in four-digit format. Birthplace does not have country for locations within the USA.

Likewise, you will also notice that the data looks skewed, with more “white” race people
from the USA. But you might have felt that the trend has changed toward later years. You
have not used any tools or techniques so far, just had a quick glance at the data. In the real
world of data science, this seemingly trivial activity can be quite helpful further down the
life cycle. You get to develop a feel for the data at hand and simultaneously hypothesize
about the data. This brings you to the very first step in the workflow.

http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone
http://www.crowdflower.com/data-for-everyone

Putting It All Together

[277]

The business problem
As iterated before, the most important aspect of any data science project is the question at
hand. Having a clear understanding on what problem are we trying to solve? This is critical to
the success of the project. It also drives what is considered as relevant data and what is not.
For example, in the current case study, if what we want to look at is the demographics, then
movie name and person name are irrelevant. At times, there is no specific question at hand!
What then? Even when there is no specific question, the business may still have some
objective, or data scientists and domain experts can work together to find the area of
business to work on. To understand the business, functions, problem statement, or data, the
data scientists start with “Questioning”. It not only helps in defining the workflow, but
helps in sourcing the right data to work on.

As an example, if the business focus is on demographics information, a formal business
problem statement can be defined as:

What is the impact of the race and country of origin among Oscar award winners?

In real-world, scenarios this step will not be this straightforward. Framing the right
question is the collective responsibility of the data scientist, strategy team, domain experts,
and the project owner. Since the whole exercise is futile if it does not serve the purpose, a
data scientist has to consult all stakeholders and try to elicit as much information as
possible from them. However, they may end up getting invaluable insights or “hunches”.
All of these combined form the core of the initial hypothesis and also help the data scientist
to understand what exactly they should look for.

The situations where there is no specific question at hand that the business is trying to find
an answer for are even more interesting to deal with, but can be complex in executing!

Data acquisition and data cleansing
Data acquisition is the logical next step. It may be as simple as selecting data from a single
spreadsheet or it may be an elaborate several months project in itself. A data scientist has to
collect as much relevant data as possible. 'Relevant' is the keyword here. Remember, more
relevant data beats clever algorithms.

We have already covered how to source data from heterogeneous data sources and
consolidate it to form a single data matrix, so we will not iterate the same fundamentals
here. Instead, we source our data from a single source and extract a subset of it.

Putting It All Together

[278]

Now it is time to view the data and start cleansing it. The scripts presented in this chapter
tend to be longer than the previous examples but still are no means of production quality.
Real-world work requires a lot more exception checks and performance tuning:

Scala

//Load tab delimited file
scala> val fp = "<YourPath>/Oscars.txt"
scala> val init_data = spark.read.options(Map("header"->"true", "sep" ->
"\t","inferSchema"->"true")).csv(fp)
//Select columns of interest and ignore the rest
>>> val awards = init_data.select("birthplace", "date_of_birth",
 "race_ethnicity","year_of_award","award").toDF(
 "birthplace","date_of_birth","race","award_year","award")
awards: org.apache.spark.sql.DataFrame = [birthplace: string,
date_of_birth: string ... 3 more fields]
//register temporary view of this dataset
scala> awards.createOrReplaceTempView("awards")

//Explore data
>>> awards.select("award").distinct().show(10,false) //False => do not
truncate
+-----------------------+
|award |
+-----------------------+
|Best Supporting Actress|
|Best Director |
|Best Actress |
|Best Actor |
|Best Supporting Actor |
+-----------------------+
//Check DOB quality. Note that length varies based on month name
scala> spark.sql("SELECT distinct(length(date_of_birth)) FROM awards
").show()
+---------------------+
|length(date_of_birth)|
+---------------------+
| 15|
| 9|
| 4|
| 8|
| 10|
| 11|
+---------------------+

//Look at the value with unexpected length 4 Why cant we show values for
each of the length type ?
scala> spark.sql("SELECT date_of_birth FROM awards WHERE

Putting It All Together

[279]

length(date_of_birth) = 4").show()
+-------------+
|date_of_birth|
+-------------+
| 1972|
+-------------+
//This is an invalid date. We can either drop this record or give some
meaningful value like 01-01-1972

Python

 //Load tab delimited file
 >>> init_data =
spark.read.csv("<YOURPATH>/Oscars.txt",sep="\t",header=True)
 //Select columns of interest and ignore the rest
 >>> awards = init_data.select("birthplace", "date_of_birth",
 "race_ethnicity","year_of_award","award").toDF(
 "birthplace","date_of_birth","race","award_year","award")
 //register temporary view of this dataset
 >>> awards.createOrReplaceTempView("awards")
 scala>
 //Explore data
 >>> awards.select("award").distinct().show(10,False) //False => do not
truncate
 +-----------------------+
 |award |
 +-----------------------+
 |Best Supporting Actress|
 |Best Director |
 |Best Actress |
 |Best Actor |
 |Best Supporting Actor |
 +-----------------------+
 //Check DOB quality
 >>> spark.sql("SELECT distinct(length(date_of_birth)) FROM awards
").show()
 +---------------------+
 |length(date_of_birth)|
 +---------------------+
 | 15|
 | 9|
 | 4|
 | 8|
 | 10|
 | 11|
 +---------------------+
 //Look at the value with unexpected length 4. Note that length varies
based on month name

Putting It All Together

[280]

 >>> spark.sql("SELECT date_of_birth FROM awards WHERE
length(date_of_birth) = 4").show()
 +-------------+
 |date_of_birth|
 +-------------+
 | 1972|
 +-------------+
 //This is an invalid date. We can either drop this record or give some
meaningful value like 01-01-1972

The preceding code snippet downloads a tab-separated text file, loads the desired columns
into a DataFrame, and registers a temporary table. The rest of the code is very similar to
basic SQL statements that just explored data.

Most of the datasets contain a date field and unless they come from a single, controlled
data source, it is highly likely that they will differ in their formats and are almost always a
candidate for cleaning.

For the dataset at hand, you might also have noticed that date_of_birth and
birthplace require a lot of cleaning. The following code shows two user-defined
functions (UDFs) that clean date_of_birth and birthplace respectively. These UDFs
work on a single data element at a time and they are just ordinary Scala/Python functions.
These user defined functions should be registered so that they can be used from within a
SQL statement. The final step is to create a cleaned data frame that will participate in
further analysis.

Notice the following logic for cleaning birthplace. It is a weak logic because we are
assuming that any string ending with two characters is an American state. We have to
compare them against a list of valid abbreviations. Similarly, assuming two-digit years are
always from the twentieth century is another error-prone assumption. Depending on the
use case, a data scientist/data engineer has to take a call whether retaining more rows is
important or only quality data should be included. All such decisions should be neatly
documented for reference:

Scala:

//UDF to clean date
//This function takes 2 digit year and makes it 4 digit
// Any exception returns an empty string
scala> def fncleanDate(s:String) : String = {
 var cleanedDate = ""
 val dateArray: Array[String] = s.split("-")
 try{ //Adjust year
 var yr = dateArray(2).toInt
 if (yr < 100) {yr = yr + 1900 } //make it 4 digit

Putting It All Together

[281]

 cleanedDate = "%02d-%s-%04d".format(dateArray(0).toInt,
 dateArray(1),yr)
 } catch { case e: Exception => None }
 cleanedDate }
fncleanDate: (s: String)String

Python:

 //This function takes 2 digit year and makes it 4 digit
 // Any exception returns an empty string
 >>> def fncleanDate(s):
 cleanedDate = ""
 dateArray = s.split("-")
 try: //Adjust year
 yr = int(dateArray[2])
 if (yr < 100):
 yr = yr + 1900 //make it 4 digit
 cleanedDate = "{0}-{1}-{2}".format(int(dateArray[0]),
 dateArray[1],yr)
 except :
 None
 return cleanedDate

The UDF to clean date accepts a hyphenated date string and splits it. If the last component,
which is the year, is two digits long, then it is assumed to be a twentieth-century date and
1900 is added to bring it to four-digit format.

The following UDF appends the country as USA if the country string is either New York
City or the last component is two characters long, where it is assumed to be a state in the
USA:

//UDF to clean birthplace
// Data explorartion showed that
// A. Country is omitted for USA
// B. New York City does not have State code as well
//This function appends country as USA if
// A. the string contains New York City (OR)
// B. if the last component is of length 2 (eg CA, MA)
scala> def fncleanBirthplace(s: String) : String = {
 var cleanedBirthplace = ""
 var strArray : Array[String] = s.split(" ")
 if (s == "New York City")
 strArray = strArray ++ Array ("USA")
 //Append country if last element length is 2
 else if (strArray(strArray.length-1).length == 2)
 strArray = strArray ++ Array("USA")
 cleanedBirthplace = strArray.mkString(" ")
 cleanedBirthplace }

Putting It All Together

[282]

Python:

 >>> def fncleanBirthplace(s):
 cleanedBirthplace = ""
 strArray = s.split(" ")
 if (s == "New York City"):
 strArray += ["USA"] //Append USA
 //Append country if last element length is 2
 elif (len(strArray[len(strArray)-1]) == 2):
 strArray += ["USA"]
 cleanedBirthplace = " ".join(strArray)
 return cleanedBirthplace

The UDFs should be registered if you want to access them from SELECT strings:

Scala:

//Register UDFs
scala> spark.udf.register("fncleanDate",fncleanDate(_:String))
res10: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
scala> spark.udf.register("fncleanBirthplace", fncleanBirthplace(_:String))
res11: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,StringType,Some(List(StringType)))

Python:

 >>> from pyspark.sql.types import StringType
 >>> sqlContext.registerFunction("cleanDateUDF",fncleanDate,
StringType())
 >>> sqlContext.registerFunction(
"cleanBirthplaceUDF",fncleanBirthplace, StringType())

Clean the data frame using the UDFs. Perform the following cleanup operations:

Call UDFs fncleanDate and fncleanBirthplace to fix birthplace and country.1.
Subtract birth year from award_year to get age at the time of receiving the2.
award.
Retain race and award as they are.3.

