
www.allitebooks.com

http://www.allitebooks.org

Struts 2 in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Struts 2 in Action

DONALD BROWN
CHAD MICHAEL DAVIS

SCOTT STANLICK

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Manning Publications Co. Copyeditor: Benjamin Berg
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-07-X
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08
www.allitebooks.com

http://www.allitebooks.org

 To world peace
 and a global redistribution of prosperity

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART 1 STRUTS 2: A BRAND NEW FRAMEWORK1

1 ■ Struts 2: the modern web application framework 3

2 ■ Saying hello to Struts 2 20

PART 2 CORE CONCEPTS: ACTIONS, INTERCEPTORS,
 AND TYPE CONVERSION ...41

3 ■ Working with Struts 2 actions 43

4 ■ Adding workflow with interceptors 74

5 ■ Data transfer: OGNL and type conversion 101

PART 3 BUILDING THE VIEW: TAGS AND RESULTS129
6 ■ Building a view: tags 131

7 ■ UI component tags 167

8 ■ Results in detail 202
www.allitebooks.com

http://www.allitebooks.org

PART 4 IMPROVING YOUR APPLICATION229
9 ■ Integrating with Spring and Hibernate/JPA 231

10 ■ Exploring the validation framework 255

11 ■ Understanding internationalization 282

PART 5 ADVANCED TOPICS AND BEST PRACTICES307

12 ■ Extending Struts 2 with plug-ins 309

13 ■ Best practices 326

14 ■ Migration from Struts Classic 339

15 ■ Advanced topics 360
www.allitebooks.com

http://www.allitebooks.org

contents
preface xvii
acknowledgments xix
about this book xxii
about the title xxvii
about the cover illustration xxviii

PART 1 STRUTS 2: A BRAND NEW FRAMEWORK1

1 Struts 2: the modern web application framework 3
1.1 Web applications: a quick study 4

Using the Web to build applications 4 ■ Examining the
technology stack 4 ■ Surveying the domain 8

1.2 Frameworks for web applications 9
What’s a framework? 10 ■ Why use a framework? 10

1.3 The Struts 2 framework 11
A brief history 11 ■ Struts 2 from 30,000 feet: the MVC
pattern 12 ■ How Struts 2 works 15

1.4 Summary 18
ix

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
2 Saying hello to Struts 2 20
2.1 Declarative architecture 21

Two kinds of configuration 21 ■ Two mechanisms for declaring
your architecture 22 ■ Intelligent defaults 25

2.2 A quick hello 25
Deploying the sample application 26 ■ Exploring the HelloWorld
application 30

2.3 HelloWorld using annotations 36
2.4 Summary 38

PART 2 CORE CONCEPTS: ACTIONS, INTERCEPTORS,
 AND TYPE CONVERSION41

3 Working with Struts 2 actions 43
3.1 Introducing Struts 2 actions 44

What does an action do? 44

3.2 Packaging your actions 46
The Struts 2 Portfolio application 47 ■ Organizing your
packages 47 ■ Using the components of the struts-default package 50

3.3 Implementing actions 52
The optional Action interface 52 ■ The ActionSupport class 54

3.4 Transferring data onto objects 62
Object-backed JavaBeans properties 62 ■ ModelDriven actions 64
Last words on using domain objects for data transfer 67

3.5 File uploading: a case study 67
Getting built-in support via the struts-default package 67 ■ What
does the fileUpload interceptor do? 68 ■ Looking at the Struts 2
Portfolio example code 69

3.6 Summary 72

4 Adding workflow with interceptors 74
4.1 Why intercept requests? 75

Cleaning up the MVC 75 ■ Reaping the benefits 77
Developing interceptors 78

4.2 Interceptors in action 78
The guy in charge: ActionInvocation 78 ■ How the interceptors fire 79

CONTENTS xi
4.3 Surveying the built-in Struts 2 interceptors 81
Utility interceptors 82 ■ Data transfer interceptors 82
Workflow interceptors 84 ■ Miscellaneous interceptors 88
Built-in stacks 90

4.4 Declaring interceptors 90
Declaring individual interceptors and interceptor stacks 90
Mapping interceptors to actions 93 ■ Setting and overriding
parameters 94

4.5 Building your own interceptor 95
Implementing the Interceptor interface 95 ■ Building the
AuthenticationInterceptor 95

4.6 Summary 99

5 Data transfer: OGNL and type conversion 101
5.1 Data transfer and type conversion:

common tasks of the web application domain 102

5.2 OGNL and Struts 2 103
What OGNL does 103 ■ How OGNL fits into the
framework 105

5.3 Built-in type converters 108
Out-of-the-box conversions 108 ■ Mapping form field names
to properties with OGNL expressions 109

5.4 Customizing type conversion 122
Implementing a type converter 122 ■ Converting between
Strings and Circles 123 ■ Configuring the framework to use
our converter 124

5.5 Summary 126

PART 3 BUILDING THE VIEW: TAGS AND RESULTS...............129

6 Building a view: tags 131
6.1 Getting started 132

The ActionContext and OGNL 132 ■ The ValueStack: a virtual
object 135

6.2 An overview of Struts tags 137
The Struts 2 tag API syntax 138 ■ Using OGNL to set attributes
on tags 139

CONTENTSxii
6.3 Data tags 142
The property tag 142 ■ The set tag 143 ■ The push
tag 144 ■ The bean tag 145 ■ The action tag 148

6.4 Control tags 150
The iterator tag 150 ■ The if and else tags 151

6.5 Miscellaneous tags 152
The include tag 152 ■ The URL tag 153 ■ The i18n and text
tags 154 ■ The param tag 156

6.6 Using JSTL and other native tags 156
6.7 A brief primer for the OGNL expression language 157

What is OGNL? 157 ■ Expression language features commonly
used in Struts 2 157 ■ Advanced expression language features 163

6.8 Summary 165

7 UI component tags 167
7.1 Why we need UI component tags 168

More than just form elements 168

7.2 Tags, templates, and themes 174
Tags 175 ■ Templates 176 ■ Themes 176

7.3 UI Component tag reference 178
Common attributes 178 ■ Simple components 180 ■ Collection-
backed components 190 ■ Bonus components 198

7.4 Summary 201

8 Results in detail 202
8.1 Life after the action 203

Beyond the page: how to use custom results to build Ajax applications
with Struts 2 204 ■ Implementing a JSON result type 205

8.2 Commonly used result types 213
The RequestDispatcher, a.k.a. dispatcher 213 ■ The
ServletRedirectResult, a.k.a. redirect 219 ■ The
ServletActionRedirectResult, a.k.a. redirectAction 222

8.3 JSP alternatives 223
VelocityResult, a.k.a. velocity 224 ■ FreemarkerResult, a.k.a.
freemarker 225

8.4 Global results 227
8.5 Summary 228

CONTENTS xiii
PART 4 IMPROVING YOUR APPLICATION...........................229

9 Integrating with Spring and Hibernate/JPA 231
9.1 Why use Spring with Struts 2? 232

What can dependency injection do for me? 232 ■ How Spring
manages objects and injects dependencies 235 ■ Using interfaces to
hide implementations 236

9.2 Adding Spring to Struts 2 238
Letting Spring manage the creation of actions, interceptors, and
results 239 ■ Leveraging autowiring to inject dependencies into
actions, interceptors, and results 242

9.3 Why use the Java Persistence API with Struts 2? 244
Setting your project up for JPA with Hibernate 245 ■ Coding
Spring-managed JPA 249

9.4 Summary 253

10 Exploring the validation framework 255
10.1 Getting familiar with the validation framework 256

The validation framework architecture 256 ■ The validation
framework in the Struts 2 workflow 258

10.2 Wiring your actions for validation 261
Declaring your validation metadata with ActionClass-
validations.xml 262 ■ Surveying the built-in validators 265

10.3 Writing a custom validator 267
A custom validator to check password strength 267 ■ Using our
custom validator 269

10.4 Validation framework advanced topics 271
Validating at the domain object level 271 ■ Using validation
context to refine your validations 274 ■ Validation
inheritance 277 ■ Short-circuiting validations 277 ■ Using
annotations to declare your validations 278

10.5 Summary 280

11 Understanding internationalization 282
11.1 The Struts 2 framework and Java i18n 283

Retrieving localized text with ResourceBundle and
Locale 284 ■ How Struts 2 can ease the pain of i18n 286

11.2 A Struts 2 i18n demo 287
A quick demo of Struts 2 i18n 287 ■ A quick look behind the scenes 290

CONTENTSxiv
11.3 Struts 2 i18n: the details 291
Struts 2 default TextProvider ResourceBundle location algorithm 291
Retrieving message texts from your bundles 295 ■ Using the i18n tag
to specify a bundle 299 ■ Parameterizing your localized
texts 299 ■ Formatting dates and numbers 301

11.4 Overriding the framework’s default locale determination 302
Letting the user interactively set the locale 302 ■ Programmatically
setting the locale 305

11.5 Summary 305

PART 5 ADVANCED TOPICS AND BEST PRACTICES307

12 Extending Struts 2 with plug-ins 309
12.1 Plug-in overview 310

How to find plug-ins 311

12.2 Common plug-ins 311
SiteMesh 311 ■ Tiles 313 ■ JFreeChart 315

12.3 Internal component system 316
Beans 317 ■ Constants 318 ■ Injection 318 ■ Struts
internal extension points 319

12.4 Writing a breadcrumb plug-in 321
12.5 Summary 325

13 Best practices 326
13.1 Setting up your environment 327

Setting up your IDE 327 ■ Reloading resources 328

13.2 Unit-testing your actions 328
The advantage of IoC for testing 329 ■ JUnit and the
tests 329 ■ Testing validation.xml files 332

13.3 Maximizing reuse 332
Componentization with the component tag 333 ■ Leveraging the
templated tags 334 ■ Connecting the UI-to-object dots 335

13.4 Advanced UI tag usage 336
Overriding existing templates 336 ■ Writing custom
templates 337 ■ Writing custom themes 337

13.5 Summary 338

CONTENTS xv
14 Migration from Struts Classic 339
14.1 Translating Struts Classic knowledge 340

Actions 340 ■ What happened to ActionForms? 341
Switching tag libraries 343 ■ Breaking up message
resources 345

14.2 Converting by piecemeal 346
Eating an elephant a piece at a time 347 ■ The action
mappings 349 ■ Where the action meets the form 350
Turn the page 352 ■ No speak English 354 ■ The data
police 355 ■ Can we just get along? 357

14.3 Summary 359

15 Advanced topics 360
15.1 Advanced action usage 361

Alternative method invocation 361

15.2 Dynamic method invocation 362
Wildcard method selection 362 ■ Dynamic workflows 365

15.3 Using tokens to prevent duplicate form submits 366
Using the <s:token/> form tag 366 ■ Exceptions to the token
interceptor rule 368

15.4 Displaying wait pages automatically 369
When users are impatient 369

15.5 A single action for CRUD operations 371
That CRUD 371 ■ Interceptors and
interfaces 372 ■ Connecting the parts 377

15.6 Tiles and Struts 2 379
Taking care of the website look and feel 379
Configuring the interplay 380 ■ Using the declarative
architecture 383 ■ Preparing web page content with a
tiles controller 385

15.7 Summary 386

index 387

preface
In mid-2006, I started a new project. Since in this case I was developing for myself,
under the banner of my own company, I had the pleasure of making all the technolog-
ical choices myself. Most of my previous experience had been with Struts 1, a framework
that proved to me that you wouldn’t want to work without a framework, but no longer
convinced me that I was working with the best option available. For my new project, I
was going to choose one of the new, second-generation web application frameworks.

 To be honest, I can no longer recall why I chose Struts 2. I know that I also consid-
ered using Spring’s MVC framework, but something made me go with Struts 2. I prob-
ably chose Struts 2 because I figured it would be more widely in demand in my
contract work. At any rate, the choice was not that impassioned. But once I started
development, I almost couldn’t believe the power of this new framework. It’s the per-
fect blend of a dedication to software engineering, which yields high levels of architec-
tural componentization and flexibility, and a willingness to be influenced by the
innovations of others. While many people love to compare frameworks and quibble
over which is best, we think that any of the serious contenders will quickly absorb the
strengths of other technologies. The Struts 2 commitment to convention over config-
uration aptly demonstrates this.

 So I was sold on Struts 2 by the time Manning contacted me later that year to see if
I was interested in teaming up with Don Brown to write a Struts 2 book for their In Action
series. I was looking at a busy upcoming year, but this was, as they say, an offer I couldn’t
refuse. It’s been a pleasure working with Don, but mostly it’s just nice to be able to pick
his brain about the details of Struts 2. That alone is worth the price of admission.
xvii

PREFACExviii
 Originally, the project was to rewrite Patrick Lightbody and Jason Carreira’s Web-
Work in Action. The core architecture of Struts 2, as you’ll learn in this book, was taken
directly from WebWork in Action. Before any Struts 2 books were available, many devel-
opers, myself included, used that book to learn Struts 2. As we started working on our
book, it became clear that Struts 2, thanks to its large and highly active community,
had moved far beyond that core. As it turns out, we wrote an entirely new book. None-
theless, I learned Struts 2 from reading WebWork in Action, so my indebtedness to that
book is nontrivial.

 Things moved pretty fast, narratively speaking, from that time. We spent the better
part of the next year writing, revising, gathering feedback from reviewers and Man-
ning Early Access Program participants, and revising again. At some point, we realized
the book would never get done if we didn’t get some help. We were lucky to find Scott
Stanlick, a metalhead drummer and Struts 2 activist, to make a contribution of several
strong chapters that helped wrap the project up.

 Now the book is done and you have it in your hot little hands. Enjoy. I hope the
work we put in pays off by easing your entry into the world of Struts 2. Please visit the
Manning Author Online forum to give us feedback and share with the community.

 CHAD DAVIS

acknowledgments
We’d like to acknowledge all of the people who played important roles in the creation
of this book. First of all, the project wouldn’t have even started if not for Jackie Carter,
Michael Stephens, and Marjan Bace of Manning Publications. After that, any coher-
ence that the book may exhibit is largely to the credit of our developmental editor
Cynthia Kane. We’d also like to thank Benjamin Berg, Dottie Marsico, Mary Piergies,
Karen Tegtmeyer, Katie Tennant, Anna Welles, and any other folks at Manning whose
efforts we’re less aware of than we probably should be.

 We’d also like to thank all of the developers who’ve spent time reading this manu-
script and pointing out all of the problems. In particular, we’d like to thank our tech-
nical reviewer Wes Wannemacher, who went through the manuscript one last time
shortly before it went to press. The following reviewers proved invaluable in the evolu-
tion of this book from manuscript to something worth a reader’s investment of time
and money: Christopher Schultz, Jeff Cunningham, Rick Evans, Joseph Hoover, Ric-
cardo Audano, Matthew Payne, Bill Fly, Nhoel Sangalang, Matt Michalak, Jason Kolter,
Patrick Steger, Kiryl Martsinkevich, Maggie Niemann, Patrick Dennis, Horaci Macias
Viel, Tony Niemann, Peter Pavlovich, Andrew Shannon, Bas Vodde, and Wahid Sadik.

 Finally, we’d like to extend a sincere thank you to the people who participated in the
Manning Early Access Program. In particular, those who’ve left feedback in the Author
Online forum have had a strong impact on the quality of the final printed product.

 And for providing Spanish translations of the text resources, we’d like to thank
Matthew Lindsey.

 Thanks to all!
xix

ACKNOWLEDGMENTSxx
DON BROWN

This book started life as “Struts in Action, Second Edition,” with new material build-
ing on the popular first edition by Ted Husted. The talented, now former, Manning
editor Jackie Carter was at the helm, and my coauthor was the dependable Nick
Heudecker. We were about two-thirds through writing the book when I timidly admit-
ted to my editor that I had started work on Struts 2. Needless to say, the soon to be out-
dated material was set aside and this new project begun. Along with an updated topic
came a highly recommended coauthor, Chad Davis, who has proven time and time
again to be worth his weight in gold. To help us get the book out the door, the ener-
getic Scott Stanlick joined the team and kept things moving along. Many thanks to
our development editors and production team, who constantly impressed me with
their thoroughness and dedication.

 Struts 2 wouldn’t be where it is today without the hard work of the Struts and Web-
Work communities. It is the product of one of the few mergers in the open source
world, and its success is a testament to the quality of both communities. In particular,
thanks to the project founders Craig R. McClanahan (Struts), Rickard Öberg (Web-
Work 1), and Jason Carreira and Patrick Lightbody (WebWork 2) for their vision and
follow-through. When it came time to bring the WebWork 2 code into the Apache
Struts project to jumpstart Struts 2, the core WebWork 2 developers Rene Gielen,
Rainer Hermanns, Toby Jee, Alexandru Popescu, and Ian Roughley, in addition to
Jason and Patrick, put in the hours to make Struts 2 a reality. Thanks to dependable
Struts developers like Ted Husted, Martin Cooper, James Mitchell, Niall Pemberton,
Laurie Harper, Paul Benedict, and Wendy Smoak for helping with the integration pro-
cess. Since then, committers like Bob Lee, Musachy Barroso, Antonio Petrelli, Nils-
Helge Garli, Philip Luppens, Tom Schneider, Matt Raible, Dave Newton, Brian Pon-
tarelli, Wes Wannemacher, and Jeromy Evans have kept the fire going, developing key
features like the plug-in system, portlet support, convention-based configuration, and
many integration plug-ins.

 Finally, my personal thanks to my best friend and wife Julie, and the constant
source of distraction (in a good way) that is my son, Makoa. Thank you Mom and
Dad for teaching me to constantly challenge myself, yet remain balanced. Thanks to
Rudy Rania at BAE Systems and the Atlassian cofounders Mike Cannon-Brooks and
Scott Farquhar for supporting open source and my involvement with Struts. Thanks
to all the great volunteers at the Apache Software Foundation and thanks to you, the
Struts community.
CHAD DAVIS

I would like to begin by thanking my wife Mary, who actually earned money during
the past year, thus keeping the mortgage paid and food on the table. I’d also like to
thank Dr. Coskun Bayrak, who insisted years ago that I apply my writing skills to my

ACKNOWLEDGMENTS xxi
knowledge of computers, meager as both are. I am also thankful to my mother and
father, who somehow convinced me I could do pretty much anything. Finally, I’d like
to thank both Don Brown and Scott Stanlick for being such great guys, whom I hope
to meet someday in person.
SCOTT STANLICK

I would like to thank the following for helping me procure, endure, and survive this
writing gig:

 The infamous Ted Husted for nominating me for the project and Manning’s very
own Michael Stephens for connecting the dots to make it happen.

 Cynthia Kane and Chad Davis for helping me reach my Gmail free space thresh-
old. It’s amazing how well you can get to know people you couldn’t even pick out of a
police lineup! Of course, I have no firsthand knowledge of either one of them tangled
up with the law.

 Dave (d.), Laurie, Wes, and so many others on the mailing lists for helping me
solve the coding problems when few others knew what the heck I was talking about.

 My wife Jamie Kay for cheerleading me on and picking up the slack all those nights
and weekends while this project had me holdup in my office writing, cursing, and cod-
ing. She quietly took care of everything and never complained once. Norah Jones, Neil
Young, and Sheryl Crow for easing me back into sanity when I was about to jump. 54th
Street Bar & Grill for providing the friendliest brews and BBQ during my late dinner
breaks. Our heavenly father who brought the warm breeze through my office window
so many evenings as I sat there writing. The wonderful Japanese oak Pro-Mark drum-
sticks that stood up during drum therapy. My understanding friends who didn’t freak
during the year I did not return their calls. The fine baristas at Starbucks and the mak-
ers of Red Bull for keeping me wired. Advil, Google and Pizza Hut. And you who are
now reading our work as you begin your journey to Struts 2. I hope this book makes
your travel safe and enjoyable.

about this book
Welcome to Struts 2! If you’ve picked up this book, we suspect you’re a Java developer
working with web applications who’s somehow or other heard about Struts 2. Perhaps
you’ve worked with the Struts 1 framework in the past, perhaps you’ve worked with
another framework, or perhaps this is your first step into Java web application develop-
ment. Whichever path has led you here, you’re probably looking for a good introduc-
tion to the new Struts 2 framework. This book intends to give you that introduction
and much more. If you’ve never heard of Struts 2, we cover the basics in enough
depth to keep you in tow. If you know what Struts 2 does, but want a deeper under-
standing of how it does it, we’ll provide that too.

 Struts 2 is a Java web application framework. As you know, the Java world is vast
and a Struts 2 application may travel far and wide in this world of Java. With that said,
one of the biggest challenges faced by a Struts 2 book arises from trying to determine
what content to include. This book could have been three times as long if we’d taken
all of the good advice we received about what to include. We apologize to those
whose course of normal development takes them outside the boundaries of our con-
tent. Please believe us when we say that we agonized over what to include and what
not to include.

 Struts 2 is much more than a revision of the Struts 1 framework. If you hadn’t yet
heard anything about Struts 2, you might expect, based upon the name, to find a new
release of that proven framework. But this is not the case. Its relationship to that older
framework is based in philosophy rather than in code base. Struts 1 was an action-
oriented framework that implemented a Model-View-Controller (MVC) separation of
xxii

ABOUT THIS BOOK xxiii
concerns in its architecture. Struts 2 is a brand new implementation of those same
MVC principles in an action-oriented framework. While the general lay of the land will
seem familiar to Struts 1 developers, the new framework contains substantial architec-
tural differences that serve to clean up the MVC lines and make the development pro-
cess all that more efficient. We cover the new framework from the ground up, taking
time to provide a true introduction to this new technology while also taking pains to
give an inside view.

 The organization of this book aims to walk you through Struts 2 in a sequence of
increasing complexity. We start with a couple of preliminary chapters that introduce
the technological context of the framework, give a high-level overview of the architec-
ture, and present a bare-bones HelloWorld sample application to get your environ-
ment up and running. After this brief introduction, we set off into a series of chapters
that cover the core concepts and components of the framework one by one. We take
time to explain the functionality of each component in depth. We also provide real
code examples as we begin the development of our full-featured sample application,
the Struts 2 Portfolio. Finally, the later chapters provide some advanced techniques
for tweaking a bit more out of the core components, as well as introducing some
advanced features of the framework such as plug-ins and Spring integration. The fol-
lowing summarizes the contents chapter by chapter.

Roadmap

Chapter 1 gets us started gently. We begin with a quick survey of the context in which
Struts 2 occurs, including short studies of web applications and frameworks. We then
take the obligatory architectural look from 30,000 feet. Unless you’re familiar with
WebWork, the true code base ancestor of Struts 2, this high-level overview of the
framework will be your first look at a fairly new and interesting way of doing things.
Some advanced readers may feel comfortable skipping this first chapter.

 Chapter 2 revisits the architectural principle of the first chapter as demonstrated
in a HelloWorld sample application. We do two versions of HelloWorld. First, we show
how to use XML to declare your Struts 2 architectural metadata; then we do it again
using Java annotations for that same purpose. The HelloWorld application both rein-
forces architectural concepts and gives you a skeleton Struts 2 application.

 Chapter 3 kicks off the core portion of the book by introducing and thoroughly
covering the Struts 2 action component. Actions are at the heart of Struts 2, and it
wouldn’t make sense to start anywhere else. In addition to revealing the inner work-
ings of this core component, we also begin to develop the full-featured Struts 2 Portfo-
lio sample application in this chapter.

 Chapter 4 continues the core topics by introducing one of the most important
components of the framework, the interceptor. Struts 2 uses interceptors to imple-
ment almost all of the important functionality of the framework. We make sure you
know what they are, how they work, and when you should consider implementing
your own.

ABOUT THIS BOOKxxiv
 Chapter 5 finishes off the discussion of framework fundamentals by covering the data
transfer mechanisms of the system. One of the most innovative features of Struts 2 is its
automatic transfer and conversion of data between the HTTP and Java realms. Elusive
but important players such as OGNL, the ValueStack, and the ActionContext are fully
demystified and put to work for the average workingman developer.

 Chapter 6 starts coverage of the view layer aspects of the framework. In particular,
this chapter will introduce the Struts 2 Tag API. This introduction explains how to use
the OGNL expression language to get your hands on the data in the ValueStack and
ActionContext, which we met in the previous chapter. The chapter provides a refer-
ence to basic tags that you’ll use to pull data into your rendering view pages, as well as
tags to control the flow of your rendering view pages. Finally, we wrap up the chapter
by providing a primer to the OGNL expression language, which will prove useful in
your daily tag development.

 Chapter 7 introduces the second major chunk of the Struts 2 tags, the Struts 2 UI
components. The UI components are the tags that you use to build the user interfaces
of your web application. As such, they include form components, text field compo-
nents, and the like. But don’t mistake the Struts 2 UI components for your father’s
HTML tags, if you know what I mean.

 Chapter 8 rounds out treatment of the view layer of the framework by introducing
the result component. This core component highlights the flexible nature of Struts 2.
With Struts 2’s highly decoupled result component, you can build results independent
of the actions. After covering the basics, we show what we mean by building a JSON
result that can return a JSON stream based on the data prepared by any action, regard-
less of whether that action knows anything about JSON. We use this example to imple-
ment some Ajax for the Struts 2 Portfolio.

 Chapter 9 begins to show you how to bring your basic Struts 2 application up to
industry standards. In particular, we take the opportunity to go off topic by showing
you how to use Struts 2’s Spring plug-in to bring dependency injection into your
application. We then up the ante by showing you how to wield that Spring integra-
tion to upgrade your application to a JPA/Hibernate persistence layer that’s man-
aged by Spring’s wonderful support for those technologies.

 Chapter 10 continues the trend of making your application more refined by show-
ing how to use Struts 2’s validation framework to gain metadata-driven validation of
your data.

 Chapter 11 introduces the Struts 2 internationalization and localization support,
and carefully walks you through all of the fine-grained details.

 Chapter 12 introduces the Struts 2 plug-in architecture. Like any well-designed
software, you should be able to extend the functionality without modifying existing
code, and Struts 2 leverages the plug-in architecture for this very purpose. If you use
Firefox or Eclipse, you already know how this works. The chapter explores the details
and shows you how to write a plug-in from scratch.

 Chapter 13 reveals best practices and tips from the trenches. This chapter presents
topics that range from optimizing your development environment to registering your

ABOUT THIS BOOK xxv
web features using a technique known as wildcard mappings. Of course, you will find a
mishmash of useful tips in between.

 Chapter 14 organizes a migration plan to help you transition from Struts 1.x to the
exciting Struts Web 2.0 world. This chapter also points out similarities and differences
between the two Struts versions.

 Chapter 15 reveals techniques that let you leverage the true spirit of the frame-
work. This chapter contains advanced concepts, and should be read several times
before starting any large-scale Struts 2 project. It is chock-full of techniques that you’ll
be happy you leveraged as you look back over your code base.

Code conventions

The following typographical conventions are used throughout the book:

■ Courier typeface is used in all code listings.
■ Courier typeface is used within text for certain code words.
■ Italics are used for emphasis and to introduce new terms.
■ Code annotations are used in place of inline comments in the code. These

highlight important concepts or areas of the code. Some annotations appear
with numbered bullets like this B that are referenced later in the text.

Code downloads

You can download the sample code for this book via a link found on the book’s home-
page on the Manning website, www.manning.com/Struts2inAction or www.manning.
com/dbrown. This will get you the SampleApplication.zip archive file, which contains
a couple of Java Servlet web application archive files-WAR files—as well as some docu-
mentation of the source. Instructions on how to install the application are contained
in a README file in that download.

 We should make a couple of points about the source code. First, all of the sample
code for the book is contained in the Struts2InAction.war web application. Note that
this web application uses a modularized structure to present a subapplication, if you
will, for each of the chapters of the book. Throughout the book, we develop what we
refer to as the Struts 2 Portfolio. This is our full-featured demonstration of a Struts 2
sample application. We develop the Struts 2 Portfolio incrementally throughout the
chapters of the book. This means that the Struts2InAction.war web application con-
tains many versions, in increasing power, of the Struts 2 Portfolio. The versions are
modularized by chapter number.

 Since we recognize that troubleshooting the deployment of a large application like
the full Struts2InAction.war can be daunting to developers new to the platform, we’ve
also provided a HelloWorld.war web application that contains only the HelloWorld
portion of the larger sample application. This will help readers more quickly get a
Struts 2 application up and running without the unwarranted complexity of such
things as setting up a database.

www.manning.com/Struts2inAction
www.manning.com/dbrown
www.manning.com/dbrown

ABOUT THIS BOOKxxvi
Author Online

The purchase of Struts 2 in Action includes free access to a private forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. You can access and subscribe
to the forum at www.manning.com/Struts2inAction. This page provides information
on how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/Struts2inAction

about the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action book is that it is example-
driven. It encourages the reader to try things out, to play with new code, and to
explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.
xxvii

about the cover illustration
The figure on the cover of Struts 2 in Action is a shepherd from the moors of Bor-
deaux, “Berger des Landes de Bordeaux.” The region of Bordeaux in southwestern
France has sunny hills that are ideal for viniculture, as well as many open and marshy
fields dotted with small farms and flocks of grazing sheep. Perched on his stilts, the
shepherd was better able to navigate the boggy fields and tend to his charges.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by J. G. St.
Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the
time and travel guides such as this one were popular, introducing both the tourist and
the armchair traveler to the inhabitants of other regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The travel guide brings
to life a sense of isolation and distance of that period and of every other historic
period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.
xxviii

Part 1

Struts 2:
 a brand new framework

Struts 2 is indeed a brand new framework. We see it as one of the second-
generation web application frameworks. In addition to including all the cutting-
edge features one would expect from a new framework, Struts 2 introduces
many architectural refinements that might not be familiar to some developers.
All this means that we need to take the time to properly introduce this new
framework to our readers. The first two chapters of this book serve that purpose.

 In chapter 1, we provide a high-level introduction and overview. Before intro-
ducing the framework itself, we sketch the technological context in which a Java
web application framework such as Struts 2 resides. This information may be old
hat for some users, and it probably won’t be adequate for full-on newbies. Our
purpose is to provide a quick sketch of the technologies you should probably be
familiar with if you’re going to develop Struts 2 applications. We quickly get past
the background stuff and provide a thorough high-level overview of the innova-
tive architecture of Struts 2. This well-engineered architecture is definitely one
of the framework’s hallmarks.

 Once the abstract preliminaries are out of the way, chapter 2 gets us on track
to satisfying our in Action pedigree. Chapter 2 brings the concepts from the high-
level overview down to earth with the HelloWorld sample application that gets a
running Struts 2 application in your hands as early as possible. If you can’t even
wait until chapter 2, just skip chapter 1!

www.allitebooks.com

http://www.allitebooks.org

Struts 2:
 the modern web

 application framework
Modern web applications are situated in a complex technological context. Some
books that you read might be about a single subject, such as the Java language, or a
specific API or library. This book is about Struts 2, a full-featured web application
framework for the Java EE platform. As such, this book must take into account the
vast array of technologies that converge in the space of the Java EE.

 In response to this complexity, we’ll start by outlining some of the most impor-
tant technologies that Struts 2 depends on. Struts 2 provides some powerful boosts
to production through convention over configuration, and automates many tasks

This chapter covers
■ Building applications on the web
■ Using web frameworks
■ Exploring the Struts 2 framework
■ Introducing interceptors and the ValueStack
3

4 CHAPTER 1 Struts 2: the modern web application framework
that were previously accomplished only by the sweat of the developer. But we think
true efficiency comes through understanding the underlying technological context,
particularly as these technologies become more and more obscured by the opacity of
scaffolding and the like. That said, the first half of this chapter provides a primer on
the Struts 2 environment. If you’re comfortable with this stuff, feel free to skim or skip
these sections entirely.

 After sketching the important figures of the landscape, we’ll move into a high-level
overview of Struts 2 itself. We’ll introduce how the Model-View-Controller (MVC) fits
into the Struts 2 architecture. After that, we’ll go through a more detailed account of
what happens when the framework processes a request. When we finish up, you’ll be
fully ready for chapter 2’s HelloWorld application.

 Let’s get going!

1.1 Web applications: a quick study
This section provides a rough primer on the technological context of a web applica-
tion. We’ll cover the technology stack upon which web applications sit, and take a quick
survey of common tasks that all web applications must routinely accomplish as they ser-
vice their requests. If you’re quite familiar with this information, you could skip ahead
to the Struts 2 architectural overview in section 1.3, but a quick study of the following
sections would still provide an orientation on how we, the authors, view the web appli-
cation domain.

1.1.1 Using the Web to build applications

While many Java developers today may have worked on web applications for most of
their careers, it’s always beneficial to revisit the foundations of the domain in which
one is working. A solid understanding of the context in which a framework such as
Struts 2 is situated provides an intuitive understanding of the architectural decisions
made by the framework. Also, establishing a common vocabulary for our discussions
will make everything easier throughout the book.

 A web application is simply, or not so simply, an application that runs over the
Web. With rapid improvements in Internet speed, connectivity, and client/server
technologies, the Web has become an increasingly powerful platform for building all
classes of applications, from standard business-oriented enterprise solutions to per-
sonal software. The latest iterations of web applications must be as full featured and
easy to use as traditional desktop applications. Yet, in spite of the increasing variety in
applications built on the web platform, the core workflow of these applications
remains markedly consistent, a perfect opportunity for reuse. Frameworks such as
Struts 2 strive to release the developer from the mundane concerns of the domain by
providing a reusable architectural solution to the core web application workflows.

1.1.2 Examining the technology stack

We’ll now take a quick look at two of the main components in the technology stack
upon which a web application is built. In one sense, the Web is a simple affair: as with

5Web applications: a quick study
all good solutions, if it weren’t simple, it probably
wouldn’t be successful. Figure 1.1 provides a simple
depiction of the context in which Struts 2 is used.

 As depicted in figure 1.1, Struts 2 sits on top of two
important technologies. At the heart of all Struts 2
applications lie the client/server exchanges of the
HTTP protocol. The Java Servlet API exposes these low-
level HTTP communications to the Java language.
Although it’s possible to write web applications by
directly coding against the Servlet API, this is generally
not considered a good practice. Basically, Struts 2 uses
the Servlet API so that you don’t have to. But while it’s a
good idea to keep the Servlet API out of your Struts 2
code, it seems cavalier to enter into Struts 2 development without some idea of the
underlying technologies. The next two sections provide concise descriptions of the
more relevant aspects of HTTP and Java Servlets.
HYPERTEXT TRANSFER PROTOCOL (HTTP)

Most web applications run on top of HTTP. This protocol is a stateless series of client/
server message exchanges. Normally, the client is a web browser and the server is a
web or application server. The client initiates communication by sending a request for
a specific resource. The resource can be a static HTML document that exists on the
server’s local file system, or it can be a dynamically generated document with untold
complexity behind its creation.

 Much could be said about the HTTP protocol and the variety of ways of doing
things in this domain. We’ll limit ourselves to the most important implications as seen
from the perspective of a web application. We can start by noting that HTTP was not
originally designed to serve in the capacity that web application developers demand of
it. It was meant for requesting and serving static HTML documents. All web applica-
tions built on HTTP must address this discrepancy.

 For web applications, HTTP has two hurdles to get over. It’s stateless, and it’s text
based. Stateless protocols don’t keep track of the relationships among the various
requests they receive. Each request is handled as if it were the only request the server
had ever received. The HTTP server keeps no records that would allow it to track and
logically connect multiple requests from a given client. The server has the client’s
address, but it will only be used to return the currently requested document. If the cli-
ent turns around and requests another document, the server will be unaware of this
client’s repeated visits.

 But if we are trying to build more complex web applications with more compli-
cated use cases, this won’t work. Take the simplest, most common case of the secure
web application. A secure application needs to authenticate its users. To do this, the
request in which the client sends the user name and password must somehow be asso-
ciated with all other requests coming from that client during that user session. With-
out the ability to keep track of relationships among various requests, even this

Servlet

Figure 1.1 The Java Servlet API
exposes the HTTP client/server
protocol to the Java platform.
Struts 2 is built on top of that.

6 CHAPTER 1 Struts 2: the modern web application framework
introductory use case of modern web applications is impossible. This problem must
be addressed by every modern web application.

 Equally as troublesome, HTTP also is text based. Mating a text-based technology to
a strongly typed technology such as Java creates a significant amount of data-binding
work. While in the form of an HTTP request, all data must be represented as text.
Somewhere along the way, this encoding of data must be mapped onto Java data types.
Furthermore, this process must occur at both ends of the request-handling process.
Incoming request parameters must be migrated into the Java environment, and out-
going responses must pull data from Java back into the text-based HTTP response.
While this is not rocket science, it can create mounds of drudge work for a web appli-
cation. These tasks are both error-prone and time-consuming.
JAVA SERVLET API

The Java Servlet API helps alleviate some of the pain. This important technology
exposes HTTP to the Java platform. This means that Java developers can write HTTP
server code against an intuitive object-oriented abstraction of the HTTP client/server
communications. The central figures in the Servlet API are the servlet, request, and
response objects. A servlet is a singleton Java object whose whole purpose is to receive
requests and return responses after some arbitrary back-end processing. The request
object encapsulates the various details of the request, including the all-important
request parameters as submitted via form fields and querystring parameters. The
response object includes such key items as the response headers and the output
stream that will generate the text of the response. In short, a servlet receives a request
object, examines its data, does the appropriate back-end magic, and then writes and
returns the response to the client.

You should know Sun and the Servlet Specification. If you’re unfamiliar
with Sun’s way of doing things, here’s a short course. Sun provides a spec-
ification of a technology, such as the Servlet API. The specifications are
generated through a community process that includes a variety of inter-
ested parties, not the least of which is Sun itself. The specification details
the obligations and contracts that the API must honor; actual implemen-
tations are provided by various third-party vendors. In the case of the
Servlet Specification, the implementations are servlet containers. These
containers can be standalone implementations such as the popular
Apache Tomcat, or they can be containers embedded in some larger
application server. They also run the gamut from open source to fully
proprietary. If you’re unfamiliar with the Servlet Specification, we recom-
mend reading it. It’s short, to the point, and well written.

Before you deploy servlets, you must first package them according to the standards.
The basic unit of servlet packaging is known as a web application. Though it sounds like
a general term, a web application is a specific thing in servlet terminology. The Servlet
Specification defines a web application as “a collection of servlets, HTML pages,
classes, and other resources.” Typically, a web application will require several servlets

ESSENTIAL
KNOWLEDGE

7Web applications: a quick study
to service its clients’ requests. A web application’s servlets and resources are packaged
together in a specific directory structure and zipped up in an archive file with a .war
extension. A WAR file is a specialized version of the Java JAR file. The letters stand for
web application archive. When we discuss chapter 2’s HelloWorld application, we’ll see
exactly how to lay out a Struts 2 application to these standards.

 Once you’ve packaged the web application, you need to deploy it. Web applica-
tions are deployed in servlet containers. A servlet is a special kind of application known
as a managed life cycle application. This means that you don’t directly execute a servlet.
You deploy it in a container and that container manages its execution by invoking the
various servlet life cycle methods. When a servlet container receives a request, it must
first decide which of the servlets that it manages should handle the request. When the
container determines which servlet should process a request, it invokes that servlet’s
service() method, handing it both a request and response object. There are other
life cycle methods, but the service() method is responsible for the actual work.

 Figure 1.2 shows the relationship between the key players of the Servlet API: serv-
lets, web applications, and the servlet container.

 As you can see, a servlet container can host one or more web applications. In
figure 1.2, three web applications have been deployed to a single container. All
requests, regardless of which web application they ultimately target, must first be han-
dled by the container; it’s the server. The servlet container typically listens on port 8080
for requests. When a request comes to that port, it must then parse the namespace of
the request to discover which web application is targeted. From the namespace of the

Web
Application

B

Web
Application

C

Web
Application

A

Servlet Container

Servlet A

Servlet C

Servlet B

Web Application C

localhost:8080/WebAppC/ServletB

Figure 1.2 The organization of the Servlet API:
servlets, web applications, and the servlet container

8 CHAPTER 1 Struts 2: the modern web application framework
URL, both the web application and the individual servlet targeted therein can be deter-
mined. The full details of this parsing process aren’t in the scope of this overview, but
figure 1.2 gives a rudimentary example of how a URL maps to a specific servlet, assum-
ing the servlet container is listening for requests on the localhost network interface.

 In addition to exposing HTTP to the Java language, the Servlet API provides other
important high-level functions, such as a session mechanism that allows us to correlate
groups of requests from a given client. As we explained earlier, HTTP doesn’t provide
a good sense of state across a set of requests, regardless of whether they all came from
the same client. This is perhaps the most important benefit, in terms of higher-level
functionality, that we receive from servlets. Without it, we’d be handling cookies and
parsing embedded querystring session keys.

 Apart from the session mechanism, the Servlet API doesn’t provide a lot of higher-
level functionality. It directly encapsulates the details of the client/sever exchange in a
set of object-oriented abstractions. This means that we don’t have to parse the incom-
ing HTTP request ourselves. Instead, we receive a tidy request object, already wrapped
in Java. We say this to make the point that, ultimately, the Servlet API is an infrastruc-
ture-level technology in the scope of modern web applications. As infrastructure, serv-
lets provide the solid low-level foundation upon which robust web applications can be
built. If you consider the routine needs of a web application, the Servlet API doesn’t
attempt to provide solutions for such things. Now that we know what servlets can do,
let’s look at what they leave undone. These common tasks of the domain are what a
web application framework like Struts 2 will need to address.

1.1.3 Surveying the domain

With the Servlet API addressing the low-level client/server concerns, we can now focus
on the application-level concerns. There are many tasks that all web applications must
solve as they go about their daily routine of processing requests. Among these are

■ Binding request parameters to Java types
■ Validating data
■ Making calls to business logic
■ Making calls to the data layer
■ Rendering presentation layer (HTML, and so on)
■ Providing internationalization and localization

We’ll examine each of the concerns briefly in the following paragraphs.
REQUEST PARAMETER BINDING AND DATA VALIDATION

Being a text-based protocol, HTTP must represent its request parameters in a text
encoding. When these parameters enter our application, they must be converted to
the appropriate native data type. The Servlet API doesn’t do this for us. The parame-
ters, as retrieved from the servlet request objects, are still represented as strings. Con-
verting these strings to Java data types is easy enough but can be time-consuming and
error-prone. Converting to simple types is tedious; converting to more complex types
is both complex and tedious. And, of course, the data must also be validated before it

9Frameworks for web applications
can be allowed to enter the system. Note that there are two levels of validation. In the
first case, the string must be a valid representation of the Java type to which you want
to convert; for example, a ZIP code should not have any letters in it.

 Then, after the value has been successfully bound to a Java type, the data must be
validated against higher-level logic, such as whether a provided ZIP code is valid. An
application must determine whether the value itself is within the acceptable range of
values according to the business rules of the application. In addition to checking ZIP
code validity, you might verify that an email address has the valid structure. Spending
too many hours writing this kind of code can certainly make Java Jack a dull boy.
CALLS TO BUSINESS LOGIC AND THE DATA LAYER

Once inside the application, most requests involve calls to business logic and the data
layer. While the specifics of these calls vary from application to application, a couple of
generalizations can be drawn. First, despite variance in the details of these calls, they
form a consistent pattern of workflow. At its core, the processing of each request con-
sists of a sequence of work that must be done. This work is the action of an action-
oriented framework. Second, the logic and function of this work represents a clear step
outside of the web-related domain. If you look back to our list of the common tasks that
a web application must do while processing its requests, you’ll see that these calls to
business logic and the data layer are the only ones that don’t specifically pertain to the
fact that this is a web application, as opposed to, say, a desktop application. If the appli-
cation is well designed, the business logic and data layers would be completely oblivious
to whether they were being invoked from a web application or a desktop application.
So, while all web applications must make these calls, the notable thing about them is
that they are outside the specific workflow concerns of a web application.
PRESENTATION RENDERING AND INTERNATIONALIZATION

It could be said that the presentation tier of a web application is just an HTML docu-
ment. However, increasing amounts of complex JavaScript, fully realized CSS, and
other embedded technologies make that no longer accurate. At the same time that
front-end user interface technology is increasing in complexity, there’s an increasing
demand for internationalization. Internationalization allows us to build a single web
application that can discover the locality of each user and provide locale-specific lan-
guage and formatting of date, time, and currency. Whether an application returns a
simple page of static text or a Gmail-esque super client, the rendering of the presenta-
tion layer is a core domain task of all web applications.

 We’ve outlined the domain tasks that all web applications must address. What now?
These tasks, by virtue of being common to the processing of nearly every request that
comes to a web application, are perfect candidates for reuse. We’d hope that a web
application framework would provide reusable solutions to such common tasks. Let’s
look at how frameworks can help.

1.2 Frameworks for web applications
Now that we’ve oriented ourselves to the domain in which web applications operate,
we can talk about how a framework can alleviate the work of building them. To build

10 CHAPTER 1 Struts 2: the modern web application framework
powerful web applications, most developers need all the help they can get. Unless you
want to spend hours upon hours solving the tasks outlined in the previous section by
hand, you must use a framework, and there are a lot of them. Let’s start with a funda-
mental question.

1.2.1 What’s a framework?

A framework is a piece of structural software. We say structural because structure is per-
haps a larger goal of the framework than any specific functional requirement. A
framework tries to make generalizations about the common tasks and workflow of a
specific domain. The framework then attempts to provide a platform upon which
applications of that domain can be more quickly built. The framework does this pri-
marily in two ways. First, the framework tries to automate all the tedious tasks of the
domain. Second, the framework tries to introduce an elegant architectural solution to
the common workflow of the domain in question.

A web application framework is a piece of structural software that provides
automation of common tasks of the domain as well as a built-in architec-
tural solution that can be easily inherited by applications implemented
on the framework.

A FRAMEWORK AUTOMATES COMMON TASKS

Don’t reinvent the wheel. Any good framework will provide mechanisms for conve-
nient and perhaps automatic solutions to the common tasks of the domain, saving
developers the effort of reinventing the wheel. Reflecting back on our discussion of
the common tasks of the web application domain, we can then infer that a web appli-
cation framework will provide some sort of built-in mechanisms for tasks such as con-
verting data from HTTP string representation to Java data types, data validation,
separation of business and data layer calls from web-related work, internationaliza-
tion, and presentation rendering. Good frameworks provide elegant, if not transpar-
ent, mechanisms for relieving the developer of these mundane tasks.
A FRAMEWORK PROVIDES AN ARCHITECTURAL SOLUTION

While everyone can appreciate automation of tedious tasks, the structural features of
frameworks are perhaps more important in the big scheme of things. The frame-
work’s structure comes from the workflow abstractions made by the classes and inter-
faces of the framework itself. Being an action-oriented framework, one of the key
abstractions at the heart of the Struts 2 architecture is the action. We’ll see the others
in a few pages. When you build an application on a framework, you are buying into
that framework’s architecture. Sometimes you can fight against the architectural
imperative of the framework, but a framework should offer its architecture in a way
that makes it hard to refuse. If the architecture of the framework is good, why not let
your application gracefully inherit that architecture?

1.2.2 Why use a framework?

You don’t have to use a framework. You have a few alternatives. For starters, you could
forgo a framework altogether. But unless your application is quite simple, we suspect

DEFINITION

11The Struts 2 framework
that the work involved in rolling your own versions of all the common domain tasks,
not to mention solving all the architectural problems on your own, will quickly deter
you. As the twenty-first century ramps up, various new web application platforms boast
light-speed development times and agile interfaces. In the world of Java web applica-
tions, using a sleek new framework is the way to take advantage of these benefits.

 If you want, you could roll your own framework. This is not a bad plan, but it
assumes a couple of things. First, it assumes you have lots of smart developers. Second,
it assumes they have the time and money to spend on a big project that might seem off
topic from the perspective of the business requirements. Even if you have the rare
trinity of smart people, time, and money, there are still drawbacks. I’ve worked for a
company whose product is built on an in-house framework. The framework is not bad,
but a couple of glaring points can’t be overlooked. First, new developers will always
have to learn the framework from the ground up. If you’re using a mainstream frame-
work, there’s a trained work force waiting for you to hire them. Second, the in-house
framework is unlikely to see elegant revisions that keep up with the pace of industry.
In-house frameworks seem to be subject to architectural erosion as the years pass, and
too many extensions are inelegantly tacked on.

 Ultimately, it’s hard to imagine creating twenty-first century web applications with-
out using a framework of some kind. If you have X amount of hours to spend on a
project, you might as well spend them on higher-level concerns than common work-
flow and infrastructural tasks. Perhaps it’s not a question of whether to use a frame-
work or not, but of which framework offers the solutions you need. With that in mind,
it’s time to look at Struts 2 and see what kinds of modern conveniences it offers.

1.3 The Struts 2 framework
Apache Struts 2 is a brand-new, state-of-the-art web application framework. As we said
earlier, Struts 2 isn’t just a new release of the older Struts 1 framework. It is a com-
pletely new framework, based on the esteemed OpenSymphony WebWork framework.
By now, you should be tuned in to what a web application framework should offer. In
terms of the common domain tasks, Struts 2 covers the domain well. It handles all the
tasks we’ve identified and more. Over the course of the book, you’ll learn how to work
with the features that address each of those tasks in turn. At this introductory stage, it
makes more sense to focus on the architectural aspects of the framework. In this sec-
tion, we’ll see how Struts 2 structures the web application workflow. In the next few
sections, we’ll look at the roots of Struts 2, see how those roots influence the high-level
architecture, and take a slightly more detailed look at how the framework handles
actual request processing.

1.3.1 A brief history

Struts 2 is a second-generation web application framework that implements the
Model-View-Controller (MVC) design pattern. Struts 2 is built from the ground up
on best practices and proven, community-accepted design patterns. This was also
true for the first version of Struts. In fact, one of the primary goals of the first Struts

12 CHAPTER 1 Struts 2: the modern web application framework
was incorporating the MVC pattern from the desktop application world into a web
application framework. The resulting pattern is occasionally called the Model 2 pat-
tern. This was a critical step in the evolution of well-designed web applications, as it
provided the infrastructure for easily achieving the MVC separation of concerns. This
allowed developers with few resources for such architectural niceties to tap into a
ready-made best practice solution. Struts 1 can claim responsibility for many of the
better-designed web applications of the last 10 years.

 At some point, the Struts community became aware of the limitations in the first
framework. With such an active community, identifying the weak and inflexible points
in the framework wasn’t hard to accomplish. Struts 2 takes advantage of the many les-
sons learned to present a cleaner implementation of MVC. At the same time, it intro-
duces several new architectural features that make the framework cleaner and more
flexible. These new features include interceptors for layering cross-cutting concerns
away from action logic; annotation-based configuration to reduce or eliminate XML
configuration; a powerful expression language, Object-Graph Navigation Language
(OGNL), that transverses the entire framework; and a mini-MVC–based tag API that
supports modifiable and reusable UI components. At this point, it’s impossible to do
more than name drop. We’ll have plenty of time to fully explore each of these fea-
tures. We need to start with a high-level overview of the framework. First, we’ll look at
how Struts 2 implements MVC. Then, we’ll look at how the parts of the framework
work together when processing a request.

NOTE Teaching old dogs new tricks, a.k.a. moving from Struts 1 to Struts 2—Since
we’ve stressed that Struts 2 is truly a new framework, you might be won-
dering how hard it will be to move from Struts 1 to Struts 2. There are
some things to learn, interceptors and OGNL in particular. But while this
is a new framework, it is still an action-oriented MVC framework. The
whole point of design patterns such as MVC is the reuse of solutions to
common problems. Reusing solutions at the architectural level provides
an easy transferal of experience and knowledge. If you’ve worked with
Struts 1, you already understand the MVC way of doing things and that
knowledge will still be applicable to Struts 2. Since Struts 2 is an
improved implementation of the MVC pattern, we believe that Struts 1
developers will not only find it easy to migrate to Struts 2, they’ll find
themselves saying, “That’s how it always should’ve been done!”

1.3.2 Struts 2 from 30,000 feet: the MVC pattern

The high-level design of Struts 2 follows the well-established Model-View-Controller
design pattern. In this section, we’ll tell you which parts of the framework address the
various concerns of the MVC pattern. The MVC pattern provides a separation of con-
cerns that applies well to web applications. Separation of concerns allows us to manage
the complexity of large software systems by dividing them into high-level components.
The MVC design pattern identifies three distinct concerns: model, view, and controller.
In Struts 2, these are implemented by the action, result, and FilterDispatcher,

13The Struts 2 framework
respectively. Figure 1.3 shows the Struts 2
implementation of the MVC pattern to
handle the workflow of web applications.

 Let’s take a close look at each part of fig-
ure 1.3. We’ll provide a brief description of
the duties of each MVC concern and look at
how the corresponding Struts 2 compo-
nent fulfills those duties.
CONTROLLER—FILTERDISPATCHER

We’ll start with the controller. It seems to
make more sense to start there when
talking about web applications. In fact,
the MVC variant used in Struts is often
referred to as a front controller MVC. This
means that the controller is out front and
is the first component to act in the process-
ing. You can easily see this in figure 1.3.
The controller’s job is to map requests to
actions. In a web application, the incoming HTTP requests can be thought of as com-
mands that the user issues to the application. One of the fundamental tasks of a web
application is routing these requests to the appropriate set of actions that should be
taken within the application itself. This controller’s job is like that of a traffic cop or air
traffic controller. In some ways, this work is administrative; it’s certainly not part of your
core business logic.

 The role of the controller is played by the Struts 2 FilterDispatcher. This impor-
tant object is a servlet filter that inspects each incoming request to determine which
Struts 2 action should handle the request. The framework handles all of the controller
work for you. You just need to inform the framework which request URLs map to
which of your actions. You can do this with XML-based configuration files or Java
annotations. We’ll demonstrate both of these methods in the next chapter.

NOTE Struts 2 goes a long way toward the goal of zero-configuration web applica-
tions. Zero-configuration aims at deriving all of an application’s meta-
data, such as which URL maps to which action, from convention rather
than configuration. The use of Java annotations plays an important role
in this zero-configuration scheme. While zero-configuration has not
quite been achieved, you can currently use annotations and conventions
to drastically reduce XML-based configuration.

Chapter 2’s HelloWorld application will demonstrate both the general architecture
and deployment details of Struts 2 web applications.
MODEL—ACTION

Looking at figure 1.3, it’s easy to see that the model is implemented by the Struts 2
action component. But what exactly is the model? I find the model the most nebulous

l

l

ll l

Figure 1.3 Struts 2 MVC is realized by three
core framework components: actions, results,
and the FilterDispatcher.

14 CHAPTER 1 Struts 2: the modern web application framework
of the MVC triad. In some ways, the model is a black box that contains the guts of the
application. Everything else is just user interface and wiring. The model is the thing
itself. In more technical terms, the model is the internal state of the application. This
state is composed of both the data model and the business logic. From the high-level
black box view, the data and the business logic merge together into the monolithic
state of the application. For instance, if you are logging in to an application, both busi-
ness logic and data from the database will be involved in the authentication process.
Most likely, the business logic will provide an authentication method that will take the
username and password and verify them against some persisted data from the data-
base. In this case, the data and the business logic combine to form one of two states,
“authenticated” or “unauthenticated.” Neither the data on its own, nor the business
logic on its own, can produce these states.

 Bearing all of this in mind, a Struts 2 action serves two roles. First, an action is an
encapsulation of the calls to business logic into a single unit of work. Second, the
action serves as a locus of data transfer. It is too early to go into details, but we’ll treat
the topic in great depth during the course of this book. At this point, consider that an
application has any number of actions to handle whatever set of commands it exposes
to the client. As seen in figure 1.3, the controller, after receiving the request, must con-
sult its mappings and determine which of these actions should handle the request.
Once it finds the appropriate action, the controller hands over control of the request
processing to the action by invoking it. This invocation process, conducted by the
framework, will both prepare the necessary data and execute the action’s business
logic. When the action completes its work, it’ll be time to render a view back to the user
who submitted the request. Toward this end, an action, upon completing its work, will
forward the result to the Struts 2 view component. Let’s consider the result now.
VIEW—RESULT

The view is the presentation component of the MVC pattern. Looking back at figure 1.3,
we see that the result returns the page to the web browser. This page is the user interface
that presents a representation of the application’s state to the user. These are com-
monly JSP pages, Velocity templates, or some other presentation-layer technology.
While there are many choices for the view, the role of the view is clear-cut: it translates
the state of the application into a visual presentation with which the user can interact.
With rich clients and Ajax applications increasingly complicating the details of the view,
it becomes even more important to have clean MVC separation of concerns. Good MVC
lays the groundwork for easily managing the most complex front end.

NOTE One of the interesting aspects of Struts 2 is how well its clean architecture
paves the way for new technologies and techniques. The Struts 2 result
component is a good demonstration of this. The result provides a clean
encapsulation of handing off control of the processing to another object
that will write the response to the client. This makes it easy for alternative
responses, such as XML snippets or XSLT transformations, to be inte-
grated into the framework.

15The Struts 2 framework
If you look back to figure 1.3, you can see that the action is responsible for choosing
which result will render the response. The action can choose from any number of
results. Common choices are between results that represent the semantic outcomes of
the action’s processing, such as “success” and “error.” Struts 2 provides out-of-the-box
support for using most common view-layer technologies as results. These include JSP,
Velocity, FreeMarker, and XSLT. Better yet, the clean structure of the architecture
ensures that more result types can be built to handle new types of responses.

 Since this favored MVC pattern has been around for decades, try visualizing what
the MVC playing field would look like if the players were in fact nicely separated yet
connectible. When I explain this to my students, I call it the Reese’s peanut butter cup
principle. Is this tasty treat chocolate or peanut butter? After your first bite, you dis-
cover it’s both! How could you use this peanut butter if all you wanted was a PBJ sand-
wich? And so it goes with technology: how do you get all the richness you desire
without actually “combining” the ingredients? Grab some sweets and continue read-
ing to learn about Struts 2 and the framework request-processing factory.

1.3.3 How Struts 2 works

In this section, we’ll detail processing a request within the framework. As you’ll see,
the framework has more than just its MVC components. We said that Struts 2 pro-
vides a cleaner implementation of MVC. These clean lines are only possible with the
help of a few other key architectural components that participate in processing every
request. Chief among these are the interceptors, OGNL, and the ValueStack. We’ll
learn what each of these does in the following walkthrough of Struts 2 request pro-
cessing. Figure 1.4 shows the request processing workflow.

Figure 1.4 Struts 2 request
processing uses interceptors
that fire before and after the
action and result.

16 CHAPTER 1 Struts 2: the modern web application framework
The first thing we should consider is that the workflow of figure 1.4 still obeys the sim-
pler MVC view of the framework that we saw earlier. In the figure, the FilterDispatcher
has already done its controller work by selecting the appropriate action to handle the
request. The figure demonstrates what really happens when the action is invoked by the
controller. As you can see, a few extra parts are added to the MVC basics. We’ll explain
in the next paragraphs how the interceptors and the ActionContext aid the action and
result in their processing of the request.

 Figure 1.4 introduces the following new Struts 2 components: ActionContext,
interceptors, the ValueStack, and OGNL. This diagram goes a long way toward showing
what really happens in Struts 2. You could say that everything we’ll discuss in this book
is shown in this diagram. As interceptors come first in the request-processing cycle,
we’ll start with them. The name seems obvious, but what exactly do they intercept?
INTERCEPTORS

You may have noticed, while studying figure 1.4, that there is a stack of interceptors in
front of the action. The invocation of the action must travel through this stack. This is
a key part of the Struts 2 framework. We’ll devote an entire chapter to this important
component later in the book. At this time, it is enough to understand that most every
action will have a stack of interceptors associated with it. These interceptors are
invoked both before and after the action, though we should note that they actually fire
after the result has executed. Interceptors don’t necessarily have to do something both
times they fire, but they do have the opportunity. Some interceptors only do work
before the action has been executed, and others only do work afterward. The impor-
tant thing is that the interceptor allows common, cross-cutting tasks to be defined in
clean, reusable components that you can keep separate from your action code.

Interceptors are Struts 2 components that execute both before and
after the rest of the request processing. They provide an architectural
component in which to define various workflow and cross-cutting tasks
so that they can be easily reused as well as separated from other archi-
tectural concerns.

What kinds of work should be done in interceptors? Logging is a good example. Log-
ging should be done with the invocation of every action, but it probably shouldn’t be
put in the action itself. Why? Because it’s not part of the action’s own unit of work. It’s
more administrative, overhead if you will. Earlier, we charged a framework with the
responsibility of providing built-in functional solutions to common domain tasks such
as data validation, type conversion, and file uploads. Struts 2 uses interceptors to do
this type of work. While these tasks are important, they’re not specifically related to
the action logic of the request. Struts 2 uses interceptors to both separate and reuse
these cross-cutting concerns. Interceptors play a huge role in the Struts 2 framework.
And while you probably won’t spend a large percentage of your time writing intercep-
tors, most developers will find that many tasks are perfectly solved with custom inter-
ceptors. As we said, we’ll devote all of chapter 4 to exploring this core component.

DEFINITION

17The Struts 2 framework
THE VALUESTACK AND OGNL

While interceptors may not absorb a lot of your daily development energies, the
ValueStack and OGNL will be constantly on your mind. In a nutshell, the ValueStack
is a storage area that holds all of the data associated with the processing of a request.
You could think of it as a piece of scratch paper where the framework does its work
while solving the problems of request processing. Rather than passing the data around,
Struts 2 keeps it in a convenient, central location—the ValueStack.

 OGNL is the tool that allows us to access the data we put in that central repository.
More specifically, it is an expression language that allows you to reference and manip-
ulate the data on the ValueStack. Developers new to Struts 2 probably ask more ques-
tions about the ValueStack and OGNL than anything else. If you’re coming from
Struts 1, you’ll find that these are a couple of the more exotic features of the new
framework. Due to this, and the sheer importance of this duo, we’ll treat them care-
fully throughout the book. In particular, chapters 5 and 6 describe the detailed func-
tion of these two framework components.

Struts 2 uses the ValueStack as a storage area for all application domain
data that will be needed during the processing of a request. Data is
moved to the ValueStack in preparation for request processing, it is
manipulated there during action execution, and it is read from there
when the results render their response pages.

The tricky, and powerful, thing about the ValueStack and OGNL is that they don’t
belong to any of the individual framework components. Looking back to figure 1.4, note
that both interceptors and results can use OGNL to target values on the ValueStack. The
data in the ValueStack follows the request processing through all phases; it slices
through the whole length of the framework. It can do this because it is stored in a
ThreadLocal context called the ActionContext.

OGNL is a powerful expression language (and more) that is used to refer-
ence and manipulate properties on the ValueStack.

The ActionContext contains all of the data that makes up the context in which an
action occurs. This includes the ValueStack but also includes stuff the framework
itself will use internally, such as the request, session, and application maps from the
Servlet API. You can access these objects yourself if you like; we’ll see how later in the
book. For now, we just want to focus on the ActionContext as the ThreadLocal
home of the ValueStack. The use of ThreadLocal makes the ActionContext, and
thus the ValueStack, accessible from anywhere in the same thread of execution.
Since Struts 2’s processing of each request occurs in a single thread, the ValueStack
is available from any point in the framework’s handling of a request.

 Typically, it is considered bad form to obtain the contents of the ActionContext
yourself. The framework provides many elegant ways to interact with that data without
actually touching the ActionContext, or the ValueStack, yourself. Primarily, you’ll
use OGNL to do this. OGNL is used in many places in the framework to reference and

DEFINITION

DEFINITION

18 CHAPTER 1 Struts 2: the modern web application framework
manipulate data in the ValueStack. For instance, you’ll use OGNL to bind HTML form
fields to data objects on the ValueStack for data transfer, and you’ll use OGNL to pull
data into the rendering of your JSPs and other result types. At this point, you just need
to understand that the ValueStack is where your data is stored while you work with it,
and that OGNL is the expression language that you, and the framework, use to target
this data from various parts of the request-processing cycle.

 Now you’ve seen how Struts 2 implements MVC, and you’ve had a brief introduc-
tion to all the other important players in the processing of actual requests. The next
thing we need to do, before getting down to the nuts and bolts of the framework’s
core components, is to make all of this concrete with a simple HelloWorld application
in chapter 2. But first, a quick summary.

1.4 Summary
We started with a lot of abstract stuff about frameworks and design patterns, but you
should now have a good understanding of the Struts 2 architecture. If abstraction is
not to your taste, you’ll be happy to know that we’ve officially completed the theoreti-
cal portion of the book. Starting immediately with chapter 2, the book will deal with
only the concrete, practical matters of building web applications. But before we move
on, let’s take a moment to review what we’ve learned.

 We should probably spend a moment to evaluate Struts 2 as a framework. Based
upon our understanding of the technological context and the common domain tasks,
we laid out two responsibilities for a web application framework at the outset of this
chapter. The first responsibility of a framework is to provide an architectural founda-
tion for web applications. We’ve seen how Struts 2 does this, and we discussed the
design pattern roots that inform the Struts 2 architectural decisions. In particular, we
have seen that Struts 2 takes the lessons learned from first-generation web application
frameworks to implement a brand-new, cleaner, MVC-based framework. We have also
seen the specific framework components that implement the MVC pattern: the action
component, the result component, and the FilterDispatcher.

 The other responsibility of frameworks is the automation of many common tasks of
the web application domain. These tasks are sometimes referred to as cross-cutting
concerns because they occur again and again across the execution of a disparate set of
application-specific actions. Logging, data validation, and other common cross-cutting
concerns should be separated from the concerns of the action and result. In Struts 2,
the interceptor provides an architectural mechanism for removing cross-cutting con-
cerns from the core MVC components. As we go further into the book, you’ll see that
the framework comes with many built-in interceptors to handle all the common tasks of
the domain. You’ll see that not only do they handle the bulk of the core framework
functionality, they also can be just the thing to handle some of your own application-
level needs. While you can probably avoid writing any interceptors yourself, we hope
that the chapter on interceptors will inspire you to write your own.

 We also took a high-level look at the actual request processing of the framework.
We saw that each action has a stack of interceptors that fire both before and after the

19Summary
action and result have done their work. In addition to the MVC components and the
interceptors, the ValueStack and the OGNL expression language play critical roles in
the storage and manipulation of data within the framework. By now you should have a
decent grasp of what the framework can do. In the next chapter’s HelloWorld applica-
tion, you’ll see a concrete example of the framework components in action. Once we
get that behind us, we’ll move on to explore the core components of the framework,
starting with chapter 3’s coverage of the Struts 2 action.

Saying hello to Struts 2
In the first chapter, we acquainted ourselves with the web application domain,
learned how design patterns and frameworks help developers do their jobs, and
conducted a quick survey of the Struts 2 architecture and request-processing pipe-
line. With that, we’ve now finished the abstract portion of the book. This chapter,
which concludes the introductory section of the book, provides the practical and
concrete details to bring the theoretical concepts from the first chapter down to
earth. In particular, this chapter will demonstrate the basic Struts 2 architectural
components with the HelloWorld sample application. This application isn’t
intended to demonstrate the full complexity of the framework. As we’ve said, we’ll
develop a full-featured sample application through the course of the book—the
Struts 2 Portfolio application. The purpose of the HelloWorld application is just to
get a Struts 2 application up and running.

This chapter covers
■ Declaring your architecture
■ Deploying a HelloWorld application
■ Building an XML-based application
■ Using Struts annotations
20

21Declarative architecture
 But before we get to the HelloWorld application, we need to look at the funda-
mentals of configuring a Struts 2 application. In particular, we’ll introduce at a type of
configuration known as declarative architecture.

2.1 Declarative architecture
In this book, we use the phrase declarative architecture to refer to a type of configuration
that allows developers to describe their application architecture at a higher level than
direct programmatic manipulation. Similar to how an HTML document simply
describes its components and leaves the creation of their runtime instances to the
browser, Struts 2 allows you to describe your architectural components through its
high-level declarative architecture facility and leave the runtime creation of your
application to the framework. In this section, we’ll see how this works.

2.1.1 Two kinds of configuration

First, we need to clarify some terminology. In the introduction to this chapter, we
referred to the act of declaring your application’s Struts 2 components as configura-
tion. While there is nothing wrong with this nomenclature, it can be confusing. Hid-
den beneath the far-reaching concept of configuration, we can distinguish between
two distinct sets of activity that occur in a Struts 2 project. One of these, the declara-
tive architecture, is more central to actually building Struts 2 applications, while the
other is more administrative in nature. Conceptually, it’s important to distinguish
between the two.
CONFIGURING THE FRAMEWORK ITSELF

First, we have configuration in the traditional sense of the word. These are the more
administrative activities. Because the Struts 2 framework is flexible, it allows you to
tweak its behavior in many areas. If you want to change the URL extension by which the
framework recognizes which requests it should handle, you can configure the frame-
work to recognize any extension that you like. By default, Struts 2 looks for URLs end-
ing in .action, but you could configure the framework to look for .do (the Struts 1.x
default extension) or even no extension at all. Other examples of configurable param-
eters include maximum file upload size and the development mode flag. Due to its
administrative nature, we’ll explain this type of configuration as we come to topics in
the book that can be configured.

 For now, we’ll focus on how to build web applications.
DECLARING YOUR APPLICATION’S ARCHITECTURE

The more important type of configuration, which we’ll refer to as declarative architec-
ture, involves defining the Struts 2 components that your application will use and link-
ing them together—or wiring them—to form your required workflow paths. By
workflow path, we mean which action fires when a particular URL is hit, and which
results might be chosen by that action to complete processing.
www.allitebooks.com

http://www.allitebooks.org

22 CHAPTER 2 Saying hello to Struts 2
Declarative architecture is a specialized type of configuration that allows
developers to create an application’s architecture through description
rather than programmatic intervention. The developer describes the
architectural components in high-level artifacts, such as XML files or Java
annotations, from which the system will create the runtime instance of
the application.

The developer needs only to declare which objects will serve as the actions, results, and
interceptors of their application. This process of declaration primarily consists of spec-
ifying which Java class will implement the necessary interface. Almost all of the Struts 2
architectural components are defined as interfaces. In reality, the framework provides
implementations for nearly all of the components you’ll ever need to use. For instance,
the framework comes with implementations of results to handle many types of view-
layer technologies. Typically, a developer will only need to implement actions and wire
them to built-in results and interceptors. Furthermore, the use of intelligent defaults
and annotations can further reduce the manual tasks needed in this area.

2.1.2 Two mechanisms for declaring your architecture

Now we’ll look at the nuts and bolts of declaring your architecture. There are two
ways to do this: through XML-based configuration files or through Java annotations.
Figure 2.1 demonstrates the dual interface to the declarative architecture.

DEFINITION

Figure 2.1 Declaring
your Struts 2 application
architecture with XML or
annotations

23Declarative architecture
As you can see, whether your application’s Struts 2 components are declared in XML
or in annotations, the framework translates them into the same runtime components.
In the case of the XML, we have the familiar XML configuration document with ele-
ments describing your application’s actions, results, and interceptors. With annota-
tions, the XML is gone. Now, the metadata is collected in Java annotations that reside
directly within the Java source for the classes that implement your actions. Regardless
of which method you use, the framework produces the same runtime application. The
two mechanisms are redundant in the sense that you can use whichever you like with-
out functional consequence. The declarative architecture is the real concept here.
Which style of declaration you choose is largely a matter of taste. For now, let’s meet
the candidates and see how each works.
XML-BASED DECLARATIVE ARCHITECTURE

Many of you are already familiar with the use of XML for declarative software devel-
opment. Struts 2 allows you to use XML files to describe your application’s desired
Struts 2 architectural components. In general, the XML documents will consist of ele-
ments that represent the application’s components. Listing 2.1 shows an example of
XML elements that declare actions and results.

<action name="Login" class="manning.Login">
 <result>/AccountPage.jsp</result>
 <result name="input">/Login.jsp</result>
</action>

<action name="Registration" >
 <result>/Registration.jsp</result>
</action>

<action name="Register" class="manning.Register">
 <result>/RegistrationSuccess.jsp</result>
 <result name="input">/Registration.jsp</result>
</action>

We won’t go into the details of these elements now. We just show this as an example of
what XML-style declarative architecture looks like. Typically, an application will have
several XML files containing elements like these that describe all of the components of
the application. Even though most applications will have more than one XML file, all of
the files work together as one large description. The framework uses a specific file as the
entry point into this large description. This entry point is the struts.xml file. This file,
which resides on the Java classpath, must be created by the developer. While it’s possible
to declare all your components in struts.xml, developers more commonly use this file
only to include secondary XML files in order to modularize their applications.

 We’ll see XML-based declarative architecture in action when we look at the Hello-
World application in a few moments.
JAVA ANNOTATION–BASED DECLARATIVE ARCHITECTURE

A relatively new feature of the Java language, annotations allow you to add metadata
directly to Java source files. One of the loftier goals of Java annotations is support for

Listing 2.1 XML declarative architecture elements

24 CHAPTER 2 Saying hello to Struts 2
tools that can read metadata from a Java class and do something useful with that infor-
mation. Struts 2 uses Java annotations in this way. If you don’t want to use XML files,
the declarative architecture mechanism can be configured to scan Java classes for
Struts 2–related annotations. We’ll explain how the framework finds the classes that it
should scan for annotations when we demo the annotated version of HelloWorld,
which we’ll do shortly. Listing 2.2 shows what these annotations look like.

@Results({
 @Result(name="input", value="/RegistrationSuccess.jsp")
 @Result(value="/RegistrationSuccess.jsp")
})

public class Login implements Action {

 public String execute() {

 //Business logic for login

 }
}

Note that the annotations are made on the Java classes that implement the actions. List-
ing 2.2 shows the code from the Login class, which itself will serve as the Login action.
Just like their counterpart elements in the XML, these annotations contain metadata
that the framework uses to create the runtime components of your application.

 We’ll fully explain this material throughout the course of the book, but it might
be worthwhile to note the relationship between the Login action’s XML element in
listing 2.1 and the annotations of listing 2.2, which are made directly on the
Login.java source itself. The annotation-based mechanism is considered by many to
be a more elegant solution than the XML mechanism. For one thing, the annotation
mechanism is heavily combined with convention-based deduction of information. In
other words, some of the information that must be explicitly specified in the XML ele-
ments can be deduced automatically from the Java package structure to which the
annotated classes belong. For instance, you don’t need to specify the name of the
Java class, as that is clearly implicit in the physical location of the annotations. Many
developers also appreciate how annotations eliminate some of the XML file clutter
that seems to increase year by year on the web application classpath. We’ll demon-
strate the fundamentals of annotation-based declarative architecture in the second
version of the HelloWorld application provided later in this chapter.
WHICH METHOD SHOULD YOU USE?

Ultimately, choosing a mechanism for declaring architecture is up to the developer.
The most important thing is to understand the concepts of the Struts 2 declarative
architecture. If you understand those, moving between the XML or Java annotation–
based mechanisms should be quite trivial. This book will use XML in its sample appli-
cations. We do this for a couple of reasons. First, we think the XML version is better
suited to learning the framework. The XML file is probably more familiar to many of

Listing 2.2 Using annotations for declarative architecture

25A quick hello
our readers, and, more importantly, it provides a more centralized notation of an
application’s components. This makes it easier to study the material when one is first
learning the framework. Second, the annotations are a moving target at this point.
The Struts 2 developers are ardently moving toward a zero-configuration system that
uses convention over configuration, with annotations serving as an elegant override
mechanism when conventions aren’t followed. Many people are already using this sys-
tem, but we think at this point it isn’t the best approach to learning the framework.
We do think that many of you will ultimately choose to use Java annotations to declare
your application’s components because of their elegance.

2.1.3 Intelligent defaults

Many commonly used Struts 2 components (or attributes of components) do not
need to be declared by the developer. Regardless of which declaration style you
choose, these components and attribute settings are already declared by the frame-
work so that you can more quickly implement the most common portions of applica-
tion functionality. Some framework components, such as interceptors and result
types, may never need to be directly declared by the developer because those provided
by the system handle the daily requirements of most developers. Other components,
such as actions and results, will still need to be declared by the developer, but many
common attribute settings can still be inherited from framework defaults.

Intelligent defaults provide out-of-the-box components that solve com-
mon domain workflows without requiring further configuration by the
developer, allowing the most common application tasks to be realized
with minimum development.

These predefined components are part of the Struts 2 intelligent defaults. In case
you’re interested, many of these components are declared in struts-default.xml, found
in the struts2-core.jar. This file uses XML to declare an entire package of intelligent
default components, the struts-default package. Starting with the upcoming Hello-
World application, and continuing through the rest of the book, we’ll learn how to
take advantage of the components offered in this default package.

2.2 A quick hello
Now we’ll present two HelloWorld applications, one with XML and one with annota-
tions, that will bring all this to life. First, we’ll introduce the XML version of the appli-
cation. We’ll explore the use of the XML as well as discuss how the application
demonstrates the Struts 2 architecture. We’ll also introduce the basic layout of a
Struts 2 application. Then we’ll revisit the same application implemented with anno-
tations, focusing on the annotations themselves. As we’ve said, the two styles of declar-
ing your architecture are just two interfaces to the same declarative architecture.
Which one you choose has no functional bearing on your Struts 2 application. The
two HelloWorld applications, which differ only in the style of architectural declara-
tion, will make this point concrete.

DEFINITION

26 CHAPTER 2 Saying hello to Struts 2
2.2.1 Deploying the sample application

To deploy an application, you need a servlet container. This sounds simple, but it’s
not. As authors of this book, we find this a troublesome question. Since servlet con-
tainers are built to the Servlet Specification, it doesn’t matter which one you use. In
short, you just need to deploy the sample applications on a servlet container. It’s
your choice. Some books attempt to walk you through the installation details for a
specific container. The problem with this is that it’s never as simple as they make
it sound.

 Furthermore, we think the benefits gained from learning to install a servlet con-
tainer far outweigh any short-term gains to be had from any container-specific quick
start we might try to provide. If you’re experienced with Java web application develop-
ment, you’ll already have your own container preferences and know how to deploy a
web application in your chosen container. If you’re new to Java web application devel-
opment, you can probably expect to spend a few hours reading some online docu-
mentation and working through the installation process. Deploying a web application
on a running container is typically point-and-click simple. Choosing a servlet con-
tainer can be overwhelming, but for newbies we recommend Apache Tomcat. It’s
arguably the most popular open source implementation of the Servlet Specification.
It’s both easy to obtain and certain to be as specified.

 Though perhaps less fundamental than the choice of a servlet container, choosing
an IDE and a build tool can be just as important. Our goal is to provide build- and IDE-
agnostic sample applications. We recognize that we might save you some time by pro-
viding an Ant build file with Tomcat targets, for instance, but, if you don’t use Ant and
Tomcat, that doesn’t help and may even hinder your progress. We should note that
the Struts 2 community, along with much of the Java open source community, has
strongly adopted Maven 2 as their build/project management tool. If you plan to have
more than a fleeting relationship with the Struts 2 source code, a working knowledge
of Maven practice would serve you well.

 Provided you have a servlet container, the only thing left to do is deploy the sample
application WAR file in accordance with the requirements of your container. You can
obtain the sample application from the Manning web site. All of the sample code from
this book is contained in a single Struts 2
web application. This application is packaged
in the Struts2InAction.war file. Once you’ve
deployed this web application to your container,
point your browser to http://localhost:8080/
Struts2InAction/Menu.action to see the main
menu for the sample application. Note that this
assumes that the sample application has been
deployed on your local machine and that
the servlet container is listening on port 8080.
Figure 2.2 shows the menu.

Figure 2.2 The sample application is
organized into several mini-applications.

http://localhost:8080/Struts2InAction/Menu.action
http://localhost:8080/Struts2InAction/Menu.action

27A quick hello
 As you can see from figure 2.2, the sample application has been organized into a
series of mini-applications. Basically, we have two versions of the HelloWorld applica-
tion and many versions of the Struts 2 Portfolio application. Technically, all of these
are just one big Struts 2 application. However, the flexibility of the framework allows
us to cleanly modularize the sample code for all of the chapters so that we can present
distinct versions of the application for each chapter. This allows us to, for instance,
present a simple version of the Struts 2 Portfolio while covering the basics in early
chapters, and then provide a full-featured version for later chapters.

THE LAYOUT OF A STRUTS 2 WEB APPLICATION

The entire Struts2InAction.war file can be used as a template for understanding what’s
required of a Struts 2 web application. Most of the requirements for the application
structure come from the requirements put on all web applications by the Servlet API.
Figure 2.3 shows the exploded directory structure of the Struts2InAction.war file.

 Again, if you aren’t familiar with the Servlet Specification, a quick read might be
worth your while. For our purposes, we’ll outline the most important aspects. First, all
of the top-level directories, except WEB-INF, are in the document root of the web
application. Typically, this is where our JSP files will go. You can also put Velocity and
FreeMarker templates here, as we’ll do, but those resources can also load from JAR
files on the classpath. In the sample application, we’ve organized our JSPs according
to the chapter to which they belong. One important thing to note about the docu-
ment root is that these resources can potentially be served as static resources by the
servlet container. If not configured to prevent such access, a URL that directly points
to resources in the document root can result in the servlet container spitting out that
resource. Because of this, the document root is not considered a secure place for sen-
sitive material.

Extra! Extra! Independent HelloWorld WAR
As we go to press, we’ve responded to feedback from our Manning Early Access Pro-
gram (MEAP) readers by adding a separate WAR file version of the HelloWorld sample
application. Many of our readers wanted to see HelloWorld in the simplest packaging
possible. Other readers wanted to see a minimal Struts 2 web application. To fulfill
both these requests, we’ve broken the XML-based HelloWorld out into a standalone
web application. Accordingly, you’ll find HelloWorld.war also bundled with the down-
loadable code on the Manning site. This allows you to deploy the HelloWorld applica-
tion without configuring the database, or other resources, that the full application
depends upon. Also, it provides you with a perfect skeleton application for jump-
starting your own projects.

Note: We didn’t remove HelloWorld from the main sample web application
(Struts2InAction.war); we just created the bonus application for your convenience.
You can work from either version as you read through this chapter, though we’ll as-
sume you’re using the full Struts2InAction web application.

28 CHAPTER 2 Saying hello to Struts 2
 All of the important stuff goes in WEB-
INF. As you can see in figure 2.3, the top-
level contents of WEB-INF include two
directories, lib and classes, and the file
web.xml. Note that there’s also a direc-
tory called src, but that’s our project
source code. This is not a required part of
the web application directory structure.
We’ve put it here for convenience. You
could put it anywhere, depending on the
details of your build process. Ultimately,
you’ll most likely not want source code in
a production-ready web application.
We’ve done it this way as a convenient,
build–agnostic alternative.

 As for the other two directories,
they’re essential. The lib directory holds
all of the JAR file dependencies that your
application needs. In the sample applica-
tion, we’ve placed all of the JARs com-
monly used by Struts 2 web applications.
Note that Struts 2 is flexible. If you add
some features that we don’t use in this
book, you might need to add additional
JARs. Also note that, if you want to see the
absolute minimum set of JARs, you should check out HelloWorld.war, referenced in an
earlier sidebar. The classes directory holds all of the Java classes that your application
will use. These are essentially no different than the resources in the lib directory, but
the classes directory contains an exploded directory structure containing the class files,
no JARs. In figure 2.3, you can see that the classes directory holds one directory, man-
ning, which is the root of our applications Java package structure, and it holds several
other classpath resource files, such as properties files and the struts.xml file we’ve
already discussed.

 In addition to the lib and classes directories, WEB-INF also contains the central con-
figuration file of all web applications, web.xml. This file, formally known as the deploy-
ment descriptor, contains definitions of all of the servlets, servlet filters, and other Servlet
API components contained in this web application. Listing 2.3 shows the web.xml file of
our sample application.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

Listing 2.3 The web.xml deployment descriptor of our sample application

Figure 2.3 The exploded directory structure of our
Struts 2 sample application

29A quick hello
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>S2 Example Application - Chapter 1 - Hello World
 </display-name>

 <filter>
 <filter-name>struts2</filter-name>
 <filter-class>org.apache.struts2.dispatcher.FilterDispatcher
 </filter-class>
 <init-param>
 <param-name>actionPackages</param-name>
 <param-value>manning</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>anotherServlet</servlet-name>
 <servlet-class>manning.servlet.AnotherServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>anotherServlet</servlet-name>
 <url-pattern>/anotherServlet</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

</web-app>

For a Struts 2 application, the most important elements in this deployment descriptor
are the filter and filter-mapping elements that set up the Struts 2 Filter-
Dispatcher. This servlet filter is basically the Struts 2 framework. This filter will exam-
ine all the incoming requests looking for requests that target Struts 2 actions. Note
the URL pattern to which this filter is mapped: “/*.” This means the filter will inspect
all requests. The other important thing about the configuration of the Filter-
Dispatcher is the initialization parameter that we pass in. The actionPackages
parameter is necessary if you’re going to use annotations in your application. It tells
the framework which packages to scan for annotations. We’ll see more about this
when we get to the annotated version of HelloWorld in a few pages.

 One other interesting thing to note is that we’ve included a non-Struts 2 servlet in
our web application. As we said earlier, a web application is defined as a group of serv-
lets packaged together. Many Struts 2 web applications won’t have any other servlets in
them. In fact, since Struts 2 uses a servlet filter rather than a servlet, many Struts 2
applications won’t have any servlets in them—unless you count compiled JSPs. Since
it’s not uncommon to integrate other servlets with the framework, we’ve included
another servlet, as seen in listing 2.3, in our web application. We’ll demonstrate using
this servlet later in the book.

FilterDispatcher:
Struts 2 begins here

Tell Struts
where to find
annotations

A servlet
outside of
Struts

30 CHAPTER 2 Saying hello to Struts 2
 Now you should know how to set up a skeletal Struts 2 application. Everything in
our sample application is by the book except for the presence of the source directory
in WEB-INF. As we said, this has been done as a convenience. You’ll probably want to
structure your build according to industry best practices. We haven’t provided such a
build because we think it only complicates the learning curve. Now it’s time to look at
the HelloWorld application.

2.2.2 Exploring the HelloWorld application

The HelloWorld application aims to provide the simplest possible introduction to
Struts 2. However, it also tries to exercise all of the core Struts 2 architectural compo-
nents. The application has a simple workflow. It’ll collect a user’s name from a form,
use that to build a custom greeting for the user, and then present the user with a web
page that displays the customized greeting. This workflow, while ultrasimple, will
clearly demonstrate the function and usage of all the Struts 2 components, such as
actions, results, and interceptors. Additionally, it’ll demonstrate the mechanics of how
data flows through the framework, including the ValueStack and OGNL. As Struts 2 is
a sophisticated framework, we’ll be limited to a high-level view. Rest assured that the
rest of the book will spend adequate time on each of these topics.
HELLOWORLD USER GUIDE

First, let’s look at what the HelloWorld application actually does. Provided you’ve
deployed the application to your servlet container, select the HelloWorld link from
the menu we saw earlier. Note that we’re starting with the XML version, not the anno-
tated version. You’ll be presented with a simple form, seen in figure 2.4, that asks for
your name.

Enter your name and click the Submit button. The
application will prepare your customized greeting
and return a new page for you, as seen in figure 2.5.

 The figure shows the customized greeting mes-
sage built by the action and displayed via a JSP
page. That’s it. Now, let’s see what the Struts 2
architecture of this simple application looks like.
HELLOWORLD DETAILS

We’ll begin by looking at the architectural components used by HelloWorld. This ver-
sion of HelloWorld uses XML to declare its architecture. As we’ve said, the entry point
into the XML declarative architecture is the struts.xml file. We’ve also said that many
developers use this root document to include other XML documents, allowing for

Figure 2.4 The
first page collects
the user’s name.

Figure 2.5 The second page
presents the customized greeting,
built from the submitted name.

31A quick hello
modularization. We’ve done this for the sample application, modularizing on the basis
of chapters. Listing 2.4 shows WEB-INF/classes/struts.xml, the most important aspect of
which are the include elements that pull in the modularized XML documents.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
 "http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

 <constant name="struts.devMode" value="true" />

 <package name="default" namespace="/" extends="struts-default">
 <action name="Menu">
 <result>/menu/Menu.jsp</result>
 </action>
 </package>

 <include file="manning/chapterTwo/chapterTwo.xml"/>
 <include file="manning/chapterThree/chapterThree.xml"/>

 . . .

 <include file="manning/chapterEight/chapterEight.xml"/>

</struts>

Though off topic, we should note that the constant element B can be used to set
framework properties; here we set the framework to run in development mode. You
can also do this with property files, as we’ll see later. Also off topic, we should note that
struts.xml is a good place to define some global actions in a default package. Since our
main menu doesn’t belong to any of our modularized mini-applications, we place it
here. Finally back on topic, we see the most important aspect of the struts.xml file, a
long list of includes that pull all of our chapter-based XML documents into the declar-
ative architecture. All of these files will be pulled into this main document, in line, to
create a single large XML document.

 The HelloWorld application belongs to the Chapter Two module of sample
code. Listing 2.5 shows the contents of WEB-INF/classes/manning/chapterTwo/
chapterTwo.xml.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
 "http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

 <package name="chapterTwo" namespace="/chapterTwo" extends="struts-
 default">

Listing 2.4 The entry point into XML-based declarative architecture

Listing 2.5 Using XML for declarative architecture

Use constants
to tweak Struts
properties

B

Menu action
belongs to a
default package Include

modularized
XML docs

32 CHAPTER 2 Saying hello to Struts 2
 <action name="Name">
 <result>/chapterTwo/NameCollector.jsp</result>
 </action>

 <action name="HelloWorld" class="manning.chapterTwo.HelloWorld">
 <result name="SUCCESS">/chapterTwo/HelloWorld.jsp</result>
 </action>

 </package>

</struts>

Note that the real file in the application contains detailed comments about the vari-
ous elements. This is true for all the examples in this book, but when we print listings
here we’ll remove the comments for clarity. This simple application has only two
actions, and one of them hardly does anything. Both the Name and the HelloWorld
actions declare some results for their own use. Each result names a JSP page that it will
use to render the result page. The only other elements here are the struts root ele-
ment and the package element. The struts element is the mandatory document root
of all Struts 2 XML files and the package element is an important container element
for organizing your actions, results, and other component elements.

 For now, the only thing we need to note about the package element is that it
declares a namespace that’ll be used when the framework maps URLs to these actions.
Figure 2.6 shows how the namespace of the package is used to determine the URL that
maps to our actions.

 The mapping process is simple. The URL combines the servlet context with the
package namespace and the action name. Note that the action name takes the .action
extension. Chapter 3 will more fully cover the mechanics of namespaces. The first
action, the Name action, doesn’t do any real back-end processing. It merely forwards to
the page that will present the user with a form to collect her name.

Use empty action components to forward to your results, even if they’re
simple JSPs that require no dynamic processing. This keeps the applica-
tion’s architecture consistent, prewires your workflow in anticipation of
increases in complexity, and hides the real structure of your resources
behind the logical namespace of the Struts 2 actions.

While we could technically use a URL that hits the form JSP directly, a well-accepted
best practice is to route these requests through actions regardless of their lack of

Figure 2.6 Anatomy of a URL: mapping a URL namespace to a Struts 2 action namespace

BEST
PRACTICE

33A quick hello
actual processing. As you can see, such pass-through actions do not specify an imple-
mentation class. They’ll automatically forward to the result they declare. This action
points directly at the NameCollector.jsp page, which renders the form that collects the
name. Listing 2.6 shows the contents of /chapterTwo/NameCollector.jsp.

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib prefix="s" uri="/struts-tags" %>

<html>

 <head>
 <title>Name Collector</title>
 </head>

 <body>

 <h4>Enter your name </h4>
 <s:form action="HelloWorld">
 <s:textfield name="name" label="Your name"/>
 <s:submit/>
 </s:form>

 </body>

</html>

At this point, we provide this listing only for the sake of full disclosure. We’ll cover the
Struts 2 UI component tags fully in chapter 6. For now, just note that a tag or two will
render a complete HTML form. And, as you’ll see, these tags also bind the form to the
various features of the framework, such as automatic data transfer.

 The second action, the HelloWorld action, receives and processes the submis-
sion of the name collection form, customizing a greeting with the user’s name.
While this business logic is still simple, it needs a real action. In its XML declaration,
the HelloWorld action specifies manning.chapterTwo.HelloWorld as its implementa-
tion class. Listing 2.7 shows the simple code of this action implementation.

package manning.chapterTwo;

public class HelloWorld {

 private static final String GREETING = "Hello ";

 public String execute() {

 setCustomGreeting(GREETING + getName());
 return "SUCCESS";
 }

 private String name;
 private String customGreeting;

 public String getName() {

Listing 2.6 Using Struts 2 UI component tags to render the form

Listing 2.7 The HelloWorld action’s execute() does the work

Standard JSP
directives

Struts 2 UI
component
tags

The action’s
business logic

Control string
will select result

JavaBeans properties
hold the data

34 CHAPTER 2 Saying hello to Struts 2
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getCustomGreeting()
 {
 return customGreeting;
 }

 public void setCustomGreeting(String customGreeting){
 this.customGreeting = customGreeting;
 }
}

As promised, there’s not much to it. The execute() method contains the business
logic, a simple concatenation of the submitted name with the greeting message. After
this, the execute() method returns a control string that indicates which of its results
should render the result page.

While many Struts 2 actions will implement the Action interface, which
we’ll cover in chapter 3, they’re only obligated to meet an informal
contract. The HelloWorld action satisfies that contract by providing an
execute() method that returns a string. It doesn’t need to actually
implement the Action interface to informally satisfy the contract.

The only other important thing to note is the presence of JavaBeans properties to hold
the application domain data. For now, recall that the action, as the MVC model compo-
nent of the framework, both contains the business logic and serves as a locus of data
transfer. Though there are other ways the action can hold the data, one common way
is using JavaBeans properties. The framework will set incoming data onto these prop-
erties when preparing the action for execution. Then, during execution, the business
logic in the action’s execute() method can access and work with the data. Looking at
the HelloWorld action, we see that the business logic both reads the name value from
these properties and writes the custom greeting to these properties. In fact, it will be
from these properties that the resulting JSP page will read the custom greeting.

 Let’s look at the JSP that renders the success result for the HelloWorld action. List-
ing 2.8 shows the HelloWorld.jsp file that does this rendering.

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib prefix="s" uri="/struts-tags" %>
<html>
 <head>
 <title>HelloWorld</title>
 </head>

 <body>

 <h3>Custom Greeting Page</h3>

Listing 2.8 HelloWorld.jsp renders the result for the HelloWorld action

ACTION TIP

35A quick hello
 <h4><s:property value="customGreeting"/></h4>

 </body>

</html>

As you can see, this page is quite simple. The only thing to note is the Struts 2 property
tag that displays the custom greeting message. Now you’ve seen all the code from front
to back on a simple Struts 2 application.

 You might still have questions about how the data gets from the front to the back
of this process. Let’s trace the path of data as it comes into, flows through, and ulti-
mately exits the HelloWorld application. First, let’s clear up some potential confusion
regarding the location of data in the framework. In chapter 1, we learned that the
framework provides something called the ValueStack for storing all of the domain
data during the processing of a request. We also said that the framework uses a power-
ful expression language, OGNL, to reference and manipulate that data from various
regions of the framework. But, as we’ve just learned, the action itself holds the domain
data. In the case of the HelloWorld action, that data is held on JavaBeans properties
exposed on the action itself. So, what gives?

 In short, both are true. The data is both stored in the action and in the Val-
ueStack. Here’s how. First, domain data is always stored in the action. We’ll see vari-
ants on this, but it’s essentially
true. This is great because it allows
convenient access to data from the
action’s execute() method. So
that the rest of the framework can
access the data, the action object
itself is placed on the ValueStack.
The mechanics of the ValueStack
are such that all properties of the
action will then be exposed as top-
level properties of the ValueStack
itself and, thus, accessible via
OGNL. Figure 2.7 demonstrates
how this works with the Hello-
World action as an example.

 As figure 2.7 shows, the action
holds the data, giving its own Java
code convenient access. At the
same time, the framework makes
the properties of the action avail-
able on the ValueStack so that
other regions of the framework can
access the data as well. In terms of
our HelloWorld application, the

Pulls data from
ValueStack

Figure 2.7 Every action is placed on the ValueStack
so that its properties are exposed to framework-wide
OGNL access.

36 CHAPTER 2 Saying hello to Struts 2
two most important places this occurs are on the incoming form and the outgoing
result page. In the case of the incoming request, the form field name attribute is inter-
preted as an OGNL expression. The expression is used to target a property on the
ValueStack; in this case, the name property from our action. The value from the form
field is automatically moved onto that property by the framework. On the other end,
the result JSP pulls data off the customGreeting property by likewise using an OGNL
expression, inside a tag, to reference a property on the ValueStack. Obviously, this
complicated process needs more than a quick sketch. We’ll cover it fully, particularly in
chapters 5 and 6.

 That gives us as much as we need to know at this point. We’ve seen how to declare
actions and results. We’ve also learned a bit about how the data moves through the
framework. You might’ve noticed that we didn’t declare any interceptors. Despite the
importance of interceptors, the HelloWorld application declares none of them. It
avoids declaring interceptors itself by using the default interceptor stack provided by
the framework. This is common practice.

 One of the exciting new features of Struts 2 is the use of annotations instead of
XML. What’s the big deal? Let’s see.

2.3 HelloWorld using annotations
Now we’ll take a peek at the annotation-based version. We won’t go back through how
the application works. It’s exactly the same. The only difference is in the declarative
architecture mechanism used to describe our application’s Struts 2 components.
We’ve reimplemented the HelloWorld application and you can check it out by click-
ing the AnnotatedHelloWorld on the main menu page. It will work exactly the same.
However, if you examine the source code, you’ll see the difference.

 As we’ve said, the annotations are placed directly in the source code of the actions.
If we tell the framework where we keep our action classes, it will automatically scan
them for annotations. The location of our actions is specified in an initialization
parameter to the Struts 2 FilterDispatcher, defined in the web.xml deployment
descriptor for the application. The following code snippet shows the relevant portions
of that file.

 <filter>
 <filter-name>struts2</filter-name>
 <filter-class>org.apache.struts2.dispatcher.FilterDispatcher
 </filter-class>

 <init-param>
 <param-name>actionPackages</param-name>
 <param-value>manning</param-value>
 </init-param>
 </filter>

Note that the value of the parameter is a Java package name. But just telling the sys-
tem where our action classes are isn’t enough. In addition, we must somehow identify
which classes are actions. To mark our classes as actions, we either make our actions

Scan manning
package for
annotations

37HelloWorld using annotations
implement the com.opensymphony.xwork2.Action interface or use a naming conven-
tion where our class names end with the word Action. We’ll explain all about the
Action interface in chapter 3. For now, all you need to know is that it’s an interface
that identifies the class as an action. In the annotation version of HelloWorld, one of
our actions, the AnnotatedNameCollector, implements the Action interface to let the
system know its true identity. The other action, AnnotatedHelloWorldAction, uses the
naming convention.

 Now that the framework knows how to find our annotations, let’s see how they
actually work. As we discuss annotations, we’ll refer back to their counterparts in the
XML version of HelloWorld. The most notable thing is that several of the elements dis-
appear entirely. We don’t have to provide any metadata for the package. If we accept
the intelligent defaults of the annotation mechanism, the framework can create a
package to hold our actions without our help. The framework makes some assump-
tions and generates the package for us. Most importantly, the framework assumes that
our namespace for this package will be derived from the Java package namespace of
the action class.

 The entire Java package namespace isn’t used. The framework only uses the por-
tion of the package namespace beneath the package specified in the actionPackages
parameter. In our case, we told the framework to look in the manning package, and
our action classes reside in the manning.chapterOne Java package. The framework will
give this package a namespace of chapterOne. In this fashion, all annotated actions in
the same Java package will be added to the same Struts 2 package/namespace.

 We also don’t have to explicitly define the action, as we do with the XML method’s
action element. In fact, it’s not possible to define the action ourselves. Since the
annotations reside in the action class, the framework takes this as declaration of an
action; this is convention over configuration at its finest. We don’t need to inform
Struts 2 about which class will provide the action implementation; it’s obviously the
class that contains the annotation. The name of the action is derived from the name of
the Java class by a simple process. First, the Action portion of the class name, if
present, is dropped. Second, the first letter is dropped to lowercase. For instance, this
version of HelloWorld uses the AnnotatedHelloWorldAction class. After removing the
ending and changing the case of the first letter, we end up with the following: http://
localhost:8080/manningHelloWorld/chapterTwo/annotatedHelloWorld.action

 We’ll look at the annotations in the AnnotatedHelloWorldAction class first, since
it’s the core of our application. If you look at the source, you see that everything is the
same as before. The only difference is the name and the presence of a class-level anno-
tation. The most important part of the name is the use of the naming convention,
where our class name ends with the word Action, to identify our class as an action.
The annotation comes just before the class declaration:

@Result(name="SUCCESS", value="/chapterTwo/HelloWorld.jsp")

Even if you’re not familiar with Java annotations, it should be easy enough to see
what’s going on here. The information is exactly the same as in the XML elements.

http://localhost:8080/manningHelloWorld/chapterTwo/annotatedHelloWorld.action
http://localhost:8080/manningHelloWorld/chapterTwo/annotatedHelloWorld.action

38 CHAPTER 2 Saying hello to Struts 2
While the package and action elements are gone, they’ve been derived from the Java
class itself. Finally, the result annotation resides nested within the containing Java class
and Java package, just as the result element was nested in the equivalent XML ele-
ments. The same wiring occurs; the same intelligent defaults are inherited.

 We could leave off here, but we’d better say something about this other action. Do
you recall that we wrapped NameCollector.jsp in an empty action element in the first
example? We said that this use of a pass-through action, rather than hitting JSPs
directly, was considered a best practice. We should try to do the same with our annota-
tion version of the application. This is complicated by the fact that annotations occur
within the action classes. This forces us to create an action class even though we don’t
really need one. But this isn’t a problem.

 If we look at AnnotatedNameCollector.java, we see that it is an empty class. This is
shown in the following code snippet. It provides nothing but a container for the
result annotation that points to our JSP page. This result annotation provides the
same information as the corresponding result element from the XML version. Like
the result XML element, it accepts the intelligent defaults for all attributes except
the page it will render.

@Result(value="/chapterTwo/AnnotatedNameCollector.jsp")

public class AnnotatedNameCollector extends ActionSupport {

 /* EMPTY */

}

There’s more going on than we currently need to know, but we’ll give the short ver-
sion for now. This class extends ActionSupport. ActionSupport is a framework-
provided implementation of the Action interface we mentioned earlier. In terms of
action logic, it does nothing but render the result we’ve defined. It does provide some
support to help some common tasks, which we’ll learn about in chapter 3. For now,
just note that it’s a convenient helper class. Also, since it implements the Action inter-
face for us, we can drop the class-naming convention and the framework will still pick
this up while scanning for actions.

 Now that we’ve covered the details of the two interfaces to Struts 2’s declarative
architecture, we should make sure you’re not confused. Really, declarative architec-
ture is what we’re trying to learn, and it’s cleanly designed. If the two styles of meta-
data make you dizzy, just breathe slowly and contemplate the clarity of the Struts 2
architecture that they both describe. Ultimately, the HelloWorld application, no mat-
ter how you describe it, consists of a pair of Struts 2 actions. The first one receives the
request for the name collection form. The second one receives the name from the
form, processes it, and returns the customized greeting.

2.4 Summary
There you go! We’ve broken the ice and gotten something up and running. Not only
have we finished our HelloWorld, we’ve completed part 1 of this book. At this point,

39Summary
you should have a good grasp of the fundamentals of building a Struts 2 web applica-
tion. Let’s review what we’ve learned in this chapter before moving on.

 In this chapter, we introduced the declarative architecture of Struts 2. While some
refer to this as configuration, we like to distinguish between configuration of the
framework itself and configuration of your application’s architecture. The former,
probably more correctly labeled configuration, involves tweaking or tuning the
behavior and performance of the framework. The latter plays a much more central
role in the development of our web applications; it involves the nuts and bolts of
defining your application’s structure. This is the declarative architecture of Struts 2.

 The framework provides two interfaces for declaring the architectural components
of which your application consists: XML and Java annotations. As we’ve seen, both are
fairly simple. While annotations are considered by many to be more elegant than
XML, we’ve opted to use XML because of its educational convenience. But we expect
that many of you will ultimately choose annotations over XML. Once you’ve learned
the framework, it’ll be easy to start using annotations. As we’ve indicated, they’re a
part of a movement toward zero-configuration Struts 2 development. Please check the
Struts 2 website for more information.

 With the high-level overviews, architectural glosses, and the obligatory HelloWorld
out of the way, we’ve officially completed the introductory portion of the book. Coming
up is chapter 3, which kicks off part 2 by providing an in-depth discussion of Struts 2
actions. We’ll also start developing our full-featured Struts 2 Portfolio sample applica-
tion in chapter 3.

Part 2

Core concepts:
 actions, interceptors,
 and type conversion

Now that we’ve taken the general lay of the land, it’s time to get down to busi-
ness. The next few chapters introduce all the core components of the Struts 2
architecture. These components make up the functionality of your application as
well as the framework itself. We’ll provide in-depth discussions of the roles these
components play in the framework, and back that up with real code samples as we
start to build our Struts 2 Portfolio sample application.

 In chapter 3, we jump right in and start working with the Struts 2 action. This
component is the heart of the framework and is the component that a developer
will spend the most time with on a daily basis. After that, chapter 4 introduces
the interceptors. These critical components, while taking less of a developer’s
time, are where all of the framework’s functionality is. Some developers will be
unfamiliar with these components, but they’re powerful and we take plenty of
time to make sure everyone comes away with a firm grip on them. Chapter 5 fin-
ishes up the tour of the framework’s core pieces by introducing the mechanisms
that support the automatic data transfer and type conversion facilities. You can
get by without knowing much about this stuff, but a solid footing will open new
horizons of efficient and effective development.

 By the time you finish this part, you’ll be able to build your own Struts 2
application. If you’re ready to start learning what Struts 2 is all about, these are
the chapters for you.

Working with
 Struts 2 actions
With the overviews and introductions behind us, it’s time to study the core compo-
nents of Struts 2. First up, actions. As we’ve learned, actions do the core work for
each request. They contain the business logic, hold the data, and then select the
result that should render the result page. This is an action-oriented framework;
actions are at its heart. In the end, you’ll spend much of your time as a Struts 2
developer working with actions.

 This chapter will give you everything you need to start building your application’s
actions. Using the XML-based mechanism for declarative architecture, we’ll explore
all of the options available to us when we declare our actions, see some convenience
classes that aid development of actions, and cover the most common ways of carrying

This chapter covers
■ Bundling actions into packages
■ Implementing actions
■ Introducing object-backed properties

and ModelDriven actions
■ Uploading files
43

44 CHAPTER 3 Working with Struts 2 actions
data in the action. The previous chapter used JavaBeans properties. We’ll also see how
interceptors work together with actions to provide much of the framework’s function-
ality. In fact, we’ll end with a useful case study of a file upload action. We will also start
to develop our full-featured sample application, the Struts 2 Portfolio, to help demon-
strate the concepts and techniques of this chapter.

 As it turns out, we can’t show you actions without introducing a fair amount of
other material. We’ll try to keep the focus on actions as much as possible. But you’ll
probably pick up enough of the other stuff to get your own simple Struts 2 application
up and running. There’s a lot to learn in this chapter. If you’re ready, let’s go.

