
Jon Manning & Paris Buttfield-Addison

 Swift
Development
for the
Apple Watch
AN INTRO TO THE WATCHKIT FRAMEWORK,
GLANCES, AND NOTIFICATIONS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Jon Manning and Paris Buttfield-Addison

Swift Development for
the Apple Watch

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-92520-1

[LSI]

Swift Development for the Apple Watch
by Jon Manning and Paris Buttfield-Addison

Copyright © 2016 Secret Lab. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald
Acquisitions Editor: Rachel Roumeliotis
Production Editor: Nicole Shelby
Copyeditor: Molly Ives Brower
Proofreader: Jasmine Kwityn

Indexer: Elisa Jepson
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-05-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491925201 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Swift Development for the Apple Watch,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491925201
http://www.allitebooks.org

Table of Contents

Preface. v

1. Understanding the Apple Watch. 1
How Users Interact with Apple Watch 1
How the Apple Watch Works with iPhone 2
App Life Cycle 2
A watchOS App’s Architecture 3
Designing for the Apple Watch 3
Dealing with the Device and Simulator 4
Diving In 4

Building for Simulator 7
Building for the Device 8

2. WatchKit Apps. 11
Displaying Content on the Watch 11
Responding to Actions 13
Controls 15

Text and Labels 16
Images 17
Menus 19
Tables 21
Picker Views 22

Playing Media 23
Getting Text from the User 26
Working with Multiple Interface Controllers 27

Hierarchical Navigation 28
Page-Based Navigation 29
Modal Presentation 30

iii

www.allitebooks.com

http://www.allitebooks.org

Communicating with the Device 32
Sending and Receiving Messages 33
Moving Between Devices Using Handoff 35

Wrapping Up 37

3. Glances. 39
Working with Glances 39
Creating a Glance 40

Creating a Glance Scheme 42
Tapping the Glance 43

Wrapping Up 44

4. Notifications. 45
Creating Notifications for Your iOS App 46
Presenting Notifications 48

Creating Custom Notification Interfaces 49
Static and Dynamic Notification Interfaces 50
Setting Up for Testing Notifications 51
Creating the Interface Controller 52
Wrapping Up 55

5. Complications. 57
Designing a Complication 58

The Data Provider 60
Templates and Timelines 61

Building a Complication 62
Overthinking Our Food 62
Implementing the Complication 63
Presenting the Complication 65
Creating Timeline Entries 66
Supporting Time Travel 68

Wrapping Up 70

Index. 71

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Apple has given developers a lot of toys to play with, and a lot of new things to learn
over the past few years: iPhone, iPad, Swift, and now the Apple Watch. We’ve been
using Swift to build OS X and iOS apps for nearly a year (and enjoying every moment
of it), but now we can also use it to build apps for a tiny wrist-mounted computer—
the kind of science-fiction gadget that we used to dream about as kids is now reality!
We can’t wait to see the apps people create for the Apple Watch.

This book introduces the basic components available to developers who want to build
apps for the Apple Watch. If you’re already familiar with Swift, this book has all the
basics you need to get familiar with the fundamentals of Apple Watch development. If
you’re in the middle of learning Swift from another book or video series, this book
provides an excellent resource to move to once you’re familiar with Swift and ready to
tackle the Apple Watch.

We hope you enjoy learning the basics of Apple Watch development with this book!

Audience
This book assumes that you already know how to use Swift. If you’ve worked through
any other Swift-based book available from O’Reilly, like Learning Swift, you should be
good to go with this book.

We assume that you’re a relatively capable programmer who is happy and confident
navigating around OS X, Xcode, and iOS, but we don’t assume you know how to pro‐
gram for the Apple Watch (that’s what this book is for!)

Organization of This Book
In this book, we’ll be discussing the basics of using Apple’s WatchKit framework to
build watchOS apps. We’ll be coding in Swift, Apple’s newest programming language.

Here is a concise breakdown of the material each chapter covers:

v

www.allitebooks.com

http://shop.oreilly.com/product/0636920045946.do
http://www.allitebooks.org

Chapter 1 reviews what the Apple Watch is—and what it isn’t. We discuss how and
why people might interact with your Apple Watch app, the life cycle of an app, and
how it interacts with the user’s iPhone. We also briefly touch on design contraints and
UI controls available for use in your Apple Watch apps.