Scala:

//Create cleaned data frame
scala> var cleaned_df = spark.sql (
 """SELECT fncleanDate (date_of_birth) dob,
 fncleanBirthplace(birthplace) birthplace,
 substring_index(fncleanBirthplace(birthplace),' ',-1)

Putting It All Together

[283]

 country,
 (award_year - substring_index(fncleanDate(date_of_birth),'-
',-1)) age, race, award FROM awards""")
cleaned_df: org.apache.spark.sql.DataFrame = [dob: string, birthplace:
string ... 4 more fields]

Python:

//Create cleaned data frame
>>> from pyspark.sql.functions import substring_index>>> cleaned_df =
spark.sql ("""SELECT cleanDateUDF (date_of_birth) dob,
cleanBirthplaceUDF(birthplace) birthplace,
substring_index(cleanBirthplaceUDF(birthplace),' ',-1) country,
(award_year - substring_index(cleanDateUDF(date_of_birth),
'-',-1)) age, race, award FROM awards""")

The last line requires some explanation. The UDFs are used similar to SQL functions and
the expressions are aliased to meaningful names. We have added a computed column age
because we would like to validate the impact of age also. The substring_index function
 searches the first argument for the second argument. -1 indicates to look for the first
occurrence from the right.

Developing the hypothesis
A hypothesis is your best guess about what the outcome will be. You form your initial
hypothesis based on the question, conversations with stakeholders, and also by looking at
the data. You may form one or more hypotheses for a given problem. This initial hypothesis
serves as a roadmap that guides you through the exploratory analysis. Developing a
hypothesis is very important to statistically approve or not approve a statement, and not
just by looking at the data as a data matrix or even through visuals. This is because our
perception built by just looking at the data may be incorrect and rather deceptive at times.

Now you know that your final result may or may not prove the hypothesis to be correct.
Coming to the case study we have considered for this lesson, we arrive at the following
initial hypotheses:

Award winners are mostly white
Most of the award winners are from the USA
Best actors and actresses tend to be younger than best directors

Putting It All Together

[284]

Now that we have formalized our hypotheses, we are all set to move forward with the next
steps in the life cycle..

Data exploration
Now that we have a clean data frame with relevant data and the initial hypothesis, it is time
to really explore what we have. The DataFrames abstraction provides functions such as
group by out of the box for you to look around. You may register the cleaned data frame
as a table and run the time-tested SQL statements to do just the same.

This is also the time to plot a few graphs. This phase of visualization is the exploratory
analysis mentioned in the data visualization chapter. The objectives of this exploration are
greatly influenced by the initial information you garner from the business stakeholders and
the hypothesis. In other words, your discussions with the stakeholders help you know what
to look for.

There are some general guidelines that are applicable for almost all data science
assignments, but again subjective to different use cases. Let us look at some generic ones:

Look for missing data and treat it. We have already discussed various ways to do
this in Chapter 5, Data Analysis on Spark.
Find the outliers in the dataset and treat them. We have discussed this aspect as
well. Please note that there are cases where what we think of as outliers and
normal data points may change depending on the use case.
Perform univariate analysis, wherein you explore each variable in the dataset
separately. Frequency distribution or percentile distribution are quite common.
Perhaps plot some graphs to get a better idea. This will also help you prepare
your data before getting into data modeling.
Validate your initial hypothesis.
Check minimum and maximum values of numerical data. If the variation is too
high in any column, that could be a candidate for data normalization or scaling.

Putting It All Together

[285]

Check distinct values in categorical data (string values such as city names) and
their frequencies. If there are too many distinct values (aka levels) in any column,
you may have to look for ways to reduce the number of levels. If one level is
occurring almost always, then this column is not helping the model to
differentiate between the possible outcomes. Such columns are likely candidates
for removal. At the exploration stage, you just figure out such candidate columns
and let the data preparation phase take care of the actual action.

In our current dataset, we do not have any missing data and we do not have any numerical
data that might create any challenge. However, some missing values might creep in when
invalid dates are processed. So, the following code covers the remaining action items. This
code assumes that cleaned_df is already created:

Scala/Python:

cleaned_df = cleaned_df.na.drop //Drop rows with missing values
cleaned_df.groupBy("award","country").count().sort("country","award","count
").show(4,False)
+-----------------------+---------+-----+
|award |country |count|
+-----------------------+---------+-----+
Best Actor	Australia	1
Best Actress	Australia	1
Best Supporting Actor	Australia	1
Best Supporting Actress	Australia	1
+-----------------------+---------+-----+		
//Re-register data as table		
cleaned_df.createOrReplaceTempView("awards")		
//Find out levels (distinct values) in each categorical variable		
spark.sql("SELECT count(distinct country) country_count, count(distinct		
race) race_count, count(distinct award) award_count from awards").show()		
+-------------+----------+-----------+		
country_count	race_count	award_count
+-------------+----------+-----------+		
34	6	5
+-------------+----------+-----------+

Putting It All Together

[286]

The following visualizations correspond to the initial hypotheses. Note that two of our
hypotheses were found to be correct but the third one was not. These visualizations are
created using zeppelin:

Note here that the all hypotheses cannot just be validated through visuals, as they can be
deceptive at times. So proper statistical tests such as t-tests, ANOVA, Chi-squared tests,
correlation tests, and so on need to be performed as applicable. We will not get into the
details in this section. Please refer to Chapter 5, Data Analysis on Spark, for further details.

Data preparation
The data exploration stage helped us identify all the issues that needed to be fixed before
proceeding to the modeling stage. Each individual issue requires careful thought and
deliberation to choose the best fix. Here are some common issues and the possible fixes. The
best fix is dependent on the problem at hand and/or the business context.

Putting It All Together

[287]

Too many levels in a categorical variable
This is one of the most common issues we face. The treatment of this issue is dependent on
multiple factors:

If the column is almost always unique, for example, it is a transaction ID or
timestamp, then it does not participate in modeling unless you are deriving new
features from it. You may safely drop the column without losing any information
content. You usually drop it during the data cleansing stage itself.
If it is possible to replace the levels with coarser-grained levels (for example, state
or country instead of city) that make sense in the current context, then usually
that is the best way to fix this issue.
You may want to add dummy columns with 0 or 1 values for each distinct level.
For example, if you have 100 levels in a single column, you add 100 columns
instead. At most, one column will have 1 at any observation (row). This is called
one-hot encoding and Spark provides this out of the box through the
ml.features package.
Another option is to retain the most frequent levels. You may even attach each of
these levels to one of the dominant levels that is somehow considered “nearer” to
this level. Also, you may bundle up the remaining into a single bucket, say,
Others.
There is no hard and fast rule for an absolute limit to the number of levels. It
depends on what granularity you require in each individual feature and the
performance constraints.

The current dataset has too many levels in the categorical variable country. We chose to
retain the most frequent levels and bundle the remaining into Others:

Scala:

//Country has too many values. Retain top ones and bundle the rest
//Check out top 6 countries with most awards.
scala> val top_countries_df = spark.sql("SELECT country, count(*) freq FROM
awards GROUP BY country ORDER BY freq DESC LIMIT 6")
top_countries_df: org.apache.spark.sql.DataFrame = [country: string, freq:
bigint]
scala> top_countries_df.show()
+-------+----+
|country|freq|
+-------+----+
USA	289
England	57
France	9

Putting It All Together

[288]

Canada	8
Italy	7
Austria	7
+-------+----+
//Prepare top_countries list
scala> val top_countries =
top_countries_df.select("country").collect().map(x => x(0).toString)
top_countries: Array[String] = Array(USA, England, New York City, France,
Canada, Italy)
//UDF to fix country. Retain top 6 and bundle the rest into "Others"
scala> import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.functions.udf
scala > val setCountry = udf ((s: String) =>
 { if (top_countries.contains(s)) {s} else {"Others"}})
setCountry: org.apache.spark.sql.expressions.UserDefinedFunction =
UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
//Apply udf to overwrite country
scala> cleaned_df = cleaned_df.withColumn("country",
setCountry(cleaned_df("country")))
cleaned_df: org.apache.spark.sql.DataFrame = [dob: string, birthplace:
string ... 4 more fields]

Python:

 //Check out top 6 countries with most awards.
 >>> top_countries_df = spark.sql("SELECT country, count(*) freq FROM
awards GROUP BY country ORDER BY freq DESC LIMIT 6")
 >>> top_countries_df.show()
 +-------+----+
 |country|freq|
 +-------+----+
 | USA| 289|
 |England| 57|
 | France| 9|
 | Canada| 8|
 | Italy| 7|
 |Austria| 7|
 +-------+----+
 >>> top_countries = [x[0] for x in
top_countries_df.select("country").collect()]
 //UDF to fix country. Retain top 6 and bundle the rest into "Others"
 >>> from pyspark.sql.functions import udf
 >>> from pyspark.sql.types import StringType
 >>> setCountry = udf(lambda s: s if s in top_countries else "Others",
StringType())
 //Apply UDF
 >>> cleaned_df = cleaned_df.withColumn("country",
setCountry(cleaned_df["country"]))

Putting It All Together

[289]

Numerical variables with too much variation
Sometimes numerical data values may vary by several orders of magnitude. For example, if
you are looking at the annual income of individuals, it may vary a lot. Z-score
normalization (standardization) and min-max scaling are two popular choices to deal with
such data. Spark includes both of these transformations out of the box in the ml.features
package.

Our current dataset does not have any such variable. The only numerical variable we have
is age and its value is uniformly two digits. That's one less issue to fix.

Please note that it is not always necessary to normalize such data. If you are comparing two
variables that are in two different scales, or if you are using a clustering algorithm or SVM
classifier, or any other scenario where there is really a need to normalize the data, you may
normalize the data.

Missing data
This is a major area of concern. Any observations where the target itself is missing should
be removed from the training data. The remaining observations may be retained with some
imputed values or removed as per the requirements. You should be very careful in
imputing the missing values; it may lead to misleading output otherwise! It may seem very
easy to just go ahead and substitute average values in the blank cells of a continuous
variable, but this may not be the right approach.

Our current case study does not have any missing data so there is no scope for treating it.
However, let us look at an example.

Let's assume you have a student's dataset that you are dealing with, and it has data from
class-1 to class-5. If there are some missing Age values and you just find the average of the
whole column and substitute, then that would rather become an outlier and could lead to
vague results. You may choose to find the average of only the class that the student is in,
and then impute that value. This is at least a better approach, but may not be a perfect one.
In most of the cases, you will have to give weightage to other variables as well. If you do so,
you may end up building a predictive model to find the missing values and this can be a
great approach!