3.1 Introducing Struts 2 actions
To set the stage, we’ll start with a sketch of the role that actions play in the framework.
We’ll explain the purpose and various roles of the action component. We’ll contrast
the Struts 2 action with the similarly named component in Struts 1. And we’ll study
the obligations that an object serving in the role of an action has toward the frame-
work in general. Struts 2 is an egalitarian enterprise. Any class can be an action as long
as it satisfies its obligations to the framework. Let’s find out what these important com-
ponents do for the framework.

3.1.1 What does an action do?

Actions do three things. First, as you probably understand by now, an action’s most
important role, from the perspective of the framework’s architecture, is encapsulating
the actual work to be done for a given request. The second major role is to serve as a
data carrier in the framework’s automatic transfer of data from the request to the
view. Finally, the action must assist the framework in determining which result should
render the view that’ll be returned in the request response. Let’s see how the action
component fulfills each of these various roles.

 By the way, we’re going to demonstrate our points in the coming paragraphs with
examples from the HelloWorld application from chapter 2. But don’t worry; we’ll start
building the real-world Struts 2 Portfolio in a few pages.
ACTIONS ENCAPSULATE THE UNIT OF WORK

Earlier in this book, we saw that the action fulfills the role of the MVC model for the
framework. One of the central responsibilities of this role is the containment of busi-
ness logic; actions use the execute() method for this purpose. The code inside this
method should concern itself only with the logic of the work associated with the
request. The following code snippet, from the previous chapter’s HelloWorld applica-
tion, shows the work done by the HelloWorldAction.

public String execute() {

 setCustomGreeting(GREETING + getName());

 return "SUCCESS";
}

The action’s work is to build a customized greeting for the user. As we can see, this
action’s execute() method does little else than build this greeting. In this case, the

45Introducing Struts 2 actions
business logic amounts to little more than a concatenation. If it were much more com-
plex, we’d probably have bumped that logic out to a business component and injected
that component into the action. The use of dependency injection, which helps keep
code such as actions clean and decoupled, is supported by the framework. We’ll learn
some techniques that utilize the framework’s Spring integration for injecting these
components later in the book. For now, just keep in mind that our actions hold the
business logic, or at least the entry point to the business logic, and they should keep
that logic as pure and brief as possible.
ACTIONS PROVIDE LOCUS FOR DATA TRANSFER

Being the model component of the framework also means that the action is expected
to carry the data around. While you might think this would make actions more com-
plicated, it actually makes them cleaner. Since the data is held local to the action, it’s
always conveniently available during the execution of the business logic. There might
be a bunch of JavaBeans properties adding lines of code to the action, but when the
execute() method references the data in those properties, the proximity of the data
makes that code all the more succinct.

 Listing 3.1, also from HelloWorldAction, shows the code that allows that action to
carry request data.

private String name;

public String getName() {
 return name;
}

public void setName(String name) {
 this.name = name;
}

private String customGreeting;

public String getCustomGreeting()
{
 return customGreeting;
}

public void setCustomGreeting(String customGreeting){
 this.customGreeting = customGreeting;
}

The action merely implements JavaBeans properties for each piece of data that it
wishes to carry. We saw this in action with the HelloWorld application. Request
parameters from the form are moved to properties that have matching names. As we
saw, the framework does this automatically. In this case, the name parameter from the
name collection form will be set on the name property. In addition to receiving the
incoming data from the request, these JavaBeans properties on the action will also
expose the data to the result. The HelloWorld action’s logic sets the custom greeting
on the customGreeting property, which makes it available to the result as well.

Listing 3.1 Transferring request data to the action’s JavaBeans properties

46 CHAPTER 3 Working with Struts 2 actions
 In addition to these simple JavaBeans properties, there are a couple of other tech-
niques for using the action as a data transfer object. We’ll examine these alternatives
later in this chapter, and will also examine the mechanisms by which the actual data
transfer occurs. For now, we just want to recognize that the action serves as a central-
ized data transfer object that can be used to make the application data available in all
tiers of the framework.

 The use of actions as data transfer objects should probably ring some alarms in the
minds of alert Struts 1 developers. In Struts 1, there’s only one instance of a given
action class. If this were still true, we couldn’t use the action object itself as a data car-
rier for the request. In a multithreaded environment, such as a web application, it’d
be problematic to store data in instance fields as we’ve seen. Struts 2 solves this prob-
lem by creating a new instance of an action for each request that maps to it. This fun-
damental difference allows Struts 2 objects to exist as dedicated data transfer objects
for each request.
ACTIONS RETURN CONTROL STRING FOR RESULT ROUTING

The final duty of an action component is to return a control string that selects the result
that should be rendered. Previous frameworks passed routing objects into the entry
method of the action. Returning a control string eliminates the need for these objects,
resulting in a cleaner signature and an action that is less coupled to specific routing
code. The value of the return string must match the name of the desired result as con-
figured in the declarative architecture. For instance, the HelloWorldAction returns the
string "SUCCESS". As you can see from our XML declaration, SUCCESS is the name of the
one of the result components.

<action name="HelloWorld" class="manning.chapterOne.HelloWorld">
 <result name="SUCCESS">/chapterTwo/HelloWorld.jsp</result>
 <result name="ERROR">/chapterTwo/Error.jsp</result>
</action>

The HelloWorld application has a simple logic for determining which result it will
choose. In fact, it’ll always choose the "SUCCESS" result. Most real-world actions will
have a more complex determination process, and the result choices will almost always
include some sort of error result to handle problems that might occur during the
action‘s interaction with the model. Regardless of the complexity, actions must ulti-
mately return a string that maps to one of the result components available for render-
ing the view for that action.

 You should now realize what an action does, but before we design one, we need to
create the packages to contain them. In the next section, we’ll see how to organize our
actions into packages and take our first glimpse at the Struts 2 Portfolio application,
the main sample application for this book.

3.2 Packaging your actions
Whether you declare your action components with XML or Java annotations, when the
framework creates your application’s architecture, it’ll organize your actions and

47Packaging your actions
other components into logical containers called packages. Struts 2 packages are similar
to Java packages. They provide a mechanism for grouping your actions based on com-
monality of function or domain. Many important operational attributes, such as the
URL namespace to which actions will be mapped, are defined at the package level.
And, importantly, packages provide a mechanism for inheritance, which among other
things allows you to inherit the components already defined by the framework. In this
section, we’ll check out the details of Struts 2 packages by examining the Struts 2 Port-
folio application’s packaging.

 First, we’ll give a quick summary of our sample application’s functionality and pur-
pose in order to set the stage for factoring our actions into separate packages.

3.2.1 The Struts 2 Portfolio application

Throughout this book we’ll develop and examine a sample application called the
Struts 2 Portfolio. Artists can use the application to create an online portfolio of their
work. The portfolio is a simple gallery of images. Artists must first register with the sys-
tem to have a portfolio. It’s free, but we’ll collect some harmless personal information.
Once the artist has an account, she can log in to the secure portion of the application
to conduct such sensitive business as creating new portfolios, as well as adding and
deleting images from those portfolios. The other side of the portfolio is the public
side. A visitor to the public site can view the images in any of the portfolios. This pub-
lic face of the portfolio won’t be protected by security.

 While this application is simple, it has enough complexity to demonstrate the core
Struts 2 concepts, including packaging strategies. A quick analysis of our requirements
tells us that we have two distinct regions in our web application. We have some func-
tions that anyone can use, such as registering for accounts or viewing portfolios, and
we have some secure functions, primarily account administration. Ultimately, these
functionalities will be implemented with actions, and we can bet that the secure
actions will have different requirements than nonsecure actions. Let’s see how we can
use Struts 2 packages to group our actions into secure and nonsecure packages.

3.2.2 Organizing your packages

It’s up to you to decide on an organizational theme for your application’s package
space. We’ll organize the Struts 2 Portfolio’s packages based upon commonality of
functionality, a common strategy. The important thing is to see how the packages can
be declared and configured to achieve a given organizational structure. As noted ear-
lier, you can declare your application’s architectural components with XML files or
with Java annotations located in your action class files. We also noted that we’ll use
XML files for our sample code. With that in mind, let’s take a look at the chapter-
Three.xml file that declares the components for our first cut of the Struts 2 Portfolio
application. You can find this file in /WEB-INF/classes/manning/chapterThree. This
XML file contains declarations of two packages, one for public actions and one for
secure actions. Listing 3.2 shows the declaration of the secure package.

<package name="chapterThreeSecure" namespace="/chapterThree/secure"

48 CHAPTER 3 Working with Struts 2 actions
 extends="struts-default">
 <action name="AdminPortfolio" >
 <result>/chapterThree/AdminPortfolio.jsp</result>
 </action>

 <action name="AddImage" >
 <result>/chapterThree/ImageAdded.jsp</result>
 </action>

 <action name="RemoveImage" >
 <result>/chapterThree/ImageRemoved.jsp</result>
 </action>

</package>

The package declared in listing 3.2 contains all of the secure actions for the applica-
tion. These actions require user authentication. A glance at the names of these actions
should be sufficient to give a good idea of their functional purpose. Obviously, the
actions that add and delete images from a portfolio should be secured behind authen-
tication. We want to make sure that the user who’s removing images from the portfo-
lio actually owns that portfolio. Grouping these together allows us to share
declarations of components that might be useful to our authentication mechanism.
Additionally, we’ve chosen to give a special URL namespace to these secure actions.
We want our users to notice from the URL that they have entered a secure region of
the website.

 Now, let’s look at the package declaration itself. You can only set four attributes on
a package: name, namespace, extends, and abstract. Table 3.1 summarizes these
attributes.

While it may be challenging to choose the strategy by which you divide your actions
into packages, declaring them is simple. The only required attribute is the name. The
name attribute is merely a logical name by which you can reference the package. In list-
ing 3.2, we’ve named our package chapterThreeSecure. This, like all good names,
indicates the purpose of this package: it contains the secure actions of the chapter 3
version of the Struts 2 Portfolio sample application.

Listing 3.2 Declaration of a package

Table 3.1 The attributes of the Struts 2 package

Attribute Description

name (required) Name of the package

namespace Namespace for all actions in package

extends Parent package to inherit from

abstract If true, this package will only be used to
define inheritable components, not actions

49Packaging your actions
 Next, we set the namespace attribute to "/chapterThree/secure". As we’ve seen,
the namespace attribute is used to generate the URL namespace to which the actions of
these packages are mapped. In the case of the AddImage action from listing 3.2, the URL
will be built as follows: http://localhost:8080/manningHelloWorld/chapterThree/
secure/AddImage.action

 When a request to this URL arrives, the framework consults the /chapterThree/
secure namespace for an action named AddImage. Note that you can give the same
namespace to more than one package. If you do this, the actions from the two pack-
ages map to the same namespace. This isn’t necessarily a problem. You might choose
to separate your actions into separate packages for some functional reason that
doesn’t warrant a distinct namespace. In our case, we decide that we want the user to
see a URL namespace change when he enters the secure region of the application.

NOTE The Struts 2 Portfolio sample application—We should make a few comments
about the structure of the sample application. All of the sample code that
we’ll develop in this book comes in a single WAR file, Struts2InAction.
war; it’s one big web application in other words. (Recall that we also pro-
vided a skeletal repackaging of the HelloWorld example as a standalone
web application, but that’s just a bonus to help you see what a minimal
Struts 2 web application looks like.) Inside the application are many “sub-
applications,” if you will. For instance, each chapter has its own version of
the Struts 2 Portfolio. We’ve used the Struts 2 packaging mechanism to
isolate these versions from one another. They all have their own
namespaces and Struts 2 XML files. Not only does this allow us to offer
versions of the Struts 2 Portfolio that focus on the specific goals of each
chapter, thus decreasing the learning curve, it also serves to further dem-
onstrate the usefulness of packages.

If you don’t set the namespace attribute, your actions will go into the default namespace.
The default namespace sits beneath all of the other namespaces waiting to resolve
requests that don’t match any explicit namespace. Consider the following: http://
localhost:8080/manningHelloWorld/chapterSeventy/secure/AddImage.action

 If this request arrives at our sample web application, the framework will attempt to
locate the /chapterSeventy/secure namespace. As this namespace doesn’t exist, the
AddImage action won’t be found in it. As a last resort, the framework will search the
default namespace for the AddImage action. If it’s found there, the URL resolves and
the request is serviced. Note that the default namespace is actually the empty string
"". You can also define a root namespace such as "/". The root namespace is treated
as all other explicit namespaces and must be matched. It’s important to distinguish
between the empty default namespace, which can catch all request patterns as long as
the action name matches, and the root namespace, which is an actual namespace that
must be matched.

 The next attribute that we set in listing 3.2 is extends. This important attribute
names another package whose components should be inherited by the current pack-
age. This is similar to the extends keyword in Java. If you think of the named package

http://localhost:8080/manningHelloWorld/chapterThree/secure/AddImage.action
http://localhost:8080/manningHelloWorld/chapterThree/secure/AddImage.action
http://localhost:8080/manningHelloWorld/chapterSeventy/secure/AddImage.action
http://localhost:8080/manningHelloWorld/chapterSeventy/secure/AddImage.action

50 CHAPTER 3 Working with Struts 2 actions
as being the superclass of your current package, you’ll understand that the current
package will inherit all the members of the superclass package. Furthermore, the cur-
rent package can override members of the superclass package. Package inheritance
plays a particularly important role in the use of the intelligent defaults we’ve been
touting. Most of the intelligent defaults are defined in a built-in package called
struts-default. You can inherit and use the components defined in that package by
making your packages extend struts-default. But what exactly do you inherit?

3.2.3 Using the components of the struts-default package

Using the intelligent default components of the struts-default package is easy. You
only need to extend that package when creating your own packages. Our chapter-
ThreeSecure package does just this. By definition, an intelligent default shouldn’t
require that a developer do anything manually. Indeed, once you extend this package,
many of the components automatically come into play. One good example is the
default interceptor stack, which we’ve already used in the HelloWorld application.
How did we use it?

The struts-default package, defined in the system’s struts-default.xml
file, declares a huge set of commonly needed Struts 2 components rang-
ing from complete interceptor stacks to all the common result types.

Here’s the secret. Most of the interceptors that you’ll ever need are found in the
struts-default package that’s declared in the struts-default.xml file. You can think
of this important file as the framework’s own declarative architecture artifact. The
struts-default package that it defines contains common architectural components
that all developers can reuse simply by having their own packages extend it. If you
want to see the whole file, it can be found at the root level of the distribution’s main
JAR file, struts2-core.jar. Listing 3.3 shows the elements from this file that declare the
default interceptor stack that will be used by most applications.

<package name="struts-default">

. . .

 <interceptor-stack name="defaultStack">
 <interceptor-ref name="exception"/>
 <interceptor-ref name="alias"/>
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="i18n"/>
 <interceptor-ref name="chain"/>
 <interceptor-ref name="debugging"/>
 <interceptor-ref name="profiling"/>
 <interceptor-ref name="scoped-model-driven"/>
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="fileUpload"/>

Listing 3.3 The struts-default package declares many commonly used components

DEFINITION

Package
elementB

Declares defaultStack
interceptor stackC

51Packaging your actions
 <interceptor-ref name="checkbox"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params">
 <param name="excludeParams">dojo\..*</param>
 </interceptor-ref>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation">
 <param name="excludeMethods">input,back,cancel,browse</param>
 </interceptor-ref>
 <interceptor-ref name="workflow">
 <param name="excludeMethods">input,back,cancel,browse</param>
 </interceptor-ref>
 </interceptor-stack>

. . .

 <default-interceptor-ref name="defaultStack"/>

. . .

</package>

Inside the package element B, an interceptor stack is declared C. It’s named, appro-
priately, defaultStack. Near the end of the listing, you can see that this stack is
declared as the default interceptor stack for this package D, as well as any other pack-
ages that extend the struts-default package. Throughout the course of the book,
we’ll see and discuss all of the interceptors in the default stack. (We’ll even learn how
to write our own interceptors in chapter 4.) For now, we’ll just point to one that you
should be able to appreciate. Note the interceptor called params. If you’ve been won-
dering about the mysteriously automatic transfer of data from the request to the
action, here’s the answer. This important params interceptor has been the one moving
data from the request parameters to our action’s JavaBeans properties. There’s
no magic going on. The work is getting done with good old-fashioned lines of code.
For the curious, these specific lines of code provide good insight into the inner work-
ings of Struts 2; check out the source for com.opensymphony.xwork2.interceptor.
ParametersInterceptor if you just can’t help yourself.

 As you can see from the params interceptor, much of the core functionality of the
framework has been implemented as interceptors. While you’re not required to extend
the struts-default package when you create your own packages, omitting this bit of
inheritance amounts to rejecting the core of the framework. Consider the package
inheritance shown in Figure 3.1.

 In this package, we see that the all-important defaultStack will be available to
our chapterThreeSecure and chapterThreePublic packages. Figure 3.1 also shows
someOtherPackage, which doesn’t extend struts-default. This package starts from
ground zero. Without the important interceptors defined in the defaultStack of the
struts-default package, most of the framework’s features are missing in action.
Not the least of these would be the automatic data transfer we’ve discussed. Without
these features, the framework is bare to say the least. You could always take the time

Sets the defaultStack
as default stackD

52 CHAPTER 3 Working with Struts 2 actions
to redeclare all of the components that the framework itself declares in the struts-
default.xml file, but that would be tedious and pointless. Unless you have compelling
reasons, you should always extend the struts-default package. And, as you’ll see
when we discuss interceptors in depth in chapter 4, the struts-default package
declares its components in such a way as to make them flexible as well as reusable.
All told, think twice before forgoing the extension of struts-default.

 Now we have a pretty good idea of the mechanics of organizing our application
into packages, as well as how to extend packages such as the built-in struts-default
package. We’ve even seen one of the packages from the Struts 2 Portfolio sample
application, the chapterThreeSecure package. In the end, packages will become
something you don’t think about much. In fact, once you have your application pack-
age structure in place, you won’t even work with them much. We’re now ready to build
our Struts 2 Portfolio actions.

3.3 Implementing actions
Now it’s time to start developing some actions. In this section, we’ll cover all the basics
of writing actions for your Struts 2 applications. As examples, we’ll show you some of
our actions from the chapter 3 version of the Struts 2 Portfolio application. While
we’ll provide thorough coverage of those actions, there’s always more to investigate in
the sample application than we have time to explore in the book. Don’t hesitate to
crack the source code; it’s well commented!

 Implementing Struts 2 actions is easy. Earlier in this chapter, we saw that the con-
tract between the framework and the classes that back the actions provides a great
deal of flexibility. Basically, any class can be an action if it wants. It simply must provide
an entry method for the framework to invoke when the action is executed. Let’s take a
look at how the framework makes it even easier to implement your actions. As a case
study, we’ll continue our look at the Struts 2 Portfolio by digging into a couple of its
own action classes.

NOTE Struts 2 actions don’t have to implement the Action interface. Any object
can informally honor the contract with the framework by simply imple-
menting an execute() method that returns a control string.

3.3.1 The optional Action interface

Though the framework doesn’t impose much in the way of formal requirements on your
actions, it does provide an optional interface that you can implement. Implementing

Figure 3.1 Much of the framework’s
functionality is obtained by extending
the struts-default package.

53Implementing actions
the Action interface costs little and comes with some convenient benefits. Let’s see why
most developers implement the Action interface when developing their actions, even
though they don’t have to.

Struts 2 gives developers both a fast development path built on intelligent
defaults and an extremely high degree of flexibility to elegantly solve the
most arcane use cases. When learning the framework, it can help to focus
on the straightforward solutions supported by the intelligent defaults.
Once comfortable with the normal way of handling things, the frame-
work’s flexibility will be natural and powerful. Without a good under-
standing of the straight and narrow, the framework’s flexibility can
admittedly leave one feeling concerned about which path to follow.

Most actions will implement the com.opensymphony.xwork2.Action interface. It
defines just one method:

String execute() throws Exception

Since the framework doesn’t make any type requirements, you could just put the
method in your class without having your class implement this interface. This is fine.
But the Action interface also provides some useful String constants that can be used
as return values for selecting the appropriate result. The constants defined by the
Action interface are

public static final String ERROR "error"
public static final String INPUT "input"
public static final String LOGIN "login"
public static final String NONE "none"
public static final String SUCCESS "success"

These constants can conveniently be used as the control string values returned by
your execute() method. The true benefit is that these constants are also used inter-
nally by the framework. This means that using these predefined control strings allows
you to tap into even more intelligent default behavior.

 As an example, consider pass-through actions. Remember the pass-through action
we used in the HelloWorld application? We said that it was a best practice to route
even simple requests through actions. In the HelloWorld application, we used one of
these empty actions to hit our JSP page that presents the form that collects the user’s
name. Here’s the declaration of that action:

<action name="Name">
 <result>/chapterOne/NameCollector.jsp</result>
</action>

The Name action doesn’t specify a class to provide the action implementation because
there’s nothing to do. We just want to go to the JSP page. Conveniently, the Struts 2
intelligent defaults provide a default action implementation that we inherit if we don’t
specify one. This default action has an empty execute() method that does nothing
but automatically return the Action interface’s SUCCESS constant as its control string.
The framework must use this string to choose a result. Luckily, or maybe not so luckily,

WARNING

54 CHAPTER 3 Working with Struts 2 actions
the default name attribute for the result element is also the SUCCESS constant. Since
our sole result forgoes defining its own name, it inherits this default and is automati-
cally selected by our action. This is the general pattern by which many of the intelli-
gent defaults operate.

 But wait; we don’t need to implement the Action interface ourselves, because the
framework provides an implementation we can borrow. Next we’ll look at a conve-
nience class that implements this and other helpful interfaces that help you further
leverage the out-of-the-box features of the framework.

3.3.2 The ActionSupport class

In this section, we’re going to introduce the ActionSupport class, a convenience class
that provides default implementations of the Action interface and several other use-
ful interfaces, giving us such things as data validation and localization of error mes-
sages. This convenience class is a perfect example of the Struts 2 straight and narrow
we spoke of a bit earlier. The framework doesn’t force you to use this, but it’s a good
idea to use it when learning the framework. In fact, it’s pretty much always a good idea
to use it unless you have reason not to.

 Following in the tradition of “support” classes, ActionSupport provides default
implementations of several important interfaces. If your actions extend this class, they
automatically gain the use of these implementations. This alone makes this class worth
learning. However, the implementations provided by this class also provide a great
case study in how to make an action cooperate with interceptors to achieve powerfully
reusable solutions to common tasks. In this case, validation and text localization ser-
vices are provided via a combination of interceptors and interfaces. The interceptors
control the execution of the services while the actions implement interfaces with
methods that are invoked by the interceptors. This important pattern will become
clearer as we work through the details of ActionSupport by examining its use in our
Struts 2 Portfolio application, which we’ll do a couple of pages from now.
BASIC VALIDATION

While Struts 2 provides a rich and highly configurable validation framework, which
we’ll fully examine in chapter 10, ActionSupport provides a quick form of basic vali-
dation that will serve well in many cases. Moreover, it’s a great case study of how a
cross-cutting task such as validation can be factored out of the action’s execution logic
through the use of interceptors and interfaces. The typical pattern is that the inter-
ceptor, while controlling the execution of a given task, may coordinate with the action
by invoking methods that it exposes. Usually, these methods are part of a specific
interface implemented by that action. In our case, ActionSupport implements two
interfaces that coordinate with one of the interceptors from the default stack, the
DefaultWorkflowInterceptor, to provide basic validation. If your package extends
the struts-default package, thereby inheriting the default interceptor stack, and
your action extends ActionSupport, thereby inheriting implementation of the two
necessary interfaces, then you already have everything you need for clean validation
of your data.

55Implementing actions
 Just to make it clear where all of this built-in functionality comes from, we’ll show
you where these default interceptors are defined and how to ensure that you’re inher-
iting them. Listing 3.4 shows the declaration of the workflow interceptor as it’s found
in the struts-default.xml file.

. . .

<interceptor name="workflow"
class="com.opensymphony.xwork2.interceptor.DefaultWorkflowInterceptor"/>

. . .

 <interceptor-stack name="defaultStack">

 . . .

 <interceptor-ref name="params"/>

 . . .

 <interceptor-ref name="workflow">
 <param name="excludeMethods">input,back,cancel,browse</param>
 </interceptor-ref>

 . . .

<interceptor-stack name="defaultStack">

. . .

In listing 3.4, we first see the declaration element for the workflow interceptor B,
specifying a name and an implementation class. Note that this is called the workflow
interceptor because it will divert the workflow of the request back to the input page if
a validation error is found. Next, we see the declaration of the default interceptor
stack C. We haven’t included all of the interceptors in this listing. Instead, we’ll focus
on the interceptors that participate in the validation process. Note that the params
interceptor D comes before the workflow interceptor E. The params interceptor will
move the request data onto our action object. Then, the workflow interceptor will
help us validate that data before accepting it into our model. The workflow intercep-
tor must fire after the params interceptor has had a chance to move the data on to the
action object. As with most interceptors, sequence is important.

 Now, let’s see how this validation actually works. We’ll use one of our actions from
this chapter’s version of the Struts 2 Portfolio, the Register action, to demonstrate. As
with the params interceptor, the workflow interceptor seeks to remove the logic of a
cross-cutting task, validation in this case, from the action’s execution logic. When the
workflow interceptor fires, it’ll first look for a validate() method on the action to
invoke. You’ll place your validation logic in validate(). This method is exposed via the
com.opensymphony.xwork2.Validateable interface. Technically speaking, Action-
Support implements the validate() method, but we have to override its empty imple-
mentation with our own specific validation logic.

Listing 3.4 Declaration of DefaultWorkflowInterceptor from struts-default.xml

B

C

D

E

56 CHAPTER 3 Working with Struts 2 actions
 As we’ve said, we’re going to demonstrate the concepts and strategies of this book
by developing the Struts 2 Portfolio application. In this section, we’ll examine the
Register action from the chapter 3 version of that application. Let’s look at the entire
source of that action class. Listing 3.5 shows the entire source of the Register action,
found in the source directory of the sample application at manning/chapterThree/
Register.java.

public class Register extends ActionSupport {

 public String execute(){

 User user = new User();
 user.setPassword(getPassword());
 user.setPortfolioName(getPortfolioName());
 user.setUsername(getUsername());

 getPortfolioService().createAccount(user);
 return SUCCESS;
 }

 private String username;
 private String password;
 private String portfolioName;

 public String getPortfolioName() {
 return portfolioName;
 }
 public void setPortfolioName(String portfolioName) {
 this.portfolioName = portfolioName;
 }
 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password = password;
 }
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;
 }

 public void validate(){

 PortfolioService ps = getPortfolioService();

 if (getPassword().length() == 0){
 addFieldError("password", "Password is required."));
 }
 if (getUsername().length() == 0){
 addFieldError("username", "Username is required.");
 }

Listing 3.5 The Register action provides validation logic in the validate() method.

B

C

D

E

GF

H

57Implementing actions
 if (getPortfolioName().length() == 0){
 addFieldError("portfolioName", "Portfolio name is required.");
 }

 if (ps.userExists(getUsername())){
 addFieldError("username", "This user already exists.");
 }

 }

 public PortfolioService getPortfolioService() {

 return new PortfolioService();

 }

While we show the entire source here, remember that we’re somewhat focused on the
validation mechanism offered by ActionSupport. With that in mind, we’ll skim the
nonvalidation parts and then focus on validation. We’ll come back to treat the rest in
detail over the next few pages. First, note that our action does indeed extend Action-
Support B. Also, note that we provide an execute() C method that contains the
business logic, registering a user in this case. After that, we see a set of JavaBeans prop-
erties D. These are common features of actions; they serve to receive the data from
the framework’s automatic transfer and then carry that data throughout the frame-
work’s processing.

 But now we’re focused on examining the basic validation mechanism provided by
ActionSupport. As you can see, our action provides a validate() method E that
contains all of our logic for checking the validity of the data received by our JavaBeans
properties. This leaves this action’s execute() method focused on business logic. The
validation logic that we’ve provided is simple. We test each of the three fields to make
sure they’re not empty by testing the length of each String property G. If a piece of
data doesn’t validate, we create and store an error H via methods provided by the
ActionSupport superclass, such as addFieldError().

 We also test that the user doesn’t already exist in the system I. This test requires a
dip into our business logic and data tiers. At this point in the book, the Struts 2 Portfo-
lio application uses a simple encapsulation of business logic and data persistence. The
PortfolioService object is capable of conducting our simple business needs at this
stage. In case you’re interested, it contains all the business rules in its simple methods,
and persists data only in memory. Even our current management techniques are
crude; our action just instantiates a PortfolioService object F when it needs one.
Later in the book, we learn how to integrate with more sophisticated technologies for
managing such important resources. For now, this keeps our study of the action com-
ponent more clear.

 What happens if validation fails? If any of the fields are empty, or if the username is
already in the system, we call a method that adds an error message. After all the valida-
tion logic has executed, control returns to the workflow interceptor. Note that there is
no return value on the validate() method. The secret, as we’ll see, is in the error
messages that our validation generates.

I

E

58 CHAPTER 3 Working with Struts 2 actions
 Even though control has returned to the workflow interceptor, it’s not finished.
What does the workflow interceptor do now? Now it’s time to earn the “workflow”
name. After calling the validate() method to allow the action’s validation logic to exe-
cute, the workflow interceptor will check to see whether any error messages were gen-
erated by the validation logic. If it finds errors, then the workflow interceptor will
alter the workflow of the request. It’ll immediately abort the request processing and
return the user back to the input form, where the appropriate error messages will be
displayed on the form. Try it out! Fire up your application and open the chapter 3 ver-
sion of the Struts 2 Portfolio at http://localhost:8080/Struts2InAction/chapterThree/
PortfolioHomePage.action

 Choose to create an account and fill out the form, but omit some data. For
instance, we’ve omitted the password. When we submit the form, the validation fails
and diverts the workflow back to the input form again, as seen in figure 3.2.

Two obvious questions remain. Where were those error messages stored, and how did
the workflow interceptor check to see whether any had been created? The com.open-
symphony.xwork2.ValidationAware interface defines methods for storing and
retrieving error messages. A class that implements this important interface must main-
tain a collection of error messages for each field that can be validated, as well as a col-
lection of general error messages that pertain only to the action as a whole. Luckily for
us, all of these methods and the collections that back them are already provided by
the ActionSupport class. To use them, we invoke the following methods:

addFieldError (String fieldName, String errorMessage)
addActionError (String errorMessage)

To add a field error, we must pass the name of the field, as we do in listing 3.5, along
with the message that we want displayed to the user. Adding an action-scoped error
message is even easier, as you don’t need to specify anything other than the message.

 The ValidationAware interface also specifies methods for testing whether any
errors exist. The workflow interceptor will use these to determine whether it should
redirect the workflow back to the input page. If it finds that errors exist, it’ll look for a
result with the name input. The following snippet from chapterThree.xml shows that
the Register action has declared such a result:

<action name="Register" class="manning.chapterThree.Register">

 <result>/chapterThree/RegistrationSuccess.jsp</result>

Figure 3.2 The default workflow
interceptor returns us to the input
form with validation error messages
displayed on the appropriate fields.

http://localhost:8080/Struts2InAction/chapterThree/PortfolioHomePage.action
http://localhost:8080/Struts2InAction/chapterThree/PortfolioHomePage.action

59Implementing actions
 <result name="input">/chapterThree/Registration.jsp</result>

</action>

In this case, the workflow interceptor, if it finds errors, will automatically forward to
the result that points to the Registration.jsp page because its name is "input". And, of
course, this JSP page is our input form.

 Now we’ve seen how interceptors clean up the action’s execution logic. But some
of you might not be convinced. If you’re tempted to complain, “But the validation
method is still on the action object!” you’re right. But this doesn’t taint the most
important separation of concerns; the validation logic is distinctly separate from the
action’s own execution logic. This is what keeps our action focused on its pure unit of
work—registering a new user. Check out the execute() method’s succinct phrasing of
the business logic of this task:

public String execute(){

 User user = new User();
 user.setPassword(getPassword());
 user.setPortfolioName(getPortfolioName());
 user.setUsername(getUsername());

 getPortfolioService().createAccount(user);
 return SUCCESS;
}

We just make the user object and create the account. No problem. If there were some
exception that might be generated from our business object’s account-creation pro-
cess, we might have a bit of added complexity in our choice of which result we should
display. For our purposes, we’re just assuming success.

 But it’s not just about clean-looking code. A more subtle point is that the control
flow of the validation process is also separated from the action. This isn’t just a case of
factoring the validation logic out of the execute() method and into a more readable
helper method. The validation workflow is itself layered away from the action’s work-
flow because the validation logic is invoked by the workflow interceptor. In other
words, the workflow interceptor is really the one controlling the execution of the vali-
dation logic. The interceptors all fire before the action itself gets a chance to execute.
This separation of control flow is what allows the workflow interceptor to abort the
whole request processing and redirect back to the input page without ever entering
the action’s execute() method. This is exactly the kind of separation that interceptors
are meant to provide.

 Before moving on, some of you are probably wondering how the error message
made its way onto the registration form when we sent the user back to try again. All of
this is handled for you with the Struts 2 UI component tags. We won’t cover these now,
as we’re staying focused on the action, but you’ll learn all about them in chapter 7.

 Now it’s beginning to feel like we’ve really learned something. We can write actions
that automatically receive and validate data. That’s cool, but let’s not get distracted
from the real topic at hand. The real lesson to take out of this section is about how

60 CHAPTER 3 Working with Struts 2 actions
actions work together with interceptors to get common chores done without polluting
the action’s core logic. If you can wrap your mind around this action/interceptor
teamwork, then you’ll find the rest of the book merely an elaboration on that theme.
Of course, there’s a lot of cool stuff waiting for you in the remaining chapters, but this
is the essence of the framework’s approach to solving problems.

 Before we move on, we need to look at the other problem that ActionSupport
solves for you—localized message text.
USING RESOURCE BUNDLES FOR MESSAGE TEXT

In our Register action’s validation logic, we set our error messages using String liter-
als. If you look back at listing 3.5, you can see that we pass the String literal Username
is required to the addFieldError() method. Using String literals like this creates a
well-known maintenance nightmare. Furthermore, changing languages for different
user locales is virtually impossible without some layer of separation between the
source code and the messages themselves. The well-established best practice is to bun-
dle these messages together into external and maintainable resource bundles, com-
monly implemented with simple properties files. ActionSupport provides built-in
functionality for easily managing just that.

 ActionSupport implements two interfaces that work together to provide this
localized message text functionality. The first interface, com.opensymphony.

xwork2.TextProvider, provides access to the messages themselves. This interface
exposes a flexible set of methods by which you can retrieve a message text from a
resource bundle. ActionSupport implements these methods to retrieve their mes-
sages from a properties file resource. No matter which method you use to retrieve
your message, you’ll refer to the message by a key. The TextProvider methods will
return the message associated with that key from the properties file associated with
your action class.

 Getting started with a properties file resource bundle is easy. First, we need to cre-
ate the properties file and give it a name that mirrors the action class for which it pro-
vides the messages. The following code snippet shows the contents from our Register
action’s associated properties file, Register.properties:

user.exists=This user already exists.
username.required=Username is required.
password.required=Password is required.
portfolioName.required=Portfolio Name is required.

In case you’re unfamiliar with properties files, they’re just simple text files. Each line
contains a key and its value. In order to have the ActionSupport implementation of
the TextProvider interface find this properties file, we just need to add it to the Java
package that contains our Register class. In this case, you can find this file in the
package structure at manning.chapterThree.

 Once the properties file is in place, we can use one of the TextProvider getText()
methods to retrieve our messages. Listing 3.6 shows our new version of the Register
action’s validate logic.

61Implementing actions
public void validate(){

 PortfolioService ps = getPortfolioService();

 if (getPassword().length() == 0){
 addFieldError("password", getText("password.required"));
 }
 if (getUsername().length() == 0){
 addFieldError("username", getText("username.required"));
 }
 if (getPortfolioName().length() == 0){
 addFieldError("portfolioName", getText("portfolioName.required"));
 }
 if (ps.userExists(getUsername())){
 addFieldError("username", getText("user.exists"));
 }
}

As you can see, instead of String literals, we now retrieve our message text from
ActionSupport’s implementation of TextProvider. We now use the getText() B
method to retrieve our messages from properties files based upon a key. This layer of
separation makes our message text much more manageable. Changing messages
means only editing the properties file; the source code’s semantic keys never need to
be changed.

 ActionSupport also provides a basic internationalization solution for the localizing
message text. The com.opensymphony.xwork2.LocaleProvider interface exposes a
single method, getLocale(). ActionSupport implements this interface to retrieve the
user’s locale based upon the locale setting sent in by the browser. You could imple-
ment your own version of this interface to search somewhere else for the locale, such
as in the database. But if the browser setting is good enough for your requirements,
you don’t have to do too much to achieve a basic level of internationalization.

 You still retrieve your message texts as we did earlier. Even when we weren’t tak-
ing advantage of it, ActionSupport’s TextProvider implementation has been check-
ing the locale every time it retrieves a message text for us. It does this by calling the
getLocale() method of the LocaleProvider interface. With the locale in hand, the
TextProvider, a.k.a. ActionSupport, tries to locate a properties file for that locale.
Of course, you have to provide the properties file for the locale in question, or it will
just serve up the standard English. But it’s simple to provide properties files for all
locales that you wish to support. In Struts 2 Portfolio, we’re providing a Spanish
properties file. The hard part is finding a translator. In order to see this in action, set
your browser’s language support to Spanish and submit the registration form again,
omitting one of the fields to see the error message that it provides.

 As with validation, the internationalization provided by ActionSupport is relatively
primitive. If it suffices for your application, great. If you need more, we’ll see how to
get cutting-edge internationalization from the Struts 2 framework in chapter 11. For
now, we’ve got a pretty decent start on building actions.

Listing 3.6 Using ActionSupport to get the validation error messages

B

62 CHAPTER 3 Working with Struts 2 actions
 Next, we’ll look at some alternative—advanced, some would say—methods of
implementing our data transfer with complex objects instead of simple JavaBeans
properties.

3.4 Transferring data onto objects
Up until now, our actions have all received data from the request on simple JavaBeans
properties. While they are powerful and elegant, we can do even better. Rather than
receiving each piece of data individually, and then creating an object on which to place
these pieces of data, we can expose the complex object itself to the data transfer mech-
anisms of the platform. Not only does this save time by eliminating the need to create
and populate the object that aggregates the individual pieces of data, it can also save
work by allowing us to directly expose an already-existing domain object to the data
transfer. While a couple of caveats must be kept in mind, the use of these complex
objects as direct data transfer objects presents a powerful option to the developer.

NOTE Struts 1 to Struts 2 Perspective—In case you’re feeling homesick, we should
note the departure of the familiar Struts 1 ActionForm. ActionForms
played an important role in data validation and type conversion for the
Struts 1 framework, but the cost was high. For each domain object, you
typically had to create a mirroring form bean. To add insult to injury, you
were then tasked with an additional manual data transfer when you
finally moved the valid data from the form bean onto your domain
object. For many, one of the biggest thrills of Struts 2 will be letting the
framework transfer, validate, and bind data directly onto application
domain objects, where it can stay!

If we want to use complex objects rather than simple JavaBeans properties to receive
our data, we have a couple of options for implementing such deep transfers. Our first
option is also JavaBeans-based. We can expose a complex object itself as a JavaBeans
property and have the data moved onto the object directly. Another alternative is to
use something called a ModelDriven action. This option involves a simple interface
and another one of the default interceptors. Like the object-backed JavaBeans prop-
erty, the ModelDriven action also allows us to use a complex Java object to receive our
data. The differences between these two methods are slight, and there are no func-
tional consequences to choosing one over the other. But you might prefer one over
the other depending on your project requirements. We’ll learn each technique and
demonstrate with examples from the Struts 2 Portfolio.

3.4.1 Object-backed JavaBeans properties

We’ve already seen how the params interceptor, included in the defaultStack, auto-
matically transfers data from the request to our action objects. To enable this transfer,
the developer needs only to provide JavaBeans properties on her actions, using the
same names as the form fields being submitted. This is easy, but despite this ease, we
frequently find ourselves occupied with another tedious task. This tedious task con-

63Transferring data onto objects
sists of collecting these individually transferred data items and transferring them to an
application domain object that we must instantiate ourselves. Listing 3.7 shows our
previous version of the Register action’s execute() method.

public String execute(){

 User user = new User();
 user.setPassword(getPassword());
 user.setPortfolioName(getPortfolioName());
 user.setUsername(getUsername());

 getPortfolioService().createAccount(user);

 return SUCCESS;
}

While we were impressed with the succinct quality of this method only a few pages
ago, we can now see that five of the seven lines do nothing more than assemble the
individual pieces of data B that the framework has transferred onto our simple Java-
Beans properties. We’re still psyched that the data has been automatically transferred
and bound to our Java data types, but why not ask for more?

 Why not ask the framework to go ahead and transfer the data directly to our User
object? Why not ask the framework to instantiate the user object for us? Since Struts 2
provides powerful data transfer and type conversion facilities, the true power of which
we’ll discover later in the book, we can ask for these things and get them. In this case,
it’s simple. Let’s rewrite our Register action so that it replaces the individual JavaBeans
properties with a single property backed by the User object itself. Listing 3.8 shows the
new version of our new action as implemented in the manning.chapterThree.
objectBacked.ObjectBackedRegister class.

public String execute(){

 getPortfolioService().createAccount(user);
 return SUCCESS;
}

private User user;

public User getUser() {
 return user;
}

public void setUser(User user) {
 this.user = user;
}

public void validate(){

 . . .

Listing 3.7 Collecting data and building the domain object by hand

Listing 3.8 Using an object-backed property to receive data transfers

B

B

C

64 CHAPTER 3 Working with Struts 2 actions
 if (getUser().getPassword().length() == 0){
 addFieldError("user.password", getText("password.required"));
 }

 . . .

}

Listing 3.8 has now reduced our business logic to a one-liner. We hand an already
instantiated and populated User object to our service object’s account creation
method B. That’s it. This logic is much cleaner because we let the framework handle
instantiating our User object and populating its attributes with data from the request.
Previously, we’d done this ourselves. In order to let the framework handle this tedious
work, we simply replaced the individual JavaBeans properties with a single property
backed by the User object itself C. We don’t even have to create the User object that
backs the property because the framework’s data transfer will handle this for us when
it starts trying to move the data over. Note that our validation code now must use a
deeper notation D to reach the data items, because they must go through the user
property to get to the individual fields themselves.

 Similarly, we also have to make a couple of changes in the way we reference our data
from our results, JSPs in this case. First of all, we have to change the field names in the
form that submits to our new action. The bottom line is that we now have another layer
in our JavaBeans properties notation. The following code snippet shows the minor
change to the textfield name in our form, found in our Registration_OB.jsp page.

<s:textfield name="user.username" label="Username"/>

As you can see, the reference now includes the user to reflect the depth of the prop-
erty in the action. Previously, when we exposed each piece of user data as an individ-
ual JavaBeans property, our reference didn’t require the user portion of this
reference. The names of the other fields in this form are similarly transformed.

 We make a similar alteration at the other end of the request. When we render our
resulting success page, we must use the deeper property notation to access our data.
The following code snippet from RegistrationSuccess_OB.jsp shows the new notation:

<h5>Congratulations! You have created </h5>
<h3>The <s:property value="user.portfolioName" /> Portfolio</h3>

As you can see, directly using an application domain object as a JavaBeans property
allows us to let the framework do even more of our work for us. The minor conse-
quences are that we have to go a dot deeper when we reference our data from the JSP
pages. Now, we’ll take a look at another method of exposing rich objects to the frame-
work’s data transfer facilities, one that gives us the same cleaner execute() method as
the object-backed JavaBeans property, but doesn’t introduce the extra dot in our view
tier data access.

3.4.2 ModelDriven actions

ModelDriven actions depart from the use of JavaBeans properties for exposing domain
data. Instead, they expose an application domain object via the getModel() method,

D

65Transferring data onto objects
which is declared by the com.opensymphony.xwork2.ModelDriven interface. While this
method introduces a new interface, as well as another interceptor, it’s simple in prac-
tice. The interceptor is already in the default stack; the data transfer is still automatic
and even easier to work with than previous techniques. Let’s see how it works.

 Implementing the interface requires almost nothing. We have to declare that our
action implements the interface, but there’s only one method exposed by Model-
Driven, the getModel() method. By model, we mean the model in the MVC sense. In
this case, it’s the data that comes in from the request and is altered by the execution of
the business logic. That data is then made available to the view, JSP pages in the case of
our Struts 2 Portfolio application. Listing 3.9 shows the new action code from the
manning.chapterThree.modelDriven.ModelDrivenRegister class.

public class ModelDrivenRegister extends ActionSupport
 implements ModelDriven {

 public String execute(){
 getPortfolioService().createAccount(user);
 return SUCCESS;
 }

 private User user = new User();
 public Object getModel() {
 return user;
 }

 public void validate(){

 . . .

 if (user.getPassword().length() == 0){
 addFieldError("password", getText("password.required"));
 }

 . . .

 }

 . . .

}

First, we see that our new action implements the ModelDriven interface B. The only
method required by this interface is getModel(), which returns our model object, the
familiar User object. Note that with the ModelDriven method, we have to initialize the
User object ourselves C. We’ll see why in chapter 5 when we explore the details of
the data transfer mechanisms, but for now just keep an eye on this slight but impor-
tant detail.

 We should note one pitfall to avoid. By the time the execute() method of your
ModelDriven action has been invoked, the framework has obtained a reference to
your model object, which it’ll use throughout the request. Since the framework
acquires its reference from your getter, it won’t be aware if you change the model field

Listing 3.9 Automatically transferring request data to application domain objects

B

C

D

66 CHAPTER 3 Working with Struts 2 actions
internally in your action. This can cause some data inconsistency problems. If, during
your execution code, you change the object to which your model field reference
points, your action’s model will then be out of sync with the one still held by the
framework. The following code snippet demonstrates the problem:

public String execute(){
 user = new User();
 user.setSomething();
 getPortfolioService().createAccount(user);
 return SUCCESS;
}

private User user = new User();
public Object getModel() {
 return user;
}

In this action’s execute() method, the developer has, for some reason, set the user
reference to a new object. But the framework still has a reference to the original
object as initialized in the instance field declaration for user. When the framework
invokes the result, your JSP page data access will be resolved against the old object.
Whatever this erroneous code has set, it’ll be unavailable. You can, of course, manipu-
late that original model object to your heart’s content. Just don’t make a new one, or
point the existing reference to another one!

 As in the previous object-backed JavaBeans property method, using a domain
object to receive all of the data allows us the luxury of a clean execute() method.
Again we incur a slight penalty related to the depth of our references. As you can see
in the validation code of listing 3.9, we now refer to the password by referencing the
model object en route to the password field D.

 However, we don’t incur any depth of reference penalty in our view layer. All refer-
ences in the JSP pages return to the simplicity of the original Register action that
used the simple, individual JavaBeans properties for data transfer. The following code
snippets, from Registration_MD.jsp

<s:textfield name="username" label="Username"/>

and RegistrationSuccess.jsp

<h5>Congratulations! You have created </h5>
<h3>The <s:property value="portfolioName" /> Portfolio</h3>

show the renewed simplicity of view-layer references to data carried in the Model-
Driven action. This is considered one of the primary reasons for choosing the
ModelDriven method over the object-backed JavaBeans property method of expos-
ing domain objects to the data transfer.

 Using domain objects for data transfer is great, but a word of caution is necessary.
We’ll explore a potential danger next.

67File uploading: a case study
3.4.3 Last words on using domain objects for data transfer

First, we want to point out a potential danger in using domain objects for data trans-
fer. The problem comes when the data gets automatically transferred onto the object.
As we’ve seen, if the request has parameters that match the attributes on your domain
object, the data will be moved onto those attributes. Now, consider the case where
your domain object has some sensitive data attributes that you don’t really want to
expose to this automatic data transfer, perhaps an ID. A malicious user could add an
appropriately named querystring parameter to the request such that the value of that
parameter would automatically be written to your exposed object’s attribute. Of
course, you can remove these attributes from the object, but then you start to lose the
value of reusing existing objects rather than writing new ones. Unfortunately, there’s
no good solution to this issue yet. Usually, you won’t have anything to worry about, but
it’s something to keep in mind when you’re developing your actions.

 Ultimately, it’ll be up to you to choose a method of receiving the data from the
framework. Each method has its purpose, and we believe that the requirements of
your projects will typically determine which approach is most appropriate. Through-
out the rest of this book, we’ll see many examples of best practices and integration
with other technologies that’ll spell out some of the cases when one or another
method serves best. Sometimes, its appropriate to use a little of each. Did we forget to
mention that you can do all of them at the same time if you like? Again, the platform
is flexible. Now it’s time to look at a case study.

3.5 File uploading: a case study
At this point, you have the tools you need to write your application’s action components
and wire them into a rudimentary Struts 2 application. We suspect you’ve even deduced
enough to get started implementing a view layer with JSP results. Later in the book, you’ll
see how much more the framework has to offer your view layer when we get to results,
tags, UI components, and Ajax integration in part 3. For now, we want to round out our
treatment of the action component by showing a useful case study that, while showing
you how to do something practical, also serves to reiterate how actions and interceptors
work together to solve the common problems of the web application domain.

 Most of you will have to implement file upload at some point. Our sample applica-
tion, the Struts 2 Portfolio, will need to upload some image files; otherwise the portfo-
lio would be drab. One reason we’re showing you how to upload files now, rather than
later in the book, is that we believe it helps demonstrate the framework’s persistent
pattern of using interceptors to layer the logic of common tasks out of the action
itself. So let’s learn how our actions can work with an interceptor from the default
stack to implement ultraclean and totally reusable file uploading.

3.5.1 Getting built-in support via the struts-default package

As with most tasks that you find yourself doing routinely, Struts 2 provides built-in help
for file uploading. In this case, the default interceptor stack includes the FileUpload-
Interceptor. As you might recall, struts-default.xml is the system file that defines all of

68 CHAPTER 3 Working with Struts 2 actions
the built-in components. Listing 3.10 shows the elements from that file that declare the
fileUpload interceptor and make it a part of the default interceptor stack.

<package name="struts-default">

 <interceptors>

 . . .

 <interceptor name="fileUpload"
 class="org.apache.struts2.interceptor.FileUploadInterceptor"/>

 . . .

 </interceptors>

 . . .

 <interceptor-stack name="defaultStack">

 . . .

 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="params"/>

 . . .

 </interceptor-stack>

</package>

As you can see, the struts-default package contains a declaration of the file-
Upload interceptor, backed by the org.apache.struts2.interceptor.FileUpload-
Interceptor implementation class. This interceptor is then added to the default-
Stack so that all packages extending the struts-default package will automati-
cally have this interceptor acting on their actions. We make our Struts 2 Portfolio
packages extend this package to take advantage of these built-in components.

3.5.2 What does the fileUpload interceptor do?

The fileUpload interceptor creates a special version of the automatic data transfer
mechanisms we saw earlier. With the previous data transfers, we were dealing with the
transfer of form field data from the request to matching JavaBeans properties on our
action objects. The params interceptor, also part of the defaultStack, was responsible
for moving all of the request parameters onto the action object wherever the action pro-
vided a JavaBeans property that matched the request parameter’s name. In listing 3.10,
you can see that the defaultstack places the fileUpload interceptor just before the
params interceptor. When the fileUpload interceptor executes, it processes a multi-
part request and transforms the file itself, along with some metadata, into request
parameters. It does this using a wrapper around the servlet request. Table 3.2 shows the
request parameters that are added by this fileUpload interceptor.

Listing 3.10 Declaring the FileUploadInterceptor and adding it to the stack

69File uploading: a case study
After the fileUpload interceptor has exposed the parts of the multipart request as
request parameters, it’s time for the next interceptor in the stack to do its work. Con-
veniently, the next interceptor is the params interceptor. When the params intercep-
tor fires, it moves all of the request parameters, including those listed in table 3.2,
onto the action object. Thus, all a developer needs to do to conveniently receive the
file upload is add JavaBeans properties to her action object that match the names in
table 3.2.

FYI We should note the elegant use of interceptors as demonstrated by the
fileUpload interceptor. As we’ve said, the Struts 2 framework tries des-
perately to keep its action components as clean as possible. A large part
of this effort consists of the use of interceptors to layer cross-cutting tasks
away from the core processing tasks of the action itself. The fileUpload
interceptor demonstrates this by encapsulating the processing of multi-
part requests and injecting the processed upload data into the action
object’s JavaBeans setter methods.

We’ve also referred to the role of interceptors in terms of preprocessing and postpro-
cessing. In the case of the fileUpload interceptor, the preprocessing is the transfor-
mation of the multipart request into request parameters that the params interceptor
will automatically move to our action. The postprocessing comes when the interceptor
fires again after our action to dispose of the temporary version of the uploaded file.

 How will all of this look in code? The Struts 2 Portfolio uses file uploading, so let’s
have a look.

3.5.3 Looking at the Struts 2 Portfolio example code

The Struts 2 Portfolio uses this file upload mechanism to upload new images to the
portfolio. The first part of such a task is presenting a form through which users can
upload files. You can visit the image upload page by first creating an account in the
chapter 3 version of the Struts 2 Portfolio sample application. Our end-user workflow
is incomplete right now, but we’ll fix that in coming chapters. Once you’ve created an
account, choose to work with your portfolio and choose to add a new picture. You’ll
see a page presenting you with a simple form to upload an image. The following code
snippet, from chapterThree/ImageUploadForm.jsp, shows the markup that creates
the form you see:

Table 3.2 Request parameters exposed by the FileUpload interceptor

Parameter name Parameter type and value

[file name from form] File—the uploaded file itself

[file name from form]ContentType String—the content type of the file

[file name from form]FileName String—the name of the uploaded file,
as stored on the server

70 CHAPTER 3 Working with Struts 2 actions
<h4>Complete and submit the form to create your own portfolio.</h4>

<s:form action="ImageUpload" method="post" enctype="multipart/form-data">

 <s:file name="pic" label="Picture"/>

 <s:submit/>
</s:form>

When we create this form, we have to take note of a couple of points. First, note that
we’re using Struts 2 tags to build the form. We’ll cover the Struts 2 tag library in chap-
ters 6 and 7. For now, just accept that this tag generates the HTML markup of a form
that allows the user to upload a file. Next, note that we set the encoding type of the
form to multipart/form-data. This important attribute signals to the framework that
the request needs to be handled as an upload. Without this setting, it won’t work.
Finally, note that the file will be submitted by the form under the name attribute we
provide to the file tag. This detail is important because you’ll use this name to build
the JavaBeans properties that will receive the upload data.

 With our JSP ready to present the form, let’s see the action that will receive and
process the upload. First, make sure that the package to which your action belongs is
extending the struts-default package so that it inherits the default interceptor
stack, and the fileUpload interceptor. Listing 3.11, a snippet from our manning/
chapterThree/chapterThree.xml file, shows that we’ve done this.

<package name="chapterThreeSecure" namespace="/chapterThree/secure"
 extends="struts-default">

 . . .

 <action name="AddImage" >
 <result>/chapterThree/ImageUploadForm.jsp</result>
 </action>

 <action name="ImageUpload" class="manning.chapterThree.ImageUpload">
 <result>/chapterThree/ImageAdded.jsp</result>
 <result name="input">/chapterThree/ImageUploadForm.jsp</result>
 </action>

 . . .

</package>

This is our package of secure actions for the Struts 2 Portfolio. We haven’t added secu-
rity yet, but we know that these actions will require security of some kind, so we’ve put
them into a separate package. We’ll add the security with a custom interceptor in
chapter 4.

 With the defaultStack and its file upload interceptor on our side, we just need to
add properties to our action object that match the parameter names, as seen in table 3.2.

 We’ve already seen that our file will be submitted under the name pic. Using the
naming conventions in table 3.2, we can derive the JavaBeans property names that we
need to implement. Listing 3.12 shows the JavaBeans properties implemented by the

Listing 3.11 Extending the struts-default package to inherit file upload processing

71File uploading: a case study
manning.chapterThree.ImageUpload class. (As always, check out the Struts 2 Port-
folio source code if you want to see more of the sample code.)

File pic;
String picContentType;
String picFileName;

public File getPic() {
 return pic;
}
 public void setPic(File pic) {
 this.pic = pic;
 }

public String getPicContentType() {
 return picContentType;
}
void setPicContentType(String picContentType) {
 this.picContentType = picContentType;
}

public void setPicFileName(String picFileName) {
 this.picFileName = picFileName;
}
public String getPicFileName() {
 return picFileName;
}

You’re not obligated to implement all of these. If you choose not to implement some
of them, you just won’t receive the data. No harm, no foul. At any rate, using the
fileUpload interceptor is about as easy as writing these JavaBeans properties. Thanks
to the separation of the upload logic, the action’s work itself is simple. As shown in the
following code snippet from the ImageUpload action, the action can focus on the task
at hand.

public String execute(){

 getPortfolioService().addImage(getPic());
 return SUCCESS;

}

There’s nothing here but the call to our business logic. The image file is conveniently
just a getter away, just as all of the auto-transferred data has been. Thanks to the team-
work of the fileUpload interceptor and the params interceptor, uploading files is
almost as easy as handling primitives. Incidentally, you can set the path to the direc-
tory where the action will save the image file with a parameter to the image upload
action element in chapterThree.xml.

 Now let’s look at a couple of tweaks you can make to the fileUpload interceptor to
handle such things as multiple file uploads.

Listing 3.12 The JavaBeans properties that’ll receive the uploaded file and metadata
www.allitebooks.com

http://www.allitebooks.org

72 CHAPTER 3 Working with Struts 2 actions
MULTIPLE FILES AND OTHER SETTINGS

Uploading multiple files with the same parameter names is also supported. All you
have to do is change your action’s JavaBeans properties to arrays; that is, File
becomes File[], and the two strings become string arrays. The three arrays are always
the same length, and their order is the same, meaning that index 0 for all three arrays
represents the same file and file metadata. There are also many other configurable
parameters regarding the fileUpload interceptor, ranging from the maximum file
size to the implementation of the multipart request parser that’ll be used to handle
the request. In general, the extreme flexibility of the Struts 2 framework makes it
impossible to provide complete coverage of all the details in a book such as this. This
book strives to filter out as much of the extraneous detail as possible in order to make
the concepts of the framework more visible. For such details and minutia, the Struts 2
website serves as a good reference.

3.6 Summary
In this chapter, we learned a lot about building Struts 2 actions. We began our tour of
this important component by examining the role of actions within the framework.
Actions have to do three things. First and foremost, they encapsulate the framework’s
interaction with the model. This means, ultimately, that the calls to the business logic
and data tier will be found in the execute() method of the action class. The second
job of the action is to serve as the data transfer object for the request processing. We
suspect we’ve made this point particularly clear by now. Finally, the action also takes
responsibility for returning a control string that’ll be used by the framework to select
the appropriate result component for rendering the view back to the user.

 We also saw how to package our action components into Struts 2 packages. These
packages help provide a logical organization to your application’s framework compo-
nents, actions in particular. Using the package structure, we can do several important
things. We can map URL namespaces to groups of actions. We can also take advantage
of the inheritance mechanisms of packages to define reusable groups of framework
components. We’ve already used this feature by having our Struts 2 Portfolio packages
extend the built-in struts-default package to take advantage of its default intercep-
tor stack, among other things. Let this serve as a model for creating your own package
hierarchies.

 We then showcased a couple of key players provided by the framework to ease your
work. First we saw the Action interface, which provides some important definitions of
constants that the framework uses for commonly used control strings. After that, we
took a long look at the functionality provided by the ActionSupport class. This help-
ful class implements several important interfaces and cooperates with key interceptors
from the defaultStack to provide built-in implementations of such valuable domain
tasks as validation and a basic form of internationalization. We demonstrated all of
this with our Struts 2 Portfolio sample application.

73Summary
 One of the more important considerations when implementing your own Struts 2
actions will be the method of data transfer that you use. Several options are available.
We covered two methods that both implement JavaBeans properties on the action
object itself. The first of these matches simple properties to individual parameters on
the incoming request. The next JavaBeans properties method provides properties that
are backed by complex domain objects. Finally, we saw that you can use an entirely dif-
ferent method to expose your complex domain objects by implementing ModelDriven
actions. The choice of which method to use will largely depend upon the require-
ments of your project and the action at hand. Flexibility is a recurring theme of the
Struts 2 framework.

 We rounded off the chapter with a case study. We looked at using one of the frame-
work’s built-in interceptors to add a file upload action to our sample application.
While we saw that uploading files with Struts 2 can be easy, we also tried to point out
some important lessons that this example demonstrates about the framework itself. In
particular, we’ve shown what we mean when we say the framework tries to provide a
clean implementation of MVC. In particular, the file upload example shows how
proper cooperation between interceptors and actions can provide a web application
with reusable and flexible encapsulations of cross-cutting tasks, as well as super-clean
actions.

 You know what an action is by now. Next up is a detailed look at interceptors, and
we’ll enhance the Struts 2 Portfolio by putting interceptors to good use.

Adding workflow
 with interceptors
In the previous chapter, we learned a great deal about the action component of the
Struts 2 framework. From a developer’s daily working perspective, the action com-
ponent may well be the heart and soul of the framework. But working silently in the
background are the true heroes of the hour, the interceptors. In truth, interceptors
are responsible for most of the processing done by the framework. The built-in
interceptors, declared in the struts-default package’s defaultStack, handle
most of the fundamental tasks, ranging from data transfer and validation to excep-
tion handling. Due to the rich set of the built-in interceptors, you might not need
to develop your own interceptor for some time. Nonetheless, the importance of
these core Struts 2 components cannot be underestimated. Without an under-
standing of how interceptors work, you’ll never truly understand Struts 2.

This chapter covers
■ Firing interceptors
■ Exploring the built-in interceptors
■ Declaring interceptors
■ Building your own interceptors
74

75Why intercept requests?
 After such a bold statement, we have no choice but to back it up with a detailed
explanation of interceptors and the role they play in the framework. This chapter will
begin by clarifying that architectural role with a brief conceptual discussion. We’ll
then dissect a couple of simple interceptors from the defaultStack (just so we can
see what’s inside), provide a reference section that covers the use of all the built-in
interceptors, and end by creating a custom interceptor to provide an authentication
service for our secure package’s actions.

 Incidentally, if you’d prefer to see a working code sample before hearing the expla-
nation, feel free to skip ahead to the last section of this chapter, where we build a cus-
tom interceptor for the Struts 2 Portfolio application. After seeing one in action, you
can always come back here for the theory. Just don’t forget to come back!

4.1 Why intercept requests?
Earlier in this book, we described Struts 2 as a second-generation MVC framework. We
said that this new framework leveraged the lessons learned by the first generation of
MVC-based frameworks to implement a super-clean architecture. Interceptors play a
crucial role in allowing the framework to achieve such a high level of separation of
concerns. In this section, we’ll take a closer look at how interceptors provide a power-
ful tool for encapsulating the kinds of tasks that have traditionally been an architec-
tural thorn in the developer’s side.

4.1.1 Cleaning up the MVC

From an architectural point of view, interceptors have immensely improved the level
of separation we can achieve when trying to isolate the various concerns of our web
applications. In particular, interceptors remove cross-cutting tasks from our action
components. When we try to describe the kinds of tasks that interceptors implement,
we usually say something like cross-cutting, or preprocessing and postprocessing.
These terms may sound vague now, but they won’t by the time we finish this chapter.

 Logging is a typical cross-cutting concern. In the past, you might’ve had a logging
statement in each of your actions. While this seemed a natural place for placing a log-
ging statement, it’s not a part of the action’s interaction with the model. In reality, log-
ging is administrative stuff that we want done for every request that the system
processes. We call this cross-cutting because it’s not specific to a single action. It cuts
across a whole range of actions. As software engineers, we should instantly see this as
an opportunity to raise the task to a higher layer that can sit above, or in front of, any
number of requests that require logging. The bottom line is that we have the opportu-
nity to remove the logging from the action, thus creating cleaner separation of our
MVC concerns.

 Some of the tasks undertaken by interceptors are more easily understood as being
preprocessing or postprocessing tasks. These are still technically cross-cutting; we rec-
ommend not worrying about the semantics of these terms. We present these new
terms mostly to give you some ideas about the specific types of tasks handled by inter-
ceptors. A good example of a preprocessing task would be data transfer, which we’re

76 CHAPTER 4 Adding workflow with interceptors
already familiar with. This task is achieved with the params interceptor. Nearly every
action will need to have some data transferred from the request parameters onto its
domain-specific properties. This must be done before the action fires, and can be
seen as mere preparation for the actual work of the action. From this aloof perspec-
tive, we can call it a preprocessing task. This is perfect for an interceptor. Again, this
increases the purity of the action component by removing code that can’t be strictly
seen as part of a specific action’s core work.

 No matter whether we call the task cross-cutting or preprocessing, the conceptual
mechanics of interceptors are clear. Instead of having a simple controller invoking an
action directly, we now have a component that sits between the controller and the
action. In Struts 2, no action is invoked in isolation. The invocation of an action is a lay-
ered process that always includes the execution of a stack of interceptors prior to and
after the actual execution of the action itself. Rather than invoke the action’s execute()
method directly, the framework creates an object called an ActionInvocation that
encapsulates the action and all of the interceptors that have been configured to fire
before and after that action executes. Figure 4.1 illustrates the encapsulation of the
entire action execution process in the ActionInvocation class.

 As you can see in figure 4.1, the invocation of an action must first travel through
the stack of interceptors associated with that action. Here we’ve presented a simplified
version of the defaultStack. The defaultStack includes such tasks as file uploading
and transferring request parameters onto our action. Figure 4.1 represents the nor-
mal workflow; none of the interceptors have diverted the invocation. This action will
ultimately execute and return a control string that selects the appropriate result. After
the result executes, each of the interceptors, in reverse order, gets a chance to do
some postprocessing work. As we’ll see, the interceptors have access to the action and
other contextual values. This allows them to be aware of what’s happening in the pro-
cessing. For instance, they can examine the control string returned from the action to
see what result was chosen.

 One of the powerful functional aspects of interceptors is their ability to alter the
workflow of the invocation. As we noted, figure 4.1 depicts an instance where none of
the interceptors has intervened in the workflow, thus allowing the action to execute
and determine which result should render the view. Sometimes, one of the interceptors
will determine that the action shouldn’t execute. In these cases, the interceptor can

Figure 4.1 ActionInvocation
encapsulates the execution of an
action with its associated
interceptors and results.

77Why intercept requests?
halt the workflow by itself returning a control string. Take the workflow interceptor, for
example. As we’ve seen, this interceptor does two things. First, it invokes the vali-
date() method on the action, if the action has implemented the Validateable inter-
face. Next, it checks for the presence of error messages on the action. If errors are
present, it returns a control string and, thus, stops further execution. The action will
never fire. The next interceptor in the stack won’t even be invoked. By returning the
control string itself, the interceptor causes control to return back up the chain, giving
each interceptor above the chance to do some postprocessing. Finally, the result that
matches the returned control string will render the view. In the case of the workflow
interceptor that has found error messages on the action, the control string is "input",
which typically maps back to the form page that submitted the invalid data.

 As you might suspect, the details of this invocation process are thorny. In fact, they
involve a bit of recursion. As with all recursion, it’ll seem harmless once we look at the
details, which we’ll see shortly. But first we need to talk about the benefits we gain
from using interceptors.

4.1.2 Reaping the benefits

Layering always makes our software cleaner, which helps with readability and testing
and also provides flexibility. Once we’ve broken these cross-cutting, preprocessing,
and postprocessing tasks into manageable units, we can do cool stuff with them. The
two primary benefits we gain from this flexibility are reuse and configuration.

 Everyone wants to reuse software. Perhaps this is the number-one goal of all soft-
ware engineering. Reuse is a bottom-line issue from both business and engineering
perspectives. Reuse means saving time, money, and maintainability. It makes everyone
happy. And achieving it is simple. We just need to isolate the logic that we want to
reuse in a cleanly separated unit. Once we’ve isolated the logic in an interceptor, we
can drop it in anywhere we like, easily applying it to whole classes of actions. This is
more exciting than clean architectural lines, but really it’s the same thing. We’ve
already been benefiting from code reuse by inheriting the defaultStack. Using the
defaultStack allows us to reuse the data transfer code written by the Struts 2 develop-
ers, along with their validation code, their internationalization code, and so forth.

 In addition to the benefits of code reuse, the layering power of interceptors gives
us another important benefit. Once we have these tasks cleanly encapsulated in inter-
ceptors, we can, in addition to reusing them, easily reconfigure their order and num-
ber. While the defaultStack provides a common set of interceptors, arranged in a
common sequence, to serve the common functional needs of most requests, we can
rearrange them to meet varying requirements. We can even remove and add intercep-
tors as we like. We can even do this on a per-action basis, but this is seldom necessary.
In our Struts 2 Portfolio application, we’ll develop an authentication interceptor and
combine it with the defaultStack of interceptors that fires when the actions in our
secure package are invoked. The flexible nature of interceptors allows us to easily cus-
tomize request processing for the specific needs of certain requests, all while still tak-
ing advantage of code reuse.

78 CHAPTER 4 Adding workflow with interceptors
Struts 2 is extremely flexible. This strength is what separates it from many
of its competitors. But, as we’ve mentioned, this can also be confusing
when you first begin to use the framework. Thankfully, Struts 2 provides
a strong set of intelligent defaults that allow developers to build most
standard functionality without needing to think about the many ways in
which they can modify the framework and its core components. In the
case of interceptors, one of the framework’s most flexible components,
the defaultStack should serve in the vast majority of cases.

4.1.3 Developing interceptors

Despite their importance, many developers won’t write many interceptors. In fact,
most of the common tasks of the web application domain have already been written
and bundled into the struts-default package. Even if you never write an interceptor
yourself, it’s still important to understand what they are and how they do what they do.
If this chapter weren’t core to understanding the framework, we would’ve placed it at
the end of the book. We put this material here because we believe that understanding
interceptors is absolutely necessary to successfully leveraging the power of the frame-
work. First of all, you need to be familiar with the built-in interceptors, and you need
to know how to arrange them to your liking. Second, debugging the framework can
truly be confusing if you don’t understand how the requests are processed. We think
that interceptors ultimately provide a simpler architecture that can be more easily
debugged and understood. However, many developers may find them counterintui-
tive at first.

 With that said, when you do find yourself writing your own custom interceptors,
you’ll truly begin to enjoy the Struts 2 framework. As you develop your actions, keep
your eyes out for any tasks that can be moved out to the interceptors. As soon as you
do, you’ll be hooked for life. But first, we should see how they actually work.

4.2 Interceptors in action
Now we’ll look at how interceptors actually run. We’ll look at the interceptor interface
and learn the mysterious process by which an interceptor is fired. Along the way, we’ll
meet the boss man, the ActionInvocation; this important class orchestrates the
entire execution of an action, including the sequential firing of the associated inter-
ceptor stack. We’ll also take the time to look inside the code of two of the built-in
Struts 2 interceptors, just to keep it real. But first let’s start with the boss man.

4.2.1 The guy in charge: ActionInvocation

A few paragraphs back, we introduced the ActionInvocation. While you’ll almost cer-
tainly never have to work directly with this class, a high-level understanding of it is key
to understanding interceptors. In fact, knowing what ActionInvocation does is equiv-
alent to knowing how Struts 2 handles requests; it’s very important! As we said before,
the ActionInvocation encapsulates all the processing details associated with the exe-
cution of a particular action. When the framework receives a request, it first must
decide to which action the URL maps. An instance of this action is added to a newly

WARNING

79Interceptors in action
created instance of ActionInvocation. Next, the framework consults the declarative
architecture, as created by the application’s XML or Java annotations, to discover
which interceptors should fire, and in what sequence. References to these intercep-
tors are added to the ActionInvocation. In addition to these central elements, the
ActionInvocation also holds references to other important information like the serv-
let request objects and a map of the results available to the action. Now let’s look at
how the process of invoking an action occurs.

4.2.2 How the interceptors fire

Now that the ActionInvocation has been created and populated with all the objects
and information it needs, we can start the invocation. The ActionInvocation exposes
the invoke() method, which is called by the framework to start the execution of the
action. When the framework calls this method, the ActionInvocation starts the invo-
cation process by executing the first interceptor in the stack. Note that the invoke()
method doesn’t always map to the first interceptor; it’s the responsibility of the
ActionInvocation itself to keep track of what stage the invocation process has
reached and pass control to the appropriate interceptor in the stack. It does this by
calling that interceptor’s intercept() method.

Now for the tricky part. Continued execution of the subsequent interceptors, and ulti-
mately the action, occurs through recursive calls to the ActionInvocation’s

Interceptor firing order
When we say the first interceptor in the stack, we’re referring to the first interceptor
declared in the XML as reading from the top of the page down. Let’s look at the dec-
laration of the basicStack from struts-default.xml to see exactly what we mean.

<interceptor-stack name="basicStack">
 <interceptor-ref name="exception"/>
 <interceptor-ref name="servletConfig"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="checkbox"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
</interceptor-stack>

In the basicStack, the first interceptor to fire will be the exception interceptor.
From here, each interceptor will fire in the same sequence as you would read down
the page. So the last interceptor to fire will be the conversionError interceptor. Af-
ter the result has rendered, the interceptors will each fire again, in reverse order, to
give them the opportunity to do postprocessing.

Incidentally, the basicStack, not to be confused with the default defaultStack, is
just a convenient chunk of common interceptors that the struts-default package
makes available to you to ease the process of custom stack building in case you find
that the defaultStack isn’t quite what you need.

80 CHAPTER 4 Adding workflow with interceptors
invoke() method. Each time invoke() is called, ActionInvocation consults its state
and executes whichever interceptor comes next. When all of the interceptors have
been invoked, the invoke() method will cause the action itself to be executed. If this
is cooking your noodle, hang in there. It’ll clear up momentarily.

 Why do we call it a recursive process? Let’s have a look. The framework itself starts
the process by making the first call to the ActionInvocation object’s invoke()
method. ActionInvocation hands control over to the first interceptor in the stack by
calling that interceptor’s intercept() method. Importantly, intercept() takes the
ActionInvocation instance itself as a parameter. During its own processing, the inter-
ceptor will call invoke() on this object to continue the recursive process of invoking
successive interceptors. Thus, in normal execution, the invocation process tunnels
down through all of the interceptors until, finally, there are no more interceptors in
the stack and the action fires. Again, the ActionInvocation itself maintains the state
of this process internally so it always knows where it is in the stack.

 Now let’s look at what an interceptor can do when it fires. An interceptor has a
three-stage, conditional execution cycle:

■ Do some preprocessing.
■ Pass control on to successive interceptors, and ultimately the action, by calling

invoke(), or divert execution by itself returning a control string.
■ Do some postprocessing.

Looking at some code will make these three stages more concrete. The following code
snippet shows the intercept() method of the TimerInterceptor, one of the inter-
ceptors included in the struts-default package.

public String intercept(ActionInvocation invocation) throws Exception {

 long startTime = System.currentTimeMillis();

 String result = invocation.invoke();

 long executionTime = System.currentTimeMillis() - startTime;

 ... log the time ...

 return result;
}

The TimerInterceptor times the execution of an action. The code is simple. The
intercept() method, defined by the Interceptor interface, is the entry point into an
interceptor’s execution. Note that the intercept method receives the ActionInvocation
instance. When the intercept method is called, the interceptor’s preprocessing phase
consists of recording the start time B. Next, the interceptor must decide whether it’ll
pass control on to the rest of the interceptors and the action. Since this interceptor has
no reason to halt the execution process, it always calls invoke(),passing control to what-
ever comes next in the chain C.

 After calling invoke(), the interceptor waits for the return of this method. invoke()
returns a result string that indicates what result was rendered. While this string tells the

B

C

D

81Surveying the built-in Struts 2 interceptors
interceptor which result was rendered, it doesn’t indicate whether the action itself fired
or not. It’s entirely possible that one of the deeper interceptors altered workflow by
returning a control string itself without calling invoke(). Either way, when invoke()
returns, a result has already been rendered. In other words, the response page has
already been sent back to the client. An interceptor could implement some conditional
postprocessing logic that uses the result string to make some decision, but it can’t stop
or alter the response at this point. In the case of the TimerInterceptor, we don’t care
what happened during processing, so we don’t look at the string.

 What kind of postprocessing does the TimerInterceptor do? It calculates the time
that has passed during the execution of the action D. It does this simply by taking the
current time and subtracting the previously recorded start time. When finished, it
must finally return the control string that it received from invoke(). Doing this causes
the recursion to travel back up the chain of interceptors. These outer interceptors will
then have the opportunity to conduct any postprocessing they might be interested in.

 Oh, my! Provided all of that sank in, your noodle should definitely be cooked by now.
But we hope in a good way—by the vast possibilities that such an architecture allows!
When contemplating the wide range of tasks that can be implemented in the reusable
and modular interceptor, consider this short sampling of the available opportunities:

■ During the preprocessing phase, the interceptor can be used to prepare, filter,
alter, or otherwise manipulate any of the important data available to it. This
data includes all of the key objects and data, including the action itself, that per-
tain to the current request.

■ Call invoke() or divert workflow. If an interceptor determines that the request
processing should not continue, it can return a control string rather than call
the invoke() method on the ActionInvocation. In this manner, it can stop
execution and determine itself which result will render.

■ Even after the invoke() method returns a control string, any of the returning
interceptors can arbitrarily decide to alter any of the objects or data available to
them as part of their postprocessing. Note, however, that at this point the result
has already been rendered.

As we’ve said, interceptors can be confusing at first. Furthermore, you can probably
avoid implementing them yourself. However, we encourage you to reread these pages
until you feel comfortable with interceptors. Even if you never make one yourself, a
solid grasp of interceptors in action will ease all aspects of your development. Now
let’s move on to something simpler—the reference/user guide section of this chapter,
wherein we will tell you all about the built-in interceptors that you can leverage when
building your own applications.

4.3 Surveying the built-in Struts 2 interceptors
Struts 2 comes with a powerful set of built-in interceptors that provide most of the
functionality you’ll ever want from a web framework. In the introductory portion of
this book, we said that a good framework should automate most of the routine tasks of

82 CHAPTER 4 Adding workflow with interceptors
the web application domain. The built-in interceptors provide this automation. We’ve
already seen several of these and have used them in our Struts 2 Portfolio sample
application. The ones we’ve used have all been from the defaultStack that we’ve
inherited by extending the struts-default package. While this defaultStack is use-
ful, the framework comes with more interceptors and preconfigured stacks than just
that one. In this section, we’ll introduce you to the most commonly used built-in inter-
ceptors. In the next section, we’ll show you how to declare which of these interceptors
should fire for your actions, and even how to arrange their order.

 Now let’s explore the offerings. If an interceptor is in the defaultStack, it’ll be
clearly noted as such.

4.3.1 Utility interceptors

First, we’ll look at some utility interceptors. These interceptors provide simple utilities
to aid in development, tuning, and troubleshooting.
TIMER

This simple interceptor merely records the duration of an execution. Position in the
interceptor stack determines what this is actually timing. If you place this interceptor
at the heart of your stack, just before the action, then it will time the action’s execu-
tion itself. If you place it at the outermost layer of the stack, it’ll time the execution of
the entire stack, as well as the action. Here’s the output:

INFO: Executed action [/chapterFour/secure/ImageUpload!execute] took 123 ms.

LOGGER

This interceptor provides a simple logging mechanism that logs an entry statement
during preprocessing and an exit statement during postprocessing.

INFO: Starting execution stack for action /chapterFour/secure/ImageUpload

INFO: Finishing execution stack for action /chapterFour/secure/ImageUpload

This can be useful for debugging. Again, note that where you put this in the stack can
change the nature of the information you learn from these simple statements. This
interceptor serves as a good demonstration of an interceptor that does processing
both before and after the action executes.

4.3.2 Data transfer interceptors

As we’ve already seen, interceptors can be used to handle data transfer. In particular,
we’ve already seen that the params interceptor from the defaultStack moves the
request parameters onto the JavaBeans properties we expose on our action objects.
There are also several other interceptors that can move data onto our actions. These
other interceptors can move data from other locations, such as from parameters
defined in the XML configuration files.
PARAMS (DEFAULTSTACK)

This familiar interceptor provides one of the most integral functions of the framework.
It transfers the request parameters to properties exposed by the ValueStack. We’ve

83Surveying the built-in Struts 2 interceptors
also discussed how the framework uses OGNL expressions, embedded in the name
attributes of your form’s fields, to map this data transfer to those properties. In chapter
3, we explored techniques for using this to move data to properties exposed directly on
our actions as well as on domain model objects with ModelDriven actions. The params
interceptor doesn’t know where the data is ultimately going; it just moves it to the first
matching property it can find on the ValueStack. So how do the right objects get onto
the ValueStack in time to receive the data transfer? As we learned in the previous chap-
ter, the action is always put on the ValueStack at the start of a request-processing cycle.
The model, as exposed by the ModelDriven interface, is moved onto the ValueStack by
the modelDriven interceptor, discussed later in this chapter.

 We’ll fully cover the enigmatic ValueStack, and the equally enigmatic OGNL, in
the next chapter when we delve into the details of data transfer and type conversion.
STATIC-PARAMS (DEFAULTSTACK)

This interceptor also moves parameters onto properties exposed on the ValueStack.
The difference is the origin of the parameters. The parameters that this interceptor
moves are defined in the action elements of the declarative architecture. For example,
suppose you have an action defined like this in one of your declarative architecture
XML files:

<action name="exampleAction" class="example.ExampleAction">
 <param name="firstName">John</param>
 <param name="lastName">Doe</param>
</action>

The static-params interceptor is called with these two name-value pairs. These
parameters are moved onto the ValueStack properties just as with the params inter-
ceptor. Note that, again, order matters. In the defaultStack, the static-params
interceptor fires before the params interceptor. This means that the request parame-
ters will override values from the XML param element. You could, of course, change
the order of these interceptors.
AUTOWIRING

This interceptor provides an integration point for using Spring to manage your appli-
cation resources. We list it here because it is technically another way to set properties on
your action. Since this use of Spring is such an important topic, we save it for a fuller
treatment in chapter 10, which covers integration with such important technologies.
SERVLET-CONFIG (DEFAULTSTACK)

The servlet-config interceptor provides a clean way of injecting various objects
from the Servlet API into your actions. This interceptor works by setting the various
objects on setter methods exposed by interfaces that the action must implement. The
following interfaces are available for retrieving various objects related to the servlet
environment. Your action can implement any number of these.

■ ServletContextAware—Sets the ServletContext
■ ServletRequestAware—Sets the HttpServletRequest
■ ServletResponseAware—Sets the HttpServletResponse

84 CHAPTER 4 Adding workflow with interceptors
■ ParameterAware—Sets a map of the request parameters
■ RequestAware—Sets a map of the request attributes
■ SessionAware—Sets a map of the session attributes
■ ApplicationAware—Sets a map of application scope properties
■ PrincipalAware—Sets the Principal object (security)

Each of these interfaces contains one method—a setter—for the resource in ques-
tion. These interfaces are found in the Struts 2 distribution’s org.apache.struts2.
interceptor package. As with all of the data-injecting interceptors that we’ve seen,
the servlet-config interceptor will put these objects on your action during the pre-
processing phase. Thus, when your action executes, the resource will be available.
We’ll demonstrate using this injection later in this chapter, when we build our cus-
tom authentication interceptor; the Login action that’ll work with the authentica-
tion interceptor will implement the SessionAware interface. We should note that
best practices recommend avoiding use of these Servlet API objects, as they bind
your action code to the Servlet API. After all the work the framework has done to
separate you from the Servlet environment, you would probably be well served by
this advice. Nonetheless, you’ll sometimes want to get your hands on these impor-
tant Servlet objects. Don’t worry; it’s a natural urge.
FILEUPLOAD (DEFAULTSTACK)

We covered the fileUpload interceptor in depth in the previous chapter. We note it
briefly here for completeness. The fileUpload interceptor transforms the files and
metadata from multipart requests into regular request parameters so that they can be
set on the action just like normal parameters.

4.3.3 Workflow interceptors

The interceptors we’ve covered so far mostly realize some concrete task, such as mea-
suring execution time or transferring some data. Workflow interceptors provide some-
thing else entirely. They provide the opportunity to conditionally alter the workflow of
the request processing. By workflow we mean the path of the processing as it works its
way down through the interceptors, through the action and result, and then back out
the interceptors. In normal workflow, the processing will go all the way down to the
action and result before climbing back out. Workflow interceptors are interceptors
that inspect the state of the processing and conditionally intervene and alter this nor-
mal path, sometimes only slightly, and sometimes quite drastically.
WORKFLOW (DEFAULTSTACK)

One of the interceptors is actually named workflow. Consider this one to be the gold
standard for what a workflow-oriented interceptor can do. We’ve already used and dis-
cussed this interceptor. As we’ve learned, it works with our actions to provide data val-
idation and subsequent workflow alteration if a validation error occurs. Since we’ve
already used this interceptor, we’ll leverage our familiarity to learn more about how
interceptors work by looking at the code that alters execution workflow. Listing 4.1
shows the code from this important interceptor.

85Surveying the built-in Struts 2 interceptors
public String intercept(ActionInvocation invocation)
 throws Exception {

 Action action = invocation.getAction();

 if (action instanceof Validateable) {
 Validateable validateable = (Validateable) action;
 validateable.validate();
 }
 if (action instanceof ValidationAware) {
 ValidationAware validationAwareAction =
 ValidationAware) action;

 if (validationAwareAction.hasErrors()) {
 return Action.INPUT;
 }
 }
 return invocation.invoke();
}

If you recall, the actions of our Struts 2 Portfolio use a form of validation imple-
mented in a couple of interfaces that cooperate with the workflow interceptor. The
action implements these interfaces to expose methods upon which the interceptor
will work. First, the interceptor must obtain an instance of the action from the
ActionInvocation B so that it can check to see whether the action has implemented
these interfaces. If the action has implemented the Validateable interface, the inter-
ceptor will invoke its validate() method C to execute the action’s validation logic.

 Next, if the action implements the ValidationAware interface, the interceptor will
check to see whether any errors were created by the validation logic by calling the
hasErrors() method D. If some are present, the workflow interceptor takes the
rather drastic step of completely halting execution of the action. It does this, as you
can see, by returning its own INPUT control string E. Further execution stops immedi-
ately. The INPUT result is rendered, and postprocessing occurs as control climbs back
out of the interceptor stack. Note that our Struts 2 Portfolio actions all inherit imple-
mentations of these interfaces by extending the ActionSupport convenience class.

 The workflow interceptor also introduces another important interceptor concept:
using params to tweak the execution of the interceptor. After we finish covering the
built-in interceptors, we’ll cover the syntax of declaring your interceptors and inter-
ceptor stacks in section 4.4.3. At that time, we’ll learn all about setting and overriding
parameters. For now, we’ll just note the parameters that an interceptor can take. The
workflow interceptor can take several parameters:

■ alwaysInvokeValidate (true or false; defaults to true, which means that
validate() will be invoked)

■ inputResultName (name of the result to choose if validation fails; defaults to
Action.INPUT)

■ excludeMethods (names of methods for which the workflow interceptor
shouldn’t execute, thereby omitting validation checking for a specific entry
point method on an action)

Listing 4.1 Altering workflow from within an interceptor

B

C

D

E

86 CHAPTER 4 Adding workflow with interceptors
These should all be straightforward. Note that the workflow interceptor configured in
the defaultStack is passed a list of excludeMethods parameters, as seen in the follow-
ing snippet from struts-default.xml:

<interceptor-ref name="workflow">
 <param name="excludeMethods">input,back,cancel,browse</param>
</interceptor-ref>

This list of exclude methods is meant to support actions that expose methods other
than execute() for various processing tasks related to the same data object. We
haven’t shown how to do this yet, but we will in chapter 15. For instance, imagine you
want to use the same action to prepopulate as well as process a form. A common sce-
nario is to combine the create, read, update, and delete (CRUD) functions pertaining
to a single data object into a single action. For now, note that the main benefit of such
a strategy is the consolidation of code that pertains to the same domain object. One
difficulty with this strategy is that the process that prepopulates the form can’t be vali-
dated because there is no data yet. To handle this problem, we can put the prepopula-
tion code into an input method and list this method as one that should be excluded
from the workflow interceptor’s validation measurements.

 Several other interceptors take excludeMethods and includeMethods parameters
to achieve similar filtering of their processing. We’ll note when these parameters are
available for the interceptors that we cover in this book. In general, you should be on
the lookout for such parameters any time you’re dealing with an interceptor for which
it seems logical that such a filtering would exist.
VALIDATION (DEFAULTSTACK)

We’ve already shown one basic form of validation offered by Struts 2. To recap that
technique, the Validateable interface, as we’ve seen, provides a programmatic vali-
dation mechanism; you put the validation code into your action’s validate() method
and it’ll be executed by the workflow interceptor. The validation interceptor, on the
other hand, is part of the Struts 2 validation framework and provides a declarative
means to validate your data. Rather than writing validation code, the validation frame-
work allows you to use both XML files and Java annotations to describe the validation
rules for your data. Since the validation framework is such a rich topic, chapter 10 is
dedicated to it.

 For now, we should note that the validation interceptor, like the Validateable
interface, works in tandem with the workflow interceptor. Recall that the workflow
interceptor calls the validate() method of the Validateable interface to execute val-
idation code before it checks for validation errors. In the case of the validation frame-
work, the validation interceptor itself executes the validation logic. The validation
interceptor is the entry point into the validation framework’s processing. When the val-
idation framework does its work, it’ll store validation errors using the same Validation-
Aware methods that your handwritten validate() code does. When the workflow
interceptor checks for error messages, it doesn’t know whether they were created by the
validation framework or the validation code invoked through the Validateable inter-
face. In fact, it doesn’t matter. The only thing that really matters is that the validation

87Surveying the built-in Struts 2 interceptors
interceptor fires before the workflow interceptor, and this sequencing is handled by the
defaultStack. You could even use both methods of validation if you liked. Either way,
if errors are found, the workflow interceptor will divert workflow back to the input page.
PREPARE (DEFAULTSTACK)

The prepare interceptor provides a generic entry point for arbitrary workflow pro-
cessing that you might want to add to your actions. The concept is simple. When the
prepare interceptor executes, it looks for a prepare() method on your action. Actu-
ally, it checks whether your action implements the Preparable interface, which
defines the prepare() method. If your action is Preparable, the prepare() method
is invoked. This allows for any sort of preprocessing to occur. Note that while
the prepare interceptor has a specific place in the defaultStack, you can define
your own stack if you need to move the prepare code to a different location in
the sequence.

 The prepare interceptor is flexible as well. For instance, you can define special pre-
pare methods for the different execution methods on a single action. As we said ear-
lier, sometimes you’ll want to define more than one execution entry point on your
action. (See the CRUD example in chapter 15 for details.) In addition to the execute()
method, you might define an input() method and an update() method. In this case,
you might want to define specific preparation logic for each of these methods. If
you’ve implemented the Preparable interface, you can also define preparation meth-
ods, named according to the conventions in table 4.1, for each of your action’s execu-
tion methods.

Two naming conventions are provided. You can use either one. The use case is simple.
If your input() method is being invoked, the prepareInput() method will be called
by the prepare interceptor, giving you an opportunity to execute some preparation
code specific to the input processing. The prepare() method itself will always be
called by the prepare interceptor regardless of the action method being invoked. Its
execution comes after the specialized prepare() method. If you like, you can turn off
the prepare() method invocation with a parameter passed to the prepare interceptor:

alwaysInvokePrepare - Default to true.

The Preparable interface can be helpful for setting up resources or values before
your action is executed. For instance, if you have a drop-down list of available values
that you look up in the database, you may want to do this in the prepare() method.
That way, the values will be populated for rendering to the page even if the action isn’t
executed because, for instance, the workflow interceptor found error messages.

Table 4.1 Parameters to the prepare interceptor

Action Method Name Prepare Method 1 Prepare Method 2

input() prepareInput() prepareDoInput()

update() prepareUpdate() prepareDoUpdate()

88 CHAPTER 4 Adding workflow with interceptors
MODELDRIVEN (DEFAULTSTACK)

We’ve probably already covered the modelDriven interceptor enough for one book.
We’ll just make a couple of brief notes here for the sake of consistency. The model-
Driven interceptor is considered a workflow interceptor because it alters the workflow
of the execution by invoking getModel(), if present, and setting the model object on
the top of the ValueStack where it’ll receive the parameters from the request. This
alters workflow because the transfer of the parameters, by the params interceptor,
would otherwise be directed onto the action object itself. By placing the model over the
action in the ValueStack, the modelDriven interceptor thus alters workflow. This con-
cept of creating an interceptor that can conditionally alter the effective functionality of
another interceptor without direct programmatic intervention demonstrates the
power of the layered interceptor architecture. When thinking of ways to add power to
your own applications by writing custom interceptors, this is a good model to follow.

4.3.4 Miscellaneous interceptors

A few interceptors don’t fit into any specific classification but are important or useful
nonetheless. The following interceptors range from the core interceptors from the
defaultStack to built-in interceptors that provide cool bells and whistles.
EXCEPTION (DEFAULTSTACK)

This important interceptor lays the foundation for rich exception handling in your
applications. The exception interceptor comes first in the defaultStack, and should
probably come first in any custom stacks you create yourself. The exception intercep-
tor will catch exceptions and map them, by type, to user-defined error pages. Its posi-
tion at the top of the stack guarantees that it’ll be able to catch all exceptions that may
be generated during all phases of action invocation. It can catch them because, as the
top interceptor, it’ll be the last to fire during postprocessing.

 The Struts 2 Portfolio uses the exception interceptor to route all exceptions of
type java.lang.Exception to a single, somewhat-unpolished error message page.
We’ve implemented this in the chapterFourPublic package. The following snippet
shows the code from the chapterFour.xml file that sets up the exception handling:

<global-results>
 <result name="error">/chapterFour/Error.jsp</result>
</global-results>

<global-exception-mappings>
 <exception-mapping exception="java.lang.Exception" result="error"/>
</global-exception-mappings>

First, we define a global result. We need to do this because this error page isn’t spe-
cific to one action, and global results are available to all actions in the package. The
exception-mapping element tells the exception interceptor which result to render
for a given exception. When the exception interceptor executes during its postpro-
cessing phase, it’ll catch any exception that has been thrown and map it to a result.
Before yielding control to the result, the exception interceptor will create an

89Surveying the built-in Struts 2 interceptors
ExceptionHolder object and place it on top of the ValueStack. The Exception-
Holder is a wrapper around an exception that exposes the stack trace and the excep-
tion as JavaBeans properties that you can access from a tag in your error page. The
following snippet shows our error JSP page:

<p><h4>Exception Name: </h4><s:property value="exception" /></p>
<p><h4>What you did wrong:</h4> <s:property value="exceptionStack" /></p>

<p><h5>Also, please confirm that your Internet is working before actually
 contacting us.</h4></p>

As you can see, our property tag, explained with the other Struts 2 tags in chapter 6,
references the exceptionStack property that has been placed on the ValueStack.
We’ve created an ErrorProne action, which automatically throws an exception, so we
can see all this in action. For a guaranteed application failure, hit the error-prone link
from the home page of the chapter 4 version of the application. Note that you don’t
need to have one page catch all exceptions; you can have as many exception map-
pings as you like, mapping specific exception types to a variety of specific results.
TOKEN AND TOKEN-SESSION

The token and token-session interceptors can be used as part of a system to prevent
duplicate form submissions. Duplicate form posts can occur when users click the Back
button to go back to a previously submitted form and then click the Submit button
again, or when they click Submit more than once while waiting for a response. The
token interceptors work by passing a token in with the request that is checked by the
interceptor. If the unique token comes to the interceptor a second time, the request is
considered a duplicate. These two interceptors both do the same thing, differing only
in how richly they handle the duplicate request. You can either show an error page or
save the original result to be rerendered for the user. We’ll implement this functional-
ity for the Struts 2 Portfolio application in chapter 15.
SCOPED-MODELDRIVEN (DEFAULTSTACK)

This nice interceptor supports wizard-like persistence across requests for your action’s
model object. This one adds to the functionality of the modelDriven interceptor by
allowing you to store your model object in, for instance, session scope. This is great for
implementing wizards that need to work with a data object across a series of requests.
EXECANDWAIT

When a request takes a long time to execute, it’s nice to give the user some feedback.
Impatient users, after all, are the ones who make all those duplicate requests. While
the token interceptors discussed earlier can technically solve this problem, we should
still do something for the user. The execAndWait interceptor helps prevent your users
from getting antsy. We’ll implement this functionality for the Struts 2 Portfolio appli-
cation in chapter 15.

 In addition to providing these useful interceptors, the struts-default package
also provides several built-in stacks made of these interceptors. We’ve already seen the
strutsDefault stack, but we should look at what else is available.

90 CHAPTER 4 Adding workflow with interceptors
4.3.5 Built-in stacks

The Struts 2 framework comes with many built-in stacks that provide convenient
arrangements of the built-in interceptors. We’ve been using one of these, the
defaultStack, for all of our Struts 2 Portfolio packages. We inherit all of this, and
other built-in stacks, just by having our packages extend the struts-default package
defined in struts-default.xml. To make things simple, we recommend that you also use
the defaultStack unless you have a clear imperative to do otherwise. Most of the
other built-in stacks you could use are just pared-down versions of the defaultStack.
This paring down is not done to make more efficient versions of the stacks by elimi-
nating unnecessary interceptors. Rather, the smaller stacks are meant to be modular
building blocks for building larger ones. If you find yourself building your own stacks,
try to use these modular pieces to help simplify your task. Still, you might ask, why do
we need the scoped-modelDriven interceptor in the stack if we aren’t using it? Isn’t
this a performance hit? We think it isn’t. So far, it seems that unused interceptors
don’t affect performance that much. Additionally, messing with the interceptors can
be the fastest way to introduce debugging complexity. Ultimately, we always recom-
mend using the built-in path of least resistance as long as possible—which means the
defaultStack. While Struts 2 is flexible, it’s also meant to perform well and be useful
right out of the box.

4.4 Declaring interceptors
We can’t go much further without learning how to set up our interceptors with the
declarative architecture. In this section, we’ll cover the details of declaring intercep-
tors, building stacks, and passing parameters to interceptors. Since most of the inter-
ceptors that you’ll typically need are provided by the struts-default package, we’ll
spend a fair bit of time perusing the interceptor declarations made in the struts-
default.xml file. They serve as a perfect example of how to declare interceptors and
stacks. After we look at the interceptors and stacks from the struts-default pack-
age, we’ll also show how you can specify the interceptors that fire for a given action.
You can do this at varying levels of granularity, starting with the broad scope of
the framework’s intelligent defaults and narrowing down to a per-action specifica-
tion of interceptors.

 We should also note that, at this point, XML is your only option for declaring your
interceptors; the annotations mechanism doesn’t yet support declaring interceptors.

4.4.1 Declaring individual interceptors and interceptor stacks

Basically, interceptor declarations consist of declaring the interceptors that are avail-
able and associating them with the actions for which they should fire. The only com-
plication is the creation of stacks, which allow you to reference groups of interceptors
all at once. Interceptor declarations, like declarations of all framework components,
must be contained in a package element. Listing 4.2 shows the individual interceptor
declarations from the struts-default package of the struts-default.xml file.

91Declaring interceptors
<package name="struts-default">

 . . .

 <interceptors>
 <interceptor name="execAndWait" class="ExecuteAndWaitInterceptor"/>
 <interceptor name="exception" class="ExceptionMappingInterceptor"/>
 <interceptor name="fileUpload" class="FileUploadInterceptor"/>
 <interceptor name="i18n" class="I18nInterceptor"/>
 <interceptor name="logger" class="LoggingInterceptor"/>
 <interceptor name="modelDriven" class="ModelDrivenInterceptor"/>
 <interceptor name="scoped-modelDriven" class= . . ./>
 <interceptor name="params" class="ParametersInterceptor"/>
 <interceptor name="prepare" class="PrepareInterceptor"/>
 <interceptor name="static-params" class=. . ./>
 <interceptor name="servlet-config" class="ServletConfigInterceptor"/>
 <interceptor name="sessionAutowiring"
 class="SessionContextAutowiringInterceptor"/>
 <interceptor name="timer" class="TimerInterceptor"/>
 <interceptor name="token" class="TokenInterceptor"/>
 <interceptor name="token-session" class= . . . />
 <interceptor name="validation" class= . . . />
 <interceptor name="workflow" class="DefaultWorkflowInterceptor"/>
 . . .

 <interceptor-stack name="defaultStack">
 <interceptor-ref name="exception"/>
 <interceptor-ref name="alias"/>
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="i18n"/>
 <interceptor-ref name="chain"/>
 <interceptor-ref name="debugging"/>
 <interceptor-ref name="profiling"/>
 <interceptor-ref name="scoped-modelDriven"/>
 <interceptor-ref name="modelDriven"/>
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="checkbox"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params">
 <param name="excludeParams">dojo\..*</param>
 </interceptor-ref>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation">
 <param name="excludeMethods">input,back,cancel,browse</param>
 </interceptor-ref>
 <interceptor-ref name="workflow">
 <param name="excludeMethods">input,back,cancel,browse</param>
 </interceptor-ref>
 </interceptor-stack>

 </interceptors>

 <default-interceptor-ref name="defaultStack"/>

</package>

Listing 4.2 Interceptor declarations from the struts-default package

Interceptors
element

B

CAll
interceptor

elements

Declaring a stackD

EInterceptor
references

ParametersF

Default
reference

G

92 CHAPTER 4 Adding workflow with interceptors
The interceptors element B contains all the interceptor and interceptor-stack
declarations of the package. Interceptor stacks are just a convenient way of referenc-
ing a sequenced chunk of interceptors by name. Each interceptor element C
declares an interceptor that can be used in the package. This just maps an interceptor
implementation class to a logical name, such as mapping com.opensymphony.
xwork2.interceptor.DefaultWorkflowInterceptor to the name workflow. (In list-
ing 4.2, we’ve snipped the package names to make the listing more readable.) These
declarations don’t actually create an interceptor or associate that interceptor with any
actions; they just map a name to a class.

 Now we can define some stacks of interceptors D. Since most actions will use the
same groups of interceptors, arranged in the same sequence, it’s common practice to
define these in small, building-block stacks. The struts-default package declares
several stacks, most importantly the defaultStack.

 The contents of the interceptor-stack element are a sequence of interceptor-
ref elements. E These references must all point to one of the logical names created
by the interceptor elements. Creating your own stacks, as we’ll see when we build a
custom interceptor later in this chapter, is just as easy. The interceptor-ref elements
can also pass in parameters to configure the instance of the interceptor that is created
by the reference F.

 Finally, a package can declare a default set of interceptors. G This set will be asso-
ciated with all actions in the package that don’t explicitly declare their own intercep-
tors. The default-interceptor-ref element simply points to a logical name, in this
case the defaultStack. This important line is what allows our actions to inherit a
default set of interceptors when we extend the struts-default package.

 While this example is from the struts-default package, you can do the same in
your own packages when you need to change the interceptors that fire for your actions.
This can be dangerous for the uninitiated. Since most of the framework’s core func-
tionality exists in the default stack of interceptors defined in struts-default, you
probably won’t want to mess with those for a while. However, we’ll show how to safely
modify this stack when we build our custom authentication interceptor in a few pages.
XML DOCUMENT STRUCTURE

Before moving on to show how you specify the interceptors that’ll fire for your specific
actions, we should make a point about the sequence of elements within the XML doc-
uments we use for declarative architecture. These XML documents must conform to
certain rules of ordering. For instance, each package element contains precisely one
interceptors element, and that element must come in a specific position in the doc-
ument. The complete DTD, struts-2.0.dtd, can be found on the Struts 2 website. For
now, note the following snippet from the DTD, which pertains to the structure of list-
ing 4.2:

<!ELEMENT struts (package|include|bean|constant)*>

<!ELEMENT package (result-types?, interceptors?, default-interceptor-ref?,
default-action-ref?, global-results?, global-exception-mappings?, action*)>

93Declaring interceptors
The first element definition specified the contents of the struts element. The struts
element is the root element of an XML file used for the declarative architecture. As
you can see in listing 4.2, struts-default.xml starts with the struts element. Moving on,
this root element can contain zero or more instances each of four different element
types. For now, we’re only concerned with the package element. The contents of a
package element, unlike the struts element, must follow a specific sequence. Fur-
thermore, all of the elements contained in a package element, except for the actions,
can occur only once. From this snippet, we glean the important information that our
interceptors element must occur just once, or not at all, and must come after the
result-types element and before the default-interceptor-ref element. The doc-
uments in the Struts 2 Portfolio application will demonstrate the correct ordering of
elements, but, if you ever have questions, consult the DTD.

4.4.2 Mapping interceptors to actions

Much of the time, your actions will belong to packages that extend struts-default, and
you’ll be content to let them use the defaultStack of interceptors they inherit from that
package. Eventually, you’ll probably want to modify, change, or perhaps just augment
that default set of interceptors. To do this, you have to know how to map interceptors
to your actions. Associating an interceptor to an action is done with an interceptor-
ref element. The following code snippet shows how to associate a set of interceptors
with a specific action:

<action name="MyAction" class="org.actions.myactions.MyAction">
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 <result>Success.jsp</result>
</action>

This snippet associates two interceptors with the action. They’ll fire in the order
they’re listed. Of course, you already know enough about how Struts 2 applications
work to know that this action, with just the timer and logger interceptors, wouldn’t
be able to accomplish much. It wouldn’t have access to any request data because the
params interceptor isn’t there. Even if it could get the data from the request, it
wouldn’t have any validation. In reality, most of the functionality of the framework is
provided by interceptors. You could define the whole set of them here, but that would
be tedious, especially as you’d end up repeating the same definitions across most of
your actions.

 Stacks address this very situation. As it turns out, you can combine references to
stacks and individual interceptors. The following snippet shows a revision of the previ-
ous action element that still uses the defaultStack while adding the other two inter-
ceptors it needs:

<action name="MyAction" class="org.actions.myactions.MyAction">
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 <interceptor-ref name="defaultStack"/>

94 CHAPTER 4 Adding workflow with interceptors
 <result>Success.jsp</result>
</action>

We should note a couple of important things. First, this action names interceptors,
not to mention the defaultStack, which are declared in the struts-default pack-
age. Because of this, it must be in a package that extends struts-default. Next, while
actions that don’t define any interceptor-refs themselves will inherit the default
interceptors, as soon as an action declares its own interceptors, it loses that automatic
default and must explicitly name the defaultStack in order to use it.

 As we’ve seen, if an action doesn’t declare its own interceptors, it inherits the
default interceptor reference of the package. The following snippet shows the line
from struts-default.xml that declares the default interceptor reference for the struts-
default package:

<default-interceptor-ref name="defaultStack"/>

When you create your own packages, you can make default references for those pack-
ages. We’ll do this when we create the authentication interceptor in a few pages.

 Now, let’s see how to pass parameters into interceptors that permit such modifica-
tions of their behavior.

4.4.3 Setting and overriding parameters

Many interceptors can be parameterized. If an interceptor accepts parameters, the
interceptor-ref element is the place to pass them in. We can see that the workflow
interceptor in the defaultStack is parameterized to ignore requests to certain action
method names, as specified in the excludeMethods parameter element.