Chapter 2 teaches you how to build an Apple Watch app and its iOS counterpart. We
talk about adding controls, working with multiple screens in your app, and sharing
data with iOS apps.

Chapter 3 discusses glances, the non-interactive component of Apple Watch apps that
provides glanceable information to users. We will also demonstrate how to build a
simple glance.

Chapter 4 covers notifications and the Apple Watch. We discuss creating, presenting,
and customizing notifications, as well as how to test notifications and connect them
to your interface controller(s).

Chapter 5 discusses complications, which let you embed small information displays
directly into the watch face to provide timely information to the user.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

vi | Preface

www.allitebooks.com

http://www.allitebooks.org

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, errata, etc.) is available for down‐
load at our site.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Swift Development for the Apple
Watch by Jon Manning and Paris Buttfield-Addison (O’Reilly). Copyright 2016 Secret
Lab, 978-1-491-92520-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Finally, we’d be remiss if we didn’t link to our own blog.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Preface | vii

www.allitebooks.com

http://www.secretlab.com.au/books/swift-development-for-apple-watch
mailto:permissions@oreilly.com
http://secretlab.com.au/blog
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
http://www.allitebooks.org

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/swift-dev-apple-watch.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Jon thanks his mother, father, and the rest of his weirdly extended family for their tre‐
mendous support.

viii | Preface

www.allitebooks.com

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/swift-dev-apple-watch
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

Paris thanks his mother, whose credit card bankrolled literally hundreds of mobile
devices throughout his childhood—an addiction that, in all likelihood, created the
gadget-obsessed monster he is today. He can’t wait to read her upcoming novel.

Thank you to our editor, Rachel Roumeliotis, who kept the book under control and
provided a ton of useful advice on content (we know it was a ton because we meas‐
ured it). Likewise, all the O’Reilly Media staff and contractors we’ve worked with over
the course of writing the book have been absolutely fantastic, and their collective
efforts have made this book better. Thank you also to Brian Jepson, our first editor at
O’Reilly.

A huge thank you to Tony Gray and the Apple University Consortium (AUC) for the
monumental boost they gave us and many others listed on this page. We wouldn’t be
working in this industry, let alone writing books, if it wasn’t for Tony and the AUC
community.

Thanks also to Neal Goldstein, who richly deserves all of the credit and/or blame for
getting both of us into the whole book-writing racket.

We’d like to thank the support of the goons at MacLab, who know who they are and
continue to stand watch for Admiral Dolphin’s inevitable apotheosis, as well as Pro‐
fessor Christopher Lueg, Dr Leonie Ellis, and the rest of the staff at the University of
Tasmania for putting up with us.

Additional thanks to Tim N., Nic W., Andrew B., Jess L., and Rex S. for a wide variety
of reasons. Thanks also to Ash Johnson, for general support.

Finally, very special thanks to Steve Jobs, without whom this book (and many others
like it) would not have reason to exist.

Preface | ix

CHAPTER 1

Understanding the Apple Watch

Apple describes the Apple Watch as “a new chapter in the relationship people have
with technology.” While it remains to be seen whether this is quite the case, the Apple
Watch, as it exists right now, is a tiny programmable computer that sits on your wrist.
It’s even smaller than Apple’s other recent tiny programmable computers.

watchOS apps are written using a framework called WatchKit. The code runs on the
watch, but because the Apple Watch is tightly linked to the iPhone, writing apps for
the Apple Watch also means writing an iOS app.

How Users Interact with Apple Watch
watchOS apps can provide four different components for the user: full apps, glances,
notifications, and complications. You must always create a full Apple Watch app,
which can be opened from the home screen of the Apple Watch.

• Full apps behave in a similar way to iPhone apps, and can have multiple screens
and a range of possible interactions.

• Glances are single screens of content that can be accessed by swiping up from the
watch face. They don’t have any interactive elements—they’re only for displaying
information. If the user taps on the screen, the full app is launched.

• Notifications appear when the watchOS app’s counterpart iOS app receives a
notification. Notifications usually come from the Apple Push Notification ser‐
vice, but they can also be “local” notifications, which the iOS app schedules for
later delivery.

• Complications are small elements that are embedded into certain watch faces.
They’re not interactive, but they let apps add a little more information to the
most quickly accessible part of the phone’s interface. Additionally, they can also

1

participate in Time Travel, in which the user rotates the Digital Crown to view
the watch face as it appeared in the past, or will appear in the future.