Putting It All Together

[290]

Continuous data
Numerical data is often continuous and must be discretized because it is a prerequisite to
some of the algorithms. It is usually split into different buckets or ranges of values.
However, there could be cases where you may not just uniformly bucket based on the range
of your data, you may have to consider the variance or standard deviation or any other
applicable reason to bucket properly. Now, deciding the number of buckets is also at the
discretion of the data scientist, but that too needs careful analysis. Too few buckets reduces
granularity and too many buckets is just about the same as having too many categorical
levels. In our case study, age is an example of such data and we need to discretize it. We
split it into different buckets. For example, look at this pipeline stage, which converts age to
10 buckets:

Scala:

scala> val splits = Array(Double.NegativeInfinity, 35.0, 45.0, 55.0,
 Double.PositiveInfinity)
splits: Array[Double] = Array(-Infinity, 35.0, 45.0, 55.0, Infinity)
scala> val bucketizer = new Bucketizer().setSplits(splits).
 setInputCol("age").setOutputCol("age_buckets")
bucketizer: org.apache.spark.ml.feature.Bucketizer =
bucketizer_a25c5d90ac14

Python:

 >>> splits = [-float("inf"), 35.0, 45.0, 55.0,
 float("inf")]
 >>> bucketizer = Bucketizer(splits = splits, inputCol = "age",
 outputCol = "age_buckets")

Categorical data
We have discussed the need for discretizing continuous data and converting it to categories
or buckets. We have also discussed the introduction of dummy variables, one for each
distinct value of a categorical variable. There is one more common data preparation practice
where we convert categorical levels to numerical (discrete) data. This is required because
many machine learning algorithms work with numerical data, integers, and real-valued
numbers, or some other situation may demand it. So, we need to convert categorical data
into numerical data.

Putting It All Together

[291]

There can be downsides to this approach. Introducing an order into inherently unordered
data may not be logical at times. For example, assigning numbers such as 0, 1, 2, 3 to the
colors “red”, “green”, “blue”, and “black”, respectively, does not make sense. This is because
we cannot say that red is one unit distant from “green” and so is “green” from “blue”! If
applicable, introducing dummy variables makes more sense in many such cases.

Preparing the data
Having discussed the common issues and possible fixes, let us see how to prepare our
current dataset. We have already covered the too many levels issue related code fix. The
following example shows the rest. It converts all the features into a single features column.
It also sets aside some data for testing the models. This code heavily relies on the
ml.features package, which was designed to support the data preparation phase. Note
that this piece of code is just defining what needs to be done. The transformations are not
carried out as yet. These will become stages in subsequently defined pipelines. Execution is
deferred as late as possible, until the actual model is built. The Catalyst optimizer finds the
optimal route to implement the pipeline:

Scala:

//Define pipeline to convert categorical labels to numerical labels
scala> import org.apache.spark.ml.feature.{StringIndexer, Bucketizer,
VectorAssembler}
import org.apache.spark.ml.feature.{StringIndexer, Bucketizer,
VectorAssembler}
scala> import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.Pipeline
//Race
scala> val raceIdxer = new StringIndexer().
 setInputCol("race").setOutputCol("raceIdx")
raceIdxer: org.apache.spark.ml.feature.StringIndexer = strIdx_80eddaa022e6
//Award (prediction target)
scala> val awardIdxer = new StringIndexer().
 setInputCol("award").setOutputCol("awardIdx")
awardIdxer: org.apache.spark.ml.feature.StringIndexer = strIdx_256fe36d1436
//Country
scala> val countryIdxer = new StringIndexer().
 setInputCol("country").setOutputCol("countryIdx")
countryIdxer: org.apache.spark.ml.feature.StringIndexer =
strIdx_c73a073553a2

//Convert continuous variable age to buckets
scala> val splits = Array(Double.NegativeInfinity, 35.0, 45.0, 55.0,
 Double.PositiveInfinity)
splits: Array[Double] = Array(-Infinity, 35.0, 45.0, 55.0, Infinity)

Putting It All Together

[292]

scala> val bucketizer = new Bucketizer().setSplits(splits).
 setInputCol("age").setOutputCol("age_buckets")
bucketizer: org.apache.spark.ml.feature.Bucketizer =
bucketizer_a25c5d90ac14

//Prepare numerical feature vector by clubbing all individual features
scala> val assembler = new VectorAssembler().setInputCols(Array("raceIdx",
 "age_buckets","countryIdx")).setOutputCol("features")
assembler: org.apache.spark.ml.feature.VectorAssembler =
vecAssembler_8cf17ee0cd60

//Define data preparation pipeline
scala> val dp_pipeline = new Pipeline().setStages(
 Array(raceIdxer,awardIdxer, countryIdxer, bucketizer, assembler))
dp_pipeline: org.apache.spark.ml.Pipeline = pipeline_06717d17140b
//Transform dataset
scala> cleaned_df = dp_pipeline.fit(cleaned_df).transform(cleaned_df)
cleaned_df: org.apache.spark.sql.DataFrame = [dob: string, birthplace:
string ... 9 more fields]
//Split data into train and test datasets
scala> val Array(trainData, testData) =
 cleaned_df.randomSplit(Array(0.7, 0.3))
trainData: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [dob:
string, birthplace: string ... 9 more fields]
testData: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [dob:
string, birthplace: string ... 9 more fields]

Python:

 //Define pipeline to convert categorical labels to numcerical labels
 >>> from pyspark.ml.feature import StringIndexer, Bucketizer,
VectorAssembler
 >>> from pyspark.ml import Pipelin
 //Race
 >>> raceIdxer = StringIndexer(inputCol= "race", outputCol="raceIdx")
 //Award (prediction target)
 >>> awardIdxer = StringIndexer(inputCol = "award",
outputCol="awardIdx")
 //Country
 >>> countryIdxer = StringIndexer(inputCol = "country", outputCol =
"countryIdx")
 //Convert continuous variable age to buckets
 >>> splits = [-float("inf"), 35.0, 45.0, 55.0,
 float("inf")]
 >>> bucketizer = Bucketizer(splits = splits, inputCol = "age",
 outputCol = "age_buckets")
 >>>
 //Prepare numerical feature vector by clubbing all individual features

Putting It All Together

[293]

 >>> assembler = VectorAssembler(inputCols = ["raceIdx",
 "age_buckets","countryIdx"], outputCol = "features")
 //Define data preparation pipeline
 >>> dp_pipeline = Pipeline(stages = [raceIdxer,
 awardIdxer, countryIdxer, bucketizer, assembler])
 //Transform dataset
 >>> cleaned_df = dp_pipeline.fit(cleaned_df).transform(cleaned_df)
 >>> cleaned_df.columns
 ['dob', 'birthplace', 'country', 'age', 'race', 'award', 'raceIdx',
'awardIdx', 'countryIdx', 'age_buckets', 'features']
 //Split data into train and test datasets
 >>> trainData, testData = cleaned_df.randomSplit([0.7, 0.3])

After carrying out all data preparation activity, you will end up with a completely numeric
data with no missing values and with manageable levels in each attribute. You may have
already dropped any attributes that may not add much value to the analysis on hand. This
is what we call the final data matrix. You are all set now to start modeling your data. So,
first you split your source data into train data and test data. Models are “trained” using train
data and “tested” using test data. Note that the split is random and you may end up with
different train and test partitions if you redo the split.

Model building
A model is a representation of things, a rendering or description of reality. Just like a model
of a physical building, data science models attempt to make sense of the reality; in this case,
the reality is the underlying relationships between the features and the predicted variable.
They may not be 100 percent accurate, but still very useful to give some deep insights into
our business space based on the data.

There are several machine learning algorithms that help us model data and Spark provides
many of them out of the box. However, which model to build is still a million dollar
question. It depends on various factors, such as interpretability-accuracy trade-off, how
much data you have at hand, categorical or numerical variables, time and memory
constraints, and so on. In the following code example, we have just trained a few models at
random to show you how it can be done.

We'll be predicting the award type based on race, age, and country. We'll be using the
DecisionTreeClassifier, RandomForestClassifier, and OneVsRest algorithms. These three are
chosen arbitrarily. All of them work with multiclass labels and are simple to understand.
We have used the following evaluation metrics provided by the ml package:

Accuracy: The ratio of correctly predicted observations.

Putting It All Together

[294]

Weighted Precision: Precision is the ratio of correct positive observations to all
positive observations. Weighted precision takes the frequency of individual
classes into account.
Weighted Recall: Recall is the ratio of positives to actual positives. Actual
positives are the sum of true positives and false negatives. Weighted Recall takes
the frequency of individual classes into account.
F1: The default evaluation measure. This is the weighted average of Precision and
Recall.

Scala:

scala> import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.Pipeline
scala> import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.classification.DecisionTreeClassifier

//Use Decision tree classifier
scala> val dtreeModel = new DecisionTreeClassifier().
 setLabelCol("awardIdx").setFeaturesCol("features").
 fit(trainData)
dtreeModel:
org.apache.spark.ml.classification.DecisionTreeClassificationModel =
DecisionTreeClassificationModel (uid=dtc_76c9e80680a7) of depth 5 with 39
nodes

//Run predictions using testData
scala> val dtree_predictions = dtreeModel.transform(testData)
dtree_predictions: org.apache.spark.sql.DataFrame = [dob: string,
birthplace: string ... 12 more fields]

//Examine results. Your results may vary due to randomSplit
scala> dtree_predictions.select("award","awardIdx","prediction").show(4)
+--------------------+--------+----------+
| award|awardIdx|prediction|
+--------------------+--------+----------+
Best Director	1.0	1.0
Best Actress	0.0	0.0
Best Actress	0.0	0.0
Best Supporting A...	4.0	3.0
+--------------------+--------+----------+

//Compute prediction mismatch count
scala> dtree_predictions.filter(dtree_predictions("awardIdx") =!=
dtree_predictions("prediction")).count()
res10: Long = 88
scala> testData.count

Putting It All Together

[295]

res11: Long = 126
//Predictions match with DecisionTreeClassifier model is about 30%
((126-88)*100/126)

//Train Random forest
scala> import org.apache.spark.ml.classification.RandomForestClassifier
import org.apache.spark.ml.classification.RandomForestClassifier
scala> import
org.apache.spark.ml.classification.RandomForestClassificationModel
import org.apache.spark.ml.classification.RandomForestClassificationModel
scala> import org.apache.spark.ml.feature.{StringIndexer, IndexToString,
VectorIndexer}
import org.apache.spark.ml.feature.{StringIndexer, IndexToString,
VectorIndexer}

//Build model
scala> val RFmodel = new RandomForestClassifier().
 setLabelCol("awardIdx").
 setFeaturesCol("features").
 setNumTrees(6).fit(trainData)
RFmodel: org.apache.spark.ml.classification.RandomForestClassificationModel
= RandomForestClassificationModel (uid=rfc_c6fb8d764ade) with 6 trees
//Run predictions on the same test data using Random Forest model
scala> val RF_predictions = RFmodel.transform(testData)
RF_predictions: org.apache.spark.sql.DataFrame = [dob: string, birthplace:
string ... 12 more fields]
//Check results
scala> RF_predictions.filter(RF_predictions("awardIdx") =!=
RF_predictions("prediction")).count()
res29: Long = 87 //Roughly the same as DecisionTreeClassifier

//Try OneVsRest Logistic regression technique
scala> import org.apache.spark.ml.classification.{LogisticRegression,
OneVsRest}
import org.apache.spark.ml.classification.{LogisticRegression, OneVsRest}
//This model requires a base classifier
scala> val classifier = new LogisticRegression().
 setLabelCol("awardIdx").
 setFeaturesCol("features").
 setMaxIter(30).
 setTol(1E-6).
 setFitIntercept(true)
classifier: org.apache.spark.ml.classification.LogisticRegression =
logreg_82cd24368c87

//Fit OneVsRest model
scala> val ovrModel = new OneVsRest().