<interceptor-ref name="workflow">
 <param name="excludeMethods">input,back,cancel,browse</param>
</interceptor-ref>

Passing parameters into interceptors is as simple as this. With the preceding method,
you pass the parameters in when you create the interceptor-ref. This one is a part
of a stack. What if we wanted to reuse the defaultStack from which this reference is
taken, but we wanted to change the values of the excludeMethods parameter? This is
easy enough, as demonstrated in the following snippet:

<action name="YourAction" class="org.actions.youractions.YourAction">

 <interceptor-ref name="defaultStack">
 <param name="workflow.excludeMethods">doSomething</param>
 </interceptor-ref>
 <result>Success.jsp</result>
</action>

First, we assume that this action belongs to a package that inherits the defaultStack.
This action names the defaultStack as its interceptor reference but overrides the
workflow interceptor’s excludeMethods parameter. This allows you to conveniently
reuse existing stacks while still being able to customize the parameters.

 Next up, rolling your own authentication interceptor!

95Building your own interceptor
4.5 Building your own interceptor
We’ve said several times that you probably won’t need to build your own interceptor.
On the other hand, we hope that we’ve sold the power of interceptors well enough to
get you itching to start rolling your own. Apart from the care needed when sequencing
the stack and learning to account for this sequencing in your debugging, interceptors
can be simple to write. We round out the chapter by creating an authentication inter-
ceptor that we can use to provide application-based security for our Struts 2 Portfolio
application. This form of authentication is probably far too simple for most real appli-
cations, but it’s a well-known use case and serves as a perfect example for interceptors.

 We’ll start by looking at the technical details of implementing an interceptor.

4.5.1 Implementing the Interceptor interface

When you write an interceptor, you’ll implement the com.opensymphony.xwork2.
interceptor.Interceptor interface:

public interface Interceptor extends Serializable {
 void destroy();
 void init();
 String intercept(ActionInvocation invocation) throws Exception;
}

As you can see, this simple interface defines only three methods. The first two are typ-
ical lifecycle methods that give you a chance to initialize and clean up resources as
necessary. The real business occurs in the intercept() method. As we’ve already
seen, this method is called by the recursive ActionInvocation.invoke() method. If
you don’t recall the details, you might want to reread section 4.2, which describes this
interceptor execution process in detail.

 We’ll directly implement the Interceptor interface when we write our authenti-
cation interceptor. Sometimes you can take advantage of a convenience class pro-
vided with the distribution that provides support for method filtering. We saw
parameter-based method filtering when we looked at the workflow interceptor. Such
interceptors accept a parameter that defines methods for which the interceptor
won’t fire. This type of parameterized behavior is so common that an abstract imple-
mentation of the Interceptor interface has already taken care of the functionality
involved in such method filtering. If you want to write an interceptor that has this
type of parameterization, you can extend com.opensymphony.xwork2.interceptor.
MethodFilterInterceptor rather than directly implementing the Interceptor inter-
face. Since our authentication interceptor doesn’t need to filter methods, we’ll stick
to the direct implementation.

4.5.2 Building the AuthenticationInterceptor

The authentication interceptor will be simple. If you recall the three phases of inter-
ceptor processing—preprocessing, calling ActionInvocation.invoke(), and postpro-
cessing—you can anticipate how our AuthenticationInterceptor will function.
When a request comes to one of our secure actions, we’ll want to check whether the

96 CHAPTER 4 Adding workflow with interceptors
request is coming from an authenticated user. This check is made during preprocess-
ing. If the user has been authenticated, the interceptor will call invoke(), thus allow-
ing the action invocation to proceed. If the user hasn’t been authenticated, the
interceptor will return a control string itself, thus barring further execution. The con-
trol string will route the user to the login page.

 You can see this in action by visiting the chapter 4 version of the Struts 2 Portfolio
application. On the home page, there’s a link to add an image without having logged
in. The add image action is a secure action. Try clicking the link without having
logged in. You’ll be automatically taken to the login page. Now, log in and try the
same link again. The application comes with a default user, username = "Arty" and
password = "password". This time you’re allowed to access the secure add image
action. This is done by a custom interceptor that we’ve placed in front of all of our
secure actions. Let’s see how it works.

 First, we should clear up some roles. The AuthenticationInterceptor doesn’t do
the authentication; it just bars access to secure actions by unauthenticated users.
Authentication itself is done by the login action. The login action checks to see
whether the username and password are valid. If they are, the user object is stored in a
session-scoped map. When the AuthenticationInterceptor fires, it checks to see
whether the user object is present in the session. If it is, it lets the action fire as usual.
If it isn’t, it diverts workflow by forwarding to the login page.

 We should take a quick look at the manning.chapterFour.Login action on our way
to inspecting the AuthenticationInterceptor. Listing 4.3 shows the execute code
from the Login action. Note that we’ve trimmed extraneous code, such as validation
and JavaBeans properties, from the listing.

public class Login extends ActionSupport implements SessionAware {

 public String execute(){

 User user = getPortfolioService().authenticateUser(getUsername(),
 getPassword());

 if (user == null)
 {
 return INPUT;
 }
 else{
 session.put(Struts2PortfolioConstants.USER, user);
 }

 return SUCCESS;
 }

 . . .

 public void setSession(Map session) {
 this.session = session;
 }
}

Listing 4.3 The Login action authenticates the user and stores the user in session scope

B

C

D

E

F

97Building your own interceptor
The first thing of interest is that our Login action uses the SessionAware interface B
to have the session-scoped map conveniently injected into a setter F. This is one of the
services provided by the ServletConfigInterceptor provided in the defaultStack.
(See the section on that interceptor earlier in this chapter to find out all the other
objects you can have injected through similar interfaces.) As for the business logic of
the login itself, first we use our service object to authenticate the username and pass-
word combination C. Our authentication method will return a valid User object if
everything checks out, or null if it doesn’t. If the user is null, we send her back to the
INPUT result, which is the login form D that she came from. If the user is not null,
we’ll store the user object in the session map E, officially marking her as an authenti-
cated user.

 With the Login action in place, we can look at how the AuthenticationInterceptor
protects secure actions from unauthenticated access. Basically, the interceptor will
check to see whether the user object has been placed in the session map. Let’s check it
out. Listing 4.4 shows the full code.

public class AuthenticationInterceptor implements Interceptor {

 public void destroy() {
 }

 public void init() {
 }

 public String intercept(ActionInvocation actionInvocation)
 throws Exception{

 Map session = actionInvocation.getInvocationContext().getSession();
 User user = (User) session.get(Struts2PortfolioConstants.USER);

 if (user == null) {
 return Action.LOGIN;
 }
 else {

 Action action = (Action) actionInvocation.getAction();

 if (action instanceof UserAware) {
 ((UserAware)action).setUser(user);
 }

 return actionInvocation.invoke();
 }
 }

}

The main part of the interceptor starts inside the intercept() method B. Here we
can see that the interceptor uses the ActionInvocation object C to obtain informa-
tion pertaining to the request. In this case, we’re getting the session map. With the ses-
sion map in hand, we retrieve the user object stored under the known key.

Listing 4.4 Inspecting the heart of the AuthenticationInterceptor

Empty
implementations

Implements
interceptor

B

C

D

E

Continue action
invocationF

98 CHAPTER 4 Adding workflow with interceptors
 If the user object is null D, then the user hasn’t been authenticated through the
login action. At this point, we return a result string, without allowing the action to
continue. This result string, Action.LOGIN, points to our login page. If you consult the
chapterFour.xml file, you’ll see that the chapterFourSecure package defines the login
result as a global result, available to all actions in the secure package. In chapter 8,
we’ll learn about configuring global results.

If you consult the API, you’ll see that the getInvocationContext()
method returns the ActionContext object associated with the request. As
we learned earlier, the ActionContext contains many important data
objects for processing the request, including the ValueStack and key
objects from the Servlet API such as the session map that we’re using
here. If you recall, we can also access objects in this ActionContext from
our view layer pages (JSPs) via OGNL expressions. In this interceptor, we
use programmatic access to those objects. Note that although it’s always
possible to get your hands on the ThreadLocal ActionContext, it’s not a
good idea. We recommend confining programmatic access to the
ActionContext to interceptors, and using the ActionInvocation object
as a path to that access. This keeps your APIs separated and lays the foun-
dation for clean testing.

If the user object exists E, then the user has already logged in. At this point, we get a
reference to the current action from the ActionInvocation and check whether it
implements the UserAware interface. This interface allows actions to have the user
object automatically injected into a setter method. This technique, which we copied
from the framework’s own interface-based injection, is a powerful way of making your
action cleaner and more efficient. Most secure actions will want to work with the user
object. With this interceptor in the stack, they just need to implement the UserAware
interface to have the user conveniently injected. You can check out any of the secure
actions in the Struts 2 Portfolio’s chapterFour package to see how they do this. With
the business of authentication out of the way, the interceptor calls invoke() on the
ActionInvocation object F to pass control on to the rest of the interceptors and the
action. And that’s that; it’s pretty straightforward.

 We need to point out one important detail before moving on. Interceptor
instances are shared among actions. Though a new instance of an action is created for
each request, interceptors are reused. This has one important implication. Intercep-
tors are stateless. Don’t try to store data related to the request being processed on the
interceptor object. This isn’t the role of the interceptor. An interceptor should just
apply its processing logic to the data of the request, which is already conveniently
stored in the various objects you can access through the ActionInvocation.

 Now we’ll apply this interceptor to our secure actions. Since we put all of our
secure actions into a single package, we can build a custom stack that includes our
AuthenticationInterceptor, and then declare that as the default interceptor refer-
ence for the secure package. This is the benefit of packaging actions according to

INSIDER TIP

99Summary
shared functionality. Listing 4.5 shows the elements from chapterFour.xml that config-
ure the chapterFourSecure package.

<package name="chapterFourSecure" namespace="/chapterFour/secure"
 extends="struts-default">

 <interceptors>

 <interceptor name="authenticationInterceptor"
 class="manning.utils.AuthenticationInterceptor"/>

 <interceptor-stack name="secureStack">
 <interceptor-ref name="authenticationInterceptor"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>

 </interceptors>

 <default-interceptor-ref name="secureStack"/>

 . . .
</package>

With all of our secure actions bundled in this package, we just need to make a stack that
includes our AuthenticationInterceptor and then declare it as the default. You can
see how easy this is. First, we must have an interceptors element B to contain our
interceptor and interceptor-stack declarations. We have to map our Java class to a
logical name with an interceptor element C. We’ve chosen authentication-
Interceptor as our name. Next, we build a new stack that takes the defaultStack and
adds our new interceptor to the top of it D. We put it on top because we might as well
stop an unauthenticated request as soon as possible. Finally, we declare our new secure-
Stack as the default stack for the package E. Note that the default-interceptor-ref
element isn’t contained in the interceptors element; it doesn’t declare any intercep-
tors, it just declares the default value for the package. Every action in this package will
now have authentication with automatic routing back to the login page, as well as injec-
tion of the user object for any action that implements the UserAware interface. It feels
like we’ve accomplished something, no? The best part is that our interceptor is com-
pletely separate from our action code and completely reusable.

4.6 Summary
In this chapter we saw perhaps the most important component of the framework. Even
though you can get away without developing interceptors for quite a while, a solid
understanding of these important components is critical to understanding the frame-
work in general. A grasp of interceptors will facilitate debugging and working with the
framework. We hope we’ve given you a solid leg up on the road to interceptor mastery.

 By now, you should have come to grips with the role of the interceptor in the
framework. To reiterate, the interceptor component provides a nice place to separate
the logic of various cross-cutting concerns into layered, reusable pieces. Tasks such as

Listing 4.5 Declaring our interceptor and building a new default stack

B

C

D

E

100 CHAPTER 4 Adding workflow with interceptors
logging, exception handling, and dependency injection can all be encapsulated in
interceptors. With the functionality of these common tasks thus modularized, we can
easily use the declarative architecture to customize stacks of interceptors to meet the
needs of our specific actions or packages of actions.

 Perhaps the toughest thing to wrap your mind around, as far as interceptors go, is
the recursive nature of their execution. Central to the entire execution model of the
Struts 2 framework is the ActionInvocation. We learned how the ActionInvocation
contains all the important data for processing the request, including everything from
the action and its interceptors to the ActionContext. On top of this, it actually man-
ages the execution process. As we’ve seen, it exposes a single, recursive invoke()
method as an entry point into the execution process. ActionInvocation keeps track
of the state of the execution process and invokes the next interceptor in the stack
each time invoke() is called until, finally, the action is executed.

 Interceptors themselves are invoked via their intercept() method. The execution
of an interceptor can be broken into three phases: preprocessing, passing control on
to the rest of the action invocation by calling invoke(), and postprocessing. Intercep-
tors can also divert workflow by returning a control string instead of calling invoke().
They also have access to all key data via the ActionInvocation instance they receive.
Ultimately, interceptors can do just about anything.

 We also reviewed the functionality of many of the built-in interceptors that come
with the struts-default package. Familiarity with these is critical to saving yourself
from repeating work already done for you. We highly recommend staying up to date
on the current set of interceptors available from the Struts 2 folks. They may have
already built something you need by the time this book makes it onto your shelf. A
quick visit to the Struts 2 website is always a good idea. Finally, we hope that our
AuthenticationInterceptor has convinced you that it’s easy to write your own inter-
ceptors. Again, we think the hardest part is understanding how interceptors work.
Writing them is not so bad. We’re confident that you’ll soon find yourself with your
own ideas for custom interceptors.

 Now that we’ve covered actions and interceptors, we should be ready to move on
to the view layer and start exploring the rich options that the framework offers for
rendering result pages. Before we do that, we have one more stop on our tour of the
core components of framework. Most likely, it’s a stop you’ve been wondering about.
Next up, chapter 5 will work on dispelling that mysterious OGNL cloud that surrounds
the data transfer mechanisms of the framework.

Data transfer: OGNL
 and type conversion
Now that we’ve covered the action and interceptor components, you should have a
good idea of how the major chunks of server-side logic execute in the Struts 2
framework. We’ve avoided poking our noses into the details of two of the more
important tasks that the framework helps us achieve: data transfer and type conver-
sion. We’ve been able to avoid thinking about these important tasks because the
framework automates them so well. This’ll continue to be true for large portions of
your development practice. However, if we give a small portion of our energy to
learning how the data transfer and type conversion actually works, we can squeeze a
whole lot more power out of the framework’s automation of these crucial tasks.

 We’ve already learned how to take advantage of the automatic data transfer for
simple cases. In this chapter, we’ll learn how to take advantage of more complex

This chapter covers
■ Transferring data
■ Working with OGNL
■ Using the built-in type converters
■ Customizing type conversion
101

102 CHAPTER 5 Data transfer: OGNL and type conversion
forms of automatic data transfer. Most of the increased complexity comes when trans-
ferring data onto more complex Java-side types, such as Maps and Lists. We haven’t
mentioned it much so far, but when the framework transfers data from string-based
request parameters to strictly typed Java properties, it must also convert from string to
Java type. The framework comes with a strong set of built-in type converters that sup-
port all common conversions, including complex types such as Maps and Lists. The
central focus of this chapter will be explaining how to take advantage of the frame-
work’s ability to automatically transfer and convert all manner of data. At the end of
the chapter, we’ll also show you how to extend the type conversion mechanism by
developing custom converters that can handle any types, including user-defined types.

 This chapter also starts our two-part formal coverage of OGNL. OGNL is currently
the default expression language used to reference data from the various regions of
the framework in a consistent manner. We’ve already seen how to use OGNL expres-
sions to point incoming form fields at the Java properties they should target when the
framework transfers the request data. Accordingly, this chapter will cover OGNL from
the point of view of incoming data transfer and type conversion. But OGNL is also
going to be critical when we introduce the Struts 2 tag API in the next chapter. The tag
is used to pull data out of the framework into the rendering response pages. We’ll
thus divide the coverage of OGNL between this chapter and the next. To be specific,
this chapter will focus on how OGNL fits into the framework, and the role it plays in
binding data throughout the various regions of the framework. The next chapter,
which introduces tags, will cover the OGNL expression language from a more syntactic
perspective, which you will need when using the tags.

 Let’s start by examining the data transfer and type conversion mechanisms at close
range.

5.1 Data transfer and type conversion:
common tasks of the web application domain
In chapter 1 of this book, we said that one of the common tasks of the web application
domain was moving and converting data from string-based HTTP to the various data
types of the Java language. If you’ve worked with web applications for many years,
you’ll be familiar with the tedious task of moving data from form beans to data beans.
This boring task is complicated by the accompanying task of converting from strings
to Java types. Parsing strings into doubles and floats, catching the exceptions that arise
from bad data, and so on is no fun at all. Worse yet, these tasks amount to pure infra-
structure. All you’re doing is preparing for the real work.

 Data transfer and type conversion actually happen on both ends of the request-
processing cycle. We’ve already seen that the framework moves the data from the
string-based HTTP requests to our JavaBeans properties, which are clearly Java types.
Moreover, the same thing happens on the other end. When the result is rendered, we
typically funnel some of the data from those JavaBeans properties back out into the
resulting HTML page. Again, while we haven’t given it much thought, this means that
the data has been reconverted from the Java type back out to a string format.

103OGNL and Struts 2
 This process occurs with nearly every request in a web application. It’s an inherent
part of the domain. No one will moan about handing this responsibility over to the
framework. Nonetheless, there’ll be times when you want to extend or configure this
automated support. The Struts 2 type conversion mechanisms are powerful and quite
easily extended. We think you’ll be excited when you see the possibilities for writing
your own custom converters. First, though, we need see who’s responsible for all of
this automated wizardry.

5.2 OGNL and Struts 2
We call it wizardry, but, as we all know, computers are rational machines. Perhaps
unsolved mystery is a more accurate phrase. What exactly are these unsolved myster-
ies? To be specific, we haven’t yet explained how all of that data makes it from the
HTML request to the Java language and back out to HTML through the JSP tags. The
next section will clarify this mysterious process.

5.2.1 What OGNL does

What OGNL does isn’t mysterious at all. In fact, OGNL is quite ordinary. OGNL stands
for the Object-Graph Navigation Language. Sounds perfectly harmless, right? No? Actu-
ally, I agree. It sounds horrifying, as if I should have studied harder in school. In an
attempt to make it sound less academic, the makers of OGNL suggest pronouncing it
like the last few syllables of “orthogonal.”

 OGNL is a powerful technology that’s been integrated into the Struts 2 framework
to help with data transfer and type conversion. OGNL is the glue between the frame-
work’s string-based HTTP input and output and the Java-based internal processing. It’s
quite powerful and, while it seems that you can use the framework without really
knowing about OGNL, your development efforts will be made many times more effi-
cient by spending a few moments with this oddly named power utility.

 From the point of view of a developer building applications on the Struts 2 frame-
work, OGNL consists of two things: an expression language and type converters.
EXPRESSION LANGUAGE

First, let’s look at the expression language. We’ve been using OGNL’s expression lan-
guage in our form input field names and JSP tags. In both places, we’ve been using
OGNL expressions to bind Java-side data properties to strings in the text-based view lay-
ers, commonly found in the name attributes of form input fields, or in various
attributes of the Struts 2 tags. The simplicity of the expression language, in its common
usage, makes for a ridiculously low learning curve. This has allowed us to get deep into
Struts 2 without specifically covering it. Let’s review what we’ve already been doing.

 The following code snippet, from our Struts 2 Portfolio application’s Registration-
Success.jsp, shows a Struts 2 tag using the OGNL expression language:

<h5>Congratulations! You have created </h5>
<h3>The <s:property value="portfolioName" /> Portfolio</h3>

The OGNL expression language is the bit inside the double quotes of the value
attribute. This Struts 2 property tag takes a value from a property on one of our Java

104 CHAPTER 5 Data transfer: OGNL and type conversion
objects and writes it into the HTML in place of the tag. This is the point of expression
languages. They allow us to use a simplified syntax to reference objects that reside in
the Java environment. The OGNL expression language can be much more complex
than this single element expression; it even supports such advanced features as invok-
ing method calls on the Java objects that it can access, but the whole idea of an expres-
sion language is to simplify access to data.

The integration of OGNL into the Struts 2 framework is tight. Pains have
been taken to make the simplest use cases just that: simple. With this in
mind, many instances of OGNL expressions require no special escaping.
While there’s an OGNL escape sequence, %{expression}, that signals to
the framework when to process the expression as an expression rather
than interpreting it as a string literal, this isn’t often used. Using intelli-
gent defaults, Struts 2 will automatically evaluate the string as an OGNL
expression in all contexts that warrant such a default behavior. In con-
texts where strings are most likely going to be strings, the framework will
require the OGNL escape sequence. As we move along, we’ll specifically
indicate which context is which.

Here’s the other side of the coin. While the property tag, which resides in a result
page, reaches back into the Java environment to pull a value from the portfolioName
property, we’ve also seen that OGNL expressions are used in HTML forms to target
properties in the Java environment as destinations for the data transfer. In both cases,
the role of the OGNL expression is to provide a simple syntax for binding things like
Struts 2 tags to specific Java-side properties, for moving data both into and out of the
framework. OGNL creates the pathways for data to flow through the framework. It
helps move data from the request parameters onto our action’s JavaBeans properties,
and it helps move data from those properties out into rendering HTML pages.

 But we must investigate how the type conversion occurs when moving data
between the string-based worlds of HTML and the native Java types of the framework.
TYPE CONVERTERS

In addition to the expression language, we’ve also been using OGNL type converters.
Even in this simple case of the Struts 2 property tag, a conversion must be made from
the Java type of the property referenced by the OGNL expression language to the
string format of the HTML output. Of course, in the case of the portfolioName, the
Java type is also a string. But this just means that the conversion is easy. Every time data
moves to or from the Java environment, a translation must occur between the string
version of that data that resides in the HTML and the appropriate Java data type. Thus
far, we’ve been using simple data types for which the Struts 2 framework provides ade-
quate built-in OGNL type converters. In fact, the framework provides built-in convert-
ers to handle much more than we’ve been asking of it. Shortly, we’ll cover the built-in
type converters and show you how to map your incoming form fields to a wide variety
of Java data types, including all the primitives as well as a variety of collections. But,
first, let’s look at where OGNL fits into the framework, just to be clear about things.

HEADS-UP

105OGNL and Struts 2
5.2.2 How OGNL fits into the framework

Understanding OGNL’s role in the framework, from an architectural perspective, will
make working with it much easier. Figure 5.1 shows how OGNL has been incorporated
into the Struts 2 framework.

 Figure 5.1 shows the path of data into and out of the framework. Everything starts
with the HTML form in the InputForm.html page, from which the user will submit a
request. Everything ends with the response that comes back to the user, represented in
figure 5.1 as ResultPage.html. Now, let’s follow the data into and out of the framework
and see how OGNL helps bind and convert the data as it moves from region to region.
DATA IN

Our data’s journey starts at the InputForm.html page shown in figure 5.1. In this case,
the form contains two text input fields. Note that, in the interest of space, we’ve cre-
ated pseudo-HTML markup for these fields; this won’t validate. The strings in the
pseudo-text input tags are the name attributes of the fields. Again, it’s important to
realize that these names are valid OGNL expressions. All that we need now is a user to
enter two values for the fields and submit the form to the framework.

 When the request enters the framework, as we can see in figure 5.1, it’s exposed to
the Java language as an HttpServletRequest object. As we learned earlier, Struts 2 is
built on the Servlet API. The request parameters are stored as name/value pairs, and

Figure 5.1 OGNL provides the framework’s mechanism for transferring and type-converting data.

106 CHAPTER 5 Data transfer: OGNL and type conversion
both name and value are Strings. As you can see in figure 5.1, the request object just
has a couple of name/value pairs, where the names are the names of our form’s text
fields and the values are the values entered by the user when the form was submitted.
Everything is still a string. This is where the framework and OGNL pick up the ball.

 We know the framework is going to handle the transfer and type conversion of the
data from these request parameters. The first question is where should the data go?
OGNL will point the way. But, first, OGNL needs a context in which to search for its tar-
gets. In chapter 3, we saw that, when the framework automatically transfers parame-
ters to our action object, the action is sitting on something called the ValueStack. In
figure 5.1, we can see that our action object has been placed on the ValueStack. In
the case represented by this figure, we’re exposing our User object as a JavaBeans
property on our action object. With our action object on the ValueStack, we’re ready
for OGNL to do its navigational work.

 From our study of interceptors, we know that the params interceptor will move the
data from the request object to the ValueStack. The tricky part of the job is mapping
the name of the parameter to an actual property on the ValueStack. This is where OGNL
comes in. The params interceptor interprets the request parameter name as an
OGNL expression to locate the correct destination property on the ValueStack. If you
look at this in figure 5.1, you might expect that the expression would need to be some-
thing more like myAction.user.username. To the contrary, only the user.username is
necessary. This is because the ValueStack is a sort of virtual object that exposes the prop-
erties of its contained objects as its own.

The ValueStack is a Struts 2 construct that presents an aggregation of
the properties of a stack of objects as properties of a single virtual object.
If duplicate properties exist—two objects in the stack both have a name
property—then the property of the highest object in the stack will be the
one exposed on the virtual object represented by the ValueStack. The
ValueStack represents the data model exposed to the current request
and is the default object against which all OGNL expressions are resolved.

The ValueStack is a virtual object? It sounds complicated, but it’s not. The Value-
Stack holds a stack of objects. These objects all have properties. The magic of the
ValueStack is that all the properties of these objects appear as properties of the
ValueStack itself. In our case, since the action object is on the ValueStack, all of its
properties appear as properties of the ValueStack. The tricky part comes when more
than one object is placed on the ValueStack. When this happens, we can have a con-
tention of sorts between properties of those two objects. Let’s say that two objects on
the stack both have a username property. How does this get resolved? Simply: the user-
name exposed by the ValueStack will always be that of the highest object in the stack.
The properties of the higher objects in the stack cover up similarly named properties
of objects lower in the stack. We’ll cover this in more detail when we discuss the OGNL
expression language in chapter 6.

 For now, this should be enough to see how the request parameters find the way to
their correct homes. In figure 5.1, one of the request parameters is named user.age.

DEFINITION

107OGNL and Struts 2
If we resolve this as an OGNL expression against the ValueStack, we first ask, “Does
the ValueStack have a user property?” As we’ve just learned, the ValueStack exposes
the properties of the objects it contains, so we know that the ValueStack does have a
user property. Next, does this user property have an age property? Of course it does.
Obviously, we’ve found the right property. Now what?

 Once the OGNL expression has been used to locate the destination property, the
data can be moved onto that property by calling the property’s setter with the correct
value. But, at this point, the original value is still the string “37”. Here’s where the type
converters come into play. We need to convert the string to the Java type of the age
property targeted by the OGNL expression, which is an int. OGNL will consult its set
of available type converters to see if any of them can handle this particular conversion.
Luckily, the Struts 2 framework provides a set of type converters to handle all the nor-
mal conversions of the web application domain. Conversion between strings and inte-
gers is provided for by the built-in type converters. The value is converted and set on
the user object, just where we’ll find it when we start our action logic after the rest of
the interceptors have fired.

 Now that we’ve seen how data makes it into the framework, let’s work our way
through the other half of figure 5.1 to see how it makes it back out.
DATA OUT

Now for the other half of the story. Actually, it’s the same story, but in reverse. After
the action has done its business, calling business logic, doing data operations, and so
forth, we know that eventually a result will fire that’ll render a new view of the applica-
tion to the user. Importantly, during the processing of the request, our data objects
will remain on the ValueStack. The ValueStack acts as a kind of place holder for
viewing the data model throughout the various regions of the framework.

 When the result starts its rendering process, it’ll also have access to the Value-
Stack, via the OGNL expression language in its tags. These tags will retrieve data from
the ValueStack by referencing specific values with OGNL expressions. In figure 5.1,
the result is rendered by ResultPage.jsp. In this page, the age of the user is retrieved
with the Struts 2 property tag, a tag that takes an OGNL expression to guide it to the
value it should render. But, once again, we must convert the value; this time we con-
vert from the Java type of the property on the ValueStack to a string that can be writ-
ten into the HTML page. In this case, the Integer object is converted back into a
string for the depressing message that “At 37, you’re our oldest user.” Must be a social
networking site.

 Now you know what OGNL does. This chapter is going to focus on the framework’s
data transfer and type conversion. We won’t say much more on the details of OGNL,
such as its expression language syntax. We’ll save that for the next chapter, which cov-
ers the Struts 2 tags. For now, you just need to understand the big picture of what
OGNL does for the framework.

 If you need a break before we go on to cover the built-in type converters, you could
practice saying “OGNL.”

108 CHAPTER 5 Data transfer: OGNL and type conversion
5.3 Built-in type converters
Now that we’ve seen how OGNL has been integrated into the framework to provide
automatic data transfer and type conversion, it’s time to see the nuts and bolts of work-
ing with the built-in type converters. Here’s where we’ll learn how to safely guide a vari-
ety of data types into and out of the framework. As we saw in the previous section, type
conversion plays an important role in that process. Out of the box, the Struts 2 frame-
work can handle almost any type conversions that you might require. These conver-
sions are done by the built-in type converters that come with the framework.

 In this section, we’ll show you what the framework will handle, give you plenty of
examples, and show you how to write OGNL expressions for form field names that
need to locate more complexly typed properties such as arrays, Maps, and Lists. In the
coming pages, we’ll provide a clear-cut how-to and reference for using OGNL to map
incoming form fields to Java properties of all the types supported by the framework’s
built-in type converters. When you start developing the forms that’ll submit data to
your actions, this section will be a great reference.

5.3.1 Out-of-the-box conversions

The Struts 2 framework comes with built-in support for converting between the HTTP
native strings and the following list of Java types:

■ String—Sometimes a string is just a string.
■ boolean/Boolean—true and false strings can be converted to both primitive

and object versions of Boolean.
■ char/Character—Primitive or object.
■ int/Integer, float/Float, long/Long, double/Double—Primitives or objects.
■ Date—String version will be in SHORT format of current Locale (for exam-

ple, 12/10/97).
■ array—Each string element must be convertible to the array’s type.
■ List—Populated with Strings by default.
■ Map—Populated with Strings by default.

When the framework locates the Java property targeted by a given OGNL expression,
it’ll look for a converter for that type. If that type is in the preceding list, you don’t
need to do anything but sit back and receive the data.

 In order to utilize the built-in type conversion, you just need to build an OGNL
expression that targets a property on the ValueStack. The OGNL expression will
either be the name of your form field, under which the parameter will be submitted in
the HTTP request, or it’ll be somewhere in your view-layer tags, such as one of the
Struts 2 JSP tags. Again, our current discussion will focus on the data’s entry into the
framework as request parameters. Chapter 6 will focus on the tag point of view. How-
ever, this is mostly a matter of convenience; OGNL serves the same functional roles at
both ends of the request processing—its expression language navigates our object
graph to locate the specified property, and the type converters manage the data type

109Built-in type converters
translations between the string-based HTTP world and the strictly typed Java world.
Data in, data out? It doesn’t matter. The type conversion and OGNL will be the same.

5.3.2 Mapping form field names to properties with OGNL expressions

Hooking up your Java properties to your form field names to facilitate the automatic
transfer and conversion of request parameters is a two-step process. First, you need to
write the OGNL expressions for the name attributes of your form fields. Second, you
need to create the properties that’ll receive the data on the Java side. You could do
these in reverse order; it doesn’t matter. We’ll go through each of the built-in conver-
sions in the order from the preceding bulleted list, showing how to set up both sides
of the equation.
PRIMITIVES AND WRAPPER CLASSES

Because the built-in conversions to Java primitives and wrapper classes, such as Boolean
and Double, are simple, we provide a single example to demonstrate them. We won’t
show every primitive or wrapper type; they all work the same way. Let’s start by examining
the JSP-side OGNL. Listing 5.1 shows the chapter 5 version of our Struts 2 Portfolio’s reg-
istration form, from Registration.jsp.

<h4>Complete and submit the form to create your own portfolio.</h4>
<s:form action="Register">
 <s:textfield name="user.username" label="Username"/>
 <s:password name="user.password" label="Password"/>
 <s:textfield name="user.portfolioName" label="Enter a name "/>
 <s:textfield name="user.age" label="Enter your age as a double "/>
 <s:textfield name="user.birthday" label="Enter birthday. (mm/dd/yy)"/>
 <s:submit/>
</s:form>]

This is nothing new. But now that you know that each input field name is actually an
OGNL expression, you’ll see a lot deeper into this seemingly simple form markup.
Recall that our OGNL expressions resolve against the ValueStack, and that our action
object will be automatically placed there when request processing starts. In this case,
our Register action uses a JavaBeans property, user, backed directly with our User
domain object. The following snippet, from our chapter 5 version of Register.java,
shows the JavaBeans property that exposes our User object:

private User user;

public User getUser() {
 return user;
}

public void setUser(User user) {
 this.user = user;
}

If you want, you can see the full source for Register.java by looking at the sample appli-
cation, but it’s nothing new. The only thing important to our current discussion is the

Listing 5.1 OGNL expressions that target specific properties on the ValueStack

110 CHAPTER 5 Data transfer: OGNL and type conversion
exposure of the user object as a JavaBeans property. Since the type of this property is
our User class, let’s look at that class to see what properties it exposes. Listing 5.2
shows the full listing of the User bean.

public class User {

 private String username;
 private String password;
 private String portfolioName;
 private Double age;
 private Date birthday;

 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password = password;
 }
 public String getPortfolioName() {
 return portfolioName;
 }
 public void setPortfolioName(String portfolioName) {
 this.portfolioName = portfolioName;
 }
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;
 }
 public Double getAge() {
 return age;
 }
 public void setAge(Double age) {
 this.age = age;
 }
 public Date getBirthday() {
 return birthday;
 }
 public void setBirthday(Date birthday) {
 this.birthday = birthday;
 }
}

As you can see, the action just exposes a bunch of JavaBeans properties to carry data.
Let’s put them to use. Go ahead and test the registration out. Click the Create an
Account link from the chapter 5 version of the Struts 2 Portfolio application. The
request comes into the framework with a map of name/value pairs that associate the
name from the form input field with the string value entered. The name is an OGNL
expression. This expression is used to locate the target property on the ValueStack.
In the case of the Register action, the action itself is on top of the stack and an OGNL

Listing 5.2 The JavaBeans properties targeted by the OGNL expressions in Listing 5.1

111Built-in type converters
expression such as user.birthday finds the user property on the action, then finds
the birthday property on that user object. In Java, this becomes the following snippet:

getUser().getBirthday();

OGNL sees that the birthday property is of Java type Date. It then locates the string-to-
Date converter, converts the value, and sets it on the property. All of the simple object
types and primitives are just this easy. If the incoming string value doesn’t represent a
valid instance of the primitive or type, then a conversion exception is thrown. Note
the difference between type conversion and validation, and thus the difference
between a type conversion error and a validation error. Validation code is about vali-
dating the data as valid instances of the data types from the perspective of the business
logic of the action; this occurs via the validation interceptor or the workflow inter-
ceptor’s invocation of the validate() method. Conversion problems occur when try-
ing to bind the HTTP string values to their Java types; this occurs, for instance, when
the params interceptor transfers the request data.

 Conversion errors result in the user being returned to the input page, similar to
validation errors. Normally, a default error message will inform the user that the string
value he submitted cannot be converted to the Java type targeted by the OGNL. You
can customize the error reporting done in the face of type conversion problems, but
we’ll save that for later in the book. In chapter 11, we’ll learn how to customize the
conversion exception handling and the error messages shown to the user when such
conversion errors arise.

 Now that we’ve seen how to map your incoming data to Java primitives and their
wrapper classes, let’s see what Struts 2 can do to automatically handle various multi-
valued request parameters.
HANDLING MULTIVALUED REQUEST PARAMETERS

As you probably know, multiple parameter values can be mapped to a single parame-
ter name in the incoming request. There are a variety of ways for a form to submit
multiple values under a single parameter name. There are also many ways to map
these to Java-side types, implying a variety of ways to wield our OGNL. In the coming
sections, we’ll cover the ways you can handle this.

 Struts 2 provides rich support for transferring multivalued request parameters to a
variety of collection-oriented data types on the Java side, ranging from arrays to actual
Collections. In the interest of being semi-exhaustive, we won’t attempt to integrate
the following examples into the functional soul of the Struts 2 Portfolio. Rather, you’ll
find that a portion of the chapter 5 version of the sample application has been specifi-
cally dedicated to demonstrating the various techniques shown in the coming pages.

 For each of these examples, we’ll reuse a single action object, the DataTransferTest.
From the perspective of data transfer and type conversion, action objects need only
expose the properties that’ll receive the data. The DataTransferTest exposes all of the
properties for the examples in this chapter. We did this to consolidate the various per-
mutations of data transfer into a convenient point of reference. But each example
is mapped in the chapterFive.xml file as a distinct Struts 2 action component, which is

112 CHAPTER 5 Data transfer: OGNL and type conversion
perfectly valid. Note the semantic difference between a Struts 2 action component and
a Java class that provides an action implementation. We can, and do, reuse a single class
for multiple actions.

 These examples demonstrate how to set up the data transfer and type conversion.
Our action will do little more than serve as a data holder for these examples. Forms
will submit request data, the framework will transfer that data to the properties
exposed on the action, the action will do nothing but forward to the success result,
and that result will display the data by pulling it off of the action with Struts 2 tags.
This should serve as a clean reference that’ll make all the variations on data transfer
and type conversion crystal clear. We encourage you to use this portion of the sample
application as a reference for proper OGNL-to-Java property mapping.

 Now, let’s see how to have Struts 2 automatically transfer multiple values to array-
backed properties.
ARRAYS

Struts 2 provides support for converting data to Java arrays. If you’ve worked with
array-backed properties, also known as indexed JavaBeans properties, you’ll appreciate
the ease with which Struts 2 handles these properties. Most of these improvements
come from the OGNL expression language’s support for navigating to such properties.
You can see the array data transfer in action by clicking the array data transfer link on
the chapter 5 home page. Listing 5.3 shows the form from ArraysDataTransferTest.jsp
that submits data targeted at array properties.

<s:form action="ArraysDataTransferTest">
 <s:textfield name="ages" label="Ages"/>
 <s:textfield name="ages" label="Ages"/>
 <s:textfield name="ages" label="Ages"/>

 <s:textfield name="names[0]" label="names"/>
 <s:textfield name="names[1]" label="names"/>
 <s:textfield name="names[2]" label="names"/>

 <s:submit/>
</s:form>

On the OGNL expression side, you just have to know how to write an expression that
can navigate to an array property on a Java object. The form shown in listing 5.3 sub-
mits data to two different array properties. The first array property, named ages, will
receive the data from the first three fields B. The second array property, names, will
receive the data from the second three fields C. These properties, if the transfer is to
work, must exist on the ValueStack. For this example, we’ll expose the array proper-
ties on our action object, which we’ll see momentarily.

 This form demonstrates two syntaxes for targeting arrays with OGNL expressions.
To understand what’ll happen, we need to refresh our memories of the HTTP and
Servlet API details that will occur as a result of this form being submitted. The first
thing to remember is that the name of each input field, as far as HTTP and the Servlet

Listing 5.3 Targeting array properties for data transfer

These target
the ages
property

B

These target
the names
property

C

113Built-in type converters
API are concerned, is just a string name. These layers know nothing about OGNL. With
that in mind, it’s time for a pop quiz. How many request parameters will be submitted
by this form? The correct answer is four. The first three fields all have the same name;
this’ll result in a single request parameter with three values, perfectly valid in HTTP.
On the other hand, the second set of fields will each come in as a distinct parameter
with a single value mapped to it. When this request hits the framework, four request
parameters will exist, as follows:

Now let’s look at the implementation of the properties that’ll receive this data. These
properties will be exposed on our action object. Listing 5.4 shows the target proper-
ties, each of type Array, from DataTransferTest.java.

private Double[] ages ;

public Double[] getAges() {
 return ages;
}

public void setAges(Double[] ages) {
 this.ages = ages;
}

private String[] names = new String[10];

public String[] getNames() {
 return names;
}

public void setNames(String[] names) {
 this.names = names;
}

First, note that we don’t need indexed getters and setters for these properties. OGNL
handles all the indexing details. We just need to expose the array itself via a getter and
setter pair. Now, consider what happens when the framework transfers the ages
parameter. First, it resolves the property and finds the ages property on the action, as
seen in listing 5.4. The value of the ages parameter in the request is an array of three
strings. Since the ages property on the action is also an array, this makes the data
transfer simple. OGNL creates a new array and sets it on the property. But OGNL does

Parameter name Parameter value(s)

ages 12, 33, 102

names[0] Chad

names[1] Don

names[2] Beth

Listing 5.4 Array properties targeted by OGNL input field names

114 CHAPTER 5 Data transfer: OGNL and type conversion
even more for us. In this case, the ages property is an array of element type Double.
OGNL sees this and automatically runs its type conversion for each element of the
array. Very nice! Also note that, since the framework is creating the array for us in
these cases, we don’t need to initialize the array ourselves. For this example, we used
multiple text input fields with the same name to submit multiple values under the
ages parameter. In real applications, parameters with multiple values mapped to them
are frequently the result of input fields that allow selection of multiple values, such as
a select box.

 Now let’s look at how the framework handles the three individual parameters with
names that look like array indexing. As far as the Servlet API is concerned, these are
just three unique names. We can see that they seem to refer to a single array, and pro-
vide indexing into that single array, but the Servlet API sees only unique strings. How-
ever, when the framework hands these names to OGNL, they’re accurately interpreted
as references to specific elements in a specific array. These parameters are set, one at a
time, into the elements of the names array. We should make a couple of comments
before moving on. First, using this method requires initializing the array. This is neces-
sary because the OGNL expressions are targeting individual elements of an existing
array; the previous method was setting the entire array, so it didn’t require an existing
array. Second, we still don’t need indexed getters and setters!

 With all of this in place, the framework will automatically transfer and convert the
request parameters onto our action’s properties. The action, in these examples, does
nothing but forward to the result page, ArraysDataTransferSuccess.jsp. The following
snippet shows the code from this page:

<h5>Congratulations! You have transferred and converted data to and from
 Arrays.</h5>
<h3>Age number 3 = <s:property value="ages[2]" /> </h3>
<h3>Name number 3 = <s:property value="names[2]" /> </h3>

We don’t want to say too much about the Struts 2 tags now; that’s the topic of the next
chapter. But it should be easy enough to understand that this result page pulls some
data off the action’s array properties just to prove that everything’s working. The rest
of the examples in this chapter will follow a similar pattern of using a result page to
pull the data off the action just to verify that the transfer and conversion is working.
We may not show this code from the result pages every time though.

 Many developers prefer to work with some of the more feature-rich classes from
the Java Collections API. Next, we’ll look at working with Lists.
LISTS

In a fashion similar to array properties, Struts 2 supports automatically converting sets
of request parameters into properties of various Collection types, such as Lists. Using
Lists is almost like using arrays. The only difference is that Lists, prior to Java 5, don’t
support type specification. This typeless nature of Lists has an important consequence
for the type conversion mechanisms of Struts 2. When the framework works with arrays,
the type conversion can easily find the element type by inspecting the property itself, as
arrays are always typed in Java. With Lists, there’s no way to automatically discover this.

115Built-in type converters
 We have two choices when working with Lists: either specify the type for our ele-
ments or accept the default type. By default, the framework will convert request
parameters into Strings and populate the List property with those Strings. Our first
example will accept this default behavior. The mechanics of using Lists are almost
identical to using arrays. The following snippet shows the form field markup from
ListsDataTransferTest.jsp that’ll target some List properties.

<s:textfield name="middleNames[0]" label="middleNames"/>
<s:textfield name="middleNames[1]" label="middleNames"/>
<s:textfield name="middleNames[2]" label="middleNames"/>

<s:textfield name="lastNames" label="lastNames"/>
<s:textfield name="lastNames" label="lastNames"/>
<s:textfield name="lastNames" label="lastNames"/>

As you can see, we again show two different notations for referencing target proper-
ties with OGNL expressions. These are the same notations as used with arrays. The
only difference is in the Java side. In Java, the List properties are much like the array
properties except the type is different. Listing 5.5 shows the target List properties
from DataTransferTest.java.

private List lastNames ;

public List getLastNames()

{
 return lastNames;
}
public void setLastNames (List lastNames) {
 this.lastNames=lastNames;
}

private List middleNames ;

public List getMiddleNames()
{
 return middleNames;
}
public void setMiddleNames (List middleNames) {
 this.middleNames=middleNames;
}

These look much like the array properties, except the type is List. There are a couple
of things to note. First, you don’t have to preinitialize any of the Lists, even the ones
that’ll receive data from the indexed OGNL notation. Second, without type specifica-
tion, the elements of these Lists will all be String objects. If that works for your
requirements, great. In our case, our data is first and last names, so this is fine. But if
you name your field birthdays, don’t expect the framework to convert to Dates. It’ll
just make a List of Strings out of your incoming birthday strings. If you want to see
this example in action, check out the List Data Transfer Test link on the chapter 5
home page. Again, the result page will pull some values out of the List properties on

Listing 5.5 Using List properties to receive the data

These target the
middleNames
property

These target
the lastNames
property

116 CHAPTER 5 Data transfer: OGNL and type conversion
the action just to prove everything is working as advertised. If you want to look at the
JSP to see the tags, check out ListsDataTransferSuccess.jsp.

 Sometimes, you’ll want to specify a type for your List elements rather than just
working with Strings. No problem. We just need to inform OGNL of the element type
we want for a given property. This is done with a simple properties file. The OGNL
type conversion uses properties files for several things. Later in the chapter, when we
write our own type converters, we’ll see another use for these files. For now, we’re just
going to make a properties file that tells OGNL what type of element we want in our
List property. In order to specify element types for properties on our action object,
we create a file according to the naming convention shown in figure 5.2.

We then place this file next to the class in your Java package. We’re going to create a
file called DataTransferTest-conversion.properties and place it next to our DataTrans-
ferTest.java class in the manning.chapterFive package. If you check out the sample
application, you’ll see that this is the case. Figure 5.3 provides an anatomical dissec-
tion of the single property from that file.

 This brief line, Element-weights=java.lang.Double, is all the type conversion
process needs to add typed elements to our List. Now, our List property will work
just like the array property; each individual element will be converted to a Double.
Here’s the markup from ListsDataTransferTest.jsp for our new weights property:

<s:textfield name="weights[0]" label="weights"/>
<s:textfield name="weights[1]" label="weights"/>
<s:textfield name="weights[2]" label="weights"/>

Name of Action Class Properties File Extension

File Name Suffix for Type Conversion Figure 5.2 Naming convention for
type conversion properties files

Element Prefix Type of the Elements

Name of List-backed Property Figure 5.3 Specifying the type
for a List-backed property

117Built-in type converters
Note that we could’ve used the nonindexed OGNL notation. You may have a prefer-
ence, but it doesn’t matter to the framework. On the Java side, the property on the
action object doesn’t change. Here’s the implementation of the List property from
DataTransferTest.java.

private List weights;

public List getWeights() {
 return weights;
}

public void setWeights(List weight) {
 this.weights = weight;
}

You might’ve noticed that it’s no different from the previous untyped version. This
shouldn’t be too surprising. Since the List is typeless from a Java point of view, we
can’t see that the elements are Doubles unless we try to cast them at runtime. Unless
you want to modify the source code and test that the elements are actually Doubles,
you’ll have to take our word for it. Of course, when you use this technique in a real
application, whose business logic will depend on those elements being Doubles, you’ll
know soon enough that they are, in fact, Doubles. Note that, if you want to see this in
action, it’s right there on the same page as the previous example.

NOTE Java 5 generics and Type conversion—If you have the pleasure of using Java 5
or higher, we highly recommend using generics to type your collections
and maps. Besides being a recommended best practice, the Struts 2 type
conversion mechanism can use generics-based typing to learn the correct
target type for the conversions. If you do this, you don’t have to use the
properties file configuration. This is a big bonus for Java 5 users. Go Tiger!

Before moving on, we need to make one warning regarding this type specification
process. When specifying the type for Lists and other Collections, take care not to
preinitialize your List. If you do, you’ll get an error. While untyped Lists will work
whether you initialize your List or not, with type-specific List conversion, you can’t
preinitialize your List.

Don’t preinitialize your List when using the typed element conversion
mechanism supported by the ClassName-conversion.properties file.

Now we want to show a full-powered example. This example will use a List property
that specifies the Struts 2 Portfolio’s User class as its element type. This allows us to take
advantage of the convenience of using Lists with the convenience of using our domain
objects at the same time. Also, we want to prove to you that the type specification is actu-
ally working. Here’s the markup, again from ListsDataTransferTest.jsp, that accesses
our List of Users:

<s:textfield name="users[0].username" label="Usernames"/>
<s:textfield name="users[1].username" label="Usernames"/>
<s:textfield name="users[2].username" label="Usernames"/>

WARNING

118 CHAPTER 5 Data transfer: OGNL and type conversion
As you can see, these field names reference the username property on a User element
in the users list, which is a property on our action. As before, from the property itself,
which comes from DataTransferTest.java, we can discern nothing about the type of the
elements it’ll contain. Here’s the property from our DataTransferTest action class:

private List users ;

public List getUsers()
{
 return users;
}
public void setUsers (List users) {
 this.users=users;
}

In order to make the framework populate our List with actual User objects, we once
again employ the aid of the conversion properties file. The following line in
DataTransferTest-conversion.properties specifies that our list-backed property will
contain objects of type User.

Element_users=manning.utils.User

This is cool stuff. In case you want to verify the type-specific conversion, just check the
tags in the ListsDataTransferSuccess.jsp page. They’re reaching back into the List to
retrieve usernames that simply wouldn’t exist if the elements weren’t of type User. If
you’ve done much work with moving data around in older frameworks, we know you’ll
be able to appreciate the amount of work that something like this will save you.

 Next, we’ll point out a use case that you might not immediately infer from the pre-
vious examples. Let’s assume that you have a List for which you specify a User element
type. Now let’s say that you expect an unpredictable amount of element data from the
request. This could be due to something like a multiple select box. In this case, you sim-
ply combine the indexless naming convention with the deeper property reference.
Note the following set of imaginary (they’re not in the sample code) text fields:

<s:textfield name="users.username" label="Usernames"/>
<s:textfield name="users.username" label="Usernames"/>
<s:textfield name="users.username" label="Usernames"/>

This will submit a set of three username strings under the single parameter name of
users.username. When OGNL resolves this expression, it’ll first locate the users prop-
erty. Let’s assume this is the same users property as in the previous example. This
means that users is a List for which the element type has been specified as User. This
information allows OGNL to use this single parameter name, with its multiple values,
to create a List and create User elements for it, setting the username property on
each of those User objects.

 That should be enough to keep you working with Lists for some time to come.
Now we’ll look at Maps, in case you need to use something other than a numeric index
to reference your data.

119Built-in type converters
MAPS

The last out-of-the-box conversion we’ll cover is conversion to Maps. Similar to its sup-
port for Lists, Struts 2 also supports automatic conversion of a set of values from the
HTTP request into a Map property. Maps associate their values with keys rather than
indexes. This keyed nature has a couple of implications for the Struts 2 type conver-
sion process. First, the OGNL expression syntax for referencing them is different than
for Lists because it has to provide a key rather than a numeric index. The second
implication involves specifying types for the Map properties. We’ve already seen that we
can specify a type for our List elements. You can do this with Maps also. With Maps,
however, you can also specify a type for the key object. As you might expect, both the
Map element and key will default to a String if you don’t specify a type. We’ll explore
all of this in the examples of this section. Again, the examples can be seen in action on
the chapter 5 home page.

 We’ll start with a simple version of using a Map property to receive your data from
the request. Here’s the form markup from MapsDataTransferTest.jsp:

<s:textfield name="maidenNames.mary" label="Maiden Name"/>
<s:textfield name="maidenNames.jane" label="Maiden Name"/>
<s:textfield name="maidenNames.hellen" label="Maiden Name"/>

<s:textfield name="maidenNames['beth']" label="Maiden Name"/>
<s:textfield name="maidenNames['sharon']" label="Maiden Name"/>
<s:textfield name="maidenNames['martha']" label="Maiden Name"/>

Again, the main difference between this and the List property version is that we now
need to specify a key value, a string in this case. We’re using first names as keys to the
incoming maiden names. As you can see, OGNL provides a couple of syntax options
for specifying the key. First, you can use a simple, if somewhat misleading, property
notation. Second, you can use a bracketed syntax that makes the fact that the property
is a Map more evident. It doesn’t matter which you use, though you’ll probably find
one or the other more flexible in certain situations. Just to prove that the syntax
doesn’t matter, all of our fields in this example will submit to the same property, a Map
going by the name of maidenNames. Since we haven’t specified a type for this Map with
a type conversion properties file, all of the values will be converted into elements of
type String. Similarly, our keys will also be treated as Strings.

 With the OGNL expressions in place in the form elements, we just need a property
on the Java side to receive the data. In this case, we have a Map-backed property imple-
mented on the DataTransferTest.java action. Here’s the property that receives the
data from the form:

private Map maidenNames ;

public Map getMaidenNames()
{
 return maidenNames;
}

These
target the
maiden-
Names
property

120 CHAPTER 5 Data transfer: OGNL and type conversion
public void setMaidenNames (Map maidenNames) {
 this.maidenNames=maidenNames;
}

Nothing special. If you want to see it in action, click Maps Data Transfer Test on the
chapter 5 home page. You’ll see that the MapsDataTransferTest.jsp page is successfully
pulling some data out of the maidenNames property.

 Now let’s see an example where we specify the type for our Map elements. First, we
just need to add a line to our DataTransferTest-conversion.properties file. Here’s the
line:

Element_myUsers=manning.utils.User

Again, this property simply specifies that the myUsers property, found on the
DataTransferTest action, should be populated with elements of type User. How easy
is that? Next, we need some form markup to submit our data to the myUsers property:

<s:textfield name="myUsers['chad'].username" label="Usernames"/>
<s:textfield name="myUsers['jimmy'].username" label="Usernames"/>
<s:textfield name="myUsers['elephant'].username" label="Usernames"/>

<s:textfield name="myUsers.chad.birthday" label="birthday"/>
<s:textfield name="myUsers.jimmy.birthday" label="birthday"/>
<s:textfield name="myUsers.elephant.birthday" label="birthday"/>

This form submits the data to a Map property named myUsers. Since we’ve specified a
User element type for that map, we can use OGNL syntax to navigate down to proper-
ties, such as birthday, that we know will be present on the Map elements. Moreover,
the conversion of our birthday string to a Java Date type will occur automatically even
at this depth.

 Just to make sure, we’ll check the myUsers property on DataTransferTest.java to
make sure it’s still simple:

private Map myUsers ;

public Map getMyUsers()
{
 return myUsers;
}
public void setMyUsers (Map myUsers) {
 this.myUsers=myUsers;
}

That’s pretty simple. Again, the Java code is still type unaware. You’ll still have to cast
those elements to Users if you access them in your action logic, but, as far as the OGNL
references are concerned, both from the input-side form fields and from the result-
side tags, you can take their type for granted. We should point out another cool fea-
ture while we’re here. We’ve already noted that you don’t have to initialize your Maps
and Lists. The framework will create them for you. You might have also noticed, in
this example, that the framework is creating the User objects for you as well. Basically,
the framework will create all objects it needs as it tunnels down to the level of the
birthday property on the User.

121Built-in type converters
TIP The framework will automatically instantiate any intermediate properties
in deep OGNL expressions if it finds them to be null when attempting to
navigate to the target property. This ability to resolve null property access
depends on the existence of a no-argument constructor for each prop-
erty. So make sure that your classes have no-argument constructors.

In addition to specifying a type for the elements, you can specify a type for the key
objects when using Map properties. Java Maps support all objects as keys. Just as with your
values, OGNL will treat the name of your parameter as a string that it should attempt to
convert to the type you specify. Let’s say we want to use Integers as the keys for the
entries in our Map property, perhaps so we can order the values. Let’s make a version of
myUsers that’ll use Integers as keys. We’ll call it myOrderedUsers. First, we add the fol-
lowing two lines to our DataTransferTest-conversion.properties file:

Key_myOrderedUsers=java.lang.Integer
Element_myOrderedUsers=manning.utils.User

These lines specify the key and element types for our myOrderedUsers Map property.
As they say, we’ve been through most of this before, so we’ll go fast. Here’s the form
markup that submits the data:

<s:textfield name="myOrderedUsers['1'].birthday" label="birthday"/>
<s:textfield name="myOrderedUsers['2'].birthday" label="birthday"/>
<s:textfield name="myOrderedUsers['3'].birthday" label="birthday"/>

Here we use a key value that is a valid Integer. If we didn’t, we’d get a conversion
error on the key when the framework tries to turn the string into the Integer type.
This is no different from the myUsers example, except the keys are now Integer
objects rather than Strings. Now let’s look at the property that receives this data.

private Map myOrderedUsers ;

public Map getMyOrderedUsers()
{
 return myOrderedUsers;
}
public void setMyOrderedUsers (Map myOrderedUsers) {
 this.myOrderedUsers=myOrderedUsers;
}

As you can see, the Java property looks no different. It’s still just a Map. The only
important thing is that the name matches the name used in the OGNL expression. As
we noted in the section on lists, if you’re using Java 5 or higher, you can use generics
to type your collections and maps, and Struts 2 will pick up on this during type conver-
sion, making the properties file configuration unnecessary.

 That does it for the built-in type conversions. We’ve seen a lot of ways to automati-
cally transfer and convert your data. These methods provide a lot of flexibility. The
variety of options can seem overwhelming at first. In the end, it’s a simple process. You
make a property to receive the data, then you write OGNL expressions that point to
that property. Remember, you can consult the sample code for this chapter as a refer-
ence of the various OGNL-to-Java type mapping techniques.

122 CHAPTER 5 Data transfer: OGNL and type conversion
 The next section takes on an advanced topic. In case you want the framework to
convert to some type that it doesn’t support out of the box, you can write your own
custom converters. It’s a simple process, as you’ll see.

5.4 Customizing type conversion
While the built-in type conversions are powerful and full featured, sometimes you
might want to write your own type converter. You can, if you desire, specify a conver-
sion logic for translating any string to any Java type. The only thing you need to do is
create the string syntax and the Java class, then link them together with a converter.
The possibilities are limitless. This is an advanced topic, but the implementation is
simple and will provide insight that might help debugging even if you never need to
write your own type converter.

 In this section, we’ll implement a trivial type converter that converts between strings
and a simple Circle class. This means that we’ll be able to specify a string syntax that
represents a Circle object. The string syntax will represent the circle objects in the text-
based HTTP world, and the Circle class will represent the same objects in the Java world.
Our converter will automatically convert between
the two just as the built-in converters handle chang-
ing the string "123.4" into a Java Double. The syn-
tax you choose for your strings is entirely arbitrary.
For our demonstration we’ll specify a string syntax
as shown on the right.

 If a request parameter comes in with this syntax, the framework will automatically
convert it to a Circle object. In this section, we’ll see how to implement the converter
code and how to tell the framework to use our converter.

5.4.1 Implementing a type converter

As we’ve explained, type conversion is a part of OGNL. Due to this, all type converters
must implement the ognl.TypeConverter interface. Generally, OGNL type converters
can convert between any two data types. In the web application domain, we have a nar-
rower set of requirements. All conversions are made between Java types and HTTP
strings. For instance, we convert from Strings to Doubles, and from Doubles to
Strings. Or, in our custom case, we’ll convert from Strings to Circles, and from
Circles to Strings.

 Taking advantage of this narrowing of the conversion use case, Struts 2 provides a
convenience base class for developers to use when writing their own type converters.
The org.apache.struts2.util.StrutsTypeConverter class is provided by the frame-
work as a convenient extension point for custom type conversion. The following snip-
pet lists the abstract methods of this class that you must implement:

public abstract Object convertFromString(Map context, String[] values,
 Class toClass);

public abstract String convertToString(Map context, Object o);

Syntax Example

C:rinteger C:r10

123Customizing type conversion
When you write a custom converter, as we’ll do shortly, you merely extend this base
class and fill in these two methods with your own logic. This is a straightforward pro-
cess, as we’ve noted. The only thing that might not be intuitive in the preceding signa-
tures is the fact that the string that comes into your conversion is actually an array of
strings. This is because all request parameter values are actually arrays of string values.
It’s possible to write converters that can work with multiple values, but, for the pur-
poses of this book, we’ll stick to a simple case of a single parameter value.

5.4.2 Converting between Strings and Circles

The logic that we put in the conversion methods will largely consist of string parsing
and object creation. It’s not rocket science. As with many of the Struts 2 advanced fea-
tures, the stroke of genius will be when you decide that a given use case can be handled
elegantly by something like a custom type converter. The implementation itself will
take much less brainpower. Listing 5.6 shows our manning.utils.CircleTypeConverter.
java file.

public class CircleTypeConverter extends StrutsTypeConverter {

 public Object convertFromString(Map context, String[] values,
 Class toClass) {

 String userString = values[0];
 Circle newCircle = parseCircle (userString);
 return newCircle;

 }

 public String convertToString(Map context, Object o) {

 Circle circle = (Circle) o;
 String userString = "C:r" + circle.getRadius();
 return userString;

 }

 private Circle parseCircle(String userString)
 throws TypeConversionException
 {
 Circle circle = null;
 int radiusIndex = userString.indexOf('r') + 1;

 if (!userString.startsWith("C:r"))
 throw new TypeConversionException ("Invalid Syntax");
 int radius;
 try {
 radius = Integer.parseInt(userString.substring(radiusIndex));
 }catch (NumberFormatException e) {
 throw new TypeConversionException ("Invalid Value for Radius"); }

 circle = new Circle();
 circle.setRadius(radius);
 return circle;

 }
}

Listing 5.6 The CircleTypeConverter provides custom type conversion.

Convert String
to Circle

Extends
StrutsTypeConverter

Convert Circle
to String

124 CHAPTER 5 Data transfer: OGNL and type conversion
You should focus on the first two methods. We include the parseCircle() method
here to make sure you realize nothing sneaky is going on. The first method, convert-
FromString(), will be used to convert the request parameter into a Circle object.
This is the same thing that has been happening behind the scenes when we’ve been
taking advantage of the built-in type conversions that come with Struts 2 by default. All
this method does is parse the string representation of a Circle and create an actual
Circle object from it. So much for the mystique of data binding. Going back from
a Circle object to a string is equally straightforward. We just take the bits of data from
the Circle object and build the string according to the syntax we specified earlier.

5.4.3 Configuring the framework to use our converter

Now that we have our converter built, we have to let the framework know when and
where it should be used. We have two choices here. We can configure our converter to
be used local to a given action or globally. If we configure our converter local to an
action, we just tell the framework to use the converter when handling a specific Circle
property of a specific action. If we configure the converter to be used globally, it’ll be
used every time a Circle property is set or retrieved through OGNL anywhere in the
application. Let’s look at how each of these configurations is handled.
PROPERTY-SPECIFIC

The first choice is to specify that this converter should be used for converting a given
property on a given action class. We’ve already worked with the configuration file
used for configuring aspects of type conversion for a specific action. We used the
ActionName-conversion.properties file when we specified types for our Collection
property’s elements in the earlier Map and List examples. Now we’ll use the same file
to specify our custom converter for a specific Circle property.

 We’ve created a specific action to demonstrate the custom type conversion. This
action is manning.chapterFive.CustomConverterTest. The action does little. Its
most important characteristic for our purposes is that it exposes a JavaBeans property
with type Circle, as seen in the following snippet:

private Circle circle;

public Circle getCircle() {
 return circle;
}

public void setCircle(Circle circle) {
 this.circle = circle;
}

This action has almost no execution logic. It functions almost exclusively as a carrier
of our untransformed data. For our purposes, we’re only interested in the type con-
version that’ll occur when a request parameter comes into the framework targeting
this property. Here’s the line from CustomConverterTest-conversion.properties that
specifies our custom converter as the converter to use for this property:

 circle=manning.utils.CircleTypeConverter

125Customizing type conversion
This simple line associates a property name, Circle, with a type converter. In this case,
the type converter is our custom type converter. Now, when OGNL wants to set a value
on our Circle property, it’ll use our custom converter. Here’s the form, from Custom-
ConverterTest.jsp, that submits a request parameter targeting that property:

<s:form action="CustomConverterTest">
 <s:textfield name="circle" label='Circle'/>
 <s:submit/>
</s:form>

The name is an OGNL expression that’ll target our property. Since the action object is
on top of the ValueStack and the Circle property is a top-level property on that
action, this OGNL expression is simple. Now let’s try it out. Go to the Custom Con-
verter Test link in the chapter 5 samples. Enter a valid Circle string in the form, as
shown in figure 5.4.

When this form is submitted, this string will go in as a request parameter targeted at our
Circle property. Since this property has our custom converter specified as its converter,
this string will automatically be converted into a Circle object and set on the Circle
property targeted by the parameter name. Figure 5.5 shows the result page, Custom-
ConverterSuccess.jsp, that confirms that everything has worked according to plan.

 Our result page verifies that the conversion has occurred by retrieving the first and
last name from the Circle property, which holds the Circle object created by the
converter. And, just for fun, the result page also tests the reverse conversion by print-
ing the Circle property as a string again.

 While we’re at it, try to enter a string that doesn’t meet our syntax requirements. If
you do, you’ll be automatically returned to the form input page with an error message
informing you that the string you entered was invalid. This useful and powerful mech-
anism is just a part of the framework’s conversion facilities. Tapping into it for your

Figure 5.4 Submitting a string that our custom CircleTypeConverter will convert
into a Java Circle object

Figure 5.5 The result page from our custom conversion test pulls data from the Circle property to
verify that the conversion worked.

126 CHAPTER 5 Data transfer: OGNL and type conversion
custom type converters is easy. To access this functionality, we throw a com. opensym-
phony.xwork2.util.TypeConversionException when there’s a problem with the
conversion. In our case, this exception is thrown by our parseCircle() method.
When we receive the input string value, we do some testing to make sure the string
meets our syntax requirements for a valid representation of a Circle. If it doesn’t, we
throw the exception.
GLOBAL TYPE CONVERTERS

We just saw how to set up a type converter for use with a specific property of a spe-
cific action. We can also specify that our converter be used for all properties of type
Circle. This can be quite useful. The process differs little from our previous exam-
ple, and we’ll go through it quickly without an example. The differences are so
minute, you can alter the sample code yourself if you want some first-hand proof.
Instead of using the ActionClassName-conversion.properties file to configure your
type converter, use xwork-conversion.properties. As you can probably tell, this is just
a global version of the conversion properties. To this file, add a line such as follows:

manning.utils.Circle=manning.utils.CircleTypeConverter

Now, our custom type converter will run every time OGNL sets or gets a value from a
property of the Circle type. By the way, the xwork-conversion.properties file goes on
the classpath, such as in WEB-INF/classes/.

 That wraps up custom type converters. As we promised, the implementation is
easy. Now the challenge, as with custom interceptors, is finding something cool to do
with them. One of the problems is that most of the converters you’ll ever need have
already been provided with the framework. Even if you never make a custom one,
we’re sure that knowing how they work will help in your daily development chores. If
you do come up with a rad type converter, though, don’t keep it a secret. Go to the
Struts 2 community and let them know. We’re all anxious to benefit from your labor!

5.5 Summary
That does it for our treatment of the Struts 2 data transfer and type conversion mech-
anisms. While you can get away with minimal awareness of much of the information in
this chapter, trying to do so will only leave you frustrated and less productive in the
long run, and even in the short run. Let’s review some of the things we learned about
how the framework moves data from one end of the request processing to the other,
all while transparently managing a wide range of type conversions.

 The Object-Graph Navigation Language (OGNL) is tightly integrated into Struts 2
to provide support for data transfer and type conversion. OGNL provides an expres-
sion language that allows developers to map form fields to Java-side properties, and it
also provides type converters that automatically convert from the strings of the request
parameters to the Java types of your properties. The expression language and type
converters also work on the other end of the framework when Struts 2 tags in the view-
layer pages, such as JSPs, pull data out of these Java properties to dynamically render
the view.

127Summary
 We conducted an extensive review of the built-in type converters that come with
the framework. We saw that they pretty much support all primitives and common
wrapper types of the Java language. We also saw that they support a flexible and rich
set of conversions to and from Arrays and Collections. And if that’s not enough, you
can always build your own custom type converters. Thanks to a convenient base class
provided by the framework, implementing a custom converter is easy.

 As we promised at the onset, this chapter started a two-part introduction to OGNL.
This chapter’s efforts focused more on the role that OGNL plays in the framework,
providing a binding between string-based data of the HTTP realm and the strict type
of the Java realm. We showed enough OGNL expression language details to make full
use of the built-in type conversions to such complex property types as Maps and Lists.

 Now, we’re ready to head to the result side of the framework and see how data is
pulled from the model, via tag libraries, and rendered in the view. The tags tend to
take more advantage of the full expression language. Accordingly, in the next few
chapters, which deal specifically with the tags, we’ll spend a lot more time on the
OGNL expression language. On to chapter 6!

Part 3

Building the view:
 tags and results

In part 2, we learned how the core of the framework processes each request.
In particular, we learned how to write actions that contain the logic for each
request, wrap that action logic with a stack of the appropriate interceptors, and
take advantage of the framework’s powerful data transfer and type conversion
mechanisms. Though we’ve been using JSP pages to render simple views for our
actions, we haven’t gone into any of the details of the view layer. We now enter
the part of the book that focuses on the view layer.

 In Struts 2, the MVC view concerns are encapsulated in the result component.
We’ve already become somewhat familiar with the result component even
though we’ve said nothing regarding its details. In fact, actually developing
results will be at least as rare as developing your own interceptors. Most of your
development work will amount to little more than using built-in result types to
hit JSP pages and Velocity templates. The built-in result types will handle the
most common view-layer technologies, so you’ll probably go through a lot of
code before you find yourself writing your own. Nonetheless, we’ll provide a
detailed account of working directly with results in chapter 8.

 For now, we’re going to focus on the Struts 2 tag libraries because, while sec-
ondary to the result component itself, they’re the tools you’ll have in hand for
most of your development efforts. The most common view-layer technologies
are probably JSP, Velocity, and FreeMarker. While each of these has its own tags
or macros, the Struts 2 framework provides a high-level tag API that you can use
on all three rendering platforms. In addition to being a portable tag API, these

Struts 2 tags bring a lot to the table functionally. You’ll find all of the features of any
recently minted tag set, and more.

 The Struts 2 tag libraries are divided into two groups: general-purpose tags and UI
component tags. We’ll start, in chapter 6, with the general-purpose tags. These tags
provide all sorts of things from conditional logic to ValueStack manipulation to i18n
help. We’ll show you how the tags work, including an overview of their syntax and
using OGNL to reference values on the ValueStack. We’ll even include a primer on the
most important parts of the OGNL expression language as used in the context of tags.

 The UI component tags, which we’ll introduce in chapter 7, are perhaps the most
impressive part of the Struts 2 tags. These tags not only generate HTML form fields,
but wrap those fields in layers of functionality that tap into all of the framework’s vari-
ous features. And if you need to customize the HTML output of a given UI-oriented
tag, such as a form tag, you can change its HTML source template and thus change the
way it renders across all uses, enabling reusable customization. The full richness of the
UI components can’t be captured in a couple of sentences, but we think you’ll find
them alluring after reading about them.

Building a view: tags
In this chapter, we’ll start looking at the Struts 2 tag library in detail. We’ll provide a
good reference to the tags and clear examples of their usage. We’ll also finish
exploring the Object-Graph Navigation Language (OGNL). We’ve already seen how
OGNL is used to bind form fields to Java properties, such as those exposed on our
action, to guide the framework’s automatic data transfer mechanism. In chapter 5,
we learned about the type conversion aspects of OGNL in the context of data enter-
ing the framework.

 Now, we’ll focus on the OGNL expression language (EL) in the context of data
exiting the framework through the Struts 2 tag API. While the previous chapter
showed us how to map incoming request parameters to Java properties exposed on
the ValueStack, this chapter will show you how to pull data off of those properties
for the rendering of result pages. We’ll explore the syntax of the OGNL EL and study
the locations from which it can pull data. In particular, we’ll look closely at the
ValueStack and the ActionContext. These objects hold all of the data important to

This chapter covers
■ Working with data tags
■ Controlling flow with control tags
■ Surveying the miscellaneous tags
■ Exploring the OGNL expression language
131

132 CHAPTER 6 Building a view: tags
processing a given request, including your action object. While it may be possible to
blissfully ignore their existence during much of your development, we think the bene-
fits are too high not to spend a few minutes getting to know them.

 But that won’t take long, and we’ll make the most of the remainder of the chapter.
After we demystify these two obscure repositories, we’ll provide a reference-style cata-
log of the general-use tags in the Struts 2 tag API. These powerful new tags allow you
to wield the OGNL expression language to feed them with values. But tags are tags,
and they also won’t take long to cover. So, after covering the tags, we’ll provide a con-
cise primer to the advanced features of the OGNL expression language. In the end,
you’ll wield your OGNL expressions confidently as you navigate through the densest of
object graphs to pull data into the dynamic rendering of your view pages. Bon appétit.

 First, we need to take a moment to make sure you understand where the framework
holds all the data you might want to access from the tags. This usage of globally acces-
sible storage areas may not be familiar to developers coming from other frameworks,
including Struts 1. In the next section, we’ll take care of these crucial introductions.

6.1 Getting started
Before we talk about the details of how Struts 2 tags can help you dynamically pipe data
into the rendering of your pages, let’s talk about where that data comes from. While we
focused on the data moving into the framework in the previous chapter, we’ll now focus
on the data leaving the framework. When a request hits the framework, one of the first
things Struts 2 does is create the objects that’ll store all the important data for
the request. If we’re talking about your application’s domain-specific data, which is the
data that you’ll most frequently access with your tags, it’ll be stored in the ValueStack.
But processing a request requires more than just your application’s domain data.
Other, more infrastructural, data must be stored also. All of this data, along with the
ValueStack itself, is stored in something called the ActionContext.

6.1.1 The ActionContext and OGNL

In the previous chapter, we used OGNL expressions to bind form field names to spe-
cific property locations on objects such as our action object. We already know that our
action object is placed on something called the ValueStack and that the OGNL
expressions target properties on that stack object. In reality, OGNL expressions can
resolve against any of a set of objects. The ValueStack is just one of these objects, the
default one. This wider set of objects against which OGNL expressions can choose to
resolve is called the ActionContext. We’ll now see how OGNL chooses which object to
resolve against, as well as what other objects are available for accessing with OGNL.

TIP The ActionContext contains all of the data available to the frame-
work’s processing of the request, including things ranging from applica-
tion data to session- or application-scoped maps. All of your application-
specific data, such as properties exposed on your action, will be held in
the ValueStack, one of the objects in the ActionContext.

133Getting started
All OGNL expressions must resolve against one of the objects con-
tained in the ActionContext. By default, the ValueStack will be the one
chosen for OGNL resolution, but you can specifically name one of the
others, such as the session map, if you like.

The ActionContext is a key behind-the-scenes player in the Struts 2 framework. If
you’ve worked with other web application frameworks, particularly Struts 1, then you
might be asking, “Why do I need an ActionContext? Why have you made my life more
complicated?” We’ve been trying to emphasize that the Struts 2 framework strives
toward a clean MVC implementation. The ActionContext helps clean things up by
providing the notion of a context for the execution of an action. By context we mean a
simple container for all the important data and resources that surround the execution
of a given action. A good example of the type of data we’re talking about is the map of
parameters from the request, or a map of session attributes from the Servlet Con-
tainer. In Struts 1, most of these resources were accessed via the Servlet stuff handed
into the execution of every action. We’ve already seen how clean the Struts 2 action
object has become; it has no parameters in its method signature to tie it to any APIs
that might have little to do with its task. So, really, your life is much less complicated,
though at first it might not seem so.

 Before we show you all of the specific things that the ActionContext holds, we need
to discuss OGNL integration. As we’ve seen, OGNL expressions target properties on spe-
cific objects. The resolution of each OGNL expression requires a root object against
which resolution of references will begin. Consider the following OGNL expression:

user.account.balance

Here we’re targeting the balance property on the account object on the user object.
But where’s the user object located? We must define an initial object upon which we’ll
locate the user object itself. Every time you use an OGNL expression, you need to indi-
cate which object the expression should start its resolution against. In Struts 2, each
OGNL expression must choose its initial object from those contained in the Action-
Context. Figure 6.1 shows the ActionContext and the objects it contains, any of which
you can point your OGNL resolution toward.

 As you can see, the ActionContext is full of juicy treasures. The most important of
these is the ValueStack. As we’ve said, the ValueStack holds your application’s
domain-specific data for a given action invocation. For instance, if you’re updating a

Figure 6.1 The ActionContext holds
all the important data objects pertaining to
a given action invocation; OGNL can target
any of them.

134 CHAPTER 6 Building a view: tags
student, you’ll expect to find that student data on the ValueStack. We’ll divulge more
of the inner workings of the ValueStack in a moment. The other objects are all maps
of important sets of data. Each of them has a name that indicates its purpose and
should be familiar to seasoned Java web application developers, as they correspond to
specific concepts from the Servlet API. For more information on where the data in
these sets comes from, we recommend the Java Servlet Specification. The contents of
each of these objects is summarized in table 6.1.

The parameters object is a map of the request parameters associated with the
request being processed—the parameters submitted by the form, in other words.
The application object is a map of the application attributes. The request and
session objects are also maps of request and session attributes. By attribute we mean
the Servlet API concept of an attribute. Attributes allow you to store arbitrary objects,
associated with a name, in these respective scopes. Objects stored in application
scope are accessible to all requests coming to the application. Objects stored in ses-
sion scope are accessible to all requests of a particular session, and so forth. Com-
mon usage includes storing a user object in the session to indicate a logged-in user
across multiple requests. The attr object is a special map that looks for attributes in
the following locations, in sequence: page, request, session, and application scope.

 Now let’s look at how we choose which object from the ActionContext our OGNL
will resolve against.
SELECTING THE ROOT OBJECT FOR OGNL

Up until now, we’ve hidden the fact that an OGNL expression must choose one of the
objects in the ActionContext to use as its root object. So how does the framework
choose which object to resolve a given OGNL expression against? We did nothing
about this while writing our simple input field names in the previous chapter. As with
all Struts 2 mysteries, this comes down to a case of intelligent defaults. By default, the
ValueStack will serve as the root object for resolving all OGNL expressions that don’t
explicitly name an initial object. You almost don’t have to know that the ValueStack
exists to use Struts 2. But, take our word, that’s not a blissful ignorance.

Table 6.1 The names and contents of the objects and maps in the ActionContext

Name Description

parameters Map of request parameters for this request

request Map of request-scoped attributes

session Map of session-scoped attributes

application Map of application-scoped attributes

attr Returns first occurrence of attribute occurring in page, request,
session, or application scope, in that order

ValueStack Contains all the application-domain–specific data for the request

135Getting started
 Though you haven’t seen it yet, OGNL expressions can start with a special syntax
that names the object from the context against which they should resolve. The follow-
ing OGNL expression demonstrates this syntax:

 #session['user']

This OGNL expression actively names the session map from the ActionContext via the
operator of the expression language. The # operator tells OGNL to use the named
object, located in its context, as the initial object for resolving the rest of the expres-
sion. With Struts 2, the OGNL context is the ActionContext and, thankfully, there’s a
session object in that context. This expression then points to whatever object has been
stored under the key user in the session object, which happens to be the session scope
from the Servlet API. This could be, for instance, the user object that our Struts 2 Port-
folio login action stores in the session.

As of version 2.1 of Struts 2, which will most likely be available by the
time this book is printed, the expression language used by the frame-
work will become pluggable. While this may sound unsettling, it’s actu-
ally harmless. You can use OGNL, just as described in this book, or you
can insert your own expression language into the framework. Any EL
plugged into Struts 2 will have access to the same data and will serve the
same purposes as we’ve described for OGNL. But don’t panic: you can
just use OGNL! Besides, it might be several versions before switching ELs
becomes well established.

As far as the full syntax of OGNL goes, we’ll wait a bit on that. In the previous chapter,
we saw as much of the OGNL syntax as we needed for writing our input field names
that would target our properties. At the most complex, this included expressions that
could reference map entries via string and object keys. But OGNL is much more. The
OGNL expression language contains many powerful features, including the ability to
call methods on the objects you reference. While these advanced features give you a
set of flexible and powerful tools with which to solve the thorn that you inevitably find
stuck in your side late on a Friday afternoon, they aren’t necessary in the normal
course of things. We’ll continue to delay full coverage of the OGNL expression lan-
guage until the end of this chapter, preferring instead to only introduce as much as we
need while demonstrating the tags. The main idea here is to understand the role that
the expression language plays in the framework.

 We’ll start exploring that role by taking a long-delayed look at the default root
object for all OGNL resolution, the ValueStack.

6.1.2 The ValueStack: a virtual object

Back to that default root object of the ActionContext. Understanding the ValueStack
is critical to understanding the way data moves through the Struts 2 framework. By
now, you’ve got most of what you need. We’ve seen the ValueStack in action. When
Struts 2 receives a request, it immediately creates an ActionContext, a ValueStack,

INSIDER
SCOOP

136 CHAPTER 6 Building a view: tags
and an action object. As a carrier of application data, the action object is quickly
placed on the ValueStack so that its properties will be accessible, via OGNL, to the far
reaches of the framework.

 First, these will receive the automatic data transfer from the incoming request
parameters. As we saw in chapter 4, this occurs because the params interceptor sets
those parameters on properties exposed on the ValueStack, upon which the action
object sits. While other things, such as the model of the ModelDriven interface, may
also be placed on the stack, what all data on the ValueStack has in common is that it’s
all specific to the application’s domain. In MVC terms, the ValueStack is the request’s
view of the application’s model data. There are no infrastructural objects, such as
Servlet API or Struts 2 objects, on the ValueStack. The action is only there because of
its role as domain data carrier; it’s not there because of its action logic.

 There’s only one tricky bit about the ValueStack. The ValueStack pretends to be
a single object when OGNL expressions are resolved against it. This virtual object
contains all the properties of all the objects that’ve been placed on the stack. If mul-
tiple occurrences of the same property exist, those lowest down in the stack are hid-
den by the uppermost occurrence of a similarly named property. Figure 6.2 shows a
ValueStack with several objects on it.

 As you can see in figure 6.2, references to a given property resolve to the highest
occurrence of that property in the stack. While this may seem complicated, it’s actu-
ally not. As with most Struts 2 features, the flexibility and power to address complex
use cases is there, but the common user can remain ignorant of such details.

 Let’s examine figure 6.2. As usual, the action object itself has been placed on the
stack first. Then, a model object was added to the stack. This most likely has occurred
because the action implements ModelDriven. Sometime after that, another object,
apparently some sort of random-number-making bean, was added to the stack. By bean
we simply mean a Java object that either serves as a data carrier or as a utility-providing

Figure 6.2 The ValueStack is
the default object against which
all OGNL expressions are resolved.

137An overview of Struts tags
object. In other words, it’s usually just some object whose properties you might want to
access from your tags with OGNL expressions.

 At present, we just want to see how the ValueStack appears as a single virtual
object to the OGNL expressions resolving against it. In figure 6.2, we have four simple
expressions. Each targets a top-level property. Behind the scenes, OGNL will resolve
each of these expressions by asking the ValueStack if it has a property such as, for
instance, name. The ValueStack will always return the highest-level occurrence of the
name property in its stack of objects. In this case, the action object has a name property,
but that property will never be accessed as long as the model object’s name property
sits on top of it.

Just so you don’t worry about it, we might as well discuss how that bean showed up on
top of the stack. Prior to this point, we’ve just had stuff automatically placed on the
ValueStack by the framework. So how did the bean get there? There are many ways to
add a bean to the stack. Many of the most common ways occur within the tags that we’ll
soon cover. For instance, the push tag lets you push any bean you like onto the stack. You
might do such a thing just before you wanted to reference that bean’s data or methods
from later tags. We’ll demonstrate this with sample code when we cover those tags.

 With a clear view of where the data is and how to get to it, it’s time to get back to
the Struts 2 tags that are the focus of this chapter, and are the means of pulling data
from the ActionContext and ValueStack into the dynamic rendering of your view
layer pages.

6.2 An overview of Struts tags
The Struts 2 tag API provides the functionality to dynamically create robust web pages
by leveraging conditional rendering and integration of data from your application’s
domain model found on the ValueStack. Struts 2 comes with many different types of

Definition
When Java developers talk about beans in the context of view technologies, such as
JSPs, they frequently mean something different than just a Java object that meets
the JavaBeans standard. While these beans are most likely good JavaBeans as well,
they don’t have to be. The usage in this context more directly refers to the fact that
the bean is a Java object that exposes data and/or utility methods for use in JSP tags
and the like. Many developers call any object exposed like this a “bean.”

This nomenclature is a historical artifact. In the past, expression languages used in
tags couldn’t call methods. Thus, they could only retrieve data from an object if it
were exposed as a JavaBean property. Since the OGNL expression language allows
you to call methods directly, you could completely ignore JavaBeans conventions and
still have data and utility methods exposed to your tags for use while rendering the
page. However, in order to keep your JSP pages free of complexity, we strongly rec-
ommend following JavaBeans conventions and avoiding expression language method
invocation as long as possible.

138 CHAPTER 6 Building a view: tags
tags. For organizational purposes, they can be broken into four categories: data tags,
control-flow tags, UI tags, and miscellaneous tags. Since they are a complex topic all to
themselves, we’ll leave the UI tags for chapter 7. This chapter examines the other
three categories.

 Data tags focus on ways to extract data from the ValueStack and/or set values in
the ValueStack. Control-flow tags give you the tools to conditionally alter the flow of
the rendering process; they can even test values on the ValueStack. The miscella-
neous tags are a set of tags that don’t quite fit into the other categories. These leftover
tags include such useful functionality as managing URL rendering and international-
ization of text. Before we get started, we need to make some general remarks about
the conventions that are applied across the usage of all Struts 2 tag APIs.

6.2.1 The Struts 2 tag API syntax

The first issue to address is the multiple faces of the Struts 2 tag API. As we’ve men-
tioned earlier, Struts 2 tags are defined at a higher level than any specific view-layer
technology. Using the tags is as simple as consulting the API. The tag API specifies the
attributes and parameters exposed by the tag. Once you identify a tag that you want to
use, you simply move on to your view technology of choice—JSP, Velocity, or
FreeMarker. Interfaces to the tag API have been implemented in all three technolo-
gies. The differences in usage among the three are so trivial that we’ll be able to cover
them in the rest of this short subsection. After that, we present our functional refer-
ence of the tags, including a summary of their attributes and parameters. We also
include examples of the tags in action. These examples are done in JSP, but we think
you’ll soon see that taking your knowledge of the Struts 2 tags API to one of the other
technologies will take approximately zero effort. Let’s start with JSPs.
JSP SYNTAX

The JSP versions of the Struts 2 tags are just like any other JSP tags. The following
property tag demonstrates the simple syntax:

<s:property value="name"/>

The only other thing to note is that you must have the property taglib declaration at
the top of your page before using the Struts 2 tags. This is standard JSP stuff, and the
following snippet from one of our Struts 2 Portfolio application’s JSPs should show
you what you need:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib prefix="s" uri="/struts-tags" %>

The second line, the taglib directive, declares the Struts 2 tag library and assigns
them the "s" prefix by which they’ll be identified.
VELOCITY SYNTAX

You can also use Velocity templates for your view technology. All you need to do is
specify your result type to the built-in velocity result type. We’ll see the details of
declaring a result to use a Velocity result type in chapter 8. For now, rest assured that
the framework supports using Velocity out of the box. Let’s see how the Struts 2 tags

139An overview of Struts tags
are accessed from Velocity. In Velocity, the Struts 2 tag API is implemented as Velocity
macros. This doesn’t matter though; the API is the same. You just need to learn the
macro syntax that specifies the same information. Here’s the Velocity version of the
property tag:

#sproperty("value=name")

Struts 2 tags that would require an end tag may require an #end statement in Velocity.
Here’s a JSP form tag from the Struts 2 Portfolio application that uses a closing tag:

<s:form action="Register">
 <s:textfield name="username" label="Username"/>
 <s:password name="password" label="Password"/>
 <s:textfield name="portfolioName" label="Enter a name"/>
 <s:submit value="Submit"/>
</s:form>

And here’s the same tag as a Velocity macro:

#sform ("action=Register")
 #stextfield ("label=Username" "name=username")
 #spassword ("label=Password" "name=password")
 #stextfield ("label=Enter a name" "name=portfolioName")

 #ssubmit ("value=Submit")
#end

Again, it’s the same tag, different syntax. Everything, as pertains to the API, is still the
same.
FREEMARKER SYNTAX

The framework also provides out-of-the-box support for using FreeMarker templates
as the view-layer technology. We’ll see how to declare results that use FreeMarker in
chapter 8. For now, here’s the same property tag as it would appear in FreeMarker:

<@s.property value="name"/>

As you can see, it’s more like the JSP tag syntax. In the end, it won’t matter what view-
layer technology you choose. You can easily access all the same Struts 2 functionality
from each technology. While we’ll demonstrate the tag API using JSP tags, we trust that
you’ll be able to painlessly migrate that knowledge to Velocity or FreeMarker accord-
ing to the syntax conventions we’ve just covered.

 Now we’ll outline some important conventions regarding the values you pass into
the attributes of your Struts 2 tags, regardless of which view technology you use.

6.2.2 Using OGNL to set attributes on tags

There are a couple of things you have to understand when setting values in tag
attributes. The basic issue is whether the attribute expects a string literal value or
some OGNL that’ll point to a typed value on the ValueStack. We’ll introduce this
issue now, and revisit it as we cover the tags themselves.

 First, we need to consider that an attribute on a tag is eventually going to be pro-
cessed by the Java code that backs the tag implementation. But in the JSP page, for

140 CHAPTER 6 Building a view: tags
instance, everything is a string. Working with other technologies, you’ve become
familiar with using some sort of escape sequence to force the attribute value to be
parsed as an expression versus being interpreted as a string literal; this frequently
leads to markup that borders on being hard to read, with its proliferation of
${expression} notation. In an effort to make the use of OGNL in tags more intuitive
and readable, Struts 2 makes assumptions about what kind of data it expects for each
attribute. In particular, a distinction is made in the handling of attributes whose type,
in the underlying execution, will be String and those whose type will be non-String.
STRING AND NON-STRING ATTRIBUTES

If an attribute is of type String, then the value written into the attribute, in the actual
JSP or Velocity page, is interpreted as a string literal. If an attribute is some non-
String type, then the value written into the attribute is interpreted as an OGNL
expression. This make sense because the OGNL expressions can point to typed Java
properties on the ValueStack, thus making a perfect tool for passing in typed param-
eters. The following property tags demonstrate the difference between String and
non-String attribute types:

nonExistingProperty on the ValueStack = <s:property
 value="nonExistingProperty" />

nonExistingProperty on the ValueStack = <s:property
 value="nonExistingProperty" default="doesNotExist" />

Here, we have two somewhat identical uses of the Struts 2 property tag. First of all,
note that the property tag’s value attribute is typed as Object, a non-String
attribute. The use case of the property tag is to take a Java property, typically from the
ValueStack, and write it as a string into the rendering page. As we know, the proper-
ties on the ValueStack might be of any Java type; the conversion to a string will be
handled automatically by the OGNL type converters. The property tag’s value
attribute tells it the property to render to the page. In the case of these examples,
both tags are looking for a property called nonExistingProperty.

 The property tag will try to locate this property by resolving the value attribute’s
value as an OGNL expression. Since no specific object from the ActionContext is named
with the # operator, it’ll look on the ValueStack. As it turns out, nonExistingProperty
doesn’t exist on the ValueStack. What then? A null value will be converted to an empty
string. In the case of the first tag, as you can see in figure 6.3, nothing will render.

 But the second tag does write something: the string doesNotExist. The second
property tag still tries to pull the nonExistingProperty from the ValueStack, which
again comes up empty. However, it also specifies a default attribute that gives a value
to use if the property doesn’t exist. Since the purpose of the default attribute is to
provide a default string for the tag to put in the page, its type is String. When the
value given to an attribute is ultimately to be used as a string, it makes sense that the

Figure 6.3 Output from property tags with
no value: one specifies a default value while
the other doesn’t

141An overview of Struts tags
default behavior is to interpret the attribute value as a string literal. Thus, the default
value of doesNotExist isn’t used as an OGNL expression. As you can see in figure 6.3,
which shows the output of these two tags, the second tag uses doesNotExist as a string
literal in its rendering.

Attributes passed to Struts 2 tags are divided into two categories. Attributes
that’ll be used by the tag as String values are referred to as string attributes.
Attributes that point to some property on the ValueStack, or in the
ActionContext are referred to as nonstring attributes. All nonstring
attributes will be interpreted as OGNL expressions and used to locate the
property that’ll contain the value to be used in the tag processing. All string
attributes will be taken literally as Strings and used as such in the tag pro-
cessing. You can force a string attribute to be interpreted as an OGNL
expression by using the %{expression} syntax.

If you’ve worked with other expression languages embedded into tags, you’re proba-
bly wondering when and how you can use some sort of expression language escape
sequence. Many of you are familiar with various markers, such as ${expression}, that
indicate which text should be regarded as an expression and which as an actual string.
The convention we’ve just described, where Struts 2 assumes that some attributes will
be expressions and others will be strings, avoids many of the scenarios in which such
escape sequences would be called for. However, we’ll sometimes want to use an OGNL
expression with a String attribute. What then?
FORCING OGNL RESOLUTION

Let’s say, assuming the previous example of the nonExistingProperty, that you wanted
to use a String property from the ValueStack as your default attribute value. In this
case, you wouldn’t want the default attribute to be interpreted as a string literal. You’d
want it to be interpreted as an OGNL expression pointing to your String property on
the ValueStack. If you want to force OGNL resolution of a String attribute, such as the
default attribute of the property tag, then you need to use an OGNL escape sequence.
This escape sequence is %{expression}. The following snippet revisits the scenario
from the previous property tag example using the escape sequence to force the
default attribute value to be interpreted as an OGNL expression:

nonExistingProperty on the ValueStack =
<s:property value="nonExistingProperty" default="%{myDefaultString}" />

Now the value of the default attribute will be interpreted as OGNL, and the actual
string used as the default string will be pulled from the myDefaultString property on
the ValueStack.

 Note the similarity between the bracket syntax used to force the String attribute
to evaluate as an OGNL expression and the JSTL Expression Language syntax.

Struts 2 OGNL Syntax JSTL Expression Language

%{ expression } ${ expression }

HEADS-UP

142 CHAPTER 6 Building a view: tags
OGNL uses % instead of $. While this may seem confusing to some JSP veterans, in real-
ity you don’t use the OGNL escape sequence very often. Due to the intelligent default
behavior of the tags, you can almost always let the tags decide when to interpret your
attributes as OGNL expressions and when to interpret them as string literals. This is
another way that the framework eases the common tasks.

 We recognize that some of this may be abstract at this point. Believe us, knowing
string and nonstring attributes will make learning the tags much, much easier. Besides,
we’re now ready to look at the tags themselves, complete with plenty of sample code.

6.3 Data tags
The first tags we’ll look at are the data tags. Data tags let you get data out of the
ValueStack or place variables and objects onto the ValueStack. In this section, we’ll
discuss the property, set, push, bean, and action tags. In this reference, our goal is
to demonstrate the common uses of these tags. Many of the tags have further func-
tionality for special cases. To find out everything there is to know, consult the pri-
mary documentation on the Struts 2 website at http://struts.apache.org/2.x/.

ALERT All of the tag usage examples found in the following reference section can
be found in the chapter 6 version of the Struts 2 Portfolio sample application.

Most of these examples use the same action class implementation, manning.chapter-
Six.TagDemo. This simple action conducts no real business logic. It merely exposes and
populates a couple of properties with data so the tags have something with which to
work. In particular, two properties, users and user, are exposed; the first exposes a col-
lection of all users in the system and the second exposes one user of your choice. For
the purposes of a tag reference, we won’t try to integrate these tag demonstrations into
the core functionality of the Struts 2 Portfolio. We’ll focus on making the usage clear.

6.3.1 The property tag

The property tag provides a quick, convenient way of writing a property into the ren-
dering HTML. Typically, these properties will be on the ValueStack or on some other
object in the ActionContext. As these properties can be of any Java type, they must be
converted to strings for rendering in the result page. This conversion is handled by the
framework’s type converters, which we covered in chapter 5. If a specific type has no con-
verter, it’ll typically be treated as a string. In these cases, a sensible toString() method
should be exposed on the class. Table 6.2 summarizes the most important attributes.

Table 6.2 property tag attributes

Attribute Required Default Type Description

value No <top of stack> Object Value to be displayed

default No null String Default value to be used if value is null

escape No True Boolean Whether to escape HTML

http://struts.apache.org/2.x/

143Data tags
Now, let’s look at a property tag in action. As with all the examples in this chapter,
you can see this in action by clicking the property tag link on the chapter 6 home
page of the sample application. The following tag accesses the user property exposed
on the ValueStack via our TagDemo action:

<h4>Property Tag</h4>
The current user is <s:property value="user.username"/>.

The output is as you’d expect and is shown in figure 6.4.
 In this case, the user property holds a user with the user-

name of mary. When the property tag pulls the property out to
render, it’ll be converted to a string based on the appropriate
type converters. While this property was a Java String, it still
must be formally converted to a text string in the rendering
page. See chapter 5 for more on the type conversion process.

6.3.2 The set tag

In the context of this tag, setting means assigning a property to another name. Various
reasons for doing this exist. An obvious use case would be taking a property that
needs a deep, complicated OGNL expression to reference it, and reassigning, or set-
ting, it to a top-level name for easier, faster access. This can make your JSPs faster and
easier to read.

 You can also specify the location of the new reference. By default, the property
becomes a named object in the ActionContext, alongside the ValueStack, session
map, and company. This means you can then reference it as a top-level named object
with an OGNL expression such as #myObject. However, you can also specify that the
new reference be kept in one of the scoped maps that are kept in the ActionContext.
Table 6.3 provides the attributes for the set tag.

Here’s an example from the chapter 6 sample code:

<s:set name="username" value="user.username"/>
Hello, <s:property value="#username"/>. How are you?

In this case, we aren’t saving much by making a new reference to the username property.
However, it illustrates the point. In this sample, the set tag sets the value from the
user.username expression to the new reference specified by the name property. Since

Table 6.3 set tag attributes

Attribute Required Type Description

name Yes String Reference name of the variable to be set in the specified scope.

scope No String application, session, request, page, or action.
Defaults to action.

value No Object Expression of the value you wish to set.

Figure 6.4 Pulling the
username into the page
with the property tag

144 CHAPTER 6 Building a view: tags
we don’t specify a scope, this new username reference exists in
the default “action” scope—the ActionContext. As you can
see, we then reference it with the # operator. Figure 6.5 shows
the output.

 In case you’re wondering what it looks like to set the new
reference to a different scope, the following sets the new ref-
erence as an entry in the application scope map that is
found in the ActionContext:

<s:set name="username" scope="application" value="user.username"/>
Hello, <s:property value="#application['username']"/>. How are you?

Note that we have to use the OGNL map syntax to get at the property in this case. We
can’t say we’ve made any readability gains here, but we have managed to persist the
data across the lifetime of the application by moving it to this map. It’s probably not a
good idea to persist a user’s username to the application scope, but it does serve to
demonstrate the tag functionality.

6.3.3 The push tag

Whereas the set tag allows you to create new references to values, the push tag
allows you to push properties onto the ValueStack. This is useful when you want to
do a lot of work revolving around a single object. With the object on the top of the
ValueStack, its properties become accessible with first-level OGNL expressions. Any
time you access properties of an object more than a time or two, it’ll probably save a
lot of work if you push that object onto the stack. Table 6.4 provides the attribute for
the push tag.

Here’s an example of the usage:

<s:push value="user">
 This is the "<s:property value="portfolioName"/>" portfolio,
 created by none other than <s:property value="username"/>
</s:push>

This push tag pushes a property named user, which is exposed by the TagDemo action
as a JavaBeans property, onto the top of the ValueStack. With the user on top of the
stack, we can access its properties as top-level properties of the ValueStack virtual
object, thus making the OGNL much simpler. As you can see, the push tag has a start
tag and close tag. Inside the body of the tag, we reference the properties of the user
object as top-level properties on the ValueStack. The closing tag removes the user
from the top of the ValueStack.

Table 6.4 push tag attributes

Attribute Required Type Description

value Yes Object Value to push onto the stack

Figure 6.5 Using the set
tag to make data available
throughout the page

145Data tags
If you want to see how this example actually renders, you can check out the sample
code. But we think you’ll find no surprises.

6.3.4 The bean tag

The bean tag is like a hybrid of the set and push tags. The main difference is that you
don’t need to work with an existing object. You can create an instance of an object
and either push it onto the ValueStack or set a top-level reference to it in the Action-
Context. By default, the object will be pushed onto the ValueStack and will remain
there for the duration of the tag. In other words, the bean will be on the ValueStack
for the execution of all tags that occur in between the opening and closing tags of the
bean tag. If you want to persist the bean longer than the body of the tag, you can spec-
ify a reference name for the bean with the var attribute. This reference will then exist
in the ActionContext as a named parameter accessible with the # operator for the
duration of the request.

 There are a few requirements on the object that can be used as a bean. As you might
expect, the object must conform to JavaBeans standards by having a zero-argument con-
structor and JavaBeans properties for any instance fields that you intend to initialize with
param tags. We’ll demonstrate all of this, including the use of param tags, shortly. First,
table 6.5 details the attributes for the bean tag.

Table 6.5 bean tag attributes

Attribute Required Type Description

name Yes String Package and class name of the bean that is to be created

var No String Variable name used if you want to reference the bean outside
the scope of the closing bean tag

Tip
The push tag, and even the set tag to a limited extent, can be powerful when trying
to reuse view-layer markup. Imagine you have a JSP template that you’d like to reuse
across several JSP result pages. Consider the namespace of the OGNL references in
that JSP template. For instance, maybe the template’s tags use OGNL references that
assume the existence of a User object exposed as a model object, as in ModelDriven
actions. In this case, the template’s tags would omit the user property and refer di-
rectly to properties of the user, for example <s:property value="username"/>.

If you try to include this template in the rendering of a result whose action exposes
a User object as a JavaBeans property, rather than a model object, then this reference
would be invalid. It would need to be <s: value="user.username"/>. Luckily, the
push tag gives us the ability to push the user object itself to the top of the ValueStack,
thus making the top-level references of the template valid in the current action. In
general, the push tag and the set tag can be used in this fashion.

146 CHAPTER 6 Building a view: tags
Our first example demonstrates how to create and store the bean as a named parame-
ter in the ActionContext. In this case, we’ll create an instance of a utility bean that
helps us simulate a for loop. This counter bean comes with Struts 2. For this example,
we’ll create the bean and use the var attribute to store it in the ActionContext as a
named parameter. The following markup shows how this is done:

<s:bean name="org.apache.struts2.util.Counter" var="counter">
 <s:param name="last" value="7"/>
</s:bean>

<s:iterator value="#counter">
 <s:property/>
</s:iterator>

Figure 6.6 how this markup will render in the result page.
 Now let’s look at how it works. The bean tag’s name attribute

points to the class that should be instantiated. The var
attribute, repeating a common Struts 2 tag API pattern, spec-
ifies the reference name under which the bean will be stored
in the ActionContext. In this case, we call the bean counter
and then refer to that bean instance in the iterator tag’s
value attribute with the appropriate OGNL. Since the bean is
in the ActionContext, rather than on the ValueStack, we
need to use the # operator to name it, resulting in the OGNL
expression #counter. The bean tag is the first of a few tags we’ll explore that are param-
eterized. In the case of the counter, we can pass in a parameter that sets the number of
elements it will contain, in effect setting the number of times the iterator tag will execute
its body markup.

TIP The var attribute occurs in the usage of many Struts 2 tags. Any tag that
creates an object, the bean tag being a good example, offers the var
attribute as a way to store the object under a name in the ActionContext.
The name comes from the value given to the var attribute. Most tags that
offer the var attribute make it optional; if you don’t want to store the cre-
ated object in the ActionContext, it will simply be placed on the top of
the ValueStack, where it’ll remain during the body of the tag.

WARNING! If you’re using a version of Struts 2 that is older than 2.1,
the var attribute should be replaced with the id attribute.

Now that the counter bean has been created and stored, we can use it from the Struts 2
iterator tag to create a simulation of for loop-style logic. The bean tag doesn’t have to
be used with the iterator tag; it’s in this example because the counter bean is meant
to be used with the iterator tag. The counter bean works in combination with the
iterator tag, which we’ll cover shortly, to provide a pseudo for loop functionality.
Generally, the iterator tag iterates over a Collection, thus its number of iterations is
based upon the number of elements in the Collection. For a for loop, we want to
specify a number of iterations without necessarily providing a set of objects. We just

Figure 6.6 Declaring a
bean that you can use
throughout a page

147Data tags
want to iterate over our tag’s body a certain number of times. The counter bean serves
as a fake Collection of a specified number of dummy objects that allows us to control
the number of iterations. In the case of our example, we do nothing more than print
a number to the result stream during each iteration. Note that we use the property tag
without any attributes; this idiom will simply write the top property on the ValueStack
to the output.

NOTE The bean tag allows you to create any bean object that you might want to
use in the page. If you want to make your own bean to use with this tag,
just remember that it needs to follow JavaBeans conventions on several
important points. It has to have no-argument constructor, and it must
expose JavaBeans properties for any parameters it’ll receive with the
param tag, such as the counter bean’s last parameter.

Now, let’s look at how to use the bean tag to push a newly created bean onto the
ValueStack rather than store it in the ActionContext. While we’re at it, we’ll fur-
ther demonstrate the use of the param tag to pump parameters into our home-
roasted bean. This is all simple. To use the ValueStack as the temporary storage
location for our bean, we just use an opening-and-closing-style tag configuration. All
tags inside the body of the bean tag will resolve against a ValueStack that has an
instance of our JokeBean on top. Here’s the example:

<s:bean name="manning.utils.JokeBean" >
 <s:param name="jokeType">knockknock</s:param>
 <s:property value="startAJoke()"/>
</s:bean>

In this example, also from the chapter 6 sample code, we create an instance of a utility
bean that helps us create jokes. If you look at the sample application, you’ll see that this
outputs the first line of a joke—“knock knock.” Though inane, this bean does demon-
strate the sense of utility beans. If you want to provide a canned joke component to drop
into numerous pages, something that unfortunately does exist in the real world, you
could embed that functionality into a utility bean and grab it with the bean tag when-
ever you liked. This keeps the joke logic out of the core logic of the action logic.

 This markup demonstrates using the bean tag to push the bean onto the
ValueStack rather than place it as a named reference in the ActionContext. Note
that we no longer need to use the var attribute to specify the reference under which
the bean will be stored. When it’s on top of the ValueStack, we can just refer to its
properties and methods directly. This makes our code concise. The bean is automati-
cally popped from the stack at the close tag.

 Using the bean is easy. In this case, we use the OGNL method invocation syntax,
startAJoke(). We do this just to demonstrate that the bean tag doesn’t have to com-
pletely conform to JavaBeans standards—startAJoke() is clearly not a proper getter.
Nonetheless, OGNL has the power to use it; we’ll cover this and more in the primer at
the end of this chapter.

148 CHAPTER 6 Building a view: tags
 Finally, note that we pass a parameter into our JokeBean that controls the type of
joke told by the bean. This parameter is automatically received by our bean as long
as the bean implements a JavaBeans property that matches the name of the parame-
ter. If you look at the source code, you can see that we’ve done this. FYI: this joke
bean also supports an "adult" joke mode, but you’ll probably be disappointed; it’s
quite innocuous.