The word “complication” comes from the fact that these elements
on the watch face, when they were part of physical, clockwork-
driven watches, were complications in the clockwork assembly.

How the Apple Watch Works with iPhone
watchOS apps are embedded inside iOS apps. When you download and install an iOS
app that contains a watchOS app inside it, that app is automatically transferred over
the Bluetooth link to the watch. If the watch isn’t in Bluetooth range of the iPhone at
the time, it’s installed later.

watchOS apps are independent applications that run entirely on the watch: they do
their own processing, manage their own memory, and can store files on the watch.
However, watchOS apps rely on the parent iPhone for access to any of the user’s data
that’s stored on the device.

Apple Watches require the presence of a parent iPhone. They don’t
work without one; additionally, they specifically require an iPhone,
not an iPod touch or an iPad.

App Life Cycle
Apps for the Apple Watch have a unique life cycle when compared to iOS or OS X
applications. Your app can be launched in a variety of circumstances:

• When the user explicitly launches your app from the watch home screen
• When the user interacts with notifications from your app on the watch
• When the user interacts with a glance provided by your app
• When the watch face needs to update a complication on the watch face provided

by your app

The battery on the watch is significantly smaller than the one built
into the phone, which means that it pays to be very careful about
the work that you do on the device.

2 | Chapter 1: Understanding the Apple Watch

A watchOS App’s Architecture
A watchOS app is very similar to an iOS app: it’s a bundle of resources and code. The
resources include the files that define the UI, any images and media needed by the
app, and the compiled binary containing all of the app’s code.

The watchOS app is exposed to the user as an icon on the Apple Watch’s home screen,
which is the grid of icons that you see when you press the Digital Crown from the
watch face. In addition to the main app itself, a watchOS app can also include the fol‐
lowing:

• A single glance interface, which allows the app to display a quick, single-page
summary of the most important information. For example, when you swipe up
from the bottom of the screen, you can access a quick summary of the current
weather; this is a glance interface provided by the Weather app.

• Customized interfaces for each of the different types of notifications the user
might receive. The Uber app customizes the presentations of notifications that
alert the user when the car he has requested is arriving, to show the license plate
number of the car to look for.

• A number of complications: small user-interface elements that are shown as part
of the watch face. The Weather app also provides a small summary of the current
weather, embedded directly into the watch face.

To communicate with the parent iPhone, you use the WatchConnectivity framework
to send and receive files, or small chunks of information. WatchConnectivity is the
only way to access information that’s kept inside the iOS app—because the Apple
Watch and the iPhone are separate devices, there’s no shared file storage between
them.

Designing for the Apple Watch
The Apple Watch requires you to think about the constraints of the device you’re
designing for with even more pedantry and attention to detail than is required for the
iPhone and iPad. You need to keep the following in mind when designing Apple
Watch apps:

• The Apple Watch has an absolutely, ridiculously minuscule screen—it’s tiny!
• The screen is not visible most of the time
• Nobody wants to spend any more than five seconds, if that, looking at it
• The watch is a separate computer (more on this later)
• It has no keyboard, so the only text input available is via voice dictation

A watchOS App’s Architecture | 3

• It has a very, very small storage capacity—less than 8 GB, and only a tiny fraction
of that is available for you to use

In general, as long as you’re careful—and pay attention to the design constraints of
the watch—you’ll probably be fine if you follow the same general approach that is
taken for iOS development. That said, it’s easy to forget that every single thing that
your Apple Watch app does relies on an often unreliable Bluetooth connection to an
iPhone. It’s especially easy to forget this when you’re using the simulator to test
things, because the Watch simulator doesn’t have to deal with talking over the radio to
its simulated counterpart iPhone. This means that the simulator will be significantly
faster than a real Apple Watch will be.

Dealing with the Device and Simulator
There are two ways to run an Apple Watch app: running it on a real device, and run‐
ning it in the simulator.

Just as with building apps for iPhone and iPad, it’s always better to run your code on a
real device, for a bunch of reasons: the simulator is faster than the real watch, and
responds to user input much more quickly; the simulator is a lot easier to read than
the real watch; and apps running on the simulator don’t have to compete for attention
with other apps. Additionally, when you’re running code on the simulator, you’re not
wearing the app on your wrist, and you’re not interacting with it in the same way.