Putting It All Together

[296]

 setClassifier(classifier).
 setLabelCol("awardIdx").
 setFeaturesCol("features").
 fit(trainData)
ovrModel: org.apache.spark.ml.classification.OneVsRestModel =
oneVsRest_e696c41c0bcf
//Run predictions
scala> val OVR_predictions = ovrModel.transform(testData)
predictions: org.apache.spark.sql.DataFrame = [dob: string, birthplace:
string ... 10 more fields]
//Check results
scala> OVR_predictions.filter(OVR_predictions("awardIdx") =!=
OVR_predictions("prediction")).count()
res32: Long = 86 //Roughly the same as other models

Python:

 >>> from pyspark.ml import Pipeline
 >>> from pyspark.ml.classification import DecisionTreeClassifier
 //Use Decision tree classifier
 >>> dtreeModel = DecisionTreeClassifier(labelCol = "awardIdx",
featuresCol="features").fit(trainData)
 //Run predictions using testData
 >>> dtree_predictions = dtreeModel.transform(testData)
 //Examine results. Your results may vary due to randomSplit
 >>> dtree_predictions.select("award","awardIdx","prediction").show(4)
 +--------------------+--------+----------+
 | award|awardIdx|prediction|
 +--------------------+--------+----------+
 | Best Director| 1.0| 4.0|
 | Best Director| 1.0| 1.0|
 | Best Director| 1.0| 1.0|
 |Best Supporting A...| 4.0| 3.0|
 +--------------------+--------+----------+
 >>> dtree_predictions.filter(dtree_predictions["awardIdx"] !=
dtree_predictions["prediction"]).count()
 92
 >>> testData.count()
 137
 >>>
 //Predictions match with DecisionTreeClassifier model is about 31%
((133-92)*100/133)
 //Train Random forest
 >>> from pyspark.ml.classification import RandomForestClassifier,
RandomForestClassificationModel
 >>> from pyspark.ml.feature import StringIndexer, IndexToString,
VectorIndexer
 >>> from pyspark.ml.evaluation import MulticlassClassificationEvaluator

Putting It All Together

[297]

 //Build model
 >>> RFmodel = RandomForestClassifier(labelCol = "awardIdx", featuresCol
= "features", numTrees=6).fit(trainData)
 //Run predictions on the same test data using Random Forest model
 >>> RF_predictions = RFmodel.transform(testData)
 //Check results
 >>> RF_predictions.filter(RF_predictions["awardIdx"] !=
RF_predictions["prediction"]).count()
 94 //Roughly the same as DecisionTreeClassifier
 //Try OneVsRest Logistic regression technique
 >>> from pyspark.ml.classification import LogisticRegression, OneVsRest
 //This model requires a base classifier
 >>> classifier = LogisticRegression(labelCol = "awardIdx",
featuresCol="features",
 maxIter = 30, tol=1E-6, fitIntercept = True)
 //Fit OneVsRest model
 >>> ovrModel = OneVsRest(classifier = classifier, labelCol =
"awardIdx",
 featuresCol = "features").fit(trainData)
 //Run predictions
 >>> OVR_predictions = ovrModel.transform(testData)
 //Check results
 >>> OVR_predictions.filter(OVR_predictions["awardIdx"] !=
OVR_predictions["prediction"]).count()
 90 //Roughly the same as other models

So far, we have tried a few models and found that they gives us roughly the same
performance. There are various other ways to validate the model performance. This again
depends on the algorithm you have used, the business context, and the outcome produced.
Let us look at some metrics that are offered out of the box in the spark.ml.evaluation
package:

Scala:

scala> import
org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
//F1
scala> val f1_eval = new MulticlassClassificationEvaluator().
 setLabelCol("awardIdx") //Default metric is F1
f1_eval: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator =
mcEval_e855a949bb0e

//WeightedPrecision
scala> val wp_eval = new MulticlassClassificationEvaluator().
setMetricName("weightedPrecision").setLabelCol("awardIdx")
wp_eval: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator =

Putting It All Together

[298]

mcEval_44fd64e29d0a

//WeightedRecall
scala> val wr_eval = new MulticlassClassificationEvaluator().
setMetricName("weightedRecall").setLabelCol("awardIdx")
wr_eval: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator =
mcEval_aa341966305a
//Compute measures for all models
scala> val f1_eval_list = List (dtree_predictions, RF_predictions,
OVR_predictions) map (
 x => f1_eval.evaluate(x))
f1_eval_list: List[Double] = List(0.2330854098674473, 0.2330854098674473,
0.2330854098674473)
scala> val wp_eval_list = List (dtree_predictions, RF_predictions,
OVR_predictions) map (
 x => wp_eval.evaluate(x))
wp_eval_list: List[Double] = List(0.2661599224979506, 0.2661599224979506,
0.2661599224979506)

scala> val wr_eval_list = List (dtree_predictions, RF_predictions,
OVR_predictions) map (
 x => wr_eval.evaluate(x))
wr_eval_list: List[Double] = List(0.31746031746031744, 0.31746031746031744,
0.31746031746031744)

Python:

 >>> from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 //F1
 >>> f1_eval = MulticlassClassificationEvaluator(labelCol="awardIdx")
//Default metric is F1
 //WeightedPrecision
 >>> wp_eval = MulticlassClassificationEvaluator(labelCol="awardIdx",
metricName="weightedPrecision")
 //WeightedRecall
 >>> wr_eval = MulticlassClassificationEvaluator(labelCol="awardIdx",
metricName="weightedRecall")
 //Accuracy
 >>> acc_eval = MulticlassClassificationEvaluator(labelCol="awardIdx",
metricName="Accuracy")
 //Compute measures for all models
 >>> f1_eval_list = [f1_eval.evaluate(x) for x in [dtree_predictions,
RF_predictions, OVR_predictions]]
 >>> wp_eval_list = [wp_eval.evaluate(x) for x in [dtree_predictions,
RF_predictions, OVR_predictions]]
 >>> wr_eval_list = [wr_eval.evaluate(x) for x in [dtree_predictions,
RF_predictions, OVR_predictions]]
 //Print results for DecisionTree, Random Forest and OneVsRest

Putting It All Together

[299]

 >>> f1_eval_list
 [0.2957949866055487, 0.2645186821042419, 0.2564967990214734]
 >>> wp_eval_list
 [0.3265407181548341, 0.31914852065228005, 0.25295826631254753]
 >>> wr_eval_list
 [0.3082706766917293, 0.2932330827067669, 0.3233082706766917]

Output:

 Decision tree Random Forest OneVsRest

F1 0.29579 0.26451 0.25649

WeightedPrecision 0.32654 0.26451 0.25295

WeightedRecall 0.30827 0.29323 0.32330

Upon validating the model performance, you will have to tune the model as much as
possible. Now, tuning can happen both ways, at the data level and at the algorithm level.
Feeding the right data that an algorithm expects is very important. The problem is that
whatever data you feed in, the algorithm may still give some output – it never complains!
So, apart from cleaning the data properly by treating missing values, treating univariate
and multivariate outliers, and so on, you can create many more relevant features. This
feature engineering is usually treated as the most important aspect of data science. Having
decent domain expertise helps to engineer better features. Now, coming to the algorithmic
aspect of tuning, there is always scope for working on optimizing the parameters that we
pass to an algorithm. You may choose to use grid search to find the optimal parameters.
Also, data scientists should question themselves on which loss function to use and why,
and, out of GD, SGD, L-BFGS, and so on, which algorithm to use to optimize the loss
function and why.

Please note that the preceding approach is intended just to demonstrate how to perform the
steps on Spark. Selecting one algorithm over the other by just looking at the accuracy level
may not be the best way. Selecting an algorithm depends on the type of data you are
dealing with, the outcome variable, the business problem/requirement, computational
challenges, interpretability, and many others.

Putting It All Together

[300]

Data visualization
Data visualization is something which is needed every now and then from the time you
take on a data science assignment. Before building any model, preferably, you will have to
visualize each variable to see their distributions to understand their characteristics and also
find outliers so you can treat them. Simple tools such as scatterplot, box plot, bar chart, and
so on are a few versatile, handy tools for such purposes. Also, you will have to use the
visuals in most of the steps to ensure you are heading in the right direction.

Every time you want to collaborate with business users or stakeholders, it is always a good
practice to convey your analysis through visuals. Visuals can accommodate more data in
them in a more meaningful way and are inherently intuitive in nature.

Please note that most data science assignment outcomes are preferably represented through
visuals and dashboards to business users. We already have a dedicated chapter on this
topic, so we won't go deeper into it.

Communicating the results to business
users
In real-life scenarios, it is mostly the case that you have to keep communicating with the
business intermittently. You might have to build several models before concluding on a
final production-ready model and communicate the results to the business.

An implementable model does not always depend on accuracy; you might have to bring in
other measures such as sensitivity, specificity, or an ROC curve, and also represent your
results through visuals such as a Gain/Lift chart or an output of a K-S test with statistical
significance. Note that these techniques require business users' input. This input often
guides the way you build the models or set thresholds. Let us look at a few examples to
better understand how it works:

If a regressor predicts the probability of an event occurring, then blindly setting
the threshold to 0.5 and assuming anything above 0.5 is 1 and less than 0.5 is 0
may not be the best way! You may use an ROC curve and take a rather more
scientific or logical decision.
False-negative predictions for diagnosis of a cancer test may not be desirable at
all! This is an extreme case of life risk.