 The bean tag is ultimately straightforward. What you want to be clear about is the
difference between the use of the var attribute to create a named reference in the
ActionContext, and the use of the opening and closing tags to work with the bean on
the ValueStack. The real trick here is in understanding the ValueStack, Action-
Context, and how OGNL gets to them. That’s why we began this chapter with a thor-
ough introduction to these concepts. If you’re confused, you might want to refer back
to those earlier sections.

 With those fundamental concepts in place, the conventions of the bean tag, and
other similar tags, should be straightforward enough. If you have all this straight, con-
gratulate yourself on a mastery of what some consider to be the most Byzantine aspect
of Struts 2.

6.3.5 The action tag

This tag allows us to invoke another action from our view layer. Use cases for this
might not be obvious at first, but you’ll probably find yourself wanting to invoke sec-
ondary actions from the result at some point. Such scenarios might range from inte-
grating existing action components to wisely refactoring some action logic. The
practical application of the action tag is simple: you specify another action that
should be invoked. Some of the most important attributes of this tag include the
executeResult attribute, which allows you to indicate whether the result for the sec-
ondary action should be written into the currently rendering page, and the name and
namespace attributes, by which you identify the secondary action that should fire. By
default, the namespace of the current action is used. Table 6.6 contains the details of
the important attributes.

Table 6.6 action tag attributes

Attribute Required Type Description

name Yes String The action name

namespace No String The action namespace; defaults to the cur-
rent page namespace

var No String Reference name of the action bean for use
later in the page

executeResult No Boolean When set to true, executes the result of the
action (default value: false)

149Data tags
Here’s an example that chooses to include the secondary action’s result:

<h3>Action Tag</h3>
<h4>This line is from the ActionTag action's result.</h4>
<s:action name="TargetAction" executeResult="true"/>

Note that the default is to not include the result, so we have to change this by setting
the executeResult attribute to true. The output looks like figure 6.7.

 One thing to note is that the result of the secondary action should probably be an
HTML fragment if you want it to fit into the primary page.

 Often, you might want the secondary action to fire, but not write a result. One
common scenario is that the secondary action, instead of writing to the page, will pro-
duce side effects by stashing domain data somewhere in the ActionContext. After
control returns, the primary action can access that data. The following markup shows
how to target an action in this fashion:

<h4>This line is before the ActionTag invokes the secondary action.</h4>
<s:action name="TargetAction"/>
<h4>Secondary action has fired now.</h4>
<h5>Request attribute set by secondary action = </h5>
<pre> <s:property value="#request.dataFromSecondAction"/></pre>

The execution of the secondary action is a bit of a side effect unless we reach back to
get something that it produced. We retrieve a property that was set by the secondary
action into the request map, just to prove that the secondary action fired. You can
check the output yourself by visiting the chapter 6 sample code. Many times, however,
a side effect may be just what you want. Note also that the secondary action can
receive, or not receive, the request parameters from the primary request, according to
the ignoreContextParams attribute.

 That finishes up our coverage of data tags. In the next section, we’ll show how to
introduce conditional logic to your page rendering with the control tags.

flush No Boolean When set to true, the writer will be flushed
upon end of action component tag (default
value: true)

ignoreContextParams No Boolean When set to true, the request parameters
are not included when the action is invoked
(default value: false)

Table 6.6 action tag attributes (continued)

Attribute Required Type Description

Figure 6.7 Using the action
tag to invoke another action
from the context of a rendering
page

150 CHAPTER 6 Building a view: tags
6.4 Control tags
Since most web pages are built on the fly, it’s going to be valuable to learn how to
manipulate, navigate over, and display data. Struts 2 has a set of tags that make it easy
to control the flow of page execution. Using the iterator tag to loop over data and
the if/else/elseif tags to make decisions, you can leverage the power of condi-
tional rendering in your pages.

6.4.1 The iterator tag

Other than the property tag, the other most commonly used tag in Struts 2 is the
iterator tag. The iterator tag allows you to loop over collections of objects easily.
It’s designed to know how to loop over any Collection, Map, Enumeration, Iterator,
or array. It also provides the ability to define a variable in the ActionContext, the iter-
ator status, that lets you determine certain basic information about the current loop
state, such as whether you’re looping over an odd or even row. Table 6.7 provides the
attributes for the iterator tag.

We already saw the iterator tag in action when we looked at the bean tag. Now we’ll
take a closer look. The chapter 6 sample application includes an example that loops
over a set of the Users of the Struts 2 Portfolio. Here’s the markup from the result page:

<s:iterator value="users" status="itStatus">

 <s:property value="#itStatus.count" />
 <s:property value="portfolioName"/>

</s:iterator>

As you can see, it’s straightforward. The action object exposes a set of users and the
iterator tag iterates over those users. During the body of the tag, each user is in turn
placed on the top of the ValueStack, thus allowing for convenient access to the user’s
properties. Note that our iterator also declares an IteratorStatus object by specify-
ing the status attribute. Whatever name you give this
attribute will be the key for retrieving the iterator sta-
tus object from the ActionContext, with an OGNL
expression such as #itStatus. In this example, we use
the iterator status’s count property to get a sequential
list of our users. The output is shown in figure 6.8.

Table 6.7 iterator tag attributes

Attribute Required Type Description

value Yes Object The object to be looped over.

status No String If specified, an IteratorStatus object is placed in
the action context under the name given as the value
of this attribute.

Figure 6.8 Iterating over a set
of data during page rendering

151Control tags
 We should probably take a minute to see what else the IteratorStatus can pro-
vide for us.
USING ITERATORSTATUS

Sometimes it’s desirable to know status information about the iteration that’s taking
place. This is where the status attribute steps in. The status attribute, when defined,
provides an IteratorStatus object available in the ActionContext that can provide
simple information such as the size, cur-
rent index, and whether the current
object is in the even or odd index in the
list. The IteratorStatus object can be
accessed through the name given to the
status attribute. Table 6.8 summarizes
the information that can be obtained
from the IteratorStatus object.

 As you can see, this list provides just
the kind of data that can sometimes be
hard to come by when trying to produce
various effects within JSP page iterations.
Happy iterating!

6.4.2 The if and else tags

Not many languages, of any sort, fail to provide the familiar if and else control logic.
The if and else tags provide these familiar friends for the Struts 2 developer. Using
them is as easy as you might suspect. As you can see in table 6.9, there’s just one
attribute, a Boolean test.

Here’s an example of using them. You can put any OGNL expression you like in the test.

<s:if test="user.age > 35">This user is too old.</s:if>
<s:elseif test="user.age < 35">This user is too young</s:elseif>
<s:else>This user is just right</s:else>

Here we conduct a couple of tests on a user object exposed by our action and, ulti-
mately, found on the ValueStack. The tests are simple Boolean expressions; you can
chain as many of the tests as you like.

 That was easy enough. Indeed, the if and else tags are as simple as they seem, and
remain that way in use. We still have a few useful tags to cover, and we’ll hit them in
the next section, which covers miscellaneous tags.

Table 6.9 if and elseif tag attribute

Attribute Required Type Description

test Yes Boolean Boolean expression that is evaluated and tested for true or false

Table 6.8 Public methods of IteratorStatus

Method name Return type

getCount int

getIndex int

isEven boolean

isFirst boolean

isLast boolean

isOdd boolean

modulus(int operand) int

152 CHAPTER 6 Building a view: tags
6.5 Miscellaneous tags
As we mentioned at the start of this chapter, Struts 2 includes a few different types of
tags. You’ve already seen how the data tags and control tags work. Let’s now look at
the miscellaneous tags that, although useful, can’t be easily classified. In this section,
we’ll discuss the Struts 2 include tag (a slight variation on the <jsp:include> tag),
the URL tag, and the i18n and text tags (both used for internationalization). Finally,
we’ll take another look at the param tag, which you’ve already seen in the context of
the bean tag, and show how it can be used to its full power.

6.5.1 The include tag

Whereas JSP has its own include tag, <jsp:include>, Struts 2 provides a version that
integrates with Struts 2 better and provides more advanced features. In short, this tag
allows you to execute a Servlet API–style include. This means you can include the out-
put of another web resource in the currently rendering page. One good thing about
the Struts 2 include tag is that it allows you to pass along request parameters to the
included resource.

 This differs from the previously seen action tag, in that the include tag can refer-
ence any servlet resource, while the action tag can include only another Struts 2
action within the same Struts 2 application. This inclusion of an action stays com-
pletely within the Struts 2 architecture. The include tag can go outside of the Struts 2
architecture to retrieve any resource available to the web application in which the
Struts 2 application is deployed. This generally means grabbing other servlets or JSPs.
The include tag may not make a lot of sense unless you’re pretty familiar with the
Servlet API. Again, the Servlet Specification is recommended reading: http://
java.sun.com/products/servlet/download.html.

 Table 6.10 lists the sole attribute for the include tag.

We won’t show a specific example of the include tag, as its use is straightforward.
When using the include tag, you should keep in mind that you’re including a JSP,
servlet, or other web resource directly. The semantics of including another web
resource come from the Servlet API. The include tag behaves similarly to the JSP
include tag. However, it’s more useful when you’re developing with Struts 2, for two
reasons: it integrates better with the framework, and it provides native access to the
ValueStack and a more extensible parameter model. What does all of this mean?

 Let’s start with the framework integration. For example, your tag can dynamically
define the resource to be included by pulling a value from the ValueStack using the
%{ ... } notation. (You have to force OGNL evaluation here, as the value attribute is
of type String and would normally be interpreted as a string literal.) Similarly, you

Table 6.10 include tag attribute

Attribute Required Type Description

value Yes String Name of the page, action, servlet, or any referenceable URL

http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html

153Miscellaneous tags
can pass in querystring parameters to the included page with the <s:param> tag (dis-
cussed in a moment). This tag can also pull values from the ValueStack. This tight
integration with the framework makes the Struts 2 include tag a powerful choice.

 Another advantage to choosing the Struts 2 include tag over the native JSP version
is plain-old user-friendliness. For example, it’ll automatically rewrite relative URLs for
you. If you want to include the URL ../index.jsp, you’re free to do so even though
some application servers don’t support that type of URL when using the JSP include
tag. The Struts 2 include tag will rewrite ../index.jsp as an absolute URL based on
the current URL where the JSP is located.

6.5.2 The URL tag

When you’re building web applications, URL management is a central task. Struts 2
provides a URL tag to help you do this. The tag supports everything you might want to
do with a URL, from controlling parameters to automatically persisting sessions in the
absence of cookies. Table 6.11 lists its attributes.

Here are a couple of examples. First we look at a simple case:

URL = <s:url value="IteratorTag.action"/>

<a href='<s:url value="IteratorTag.action" />'> Click Me

And here’s the output markup:

URL = IteratorTag.action

 Click Me

Table 6.11 URL tag attributes

Attribute Required Type Description

Value No String The base URL; defaults to the current URL the page
is rendering from.

action No String The name of an action to target with the generated
URL; use the action name as configured in the declar-
ative architecture (without the .action extension).

var No String If specified, the URL isn’t written out but rather is
saved in the action context for future use.

includeParams No String Selects parameters from all, get, or none; default
is get.

includeContext No Boolean If true, then the URL that is generated will be
prepended with the application’s context; default is
true.

encode No Boolean Adds the session ID to the URL if cookies aren’t
enabled for the visitor.

scheme No String Allows you to specify the protocol; defaults to the cur-
rent scheme (HTTP or HTTPS).

154 CHAPTER 6 Building a view: tags
The URL tag just outputs the generated URL as a string. First we display it for refer-
ence. Then we use the same markup to generate the href attribute of a standard
anchor tag. Note that we set the target of the URL with the value attribute. This
means we must include the .action extension ourselves. If we want to target an action,
we should probably use the action attribute, as seen in the next example:

URL = <s:url action="IteratorTag" var="myUrl">
 <s:param name="id" value="2"/>
 </s:url>
 <a href='<s:property value="#myUrl" />'> Click Me

Now, let’s see the markup generated by these tags:

URL =

 Click Me

As you can see, the URL tag didn’t generate any output in this example. This happened
because we used the var attribute to assign the generated URL string to a reference in
the ActionContext. This helps improve the readability of the code. In this example,
our URL tag, with its param tags, has become unwieldy to embed directly in the anchor
tag. Now we can just pull the URL from the ActionContext with a property tag and
some OGNL. This is also useful when we need to put the URL in more than one place
on the page.

 The param tag used in this example specifies querystring parameters to be added
to the generated URL. You can see generated querystring in the output. Note that you
can use the includeParams attribute to specify whether parameters from the current
request are carried over into the new URL. By default this attribute is set to get, which
means only querystring params are carried over. You can also set it to post, which
causes the posted form parameters to also be carried over. Or you can specify none.

6.5.3 The i18n and text tags

Many applications need to work in multiple languages. The process of making this
happen is called internationalization, or i18n for short. (There are 18 letters between
the I and the N in the word internationalization.) Chapter 11 discusses Struts 2’s inter-
nationalization support in detail, but we’d like to take a moment to detail the two tags
that are central to this functionality: the i18n tag and the text tag.

 The text tag is used to display language-specific text, such as English or Spanish,
based on a key lookup into a set of text resources. This tag retrieves a message value
from the ResourceBundles exposed through the framework’s own internationalization
mechanisms. We’ll explain this in greater detail in chapter 11. For now, we’ll just note
the usage of the tag; it takes a name attribute that specifies the key under which the mes-
sage retrieval should occur. The framework’s default Locale determination will deter-
mine the Locale under which the key will be resolved. Consult chapter 11 for full
details on where to place properties files to make their resources available to this tag.

155Miscellaneous tags
 Table 6.12 lists the attributes that the text tag supports.

You can also name an ad hoc ResourceBundle for resolving your text tags. If you want
to manually specify the ResourceBundle that should be used, you can use the i18n
tag. Table 6.13 lists the attributes of the i18n tag.

Here’s a quick example that shows how to set the ResourceBundle with the i18n tag
and then extract a message text from it with the text tag:

<s:i18n name="manning.chapterSix.myResourceBundle_tr">

 In <s:text name="language"/>,
 <s:text name="girl" var="foreignWord"/>

</s:i18n>

"<s:property value="#foreignWord"/>" means girl.

Figure 6.9 shows the output.
 The i18n tag simply specifies a resource bundle

to use. The bundle is only used during the body of
the tag. However, as our example demonstrates, you
can “persist” a message from the bundle using the
text tag’s var attribute to set the message to the
ActionContext as a named reference. This usage of
the var attribute should be more familiar by now.
The first text tag writes the message associated with
the key “language” directly to the output. The second text tag stores the message
associated with the key “girl” under the reference name “foreignWord”.

 These tags are simple, but seem out of context without full knowledge of the built-
in internationalization features of Struts 2. In particular, you’ll need to know how the
framework locates, loads, and uses properties file ResourceBundles. We’ll cover this in
detail in chapter11.

Table 6.12 text tag attributes

Attribute Required Type Description

name Yes String The key to look up in the ResourceBundle(s).

var No String If specified, the text is stored in the action context under this name.

Table 6.13 i18n tag attribute

Attribute Required Type Description

name Yes String The name of the ResourceBundle

Figure 6.9 Using
internationalization tags to pull
text from ResourceBundles

156 CHAPTER 6 Building a view: tags
6.5.4 The param tag

The last tag we’ll discuss has already been used throughout this chapter. The param tag
does nothing by itself, but at the same time it’s one of the more important tags. It not
only serves an important role in using many of the tags covered in this chapter, it’ll also
play a role in many of the UI component tags, as you’ll see in chapter 7. Table 6.14 lists
the attributes you’re now familiar with.

Using the param tag has already been established in this chapter. In particular, our cov-
erage of the bean tag showed a couple of use cases for the param tag, including as a means
for passing parameters into your own custom utility objects. As long as you have the gen-
eral idea, it’s just a matter of perusing the APIs to see which tags can take parameters.
Toward this end, it’s always a good idea to consult the online documentation of the
Struts 2 tags to see if a given tag can take a parameter of some sort. For one, this book
doesn’t attempt to be exhaustive in its coverage of the tags. Additionally, the tag API is
always being improved and expanded. Struts 2 is a new framework and growth is rapid.

 That’s all of the general-use Struts 2 tags that we’ll cover. Chapter 7 will cover the UI
component tags, which allow you to quickly develop rich user interfaces in your pages.
Before that, we’ll touch on a couple of advanced topics that pertain to tag usage. First,
we’ll comment on the use of native tags from the various view technologies. After that,
we’ll provide a short OGNL expression language primer to empower your tag usage.

6.6 Using JSTL and other native tags
What if you want to use the native tags and expression languages of your chosen view-
layer technology? That’s fine, too. While the Struts 2 tags provide a high-level tag API
that can be used across all three view technologies that the framework supports out of
the box, you can use the tags and macros provided natively by each of those technolo-
gies if you wish. The JSTL, for instance, is still available in your JSP pages. We don’t cover
the JSTL in this book and assume that, if you have enough reason to use JSTL instead of
the built-in Struts 2 tags, you probably already know quite a bit about the JSTL. We’ll just
note that the result types that prepare the environment for JSP, Velocity, and
FreeMarker rendering do make the ValueStack and other key Struts 2 data objects
available to the native tags of each technology. Bear in mind that the exposure of the
Struts 2 objects to those native tags and ELs may not be consistent, due to the differ-
ences between those technologies.

 Next up, the OGNL expression language details we’ve been promising for oh, so long.

Table 6.14 param tag attributes

Attribute Required Type Description

name No String The name of the parameter

value No Object The value of the parameter

157A brief primer for the OGNL expression language
6.7 A brief primer for the OGNL expression language
Throughout Struts 2 web applications, a need exists to link the Java runtime with the
text-based world of HTML, HTTP, JSP, and other text-based view-rendering technolo-
gies. There must be a way for these text-based documents to reference runtime data
objects in the Java environment. A common solution to this problem is the use of
expression languages. As we’ve seen, Struts 2 uses OGNL for this purpose. We’ll now
take the opportunity to cover the features of this expression language that you’ll most
likely need to use in Struts 2 development.

 Before we get too far, we should point out that this section could easily be skipped.
For most use cases, you’ve probably already learned enough OGNL expression lan-
guage to get by. You could treat this section as a rainy-day reference if you like. On the
other hand, you’ll probably find some stuff you can use immediately. It’s your choice.

6.7.1 What is OGNL?

The Object-Graph Navigation Language exists as a mature technology completely dis-
tinct from Struts 2. As such, it has purposes and features much larger than its use
within Struts 2. OGNL is an expression and binding language. In Struts 2, we use the
OGNL expression language to reference data properties in the Java environment, and
we use OGNL type converters to manage the type conversion between HTTP string val-
ues and the typed Java values.

 In this last section, we’ll try to summarize the syntax and some of the more useful
features of the OGNL expression language. First we’ll cover the syntax and features
most commonly used in Struts 2 development. Then we’ll cover some of the other
OGNL features that you might find handy. OGNL has many of the features of a full pro-
gramming language, so you’ll find that most everything is possible. Also note that this
section doesn’t try to be a complete reference to OGNL. If you want more OGNL
power, visit the website at www.ognl.org for more information.

Keep those JSPs clean! While OGNL has much of the power of a full-
featured language, you might want to think twice before squeezing the
trigger. It’s a well-established best practice that you should keep busi-
ness logic out of your pages. If you find yourself reaching for the OGNL
power tools, you might well be pulling business logic into your view
layer. We’re not saying you can’t do it, but we recommend giving it a
moment’s thought before complicating your view pages with too much
code-style logic. If you’re getting complex in your OGNL, ask yourself if
what you’re doing should be done in the action or, at least, encapsu-
lated in a helper bean that you can use in your page.

6.7.2 Expression language features commonly used in Struts 2

First, we should review the most common uses of the OGNL expression language in
Struts 2 development. In this section, we’ll look at how the expression language serves
its purpose for most daily development. Basically, we use it to map the incoming data

WARNING

www.ognl.org

158 CHAPTER 6 Building a view: tags
onto your ValueStack objects, and we use it in tags to pull the data off of the
ValueStack while rendering the view. Let’s look at the expression language features
most commonly used in this work.
REFERENCING BEAN PROPERTIES

First of all, we need to define what makes an expression. The OGNL expression lan-
guage refers to something called a chain of properties. This concept is simple. Take the
following expression:

person.father.father.firstName

This property chain consists of a chain of four properties. We can say that this chain
references, or targets, the firstName property of person’s grandfather. You can use
this same reference both for setting and getting the value of this property, depending
on your context.
SETTING OR GETTING?

When we use OGNL expressions to name our form input parameters, we’re referring
to a property that we’d like to have set for us. The following code snippet shows the
form from our Struts 2 Portfolio application’s Registration.jsp page:

<s:form action="Register">
 <s:textfield name="username" label="Username"/>
 <s:password name="password" label="Password"/>
 <s:textfield name="portfolioName" label="Enter a portfolio name."/>
 <s:submit/>
</s:form>

The name of each input field is an OGNL expression. These expressions refer to, for
example, the username property exposed on the root OGNL object. As we’ve just
learned, the root object is our ValueStack, which probably contains our action object
and perhaps a model object. When the params interceptor fires, it’ll take this expres-
sion and use it to locate the property onto which it should set the value associated with
this name. It’ll also use the OGNL type converters to convert the value from a string to
the native type of the target property.

 There is one common complication that arises when the framework moves data
onto the properties targeted by the OGNL expressions. Take the deeper expression:

user.portfolio.name

If a request parameter targets this property, its value will be moved onto the name
property of the portfolio object. One problem that can occur during runtime is a
null value for one of the intermediate properties in the expression chain. For
instance, what if the user hasn’t been created yet? If you recall, we’ve been omitting
initialization for many of our properties in our sample code. Luckily, the framework
handles this.

 When the framework finds a null property in a chain that it needs to navigate,
it’ll attempt to create a new instance of the appropriate type and set it onto the prop-
erty. However, this requires two things on the developer’s part. First, the type of the

159A brief primer for the OGNL expression language
property must be a class that conforms to the JavaBeans specification, in that it pro-
vides a no-argument constructor. Without this, the framework can’t instantiate an
object of the type. Next, the property must also conform to the JavaBeans specifica-
tion by providing a setter method. Without this setter, the framework would have no
way of injecting the new object into the property. Keep these two points in mind and
you’ll be good to go.

 In addition to targeting properties onto which the framework should move incom-
ing data, we also use OGNL when the data leaves the framework. After the request is
processed, we use the same OGNL expression to target the same property from a
Struts 2 tag. Recall that the domain model data stays on the ValueStack from start to
finish. Thus, tags can read from the same location that the interceptors write. The fol-
lowing snippet from the RegistrationSuccess.jsp page shows the property tag doing
just this:

<h5>Congratulations! You have created </h5>
<h3>The <s:property value="portfolioName" /> Portfolio</h3>

In this snippet, we see that the Struts 2 property tag takes an OGNL expression as its
value attribute. This expression targets the property from which the property tag will
pull the data for its rendering process, a simple process where it merely converts the
property to a string and writes it into the page.

 As you can see, OGNL expressions, as commonly used in Struts 2, serve as pointers
to properties. Whether the use case is writing to or reading from that property is up to
the context. Though not nearly as common, you can also use the fuller features of the
OGNL expression language, operators in particular, to write self-contained expres-
sions that, for instance, set the data on a property themselves. But, as this is outside of
the normal Struts 2 use case, we’ll only discuss such features in the advanced section.
WORKING WITH JAVA COLLECTIONS

Java Collections are a mainstay of the Java web developer’s daily workload. While the
JavaBeans specification has always supported indexed properties, working with actual
Java Collections, while convenient in the Java side, has always been a hassle in con-
texts such as JSP tags. One of the great things about the OGNL expression language is
its simplified handling of Collections. We’ve already seen this in action when we
demonstrated the automatic type conversion to and from complex Collection prop-
erties in the previous chapter. We’ll now summarize the OGNL syntax used to refer-
ence these properties.
WORKING WITH LISTS AND ARRAYS

References to lists and arrays share the same syntax in OGNL. Table 6.15 summarizes
the basic syntax to access list or array properties. To see these in action, refer back to
the code samples from chapter 5 that demonstrated type conversion to and from lists
and arrays.

 As table 6.15 demonstrates, the syntax for referencing elements or properties of
lists and arrays is intuitive. Basically, OGNL uses array index syntax for both. This
makes perfect sense, due to the ordered, indexed nature of lists.

160 CHAPTER 6 Building a view: tags
A couple of things warrant remarks. First, the reference to the name property of a list
element assumes something important. As we know, Java Lists are type-agnostic. In
Java, we always have to cast the element to the appropriate type, in this case User,
before we try to reference the name property. We can omit this in OGNL if we take the
time to specify the Collection element type as we learned earlier in this chapter. This
syntax assumes that has been done. We should also note that you can reference other
properties, such as length and size, of arrays and lists. In particular, note that OGNL
makes the List class’s non-JavaBeans-conformant size method answer to a simple
property reference. This is something nice that OGNL provides as free service to its
valued customers!

 OGNL also allows you to create List literals. This can be useful if you want to
directly create a set of values to feed to something like a select box. Table 6.16 shows
the syntax for creating these literals.

You probably only want to do this with trivial data, since creating complex data in the
view layer would make a mess. Nonetheless, sometimes this will be the perfect tool for
the job.
WORKING WITH MAPS

OGNL also makes referencing properties and elements of maps delightfully simple.
Table 6.17 shows a variety of syntax idioms for referencing Map elements and properties.

Table 6.15 OGNL expression language syntax for referencing elements of array and list properties

Java code OGNL expression

list.get(0) list[0]

array[0] array[0]

((User) list.get(0)).getName() list[0].name

array.length array.length

list.size() list.size

list.isEmpty() list.isEmpty

Table 6.16 Creating a list dynamically in OGNL

Java code OGNL expression

List list = new ArrayList(3); {1,3,5}

list.add(new Integer (1));

list.add(new Integer (3));

list.add(new Integer (5));

return list;

161A brief primer for the OGNL expression language
As you can see, you can do a lot with maps. The main difference here is that, unlike
Lists, the value in the index box must be an object. If the value in the box is some
sort of numeric data that would map to a Java primitive, such as an int, then OGNL
automatically converts that to an appropriate wrapper type object, such as an Integer,
to use as the key. If a string literal is placed in the box, that becomes a string object
which will be used for the key. The last row in the table shows a special syntax for maps
with strings as keys. If the key is a string, you may use this simpler, JavaBeans-style
property notation.

 As for other object types that you might use as a key, you ultimately have the full
power of OGNL to reference objects that might serve as the key. The possibilities are
beyond the capacity of the table format. Note that, as with the List syntax, the direct
reference to the name property on the uncast map element depends on the configura-
tion of the OGNL type conversion to know the specific element type of the map, as we
learned in chapter 6.

 You can also create Maps on the fly with the OGNL literal syntax. Table 6.18 demon-
strates this flexible feature.

Table 6.17 OGNL expression language syntax for referencing map properties

Java code OGNL expression

map.get("foo") map['foo']

map.get(new Integer(1)) map[1]

User user = (User)map.get("userA");
return user.getName();

map['userA'].name

map.size() map.size

map.isEmpty() map.isEmpty

map.get("foo") map.foo

Table 6.18 Creating maps dynamically in OGNL

Java code OGNL expression

Map map = new HashMap(2);
map.put("foo", "bar");
map.put("baz", "whazzit");
return map;

#{ "foo" : "bar","baz" : "whazzit" }

Map map = new HashMap(3);
map.put(new Integer(1), "one");
map.put(new Integer(2), "two");
map.put(new Integer(3), "three");
return map;

#{ 1 : "one",2 : "two", 3 : "three" }

162 CHAPTER 6 Building a view: tags
As you can see, the syntax for creating a Map literal is similar to that for creating a List
literal. The main difference is the use of the # sign before the leading brace.

OGNL uses the # sign in a few different ways. Each is distinct. The uses are
completely orthogonal, so you shouldn’t be confused as long as you’re
alert to the fact that they’re different use cases. In particular, this isn’t the
same use of the # sign as we saw when specifying a nonroot object from
the ActionContext for an expression to resolve against. We’ll also see
another use of the # sign in a few moments.

Dynamic maps are especially useful for radio groups and select tags. The Struts 2 tag
libraries come with special tags for creating user interface components. These will be
explored in chapter 7 . For now, just note that you can use literal maps to feed values
into some of the UI components. If you wanted to offer a true/false selection that dis-
plays as a Yes/No choice, #{true : 'Yes', false : 'No'} would be the value for the
list attribute. The value for the value attribute would evaluate to either true or false.
FILTERING AND PROJECTING COLLECTIONS

OGNL supports a couple of special operations that you can conduct on your collec-
tions. Filtering allows you to take a collection of objects and filter them according to
some rule. For instance, you could take a set of users and filter them down to only
those who’re more than 20 years old. Projection, on the other hand, allows you to
transform a collection of objects according to some rule. For instance, you could take
a set of user objects, having both first and last name properties, and transform it into a
set of String objects that combines the first and last name of each user into a single
string. To clarify, filtering takes a Collection of size N and produces a new collection
containing a subset of those elements ranging from size 0 to size N. On the other
hand, projecting always produces a Collection with exactly the same number of ele-
ments as the original Collection; projecting produces a one-for-one result set.

 The syntax for filtering is as follows:

collectionName.{? expression }

In the expression, you can use #this to refer to the object from the collection being eval-
uated. This is another distinct use of the # sign. The syntax for projection is as follows:

collectionName.{ expression }

Table 6.19 shows some examples of both of these useful operations in action.

Table 6.19 Producing new collections by filtering or projecting existing collections

OGNL expression Description

users.{?#this.age > 30} A filtering process that returns a new collection with
only users who are older than 30

users.{username} A projection process that returns a new collection
of username strings, one for each user

WARNING

163A brief primer for the OGNL expression language
As you can see, each filtering or projection simply returns a new collection for your
use. This convenient notation can be used to get the most out of a single set of data.
Note that you can combine filtering and projection operations. That about covers it
for aspects of OGNL that are commonly used in Struts 2. In the next section, we’ll
cover some of the advanced features that might help you out in a pinch, but, still, we
recommend keeping it simple unless you have no choice.

6.7.3 Advanced expression language features

As we’ve indicated, OGNL is a full-featured expression
language. In fact, its features rival that of some full-
fledged programming languages. In this section, we give
a brief summary of some of the advanced features that
you might use in a pinch. Some of these things are basic
features of OGNL, but advanced in the context of Struts 2
usage. Take our terminology with a grain of salt. Also,
we’ll make little effort to introduce use cases for these fea-
tures. We consider their usage to be nonstandard prac-
tice. With that said, we also know that these power tools
can save the day on those certain occasions that always
seem to occur.
LITERALS AND OPERATORS

Like most languages, the OGNL expression language
supports a wide array of literals. Table 6.20 summarizes
these literals.

 The only thing out of the ordinary would be the usage of both single and double
quotes for string literals. Note, however, that a string literal of a single character must
use double quotes, or it’ll be interpreted as a char literal. Table 6.21 shows the operators.

users.{firstName + ' ' +
lastName}

A projection process that returns a new collection
of strings that represent the full name of each user

users.{?#this.age > 30}.{username} A projection process that returns the usernames of
a filtered collection of users older than 30

Table 6.21 Operators of the OGNL expression language

Operation Example

add (+) 2 + 4
'hello' + 'world'

subtract (-) 5 – 3

Table 6.19 Producing new collections by filtering or projecting existing collections (continued)

OGNL expression Description

Table 6.20 Literals of the
OGNL expression language

Literal type Example

Char 'a'

String 'hello'

"hello" Boolean

True False

int 123

double 123.5

BigDecimal 123b

BigInteger 123h

164 CHAPTER 6 Building a view: tags
As you can see, all the usual suspects are here. This would probably be a good time to
note that the OGNL expression language also allows multiple comma-separated
expressions to be linked in a single expression. The following snippet demonstrates
this process:

user.age = 10, user.name = "chad", user.username

This relatively meaningless example demonstrates an expression that links three sub-
expressions. As with many languages, each of the first two expressions executes and
passes control on to the next expression. The value returned by the last expression is
the value returned for the entire expression. Now we’ll see how to invoke methods
with OGNL.
CALLING METHODS

One power that many a JSP developer has wished for is the ability to call methods from
the expression language. Until recently, this was rare. Actually, even the simplest prop-
erty reference involves a method call. But those simple property references can invoke
methods based on JavaBeans conventions. If the method you want to invoke doesn’t
conform to JavaBeans conventions, you’ll probably need the OGNL method invoca-
tion syntax to get to it. This can sometimes get you out of a jam. It can also be useful in
calling utility methods on helper beans. Table 6.22 shows how it works.

multiply (*) 8 * 2

divide (/) 9/3

modulus (%) 9 % 3

increment (++) ++foo
foo++

decrement (--) bar--
--bar

equality (==) foo == bar

less than (<) 1 < 2

greater than (>) 2 > 1

Table 6.22 Calling methods from the OGNL expression language

Java code OGNL expression

utilityBean.makeRandomNumber() makeRandomNumber()

utilityBean.getRandomNumberSeed() getRandomNumberSeed()
randomNumberSeed

Table 6.21 Operators of the OGNL expression language (continued)

Operation Example

165Summary
Note that in this table we assume that a random number generator bean, named
utilityBean, has been pushed onto the ValueStack prior to the evaluation of these
OGNL expressions. With this bean in place, you can omit the object name in the
OGNL expression, because it resolves to the ValueStack by default. First, we invoke
the makeRandomNumber() method as you might expect. In the second example, we
show that you can even use a full method invocation syntax to access JavaBeans prop-
erties, though you don’t have to. The result is no different than when using the sim-
pler property notation.

 We should note that these method invocation features of the OGNL expression lan-
guage are turned off during the incoming phase of Struts 2 data transfer. In other
words, when the form input field names are evaluated by the params interceptor,
method invocations, as well as some other security-compromising features of the
expression language, are completely ignored. Basically, when the params interceptor
evaluates OGNL expressions, it’ll only allow them to point to properties onto which it
should inject the parameter values. Nothing else is permitted.
ACCESSING STATIC METHODS AND FIELDS

In addition to accessing instance methods and properties, you can also access static
methods and fields with the OGNL expression language. There are two ways of doing
this. One requires specifying the fully qualified class name, while the other method
resolves against the ValueStack. The syntax that takes the full class name is
@[fullClassName]@[property or methodCall]. Here are examples of using full class
names to access both a static property and a static method:

@manning.utils.Struts2PortfolioConstants@USER
@manning.utils.PortfolioUtilityBean@startImageWrapper()

Besides the @ signs, these are no different than normal property specification or method
invocation. As we said, you can forgo specifying the class name if and only if your prop-
erty or method will resolve on the ValueStack. Here we have the same two examples,
but they assume that some object on the ValueStack exposes what they need. The syntax
replaces the class name with the vs symbol, which stands for ValueStack:

@vs@USER
@vs@startImageWrapper()

That wraps up our coverage of some of the advanced features of OGNL. You’ll proba-
bly find yourself coming back to this quick reference in the future as you butt heads
with some odd wall or two. Again, we recommend taking it easy on the OGNL power
tools. However, we’re compelled to tell you that OGNL contains even more powerful
features than we’ve felt comfortable divulging. For the full details, we refer you
directly to the primary OGNL documentation found at www.ognl.org.

6.8 Summary
Well, that was a long chapter. That should be about as long as they’ll get in this book.
I’m worn out from writing it. To be fair, a large portion of the chapter was filled up

www.ognl.org

166 CHAPTER 6 Building a view: tags
with reference material, screen shots, tables, and the like. Let’s take a moment to con-
sider the range of information that this chapter covered.

 This chapter started by trying to clarify where data is kept during request process-
ing. This key concept may be one of the most challenging parts of learning Struts 2.
It’s not really that complicated; it’s just different than some frameworks you might’ve
worked with in the past. As we noted, with the cleaned-up action component—it has
no heavy parameter list on the execute() method signature—there’s a strong need
for a location where we can centralize all the data important to the execution of the
action. This data makes up the context in which the action executes. Thus, the loca-
tion where most of the important data resides is known as the ActionContext.

 The ActionContext contains all kinds of important data, ranging from request-,
session-, and application-scoped maps to the all-important ValueStack itself. We saw
that we can access all these data items via the OGNL expression language. In particu-
lar, we learned that, by default, OGNL will resolve against the ValueStack, but we can
also specify a different object from the ActionContext for our OGNL expressions by
using the # operator to name our initial object. The ValueStack, in addition to being
the default object for OGNL, is also distinguished by its special qualities. The most
important quality of the ValueStack is that it presents a synthesis of the properties in
the stack as if they were all properties on a single virtual object, with duplicate proper-
ties resolving to the instance of the property highest in the stack.

 This section has introduced brand-new concepts for our Struts 1 friends. These
new capabilities allow complex websites to be built easily. This might be a good time to
reward you with a break. For many, understanding these data repositories can be the
biggest hurdle in learning Struts 2.

 With all that out of the way, we ran through the Struts 2 tag API at a gallop. The
most important things to remember about the tag API are that it’s implemented at a
layer higher than the specifics of a given view-layer technology. Everything we’ve
learned about using the specific tags, though we demoed them in JSPs, can easily be
transferred to Velocity or FreeMarker. Just consult the syntactical changes we specified
in this chapter and go. The APIs are all the same.

 Actually, we’ve just started our tour of the Struts 2 tag API. This chapter covered
the general-use tags. In chapter 7, we’ll look at the UI component tags. These power-
ful tags will help us build rich user interfaces for our view layer. We’re now deep into
the view layer of the Struts 2 framework. In many ways, it’s just getting interesting.
Wait till you see how easy it is to make powerful forms with the Struts 2 UI tags.

UI component tags
In the previous chapter, we introduced the Struts 2 tag API. As we saw, this high-
level API provides a common set of tag functionality that you can access from any of
three view-layer technologies: JSPs, Velocity, and FreeMarker templates. Learn the
tag API once, and you’ll start using it everywhere. We saw tags that helped us pull
data from the ValueStack, iterate over collections of data, and even control the
flow of page rendering with conditional logic of various sorts. Now it’s time to start
building a user interface with a special set of tags known as the UI component tags.

 UI components take some introduction. Each UI component is a functional
unit with which the user can interact and enter data. At the heart of each Struts 2
UI component is an HTML form control, such as a text field or select box. But
don’t be mistaken: these components are much more than just tags that output an
HTML input element. They are a higher-level component, of which the HTML ele-
ment is only the browser manifestation. They integrate all areas of the framework,

This chapter covers
■ Generating HTML with UI component tags
■ Building forms and beyond
■ Snazzing it up with templates and themes
■ Surveying the components
167

168 CHAPTER 7 UI component tags
from data transfer and validation to internationalization and look and feel. Some of
these components even combine more than one HTML form element to build new
functional units for your pages.

 In addition to all their functional capacity, the UI components are built on a lay-
ered, mini-MVC architecture that isolates the HTML markup output of a given compo-
nent into an underlying FreeMarker template. This empowers the developer to modify
the components themselves simply by modifying these underlying templates. This flex-
ibility can provide developers with a powerful tool for meeting the finicky demands of
user-interface requirements while still leveraging the reusability of a component-based
architecture. This chapter will familiarize you with the UI component architecture, as
well as provide a hands-on tour of the various component tags and demonstrate their
use with sample code from the Struts 2 Portfolio.

 This chapter might seem long, but the UI components have a lot to offer, and
much of this chapter’s later parts are reference-oriented. You probably won’t need to
read about the more advanced UI components until you need to use them.

7.1 Why we need UI component tags
I used to say that I’d never be a front-end developer. All of those hackish browser
workarounds and convoluted JavaScript tangles, a million different ways to solve com-
mon problems, a dozen ways to solve each eccentric browser-specific problem—this is
no place for anyone with an inclination toward order. Now things are clearing up as
browsers begin to reach a higher level of standards compliance. You can now count on
a large share of browsers behaving as you’d expect most of the time.

 But this increasing compliance to standards hasn’t made life simpler. Instead of tak-
ing a moment to appreciate the calm, developers have taken advantage of the stabiliz-
ing front-end platform to pile on a whole new wave of front-end complexity. Each day,
dynamic front ends, powered by Ajax and other rich-client technologies, get closer to
becoming commonplace requirements. A new web application framework, such as
Struts 2, would be in grave error if it didn’t lay the architectural foundations for man-
aging the increasing complexity of the front end. The Struts 2 UI components pull this
off quite well. In this chapter, we’ll see how.

7.1.1 More than just form elements

As most of the work of an HTML user interface is accomplished by forms and form ele-
ments, many of the UI component tags correlate to HTML elements. There’s a Struts 2
UI component for all of the commonly used HTML form elements. Moving past this
one-to-one relationship, the more complex UI components wrap a couple of HTML
elements into a single unit to create a new form widget. If you like, you can think of
the rendering of the corresponding HTML element(s) as the foundation of the UI
component. But, ultimately, the UI components are more than the sum of their
underlying HTML elements. The following list summarizes some of the things that a
UI component can do for you:

169Why we need UI component tags
■ Generate HTML markup
■ Bind HTML form fields to Java-side properties
■ Tie into framework type conversion
■ Tie into framework validation
■ Tie into framework internationalization

In this section, we’ll explain each of these functional roles. We’ll start with generating
the markup.
GENERATING THE HTML MARKUP

First of all, each UI component tag does indeed generate a wad of HTML markup. This
markup defines the corresponding HTML element and frequently some additional
layout markup. This is the simplest aspect of the component tags. For instance, the
Struts 2 textfield tag creates an HTML text input element. To parameterize the out-
put of the component, the Struts 2 tag exposes various attributes to the developer.
Many of these attributes mirror those found on the HTML element itself, frequently in
a one-to-one fashion. However, as is typical for Struts 2, you won’t usually need to
define many of the attributes by hand. Their values will be deduced by the framework
based on convention and intelligent defaults. This makes your page code much
cleaner, faster, and more reusable.

 As a simple example, let’s look at the Struts 2 textfield component. Consider the
following Struts 2 textfield tag:

<s:textfield name="username" label="Username"/>

As you can see, the only attributes that we set are name and label, but the output,
shown in the following snippet, deduces a lot of information from these two
attributes:

<td class="tdLabel">
 <label for="Register_username" class="label">Username:</label>
</td>
<td>
 <input type="text" name="username" value="" id="Register_username"/>
</td>

First of all, don’t be confused by the table markup. This is done by the XHTML theme,
one of the themes you can choose to determine the layout style used when rendering
the UI component. We’ll cover it in detail in section 7.2. For now, it’s enough to know
that the XHTML theme uses a table to control the layout of form elements. It also adds
some class attributes for CSS control, and it can even generate a simple default
stylesheet for these styles, if you like. Later, when we cover themes, you’ll see that you
can choose other themes for rendering your tags, including a theme that will use pure
CSS for form layout.

 For now, let’s not think about the layout. If we look at the HTML elements themselves,
we can see that the textfield component tag produced two: a label and an input. As
you’d expect, it generates the HTML input field, with type set to text. It also creates an
id by concatenating the enclosing form’s name with the input field’s name; note that we

170 CHAPTER 7 UI component tags
haven’t shown the enclosing form in this example. Since CSS and JavaScript both
depend so heavily on the existence of ids, this has become a foundational feature of the
component tags. Additionally, the textfield tag, following HTML best practices, cre-
ates a label element to be used for displaying the name of the field to the user.

 While this markup generation eases your development, it’s not enough to warrant
the use of the term component. Don’t get misled into equating the UI component with
a tag that just generates the markup for an HTML element. The textfield tag does
much more than create the markup shown.

Don’t freak out! Many developers start to twitch when we tell them that the
UI component tags will generate the HTML markup for them. If you’re get-
ting jittery, just focus on your breathing and hear us out. The Struts 2 UI
component tags were carefully designed as a mini-MVC UI component
framework of their own. The HTML view of each component is isolated
into a single FreeMarker template that can easily be edited. Thus, you can
tweak the Struts 2 UI components to generate HTML that meets your own
idiosyncratic requirements. Now, rather than being a one-off hack, your
quirky HTML will be a quirky component. You will, if you like, be able to
share your quirky markup across many pages and projects.

You probably expected that the component tags would generate the markup for the cor-
responding HTML elements. We’ll now move on to the other services provided by the
UI components that integrate them with the whole framework and truly set them apart.
BINDING FORM FIELDS TO VALUESTACK PROPERTIES

Creating the HTML elements is just the beginning. Once the HTML elements are in
place, the UI components wire these elements into all the rich functionality of the
Struts 2 framework. For starters, they bind the form input fields to the properties on the
ValueStack. This binding lays the foundation for a bidirectional flow of data between
UI components and the domain model objects on the ValueStack. We’ve already
explored this in some depth, but we’ll now reiterate the role that the UI components
play in this.

 When you’re looking at a form generated by Struts 2 UI component tags, the form
fields you see are tied to the back-end Java properties in two directions. First,
ValueStack data can flow into your form for prepopulation, if you desire. Then, when
the form is posted, the data from those form fields will flow back into the framework
and be automatically transferred onto the ValueStack. When we covered actions in
chapter 3, we discussed the incoming data at length. We’ll now go through an example
to show how the full binding of UI components to the ValueStack also works in the
outgoing mode to power easy prepopulation of your forms.

 As we’ve already learned, the name of a UI component is what binds the compo-
nent to a ValueStack property. The name, as it’s interpreted as an OGNL expression,
is used to locate a property on the stack. During rendering, a UI component will pull
the value from the stack, if it exists, to prepopulate the form. On submission, that
same name will be used to locate the target of the framework’s automatic data trans-
fer. Let’s look at an example of how this works.

WARNING

171Why we need UI component tags
 In order to show both the form pre-
population and submission phases, we’ve
added an Update Account feature to the
Struts 2 Portfolio application. Go to the
chapter 7 section of the sample applica-
tion and log in to an account. From there,
choose to update your account details.
When you do, you’ll be presented with an
account update form that’s prepopulated
with your existing account details, shown
in figure 7.1.

 As you can see, the form has been prepopulated. Clearly, the UI components have
already been bound to Java-side properties. Before we edit anything, let’s look at how
we’ve built the actions and JSP result pages to drive this account update example.

 First of all, we’ve broken the process of updating the account into two actions. The
first action retrieves the current account data and builds a prepopulated form. The
second action, which the form will submit to, will accept the revised account informa-
tion, validate it, and persist it. The use of two actions is perhaps inelegant, but it serves
as a better illustration of the prepopulation and submission phases of the component.
In chapter 15, we explore a common technique of combining these phases into a sin-
gle action that can handle all aspects of data manipulation for a given data object,
a.k.a. the Create-Read-Update-Delete (CRUD) action.

 The first action, UpdateAccountForm, will build a prepopulated form. All this action
needs to do is expose the appropriate User object. We’ll do this by exposing the User
object as a domain model object, à la ModelDriven actions. Listing 7.1 shows the
UpdateAccountForm action in full.

public class UpdateAccountForm extends ActionSupport
 implements UserAware, ModelDriven {

 public String execute(){
 return SUCCESS;
 }

 private User user;

 public void setUser(User user) {
 this.user = user;
 }

 public Object getModel() {
 return user;
 }
}

This action implements the UserAware interface B, developed in conjunction with
the AuthenticationInterceptor we built in chapter 4, to receive an injection of the

Listing 7.1 The UpdateAccountForm exposes a User to prepopulate the form

B

C

D

E

Figure 7.1 The account form is prepopulated
with data from properties on the ValueStack.

172 CHAPTER 7 UI component tags
current User object into a setter method D. This action is in the secure package that
has that interceptor in its stack. This is great, because it saves the work of having to
manually retrieve the User object that’ll be used to prepopulate our form. We also
implement the ModelDriven interface B, because we’ll expose our User object as a
domain model object rather than as a local JavaBeans property. This, in combination
with the automatic injection of the User as described previously, allows us to use an
extremely elegant syntax where we implement our getModel() to just return the
already-injected user E.

 Since all this action needs to do is retrieve and expose the User object for the pur-
pose of form prepopulation, we’re done! But we haven’t even hit the execute()
method yet! No problem; if we’ve made it this far, we can assume success C. Any prob-
lems would’ve been intercepted at the levels of data conversion or validation. What’s
our result?

 As you would see if you consulted manning/chapterSeven/chapterSeven.xml, the
SUCCESS result points to the UpdateAccountForm.jsp page. This page presents a pre-
popluated and editable form of user account information. This page contains the UI
component tags that’ll build our account update form. The essential markup from
the UpdateAccountForm.jsp page is shown in the following snippet:

<s:form action="UpdateAccount">
 <s:textfield name="username" label="Username" readonly="true"/>
 <s:password name="password" label="Password"/>
 <s:textfield name="portfolioName" label="Enter a name."/>
 <s:submit/>
</s:form>

The most important aspect of these tags is the name attribute. The name attribute is
what binds each component to the properties exposed on the ValueStack, thus allow-
ing data from the current stack to flow into the form fields during the page rendering
prepopulation stage, and also allowing data from this form’s eventual submission to
flow from that request onto the receiving action’s ValueStack properties. This is what
we mean when we say that a UI component binds the form field to Java-side properties
on the ValueStack. And this works, ultimately, because the name of an input field is
interpreted by the framework as an OGNL expression that ties everything together.

 Since our UpdateAccountForm action exposes the User object via the ModelDriven
interface’s getModel() method, our name attribute OGNL can be simple, top-level ref-
erences. For example, we can bind to the username of our model object with a simple
username B. With this binding in place, this textfield component will pull the value
off of the ValueStack’s username property, which is actually our user’s username prop-
erty, and use that value in the creation of the actual form field. In other words, it’ll
write that value into the input field’s value attribute. The rest of the form compo-
nents are handled similarly. Here’s the resulting HTML source:

<input type="text" name="username" value="Arty" readonly="readonly"
 id="UpdateAccount_username"/>

B

173Why we need UI component tags
<input type="password" name="password" id="UpdateAccount_password"/>

<input type="hidden" name="__checkbox_receiveJunkMail" value="true" />

Voilà, these are our prepopulated form fields. For ease of reading, we’ve stripped out
all of the markup except the form input elements themselves. As you can see, the
input elements have had their value attribute set with the data from the bound prop-
erty on the ValueStack. Refer back to figure 7.1 to see how this looks on the page. As
you can see, UI components, in addition to just generating the HTML element, make
easy work of form prepopulation.

Though we’ve made it sound like the name attribute is responsible for the
prepopulation, it’s actually the value attribute at work. We’ve glossed
over this a bit thanks to the intelligent default behavior of the framework.
In truth, the UI components expose a value attribute, which takes an
OGNL expression pointing to a Java property that should be used to fill in
the value of the form field during prepopulation. You can do it this way if
you like. However, since you’ll almost always prepopulate from a prop-
erty with the same name as the property that’ll be the target of the posted
data, the framework will simply propagate the name attribute’s OGNL over
to the value attribute. If you ever need to prepopulate from a different
property than you’ll submit to, feel free to set the value attribute inde-
pendently from the name attribute.

The other side of the UI component data binding is the incoming request parameters
from the submitted form. We’ve spent a lot of time on that already, so we won’t rehash
how the automatic data transfer works. We’ll summarize this section by noting that the
UI component does indeed bind itself, via the name attribute as an OGNL expression, to
both outgoing and incoming properties on the ValueStack to achieve both prepopu-
lation of forms and automatic data transfer when a form is posted.

 In addition to providing built-in binding to ValueStack properties, UI compo-
nents also provide integration with several framework features, including type conver-
sion, validation, and internationalization.
INTEGRATION WITH TYPE CONVERSION, VALIDATION, AND INTERNATIONALIZATION

We’ve already seen how the UI components can bind a form field to a property on the
ValueStack to make the data flow effortlessly from the user interface to the back-end
Java code. There are several other functions encapsulated in the UI components. In
this section, we’ll discuss how the components tie into the framework’s type conver-
sion, validation, and internationalization mechanisms.

 For type conversion and validation, the UI components automatically handle error
messages when there’s a problem. As you’ve seen, problems with type conversion or
validation cause the request to return the user back to the input form. When this hap-
pens, the UI components will automatically detect the presence of errors associated
with themselves, and display error messages accordingly. You can customize these
error messages and even tie them into the internationalization features to provide

HEADS-UP

174 CHAPTER 7 UI component tags
localized error messages to your users. For a full discussion of these functionalities,
please consult chapters 5 and 10.

 As we’ve indicated, UI components can tap into the internationalization mecha-
nism to provide localized error messages. They can also tap into the internationaliza-
tion to provide localized label names for your UI components. This feature uses the
key attribute provided by all UI components. When using the key attribute, you can
simplify your form field markup to a high level. You can set just this attribute and it’ll
pull a localized label from a framework ResourceBundle and intelligently deduce the
name and value attributes to fully complete the component’s bindings. This is fully
explored in chapter 11.

 Now that we’ve convinced you that the Struts 2 UI components provide much more
than just an HTML element on the page, let’s learn how to use them. The first thing we
need to do is explain that mini-MVC architecture in a bit more depth.

7.2 Tags, templates, and themes
We’ve covered the functional aspects of the UI components. Now we need to say
something about their unique architecture. You might be thinking that an architec-
ture for tags is a bit much. We understand that response. But once you see what the
tag architecture provides, we think you’ll fully appreciate the effort. The most impor-
tant benefit of the mini-MVC architecture of the UI components is reusable customi-
zation.

 Let’s start with a high-level introduction. Figure 7.2 shows the architecture of the
UI component framework.

 The UI components are built on a layered architecture. As a developer, you need to
be clear about three things: tags, templates, and themes. At the top of figure 7.2, the com-
ponent API is exposed as a JSP tag in a page. This tag is first processed in its native envi-
ronment—the JSP tag is processed as a JSP tag. As we learned in the previous chapter,

Figure 7.2 Tags,
templates, and themes work
together to provide feature-
rich, flexible, extensible UI
components.

175Tags, templates, and themes
the tag API can be utilized from several view-layer technologies. The native tag, such as
a JSP Struts 2 textfield tag, is just a wrapper around the framework’s corresponding
UI component API, such as the org.apache.struts2.components.TextField compo-
nent class. As you can see in figure 7.2, the native tag quickly hands control over to this
component API for actual processing. The UI component layer processes the logic of
the tag and prepares the data. It then hands off the rendering task to the underlying
FreeMarker templates.

Don’t be confused by the fact that the UI components use FreeMarker
templates for their own rendering. This is an internal detail of the mini-
MVC component framework itself; it has no bearing on your choice of
JSP, Velocity, or FreeMarker for your view-layer pages. The internal
FreeMarker templates are used to generate the output of the tag itself,
which’ll show up in whatever kind of page you put the tag. If you want to
customize the tag output, you’ll have to work with the underlying
FreeMarker templates. But your view layer isn’t bound to FreeMarker just
because the framework uses it internally. Incidentally, we’ll show you how
to customize those templates in chapter 13.

In this way, the markup output of the tag API is layered away from the Java classes that
conduct the logic; thus we have a mini-MVC. As with all MVCs, the main benefit is the
ability to easily change the “view” of the tag without needing to touch the business logic
embedded in the tag’s component class. We’ll show you how to customize the view of
the tags yourself in chapter 13. For now, we’ll focus on explaining how to work with the
several view options that are bundled with the framework. Several themes of templates
are available for rendering the tags. The css_xhtml theme, for instance, renders the
tags with pure CSS-based layout markup.

 All of this will be explained in the following sections, which go into more detail
about the layers shown in figure 7.2: tags, templates, and themes.

7.2.1 Tags

Tags are quite simple. As we explained in chapter 6, the Struts 2 tag API is high-level API.
In other words, the functionality and use of the tags is defined outside the details of a
given view-layer technology. The tag API could be implemented in any technology. By
default, the framework provides implementations of the tag API for JSP, Velocity, and
FreeMarker. In chapter 6, we explained how to use the tags with each of these technol-
ogies. Regardless of which you use, the native tag will delegate the processing to the UI
component framework. The framework manages the logic and data model for the tag,
processing the logic associated with the tag as well as collecting the relative data. The
data might come from tag attributes or parameters, as well as from the ActionContext
and ValueStack. This data is all made available to the template that’ll render the HTML
view of the UI component. The framework uses FreeMarker templates for rendering the
UI components.

WARNING

176 CHAPTER 7 UI component tags
7.2.2 Templates

As we’ve said, every tag has a FreeMarker template that’ll render its markup. As with
most templating technologies, a FreeMarker template looks like a normal text file.
Inside the plain text, special FreeMarker directives are included that can dynamically
pull in data and render the resulting output. In the case of the UI component tags, a
template takes the data model, as collected by the tag logic, and blends that data with
the static parts of the template to create the final markup that’ll be in your HTML
page. Note that regardless of whether the tag was invoked from a JSP or a Velocity tem-
plate, the same template will receive the same set of parameters and render the result-
ing markup in exactly the same way.

 If you never customize or create your own templates, you don’t need to concern
yourself with these details in any greater detail than this. However, we think that cus-
tomizing the tags will appeal to many users. If you want to customize the templates,
they are readily accessible in the Struts 2 JAR, or you can override them by inserting
your own in the classpath. In chapter 13, we’ll provide a demonstration of some tech-
niques for customizing these templates. If you never customize them, you should be
fine as long as you understand that the UI components use FreeMarker templates to
handle their rendering.

7.2.3 Themes

It’s easy to understand that an underlying template generates the markup for a given
tag. However, it’s more complicated than that. In fact, each tag has several versions of
the underlying template at its disposal. Each of these versions belongs to a different
theme. A theme, as shown in figure 7.2, is a group of templates, one for each tag more
or less, that’ll render the tags in some consistent fashion or manner. For instance, one
theme renders the tags to work with HTML table layout, while another renders them
to work with CSS. Several themes are bundled with the framework, and you can
choose which one you want your tags to use.

 There are several ways to specify the theme. By default, all tags will render under
the xhtml theme. You can change this default theme for the whole application, or you
can specify a different theme on a per-page or per-tag basis. In the rendering scenario
of figure 7.2, we can see that the css_xhtml theme, which uses pure CSS to lay out the
elements of a form, has been selected. Right now, Struts 2 comes with four themes for
rendering your UI components: simple, xhtml, css_xhtml, and ajax. Table 7.1 sum-
marizes the characteristics of these themes.

Table 7.1 The built-in UI component themes

Theme Description

simple Renders the basic HTML element.

xhtml Renders the UI component using a table to provide the layout.

177Tags, templates, and themes
These themes are straightforward. The simple theme is rarely used on its own. The
simple theme does little more than build the basic HTML element itself. While this
isn’t too useful on its own, it provides a good core for creating more complicated
themes. In fact, the other themes that come with Struts 2 all take advantage of this and
use the simple theme to render the basic HTML element at the core of their more
complex markup. They do this by extending the simple theme. Extending a theme is
a technique you can use to create new themes; again, we’ll explore this topic in chap-
ter 13. While the simple theme may rarely be used on its own, the other three themes
presented in table 7.1 all provide full-featured UI components that integrate fully with
the Struts 2 framework.
CHANGING THE THEME

Before moving on to discuss the use of the UI components themselves, we should show
how to change the theme under which they render. By default, the components will
render under the xhtml theme, which uses HTML tables for layout of the forms. Many
developers are moving away from the use of HTML tables for layout. If you want to do
this, you’ll probably want to change the default rendering theme to css_xhtml. The
default theme is changed by overriding the default property. All of the framework’s
default properties are defined in default.properties, found in the Struts 2 core JAR
file at org.apache.struts2. To override any of the framework’s default properties, you
only need to create your own properties file, named struts.properties, and place it in
the classpath. To change the default theme, just create a struts.properties file with the
following property definition:

struts.ui.theme=css_xhtml

Then just make sure it’s on the classpath. Most people put it in the web application at
WEB-INF/classes/struts.properties. With this in place, all UI components will render
under the css_xhtml theme. Now your application will use CSS and divs instead of
HTML tables for its layout.

 You can also change the theme on a more fine-grained level by specifying the
theme attribute of the components themselves. You can, for instance, specify that a
certain textfield should be rendered under a certain theme. Or you can specify the
theme for a given form component, thus causing all components in that form to ren-
der with that theme.

 That’s about all there is to setting themes. And that finishes up our general intro-
duction to tag usage; it’s time for specifics. We understand that the UI components can

css_xhtml Renders the UI component using pure CSS to provide the layout.

ajax Extends xhtml and provides rich Ajax components. This theme is not quite
finished as of this writing… but is a good starting point for building Ajax
applications nonetheless. Check the Struts 2 website for more details.

Table 7.1 The built-in UI component themes (continued)

Theme Description

178 CHAPTER 7 UI component tags
seem complex at first glance. Admittedly, they’re more complex than the tags of previ-
ous frameworks, but, on the other hand, they do a whole lot more. There’s more to
learn, but it’s worth it. In particular, keep the mini-MVC in mind. When it comes time
to customize your tag output to meet some rather particular requirements, we think
you’ll find the added sophistication pays off in triple. Now let’s meet the UI compo-
nents and start demonstrating their use with the Struts 2 Portfolio. Any lingering con-
fusion will dissolve with a bit of practical experience.

7.3 UI Component tag reference
Now that we’ve done a high-level overview of the UI component architecture, it’s time
to learn to use the UI component tags themselves. In this section, we provide both a
reference and a demonstration of the most common UI component tags. For each
tag, we’ll provide a description and a list of attributes and parameters, and demon-
strate usage.

The components in this reference are covered in order of most com-
monly used to more, shall we say, specialized. Since usage of the compo-
nents follows certain patterns, our coverage of the first tags in the
reference includes much more detailed explanation of these usage pat-
terns. We recommend reading everything through section 7.3.4 in order
to learn how the tags work in general. Almost every developer will need
all of these tags anyway; we’re not wasting your time here. After that, you
don’t need to read unless you see a tag you want to use.

We’ll start by summarizing the attributes and usage common to all of the UI components.

7.3.1 Common attributes

The list of attributes common to all the Struts 2 UI component tags is large. This is
mostly a reflection of the numerous attributes exposed by the underlying HTML ele-
ments. If you’re like me, a huge table of attributes can be a bit of a brain freeze. We’ll
focus on the core usage of the Struts 2 tags themselves, and leave the details of various
HTML- and JavaScript-related attributes, such as event handlers, to you. While the fol-
lowing tables are long, they aren’t exhaustive. If you want the definitive list of all
attributes supported by the tags, visit the Struts 2 website. In general, you can assume
that all attributes of the underlying HTML elements are supported in at least a pass-
through manner.

 When browsing the following tables, a few things should be kept in mind. First of all,
we need to recall what we learned in the previous chapter about attribute data types and
the use of OGNL expressions in attribute values. If the data type is String, then the
attribute value will be interpreted as a string literal. This means that it won’t be evalu-
ated as an OGNL expression unless you force that evaluation with the %{ expression }
notation. On the other hand, all non-String data types will be automatically evaluated
as OGNL expressions. Generally, this means that you won’t have to use the formal OGNL
expression brackets often because you’ll typically feed literal strings to the String
attributes and OGNL expressions to the non-String data types.

REFERENCE
USER TIP

179UI Component tag reference
 Table 7.2 shows the common attributes of the UI components.
 All of the components that we’ll cover in this chapter support the attributes listed

in table 7.2. We’ll cover the usage of these attributes in more detail as we work our way
through the components in the next sections. Most components also use a few special-
ized attributes. These will be presented with the component itself.

Table 7.2 Common attributes for all UI tags

Attribute Theme Data type Description

name simple String Sets name attribute of the form input element. Also
propagates to the value attribute of the component,
if that attribute isn’t set manually. The name itself is
used by the component to target a property on the
ValueStack as destination for the posted request
parameter value.

value simple Object OGNL expression pointing to ValueStack property
used to set the value of the form input element for pre-
population. Defaults to the name attribute.

key simple String Pulls localized label from ResourceBundle, and
can propagate to name attribute, and thus to value
attribute. See chapter 11.

label XHTML String Creates an HTML label for the component. Not needed
if setting using the key attribute and localized text.

labelPosition XHTML String Location of the element label: left or top.

required XHTML Boolean If true, an asterisk appears next to the label indicat-
ing the field is required. By default, the value is true
if a field-level validator is mapped to the field indicated
in the name attribute.

id simple String HTML id attribute. Components will create a unique ID
if one isn’t specified. IDs are useful for both JavaScript
and CSS.

cssClass simple String HTML class attribute, for CSS.

cssStyle simple String HTML style attribute, for CSS.

disabled simple Boolean HTML disabled attribute.

tabindex simple String HTML tabindex attribute.

theme N/A String Theme under which component should be rendered,
such as xhtml, css_xhtml, ajax, simple.
Default value is xhtml, set in default.properties.

templateDir N/A String Used to override the default directory name from which
templates will be retrieved.

template N/A String Template to look up to render the UI tag. All UI tags
have a default template (except the component tag),
but the template can be overridden.

180 CHAPTER 7 UI component tags
In addition to these attributes, the components also support the common JavaScript
event handler attributes, such as onclick and onchange. Basically, the components
support any HTML attribute you’ll want to set. In common tag usage, you’ll typically
only use a few of these attributes, such as name, key, label, and value. Rather than try-
ing to explain these attributes in a vacuum, we’ll explain them in the context of actual
UI component tag examples.

7.3.2 Simple components

In this section, we’ll introduce the most commonly used UI components. We’ll start
with the infrastructural components, including the important form component, which
acts as a container for all the other components. With the preliminaries out of the
way, we’ll meet many of the simpler components such as textfield, password, and
checkbox. After that, we’ll hit the collection-backed components.

The organization of this reference section has been designed to require
the least amount of reading. Basically, we’ll cover all the stuff you’ll use
first. We’ll also use our coverage of these essentials, such as text fields and
select boxes, to demonstrate the fundamental patterns of usage common
to all components. This structure means you can safely stop reading as
soon as you have what you need. Later sections will point you toward richer
components, but if you’re not interested you won’t need to keep reading.

THE HEAD COMPONENT

We will start with the head component. This tag doesn’t do anything by itself, but it
plays an important role in supporting the other tags. The head tag must be placed
within the HTML head element, where it generates information generally found in
that location. This information includes HTML link elements that can reference CSS
stylesheets, as well as script elements that can define JavaScript functions or reference
files of such functions. Since many of the UI component tags come with rich function-
ality, this head tag can link to commonly used JavaScript libraries that help implement
that functionality.

 Note that if a tag depends upon the resources pulled in by the head tag, it’ll appear
to not work if you omit the head tag. This is a common source of “bugs.” If you’re
using the xhtml theme, this tag also loads a default CSS stylesheet that defines some
basic styles for the form elements rendered under the xhtml theme. If your require-
ments aren’t that rigid, this basic styling may be all you need. As you can see from the
following snippet from one of our Struts 2 Portfolio application’s JSP pages, adding
this tag to your page is easy:

<head>
 <title>Portfolio Registration</title>
 <s:head/>
</head>

No attributes are required. This tag can discover all of the information it needs. What
does it create? Here’s the markup, assuming it renders under the default xhtml

READERS’
COURTESY

181UI Component tag reference
theme. Note that we’ve abbreviated this a bit. We just want to show you that the head
tag generates links to stylesheets and JavaScript libraries:

<link rel="stylesheet" href=" . . . styles.css" type="text/css"/>

<script language="JavaScript" type="text/javascript" src=". . .dojo.js"/>

<script language="JavaScript" type="text/javascript" src="dojoRequire.js"/>

Obviously, this tag doesn’t do much by itself. It’s more of a helper tag that lays the
foundation for other, more concretely productive tags that’ll come later in the page.
When we cover tags that depend on its presence, we’ll explicitly indicate their reliance
on the head tag.
THE FORM COMPONENT

The form component is probably the most important of all. This critical UI compo-
nent provides the central tie-in point to your Struts 2 application. It’s the form, after
all, that targets your Struts 2 actions. In addition to the common attributes defined at
the beginning of this section, the form component also uses the attributes summa-
rized in table 7.3.

 Table 7.3 provides concise descriptions of the attributes. In practice, it’s easy. Let’s
jump right in by looking at an example. The following snippet shows the form from
chapter 7’s Login.jsp page:

<s:form action="Login">
 <s:textfield name="username" label="Username"/>
 <s:password name="password" label="Password"/>
 <s:submit/>
</s:form>

The markup up is simple. The action attribute is the most important. We simply specify
the action name, sans .action extension, to which we want to submit the form. The
name given here is the logical name given to the action in the declarative architecture,
in our chapterSeven.xml file in this case. Note that if we specify the action attribute
without specifying the namespace attribute, it’ll assume the current namespace. Since
we frequently target actions within the same namespace as the current request, this

Table 7.3 Frequently used form tag attributes

Attribute Data type Description

action String Target of form submission—can be name of Struts 2 action or a URL.

namespace String Struts 2 namespace under which to search for named action (above), or
from which to build the URL. Defaults to current namespace.

method String Same as HTML form attribute. Defaults to POST.

target String Same as HTML form attribute.

enctype String Set to multipart/form-data if doing file uploads.

validate Boolean Turns on client-side JavaScript validation, works with Validation Framework.

182 CHAPTER 7 UI component tags
allows for clean markup. Indeed, we’ve specified only one attribute. For everything else,
we let the framework provide intelligent defaults.

 Listing 7.2 shows the output generated by this form tag.

<form id="Login" name="Login" onsubmit="return true;"
 action="/manningSampleApp/chapterSeven/Login.action" method="POST">

 <label for="Login_username" class="label">Username:</label>
 <input type="text" name="username" value="" id="Login_username"/>

 <label for="Login_password" class="label">Password:</label></td>
 <input type="password" name="password" id="Login_password"/>

 <input type="submit" id="Login_0" value="Submit"/>

</form>

Remember when we said that the UI components generate layout-related markup?
We’ve suppressed that from this listing; we don’t want to confuse things while we’re
trying to understand the functional parts of the tag. Functionally, the most important
attribute is the action attribute. In this case, the action attribute has become a fully
qualified path even though our tag only specified a logical action name. Struts 2 lets
us specify a simple logical name for our action attribute, and it then generates the
full URL for that action.

TIP When your form targets another Struts 2 action, you only need to specify
the logical name of the action. You don’t need to add the .action exten-
sion. And if it’s in the same namespace as the current action—the one
whose result is rendering the page—you don’t even need to specify the
namespace. Intelligent defaults like this allow for cleaner, faster coding.

The form component tag also creates sensible values for several other attributes, nota-
bly the id and method attributes. The generated ID is unique and built on the name of
the action itself. Interior fields of the form will also build upon this naming conven-
tion so that you can count on these IDs when applying relevant JavaScript techniques.

NOTE Most of the Struts 2 UI components will automatically generate IDs and
names for components even if you don’t specify those attributes yourself.
This important step lays the foundation for JavaScript and CSS functional-
ity that depends upon being able to specify elements in the HTML DOM by
their unique ID. If you don’t need these, it’s nonintrusive. However, if you
ever find yourself needing to go back and use IDs, you can rest assured
that all of your pages have been prepared for just such an occasion.

In this example, we followed the most common use case of aiming our form submis-
sion at another Struts 2 action. The tag’s default behavior supports this, but, as always,
the framework is flexible and allows you to easily target any web resource. To be com-
plete, we’ll outline the process by which the form tag generates the final action URL
for the HTML form. The following list shows the steps followed when determining
how to create the URL:

Listing 7.2 HTML Output from a form UI component

183UI Component tag reference
1 If no action attribute is specified, the current Struts 2 action is targeted again.
2 If the action attribute is specified, it’s first interpreted as the name of a Struts 2

action. If no namespace attribute is specified, then the action is resolved against
the namespace of the current request. If a namespace attribute is specified, the
action will be searched for in that namespace. Note that actions are specified
without the .action extension.

3 If the value set in the action attribute doesn’t resolve to a Struts 2 action
declared in your declarative architecture, then it’ll be used to build a URL
directly. If the string begins with a slash (/), then this is assumed to be relative
to the ServletContext and a URL is made by appending this to the Servlet-
Context path. If the value doesn’t start with a slash, then the value is used
directly as the URL. Note that the namespace attribute, even if specified, is not
used in these cases.

The first option is relatively self-explanatory. A URL is generated that’ll submit to the
same action again. The second option, which involves targeting named Struts 2
actions, is also simple. Mostly you’ll do as we did in the example; you’ll target an
action in the same namespace as the current action. You can also specify an alternate
namespace under which the framework should search for the named action. The fol-
lowing snippet shows how to make our chapter 7 version of the login form submit to
the chapter 4 Login action:

<s:form action="Login" namespace="/chapterFour">

This tag will generate the following HTML code, building a URL for the action attribute
that targets the Login action in the chapterFour namespace. Here’s the output:

<form id="Login" name="Login" onsubmit="return true;"
action="/manningSampleApp/chapterFour/Login.action" >

As you can see, this’ll hit the Login action in the chapterFour namespace. Not exactly
what we want, but it serves to demonstrate the syntax for specifying a different
namespace.

 If the value of the action attribute doesn’t map to an action name, then the value
will be used directly to build a URL. Typically, the process shouldn’t get to option
three unless you’re intentionally specifying a URL rather than an action name. If you
want to specify a URL, you have a couple of choices. First, you can specify a path that
starts with a slash, such as

<s:form action="/chapterSeven/PortfolioHomePage.jsp">

Note that we have to specify the .jsp extension. This is because we’re specifying an
actual URL here. In the previous cases, we were naming an action by its logical name
and letting the framework generate the URL for us. The following snippet shows how
the framework uses the previous tag to build a URL by appending the action value
directly onto the ServletContext path:

<form id="PortfolioHomePage" onsubmit="return true;"
action="/manningSampleApp/chapterSeven/PortfolioHomePage.jsp">

184 CHAPTER 7 UI component tags
If you want to specify a full URL yourself, to target an external resource, just do so.
The framework will know what you’re doing because the value doesn’t resolve to an
action and it doesn’t start with a slash. So we can specify a full URL as follows:

<s:form action="http://www.google.com">

This form tag will generate a form that submits to Google. Again, probably not what
you want, but this demonstrates how to specify a full URL in case you need to link to
target an external resource.

 Finally, if you specify a value that doesn’t start with a leading slash, doesn’t resolve
to a action, and doesn’t represent a full URL, then the value will be printed as-is into
the HTML action attribute. For instance:

<s:form action="MyResource">

This tag will generate a form like the following:

<form id="MyResource" onsubmit="return true;" action="MyResource">

When a browser sees a URL like this, it’ll interpret it as relative to the URL of the
current page. If this form is in our chapterSeven/LoginForm.action page, the browser
will start from chapterSeven and build a URL like this: http://localhost:8080/
manningSampleApp/chapterSeven/MyResource

 If you do this, be sure that the resource exists. Typically, relative paths are used to hit
static resources, such as images, rather than the application server’s dynamic resources.
It’s unlikely that your form will want to target a static resource. And best practices warn
against targeting a dynamic resource, such as a JSP, directly. Accepted best practice is to
use a pass-through action to target JSPs and other dynamic resources.

 Now that you know how the form sets up the HTML form element itself, we should
take a look at the layout-related markup that’s also generated by the component. As
we’ve indicated, the UI component tags generate additional markup to handle layout.
By default, the components render under the xhmtl theme. This theme generates an
HTML table to format the form elements. Listing 7.3 shows the full markup generated
by the form tag in the example, rendered under the default xhtml theme.

<form id="Login" name="Login" onsubmit="return true;"
 action="/manningSampleApp/chapterSeven/Login.action" method="POST">

 <table class="wwFormTable">
 <tr>
 <td class="tdLabel">
 <label for="Login_username"class="label">Username:</label>
 </td>
 <td>
 <input type="text" name="username" value=""
 id="Login_username"/>
 </td>
 </tr>

 <tr>
 <td class="tdLabel">

Listing 7.3 The full markup generated by the form component

B

C

http://localhost:8080/manningSampleApp/chapterSeven/MyResource
http://localhost:8080/manningSampleApp/chapterSeven/MyResource

185UI Component tag reference
 <label for="Login_password" class="label">Password:</label>
 </td>
 <td>
 <input type="password" name="password" id="Login_password"/>
 </td>
 </tr>

 <tr>
 <td colspan="2">
 <div align="right">
 <input type="submit" id="Login_0" value="Submit"/>
 </div>
 </td>
 </tr>
 </table>
</form>

We don’t need to examine this too much. After all, the whole point of the component
is to keep you from having to think about this kind of stuff. We just wanted to show it
once so that you know what to expect. The main bit here is that the xhtml theme gen-
erates an HTML table that handles the layout of the form and the form elements. The
username text field, for instance, is situated in a single row of the table B. You should
also note that the elements have class attributes defined for CSS tie-in C.

 Admittedly, this is a big wad of HTML goo. But remember that this markup is all
generated from the underlying FreeMarker templates. This means that you can easily
alter the template if you need to make some changes to the markup. Again, we’ll learn
how to modify these templates in chapter 13.

 Now that we’ve seen how to deploy the form component, we need to add some
input fields to that form.
THE TEXTFIELD COMPONENT

This is one tag you can’t avoid using. This component generates the ubiquitous text
input field. And, as usual, the most common things are easy in Struts 2. The main
thing you need to understand about the textfield tag is how the name attribute and
the value attribute tie into the framework. If you don’t recall how this works, refer
back to our explanation in section 7.1.1. If you’re clear on how the name and value
attributes function as OGNL expressions that bind the component to a property on
the ValueStack, you’re good to go.

 In addition to the common UI component attributes summarized previously,
textfield makes frequent use of a few more attributes of its own. Table 7.4 summa-
rizes these attributes.

Table 7.4 Important textfield attributes

Attribute Data type Description

maxlength String Maximum length for field data.

readonly Boolean If true, field is uneditable.

size String Visible size of the textfield.

186 CHAPTER 7 UI component tags
Now, let’s a look at an example from the Struts 2 Portfolio application. The following
snippet shows the login form from the chapter 7 sample code, Login.jsp:

<s:form action="Login">
 <s:textfield key="username"/>
 <s:password name="password" label="Password"/>
 <s:submit/>
</s:form>

Since we’ve already demonstrated, in section 7.1.1, the use of the name and value
attributes to configure a textfield component, we’ll now show how it works with the
key attribute. The key attribute can be used to pull a localized label value from a
ResoureBundle; the global-resources.properties file found in the root of the classpath
in this case. When you do this, you don’t have to set the label attribute manually. But,
if you’re using the key attribute, you might as well let the framework handle a couple
of other things for you as well.

 As we’ve seen, you can omit setting the value attribute by letting the framework use
the name value as an OGNL expression that points to the property that’ll provide the
value for the value attribute. The framework is inferring the value from the name. The
key attribute ups the ante. In addition to allowing you to pull a localized message in for
your label, the framework can infer the name attribute from the key attribute, thereby
inferring the value attribute as well. The end result, as seen in the previous snippet, is
a clean tag that specifies only the key attribute.

When the framework does work for you, as when using the key attribute
to infer the other attributes of a UI component, the magic is all about
convention. In general, Struts 2 can save you loads of time if you can fol-
low conventions that it understands. In this case, the framework expects
that the value you give for the key attribute can locate a localized mes-
sage in a ResourceBundle and locate a property on the ValueStack. You
must follow this synergy when creating your ResourceBundle properties
files and naming the properties of your data model. If you follow this
convention, the framework will do the work for you. If you scoff at con-
vention, no tool is smart enough to divine your logic.

Here’s the markup generated by the textfield portion of this JSP snippet:

<tr>
 <td class="tdLabel">
 <label for="Login_username" class="label">Username:</label>
 </td>
 <td>
 <input type="text" name="username" value="" id="Login_username"/>
 </td>
</tr>

Since this is the first form field we’ve discussed, we decided to show you the layout-
related markup generated by the tag as well. We do this just so you see that, under the
xhtml theme, each input field tag generates its own row and table data markup to

CONVENTIONAL
WISDOM

187UI Component tag reference
position itself within the table created by the form tag. This is true for all UI compo-
nents that generate a form field under the xhtml theme. As you might expect, if
you use the css_xhtml theme, a CSS-based version of layout markup will be gener-
ated instead.

 In addition to the table markup, the most striking thing about this example is how
specifying a single attribute, key, was able to do so much. In addition to getting a local-
ized message for our label, the key created the input field’s name attribute, which of
course is an OGNL expression binding the field to a property on the ValueStack.
Through this binding, the value might also be set, but not in this case. In this case, our
value attribute is empty because the matching property on the ValueStack was empty,
or nonexistent, when this form rendered; we’re not prepopulating the login form.

 Using the key property is elegant, but you need to be using ResourceBundles to pro-
vide the text messages for the label. When the component renders, it’ll attempt to find
a text message using the key attribute value for the ResourceBundle lookup key. This
is a highly recommended practice, as it allows you to externalize your text messages in
a manageable location. For the Struts 2 Portfolio application, we’ve followed a common
web application practice of putting our text resources in properties files.

 The framework makes it particularly easy to use properties files. Two convenient
options are to externalize your messages in a global properties file or in individual
properties files local to a specific class. In this case, we’ve added a global properties
file to the application. This file, global-messages.properties, resides in the classpath at
WEB-INF/classes/, and contains the following property:

username=Username

Again, note that the key of this property matches the OGNL expression that we use to
target the username property on the ValueStack. This works great because the same
hierarchical namespace works well in both places. In this example, our key/OGNL is
simple, but deeper expressions will work fine.

 In order to use global properties files, you need to tell Struts 2 where to find them.
As always, such configuration details can be controlled through system properties in
the struts.properties file. This file, which the user must create, goes on the classpath,
typically at /WEB-INF/classes/struts.properties. Here’s the property we set to specify a
properties file that should be picked up by the framework:

struts.custom.i18n.resources=global-messages

The framework’s built-in support for managing localized text in ResourceBundles
goes quite a bit further than this. For a complete discussion, see chapter 11.
THE PASSWORD COMPONENT

The password tag is essentially like the textfield tag, but in this case the input value
is masked. As with all input fields, the name, value, and key attributes are the most
important. Table 7.5 summarizes the additional attributes frequently used with the
password tag.

188 CHAPTER 7 UI component tags
While there are no surprises, we’ll look at a sample just to make it real. The following
snippet, again from this chapter’s Login.jsp page, defines a password field:

<s:form action="Login">
 <s:textfield key="username"/>
 <s:password name="password" label="Password"/>
 <s:submit/>
</s:form>

In this case, we specify the name attribute and the label attribute. (You could use the
key attribute if you have set up some ResourceBundles.) Again, the name value is
understood as an OGNL expression that binds the component to a specific property
on the ValueStack:

<label for="Login_password" class="label">Password:</label>
<input type="password" name="password" value="" id="Login_password"/>

As you can see, the output is just like textfield. The password tag generates a label
and a password field. Note that, in this example, the tag is actually rendered under the
xhtml theme, but we’ve stripped out the table markup to clarify what’s going on with
the HTML elements.
THE TEXTAREA COMPONENT

The textarea tag generates a component built around the HTML textarea element.
As with all form fields, the name, value, and key attributes are the most important.
Table 7.6 summarizes the additional attributes frequently used with the textarea tag.

Table 7.5 Important password attributes

Attribute Data type Description

maxlength String Maximum length for field data.

readonly Boolean If true, field is uneditable.

size String Visible size of the text field.

showPassword Boolean If set to true, the password will be prepopulated from the
ValueStack if the corresponding property has a value.
Defaults to false. Populated value will still be masked in
proper password fashion.

Table 7.6 Important textarea attributes

Attribute Data type Description

cols Integer Number of columns.

rows Integer Number of rows.

readonly Boolean If true, field is uneditable.

wrap String Specifies whether the content in the textarea should wrap.

189UI Component tag reference
From the development point of view, there’s no difference between this and the text-
field. Because of this, we’ll spare you the example.
THE CHECKBOX COMPONENT

The checkbox component uses a single HTML checkbox to create a Boolean compo-
nent. Take heed, this component isn’t equivalent to an HTML checkbox. It’s special-
ized for Boolean values only. The property you bind it to on the Java side should be a
Boolean property. Don’t worry; there’s another component, the checkboxlist, that
solves the other checkbox use case—a list of checkboxes, all with the same name, that
allow the user to submit multiple values under that single name. The checkbox com-
ponent is focused on a true or false choice. We’ll see the checkboxlist component
in a few pages when we cover the collection-backed components.

 In addition to the commonly used attributes we’ve already defined, the checkbox
component also uses the attributes defined in table 7.7.

To demonstrate the usage of the checkbox, we’ve modified our Struts 2 Portfolio data
model to include a Boolean value. We’ll now track whether a user wants to receive junk
mail. We’ve added a Boolean field to the User object and we’ll give the user an oppor-
tunity to express their junk mail preference during registration. The Registration
action is where the User object is first created and persisted. Here’s the form from Reg-
istration.jsp that collects the account information, including the new junk mail prefer-
ence Boolean value.

<s:form action="Register">
 <s:textfield name="username" label="Username"/>
 <s:password name="password" label="Password"/>
 <s:textfield name="portfolioName" label="Enter a portfolio name"/>
 <s:checkbox name="receiveJunkMail" fieldValue="true" label="Check to
 receive junk mail"/>
 <s:submit/>
</s:form>

The checkbox component is deceptively easy to define. In fact, we didn’t even need to
set the fieldValue because true is the default value. We’ve done this just for clarity. This
means that the checkbox, if checked, will submit a true value to the framework. The fol-
lowing code shows the actual HTML checkbox element output by this component:

<input type="checkbox" name="receiveJunkMail" value="true"
 id="Register_receiveJunkMail"/>

Table 7.7 Important checkbox attributes

Attribute Data type Description

fieldValue String The actual value that’ll be submitted by the checkbox. May
be true or false; true by default.

value String In combination with fieldValue, determines whether the
checkbox will be checked. If the fieldValue = true,
and the value = true, then the box will be checked.

190 CHAPTER 7 UI component tags
As we specified in the fieldValue attribute, the value attribute of the checkbox is
true. To receive this Boolean value, we implemented a JavaBeans property on our
Register action. This property is shown in the following snippet:

private boolean receiveJunkMail;

public boolean isReceiveJunkMail() {
 return receiveJunkMail;
}
public void setReceiveJunkMail(boolean receiveJunkMail) {
 this.receiveJunkMail = receiveJunkMail;
}

We haven’t been showing the Java code for most of the UI components. We only do so
here to drive home the point that the checkbox component works with Boolean val-
ues. If the junk mail checkbox is checked, then its true value will be submitted to this
Boolean property, in concordance with the OGNL of the name attribute. Fairly simple.
But what about prepopulation?

 Prepopulation is usually accomplished with the value attribute of the UI compo-
nent. It’s more complex with the checkbox. We now have to specify the value that the
field will input as well as the current value of the Java-side property. These aren’t
equivalent values in the context of the checkbox, as they would be with a textfield.
Reflecting the independence of these two values, the checkbox component exposes
two attributes, value and fieldValue. The fieldValue attribute determines the
actual value attribute of the HTML element—the value that’ll be submitted if the box
is checked. Meanwhile, the value attribute, as with the other UI components, points
to the actual Java-side property to which the component is bound, a Boolean in this
case. The checkbox component will handle the translation of the Java-side Boolean
into the semantics of whether the checkbox should be checked. In our simple exam-
ple, our checkbox fieldValue is true. Thus, if our Java-side property, pointed to by
the value attribute, is false, then the box should be unchecked. If our Java-side prop-
erty is true, then the box should be checked. Of course, in all of this, recall that our
name attribute will be reused for the value attribute if we don’t set it manually.

 All of this matters most when prepopulating the form. The registration form is not
prepopulated because there is no existing user data at that point. If you want to see
how the checkbox prepopulates, check out the account update process available when
you log into an existing account. We won’t detail this update action here, as the pre-
population process was covered earlier in the chapter.

 We’ve now covered the simple UI components. The next set of UI components are
those that present a set of options to the user. These options are typically backed by
collections of data on the Java side. We’ll explore these collection-backed components
in the next section.

7.3.3 Collection-backed components

This section will introduce a set of components that allow a user to select a choice
from a set of options. In some ways, this is a simple and familiar task to most web

191UI Component tag reference
developers. One of the most common scenarios involves a user being presented with a
list of states or countries. The user selects one of the options and that value is sent
under the name of the select box itself.

 As this plays out in a Java web application, we typically have a Java-side property that
is some sort of collection of data. This might be an array, a Map, or a List. A full com-
plement of types is supported by the Struts 2 tags. The basic logic of the collection-
backed components is that the Java-side data set is presented to the user as a set of
options. The user then selects one of the options, such as Colorado, and that value is
submitted with the request.

 Some of the complications encountered with these components involve whether the
Java-side data set consists of simple types, such as Strings or ints, that can be themselves
used as the option values, or of complex types, such as our User object, which don’t map
so easily to an option value. As you’ll see, the Struts 2 collection-backed components
provide a mechanism for indicating which of the User object’s properties should be
used as the option value. We’ll start by demonstrating the simpler case of using a data
set of simple types, then move on to the more complex use case of complex types.

 We’ll explain all of this in the context of our first, and most ubiquitous, compo-
nent—the select component.
THE SELECT COMPONENT

The select component is perhaps the most common collection-based UI component.
This component is built on the HTML select box, which allows the user to select a
value from a list of options. In a Java web application, it’s common to build these lists
of options from Collections, Maps, or arrays of data. The select component offers a
rich, flexible interface for generating select boxes from a wide assortment of back-end
data sets. Just to make this easy, we’ll start with a trivial but illustrative sample of using
a List to build a select component. In this first example, the List will be of Strings;
we’ll show how to use sets of complex types in a minute. The following snippet shows
the simplest use case of the select UI component:

<s:select name="user.name" list="{'Mike','Payal','Silas'}" />

The list attribute of the select component points to the data set that will back the
component. We’ve supplied an OGNL list literal for this value. You’ll typically be using
an OGNL expression to point to a list of data on the ValueStack rather than generate
a list literally. Here, we’re striving to simplify the usage while introducing the tag. As
usual, the name attribute is an OGNL expression that’ll target a destination property
on the ValueStack. One of the strings in the list will be selected, submitted, and trans-
ferred by the framework onto the property referenced by our name attribute. We’ve
seen this many times by now.

 Here’s how the preceding tag renders into HTML to present the user with the choice:

<select name="user.name" id="ViewPortfolio_user_name">
 <option value="Mike">Mike</option>
 <option value="Payal">Payal</option>
 <option value="Silas">Silas</option>
</select>

192 CHAPTER 7 UI component tags
Again, we’ve removed the layout-related markup from the HTML output of this com-
ponent. As you can see, each of the values in the list was used to create an option ele-
ment. But what about prepopulation? Since we didn’t specify a value attribute
ourselves, the name attribute will be used to infer the value. If the ValueStack had con-
tained a value in the property user.name when this tag rendered, that value would’ve
been matched against the values of the option elements to preselect one of them. In
this case, none have been preselected; the ValueStack must not have contained a
value for the user.name property. That’s about as simple as it gets. But if you under-
stand the principle, the rest should make sense. Let’s move on to the richer use cases
of the select component.

 Now we’ll see how the select component supports using a wide range of data sets
and offers flexible control over the various attributes of the generated HTML select
box. Table 7.8 summarizes the attributes specific to using the select UI component.

We’ll now demonstrate a Collection-backed select component with an example
from the Struts 2 Portfolio application. We’ve added a couple of functions to our
home page that allow a user to select a portfolio for viewing. At this point, our sample
application doesn’t have a database and, hence, doesn’t use numeric keys to identify
such things as portfolios or artists. At this point, artist usernames must be unique. Fur-
thermore, a portfolio name must be unique in the context of the artist who owns it.
We can then assume that a username and portfolio name pair serves as a unique key
for retrieving a given portfolio. The following examples use these requirements.

Table 7.8 Important select attributes

Attribute Data type Description

list Collection, Map,
Array, or Iterator

A set of data used to generate the options for the select
box.

listKey String The property of the List’s elements to be used for the
value submitted when those elements are complex
types; key by default.

listValue String The property of the List’s elements to be used for the
content of the option when those elements are complex
types—in other words, the string seen by the user;
value by default.

headerKey String Used with the header. Specifies the value to submit if the
user selects the header.

headerValue String Shown to the user as a header for the List, for exam-
ple "States", "Countries".

emptyOption Boolean Used with the header. Places an empty spacer option
between the header and the real options.

multiple Boolean User can select more than one value.

size String Number of choices shown at one time.

193UI Component tag reference
 If you check the chapter 7 home page,
you’ll see some additions to our user inter-
face. The first of these is a select compo-
nent that asks the user to choose an artist.
A screen capture of this component is
shown in figure 7.3.

 The user can now select an artist and
browse that artist’s work. After the artist has
been selected, the user will be taken to a page that presents her with a similar box pre-
senting a selection of the portfolios associated with the chosen artist. Feel free to
explore the full workflow of the application at your convenience. For now, we’ll focus
on how selecting an artist works. The following snippet from this chapter’s Portfolio-
HomePage.jsp file shows how the select box in figure 7.3 is created:

<h5>Browse an Artist's Portfolios (Demo of select component.)</h5>
 <s:form action="SelectPortfolio" >
 <s:select name="username" list='users' listKey="username"
 listValue="username" label="Select an artist" />
 <s:submit value="Browse"/>
</s:form>

This example seems more complicated than the first example we gave. It’s not really
though. First, we point the list attribute at a Collection of User objects exposed by our
action class; check out manning.chapterSeven.PortfoioHomePage if you want to see
this property. Next, we have two new attributes: listKey and listValue. These
attributes are required, since the collection backing this select, unlike the first exam-
ple we showed, holds complex types, Users, rather than simple strings. These new
attributes allow us to select the specific properties from our User objects to use in
building the component. The tag will iterate over the collection of Users and build an
option element from each one. There will be one option element for each artist in the
system then.

 Two questions remain. First, how should we derive the value of each option ele-
ment, the value that’ll be submitted when that option is selected? Easy. The listKey
attribute binds one of the properties of your object to the value attribute of the gen-
erated option element, which determines the request parameter value that’ll be sub-
mitted if that option is selected. This key nomenclature comes from the idea that the
value attribute of the select box is frequently set to the key value of the data object.
Sometimes this is a numeric key from the database, but it doesn’t have to be. It just
needs to be a unique identifier. As we’ve said, usernames work for us at this point.
Thus, we’ve set the listKey attribute to the username property.

 Next question. How should we represent that choice to the user—what’ll the body
of the option element be? Again, an easy answer. The listValue attribute determines
what the user will see in the UI select box. In other words, this determines the text
visually displayed by each option. Don’t be confused. This isn’t the HTML option ele-
ment’s value attribute; that attribute is set by the previously explained listKey. In this
case, we’ve set both listKey and listValue to the same property, username. This is

Figure 7.3 The select component presents
a Collection of data as a set of choices.

194 CHAPTER 7 UI component tags
only because the username is both a unique identifier and a good string for visually
representing the options to the user.

 Now, let’s see how the select tag renders. The following snippet shows the
markup generated by that tag as it iteratively renders over the set of Users in the list:

<form id="SelectPortfolio" name="SelectPortfolio"
 action="/manningSampleApp/chapterSeven/SelectPortfolio.action" >
 <select name="username" id="SelectPortfolio_username">
 <option value="Jimmy">Jimmy</option>
 <option value="Chad">Chad</option>
 <option value="Mary">Mary</option>
 </select>
 <input type="submit" id="SelectPortfolio_0" value="Browse"/>
</form>

As you can see, there is an option element for each of the elements in the collection of
Users. Each option uses the username both to depict the option to the user and to set
the value attribute. Remember that the value attribute of the option element is set by
the listKey, whereas the display string is set by the listValue. And that’s how you wire
a select component to a Java-side Collection property. As we’ve said, you can use a
variety of Java-side types to back your components. Let’s do the same thing again, with
a Map on the Java side.

 The following snippet shows the same component from the home page imple-
mented with a Map of users instead of a Collection.:

<h5>Browse an Artist's Portfolios (Demo of select component.)</h5>
<s:form action="SelectPortfolio" >
 <s:select name="username" list='users' listValue="value.username"
 label="Select an artist" />
 <s:submit value="Browse"/>
</s:form>

As the Map that backs this holds the same Users as the previous example’s Collection,
this tag will generate exactly the same output as before. There are some slight differ-
ences in how the data is accessed, though. When the tag iterates over the Map of users,
it doesn’t iterate directly over the User objects themselves. This is just a detail of the
Java Map API. Instead, it iterates over Entry objects. The Entry object has two proper-
ties, the key and the value. In our case, the key is the username and the value is the
User object itself.

 By default, the select component’s listKey attribute will be set to key and, thus,
point to the username. Also by default, the listValue attribute will be set to value
and, thus, point to the User object. If you’re using Maps, you can sometimes accept
these defaults. In this example, we use the default listKey because our keys are our
usernames, which is what we want. As for the listValue, we can’t just use the entire
value from the entry, because that would be the entire User object. If our User object
implemented a suitable toString() method, we could allow the select component
to use it for representing the choices to the user. But it doesn’t. So, as you can see, we
use a concise OGNL expression to target the portfolioName as the listValue. The
bottom-line difference between using maps and using collections is that maps may

195UI Component tag reference
require a longer OGNL expression, such as value.username instead of just username.
Here’s the markup generated from rendering our select component tag:

<form id="SelectPortfolio" name="SelectPortfolio"
 action="/manningSampleApp/chapterSeven/SelectPortfolio.action" >
 <select name="username" id="SelectPortfolio_username">
 <option value="Jimmy">Jimmy</option>
 <option value="Chad">Chad</option>
 <option value="Mary">Mary</option>
 </select>
 <input type="submit" id="SelectPortfolio_0" value="Browse"/>
</form>

As you can see, everything is the same as when we rendered the tag using a Collection
of users. The Map we use for this example contains the same set of User objects as the
Collection. The notation for reaching the data is different, but functionally it doesn’t
matter whether you use Maps or Collections.

 The bottom line is that you can easily build a select component from any group
of data. You can even pass arrays and iterators to the tag. We won’t detail these uses,
but they work pretty much as you would expect.

THE RADIO COMPONENT

The radio component offers much the
same functionality as the select compo-
nent, but presented in a different manner.
Figure 7.4 shows what the radio compo-
nent looks like on the page.

 The usage of the radio component is
the same as the select component, except

Tip
If you understand the ValueStack and the use of OGNL expressions in the tag
attributes, you’ll have no trouble exploring all the rich functionality offered by the
Struts2 UI component tags. We can’t begin to cover every bit of functionality they
offer in the space of this book. Even if we could, our laborious efforts would be
undermined by the constant flow of new components. A rich set of Ajax tags is
in the foundry as we write.

Just keep in mind that all of the tags use the ValueStack. Some even push ob-
jects temporarily onto the ValueStack so that they can conveniently access the
properties of those tags during their brief rendering cycle. For instance, when the
select tag iterates over the set of objects handed to its list attribute, it pushes
each object, temporarily, onto the ValueStack. The OGNL expressions in the
tag’s attributes can then resolve against this state of the ValueStack. When the
iteration cycle ends, the object is popped and a new one is pushed when the next
iteration cycle begins. This is the power of the ValueStack.

Figure 7.4 The radio component presents
a collection of data as a set of choices.

196 CHAPTER 7 UI component tags
that it has a few less attributes. For instance, the radio component doesn’t allow multiple
selections. You can use Collections, Maps, arrays, and Iterators, just as before. Again,
the radio component tag uses the common UI component attributes. In addition to the
common attributes, the radio component uses the attributes summarized in table 7.9.

As we said, the usage is nearly identical to the select component. In fact, to generate
the screen shot of the radio component, we merely changed the name of the tag in
PortfolioHomePage.jsp from select to radio. That’s it. Because of this, we won’t go
into details on this component.
THE CHECKBOXLIST COMPONENT

The checkboxlist component is also
similar to the select component. As you
can see in figure 7.5, it presents the same
selection choices, but using checkboxes,
so it allows for multiple selections.

 Using the checkboxlist is just like
using the select component with the
multiple selection option chosen. Again,
for our screenshot, we just changed the name of the tag in PortofolioHomePage.jsp
from select to checkboxlist. In addition to the common UI component attributes,
the checkboxlist also frequently uses the attributes summarized in table 7.10.

Table 7.9 Important radio attributes

Attribute Data type Description

list Collection, Map,
Array, or Iterator

A set of data used to generate the radio selections.

listKey String The property of the collection’s elements to be used for the
value submitted; key by default.

listValue String The property of the collection’s elements to be used for the
content of the option; in other words, the string seen by the
user; value by default.

Table 7.10 Important checkboxlist attributes

Attribute Data type Description

list Collection, Map,
Array, or Iterator

A set of data used to generate the checkboxlist selections.

listKey String The property of the collection’s elements to be used for the
value submitted; key by default.

listValue String The property of the collection’s elements to be used for the
content of the option, in other words, the string seen by the
user; value by default.

Figure 7.5 The checkboxlist component
presents a collection of data as a set of choices
from which the user can select several.

197UI Component tag reference
Note that these attributes are used in the same manner as for the other collection-
driven UI components, such as the select component.
PREPOPULATION WITH COLLECTION-BACKED COMPONENTS

Prepopulation of the collection-backed components may not seem straightforward at
first glance. For starters, we’ll call it preselection, as that more accurately describes
what’ll happen. It works just as the prepopulation of the simple component tags; the
value attribute points to a property on the ValueStack that’ll be used as the current
value when preselecting one of the options. Remember, you’ll frequently leave the
value attribute unset, allowing the framework to infer it from the name attribute, as
we’ve seen.

 With simpler components, like the textfield, the value will directly populate the
input field. With collection-backed components, we don’t have a simple input field; we
have a selection of options. Each of these HTML options has a value attribute that rep-
resents the value of the component if that option is selected. The trick, then, is to use
the value attribute of the Struts 2 tag to match one of those option values. When a match
occurs, that option is preselected. Let’s demonstrate how this preselection works.

 To do so, we’ll modify the PortfolioHomePage to automatically select one of the
artists as the default choice. Let’s imagine that, each week, the Struts 2 Portfolio will
feature the work of one artist by making that artist the default choice. In order to have
one of the options preselected, we must provide a property on the ValueStack that
holds the username, our key, of the default artist. We’ve implemented a method on
our PortfolioService that returns the username of the currently featured artist.
We’ll retrieve this and set it on a defaultUsername property on the action. To make
things clearer, we’ll specify the component’s value attribute separately from the name
attribute, rather than letting the framework infer it. The following snippet shows the
code from the PortfolioHomePage action’s execute() method, which does the neces-
sary work:

public String execute(){
 Collection users = getPortfolioService().getUsers();
 setUsers(users);

 String selectedUsername = getPortfolioService().getDefaultUser();
 setDefaultUsername(selectedUsername);

 return SUCCESS;
}

First, we set the collection of users that’ll be used to create the collection-backed com-
ponent B. Then, we retrieve the username of the featured artist, and we set this on the
defaultUsername JavaBeans property C on the action itself. This’ll make it available
on the ValueStack. Now, let’s see how this works with our radio component.

<s:form action="SelectPortfolio" >
 <s:radio name="username" list='users' value="defaultUsername"
 listKey="username" listValue="username" label="Select an artist" />
 <s:submit value="Browse"/>
</s:form>

B

C

198 CHAPTER 7 UI component tags
Just as in the previous examples, we point the component to our collection of Users
and tell it to use each User’s username as both the listKey and listValue. Then, we
preselect our artist of the week by pointing the value attribute at our defaultUser-
name property. At the moment, our featured artist is the user Chad. So the following
markup is generated by our tag and action logic:

<input type="radio" name="username" value="Jimmy"/>
<input type="radio" name="username" value="Charlie Joe"/>
<input type="radio" name="username" checked="checked" value="Chad"/>
<input type="radio" name="username" value="Mary"/>

As you can see, the username of the featured user was Chad, so the radio button with that
value was checked. Note that you can easily go back and reimplement this to stash the
featured artist’s username in a property on the action called username. Then you
wouldn’t have to manually specify the value attribute separately from the name attribute.
This would’ve been confusing in our example, since our listKey and listValue
attributes are also usernames. How can this be? Consider that the listKey and
listValue are used during the iterative cycle of the collection-backed components.
During this cycle, each of the Users in the collection is pushed onto the ValueStack.
Thus, the listKey and listValue hit the property as found on the current User object.
But when the name attribute resolves, the iteration hasn’t started; the top object on
the ValueStack is the action, not one of the Users. This subtlety explains how the same
OGNL, username, can mean different things depending upon the state of the
ValueStack. This is admittedly tricky. But once you master the ValueStack, it’ll all seem
elegant and powerful.

 This same preselection process works for all of the collection-backed components.
We should make a point about multiple selection before moving on. If you’re working
with a multiple-selection component, such as the select component with the multi-
ple attribute set to true, your value attribute can point to a property that contains
more than one choice, such as an array of usernames in our case. The component will
select each of those values.

 That does it for the components that we expect all developers will need to use on a
regular basis. We’ll round out the chapter by pointing you toward some rich compo-
nents that would enhance any page.

7.3.4 Bonus components

We call this the bonus components section because these components are useful but,
for one reason or another, not quite as much as the previous components. For this
reason, we’ll be slightly less exhaustive in our explanations. We’ll provide enough to
make sure you can use them, but we won’t explore advanced cases. As always, we rec-
ommend visiting the Struts 2 site to get the details on the full set and functionality of
UI component tags.
THE LABEL COMPONENT

The label component shouldn’t be confused with the label generated by the other UI
components we’ve covered previously. The label component has a special and simple
use case. Figure 7.6 shows how a label component is used.

199UI Component tag reference
 In the form shown in the figure, the user-
name property of a User is written onto the
form in a read-only form. This is the purpose
of a label component. Usage is straightfor-
ward, as you can see from the following snip-
pet, which shows the tag that created the label
shown in figure 7.6:

<s:label name="username" label="Username" />

Basically, it’s just like a read-only textfield.
THE HIDDEN COMPONENT

The hidden component also satisfies a specific use case. Frequently, we need to embed
hidden request parameters into a form without showing them to the user. Sometimes
you set the values of these hidden fields with values from the server. Sometimes you
use JavaScript functionality to calculate the values for these hidden fields. This book
won’t show you how to write JavaScript, but it’ll show you how to use the hidden com-
ponent. Here’s the markup:

<s:hidden name="username" />

And here’s the hidden input field as written into the HTML:

<input type="hidden" name="username" value="Chad"
 id="UpdateAccount_username"/>

Note that this example obviously rendered with a username property on the Value-
Stack that contained the value of Chad. As you might guess, this can’t be seen on
the page in the browser, but it’ll be submitted with the other request parameters.

 Now, we’ll move on to a more complex component of the bells-and-whistles class.
THE DOUBLESELECT COMPONENT

The doubleselect component addresses the common need to link two select boxes
together so that selecting one value from the first box changes the set of choices avail-
able in the second box. Such a component might link a first select box of state names
to a second box of city names. If you select California in the first box, you get a list of
California cities in the second box. When you change to another state, the second box
automatically changes to reflect this choice.

 To use the doubleselect component, you first have to tell the component which
data set it should use to generate the first select box. This works just like setting up a
normal select component. The same attributes are used and they function in the
same fashion as before. Next, you have to specify a property that’ll refer to another
data set that can be used as the second list. This property will effectively need to refer
to multiple sets of data, most likely one for each item in the first list—for example, a
set of cities for each state in the first list. While this can begin to sound tricky, you
need to recall that all these things resolve against the ValueStack. With this in mind,
everything should make perfect sense. Well, let’s hope so anyway.