At the same time, though, building and testing your app on the simulator is consider‐
ably easier than using a real device—you don’t need to worry about pairing, or wait‐
ing for the install to complete. You also don’t have to own a real device. (Again,
though, if you’re making apps, you really should own a watch. Given the cost of buy‐
ing additional hardware, though, it’s understandable to want to start building apps on
the simulator before getting a device.)

Diving In
Let’s dive into creating an app for the Apple Watch. Because we’re starting from
scratch, the iOS app that runs on the phone will be mostly empty, and we’ll focus our
attention on the watchOS app.

To get started, you’ll need a copy of Xcode 7.2 or later installed.

4 | Chapter 1: Understanding the Apple Watch

When shipping a real app, your iOS app needs to be fully func‐
tional. Focus on getting that product complete as well as your
Apple Watch—don’t make a poor iOS app and put your entire
energy into the watchOS app. The first experience your user will
have with your apps will be the iOS app.

1. Launch Xcode. The Welcome to Xcode window will appear, as seen in Figure 1-1.

Figure 1-1. The Welcome to Xcode screen

2. Click “Create a new Xcode project.” The template chooser window will appear
(seen in Figure 1-2). Select “Application” in the “watchOS” section of the list, and
then choose “iOS App with WatchKit App.” Click Next, and on the following
screen, name the project “HelloWatch.” Make sure you choose Swift as the devel‐
opment language, and turn on “Include Notification Scene,” “Include Glance
Scene,” and “Include Complication.” Leave “Include Unit Tests” and “Include UI
Tests” as they are—we won’t be working with them.

Diving In | 5

Figure 1-2. Creating the project

The watchOS app will have the same name as your main application, with “WatchKit
App” attached to the end. So, if you named your iOS app “HelloWatch,” the WatchKit
app will be named “HelloWatch WatchKit App.”

1. Open the scheme selector: it’s the drop-down menu at the top-left of the Xcode
window.

2. Select the HelloWatch WatchKit App scheme.
3. Build and run the app: press Command-R, and the app will build and launch in

the simulator.

You’ll see two windows: the phone and the watch. Both will be empty.

When an iOS simulator is launched for the first time, it will take
some time to prepare itself. This can interfere with the installation
of the watchOS app. If the app doesn’t appear on the simulated
watch, quit both the Simulator and the Simulator (Watch) apps,
and try building and running the app again.

6 | Chapter 1: Understanding the Apple Watch

Building for Simulator
Simulator comes with built-in support for simulating an Apple Watch. When you cre‐
ate an Apple Watch application and tell Xcode to build and run it, Simulator will dis‐
play an additional window, in which your Apple Watch will appear (as seen in
Figure 1-3).

Figure 1-3. The iOS simulator, with an Apple Watch app being simulated next to it

To run an app on the simulator, you simply select the scheme for your WatchKit
application by choosing it in the lefthand side of the scheme selector, and select an
iPhone simulator and Apple Watch combination in the righthand side of the scheme
selector (see Figure 1-4).

Diving In | 7

Figure 1-4. Selecting an iPhone and Apple Watch simulator in the scheme selector

You can also interact with the Apple Watch simulator in much the same way as you
do an actual Apple Watch. When you press Command-Shift-H, the Apple Watch will
act as though you pressed the Digital Crown; when you scroll the trackpad up and
down over the simulated Apple Watch screen, it will act as though you rotated the
Digital Crown.

Take some time to play with the simulated Apple Watch, and get comfortable with
how it works.

You can download additional simulators for use in Xcode. When
you install Xcode, it includes the most recent (as at the time of
download) versions of iOS and watchOS; you can also download
simulators that run older versions of the operating system, and test
your software on those.
To install these older versions, open the Xcode menu, and choose
Prefences. Click the Components tab, and you’ll be shown a list of
simulators to download. Once they’re downloaded, you can choose
which version of watchOS you want to run your app through the
scheme selector.

Building for the Device
To build a WatchKit application for a device, you first need to have an Apple Watch
that’s paired with an iPhone. When you build and install the app, you’re actually
building and installing an iOS app, and the watchOS app it contains is then copied to
the Apple Watch.

Building and running the app on the watch is very similar to using the iOS simulator:
you select the WatchKit app in the scheme selector, and choose your iPhone as the
destination (see Figure 1-5). Hit Command-R to start the building and copying pro‐
cess, and after a moment, the various bits and pieces will be in place.