Putting It All Together

[301]

E-mail campaigning is cheaper compared to delivery of hard copies. So the
business may decide to send e-mails to the recipients who are predicted with less
than 0.5 (say 0.35) probability.

Notice that the preceding decisions are influenced heavily by business users or the problem
owners, and data scientists work closely with them to take a call on such cases.

Again, as discussed already, the right visuals are the most preferred way to communicate
the results to the business.

Summary
In this chapter, we have taken up a case study and completed the data analytics life cycle
end to end. During the course of building a data product, we have applied the knowledge
gained so far in the previous chapters. We have stated a business problem, formed an initial
hypothesis, acquired data, and prepared it for model building. We have tried building
multiple models and found a suitable model.

In the next chapter, which is also the final chapter, we will discuss building real-world
applications using Spark.

References
http://www2.sas.com/proceedings/forum2007/073-2007.pdf.

h t t p s : / / a z u r e . m i c r o s o f t . c o m / e n - i n / d o c u m e n t a t i o n / a r t i c l e s / m a c h i n e - l e a r n i n g - a l

g o r i t h m - c h o i c e /.

http://www.cs.cornell.edu/courses/cs578/2003fa/performance_measures.pdf.

https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/
https://azure.microsoft.com/en-in/documentation/articles/machine-learning-algorithm-choice/

11
Building Data Science

Applications
Data science applications are garnering a lot of excitement, mainly because of the promise
they hold in harnessing data and extracting consumable results. There are already several
successful data products that have had a transformative effect on our daily lives. The
ubiquitous recommender systems, e-mail spam filters, and targeted advertisements and
news content have become part and parcel of life. Music and movies have become data
products streaming from providers such as iTunes and Netflix. Businesses, especially in the
domains such as retail, are actively pursuing ways to gain a competitive advantage by
studying the market and customer behavior using a data-driven approach.

We have discussed the data analytics workflow up to the model building phase so far in the
previous chapters. But the real value of a model is when it is actually deployed in a
production system. The end product, the fruit of a data science workflow, is an
operationalized data product. In this chapter, we discuss this culminating stage of the data
analytics workflow. We will not get into actual code snippets but take a step back to get the
complete picture, including the non-technical aspects.

The complete picture is not limited to the development process alone. It comprises the user
application, developments in Spark itself, as well as rapid changes happening in the big
data landscape. We'll start with the development process of the user application first and
discuss various options at each stage. Then we'll delve into the features and enhancements
in the latest Spark 2.0 release and future plans. Finally, we'll attempt to give a broad
overview of the big data trends, especially the Hadoop ecosystem. References and useful
links are included in individual sections in addition to the end of the chapter for further
information about the specific context.

Building Data Science Applications

[303]

Scope of development
Data analytics workflow can be roughly divided into two phases, the build phase and the
operationalization phase. The first phase is usually a one-time exercise, with heavy human
intervention. Once we've attained reasonable end results, we are ready to operationalize the
product. The second phase starts with the models generated in the first phase and makes
them available as a part of some production workflow. In this section, we'll discuss the
following:

Expectations
Presentation options
Development and testing
Data quality management

Expectations
The primary goal of data science applications is to build “actionable” insights, actionable
being the keyword. Many use cases such as fraud detection need the insights to be
generated and made available in a consumable fashion in near real time, if you expect any
action-ability at all. The end users of the data product vary with the use case. They may be
customers of an e-commerce site or a decision maker of a major conglomerate. The end user
need not always be a human being. It could be a risk assessment software tool in a financial
institution. A one-size-fits-all approach does not fit in with many software products, and
data products are no exception. However, there are some common expectations for data
products, as listed here:

The first and foremost expectation is that the insight generation time frame based
on real-world data should be within “actionable” timeframes. The actual time
frame varies based on the use case.
The data product should integrate into some (often already existing) production
workflow.
The insights should be translated into something that people can use instead of
obscure numbers or hard-to-interpret charts. The presentation should be
unobtrusive.
The data product should have the ability to fine-tune itself (self-adapting) based
on the incoming data inputs.
Ideally, there has to be some way to receive human feedback, which can be used
as a source for self-tuning.

Building Data Science Applications

[304]

There should be a mechanism that quantitatively assesses its effectiveness
periodically and automatically.

Presentation options
The varied nature of data products calls for varied modes of presentation. Sometimes the
end result of a data analytics exercise is to publish a research paper. Sometimes it could be a
part of a dashboard, where this becomes one of several sources publishing results on a
single web page. They may be overt and targeted for human consumption, or covert and
feeding into some other software application. You may use a general-purpose engine such
as Spark to build your solution, but the presentation must be highly aligned to the targeted
user base.

Sometimes all you need to do is write an e-mail with your findings or just export a CSV file
of insights. Or you may have to develop a dedicated web application around your data
product. Some other common options are discussed here, and you have to choose the right
one that fits the problem on hand.

Interactive notebooks
Interactive notebooks are web applications that allow you to create and share documents
that contain code chunks, results, equations, images, videos, and explanation text. They
may be viewed as executable documents or REPL shells with visualization and equation
support. These documents can be exported as PDFs, Markdown, or HTML. Notebooks
contain several “kernels” or “computational engines” that execute code chunks.

Interactive notebooks are the most suitable choice if the end goal of your data analytics
workflow is to generate a written report. There are several notebooks and many of them
have Spark support. These notebooks are useful tools during the exploration phase also. We
have already introduced IPython and Zeppelin notebooks in previous chapters.

References

The IPython Notebook: A Comprehensive Tool for Data
Science: http://conferences.oreilly.com/strata/strata2013/public/schedule/detail/27
233
Sparkly Notebook: Interactive Analysis and Visualization with Spark: h t t p : / / w w
w . s l i d e s h a r e . n e t / f e l i x c s s / s p a r k l y - n o t e b o o k - i n t e r a c t i v e - a n a l y s i s - a n d -
v i s u a l i z a t i o n - w i t h - s p a r k

http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark
http://www.slideshare.net/felixcss/sparkly-notebook-interactive-analysis-and-visualization-with-spark

Building Data Science Applications

[305]

Web API
An Application Programming Interface (API) is a software-to-software interface; a
specification that describes the available functionality, how it must be used, and what the
inputs and outputs are. The software (service) provider exposes some of its functionality as
an API. A developer may develop a software component that consumes this API. For
example, Twitter offers APIs to get or post data onto Twitter or to query data
programmatically. A Spark enthusiast may write a software component that automatically
collects all tweets on #Spark, categorizes according to their requirements, and publishes that
data on their personal website. Web APIs are a type of APIs where the interface is defined
as a set of Hypertext Transfer Protocol (HTTP) request messages along with a definition of
the structure of response messages. Nowadays REST-ful (Representational State Transfer)
have become the de facto standard.

You can implement your data product as an API, and perhaps this is the most powerful
option. It can then be plugged into one or more applications, say the management
dashboard as well as the marketing analytics workflow. You may develop a domain specific
“insights-as-a-service” as a public Web API with a subscription model. The simplicity and
ubiquity of Web APIs make them the most compelling choice for building data products.

References

Application programming interface: h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / A p p l i c a
t i o n _ p r o g r a m m i n g _ i n t e r f a c e

Ready for APIs? Three steps to unlock the data economy's most promising
channel: http://www.forbes.com/sites/mckinsey/2014/01/07/ready-for-apis-three-s
teps-to-unlock-the-data-economys-most-promising-channel/#61e7103b89e5
How Insights-as-a-service is growing based on big
data: http://www.kdnuggets.com/2015/12/insights-as-a-service-big-data.html

PMML and PFA
Sometimes you may have to expose your model in a way that other data mining tools can
understand. The model and the complete pre- and post-processing steps should be
converted into a standard format. PMML and PFA are two such standard formats in the
data mining domain.

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface

Building Data Science Applications

[306]

Predictive Model Markup Language (PMML) is an XML-based predictive model
interchange format and Apache Spark API convert models into PMML out of the box. A
PMML message may contain a myriad of data transformations as well as one or more
predictive models. Different data mining tools can export or import PMML messages
without the need for custom code.

Portable Format for Analytics (PFA) is the nextgeneration of predictive model interchange
format. It exchanges JSON documents and straightaway inherits all advantages of JSON
documents as against XML documents. In addition, PFA is more flexible than PMML.

References

PMML FAQ: Predictive Model Markup
Language: http://www.kdnuggets.com/2013/01/pmml-faq-predictive-model-mark
up-language.html
Portable Format for Analytics: moving models to
production: http://www.kdnuggets.com/2016/01/portable-format-analytics-model
s-production.html
What is PFA for?: h t t p : / / d m g . o r g / p f a / d o c s / m o t i v a t i o n /

Development and testing
Apache Spark is a general-purpose cluster computing system that can run both by itself or
over several existing cluster managers such as Apache Mesos, Hadoop, Yarn, and Amazon
EC2. In addition, several big data and enterprise software companies have already
integrated Spark into their offerings: Microsoft Azure HDInsight, Cloudera, IBM Analytics
for Apache Spark, SAP HANA, and the list goes on. Databricks, a company founded by the
creators of Apache Spark, have their own product for data science workflow, from ingestion
to production. Your responsibility is to understand your organizational requirements and
existing talent pool and decide which option is the best for you.

Regardless of the option chosen, follow the usual best practices in any software
development life cycle, such as version control and peer reviews. Try to use high-level APIs
wherever applicable. The data transformation pipelines used in production should be the
same as the ones used in building the model. Document any questions that arise during the
data analytics workflow. Often these may result in business process improvements.

http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/
http://dmg.org/pfa/docs/motivation/

Building Data Science Applications

[307]

As always, testing is extremely important for the success of your product. You have to
maintain a set of automated scripts that give easy-to-understand results. The test cases
should cover the following at the minimum:

Adherence to timeframe and resource consumption requirements
Resilience to bad data (for example, data type violations)
New value in a categorical feature that was not encountered during the model
building phase
Very little data or too heavy data that is expected in the target production system

Monitor logs, resource utilization, and so on to uncover any performance bottlenecks. The
Spark UI provides a wealth of information to monitor Spark applications. The following are
some common tips that will help you improve performance:

Cache any input or intermediate data that might be used multiple times.
Look at the Spark UI and identify jobs that are causing a lot of shuffle. Check the
code and see whether you can reduce the shuffles.
Actions may transfer the data from workers to the driver. See that you are not
transferring any data that is not absolutely necessary.
Stragglers; tasks that run slower than others; may increase the overall job
completion time. There may be several reasons for a straggler. If a job is running
slow due to a slow node, you may set spark.speculation to true. Then Spark
automatically relaunches such a task on a different node. Otherwise, you may
have to revisit the logic and see whether it can be improved.