Figure 7.6 A label component can be
used to display read-only data on a form.

200 CHAPTER 7 UI component tags
Let’s start by looking at a screen shot to see what we’re doing. Figure 7.7 shows a dou-
bleselect component that we’ve put on our PortfolioHomePage.

 To select a portfolio to view, you must first select an artist from the primary select
box. The doubleselect component will then dynamically populate the second box
with the names of all of that artist’s portfolios. After browsing for a few minutes, the user
will select one of the portfolios and that portfolio will be displayed.

 The following snippet shows how this doubleselect was set up:

<h4>Select a portfolio to view.</h4>
 <s:form action="ViewPortfolio">
 <s:doubleselect name="username" list='users' listKey="username"
 listValue="username" doubleName="portfolioName"
 doubleList="portfolios" doubleListValue="name" />
 <s:submit value="View"/>
</s:form>

The attributes are just like the normal select box, except there’s a second set of attributes
that refers to the secondary select box with names such as doubleXXX. As we indicated
before, the first set of attributes works just like the standard select component.

 Notably, the list attribute refers to a property that holds a set of data from which
the first select box will be generated. In this case, it’s a set of User objects exposed as
the users property on our PortfolioHomePage action. While this tag renders, it’ll iter-
ate over each user in the collection, pushing that user onto the ValueStack while it
renders the markup related to that particular user. In the case of the doubleselect
component, the markup related to each user will be some JavaScript for dynamically
repopulating the secondary select box with the portfolios for that user.

 The doubleList attribute, like the list attribute, is an OGNL expression that points
to a property on the ValueStack. In logical terms, it points to a set of data that’ll be
used to build the secondary select box. As we’ve said, while the doubleselect compo-
nent iterates over the users, it pushes each user onto the ValueStack. We’ve imple-
mented our User class so that it exposes each user’s set of portfolios as a property
named portfolios. Thus, when a specific user object is on the ValueStack, the OGNL
expression portfolios will evaluate to that user’s collection of portfolios. This use of
the ValueStack as a mini-execution context for each iterative cycle of a tag’s rendering
is powerful. Try to keep this in mind when you get ready to build your own compo-
nents, which we’ll learn how to do in chapter 13.

 As this is a bonus component, and as JavaScript can eat up some book space in a
hurry, we won’t show you the HTML source generated by this doubleselect. But you
can always look at it yourself. Ultimately, the doubleselect component is a convenient

Figure 7.7 The doubleselect
component dynamically populates
a secondary select box based on
the primary select box’s choice.

201Summary
and powerful component that also, incidentally, illustrates elegant use of the
ValueStack that drives dynamic generation of HTML with minimal lines of code count.

7.4 Summary
This chapter introduced the powerful Struts 2 UI component tags. With these compo-
nents in hand, you should be able to quickly assemble rich interfaces that easily wire all
your application domain data to the keystrokes and mouse clicks of your end users. If
we’ve done our job, you now understand that the component tags are much more than
just tags. In reality, the Struts 2 UI component tags are a mini-MVC framework unto
themselves. Let’s recap the highlights of this lengthy chapter.

 We started the chapter off by detailing how these component tags differ from
plain, ordinary tags. First of all, these components do a whole lot more than just ren-
der an HTML element. Based on which theme you choose, they can render additional
markup to support everything from rich layout to the structural foundations for
advanced JavaScript and Ajax support. Perhaps more importantly, the UI components,
with a helping hand from OGNL, bind your user interface to all the framework’s inter-
nal components, including the Validation Framework and the ValueStack. This pow-
erful binding allows you to accomplish such things as automatic validation error
reporting and form prepopulation with minimum coding.

 We also took pains to assure you that the autogeneration of markup wasn’t going
to tie your hands as a developer. In fact, the opposite is true. Instead of making it
harder to handle special cases and quirky requirements, the UI component architec-
ture has been carefully designed to allow the developer to modify the underlying tem-
plates as little or as much as necessary to bend the components to their own needs.
Most importantly, your modifications will still fit into the component structure, so
you’ll be able to reuse and manage your new components as elegantly as the next
Struts 2 guru. We’ll learn all about modifying the components in chapter 13.

 While we don’t need to take time to rehash the specifics of the various tags we intro-
duced in this chapter, we want to make a couple of points about them. First of all, we’ve
tried to provide you with a solid understanding of how the UI component tags work.
We’ve also tried to provide you with examples and demonstrations of the most com-
monly used components and their most common use cases. As always, the Struts 2
framework provides easy paths to the most common tasks, and then leaves the door
open for nearly anything else. With this in mind, there’s much we left unsaid about even
the most common tags. If you need something that doesn’t seem to be here, please
refer to the Struts 2 website for a comprehensive listing of all the details of each tag.
There are even more components than we’ve shown. In particular, there are additional
tags of the rich functionality variety. The website is your best resource for an up-to-date
list of the full set of tags.

 Now it’s time to wrap up the view part of the book. We noted in the introductory
section of the book that the view component of the framework was something called
the result. Working with results is so easy that we haven’t said much about them. But we
will now. The next chapter discusses the result in detail.

Results in detail
This chapter wraps up part 3. If you recall from the early chapters, the result is the
MVC view component of the Struts 2 framework. As the central figure of the view, you
might be wondering why we started with two chapters on the Struts 2 tag API and left
the result for last. Easy. For common development practice, you don’t need to know
much about the result component itself. In fact, if you use JSP pages for your results,
you don’t even need to know that the framework supports many different types of
results, because the default result type supports JSPs. But the framework comes with
support for many different kinds of results, and you can write your own results as
well. This chapter explores the details of this important Struts 2 component.

 In order to make sure you know what they are and how they work, we start by
building a custom result that demonstrates a technique for developing Ajax appli-
cations on the Struts 2 platform. Seeing how the framework can easily be adapted
to return nontraditional results, such as those required by Ajax clients, serves as a
perfect demonstration of the flexibility of the result component. It both teaches

This chapter covers
■ Working with results
■ Dispatching and redirecting requests
■ Building custom results
■ Using results with Velocity or FreeMarker
202

203Life after the action
you the internals of results and gives you an example of Struts 2 Ajax development.
After that, we go on to tour the built-in results that the framework provides for your
convenience. These include the default result that supports JSP pages, as well as alter-
native page-rendering options such as Velocity or FreeMarker templates.

 Let’s start by refreshing ourselves on the Struts 2 architecture and the role played
by results in that architecture.

8.1 Life after the action
To quickly refresh ourselves, a Struts 2 action conducts the work associated with a
given request from the client. This work generally consists of a set of calls to business
logic and the data tier. We’ve seen how actions expose JavaBeans properties or model
objects for carrying domain data. And we’ve seen how they provide an execute()
method as the entry point into their business logic. When the framework determines
that a given request should be handled by a given action, the action receives the
request data, runs its business logic, and leaves the resulting state of domain data
exposed on the ValueStack. The last thing the action does is return a control string
that tells the framework which of the available results should render the view. Typi-
cally, the chosen result uses the data on the ValueStack to render some sort of
dynamic response to the client.

 We’ve seen this in action throughout the book—in chapter 3 in particular—but we
still don’t know much about results. So what exactly is a result? In the introductory
section of this book, we described the result as the encapsulation of the MVC view con-
cerns of the framework.

A classic web application architecture uses the HTTP request and response
cycle to submit requests to the server, and receive dynamically created
HTML page responses back from that server. This architecture can most
notably be distinguished from Ajax web applications that generally
receive HTML fragments, XML, or JSON responses from the server, rather
than full HTML pages.

In a classic web application, these view concerns are generally equivalent to creating
an HTML page that’s sent back to the client. The intelligent defaults of the framework
are in perfect tune with this usage. By default, the framework uses a result type that
works with JSPs to render these response pages. This result, the dispatcher result,
makes all the ValueStack data available to the executing JSP page. With access to that
data, the JSP can render a dynamic HTML page.

 Thanks to the intelligent defaults, we’ve been happily using JSPs from our earliest
HelloWorld example, all the while oblivious to the existence of a variety of result
types. The following snippet shows how easy it is to use JSPs under the default settings
of the framework:

<action name="PortfolioHomePage" class=". . . PortfolioHomePage">
 <result>/chapterEight/PortfolioHomePage.jsp</result>
</action>

DEFINITION

204 CHAPTER 8 Results in detail
As the snippet demonstrates, you can get your JSPs up and running without knowing
anything about what a result is. All you need to know is that a result is the element into
which you stuff the location of your JSP page. And that’s about all you need to know as
long as your project stays the JSP course.

 But what if you want to use Velocity or FreeMarker templates to render your HTML
pages? Or what if you want to redirect to another URL rather than rendering a page
for the client? These alternatives, which also follow the general request and response
patterns of a classic web application, are completely supported by the built-in result
types that come with the framework. Starting in section 8.2, we’ll provide a tour of
these commonly used results. If all you want to do is switch from JSPs to FreeMarker or
Velocity, or redirect to another URL instead of rendering the HTML page yourself, you
can skip ahead to the reference portion of this chapter.

 If you want, however, to see how you can adapt results to nonstandard patterns of
usage, such as the nonclassic patterns of Ajax applications, then stick around.

8.1.1 Beyond the page: how to use custom
results to build Ajax applications with Struts 2

In the rest of this section, we’re going to build a custom result that can return a
response suitable for consumption by an Ajax client. This example, while focusing on
an Ajax use case, is meant, first and foremost, to serve as a thorough introduction to
results. But we’ve chosen Ajax as our example because we know that all new web appli-
cation frameworks will have to support Ajax. In short, we feel that Struts 2 provides a
strong platform for building Ajax applications, and we believe that the flexibility of
the result component is a cornerstone of this strength. Thus, it’s only natural to use an
Ajax example as our case study of a custom result.

 As we mentioned, a classic web application returns full HTML page responses to
the client. Figure 8.1 illustrates this pattern.

 In figure 8.1, the client makes a request that maps to some action. This action,
most likely, takes some piece of request data, conducts some business logic, then
exposes the subsequent domain data on
the ValueStack. The action then passes
control to a result that renders a full
HTML page, using the prepared data, to
build the new HTML page. The key thing
here is that the response is a full HTML
page, which the client browser uses to
rerender its entire window. The response
sent back to the client in figure 8.1 is
probably rendered by a JSP under the
default dispatcher result type. As we’ve
seen, the framework makes this classic
pattern of usage easy.

Figure 8.1 Classic web applications return full
HTML page responses to the client.

205Life after the action
 On the other hand, Ajax applications
do something entirely different. Instead
of requesting full HTML pages, they only
want data. This data can come in many
forms. Some Ajax applications want
HTML fragments as their responses.
Some want XML or JSON responses. In
short, the content of an Ajax response
can be in a variety of formats. Regardless
of their differences, they do share one
distinct commonality: none of them want
a full HTML page. Figure 8.2 illustrates a
typical Ajax request and response cycle.

 When the Ajax client receives the response, it won’t cause the browser to rerender
the entire HTML page. On the contrary, it carefully examines the data serialized in the
XML or JSON and uses that data to make targeted updates to the affected regions of
the current browser page. This is a different kind of response. Luckily, Struts 2 can
easily handle this with the flexibility of its result component.

8.1.2 Implementing a JSON result type

One of the most challenging things about developing a modern Ajax-based web appli-
cation is that most of the web application frameworks weren’t exactly designed for the
innovative patterns of HTTP communication used by them. As we’ve indicated, the
Struts 2 result component provides the adaptive power to make a variety of Ajax tech-
niques fit the framework like a glove. In this section, we’re going to develop a result
type that can return JSON responses to an Ajax client.

 JavaScript Object Notation (JSON) provides a succinct text-based serialization of
data objects. JSON can be a powerfully succinct and lightweight means of communica-
tion between a web application server and an Ajax client. By using JSON, we can serial-
ize our Java-side data objects and send that serialization in a response to the client. On
the client side, we can easily deserialize this JSON into runtime JavaScript objects and
make targeted updates to our client-side view without requiring a page refresh.
Sounds pretty clean in theory, and it’s even cleaner in practice.

If you want to learn more about JSON, visit the website at http://www.
json.org/.

AN AJAX CLIENT TO DEMO OUR RESULT

If we’re going to demonstrate a JSON result, we need to actually put some Ajax into our
web app. For these purposes, we add an Ajax artist browser to the Struts 2 Portfolio page.
This browser provides the visitor with a means of browsing the various artists who’re cur-
rently hosting portfolios on the site. The visitor can peruse the list of artists and see such
details as each artist’s full name and the set of portfolios that artist has on the site. From

HOT LINK

Ajax Client
in Browser

Figure 8.2 Ajax applications expect only data,
such as JSON or XML, in the response.

http://www.json.org/
http://www.json.org/

206 CHAPTER 8 Results in detail
the chapter 8 home page of the sample appli-
cation, enter the site as a visitor and follow the
link to the artist browser. Figure 8.3 shows the
Ajax artist browser.

 The artist browser is simple. The visitor
can peruse some basic information about the
selected artist. This information is displayed
in the blue box and is updated when the vis-
itor selects a different artist in the select box
control. This selection causes an Ajax request
to be sent to our Struts 2 application. The
response to this request is a JSON serializa-
tion of the artist in question. When this
response arrives, our JavaScript client code
instantiates a JavaScript object from that JSON and uses it to dynamically update the
information in the blue window. Nothing else in the window is changed. While simple,
this demonstrates a solid Ajax strategy where the page in the browser is an application
unto itself. Requests to the server are for JSON-based data, not new pages.
CODING THE JSONRESULT

First things first. If we plan to have Ajax clients demanding JSON responses, we need
to build a result that can do that. This leads us to our custom JSONResult. Making a
custom result is, in some ways, just as easy as writing an action. The only requirement
imposed on a result implementation is that it implement the com.opensymphony.
xwork2.Result interface, as shown:

public interface Result extends Serializable {
 public void execute(ActionInvocation invocation) throws Exception;
}

As with most framework components, a simple interface defines a highly decoupled
and nonrestrictive contract for the component implementation. In this case, we need
only provide an execute() method for an entry point. This method receives the
ActionInvocation, which gives it access to all the relevant information for the current
request. As we’ve learned, this ActionInvocation provides access to such things as the
action itself, the ActionContext, and the ValueStack. This is how results get their
hands on the data.

 Let’s dive in and have a look at our JSONResult. Listing 8.1 shows the full code of
our custom result.

public class JSONResult implements Result {

 public static final String DEFAULT_PARAM = "classAlias";

 String classAlias;

 public String getClassAlias() {

Listing 8.1 Serializing objects from the ValueStack into JSON responses

B

C

D

Figure 8.3 Our artist browser submits Ajax
requests to the web application and receives
JSON responses via our custom JSONResult.

207Life after the action
 return classAlias;
 }

 public void setClassAlias(String classAlias) {
 this.classAlias = classAlias;
 }

 public void execute(ActionInvocation invocation)
 throws Exception {

 ServletActionContext.getResponse().setContentType("text/plain");
 PrintWriter responseStream =
 ServletActionContext.getResponse().getWriter();

 ValueStack valueStack = invocation.getStack();
 Object jsonModel = valueStack.findValue("jsonModel");

 XStream xstream = new XStream(new JettisonMappedXmlDriver());

 if (classAlias == null){
 classAlias = "object";
 }
 xstream.alias(classAlias, jsonModel.getClass());

 responseStream.println(xstream.toXML(jsonModel));

 }

}

Admittedly, there might be a few unfamiliar things in this code. But it’s short and sim-
ple, as you’ll soon see. Basically, this result just takes data from the ValueStack and
writes it to the response stream as JSON. Let’s go line by line.

 First, we implement the result interface B. Before getting to the execute()
method E, which we must implement to fulfill the responsibilities of that interface,
we do some stuff to parameterize our result. With a little code, we can allow our
results to accept parameters from their XML declarations via the param tag. For this
result, we want to accept a parameter than gives us a logical name under which our
root data object will be serialized to the JSON. We’ll explain why in a moment, but for
now just observe that we implement a JavaBeans property classAlias D and then
provide a constant called DEFAULT_PARAM C that names our classAlias as the default
parameter. Each result can define a default parameter, which can be passed in without
being named.

 Now, to the heart of the matter. Once inside the execute() method, we get
down to work. Since we’re going to return an HTTP response to the client, we use the
ServletActionContext, a servlet-specific subclass of the ActionContext, to set the
content type F on the servlet response object and get the output stream G from that
same object. This is standard fare for all results that write a response for the client.
Next, we use the ActionInvocation to retrieve the ValueStack and programmatically
pull the domain object we want to serialize from it H. Note that in this naive, but
easy-to-follow, result implementation, we’re requiring that the action place the object
that it wants to send to the client in a property called jsonModel. We could perhaps
parameterize this also, but we’ll save that for later refactoring.

D

E

F

G

H

I

J

1)

208 CHAPTER 8 Results in detail
Now it’s time to serialize that object. We’re using a couple of open source packages
to do this: XStream (http://xstream.codehaus.org) and Jettision (http://jettison.
codehaus.org). XStream allows us to serialize Java objects to XML, and the Jettison
driver for XStream adds in the JSON part. First, we create an instance of the XStream
serializer with the Jettison driver I. Then we use our classAlias to set the alias for
the object we’re serializing J. If we didn’t do this, our JSON would name the object
with the fully qualified class name—manning.utils.User. It’d be much nicer to have
this just show up with a name that’s more suitable for our JavaScript code, such as
user or artist. We’ve parameterized this value so the user can choose his own alias.
Finally, we serialize the jsonModel to the response output stream 1).

 For the curious, here’s what our JSON response looks like:

{"artist":{"username":"Mary","password":"max","portfolioName":"Mary's
Portfolio","firstName":"Mary","lastName":"Greene",
"receiveJunkMail":"false"}}

Even without a short course in JSON, you should be able to see that this notation
defines an associative-array–based object. An associative array is something like a normal
array, but with values mapped to string keys instead of numerical indexes. In this case,

Point of interest
Default parameters provide another mechanism for supporting intelligent defaults.
The result type we’ve been using with JSPs, the RequestDispatcher, takes the lo-
cation of the JSP page as a default parameter. If you were to consult the source code
for the RequestDispatcher result, you’d find that it defines location as its default
parameter in the same fashion as the JSONResult defines the classAlias parame-
ter as its default. The benefit of defining a default parameter is that you don’t have
to name that parameter when you pass it in.

In the following result definition, you can see that we just put the location of the JSP
in the body of the result element, rather than submitting it via a param tag.

<result>/chapterEight/VisitorHomePage.jsp</result>

This path value is automatically set to the location property of the RequestDis-
patcher result object. It would be valid, but unnecessary, to specify the location prop-
erty with an explicit param tag as follows:

<result type="dispatcher">
 <param name="location">/chapterEight/VisitorHomePage.jsp</

param>
</result>

Much more verbose. Thanks to the framework’s dedication to intelligent defaults, we
can usually avoid such lengthy elements in our declarative architecture documents.
Note that we also added the unnecessary type attribute here. It’s unnecessary be-
cause the RequestDispatcher is the default result type as long as you inherit from
the struts-default package.

http://xstream.codehaus.org
http://jettison.codehaus.org
http://jettison.codehaus.org

209Life after the action
the JSON defines an object named artist. The artist object is an associative array
containing name-value pairs equivalent to the properties of our Struts 2 Portfolio’s user
object. Our JavaScript client code can make quick work of instantiating an object from
this bit of JSON, as you’ll soon see.

 And, believe it or not, that’s all there is to our custom JSONResult. We could make
many refinements to this result, but this one works and has remained simple enough
to give you a good idea of how results get their hands on the ValueStack and other
objects they want. With a result that can return JSON to our client, we’re now ready to
implement some Ajax functionality in our application. The next sections show how we
implement our Ajax artist browser that uses this JSONResult.
AN AJAX CLIENT

On the client, we use JavaScript Ajax techniques to submit an asynchronous request to
our Struts 2 application. Since Ajax is beyond the scope of this book, we’ll be brief
here. We’d like to point out that our Ajax techniques come directly from another
Manning title, Ajax in Action. If you’d like to learn more about Ajax, we highly recom-
mend that acclaimed book.

 The artist browser client code is defined in the ajaxUserBrowser.jsp page. That
page sets up the select box and the information window, as seen in figure 8.3. The
select box registers an Ajax JavaScript function, fetchUser(), for its onchange event.
This function, defined in ajaxUserBrowser.js, submits the request. It gets the selected
username from the select box, then submits an asynchronous request to the server. All
of this can be seen in the following snippet:

function fetchUser(){
 console=document.getElementById('console');
 var selectBox = document.getElementById('AjaxRetrieveUser_username');
 var selectedIndex = selectBox.selectedIndex;
 var selectedValue = selectBox.options[selectedIndex].value
 sendRequest("AjaxRetrieveUser.action",
 "username=" + selectedValue , "POST");
}

Note that we no longer use the form to submit the request; we use programmatic
access to send our request. Nonetheless, we still use a normal Struts 2 action as our tar-
get URL. You can dig deeper into the sendRequest function if you want to see the spe-
cifics of the Ajax stuff, but suffice it to say that it just gets an XMLHttpRequest object
and uses that object to submit our request. It also, notably, registers a callback func-
tion that handles the JSON response when it arrives. Such callback functions are at the
core of any Ajax application; they make the dynamic changes to the page when the
response returns with the new data. Let’s take a look at how our callback handles our
JSON response. Here’s the onReadyState function that handles our server’s response:

function onReadyState() {
 var ready=req.readyState;
 var jsonObject=null;

 if (ready == READY_STATE_COMPLETE){ B

210 CHAPTER 8 Results in detail
 jsonObject=eval("("+ req.responseText +")");
 toFinalConsole (jsonObject);
 }
}

The XMLHttpRequest object actually calls this function at several intermediate stages
of completion before the response has completely returned. In this case, we’re not
going to do anything until the response is fully cooked. With this in mind, we test for
completion B before starting to process the response. If the response is complete, we
retrieve the JSON response text and directly instantiate it as a JavaScript object, the
jsonObject, by using the built-in JavaScript eval() function C. With that one line,
we now have a JavaScript version of the same object that our action prepared on the
Java side. That’s undeniably cool. Next, we send this object off to a function that
dynamically modifies our blue window to show the new artist’s information D. Again,
if you’re interested in the details of our dynamic HTML techniques, you can look at
the source code to see how we update the artist info on the fly, but it’s off topic for us
to explore in this book.

 Now that we have an Ajax client in place, it’s time to build the action that processes
the request. As you’ll see, it’s no different from the other actions we’ve been working
with throughout the book.
THE ACTION

How hard is it to write an Ajax action? There’s nothing to it. In fact, it’s no different
than a normal action. One of the good things about the clean MVC of Struts 2 is that
our action won’t have to know anything about what’s happening in the result. Our
actions continue to function in the same old mode of receiving data from request
parameters, executing some business logic, preparing the final data objects, and then
handing everything over to the result. In this case, our action receives a username
from the Ajax artist browser’s select box, retrieves a full user object, and puts it on a
JavaBeans property where the result can find it. For our Ajax example, we wire this
action to a result of the JSONResult type so that the user object gets serialized to JSON.
But we could just as easily use this same action in non-Ajax settings if we like; we’d just
have to wire it to a JSP or something. The action doesn’t care whether the result serial-
izes the user object to JSON or reads properties off of it with JSP-based Struts 2 tags.

 Just to prove we’ve got nothing up our sleeves, we look at the RetrieveUser action
class to confirm that we’re still working with a standard Struts 2 action. Listing 8.2
shows the full code from RetrieveUser.java.

public class RetrieveUser extends ActionSupport {

 public String execute(){

 User user = getPortfolioService().getUser(getUsername());
 setJsonModel(user);

 return SUCCESS;
 }

Listing 8.2 RetrieveUser retrieves a user and sets the jsonModel property

C
D

B
C

211Life after the action
 private String username;
 private Object jsonModel;

 . . .

 JavaBeans Property Implementations Omitted for Brevity

 . . .
}

Again, this looks just like any other action we’ve been working with. It doesn’t matter
that the request came from a JavaScript XMLHttpRequest object or that the response is
going to be a JSON serialization. Incoming and outgoing data is still carried on Java-
Beans properties D. The execute() method still conducts our business logic, consist-
ing of a call to our service object’s getUser() method B, and then exposes the
resulting data object, the user, by setting it on a local JavaBeans property C. We then
return the result string to indicate which result we want to fire. If that result is of type
JSONResult, it pulls the user off of the ValueStack, serializes it in JSON, and sends it
back to the client.

 The cool thing is that this action could be reused with a normal full-page JSP result
without modifying a line of code. Let’s say we had a JSP page that would rerender the
entire page with the updated User information. We could just wire it to this same
action and it would read the User information off of the ValueStack, with Struts 2
tags, as it built the page. Both the JSON result and the JSP result can easily work with
the User object on the ValueStack. When the action prepares the User, it doesn’t care
who does what with that data. Any result could be wired to this action. This can be
helpful if you’re, say, migrating an existing Struts 2 web application from classic full-
page HTTP cycles to a more Ajax-based application.
DECLARING AND USING THE JSONRESULT TYPE

Now that you’ve seen all the parts, let’s look at how we wire it all together for the
Struts 2 Portfolio. We’ve already been through the process of declaring actions and
their results, but in this case we’ve created a whole new result type, and that requires
more work. Previously, we’ve only worked with results that come predeclared as a part
of the struts-default package. Obviously, our JSONResult hasn’t been declared in
that default package. So, we need to declare our JSONResult as an available result
type in our package. We do this with the following declaration from our chapter-
Eight.xml document:

<result-types>
 <result-type name="customJSON" class="manning.chapterEight.JSONResult" />
</result-types>

This is simple. We use the result-type element, which must be contained in the
result-types element, to map a logical name to our implementation class. With this
in place, we can use this result type anywhere in our package or in any package that
extends our package. We do just that in the declaration of our AjaxRetrieveUser
action, which is the action that responds to our Ajax request. Here’s the declaration of
that action:

D

212 CHAPTER 8 Results in detail
<action name="AjaxRetrieveUser"
 class="manning.chapterEight.RetrieveUser">
 <result type="customJSON">artist</result>
</action>

Since the custom JSON result type is not the default result type for this package, we
must specify it with the type attribute. If we were going to do a lot of Ajax work, we’d
probably make a separate package for those requests and declare the JSON result as
our default type. Next, see that we’ve passed in artist as our default parameter,
which is set to our result’s classAlias property. Earlier, we saw how this was used as
the name of the JSON serialization of our object.

 That covers all the pieces of our Ajax artist browser. With this mapping in place,
our Ajax request, submitted by our JavaScript client-side application, will come into
the framework and hit the AjaxRetrieveUser action. Looking back to figures 8.1
and 8.2, you can see that the framework handles this Ajax submission no differently
from normal requests. The AjaxRetrieveUser action prepares the User data, puts it
on the ValueStack, and hands processing of the response over to the customJSON
result. That result serializes our user object into JSON and sends it back to the client.
On the client, a callback method receives the JSON, makes a JavaScript object out of
it, and passes that object to a method that dynamically updates the page to show the
new user information. That’s one way to do Ajax with Struts 2.

By now, you can probably see the flexibility the result component adds to the Struts 2
framework. The separation is so clean that the same set of actions can be wired to
many different kinds of result types. Additionally, the result type itself is flexible
enough to support any kind of result that you could dream up. It has all of the
resources of the framework, such as the all-important ValueStack, at its disposal.

Ajax Tips
As you might suspect from a newly minted web application framework, there’s a bit
of attention being paid to Ajax. Using a custom result to return an Ajax-suitable re-
sponse is one good way to build a Struts 2 Ajax application. JSON is definitely not the
only option for implementing Ajax. If you wanted to use something else, such as XML,
you could easily roll your own result type for returning just about anything.

We should point out that there’s already a plug-in to the framework that provides a
more robust version of a JSON result type. You can find this and other plug-ins in the
Struts 2 plug-in repository at http://cwiki.apache.org/S2PLUGINS/home.html. We
recommend you test-drive that plug-in if you want to do something along the lines
we’ve demonstrated in this chapter to integrate Ajax into your Struts 2 application.

Additionally, there’s an Ajax theme for the Struts 2 tag API. At the time of writing, this
tag library is too beta for us to document. However, we highly recommend visiting the
Struts 2 website to check on the status of this exciting project.

http://cwiki.apache.org/S2PLUGINS/home.html

213Commonly used result types
 Now that you have a feel for what results can do, it’s time to peruse the various
types that come with the framework. The offering is rich; we’ll start by looking at the
most commonly used types.

8.2 Commonly used result types
In this section, we cover the usage of the most common result types. The framework
comes with quite a few built-in result types, and we invite you to peruse the whole set
of them on the Struts 2 website: http://struts.apache.org/2.x/docs/result-types.html.
In this section, we show you how to use the ones we think will cover 90 percent of your
development needs. The results shown in table 8.1 cover the most common use cases
of a classic web application. We cover each of these thoroughly in this section.

Note that all these built-in result types are defined in struts-default.xml. They’re only
built in if you extend the struts-default package. We assume that you’ll do this. A
result-type declaration maps a logical name to a class implementation. The following
snippet shows the declaration of the FreemarkerResult from struts-default.xml:

<result-type name="freemarker"
 class="org.apache.struts2.views.freemarker.FreemarkerResult"/>

In all packages that extend the struts-default package, we can simply refer to the
FreemarkerResult by the more convenient name freemarker. Throughout our follow-
ing coverage of the various built-in result types, we’ll indicate both the formal class name
and the logical name to which that class is mapped: for example, the FreemarkerResult,
a.k.a. freemarker. You’ll see what we mean. Incidentally, we cover the Freemarker-
Result in section 8.3.

8.2.1 The RequestDispatcher, a.k.a. dispatcher

The short story is that you use this result when you want to render a JSP page as the
result of your action. For the normal Struts 2 workflow, this understanding of the dis-
patcher result type will serve you well enough. By normal Struts 2 workflow, we mean
that a request comes in to an action, that action processes the request and hands off to
a result that writes the response back to the client. In this routine use case, using the
RequestDispatcher result is easy.

Table 8.1 The most commonly used built-in result types

Result type Use case Parameters

dispatcher JSPs, other web application resources
such as servlets

location (default), parse

redirect Tell browser to redirect to another URL location (default), parse

redirectAction Tell browser to redirect to another
Struts action

actionName (default), namespace,
arbitrary parameters that will become
querystring params

http://struts.apache.org/2.x/docs/result-types.html

214 CHAPTER 8 Results in detail
 The fact that we’ve been using this result type in all of our sample code, without
mentioning it, speaks to the ease with which you can use it. So far, we haven’t even had
to specify this type when declaring our results. This is because when you extend the
struts-default package, you inherit the DispatcherResult as the default type. One
result type per package is allowed to claim itself as the default type. Here’s the snippet
from struts-default.xml that specifies the dispatcher as the default type of the
struts-default package:

<result-type name="dispatcher"
 class=" . . . ServletDispatcherResult" default="true"/>

First, note that we’ve omitted the full package name of this class due to space con-
cerns. With this declaration in place, we can write simple result elements like the fol-
lowing if we are using JSPs:

<action name="PortfolioHomePage" class=". . . chapEight.PortfolioHomePage">
 <result>/chapterEight/PortfolioHomePage.jsp</result>
</action>

Using JSPs in the common use case is a no-brainer; for the most part, we can keep our
gray matter out of this. However, there’s a fair chunk of logic occurring, or potentially
occurring, within this innocent-looking result. At the least, you might be wondering
why it’s called the DispatcherResult. And, eventually, you’ll probably need to know
how to use this result in a nonstandard Struts 2 workflow. With that in mind, we
present the following account of what a dispatcher result does. Warning: it helps to
understand the Servlet API. If you need a primer, we still recommend reading the
Servlet Specification; it’s the shortest path to enlightenment.
THE SERVLET HEART OF THE DISPATCHER RESULT

At the core of the DispatcherResult result type is a javax.servlet.Request-
Dispatcher. This object, from the Servlet API, provides the functionality that allows
one servlet to hand processing over to another resource of the web application. Usu-
ally this is a servlet, and this servlet is commonly a JSP page. The handoff must be to
another servlet in the same web application as the first servlet. The Request-
Dispatcher exposes two methods for handing execution over to the other servlet:
include() and forward(). These two methods determine how much control over the
response will be given to the secondary resource.

 A temporary handoff is done via a call to the include() method. This means that
the first servlet has already started writing its own response to the client but wants to
include the output from the second servlet in that response. A permanent handoff is
done via a call to the forward() method. In this case, the first servlet must not have
sent any response to the client before the call is made. In a forward, the servlet is dele-
gating the complete response rendering to the second servlet.

 These two dispatch methods are quite different from each other, but they do share
some things in common. Most importantly, they’re both distinguished from an HTTP
redirection. Whereas a redirection sends the browser a redirect response telling it to
make another request to a different URL, the dispatcher methods don’t send the

215Commonly used result types
browser any response at all. The transfer of control, from one resource to another, is
completely within the server. In fact, it’s even in the same thread of execution.
Another important detail is that the include() and forward() methods both pass the
original request and response objects to the new servlet. This important detail allows
the second servlet to essentially process the same request.
NORMAL WORKFLOW: DISPATCHING AS A FORWARD()

Now let’s get back to Struts 2. Let’s consider the normal Struts 2 workflow from a Serv-
let perspective. By normal workflow, we mean the simple case where an action receives
the request, processes the business logic, prepares the data, then asks a result to render
the response. This case has no indirection, no slight of hand, just an action and a
result. We start by examining the case with which we’re already familiar, the JSP result.

 First of all, note that the framework is itself actually just a servlet. Well, a servlet fil-
ter, but that’s a fine point not worth quibbling over for the moment. When the frame-
work first processes a request, we can consider it as the work of the primary servlet.
Thus, when your initial action is executing, it’s executing as the primary servlet. When
it’s finished, the action selects a JSP result to render the view. Since JSP pages are actu-
ally servlets, this transfer of execution from the action to the JSP page is a transfer of
control from the first servlet to a second. This normal case is done with the Request-
Dispatcher’s forward() method.

 This implies that the Struts 2 action, processing under the control of the first serv-
let, obviously can’t have written anything to the response yet. If it had, we’d be limited
to an include() call. By forwarding to the result JSP servlet, the action gives full con-
trol over writing the response to that JSP. This is the low-level expression of the frame-
work’s MVC separation of concerns, in case you’re interested in that sort of thing.
Note that the JSP has access to all of the data from the action via the ThreadLocal
ActionContext, and its most important citizen, the ValueStack; this access to the
ActionContext depends on the fact that the dispatching of requests, with forward()
or include(), always occurs on the same thread of execution.
FORWARDING TO ANOTHER SERVLET

But you don’t have to limit yourself to JSPs. You can point a RequestDispatcher result
at any resource of a web application. By web application, we’re talking about the Serv-
let API concept. In addition to a JSP, it could be another servlet or even a static
resource of some kind that can be served by your web application. In the chapter 8
version of the Struts 2 Portfolio, we’ve built a demonstration of handing off to another
servlet in the web application. On the chapter 8 home page, enter your favorite color
in the field shown in figure 8.4.

Figure 8.4 A simple form that submits to a Struts 2 action that uses another servlet
to render the result.

216 CHAPTER 8 Results in detail
When you submit your form, the ForwardToAnotherServlet Struts 2 action does
some simple processing and then turns over the rendering of the result, a.k.a. the
servlet response, to another servlet in our web application. Listing 8.3 shows our
AnotherServlet class, the servlet that renders the response for our action.

public class AnotherServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {

 response.setContentType("text/html");
 response.getOutputStream().println("<html>");
 response.getOutputStream().println("<head>");
 response.getOutputStream().println("</head>");
 response.getOutputStream().println("<body>");
 response.getOutputStream().println("<p>Hello from
 anotherServlet's doPost()</p>");
 response.getOutputStream().println("<p>Attribute set in the
 struts 2 action = " +
 request.getAttribute("attributeSetInS2Action") + "</p>");
 response.getOutputStream().println("<p>Favorite color from
 request parameters = " + request.getParameter("favoriteColor")
 + "</p>");
 String propertyFromAction = (String)

ActionContext.getContext().getValueStack().findValue("testProperty");
 response.getOutputStream().println("<p>Value retrieved from action
 property on ValueStack = " + propertyFromAction + "</p>");
 response.getOutputStream().println("</body>");
 response.getOutputStream().println("</html>");
 }
}

AnotherServlet extends HttpServlet B to become a servlet. Then it overrides the
doPost() method. As you can see, the AnotherServlet servlet writes a fully structured
HTML page C to the response’s output stream. It even sets the content-type header
for the HTTP response. This is what we mean when we say that a forward gives full con-
trol of the response rendering over to the other servlet. Next, the servlet begins writ-
ing to the response stream.

 AnotherServlet pulls data from several sources while rendering the response just
to demonstrate the various methods for passing data. First, we pull a named request
attribute D into the rendering. This attribute will have been set in our Struts 2 action.
This demonstrates passing data via the Servlet API objects, the request map in this
case. Next, we pull the request parameter E, the favorite color that we entered in the
form that was submitted. This also comes to us via the Servlet API’s request object.

 But what about the Struts 2 data? Next, just to prove that the ActionContext’s
ThreadLocal nature does indeed make all of the Struts 2 stuff available to our dis-
patched servlet, we pull some values, programmatically, from the ValueStack itself F.
As it turns out, this value from the ValueStack was a property we set on our action

Listing 8.3 AnotherServlet renders a response, pulling data from various locations

B

C

D

E

F

217Commonly used result types
during its execution. This method of retrieving values from the ValueStack, from the
secondary servlet, approximates the details of how our Struts 2 JSP tags have been
accessing our ValueStack values. In this case, we had to go with programmatic access,
but that’s what the tag implementations do themselves.

 Now let’s take a look at the ForwardToAnotherServlet action to see how all of this
data was put in place prior to the dispatch. Listing 8.4 shows the complete code from
FrowardToAnotherServlet.java.

public class ForwardToAnotherServlet extends ActionSupport implements
 RequestAware{

 public String execute(){
 getRequest().put("attributeSetInS2Action", "Hello from
 a request attribute set in the S2 Action");
 return SUCCESS;
 }

 private Map request;

 public void setRequest(Map request) {
 this.request = request;
 }
 public Map getRequest (){
 return request;
 }

 public String getTestProperty(){
 return "myValueFromActionProperty";
 }
}

Not too much new here. We just want to follow the data flow to demonstrate how two
servlets, linked by the RequestDispatcher, share in the processing of a single request.
First, we see that our action uses the RequestAware interface to have the request map
injected. It then uses the request map to set the attributeSetInS2Action attribute B,
which AnotherServlet will retrieve, as we saw in listing 8.3. We also see that this action
exposes the testProperty JavaBeans property C, which AnotherServlet pulls off the
ValueStack with programmatic access.

 As for wiring our action to our result rendering servlet, it works just like a JSP:

<action name="ForwardToAnotherServlet"
 class="manning.chapterEight.ForwardToAnotherServlet">
 <result>/anotherServlet</result>
</action>

We put the path to the servlet, relative to our web application, just as we’ve been put-
ting the paths to our JSPs. Note that this all assumes we’ve declared AnotherServlet
with a servlet mapping in our web application’s web.xml file. Take a look at that file, in
the source code, if you want to see how that’s done.

 We should sum up the point of this example. The AnotherServlet example ren-
ders an HTML page result. If you have the choice, you should never do this. This is

Listing 8.4 Putting data on a property and in the request map

B

C

218 CHAPTER 8 Results in detail
what JSPs are for. However, this example will prove useful as a demonstration of access-
ing data from another servlet if you ever find yourself called to integrate Struts 2 with
an external servlet. This is something that happens fairly often. As this example dem-
onstrates, it’s easy to pass data from the framework to external web application
resources, such as AnotherServlet.

 Now we’ve seen two normal workflow examples of an initial action passing control
over to a servlet, or JSP, for rendering its response. In these normal cases, we’re still in
the realm of the forward() method of the RequestDispatcher. Let's now look at
some cases where the include() method is used.
DISPATCHING AS AN INCLUDE()

It’s quite important to know when the dispatcher will use a forward() and when it’ll
use an include(). The main reason is because included material must make sense as a
fragment, since it’s dumped midstream into the primary response. Our previous serv-
let example, which wrote its own <html>, <head>, and <body> tags, would most likely
not be a suitable target for inclusion, as the initial servlet might already have written
these elements. So when will we see an include?

 The most common case is the use of the Struts 2 action tag. This tag, which we’ve
already seen in chapter 6, invokes the execution of another action from the execution
of a JSP page. All actions invoked via the action tag will be includes. This means the
result of the action, if it renders, must be a valid fragment of the first result. If you want
more details on this case, please refer back to our action tag examples in chapter 6.
SETTING UP A REQUESTDISPATCHER RESULT

Configuring a dispatcher result is simple. First, the dispatcher result must be
defined as a result type. As with all of the built-in result types, this is already done in
the struts-default package, which your packages will typically extend. In the case of
the dispatcher result type, it was configured as the default result type. The following
snippet shows the configuration of the dispatcher result type from the struts-
default.xml file:

<result-type name="dispatcher"
 class="org.apache.struts2.dispatcher.ServletDispatcherResult"
 default="true"/>

The result-type element maps a logical name to a Java class that provides an imple-
mentation of the Result interface. These declarations are made on the package level
and can be inherited. This is just as we’ve seen with interceptors. Since our Struts 2
Portfolio packages extend the struts-default package, we can use this result type in
our applications. We just need to reference it by its name, as follows:

<action name="SelectPortfolio"
 class="manning.chapterSeven.SelectPortfolio">
 <result type="dispatcher" >
 /chapterSeven/SelectPortfolio.jsp
 </result>
</action>

219Commonly used result types
This action declaration, from our chapterSeven.xml file, doesn’t actually specify the
type attribute of the result element like this. We’ve added it only for this listing. We
can omit it in the actual application because the declaration of the dispatcher result
type sets its default attribute to true.

 Like many of the result types, it’s possible to parameterize the dispatcher result
type in a given instance. The dispatcher has two parameters, but they’re seldom used,
as they both provide strong default values. The first parameter is the location param-
eter. This parameter gives the location of the servlet resource to which we should dis-
patch the request. The second parameter is the parse parameter. This parameter
determines whether the location string will be parsed for OGNL expressions. Here’s the
previously seen action declaration rewritten to explicitly use these parameters:

<action name="SelectPortfolio"
 class="manning.chapterSeven.SelectPortfolio">
 <result type="dispatcher" >
 <param name="location">/chapterSeven/SelectPortfolio.jsp</param>
 <param name="parse">true</param>
 </result>
</action>

You probably won’t use these parameters too often because the default settings are so
sensible. We show them here to demonstrate how to parameterize your results. In this
case, the location parameter is what’s known as the default parameter of the result
element. Since location is the default parameter, you can omit the param tag, as we
usually do, and pass the path to your JSP in as the text content of your result ele-
ment. As for the parse parameter, it’s true by default. If you ever feel the need to
squelch parsing of OGNL in your location string, you can use this parameter.

 Why would you want to put OGNL in your location string? The short answer is to
make it dynamic. For instance, you could dynamically build querystring parameters. In
the case of the dispatcher result, dynamically inserting data doesn’t make a lot of sense.
All the data that you might insert into the querystring will be available to your result
page anyway, via OGNL, tags, and so on. We demonstrate how to take advantage of
OGNL parsing in the location string in the next section, which covers redirect results.

 Rather than returning a page to the client yourself, you’ll sometimes want to redi-
rect the client to another web resource. The next two results, from table 8.1, provide
ways of redirecting to other resources. We start with the standard redirect result.

8.2.2 The ServletRedirectResult, a.k.a. redirect

Though the RequestDispatcher result can hand over processing to another resource,
and is commonly the right tool for the job, you’ll sometimes want to use a redirect to
hand control to that other resource. What’s the difference? The defining characteris-
tic of the RequestDispatcher is that the handoff is completely on the server side.
Everything happens within the Servlet API and on the same thread. This means that
all the data from the first resource is available to the second resource via both the
Servlet API and the Struts 2 ActionContext. We saw this clearly in our examples from

220 CHAPTER 8 Results in detail
the RequestDispatcher section. This is critical if your second servlet expects to have
full access to all the data.

 A redirect, on the other hand, considers the current request finished and issues an
HTTP redirect response that tells the browser to point to a new location. This act offi-
cially closes the current request from both the Struts 2 ActionContext perspective
and the Servlet request perspective. In other words, all server-side request- and action-
related state is gone. While it’s still possible to persist some of the current request’s
data over to the second resource, the techniques for doing so are inefficient. We’ll
show how to do this, but if you really need to carry much data over to the second
resource, you should probably just use the RequestDispatcher.

NOTE If you need to persist data from the initial request to the resource that’s
the target of your redirect, you have two choices. The first choice is to
persist the data in querystring parameters that are dynamically populated
with values from the ValueStack. You can embed OGNL in the location
parameter to do this. We’ll demonstrate this technique when we discuss
the ActionRedirect result, a special redirect result to be used when redi-
recting to other Struts 2 actions.

The second option is to persist data to a session-scoped map. This has
a couple of drawbacks. First, it only works when the secondary resource
belongs to the same web application. Second, best practices warn against
unnecessary use of the session scope as a data storage.

The most common reason for using a redirect arises from the need to change the URL
shown in the browser. When a redirect is issued, the browser handles the response by
making a new request to the URL given in the redirect. The URL to which the redirect
is issued replaces the previous URL in the browser. The fact that the new URL replaces
the old URL in the browser makes the redirect particularly useful when you don’t want
the user to resubmit the previous URL by clicking the Reload button. Or, for that mat-
ter, any time you just want to change the URL in the browser.
SETTING UP A REDIRECT RESULT

As with all Struts 2 components, the redirect result must be declared and mapped to
a logical name. And as with all built-in components, this occurs in the struts-
default.xml document. The following snippet shows the declaration of this result type
from that file:

<result-type name="redirect"
class="org.apache.struts2.dispatcher.ServletRedirectResult"/>

Nothing unusual here. Note that this result isn’t set to default as the Request-
Dispatcher declaration was. This just means that we need to explicitly specify our
type attribute when we use this result type. The following snippet shows how we might
configure a redirect result that would tell the browser to go to another URL:

<action name="SendUserToSearchEngineAction" class="myActionClass">
 <result type='redirect'>http://www.google.com</result>
</action>

221Commonly used result types
To redirect to another resource, we just need to specify a full URL, or a relative one if
the redirect is to another resource in our web application, and name the redirect type
explicitly. Here we redirect to the omnipotent Google search engine. Note again that
the name given to the type attribute matches the name attribute of the result-type
element from the struts-default package.

 The redirect result supports two parameters: location and parse. These are the
same parameters supported by the RequestDispatcher. As you can guess, the location
parameter is the default parameter, so we don’t have to specify it by name when we give
the URL for the location in the body of the result element. And parse is true by
default, so unless you have reason to turn off the framework’s parsing of the location
value for OGNL expressions, you won’t be handling that parameter much either. Since
the use of embedded OGNL to pass along querystring params to the secondary resource
is particularly helpful with redirect results, we’ll explore this technique now. But keep
in mind that you can use embedded OGNL with any of the result types that support it.
EMBEDDING OGNL TO CREATE DYNAMIC LOCATIONS

We should now look at an example of how to embed an OGNL expression in the
location parameter value in order to pass some data forward to the second action.
Note that this method of embedding OGNL to create dynamic parameter values can
be used in any of the previous result types that support the parse parameter. The fol-
lowing example shows how we could pull a value from the ValueStack, at runtime,
and pass that value as a querystring parameter to the same URL we used in the previ-
ous example:

<action name="SendUserToSearchEngineAction" class="myActionClass">
 <result type='redirect' >
 http://www.google.com/?myParam=${defaultUsername}
 </result>
</action>

First of all, take careful notice of the fine point of the dollar sign. We’ve been using
the percent sign throughout the book for our OGNL escape sequence, but in the con-
text of our struts.xml, and other XML documents used for the declarative architec-
ture, we must use a $ instead. Other than this inconsistency, the OGNL access still
works the same. The OGNL looks up the property on the ValueStack. Provided that
the imaginary myActionClass did something to make the defaultUsername property
appear on the ValueStack, such as exposing it as a JavaBeans property, this result
would render into a redirect response that’d point the browser to the following URL
(assuming that the defaultUsername property, on the ValueStack, held the value of
Mary): http://www.google.com/?myParam=Mary

 Of course, this URL will get you nowhere. We show a real example of using this
kind of embedded OGNL when we discuss the redirectAction result in the next sec-
tion. For now, just note that you can use OGNL to build dynamic parameter values by
pulling values from the ValueStack. You can do this to all the parameters that a result
takes, as long as the result type itself supports the parsing of OGNL.

http://www.google.com/?myParam=Mary

222 CHAPTER 8 Results in detail
8.2.3 The ServletActionRedirectResult, a.k.a. redirectAction

The redirectAction result does the same thing as the plain redirect result, with one
important difference. This version of redirect can understand the logical names of
the Struts 2 actions as defined in your declarative architecture. This means that you
don’t have to embed real URLs in your result declarations. Instead you can feed the
redirectAction names and namespaces from your action and package declarations.
This makes your declarations more robust in the face of changes to URL patterns. As
an example of such a URL pattern change, let’s say you wanted to change the action
extension from .action to .go. If you’d used the plain redirect result extensively to tar-
get Struts 2 actions, then you’d have a lot of hard-coded URLs to adjust.

 As an example, let’s look at the Login action mapping from our earlier versions of
the Struts 2 Portfolio application. This mapping, as seen in the following snippet, uses
the plain redirect result:

<action name="Login" class="manning.chapterSeven.Login">
 <result type="redirect">
 /chapterSeven/secure/AdminPortfolio.action
 </result>
 <result name="input">/chapterSeven/Login.jsp</result>
</action>

As you can see, we have a real URL embedded in our declarative architecture. This
would have to be manually corrected in the face of our hypothetical action extension
change. The following snippet, from the chapter 8 version of the application, shows
how we can do the same thing with the redirectAction instead:

<action name="Login" class="manning.chapterEight.Login">
 <result type="redirectAction">
 <param name="actionName">AdminPortfolio</param>
 <param name="namespace">/chapterEight/secure</param>
 </result>
 <result name="input">/chapterEight/Login.jsp</result>
</action>

Functionally, this is no different than the previous version. They both create a redirect
response that points to the following URL: http://localhost:8080/manningSample
App/chapterEight/secure/AdminPortfolio.action

 The difference is that the redirectAction result would stand up to a variety of
changes in the URL pattern handling, such as the action extension we mentioned
earlier.

 There is one other goodie supported by the redirectAction result. We can easily
configure request parameters to be passed on to the target action. With the plain redi-
rect, we had to write the querystring parameter out by hand. Now we can use the
param tag. In this case, we give the parameter whatever name and value we like. These
arbitrary name-value pairs are appended as querystring parameters to the generated
URL. Take the following real example from our chapter 8 version of the Struts 2 Port-
folio’s Login action:

http://localhost:8080/manningSampleApp/chapterEight/secure/AdminPortfolio.action
http://localhost:8080/manningSampleApp/chapterEight/secure/AdminPortfolio.action

223JSP alternatives
<action name="Login" class="manning.chapterEight.Login">
 <result type="redirectAction">
 <param name="actionName">AdminPortfolio</param>
 <param name="namespace">/chapterEight/secure</param>
 <param name="param1">hardCodedValue</param>
 <param name="param2">${testProperty}</param>
 </result>
 <result name="input">/chapterEight/Login.jsp</result>
</action>

This result configuration is no different than the previous except for the addition of
two request parameters. First, we hard-code a value for param1 B. Then, we use our pre-
viously learned OGNL embedding skills to dynamically pass a second parameter C.
Here’s the new URL to which our result will redirect the browser, complete with our
querystring parameters: http://localhost:8080/manningSampleApp/chapterEight/
secure/AdminPortfolio.action?param1=hardCodedValue¶m2=777

 As you can see, our Login action must have done something to make the
testProperty property exist on the ValueStack and hold the value of 777. As it turns
out, our AdminPortfolio action won’t do anything with these values except write
them to the result page to prove they went through. But this should be adequate to
demonstrate how one goes about passing dynamic values into result parameter values
with embedded OGNL. Again, any result that supports a parse parameter supports
these kinds of techniques.

 With that, we’re finished with the most commonly used result types. Some develop-
ers will rarely need anything more. But while JSPs still retain their preeminence, many
teams are choosing Velocity or FreeMarker to render their response pages. In the next
section, we look at the results that support using Velocity or FreeMarker templates
instead of JSPs.

8.3 JSP alternatives
In this section, we a look at two result types that support alternative view-layer technol-
ogies: FreeMarker and Velocity. While using these is as straightforward as using the
dispatcher result for JSPs, we do want to give clear demonstrations of using each. For
each of these alternative technologies, we’ll rewrite one of the pages that we’ve
already done with JSPs and the dispatcher result.

 In the past, some energy has been spent debating whether templating engines pro-
vide better performance than JSPs. At this point, any performance difference doesn’t
seem quite large enough to warrant making a view-layer technology decision on that
basis alone. For mission-critical performance, you might want to investigate the perfor-
mance issues in the context of the most recent versions of the common web application
servers. The most obvious performance issues center around the fact that both Velocity
and FreeMarker results write directly to the original response stream of the original
request. In other words, the RequestDispatcher and all of the Servlet overhead implied
therein aren’t involved. This and other performance issues are well documented on the

B
C

http://localhost:8080/manningSampleApp/chapterEight/secure/AdminPortfolio.action?param1=hardCodedValue¶m2=777
http://localhost:8080/manningSampleApp/chapterEight/secure/AdminPortfolio.action?param1=hardCodedValue¶m2=777

224 CHAPTER 8 Results in detail
Web, and we suggest you consult the most recent e-opinions if you need to hit maximum
levels of performance.

8.3.1 VelocityResult, a.k.a. velocity

Velocity templates are a lightweight and well-proven technology for mixing dynamic
data into the rendering of view-layer pages. Using the Struts 2 tag API in Velocity tem-
plates, even for the Velocity novice, poses a gentle learning curve. Besides the quick
bit about learning the syntactical differences of how the tags are written, the most
sophisticated portion is still the OGNL used by the tags to reference the data in the
ActionContext and the ValueStack. But, as we’ve indicated, the OGNL works the
same as in all the JSP-based examples we’ve given throughout the book.

 In passing, we note that the velocity result type also exposes the Struts 2 data to
the native Velocity expression language capabilities. This means that you could forgo
using the Struts 2 tag API and still access values on the ValueStack or in the Action-
Context. We won’t cover the details of this access for a couple of reasons. First of all,
we really believe that the Struts 2 tag API represents the best way to render your pages.
Second, the manner in which the data objects are exposed to the Velocity EL is not
tightly synchronized with the exposure to the OGNL used in the Struts 2 tags. This can
be confusing when trying to learn the OGNL. If you find that you want to use the
native expression language capabilities of Velocity to access the data exposed by the
Velocity result, please consult the Struts 2 website at http://struts.apache.org/2.x/
docs/velocity.html.

 Now let’s see how to get set up and start using Velocity templates as your view-layer
technology. To demonstrate this, we’ll reimplement the Struts 2 Portfolio’s ViewPort-
folio action.
USING VELOCITY RESULTS

The first thing you need to do is make sure that you have the Velocity JAR files in your
application. At the time of writing, the Struts 2 distribution doesn’t come with the
Velocity JAR files. It does come with a built-in velocity result type, defined in the fol-
lowing snippet from struts-default.xml:

<result-type name="velocity"
 class="org.apache.struts2.dispatcher.VelocityResult"/>

This is just like all declarations we’ve seen. With this in place, we can use the logical
name to specify Velocity as the type for our results. Note that many applications that
choose to use Velocity templates as their view-layer technology will want to go ahead
and declare the velocity result type as the default result for their packages. We aren’t
doing this for the Struts 2 Portfolio application, but if you want to do so you can. Just
add a redeclaration of the velocity result to your package’s result-types element
with the default attribute set to true, as in the following snippet:

<result-types>
 <result-type name="velocity"
 class="org.apache.struts2.dispatcher.VelocityResult" default="true"/>
</result-types>

http://struts.apache.org/2.x/docs/velocity.html
http://struts.apache.org/2.x/docs/velocity.html

225JSP alternatives
Now let’s take a look at our Velocity version of the ViewPortfolio action. If you go to
the visitor’s page of the chapter 8 version of the application, you’ll find three versions
of the ViewPortfolio page, one each for JSPs, Velocity, and FreeMarker templates. If
you test them out, you’ll see that they all work exactly the same. Even the XML declara-
tions themselves look very similar. Here’s how we declare our velocity result version
of the ViewPortfolio action:

<action name="ViewPortfolioVM" class="...ViewPortfolio" >
 <result type="velocity">/chapterEight/ViewPortfolio.vm</result>
</action>

The only difference here is that the type of the result is specified as the velocity
result type defined in the struts-default package. The default parameter is still the
location parameter. Listing 8.5 shows the Velocity template that renders the result.

<html>
 <head>
 <title>Viewing Portfolio</title>
 </head>
 <body>

 <h5>
 This is the #sproperty ("value=portfolioName") portfolio of the
 artist currently known as #sproperty ("value=username")
 </h5>
 Home
 </body>
</html>

We’ve already covered the syntax differences of the Struts 2 tags as applied across the
various view-layer technologies. As you can see, we’re using the Struts 2 property tags
and, while the syntax is a bit different, the OGNL in them is the same. It still pulls data
from the ValueStack just as when using the property tag from a JSP. You might also
note some fundamental differences between JSP and Velocity, such as the lack of
directives at the top of the page. As we said, Velocity is simpler than JSP in some ways.
If you want to learn more about Velocity, check out their excellent documentation on
the Web at http://velocity.apache.org.

 That’s about all there is to using the velocity result type. As we indicated at the
start of this section, the velocity result also exposes all of the Struts 2 data to the
native Velocity expression language. In some cases, such as in the reuse of existing
Velocity templates, that might prove useful. Note also that the velocity result type
supports the same embedded OGNL, and parse parameter, that we saw used with the
earlier dispatcher and redirect result types.

 Now, let’s see how to use FreeMarker results.

8.3.2 FreemarkerResult, a.k.a. freemarker

Another built-in result type makes it possible to easily transition to FreeMarker as your
choice of page-rendering technology. When compared to JSPs, FreeMarker templates

Listing 8.5 Using Velocity templates to reimplement the ViewPortfolio page

http://velocity.apache.org

226 CHAPTER 8 Results in detail
feature the same potential performance benefits as Velocity templates. Again, this
mainly arises from the fact that the FreeMarker templates are written directly to the
original request’s response stream. Many developers wax poetic over the rich features
of FreeMarker. And, as we’ve learned, Struts 2 uses it internally to render the UI com-
ponents. It’s clearly a hot technology for the view layer.

 As with Velocity, we don’t have the space to give a tutorial on FreeMarker tem-
plates, but you don’t really need to know too much about FreeMarker to get started.
In particular, using the Struts 2 tags from FreeMarker should be a snap. If you need to
know more about FreeMarker in general, check out the excellent documentation on
the FreeMarker website: http://www.freemarker.org. Again, like the velocity result,
this result exposes much of the Struts 2 data to the native FreeMarker expression lan-
guage. And again, we won’t cover those details here because we think it can needlessly
confuse our coverage of the Struts 2 tag API. However, all the details can be found on
the Struts 2 site: http://struts.apache.org/2.x/docs/freemarker.html.

 We now reimplement the same ViewPortfolio action, this time using a
FreeMarker result to render the view.
USING FREEMARKER RESULTS

You won’t have to add any JAR files to use FreeMarker. Since the framework uses
FreeMarker itself, those resources are already included in the distribution. And the
result itself is already declared in struts-default.xml with the following line:

<result-type name="freemarker"
 class="org.apache.struts2.views.freemarker.FreemarkerResult"/>

As long as you extend the struts-default package, this result type is available for
your use. All you have to do is specify the logical name freemarker in your result’s
type attribute. Again, if you plan to make FreeMarker your primary view-layer tech-
nology, you might as well make it the default result type for your packages by adding a
line to your package’s result-type element, as in the following snippet:

<result-types>
 <result-type name="freemarker"
 class="org.apache.struts2.views.freemarker.FreemarkerResult"
 default="true"/>
</result-types>

Now, let’s take a look at how we set up the ViewPortfolio action to use the
freemarker result. The following snippet, from our chapterEight.xml, shows the dec-
laration of the FreeMarker version of the ViewPortfolio action:

<action name="ViewPortfolioFM"
 class="manning.chapterEight.ViewPortfolio" >
 <result type="freemarker">/chapterEight/ViewPortfolio.ftl</result>
</action>

Again, we point the result’s type attribute to FreeMarker, and the location parame-
ter at the FreeMarker template itself. As with the Velocity result, you can use OGNL
embedding to pass dynamic values into your parameter values. Or you can turn this

http://www.freemarker.org
http://struts.apache.org/2.x/docs/freemarker.html

227Global results
parsing off with the parse parameter. Listing 8.6 shows the ViewPortfolio template
in full.

<html>
 <head>
 <title>Viewing Portfolio</title>
 </head>
 <body>
 <h5>
 This is the <@s.property value="portfolioName" /> portfolio of
 the artist currently known as <@s.property value="username" />
 </h5>
 <a href="<@s.url action='PortfolioHomePage'/>">Home
 </body>
</html>

As you can see, it’s quite intuitive. The syntax for the Struts 2 tag API is a bit different,
as documented earlier in this book, but it still uses the same OGNL to access data on
the same ValueStack. As promised, the Struts 2 tag API makes switching between view-
layer technologies a snap.

 That completes our tour of the most commonly used built-in result types. We have
one more topic to hit before wrapping up our coverage of results. Up until now, we’ve
just shown how to declare a result locally to a single action. Sometimes, however, you
might want to reuse a single result across many actions. In the next section, we show
how to declare results that can be used with all the actions in a package.

8.4 Global results
As an alternative to configuring results locally to specific actions, you can also config-
ure results globally. This means that a result can be used from any action in the entire
package. When an action returns a result control string, such as "error", the frame-
work first consults the set of results as defined locally to the action. If no error result
is found, it then consults the set of globally defined results for an error result. In this
fashion, your actions can utilize any globally defined result just by returning the
appropriate string. Note that a locally defined result will override a globally defined
result during this lookup process.

 This is particularly useful for such results as errors. It’s common to display all error
states via a standard error page. This page can be reused throughout the application.
We’ve already discussed this in chapter 4, in the context of the Exception interceptor.
For that example, we declared a global error result. Declarations of global results go
inside your package’s global-results element, as seen in the following snippet from
our chapter 4 example:

<global-results>
 <result name="error">/chapterFour/Error.jsp</result>
</global-results>

Listing 8.6 Using FreeMarker templates to reimplement the ViewPortfolio action

228 CHAPTER 8 Results in detail
The result declaration is no different. The only difference is the location of the dec-
laration; it’s inside the global-results element rather than in an action element.
With this declaration in your package, any of your package’s actions can return a
result string of error and the rendering of the result page will be handled by this JSP
result. Please refer back to chapter 4 if you want to check out the implementation.

8.5 Summary
In this chapter, we saw the last of the framework’s core MVC components, the result.
Results provide an encapsulation of whatever work should occur after the action has
fired. As we’ve seen, this is most frequently the generation of an HTTP response that’s
sent back to the client browser as an answer to its original request. For many develop-
ers, the JSP-based generation of an HTML page will serve most of the needs of their
applications. We’ve seen that the framework also provides support for using a couple
of other technologies to render these pages: Velocity and FreeMarker.

 One of the most important things that we covered in this chapter was implement-
ing a custom result that can return a JSON response suitable for Ajax requests. This
custom result serves a couple of purposes. First, it helps demonstrate how to integrate
Ajax applications into the Struts 2 framework. Ajax techniques are still somewhat of a
moving target, and integrating with them will be a focal point for many development
teams in the near to immediate future. The flexibility of the Struts 2 framework was
intended for just such cases.

 We hope that the JSON custom result also demonstrates the internal details of
results in general, so that you can confidently come up with custom result types as
solutions to the unforeseen integration problems you’ll assuredly be faced with. Cus-
tom results can provide powerful solutions. They can access all the important data
from the request, including the ValueStack, ActionContext, and even the action
itself. Furthermore, the result component has been designed to keep the action
completely oblivious to the details of the result. This can provide powerful reuse of
both results and actions. As we noted when implementing the Ajax artist browser for
the Struts 2 portfolio, our action that looks up an artist by username could just as eas-
ily be used in a non-Ajax context.

 With the completion of this chapter, we’ve completed not only our tour of the view
layer of Struts 2 but our tour of the core components themselves. The next part of the
book addresses finer points of web application polish, such as integration with Spring
for IOC resource management, data persistence with Hibernate, the framework’s
XML-based validation framework, and support for internationalization.

Part 4

Improving your application

At this point, you can build a Struts 2 application. But what about building
that application to the highest standards of industry practice? The next three
chapters start you on your way to refining your application. We will, of course, be
making these refinements to our Struts 2 Portfolio sample application as we go.

 In chapter 9, we’ll introduce Spring resource management to our applica-
tion. Many developers agree that dependency injection is a nonnegotiable com-
ponent of a well-implemented Java application. We’ll learn to use the Struts 2
Spring plug-in to start letting Spring manage our dependencies. We’ll also bump
our persistence layer up a notch or two by introducing the Java Persistence API
to our modest application. By the time we get these two things in place, we’ll
have a respectable, enterprise-class application in our hands.

 Chapter 10 continues the process of improving our applications by showing
us how to take advantage of Struts 2’s validation framework to get a metadata-
driven validation mechanism in place, one that will prove much more flexible
and reusable than the simple validation mechanism we’ve been using thus far.
Finally, chapter 11 will expose all the details of the framework’s support for
internationalization.

Integrating with Spring
 and Hibernate/JPA
Now that we’ve finished the core chapters, we know how to build a basic Struts 2
application. We’ve even done so with our Struts 2 Portfolio. This chapter starts the
part of the book dealing with how to finish the application with a variety of refine-
ments that many developers consider best practices. The refinements that we intro-
duce in this chapter are specifically related to integrating a Struts 2 application with
a pair of popular third-party technologies, Spring and the Java Persistence API (JPA).

 First, we learn how to use a Spring container to provide a more sophisticated
means of managing our application resources. While Spring provides many different
services to the application developer, we focus here on the use of Spring as a means
of dependency injection. In short, we use Spring to intervene in the creation of both
framework and application objects for the purpose of injecting dependencies into

This chapter covers
■ Managing objects with Spring
■ Knowing when to use dependency injection
■ Adding Spring to Struts 2
■ Integrating Struts 2 and the Java Persistence API
231

232 CHAPTER 9 Integrating with Spring and Hibernate/JPA
those objects. We both explain what this means and demonstrate the details by upgrad-
ing our Struts 2 Portfolio to use Spring for such purposes as injecting our service object
into the actions that require it.

 After we get Spring in place, we move into a discussion of using JPA/Hibernate to
handle our data persistence needs. Hibernate is a popular object-relational mapping
(ORM) technology, and the Java Persistence API is a new standardized interface for
working with persistence technologies. We’ll be coding to the standard JPA, but we’ll
be using Hibernate beneath the covers. Though Struts 2 doesn’t do anything specifi-
cally to support integration with the JPA, the framework has generally been designed
to ease such tasks. We demonstrate the commonly accepted best practices for using
JPA with a Struts 2 application. We also upgrade our Struts 2 Portfolio application to
use a JPA PortfolioService object. To top it all off, we use the Spring techniques
learned in the first half of the chapter to manage our JPA service.

 Where to start? Since Spring serves as the foundation for integrating JPA into the
application, we get started in the next section by clearing up what we mean by depen-
dency injection. Right after that, we show you how to introduce Spring into the frame-
work’s object-creation and management mechanisms.

9.1 Why use Spring with Struts 2?
Good question. Many people ask this question when first confronted with the Spring +
Struts 2 equation. (Other people might note that this is not actually an “equation,”
mathematically speaking.) The confusion here is that Spring is a large framework that
contains solutions to many different aspects of a J2EE application. Spring even has its
own MVC web application framework, but that’s not the part we’re going to learn how
to use in this chapter. In fact, we won’t learn much about Spring at all, at least in the
big sense. We’ll be focusing on the part of Spring that provides dependency injection.
Many Struts 2 developers consider this resource management service to be an essen-
tial part of a well-built web application.

 In this section, we start by introducing the concept of dependency injection and
cover the fundamentals of how Spring handles this. If you’re familiar with Spring,
you’ll probably be comfortable skipping past this introductory material and proceed-
ing straight to section 9.2, where we describe the details of integrating Spring with
Struts 2.

9.1.1 What can dependency injection do for me?

We start by describing the problem that we’ll use Spring to solve. In a nutshell, a Java
application consists of a set of objects. These objects cooperate to solve the problems
facing the application. In a Struts 2 application, these objects include application
objects like our PortfolioService object, as well as core framework components such
as actions and interceptors. It’s now time to think about how all these objects get
instantiated, and how they come to have references to one another.

 Some objects are created by the framework. For instance, when a request comes
into the framework, Struts 2 must decide which action class maps to that request.

233Why use Spring with Struts 2?
Once it determines the correct action class, it creates an instance of that class to han-
dle the processing of that request. As a developer, you write the action class and map it
to the appropriate URL with XML or Java annotations. You never create an action your-
self. Creation of actions and other objects is one of the main jobs of the framework
internals. In fact, one of the most important internal components of the framework is
the ObjectFactory, wherein all framework objects come to life.

 But other objects, such as our PortfolioService object, aren’t automatically cre-
ated by the framework. At least not yet! Many of our actions depend on this service
object to do their work. One way or another, these actions must obtain a reference to
a service object. So far, we’ve been manually creating these objects with a low-tech
strategy: the new operator. This unsophisticated strategy has created a tight bond
between our actions and this PortfolioService. It’s time to make some improve-
ments in the way we manage our objects and their dependencies upon one another.

 One of the most popular technologies for managing the creation of objects in a
Java application is Spring. What does Spring add to the management of object cre-
ation? As we’ve been suggesting throughout this book, a well-designed application
minimizes the coupling between its objects. The Struts 2 framework itself follows this
design imperative quite well. A Struts 2 action, for instance, doesn’t contain any refer-
ences to the Servlet API even though it runs on top of that API when it executes inside
the framework. We should strive to continue this level of decoupling as we build our
applications on the framework. Spring can help in our decoupling.

 But before we look at how Spring does this, let’s take a brief look at what it means
for objects to be tightly coupled in the first place.
TIGHTLY COUPLED OBJECTS

We can’t get around the fact that our objects depend upon each other to do their
work. In the code, this means they must acquire references to each other at some
point in time. If the acquisition of references is done in the wrong way, the objects
become tightly coupled, introducing a variety of issues from complicated testing to
nightmarish maintenance. In order to make this issue more clear, we’ll explore the
shortcomings of the current version of the Struts 2 Portfolio.

 The main resource upon which all of our actions are dependent is the Portfolio-
Service object. This object provides all the data persistence and business logic needs
of our application. It’s great that we’ve been wise enough to extract all of that into a
tidy service class. Thanks to our foresight, the action code is clean. However, we’ve
allowed a tight binding to sneak in. Consider our chapter 8 version of the Register
action, seen in listing 9.1. In particular, take note of the method by which we acquire
our reference to the service object.

public class Register extends ActionSupport implements SessionAware {

 public String execute(){

 //Prepare the new user object

Listing 9.1 Using the new operator to construct the PortfolioService object

234 CHAPTER 9 Integrating with Spring and Hibernate/JPA
 . . .

 getPortfolioService().createAccount(user);
 session.put(Struts2PortfolioConstants.USER, user);

 return SUCCESS;
 }

 private String username;
 private String password;
 private String portfolioName;
 private boolean receiveJunkMail;

 // getters and setters omitted

 public PortfolioService getPortfolioService() {

 return new PortfolioService();
 }
}

In case you’ve forgotten, this action simply collects the data from the registration
form, creates a new User object with that data, then uses the PortfolioService
object B to persist that new user. But the real point of interest here is how we
acquire our PortfolioService object. Our Register action clearly has a depen-
dency upon the PortfolioService object. It must obtain a reference to a service
object so that it can do its work. This service object is obtained with direct instantia-
tion via the new operator C. While this works, it presents two major problems:

1 We’re bound to a specific type, the old memory-based PortfolioService object.
2 We’re bound to a specific means of acquisition, the new operator.

We now discuss each of these briefly.
 The first problem is that we’re bound, or coupled, to this implementation of the

PortfolioService object because our code has a specific and naked type in it. To see
how this is a problem, consider the task that we’ll be faced with later in this chapter
when we create a new portfolio service object that uses JPA for its data persistence.
Let’s say the new service class is called JPAPortfolioService. In order to integrate
that back into the application, we’ll have to go into every class that creates a specific
instance of the PortfolioService object C and change the code by hand to some-
thing like the following:

public JPAPortfolioService getJPAPortfolioService()
 return new JPAPortfolioService();
}

The second problem is that we’re bound to the new operator as a means of acquiring
our object references. In some ways, this is the worst possible way to acquire your ref-
erences. There are many other methods of acquisition that make various improve-
ments upon the vulgar new operator, ranging from factories to service locators. But
even these still suffer from the tight coupling inherent in any code-level means of
acquisition. Basically, this means that we still have to touch code in order to change

B

Properties to
receive data
transfer

C

235Why use Spring with Struts 2?
the object being used, such as our service object. The most obvious headaches caused
by this are maintenance and testing. Consider testing. If we wanted to plug in a mock
service object to test our action, we’d be forced to intervene at the code level in every
occurrence of the acquisition code. It’d be nice to make the change with a single line
of declarative metadata, wouldn’t it?

 We’ll now show a best-practice solution to these two problems, tight coupling to a
specific implementation and tight coupling to an acquisition method. This solution
utilizes a Spring container to inject dependencies into our objects, thus escaping the
coupling to a specific acquisition method. Simultaneously, we’ll also introduce an
interface to provide a layer of separation from our specific service object implementa-
tion and our code that handles it. While the interface separation isn’t required by
Spring, many folks believe it to be a very powerful one-two punch of software design.

 First, let’s look at how Spring can resolve the issue of resource acquisition.

9.1.2 How Spring manages objects and injects dependencies

As we said, Spring is many things, but one of its most popular uses is the management
of object creation and the injection of dependencies into those objects as they’re cre-
ated. Rather than using code to acquire our resources, we use metadata to declare what
dependencies a given object requires. Spring reads this metadata, commonly located in
an applicationContext.xml file, to learn about the dependencies of the objects it man-
ages. Spring offers several means of injecting dependencies into managed objects, but
one common method is via setter methods exposed by the managed object.

FYI Struts 2 itself uses a form of setter injection to acquire decoupled access
to things such as the Servlet API attribute maps. Actions that want access
to the session map, for instance, can implement the SessionAware
interface, which exposes the setSession(Map session) method. The
servletConfig interceptor, part of the defaultStack, will inject the ses-
sion map into this setter for all actions that implement the Session-
Aware interface. Note that, like the Spring injection we’re introducing,
this interface allows the action to have decoupled access to the Servlet
API session map. The action itself doesn’t touch the Servlet API, and the
type of the setter is the Map interface, thus keeping the action free of
binding to a particular map. We could now easily inject a mock session
map for testing.

Let’s see how our Register action would look if we used Spring to inject our service
object, rather than directly acquiring it in our code:

private PortfolioService portfolioService;

public PortfolioService getPortfolioService() {
 return portfolioService;
}

public void setPortfolioService(PortfolioService portfolioService) {
 this.portfolioService = portfolioService;
}

236 CHAPTER 9 Integrating with Spring and Hibernate/JPA
Instead of worrying about how to create our service object, we just let Spring create and
inject it into a setter method. We completely get rid of the acquisition code and are left
with only a simple JavaBeans property. This is all it takes, in the code, to have your
resources injected. It doesn’t look like much, but that’s because everything’s been
removed to the Spring metadata layer, most likely applicationContext.xml. It is in that
file where we tell Spring the details of the object’s creation. We learn about that meta-
data in section 9.2, when we cover the details of integrating and using Spring.

 First, though, we need to talk about the second part of that one-two punch. Remem-
ber the interface we’re also going to introduce, the one that will solve the problem of
being bound to a specific implementation of the service object? We look at that next.

9.1.3 Using interfaces to hide implementations

While the code snippet in the previous section has completely removed the resource
acquisition code by allowing the service object to be externally injected by Spring, we
still have a tight binding to the type of the object being injected, a memory-based
PortfolioService class in this case. As you can see, our Register action’s JavaBeans
property is specifically typed to that class. When we want to upgrade to another imple-
mentation of our service object that uses JPA, we’ll be forced to refactor all these prop-
erties across all the objects that depend on a service object. After that, we’ll be just as
bound to that JPA version of the service. To solve this binding problem, we’ll intro-
duce an interface for service objects that both the memory-based and the JPA-based
versions can implement. Then, we’ll change the property to that interfaced type.

 We’ve done just this for the chapter 9 version of the Struts 2 Portfolio. Listing 9.2
shows the full source code of our new interface manning.chapterNine.utils.Port-
folioServiceInterface.

public interface PortfolioServiceInterface {

 public boolean userExists (String username);

 public void updateUser(User user) ;

 public void addImage (File file) ;

 public User authenticateUser(String username, String password) ;

 public Collection getUsers();

 public Collection getAllPortfolios() ;

 public User getUser(String username);

 public User getUser(Long id);

 public Portfolio getPortfolio (Long id);

 public String getDefaultUser() ;

 public void persistUser (User user);

Listing 9.2 The PortfolioServiceInterface provides a layer of separation.

237Why use Spring with Struts 2?
 public boolean contains (User user);

 public void updatePortfolio(Portfolio port);

}

There shouldn’t be any surprises here. This interface simply defines the core business
methods that our application uses. We could implement this interface with native
Hibernate, JPA, XML files, raw JDBC, or anything else you like. You could even imple-
ment a mock service object for testing. For this chapter, we’ve implemented a JPA ver-
sion of the service.

 Now, our actions that depend upon a service object provide setters typed to this
interface, rather than a specific implementation, to receive the Spring injections.
With this done, changing the service object used by the actions is as simple as flipping
a switch in the Spring metadata. Listing 9.3 shows the full source of our chapter 9
Login action, in which we’ve changed the setter to use the interface.

public class Login extends ActionSupport implements SessionAware {

 public String execute(){

 User user = getPortfolioService().authenticateUser(getUsername(),
 getPassword());

 if (user == null)
 {
 return INPUT;
 }
 else{
 session.put(Struts2PortfolioConstants.USER, user);
 }
 return SUCCESS;
 }

 private String username;
 private String password;

 //getters and setters omitted

 PortfolioServiceInterface portfolioService;

 public PortfolioServiceInterface getPortfolioService() {
 return portfolioService;
 }

 public void setPortfolioService(PortfolioServiceInterface
 portfolioService) {
 this.portfolioService = portfolioService;
 }

 private Map session;

 public void setSession(Map session) {
 this.session = session;
 }
}

Listing 9.3 Login exposes a setter into which Spring injects the service object

B

C

D

E

F

238 CHAPTER 9 Integrating with Spring and Hibernate/JPA
Not much to look at. The service setter now takes an object of type PortfolioService-
Interface E. We’ve worked with this action before, but let’s revisit a couple of points
in light of our new understanding of dependency injection. To recap this action’s busi-
ness logic, it checks whether or not the login credentials returned a valid user D. If valid,
the user is stored in the session scope. But if the credentials don’t map to a valid user,
we return the user back to the input page, a.k.a. the login page. As we mentioned earlier,
the Login action needs to access the session-scoped map because a User object will be
placed in that map when a user successfully logs in. We know that Struts 2 is probably
running on the Servlet API, so this map is actually the Servlet session map. But the frame-
work has a strong commitment to loose coupling. In order to get a reference to this map
in a loosely coupled manner, Login implements the SessionAware interface B. The
contract of this interface is fully satisfied by the exposure of a single setter method F
into which the framework will inject a session map. At runtime, this map is most likely
going to be the Servlet API map. Thanks, however, to the loose coupling of the
SessionAware interface, you could easily set a mock map for testing purposes. In gen-
eral, the Aware interfaces offered by the framework provide a good form of dependency
injection. Unfortunately, they mostly just handle servlet-related things.

 Thankfully, we can use Spring for injecting stuff like our service object. With
Spring, the dependent object doesn’t need to implement any specific interface, like
the Aware interfaces, in order to receive the injection. Spring tries hard to keep your
code independent of Spring. When it’s time to conduct the business, the service
object is just there. In this case, the Login action uses the service object to authenti-
cate the user C. It could be a mock service object that returns true every time, or it
could be our JPA service object that makes a live check against our database. This is
what Spring dependency injection is all about.

 Now it’s time to see the details of adding Spring to our Struts 2 application.

9.2 Adding Spring to Struts 2
In this section, we see how to add Spring to a Struts 2 application. It’s quite easy.
There are a couple of strategies for the actual injection of dependencies into your
objects. We cover those in this section. But first we need to show you how to get Spring
set up. The basic idea is that we need to give Spring a chance to handle the objects
that are created by Struts 2. One way to let Spring do this is to provide a Spring exten-
sion of the Struts 2 ObjectFactory, the class that creates each of the objects used in
the framework. We do just this in this section.

 First, we need to download and add the Spring plug-in to our application. As you’ll
see in chapter 12, plug-ins can modify or enhance the core structure of the frame-
work. One such example is the Spring plug-in. This plug-in provides a Spring exten-
sion of the core ObjectFactory. With this plug-in in place, Spring has the opportunity
to manage the creation of any objects that the framework creates. Note that while the
Spring ObjectFactory adds the opportunity for Spring to manage the creation of
objects, it’s not necessary for Spring to be involved in all object creation. Basically, the
Spring ObjectFactory only intervenes when you tell it to; all other objects get created
in the normal fashion.

239Adding Spring to Struts 2
 You can find the Spring plug-in in the Struts 2 plug-in registry at http://
cwiki.apache.org/S2PLUGINS/home.html. The plug-in comes as a JAR file, struts2-
spring-plugin-2.0.9.jar. You also need to get the Spring JAR, spring.jar, found at
www.springframework.org. With these two added to your lib directory, you just need a
way to create the Spring container itself. Since we’re building web applications, we
can use a Spring application-context listener. This comes with the Spring JAR and is
set up with the following snippet from our web.xml file:

<listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

At this point, you’re completely ready to start managing your objects with Spring. But,
as we indicated earlier, Spring won’t just start handling all of your objects. You must
tell Spring to intervene. To have Spring manage your objects, you need to declare
these objects as Spring beans in a Spring configuration file. By default, the Spring
container created by the ContextLoaderListener looks for metadata in an XML file at
/WEB-INF/applicationContext.xml. You can pass in a parameter to the listener to
specify different locations, and even multiple files, if you like. Consult the Spring doc-
umentation for this listener if you’d like to know more. As for the structure and usage
of the XML metadata, we’ll start to explore that in the next two sections as we explore
some basic strategies for managing dependencies with Spring.

9.2.1 Letting Spring manage the creation
of actions, interceptors, and results

With the Spring plug-in set up, it’s time to put it to use. We start by showing how to let
Spring directly manage the creation of framework objects such as actions, intercep-
tors, and results. First, we’ll let Spring handle the creation of our Login action. As
we’ve seen, this action depends on our PortfolioService object. In the last couple of
sections, we’ve already prepared the Login class for Spring injection by adding the set-
ter into which we can inject a PortfolioServiceInterface-typed object. To put that
setter to use, we need to tell Spring how to manage the creation of our Login action.

 As we’ve hinted, one common way to tell Spring about the objects it should man-
age is with metadata contained in XML files. In our case, we use a file called applica-
tionContext.xml. Listing 9.4 shows what to put in applicationContext.xml to have
Spring manage the creation of a Login action, complete with the injection of a portfo-
lio service object.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

Listing 9.4 Telling Spring how to inject our service bean into our Login action

B

http://cwiki.apache.org/S2PLUGINS/home.html
http://cwiki.apache.org/S2PLUGINS/home.html
www.springframework.org

240 CHAPTER 9 Integrating with Spring and Hibernate/JPA
 <bean id="portfolioService"
 class="manning.chapterNine.utils.PortfolioServiceJPAImpl"/>

 <bean id="springManagedLoginAction" class="manning.chapterNine.Login"
 scope="prototype">
 <property name="portfolioService" ref="portfolioService"/>
 </bean>
</beans>

At first glance, this might be an eyeful. But it’s actually simple. The critical chunks are
the declaration of two Spring beans, objects that Spring should manage for us.
Before we get to those, let’s look at that messiness at the start. We’ve got a huge
bunch of namespace and schema stuff at the top B. Spring uses a lot of namespaces,
so sometimes this stuff differs from one file to another depending upon the Spring
functionality in play. You’ll get by fine by copying ours unless you want to do some-
thing special with Spring. After that, we get to the good stuff, the declaration of two
Spring beans. Notice that the root element of the applicationContext.xml file is the
<beans> element B. All of the objects that Spring manages are known as Spring beans.
We declare two.

 The first of our beans is our JPA implementation of our PortfolioServiceInter-
face C. It’s pretty accurate to just imagine this bean declaration as an instantiation of
the object, or the definition of how to instantiate the object. In this case, we simply
give the bean tag our fully qualified class name and an ID. The ID is used to identify
the bean, much like a reference is used to identify an object in Java code. Next, we’ve
told Spring to manage the creation of instances of our Login action. We’ve done this
with another bean tag, giving it the class name and an ID D. We’ve also set the scope
attribute to prototype. Why did we do this? By default, Spring beans are created as
singletons. This won’t work for Struts 2 actions, because they carry data related to
each individual request. In order to make Spring create a new Login action bean each
time one is needed, we must set the scope attribute to prototype. Our service object,
like many application resources, works well as a singleton.

Make sure that your Spring-managed actions are configured to be cre-
ated as new instances each time they’re needed. By default, Spring cre-
ates singletons and reissues them when that bean is requested. You can
force Spring to create a unique instance for each request if you set the
scope attribute to prototype. Very important!

Now we get down to the business of wiring the portfolio service bean that we declared
in the first bean tag into our Login action. We use Spring’s property tag to do this E.
The property tag looks for a setter for a property with the same name as the property
tag’s name attribute. The value to inject into this setter is then specified with the ref
attribute, which takes a reference that points, in our case, to the ID we gave to our ser-
vice object in the first bean tag.

 Okay. We’ve told Spring how to create a couple of our objects for us. Whenever
someone asks for the portfolioService or springManagedLoginAction bean, Spring

C

E D

WARNING

241Adding Spring to Struts 2
serves up a bean matching those IDs managed just as we’ve asked. If someone asks for
a springManagedLoginAction, Spring creates a unique instance of our manning.
chapterNine.Login class and injects a portfolioService Spring bean into it. But this
doesn’t mean that Spring will intervene any time a Login action is created. It won’t do
anything until someone asks, by ID, for one of the beans it manages. Every instance of
a Login action in the system is not inherently the springManagedLoginAction Spring
bean. So how do we make the framework ask Spring for this bean when it needs a
Login action? Good question.

 Normally, Struts 2 creates its action objects by instantiating the class defined in the
declarative architecture metadata. If a request comes in with a URL that maps to the
Login action, as defined in our declarative architecture XML or annotations, the
framework consults the declaration of that action to find out which class should be
instantiated. Here’s how we’ve been declaring our Login action up until now:

<action name="Login" class="manning.chapterNine.Login">
 <result type="redirectAction">
 <param name="actionName">AdminPortfolio</param>
 <param name="namespace">/chapterEight/secure</param>
 </result>
 <result name="input">/chapterEight/Login.jsp</result>
</action>

This mapping tells the framework to create an instance of the manning.chapter-
Nine.Login class to use as its action object for this request. As we’ve indicated, the
framework has an ObjectFactory that normally handles all of this. Even with the
SpringObjectFactory in place, via the Spring plug-in, this mapping is still handled in
that standard fashion. If we want the framework to ask Spring to create one of its
beans for us, we need to refer to that Spring bean’s ID from within our Struts 2 action
mapping, as follows:

<action name="Login" class="springManagedLoginAction">
 <result type="redirectAction">
 <param name="actionName">AdminPortfolio</param>
 <param name="namespace">/chapterEight/secure</param>
 </result>
 <result name="input">/chapterEight/Login.jsp</result>
</action>

Now, the framework asks Spring for a bean going by the name of springManagedLogin-
Action and Spring gladly returns that bean with the PortfolioService injected and
ready to go.

 That’s about all you need to know to have Spring directly manage the creation of
framework objects such as our Login action. You can do the same thing with intercep-
tors or any other framework components. Oddly enough, we don’t recommend using
Spring in this manner for most situations. We showed this technique first because it’s
the most straightforward way of understanding what Spring does. But it’s not always
the best way to use Spring for dependency injections. If you want to take advantage of

242 CHAPTER 9 Integrating with Spring and Hibernate/JPA
some other Spring-fu, like some of its aspect-oriented features, then you’ll need to use
this heavy-handed, direct object management technique. But if all you want to do is
inject dependencies, such as the PortfolioService object, there’s a much easier
method: autowiring! Let’s have a look.

9.2.2 Leveraging autowiring to inject dependencies
into actions, interceptors, and results

The direct management of your actions, interceptors, and results by Spring is a per-
fectly good way to do things, but it’s verbose. To make things super easy, you’ll want to
take advantage of Spring’s ability to autowire dependencies. Autowiring is a way to
inject dependencies without explicitly declaring the wiring in your application-
Context.xml. In other words, we can have the PortfolioService object automatically
injected into all the actions that need it without actually having to generate any meta-
data regarding those actions. You don’t have to do anything to enable autowiring; it’s
on by default. There are several flavors of autowiring. You can autowire by name, type,
constructor, or something called auto. We cover each of them in this section.
AUTOWIRING BY NAME

The default behavior of the Spring plug-in autowiring is by name. Autowiring by name
works by matching the ID of a managed Spring bean with setter method names
exposed on potential target objects. As it turns out, every object created by the frame-
work is a potential target object. Since all of our actions are clearly created by the
framework, they’re all potential targets of autowiring without any explicit intervention
on the behalf of the developer. Listing 9.5 shows what our applicationContext.xml
would look like if we rely on name-based autowiring instead of direct Spring manage-
ment of our dependencies.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="portfolioService"
class="manning.chapterNine.utils.PortfolioServiceJPAImpl"/>

</beans>

As you can see, we now do nothing more than declare the bean that we need to inject,
our portfolioService bean, and give it an ID. There are no bean tags telling Spring
how to manage our action objects. In fact, Spring won’t handle the creation of our
action objects in this case. Nonetheless, the framework lets Spring do a postcreation
inspection of all objects that it creates, such as actions and interceptors, and try to
autowire them with beans that it knows about. In our case, we’ve told Spring about
our portfolioService bean. Spring tries to automatically inject this bean into any
framework object that exposes a setter with a name that matches the ID of the service

Listing 9.5 Autowiring requires less metadata in our applicationContext.xml.

243Adding Spring to Struts 2
bean. To receive the automatic injection of this portfolioService bean, a framework
object just needs to expose a setter like the following:

PortfolioServiceInterface portfolioService;

public void setPortfolioService(PortfolioServiceInterface portfolioService)

 this.portfolioService = portfolioService;
}

The key here is that the setter naming convention matches the Spring bean ID. All
objects created by the framework are subject to this injection. This isn’t just actions.
Our manning.chapterNine.utils.AuthenticationInterceptor also receives this
injection. Due to the ease and elegance of autowiring by name, this’ll probably be
your preferred Spring usage as long as your need for Spring doesn’t extend past
dependency injection.

 Before moving on to the next method of autowiring, we should make one point. In
the previous section, where we had Spring actually create our action objects for us, we
had to write our declarative architecture to point to Spring IDs rather than the normal
class names. Since Spring is no longer creating our action objects, we can revert our
declarative architecture back to the previous form. In other words, we no longer map
our action element to a Spring ID name; we map it to the class name again, as seen in
the following snippet:

<action name="Login" class="manning.chapterNine.Login">
 <result type="redirectAction">
 <param name="actionName">AdminPortfolio</param>
 <param name="namespace">/chapterNine/secure</param>
 </result>
 <result name="input">/chapterNine/Login.jsp</result>
</action>

The class attribute now points to an actual Java class rather than the ID of a Spring
bean. With autowiring, the framework creates the action, then Spring inspects to see
whether it can inject anything. This is a subtle but different mechanism than we dis-
cussed in the previous section.

 Autowiring comes in several other varieties. Let’s consider our options.
AUTOWIRING BY TYPE, CONSTRUCTOR, AND AUTO

Spring provides several other means of autowiring that are also available to us in the
context of Struts 2. In the interest of space, we won’t demonstrate these other strate-
gies, but we’ll give brief explanations of what they do. They’re quite simple. The first
step to using an alternative method of autowiring is configuration. If you want to
change the method of autowiring, you need to set a Struts 2 configuration property.
You need to add something like the following to your struts.properties file:

struts.objectFactory.spring.autoWire=type

Or, as with all Struts 2 configuration settings, you can set this property via a constant
element in one of your XML files, such as struts.xml, or chapterNine.xml if you like.
Here’s what the constant element would look like:

<constant name="struts.objectFactory.spring.autoWire" value="type"/>

244 CHAPTER 9 Integrating with Spring and Hibernate/JPA
It doesn’t matter which way you do it. Now, let’s talk a bit about what each of these
alternative autowiring methods means.

 Essentially, they all do the same thing. They tell Spring to inspect the objects created
by the framework for places where it can inject the beans that it knows about. If you
choose to do autowiring by type, rather than the default name, Spring will try to match
the type of the beans it knows about to the types of setter methods it finds on the objects
created by the framework. The secret here is that you should only tell Spring about one
bean per type; otherwise it can’t figure out which bean to inject and it complains.
The only thing faintly subtle about autowiring by type is that interfaces count. In other
words, since the manning.chapterNine.utils.PortfolioServiceJPAImpl bean that
we told Spring about implements manning.chapterNine.utils.PortfolioService-
Interface, it’s autowired to setters of the interface type. Since the setter on our Login
action takes type PortfolioServiceInterface, this injection will occur automatically if
we change the autoWire property to type. This is another sign that interfaces are the
right thing to do!

 The next two alternative methods of autowiring are constructor and auto. If you
choose constructor, your objects must have a constructor that takes its dependencies
as parameters. Beans known to Spring will be injected into the constructor parameters
as they match up by type. This has the same limitations as the type-based method dis-
cussed in the previous paragraph. If more than one Spring bean of the matching type
is available, Spring will throw an exception rather than try to decide which one to
inject. The last method of autowiring is auto. This method simply tries to inject by
constructor first and then by type.

 And that’s it. Spring’s not such a big deal, huh? Well, this is a small part of Spring.
Moreover, it’s a tribute to the power of Spring that the end result can look so effort-
less. Nonetheless, this simple use of Spring can make your code much more maintain-
able and testable, the twin joys of loose coupling. Keep in mind that we’ve only shown
you how to use the dependency injection features of Spring, but it offers a lot more
than just DI. Many of you will want to take advantage of some of that other stuff in
your Struts 2 applications. With limited book space, we can only point the way. One
thing to keep in mind is this. If you want to add further Spring management to your
beans, such as Spring’s aspect-oriented programming features, you need to let Spring
directly manage your actions, interceptors, and results. We showed how to do this in
section 9.2.1. Spring has a lot to offer and the Spring plug-in makes it easy to leverage
these offerings from a Struts 2 application. Enjoy.

 Now it’s time to see how we can make another drastic improvement to your
Struts 2 Portfolio. In the next section, we’re going to introduce the powerful Java
Persistence API (JPA) and show how to let it manage your application’s data persis-
tence needs.

9.3 Why use the Java Persistence API with Struts 2?
In this section, we show you how to integrate the Java Persistence API (JPA) into your
application. This technology, wrapped around Hibernate, represents the bleeding

245Why use the Java Persistence API with Struts 2?
edge of enterprise Java data persistence. Coding to the JPA works a lot like coding to
native Hibernate, but its interface-based architecture gives you the ability to switch out
the vendor supplying the underlying implementation. In our examples, we use Hiber-
nate. Still, the techniques we demonstrate are applicable regardless of which underly-
ing engine you choose.

 The topics of JPA and Hibernate go beyond the scope of this book. This section
doesn’t intend to teach you anything specific about JPA and Hibernate. The purpose
of this section is to demonstrate a best practice of integration with those technologies.
If you don’t know anything about JPA and Hibernate, you’ll need to seek basic instruc-
tion elsewhere. We recommend the Manning title Java Persistence with Hibernate. If
you’re already familiar with these topics, we build on that by walking you through one
of the most successful solutions to integrating JPA into a Struts 2 web application. This
solution solves two of the most immediate issues a developer faces when integrating
JPA with a web application. First, we show how to use a servlet filter to solve the infa-
mous Open Session In View problem. Second, we show how to use the well-respected
Spring support for JPA to make management of the JPA all that much easier.

 Before we get to the integration, we should start with the mundane, but essential,
details of setting your project up to use JPA with Hibernate.

9.3.1 Setting your project up for JPA with Hibernate

First, there’s no plug-in or anything for integrating JPA with your Struts 2 application.
Setup includes adding a few JAR files, a configuration file or two, getting a database,
and some other odd bits or two. We’ll sail right through these in no time, starting with
the issue of JAR files.
COLLECTING THE APPROPRIATE JAR FILES

There’s quite a list here. Some of these resources belong to Hibernate and some
belong to the JPA. There’s also the issue of a driver for your choice of database. Some
libraries are already in the project; some we need to add just for this chapter. As
always, these kinds of things change over time; a trip to the Hibernate, JPA, or the
MySQL website will yield the most accurate and up-to-date word on dependencies.

 At the time of writing, here’s what we’re using:

The ones with asterisks are the ones that would already be in a Struts 2 project. The
rest are all specific requirements of our current persistence work.

■ antlr.jar * ■ jta.jar
■ asm.jar ■ hibernate-annotations.jar
■ asm-attrs.jar ■ hibernate-commons-annotations.jar
■ c3po.jar ■ ejb3-persistence.jar
■ cglib.jar ■ hibernate-entity-manager.jar
■ commons-logging.jar * ■ mysql-connector-java-5.1.5-bin.jar
■ commons-collection.jar * ■ jboss-archive-browsing.jar
■ dom4j.jar ■ javassist.jar
■ hibernate3.jar

246 CHAPTER 9 Integrating with Spring and Hibernate/JPA
CHOOSING A DATABASE

You can use just about any database you like. We use MySQL because it’s familiar to
many, including ourselves. If you opt to use another database, then you should switch
out the MySQL driver in our list of resource dependencies. In addition, you’ll need to
change a couple of settings in the data source and Hibernate configuration found in
the applicationContext.xml. We’ll cover that file in a moment.

 After you install a database, you just need to do the prerequisite admin stuff to set
up the account by which you’ll connect to the database. While you can change the set-
tings, our current configuration expects to find a database account with username/
password equal to manning/action. This database user must, of course, have the
appropriate rights to create, update, alter, and so forth.

 With the database and resources all in place, it’s time to configure JPA. As we said,
we’re going to leverage Spring’s built-in support for JPA to do this. Since we’ve taken
the time to integrate the Spring container, we should take the opportunity to really
benefit from it.
USING SPRING TO MANAGE OUR JPA DEPENDENCIES

After all the trouble of setting up the Spring plug-in, we might as well make the most
of it. Actually, using Spring to manage JPA is a nice thing. Spring comes with packages
dedicated to making the management of JPA easy and powerful. By the end of this
chapter, we think you’ll have to admit that the combination is elegant. Let’s jump
right in by examining our new applicationContext.xml to see just exactly what we’re
asking Spring to do for us. Listing 9.6 shows that Spring configuration file in full glory.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.0.xsd

 <bean class="org.springframework.orm.jpa.support.
 PersistenceAnnotationBeanPostProcessor" />

 <bean id="portfolioService" class="manning.chapterNine.utils.
 PortfolioServiceJPAImpl"/>

 <bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBea
n">|#4

 <property name="dataSource" ref="dataSource" />
 <property name="jpaVendorAdapter">
 <bean class="org.springframework.orm.jpa.vendor.
 HibernateJpaVendorAdapter">

Listing 9.6 Letting Spring manage our JPA dependencies and transactions

B

C

D

E

247Why use the Java Persistence API with Struts 2?
 <property name="database" value="MYSQL" />
 <property name="showSql" value="true" />
 </bean>
 </property>
 </bean>

 <bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">

 <property name="driverClassName" value="org.gjt.mm.mysql.Driver" />
 <property name="url" value="jdbc:mysql://127.0.0.1:3306/manning" />
 <property name="username" value="manning" />
 <property name="password" value="action" />
 </bean>

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="entityManagerFactory" />
 </bean>

 <tx:annotation-driven transaction-manager="transactionManager" />

</beans>

This might look like a lot at first, especially if you’re unfamiliar with the JPA. But we
can remedy all that quickly. Here’s a nutshell version of what’s happening. All we’re
really doing is having Spring create our JPA EntityManager and inject it into our ser-
vice object. That’s it. And, of course, we’re still having the service object autowired
into our actions. But everything here is all about creating the EntityManager and
injecting it into our service object. Now, let’s pick it apart line by line to take the sting
out of it.

 First, we’ve got a gigantic wad of namespace and schema stuff B. Too bad the
printed word doesn’t do code folding yet. Next, we declare a bean postprocessor
that checks all the beans managed by Spring for persistence-related annotations C,
such as the annotations that mark which setter methods should be injected with the
EntityManager. We put one of these annotations in our PortfolioServiceJPAImpl
class. Next, we have the familiar declaration of our service object D as a Spring bean.
As we’ve seen, this is autowired by name into our actions and interceptors. This hasn’t
changed in the slightest.

 All of the rest of this mess sets up our JPA stuff. And it’s not really messy at all.
The main entry point into the JPA is something called the EntityManager. This
object manages all of your persistent entities—our users and portfolio objects. Our
PortfolioServiceJPAImpl uses an EntityManager to read, write, and update our
objects. If you’re familiar with Hibernate, the EntityManager is equivalent to the
Session. Rather than telling Spring how to create an EntityManager, we need to tell
Spring how to create an EntityManagerFactory E. This is also where we configure
our JPA persistence unit. As you can see, we tell Spring which JPA vendor we’re going
to use as well as which data source we’re going to use. The data source that we wire
to the factory is another Spring bean F, which we’ve configured to work with our
MySQL database and the database account we created.

E

F

G

H

248 CHAPTER 9 Integrating with Spring and Hibernate/JPA
 Finally, since all JPA and Hibernate work must occur within transactional bound-
aries, we register a transaction manager with Spring G, which we also wire to the
EntityManagerFactory. We then tell Spring that we’ll use annotations to tell the
transaction manager about our transactional boundaries H. You can also define trans-
actional boundaries in the XML, but we’re using transaction annotations in our Port-
folioServiceJPAImpl class. Once you get familiar with it, it’s fairly elegant.

 That’s the Spring part of it. Next, we look at how to handle the problem of lazy
loading in the view layer.
HANDLING LAZY LOADING WITH SPRING’S OPENENTITYMANAGERINVIEW FILTER

If you’ve used Hibernate before, you’re probably familiar with the view-layer lazy
loading issue. To summarize the problem, when you retrieve Java objects from a per-
sistence technology such as JPA, optimizations are made to reduce traffic with the
database. One of the primary optimizations is the lazy loading of deeper elements in
the data structure contained by the retrieved object. Let’s say we retrieve a User from
the JPA EntityManager. All of the Portfolios, for instance, might not be loaded when
this User is first loaded. In fact, they might not be loaded until they’re referenced.
This is lazy loading.

 In an MVC web application, the action classes generally load the data from the
database, such as the User mentioned previously. Then they forward control over to
the view layer, a JSP result, let’s say. Many times, data such as a given Portfolio refer-
enced within that User won’t be read until a JSP tag iterates over that set of Port-
folios while rendering the result page. If the persistence context, the EntityManager
in the case of the JPA or the Session in the case of native Hibernate, has been closed,
this attempt to read the unloaded Portfolio data will fail because lazy loading is no
longer available.

 A well-known fix to this has been around for some time. In Hibernate terms, the
fix is known as the OpenSessionInView pattern. This fix typically uses a servlet filter or
some kind of interceptor to wrap a Hibernate Session around the entire request-pro-
cessing pipeline, including the view layer. You can find many examples of this on the
Web. In JPA terms, we need a OpenEntityManagerInView fix. Fortunately, Spring pro-
vides a servlet filter implementation of this fix that’s widely used: one of the key rea-
sons for going with the Spring support for JPA. We don’t need to do anything other
than configure this filter in our web.xml file, as seen in Listing 9.7.

<filter>
 <filter-name>struts2</filter-name>
 <filter-class>
 org.apache.struts2.dispatcher.FilterDispatcher
 </filter-class>
</filter>

<filter>
 <filter-name>SpringOpenEntityManagerInViewFilter</filter-name>
 <filter-class>

Listing 9.7 Configuring the OpenEntityManagerInViewFilter

249Why use the Java Persistence API with Struts 2?
 org.springframework.orm.jpa.support.OpenEntityManagerInViewFilter
 </filter-class>
</filter>

<filter-mapping>
 <filter-name>SpringOpenEntityManagerInViewFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

If you’re familiar with web.xml files, there’s nothing complicated here. There’s one
critical thing, though. The mapping of the Spring filter must come before the map-
ping of the struts2 filter; otherwise nothing will work. Once in place, this filter cre-
ates and binds an EntityManager to the thread that’s processing the request. It uses
the factory declared in our Spring container to do this. This threadbound Entity-
Manager will always be used by our other Spring-controlled JPA code. You don’t have to
do anything in your code. It’s very convenient.

 With all of that in place, we’re now ready to look at how it all works. The next sec-
tion walks us through the code that uses the JPA as we’ve configured here.

9.3.2 Coding Spring-managed JPA

In the previous section, we showed you how to set up your Struts 2 application to use
JPA. In addition to adding the resources for JPA and Hibernate, we showed you how to
leverage the Spring plug-in we added earlier in this chapter to manage your JPA
resources. With all that in place, we’re now ready to examine the code-level imple-
mentation of a JPA persistence layer. In our Struts 2 Portfolio, this takes place inside
the PortfolioServiceJPAImpl class.

 We start with a quick discussion of the JPA persistence unit.
THE PERSISTENCE UNIT

When you use the JPA, the entirety of your persistence-related pieces is known as a per-
sistence unit. The EntityManagerFactory managed by Spring encapsulates most of the
details of the persistence unit. These details include everything from the metadata
that describes how your Java classes map to database tables to the database connection
details. The main entry point into configuring your persistence unit is the persis-
tence.xml file. Just as a web application must have a web.xml file, a JPA project must
have a persistence.xml file. Listing 9.8 shows the full details of this important file,
which can be found in the project at /WEB-INF/classes/META-INF/persistence.xml.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://

java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

Listing 9.8 The mandatory configuration entry point for a JPA persistence unit

250 CHAPTER 9 Integrating with Spring and Hibernate/JPA
 <persistence-unit name="struts2InAction">
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 </properties>
 </persistence-unit>

</persistence>

It’s of interest that such an important file contains so little. Mostly, this is because we’re
deferring the management of our JPA details to Spring. The important thing here is the
name of the persistence unit and the fact that we pass in a Hibernate property to con-
trol the autocreation of our database schema. We’re using the development-friendly
create setting. Every time the application is started, the database schema will be cre-
ated anew. This means that your data won’t persist over multiple application startups.
If you want to preserve the database from a preceding state, just take this out before
restarting the application.