After the app has finished installing, you may or may not have to manually launch the
app on your Apple Watch. If your app isn’t launched immediately, you need to man‐
ually launch it by pressing once on the Digital Crown, and then locating your app’s
icon on the watch’s home screen. Tap the app’s name, and it will be launched. Xcode
will attach its debugger to the watchOS app, and you can use your app.

8 | Chapter 1: Understanding the Apple Watch

Figure 1-5. Selecting an iPhone in the scheme selector

Congratulations! You’ve built an empty app. In the next chapter, we’ll explore what
you can do with it.

Diving In | 9

CHAPTER 2

WatchKit Apps

Put simply, a WatchKit app is an app that runs on the watch. Apps on watchOS are
separate and independent binaries that run on the watch, and communicate with
their parent iOS app only when they have to. This reduces latency, and ensures that
the power-hungry Bluetooth radio is used as infrequently as possible.

From the user’s perspective, apps on the watch are very similar to apps on the phone:
they present information to the user, and respond to taps and other input. However,
while the watch is an independent computer, it’s incredibly underpowered compared
to the iPhone. You can’t do heavy processing on the watch—if you need to do hard
work, you get in touch with the iPhone in the user’s pocket. Additionally, certain
hardware isn’t best suited to being directly in contact with the user’s skin at all times
(for example, cellular radios), due to the fact that they emit larger amounts of energy.

It’s for this reason that the Apple Watch requires the user to have an iPhone: without
an iPhone providing information to the watch, the watch’s utility is limited.

When you’re developing an app for the Apple Watch, you’ll end up building the iOS
app and the watchOS app separately. These are two different targets in Xcode, but can
belong to the same project. Any code or resource that needs to run on both devices
needs to be added to both of the targets.

Displaying Content on the Watch
Once you have an empty WatchKit app, the next step is to show content:

1. Open the storyboard for the WatchKit app. Find Interface.storyboard in the Hello‐
WatchWatchKitApp folder, and open it. You’ll see four interface controllers: one
labeled “Interface Controller,” one labeled “Glance Controller,” and one labelled
“Static Interface,” which is connected to the final interface controller labeled

11

“Dynamic Interface.” In this chapter, we’ll be focusing on the first one, labeled
“Interface Controller.”

2. Add a label. If it isn’t already open, open the Object Library by choosing
View→Utilities→Show Object Library. Scroll down the list until you find the
label, and drag it into the application’s interface.
Double-click the label, and make it contain the text “Hi, Apple Watch!” When
you’re done, your interface should look like Figure 2-1.

Figure 2-1. Adding the label

The way you design your interfaces on the Apple Watch is quite different than how
you design interfaces on iOS. When you’re designing an interface on iOS or OS X—
or, indeed, most operating systems—you generally position objects wherever you like
on the screen. By contrast, the layout of interfaces on the Apple Watch is managed:
when you add items to the screen, their position and size is determined by the sys‐
tem, based on where they are in the list or what type of interface object they’re con‐
tained in.

12 | Chapter 2: WatchKit Apps

This also means that you can’t overlap any interface objects.
Objects are displayed next to each other, based on the order in
which they’re arranged in the Interface Builder.

When you select an object in the interface, you can configure various settings for that
object in the Attributes Inspector. To bring up the Attributes Inspector, choose
View→Utilities→Show Attributes Inspector.

There are two different sizes of Apple Watch: a 38mm model and a
42mm model. These two models have different screen sizes, which
means that there are differing amounts of room on the screen for
your interface. More content can be shown on the 42mm device
than on the 38mm.
You can change the settings for different controls based on whether
the watch is a 38mm or 42mm device by selecting them (clicking
the + button at the left of each of the attributes in the Attributes
Inspector).

When you run the app, you’ll now see text on the simulated Apple Watch’s screen.

Responding to Actions
Displaying stuff on the screen is good, but the real power of the Apple Watch is its
ability to let users control the phone from their wrists. The most straightforward way
to demonstrate this is to add a button to our “HelloWatch” app:

1. Find the Button in the Objects Library, then drag it into the interface. Place it
underneath the label.

2. Open the Assistant by clicking the Assistant button at the top-right of the Xcode
window—it looks like two interlinked circles (see Figure 2-2).

Figure 2-2. The Assistant button at the top-right of the Xcode window opens the
Assistant editor

3. Open InterfaceController.swift in the Assistant by clicking the leftmost element in
the Jump Bar at the top of the assistant, selecting Automatic, and then choosing
“InterfaceController.swift” (see Figure 2-3).