References
Investigating Spark's
performance: http://radar.oreilly.com/2015/04/investigating-sparks-performance.
html
Tuning and Debugging in Apache Spark by Patrick Wendell: h t t p s : / / s p a r k h u b

. d a t a b r i c k s . c o m / v i d e o / t u n i n g - a n d - d e b u g g i n g - a p a c h e - s p a r k /
How to tune your Apache Spark
jobs: http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-
part-1/ and part 2

https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/
https://sparkhub.databricks.com/video/tuning-and-debugging-apache-spark/

Building Data Science Applications

[308]

Data quality management
At the outset, let's not forget that we are trying to build fault-tolerant software data
products from unreliable, often unstructured, and uncontrolled data sources. So data
quality management gains even more importance in a data science workflow. Sometimes
the data may solely come from controlled data sources, such as automated internal process
workflows in an organization. But in all other cases, you need to carefully craft your data
cleansing processes to protect the subsequent processing.

Metadata consists of the structure and meaning of data, and obviously the most critical
repository to work with. It is the information about the structure of individual data sources
and what each component in that structure means. You may not always be able to write
some script and extract this data. A single data source may contain data with different
structures or an individual component (column) may mean different things during different
times. A label such as owner or high may mean different things in different data sources.
Collecting and understanding all such nuances and documenting is a tedious, iterative task.
Standardization of metadata is a prerequisite to data transformation development.

Some broad guidelines that are applicable to most use cases are listed here:

All data sources must be versioned and timestamped
Data quality management processes often require involvement of the highest
authorities
Mask or anonymize sensitive data
One important step that is often missed out is to maintain traceability; a link
between each data element (say a row) and its original source

The Scala advantage
Apache Spark allows you to write applications in Python, R, Java, or Scala. With this
flexibility comes the responsibility of choosing the right language for your requirements.
But regardless of your usual language of choice, you may want to consider Scala for your
Spark-powered application. In this section, we will explain why.

Building Data Science Applications

[309]

Let's digress to gain a high-level understanding of imperative and functional programming
paradigms first. Languages such as C, Python, and Java belong to the imperative
programming paradigm. In the imperative programming paradigm, a program is a
sequence of instructions and it has a program state. The program state is usually
represented as a set of variables and their values at any given point in time. Assignments
and reassignments are fairly common. Variable values are expected to change over the
period of execution by one or more functions. Variable value modification in a function is
not limited to local variables. Global variables and public class variables are some examples
of such variables.

In contrast, programs written in functional programming languages such as Erlang can be
viewed as stateless expression evaluators. Data is immutable. If a function is called with the
same set of input arguments, then it is expected to produce the same result (that is,
referential transparency). This is possible due to the absence of interference from a variable
context in the form of global variables and the like. This implies that the sequence of
function evaluation is of little importance. Functions can be passed as arguments to other
functions. Recursive calls replace loops. The absence of state makes parallel programming
much easier because it eliminates the need for locking and possible deadlocks. Coordination
gets simplified when the execution order is less important. These factors make the
functional programming paradigm a neat fit for parallel programming.

Pure functional programming languages are hard to work with because most of the
programs require state changes. Most functional programming languages, including good
old Lisp, do allow storing of data in variables (side-effects). Some languages such as Scala
draw from multiple programming paradigms.

Returning to Scala, it is a JVM-based, statically typed multi-paradigm programming
language. Its built-in-type inference mechanism allows programmers to omit some
redundant type information. This gives a feel of the flexibility offered by dynamic
languages while retaining the robustness of better compile time checks and fast runtime.
Scala is an object-oriented language in the sense that every value is an object, including
numerical values. Functions are first-class objects, which can be used as any data type, and
they can be passed as arguments to other functions. Scala interoperates well with Java and
its tools because Scala runs on JVM. Java and Scala classes can be freely mixed. That implies
that Scala can easily interact with the Hadoop ecosystem.

All of these factors should be taken into account when you choose the right programming
language for your application.

Building Data Science Applications

[310]

Spark development status
Apache Spark has become the most currently active project in the Hadoop ecosystem in
terms of the number of contributors by the end of 2015. Having started as a research project
at UC Berkeley AMPLAB in 2009, Spark is still relatively young when compared to projects
such as Apache Hadoop and is still in active development. There were three releases in the
year 2015, from 1.3 through 1.5, packed with features such as DataFrames API, SparkR, and
Project Tungsten respectively. Version 1.6 was released in early 2016 and included the new
Dataset API and expansion of data science functionality. Spark 2.0 was released in July
2016, and this being a major release has a lot of new features and enhancements that
deserve a section of their own.

Spark 2.0's features and enhancements
Apache Spark 2.0 included three major new features and several other performance
improvements and under-the-hood changes. This section attempts to give a high-level
overview yet step into the details to give a conceptual understanding wherever required.

Unifying Datasets and DataFrames
DataFrames are high-level APIs that support a data abstraction conceptually equivalent to a
table in a relational database or a DataFrame in R and Python (the pandas library). Datasets
are an extension of the DataFrame API that provide a type-safe, object-oriented
programming interface. Datasets add static types to DataFrames. Defining a structure on
top of DataFrames provides information to the core that enables optimizations. It also helps
in catching analysis errors early on, even before a distributed job starts.

RDDs, Datasets, and DataFrames are interchangeable. RDDs continue to be the low-level
API. DataFrames, Datasets, and SQL share the same optimization and execution pipeline.
Machine learning libraries take either DataFrames or Datasets. Both DataFrames and
Datasets run on Tungsten, an initiative to improve runtime performance. They leverage
Tungsten's fast in-memory encoding, which is responsible for converting between JVM
objects and Spark's internal representation. The same APIs work on streams also,
introducing the concept of continuous DataFrames.

Building Data Science Applications

[311]

Structured Streaming
Structure Streaming APIs are high-level APIs that are built on the Spark SQL engine and
extend DataFrames and Datasets. Structured Streaming unifies streaming, interactive, and
batch queries. In most use cases, streaming data needs to be combined with batch and
interactive queries to form continuous applications. These APIs are designed to address that
requirement. Spark takes care of running the query incrementally and continuously on
streaming data.

The first release of structured streaming will be focusing on ETL workloads. Users will be
able to specify the input, query, trigger, and type of output. An input stream is logically
equivalent to an append-only table. Users define queries just the way they would on a
traditional SQL table. The trigger is a timeframe, say one second. The output modes offered
are complete output, deltas, or updates in place (for example, a DB table).

Take this example: you can aggregate the data in a stream, serve it using the Spark SQL
JDBC server, and pass it to a database such as MySQL for downstream applications. Or you
could run ad hoc SQL queries that act on the latest data. You can also build and apply
machine learning models.

Project Tungsten phase 2
The central idea behind project Tungsten is to bring Spark's performance closer to bare
metal through native memory management and runtime code generation. It was first
included in Spark 1.4 and enhancements were added in 1.5 and 1.6. It focuses on
substantially improving the efficiency of memory and CPU for Spark applications,
primarily by the following ways:

Managing memory explicitly and eliminating the overhead of JVM object model
and garbage collection. For example, a four-byte string would occupy around 48
bytes in the JVM object model. Since Spark is not a general-purpose application
and has more knowledge about the life cycle of memory blocks than the garbage
collector, it can manage memory more efficiently than JVM.
Designing cache-friendly algorithms and data structures.
Spark performs code generation to compile parts of queries to Java bytecode. This
is being broadened to cover most built-in expressions.

Building Data Science Applications

[312]

Spark 2.0 rolls out phase 2, which is an order of magnitude faster and includes:

Whole stage code generation by removing expensive iterator calls and fusing
across multiple operators so that the generated code looks like hand-optimized
code
Optimized input and output

What's in store?
Apache Spark 2.1 is expected to have the following:

Continuous SQL (CSQL)
BI application integration
Support for more streaming sources and sinks
Inclusion of additional operators and libraries for structured streaming
Enhancements to a machine learning package
Columnar in-memory support in Tungsten

The big data trends
Big data processing has been an integral part of the IT industry, more so in the past decade.
Apache Hadoop and other similar endeavors are focused on building the infrastructure to
store and process massive amounts of data. After being around for over 10 years, the
Hadoop platform is considered mature and almost synonymous with big data processing.
Apache Spark, a general computing engine that works well with is and not limited to the
Hadoop ecosystem, was quite successful in the year 2015.

Building data science applications requires knowledge of the big data landscape and what
software products are available out of that box. We need to carefully map the right blocks
that fit our requirements. There are several options with overlapping functionality, and
picking the right tools is easier said than done. The success of the application very much
depends on assembling the right mix of technologies and processes. The good news is that
there are several open source options that drive down the cost of doing big data analytics;
and at the same time, you have enterprise-quality end-to-end platforms backed by
companies such as Databricks. In addition to the use case on hand, keeping track of the
industry trends in general is equally important.

Building Data Science Applications

[313]

The recent surge in NOSQL data stores with their own interfaces are adding SQL-based
interfaces even though they are not relational data stores and may not adhere to ACID
properties. This is a welcome trend because converging to a single, age-old interface across
relational and non-relational data stores improves programmer productivity.

The operational (OLTP) and analytical (OLAP) systems were being maintained as separate
systems over the past couple of decades, but that's one more place where convergence is
happening. This convergence brings us to near-real-time use cases such as fraud prevention.
Apache Kylin is one open source distributed analytics engine in the Hadoop ecosystem that
offers an extremely fast OLAP engine at scale.

The advent of the Internet of Things is accelerating real-time and streaming analytics,
bringing in a whole lot of new use cases. The cloud frees up organizations from the
operations and IT management overheads so that they can concentrate on their core
competence, especially in big data processing. Cloud-based analytic engines, self-service
data preparation tools, self-service BI, just-in-time data warehousing, advanced analytics,
rich media analytics, and agile analytics are some of the commonly used buzzwords. The
term big data itself is slowly evaporating or becoming implicit.