 The next critical element of a JPA project is the metadata that maps your Java
classes to database tables. The next section covers this important topic.
USING ANNOTATIONS TO MAP OUR JAVA CLASSES TO DATABASE TABLES

One of the great things about using JPA is that we can use Java annotations to map our
Java classes to the database. Though people, including myself, can debate whether
annotations are fluff or stuff, it’s hard to deny some of the benefits of using them. A
few of the benefits of using the JPA annotations in this context include IDE support,
less verbosity, automatic scanning for annotated classes, and type checking—annota-
tions are actual Java types after all.

 We’re going to keep it simple, so let’s start by cracking the source code to our per-
sistent entities, a.k.a. our User and Portfolio classes. Listing 9.9 shows the source for
our manning.chapterNine.utils.User class.

@Entity
public class User {

 private String username;
 private String password;
 private String firstName;
 private String lastName;

 @OneToMany (cascade={CascadeType.ALL }, mappedBy="owner")
 private Set<Portfolio> portfolios = new HashSet<Portfolio>();

 @Id @GeneratedValue
 private Long id;

 //getters and setters omitted

 public Set getPortfolios()
 {
 return portfolios;
 }
 public void setPortfolios(Set portfolios) {
 this.portfolios = portfolios;

Listing 9.9 This version of the User class is a JPA persistent entity.

B

C

D

251Why use the Java Persistence API with Struts 2?
 }

 public void addPortfolio (Portfolio portfolio){
 portfolio.setOwner(this);
 portfolios.add(portfolio);
 }

}

This class uses annotations to tell JPA how to map its properties to the database. The
entity annotation B marks this class as one that should be scanned by the JPA and
mapped to the database. This is required. Next, note the absence of any metadata
describing mappings between the properties and the database. We could annotate
these, but we can also sit back and let JPA generate sensible database column names
for each of these properties. They will each be columns in our User table. We then
map an association to our collection of Portfolio objects that belong to this user C,
and annotate our id property D. This id property is the only actual change we have
to make to our class to make it work as a persistent entity managed by the JPA Entity-
Manager. As a final point of interest, we’d also like to point out that while we can rely
on the JPA to manage our persistence, we still have to manage our Java relationships.
In the interest of this, we have an addPortfolio method that manages the directional
references between a Portfolio and the owning User E. This is required so that we
can track the User from the Portfolio, if need be.

 If you check out the manning.chapterNine.utils.Portfolio class, you’ll find
similar annotations. Again, these annotations are automatically located and scanned
by JPA when it fires up. You don’t have to register the annotated classes anywhere.

 At this point, we’ve done everything we need to do. We have annotation metadata
that describes how we want to map our Java classes to the database. We have a data-
base. We’ve configured the Spring container to create our JPA EntityManagerFactory
with all the necessary settings. When the EntityManagerFactory starts up, it scans our
annotated classes and automatically creates the schema in the database. The only
thing left is to get our hands on an EntityManager and start writing the JPA persis-
tence code in the PortfolioServiceJPAImpl class. So that’s what we’ll do now.
USING THE JPA ENTITYMANAGER TO IMPLEMENT OUR SERVICE OBJECT

We’re finally ready to look at the PortfolioServiceJPAImpl class itself and see what the
actual JPA code looks like. Be forewarned, it doesn’t look like much. As we indicated ear-
lier, the actual work of JPA code will mostly involve an instance of the EntityManager
class. This is why we’ve asked Spring to set up an EntityManagerFactory for us. Some-
where along the line, we need to get a reference to an real EntityManager in our code.
As you might’ve guessed, we’re planning to have Spring inject it. But how? Autowiring?
Not quite, but close.

 You might’ve noticed that we didn’t actually declare an EntityManager bean in
our Spring applicationContext.xml file. So we can’t use autowiring to inject one into
our service object. But we can take advantage of the Spring support for JPA. We can
use annotations to tell Spring where to inject an EntityManager. The following snip-
pet shows the annotation on our PortfolioServiceJPAImpl’s entityManager setter:

E

252 CHAPTER 9 Integrating with Spring and Hibernate/JPA
@PersistenceContext
public void setEntityManager(EntityManager entityManager) {
 this.entityManager = entityManager;
}

The PersistenceContext annotation indicates that Spring should inject an entity-
Manager at this setter. The naming of the setter is unimportant. It’s not autowiring by
name. This works because of two things. First, we declared the following bean postpro-
cessor in our applicationContext.xml:

<bean class="org.springframework.orm.jpa.support.
 PersistenceAnnotationBeanPostProcessor" />

This postprocessor looks for the PersistenceContext annotations. Second, we
declared an EntityManagerFactory in our applicationContext.xml. Without this fac-
tory, Spring wouldn’t know where to get the EntityManager to inject in the anno-
tated setters.

 Now we have the EntityManager in hand and we’re ready to write code. List-
ing 9.10 shows how we get down to the business of using the EntityManager in our
PortfolioServiceJPAImpl class.

@Transactional
public class PortfolioServiceJPAImpl
 implements PortfolioServiceInterface {

 public boolean userExists (String username) {

 Query query = entityManager.createQuery ("from User where
 username = :username").setParameter("username", username);
 List result = query.getResultList();

 return !result.isEmpty();

 }

 public void updateUser(User user){
 entityManager.merge(user);
 }

 public Collection getUsers(){

 Query query = entityManager.createQuery ("from User");
 return query.getResultList();
 }

 public Portfolio getPortfolio (Long id){
 Portfolio port = entityManager.find(Portfolio.class, id);
 return port;
 }

 public void persistUser (User user){
 entityManager.persist(user);
 }

 private EntityManager entityManager;

Listing 9.10 Using the JPA to manage the persistence of our Users and Portfolios

B

C

D

E

F

253Summary
 @PersistenceContext
 public void setEntityManager(EntityManager entityManager) {
 this.entityManager = entityManager;
 }
}

As we’ve indicated, we don’t want to present a primer on JPA. We’ll just point out the
highlights of how we’re using the injected EntityManager. First, we take advantage of
Spring transaction management and the accompanying annotations to declare that
this class is transactional B. This means that every method in the class will be transac-
tional. Typically, you’d want to pursue a more fine-grained approach to the descrip-
tion of your transactions, but this works for us. In JPA, as in native Hibernate, all data
access has to occur within the bounds of a transaction. You can open and commit
these transactions programmatically, but you can also let Spring do it by configuring a
transaction manager as we did in our applicationContext.xml. We also chose to use
annotations to describe our transactions.

 With transactional control out of the way, we can start persisting, loading, and
updating data. The JPA offers a full API to make this work easy and clean. We can write
queries against the database with a high-level query language that allows us to use our
Java names instead of the database names that’d be required by native SQL C. We can
update the database by merging new data objects with the persistence context D. We
can, of course, retrieve an object E and persist a new object F. While this can’t teach
you JPA, it does serve as a clean demonstration of a full set of CRUD functionality
implemented in JPA.

 This object, injected with the EntityManager, is then injected via autowiring into
all of our actions that need to use it. They simply call these methods to persist their
objects. Furthermore, the actions only handle an interface. You could easily switch
this JPA implementation out for any other implementation, including test mockups.

 Oh my, that was a fast run through a rather sophisticated technology. Again, our
point here is not to teach JPA, but to demonstrate a best-practice integration technique.
Based on our experience and our conversations with others doing Struts 2 web
applications, this combination of JPA with Spring support is hard to beat. We hope you
enjoy it.

9.4 Summary
In this chapter, we’ve seen how to integrate a Struts 2 application with two of the more
commonly used third-party technologies. Both of these technologies, Spring and JPA,
offer much more than we could’ve shown you in this brief chapter. Some JPA books
are 800 pages long. Rather than try to tell you about those technologies, we’ve focused
instead on showing you some best practices concerning the integration itself. Let’s
review what we’ve seen.

 First, we saw how to use the Spring plug-in to extend the framework’s Object-
Factory with a SpringObjectFactory that gives you the opportunity to manage
framework objects in a Spring container. While we hinted that this management could

254 CHAPTER 9 Integrating with Spring and Hibernate/JPA
offer you more bonuses than we have the time to discuss, such as AOP, we did show
you what many people consider to be the bottom-line in Spring usage for a Struts 2
application: dependency injection. We saw how to inject dependencies into managed
beans and how to use several varieties of autowiring to inject dependencies into
objects that the framework creates in the normal fashion. Dependency injection is
great, hence all the hoopla. But we encourage you to check out all the other stuff that
Spring has to offer its managed beans.

 Finally, we took on the large task of upgrading our service object to use JPA. We
went on a whirlwind tour of using Spring’s support for JPA to make management of
the JPA...well...manageable. Our fast coverage of JPA covered the critical issues of inte-
grating with a persistence technology such as JPA. We showed you how to set up the
OpenEntityManagerInView filter. We also showed you how to use Spring to inject the
PortfolioService into the actions that depend on it. Somewhere in the midst of all
that, we gave you a peek at using JPA annotations to map Java classes to the database,
as well as Spring-managed transactions.

 With all of this dense information crammed into a single chapter, we have no
doubt that some of you are breathless. We fully expect that you might need to consult
a Hibernate or JPA resource. They are complex topics that offer a lot to those willing
to come to grips with their full breadth and depth. However, once you have the persis-
tence technology background, we think this chapter will provide you with a good case
study for getting that technology into your Struts 2 application.

 With our core application shaping up, we can pick off a couple more points of
refinement before moving into the advanced topics section of the book. Next up, we
look at improving our validation code in chapter 10.

Exploring the
 validation framework
Building on the refinements we saw in the previous chapter, where we added
Hibernate-based persistence and Spring resource management to our sample
application, this chapter introduces another advanced mechanism of the Struts 2
Framework, the validation framework. We’ve had robust data validation in our
Struts 2 Portfolio since chapter 3, where we learned how to implement an action-
local form of validation with the Validateable interface’s validate() method.
While this method works fine, it has some limitations that eventually become bur-
densome. We revisit the details of this basic form of validation in the first section of
this chapter, and then quickly move on to explore the higher-level validation frame-
work that comes with Struts 2.

This chapter covers
■ Introducing the validation framework
■ Wiring your actions for validation
■ Building a custom validator
■ Adapting the validation framework to your needs
255

256 CHAPTER 10 Exploring the validation framework
 The validation framework provides a more versatile and maintainable solution to
validation than the Validateable interface. Throughout this chapter, we explore the
components of the validation framework and learn how easy it is to work with this
robust validation mechanism. We demonstrate this in code by migrating the Struts 2
Portfolio to use the validation framework instead of the Validateable interface
mechanism. This example shows you how to wire up your actions for validation as
well as demonstrates the use cases of the more common built-in validators. During
this process, you’ll learn all you need to leverage this advanced validation tool in your
own projects.

 One of the stronger points of the validation framework is the Validator, a reus-
able component in which the logic of specific types of validations are implemented.
Some of the built-in validators handle such validations as checking whether a given
string represents a valid email address or whether a date falls within a given range. We
also demonstrate the extensible nature of the Validators by implementing a custom
Validator for use in the Struts 2 Portfolio. We even point out some advanced nuances
and techniques before we wind things up.

 But let’s get started by exploring the basic architecture of the validation frame-
work. As you’ll soon see, the learning curve is gentle.

10.1 Getting familiar with the validation framework
As with most aspects of Struts 2, the validation framework is well engineered. As we’ve
indicated, Struts 2 is a second-generation web application framework. As with most of
its components, validation has been a part of web application frameworks for a while,
but Struts 2 takes it to a new level of refinement, modularity, and clean integration.
Due to this, we can benefit greatly from a high-level study before kicking off into our
code examples. We’ll take the first section of this chapter to examine the architecture
of the validation framework as well as how it fits into the workflow of Struts 2 itself.
First, we’ll look at the architecture.

10.1.1 The validation framework architecture

While it may make some people groan to learn that even validation has its own frame-
work and architecture in Struts 2, we think a clean architecture just means it’s easier
to learn. Figure 10.1 shows the main components of the validation framework.

 As you can see in figure 10.1, there are three main components at play in the vali-
dation framework: the domain data, validation metadata, and the validators. Each plays a
vital role in the work of validation, which we explain in the next sections.
DOMAIN DATA

First, we must have some data to validate. We can see that the domain data depicted in
figure 10.1 resides as properties on a Struts 2 action: username, password, and age.
These properties are assumed to hold the data our action will work with when it begins
execution. This is a common scenario we’ve become familiar with throughout the
course of the book. However, we also know that such domain data could also be imple-
mented in a couple of other ways, via a ModelDriven action for instance. All such

257Getting familiar with the validation framework
variations on domain data handling can use this method of validation, but we’ll start
with this simplest case of simple JavaBeans properties on the action while we first
explore the validation framework behavior. Later in the chapter, we’ll demonstrate
using ModelDriven actions.
VALIDATION METADATA

In figure 10.1, we see that a middle component lies between the validators and the data
properties themselves. This middle component is the metadata that associates individ-
ual data properties with the validators that should be used to verify the correctness of
the values in those properties at runtime. You can associate as many validators with each
property as you like, including zero if that makes sense for your requirements.

 When it comes to the details of implementation, the metadata layer offers a choice.
The developer can map data properties to validators with XML files or with Java anno-
tations. During this chapter, we’ll focus our energies on the XML versions. We’ll show
how the annotations work at the end of the chapter. Ultimately it doesn’t matter which
one you use, as they’re both just interfaces to the underlying validation mechanisms.
VALIDATORS

The actual work in all of this is done by the validators themselves. A validator is a reusable
component that contains the logic for performing some fine-grained act of validation.

Figure 10.1 The validation framework uses metadata to associate validators
with data properties.

258 CHAPTER 10 Exploring the validation framework
For instance, in figure 10.1 our username property is mapped to the requiredstring val-
idator. This validator verifies that the value of the username property, or whatever prop-
erty it validates, is a nonempty String value. The password property is mapped to
requiredstring and stringlength. The stringlength validator checks that the string
is of a desired length. The framework comes with a rich set of built-in validators, and you
can even write your own. To have your data validated by these validators, you simply wire
up your properties to the desired validators via some XML or Java annotations. When the
validation executes, each property is validated by the set of validators with which it’s
been associated by the metadata layer.

 But how does the validation framework actually get executed? Good question. In
the next section, we examine how it fits into the Struts 2 workflow.

10.1.2 The validation framework in the Struts 2 workflow

Now let’s look at how all of this validation actually gets done. As you might guess,
there’s an interceptor involved. Before we get into the details of that interceptor, let’s
take a moment to review how the basic version of validation, which we’ve already been
using, works.
REVIEWING BASIC VALIDATION

Up until now, we’ve been putting our validation in the validate() method on our
actions. We’ll now provide a quick summary of how that validation works. If you want
all of the details, you can go back to chapter 3 and review them, but a quick refresher
should work fine.

 The actions of our Struts 2 Portfolio all extend ActionSupport, which implements
a couple of interfaces that play an important role in validation. These interfaces are com.
opensymphony.xwork2.Validateable and com.opensymphony.xwork2.Validation-
Aware. Validateable exposes the validate() method, in which we’ve been stuffing our
validation code, and ValidationAware exposes methods for storing error messages gen-
erated when validation finds invalid data. As we learned before, these interfaces work
in tandem with an important interceptor known as the workflow interceptor.

 When the workflow interceptor fires, it first checks to see whether the action imple-
ments Validateable. If it does, the workflow interceptor invokes the validate()
method. If our validation code finds that some piece of data isn’t valid, an error message
is created and added to one of the ValidationAware methods that store error messages.
When the validate() method returns, the workflow interceptor still has another task.
It calls ValidationAware’s hasErrors() method to see if there were any problems with
validation. If errors exist, the workflow interceptor intervenes by stopping further exe-
cution of the action by returning the input result, which returns the user back to the
form that was submitted.

 With that quick recap out of the way, let’s see how the validation framework works.
INTRODUCING THE VALIDATION FRAMEWORK WORKFLOW

As you’ll see, the validation framework actually shares quite a bit of the same function-
ality we’ve previously outlined for basic validation; it uses the ValidationAware inter-
face to store errors and the workflow interceptor to route back to the input page if

259Getting familiar with the validation framework
necessary. In fact, the only thing that changes is the validation itself. But this is a signif-
icant change.

 We start by noting that both the basic validation examples and the validation frame-
work examples all work in the context of the defaultStack of interceptors that come
with Struts 2. The workflow, as dictated by this stack of interceptors, remains constant
regardless of which type of validation you choose to use. In particular, note the following
sequence of interceptors from the defaultStack, as defined in struts-default.xml:

<interceptor-ref name="params"/>
<interceptor-ref name="conversionError"/>
<interceptor-ref name="validation"/>
<interceptor-ref name="workflow"/>

In this snippet, we’ve excerpted only the portion of the defaultStack that pertains
to our current discussion. As you can see, the params interceptor and the
conversionError interceptor both fire before we get to the validation-related inter-
ceptors. These two interceptors finish up the work of transferring the data from the
request and converting it to the correct Java types of the target properties. If you
recall from our discussion of basic validation in chapter 3, the validation intercep-
tor has nothing to do with that form of validation. Recall that the workflow intercep-
tor invokes the validate() method to conduct basic validation. Now we need to take
note of the validation interceptor because it’s the entry into the validation frame-
work. When this interceptor fires, it conducts all the validation that’s been defined
via the validation metadata we mentioned in the previous section.

 Figure 10.2 illustrates the workflow of the validation framework.
 As we’ve said, all Struts 2 workflow, such as shown in figure 10.2, is ultimately deter-

mined by interceptors. This figure assumes the defaultStack. As you can see, the first
functional unit in the pipeline is the data transfer and type conversion process. This
process, conducted by the params and conversionError interceptors, moves the data
from the request parameters onto the properties exposed on the ValueStack. In this

Figure 10.2 The validation
framework runs after data transfer/
type conversion and before the
workflow interceptor.

260 CHAPTER 10 Exploring the validation framework
case, we’re moving the string value 2.0 onto the type-double property weight. In fig-
ure 10.2, this conversion is successful. If it weren’t, note that an error would be added
to the ValidationAware methods exposed on our action.

 After type conversion, we proceed to the validation phase. In the figure, we’re talk-
ing about the validation framework. The validation interceptor, which follows the
conversionError interceptor in the defaultStack, provides the entry point into this
validation process. Looking at figure 10.2 shows that the weight property, which was
just populated by the params interceptor, is validated against a double validator that’s
been configured to verify that the double value falls in the range of 1.2 and 5.0. If
this weren’t true, then an error would be added to the ValidationAware methods.
Note that both conversion errors and validation errors are collected by Validation-
Aware. In our case, 2.0 passes this validation and no errors are added. Whether errors
are added or not, we still proceed to the next interceptor, the workflow interceptor.

 We’ve discussed the workflow interceptor several times in this book. We know that
it has two phases. The first phase is to invoke the validate() method, if exposed by
the current action. This is the entry point into basic validation. Let’s assume, since
we’re using the validation framework, that we didn’t implement this method. Fine. We
quickly proceed to phase two of the workflow interceptor: checking for errors. At this
point, the workflow interceptor checks the ValidationAware method hasErrors(). If
there are none, it passes control on to the rest of the action invocation process. If
errors are found, workflow is diverted and we return to the input page and present
the user with error messages so she can correct the form data.

 Before wrapping this overview up, we should make one fine but important point
about the relationship between the basic validation methods and the validation frame-
work. You can use them both at the same time. As you’ve seen, due to the clean lines
of Struts 2, everything except the actual validation logic itself is shared between the
two methods. When you use the defaultStack, both the validation and workflow
interceptors fire every time. Ultimately, this means that you could use both forms of
validation at the same time, if you like. First, the validation interceptor runs all vali-
dations that you define with the validation framework metadata. Then, when
the workflow interceptor runs, it still checks to see if your action implements the
validate() method. Even if you’ve already run some validators via the validation
interceptor, you can still provide some additional validation code in a validate()
method. When the second phase of the workflow interceptor checks for errors, it
doesn’t care or know who created them. The effect is the same.

 But why use both validation mechanisms at once? One reason is common. Perhaps
the strongest point of the validation framework is that the validation code is contained
in reusable validators. As long as your validation needs are satisfied by the built-in vali-
dators, why write code to do that stuff? Just wire the validators to your properties and
let them go.

 Eventually, you’ll have some validation logic that isn’t handled by the built-in vali-
dators. At that point, you’ll have two choices. If your validation logic is something that
you can foresee reusing in the future, it probably makes sense to implement a custom

261Wiring your actions for validation
validator. However, if your validation logic truly appears to be a quirky requirement
that will most likely only be applied in this one case, it makes more sense to put it in
the validate() method. In a one-off case like this, it’s much more efficient to take the
quick and local fix.

 That’s about it. Now that you understand the architecture of the validation frame-
work and how it fits into the interceptor-controlled Struts 2 workflow, we’re ready to
get back to our Struts 2 Portfolio sample application and convert it to use the valida-
tion framework.

10.2 Wiring your actions for validation
Staying true to our in Action name, we’ll dive right in with a live example. To demon-
strate the details of using the validation framework, we’ll migrate our existing Struts 2
Portfolio application from the basic validation it currently uses. We’ll migrate the
entire thing in the sample code, which you can peruse at your convenience, but here
we’ll focus on the Register action as our case study.

 The Register action, if you’ve forgotten, registers a new user of the Struts 2 Port-
folio. As such, this action receives data from a registration form that collects a few
pieces of information such as username and password. If you consult the older ver-
sions of this action, such as the chapter 8 version shown in listing 10.1, you can see
how we’d previously implemented our validation in the validate() method.

public class Register extends ActionSupport implements SessionAware {

 public String execute(){

 //Make user and persist it.

 return SUCCESS;
 }

 private String username;
 private String password;
 private String portfolioName;
 private boolean receiveJunkMail;

 // Getters and setters omitted

 public void validate(){

 PortfolioService ps = getPortfolioService();

 if (getPassword().length() == 0){
 addFieldError("password", getText("password.required"));
 }
 if (getUsername().length() == 0){
 addFieldError("username", getText("username.required"));
 }

 . . .

 }
}

Listing 10.1 An earlier version of the Register action that uses basic validation

B

C

D

E

262 CHAPTER 10 Exploring the validation framework
First, we note that the basic validation relies upon the ValidationAware implementa-
tion provided by ActionSupport B. We aren’t required to extend ActionSupport,
but, if we didn’t, we’d need to implement ValidationAware ourselves to provide a
place to store errors. Usually, we just extend ActionSupport to use the built-in imple-
mentation it provides. We do this regardless of which validation method we use. The
execute() method of the Register action just creates the user object with the submit-
ted data and persists that object C; we don’t need to rehash that at this point, but you
can look at the source code of the sample application if you like. Our main interest, at
this time, is the use of the validate() method E to programmatically validate the
data contained in the JavaBeans properties D this action exposes to hold the request
data. Glancing at this code, you’ll see that it programmatically tests the values in the
JavaBeans properties. If it finds some validation problems, it programmatically sets a
field error using the ValidationAware method implemented by ActionSupport.

10.2.1 Declaring your validation metadata
with ActionClass-validations.xml

Now let’s rewrite the Register action to use the validation framework instead of the
validate() method. As we saw in the overview sections of this chapter, the default-
Stack has everything in place to handle both kinds of validation. To make the switch,
we just need to change the way the validation logic is invoked. We replace the pro-
grammatic validations of the validate() method with some metadata that creates
associations between our data properties and the validators that contain the desired
logic. For now, we do this with an XML file. Listing 10.2 shows the complete listing of
our Register action’s validation metadata file, Register-validation.xml.

<!DOCTYPE validators PUBLIC "-//OpenSymphony Group//XWork Validator 1.0.2//
 EN" "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <field name="password">
 <field-validator type="requiredstring">
 <message>You must enter a value for password.</message>
 </field-validator>
 </field>
 <field name="username">
 <field-validator type="stringlength">
 <param name="maxLength">8</param>
 <param name="minLength">5</param>
 <message>While ${username} is a nice name, a valid username must
 be between ${minLength} and ${maxLength} characters long.
 </message>
 </field-validator>
 </field>
 <field name="portfolioName">
 <field-validator type="requiredstring">
 <message key="portfolioName.required"/>
 </field-validator>
 </field>

Listing 10.2 Declares the validators that validate each exposed property

B
C

F

E

D

263Wiring your actions for validation
 <field name="email">
 <field-validator type="requiredstring">
 <message>You must enter a value for email.</message>
 </field-validator>
 <field-validator type="email">
 <message key="email.invalid"/>
 </field-validator>
 </field>
 <validator type="expression">
 <param name="expression">username != password</param>
 <message>Username and password can't be the same.</message>
 </validator>
</validators>

Listing 10.2 shows the Register-validation.xml file from our chapter 10 version of the
Struts 2 Portfolio. The name of this file is derived from the name of the class that
implements the action for which the validation rules apply. In this case, we’re validat-
ing our Register action. The naming convention of the XML validation metadata
file is ActionClass-validations.xml. This file is then placed in the package directory
structure next to the action class itself. If you look back to figure 10.1, which shows
the architecture of the validation framework, this XML file is the metadata compo-
nent. This metadata associates sets of validators with each of the pieces of data you’d
like to validate.

 At the top of our Register-validations.xml file, we have a doctype element B that
you must include in all of your validation xml files. Next, we have a validators ele-
ment C that contains all of the declarations of individual validators that should be
run when this action is invoked. There are two types of validators you can declare:
field and nonfield.
FIELD VALIDATORS

Field validators are validators that operate on an individual field. By field we mean the
same thing as when we say data property. The validators use the word field in the sense
that they’re coming from fields on the HTML form that submitted the request. This
makes sense because, until the validator approves, the data hasn’t been formally
accepted into the Java side of things.

 The first field declared in listing 10.2 is the password field D. Once we declare a
field element for our data, we just need to put field-validator elements inside
that field element to declare which validators should validate this piece of data.
In the case of the password, we declare only one validator, the requiredstring valida-
tor E. This validator verifies that the string has been submitted and isn’t an empty
string. If the password string doesn’t pass this verification, then a message is displayed
to the user when the workflow interceptor sends him back to the input form. The
message element F contains the text of this message. To see how this works, go to the
chapter 10 version of the sample application, navigate to the user homepage, and reg-
ister for an account. If you omit the password, you’ll receive this message.

 A field element isn’t limited to declaring just one the validator. It can declare as
many as it likes. As an example, our email field G in listing 10.2 declares both the
requiredstring validator and the email validator.

G

H

264 CHAPTER 10 Exploring the validation framework
NONFIELD VALIDATORS

You can also declare validators that don’t apply logic targeted at a specific field. These
validators apply to the whole action and often contain checks that involve more than
one of the field values. The built-in validators only offer one instance of a nonfield val-
idator: the expression validator. This useful validator allows you to embed an OGNL
expression that contains the logic of the validation you wish to perform. As you’ve
seen earlier, OGNL provides a rich expression language. You can easily write sophisti-
cated validation logic into the expression validator.

 Listing 10.2 declares a single nonfield validator H. This validator uses OGNL to
compare two of the other fields. It’s important to understand that this OGNL, like all
OGNL, resolves against the ValueStack. Since we’re in the middle of processing our
action, that action and the properties it exposes are on the ValueStack. Thus, we can
easily write a concise OGNL expression that says that the username and the password
shouldn’t be equal. If they’re not equal, then our expression returns true and valida-
tion passes. If they’re the same, validation will fail and the user will be returned to the
input page, where he’ll see the message specified in this validator’s message element.
MESSAGE ELEMENT OPTIONS

The message element is used to specify the message that the user should see in the
event of a validation error. In the simplest form, as seen in listing 10.2, we simply
embed the message text itself in the message element F. However, several more
options present themselves. First, we can use OGNL to make the message dynamic. An
example of this can be seen in Register-validation.xml’s declaration of the username
field. The following snippet shows the code:

 <field name="username">
 <field-validator type="stringlength">
 <param name="maxLength">8</param>
 <param name="minLength">5</param>
 <message>While ${username} is a nice name, a valid username
 must be between ${minLength} and ${maxLength}
 characters long.
 </message>
 </field-validator>
 </field>

First of all, those param elements are as simple as they seem. Many of the validators,
such as the stringlength, take parameters that configure their behavior. In this case,
the maxLength and minLength parameters specify the length requirements that are
imposed on the username string when this stringlength validator runs. When we list
all the built-in validators shortly, we’ll show all the parameters that each supports.

 In the message element in the snippet, we see three embedded OGNL expressions.
These resolve at runtime against the ValueStack. In this case, the username is pulled
from the stack to customize the message that the user sees when he returns to the
input page. Next, we pull the minLength and maxLength values themselves from the
ValueStack. As it turns out, the Validator itself has been placed on the ValueStack,
thus its properties are also exposed. So, you can access pretty much any data you’d

265Wiring your actions for validation
want to inject into a message. Before we move on, we should point out that the OGNL
in these XML files uses the $ rather than the % sign that’s normally used in OGNL.

 The next thing you can do with message elements is externalize the message
itself in a resource bundle. By default, Struts 2 works with properties file–backed
resource bundles. As you might recall from chapter 3, ActionSupport implements
the TextProvider interface to provide access to localized messages. As you can see if
you refer back to listing 10.1, the basic validation in the validate() method calls
the TextProvider’s getText() method to retrieve localized messages. This method
takes a key and retrieves a locale-sensitive message from the properties file resources.
The validation framework provides even easier access to our localized messages. The
following snippet from Register-validation.xml shows how this works:

<field name="portfolioName">
 <field-validator type="requiredstring">
 <message key="portfolioName.required"/>
 </field-validator>
</field>

 The message element in this snippet doesn’t have a text body. Rather, it sets the
key attribute to a value to be used to look up the message via the TextProvider imple-
mentation provided by ActionSupport. In other words, this key is used to find a locale-
sensitive message in your properties files. The contents of the Register.properties
file follow:

user.exists=This user ${username} already exists.
portfolioName.required=You must enter a name for your initial portfolio.
email.invalid=Your email address was not a valid email address.

If the previous requiredstring validator finds that the portfolioName doesn’t hold a
value, then it pulls the error message from this properties file when it adds the error.
Of course, since the ResourceBundle is locale-sensitive, the message might come from
Register_es.properties if that locale is specified in the information submitted by the
browser and returned by the LocaleProvider interface, which ActionSupport also
implements. Change the locale in your browser and run through the registration pro-
cess a few times to see this in action. If you need a refresher course on that process,
please refer back to chapter 3.

 Now that we’ve seen how validators are declared, we’ll take the time to cover all the
validators that come bundled with the validation framework.

10.2.2 Surveying the built-in validators

We’ve referred to the built-in validators more than once. The framework comes with a
rich set of validators to handle most validation needs. They mostly perform such
straightforward tasks that little has to be said about them. You’ve seen some of them
already in the previous section, when we migrated the Register action from basic val-
idation to the validation framework. In this section, we give a full summary of the
built-in validators. Table 10.1 lists them all.

266 CHAPTER 10 Exploring the validation framework
As you can see, the table provides a brief description of the functionality of each vali-
dator, a summary of the parameters supported by the validator, and the type: field or
nonfield. The functionality of most of these is simple. We’ve already shown how to use
parameters and OGNL in the messages. The only validator that requires further discus-
sion is the visitor, which allows you to define validation metadata for each domain

Table 10.1 Built-in validators that come with Struts 2

Validator name Params Function Type

required None Verifies that value is non-null. field

requiredstring trim (default = true, trims
white space)

Verifies that value is non-null, and not
an empty string.

field

stringlength trim (default=true, trims
prior to length check),
minLength, maxLength

Verifies that the string length falls
within the specified parameters. No
checks are made for unspecified
length params—if you give no mini-
mum, then an empty string would
pass validation.

field

int Min, max Verifies that the integer value falls
between the specified minimum and
maximum.

field

double minInclusive,
maxInclusive,
minExclusive,
maxExclusive

Verifies that the double value falls
between the inclusively or exclusively
specified parameters.

field

date Min, max Verifies that the date value falls
between the specified minimum and
maximum. Date should be specified
as MM/DD/YYYY.

field

email None Verifies email address format. field

url None Verifies URL format. field

fieldexpression expression (required) Evaluates an OGNL expression
against current ValueStack.
Expression must return either true
or false to determine whether vali-
dation is successful.

field

expression expression (required) Same as fieldexpression, but
used at action level.

action

visitor Context, appendPrefix Defers validation of a domain object
property, such as User, to validation
declarations made local to that
domain object.

field

regex expression (required),
caseSensitive, trim

Verifies that a String conforms to
the given regular expression.

field

267Writing a custom validator
model class, such as our Struts 2 Portfolio User object. We’ll show how to do this in
the Advanced Topics section at the end of this chapter.

 The only other thing you need to know about the built-in validators is the location
of their declarations. The validation framework is actually a part of a low-level frame-
work, upon which Struts 2 has been built, called Xwork. You don’t need to know
much about Xwork to use Struts 2, but if you like you can visit the project home page
at http://www.opensymphony.com/xwork. The only reason we mention it now is
to show you where the validators of the validation framework are defined. If you look
in the XWork JAR file, something like xwork-2.0.4.jar, you can find an XML file
that declares all these built-in validators, located at /com/opensymphony/xwork2/
validator/validators/default.xml. When we build a custom validator in the next section,
we see how to properly add new validators to this declaration.

10.3 Writing a custom validator
Writing your own custom validator is little different than writing any of the other custom
Struts 2 components. We’ve already seen how to write custom interceptors, results, and
type converters. In this section, we follow a familiar path of extending a convenience
class, declaring our new component with XML, then wiring it in to a working code exam-
ple. For our example, we write a custom validator that checks for a certain level of pass-
word integrity. After we implement it, we add it to the Struts 2 Portfolio Register action
to make sure that people are using strong passwords for their accounts.

10.3.1 A custom validator to check password strength

As with other custom components, a custom validator must implement a certain inter-
face. In this case, all validators are obligated to implement the Validator or Field-
Validator interface. The two interfaces, found in the com.opensymphony.xwork2.
validator package, represent the two types of Validators as described earlier, field
and nonfield. As you might expect, the framework also provides some convenience
classes to make the task of writing custom validators all the more agreeable. Typically,
you’ll extend either ValidatorSupport or FieldValidatorSupport, both from the
com.opensymphony.xwork2.validator.validators package.

 In our case, we extend the FieldValidatorSupport class because our validator, like
most, operates on a given field. We design our password validator to make three checks:

1 The password must contain a letter, uppercase or lower.
2 The password must contain a digit, 0–9.
3 The password must contain at least one of a set of “special characters.”

The special characters have a default value but can be configured with a parameter,
similar to the stringlength parameters that we used earlier. Note that we won’t ask
our password validator to check for password length, because that would be duplicat-
ing functionality already provided by the stringlength validator. If we want to also
enforce a length requirement on the password, we can use both validators.

http://www.opensymphony.com/xwork

268 CHAPTER 10 Exploring the validation framework
 Without further delay, listing 10.3 shows the full code of our manning.utils.
PasswordIntegrityValidator.

public class PasswordIntegrityValidator extends FieldValidatorSupport {

 static Pattern digitPattern = Pattern.compile("[0-9]");
 static Pattern letterPattern = Pattern.compile("[a-zA-Z]");
 static Pattern specialCharsDefaultPattern = Pattern.compile("!@#$");

 public void validate(Object object) throws ValidationException {

 String fieldName = getFieldName();
 String fieldValue = (String) getFieldValue(fieldName, object);

 fieldValue = fieldValue.trim();
 Matcher digitMatcher = digitPattern.matcher(fieldValue);
 Matcher letterMatcher = letterPattern.matcher(fieldValue);
 Matcher specialCharacterMatcher;

 if (getSpecialCharacters() != null){
 Pattern specialPattern =
 Pattern.compile("[" + getSpecialCharacters() + "]");
 specialCharacterMatcher = specialPattern.matcher(fieldValue);
 } else{
 specialCharacterMatcher =
 specialCharsDefaultPattern.matcher(fieldValue);
 }

 if (!digitMatcher.find()) {
 addFieldError(fieldName, object);
 }else if (!letterMatcher.find()) {
 addFieldError(fieldName, object);
 }else if (!specialCharacterMatcher.find()) {
 addFieldError(fieldName, object);
 }
 }

 private String specialCharacters;

 //Getter and setter omitted

}

The first thing we need to do is extend the convenience class FieldValidator-
Support B. Most custom validators do this. If we were writing a nonfield validator,
such as one that performed a validation check involving more than one field, we’d
extend ValidatorSupport. Extending these convenience classes provides implemen-
tations of several helper methods that we use in this example. As a developer, you’re
left to focus on the details of your own logic. This logic is placed in the validate()
method D, the entry method defined by the Validator interface and left unimple-
mented by the abstract support classes that you extend. Another preliminary
duty of the developer is creating JavaBeans properties H to match all parameters
that should be exposed to the user. In this case, we want to allow the user to set the

Listing 10.3 Verifying that a password contains the required characters

B

C

D

E

F

G

H

269Writing a custom validator
list of specialCharacters; a valid password must have at least one of these charac-
ters. The following snippet shows how a parameter is passed in from the XML file to
this property:

 <field-validator type="passwordintegrity">
 <param name="specialCharacters">$!@#?</param>
 <message>Your password must contain one letter, one number, and one
 of the following "${specialCharacters}".
 </message>
 </field-validator>

Now, let’s look at how this validator works. It’s mostly a matter of Java regular expres-
sions and string handling, but we want to make sure you see where the code is
calling on the helper methods provided by the convenience classes. Most of these
helper methods are actually defined in ValidatorSupport, which is extended by
FieldValidatorSupport. First, note that we define some regular expression pat-
terns as static members of our class C. There’s even a default set of special charac-
ters defined here in case the user doesn’t specify a set herself.

 Next we retrieve the value of the field via a couple of calls to our helper methods E.
Note that the validate() method receives the object that’s being validated. Since we’ve
defined our validations at the action level, via Register-validation.xml, the object passed
into the validate() method is our action. Later we’ll learn how to have validation run
on a domain object itself. In the case of field validators, we usually want to get our hands
on the actual field value as soon as possible.

 Obtaining the password value is a two-step process. First, we call the getField-
Name() method, then the getFieldValue() method. Again, these helper methods are
defined by the support classes.

 With the password in hand, we quickly move on to build our Matchers F and then
search the password for the required characters. If a password doesn’t have a required
character, we generate an error and add it to the set of stored errors G, again with
helper methods inherited from the support classes. That’s it. If errors are stored, the
workflow interceptor will find them and divert the user back to the input page with
the appropriate error messages.

 Next, we wire this validator into our Struts 2 Portfolio application to help our users
start making better passwords.

10.3.2 Using our custom validator

First things first. As we mentioned at the start of this chapter, all validators must first be
declared so that they can be referenced when we write our validation metadata that
maps fields to validators. As we said, the built-in validators are already declared in the
XWork JAR file at /com/opensymphony/xwork2/validator/validators/default.xml. We
declare our own custom validators in an application-local validators.xml file, which we
put at the root of our classpath—directly under our src folder, which will be moved to
WEB-INF/classes/ during the build. Listing 10.4 shows the complete source of this
important file.

270 CHAPTER 10 Exploring the validation framework
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator Config 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-config-1.0.dtd">

<validators>
 <validator name="passwordintegrity"
 class="manning.utils.PasswordIntegrityValidator"/>
</validators>

The brief validators.xml file, shown in listing 10.4, simply declares our Password-
IntegrityValidator as an available validator that can be referenced under the logi-
cal name passwordintegrity. To declare your own custom validators, simply copy this
page and insert your own validator declarations. With this in place, we can use our
new validator just as easily as the built-in validators.

 As promised, we’ll now use the password integrity validator to ensure that our
aspiring artists create good passwords. I don’t want to point any fingers, but I suspect
this group of users sports an alarmingly poor average strength of password. To do this,
we just need to add this validator to the validators mapped to the password field in
our Register-validation.xml file. Listing 10.5 shows the new password field element
from that file.

<field name="password">
 <field-validator type="stringlength">
 <param name="maxLength">10</param>
 <param name="minLength">6</param>
 <message>Your password should be 6-10 characters.</message>
 </field-validator>
 <field-validator type="passwordintegrity">
 <param name="specialCharacters">$!@#?</param>
 <message>Your password must contain one letter, one number, and one
 of the following "${specialCharacters}".
 </message>
 </field-validator>
</field>

This field element maps two validators to our password field. The first one is the
stringlength validator, which we’ve already seen in action. Next, we map the pass-
wordintegrity validator to the password field. This works just like using the built-in val-
idators; we simply use a field-validator element to declare the type B, using our
logical name as specified in the validators.xml file. Next, we pass in the special-
Characters parameter C to indicate the set of required characters, one of which all
good passwords must include. Remember, this is received by the JavaBeans property, of
matching name, that we exposed on the PasswordIntegrityValidator. Finally,
we specify the message that the user will see if his password doesn’t pass the integrity
check D. This message pulls the special characters off of the validator, which sits on the
ValueStack at runtime, to inform the user exactly what characters are needed.

Listing 10.4 Using validators.xml to declare our custom validator

Listing 10.5 The password element that uses our PasswordIntegrityValidator

B
C

D

271Validation framework advanced topics
 We already have this implemented in our chapter 10 version of the Struts 2 Port-
folio, so feel free to check out this action by playing around with the Create an
Account page found on the User Home Page section of the application.

 We’ve now covered the fundamentals of using the validation framework. We hope
you’re convinced that it’s a powerful, yet user-friendly way of validating your data. The
final section of this chapter addresses some advanced topics and nuances.

10.4 Validation framework advanced topics
In this section, we address some advanced topics of using the validation framework.
Some of these advanced topics merely explore the nuances of the validation mecha-
nism, but others demonstrate adapting the validation framework to some of the more
specialized development patterns of Struts 2, such as ModelDriven actions and alias-
mapped actions. (Using alias mappings to wire action mappings to alternative methods
exposed on the action implementation class is demonstrated in full in chapter 15.)
The validation topics covered in this section include inheritance of validators, map-
ping validation to domain model objects instead of actions, and short-circuiting out of
validation when one validator fails.

10.4.1 Validating at the domain object level

In our earlier demonstrations of the validation framework, we defined our valida-
tion metadata in an XML file on a per-action basis. This is a convenient method for
wiring into the validation framework. On the other hand, if you’re exposing domain
objects directly to the Struts 2 data transfer, then you might find it more convenient
to declare your validation metadata on a per-domain object basis. We’ll do just this
when we continue our migration of the Struts 2 Portfolio application to the valida-
tion framework.

 The UpdateAccount action allows a user to modify her account information. The
form that submits to this action contains exactly the same set of data as the registra-
tion form with which we’ve been working. For the registration action, we received our
data on a JavaBeans properties–exposed action, and we defined the validation meta-
data in an action-local XML file that mapped validators to each field of the incoming
form. This time, we define our metadata in an XML file local to our domain object,
manning.utils.User. The corresponding change in the UpdateAccount action itself,
as opposed to the Register action we just worked with, is that the entire User object is
exposed directly on a JavaBeans property. If you need to know more about exposing
domain objects, refer back to chapter 3.

 The first thing we need to do is define our metadata. Listing 10.6 shows the full
source of our User-validation.xml.

<!DOCTYPE validators PUBLIC "-//OpenSymphony Group//XWork Validator 1.0.2//
EN" "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">

<validators>

Listing 10.6 Declaring the validators that validate each property of the user object

272 CHAPTER 10 Exploring the validation framework
 <field name="password">
 <field-validator type="stringlength">
 <param name="maxLength">10</param>
 <param name="minLength">6</param>
 <message>Your password should be 6-10 characters.</message>
 </field-validator>
 <field-validator type="passwordintegrity">
 <param name="specialCharacters">$!@#?</param>
 <message>Your password must contain one letter, one number, and
 one of the following "${specialCharacters}".
 </message>
 </field-validator>
 </field>
 <field name="username">
 <field-validator type="stringlength">
 <param name="maxLength">8</param>
 <param name="minLength">5</param>
 <message>While ${username} is a nice name, a valid username must
 be between ${minLength} and ${maxLength} characters long.
 </message>
 </field-validator>
 </field>
 <field name="portfolioName">
 <field-validator type="requiredstring">
 <message key="portfolioName.required"/>
 </field-validator>
 </field>
 <field name="email">
 <field-validator type="requiredstring">
 <message>You must enter a value for email.</message>
 </field-validator>
 <field-validator type="email">
 <message key="email.invalid"/>
 </field-validator>
 </field>
 <validator type="expression">
 <param name="expression">username != password</param>
 <message>Username and password can't be the same.</message>
 </validator>
</validators>

As you can see, this file is exactly the same as the XML file we used to define our valida-
tors for the Register action. This is because we’re validating the same User data. The
only difference is that, in the case of the Register action, the data was being exposed
directly on the action itself as individual properties. Now we expose our entire User
object on an action-local property. We can now raise the validation metadata to the
level of the User class itself, which allows us to reuse it across all actions that work with
User. Once we’ve created our User-validation.xml file, we place it next to the User class
itself at /manning/utils/.

 With our User validations in place, we now need to make a connection between the
action that uses a User and these validations. This is done by the visitor validator. But
this validator doesn’t go in the User-validation.xml file. It goes in an action-local validation

273Validation framework advanced topics
file. The following snippet shows the brief contents of the UpdateAccount-validation.
xml file:

<!DOCTYPE validators PUBLIC "-//OpenSymphony Group//XWork Validator 1.0.2//
 EN" "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <field name="user">
 <field-validator type="visitor">
 <message>User: </message>
 </field-validator>
 </field>
</validators>

While much shorter, the UpdateAccount-validation.xml file still serves the same pur-
pose as all ClassName-validation.xml files. But where those files usually define many
fine-grained mappings of validators to fields, this one simply uses the visitor valida-
tor to make a wholesale deferral of validation details to the validation metadata made
on the class of the specified field name. In this case, we’ve specified the user field. We
know that our UpdateAccount action’s user property is of type manning.utils.User.
The visitor validator uses this information to locate User-validation.xml and uses the
validation logic described in that file to validate all the properties on the user. At this
point, it all works exactly the same as our earlier examples. The only item worth not-
ing is the body of the message element. The content of the message body is used as a
prefix that’s attached to the error messages generated by the validations defined at
the User level. Again, if you want to see this in action, check out the update account
page on the chapter 10 version of the Struts 2 Portfolio.
USING THE VALIDATION FRAMEWORK WITH MODELDRIVEN ACTIONS

You can also use the preceding technique when your actions implement the Model-
Driven interface. As we learned in chapter 3, ModelDriven actions expose domain
objects via a getModel() method rather than exposing them directly on a JavaBeans
property. The ModelDriven magic is such that you can now access the properties
of your domain model object with top-level OGNL syntax. Instead of having fields such
as user.username and user.password, we would now have, simply, username and
password. Since this is almost exactly like the previous visitor example, we’ll gallop
through at a quick pace.

 First of all, everything is the same unless we note a difference. For instance, the
User-validation.xml file doesn’t change. The main changes are to the actions and to
the JSP pages. In the actions, we must implement the ModelDriven interface. If we
were working with the update account page, we’d need to convert two actions,
UpdateAccountForm and UpdateAccount. The first action prepopulates the form and
the second one processes the update. Changing these to ModelDriven amounts to lit-
tle more than adding the ModelDriven interface and implementing its one method,
getModel(). If you need to see how to do this, check chapter 3 for the details.

 The next step is to change your JSP page form elements to contain the simpler
OGNL references. The following snippet shows what the UpdateAccountForm.jsp
page would look like:

274 CHAPTER 10 Exploring the validation framework
<s:form action="UpdateAccount">
 <s:label key="username" />
 <s:hidden name="username" />
 <s:password name="password" label="Password" showPassword="true"/>
 <s:textfield name="portfolioName" label="Initial Portfolio"/>
 <s:textfield name="email" label="Email Address"/>
 <s:checkbox name="receiveJunkMail" label="Do you want to receive junk
 mail?" />
 <s:submit/>
</s:form>

This differs only slightly from the current page. Here we’ve omitted the user level of
the OGNL and are left with top-level references such as username and password. Based
on this change of reference namespace, we now need to make a single, slight change
to the visitor validator mapping in UpdateAccount-validation.xml. Here’s the new
content of that file:

<validators>
 <field name="model">
 <field-validator type="visitor">
 <param name="appendPrefix">false</param>
 <message>User: </message>
 </field-validator>
 </field>
</validators>

Two changes have been made. First of all, since our ModelDriven domain object is
exposed with the getModel() getter method, we now need to change the field name
to model. Second, we need to use the appendPrefix parameter to tell the visitor val-
idator that we no longer need the user prepended to the field names. Setting this
parameter to false allows the validator to find the top-level field names. That’s it.
Combining the validation framework with ModelDriven actions is approaching a
pretty efficient level of development.

 In the next section, we investigate another high-level development technique and
explore how it fits in with the validation framework.

10.4.2 Using validation context to refine your validations

We’ve already seen how to define your validation metadata on a per-action and per-
domain class level. As it turns out, you might find you need a more fine-grained level
of control over what validations run when. In order to control this, the validation
framework introduces the notion of context. Context is pretty straightforward. Valida-
tion context provides a simple means of identifying the specific location in the appli-
cation that’s using the data that we want to validate.

 The first use case for validation context arises when you use the framework’s ability
to define more than one entry point method for action execution. Thus far, we’ve stuck
to the default execute() method as our single point of entry into an action. In chapter
15, we’ll show you how to use multiple entry point methods on a single action class.
These multiple entry point methods can then be mapped to multiple Struts 2 actions

275Validation framework advanced topics
that have different names, or aliases. Note the difference between a Struts 2 action com-
ponent, one of the action mappings from your declarative architecture, and an action
class, the Java class that can be used to back a Struts 2 action component.

 Imagine we have a Java action class that provides a sorting capability. Now, suppose
that we want to have several sort algorithms exposed by this action class. We could have
put each one in its own class, but it makes sense to gather them together into a single
class, both from a logical and design point of view. So, we have something like manning.
sort.SortAction and it exposes two entry point methods named bubbleSort() and
heapSort(). And let’s assume we don’t even use the execute() method, since Struts 2
doesn’t require us to.

 Here’s a snippet of XML that declares two Struts 2 action components that both
use this one action class:

<action name="BubbleSort" class="manning.sort.SortAction"
 method="bubbleSort">
 <result>/sort/SortResults.jsp</result>
</action>
<action name="HeapSort" class="manning.sort.SortAction" method="heapSort">
 <result>/sort/SortResults.jsp</result>
</action>

Now let’s assume that we have our validations defined in a single file for the Sort-
Action named, appropriately, SortAction-validation.xml. This is what we did earlier
in this chapter. This works great, but what happens if we decide that one of the sort
entry points, or contexts, requires a different set of validations? Obviously, we need a
finer granularity for our validation definitions. The notion of validation context
solves this problem ASAP. If we need a different set of validations for each entry
point method, we just replace the single SortAction-validation.xml with two new files,
SortAction-BubbleSort-validation.xml and SortAction-HeapSort-validation.xml. Just
to be clear, the naming convention is ActionClassName-aliasName-validation.xml.
When one of the aliases from the preceding snippet is invoked, the validation frame-
work automatically picks up the corresponding alias-named validation file. Note that
if you still have a general SortAction-validation.xml defined, the validations defined
in it will also be loaded. The aliased validations do not prevent the general ones from
being used. This allows you to define common validations separate from the ones
specific to the various contexts. Now, let’s look at another use case where validation
context can be helpful.
USING VALIDATION CONTEXT WITH THE VISITOR VALIDATOR AND DOMAIN OBJECTS

Earlier in this chapter, we learned how to use the visitor validator to point to valida-
tions declared at the level of the domain object itself. Validation context can be used
in these situations as well. There are a couple of ways you can use validation context
with the visitor validator. The first method follows the alias patterns described in
our earlier SortAction example. In the SortAction example, we defined our valida-
tions at the action class level. Now imagine that we’ve defined the validations at the
domain object level instead. If our domain object is the User, we end up with valida-
tions in a file next to the User class with a name of User-validation.xml.

276 CHAPTER 10 Exploring the validation framework
 Again, assume we need to have different validation rules for the User class depend-
ing upon the context in which it’s being used. One option follows the previous pat-
tern to define separate files for the different contexts that arise from different action
aliases. The solution here is to create, again, a file for each alias such as ClassName-
aliasName-validation.xml. If our User was being used from the two contexts of the
SortAction defined previously, we could break the validations into the two files User-
BubbleSort-validation.xml and User-HeapSort-validation.xml. Again, the validation
framework is aware of the alias/context under which the action is being invoked and
automatically use the correct validations.

 The final variation on context usage aims to check the proliferation of validation def-
initions in the face of numerous alias-based contexts. A domain object such as User will
most likely be used from dozens of locations throughout the application. If we define
our validations at the User level, and we require context-based variations in those vali-
dations, then we could easily end up with a mess of User-thisAlias-validation.xml and
User-thatAlias-validation.xml. To solve this problem, the visitor validator provides the
context attribute to allow the developer to introduce a user-defined context. Let’s say
that the User object is used from 15 different action aliases. If we can identify special
validation needs shared by 7 of these and another set of needs shared by the other 8,
then we really only have 2 contexts, not 15. But obviously we can use the alias names of
these 15 with the alias-naming scheme for our XML.

 The solution is to invent two logical names for the two sets of validation needs.
Let’s say the two needs can be described as admin and public. With this determina-
tion made, we simply divide our validations into two files named for these contexts,
User-admin-validation.xml and User-public-validation.xml. Since these context names
don’t match the alias names of our various action mappings, we need to somehow link
the various action mappings to these contextual validations. To do this, we use the
context attribute of the visitor validator. Recall that this validator is placed in the
action-local validations file. Let’s say we have an action, UpdateUserAction, that allows
us to update the user, and that it exposes two aliased entry points, one for users to
update themselves—UpdateUser—and one for administrators to update user data—
UpdateUserAdmin. The second one obviously requires that the User be validated
under the admin context. Here’s how it works.

 We’ve already defined our two contextual validations files at the User level. Now we
just need to configure the visitor validator for the alias. The validations file for the
UpdateUserAdmin alias would be UpdateUserAction-UpdateUserAdmin-validation.xml
and it would contain the following visitor definition:

<field name="user">
 <field-validator type="visitor">
 <param name="context">admin</param>
 <message>User: </message>
 </field-validator>
</field>

277Validation framework advanced topics
This visitor now seeks out the admin validations defined at the domain object level in
the file User-admin-validation.xml. Again, note that any validations defined generally
for the User in User-validation.xml will also be used with the contextual validations.

10.4.3 Validation inheritance

Now that we’ve seen that validations can be declared at various levels and under vari-
ous contexts, we need to briefly describe inheritance of validation declarations. This is
simple, and we’ve already mentioned it indirectly. Recall that we said that general vali-
dations still run when contextual validations are also defined. This is part of the inher-
itance chain, but it’s actually more complex. The following list shows the locations
from which validations are collected when the framework begins its processing:

■ SuperClass-validation.xml
■ SuperClass-aliasName-validation.xml
■ Interface-validation.xml
■ Interface-aliasName-validation.xml
■ ActionClass-validation.xml
■ ActionClass-aliasName-validation.xml

When defining your validations, you should take advantage of this structure to define
common validations at higher levels in the search list, thus allowing you to reuse
definitions.

 In the next section, we see how to forgo unnecessary validations by short-circuiting
when one validation fails.

10.4.4 Short-circuiting validations

A useful feature of the validation framework is the ability to short-circuit further vali-
dation when a given validation fails. Let’s say you have a series of validations defined
for a given field. Take our password field for example. Listing 10.7 shows the declara-
tion of our password field validators from User-validation.xml.

 <field name="password">
 <field-validator type="stringlength" short-circuit="true">
 <param name="maxLength">10</param>
 <param name="minLength">6</param>
 <message>Your password should be 6-10 characters.</message>
 </field-validator>
 <field-validator type="passwordintegrity">
 <param name="specialCharacters">$!@#?</param>
 <message>Your password must contain one letter, one number, and
 one of the following "${specialCharacters}".
 </message>
 </field-validator>
 </field>

Listing 10.7 Using the short-circuit attribute to cancel unnecessary validations

278 CHAPTER 10 Exploring the validation framework
The only thing we’ve added here is the short-circuit attribute, which we’ve set to
true. We’ve done this because we don’t want the passwordintegrity check to run if
the stringlength check fails. There’s no point in wasting processing resources and
there’s no point in adding another error message to the user interface. Note that
since this short-circuit is defined on a field validator, the rest of the validations for
that field are short-circuited. If you define a short circuit at the action level, all valida-
tions are short-circuited.

 With this, you’ve seen all the features offered by the validation framework. Before
closing the chapter, we’ll take the next section to tell you how you could set up your
validations with annotations rather than XML-based metadata. All of the same features
are available; it’s just a different interface to the metadata.

10.4.5 Using annotations to declare your validations

At all levels of Struts 2, you generally have a choice between using XML or Java annota-
tions for your various configuration and metadata needs. The validation framework is
no different. In this section, we show you how to use annotations to declare your vali-
dations. Warning: this section makes no attempt at thoroughness. The idea here is to
merely show you how it’s done, roughly, and refer you to the proper resources if you
feel like you want to use annotations.

 First of all, the validation framework is the validation framework no matter how you
declare your metadata. With that in mind, we just write a version of the Register action
that uses annotations to declare its validations. Our new version of the Register
action is manning.chapterTen.RegisterValidationAnnotated. Listing 10.8 shows
the source.

@Validation

public class RegisterValidationAnnotated extends ActionSupport
 implements SessionAware {
 @ExpressionValidator(expression = "username != password",
 message = "Username and password can't be the same.")
 public String execute(){

 User user = new User();
 user.setPassword(getPassword());
 Portfolio newPort = new Portfolio();
 newPort.setName(getPortfolioName());
 user.getPortfolios().put (newPort.getName(), newPort);
 user.setUsername(getUsername());
 user.setReceiveJunkMail(isReceiveJunkMail());
 user.setEmail(getEmail());

 getPortfolioService().createAccount(user);
 session.put(Struts2PortfolioConstants.USER, user);

 return SUCCESS;
 }

Listing 10.8 Using annotations to describe the required metadata

B

C

279Validation framework advanced topics
 private String username;
 private String password;
 private String portfolioName;
 private boolean receiveJunkMail;
 private String email;

 @RequiredStringValidator(type = ValidatorType.FIELD,
 message="Email is required.")
 @EmailValidator(type = ValidatorType.FIELD, key="email.invalid",
 message="Email no good.")
 public void setEmail(String email) {
 this.email = email;
 }
 public String getEmail() {
 return email;
 }

 @RequiredStringValidator(type = ValidatorType.FIELD,
 message = "Portfolio name is required.")
 public String getPortfolioName() {
 return portfolioName;
 }
 public void setPortfolioName(String portfolioName) {
 this.portfolioName = portfolioName;
 }

 @StringLengthFieldValidator(type = ValidatorType.FIELD, minLength="5" ,
 maxLength = "8", message = "Password must be between
 ${minLength} and ${maxLength} characters.")
 @RequiredStringValidator(type = ValidatorType.FIELD,
 message = "Password is required.")
 public String getPassword() {
 return password;
 }
 public void setPassword(String password) {
 this.password = password;
 }

 @RequiredStringValidator(type = ValidatorType.FIELD,
 message = "Username is required.")
 @StringLengthFieldValidator(type = ValidatorType.FIELD, minLength="5" ,
 maxLength = "8", message = "Username must be between
 ${minLength} and ${maxLength} characters.")
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;
 }

}

These annotations work with the same built-in validators that we’ve been working with
throughout this chapter. We still map field validators to JavaBeans properties and map
nonfield validators to the action as a whole. Let’s see how it works. First, we must
include a class-level annotation B to mark the entire class as something that should be

D
E

280 CHAPTER 10 Exploring the validation framework
scanned by the validation framework. Next, we define a nonfield annotation, the same
expression validator C that checks to make sure that the username and password
aren’t identical.

 Next, we define all of our field validators. These must come right before the get-
ter and setter of the corresponding property. We can see many of these throughout
this class. For instance, we associate both the requiredstring and email validators
with the email property by placing annotations just before the getter and setter for
the email property D. Note that the annotations set the same parameters that we set
in our XML-based validation metadata.

 One slight difference is in the way the message is handled. The message attribute is
a required attribute of the annotations. If you want to use a message from your prop-
erties file resource bundle, you don’t write the key in as the message value. Rather, you
add the key attribute to the annotation, as we’ve done for the email field’s email vali-
dator E. Contrary to what you might expect, you still have to put a message value in
the message attribute. It’s considered the default message, in case the key lookup fails.
While it may never reach the light of day, it’s required.

 If you want to see this annotated version in action, simply switch it out for the reg-
ular one in the chapterTen.xml file. Here’s what the Register action element from
that file would look like if you use the annotated version:

 <action name="Register"
 class="manning.chapterTen.RegisterValidationAnnotated">
 <result>/chapterTen/RegistrationSuccess.jsp</result>
 <result name="input">/chapterTen/Registration.jsp</result>
 </action>

As we’ve mentioned in respect to some of the other Struts 2 annotations, the annota-
tions mechanisms are being improved daily. They’re all part of a movement toward a
zero-configuration development pattern that seeks to eliminate all of the XML arti-
facts. If you’re keen on annotations, it would pay to keep an eye on the Struts 2 web-
site and mailing lists. Completing the annotations is one of the priority milestones of
the Struts 2 project. You may be able to say goodbye to those XML files sooner than
you think.

10.5 Summary
We’ve now covered the validation framework in substantial detail. Before we move on,
we should recap what we’ve learned in this chapter. First of all, the validation frame-
work extends the work of the previous chapter to show yet another way to refine your
Struts 2 development practices. With the validation framework, we can add a
more sophisticated level of validation to our applications. While earlier chapters
introduced a strong form of basic validation that uses the Validateable interface and
its validate() method, the validation framework provides many enterprise-strength
benefits not found with the validate() method strategy.

 The most obvious benefit of using the validation framework arises from the reus-
able nature of the Validator component. This component contains the logic for a

281Summary
given validation type and makes that validation available to any data that wants to be
verified against that logic. We saw that Struts 2 comes with a set of 13 built-in validators
that developers can immediately take advantage of to start validating their own data.
Associating these with your data, both at the action level and the domain object level,
can be done quickly with convenient XML or annotations-based metadata.

 We also learned how to write custom validators that allow developers to add their
own validation logic to the framework, thus allowing them to reuse their own efforts as
easily as they use the built-in components. We hope that you’ll be able to create many
powerful validators, and we hope that you’ll contribute them back to the Struts 2 com-
munity. But you don’t have to, of course ;)

 In the next chapter, we’ll cover another topic of application refinement, interna-
tionalization.

Understanding
internationalization
In the previous chapter, we learned how to refine our Struts 2 applications by
upgrading their validation to the validation framework. Now we’ll learn how to
refine our application even further. Internationalization represents, in some
aspects, the finest finishing touches that you can put on a web application. Many
people like to separate the topic of this chapter into two concepts, internationaliza-
tion and localization. Many people also like to shorten these cumbersome words to
the numeronyms i18n and l10n.

 While the semantic differences between i18n and l10n can be meaningfully
expounded upon, we find the practical aspects of developing multilingual web
applications don’t call for all the verbiage. Rather than spend too much time trying
to pin down exactly where i18n ends and l10n begins, we’re going to gloss over the

This chapter covers
■ Internationalizing your applications
■ Reading messages from properties files
■ Localizing your messages
■ Setting and overriding the locale
282

283The Struts 2 framework and Java i18n
semantics and skip straight to the practical aspects of making an application speak dif-
ferent languages for different users in an elegant fashion. Throughout the remainder
of this chapter, we’ll refer to the entire undifferentiated mass of this process as i18n.

In practice, it’s an easy process. First, you need to find someone on the team who can
identify all of the culturally sensitive elements of your web application user interface,
and then translate each of those items into all of your target languages and cultures.
All right, that’s not a simple task. Is that a job for the JavaScript guy, or maybe the
DBA? Probably neither. Actually, there’s nothing simple about this first phase at all.
But, thankfully, it’s not the phase that we Java developers are employed to solve.

 The part that does fall to the developer, the technical aspects of introducing
locale sensitivity to your application’s user interface, is in fact straightforward in
Struts 2. This chapter covers the technical details of preparing your application to
“speak” different languages, not to mention different date and currency formats.
Since the Struts 2 i18n support is a relatively thin wrapper over the native Java sup-
port, it’s important to understand the Java basics. Toward this end, we’ll start by
giving a short primer on the Java platform’s native support for i18n. We’ll then
move quickly on to show you how Struts 2 provides a higher-level wrapper over these
native Java resources, and, as always, we’ll provide implementation examples with the
Struts 2 Portfolio sample application.

11.1 The Struts 2 framework and Java i18n
The Java platform has long provided built-in support for i18n. Most experienced Java
developers are familiar with the process of externalizing messages to a properties file

Nomenclature
Internationalization and localization: The literature makes a point of differentiating be-
tween these two terms, though the distinguishing marks between the two seem to
waver a bit depending on the writer. In the interest of clarity, we provide two quick
definitions that clearly overdramatize the distinction between the two. i18n is the pro-
cess of designing an application so that it has the functionality to change to a differ-
ent language without resorting to programmatic change of the application; developers
need not be involved, technically speaking. l10n is the process of creating the actual
language-specific texts and formatting; it’s the nonprogrammatic adaptation of the
application to another language. Sometimes people expect you to know the differ-
ence; other times these terms seem to be used completely interchangeably, and, in
the end, we think it doesn’t matter. In other words, we’re recommending that you
don’t spend too much time limning the border between i18n and l10n. We’ll show
you what you really need to know.

ICYDK (in case you didn’t know): i18n is an abbreviation, of sorts, of international-
ization. The i is the first letter, the n is the last letter, and the 18 means that there
are 18 letters between the first and last letters of this unwieldy word. l10n is simi-
larly derived from localization.

284 CHAPTER 11 Understanding internationalization
and retrieving those messages from a ResourceBundle via keys. Even if you’re not
familiar with this stuff, we’ll provide a crash course to get you up to speed. The bottom
line is that Struts 2 provides a higher-level, ultra-convenient wrapper around the
native Java support for i18n. While Struts 2 won’t make you handle the native Java
platform classes yourself, you need to be familiar with the underlying mechanics. In
this section, we provide a brief course in the general Java concepts and then explain
how Struts 2 makes it all easier.

11.1.1 Retrieving localized text with ResourceBundle and Locale

The Java support for i18n centers around two classes from the java.util package,
ResourceBundle and Locale. In this section, we explain the roles these two classes
play in i18n. The first step in i18n-ing an application is identifying all locale-sensitive
text on the application’s pages. If you look at an unlocalized application, like our cur-
rent Struts 2 Portfolio, you’ll find these message texts hard-coded in our JSP pages. If
we’re to achieve any level of i18n, we have to move these texts out of the JSP page and
into some sort of Java ResourceBundle. We’ll be doing this in a few moments.

 But the ResourceBundle isn’t just a container for our texts. The ResourceBundle is
a locale-sensitive object. Let’s clarify this concept briefly. The resources that are most
commonly found in these bundles are message texts. If your internationalized home-
page has a greeting, you’d need to have a version of that greeting for each locale you
want your application to support. If your application supports Turkish and English
users, then your ResourceBundle needs to contain the English and Turkish equiva-
lents of this greeting, “Hello” and “Merhaba.” If these two greetings are contained by a
locale-sensitive resource bundle, then that bundle will be aware of which locale is in
play and will return the appropriate version of the “greeting” text when asked for it.

 In theory, that’s all there is to it. Let’s look quickly at the Java classes and how they
work together to bring this theory to life.
STORING RESOURCES IN A RESOURCEBUNDLE

Java’s ResourceBundle is an abstract class. It’s up to subclasses to provide an imple-
mentation that can manage the resources contained in the bundle, such as the greet-
ing text we mentioned earlier. Subclasses of ResourceBundle can manage their
resources in any way they like. Greetings could be stored in the database and retrieved
with database code contained in the subclass. The Java platform provides a couple of
convenient subclasses for your use. The most commonly used of these is the
PropertyResourceBundle, which loads its resources from plaintext properties files.
This properties file style of bundles is so ubiquitous that we’ll use it throughout this
chapter in all our examples. Along the way, we’ll say a word or two about using alterna-
tive bundles, but we leave it to you to read the Java documentation if you find yourself
going in that direction.

 Let’s quickly cover some Java ResourceBundle fundamentals, using properties
files ResourceBundles, of course. We’ll walk through a brief example to show how
these native Java classes, ResourceBundle and Locale, work together to provide i18n.

285The Struts 2 framework and Java i18n
Our example assumes that we’re working on some sort of email client application.
Let’s create a properties file resource bundle for our email client. All bundles must
have a name so that we can identify the one from which we’d like to retrieve mes-
sages. Figure 11.1 shows a ResourceBundle with the name EmailClientMessages,
which is backed by a pair of properties files.

 Since we’re using properties files to store our resources, we don’t have to write any
Java code to implement our bundle. The bundle uses the built-in PropertyResource-
Bundle. We just provide a set of properties files that follow a specific naming conven-
tion, as follows:

BundleName_languageCode.properties

You can observe this pattern in action in the names of the two properties files shown in
figure 11.1. The bundle name shared by the properties files is EmailClientMessages.
Thus, we refer to the entire bundle as the EmailClientMessages bundle. There’s one
file for each language-specific version of the text resources. If we wanted to support
more locales, we could add dozens more properties files with different locale exten-
sions. Regardless of the number of supported locales, all of the properties files that share
the same root bundle name belong to a single bundle.

 With our properties files in place, we’re ready to work with our bundle. Let’s see
how we can create the bundle and then retrieve locale-sensitive messages for our ficti-
tious email client software.
WORKING WITH NATIVE JAVA RESOURCEBUNDLES

If we want to retrieve a localized text, we must first obtain a reference to the bundle
that contains that text. After we have a reference to the bundle, we can start to pull
texts from it by key. The following code snippet demonstrates how this works:

Locale currentLocale = new Locale("tr");
ResourceBundle myMessages = ResourceBundle.getBundle("EmailClientMessages",
 currentLocale);
String greetingLabel = myMessages.getString("greeting");

As we’ve said, ResourceBundles are locale-sensitive, so the first thing we need to do is
create a java.util.Locale object that represents the locale for which we want to
retrieve texts. Based on the two properties files that are backing this bundle, we know
that both English and Turkish are supported. We need to use a Locale object to inform

Figure 11.1 The
EmailClientMessages
ResourceBundle is backed
by two properties files, one
English and one Turkish.

B

C
D

286 CHAPTER 11 Understanding internationalization
the ResourceBundle about which version of the resources to return. So we program-
matically create a Locale to represent the Turkish language B. Note that we pass in the
Turkish language code string, which matches precisely our properties file naming
extension. We then pass this Locale object, along with the name of the bundle we want,
to the static ResourceBundle.getBundle(). This method returns an instantiated
EmailClientMessages ResourceBundle C from which we can start to pull message
texts by their key value. The greetingLabel retrieved with the getString() method D
would contain the string “Merhaba” since that’s the correct message for the Turkish lan-
guage locale.

 How does the getBundle() method know that it should use our properties files to
create a bundle? Good question. The answer is simple. This method has a two-phase
search process. First, it searches for properties files that match the bundle name
parameter that it receives. After that, it also searches for Java class implementations of
the bundle. These would be implemented in Java classes named similarly to the prop-
erties files, such as EmailClientMessages_tr.java. Since we haven’t provided a class-
based ResourceBundle, none is found. Instead, our properties files are found and a
ResourceBundle is made from them.

 In summary, we can describe the native Java support for i18n as containing the fol-
lowing steps:

1 Create the ResourceBundles, most commonly by providing a set of properties
files following the naming convention of the bundle and containing the local-
ized message values for each of the message keys in the bundle.

2 Programmatically create a Locale object to match the locale for which you want
to retrieve message texts.

3 Programmatically instantiate a ResourceBundle with the static ResourceBundle.
getBundle (bundleName, currentLocale).

4 Retrieve locale-sensitive resources, such as message texts, with that bundle’s
getString(key) method.

As you can see, the native Java stuff is simple, but tedious. Every time you want to
retrieve a message, you need to create the bundle by hand. Another particularly
unwieldy aspect of the native Java stuff is the way we have view-layer code—code that’s
knowledgeable about the text of the UI—embedded in the Java layer. As you’ve seen,
Struts 2 developers aren’t accustomed to such things as the vulgar handling of UI
labels in direct Java code.

 With the foundation poured, let’s see how Struts 2 builds on these native Java
classes. In the next section, we give an overview of how Struts 2 adds a higher-level
interface to these i18n services.

11.1.2 How Struts 2 can ease the pain of i18n

Struts 2 takes a lot of the effort out of i18n. The framework still uses the Java classes we
just saw, but it makes things easier. For one thing, you don’t have to instantiate your
ResourceBundles. Struts 2 automatically creates the ResourceBundles for you, handling

287A Struts 2 i18n demo
the whole mess of determining which bundle you need. Additionally, the framework
also handles determining the correct locale. The framework automatically determines
the Locale by examining the HTTP headers from the browser. If you like, you can also
override this behavior and use other means to determine the locale, such as letting the
user manually select a locale through a user-interface–based choice.

 If the framework is going to automatically create the bundles, you obviously need
to know where to put your properties files and how to name them. As with most auto-
mated features, the Struts 2 bundle-creation process uses a mixture of convention and
configuration to locate your properties files. It’s a two-way street. Struts 2 tells you
where it’ll look for properties files, but you can also tell Struts 2 where to look for
properties files. Of course, you can also do both of these at the same time. We’ll learn
all the details and variations in the coming pages of this chapter; section 11.3.1
describes in detail all of the places that Struts 2 will look for properties files.

 In addition to handling the creation of the ResourceBundles, the framework also
handles retrieving the messages from the bundles. You don’t have to do this program-
matically. The framework provides several high-level mechanisms for retrieving the
messages from the bundles for you. Among the options are Struts 2 tags made espe-
cially to retrieve messages from the bundles, OGNL access (did you guess that the bun-
dles would be on the ValueStack?), as well as via the framework’s validation
framework and type-conversion facilities.

 In short, using i18n with Struts 2 comes down to two things. First, you learn where
to put your properties files. Second, you learn how to pull text from the bundles the
framework creates from your properties files. In the next section, we run through a
demonstration of this easy process.

11.2 A Struts 2 i18n demo
Internationalization lends itself particularly well to the tutorial style of explanation.
With that in mind, we’re going to cut directly to the heart with a quick example of
how Struts 2 does things. In section 11.3 we go through all the detailed nooks and
crannies of the framework’s i18n facilities, but we’ll start with a practical demonstra-
tion. For many, the material covered in this demo might even be enough to fulfill the
i18n needs of their own applications.

11.2.1 A quick demo of Struts 2 i18n

We’re going to jump right in and start upgrading our Struts 2 Portfolio sample appli-
cation to support a robust level of i18n. First, we add the properties files. Struts 2 pro-
vides many options for where and how you make your properties files available. One of
the options is to associate the properties file, by name, with the action class. In this
example, we’ll work with the home page of the Struts 2 Portfolio, shown in figure 11.2.

 To add i18n to our home page, we have to provide ResourceBundles that have
localized message texts for all of the text on the page for each locale we want to sup-
port. In our case, we’re going to provide text for two locales, English and Spanish.

288 CHAPTER 11 Understanding internationalization
When Struts 2 creates the ResourceBundles that it makes available to a given request,
one of the first bundles it attempts to instantiate is a bundle with a name that
matches the current action. In the case of our home page, the current action is the
manning.chapterEleven.PortfolioHomePage class. Based on this, we know that one
of the bundles the framework will attempt to create is PortfolioHomePage, located in
the manning.chapterEleven package. We implement this, for reasons already dis-
cussed, as a properties-file–backed bundle. To this end, we create two properties files
with the correct root bundle name and the correct locale endings, one for English
and one for Spanish. Listing 11.1 shows the English-language version of the proper-
ties file.

artistHomePage.greeting=Welcome to the Artist HomePage!
chooseLanguage=Select a different language.
visitor=Visitor
user=User
site.entrance.text=Are you a visitor or user?
visitorHomePage.viewPortfolio=View a portfolio
visitorHomePage.greeting=Welcome to the Visitor HomePage!
artistHomePage.accountManagement=Account Management
artistHomePage.register=Register for an account.
artistHomePage.login=Login to an existing account.
visitorHomePage.submit=View
visitorHomePage.selectPortfolio=Select an artist and a portfolio.

Note that our English-language resources are in the default properties file rather than
in an English-specific file, such as PortfolioHomePage_en.properties. There’s a good
reason for this. We’re assuming that English is the default language for the applica-
tion. If you want to make another language the default language, then it should go
into the default properties file. If a request comes in that specifies an unsupported
locale, then the default locale will be used. If we had put the English language
resources in a PortfolioHomePage_en.properties file and left the default properties
file empty, then requests for unsupported languages would have nothing to fall back
on. Thus, it’s always important to use the default properties file for your default lan-
guage. Listing 11.2 shows the Spanish language version of the properties file.

Listing 11.1 The default resources for the PortfolioHomePage bundle

Figure 11.2 The Struts 2 Portfolio
home page presents a greeting and
a navigational choice.

289A Struts 2 i18n demo
homepage.greeting=Beinvenido a el Struts 2 Portfolio
artistHomePage.greeting=Beinvenido a la página de inicio de artista.
chooseLanguage=Cambiar idioma.
visitor=Visitante
user=Usuario
site.entrance.text=Es usted un visitante o usuario?
visitorHomePage.viewPortfolio=Buscar una cartera
visitorHomePage.greeting=Beinvenido a la Página de inicio de Visitantes
artistHomePage.accountManagement= Administrar el perfil de su cuenta
artistHomePage.register= Regístrarse una cuenta
artistHomePage.login=Acceder a su cuenta.
visitorHomePage.submit=Ver
visitorHomePage.selectPortfolio= Seleccioner una artista y una cartera.

No surprises here. It’s just the same, but with Spanish! Once we’ve created these files,
we just need to put them into the package directory structure next to the action class
itself. With these two files in place, the framework automatically instantiates the
PortfolioHomePage ResourceBundle every time a request comes in for the Portfo-
lioHomePage action. Furthermore, the framework will have automatically determined
the user’s locale based upon information sent from the browser, and created the
ResourceBundle accordingly. Now, let’s see how we can pull messages out of those
bundles. The following snippet from the PortfolioHomePage.jsp page shows the most
common way of retrieving localized text, the Struts 2 text tag:

<h4><s:text name="homepage.greeting"/></h4>
<hr>
<h5><s:text name="site.entrance.text"/></h5>
<h5><a href="<s:url action='VisitorHomePage'/>">
 <s:text name="visitor"/>
 </h5>
<h5><a href="<s:url action='ArtistHomePage'/>"><s:text name="user"/>
</h5>
<hr>

As you can see, the Struts 2 text tag is simple. It’s similar to the Struts 2 property
tag, but it takes a ResourceBundle key instead of an OGNL expression. Let’s analyze
what’s happening in this front-end markup. First of all, this JSP snippet is the same
code that created the screen capture shown in figure 11.2. In the previous versions of
the Struts 2 Portfolio, we’ve simply hard-coded the welcome message directly into the
JSP. Now, we’ve replaced that locale-sensitive message with a Struts 2 text tag that
retrieves a ResourceBundle message based on the key passed in to the name attribute.
If we’re executing in the presence of a Spanish locale, this key resolves to the corre-
sponding message from the PortfolioHomePage_es.properties file. Otherwise, it
resolves to the default English message. And that’s about all there is to it.

 Now, let’s revisit what’s happening in this simple demo from a Struts 2 internals
point of view.

Listing 11.2 The Spanish language resources for the PortfolioHomePage bundle

290 CHAPTER 11 Understanding internationalization
11.2.2 A quick look behind the scenes

In the previous demonstration, we saw how easy it can be to take advantage of the i18n
features of Struts 2 to provide localized message text in your pages. We now take a
look at the framework mechanics that drive this. As you might’ve guessed, it’s going to
involve a couple of interfaces and the ValueStack. First, we introduce the main char-
acter in this mystery, a shady guy known as the TextProvider.

 The com.opensymphony.xwork2.TextProvider interface exposes an overloaded
method getText(). The many versions of this method have at their heart the retrieval
of a message value based on a key. In other words, the TextProvider is the guy who takes
your key and tracks down an associated message text from the ResourceBundles that it
knows about. This guy pretty much handles all of the i18n duties of the framework.
While you can always implement your own TextProvider, a default implementation is
provided by the framework. The helper class ActionSupport, which we’ve been using
throughout the book, provides this default implementation. Thus, as long as you have
your action classes extend ActionSupport, you automatically get the built-in i18n sup-
port we discuss in this chapter.

 As you already know, when the framework begins processing a request, one of the
first things that it does is create the action object and push it onto the ValueStack. If
your action extends ActionSupport, as ours do, you’ve automatically pushed a Text-
Provider onto the ValueStack as well. Very convenient. The default implementation of
the TextProvider loads the ResourceBundles that have names matching the current
action, as well as several others; we’ll explore the full process by which all the resource
bundles are located in the next section. Figure 11.3 shows our TextProvider sitting on
the ValueStack ready to serve messages from our PortfolioHomePage ResourceBundle.

 With our TextProvider on the ValueStack, our ResourceBundle messages are
available to every part of the framework. The Struts 2 text tag, as seen in the following
snippet, looks for a TextProvider on the ValueStack and asks that provider to
retrieve the message based on the key you pro-
vide it:

<s:text name="homepage.greeting"/>

Since the TextProvider is on the ValueStack,
we can also access its getText() method with
OGNL. This allows us to pull ResourceBundle
messages into many places, including other
Struts 2 tags. In order to do this, we take advan-
tage of OGNL’s ability to call methods on objects.
The following use of the Struts 2 property tag is
absolutely equivalent to the previous Struts 2
text tag:

<s:property value="getText('homepage.greeting')"/>

Figure 11.3 Our PortfolioHomePage
action extends ActionSupport and thus
carries a default implementation of the
TextProvider onto the ValueStack.

291Struts 2 i18n: the details
Note that the value attribute of the property tag is a nonstring attribute, thus we
don’t have to force OGNL evaluation with the %{expression} syntax.

 Now, you pretty much know how Struts 2 i18n and l10n work. It’s as easy as 1-2-3.

1 Make your actions extend ActionSupport, so that they inherit the default Text-
Provider implementation.

2 Put some properties files somewhere they can be found by the default Text-
Provider, such as in a properties file with a name mirroring the action.

3 Start pulling messages into your pages with the Struts 2 text tag or by hitting
the getText() method with direct OGNL.

That’s it. But we still have a lot of details to track down. For instance, where else can
we put properties files and expect the framework to find them? And, in what other
ways does the framework provide access to the resources contained in the bundles?
These questions and more are answered in the next section.

11.3 Struts 2 i18n: the details
In the previous section, we ran through a quick demo of how Struts 2 uses Text-
Providers to load ResourceBundles and make their messages available with the help
of the ValueStack. In that quick demo, we went through a use case that featured the
path of least resistance, but, actually, you’ve already seen the real deal. And, as prom-
ised, it wasn’t rocket science. In this section, we sort out the details.

 This section is going to be a hodgepodge. We start by going through the entire pro-
cess by which the default TextProvider locates the bundles that it makes available and
retrieves texts from that set of bundles. After that, we’ll show you the other ways, beyond
the Struts 2 text tag, that you can pull texts from those bundles. Finally, we’ll see how
you can parameterize your texts and leverage the data and currency-formatting power
of the Java MessageFormat class.

 But first things first. Let’s start by exploring all the different places you can put
your properties files.

11.3.1 Struts 2 default TextProvider ResourceBundle location algorithm

This isn’t that complicated, but it’s the kind of thing you need to know if you want to
find the best solution for your own project. Some of it may not seem obvious at first
glance, but we’ll try to provide a clear outline of the process that the framework’s
default TextProvider goes through when locating ResourceBundles. It’s a rich
model. Essentially, Struts 2 leaves the door wide open for you to distribute the local-
ized text of your application in about any way you see fit. We’ve already seen that the
framework looks for bundles that match the name of your current action class. But
this is just the tip of the iceberg.

 In addition to the action-class–named ResourceBundles, the default implementa-
tion of TextProvider searches in several other “well-known” locations for bundles that
might’ve been created by the developer. Many of these locations follow a similar naming

292 CHAPTER 11 Understanding internationalization
pattern based on the names of superclasses and implemented interfaces. The following
sequence shows the name and derivation of the ResourceBundles that Struts 2 attempts
to load:

1 ActionClass—Is there a ResourceBundle with the same name as the current
action class? In other words, is there a set of properties files like Action-
Class.properties, ActionClass_es.properties, and so forth?

2 MyInterface—If your action implements any interfaces, are there Resource-
Bundles associated with those interfaces? In other words, if the current class
implements MyInterface, is there a set of properties files like MyInter-
face.properties, MyInterface_es.properties, and so forth? Superinterfaces of
each interface will also be searched accordingly, with more specific interfaces
taking precedence over superinterfaces.

3 MySuperClass—If your action extends a superclass, is there a ResourceBundle
associated with that superclass? In other words, if the superclass is MySuper-
Class, is there a set of properties files like MySuperClass.properties,
MySuperClass_es.properties, and so forth? Note that the search continues up
the superclass chain all the way to Object, looking for ResourceBundles all the
way. Again, the ResourceBundles of classes lower on the chain take precedence
over the higher ones. In other words, Object.properties comes last, if it exists.

4 If the action implements ModelDriven, the class of the model object itself will
be used to look up ResourceBundles. In other words, if our model object is our
User class, then User.properties, and so on, will be loaded if they exist. Further-
more, the entire process of searching up the interface and class hierarchy, as
outlined, will be repeated in the context of the model object class.

5 package.properties—Next, the search tries to load a package ResourceBundle for
the package of the current action class, and every superpackage back up the
chain. In other words, if our current action is manning.chapterEleven.
PortfolioHomepage, the framework will attempt to find a package.properties
file located in the manning.chapterEleven package, then in the manning pack-
age. Note that these properties files are all named package.properties, and are
located in the directory structure of the package to which they belong.

6 Domain model object exposed on the ValueStack referenced by key—This is similar to #4,
ModelDriven. Given a key such as user.username, if the ValueStack has a prop-
erty exposed on it named user, then the class of that property will be used to
load ResourceBundles, again following the same process we’ve outlined. How-
ever, when resolving the key against those bundles, the first element of the key
is stripped away. In other words, given the key user.username, and a user prop-
erty on the ValueStack (of type User), the ResourceBundles associated with
User, beginning with the User.properties, will be searched for a message with
the key username, not user.username.

7 Default ResourceBundles—Struts 2 allows you to specify global bundles that will
always be available.

293Struts 2 i18n: the details
All bundles that are found are added to the stock of messages that the TextProvider will
make available. The various ResourceBundles that are loaded into the TextProvider
form a lookup hierarchy for resolving message keys. Figure 11.4 demonstrates how the
TextProvider retrieves texts from the bundles that it has found.

 Figure 11.4 shows a scenario in which the default TextProvider has found three
ResourceBundles while searching according to the algorithm given earlier in this sec-
tion. This figure assumes that the current request resolved to the PortfolioHomePage
action. This TextProvider has located properties files for an action-associated bundle,
an interface-associated bundle (our action must have implemented the MyInterface
interface), and, finally, a default global-messages bundle. We’ll show how to tell the
framework about your default bundles in a page or two. These bundles are ordered just
as they are in the bundle search order algorithm. The highest is the bundle associated
directly with the action class, and the lowest is the default bundle. Let’s look at what hap-
pens when the default TextProvider attempts to retrieve texts from this set of bundles.

 Figure 11.4 shows two hypothetical calls to the TextProvider’s getText() method.
Let’s look at what happens when the provider is asked to return a text for the key sub-
mit. The process is simple. The TextProvider starts at the top of the bundle stack and
works its way down. The first bundle, from the top, that can return a value for the key

Figure 11.4 The framework’s default
TextProvider retrieves text by
resolving the key against all of its
bundles in a hierarchical fashion.

294 CHAPTER 11 Understanding internationalization
wins. In the case of the submit key, no bundle except the default bundle has a value,
so the default bundle is the one that returns the value. In the case of the name key, the
bundle associated with the class name has a value. In this case, the interface bundle
also has a value for the key, but that value is masked by a higher bundle.

 One complication to this tidy process is locale specificity. We explore this complex-
ity next.
LOCALE SPECIFICITY AND MESSAGE RETRIEVAL

When working your way through the bundle search and the text retrieval hierarchy,
you might’ve asked yourself how locale influences the retrieval of messages. Of course,
if the current locale matches one of the properties files locale extensions, we expect
that the text comes from that file’s set of values. If that file doesn’t exist, or if the
request key isn’t defined in that file, we must fall through to the next most specific
locale match. A quick example: assume that we’re retrieving a message for the key
homepage.greeting. Also, assume the current locale is American English, en_US.
According to Java’s ResourceBundle specifications, a given bundle, such as Portfolio-
Homepage, should return the most locale-specific message that it can find. Assuming
this bundle is backed by properties files, the key should be first attempted against
PortfolioHomepage_en_US.properties, then against PortfolioHomepage_en.proper-
ties, and finally against PortfolioHomepage.properties.

 This locale specificity hierarchy is always used when Struts 2 attempts to locate your
message text. However, this algorithm is isolated within a given bundle from the bun-
dle hierarchy outlined previously. Consider that a ResourceBundle associated with an
interface takes precedence over a ResourceBundle associated with a superclass. Here’s
a quick scenario explaining how locale specificity factors into this. Assume the locale
of en_US again. Also, assume that our action implements an interface, MyInterface,
and also has a superclass, MySuperClass. Assume too that both the interface and the
superclass have properties files associated with them so the framework will create both
the MyInterface and the MySuperClass bundles. Now let’s see what happens if we try
to resolve the homepage.greeting key.

 As we know, this key will first be tried against the interface bundle, according to
the search order we’ve outlined. Here’s the question regarding locale specificity. What
happens if MyInterface only has a MyInterface.properties file, a default set of
resources, but MySuperClass has a specific MySuperClass_en_US.properties file? You
might think that the more specific locale should win, but it doesn’t. The default mes-
sage is retrieved from the MyInterface.properties file ahead of the more locale-spe-
cific superclass file. This is because locale specificity only matters within the bounds of
a given resource bundle, in this case MyInterface. Being higher in the bundle search
order trumps locale specificity.

 Now let’s look at how to define those default bundles referenced by step 7 of the
bundle search order.
DEFINING DEFAULT BUNDLES

The first six steps of the bundle search order outline convention-based locations where
Struts 2 will search for properties files. In order to have Struts 2 find your properties

295Struts 2 i18n: the details
files, you must put them where it wants them. The framework, however, does provide
you with a way to locate your properties files according to your own whim. This is the
role of default bundles.

 Default bundles are great. If none of the convention-oriented bundles exist, such
as the action class–associated bundle, there’s always the default bundles. These are the
last place where the framework will look when trying to resolve a key. For some
projects, it might suffice to use default bundles exclusively, filling them with all of the
text resources required by your entire application. This is a common practice. Other
applications might want to organize their text resources according to application
region and package space. Within this more hierarchical organization of text
resources, you still might find it useful to define globally useful text in a default bun-
dle. Default bundles can, in fact, be thought of as global bundles.

 Whatever your use case, defining default bundles is as simple as telling the frame-
work the name of your bundles. To do this, you just need to set the value for the
Struts 2 property struts.custom.i18n.resources. You can set this, and all Struts 2
properties, either in the struts.properties file or with a constant element in one of
your XML configuration files, for example struts.xml or one of the files it sources,
such as our chapterEleven.xml. Either way, it doesn’t matter. The following shows the
constant element, which can be placed in struts.xml or any other XML sourced by
that file:

<constant name="struts.custom.i18n.resources" value="global-messages" />

Here’s the same bit of configuration as done in the struts.properties file:

struts.custom.i18n.resources=global-messages

You can specify a comma-separated list of bundles, to be searched in the given order.
You can also specify package space for the location of the bundles. Here’s what this
would look like:

struts.custom.i18n.resources=global-messages,manning.utils.otherBundle

This would look for a properties file otherBundle.properties in the manning.util
directory space. If for some reason you mix configuration patterns, bear in mind that
the struts.properties file trumps the constant element from the XML.

 Now that we’ve shown you a gazillion places to incorporate your properties files,
let’s start exploring all the ways you can retrieve texts from those bundles.

11.3.2 Retrieving message texts from your bundles

There are several ways that the framework can pull messages from your ResourceBun-
dles. We’ve already shown the most common method when we demoed the Struts 2
text tag in section 11.2.2. In fact, we also saw how to invoke the getText() method of
the TextProvider by using OGNL in the attribute values of other tags. In this section,
we cover a couple of other ways that the framework allows you to pull messages out of
your ResourceBundles.

296 CHAPTER 11 Understanding internationalization
 But first we say a word or two about how the framework knows which locale to use
when creating the ResourceBundles.
RETRIEVING THE RIGHT LANGUAGE

Of course, the whole point of i18n and l10n is to make applications that can detect
the user’s locale and automatically use messages in the right language and format.
Luckily, this is all built into the framework. There’s nothing for a developer to do.
Well, we’ll give you some work along those lines later in the chapter when we show
how to allow the user to interactively choose a locale in section 11.4. But out of the
box, the framework comes with a decent mechanism for autodetecting the locale and
choosing messages accordingly. Here’s how it works.

 When a browser submits a request, it sends along some information in HTTP headers
that indicates the default locale settings from the user end. Typically, a user can set his
locale preference by configuring his browser settings. The framework takes this and
makes it the locale under which the request will be served. For instance, if the user sets
his browser to specify the es_SP locale—Spanish language and Spain as the country—
the default implementation of TextProvider attempts to locate the appropriate version
of the ResourceBundles for which it searches. The first choice would be a bundle such
as MyResources_es_SP.properties. The second choice would be a bundle such as
MyResources_es.properties. And the default choice, if nothing more specific can be
located, would be MyResources.properties. This is the reason to always provide your
default language in the default bundle. For us, this means putting our English language
resources in MyResources.properties rather than MyResources_en.properties.
There must be a default bundle to fall back on if the requested locale isn’t supported.

 Once we’re confident that the right locale is set, we can start to pull text from our
bundles. In addition to the text tag and the getText() method, the framework pro-
vides several other convenient means of pulling localized text from our bundles.
USING THE KEY ATTRIBUTE OF UI COMPONENT TAGS

One of the most elegant ways to use the localized message texts from your Resource-
Bundles is with the key attribute found on all of the UI component tags. Listing 11.3
shows the form from the manning/chapterEleven/UpdateAccountForm.jsp page,
which has been modified to use the powerful key attribute.

<s:form action="UpdateAccount">
 <s:label key="user.username" />
 <s:hidden name="user.username" />
 <s:hidden name="id" />
 <s:textfield key="user.firstName"/>
 <s:textfield key="user.lastName" />
 <s:password key="user.password" showPassword="true"/>
 <s:textfield key="user.email" />
 <s:checkbox key="user.receiveJunkMail" />
 <s:submit key="submit"/>
</s:form>

Listing 11.3 The key attribute can use your bundles to make your markup simple.

B

297Struts 2 i18n: the details
These tags have a single attribute. Our previous versions specified a name attribute as
well as a label attribute. Now we can create a textfield for the user’s first name with
the specification of a single attribute B. As we’ll explain shortly, the key attribute can
be used to completely configure the UI component, from binding it to ValueStack
properties for data transfer purposes to pulling a localized text from a ResourceBun-
dle to create a locale-sensitive label for the UI. We’ll explain all this in a moment, but
first let’s consider where the bundles are coming from for this particular example.

 This JSP is the result of the UpdateAccountForm action. This action has an associ-
ated UpdateAccountForm ResourceBundle, backed by a pair of properties files,
UpdateAccountForm.properties and UpdateAccountForm_es.properties. These files
are right next to the Java class in the directory structure. They contain the keys refer-
enced by the tags in listing 11.3. Listing 11.4 shows the full contents of Update-
Account.properties.

user.username=Username
user.password=Password
user.firstName=First Name
user.lastName=Last Name
user.email=Email
user.receiveJunkMail=Send Junk Mail
account.update.greeting=Edit your account information

As you can see, each of the keys named in the tags of listing 11.3 is contained in this
file. When this page renders, the key is used to retrieve a localized message text from
the ResourceBundle. This localized text is used for the form field’s label. Next, if
your tag doesn’t specify a name attribute, the key itself is used as a name attribute. If you
recall from chapter 7, the name attribute is what binds the form field to a property on
your action or domain model to enable such things as automatic data transfer. If you
check out the source for our UpdateAccountForm action class, you’ll see that it
exposes a user JavaBeans property to match these keys.

 As an additional bonus, this key propagates from the name attribute to the value
attribute of the UI component tag to bind the property for form prepopulation. If you
need a refresher on all of that, revisit chapter 7. Even if you need a refresher on the
details, it’s easy to see how simple your JSP markup can become by using Resource-
Bundles and the key attribute. Also note that you don’t have to let the key attribute
propagate onto your name and value attributes. If you need, you can specify the key
attribute and the name attribute both explicitly. The key is used to do the label, and
the name value is used for binding the component to the data transfer, and so on.

 In addition to pulling localized messages into UI components with the key
attribute, you can also use your localized messages in your validation work.
LOCALIZING YOUR VALIDATION ERROR MESSAGES

In chapter 10, we learned how to employ the validation framework to validate our
incoming data against validation rules defined in XML- or annotation-based metadata.

Listing 11.4 A ResourceBundle for the UpdateAccountForm action

298 CHAPTER 11 Understanding internationalization
When a validation fails, an error message is automatically provided when the user is
taken back to the input form. As we saw in chapter 10, this message can be hard-coded
into the metadata or it can be referenced with a key attribute. The following snippet,
which defines the email field validators for the manning.chapterEleven.Register
action, shows both styles:

<field name="email">
 <field-validator type="requiredstring">
 <message>You must enter a value for email.</message>
 </field-validator>
 <field-validator type="email">
 <message key="email.invalid"/>
 </field-validator>
</field>

As you can see, you can specify a hard-coded message in the body of the message ele-
ment B, or you can use the key attribute of the message element to specify a key C
that’s used to look up a localized message in your bundles. In this case, the Struts 2
Portfolio has messages for this key stored in the Register bundle, backed by Regis-
ter.properties and Register_es.properties. Note that you can also specify a key and a
hard-coded message. If you do, the hard-coded message will be the default in case the
key lookup fails.

 In addition to validation error messages, you can also pull type conversion error
messages from your localized bundles.
LOCALIZING YOUR TYPE CONVERSION ERROR MESSAGES

In chapter 5, we learned all about the automatic type conversion mechanism
employed by the framework to convert your incoming request parameters from
String values to the native Java types of their target properties. Sometimes this
doesn’t work out and we must kick the user back to the input page and give him an
error message letting him know about the problem with his data. By default the user
sees a generic message as shown in figure 11.5.

 The problem with the data in this screen shot is that the property on the back end
expects a valid double from the Age field. It looks like our man Lando has been the vic-

B

C

Figure 11.5 By default,
the type conversion
mechanisms of the
framework display a
generic message
complaining about
bad data.

299Struts 2 i18n: the details
tim of a typo. He’s entered the letter o instead of a zero. You can easily add custom and
localized messages via the ResourceBundle system. To add a custom type conversion
error message for this Age field, you just need to add a property to one of your accessi-
ble bundles following the naming convention of invalid.fieldvalue.fieldname.
The following property defines an error message for the Age field:

invalid.fieldvalue.age=Please enter a numerical value for your age.

Just add this to a bundle accessible to the Register action, such as the Register.prop-
erties file, and you’re good to go. Another thing you might want to do is to change
and/or localize the default type conversion message. You can do this by adding the
following property to our default global-messages bundle.

xwork.default.invalid.fieldvalue=We can not convert that to a Java type.

While this message isn’t that user-friendly, it does demonstrate how to change the
default type conversion error message. Note that if we also put a Spanish language ver-
sion in our global-messages_es.properties file, we’ve also localized our type conversion
error. The framework’s default message isn’t localized.

 During all of our examples thus far, we’ve assumed that the messages were being
retrieved from the ResourceBundles loaded by the framework’s default TextProvider
implementation—via the bundle location algorithm of section 11.3.1. In the next sec-
tion, we see how to specify the bundle manually.

11.3.3 Using the i18n tag to specify a bundle

While it’s nice to let the framework handle the details of bundle location, sometimes
you just want to slap a given ResourceBundle in place and pull your messages. This
functionality is provided by the Struts 2 i18n tag. This tag takes the specified Resource-
Bundle, creates it, wraps it in a TextProvider, and puts it on the ValueStack. During
the body of the tag, all attempts to retrieve messages resolve against the specified bun-
dle. The following snippet shows the usage:

<s:i18n name="manning.chapterEleven.SpecialMessages">
 <s:text name="greeting"/>
</s:i18n>

Provided that a SpecialMessages bundle exists, such as in the form of a SpecialMes-
sages.properties file or two in the manning/chapterEleven package directory, this code
will use the greeting key to look up a message in that bundle. The SpecialMessages
bundle will only be on the ValueStack for the body of this tag. Note that all forms of
message access we’ve discussed in this chapter will work in this context as long as they
occur within the body of the i18n tag.

 We’ve now covered all of the ways to make bundles available and to pull messages
from them. Next, we look at how you can parameterize your message texts.

11.3.4 Parameterizing your localized texts

Sometimes you want to pull dynamic runtime values into the texts of your Resource-
Bundles. There are two ways to add dynamic values into your message texts. The first

300 CHAPTER 11 Understanding internationalization
method uses embedded OGNL expressions to pull values from the ValueStack or
ActionContext. The second method uses the native Java mechanisms for adding
parameters to resource bundle message texts. We start by looking at the use of embed-
ded OGNL.
PARAMETERIZING YOUR MESSAGE TEXTS WITH OGNL EXPRESSIONS

By now you should be familiar with the use of OGNL to pull values from the Value-
Stack or ActionContext. This technique is the backbone of the Struts 2 tags. The use
of OGNL in the context of ResourceBundles is no different. Consider the following
property defined in the global-messages.properties file, which we’ve defined as the
default bundle for our Struts 2 Portfolio sample application:

portfolio.view.greeting=Welcome to the ${portfolio.name} Portfolio

This text is the greeting the users see when viewing a given portfolio. Since we want to
blend the name of the actual portfolio being shown, we need to blend in some run-
time values. We can do this by pointing the current portfolio’s name with a bit of
OGNL. As you can see in the preceding snippet, the text contains an OGNL expression
escaped with the ${expression} sequence. As with the OGNL embedded into the vali-
dation framework XML files, this embedded OGNL varies from the typical % syntax and
uses the $ syntax. Keep an eye on this quirk.

 Despite the syntactical variance, the OGNL works the same as usual. When this mes-
sage is resolved at runtime, the OGNL will be replaced with the appropriate value from
the ValueStack. In this case, we can see that the property on the ValueStack will most
likely hold the name of the portfolio, thus customizing this portfolio page greeting. If
you want to see this in action, check out the ViewPortfolio action, which exposes the
portfolio property, and check out the ViewPortfolio.jsp page that pulls this message
from the ResourceBundles with a Struts 2 text tag.
PARAMETERIZING YOUR MESSAGE TEXTS WITH NATIVE JAVA CAPABILITIES

Java also provides a means for parameterizing message texts as they’re pulled from
ResourceBundles. Here’s a message from the global-messages.properties file that uses
this style of parameterization:

portfolio.view.tagline=Created by {0} {1}

The Java version of parameters uses placeholders. You can have up to 10 of these place-
holders in a given message. When the text is retrieved, you must pass in the appropriate
parameters. Doing this from the Struts 2 text tag makes use of the Struts 2 param tag.
The following demonstration is from our ViewPortfolio.jsp page:

<s:text name="portfolio.view.tagline">
 <s:param value="portfolio.owner.firstName"/>
 <s:param value="portfolio.owner.lastName"/>
</s:text>

The parameters are inserted into the placeholders according to the sequence in
which they’re defined inside the body of the text tag. The value attributes are OGNL

301Struts 2 i18n: the details
expressions pointing to values on the ValueStack, exposed by our ViewPortfolio
action in this case. You could also specify literal values in the body of the param tag:

<s:param>Lando</s:param>

That wouldn’t be all that dynamic, but this isn’t intended as a use case; it’s just a hint
at what you can do. Instead of putting the simple string inside the body of the param
tag, you could actually nest all sorts of tags and JSP fragments. This could be used to
solve large issues of dynamic and localized pages.

 Before wrapping up our coverage of parameterizing messages, we should show
you how to use them from the other most common means of message retrieval, the
getText() method exposed by TextProvider. If you’re retrieving your parameterized
messages with the getText() method, perhaps from the attribute of another Struts 2
tag as we described earlier, you can easily pass in the required parameters. As we
mentioned before, the TextProvider getText() method is overloaded. Note the fol-
lowing two signatures:

String getText(String key, List args);
String getText(String key, String[] args);

The values in the List or in the String [] are used to fill the parameters in the
returned message text.

 Another critical aspect of localization in which Java provides some strong native
support is formatting dates and numbers. We show you how to leverage that from your
Struts 2 application next.

11.3.5 Formatting dates and numbers

Just as Java provides a native means for parameterizing messages, it also provides a
native means for formatting dates and numbers in a locale-sensitive fashion. Using
this support, we can easily pull in runtime values for dates and other numerical values,
and these values will automatically be formatted according to the current locale. Con-
sider the following message from our global-messages.properties file:

timestamp=Today is {0,date,long}

We use this to put a nice timestamp message on our pages. Basically, this is another
version of the placeholder parameter we saw in the previous section. The difference
here is that the parameter that comes into the placeholder is going to be a date. We
specify the parameter index as 0, the type as date, and the format as long. The magic
is that Java automatically handles the localization formatting of this date, whatever the
current locale. The following snippet from our ViewPortfolio.jsp page shows how to
use this:

<s:text name="timestamp">
 <s:param value="currentDate"/>
</s:text>

The date we’re passing into the message comes from the property on the ValueStack
at which our value attribute’s OGNL points. In this case, we’ve implemented a simple

302 CHAPTER 11 Understanding internationalization
getter on our ViewPortfolio action to feed this value. The getter simply creates a
java.util.Date object and returns it. All of this is live in the sample application if you
want to check it out.

 Java also makes it easy to format currency and other numbers. Java’s built-in sup-
port for currency works much like the date. A message text in a ResourceBundle
might look something like this:

item.price={0,number,currency}

Again, you just need to pump in a numerical parameter when you retrieve this text.
We could go on about this but it’s a bit beyond our scope. If you need to exploit the
fuller powers of date and number formatting, consult the documentation for the Java
platform. The central figure in the native Java support for this stuff is the
java.text.MessageFormat class.

 We’ve now covered the basics of building ResourceBundles and retrieving texts
from them. This should get you pretty far. Before calling it quits, we’ll show how to
override the framework’s default locale detection by letting the user set the locale
interactively, or by setting it programmatically in the back-end code.