Responding to Actions | 13

Figure 2-3. The Jump Bar, selecting the InterfaceController.swift file

This object is in charge of providing the content for this page in the WatchKit
app.

4. Connect the button to the code by holding down the Control key on the key‐
board and drag the button into the InterfaceController class. A pop-up win‐
dow will appear, allowing you to define a connection between the interface and
the code (see Figure 2-4). Set the connection type to “Action” and name it “but‐
tonTapped.” Click Connect, and a new method called buttonTapped will be added
to your code.

Figure 2-4. Creating the interface

An action is a method that’s run when the user interacts with the interface. For exam‐
ple, when the user taps a button, slides a slider, or otherwise does anything to the
interface, you can hook up an action method to run in response.

The other type of connection is called an outlet. An outlet is a variable that is connec‐
ted to the object in your interface at runtime, allowing your code to interact with the
contents of your interface.

Create an outlet for the label by control-dragging from the label into the Interface
Controller class; when the connection dialog box appears, set the connection type to
“Outlet,” and name it “label.”

14 | Chapter 2: WatchKit Apps

What we’ll do now is make the label change its text when the button is tapped. Add
the code to the buttonTapped method:

 @IBAction func buttonTapped() {
 label.setText("Hi Hello Hi")
 }

Test it out by running the app, tap the button, and see it change.

Controls
When you’re designing a WatchKit app, you have quite a few tools to work with. If
you scroll through the list of objects available in the Object Library, you’ll see a large
collection of different elements, which you can drag into your interface and let the
user interact with.

The only way you can add objects to your interfaces in WatchKit is through the Inter‐
face Builder. Unlike when programming for iOS, you can’t create them at runtime
using code. The only way to work with interface objects is through outlets.

Additionally, your code never retrieves data from controls. You’ll notice that there are
setter methods like setText for labels, but no getter methods like text.

In WatchKit, a “page” of content is managed by an interface controller. To create an
interface controller, you subclass the WKInterfaceController class, and add your
actions and outlets for that chunk of content in your WatchKit app.

There are some important methods that your WKInterfaceController subclass
should implement.

• awakeWithContext is called when the interface controller is loaded from disk. In
this method, you prepare your interface objects, and give them their initial val‐
ues.

• willActivate is called when the interface controller is about to be shown to the
user.

• didDeactivate is called when the interface controller is no longer visible to the
user.

In fact, these methods are so important that the InterfaceController.swift file that
Xcode generates for you when you create a new project already includes them:

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 }

Controls | 15

 override func willActivate() {
 // This method is called when watch view controller is about to
 // be visible to user
 super.willActivate()
 }

 override func didDeactivate() {
 // This method is called when watch view controller is no longer visible
 super.didDeactivate()
 }

Once you know your way around interface controllers, it’s helpful to know about the
four most useful controls available to you: labels, image views, table views, and
menus.

Text and Labels
When you want to show text to to the user, you most often use a label. Labels in
WatchKit are instances of the WKInterfaceLabel class.

Labels in WatchKit can display either plain text or attributed text. Attributed text is
text that contains style information throughout the text, like making certain charac‐
ters bold.

To update the text shown in a WKInterfaceLabel, you use the setText method:

 label.setText("Hi Hello Hi")

To show attributed text using an NSAttributedString, use the setAttributedText
method. You can also set the color of a label using setTextColor.

Automatically Updating labels
Some labels that appear on the screen need to be updated frequently, and it’s not espe‐
cially convenient to have to perform these changes yourself.

One of the most common cases where you’d need to perform frequent updates is the
case of a label that shows the current time, or shows a countdown timer. Fortunately,
there are two special subclasses of WKInterfaceLabel that handle these specific situa‐
tions.

• WKInterfaceDate is a special label that shows the current time and date.
• WKInterfaceTimer is a special label that counts down to a date. When you call
setDate on this label, the label automatically begins counting down toward this
date (if the date is in the future), or counting upwards from that date (if the date
is in the past or is right now).

16 | Chapter 2: WatchKit Apps

WKInterfaceTimer is a display-only object. When the label is
counting down toward a specific date, it won’t notify you when that
date is reached. If you want to be notified when this happens, you
need to set up your own NSTimer object.