There are plenty of software products and libraries in the big data landscape with
overlapping functionalities, as shown in this infographic
(http://mattturck.com/wp-content/uploads/2016/02/matt_turck_big_data_landscape_v11.pn
g). Choosing the right blocks for your application is a daunting but very important task.
Here is a short list of projects to get you started. The list excludes popular names such as
Cassandra and tries to include blocks with complementing functionality and mostly from
Apache Software Foundation:

Apache Arrow (h t t p s : / / a r r o w . a p a c h e . o r g /) is an in-memory columnar layer
used to accelerate analytical processing and interchange. It is a high-performance,
cross-system, and in-memory data representation that is expected to bring in 100
times the performance improvements.
Apache Parquet (h t t p s : / / p a r q u e t . a p a c h e . o r g /) is a columnar storage format.
Spark SQL provides support for both reading and writing parquet files while
automatically capturing the structure of the data.
Apache Kafka (h t t p : / / k a f k a . a p a c h e . o r g /) is a popular, high-throughput
distributed messaging system. Spark streaming has a direct API to support
streaming data ingestion from Kafka.

https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/

Building Data Science Applications

[314]

Alluxio (h t t p : / / a l l u x i o . o r g /), formerly called Tachyon, is a memory-centric,
virtual distributed storage system that enables data sharing across clusters at
memory speed. It aims to become the de facto storage unification layer for big
data. Alluxio sits between computation frameworks such as Spark and storage
systems such as Amazon S3, HDFS, and others.
GraphFrames
(https://databricks.com/blog/2016/03/03/introducing-graphframes.html) is a
graph processing library for Apache spark that is built on top of DataFrames API.
Apache Kylin (h t t p : / / k y l i n . a p a c h e . o r g /) is a distributed analytics engine
designed to provide SQL interface and multidimensional analysis (OLAP) on
Hadoop, supporting extremely large datasets.
Apache Sentry (h t t p : / / s e n t r y . a p a c h e . o r g /) is a system for enforcing fine-
grained role-based authorization to data and metadata stored on a Hadoop
cluster. It is in the incubation stage at the time of writing this book.
Apache Solr (h t t p : / / l u c e n e . a p a c h e . o r g / s o l r /) is a blazing fast search
platform. Check this presentation for integrating Solr and Spark.
TensorFlow (h t t p s : / / w w w . t e n s o r f l o w . o r g /) is a machine learning library with
extensive built-in support for deep learning. Check out this blog to learn how it
can be used with Spark.
Zeppelin (h t t p : / / z e p p e l i n . i n c u b a t o r . a p a c h e . o r g /) is a web-based notebook
that enables interactive data analytics. It is covered in the data visualization
chapter.

Summary
In this final chapter, we discussed how to build real-world applications using Spark. We
discussed the big picture consisting of technical and non-technical aspects of data analytics
workflows.

http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://alluxio.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://kylin.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://sentry.apache.org/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
https://spark-summit.org/2015/events/integrating-spark-and-solr/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://databricks.com/blog/2016/01/25/deep-learning-with-spark-and-tensorflow.html
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/
http://zeppelin.incubator.apache.org/

Building Data Science Applications

[315]

References
The Spark Summit site has a wealth of information on Apache Spark and related
projects from completed events
Interview with Matei Zaharia by KDnuggets
Why Spark Reached the Tipping Point in 2015 from KDnuggets by Matthew Mayo
Going Live: Preparing your first Spark production deployment is a very good
starting point
What is Scala? from the Scala home page
Martin Odersky, creator of Scala, explains the reasons why Scala fuses together
imperative and functional programming

Index

A
Abstract Syntax Tree (AST) 52
action functions
 collect() function 44
 count() function 44
 countByKey() function 45
 first() function 44
 take(n) function 44
 takeSample() function 44
Akaike information criterion (AIC) 249
Alluxio
 about 314
 URL 314
Apache Arrow
 about 313
 URL 313
Apache Kafka
 about 313
 URL 313
Apache Kylin
 about 314
 URL 314
Apache Parquet
 about 58, 313
 DataFrames, creating from 58
 URL 313
Apache Sentry
 about 314
 URL 314
Apache Solr
 about 314
 URL 314
Apache Spark
 about 8
 data abstractions 70
Apache Toree kernel 258

Apache Zeppelin 258
Application Programming Interface (API) 305
Artificial Intelligence (AI) 146

B
Bayesian information criterion (BIC) 249
bell curve 128
big data analytics
 challenges 10
 evolution 12, 13
big data trends 312, 313
big data
 about 8
 overview 9
binomial distribution
 about 125
 sample problem 126
Business Intelligence (BI) 259
business problem 277

C
case study 276
Catalyst optimizer
 about 49
 features 49, 50
Central Limit Theorem (CLT) 129
challenges, with big data analytics
 about 10
 analytical challenges 11
 computation challenges 10, 11
Chi-square distribution
 about 132
 sample problem 133, 134
classification methods
 about 175
 examples 175
 logistic regression 176, 177

[317]

clustering techniques
 about 202
 K-means clustering 202
Compressed Sparse Column (CSC) format 153
continuous applications 88
continuous probability distributions
 about 128
 Chi-square distribution 132, 133
 F-distribution 136
 normal distribution 128, 129
 standard normal distribution 129, 130, 131
 Student's t-distribution 135, 136

D
data abstractions 71
data acquisition 93, 277
data analytics life cycle 91, 92, 93
data cleansing
 about 96, 280
 duplicate values treatment 103
 missing value treatment 97
 outlier treatment 100
data distributions
 about 115
 frequency distributions 115, 116
 probability distributions 117, 118
data engineering 94
data exploration 284, 285, 286
data lakes 92
data preparation
 about 94, 95, 286
 data cleansing 96
 data consolidation 95
 data transformation 105, 108, 111
 levels, in categorical variable 287
 numerical variables, with variation 289
data science applications
 building 302
Data Source API 50
data visualization techniques
 about 259
 modeling and visualizing 270, 271, 272
 sampling and visualizing 267, 269
 subsetting and visualizing 263, 264, 265, 266,

267

 summarizing and visualizing 259, 261, 262, 263
data visualization tools
 about 257
 Apache Zeppelin 258
 IPython notebook 258
 third-party tools 258
data visualization
 about 255, 300
 business user's perspective 257
 data engineer's perspective 256
 data scientist's perspective 256
DataBricks 257
DataFrame API
 about 50
 basics 51
 features 51
 RDDs, versus DataFrames 51
DataFrame operations
 about 60
 implementing 67
DataFrames
 about 17, 48
 creating 53
 creating from databases, JDBC used 57
 creating, from Apache Parquet 58, 59
 creating, from JSON 56
 creating, from other data sources 59
 creating, from RDDs 54
Datasets API
 limitations 76
Datasets
 about 72
 creating, from JSON 75
 working with 72, 73, 74
decision trees
 about 183
 advantages 187
 disadvantages 187
 example 187
 impurity measures 184
 split candidates 186
 stopping rule 186
descriptive statistics
 about 118
 graphical techniques 123

[318]

 measures of location 118
 measures of spread 120
 summary statistics 122
development scope, data science application
 about 303
 data quality management 308
 development and testing 306, 307
 expectations 303
 presentation options 304
dimensionality reduction 250
Directed Acyclic Graph (DAG) 25, 52
discrete probability distributions
 about 124
 Bernoulli distribution 124, 125
 binomial distribution 125, 126
 Poisson distribution 127
Discretised Stream (DStream) 17

E
elastic net regression 172
ensembles
 about 192
 Gradient-Boosted Trees (GBTs) 193
 random forests 192
Expectation Maximization (EM) 94
Extract, Transform, and Load (ETL) 11

F
final data matrix 293
frequency distribution 115

G
Garbage In, Garbage Out (GIGO) 111
Gaussian GLM model 224
Gaussian Mixture Models (GMMs) 94
Generalized Linear Models (GLMs) 208
gradient descent 171
Gradient-Boosted Trees (GBTs) 193
GraphFrames
 about 314
 URL 314
GraphX 18

H
Hadoop Distributed File System (HDFS) 10
Hypertext Transfer Protocol (HTTP) 305
hypothesis testing
 about 139
 Chi-square test 140
 correlations 143
 F-test 142
 null and alternate hypotheses 140
hypothesis
 about 283
 developing 283

I
impurity measures, decision trees
 about 184
 entropy 185
 Gini Index 184
 variance 185
inferential statistics
 about 124
 confidence interval 138
 confidence level 137
 continuous probability distributions 128
 discrete probability distributions 124
 hypothesis testing 139
 margin of error 138
 sample size, estimating 139
 standard error 137
 variability, in population 138
Internet of Things (IoT) 9
Inverse Document Frequency (IDF) 234
IPython/Jupyter 257
IPython/Jupyter notebook 258

J
Java Virtual Machine (JVM) 22
Java
 about 22
JSON
 about 56

[319]

K
K-means clustering
 about 202, 249
 disadvantages 203
 example 204

L
laplace smoothing technique 241
lasso regression 172
least squares 167
line-of-business (LOB) 93
lineage graph 27
linear regression
 loss function 170
 optimization 171
Linear Support Vector Machines (SVM)
 about 178, 179, 180
 linear kernel 181
 polynomial kernel 181
 Radial Basis Function (RBF) 181
 sigmoid kernel 181
loss functions 194

M
machine learning
 about 148, 163, 222
 evolution 148
 Gaussian GLM model 224
 Naive Bayes model 222, 223
 non-parametric methods 165
 parametric methods 165
 supervised learning 148
 unsupervised learning 149
Mahalanobis distance 94
maximal margin classifier 178
measures of location
 about 118
 mean 118
 median 119
 mode 119
measures of spread
 about 120
 range 120
 standard deviation 120

 variance 120
ML Pipelines
 about 18, 156
 Estimator 157, 158
 transformer 157
MLlib 18, 150, 151, 153, 154, 156
model building 293, 294, 299
multilayer perceptron classifier (MLPC) 199

N
n-gram modelling 239
Naive Bayes (NB) classifier 241
Naive Bayes model 222, 223
Natural Language Processing (NLP) 226
netcat (nc) 81
numerical variables, with variation
 about 289
 categorical data 290
 continous data 290
 data, preparing 291
 missing data 289

O
one-hot encoding 287
Ordinary Least Squares (OLS) approach 167

P
Poisson distribution
 about 127
 sample problem 127
Portable Format for Analytics (PFA) 306
PowerBI 258
Predictive Model Markup Language (PMML) 306
presentation options
 interactive notebooks 304
 PFA 305, 306
 PMML 305, 306
 Web API 305
Principal Component Analysis (PCA) 252
probability density function (PDF) 128
probability distributions 117
programming language
 selecting 23
programming paradigm
 about 21

[320]

 supported programming languages 21
Proof of Concept (POC) 276
PySpark 22
Python 22