11.4 Overriding the framework’s
default locale determination
As we’ve already seen, the framework automatically determines the user’s locale when
starting to process a request. This determination is made from the HTTP headers in
the request. Typically, this works well as a determination of which locale the user
wishes to use to view the pages. But sometimes you might want to override this default
locale determination. For instance, you might want to let the user make an active
locale choice from a UI component such as a select list. Or you might want to allow
registered users to store their locale preferences as part of their account information.
You could then set the locale for that user at login by pulling the value from the data-
base. However you want to set the locale, the techniques described in this section will
help you do it.

 First, let’s see how we can modify the Struts 2 Portfolio to allow the user to select
their own preferred locale via a UI component such as a radio box.

11.4.1 Letting the user interactively set the locale

Under normal usage, the framework determines the locale from the HTTP headers
that come in with the request. Determining the locale is just part of setting up the
request processing. As we’ve learned, when the framework starts to process a request,
it creates several important objects that play important roles in serving the request.
One of the more important of these objects is the ActionContext.

 As you might recall, an ActionContext object contains all of the important data ele-
ments related to the request. One of the most important data objects that it contains is
the weighty ValueStack. The ActionContext also contains such data elements as the

303Overriding the framework’s default locale determination
parameters from the request and a map of session-scoped objects. So it should come as
no surprise to find that the ActionContext also holds the locale under which the request
will be processed. When the framework is setting up the ActionContext at the start of
request processing, it sets the locale based on the HTTP headers of the request. This can
be overridden with an interceptor from the defaultStack, the i18n interceptor.
THE I18N INTERCEPTOR

The i18n interceptor provides a simple service. It checks to see whether the request
contains a parameter named request_locale. If a request_locale parameter exists
in the request, then this value is set on the ActionContext, thus overriding the default
locale choice made by the framework. Better still, the i18n interceptor is already in
the defaultStack. All you need to do is provide the user with a form by which he can
submit his preferred locale choices. As you can see from figure 11.6, we’ve added just
such a form on the Struts 2 Portfolio home page.

 Now the user can override the default locale determination with an interactive selec-
tion of locales. If you check out the chapter 11 version of the Struts 2 Portfolio, you’ll
also notice that the form automatically prepopulates with the current locale. Let’s take
a look at the source of chapterEleven/PortfolioHomePage.jsp to see how this works.
The following snippet shows the code that creates the locale selection form:

<s:form>
 <s:radio name="request_locale" list="locales" value="locale"/>
 <s:submit key="chooseLanguage"/>
</s:form>

Ultimately, it’s pretty simple. The most important thing is the radio component’s name
attribute. As we’ve just seen, the i18n interceptor looks for a request parameter
named request_locale. If the user submits this form, rather than following one of
the links on the page, then the i18n interceptor will take that parameter and set it as
the locale on the ActionContext. Easy enough.

 You might’ve noticed, however, that we left a couple of details out. First of all, where
does the collection of locale options come from? This is up to you. For this example,
we’ve provided them in a statically defined java.util.Map, exposed as a JavaBeans
property on our PortfolioHomePage action, shown in listing 11.5.

Figure 11.6 Presenting the user
with an interactive choice of locales

304 CHAPTER 11 Understanding internationalization
static public final Map locales = new HashMap();

static {
 locales.put("en_US", "English");
 locales.put("es_SP", "Spanish");
}

public Map getLocales (){
 return locales;
}

It wouldn’t matter where the locales come from, as long as you can get to them with an
OGNL expression from your Struts 2 form element tags. You could store them in the
database, or you could even hard-code them directly into JSP with an OGNL map literal.
This choice depends largely on your requirements. We’ve defined them in a static
map B just to make things simple. Due to the semantics of the collection-backed
Struts 2 UI components, such as this radio box, it’s convenient to use a map pairing the
locale string, such as en_US, with a real language label, such as “English” C. Finally, we
provide a getter D so that the map can be retrieved off of the ValueStack with a simple
OGNL expression, as seen in our JSP snippet.

 Next, you might be wondering how the prepopulation works. As you can see, the
value attribute of our radio box points to an OGNL expression locale. What’s this?
Good question. As it turns out, in addition to TextProvider, ActionSupport also
implements the LocaleProvider interface. TextProvider doesn’t check the Action-
Context directly when discovering the current locale. Rather, it gets this information
from the LocaleProvider. The most important part of this for our current business is
the fact that LocaleProvider exposes a single method, getLocale(). Since our action
is on the ValueStack, and it extends ActionSupport, we can hit this getter with a sim-
ple OGNL–like locale. Thus, our radio box pulls this value to preselect one of the
locale options.

 Finally, you might also be wondering how the user-selected locale persists across all
the other requests that don’t submit the request_locale parameter. Once the user
chooses a locale, she doesn’t need to choose again. The answer is that the i18n inter-
ceptor, when it finds a request_locale parameter, does a bit more than just set that
locale on the current ActionContext. That wouldn’t be enough to persist the locale,
since the ActionContext exists only for one request. When the i18n interceptor finds
a request_locale parameter, it sets that locale on the current ActionContext and it
caches that locale value as a session-scoped attribute, under a well-known key,
WW_TRANS_I18N_LOCALE.

 And this leads us to something else the i18n interceptor does. When it processes
each request, it does more than just check for the presence of the incoming
request_locale parameter. It also checks for a value in the session map under the key
WW_TRANS_I18N_LOCALE. If there isn’t a request_locale parameter, but there’s a
locale value cached in the session map, the one from the session map will be set on
the current ActionContext. Thus, once a user interactively selects a locale, it’ll persist

Listing 11.5 Exposing our supported locales via a JavaBeans property

B

C

D

305Summary
for the duration of his current session, or until he submits another request_locale
parameter to override the one in session scope.

 As you can see, the i18n interceptor giving the user the power to select her locale
is easy in Struts 2 applications. Before closing this chapter down, we’ll look at a closely
related topic: setting the locale programmatically with back-end logic.

11.4.2 Programmatically setting the locale

Now that you know the secrets of the i18n interceptor, you might’ve already realized
that you could set the locale entirely from back-end logic. Who needs the user anyway?
Let’s say you want to store user preferences for locale in the database and set the
locale for that user automatically each time he logs in. Or imagine whatever method
of locale determination you want; the process is going to be the same.

 As we saw earlier, the i18n interceptor checks for the existence of a request param-
eter containing a user-chosen locale preference. The i18n interceptor then sets this
value automatically on the ActionContext, and into the session. Once the locale is in
the session map, the i18n interceptor takes care of persisting that value onto the
ActionContext of each new request associated with that session. You can easily take
advantage of this. If we stored user locale preferences in the database, we could add
some logic to our Login action to retrieve that locale preference and store it in the
session map under the key WW_TRANS_I18N_LOCALE. Now the i18n interceptor will
take care of the rest of the work for us, propagating that value onto each new
request’s ActionContext.

 Another solution you might choose, depending upon your needs, would be to pro-
vide your own implementation of LocaleProvider on your action. The LocaleProvider
exposes just one method, getLocale(). The default implementation provided by
ActionSupport simply retrieves the value from the ActionContext, as you can see.

public Locale getLocale() {
 return ActionContext.getContext().getLocale();
}

Your action can easily override this method so it inherits from ActionContext to pro-
vide whatever means of determining the locale you might need. This solution differs
significantly from the previous one, but both serve certain requirements quite well.

 The ability to elegantly add programmatic determination of the locale gives a
more robust quality to the i18n structure of Struts 2. We hope these flexible tech-
niques will help you solve your complex internationalization problems.

11.5 Summary
In this chapter, we added another level of refinement to our Struts 2 Portfolio applica-
tion. With the i18n support provided by the framework, we’ve given our application
the ability to render its pages with text pulled from locale-sensitive ResourceBundles.
Let’s take a moment to recap the highlights of Struts 2’s support for i18n.

 As a Java-based framework, Struts 2 makes heavy use of Java’s built-in i18n support.
The central figures from this native Java functionality are the classes ResourceBundle,

306 CHAPTER 11 Understanding internationalization
Locale, and MessageFormat. Java ResourceBundles hold collections of resources,
commonly String messages texts, mapped to String keys. A common way of handling
ResourceBundles in a J2EE application is through the use of properties files. We’ve
demonstrated this approach thoroughly in our Struts 2 Portfolio sample application.

 You can also implement Java classes that provide the resources. While we didn’t
show this in this chapter, it’s well documented in the Java documentation. If you pro-
vide class-based ResourceBundles for your Struts 2 application, the framework will
work just as well with them. One point of warning, however. The class and interface
name–oriented portions of the framework’s default bundle lookup process will be
problematic when used with class-backed ResourceBundles. This is because the action
class itself will have a name conflict with the class-based ResourceBundle that the
lookup would attempt to locate.

 You might also want to further investigate the MessageFormat class of the Java plat-
form. We saw its fundamentals in this chapter when we learned of the native Java sup-
port for parameterization of message texts and the autoformatting of date and
numbers. As we indicated earlier, the MessageFormat class is much richer than we’ve
had the time to demonstrate. We recommend consulting the Java documentation if
you have further formatting needs as well.

 Finally, we saw that one can easily override the locale determination made by the
framework. The Locale class determines which version of a ResourceBundle’s
resources will be used (English or Spanish in the case of our Struts 2 Portfolio applica-
tion). While the framework can automatically determine the locale from headers in
the HTTP request, you can also let the user choose her own locale interactively, or you
can set it programmatically. This flexibility is thanks to another powerful interceptor
from the defaultStack, the i18n interceptor.

 With i18n out of the way, we’re ready to head on into deeper waters. With the close
of this chapter, we’ve finished part 4. With the next chapter, we embark on the final
part, part 5.

Part 5

Advanced topics
 and best practices

You should now have a firm grasp of Struts 2 and its architecture. From
actions to interceptors and ultimately the result, the pieces interact like parts in
a well-oiled machine. In fact, you’ve learned enough now to run off and start
building your website. But hold your horses! In part 5, we cover material that can
help you work smarter.

 Chapter 12 explains the plug-in architecture and how the framework can be
extended by simply dropping a plug-in JAR on your classpath. You might never
need to write one yourself, but once you discover the bounty of plug-ins already
available, you may quickly incorporate their features into your site. Modern soft-
ware adheres to the open-closed principle, which means it’s open for extension
but closed to modification. Simply stated, we no longer check out code and
monkey around with it to get extended behavior. The plug-in architecture in
Struts 2 is similar to that found in Firefox and Eclipse.

 In chapter 13, you’ll learn best practices from the trenches. Topics shared
here are those that you can easily begin using right away to provide immediate
benefit to you and your project. We discuss setting up your IDE, unit-testing
code, validation, and maximizing reuse.

 Chapter 14 covers migrating an existing Struts 1.x application to Struts 2. It
also compares and contrasts what you already know about Struts Classic with
concepts found in the new framework. You might be surprised to learn that you
can leverage existing Struts 1.x artifacts in your Struts 2 application.

 We wrap up with chapter 15, which covers advanced topics that are largely appreci-
ated only after writing applications without this knowledge. The information dis-
cussed here can save you oodles of time by doing things the right way to begin with.
From web page look and feel to optimized feature mappings, this is a must-read
before building your website.

Extending
 Struts 2 with plug-ins
At this point, you’ve looked at all the essential artifacts that make up Struts 2.
You’ve seen how all the parts fit together and could go off and write some amazing
code. However, you probably wouldn’t get the best return on your investment. This
section begins our review of the advanced features that tie all the basics together in
exciting and useful ways.

 Like any well-designed software, you should be able to extend the functionality
without modifying existing code. Struts 2 leverages the plug-in architecture for this
very purpose. If you use Firefox or Eclipse, you already know how this works. When
you need to use a feature that wasn’t included in the “baseline,” you simply install a
plug-in that provides the new capability you seek. A plug-in includes the software
ingredients to enable features that weren’t considered in the design of the original

This chapter covers
■ Extending the functionality of Struts 2
■ Integrating with SiteMesh, Tiles, and JFreeChart
■ Injecting constants and beans
■ Writing a breadcrumb plug-in
309

310 CHAPTER 12 Extending Struts 2 with plug-ins
code base. Think of them as strategic points in the framework where you can plug in
your own features and behaviors. In fact, you can write your own plug-in with relative
ease. Perhaps one day you’ll contribute your custom plug-in and it’ll become the most
downloaded of them all. In this chapter, we crack open a plug-in and study what’s
inside, and also learn how they’re packaged and made ready for deployment.

 We review several plug-ins included with Struts 2 and demonstrate ways to extend
the framework by using them. Finally, we create a breadcrumb plug-in from scratch to
demonstrate how the elegant plug-in architecture can change the way you think about
adding features. Where we might’ve once changed existing code to get a custom
behavior, we can now simply drop in a plug-in to accomplish the goal.

12.1 Plug-in overview
The Struts 2 plug-in architecture allows developers to extend the framework by simply
adding a JAR file to their application classpath. These extensions can support the
framework itself or be used to extend the web user experience. You must be excited to
get started, so let’s see what a plug-in can do.

 Plug-ins can be written to do essentially anything you like. In a nutshell, they’re
typically designed to add custom interceptors and results to the framework. For exam-
ple, if you want to replace the way URLs are digested by the framework, you can drop
your custom plug-in on the classpath to supersede the original processing. Of course,
you can do other imaginative things with them too, as we’ll soon discover. Struts 2 was
designed so any piece of the framework can be replaced, extended, or removed in a
standard, consistent way. Several plug-ins that ship with the framework leverage this
capability to extend the framework by providing support for third-party packages such
as Spring, Guice, and SiteMesh. A plug-in is basically a miniature S2 context that can
be snapped into a larger S2 application to modify the runtime configuration of the
larger environment. This allows us to affect the overall behavior without changing
existing code. These modifications can either add or override features. Struts 2 has a
single runtime configuration that’s built up in the following order:

1 struts-default.xml (bundled in the struts2-core-x.y.z.jar)
2 struts-plugin.xml (as many as can be found in plug-in JARs)
3 struts.xml (provided by your application)

Since the struts.xml file is always loaded last, it can use any resources provided by the
plug-ins bundled with the distribution, or any other plug-ins you’ve added to your
application. In fact, when Struts 2 is started, it searches for configuration files by
snooping inside all the JARs on your classpath. In this way, you can customize the
behavior of your runtime configuration by merely dropping a JAR on your classpath
that contains a configuration file. This gives you flexibility unparalleled in Struts 1.

 Some plug-ins are designed to package new capabilities that you can leverage in
your declarations, while others silently replace default behaviors. This plug-in archi-
tecture is explained more fully in section 12.3. Plug-ins can provide a variety of config-
uration options. The runtime plug-in elements that can be modified are

311Common plug-ins
■ Bean
■ Constant
■ Package/namespace
■ Interceptor/result
■ Exception

We explore combinations of assembling these elements inside plug-ins throughout
the remainder of this chapter. Since plug-ins can be designed to do just about any-
thing, you’ll have to use some imagination until we get to the specifics later in the
chapter. All right, this is starting to sound cool, but does Struts 2 have a marketplace
for plug-ins like Firefox and others do? We discuss this next.

12.1.1 How to find plug-ins

Of course you can write your own plug-ins, but what if one of your brother or sister
developers already has this functionality built? We’re already starting to see vendors
writing Struts 2 plug-ins to provide easy access to their packaged software. The Struts 2
website contains a plug-in registry that’s already starting to grow. In fact, if you Google
Struts 2 plug-ins, you’ll see interest emerging from many sources. The last check of
the registry revealed several new entries, and I expect plug-ins to become quite plenti-
ful in the coming months.

12.2 Common plug-ins
Struts 2 ships with several plug-ins to allow out-of-the-box compatibility with main-
stream frameworks considered necessary to supplement a rich web application. These
plug-ins range from connecting to dependency-injection frameworks to providing
hooks into look-and-feel libraries. In an attempt to introduce these integrated plug-
ins, we provide an overview of a few. These introductions won’t go into details of third-
party frameworks, but we provide links to their respective websites. Once we’ve stud-
ied several of these integrated plug-ins, we then create a breadcrumb plug-in so you
can see how easy it is to change the overall Struts 2 request life cycle. If you’re ready,
let’s review the SiteMesh, Tiles, and JFreeChart plug-ins.

12.2.1 SiteMesh

SiteMesh is a web page look-and-feel, layout, and navigation framework. If you’re using
SiteMesh to decorate your web pages, Struts 2 provides a SiteMesh plug-in to expose
the framework’s ValueStack to your SiteMesh page decorators. This plug-in provides
filters for both FreeMarker and Velocity templates, and incorporating either frame-
work requires a few entries in web.xml. The standard filter chain optionally starts with
the ActionContextCleanUp filter, followed by other desired filters. Lastly, the Filter-
Dispatcher handles the request, usually passing it on to the ActionMapper. The pri-
mary purpose of ActionContextCleanUp is to provide SiteMesh integration. The clean-
up filter tells the dispatcher filter exactly when to remove obsolete objects from the
request. Otherwise, the ActionContext may be removed before the decorator has had
a chance to access it. The plug-in combined with this sequence of filters is uniquely

312 CHAPTER 12 Extending Struts 2 with plug-ins
designed to merge the ValueStack with either Velocity or FreeMarker templates. List-
ing 12.1 illustrates how we’d configure our web.xml to use the plug-in with FreeMarker.

 <filter>
 <filter-name>struts-cleanup</filter-name>
 <filter-class>
 org.apache.struts2.dispatcher.ActionContextCleanUp
 </filter-class>
 </filter>
 <filter>
 <filter-name>sitemesh</filter-name>
 <filter-class>
 org.apache.struts2.sitemesh.FreeMarkerPageFilter
 </filter-class>
 </filter>
<filter>
 <filter-name>struts</filter-name>
 <filter-class>
 org.apache.struts2.dispatcher.FilterDispatcher
 </filter-class>
</filter>

<filter-mapping>
 <filter-name>struts-cleanup</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>sitemesh</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>struts</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

The ActionContextCleanUp filter B is designed to dereference objects following a
successful request life cycle. We have to be concerned with memory management
when processing requests using the ThreadLocal model, and ActionContextCleanUp
handles this task wonderfully. The timing of this cleanup becomes more interesting
when we incorporate a package such as SiteMesh C. Consider figure 12.1.

 The ActionContextCleanUp filter precedes SiteMesh in the list of filters. In this
case, ActionContextCleanUp determines the appropriate time to clear the resources,
thereby allowing SiteMesh a pass at the value stack containing the dynamic data for
this request. This is all there is to it. Of course, the sitemesh-2.x.jar must be on your
classpath and you need to provide your preferred decorator templates that specify the
“extra content” for your pages. If this sounds cool but you don’t have much experi-
ence with SiteMesh, you can find all the details at http://www.opensymphony.com/
sitemesh/. For those who use Tiles instead of SiteMesh, the next section discusses how
to integrate Struts 2 with Tiles.

Listing 12.1 web.xml with SiteMesh-relevant entries

Context
cleanup filter

B

SiteMesh
filter

C

http://www.opensymphony.com/sitemesh/
http://www.opensymphony.com/sitemesh/

313Common plug-ins
12.2.2 Tiles

Apache Tiles is a framework that allows developers to build templates that simplify the
development of web application user interfaces. If you’re using Tiles to manage your
site layout, the Struts 2 Tiles plug-in provides a new result type that utilizes your tile
definitions for rendering pages. Listing 12.2 illustrates how we would configure our
web.xml to use this plug-in.

<context-param>
 <param-name>
 org.apache.tiles.impl.BasicTilesContainer.DEFINITIONS_CONFIG
 </param-name>
 <param-value>/tiles/myTiles.xml</param-value>
</context-param>
...
<listener>
 <listener-class>
 org.apache.struts2.tiles.StrutsTilesListener
 </listener-class>
</listener>

Listing 12.2 web.xml with Tiles-relevant entries

Figure 12.1 Struts 2 Request
life cycle

Our Tiles definitions
files are hereB

Tiles
listener

C

314 CHAPTER 12 Extending Struts 2 with plug-ins
The context parameter B is where we specify the location of our Tiles definitions file,
and the listener C is how we bootstrap the integration. The plug-in creates a new result
type that you can use to specify that Tiles should render the result. Listing 12.3 reveals
the declarative elements for this plug-in.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
 <package name="tiles-default" extends="struts-default">
 <result-types>
 <result-type
 name="tiles"
 class="org.apache.struts2.views.tiles.TilesResult"/>
 </result-types>
 </package>
</struts>

The first thing to notice is that the new tiles-default package B extends the
struts-default package. This means we can extend tiles-default in our package
and inherit the new result type plus all the support provided by struts-default.
Once we have these entries in place, Tiles is active and ready to render responses. List-
ing 12.4 contains the configuration for an action mapping that uses the Tiles page
rendering framework.

 <?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
 <package name="members" namespace="/members" extends="tiles-default">
 <result-types>
 <result-type
 name="tiles"
 class="org.apache.struts2.views.tiles.TilesResult"
 default="true"/>
 </result-types>

 <action name="list">
 <result>membersPage</result>
 </action>
 </package>
</struts>

The application package extends B the plug-in package and thereby inherits the new
Tiles result type. If the package uses Tiles exclusively, we can even set the default result

Listing 12.3 struts-plugin.xml file inside struts2-tiles-plugin-2.x.jar

Listing 12.4 Our application’s members.xml file

New
package

B

New Tiles
result

Extends the Tiles
plug-in package

B

Sets default
result to tiles

C

Tiles definition
name

D

315Common plug-ins
type to use tiles C and not have to specify the type attribute on each result map-
ping. Lastly, we see our Tiles definition D being specified as the page to render for
the response. As Tiles is a respectable alternative to SiteMesh, you might want to
review it at http://tiles.apache.org/.

 In the next section, we turn our attention to a plug-in designed for those who
believe a picture is worth a thousand words.

12.2.3 JFreeChart

The JFreeChart plug-in allows an action to return generated charts and graphs to be
included in your web page. Like the Tiles plug-in, it adds a new result type that we
can use in our declarative mappings. Listing 12.5 reveals the declarative elements for
this plug-in.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
 <package name="jfreechart-default">
 <result-types>
 <result-type
 name="chart"
 class="org.apache.struts2.dispatcher.ChartResult">
 <param name="height">150</param>
 <param name="width">200</param>
 </result-type>
 </result-types>
 </package>
</struts>

The first thing to notice is the new jfreechart-default package B. The conse-
quence of inheriting this package in your application allows you access to the new
chart result C. Lastly, we see the declaration contains a default chart size D to be
rendered and returned to your page.

 So now we use the plug-in to generate a neat graph to be displayed on our web
page. Listing 12.6 shows one of our declarative configuration files in the application.

 <?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
 <package name="charts"
 namespace="/charts"

Listing 12.5 struts-plugin.xml file inside struts2-jfreechart-plugin-2.x.jar

Listing 12.6 Our application’s chart.xml file

B

C

D

http://tiles.apache.org/

316 CHAPTER 12 Extending Struts 2 with plug-ins
 extends="struts-default , jfreechart-default">

 <action name="chartScreen">
 <result>/jsp/chart.jsp</result>
 </action>

 <action name="chart" class="com.strutsschool.action.CreateChart">
 <result type="chart">
 <param name="width">400</param>
 <param name="height">300</param>
 </result>
 </action>

 </package>
</struts>

Our application package extends both the struts-default and the plug-in parent
packages B. This allows us to inherit all the standard intelligent defaults plus the
new chart E result type. This file includes a declarative mapping C for a web page
that contains the request for chart D action where we’re specifying a graph sized
to 400 by 300 F.

 It looks like everything is in place, so we issue the request …/chartScreen.action
to see the beautiful chart appear on the page. Figure 12.2 shows an example of the
capabilities of JFreeChart.

In this example, our package inherits the configuration elements from a couple of
parent packages. You may extend as many parent packages as necessary by listing
them on the package extends clause. In the next section, we discuss the internals that
build the runtime configuration.

12.3 Internal component system
At the heart of the framework, Struts has an internal component system that builds
and configures the framework. It works like a specialized dependency injection frame-
work that manages the life cycle of the components and wires them together with

B

C

D
E

F

Figure 12.2
Sample
JFreeChart

317Internal component system
other components and configuration. In fact, the first version of the inject package,
as it’s termed internally, was a fork of an early version of the popular dependency
injection library, Google Guice, which incidentally was created by Bob Lee, also a
Struts committer. To complete the circle, Bob developed Guice based on ideas he had
while working with the internals of Struts.

 There are two types of objects that can be registered with the inject framework:
constants and beans.

12.3.1 Beans

Beans can be any Java object, sometimes termed a Plain Old Java Object or POJO, that
doesn’t have to extend any class, implement any interface, or contain any annotations.
When declaring a bean in the XML configuration, the attributes shown in table 12.1
are available.

The primary way beans are defined is by declaring them in the XML configuration:
struts-plugin.xml for plug-ins and struts.xml for applications. If we were writing a
plug-in and wanted the plug-in to define its own ObjectFactory (more on that in sec-
tion 12.3.4), our XML would look like listing 12.7.

<bean type="com.opensymphony.xwork2.ObjectFactory"
 alias="myFactory"
 class="com.mycompany.MyObjectFactory" />

Alternatively, you can register beans directly with the container by implementing the
com.opensympony.xwork2.config.ConfigurationProvider interface and specifying
your class in web.xml as the configProviders init parameter for the Struts filter. List-
ing 12.8 shows the code.

<init-param>
 <param-name>configProviders</param-name>
 <param-value>com.mycompany.MyContainerProvider</param-value>
</init-param>

Table 12.1 Bean attributes

Name Description Required

name The class name of the bean Yes

type The primary interface the bean implements, defaults to the name value No

alias The alias of the bean, necessary if more than one bean is registered for
a given type

No

scope The scope of the bean, could be default, singleton, thread,
request, session, or wizard

No

Listing 12.7 Bean definition example

Listing 12.8 Registering a ContainerProvider in web.xml

318 CHAPTER 12 Extending Struts 2 with plug-ins
This technique is only recommended for application developers and not plug-in
developers. as it requires manual configuration steps on the part of the user.

12.3.2 Constants

Constants are simply configuration settings that can be injected into beans, and are as
simple as a name/value pair. During initialization, constants defined by the frame-
work can be overridden by plug-ins, and further overridden by application configura-
tion. There are many more ways to declare constants than beans, and constants are
loaded in the following order:

1 web.xml init parameters for the Struts filter
2 default.properties in the Struts JAR

3 struts.properties in WEB-INF/classes (deprecated in Struts 2.1)
4 struts-plugin.xml in each plug-in JAR

5 struts.xml in WEB-INF/classes

Constants can also be used to select an alias of the desired implementation of a
defined framework or plug-in extension point, as we talk about more in section 12.3.4.

12.3.3 Injection

After all the configuration has been loaded, the injection framework is initialized with
the defined beans and constants. Then, as each internal Struts component is needed
at runtime, the framework creates the object and provides it with its bean and con-
stant dependencies. A bean can tell the framework that it needs an instance of
another bean or constant by using the @Inject annotation on a constructor argu-
ment, private field, or setter method. The class type of the dependency to be injected
comes from the class defined for the constructor argument, private field, or setter
method. How does the framework know to inject a constant or bean? Constants are
simply a subset of beans, where their class type is java.lang.String.

 The @Inject annotation takes the parameters shown in table 12.2.

While injection is primarily meant for internal Struts components, you can also use
the @Inject annotation in your actions, interceptors, and results.

 Let’s look at an example. Say we wanted to write a new plug-in that needed its own
ObjectFactory. In writing our new SpecialObjectFactory, we realize we need the
Struts configuration information. We also want to allow our users to customize the
behavior of the plug-in, so we want to support a new constant named struts. spe-
cialFeature. Our code would look something like listing 12.9.

Table 12.2 @Inject annotation parameters

Parameter name Description Required

value The alias of the desired bean or name of the desired constant False

required Whether the dependency is required or not False

319Internal component system
public class SpecialObjectFactory extends ObjectFactory {

 private ConfigurationManager configurationManager;
 private String specialFeature;

 @Inject
 public void setConfigurationManager(ConfigurationManager mgr) {
 this.configurationManager = mgr;
 }

 @Inject(“struts.specialFeature”)
 public void setSpecialFeature(String value) {
 this.specialFeature = value;
 }

 // the rest of the class
}

Alternatively, we could’ve used constructor injection, by placing an @Inject annota-
tion on the constructor, or even private field injection, by putting an @Inject anno-
tation before the declaration, although private field injection isn’t generally
recommended.

12.3.4 Struts internal extension points

The last step of the initialization of the injection framework is to select which imple-
mentations of key Struts components are chosen. Between built-in components and
the various plug-ins that are loaded, there may be multiple implementations of a com-
ponent, each with its own bean alias. The BeanSelectionProvider, an implementa-
tion of ContainerProvider, is responsible for determining and loading the selected
implementations.

 To determine which alias to choose for a given Struts component, there generally
exists a respective constant, whose value could be

■ The alias of the desired bean implementation
■ The class name of a new bean

The default implementation, provided by the Struts framework in struts-default.xml,
has the alias of struts, so this is the default value of the respective constant. Plug-ins
that replace framework components such as the Spring plug-in, which among other
things provides an alternative implementation of ObjectFactory, generally set the
respective constant to their implementation alias. Since struts.xml is loaded last, it has
the final say on which framework component implementations are used. In some
cases, there’s no selection constant, as all implementations are loaded and used.

 Table 12.3 shows the available framework extension points and their constant
selector available in Struts 2.

 As you can see, many of the extension points are only available in Struts 2.1 and
later, so take note as you plan your plug-in.

Listing 12.9 Injection example

320 CHAPTER 12 Extending Struts 2 with plug-ins
Table 12.3 Framework extension points

com.opensympony.ObjectFactory

Constant selector struts.objectFactory

Description Builds important objects such as actions, interceptors, and results. Extended by
several plug-ins to integrate with dependency injection frameworks such as Spring
and Guice.

com.opensympony.ActionProxyFactory

Constant selector struts.actionProxyFactory

Description Builds the ActionProxy and ActionInocation objects, which manage the
action-interceptor-result process. Override to have full control over how actions,
interceptors, and results are executed.

com.opensympony.conversion.ObjectTypeDeterminer

Constant selector Struts.objectTypeDeterminer

Description Determines the type of objects in a Collection or Map.

org.apache.struts2.dispatcher.mapper.ActionMapper

Constant selector struts.mapper.class

Description Maps the incoming request URI to an action name and namespace. Override if you
want to change the URI pattern for your application.

org.apache.struts2.dispatcher.multipart.MultiPartRequest

Constant selector struts.multipart.parser

Description Parses multipart requests in the case of a file upload.

org.apache.struts2.views.freemarker.FreemarkerManager

Constant selector struts.freemarker.manager.classname

Description Loads and processes FreeMarker templates.

org.apache.struts2.views.velocity.VelocityManager

Constant selector struts.velocity.manager.classname

com.opensymphony.xwork2.util.PatternMatcher

Constant selector struts.patternMatcher

Description Processes wildcard patterns in action names and namespaces. Only available in
Struts 2.1 or later.

com.opensymphony.xwork2.validator.ActionValidatorManager

Constant selector struts.actionValidatorManager

Description Handles the loading of validators and validator configuration. Only available in
Struts 2.1 or later.

321Writing a breadcrumb plug-in
12.4 Writing a breadcrumb plug-in
As promised, we now discuss the details of creating a plug-in from scratch. This plug-in
will capture user requests and create a breadcrumb trail. This trail will contain recent
user web requests, allowing them to click back to anywhere they’ve been. Of course,
before writing it, we search the plug-in registry to see if one already exists. Since plug-
ins are designed to be plug-and-play, we want to design it to have smart defaults out of
the box. In addition, we want to allow developers to configure it to their liking. As we
consider the breadcrumb plug-in, the following points seem worth considering:

1 Developers should be able to set a limit for the number of breadcrumbs to be
managed.

2 Should the crumbs be unique in the list?
3 Do we want to filter which requests drop a crumb?
4 What if we only want to include requests that were HTTP GET types?
5 We need to support the Struts 2 wildcard request type.
6 Some packages may not want to participate in crumb tracking.

This suggests what aspects will need to be variable in our design. Developers like to be
able to set preferences, and these usually vary according to context. We take advan-
tage of several core framework components to assemble this plug-in. This is where we

Table 12.3 Framework extension points (continued)

com.opensymphony.xwork2.util.ValueStackFactory

Constant selector struts.valueStackFactory

Description Creates ValueStack instances for each request. A key component to replace if
you want to change the expression language, as value stacks apply expressions to
your actions. Only available in Struts 2.1 or later.

com.opensymphony.xwork2.reflection.ReflectionProvider

Constant selector struts.reflectionProvider

Description Provides reflection services to the framework. Also important to override if defining
your own expression language. Only available in Struts 2.1 or later.

com.opensymphony.xwork2.reflection.ReflectionContextFactory

Constant selector struts.reflectionContextFactory

Description Creates the reflection context object that’s passed to the reflection methods.
Allows per-call reflection configuration values to be passed to the reflection meth-
ods. Only available in Struts 2.1 or later.

com.opensymphony.xwork2.config.PackageProvider

Constant selector N/A—all implementations are automatically loaded.

Description Provides package configuration objects that contain actions, interceptors, and
results. Only available in Struts 2.1 or later.

322 CHAPTER 12 Extending Struts 2 with plug-ins
start to see the elegance in the Struts 2 architecture. Most of the request life cycle is
processed by a clever assembly of interceptors. In chapter 4, we saw how these inter-
ceptors are sandwiched into named stacks that play a pivotal role in the declarative
architecture. We’re implementing the breadcrumb plug-in as an interceptor. Writing
an interceptor is a simple matter of implementing the interceptor interface, as shown
in listing 12.10.

public interface Interceptor extends Serializable {
 void destroy();
 void init();
 String intercept(ActionInvocation invocation) throws Exception;
}

In looking around Struts 2, you’ll discover several ready-built implementations of this
interface that provide prebuilt solutions to common interceptor needs. One such
implementation is the MethodFilterInterceptor, which allows you to configure lists
of method names to filter from the interception. This satisfies the requirement that
we might want to filter which requests drop breadcrumbs. Listing 12.11 reveals this
implementation.

public abstract class MethodFilterInterceptor extends AbstractInterceptor {
 protected transient Log log = LogFactory.getLog(getClass());

 protected Set excludeMethods = Collections.EMPTY_SET;
 protected Set includeMethods = Collections.EMPTY_SET;

 public void setExcludeMethods(String excludeMethods) {
 this.excludeMethods =
 TextParseUtil.commaDelimitedStringToSet(excludeMethods);
 }

 public Set getExcludeMethodsSet() {
 return excludeMethods;
 }

 public void setIncludeMethods(String includeMethods) {
 this.includeMethods =
 TextParseUtil.commaDelimitedStringToSet(includeMethods);
 }

 public Set getIncludeMethodsSet() {
 return includeMethods;
 }

 public String intercept(ActionInvocation invocation) throws Exception {
 if (applyInterceptor(invocation)) {
 return doIntercept(invocation);
 }
 return invocation.invoke();
 }

 protected boolean applyInterceptor(ActionInvocation invocation) {

Listing 12.10 Interceptor interface

Listing 12.11 MethodFilterInterceptor interface

Invoke interceptB

Skip
interceptC

Should method be
intercepted?

D

323Writing a breadcrumb plug-in
 String method = invocation.getProxy().getMethod();
 // ValidationInterceptor
 boolean applyMethod = MethodFilterInterceptorUtil.applyMethod(
 excludeMethods,includeMethods, method);
 if (log.isDebugEnabled()) {
 if (!applyMethod) {
 log.debug(
 "Skipping Interceptor... Method [" + method + "]
 found in exclude list.");
 }
 }
 return applyMethod;
 }

 /**
 * Subclasses must override to implement the interceptor logic.
 *
 * @param invocation the action invocation
 * @return the result of invocation
 * @throws Exception
 */
 protected abstract String doIntercept(ActionInvocation invocation)
 throws Exception;

}

The applyInterceptor D method compares our interceptor configuration against
the current method being executed on the Struts action class. If this method is deter-
mined to be excluded, the interceptor is not invoked C. Otherwise, the interceptor is
called B to do its part.

 The remaining requirements from our list can be met with a little code in our
plug-in class. Listing 12.12 reveals the abbreviated source code for our plug-in. The
complete source listing is included with the plug-in, which can be downloaded from
the Struts 2 plug-in registry.

public class BreadCrumbInterceptor extends MethodFilterInterceptor {

 private static final String timerKey =
 "BreadCrumbInterceptor_doIntercept:";

 private Stack<Crumb> crumbs;

 private int crumbMax;
 private boolean uniqueCrumbsOnly;
 private boolean getRequestsOnly;
 private String wildCardSeparator = "!";

@Override
protected String doIntercept(ActionInvocation invocation) throws Exception {
 try {
 UtilTimerStack.push(timerKey);
 dropCrumb(invocation);

Listing 12.12 Breadcrumb interceptor

B

Crumbs
stack

C

Attributes for
configurable
elements

D

E

F

324 CHAPTER 12 Extending Struts 2 with plug-ins
 return invocation.invoke();
 } catch (RuntimeException e) {
 String msg = (new StringBuilder()).append("Error in intercept: ")
 .append(e.getMessage()).toString();
 LOG.error(msg, e);
 throw new Exception(msg, e);
 } finally {
 UtilTimerStack.pop(timerKey);
 }
}

Our interceptor extends MethodFilterInterceptor B, enabling us to configure
method names to be intercepted. It contains a stack C for the breadcrumbs and
attributes D to hold all the other configurable aspects of the plug-in. The doInter-
cept E method overrides the abstract version from the parent and is where the
action happens. The dropCrumb method F is where we determine how to process the
request and maintain the stack of crumb objects. Remember, if this request were a
result of an action method we wanted to omit from the interception, this would have
been bypassed by our parent and would never be invoked! Lastly, we invoke the next
interceptor G on the list.

 The final piece we need to include is the struts-plugin.xml file that serves to regis-
ter this plug-in when Struts 2 is started. Listing 12.13 shows the code.

<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
 "http://struts.apache.org/dtds/struts-2.0.dtd">
<struts>
<package name="com.strutsschool.interceptors.breadcrumbs"
 extends="struts-default">
 <interceptors>
 <interceptor name="breadCrumbs"

class="com.strutsschool.interceptors.breadcrumbs.BreadCrumbInterceptor">
 <param name="wildCardSeparator">!</param>
 <param name="uniqueCrumbsOnly">true</param>
 <param name="getRequestsOnly">true</param>
 <param name="crumbMax">4</param>

 </interceptor>
 </interceptors>
 </package>
</struts>

Our package extends struts-default B and adds a new interceptor C to the mix. The
parameters for the interceptor allow developers to configure the breadcrumb plug-in
for their Struts 2 application according to their preferences. If you compare these
parameters D to the interceptor in listing 12.11, you’ll see how the pieces go together.

 The last thing we have to do is jar up the pieces and drop it on our application
classpath. The Struts 2 startup will detect the new JAR and extract struts-plugin.xml for

Listing 12.13 Breadcrumb struts-plugin.xml

G

B

C

D

325Summary
inclusion in the runtime configuration. Of course, if you believe the plug-in serves a
utilitarian purpose, why not promote it to the registry for others to enjoy?

12.5 Summary
This chapter covered the plug-in architecture and how the internal component system
builds the runtime configuration from the JARs on your application classpath. We
looked at how the request life cycle could be modified by simply adding a JAR to the
application. The plug-in architecture allowed us to easily incorporate third-party
frameworks into our application without modifying existing code. We discussed the
Struts 2 plug-in registry and how to search for the latest plug-ins that might provide our
application with new features. Lastly, we described the recipe for this new architecture
by designing a breadcrumb utility from scratch that we packed as a plug-in. In the next
chapter, we explore best practices by sharing tips and techniques from the trenches.

Best practices
The book has now covered the essential ingredients you need to start using Struts 2.
You might be wondering how to optimally leverage all the capabilities within such a
flexible framework, and this chapter is where we set out to answer these questions
and more. This chapter contains an assortment of techniques and tips from the
trenches. While it isn’t required that you understand this material before writing
your first Struts 2 site, it’s strongly encouraged. We liken this chapter to those tips
your parents shared with you as a youngster. You didn’t have to apply them right
away, but life was simpler when you did. This chapter presents topics ranging from
how to optimize your development environment to registering your web features
using a wild technique known as wildcard mappings. Of course, there’s also a mish-
mash of useful tips in between. We present the practices in an easily consumable
fashion, so you can take advantage of them right away. Using these practices will
minimize the refactoring you might need to do after the application is built.

This chapter covers
■ Setting up your environment
■ Unit-testing your actions
■ Building reusable widgets
■ Writing custom templates and themes
326

327Setting up your environment
 This chapter expands your vocabulary and coding style, so you’ll be the confident
one making suggestions during the next code review. If at any time you feel over-
whelmed during your reading, realize that this is new material and it’s a fresh
approach to things. Learning to tie your shoes wasn’t easy, but it sure helped with all
the scraped knees. Take a deep breath and realize we were overwhelmed too, and
we’re no smarter than you!

13.1 Setting up your environment
Unless you’re getting paid by the keystroke, I assume you’re using an IDE as your
development workbench. Since the IDE wars are as hotly contested as religion and
politics, I’m not going to discuss which one is better. Instead, I’m going to present the
Eclipse IDE available at http://www.eclipse.org/, which has become the de facto stan-
dard among developers. The fact that this IDE is available at no charge makes it partic-
ularly attractive, and when you add the feature richness Eclipse provides, it starts to
make sense why so many developers have chosen it. To get started with Struts 2, all you
need is a project that contains the Struts 2 libraries required for your website. Adding
these libraries to an Eclipse project is a fancy way of having Eclipse add them to your
classpath! Let’s face it, setting the classpath is a nuisance and nobody wants to contin-
uously mess around with it.

13.1.1 Setting up your IDE

The following describes the setup required to start a Struts 2 project. Depending on
the version, figure 13.1 reveals the minimum set of libraries currently required for a
Struts 2 application. If you find yourself wanting to expand your site by adding third-
party features, you’ll need to add those JARs and likely the corresponding Struts 2
plug-in JAR file as well. As we’ve been keeping up with the Struts 2 evolution, we find

Figure 13.1 Struts 2 libraries

http://www.eclipse.org/

328 CHAPTER 13 Best practices
ourselves referring to the struts2-blank-2.0.x.war file that’s included in the download.
This is a bare-bones Struts 2 web application and can be used to establish the mini-
mum requirements for your Struts 2 project.

 To download the latest version of Struts 2, visit http://struts.apache.org/download
and select Full Distribution. This provides you with everything you need to use the
framework. At this point, you can unzip <drive>:\struts-2.0.x\app\struts2-blank-2.0.x.war
and you’ll have a working Struts 2 web application shell.

13.1.2 Reloading resources

We’re going to make this easy for you. There’s an Eclipse plug-in available to make
reloading resources during development a piece of cake. This is available from
www.myeclipseide.com for less cash than a pan pizza and a couple of beers. This plug-
in takes care of reloading resources as you make source code changes, and even reloads
classes in your server of choice. This way, clicking Refresh in your browser reveals your
latest code changes. Compare this to bailing out of the IDE to run Ant scripts and then
bouncing the server, and you’ll quickly decide it’s worth the meager purchase price.

 There are configuration settings that you need to be aware of as you transition
your Struts 2 site from development to production that affect the application’s perfor-
mance. These settings are useful during your development with the framework, but
are intended to be turned off before moving your product to production. These set-
tings can be made in either your struts.xml or struts.properties files, although it’s a
good practice to keep these in properties files for easy transition between environ-
ments. This way, you don’t need to remember to make changes to the struts.xml as
your application moves from development to production. These properties are listed
in table 13.1.

Now that we’ve downloaded Struts 2 and configured our desktop using Eclipse, we’re
ready to a look at writing test cases for our actions. The next section explains how to
write unit tests around your Struts 2 actions.

13.2 Unit-testing your actions
Test-driven development is sweeping the nation. Testing code is no longer considered
something we might do at the end of the project. Your work is expected to perform
correctly as it interacts with all the other objects that make up an object-oriented
application. As we pointed out in chapter 1, a great thing about Struts 2 is that action
classes are Plain Old Java Objects (POJOs) and can be tested independently of all the

Table 13.1 Struts 2 runtime properties that control resource reloading

Property Value

struts.devMode True if DEV; false if PROD

struts.i18n.reload True if DEV; false if PROD

struts.configuration.xml.reload True if DEV; false if PROD

http://struts.apache.org/download
www.myeclipseide.com

329Unit-testing your actions
complicated plumbing that comes with web and/or application servers. Actions in
Struts 1 were tangled up with the Servlet API and were difficult to test outside of the
server environment. This often led to either no testing at all or complicated tests
involving funky mock objects configured to “trick” your actions into thinking they
were interacting with the Servlet API code they so desperately relied upon. Struts 2
avoids tangling its actions up with the Servlet API so you can easily test them. Another
tenet of modern software design is to minimize dependency. Rather than have your
code dependent on other code, it’s based loosely on interfaces or roles. This allows
different concrete implementations to be injected into your code according to the
context or environment in which it’s running. The next section reveals how this can
be useful in the context of testing.

13.2.1 The advantage of IoC for testing

When it comes to testing your action objects, the objects they interact with will likely
need to be “test” versions of the objects your action would otherwise encounter running
in the “real” mode. Back in chapter 9, we discussed the affinity Struts 2 has with Spring
when it comes to specifying these dependencies. This is where IoC (inversion of control,
a.k.a. dependency injection) saves the day. When using this design philosophy, depen-
dent target objects are “injected” into the source object and the target object adapta-
tion can be swapped out without touching your Java source code. Struts 2 has built-in
support for dependency injection and even lets you plug in your favorite IoC implemen-
tation. Since the Spring framework is so wildly popular, we demonstrate using Spring.

 Actions need to be injected with their dependent objects while the tests are being
executed in much the same way they are when running in production, the likely differ-
ence being certain injected objects will be unique while testing. For instance, you’ll
probably inject a data source while testing that behaves differently than your produc-
tion data source. One additional consideration is the fact that Struts 2 never calls your
action directly. Instead, it wraps an ActionProxy around your action so registered inter-
ceptors can be called before and after consulting with your action. So do we test an
action with all the pomp and circumstance of the ActionProxy and interceptors, or
simply as a naked POJO? The answer is that you get to decide; both ways are clearly
valid. If the interception of your action is necessary in order to run a valid test, test your
action through the ActionProxy. Otherwise, test the action directly as a naked POJO.

 If you choose to test your action independently of the interceptors, it’s drop-dead
simple. Just create an instance of your action class and set whatever properties you
like. At this point, you can start making assertions against this action object the same
way you would any other POJO. If you need to test your action in the context of run-
ning inside your Struts 2 application, you’ll need a handle to the ActionProxy that
wraps around your action. We explain this process in the next section.

13.2.2 JUnit and the tests

We want to get something out of the way before writing the tests. You’re probably ask-
ing yourself, “How am I going to access the HttpServetRequest object?” The short

330 CHAPTER 13 Best practices
answer is, “Why do you need to?” Is this just a bad habit from years of doing it this way?
Remember, Struts 2 avoids tangling its actions up with the Servlet API so you can easily
test them. The Struts 2 action is expected to have properties that hold the user inputs.
The framework even populates these properties so you don’t have to mess around
with fishing them out of the HttpServetRequest yourself. If you have a genuine desire
to manhandle the HttpServetRequest attributes inside an action, you can implement
the RequestAware interface. This is how an action asks the framework to populate a
Map property with the objects associated with the HttpServetRequest. Now all your
unit tests need to do is read and write to this Map in order to accomplish the old
request.setAttibute(k,v) and request.getAttribute(k);.

 We start off testing an action in the wild and then consider the action in the con-
text of the framework. Listing 13.1 demonstrates a CustomerSearchAction class.

public class CustomerSearchAction {
 private String nextStep ="List";
 private Customer model;
 public void setModel(Customer customer) {
 this.customer=customer;
 }
 public String execute(){
 if(model.getZip().equalsIgnoreCase(ALL))
 nextStep = "PagedList"
 return nextStep;
 }
}

Listing 13.1 is a typical Struts 2 action class with an execute() method that returns a
String, which determines the next step in the workflow. As you can see, if the user
chooses to search across all ZIP codes, the action will guide the workflow such that a
pageable list is displayed rather than potentially loading up hundreds of customers all
at once. Listing 13.2 reveals the simplicity involved in testing this action.

public class CustomerSearchActionTest extends TestCase {
 CustomerSearchAction action;
 public void testSearchByAllZips() {
 action=new CustomerSearchAction();
 Customer customer = new Customer();
 Customer.setZip(ALL);
 action.setModel(customer);
 assertEquals("PagedList", action.execute());
 }
}

Simple, huh? Now let’s consider a more comprehensive test where our action is
injected by Spring and requires the interceptor stack to be involved as well. In this
case, we can’t simply instantiate the action ourselves. Rather, we need to have the

Listing 13.1 A typical action class

Listing 13.2 The simple JUnit test of our action as a naked POJO

Populated by
web page

Used to inject
the model

Default method the
framework calls

Breadcrumb
to determine
next step

Normal JUnit
TestCase

Create the action

Create/configure model
and inject action

Test response

331Unit-testing your actions
action (and its ActionProxy) created for us by a helper factory. Since the interceptors
are registered in struts.xml, this file needs to be consulted. Also, the fact that an
action’s symbolic name can be repeated across different package namespaces necessi-
tates that we provide this information to the helper factory as well. If you’re new to
Java generics, what you’re about to see might amaze you. Before we get into the
helper factory, let’s use it to create a full-blown reference to an action context:

searchAction = helper.createAction(CustomerSearchAction.class,
 "/searchNameSpace", "/search"))

This is considered a polymorphic factory method. Try saying that five times fast! The
first argument is the type of object you’d like created. The factory method uses Java
generics to return a type compatible with your request. The next two arguments are
the namespace and symbolic name you specified in your declarative architecture for
this web feature. This does all the heavy lifting of combing the interceptors from
struts.xml. After writing several versions of this helper class ourselves, we decided to
use the example found at www.arsenalist.com to do this creation. Why recreate the
wheel, right? Listing 13.3 shows a more comprehensive test that takes advantage of
this ActionProxy.

public class CustomerSearchActionTest extends BaseStrutsTestCase {
 CustomerSearchAction action;
 public void testSearchByAllZips() {
 String ns ="/searchNameSpace";
 String mapping = "/search";
 action=createAction(CustomerSearchAction.class,ns, mapping);
 Map p = new HashMap();
 p.put("customer.id", "bogus123");
 proxy.getInvocation().getInvocationContext().setParameters(p);
 String result = proxy.execute();
 assertEquals(result, "input");
 }
}

Our test extends the BaseStrutsTestCase helper class B. This base class provides the
magic E createAction behavior. The magic method takes the namespace C and the
symbolic name D chosen for our mapping and creates a configured action object. At
this point, we inject request parameters into the map F that test the search behavior,
and finally G execute and verify results.

 Note that in this example we didn’t create a Customer object; Spring did. Also, we
didn’t inject the customer into the action. It was injected into the action by the frame-
work. All we did was simulate some user inputs followed by the proxy.execute(). The
interceptors took care of populating the domain value with the request parameters, so
all we had to deal with was testing the results of the execute() method. This should
indicate just how easy it is to comprehensively test your action classes outside of the
server environment. No more excuses! Let’s see the tested code coverage hit 90.9%.

Listing 13.3 The JUnit test with a proxy

B

C
D

E

F

G

www.arsenalist.com

332 CHAPTER 13 Best practices
13.2.3 Testing validation.xml files

Before we leave the topic of unit testing, let’s see how we can test our declarative vali-
dations to make sure bad input doesn’t make its way into our system. If you need a
refresher on the validator framework, you can flip back to chapter 10. Validations can
be specified external to the Java code. We simply specify the rules in an XML file
named corresponding to the action class it’s protecting. Listing 13.4 demonstrates
testing our XML validation.

public class CustomerSearchActionTest extends BaseStrutsTestCase {
 CustomerSearchAction action;
 public void testSearchByAllZips() {
 String ns ="/searchNameSpace"
 String mapping = "/search"
 action=createAction(CustomerSearchAction.class,ns, mapping);
 Map p = new HashMap();
 p.put("customer.id", "bogus123");
 proxy.getInvocation().getInvocationContext().setParameters(p);
 String result = proxy.execute();
 assertEquals(result, "input");
 int errorCount=action.getFieldErrors().size();
 assertTrue("Should contain errors", errorCount>0)

 }
}

Our test extends the BaseStrutsTestCase helper class B. This base class provides the
magic E createAction behavior. The magic method takes the namespace C and the
symbolic name D chosen for our mapping and creates a configured action object. At
this point, we inject request parameters into the map F that test the search behavior,
and G execute the proxy. In this test we validate the return type H, and assert that
field errors were added to the collection I.

 It should also be noted that you can pull many different references from the proxy
for making assertions. For example, you could pull the collection of interceptors out
to test for the existence of a required interceptor.

 You should now have a good understanding of how to test Struts 2 action classes
using JUnit. In the next section, we shift gears and look at how the data is getting into
your actions. Struts 2 uses a clever approach to building web pages that interact with
your users. We now explore this UI toolkit and the underlying FreeMarker scripting
that makes it work.

13.3 Maximizing reuse
In a world where users expect new website features with instant access, we must reach
for more prebuilt software. The fact that you’re using Struts 2 suggests you chose a
ready-made framework to manage your website. In this section, we look into ways that
Struts 2 allows us to build unique UI widgets by extending prebuilt components. The

Listing 13.4 The validation testing with JUnit

B

C
D

E

F

G
H

I

333Maximizing reuse
widgets have full access to the OGNL and value stacks within the framework, so their
access to data is automatic.

 For those of you who’ve written your own custom tags using the JSP specification,
this’ll seem unbelievable to you. I remember writing a few custom tags before JSTL
came on the scene, and it was always a horror. Instead of writing Java classes to support
the UI widgets, we now have the ability to use a scripting language to generate the
markup. This scripting language is FreeMarker and internally the JSP, FTL, and Veloc-
ity tags are all rendered using it. Simply put, FreeMarker combines static and dynamic
content to generate real-time output. In case you jumped over here without exploring
the chapter covering UI components, you’d be well advised to slip a bookmark into
this page and circle back to chapter 7.

 Now then, a few definitions might be in order before jumping in. A tag is a small
piece of code executed from within JSP, FreeMarker, or Velocity. A template is code,
usually written in FreeMarker, that can be rendered by certain tags. A theme is a collec-
tion of templates packaged together to provide common functionality.

 In the next section, we see how to combine these ideas to create a custom tag that
adds to our UI toolbox.

13.3.1 Componentization with the component tag

The component tag renders a UI widget using a specified template. Beyond the full
complement of the OGNL and ValueStack variables, additional objects can be passed
into the template using the param tag. These make up the dynamic data that’s merged
into the template. The component hierarchy for UI tags is illustrated in figure 13.2.

Figure 13.2 Component hierarchy for UI tags

334 CHAPTER 13 Best practices
There are other template engines as well, but we’ll concentrate on FreeMarker for
now. The real power of this architecture is that you get the feature richness of object
inheritance for data access and the ease of UI widget scripting with FreeMarker.
FreeMarker is an integral piece of Struts 2, so we should understand what it’s designed
to do. It’s intended to dynamically generate output by combining static and dynamic
content. This output can correspond to the grammar of any syntax you like. Our
example generates HTML output. The component tag renders a UI widget using the
specified FreeMarker template. Each subclass in the Struts 2 UI toolkit has its own sty-
listic FreeMarker template that weaves its static and dynamic content together to pro-
duce a cohesive HTML widget. However, we can write our own FreeMarker template
and pass it into the component custom tag to be rendered.
Let’s write a FreeMarker template that outputs the current
date and time in a div tag. Figure 13.3 illustrates how we’d
like the widget to look.

 Now let’s look at the web page that included this widget.
We begin by showing the single line of code that generated
the HTML output:

<s:component template="now.ftl"/>

So the interesting code must be in the now.ftl file, but where is it? By default. the tem-
plates you write (or override) go in a folder <web-root>/template/{theme} where
{theme} is either a theme that’s included with Struts 2 or a custom theme you design
yourself. That takes care of where it goes, so let’s look inside it. Listing 13.5 illustrates
the template.

<#include ".../controlheader.ftl" />
 <div>
 <fieldset>
 <legend>
 Current date/time
 </legend>
 <@s.textfield theme="simple" value="${now?datetime}"/>
 </fieldset>
 </div>
<#include ".../controlfooter.ftl" />

The variable now is retrieved from the ValueStack just like you’d expect. The compo-
nent tag will also allow you to parametrically pass in name/value pairs to control gen-
erated DOM ID names and corresponding values to be looked up on the ValueStack.
Building up widgets like this maximizes reuse and guarantees standard look and
behavior. Think of these as the HTML tags the W3C forgot to include.

13.3.2 Leveraging the templated tags

In the previous section, we discovered how FreeMarker templates are the heart and
soul of the UI tags included in Struts 2. Moreover, we saw how we could write our own

Listing 13.5 The now.ftl file

Figure 13.3 The current
date/time widget

335Maximizing reuse
FreeMarker templates that the component tag would process to generate meaningful
HTML widgets. In this section, we extend the discussion of templates and tags by pre-
senting the UI library and the corresponding templates. The UI tags are divided into
form and nonform groups. The following are the form tags:

The following are the nonform tags:

The templates that support these tags are located in the struts2-core-2.0.x.jar. As men-
tioned earlier, they’re grouped into themes and located in folders named
template.{theme}. We wrap up this exploration by discussing the mechanics of the
Struts 2 UI textfield tag more closely. Once you see how we connect the data dots,
you can apply the same knowledge to any other tag.

 Struts UI tags are designed to use the data from your action and ValueStack or
from Struts data tags. The action/value stack is the comprehensive tree of nodes that
contains, among other objects, your action. It’s straightforward to link object data to
your tag by simply providing an accessor method in your web-page-related action class.
In the advanced topics chapter, we’ll look at an additional technique for making data
available to UI tags. The following are the Struts data tags:

Now that we’ve looked at all the individual pieces that make this baby work, let’s take a
crack at connecting the dots in order to see the entire puzzle assembled.

13.3.3 Connecting the UI-to-object dots

If it’s true that a picture’s worth a thousand words, this section may overflow my page
quota. Figure 13.4 illustrates what the browser output looks like with our new custom
tag. The concentration here is on our new widget and not the overall web page. We’ll
discuss comprehensive web pages using Tile in the advanced topics chapter.

■ autocomplete ■ optiontransferselect
■ checkbox ■ optgroup
■ checkboxlist ■ password
■ combobox ■ radio
■ datetimepicker ■ reset
■ doubleselect ■ select
■ file ■ submit
■ form ■ textarea
■ head ■ textfield
■ hidden ■ token
■ label ■ updownselect

■ actionerror ■ table
■ actionmesssage ■ tabbedPanel
■ component ■ tree
■ div ■ treenode
■ fielderror

■ action ■ i18n ■ push
■ bean ■ include ■ set
■ date ■ param ■ url
■ debug ■ property

336 CHAPTER 13 Best practices
The web page in figure 13.4 contains a bevy of Struts 2 custom tags. In fact, it’s con-
structed entirely of Struts 2 tags. Notice the current date/time widget that we built in
section 13.3.1. This widget searches the ValueStack to find a getNow() behavior
whose return value will be substituted into the ${now} placeholder of the now.ftl tem-
plate. This template merely wraps this value returned from the ValueStack in a
fieldset tag and writes the chunk of HTML to the enclosing page. While this was a
simple example, the only limitation relating to FreeMarker and custom UI widgets is
your imagination. If the Struts UI game is your bag, the next section discusses ways to
take the templates to another strata.

13.4 Advanced UI tag usage
If you’re reading this, extending the Struts UI tags must be of interest to you. There
are plenty of UI tags included in Struts 2 to build commercial applications. However, if
you wish to personalize the appearance beyond cascading style sheets, you have
options here too. Struts 2 is designed to allow you the freedom to enhance the tags to
your heart’s content. Remember, they’re generated using simple FreeMarker scripting
templates. In fact, you can create an entirely new theme that shows the world your
individual creativity. Let’s review the options.

13.4.1 Overriding existing templates

As we saw earlier in this chapter, you can tweak tags and have the rendering framework
select your modified template. This allows you to reuse the guts of the existing tem-
plates and simply make minor tweaks. This is accomplished by copying the FreeMarker
template you’d like to change into the folder <web-root>/template/{theme}. At this
point, you can make any changes you like to the template and the rendering frame-
work will select your template as opposed to its own. The rules for selecting templates

Figure 13.4 The browser
output

337Advanced UI tag usage
are as follows. Templates are loaded based on the template directory and theme name.
The template directory is defined by the struts.ui.templateDir property in struts.
properties and defaults to template. This directory is first searched for within the
application; if not found, the search proceeds to the classpath. The default templates
provided in struts-core.jar should suit the needs of many applications. But if a template
needs to be modified, it’s easy to override with a new version. Extract the template you
need to change from struts-core.jar, make the modifications, and save the updated
copy to /template/$theme/$template.ftl. If you’re using the xhmtl theme and need to
change how the select tags render, edit that template and save it to /template/xhtml/
select.ftl. Now we will look at the steps involved in writing your own custom themes.

13.4.2 Writing custom templates

In the previous section, we looked at overriding existing templates. We now explore the
steps involved in creating custom templates for your web pages. If you’re duplicating
chunks of HTML all over the place, you need to read this closely. Writing custom tem-
plates is analogous to creating custom tag libraries, only without all the pain. Struts 2
provides the UI component tag <s:component template='customTemplate.ftl'/>,
which expects a custom template that it merges with dynamic data located on the
action/value stack. Writing the custom FreeMarker template is all there is to it. If you’re
surprised, you’re not alone. It almost seems too easy. For a refresher on how your custom
FreeMarker template interacts with the other pieces, please review section 13.3.3.

13.4.3 Writing custom themes

Most often, an application just needs to override a template so that a certain UI widget
renders differently. Or maybe you need to add a new template to an existing theme
for a custom UI widget. However, if you want to create an entirely new theme, perhaps
because you’re building a rich set of unique and reusable templates for your organiza-
tion, there are three ways to do it.
CREATE A NEW THEME FROM SCRATCH (HARD!)

It’s probably never a good idea to create a new theme from scratch. Instead, use the
simple theme as a starting point. The simple theme provides just enough foundation
to make it easy to create new controls by extending or wrapping the basic controls.
Before starting a new theme, be sure to review the source templates for all of the pro-
vided themes. These templates can be found in struts-core.jar. The existing themes
are your best guide to creating new themes.
WRAP AN EXISTING THEME

Wrapping is a great way to augment the basic HTML elements provided by the simple
theme. In fact, if you look at the xhtml theme, you’ll find this is what it’s doing. It
wraps the simple theme by adding unique FreeMarker header and footer templates
to automatically render elements such as error messages, internationalized labels, and
hover help for a control.
EXTEND AN EXISTING THEME

One benefit of object-oriented programming is that it lets us “design by difference.” We
can extend an object and code only the behavior that’s different. UI themes provide a

338 CHAPTER 13 Best practices
similar capability. The subdirectory that hosts a theme can contain a theme.properties
file. A parent entry can be added to the property file to designate a theme to extend.
The ajax theme extends the xhtml theme using this technique. An extended theme
doesn’t need to override every template from the parent theme. It only needs to over-
ride the templates it wants to behave or appear different than the parent version.

13.5 Summary
This chapter has covered many practices that you can begin using on your first Struts 2
project. You learned about testing your code so that pesky and embarrassing bugs don’t
make it into your production release, and speeding the development of custom UI wid-
gets through the use of templates and themes. We also saw how the FreeMarker template
engine makes writing dynamic web components a breeze. In the next chapter, we discuss
migration strategies to get your existing Struts 1 sites converted to Struts 2.

Migration
 from Struts Classic
So you’re convinced Struts 2 is worth the effort to learn, but you also have all this
knowledge and experience with Struts 1, also called Struts Classic. And what about
all those Struts 1 websites in production? This chapter compares and contrasts the
similarities and differences between the two Struts versions and provides useful
migration strategies for you. The good news is you don’t have to relearn everything.
In fact, some of the esoteric things you had to remember to do in Struts Classic
have been eliminated. Also, many features we always wished for in Struts 1 have
finally arrived in Struts 2. So grab a lovely beverage and let’s get started. I am going
to trust you are familiar with a version of Struts Classic.

This chapter covers
■ Migrating from Struts 1 to Struts 2
■ Switching to the new tag library
■ Breaking up message resources
■ Migrating one piece at a time
339

340 CHAPTER 14 Migration from Struts Classic
14.1 Translating Struts Classic knowledge
You come to work on Monday morning to learn that your company is adopting this
new version of Struts. At first you’re excited to learn a modern web framework, but
you’ve also heard it’s quite different from Struts Classic. What does this mean for your
career? What if you’re no longer the person everyone calls the Struts guru? How do
you quickly become the Struts 2 expert you know you can be? Luckily, you’ve already
taken the first step by purchasing this fine book. In fact, chapter 1 showed you how
the two Struts flavors aren’t really that different. You should’ve walked away from
chapter 1 realizing Struts Classic and Struts 2 are both MVC-patterned, but Struts 2
provides a much cleaner implementation. This chapter will transition your expert sta-
tus to the new Struts before anyone realizes your confidence was shaken. Our first stop
will be the Struts action.

14.1.1 Actions

You’ll be happy to know the action is still the workhorse in Struts 2 that it was in Struts
Classic. In fact, it’s now a thoroughbred! The first change to grasp is that an action is
no longer a singleton. Each request gets its own action instance that is thread-safe.
This means you can have first-class instance variables of complex types! The next
change is that the action has divorced the Servlet API. Listing 14.1 reveals a typical
Struts 1 action. Note how the Servlet API and Struts 1 framework objects are bound
into your code. Not only does this make the action hard to test, it also blurs the divi-
sion of responsibility between the action and the server plumbing. A couple more
things to recognize before we look at the Struts 2 action are the name of the method
and the action class that our SamplesAction is extending. Listing 14.1 shows the
requirements of the Struts Classic actions.

public class SamplesAction extends Action {
 public ActionForward execute(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 {
 SamplesWebForm webForm=(SamplesWebForm) form;
 // business logic here…
 return mapping.findForward("success");
 }
}

First, our SamplesAction was required to extend the Struts Classic Action class B.
Next, we were required to receive the framework mapping and form references D in
the execute() method C. The framework form passed to the execute() method was
always quirky. It had to be cast F to a subclass, which could easily throw an exception
and was chock full of strings representing user input that we had to wrestle into “real”

Listing 14.1 Struts Classic Action

B
C

D

E

F

G

341Translating Struts Classic knowledge
data types. You can also see that we had to receive Servlet API references E for the
request and response. Lastly, we had to determine the ActionForward object G and
return it to the framework. If you were reading closely, we were expected to do many
things the framework should’ve been doing itself! Now let’s look at the corresponding
Struts 2 Action in listing 14.2.

public class SamplesAction{
 private SamplesBean model;

 public String execute(){
 // business logic here ...
 return "success";
 }
 public SamplesBean getModel(){
 return model;
 }
 public void setModel(SamplesBean model){
 this.model = model;
 }
}

First, our Struts 2 SamplesAction is a simple POJO B. Now that action classes aren’t sin-
gletons, we have an instance variable C that preserves the user input. The method
requires us to receive no arguments D and can be named whatever we like. The return
value is a simple string that serves as a symbolic name E the framework digests to deter-
mine what should happen next. Lastly, the get/setModel() F behaviors are accessed
by the framework to keep its internal value stack synchronized with user inputs.

 Pretty slick, huh? This JavaBeans action contains no Servlet API dependencies, so
testing it is a breeze. The fact that the execute() method can be called anything you
like turns out to be an extremely cool feature that we’ll explore in more detail later
when we discuss wildcard mappings. Now let’s take a closer look at how the data flows
between the Web and Struts 2.

14.1.2 What happened to ActionForms?

Can we have a moment of silence in memory of the ActionForm? The ActionForm has
been booted out of the framework and we’re better off because of it. It never measured
up and at one point in the evolution of Struts Classic, we were even allowed to pretend
it didn’t exist by using the infamous DynaForm. Of course the DynaForm was just an
ActionForm in disguise. The ActionForm was weak at best and only existed as a bridge
to shuttle user inputs between the action and web page. It did little more than hold the
String request parameters from the HttpServletRequest so we didn’t have to fish
them out ourselves. But once we received the form, we were left to convert it into a
business-savvy domain model before we could do anything useful with the user inputs.

 Struts 2 has removed the ActionForm and now serves the action a business-savvy
domain model freshly adapted from the user inputs. Struts 2 translates and converts

Listing 14.2 Struts 2 Action

B
C

D

E

F

342 CHAPTER 14 Migration from Struts Classic
all the String request parameters to their complex data types found in the action. If
you’ve written adapters to map web pages to domain objects, you can already see this
automation will save many hours of manual work. Struts 2 also takes care of transla-
tion in the other direction to satisfy the String requirements of the HTML.

 The translation between Strings and your business-savvy domain model is per-
formed by the OGNL DefaultTypeConverter. It understands many data types, dates,
arrays, maps, and collections. Of course, as you discovered in chapter 5, if you have
requirements beyond the scope of the framework and would like to create your own
type converters for your custom data types, here’s the recipe:

1 Create your converter extending StrutsTypeConverter.
2 Register your new converter for either an individual class in ClassName-

conversion.properties or globally in xwork-conversion.properties.

In case you jumped to this migration section before reading the earlier chapters, it’s
worth mentioning that Struts 2 populates your objects with the user input via an inter-
ceptor. Recall that interceptors do most of the heavy lifting in this new framework (see
chapter 4), so this makes sense. This interceptor uses the web page input control
name to find a setter method on your action class. Once the set method is located, it
determines the actual data type the method is expecting and has the String con-
verted to this anticipated type (see chapter 5). Lastly, the converted data type is passed
to the setter method and the object is injected with the user input. Figure 14.1 illus-
trates this parameter-setting flow.

Figure 14.1 Parameter interception and conversion

343Translating Struts Classic knowledge
Of course, if our HTML control had been named department.project, then our
action would contain a set/getDepartment method that returns a Department. The
Department would contain a getProject() method that would ultimately contain the
setProject(…) operation. This powerful Struts 2 capability will accommodate shut-
tling user inputs between the web page and a rich domain model without human
intervention.

 Now that we’ve explained how Struts 2 has effectively eliminated the ActionForm,
let’s discuss web pages and their custom tags that operate as the opposite end of this
data exchange.

14.1.3 Switching tag libraries

Struts has always had an affinity for tag libraries. In fact, the Struts tag libraries work
closely with the Struts framework itself to handle data movement and workflow naviga-
tion. They’re doing many “Struts” things behind the scenes. Struts Classic had several
different tag libraries with an occasional overlap among them. Struts 2 has cleaned
this up by combining its tags into one library. This simplifies figuring out which
taglib directive to include in your web pages.

 The biggest difference between the two versions of Struts is that Struts 1 tags were
dependent on the old ActionForm whereas Struts 2 utilizes the OGNL ValueStack. For
the sake of comparison, these two schemes are about as similar as a Ford Escort and a
Chevrolet Corvette! Whereas the Struts 1 scheme merely shuttled string data types
between the web page and ActionForm, the Struts 2 approach is amazingly different.
Unless you’ve jumped right to this chapter in
the book, you should have a clear under-
standing of the ValueStack and the Object-
Graph Navigation Language that form the
core of Struts 2. This ValueStack is an
ordered list of real-time objects. This means
objects are being pushed on and popped off
the stack as the framework executes requests.
The tags are one such agent allowed to push
and pop the stack. As properties are re-
quested, the stack is searched from the top
down. This flexibility allows us to reference
properties without needing to first know
which object contains the property. Consider
figure 14.2.

 As you can see from this illustration, the
OGNL searches for your expression starting at
the top of the stack and proceeds downward
until either it’s located or the list is exhausted.
Learning this powerful navigation language
will be a valuable tool in your toolkit. Visit the

Figure 14.2 ValueStack
and expression navigation

344 CHAPTER 14 Migration from Struts Classic
website http://www.ognl.org for more information. Now, let’s take a look at an example
of our web page interacting with dynamic objects on this stack. Figure 14.3 reveals how
a Struts 2 custom tag would find the project property.

 In this case, the first object where the project property could be accessed was in
the Action object.

 Migrating your Struts 1 web pages to Struts 2 will require replacing the Struts 1 tag
directives with the single <%@ taglib prefix="s" uri="/struts-tags"%>. Details of
this conversion are included later in this section. The Struts 2 tags automatically
include support for internationalization and field-level messages without much fuss.
This allows you to remove much of the HTML you had to write to get this support with
the Struts Classic tags.

 Before leaving this section, we need to comment on JSTL. Struts Classic contained
several tag libraries, each of which contained a related grouping of tags. Once JSTL
came onto the scene, you were encouraged to select the JSTL version where there was
a corresponding tag in a Struts Classic library. This was because of the JSTL support for
the new Expression Language that enabled objects to be interwoven with the tag itself
to produce the desired markup.

 The JSTL ${someObject.someMethod} expression language is rich and can be used
to reach deep into an object graph. Plus there’s also support for working with Maps and
Lists. Struts 2 has full access to JSTL in the same way Struts Classic does. Where we see
the real difference is that Struts 2 has its own tag libraries that interact with the OGNL
and the ValueStack where Struts Classic knows nothing about these new capabilities.

 Next we look at how to organize all those internationalized resource files.

Figure 14.3 Custom tag interplay with
ValueStack

http://www.ognl.org

345Translating Struts Classic knowledge
14.1.4 Breaking up message resources

Java has always provided native support to allow us to easily access locale-sensitive text
and formatting. The hardest part is having all the text translated into other dialects,
which has nothing to do with Struts. Struts Classic leveraged this native support
through the use of the java.util.PropertyResourceBundle and the java.util.
ListResourceBundle, and so does Struts 2. Where Struts 2 differs is in the flexibility
you have in selecting a language bundle. This is covered in greater detail in chapter
11. So that we don’t confuse what’s meant by the bundle selection, let me first identify
what we mean about this selection. Suppose our website has been designed to accom-
modate English, German, Spanish, and French. This would require us to have the fol-
lowing files on our classpath:

■ MyWebBundle.properties
■ MyWebBundle_en.properties
■ MyWebBundle_de.properties
■ MyWebBundle_es.properties
■ MyWebBundle_fr.properties

The file selected would depend on the language the requester passed in on the HTTP
header. For sake of illustration, let’s suppose it was a French requester. Judging from
what we know so far, MyWebBundle_fr.properties would be selected. In Struts 1, all
your keys were expected to be in this file. Since it’s never a good idea to put all the
text for your entire website in a single file, Struts 1 allowed you to have French text in
multiple French files. However, it was a messy technique that was clearly added as an
afterthought. It required a custom Java class and you had to prefix your message keys
with a file designator so the custom class could determine which file it should select
your text from. It was clumsy and error-prone.

 Struts 2 makes it easy to set up language files for your entire application, sections
of the site, or even down to the action and property level. At the application level, it
works the same as Struts Classic. Simply provide the default bundle in the struts.prop-
erties as follows:

struts.custom.i18n.resources=resources.package

Where things get more interesting in Struts 2 is how you can deal with special cases.
Let’s suppose you have special needs for an action named MemberAction. If you create
a bundle called MemberAction.properties and place it alongside this action class,
Struts 2 will retrieve values from this locale bundle. There are many variations
between choosing the scope of the entire application or an individual Action. This fol-
lowing is the search order:

1 A ResourceBundle is selected with the same name and package as the class of
the object on the stack, including the interfaces and superclasses of that class.
The search hierarchy is as follows:
■ Look for the message in a ResourceBundle for the class.

346 CHAPTER 14 Migration from Struts Classic
■ If not found, look for the message in a ResourceBundle for each imple-
mented interface.

■ If not found, traverse up the class’s hierarchy to the parent class, and repeat
from step 1.

2 If the message text isn’t found in the class hierarchy search and the object
implements ModelDriven, call getModel() and do a class hierarchy search for
the class of the model object. There was no concept in Struts Classic for scoping
messages to a particular bean.

3 If the message text still is not found, search the class hierarchy for default pack-
age texts. For the package of the original class or object, you look for a Resource-
Bundle named package.properties in that package. For instance, if the class is
com.strutsschool.enrollment.MemberAction, look for a ResourceBundle

named com.strutsschool.enrollment.package.properties. You continue
along this line for each superclass in turn.

4 If Struts 2 hasn’t found the text at this point, it checks whether the message
key refers to a property of an object on the ValueStack. If a search for mem-
bers on the ValueStack returns a nonnull object and the text key you’re look-
ing for is member.course.description, use the member’s class to look for the
text key course.description, searching up its class hierarchy, and so on, as in
previous steps.

5 The last resort is to search for the text in the default ResourceBundles that have
been registered in struts.properties.

As you look at this flexibility, it’s clear that Struts 2 learned a valuable lesson from
Struts 1. All these capabilities might at first seem ridiculous, but once you find yourself
faced with that exceptional use case, you’ll be happy to know the framework is pre-
pared to provide an elegant solution to your problem.

 A wise man once said you can’t eat an elephant in one bite. I didn’t understand
what he meant until I was faced with migrating a large Struts Classic web applica-
tion to Struts 2. In the next section, we begin discussing how we can do this in small
increments.

14.2 Converting by piecemeal
We’re going to extend a convention that’s been followed throughout the book. We’d
like to refer to Struts Classic as S1 and Struts 2 as S2. This makes it easier to discuss the
two frameworks as we compare and contrast them. While S2 is a quantum leap for-
ward, converting your S1 application is fairly mechanical. We’ll soon begin to see tools
that assist with the conversion, but for now, you can also find comfort in the fact that
we don’t need to convert everything at once. Much like eating an elephant in one
bite, this just isn’t practical. There are several possibilities when it comes to the S1 and
S2 unity:

■ Leave the S1 application unchanged.
■ Convert the entire S1 application to S2.

347Converting by piecemeal
■ Merge S1 and S2 technologies and convert using a piecemeal approach:
■ Calls between the two are easy
■ The S1 plug-in allows you to use S1 actions in an S2 application

If you have a stable S1 website that doesn’t require maintenance, you might as well
leave it alone. If you have a relatively small S1 site that’s evolving, you might consider a
wholesale migration to S2. Lastly, since most S1 applications are large, we concentrate
on the merge and piecemeal approach, with a sidebar on the Struts 1 plug-in. If
you’re the proud parent of an S1 website and would like to adapt it to S2, let’s begin
our conversion.

14.2.1 Eating an elephant a piece at a time

While it’s true that S2 is easier to configure and provides many more features, the two
frameworks can coexist, as they each

■ Declaratively map a URL to a Java class
■ Declaratively map a response to a web resource
■ Contain custom tags to link requests to their respective framework

The first thing to consider is the declarative URL mapping that determines where the
request should be routed. S1 is typically mapped to digest a URL matching /*.do and
S2 /*.action. While these may be configured using different extensions, they need to
be unique if you plan to combine the two frameworks into a single web application.
Let’s take the first bite of the elephant. The first step is to copy the S2 JARs to the WEB-
INF/lib folder of our S1 application and add the S2 elements to the web.xml file. List-
ing 14.3 covers these elements in detail.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <!-- Struts 2 -->
 <filter>
 <filter-name>struts2</filter-name>
 <filter-class>
 org.apache.struts2.dispatcher.FilterDispatcher
 </filter-class>

 </filter>
 <!-- extensions are included in the struts.properties -->
 <!-- struts.action.extension=action -->
 <filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Listing 14.3 web.xml combining both S1 and S2 into the same web application

B

C

348 CHAPTER 14 Migration from Struts Classic
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 <listener>
 <listener-class>
 org.apache.struts2.tiles.StrutsTilesListener
 </listener-class>
 </listener>

 <!-- Struts 1 -->
 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>

 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/classes/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

 <!-- Either version -->
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
<web-app>

The S2 framework leverages a filter to intercept requests B and the URL mapping is
set to /* C. where the actual extensions are specified in the struts.properties file. This
property is shipped to handle requests with the .action extension, but can be changed.
S1 mappings F G are shown for unity. The listener D fires up the Spring framework,
which S2 uses to instantiate its objects. This listener expects the file application-
Context.xml to exist in the WEB-INF folder even if it’s empty. This file is shown in list-
ing 14.4. The listener E fires up the Tiles 2 framework, which S2 may interface with
for common look and feel.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd ">
 <beans>

 </beans>

Listing 14.4 applicationContext.xml

D

E

F

G

349Converting by piecemeal
Our S1 application is now capable of handling both S1 and S2 requests. The *.do
requests will be handled by S1 and the *.actions by S2. We can now begin to add new
S2 features and also migrate existing S1 artifacts to S2. Likewise, we may have action
mappings in S1 that direct to S2 resources and vice versa. Infusing our existing S1
application with S2 capabilities is what we refer to as merging technologies. This allows us
to systematically migrate S1 to S2 while immediately being allowed to share many
resources between the two “sides” of the web application.

 Next, we look at how the action mappings have changed.

14.2.2 The action mappings

One of the real advances in website design was the advent of symbolic mapping. This
allowed us to modify website behavior without getting tangled up in the HTML. This
declarative mapping has been the hallmark of S1 for years and has improved markedly
in S2. Any seasoned S1 developer can tell you about the hours she’s spent modifying
struts-config.xml. This file is essentially a registry where the symbolic features of your
website are matched with their concrete counterparts. Let’s take a look at a typical S1
action mapping in listing 14.5.

<struts-config>
 <form-beans>
 <form-bean name="reportForm" type="ReportForm"/>
 </form-beans>

 <action-mappings>
 <action
 path="/reportDateSelection"
 input="/reportDateSelection.page"
 name="reportForm"
 type="ReportDateSelection"
 scope="request">
 <forward name="success" path="reportByDate.page"/>
 <forward name="largeDateRange" path="reportWarning.page"/>
 </action>
 </action-mappings>
</struts-config>

It was easy to retire as a wealthy S1 developer if you were paid by the keystroke! As you
can see, this single web feature was verbose and often led to a bloated struts-config.xml
file. In order to capture the user inputs for this action, we first had to create a form
bean B that was separate from the action itself. This form bean was assigned a name and
could be associated with many different actions. The type ReportDateSelection F is the
Struts action class associated with this mapping. The path attribute C is where we spec-
ified the symbolic name of the web feature. In this case, we’re prompting the user for
a date range to be used in selecting data for a report. The input attribute D is where
we specify what page should be displayed if validation fails. The name attribute E is what

Listing 14.5 Struts Classic action mapping

B

C
D

E
F

G
H

350 CHAPTER 14 Migration from Struts Classic
links this action to the form bean B, and the scope G is where we specify where S1
should store the form bean. Lastly, the forward tags H are where we specify the list of
eligible targets from which the action may select.

 A web request for someContext/reportDateSelection.do would invoke this S1
action mapping. S2 streamlines this mapping substantially by leveraging smart defaults
and storing user inputs inside the action itself. Listing 14.6 shows what this action
mapping looks like in Struts 2.

<struts>
<package name="invoicing" namespace="/invoicing">

<action name="reportDateSelection" class="ReportDateSelection">
 <result name="input">reportDateSelection.page</result>
 <result name="largeDateRange">reportWarning.page</result>
 <result>reportByDate.page</result>
</action>

</package>
</struts>

The first thing to notice is the new package tag B used in our mappings. This works in
a way similar to packages in Java, where similar actions are grouped together in a com-
mon namespace. The web request someContext/invoicing/reportDateSelection.
action would invoke this S2 action. Note how this allows us to use this same action name
in another package namespace as in someContext/payables/reportDateSelection.
action. The action mapping itself C has been greatly simplified. First off, there’s no
form bean to mess with, as S2 encapsulates the user inputs inside the action itself. Lastly,
the eligible targets or “next steps” resulting from this action are cleanly laid out in the
form of result tags D. Note that the last result doesn’t specify a name. This is because
success is the default. Also, unlike the S1 ActionForward, results in S2 can actually help
prepare the response.

 We’ve now discussed how to infuse S2 capabilities into our S1 application and we’ve
looked at S1 and S2 mappings side by side. Now we’ll look at the steps to migrate S1
artifacts to S2.

14.2.3 Where the action meets the form

In S1, the user inputs were stored in a form bean that the framework passed into the
action class. S2 combines the utility of the form within the action itself, thereby elimi-
nating the form bean. So the first step in the migration is to modify the S1 action to
accommodate the user inputs. This could be as simple as removing the S1 code from
the form bean and including this POJO as a field inside the action class. Listings 14.7
and 14.8 show the before-and-after form beans.

Listing 14.6 Struts 2 action mapping

B

C

D

351Converting by piecemeal
public class ReportForm extends ActionForm {

 private boolean average;
 private boolean totals;
 private String fromDate;
 private String toDate;

 getters/setters...

}

This S1 form bean extends a framework class B and is comprised largely of primitive
data types C. Listing 14.8 shows the migrated S2 version of this bean, which is a sim-
ple POJO.

public class Report {

 private boolean average;
 private boolean totals;
 private Date fromDate;
 private Date toDate;

 getters/setters...

}

As you can see, this is a plain Java class with useful data types to contain user inputs. In
listing 14.1, we looked at a typical S1 action class and saw that it expected a framework
form bean. In listing 14.9, we peer into the S2 action class to see how the user data is
made available.

public class ReportDateSelection extends ActionSupport{
 private Report model;

 public String execute(){
 // business logic here ...
 return SUCCESS;
 }
 public Report getModel(){
 return model;
 }
 public void setModel(Report model){
 this.model = model;
 }
}

First, our S2 ReportDateSelection extends the S2 ActionSupport base class B.
While it isn’t necessary, it contains several handy behaviors and tokens that we would
end up writing ourselves. In this case, we’re only leveraging the SUCCESS token. Next,
since action classes are no longer singletons, we can have an instance variable C that

Listing 14.7 Struts 1 action form

Listing 14.8 Struts 2 POJO

Listing 14.9 Struts 2 action with model bean

Framework classB

Simple typesC

POJO

Actual data
types

Extends
S2 classBWeb data

encapsulated
in model beanC

D
Accessors for
ValueStack

352 CHAPTER 14 Migration from Struts Classic
is the model POJO that preserves the user input. Lastly, the get/setModel() D
behaviors are accessed by the framework to keep its internal ValueStack synchro-
nized with user inputs.

 Let’s turn our attention to web pages and how we go about migrating them to S2.
This is probably the most time-consuming part, as this is the dimension of a website
that the user sees. Much care and concern goes into this layer of development to allow
the system to be user-friendly. In the next section, we turn our S1 pages into their S2
counterparts.

14.2.4 Turn the page

In the previous section, we eliminated the S1 form bean and moved the user inputs into
the action itself. Now that we’ve explained how Struts 2 has effectively eliminated the
ActionForm, let’s discuss the web pages and their custom tags that operate as the oppo-
site end of this user data exchange. The first thing that changes is the tag library dec-
laration. Rather than have several libraries, S2 has combined the tags into a single
library. The next big difference is that S2 tags get and set objects on the ValueStack
whereas S1 used a form bean. Lastly, the S2 tags do more than simply shuttle web page
content; they assist in the presentation of the web page. This is a real time saver and
results in web pages that are much more readable. The S1 custom tags helped separate
the Java from the presentation code in your web pages. S2 custom tags not only elimi-
nate Java from your web pages but also drastically reduce the HTML you’re expected to
write. Before we get into the nitty-gritty, take a look
at the web page in figure 14.4. Admittedly, it isn’t
complex from the end-user’s point of view, but
designing a screen that’s dynamically generated
from static and dynamic portions can be a consid-
erable challenge.

 Listing 14.10 shows the source code behind this
S1 web page. Note that much of this code has to
do with positioning elements on the page and pull-
ing language constants from internationalized
resource bundles. Also, we placed the user mes-
sages next to each control that might fail validation.

<%@taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>
<H3> <bean:message key="promptTitle" /> </H3>

<html:errors />
<html:form action="reportParameters">
<TABLE border="0" cellpadding="0">
<TBODY>
<tr>

Listing 14.10 Struts 1 web page

Figure 14.4 Report selection web
page

353Converting by piecemeal
<TD align="right">
<bean:message key="average" />
</TD>
<TD>
<html:checkbox property="average"></html:checkbox>
</TD>
</tr>
<tr>
<TD align="right">
<bean:message key="totals" />

</TD>
<TD>
<html:checkbox property="totals"></html:checkbox>
</TD>
</tr>
<tr>
<TD align="right">
<bean:message key="fromDate" />
</TD>
<TD>
<html:text property="fromDate"></html:text>
</TD>
<TD>
<html:errors property="fromDate" />
</TD>
</tr>
<tr>
<TD align="right">
<bean:message key="toDate" />
</TD>
<TD>
<html:text property="toDate"></html:text>
</TD>
<TD>
<html:errors property="toDate" />
</TD>
</tr>
</TBODY>
</TABLE>
<html:submit property="submit">
<bean:message key="ok" />
</html:submit>
</html:form>

That’s a bunch of code for such a compact web pagelet, and we haven’t even discussed
cascading style sheets. Listing 14.11 shows the source code for this same web page
designed using S2 custom tags.

<%@ taglib prefix="s" uri="/struts-tags"%>

<H3><s:label key="promptTitle" /></H3>

<s:form>

Listing 14.11 Struts 2 web page

354 CHAPTER 14 Migration from Struts Classic
 <s:checkbox key="average" labelposition="left"/>
 <s:checkbox key="totals" labelposition="left"/>
 <s:textfield key="fromDate" />
 <s:textfield key="toDate"/>

 <s:submit key="ok" action="reportParameters" />
</s:form>

What do you think about this? The same web page in S2 requires a fraction of the
developer coding because the standard markup is generated by the tags. Actually, the
markup is merely associated with the tags. S2 utilizes FreeMarker to generate the
markup for the tags. In this case, the markup was HTML, but FreeMarker can generate
any type of markup you like. Imagine being able to generate markup for HTML, WML,
XSLT, and more, all from the same source. S2 has packaged these FreeMarker tem-
plates into themes to generate markup according to your preferred look and feel.
Note that each tag contains a key property, which serves multiple roles. If you refer to
listing 14.8, you’ll find these keys are also the properties in our model object. What
isn’t as obvious is the fact that these keys are also located in our language Resource-
Bundles, which is how the S2 tags retrieved the screen labels. These keys also become
the DOM id and name properties for the page elements that are essential for validation
and AJAX support.

14.2.5 No speak English

Chances are you have a rich set of localized messages that have been serving your S1
application. Since S1 and S2 both leverage the underlying Java i18n facilities, those
same resources can also serve the S2 framework. In S1, we specified our resource files
in the struts-config.xml with the following tag:

<message-resources parameter="applicationResources" />

This existing ResourceBundle can be used in S2 by placing the following entry in your
struts.properties configuration file:

struts.custom.i18n.resources= applicationResources

This entry indicates that we have a ResourceBundle with the root name application-
Resources and an alternate file named applicationResources_es.properties, where es
is a standard locale code for Spanish. Both the ResourceBundle and the struts.proper-
ties file should be placed in the classes directory of a web application, so that they’re
accessible on the classpath. If you want to expand your migration to take full advan-
tage of the flexibility S2 has to offer in this area, refer to section 14.1.4 for a review of
the ways you can further break these message resources apart. Listing 14.12 reveals
sample content for our reporting web page.

applicationResources.properties
promptTitle=Report Selection
average=Compute Averages

Listing 14.12 Localized language files

355Converting by piecemeal
totals=Compute Totals
type=Report Type
fromDate=From Date
toDate=To Date
ok=OK

applicationResources_es.properties
promptTitle= Informe de selección
average= Promedios del cálculo
totals= Totales del cálculo
type= Tipo de informe
fromDate= A partir de fecha
toDate= Hasta la fecha
ok=OK

S1 action classes retrieved localized messages with

getResources(request).getMessage("promptTitle")

S2 is more succinct:

getText("promptTitle")

This is another contrast between S1 passing HTTP objects during method calls versus
S2 dependency injection. The getText behavior in S2 can interrogate the request on
its own. Lastly, you may recall that, in S1, if you asked for a message whose key couldn’t
be found in the resource file, you received a null in return. S2 will return the message
key in this case, which indicates a missing message.

 Now that we’ve discussed the changes in language support, let’s turn our attention
to validation. The language support we just looked at will play a big role in user mes-
sages as we construct meaningful dialog with the user interacting with our website.

14.2.6 The data police

How do your action classes handle invalid data entered by the user? We hope you
never allow invalid data to make it into your action classes, at least not the kind that
could be easily prevented. We now compare the S1 and S2 validation frameworks to
see how they perform their traffic cop duties. These respective frameworks are layered
between the web page and action class, and the validation rules for determining the
data validity are configured independent of either one. In S1, the traffic cop was the
Commons Validator, which leaned on the S1 ActionForm derivatives ValidatorForm
and ValidatorActionForm. There was a great deal of stitching involved to get Com-
mons Validator to cooperate with S1, and when one or the other API would evolve, you
were back with a needle and thread to get it working again. In fact, as I was writing this
chapter, my application started throwing heaps of stack trace data at the console that
required a couple of hours to discover a mismatch in XML files. The funny thing is,
while I was reading through the minutiae I had this vague reminiscence of research-
ing the same problem a few years ago.

 The validator engine in S2 is a core component of the framework that evolved
from Open Symphony XWork. After working with it awhile, you’ll discover how easily

356 CHAPTER 14 Migration from Struts Classic
it performs all the tests the Commons Validator handled, even the complicated vali-
dations you once had to write Java code to authenticate. This section is intended to
help you migrate your validations from S1 to S2. For a full tour guide of the S2 valida-
tion system, see chapter 10.

 We compare the differences by validating the data keyed into the web page shown
in figure 14.4. I’m assuming you already have Common Validator configured and
plugged into S1, so we won’t discuss that here. With S1, we added our rules to a valida-
tions.xml file as shown in listing 14.13.

-<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE form-validation PUBLIC
"-//Apache Software Foundation//DTD Commons Validator Rules
Configuration 1.3.0//EN"
"http://jakarta.apache.org/commons/dtds/validator_1_3_0.dtd ">

<form-validation>
 <formset>

 <form name="S1ReportForm">
 <field property="fromDate" depends="required,date">
 <arg0 key="fromDate"/>
 </field>

 <field property="toDate" depends="required,date">
 <arg0 key="toDate"/>
 </field>
 </form>
</formset>
</form-validation>

The <formset> B tag defines a grouping of <form> C tags according to a country
and language code. The <form> D section appeared many times in a typical S1 appli-
cation, and each grouping addressed a particular form bean/web page scenario. As
you can imagine, this file became large and was difficult to administer in a multiple-
developers environment. The form bean property validity depends D on the rules it’s
registered to pass. If a rule fails validity, the property name for this key E is substi-
tuted into the respective error message that’s displayed back to the web browser.

 S2 takes a simpler approach to solving the validity problem. Rather than lump all the
website validations in a single file, S2 allows you to manage the rules at the object level.
This eases the burden of source file contention and allows you to focus on simpler units
of work. There are many conventions you can use to achieve more or less granularity,
and a common approach is the naming convention {Action}-validation.xml. However, if
annotations are your deal, you can decorate your action classes instead of using the XML
approach. In addition to base validation, S2 offers client-side validation with JavaScript
and a new Ajax-based option. Let’s take a look at the S2 validation for our report action
shown in listing 14.9. The {Action}-validation.xml naming convention for this action
yields ReportDateSelection-validation.xml, revealed in listing 14.14.

Listing 14.13 Struts 1 validations.xml file

Locale
section

B
S1 form
bean name

C
Validation
rules to apply

D

Key from
ResourceBundleE Validation

rules to apply
D

Key from
ResourceBundleE

357Converting by piecemeal
<!DOCTYPE validators PUBLIC
"-//OpenSymphony Group//XWork Validator 1.0.2//EN"
"http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">

<validators>
 <field name="model.fromDate">
 <field-validator type="required">
 <message key="required" />
 </field-validator>

 <field-validator type="date">
 <message key="date" />
 </field-validator>
 </field>
</validators>

The <field> B tag defines a grouping of <field-validator> C tags, each of which
validates the field against specific rules. If a rule fails validity, the message key D is
constructed as the error message displayed in the web browser. The message in S2 can
be constructed with variable data pulled directly from the ValueStack associated with
this request. This allows you to build messages that make good sense to the user with-
out having to jump through all the {0},{1},{2} hurdles to substitute dynamic bits into a
message. If it’s easy, chances are it’ll get done. Please review the chapter on validation
to get the big bang. This isn’t just the Commons Validator warmed over!

 This evening as I’m shopping the Web for better rates on HDTV service, I’m again
reminded of how many Struts Classic applications are hosted on this planet. Most of the
big players are using Struts Classic. As I gaze into those embedded .do web extensions,
I start to think of ways I could offer you better returns on your S1 investments as you
move to Struts 2. Before we wrap up, I want to discuss a plug-in that allows you to snap
Struts Classic actions, forms, and validations into a Struts 2 application. I’m well aware
that certain S1 artifacts are too “something” to refactor right away, so this might be a
tool to allow you to continue receiving dividends on those works of art.

14.2.7 Can we just get along?

If you’re a student of design patterns, chances are the open-closed principle is among
your 10 commandments. Like any well-designed software, you should be able to extend
the functionality without modifying existing code. Struts 2 leverages plug-ins for this
very purpose. If you use Firefox or Eclipse, you already know how this works. When you
need to use a feature that wasn’t included in the “baseline,” you install a plug-in that
provides the capability you seek. Chapter 12 discussed plug-ins in detail, so here we sim-
ply discuss a plug-in that allows Struts Classic components to appear as if they were
Struts 2 components. This plug-in is called struts2-struts1-plugin, appropriately
enough, and to take advantage of it, you simply drop it in the WEB-INF/lib folder of your
application and start using the new feature. This plug-in utilizes available S2 intercep-
tors to adapt the request life cycle of an S1 action. Studying this will not only help you
leverage your S1 actions, but may also reveal smarter design decisions.

Listing 14.14 Struts 2 ReportDateSelection-validation.xml file

B
C

D

C
D

358 CHAPTER 14 Migration from Struts Classic
 All right, we know the action class was a singleton in S1 and that it interacted with a
form bean in a scope you specified. S2 actions are thread-safe and have no concept of
a form bean. So let’s see how the S1 plug-in dresses up the old action/form pair to
appear as an S2 action. If you aren’t comfortable with interceptors, you might want to
refer to the index for a refresher because you’re about to see the interceptor magic
performing a few tricks.

 This plug-in creates a new S2 package called struts1-default that extends
struts-default. The new struts1-default package includes new interceptors that
are sandwiched into a default interceptor stack assembled to mimic the S1 request
cycle logic. You simply create an S2 package that extends the struts1-default pack-
age and you’re ready to roll. Listing 14.15 illustrates how we configure an S1 action to
be executed in your S2 application.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>

<package name="hybridActions"
 namespace="/old2new"
 extends="struts1-default">

<action name="enroll" class="org.apache.struts2.s1.Struts1Action" >
 <param name="className">com.strutsschool.s1.actions.EnrollAction</param>

 <interceptor-ref name="scopedModelDriven" >
 <param name="className">s1.webapp.forms.EnrollForm</param>
 <param name="name">enrollForm</param>
 <param name="scope">request</param>
 </interceptor-ref>

 <interceptor-ref name="struts1Stack"></interceptor-ref>

 <result name="success">enrollPage</result>
</action>

</package>
</struts>

The <package> B is a typical configuration with a namespace C and parent package
to extend D. The action mapping is where things start to get interesting. The class
you specify here is the S1 plug-in class E, and it expects a parameter F which is the
qualified name of the existing S1 action class. The next peculiar section is the config-
uration of the scopedModelDriven G interceptor. This interceptor is an integral part
of S2 and has a companion interface with the same name. The S1 class E implements
this interface so the parameters for className H, name I, and scope J are where we

Listing 14.15 Packaging Struts 1 actions in Struts 2 package

B
C

D

E
F

G
H

I
J

1)

359Summary
specify our S1 action form. The last interceptor 1) is actually defined in the S1 plug-in
as the stack of interceptors that make the magic happen.

 This plug-in also allows you other configurations according to what your S1 map-
ping looked like. For instance, you might not have used a form bean, or perhaps you
were using the S1 Commons Validator. These use cases and more can be configured
with the new plug-in.

14.3 Summary
This chapter has covered many practices that you can begin using to migrate S1 apps
to S2. It shared a pragmatic approach to migrating your existing applications a piece
at a time and wrapped up with a discussion about how the struts2-struts1-plugin allows
you to bring your S1 artifacts into the S2 application without tampering with them at
all. As you might imagine, this isn’t exhaustive coverage of every migration technique
possible, as that would be overwhelming. Regardless of the path you choose, this chap-
ter will get you on your path to migration.

Advanced topics
In the previous chapter, we discussed migration strategies for converting a Struts 1
website to Struts 2. We now discuss advanced topics that either didn’t exist in
Struts 1 or were cumbersome to implement. This is the feel-good chapter of the
book, designed to assist both developers writing web pages and the infrastructure
team tracking web hits and sizing machinery to handle the traffic. We show tech-
niques to help keep users informed about why they’re waiting and how much
longer it’s going to take. We also add a dash of Tiles pizzazz so you can change the
look and feel of your entire site with a couple of keystrokes. Lastly, we look at ways
to optimize your action mappings that take advantage of OGNL and the Value-
Stack. Once you’ve completed this chapter, chances are you’ll even look better!

This chapter covers
■ Invoking messages
■ Dealing with impatient users
■ Working with CRUD operations
■ Maintaining look and feel with Tiles
360

361Advanced action usage
15.1 Advanced action usage
By now you probably feel like you’ve seen every permutation of action mapping. It’s
true there are many ways to do things in Struts, and it was probably best that we waited
until now to show these advanced features. Actions and their declarative mappings are
at the heart of Struts 2, and it only makes sense that we should have freedom when it
comes to wiring them together. Strap on your safety belt and let’s look at the wild ways
that we can optimize our action declarations.

15.1.1 Alternative method invocation

We’ve seen how you can easily write actions to respond to web requests and how your
execute() method is called to begin the response processing. But suppose you have
several closely-related web features. You wouldn’t want to create a different action for
each related feature, would you? Neither would we. Struts 2 offers support for wild-
cards that allow you to have more than one method in your action class and have the
correct method selected at request time. In addition to this mapping support, you can
also specify the method that should be invoked as you configure the action mapping
itself. Review the action mappings in listing 15.1.

<action name="samples" class="Samples">
 <result name="success">samplesPage</result>
</action>

<action name="samplesHead" method="head" class="Samples">
 <result name="success">samplesPage</result>
</action>

<action name="samplesTail" method="tail" class="Samples">
 <result name="success">samplesPage</result>
</action>

Notice how we’ve specified the same action class for three distinct mappings. This is a
straightforward way of specifying which method the framework should invoke without
passing parameters that your execute() would have to turn around and switch on.
Consider the following three requests:

1 http://www.strutsschool.com/samples/samples.action
2 http://www.strutsschool.com/samples/samplesHead.action
3 http://www.strutsschool.com/samples/samplesTail.action

Now look at the corresponding action class in listing 15.2. It contains the two meth-
ods, head() and tail(), that were specifically wired to action mappings samplesHead
and samplesTail respectively. So what about the execute() method? When does it
get called? The framework calls this method when you make request number one. It’s
the default method name that’s expected to be there and doesn’t need to be specifi-
cally mentioned in your action mapping.

Listing 15.1 Struts action mappings with method specified

default execute()
method of Samples

head()
method of
Samples

tail()
method of
Samples

http://www.strutsschool.com/samples/samples.action
http://www.strutsschool.com/samples/samplesHead.action
http://www.strutsschool.com/samples/samplesTail.action

362 CHAPTER 15 Advanced topics
public class Samples {

 private String coinToss = "Not yet flipped";

 public String execute() {
 return SUCCESS;
 }

 public String head() {
 setCoinToss("Head");
 return SUCCESS;
 }

 public String tail() {
 setCoinToss("Tail");
 return SUCCESS;
 }

 public String getCoinToss() {
 return coinToss;
 }

}

As you can see, this makes it easy to use the same action in multiple action mappings.
But do we really want so many action mappings at all? In the next section, we look at a
powerful feature of Struts 2 called dynamic method invocation. This helps out by allow-
ing us to remove the method name from the mapping altogether and simply pass the
method name at runtime.

15.2 Dynamic method invocation
All right, the previous section described a declarative way to map web requests to
methods in the same action. While this is useful in eliminating the need to create mul-
tiple related action classes and writing if/else spaghetti code in a single execute()
method, this could get nuts if there were more than a couple of alternative methods
in an action. Six related methods would require six action mappings, and you’d like to
leave work today in time to take your friend out to dinner!

 Dynamic method invocation takes the idea of alternative method selection to a
higher level. Rather than code all the individual mappings yourself, we write a single
mapping and turn the nitty-gritty details about which method to invoke over to the
framework. After all, shouldn’t the framework be doing the heavy lifting? In this sec-
tion, we shift the Struts 2 declarative architecture into high gear.

15.2.1 Wildcard method selection

Let’s take a look at a familiar requirement. We’ve been asked to design a new website
feature that allows the user to maintain a coin collection. It’s the same old routine:
add, change, remove, list, print, yada-yada-yada...coins. In fact, didn’t we write a new

Listing 15.2 Action class with multiple related methods

363Dynamic method invocation
web feature last week that enabled the web users to add, change, remove, list, and
print members? At this rate, your struts.xml action mappings are going to overflow
the kernel.

 As I started to write the code for the coins feature, déjà vu suggested I should stop
what I was doing and take a step back. As I compared my coding last week to what I
was about to write, the following pattern began to emerge. Table 15.1 identifies the
methods that were common between these two web features.

I always try to factor out commonalities, and I never want to reinvent the wheel. I
could see that specifying all these names in the struts.xml file was a bad habit from
years gone by, so I decided to start searching the web to see how others had solved this
problem with Struts 2. After looking at examples and sorting out their good and bad
techniques, I ultimately crafted the approach that we explore over the next several
pages. Since there are many moving parts, you need to study all the pieces to under-
stand why any one puzzle piece works the way it does. This is the biggest problem in
complex systems today; developers don’t see the forest because they’re too concen-
trated on a tree. Let’s begin by looking at the action class for our coin collection fea-
ture in listing 15.3. Here we see an action class containing a common collection of
behaviors found in many action classes, each of which differs only slightly.

public class CoinAction{
 public String show() {
 ...
 return SHOW;
 }

Table 15.1 Recurring patterns found in struts mappings

Action method Description Next action method

add Prepare web page for save save

save Commit INSERT list

edit Prepare web page for update update

update Commit UPDATE list

destroy Prepare web page for remove remove

remove Commit DELETE list

show Prepare web page for detail
display

list

list Prepare web page for list dis-
play

list

print Prepare web page for print list

Listing 15.3 The CoinAction class

B

364 CHAPTER 15 Advanced topics
 public String add() {
 ...
 return ADD;
 }
 public String edit() {
 ...
 return EDIT;
 }
 public String destroy() {
 ...
 return DESTROY;
 }
 public String list() {
 ...
 return LIST;
 }
}

This action class is a simple POJO B. It contains a few methods, each of which returns
a task-appropriate result. For instance, add() C will prepare to add a page and return
the resulting add to the Struts 2 framework. Likewise, the destroy() D behavior will
prepare to delete a page, where data is likely obtained for confirmation and the result-
ing destroy is returned to the framework.