R
R package 23
random forests
 about 192
 advantages 193
random sampling 267
RDD API
 about 28
 RDD basics 28, 29
RDD operations on normal RDDs
 actions 43
RDD operations
 about 30
 RDDs, creating 30, 31, 33, 34
 transformations, on normal RDDs 34
 transformations, on pair RDDs 39
RDDs, versus DataFrames
 about 51
 differences 52
 similarities 52
Read-Evaluate-Print-Loop (REPL) 21
regression methods
 about 165
 linear regression 166, 167, 168, 169, 170
regularization, on regression
 about 171, 172
 elastic net regression 174
 lasso regression 173
 ridge regression 172, 173
Residual Sum of Squares (RSS) 168
Resilient Distributed Dataset (RDD) 16
 persistence 29
Resilient Distributed Graph (RDG) 18
results
 communicating, to business users 300
ridge regression 172

S
sampleByKey 267
sampling

 about 113
 simple random sample 113
 stratified sampling 114
 systematic sampling 113
Scala 22
Scala advantage 308, 309
shared variables
 accumulators 26
 broadcast variables 26
shrinkage penalty 172
Singular Value Decomposition (SVD) 251, 252
Software Development Life Cycle (SDLC) 276
Spark 2.0
 DataFrames, unifying 310
 Datasets, unifying 310
 enhancements 310
 features 310
 project Tungsten phase 2 311
 Structured Streaming 311
Spark development status 310
Spark engine
 about 24
 driver program 24, 25
 execution flow 27
 executors 26
 shared variables 26
 Spark shell 25
 SparkContext 25
 worker nodes 26
Spark SQL
 about 49, 76
 Catalyst optimizer 49, 50
 implementing 79
 SQL operations 77
Spark stack
 about 15, 16
 GraphX 18
 MLlib 18
 Spark core 16
 Spark SQL 17
 Spark streaming 17
 SparkR 19
Spark streaming programming model
 about 83, 84, 85
 comparing, with other streaming engines 87

[321]

 implementing 86
Spark, for data analytics 14, 15
SparkR DataFrames
 about 217, 218
 merging 220, 221
 set operations 219
 SQL operations 218
SparkR
 about 207
 accessing, from R environment 208, 209
 advantages 211
 basics 207
 column functions 215
 data, subsetting 214
 DataFrames 209
 function name masking 213
 grouped data 216, 217
 limitations 211
 preparing 210
 programming with 212, 213
 RDDs 209
split candidates, decision trees
 about 186
 categorical features 186
 continuous features 186
squared loss 170
standard error (SE) 137
standard error of the mean (SEM) 137
Stanford Network Analysis Project (SNAP) 265
Static data 80
statistics
 about 111
 basics 111
 data distributions 115
 descriptive statistics 112
 inferential statistics 112
 sampling 112
Stochastic Gradient Descent (SGD) 171
strata 114
stratified sampling 267
Streaming Data 80
Structured Streaming 79, 80, 81
Sum of Squared Error (SSE) 168
summary statistics 122
supervised learning 149

support vector classifier 178
Support Vector Machines (SVM) 164, 178
 training 181
supported programming languages
 Java 22
 Python 22
 R package 23
 Scala 22
System Activity Report (sar) 81

T
Tableau 258
TensorFlow
 about 314
 URL 314
Term Frequency (TF) 234
Term Frequency-Inverse Document Frequency (TF-

IDF) 234
text classification
 about 241
 Naive Bayes classifier 241
text clustering
 about 249
 K-means 249
Total Sum of Squares (TSS) 169
transformations, on normal RDDs
 about 34
 cartesian operation 38
 distinct operation 35
 filter operation 35
 flatMap operation 37
 intersection operation 36
 keys operation 38
 map operation 37
 union operation 36
transformations, on pair RDDs
 about 39
 aggregate operation 42
 groupByKey operation 39
 join operation 40
 reduceByKey operation 41

U
unstructured data
 count vectorizer 231, 233

 n-gram modelling 239
 normalization 237
 processing 228, 230
 scaling 237
 sources 227
 stop-word removal 235, 236
 TF-IDF 234
 Word2Vec 237
User-Defined Functions (UDF) 77

user-defined functions (UDFs) 280

W
within-cluster sum of squares (WCSS) 203
Word2Vec 237

Z
Zeppelin 258, 314
 URL 314

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Big Data and Data Science – An Introduction
	Big data overview
	Challenges with big data analytics
	Computational challenges
	Analytical challenges

	Evolution of big data analytics
	Spark for data analytics
	The Spark stack
	Spark core
	Spark SQL
	Spark streaming
	MLlib
	GraphX
	SparkR

	Summary
	References

	Chapter 2: The Spark Programming Model
	The programming paradigm
	Supported programming languages
	Scala
	Java
	Python
	R

	Choosing the right language

	The Spark engine
	Driver program
	The Spark shell
	SparkContext
	Worker nodes
	Executors
	Shared variables
	Flow of execution

	The RDD API
	RDD basics
	Persistence

	RDD operations
	Creating RDDs
	Transformations on normal RDDs
	The filter operation
	The distinct operation
	The intersection operation
	The union operation
	The map operation
	The flatMap operation
	The keys operation
	The cartesian operation

	Transformations on pair RDDs
	The groupByKey operation
	The join operation
	The reduceByKey operation
	The aggregate operation

	Actions
	The collect() function
	The count() function
	The take(n) function
	The first() function
	The takeSample() function
	The countByKey() function

	Summary
	References

	Chapter 3: Introduction to DataFrames
	Why DataFrames?
	Spark SQL
	The Catalyst optimizer

	The DataFrame API
	DataFrame basics
	RDDs versus DataFrames
	Similarities
	Differences

	Creating DataFrames
	Creating DataFrames from RDDs
	Creating DataFrames from JSON
	Creating DataFrames from databases using JDBC
	Creating DataFrames from Apache Parquet
	Creating DataFrames from other data sources

	DataFrame operations
	Under the hood

	Summary
	References

	Chapter 4: Unified Data Access
	Data abstractions in Apache Spark
	Datasets
	Working with Datasets
	Creating Datasets from JSON

	Datasets API's limitations

	Spark SQL
	SQL operations
	Under the hood

	Structured Streaming
	The Spark streaming programming model
	Under the hood
	Comparison with other streaming engines

	Continuous applications
	Summary
	References

	Data Analysis on Chapter 5: Spark
	Data analytics life cycle
	Data acquisition
	Data preparation
	Data consolidation
	Data cleansing
	Missing value treatment
	Outlier treatment
	Duplicate values treatment

	Data transformation

	Basics of statistics
	Sampling
	Simple random sample
	Systematic sampling
	Stratified sampling

	Data distributions
	Frequency distributions
	Probability distributions

	Descriptive statistics
	Measures of location
	Mean
	Median
	Mode

	Measures of spread
	Range
	Variance
	Standard deviation

	Summary statistics
	Graphical techniques

	Inferential statistics
	Discrete probability distributions
	Bernoulli distribution
	Binomial distribution
	Sample problem

	Poisson distribution
	Sample problem

	Continuous probability distributions
	Normal distribution
	Standard normal distribution
	Chi-square distribution
	Sample problem

	Student's t-distribution
	F-distribution

	Standard error
	Confidence level
	Margin of error and confidence interval
	Variability in the population
	Estimating sample size
	Hypothesis testing
	Null and alternate hypotheses
	Chi-square test
	F-test
	Problem:

	Correlations

	Summary
	References

	Chapter 6: Machine Learning
	Introduction
	The evolution
	Supervised learning
	Unsupervised learning

	MLlib and the Pipeline API
	MLlib
	ML pipeline
	Transformer
	Estimator

	Introduction to machine learning
	Parametric methods
	Non-parametric methods

	Regression methods
	Linear regression
	Loss function
	Optimization

	Regularizations on regression
	Ridge regression
	Lasso regression
	Elastic net regression

	Classification methods
	Logistic regression

	Linear Support Vector Machines (SVM)
	[Linear kernel]
	Linear kernel
	Polynomial kernel
	Radial Basis Function kernel
	Sigmoid kernel

	Training an SVM

	Decision trees
	Impurity measures
	Gini Index
	Entropy
	Variance

	Stopping rule
	Split candidates
	Categorical features
	Continuous features

	Advantages of decision trees
	Disadvantages of decision trees
	Example

	Ensembles
	Random forests
	Advantages of random forests

	Gradient-Boosted Trees

	Multilayer perceptron classifier
	Clustering techniques
	K-means clustering
	Disadvantages of k-means
	Example

	Summary
	References

	Chapter 7: Extending Spark with SparkR
	SparkR basics
	Accessing SparkR from the R environment
	RDDs and DataFrames
	Getting started

	Advantages and limitations
	Programming with SparkR
	Function name masking
	Subsetting data
	Column functions
	Grouped data

	SparkR DataFrames
	SQL operations
	Set operations
	Merging DataFrames

	Machine learning
	The Naive Bayes model
	The Gaussian GLM model

	Summary
	References

	Chapter 8: Analyzing Unstructured Data
	Sources of unstructured data
	Processing unstructured data
	Count vectorizer
	TF-IDF
	Stop-word removal
	Normalization/scaling
	Word2Vec
	n-gram modelling

	Text classification
	Naive Bayes classifier

	Text clustering
	K-means

	Dimensionality reduction
	Singular Value Decomposition
	Principal Component Analysis

	Summary
	References:

	Chapter 9: Visualizing Big Data
	Why visualize data?
	A data engineer's perspective
	A data scientist's perspective
	A business user's perspective

	Data visualization tools
	IPython notebook
	Apache Zeppelin
	Third-party tools

	Data visualization techniques
	Summarizing and visualizing
	Subsetting and visualizing
	Sampling and visualizing
	Modeling and visualizing

	Summary
	References
	Data source citations

	Chapter 10: Putting It All Together
	A quick recap
	Introducing a case study
	The business problem
	Data acquisition and data cleansing
	Developing the hypothesis
	Data exploration
	Data preparation
	Too many levels in a categorical variable
	Numerical variables with too much variation
	Missing data
	Continuous data
	Categorical data
	Preparing the data

	Model building
	Data visualization
	Communicating the results to business users
	Summary
	References

	Chapter 11: Building Data Science Applications
	Scope of development
	Expectations
	Presentation options
	Interactive notebooks
	References

	Web API
	References

	PMML and PFA
	References

	Development and testing
	References

	Data quality management

	The Scala advantage
	Spark development status
	Spark 2.0's features and enhancements
	Unifying Datasets and DataFrames
	Structured Streaming
	Project Tungsten phase 2

	What's in store?

	The big data trends
	Summary
	References

	Index