 In fact, this collection of standardized behaviors is so common that we extract
them into their own class so similar actions can take advantage of the shared code.
Now let’s a look at the wildcard mappings for this action in listing 15.4. Note that it
varies from the alternative method invocation in that it doesn’t contain hard-coded
methods to call in the action mapping declaration. Instead, it specifies the method to
invoke as a substitution marker {1} that’ll be interpreted at runtime by parsing the
request URL. The asterisk at the end of the mapping name is where the method name
is specified.

<action name="CoinAction_*" method="{1}" class="CoinAction">
 <result name="show">/pages/member/show.jsp</result>
 <result name="add">/pages/member/add.jsp</result>
 <result name="edit">/pages/member/edit.jsp</result>
 <result name="destroy">/pages/member/destroy.jsp</result>
 <result name="list">/pages/member/list.jsp</result>
</action>

This mapping is wired in such a way as to expect the desired method to immediately fol-
low the underscored character B on the request URL. This method name will be sub-
stituted in the method="{1}" attribute, as it’s the first asterisk in the name. RESTful
mappings might contain several such asterisks and their portions would be stripped
from the URL and substituted into {1}, {2}, {3}, and so on. The resulting method exe-
cution will return the standard name String C, which Struts 2 matches on in order to
present the appropriate web page.

Listing 15.4 The CoinAction wildcard mapping

C

D

B

C

365Dynamic method invocation
 Now that we’ve seen the CoinAction class and its declarative configuration, let’s
consider the following three web requests in terms of the wildcard substitution that
results in the runtime requirements of the requests:

1 http://www.strutsschool.com/coins/CoinAction_list.action
2 http://www.strutsschool.com/coins/CoinAction_add.action
3 http://www.strutsschool.com/coins/CoinAction_destroy.action

These three requests would invoke the list(), add(), and destroy() methods
respectively of the CoinAction class. This easily allows you to group your related
behaviors together in a single action class, and also significantly reduces the required
action mapping code.

 One thing to be aware of is that the Struts 2 filter doesn’t look for the best match;
it looks for the first match. This means you have to make sure that less-specific wild-
card mappings are coded after any more-specific mappings in your configuration.
Struts 2 allows you to parameterize other elements of the action mapping, too. In the
next section, we exploit an aspect of the mapping that allows us to determine in real-
time what the next step should be in the workflow. I call this dynamic workflow for lack
of a better name.

15.2.2 Dynamic workflows

In addition to the wildcard method selection that we studied in the previous section,
Struts 2 also allows you to parameterize other aspects of your action mappings. This
continues the theme of minimizing literal declarations in your configuration map-
pings. Any object on the OGNL ValueStack can be substituted into your declarative
action mappings in real-time. Consider the requirement of dynamically figuring out
the next step in workflow processing. Naturally, the next step can be a consequence of
the previous step and the rules of the business. We can easily add a property to an
action class to contain this “next step” instead of hard-coding all the use cases in an
XML file. The magic is in the action mapping declaration and the way it retrieves the
next step from the action at runtime. Say that certain advanced users are asking if you
can turn off the “Are you sure?” pages included in your workflow. This requirement
can be easily met with Struts 2 and is illustrated in listings 15.5 and 15.6.

public class CoinAction{
 private String nextPage;

 public String destroy() {
 if(user.dontConfirm()){
 nextPage=LIST_PAGE;
 } else {
 nextPage=CONFIRM_PAGE;
 }
 return REMOVE;
 }

Listing 15.5 More dynamic substitutions in our wildcard mapping

Property to
hold next step

Determine
next step

http://www.strutsschool.com/coins/CoinAction_list.action
http://www.strutsschool.com/coins/CoinAction_add.action
http://www.strutsschool.com/coins/CoinAction_destroy.action

366 CHAPTER 15 Advanced topics
 public String getNextPage() {
 return nextPage;
 } …

Pay special attention to the getNextPage behavior in listing 15.5. The nextPage prop-
erty is being determined based on user preferences, and the mapping in listing 15.6 is
navigating the user accordingly.

<action name="CoinAction_*" method="{1}" class="CoinAction">
 <result name="destroy">${nextPage}</result>
</action>

Now that we’ve seen how powerful the Struts 2 runtime can be, you should begin
experimenting with ways to minimize the mappings in your declarative struts.xml file.
If your file has hundreds of action mappings that look similar, chances are you could
refactor them to take advantage of the Struts 2 runtime power by utilizing the wild-
card-mapping support. In the next section, we discuss ways to prevent duplicate form
submits, which happen when a web user becomes impatient and clicks the Submit but-
ton before the previous click finishes. We call this an impatient user.

15.3 Using tokens to prevent duplicate form submits
Users are an impatient lot. I’ve watched my mom load up a search screen and click the
Go button three times in a matter of a few seconds. When I ask her what she’s doing,
she says “I must not have clicked in the middle of the button.” Of course I love Mom
to pieces, but when I hear this I’m convinced she’s nuts! So how can we prevent my
mom from killing the machinery in our server farm? The middleware is already reach-
ing critical mass and the database server is glowing cherry-red. The last thing we need
is transaction duplication. There are also times when processing a user request more
than once could be a big mistake. Imagine a shopping cart checkout form. In this sec-
tion, we take advantage of a Struts 2 feature that helps Mom with her impatience while
easing the load on the server farm by allowing her first search to complete. We also
discuss ways to prevent a form from being processed more than once.

15.3.1 Using the <s:token/> form tag

Suppose you’re prompting the user to complete a banking transaction that involves a
transfer of funds between her accounts. If she were allowed to accidentally submit the
transfer more than once, she would likely be looking for a new bank. Struts 2 provides
support for this conundrum by incorporating a custom tag in your web page and an
interceptor to prevent duplicate requests. Struts 2 uses the following logic to make
this work:

1 Prepare the web page with a unique token embedded as a hidden field.
2 Stash this unique token in the user session.
3 Return the page to user browser.

Listing 15.6 More dynamic substitutions in our wildcard mapping

Method for action
mapping workflow

367Using tokens to prevent duplicate form submits
4 When the form is submitted, the two tokens are compared.
5 If the tokens do not match, invalid.token result is returned.

Now let’s look at some code. This is illustrated in listing 15.7. The web page simply
includes the <s:/token/> tag in the form that shouldn’t be submitted more than
once. The example is a coin toss and the request must be allowed to complete and
never duplicate for a turn, or else it would be cheating.

<s:form>
 <s:token/>
 <s:textfield key="coinToss"/>
 <s:submit action="flipCoin"/>
</s:form>

Now we’ll look at the declaration that handles this request. This check is performed by
combining the custom tag shown in listing 15.7 with the tokenStack interceptor stack.
Remember, interceptors interrupt your action call so as to provide supporting behav-
ior before your code is executed. It’s precisely this stack of interceptors that checks to
see whether the user has submitted a duplicate request. The mapping is found in list-
ing 15.8. Once this technique is clear, we’ll look at an alternative interceptor.

<action name="flipCoin" method="flipCoin" class="CoinAction">
 <interceptor-ref name="tokenStack"/>
 <result name="success">samplesPage</result>
 <result name="invalid.token">duplicatePage</result>
</action>

The tokenStack includes the token interceptor and is required for the duplicate
checking to occur. The interceptor will return invalid.token when it determines the
request was a duplicate. See Listing 15.9 for an example of this stack.

<interceptor-stack name="myTokenStack">
 <interceptor-ref name="token"/>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

The next interceptor we discuss is a more intelligent version of the token interceptor.
It’s called the tokenSession interceptor and it extends the token interceptor by add-
ing sophisticated logic to the duplicate token-processing checks. Rather than return
the invalid.token when it detects a duplicate request, it blocks the duplicate request
and returns the result from the initial request. In this way, it’s often called the “trans-
parent” solution. The net effect is as though no duplicate submit were attempted. List-
ing 15.10 reveals the subtle difference in the interceptor stack configuration.

Listing 15.7 Web page with token tag

Listing 15.8 Declarative action mapping with token interceptor

Listing 15.9 Interceptor stack for basic token support

Token tag

Posts form to
the server

tokenStack
required

Returned if
duplicate submit

368 CHAPTER 15 Advanced topics
<interceptor-stack name="myTokenStack">
 <interceptor-ref name="tokenSession"/>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

The Struts 2 support for eliminating duplicate transactions is powerful and easy to
use. This support will protect your application against double-clicking and the pesky
browser Back and Refresh buttons. In the next section, we discuss some finesse tech-
niques to provide a finer level of configuration granularity. Perhaps you have methods
in your class that you absolutely don’t want the interceptors to intercept. We reveal
how to make these exceptions known.

15.3.2 Exceptions to the token interceptor rule

The token and tokenSession interceptors we looked at in the previous section sup-
port an additional feature. In fact, this support we’re about to discuss is available in
many places across the framework. We know that interceptors and interceptor stacks
can be applied to requests in Struts 2. We also know that wildcard support and the
framework’s flexibility allow us to have multiple methods in an action class. So now
we’re talking about the situation where interceptors might intercept different meth-
ods in your action class. But what if you need to specify methods that shouldn’t be
intercepted? This topic discusses how easily this is performed. If you have method(s)
in your action mapping class that you do not want to be intercepted for participation in
this token testing, you can exclude them from an include list (or include on an
exclude list), so only those token-sensitive methods are included in the token inter-
ception. See listing 15.11.

<interceptor-stack name="myTokenStack">
 <interceptor-ref name="tokenSession">
 <param name="includeMethods">save,proceed,whateverElse</param>
 </interceptor-ref>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

This supported flexibility is provided by the MethodFilterInterceptor, which sup-
ports the notion of methods to include or exclude from an interceptor. Several inter-
ceptors allow you to specify methods to include or exclude according to your
requirements. If you specify both includeMethods and excludeMethods parameters
on your interceptor configuration and the same method name happens to appear in
both lists, the method will be intercepted, which is to say included. The rules for this
condition must be spelled out in advance, and include always trumps exclude. We
saw in listing 15.11 one way to customize the configuration. Listing 15.12 reveals
another technique.

Listing 15.10 Interceptor stack for advanced token support

Listing 15.11 Interceptor stack sensitive to method names to intercept

369Displaying wait pages automatically
<interceptor-stack name="mySensitiveStack">
 <interceptor-ref name="myTokenStack">
 <param name="tokenSession.includeMethods">save</param>
 <param name="validation.excludeMethods">someMethod</param>
 </interceptor-ref>
</interceptor-stack>

The name we’ve chosen to give this stack of interceptors is mySensitiveStack B. If
you look at listing 15.11, you’ll see this custom stack is the defaultStack with the
tokenSession C added to the top. This interceptor will veto any attempt to process a
request already received. The interesting thing to point out here is that we’ve chosen
a few method names to include D and yet another to exclude E. We can use include
and/or exclude without lists.

 Is Struts 2 flexible or what? Most questions about this new framework revolve
around the best way to configure action mappings. As with any versatile framework,
the right answer is usually “It depends!” You’ll quickly discover which style has been
adopted as a standard in your IT shop or for you personally. Now that you’ve seen the
possible ways to architect the declarative mappings, maybe you’ll be the one to make
the decision for your company.

 In the next section, we discuss a way to provide feedback to the impatient user. If a
user has to wait much more than a couple of seconds for a response, statistics show
that the user will make the request again. Perhaps he believes he didn’t press the but-
ton hard enough or thinks this time it’ll be faster. Admit it; you like it when a progress
bar shows you why you’re waiting and how much longer you’re expected to wait
before things complete. Let’s see how to add this feature.

15.4 Displaying wait pages automatically
How long will your web users wait for a web page to be returned before they start click-
ing again? Do they not know you’re running your best code back on the server or that
some requests just take longer than others? Do they care? In this section, we provide a
way for you to easily display a progress page that keeps your users informed about
what’s going on back on the server—while also ignoring their repeated clicks. The
technique that Struts 2 uses is pretty clever and works well in the stateless HTTP world.

15.4.1 When users are impatient

Although the token and tokenSession interceptors can help prevent duplicate posts
from being submitted and processed, the other common problem with web applica-
tions is users who click too frequently. Long-running pages are often resubmitted mul-
tiple times. The tokenSession interceptor can transparently address this issue, but
sometimes having a simple Please Wait page while the action executes gives the user a
better sense of confidence with your application. The execAndWait interceptor does
that for you. We begin demonstrating this interceptor by looking at the action map-
ping in listing 15.13.

Listing 15.12 Interceptor stack sensitive to method names to intercept

B
C

D
E

370 CHAPTER 15 Advanced topics
<action name="search" class="SearchAction">
 <interceptor-ref name="waitStack"/>
 <result name="success">resultsPage</result>
 <result name="wait">waitPage</result>
</action>

The interceptor stack definition is shown in listing 15.14. Note that the execAndWait
interceptor is declared last. It’s important that execAndWait be the last interceptor,
because it stops the execution and no further interceptors will be called. In the thread
created by the execAndWait interceptor, only the action is executed, so any intercep-
tors after the execAndWait will never be run.

<interceptor-stack name="waitStack">
 <interceptor-ref name="defaultStack" />
 <interceptor-ref name="execAndWait" />
</interceptor-stack>

The last part you need to configure is the page that’s returned to the user while she
waits for the action to complete. Listing 15.15 shows the waitPage returned by the
search action. The most interesting element of the web page is the meta tag in the
head section. This instructs the web browser to rerequest the URL that resulted in this
wait page every two seconds. As long as the processing of the action is going on, the
waitPage view is returned, which sets the browser timer to refresh again in two sec-
onds. Eventually, the action finishes and a page refresh returns the result from the
action by rendering the resultsPage in the browser.

<html>
 <head>
 <title>Please wait</title>
 <meta http-equiv="refresh" content="2;url=<s:url/>"/>
 </head>

 <body>
 Processing your request. Please wait a moment...
 </body>
</html>

This rounds out tokens and wait pages. With a few lines of declaration, you can trans-
form your website into a real jewel for the user and the server. The web pages keep
users apprised of what’s happening, and the fact that the original request finishes
without all the duplicates coming in keeps the server running smoothly. In the next
section, we change gears and discuss another powerful feature of Struts 2 that takes
the pain out of creating your CRUD actions. The idea of augmenting a website to pro-
vide create, read, update, and delete behaviors is prevalent and deserves a streamlined

Listing 15.13 Declarative action mapping for long-running action

Listing 15.14 Interceptor stack for long-running action

Listing 15.15 waitPage to display during long-running action

Wait interceptor stack

Result returned
by interceptor

Request same
URL every 2
seconds

Message displayed
during wait

371A single action for CRUD operations
facility to ease development. The next section discusses how Struts 2 allows you to eas-
ily add these capabilities.

15.5 A single action for CRUD operations
Let’s first discuss what CRUD isn’t. It’s not that yucky code nobody wants, nor is it any-
thing nasty at all. CRUD is an acronym that has come to mean create-read-update-delete
and it typically has to do with persistent data stored someplace. For a new Struts 2 devel-
oper who’s getting the hang of these Struts actions and their declarative mappings, it can
be easy to get carried away with writing a mapping and action class for each type of
request. Before you realize it, you have several hundred (or even thousand) mappings.
So that you don’t find yourself in this trap, we’re going to explain a much better tech-
nique covered in the next several pages. This section discusses how easy it is to write
beautiful code that’s easily maintained without writing too many mappings.

15.5.1 That CRUD

Struts 2 provides several techniques for writing this sort of persistent storage update
code. In the spirit of MVC, we won’t be concerned about how the data is being stored
or even where. Those responsibilities are outside the scope of Struts 2, and implemen-
tation details should be easily swapped out without regard for your Struts 2 code.
Since this section involves several moving parts, let’s first consider the players:

■ Requests and parameters
■ Action mapping and wildcards
■ Action class and implemented interfaces
■ Interceptor stack
■ Custom tags and wildcards

 This might be a great time to review table 15.1. We begin with a request to update
a member. The request is invoked with a URL composed as follows: http://strutsschool.
com/strutsschool/member/MemberAction_edit.action?id=11903950318411660

 The anatomy of this URL is broken down in listing 15.16.

http://strutsschool.com/strutsschool
…/member
…/MemberAction_edit.action
…?id=11903950318411660

The next thing to consider is how this request URL matches up with our declarative
Struts 2 application. Listing 15.17 contains the declarations for this package. You’ll
recall that Struts 2 uses packages in a way similar to Java, allowing us to group related
actions together within a single web application. This enables us to write as many list
actions as we need without worrying about name collisions. So strutsschool/members/
list.action can be easily identified as different from strutsschool/companies/
list.action.

Listing 15.16 The anatomy of our wild URL

http://strutsschool.com/strutsschool/member/MemberAction_edit.action?id=11903950318411660
http://strutsschool.com/strutsschool/member/MemberAction_edit.action?id=11903950318411660

372 CHAPTER 15 Advanced topics
<package name="member" namespace="/member" extends="strutsSchool">

<default-interceptor-ref name="paramsPrepareParamsStack"/>

<action name="MemberAction_*" method="{1}"class="MemberAction">
 <result name="input">${destination}</result>
 <result name="success">${destination}</result>
 <result name="list">${destination}List</result>
</action>

</package>

The only thing that might appear a unusual here is the target destination ${destina-
tion}. For now, just realize that our BaseAction class has a getDestination() method
and Struts 2 is smart enough to call it using OGNL. The action mapping expects a runt-
ime method to be specified, so Struts 2 extracts edit from the request URL and that’s
the method called on the action. But before looking at the action class, let’s briefly dis-
cuss interceptors again. Interceptors are invoked before your action class code is even
considered. They’re also invoked again in reverse order following your action’s code
execution. Our action class implements interfaces that’ll be more easily understood if
we first consider their related interceptors. In the next section, we describe the rela-
tionship between the interceptors we use and their related interfaces.

15.5.2 Interceptors and interfaces

As we’ve mentioned many times in this book, interceptors are the heartbeat of Struts 2,
and they determine workflow and even how much work should flow into a request. One
of the essential interceptors is the params interceptor, which has the responsibility of
grafting request parameters onto JavaBeans. Another interceptor we’ll incorporate into
our CRUD action is the prepare interceptor. Combining these interceptors in a clever
way makes our code simpler and easy to understand. Lastly, we add the modelDriven
interceptor to streamline our web page code that’s responsible for reading and writing
the model properties.

 Struts 2 includes many interceptors and interceptor stacks that are predefined
arrangements of interceptors. Our specified default paramsPrepareParamsStack is one
such built-in interceptor stack. This stack allows our Preparable and ModelDriven
action class implementations to do their magic. As the name paramsPrepare-
ParamsStack suggests, the params interceptor is invoked at two strategic points in the
interceptor stack workflow. Sandwiched in between these two params interceptors are
the prepare and modelDriven interceptors. Let’s look at listing 15.18 to see what behav-
iors our two interfaces provide.

public interface Preparable {
 void prepare() throws Exception;
}

Listing 15.17 Package declaration

Listing 15.18 Preparable and ModelDriven roles

prepare
interceptor

373A single action for CRUD operations
public interface ModelDriven<T> {
 T getModel();
}

Is this making sense so far? If not, you might want to back up and read from sec-
tion 15.1.4 again. It is straightforward once you see it, but it took me several tries to
get it all squared away. If you’re doing okay, I believe it’s time to look at our action
class. This is where everything comes together. I view the action class as the hub in a
spoked wheel. It interacts with the framework and is interacting with nonframework
objects. Web page custom tags and back-end persistence objects are a couple that
immediately come to mind. Listing 15.19 contains our action class.

package com.strutsschool.action;

import…

public class MemberAction extends BaseAction
 implements ModelDriven,Preparable{

 private Member model;

 public Member getModel() {
 return model;
 }
 public void prepare() throws Exception {
 if (getRequestId()==0) {
 model = new Member();
 } else {
 model = (Member) db.get(getRequestId());
 }
 }
}

Now this is what a Java class should look like! This code is simple, yet it does everything
we need it to do. Part of what makes it so clean is the fact that we’ve factored out the
common CRUD stuff into a base class, BaseAction. This base class has code that’s lever-
aged polymorphically to support any action class needing to provide CRUD capabili-
ties. There are also a few properties in this base class that coordinate with custom tags
on the web pages via OGNL so we can minimize hard-coding in the HTML. As you recall
from the chapter 4 discussion on workflow with interceptors, we sometimes need to
“disengage” the validation interceptor from intervening during method execution. We
showed you how to specify the excludeMethods parameter on your interceptor map-
ping as one way of switching this feature off. The CRUD technique takes a different
approach to meeting the needs with annotations. You’ll find the @SkipValidation
annotation specified for those action methods that shouldn’t be validated. This tech-
nique is functionally equivalent to specifying the methods in a comma-delimited string
and passing it to the excludeMethods parameter. You can use the excludesMethods
parameter to tell the workflow interceptor to ignore any validation problems on a per-
method basis, or you can use annotations to mark the methods that should be
excluded. We’re going to use the annotations here.

Listing 15.19 The CRUD action class

modelDriven
interceptor

Base class is
BaseAction

This is model of MVC

ModelDriven
behavior

Preparable
behavior

374 CHAPTER 15 Advanced topics
 We’ll show you the code now and then discuss how a request flows through all the
parts. Listing 15.20 reveals our BaseAction.

package com.strutsschool.action;

public abstract class BaseAction extends ActionSupport {

 protected DB db;
 protected static Log log = LogFactory.getLog(BaseAction.class);
 private long requestId;
 private boolean readOnly=false;
 private String mappedRequest;

 @SkipValidation
 public String show() {
 setReadOnly(true);
 setMappedRequest(Constants.LIST);
 return SUCCESS;
 }

 @SkipValidation
 public String add() {
 setMappedRequest(Constants.SAVE);
 return SUCCESS;
 }

 public String save() { // insert
 db.save(getModel());
 return list();
 }

 @SkipValidation
 public String edit() {
 setMappedRequest(Constants.UPDATE);
 return SUCCESS;
 }

 public String update() {// update
 db.save(getModel());
 return list();
 }

 @SkipValidation
 public String destroy() {
 setReadOnly(true);
 setMappedRequest(Constants.REMOVE);
 return Constants.SUCCESS;
 }

 public String remove() {// delete
 db.remove(getModel());
 return list();
 }

 @SkipValidation
 public String list() {

Listing 15.20 The Super class

Injected
persistence
engine

Unique
request IDUsed in concert with

screen tags and mappings

Web features
accessed via URLs

375A single action for CRUD operations
 // code to fetch list objects is in Tiles Controller
 setMappedRequest(Constants.LIST);
 return Constants.LIST;
 }

 public String getActionClass() {
 return getClass().getSimpleName();
 }

 public String getDestination() {
 return getClass().getSimpleName();
 }

 public String getActionMethod() {
 return mappedRequest;
 }

 // when invalid, the request parameter will restore command action
 public void setActionMethod(String method) {
 this.mappedRequest = method;
 }

 // this prepares command for button on initial screen write
 public void setMappedRequest(String actionMethod) {
 this.mappedRequest = getActionClass() + "_" + actionMethod;
 log.debug("setting mappedRequest to " + getActionClass() + "_"
 + actionMethod);
 }

 public void setReadOnly(boolean readOnly) {
 this.readOnly = readOnly;
 log.debug("setting readOnly to " + readOnly);
 }

 public long getRequestId() {
 return requestId;
 }

 public void setRequestId(long requestId) {
 this.requestId = requestId;
 }

 public void setDb(DB db) {
 this.db = db;
 }

 public boolean isReadOnly() {
 return readOnly;
 }

 public abstract Object getModel();
}

Once you write a base class like this, it never needs to be tampered with. The illustration
is here so you can see an example of how our CRUD stuff hooks together. The main
thing to identify is that the getModel() method is abstract and therefore requires your
specific CRUD actions to implement their behavior of this method. The real heavy lift-
ing to read and write objects is encapsulated in this base class, and your subclasses get

ModelDriven
behavior

Unique
request ID

Injected
persistence engine

Used in concert with
screen tags and mappings

376 CHAPTER 15 Advanced topics
the richness for free. We’re injecting the DB abstraction into this base class with Spring,
so the underlying data store is independent of the web code. We should mention that
the implementation we’re writing uses the slick object database, DB4o.

 The last element to consider before we step back and see how everything interop-
erates is the web pages. We’ve written just two pages to support all the CRUD. The first
page is our membership listing and the other is the detail page. Figure 15.1 shows our
list page.

This web page includes a dynamic table of rows from
a persistent store and hyperlinks to do the CRUD.
Let’s suppose we clicked the hyperlink to edit fred-
Flintstone. Figure 15.2 shows the detail page that
would be presented.

 Now let’s change Fred’s email address and click
OK. Figure 15.3 returns us to the list page and the
updated email for Fred is displayed.

 These web pages were constructed using the
Struts 2 custom tags so the interoperability with the action class and model is nearly
automatic. We name the web fields and model properties the same, and the mapping
between the two is performed by Struts 2. Listings 15.21 and 15.22 contain the model
and detail pages respectively.

Figure 15.1 CRUD list page

Figure 15.3 CRUD list page after edit

Figure 15.2 CRUD detail page

377A single action for CRUD operations

package com.strutsschool.beans;

public class Member {

 private long id = System.nanoTime();
 private Date created = new Date();
 private String email;
 private String userName;
 private String password;
 private String confirmPassword;
 ... get/set methods not shown

}

This Member bean is a simple POJO, and probably looks like one of the first Java classes
you wrote when you were learning Java. Struts 2 follows the K.I.S.S. principle—we like
to interpret the acronym to mean Keep It Simple, Strutter! These properties are made
visible via Struts 2 custom web page tags, as we see in listing 15.22. Keep in mind that
this POJO can have complex property types, and the powerful type conversion engine
will easily convert between the web page string types and their corresponding types in
the POJO. Of course, it converts in the opposite direction as well.

<%@ taglib prefix="s" uri="/struts-tags"%>
<s:form>
 <s:hidden key="id" />
 <s:hidden key="actionMethod" value="%{actionMethod}"/>

 <s:textfield key="userName" readonly="%{readOnly}" />
 <s:textfield key="password" readonly="%{readOnly}" />
 <s:textfield key="confirmPassword" readonly="%{readOnly}" />
 <s:textfield key="email" readonly="%{readOnly}"/>

 <s:submit action="%{actionMethod}" key="label.ok"/>
</s:form>

Now we’ve looked at all the puzzle pieces and should be able to identify the parts and
their function in the framework. In the next section, we put the puzzle together by fol-
lowing a web request from the browser through Struts 2 and finally back to the browser.

15.5.3 Connecting the parts

At this point, we need to stitch the parts together in our mind. My college professors
called this “desk checking” the system, where I was expected to explain how and why
things should work before asking for help. If we’re not clear about how Struts 2 works,
we aren’t going to be clear about our expectations. Let’s take the request URL that
returned the list shown in figure 15.1 and follow it through the framework. This
explains how Struts 2 works and may save you many hours of debugging. This might be

Listing 15.21 The model

Listing 15.22 The web page

Struts 2 tag library

Retained for
validation errors

readOnly set
accordingly in
BaseAction

actionMethod
set accordingly
in BaseAction

378 CHAPTER 15 Advanced topics
a good time to run and get something to drink. In fact, we’ll wait for you to return
before we start the journey of a Struts 2 request. Wow, that was fast! All right, here we go:

1 Struts filter dispatcher receives the request and processes it: http://strutsschool.
com//member/MemberAction_list.action.

2 A mapping (see listing 15.17) is found and the list() method is called on the
action.

3 Members are retrieved and list is returned from the method.
4 Struts makes a move to the ${destination} that’s determined by the base class.
5 The browser is loaded up with the list.
6 The user clicks an edit link to modify a member.
7 Struts filter dispatcher receives the request and processes it: http://strutsschool.

com/member/MemberAction_edit.action?id=1190413556786542000.
8 A mapping (see listing 15.17) is found and the edit() method will be called on

the action.
9 Any parameters received are set on the action and its beans. In this case. we

know id was passed.
10 The prepare() method is called on the action, and if you look back you’ll see

that it either creates a new member or requests the existing member from the
permanent store. In our case, it requests the existing member.

11 The parameter assignment is repeated as in step 9.
12 The edit() method is called on the action.
13 The mappedRequest (form action) is determined and success is returned from

the method.
14 The detail page is dynamically built by accessing the getModel() on your action.
15 The browser is loaded up with the detail page.
16 User makes changes and clicks the OK button.
17 Struts filter dispatcher receives the request and processes it: http://strutsschool.

com/member/MemberAction_update.action.
18 This is a form submit, so many web controls are passed along with request.
19 A mapping (see listing 15.17) is found and the update() method will be called

on the action.
20 Any parameters received are set on the action and its beans. In this case, we

know id was passed.
21 The prepare() method is called on the action, and if you look back, you’ll see

that it either creates a new member or requests the existing member from the
permanent store. In our case, it requests the existing member.

22 The parameter assignment is repeated as in step 20.
23 The update() method is called on the action and list is returned from the

method.
24 Struts makes a move to the ${destination} that the base class determined.
25 The browser is loaded up with the list with changes revealed.

http://strutsschool.com//member/MemberAction_list.action
http://strutsschool.com//member/MemberAction_list.action
http://strutsschool.com/member/MemberAction_edit.action?id=1190413556786542000
http://strutsschool.com/member/MemberAction_edit.action?id=1190413556786542000
http://strutsschool.com/member/MemberAction_update.action
http://strutsschool.com/member/MemberAction_update.action

379Tiles and Struts 2
It can’t be overemphasized how important the interceptor stack is to Struts 2. With
respect to processing a request, the interceptor stack determines what steps are exe-
cuted and in what order. In fact, if we don’t use the appropriate interceptors, it won’t
matter which interface our action classes implement, because unless the interceptor is
included in the stack, the action class method(s) won’t be called anyway.

 Before we wrap up the chapter, let’s talk about the look and feel of our website.
You might’ve noticed in this section that we weren’t specifying what the physical web
page names were for the list and detail pages. This is because we’ve been utilizing
Tiles the entire time, so UI concepts such as page arrangement and file names have
been largely excluded from our discussion. In the next section, we demystify how to
add the advanced features of Tiles to your website.

15.6 Tiles and Struts 2
Struts 2 and its declarative architecture allow you to develop web pages by specifying
only symbolic links and actions instead of literal path names. This has enabled compa-
nies to easily upgrade and evolve their websites to meet architectural changes. How-
ever, Struts 2 does little to assist UI developers with page layout or site look and feel.
This is where Tiles saves the day. Tiles and Struts have been companions for years, and
Tiles has now emerged as Tiles 2, a Struts 2 plug-in. Without a disciplined approach to
your website presentation, the user may become confused and lose confidence in your
site. Maintaining a standard web appearance can be easy when you combine Tiles 2
with Struts 2. If you break out in a cold sweat when the marketing department asks
you to change the website appearance, reading the following section might reduce
your antiperspirant budget.

15.6.1 Taking care of the website look and feel

From 100 yards away, you can tell the difference between the layout of a professional
website and one that was built without a plan. Every mouse click on a poorly designed
site has you wondering if you have entered
a different site! Consistent look and feel is
considered the mark of a professional appli-
cation, so how do many software developers
maintain hundreds of web pages without
deviating from the preferred layout? The
next few sections describe how Tiles 2
allows you to sketch out your look and feel
independent of the pages to be presented.
In fact, since the layout is separate from the
web pages, you can switch out the look and
feel of your entire website in a few key-
strokes. Figure 15.4 illustrates a typical web-
site layout. Figure 15.4 Classic layout

380 CHAPTER 15 Advanced topics
As you can see, the layout is not the content, but rather a placeholder for the content.
A webpage in Tiles is actually made up of many small tiles that your miniature pages
occupy. An individual tile can be further subdivided into tile regions, and on and on.
Figure 15.5 shows a couple of pages that take advantage of this type of design.

 As you can see, the pages share the same look and feel, and differ only by their
body content. If we wanted to move the menu to the top and have it appear horizon-
tally, this would be a change we could make in a single place that would affect the
entire site. In the next section, we configure the interplay between Struts 2 and Tiles.

15.6.2 Configuring the interplay

In the previous section, we discussed the importance of a consistent website appear-
ance overall and the need to be able to easily change the overall look and feel. In this
section, we make it a reality. Figure 15.4 illustrated a typical layout; the Tiles declara-
tion for this layout can be found in listing 15.23.

<tiles-definitions>
 <definition name="baseLayout" template="/layouts/base.jsp">
 <put-attribute name="title" value="Struts School"/>
 <put-attribute name="bodyBackground" value="images/background.jpg"/>
 <put-attribute name="logo" value="images/logo.jpg" />
 <put-attribute name="menu" value="/tiles/menu.jsp" />
 <put-attribute name="body" value="/tiles/body.jsp" />
 <put-attribute name="footer" value="/tiles/footer.jsp" />
 </definition>

additional definitions here...

</tiles-definitions>

Listing 15.23 Tiles definitions

Figure 15.5 Example pages using Tiles layout

Base definition

381Tiles and Struts 2
The name property of the put-attribute tag defines a tile region. Note that this defi-
nition has a few more regions than the classic illustration. Again, there’s no limit to
what you can do with these layouts. In listing 15.24, we explore file base.jsp, which
determines the overall look and feel for the website.

<%@ taglib uri="http://tiles.apache.org/tags-tiles" prefix="tiles"%>
<html>
<head>
<!------------------------ title zone ---------------->
<title><tiles:insertAttribute name="title" /></title>
<!-->
<link rel=stylesheet type="text/css" href="style/style.css">
</head>
<!------------------------ bodyBackground zone ----------------------->
<body bottommargin="0" leftmargin="0" marginheight="0" marginwidth="0"
rightmargin="0" topmargin="0"
background=<tiles:insertAttribute name="bodyBackground"/>>
<!-->
<table width="780" height="143" cellpadding="0" cellspacing="0"
border="0">
<tr valign="top">
<td width="780">
<!------------------------ Logo zone ---------------------->
<img src="<tiles:insertAttribute name="logo"/>" width="780"
height="143" border="0" alt="">
<!--->
</td>
</tr>
</table>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top">
<td width="175">
<table width="175" cellpadding="4" cellspacing="0" border="0">
<tr valign="top">
<td width="175">
<!------------------------ Menu zone ->
<tiles:insertAttribute name="menu" />
<!------------------------------------
</td>
</tr>
</table>
</td>
<td width="510">
<table width="510" cellpadding="5" cellspacing="5" border="0">
<tr valign="top">
<td width="510">
<!------------------------ Body zone ->
<tiles:insertAttribute name="body" />
<!------------------------------------>
</td>
</tr>
<tr valign="top">

Listing 15.24 Overall look and feel page

title tile
region

B

bodyBackground
tile region C

logo tile region D

menu tile
region

E

body tile
region

F

382 CHAPTER 15 Advanced topics
<td width="510">
<!------------------------ Footer zone ->
<tiles:insertAttribute name="footer" />
<!-------------------------------------->
</td>
</tr>
</table>
</td>
</tr>
</table>
</body>
</html>

This is the HTML for one of our overall layouts. You can see several places where we’ve
included the tiles:insertAttribute tags. In B, we’re going to insert the title from
the particular Tiles page definition to be displayed. This keeps the title of the window
in sync with the current request. A more interesting tile is the body F. This is the
region that typically changes the most from page to page, and is often the center of
the web page. Tiles C, D, E, and G are the other regions we chose when laying out
this look and feel.

 This page merely specifies what content will be presented and where it’s to appear
on the page. The Tiles magic happens where a tiles:insertAttribute in the layout
page is matched up with the put-attribute from the tiles definition. In effect, the
pages specified on the put-attribute are inserted into their respective tiles regions
on the site layout master page. But we haven’t discussed the coolest part yet. The defi-
nition in listing 15.23 is named baseLayout and it defines the overall look and feel.
What about the two pages we looked at in figure 15.5? What did their definitions look
like? For the sake of explanation, listing 15.25 includes the definitions for these two
pages along with a repeat of the baseLayout.

<tiles-definitions>
 <definition name="baseLayout" template="/layouts/base.jsp">
 <put-attribute name="title" value="Struts School"/>
 <put-attribute name="bodyBackground" value="images/background.jpg"/>
 <put-attribute name="logo" value="images/logo.jpg" />
 <put-attribute name="menu" value="/tiles/menu.jsp" />
 <put-attribute name="body" value="/tiles/body.jsp" />
 <put-attribute name="footer" value="/tiles/footer.jsp" />
 </definition>

 <definition name="HomePage" extends="baseLayout">
 <put-attribute name="body" value="/tiles/home/homeBody.jsp" />
 </definition>

 <definition name="MemberActionList" extends="baseLayout"
 preparer="ListMembers">
 <put-attribute name="body" value="/tiles/member/membersBody.jsp" />
 </definition>
</tiles-definitions>

Listing 15.25 Overall look and feel page

footer tile
region

G

Base definition

Home page
definition

Members list
definition

383Tiles and Struts 2
Note how these two definitions extend baseLayout and override only the tiles for
which they provide unique content. Whatever regions (or tiles) they don’t override
will contain the content provided by the parent baseLayout. Is this awesome? You
might be wondering what the preparer is for on the MemberActionList definition,
and it’s wonderful that you noticed. This is a Tiles controller and will be fully
explained in section 15.6.4. It’s now time to snap Tiles into the Struts 2 application
and make things roar.

15.6.3 Using the declarative architecture

Struts 2 was designed with the notion of plug-ins, like Eclipse or Firefox. Plug-ins can
override and extend the base Struts 2 architecture to provide custom and unique
functionality. There are already many plug-ins written for Struts 2, and a new one will
probably appear on the scene by the time we finish this chapter. Tiles is also a plug-in,
and we’ll describe how to introduce this extension to the framework now. A Struts 2
plug-in is a single JAR that contains classes and configuration code that extends,
replaces, or adds to existing Struts framework behavior. A plug-in can be installed by
adding the JAR file to the application’s classpath. To configure the plug-in, the JAR
should contain a struts-plugin.xml file, which follows the same format as an ordinary
struts.xml file. The struts-plugin.xml file has the ability to

■ Define new packages with results, interceptors, and/or actions
■ Override framework constants
■ Introduce new extension point implementation classes

The framework loads its default configuration first, then any plug-in configuration
files found in other JARs on the classpath, and finally the bootstrap struts.xml:

1 struts-default.xml from struts core jar
2 struts-plugin.xml from each jar on classpath
3 struts.xml provided by your application

Now that we’ve discussed the basics of plug-ins, we add the Tiles plug-in to our web
application classpath. As of this writing, several common plug-ins are included in the
Struts 2 download, and Tiles is one. To plug Tiles into our Struts 2 application, we
had to add struts2-tiles-plugin-2.0.9.jar and also the tiles API, core, and JSP JAR files to
our classpath. Our hunch is that this’ll be fixed in the next release of Struts 2, since
the only JAR that’s supposed to be added is struts2-tiles-plugin-2.0.9.jar. The next
thing we do is add the required entries to our web.xml file. These entries are identi-
fied in listing 15.26.

<context-param>
 <param-name>
 org.apache.tiles.impl.BasicTilesContainer.DEFINITIONS_CONFIG
 </param-name>

Listing 15.26 Required additions to web.xml file

384 CHAPTER 15 Advanced topics
 <param-value>/tiles/tiles.xml</param-value>
</context-param>

<listener>
 <listener-class>
 org.apache.tiles.web.startup.TilesListener
 </listener-class>
</listener>

The first thing to consider is the struts-plugin.xml file from the struts2-tiles-plugin-2.0.9.
jar. Remember, this file is what adds the atypical behavior to the Struts 2 framework. List-
ing 15.27 contains this content.

<struts>
 <package name="tiles-default" extends="struts-default">
 <result-types>
 <result-type name="tiles"
 class="org.apache.struts2.views.tiles.TilesResult"/>
 </result-types>
 </package>
</struts>

This new result type is what we add to our action mappings to arrange for Tiles to process
our response and return those wonderfully consistent Tiles web pages. Listing 15.28
shows our application struts.xml file. Note how we’ve set tiles as the default result type.

<struts>
 <package name="strutsSchool" extends="tiles-default">
 <result-types>
 <result-type name="tiles"
 class="org.apache.struts2.views.tiles.TilesResult"default="true"/>
 </result-types>
 </package>

 <include file="home.xml"/>
 <include file="member.xml"/>
 <include file="about.xml"/>
 <include file="links.xml"/>
 <include file="samples.xml"/>
</struts>

 Listing 15.29 shows the action mappings for our tiles pages shown in figure 15.5.

<action name="home" class="com.strutsschool.action.Home">
 <result name="success">HomePage</result>
</action>

<action name="MemberAction_*" method="{1}"
 class="com.strutsschool.action.MemberAction">

Listing 15.27 struts-plugin.xml file

Listing 15.28 struts.xml file

Listing 15.29 Action mappings

Tiles
definitions files

Tiles listener

Plug-in adds a
new result type

tiles is default
result type

Match HomePage
with listing 15.25

385Tiles and Struts 2
 <result name="input">MemberAction</result>
 <result name="success">MemberAction </result>
 <result name="list">MemberActionList</result>
</action>

If you look for these target names in listing 15.25, you’ll see the only difference
between the home page and member listing is the body content. The last thing we dis-
cuss is how the members were retrieved. You might recall from section 15.6.2 that we
promised to explain the Tiles controller. The time has come to wrap up our journey of
Tiles by talking about Tiles controllers. If you’ve used Tiles only to manage website
look and feel, you might be surprised to know Tiles also assists you in fetching the data
to be displayed. The next section shows you a slick way to fetch data just in time using
Tiles controllers.

15.6.4 Preparing web page content with a tiles controller

When the request was made to display the members listing, Struts 2 received the fol-
lowing request: http://strutsschool.com//member/MemberAction_list.action.

 If we follow this through the action mapping in listing 15.29, we determine the
Tiles page MemberActionList is returned to the browser. Actually, Struts 2 refers to
the MemberActionList Tiles definition in listing 15.25 to determine what pages to
assemble. In addition to pages specified, we’ve also registered a Tiles preparer for this
definition. This preparer is a Tiles controller that we can write to do prework before
the tiles pages are assembled. The ListMembers class that we specified retrieves the
members that are contained in membersBody.jsp The code for this controller can be
found in listing 15.30.

public class ListMembers extends BaseController {

 public void execute(TilesRequestContext tilesContext,
 AttributeContext attributeContext) {
 tilesContext.getRequestScope().put("list", getMembers());
}

Note how this list is consumed by the web page in listing 15.31.

<s:iterator value="#request.list">
 <tr>
 <td>
 <s:property value="id" />
 </td>
 <td>
 <s:property value="userName" />
 </td>
 <td>
 <s:property value="email" />
 </td>

Listing 15.30 Tiles controller (preparer)

Listing 15.31 membersBody snippet

Match MemberActionList
with listing 15.25

Get
member
list and
store in
scope

Members list populated
in Tiles controller

http://strutsschool.com//member/MemberAction_list.action

386 CHAPTER 15 Advanced topics
 <td>
 <s:property value="password" />
 </td>
 <td>
 <s:date name="created" format="M/d/yyyy" />
 </td>
 <td>
 <s:url id="url" action="%{actionClass}_show">
 <s:param name="requestId" value="id"/>
 </s:url>
 <s:a href="%{url}">Show</s:a>
 </td>
 <td>
 <s:url id="url" action="%{actionClass}_edit">
 <s:param name="requestId" value="id"/>
 </s:url>
 <s:a href="%{url}">Edit</s:a>
 </td>
 <td>
 <s:url id="url" action="%{actionClass}_destroy">
 <s:param name="requestId" value="id"/>
 </s:url>
 <s:a href="%{url}">Destroy</s:a>
 </td>
 </tr>
</s:iterator>

This ties all the parts together. We hope this has answered every question you had
about Tiles and Struts 2. There’s nothing we didn’t cover in this chapter as it relates to
this plug-in. We encourage you to strongly consider this plug-in before you determine
that your pages are inconsistent and you’re knee-deep in alligators. This chapter can
get your project look and feel tuned up before it gets hectic.

15.7 Summary
This chapter should have prepared you to make your website easy to maintain and
easy to use. Our action mappings now incorporate the wildcard feature, and we saw a
great demonstration of factoring all the common CRUD code into a base class. We’ve
worked through issues where impatient users click too much by blocking the clicks
and showing them progress pages. We wrapped up by looking at how to add the Tiles
plug-in to Struts 2 so we can easily present a standard UI while modifying the look and
feel as often as we like. If your copy of the book is like ours, this is the chapter with all
the sticky notes marking topics. The techniques leverage the power of Struts 2 and
often take a few reviews to master. All together, this book should have you prepared to
build a world class Struts 2 website.

index
Symbols

operator 135, 146, 166
in Map literals 162
multiple uses 162
projection, and 162

${expression} 140–141
%{ ... } 152
%{expression} 104, 141, 178

and i18n 291
/*.action 347
/*.do 347
@SkipValidation 373

A

AbstractInterceptor 322
.action 21
.action extension 182

configuring 21
action 203

as central figure of
framework 9

as encapsulation of work 44
basic validation, and 59
business logic, and 44
choosing a result 46
contract 34
cooperating with

interceptors 54
declaring 53
declaring in XML 33
default implementation 53
demonstrated in

HelloWorld 34

execute() 34
flexibility 210
in classic web application 204
invocation 16
invocation process 76
mappings 349–350
obligations to framework 44
properties files, and 60
result agnostic 210
returning control string 46
role in type coversion 106
tag 148–149
targeted by forms 182
to URL resolution 78
two roles of 14
versus action implementation

class 112
action attribute 181, 183

of form tag 182–183
action extension 32, 222
Action interface 34, 37,

52–54, 72
annotations, and 37
introduction 53
result name constants 53

ActionClass.properties 292
ActionClassName-aliasName-

validation.xml 275
ActionClass-validations.xml 263
ActionContext 98, 131–133,

149, 166
accessing from Velocity 224
application map 134
attr map 134
data, and 132
dispatcher result, and 215

i18n interceptor, and 303
in Struts 2 architecture 16
IteratorStatus, and 151
keeper of all data 132
locale determination,

and 302
managing contents 146
MVC, and 133
named objects 143
OGNL, and 132–135
parameters map 134
redirects, and 219
relationship to

ValueStack 133
request map 134
results, and 207, 228
role in architecture 17
Servlet API, and 133
servlets, and 216
session map 134
setting object in 143
storing a ResourceBundle

in 155
storing beans 147
storing objects in 145
tags, and 131
ValueStack, and 135–137

ActionContextCleanUp 311
ActionForm 62, 340–343

migrating to Struts 2 341–343
ActionForward 340–341
ActionInvocation 76, 78, 97

as parameter to invoke() 80
interceptor firing, and 78
interceptors, and 76
invoke() 79
387

388
ActionInvocation (continued)
invoking interceptors 79
results, and 206
role in framework 100
state 79
workflow interceptor, and 85

ActionMapping 340
actionMethod 377
ActionName-

conversion.properties 124
action-oriented framework 9, 43
actionPackages 29, 36
ActionProxy 329
ActionRedirect 220
actions 13, 43–46, 72–73

Action interface, and 53
advanced usage 361–362
Ajax, and 210
as locus of data transfer 45–46
as MVC model 13, 45–46
associating interceptors

with 93
autowiring, and 242
configuring 22
contract with framework 52
creating with Spring 239–242
creation of 233
CRUD operations, and

371–379
declaring 36
form prepopulation, and 171
forms, and 350–352
implementing 24, 52–62
in HelloWorld 30, 32
in Struts 2 Portfolio 52
intelligent defaults, and 25
keeping them clean 45
mapping interceptors to 93
mapping to URLs 49
migrating from Struts 1

340–341
ModelDriven 64–66
multiple entry methods 274
packaging 46–52
role in framework 44
selecting result 46
Struts 2 vs. Struts 1 46
thread safety, and 46
unit-testing 328–332
wiring for validation 261–267
working with interceptors 67
writing 52

action-scoped error message 58

ActionSupport 38, 54–62,
72, 351

Action interface, and 54
basic internationalization,

and 61
basic validation, and 258
locale, and 304
LocaleProvider, and 61
localization, and 60
ResourceBundles, and 60
role in basic validation 54
TextProvider, and 60
validation, and 262
ValidationAware, and 58, 262
workflow interceptor, and 54

add 364
addActionError() 58
addFieldError() 57–58
advanced validation 256
Ajax 168, 228, 356

applications, building
204–205

artist browser 212
client example 205, 209
demands on architecture 14
migrating to 211
plug-in 212
results, and 202, 204
Struts 2 tips 212
tag theme 212
tags 195
web applications 203
with XML

communication 212
Ajax in Action 209
alias-mapped actions and

validation framework 271
alternative method

invocation 361–362
alwaysInvokePrepare 87
anatomy of URL 371
anchor tag 154
annotations 12, 22, 356

declarative architecture,
and 13, 22

declaring validators 278
determining namespaces for

annotated actions 37
for results 38
HelloWorld 36–38
identifying actions with 37
in the source code 37
location 36
mapping classes to tables

with 250

scanning for 23
setting actionPackages init

param 36
telling Struts 2 where to

look 29
tool support 23
used in HelloWorld 36
using with JPA 250
validation framework,

and 257, 278, 281
zero configuration, and

13, 25
Ant 26, 328

Tomcat targets 26
AOP 254
Apache 11
Apache Tiles 313–315
Apache Tomcat 6, 26
appendPrefix parameter 274
application 134

HelloWorld 25–36
applicationContext.xml

235–236
auto-wiring, and 242
Hibernate, and 246
JPA, and 246

applyInterceptor 323
architectural components,

declaring 47
architectural imperative of

a framework 10
architecture

declarative 21–25
flexibility 14
in HelloWorld 30
MVC 4
of Struts 2 13
of UI component tag API 174

array properties and OGNL
mapping 112

Arrays 108, 127
arrays 342

data transfer, and 112
OGNL, and 159
receiving data transfer

with 113
type conversion, and 112

arsenalist 331
aspect-oriented

programming 244
assertions 329
associative array 208
asterisk 364
asynchronous request 209
attr 134

389
attribute types and UI tags 178
attributes 134

common 178–180
non-String 140–141
OGNL, and 139–142
String 140–141

authenticate 356
authentication 95
AuthenticationInterceptor

95, 171
building 95, 99

automatic data transfer 44, 51
uploading, and 68

automation 10
autowiring 243, 254

by auto 243
by constructor 243
by name 242
by type 243
changing the method 243
declarative architecture,

and 243
flavors 242
interceptor 83
potential targets 242
struts.properties, and 243
with Spring 242–244

Aware interfaces 238

B

Back button 89
banking transaction 366
base class 373
baseLayout 382–383
BaseStrutsTestCase 331
basic validation 258–261, 280

implementing 57
in Struts 2 Portfolio 57
renewing 258
using with the Validation

Framework 260
Beans 311, 317
beans 146

postprocessor 247
properties, referencing 158
tag 145–148
type conversion, and 102

beautiful code 371
best practices 11, 231

web application
deployment 30

binding request parameters 8

bloated struts-config.xml
file 349

Bob Lee 317
bonus components 198–201
Boolean 108

request params 190
values in forms 189

breadcrumb plug-in 321–325
BreadCrumbInterceptor 323
browser 168

as application 206
locale determination 289

build 30
methodology 28
tool 26

building Ajax applications
204–205

built-in interceptors 78, 81–90
built-in validators 267
BundleName_languageCode.

properties 285
bundles

retrieving messages
from 295–299

specifying with i18n tag 299
business logic 8–9, 43, 72,

107, 203
actions, and 44
calls 9
in HelloWorld 33

C

calls 9
cascading style sheets 353
chain of properties 158
chapterFive.xml 111
chapterSeven.xml 172
chapterThree.xml 47

basic validation, and 58
charts 315
checkbox component 189
checkboxlist component

189, 196
Circles, converting to

Strings 123–124
classes 28

ActionSupport 54–62
Locale 284–286
mapping to database

tables 250
wrapper 109–111

classic web application 203–204
ClassName-aliasName-

validation.xml 276

ClassName-conversion.
properties 117, 342

ClassName-validation.xml 273
classpath resources 28
client/server 4–5
closing tags 148
code coverage 331
coding

JPA 249
JSON result 206

Collection and OGNL 162
collection-backed

components 190–198
prepopulation, and 197–198

Collections 114, 127, 342
as targets of data transfer 114
data-transfer, and 111
OGNL, and 159
select boxes, and 191
type conversion, and 111
type specification, and 117
UI component tags, and 191

comma-separated expressions in
OGNL 164

comments in source code 32
common plug-ins 311–316

JFreeChart 315–316
SiteMesh 311–312
Tiles 313–315

Commons Validator 355
migrating to validation

framework 355–357
component tag 333–334
comprehensive test 331
conditional rendering 150
confidence 340
configuration 12, 21

avoiding 25
of framework itself 21
of type converters 124–126
redirect result 220
setting framework

properties 177
two kinds 21–22
types of in Struts 2 39
with Java annotations 23–24
XML, and 23

constants 311, 318
declaring in XML 31

constructor, autowiring 243
ContextLoaderListener 239
control string 72

returned by action 46, 76
control tags 150–151
control-flow tags 138

390
controller 12
in MVC 13

convention over configuration
3, 25, 169, 186

conversion error 111
conversionError interceptor and

validation 259
converting types 102
core components of Struts 2 43
counter bean 146
coupling 233
creating with Spring 239–242
cross-cutting concerns 75
cross-cutting tasks 16

factoring out of business
logic 54

CRUD 171, 370
actions, and 371–379
prepare interceptor, and 87
workflow interceptor, and 86

crumb tracking 321
CSS 9, 169, 185

for layout 177
tag themes, and 176

css_xhtml 175
theme 176, 187

currency 283
current locale 294
custom tags 333
custom templates, writing 337
custom themes 337
custom validators 267, 269–271

checking password
strength 267–269

customizing type
conversion 122–126

D

data 43
accessing 17

from actions 34
with OGNL 104

ActionContext, and 132
auto transfer 46
binding to Java types 103
carried by action 45
carrying in domain objects 62
coming into framework

105–107
domain data 256
flow through framework

102, 105
incoming 35
into framework 105

leaving framework 107
location 35
location in framework 131
moving through Struts 2 30
outgoing 35
path through framework 35
persistence 232, 245
police 355
referencing from results 64
source 247
storage 17, 132
storage in framework 166
transferred to action 45
transferring 102
type 104
validation of 10, 255
ValueStack, and 132

data binding 6
name and value

attributes 173
data layer 9
data tags 138, 142–149
data tier 72, 203
data transfer 46, 73, 102,

126, 168
Collections, and 111
forms, and 104
key attribute, and 297
key interceptors 82
Lists, and 101, 118
Maps, and 101
methods 62
multi-valued request

parameters, and 111
object instantiation 64
OGNL, and 103
onto array-backed

properties 112
onto domain objects 67
onto Lists 116
params interceptor, and 83
security issues 67
Struts 2 Portfolio, and 112
tags, and 131
type conversion, and 63, 101
UI Components, and 173
UI tags, and 170
validation, and 259
with domain objects 62–67
with object-backed JavaBeans

properties 62–63
data transfer object 72

action as 46
databases, choosing 246
Date 108

dates 342
formatting 283, 301
localizing 301

DB abstraction 376
DB4o 376
declarative architecture

21, 23–25, 383–385
ActionInvocation, and 79
actions, and 43
annotation-based 21, 23–24
choosing a mechanism 24
declaring interceptors 90
declaring results 46
in XML-based HelloWorld 30
Spring object creation,

and 241
with annotations 37
XML elements 51
XML or annotations? 24, 38
XML-based 22–23

declarative mapping 361
declaring

architecture 22–25
interceptors 90–94
JSON results 211
validation metadata 262–265

decorator 311
default bundles 294
default interceptor stack 50
default namespace 49
default.properties 177
default-interceptor-ref

in struts-default 94
XML element 92

defaultStack 74, 82, 93
execution 76
fileUpload 70
i18n, and 303
parameters, and 94
validation framework,

and 259
DefaultTypeConverter 342
definitions 382
department.project 343
dependencies

management of 233
managing with Spring

246–248
dependency injection

45, 231–235, 254, 329
autowiring with Spring

242–244
how it works in code 238
strategies 238–244

391
Dependency Injection
library 317

deploying 26
deployment descriptor 28
design by difference 338
design patterns 11–12, 18, 357
destroy 364
developing interceptors 78
DHTML 206, 210
disctinct mappings 361
dispatcher result 203

declaring 218
dispatcher result type 214

classic web application,
and 204

dispatching to another
servlet 215

includes, and 218
dispatcher results

configuring 218
dispatching to a JSP 215

DispatcherResult 214
divs 177
.do 21
document root 27
DOM 334
domain 8–9
domain data 203–204, 256

exposing via ModelDriven
actions 64

on actions 34
validating 256

domain model 341
domain model objects and vali-

dation framework 271
domain objects

data transfer, and 62
exposed to direct data

transfer 73
ModelDriven, and 64
prepopulation, and 171
used to recieve data

transfer 64, 67
validation, and 271

double validator 260
doubleList 200
doubleselect component

199–201
appearance on page 199

dropCrumb 324
duplicate 367

form posts 89
form submits,

preventing 366–369

requests 89
token 367

DynaForm 341
dynamic method

invocation 362–366
dynamic table 376
dynamic workflow 365

E

Eclipse 327
element type arrays and

OGNL 114
elements, specifying type 116
else tag 151
embedded OGNL, escape

sequence 264
empty action components 32
entity annotation 251
EntityManager 247

coding with 251–253
injecting into service

object 251
injecting with Spring 247

EntityManagerFactory 247, 252
Entry 194
environment

of Struts 2 4
setting up 327–328

error messages
i18n, and 298
in user interface 59
in validation 258
UI tags, and 173
validation, and 58

escape sequence 104, 141
eval() 210
exception interceptor 88
ExceptionHolder 89
exceptionStack 89
excludeMethods 86, 94, 368
execAndWait 369
execute() 44, 203

accessing domain data
from 35

introduction 53
ModelDriven actions, and 65

explicit namespaces 49
expression language 17,

102–103, 126, 131, 157, 166
for maps 119
OGNL power tools 135
pluggability 135
primer 157–165
purpose 104

reference 157–165
syntax 135
ValueStack, and 157–163

expression validator 264
extension points, internal 319
externalized text 187

F

factor 363
factored out 373
factories 234
field element in validation

XML 270
field validators 263

annotations, and 280
short circuiting, and 278

field-validator elements
in validation XML 270
in XML meta-data 263

FieldValidator interface 267
FieldValidatorSupport 267

extending 268
files, uploading 44, 67–72
fileUpload interceptor

67–69, 84
automatic transfer of File 68
exposes new params 68
multiple files 71
params interceptor, and 69
pre- and postprocessing 69
retrieving File in action 71
Struts 2 Portfolio example 69
tweaking 71

filter 29
OpenEntityManagerInView

248
FilterDispatcher 12–13

as MVC controller 13
declaring in web.xml 29
in Struts 2 architecture 16

Filtering 162
filter-mapping 29
findForward 340
Firefox 357
forcing OGNL resolution 141
form bean 352
form component 180–185
form fields

binding to properties
170–173

names, mapping to
properties 109

OGNL, and 158

392
forms 168–174, 182
actions, and 350–352
building a form with Struts 2

tags 70
prepopulation 173
preventing duplicate

submits 366–369
submission 182
tags, <s:token> 366–368

forward 350
frameworks 9–11, 18

alternatives 10–11
architectural decisions, and 4
architecture, and 10
automation 10
for web applications 3
roll your own 11
Struts 2 11–18

FreeMarker 27, 156, 166,
311–312, 332, 354

accessing Struts 2 data 226
accessing ValueStack 227
as basis for UI tags 168
as view layer choice 15
documentation 226
embedding OGNL 226
in UI tags 175
native expression

language 226
result type 204, 223–227
Struts 2 tags, and 175
syntax 139
tags, and 138
UI component templates,

and 175
usage 226

FreemarkerResult 213, 225–227
front controller 13
front end 14

G

generics and type
conversion 117

getBundle() 286
getFieldName() 269
getFieldValue() 269
getLocale() 304
getModel() 65
getText() 290, 296
global actions 31
global result 98, 227
global-messages.properties 187
global-results element of declar-

ative architecture 227

Google Guice 317
graphs 315
Guice 310

H

hard-coding 365
hasErrors() 260
head 361
head component 180
heavy lifting 362
HelloWorld 13, 18, 20, 25–36

annotations, and 24–25
demonstrating Struts 2

architecture 30
introduction 25
JavaBeans, and 35
OGNL, and 35
purpose 20
UI Component tags, and 33
ValueStack, and 35
with annotations 36–38
workflow 30
XML configuration, and 23
xml declarations 32
XML, and 25

Hibernate 232, 237, 244
using with JPA 245–249

hidden component 199
hidden fields 199, 366
hidden request parameters 199
href 154
HTML 5, 9, 168, 334

data, and 103
forms 168–174
fragments 149, 203, 205
generated by UI component

templates 176
goo 185
options 197
pages 205, 228
tables 177, 185
tag themes, and 176

HTML DOM 182
HTML form elements 168
HTML forms

data transfer, and 105
name attribute of fields 36
OGNL, and 104
tags, and 167
UI component 181

HTML markup
generated by UI tags 169
generating 169–170

HTTP response 228
in servlets 216

HTTP. See Hypertext Transfer
Protocol (HTTP)

HttpServletRequest 83, 105,
329, 340

HttpServletResponse 83, 340
human intervention 343
Hypertext Transfer Protocol

(HTTP) 5–6, 102, 157, 302
converting to Java types

from 108
GET types 321
headers and locale 287, 296
hurdles for web

applications 5
in Ajax web apps 205
in servlet API 8

I

i18n 282–283, 305
ActionSupport, and 290
currency, and 301
dates, and 301
dynamic text 299–300
global bundles 295
how the framework finds

bundles 291
key attribute, and 297
locale determination 296,

302, 305
Locale, and 284–286
native Java parameterization

of text 300
numbers, and 301
parameterizing text 299
quick demo 287–291
ResourceBundles, and

284–286
retrieving localized text 295
specifying an ad hoc

bundle 299
Struts 2 internals 290–291
Struts 2 way 286
TextProvider 290
type conversion, and 298
validation framework,

and 297
ValueStack, and 290

i18n interceptor 303–305
i18n tag 154–155, 299

attributes 155
ValueStack, and 299

IDE 26, 327

393
if tag 151
if/else tag 151
impatient users 369
implementation

changing with Spring 237
hiding with interfaces

236–238
implementing

actions 52–62
components 22
type converters 122

include tag 152–153
includeMethods 86, 368
includeParams 154
incoming request data

validation 8
indexing

OGNL, and 113, 115
properties 113

inheritance
Struts 2 packages, and 50
validation inheritance 277

injected 329
injection 318
input

attribute 349
result for validation 58

installation of sample code 26
intelligent defaults 22, 25, 316

versus flexibility 53
intercept() 79, 97, 100
interceptor 12, 311

control flow 80
entry method 79
how they get fired 79
interface 78
params 51, 76
pre- and postprocessing

example 69
sequencing 55
XML element 92

Interceptor interface 95
interceptor stack

declaration of 51, 90–93
default 50

interceptor-ref
parameters, and 94
XML element 92

interceptors 15–16, 44, 74,
99–100, 372–377

ActionInvocation, and 76, 78
alteration of workflow 81
annotations, and 90
architectural purpose 75
associating with actions 90

AuthenticationInterceptor
95, 99

autowiring 83, 242
benefits 77
building block stacks 79
building stacks 77, 90, 99
building your own 95–99
built-in 81–90, 100
code reuse, and 77
commonly used 82
concepts 76
configuring 22
control of workflow, and

59, 261
control string, and 80
coordinating with actions 54
core framework tasks, and 74
creating with Spring 239–242
cross-cutting concerns,

and 75
data transfer interceptors

82–84
declarative architecture,

and 90
declaring 90–94
declaring your own

interceptor 98
default stack 36, 74, 78
developing your own 78
example code 80
exception 88
execAndWait 89
execution 80
fileUpload 68–69, 84
firing order 78
handling common tasks 67
i18n 303–305
implementing core function-

ality of framework 51
importance 51
in HelloWorld 30, 36
in request processing 16
intelligent defaults, and 25
layering power 77
lifecycle 80
life-cycle methods 95
logger 82
mapping to actions 93
modelDriven 88
OGNL, and 159
param tag, and 85
parameterizing 85, 94
params interceptor 82
per-action mappings 93
performance 90

phases 81
postprocessing 75, 96
prepare 87
preprocessing 75, 96
reuse 69
role in architecture 16
role in framework 100
rolling your own 95
scoped-modelDriven 89
separation of concerns,

and 75
sequencing 99
servlet-config 83
static-params 83
timer 82
token and token-session 89
tokenSession 368–369
utility interceptors 82
validation framework,

and 258–261
validation, and 86, 259
when they fire 16
workflow 77, 84
workflow, and 59, 76
working with actions 60
XML declaration, and 90
XML element 92

interceptors element in declara-
tive architecture 93

interceptor-stack, XML
element 92

interface
decouple from

implementations 235
hide implementations 236

interfaces 372–377
Action 52–54
autowiring by type, and 244
hiding implementation

with 236–238
Interceptor 95
ResourceBundles, and 292

internal component
system 316–319

internal extension points 319
internationalization 9–10, 154,

168, 344
basic 61
UI components, and 187
UI tags, and 173
via ActionSupport 61
See also i18n

Internet 4
invalid.fieldvalue.fieldname 299
invalid.token 367

394
invocation of actions 14
invoke methods from

OGNL 164
invoke() 81
IoC. See dependency injection
iterator tag 150–151

attributes 150
iterators 195
IteratorStatus 150–151

J

J2EE 232
JAR files

collecting 245
required by Struts 2 28
web applications, and 7

Java 3
annotations 23
data types 6, 8
generics 331
i18n 283
native i18n support 285
types 157
web application

development 26
web applications, and 4

Java annotations,
configuration 23–24

Java Collections 159
Java EE 3
Java Persistence API 244–253

why to use 244–253
Java Servlet API 5

See also Servlets
Java types 102

converting to 122
data transfer, and 104
tag attributes, and 140

java.lang.Exception 88
JavaBeans properties 62–64,

147, 172, 257
as receivers of data

transfer 110
carrying data on actions 57
carrying data on

properties 44
custom results, and 211
data transfer, and 82
on action 45
on actions 34
parameters for validators,

and 268
setter injection, and 236
uploading, and 68

JavaBeans specification 159
JavaScript 9, 168, 182, 356

Ajax client 206
client 209
functions 180
hidden fields, and 199
in head component 180
JSON, and 205
with UI Components 178

Jettision 208
JFreeChart 315–316
journey of a Struts 2 request 378
JPA 231, 234, 244, 253

annotations 250, 254
coding 249
configuration with

Spring 246–248
data operations 253
database configuration 246
EntityManager 247, 251–253
persistence unit 247, 249
required JARs 245
Spring-managed 246
using with Hibernate 245–249
writing the code 251

JSON 203, 228
response 205, 209
result 206
result type 205–213
serializing objects 208
syntax 208

JSP 15, 27, 228
as view layer option 14
in result 202
including with include

tag 152
result type 203
results 213
Struts 2 tags, and 175
tags, syntax 138
using 204

.jsp extension 183
JSTL 141, 156, 344

and ValueStack 156
JUnit 329–332

K

key attribute 174, 186
i18n, and 174, 296
ResourceBundles, and 186

key objects, specifying type
for 121

L

l10n 282–283
label 170
label attribute 169, 186, 188
label component 198

usage 199
languages 283
layering and interceptors 77
layout 379–386

consistency 379–383
layout-related markup 186
lazy loading 248
lib 28
List literals in OGNL 160
List, implementing properties

as 115
listKey 193

in pre-selection 198
Lists 108, 127

as targets of data transfer 114
data transfer, and 102
element types, and 114
initializing 117
OGNL, and 115, 159
pointing to data in 108
specifying type for type

conversion 116
UI components, and 191

listValue 193
in preselection 198

literals of OGNL 163
Locale 154, 284–286

coding against directly 286
ResourceBundles, and 284

locale 283, 305
automatic determination 302
detection 302
determination 287
determination with

ActionSupport 61
extensions 294
how the framework

chooses 296
HTTP headers, and 296
letting the user choose

302–305
message retrieval, and 294
overriding 302–305
setting programmatically 305
specificity 294
storing in database 305
Struts 1, and 354

LocaleProvider 61, 304
implementing 305

395
locales, supporting 285
locale-sensitive 284, 345
localization, provided by

ActionSupport 60
See also l10n

localized error messages 174
location parameter 219, 221

OGNL 221
logger interceptor 82
long requests 89
look and feel 311, 360, 379–386

consistency 379–383
loop 150
loose coupling 238

M

managed life cycle 7
Map

elements, specifying type
for 120

OGNL, and 160, 162
mapping 340

form field names to
properties 109–122

interceptors to actions 93
with OGNL expressions

109–122
Maps 108, 127

as targets of data transfer 119
data transfer, and 102
initialization 120
OGNL, and 119
pointing to data in 108
select component, and 194
specifying element type 120
specifying key type 121
type conversion, and 119
UI components, and 191

maps 342
marketing department 379
markup 184, 354
master page 382
Maven 26
message element 273

i18n, and 298
localized text, and 265
XML validation

metadata 263–264
message key 357
message resources, breaking

up 345–346
message text, resource bundles

as 60–62
MessageFormat 291, 302, 306

message-resources
parameter 354

messages
reading from properties

files 291–302
retrieving 294
retrieving from bundles

295–299
meta tag 370
metadata 38

declarative architecture,
and 23

validation metadata 257, 281
with annotations 23, 37

MethodFilterInterceptor 95,
322, 368

methods
alternative method

invocation 361–362
dynamic invocation 362–366
filtering 95
name at runtime 362
wildcard selection 362–365

migrating 346
ActionForms 341–343
actions 340–341
from Struts 1 339–359
piecemeal approach 346–359
to Ajax 211
web pages 352–354

migration 12, 339, 360
miniature S2 context 310
minimum set of libraries 327
mini-MVC 174, 201

of UI components 175
miscellaneous tags 138, 152–156
mock service object 237
model 12, 45

in MVC 13
Model 2 12
model component 34
ModelDriven 64–66, 73, 136,

171–172, 256, 346
actions 64–66

receiving data on model
objects 62

validation framework,
and 271, 273

interface 273
params interceptor, and 83

modelDriven 372
interceptor 88

Model-View-Controller 4
pattern 12–15

modularization of Struts 2
applications 31

modules in XML-based declara-
tive architecture 31

multipart request 68
multipart/form-data 70
multiple selection and

preselection 198
multiple selections 196
multi-valued request

parameters 111
MVC 11–12

Ajax, and 210
cleaner implementation 12
cleaning up 75–77
data persistence, and 248
lazy loading in view, and 248
pattern 12–15
result as view 202
results 228

MyInterface.properties 292
mySensitiveStack 369
MySQL 245
MySuperClass.properties 292
MyWebBundle.properties 345

N

naked POJO 329
name attribute 169, 173, 186,

191, 349
form fields, and 185
key attribute, and 297
prepopulation, and 197

namespace 72, 148, 183, 311
attribute 181, 183
default 49
explicit 49
how they work 32
in Struts 2 package 32, 47
root 49
with annotations 37

naming convention for
annotations 37

nanoTime 377
new operator 233
no-argument constructor 159

OGNL, and 121
nonfield annotation 280
non-String attributes 140–141
nonstring attributes 141
now.ftl 334
null property

access 121
OGNL, and 158

396
numbers
formatting 301
localizing 301

numeronyms 282

O

object creation 232
with Spring 233, 235

object database 376
object instantiation 232
ObjectFactory 233, 253

Spring version 238
Object-Graph Navigation Lan-

guage (OGNL) 12, 15, 30,
126, 131, 166, 274

operator 135, 143, 145, 162
accessing static methods and

fields 165
ActionContext, and 132–135
advanced expression language

features 163–165
advanced features 135
array backed properties,

and 113
array syntax 112
as form field names 109
as glue technology 103
binding form fields to Java

properties 103
Booleans, and 190
data binding, and 104
data validation, and 264
embedded 221
escape sequence 104
expression language 103–104,

133, 135, 157
filtering collections 162
forcing resolution 141
forcing tag attributes to be

parsed for OGNL 141
form field names, and 108
FreeMarker, and 224
full power 157
HTML forms, and 18
i18n, and 287, 290, 300
in HelloWorld 35
in parameters 219
in select component 194
in tag attributes 139–142
in the view 108
initializing arrays 114
instantiation of null

references 121

integration into Struts 2 108
introduction to expression

language 158
list literal in UI

component 191
List literals 160
Lists, and 115, 117
literals 163
locale determination,

and 304
Map literals 161
Map syntax 121
mapping form fields to Java

properties 109
Maps, and 119–120, 160
method invocation 147, 164
null properties, and 158
operators 159, 164
parameterizing localized

text 300
params interceptor, and 83
pointing to data 106
power tools 163
prepopulation, and 172
projecting collections 162
reference 157, 165
referencing data in arrays 114
resolution 141
resolution of expressions

133, 137
ResourceBundles, and 187
role

in architecture 16–17
in data retreival 36
in data transfer 36
in framework 105–107

root object 132, 134–135
Struts 2 tags, and 102
Struts 2, and 157
syntax 157
tags, and 108, 131
targeting JavaBeans

properties 111
targeting properties 125
type converters 103–104, 122
type coversion, and 107
UI components, and 201
UI tags, and 178
value attribute, and 103
ValueStack, and 106, 132,

137, 157–163
Velocity, and 224
with Collections 159

objects
managing with Spring 235

service object 251–253
tightly coupled 233–235

OGNL expression 141
mapping with 109–122
simplifying 143

OGNL expression language 103
OGNL. See Object-Graph Navi-

gation Language (OGNL)
OGNL-to-Java mapping

112, 121
Open Session In View 245
open source servlet containers 6
open-closed principle 357
OpenEntityManagerInView

248, 254
filter 248

opening tags 148
OpenSessionInView 248
OpenSymphony 11
opensymphony.com 312
operators of OGNL 159, 163
option-backed properties 62–67
options in forms fields 191
organizing packages 47–50
ORM 232
overflow the kernel 363
overridden by plug-ins 318
Override framework

constants 383
overriding

locale 302–305
parameters 94
templates 336

P

package element
in declarative architecture 93
in XML declarative

architecture 32
package tag 350
packages 46–52, 72, 371

attributes of 48
comparison to Java

packages 47
containers for framework

components 47
default result type for 212
extends attribute 48
factoring actions into 47
inheritance 49
name attribute 48
namespace attribute 48
organizational strategy 48

397
packages (continued)
organizing 47–50
Struts 2 Portfolio packages 47
struts-default 50, 67–68
URLs to actions, and 48

page refresh 205
page, as view 14
pageable list 330
paid by the keystroke 327, 349
param elements and

validation 264
param tag 154, 156

attributes 156
parameterizing text, and 300
results, and 207, 219

parameterize 365
parameters 134

default parameters 208
overriding 94
setting 94
to interceptors 85, 94
xml tag 94

params interceptor 62, 106
in action 111
modelDriven interceptor,

and 88
preprocessing, and 76
validation, and 55, 259
ValueStack, and 136

paramsPrepareParamsStack 372
parse parameter 219, 227

OGNL, and 221
parsing to Java types 102
pass-through action 33, 184

with annotations 38
password component 187
password strength,

checking 267–269
password tag 187
password validator 267
PasswordIntegrityValidator

268, 270
path attribute 349
pattern 363
performance 223, 328
persistence 373
persistence unit 249
persistence.xml 249
PersistenceAnnotationBeanPost

Processor 252
PersistenceContext

annotation 252
persistent entity 247

mapping to database 251
writing Java classes 251

plug-in architecture
breadcrumbs 321–322,

324–325
classpath 310
Eclipse 309
Firefox 309

plug-in registry 311
plug-ins 357–359

breadcrumb plug-in 321–325
common 311–316
finding 311
overview 310–311

POJOs 328
polymorphic factory

method 331
PortfolioService,

introduction 57
PortfolioServiceInterface 236
PortfolioServiceJPAImpl

247, 251
postprocessing 75, 81
Preparable 87
prepare 372
prepare interceptor 87
prepareInput() 87
prepopulation 304

of collection-backed
components 197–198

of forms 170
UI components, and 173

preprocessing 75, 80
preselection 197–198
presentation layer 14
presentation tier 9
prework 385
primitives 108–111, 127

as targets of data transfer 109
PrincipalAware 84
processing requests 11
production 328
professional 379
progress bar 369
project management 26
Projection 162
properties 158

binding to form fields
170–173

JavaBeans-compliant 62–64
mapping from form field

names 109–122
option-backed 62–67

properties files 28, 154, 306
default 288
for localized text 60
global 292

i18n, and 283
location 60, 287
ModelDriven actions,

and 292
package level 292
reading messages from

291–302
superclasses, and 292
type conversion

configuration, and 116
UI components, and 187
where to put 291–302

property chain 158
property tag 103, 142, 154

attributes 142
i18n, and 290
in HelloWorld 35

PropertyResourceBundle 284
push tag 144–145

attributes 144
ValueStack, and 137

pushed 343
put-attribute 381

Q

querystring parameters 6
dynamically building 219
redirectAction results,

and 222
redirects, and 220

R

radio component 195–196
Collections, and 196

readOnly 377
read-only form fields 199
recursion 77
redirect result

configuration 220
type 219–221

redirect to other actions
222–223

redirectAction 221
result and persisting request

params 222
redirection, contrast with a

dispatch 214
refactor 357
refactoring 326
related methods 362
relative paths 184
reload 328

398
rendering 336
request 6, 134

attribute 216
data 45
life cycle 357
routing of 13

request parameters 6, 8, 45, 84,
105, 108, 131

Ajax, and 210
binding to Java types 8
converting to Java type 125
created by fileUpload

interceptor 68
data transfer, and 110
handling 111
i18n interceptor, and 303
include tag, and 152
multi-valued 111, 113

request processing 11
by Struts 2 15
customizing with

interceptors 77
request_locale 303
RequestAware 217, 330
RequestDispatcher 213–219

dispatcher result type 214
forward() 214
include() 214
integrating other servlets,

and 217
requiredstring validator 263,

265
resource acquisition 234
resource bundles 60

for message text 60–62
resource management 232
ResourceBundle 154, 284, 305

class-backed 286
creation 287
fundamentals 284
how they work 284–285
i18n tag, and 155
key attribute, and 186
subclassing 284
text tag, and 155, 289
validation, and 265

ResourceBundles
and i18n 283–287
associated with actions 288
coding against native Java

i18n 285–286
lookup 291–295
naming conventions 288
with Struts 2 286

resources
message resources 345–346
storing 284–285

response 6
JSON response 207

RESTful 364
result 12, 202, 311

accessing data from 45
accessing ValueStack 107
annotation location 38
as MVC view component 14
chosen by action 46, 76
declarative architecture,

and 211
declaring a new type 211
declaring your own 210
default result types 212
definition of default

names 53
flexibility 212
JSON 205–206
JSPs in HelloWorld 34
pulling data from

framework 104, 107
selection 32, 43
selection with String

constants 53
type attribute 226
usage 211
used for Ajax 202

Result interface,
implementing 206

result types
commonly used 213–223
FreeMarker 223–227
intelligent defaults, and 25
parameterizing 219
Velocity 223–227

results
as MVC views 14–15
built-in 203
built-in types 213–223
configuration 227
configuring 22
creating with Spring 239–242
custom 204–205
declaration 224
declaring 211
different types 202
dispatcher result type

213–219
FreeMarker 225–227
global declarations 227
global results 88

implementing to receive
parameters 207

in HelloWorld 30
intelligent defaults, and 25
JSON type 205–213
JSP 203, 214
lookup by name 227
parameterizing 207
redirect type 219–221
redirectAction type 221–223
role in framework 203–213
scope 227
type conversion, and 102
using 211
velocity type 224–225
working with actions 203

result-type element 221
in declarative

architecture 211, 218, 224
reuse 4

maximizing 332–336
of interceptors 77

reverse order 372
rich-client 168
root namespace 49
root object 134–135
rules of the business 365
runtime

components 23
configuration plug-in 310
creation of framework

components 21
rxception 311

S

<s:token> 366, 368
sample application 20

deploying 26, 30
download 26
installing 26
source code 28
structure 26–27

scanning for actions 38
scope 350
scope attribute 240
scopedModelDriven 358

interceptor 89
select box 191–195

generating options 193
linking two 199

select component 191–195
arrays, and 195
backed by a Map 194

399
select component (continued)
contrasted to radio

component 195
demonstrated in Struts 2

Portfolio 193
HTML output 194
iterators, and 195
prepopulation, and 193
preselection, and 197

sensitive methods 368
separation of concerns 12

business logic, and 59
in basic validation 59
interceptors, and 75

service locators 234
service objects 233–253

implementing 251
injecting 235
interfaces, and 236

Servlet 5
request parameters 105
session 8

servlet 6–8, 152
filters 28
includes 218
integrating Struts 2 with 216
other than Struts 2 29
request 17
response

dispatcher result type,
and 216

results, and 207
session 17

Servlet API 5
accessing from actions 83
decoupling from 233
how to access 134
keeping away from 133
redirects, and 219
working with 216

servlet container 6–7
installing 26

servlet context in Struts 2
URLs 32

Servlet Specification 6, 26, 152
dispatcher results, and 214
importance to Struts 2

developers 27
ServletActionContext 207
ServletActionRedirectResult 22

2–223
ServletConfigInterceptor 83, 97

setter injection, and 235
ServletContext 83, 183
ServletRedirectResult 219–221

session 134
SessionAware 97

setter injection, and 235
set tag 143–144
setter injection 172, 235
setting parameters 94
setting up environment

327–328
shopping cart 366
short-circuit attribute 278
short-circuiting validation

271, 277
simple 176
simple components 180–190
singletons 240, 341
SiteMesh 310–312
sizing machinery 360
skeleton application 27
smart defaults 350
software, structural 10
spaghetti code 362
Spanish 345
Spring 45, 231, 253,

310, 329, 348
AOP 241
applicationContext.xml 239
autowiring 242–244
autowiring interceptor 83
bean post processor 247
bean scope 240
bean XML element 240
beans 239
configuration 239
configuring JPA 246–248
container 239
creating framework objects

with 239–242
declaring Spring beans 240
dependency injection 232,

235, 244
EntityManagerFactory 247
hooking into declarative

architecture 241
in the Struts 2 Portfolio

238–244
integration with Struts 2

apps 238–244
introduction 232–235
JARs 239
managing dependencies

with 246–248
managing objects with 235
namespace 240
object factory 238
plug-in 238, 253

prototype scope 240
schema 240
singleton beans 240
support for JPA 246
transactions 248
ways to inject 238
web application

framework 232
why use with Struts 2 232–238

Spring bean, id attribute 241
Spring transaction

management 253
spring.jar 239
Spring-managed

transactions 254
SpringObjectFactory 241
standards 168
stateless 369

protocols 5
static resource 184
static-params interceptor 83
String attributes 140–141
stringlength validator 258, 264
Strings, converting to

Circles 123–124
strings, converting to Java

types 102
structural software 10
Struts 1 11, 62

actions compared to
Struts 2 44

differences 17
legacy 12
locale, and 354
migrating from 12, 339–359
plug-in 347
Servlet API, and 133

Struts 2
application, basic layout 25
built-in type converters 108
community 26
data storage, and 133
development path 53
expression language 157
flexible architecture 78
framework 11–18
history 11–12
how it works 15–18
interceptors 74
internal extension points 319
migrating from Struts 1 12
OGNL, and 104–105
plug-in registry 323
project 327
Servlet API, and 133

400
Struts 2 (continued)
servlets, and 105
setting configuration

properties 177
tag library 131
technological context 5
type conversion 103
UI component tags 167–201
validation 259
validation options 86
ValueStack 106
web site 72
workflow 256–261

Struts 2 actions
contract with framework 52
implementing 52

Struts 2 components
declaring 21
default set 50

Struts 2 Portfolio 20, 44
ActionSupport, and 85
Ajax client example 205
authentication 48
authentication interceptor 96
basic validation 56
building the actions 52
custom interceptor 75, 95–96
custom validator example 256
data transfer, and 62, 109
default interceptor stack,

and 82
dispatching to another

servlet 215
file upload example 67
form prepopulation

demo 171
i18n example 287
introduction 47
iterator tag demo 150
ModelDriven, and 65
organization 49
packages 47
packaging, and 47
properties files 287
redirectAction example 222
tag demos 142
textfield demo 186
UI Component demo 171
uploading files 69–71
use of OGNL 103
user-selected locale 303
validation framework

example 261
versions 27

Struts 2 tag API 175
overview 137–142
syntax 138–139

Struts 2 tags
arrays, and 114
attribute types 141
cross technology usage 138
in image upload form 70
OGNL, and 103
syntax 138

Struts 2.1 319
Struts Classic 339

migrating from 339–359
struts element

in declarative architecture 93
in XML declarative

architecture 32
Struts guru 340
struts.custom.i18n.resources

295, 345, 354
struts.properties 177, 328

auto-wiring strategy, and 243
i18n, and 295
properties files, and 187

struts.ui.templateDir 337
struts.xml 23, 28, 310, 328

from HelloWorld 30
i18n, and 295
modularizing with

includes 31
struts-2.0.dtd 92
struts2-core.jar 25, 50
Struts2InAction.war 26
struts2-spring-plugin-

2.0.9.jar 239
struts-config.xml 349
struts-default

built-in interceptors 74
default interceptors, and 90
extending 50–51
importance of 51
package 25
using components from

50–52
struts-default package 67–68,

72, 78
heart and soul of Struts 2 51
interceptor declarations,

and 92
interceptor stacks, and 90
interceptors, and 82
results, and 213

struts-default.xml 25, 50, 310
basic validation, and 55
file uploads, and 67

interceptor stacks, and 90
results, and 213
the redirect result, and 220
validation framework,

and 259
struts-plugin.xml 310, 383
StrutsTypeConverter 122, 342
Strutter 377
stylesheet and head

component 180
substitution marker 364
SUCCESS 351
Sun 6
symbolic name 341
synchronized 341, 352
syntax

FreeMarker 139
JSP tags 138
OGNL 157
Velocity 138

T

table markup 169, 187
tag libraries

migrating from Struts 1
343–344

switching 343–344
taglib directive 138
tags 131, 166, 174–178

366–368
action tag 148–149
ActionContext, and 131
attribute types 140, 178
attribute usage 141
bean tag 145–148
categories of 137–142
component 333–334
control tags 150–151
data tags 142–149
for FreeMarker 139
for JSP 138
for Velocity 138
i18n tag 154–155
id attribute 146
if/else tags 151
in HelloWorld 33
include tag 152–153
iterator tag 146, 150–151
miscellaneous tags 152–156
non-String attributes 140
overview 137–142
param tag 145, 154, 156
parameterizing 148, 156
property 104, 140

401
tags (continued)
property tag 142, 147
pulling data from

ValueStack 107
push 137
push tag 144–145
set tag 143–144
setting attributes with

OGNL 178
String attributes 140
syntax 138–139
templated 334–335
text tag 154–155
UI component

reference 178–201
UI components 167, 175, 201
URL tag 153–154
usage 138–139
ValueStack, and 131
var attribute 145–146
view layer technology

options 138
with bodies 144, 150
with different results 225

tail 361
technological context of

Struts 2 3
technology stack 4–8
template 176, 335
template engines 224
templated tags, leveraging

334–335
templates 174–178, 335

custom 337
customizing 176
overriding 336

test-driven development
328–332

testing 77, 235, 237
text

encoding 8
input field 185
localizing 287

text tag 154–155, 289
attributes 155
retrieving localized text 295

textarea component 188
textfield component

169, 185–187
TextProvider 60, 290–295

bundle lookup hierarchy 293
getText() 60
how it finds bundles 293
OGNL, and 290

ResourceBundle search
path 291

validation, and 265
TextProviders and properties

files 291
theme.properties 338
themes 169, 174, 176–178

ajax 177
changing 177
creating from scratch 337
css_xhmtl 177
custom 337
extending 338
simple 177
wrapping 337
xhtml 177

third-party frameworks 325
thread safety and actions 46
ThreadLocal 98, 215, 312

ActionContext
implementation 17

tight coupling 233–235
tile regions 380
Tiles 313–315, 360, 379–386

as the default result type 384
bootstrap 314
context parameter 314
controllers 383, 385–386
inherits 314
insertAttribute 382
integration 314
plug-in 383
struts-default 314

tilesContext.getRequestScope
385

TimerInterceptor 80, 82
title 382
token interceptor 89, 368–369
tokens 368

preventing duplicate form
submits 366–369

tokenSession interceptor 89,
367–369

tokenStack 367
tracking web hits 360
transactional boundaries 248
transactional classes 253
transactions

duplication 366
letting Spring handle it 253
manager 248
with annotations 253

transferring data 102
translation 342
traverse 346

type
autowiring 243
converting 102
specifying for map

elements 120
type converters 104

type conversion 16, 63, 101–102,
106, 126, 131, 157

Collections, and 111
conversions supported out of

the box 108
customizing 122, 124–126
from Java to HTTP 125
handling errors 111
i18n, and 287, 298
introduction 104
Java 5 generics, and 117
Lists, and 114
localized error messages 299
Maps, and 119
multi-valued request parame-

ters, and 111
OGNL, and 103, 122
out-of-the-box 108–109
primitives, and 109
properties file 116
rolling your own

converters 122
specifying types for

Collections 116, 120
the Struts 2 Portfolio, and 112
typed elements 117
UI tags, and 173
validation, and 111, 259
wrappers, and 109

type converters 102–104, 107,
126, 342

built-in 107–122
configuring 124–126
custom 102
default converters 108
global 126
how they work 124
implementing 122
OGNL, and 158
property tag, and 143
property-specific 124–126
tags, and 142
wiring a custom

converter 125
type specification of Collection

elements 115
TypeConverter interface 122
typed elements 116
type-specific conversion 118

402
U

UI component 167, 176, 182
architecture 201
common attributes 178
convention over

configuration 186
customization 201
customizing 170
data binding 170–173
functional range 201
HTML form elements,

and 168–174
HTML markup, and 169–170
i18n, and 296
JavaScript attributes 180
label component 198
layout markup 184
mini-MVC 170
name attribute 70, 172
OGNL, and 162, 172
prepopulation 170, 172
prepopulation of

checkboxes 190
relationship of name and

value attributes 173
tag reference 178–201
tags 175
templates 176
textfield 169–170
underlying FreeMarker

templates 175
usage 178
ValueStack, and 170–173, 195

UI component tags 167–201
in HelloWorld 33
validation errros, and 59

UI components 12, 201
architecture 174
bonus components 198–201
changing themes 177
checkbox component 189
collection-backed

components 190–198
customizing templates 176
data transfer 171
doubleselect

component 199–201
error messages, and 173
example of preselection of

collection backed
components 197

form component 181–185
functional roles 168
head component 180

integration with
framework 170

internationalization, and 173
introduction 167
key attribute 174
label component 198
layout, and 201
locale, and 304
mini-MVC 168, 174
password component 187
radio component 195–196
ResourceBundles, and 174
reusable customization 174
select component 191–195
simple components 180–190
tags 174
templates 174
textarea component 188
textfield component 185–187
themes 174, 176
type conversion, and 173
underlying FreeMarker

templates 168
validation, and 173

UI tags 138
advanced usage 336–338
common attributes 178–180

underscore 364
unique token 366
unit-testing actions 328–332
uploading 67–72
uploading files 73
URL 154, 182, 364, 371

changing in browser 220
extension 21
generation by form tag 184
mapping to Struts 2

actions 49
pattern for Struts 2 29
relative 184
servlets, and 8
targeted by HTML form 182

URL tag 153–154
attributes 153

user authentication in Struts 2
Portfolio 48

user interface 9
building with tags 167

UserAware 98
interface 171

user-defined types and type
conversion 102

utilitarian 325
utility interceptors 82

V

validate() 55, 77, 255
Validateable 55, 77, 85, 258, 280

contrast to Validation
Framework 86

interface 255
validating domain objects

271–274
validation 8, 16, 255, 332, 355

actions, and 261–267
basic 54–60, 258–261
declaring 278
failure 57
i18n, and 298
in Struts 2 Portfolio 55
redefining 274–277
UI tags, and 173

validation context 274–277
domain object local

metadata 276
validation error 55, 111
validation files, testing 332
validation framework 255,

280, 355
advanced topics 271–280
annotation based

metadata 278
annotations sample code 280
architecture 256–261
built-in validators 265–267
compared to basic

validation 86
demonstrated in Struts 2

Portfolio 261
field validators 263
how it works 258
i18n, and 265, 287, 297
implementing your own

validator 269
in Struts 2 workflow 258–261
metadata 257, 260
migrating to Commons

Validator 355–357
ModelDriven actions,

and 271, 273–280
nonfield validators 264
UI components, and 201
using with basic

validation 260
validating domain

objects 271–274
validation context, and

274–277

403
validation framework (continued)
validation interceptor, and 86
validation metadata, and

256, 262
validator inheritance,

and 277
validator short-circuiting 277
workflow 258
XML metadata for

context 275
XWork, and 267
zero configuration, and 280

validation interceptor 86
workflow interceptor 86

validation logic in basic
validation 57

validation metadata
256–257, 259

annotations 257
declaring 262–265
domain objects, and 271
in action local XML 271
in domain object local

XML 271
XML 257
XML example 263

validation rules 355
ValidationAware 58, 85, 258

storing error messages 58
validation framework 258
validation interceptor, and 86
workflow interceptor, and 85

Validators 280
custom 256
interface 267

validators 256, 265–267
built-in 258, 265–267
class level annotations 279
convenience classes 268
custom 267–271
declaring 267, 269–271
field and nonfield

263–264, 267
inheritance 271
inheritance chain 277
introduction 257
mapping 273
parameterizing 267
wiring 263

validators element in XML
meta-data 263

validators.xml 269
ValidatorSupport 267

value attribute 173, 186
form fields, and 185
key attribute, and 297
prepopulation, and 197

ValueStack 15, 30, 131, 166
accessed by control tags 151
accessing from Velocity 224
ActionContext, and 135–137
as target of OGNL 109
as view of domain data 136
as virtual object 106, 135–137
collection-backed

components, and 198
data binding, and 172
data tags, and 142
doubleselect component,

and 200
dynamic localized text,

and 300
expression language,

and 157–163
form prepopulation, and 172
framework usage 195
i18n tag, and 299
i18n, and 287
in classic web application 204
in data transfer 106
in HelloWorld 35
include tag, and 153
key attribute, and 186
managing 144
manipulating 148
mechanics 35
modelDriven interceptor,

and 88
OGNL, and 132, 137,

157–163
param tags, and 264
params interceptor, and 83
placing objects onto 137
pre-selection, and 198
programmatic access 207, 217
property resolution 106
pulling data from 107
pulling values from 140
pushing objects onto 144–145
relationship to

ActionContext 132
repository of data 132
results, and 203, 206, 228
role as default root object for

OGNL 134
role in architecture 16–17
storing beans 147
tag attributes, and 140

tags, and 107, 131
TextProvider, and 290
UI components, and 170, 191
UI tags, and 167
validation, and 259, 264
working with action 203

var attribute 147, 154
Velocity 15, 27, 203, 228, 311

accessing Struts 2 data 224
as view layer option 14
documentation 225
JAR file 224
native expression

language 224
OGNL, and 224
result type 204, 223–227
Struts 2 tags, and 175
syntax 138
tags, and 138
using 224

VelocityResult 224–225
view 12, 202

of MVC 14
view layer and ValueStack 137
view-layer technology 223

choices 166
views 14–15
visitor validator 273

context, and 275

W

wait pages 369–371
waiting 369
waitPage 370
.war file 7
WAR, deploying 26
web application framework

architectural solution 10
automation of common

tasks 10
reasons to use 11

web applications 4, 6–9, 215
building 4
deploying 26
directory structure 27
domain tasks 8
frameworks 9–11
namespace 7
requirements 27
technological context 4
zero-configuration 13

web browser 5
web features 363

404
web pages 352
creating with tiles

controllers 385–386
migrating from Struts 1

352–354
web.xml 28, 217

annotations, and 36
configuring Spring 239
for sample application 28
Spring, and 249

WEB-INF 27
website 379
WebWork 11
widget 168
wildcards 361, 368

mapping 366
substitution 365

wiring your application
components 21

wizards 89
WML 354
workflow interceptor 77, 84, 258

checking for errors 260
checking for validation

errors 58
declaration 55
parameters 85

returning user to input
page 59

role in validation 54
source code 85
two phases of 260

workflow navigation 343
workflows 9, 365

dynamic 365
wrapper classes 109–111
wrapper types 127
WW_TRANS_I18N_LOCALE

304
www.ognl.org 344
www.strutsschool.com 361

X

XHTML 169
xhtml theme 176, 181, 185
XML 12

Ajax applications, and 203,
205

configuration, and 22–23
declarative architecture,

and 22, 43
document structure 92

for declarative
architecture 13

reduction of 24
result type for Ajax 212
Spring, and 239
validation framework,

and 257
validation, and 281

XML-based configuration 13
XML-based declarative

architecture 31
XMLHttpRequest 209, 211
XSLT 15, 354
XStream 208
XWork 355

validation, and 267
xwork.default.invalid.fieldvalue

299
xwork-conversion.

properties 126

Z

zero configuration 13, 25
validation annotations,

and 280

	Struts 2 in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Author Online
	about the title
	about the cover illustration
	Struts 2: a brand new framework
	Struts 2: the modern web application framework
	1.1 Web applications: a quick study
	1.1.1 Using the Web to build applications
	1.1.2 Examining the technology stack
	1.1.3 Surveying the domain

	1.2 Frameworks for web applications
	1.2.1 What’s a framework?
	1.2.2 Why use a framework?

	1.3 The Struts 2 framework
	1.3.1 A brief history
	1.3.2 Struts 2 from 30,000 feet: the MVC pattern
	1.3.3 How Struts 2 works

	1.4 Summary

	Saying hello to Struts 2
	2.1 Declarative architecture
	2.1.1 Two kinds of configuration
	2.1.2 Two mechanisms for declaring your architecture
	2.1.3 Intelligent defaults

	2.2 A quick hello
	2.2.1 Deploying the sample application
	2.2.2 Exploring the HelloWorld application

	2.3 HelloWorld using annotations
	2.4 Summary

	Core concepts: actions, interceptors, and type conversion
	Working with Struts 2 actions
	3.1 Introducing Struts 2 actions
	3.1.1 What does an action do?

	3.2 Packaging your actions
	3.2.1 The Struts 2 Portfolio application
	3.2.2 Organizing your packages
	3.2.3 Using the components of the struts-default package

	3.3 Implementing actions
	3.3.1 The optional Action interface
	3.3.2 The ActionSupport class

	3.4 Transferring data onto objects
	3.4.1 Object-backed JavaBeans properties
	3.4.2 ModelDriven actions
	3.4.3 Last words on using domain objects for data transfer

	3.5 File uploading: a case study
	3.5.1 Getting built-in support via the struts-default package
	3.5.2 What does the fileUpload interceptor do?
	3.5.3 Looking at the Struts 2 Portfolio example code

	3.6 Summary

	Adding workflow with interceptors
	4.1 Why intercept requests?
	4.1.1 Cleaning up the MVC
	4.1.2 Reaping the benefits
	4.1.3 Developing interceptors

	4.2 Interceptors in action
	4.2.1 The guy in charge: ActionInvocation
	4.2.2 How the interceptors fire

	4.3 Surveying the built-in Struts 2 interceptors
	4.3.1 Utility interceptors
	4.3.2 Data transfer interceptors
	4.3.3 Workflow interceptors
	4.3.4 Miscellaneous interceptors
	4.3.5 Built-in stacks

	4.4 Declaring interceptors
	4.4.1 Declaring individual interceptors and interceptor stacks
	4.4.2 Mapping interceptors to actions
	4.4.3 Setting and overriding parameters

	4.5 Building your own interceptor
	4.5.1 Implementing the Interceptor interface
	4.5.2 Building the AuthenticationInterceptor

	4.6 Summary

	Data transfer: OGNL and type conversion
	5.1 Data transfer and type conversion: common tasks of the web application domain
	5.2 OGNL and Struts 2
	5.2.1 What OGNL does
	5.2.2 How OGNL fits into the framework

	5.3 Built-in type converters
	5.3.1 Out-of-the-box conversions
	5.3.2 Mapping form field names to properties with OGNL expressions

	5.4 Customizing type conversion
	5.4.1 Implementing a type converter
	5.4.2 Converting between Strings and Circles
	5.4.3 Configuring the framework to use our converter

	5.5 Summary

	Building the view: tags and results
	Building a view: tags
	6.1 Getting started
	6.1.1 The ActionContext and OGNL
	6.1.2 The ValueStack: a virtual object

	6.2 An overview of Struts tags
	6.2.1 The Struts 2 tag API syntax
	6.2.2 Using OGNL to set attributes on tags

	6.3 Data tags
	6.3.1 The property tag
	6.3.2 The set tag
	6.3.3 The push tag
	6.3.4 The bean tag
	6.3.5 The action tag

	6.4 Control tags
	6.4.1 The iterator tag
	6.4.2 The if and else tags

	6.5 Miscellaneous tags
	6.5.1 The include tag
	6.5.2 The URL tag
	6.5.3 The i18n and text tags
	6.5.4 The param tag

	6.6 Using JSTL and other native tags
	6.7 A brief primer for the OGNL expression language
	6.7.1 What is OGNL?
	6.7.2 Expression language features commonly used in Struts 2
	6.7.3 Advanced expression language features

	6.8 Summary

	UI component tags
	7.1 Why we need UI component tags
	7.1.1 More than just form elements

	7.2 Tags, templates, and themes
	7.2.1 Tags
	7.2.2 Templates
	7.2.3 Themes

	7.3 UI Component tag reference
	7.3.1 Common attributes
	7.3.2 Simple components
	7.3.3 Collection-backed components
	7.3.4 Bonus components

	7.4 Summary

	Results in detail
	8.1 Life after the action
	8.1.1 Beyond the page: how to use custom results to build Ajax applications with Struts 2
	8.1.2 Implementing a JSON result type

	8.2 Commonly used result types
	8.2.1 The RequestDispatcher, a.k.a. dispatcher
	8.2.2 The ServletRedirectResult, a.k.a. redirect
	8.2.3 The ServletActionRedirectResult, a.k.a. redirectAction

	8.3 JSP alternatives
	8.3.1 VelocityResult, a.k.a. velocity
	8.3.2 FreemarkerResult, a.k.a. freemarker

	8.4 Global results
	8.5 Summary

	Improving your application
	Integrating with Spring and Hibernate/JPA
	9.1 Why use Spring with Struts 2?
	9.1.1 What can dependency injection do for me?
	9.1.2 How Spring manages objects and injects dependencies
	9.1.3 Using interfaces to hide implementations

	9.2 Adding Spring to Struts 2
	9.2.1 Letting Spring manage the creation of actions, interceptors, and results
	9.2.2 Leveraging autowiring to inject dependencies into actions, interceptors, and results

	9.3 Why use the Java Persistence API with Struts 2?
	9.3.1 Setting your project up for JPA with Hibernate
	9.3.2 Coding Spring-managed JPA

	9.4 Summary

	Exploring the validation framework
	10.1 Getting familiar with the validation framework
	10.1.1 The validation framework architecture
	10.1.2 The validation framework in the Struts 2 workflow

	10.2 Wiring your actions for validation
	10.2.1 Declaring your validation metadata with ActionClass-validations.xml
	10.2.2 Surveying the built-in validators

	10.3 Writing a custom validator
	10.3.1 A custom validator to check password strength
	10.3.2 Using our custom validator

	10.4 Validation framework advanced topics
	10.4.1 Validating at the domain object level
	10.4.2 Using validation context to refine your validations
	10.4.3 Validation inheritance
	10.4.4 Short-circuiting validations
	10.4.5 Using annotations to declare your validations

	10.5 Summary

	Understanding internationalization
	11.1 The Struts 2 framework and Java i18n
	11.1.1 Retrieving localized text with ResourceBundle and Locale
	11.1.2 How Struts 2 can ease the pain of i18n

	11.2 A Struts 2 i18n demo
	11.2.1 A quick demo of Struts 2 i18n
	11.2.2 A quick look behind the scenes

	11.3 Struts 2 i18n: the details
	11.3.1 Struts 2 default TextProvider ResourceBundle location algorithm
	11.3.2 Retrieving message texts from your bundles
	11.3.3 Using the i18n tag to specify a bundle
	11.3.4 Parameterizing your localized texts
	11.3.5 Formatting dates and numbers

	11.4 Overriding the framework’s default locale determination
	11.4.1 Letting the user interactively set the locale
	11.4.2 Programmatically setting the locale

	11.5 Summary

	Advanced topics and best practices
	Extending Struts 2 with plug-ins
	12.1 Plug-in overview
	12.1.1 How to find plug-ins

	12.2 Common plug-ins
	12.2.1 SiteMesh
	12.2.2 Tiles
	12.2.3 JFreeChart

	12.3 Internal component system
	12.3.1 Beans
	12.3.2 Constants
	12.3.3 Injection
	12.3.4 Struts internal extension points

	12.4 Writing a breadcrumb plug-in
	12.5 Summary

	Best practices
	13.1 Setting up your environment
	13.1.1 Setting up your IDE
	13.1.2 Reloading resources

	13.2 Unit-testing your actions
	13.2.1 The advantage of IoC for testing
	13.2.2 JUnit and the tests
	13.2.3 Testing validation.xml files

	13.3 Maximizing reuse
	13.3.1 Componentization with the component tag
	13.3.2 Leveraging the templated tags
	13.3.3 Connecting the UI-to-object dots

	13.4 Advanced UI tag usage
	13.4.1 Overriding existing templates
	13.4.2 Writing custom templates
	13.4.3 Writing custom themes

	13.5 Summary

	Migration from Struts Classic
	14.1 Translating Struts Classic knowledge
	14.1.1 Actions
	14.1.2 What happened to ActionForms?
	14.1.3 Switching tag libraries
	14.1.4 Breaking up message resources

	14.2 Converting by piecemeal
	14.2.1 Eating an elephant a piece at a time
	14.2.2 The action mappings
	14.2.3 Where the action meets the form
	14.2.4 Turn the page
	14.2.5 No speak English
	14.2.6 The data police
	14.2.7 Can we just get along?

	14.3 Summary

	Advanced topics
	15.1 Advanced action usage
	15.1.1 Alternative method invocation

	15.2 Dynamic method invocation
	15.2.1 Wildcard method selection
	15.2.2 Dynamic workflows

	15.3 Using tokens to prevent duplicate form submits
	15.3.1 Using the <s:token/> form tag
	15.3.2 Exceptions to the token interceptor rule

	15.4 Displaying wait pages automatically
	15.4.1 When users are impatient

	15.5 A single action for CRUD operations
	15.5.1 That CRUD
	15.5.2 Interceptors and interfaces
	15.5.3 Connecting the parts

	15.6 Tiles and Struts 2
	15.6.1 Taking care of the website look and feel
	15.6.2 Configuring the interplay
	15.6.3 Using the declarative architecture
	15.6.4 Preparing web page content with a tiles controller

	15.7 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