Images
To display images on your watch, you use the WKInterfaceImage class. This object
displays both static and animated images.

There are several methods you can use to display an image on a WKInterfaceImage:

• setImage takes a UIImage object and displays it.
• setImageData takes an NSData object that contains an image. It loads the image

into a UIImage and displays it.
• setImageNamed makes the watch look for an image with the specified name, and

displays it. If it can’t be found, the image view shows no image.

You can always clear the image from an image view by calling setImage and passing
nil.

WKInterfaceImage supports the same image formats as iOS. However, it’s better if
you use PNG and JPEG images, as these don’t need to be converted by iOS before
being sent to the watch.

If you send an image that’s too big for the control, it’s scaled down so that it fits in the
control (preserving the image’s aspect ratio).

Finally, images can be given a tint color using setTintColor. This allows you to save
space by providing a single grayscale image, which is then filled with a color. Because
this tinting is done on the watch, you can update the color of a WKInterfaceImage at
any time, and without having to transfer an entirely new UIImage to the watch.

Animations

In addition to showing single images, you can also use a WKInterfaceImage to display
animations. You can either configure a WKInterfaceImage to show an animated
image using the Interface Builder, or you can do it with code.

To create an animated image, you first need to have all of the frames of your image
ready, and add them to your application. You do this in the same way you add static
images: by dragging and dropping them into an asset bundle. The key difference
between static and animated images is that the frames attached to each animated
image must all have the same name, suffixed with an increasing number.

Controls | 17

For example, if you want an animation named “Animation,” you’d add an image called
“Animation0,” a second called “Animation1,” and so on (see Figure 2-5). You can have
up to 1024 frames in an animation.

Figure 2-5. Creating frame images for an animation

To set up an animated image in the Interface Builder, you set the name of the image
to “Animation” (or whatever the name of your animation is)—without the frame
number suffix. Next, change Animate from “No” to “Yes,” and specify how long the
animation should run in seconds (see Figure 2-6: in this case, each loop of the anima‐
tion will take one second). The Interface Builder won’t recognize the image, so you
won’t see a preview in the window, but when you run the app, it’ll work fine.

Figure 2-6. Setting up an animation in the Interface Builder

18 | Chapter 2: WatchKit Apps

www.allitebooks.com

http://www.allitebooks.org

Alternatively, you can set up an animation in code. The way that you interact with the
WKInterfaceImage actually remains the same: you simply provide it with a UIImage
object by calling the setImage or setImageNamed methods.

The difference is in how the UIImage object is set up. To create an animated UIImage,
you use the animatedImageNamed method, and provide the name and duration of
your animation:

 let animatedImage =
 UIImage.animatedImageNamed("Animation",
 duration: 1.0)

 self.imageView.setImage(animatedImage)

Menus
A menu is a place where you can put additional actions that the user can perform.
These actions aren’t visible until the user pushes on the screen with a little extra force
(a force touch). When the user does this, and the interface controller that’s currently
active has a menu, menu items appear. You can see an example of a menu in
Figure 2-7.

Figure 2-7. A menu, with a single menu item

Menus are used all over the Apple Watch to provide access to extra actions that aren’t
critical to the main functionality of whatever you’re using. For example, when you
force-touch the notifications list, a menu appears that contains a single menu item,
which lets you dismiss all notifications at once.

Controls | 19

Menus don’t include a button to close them. To close them, you tap
anywhere outside the menu’s buttons, or you press the Digital
Crown.

Menus are attached to interface controllers. To add a menu, you drag and drop the
Menu item from the Object Library onto an interface controller.

Unlike the other controls, you don’t work with code to configure menus. In fact, you
don’t really configure menus at all—you can’t customize their appearance in code,
and you can’t change any properties at runtime. The only thing you can do is add
them to your interface, and connect the buttons to methods in your interface control‐
ler’s code.

Each menu contains between one and four menu items. Menu items themselves con‐
tain an image and a label. You can select from a list of different built-in images, or
you can add a custom image to your app’s asset catalog.

Menu items need to have both an image and a label. If the text for
the label is empty, or if the custom image that you provide can’t be
found, the menu item won’t appear.

While a menu can contain up to four items, it’s a good idea to try to
keep this number as close to one as possible. The more items you
add, the smaller they all get. When you’re on a device that the user
will be looking at for only a few seconds at a time, anything that
reduces readability is a bad thing.
Where possible, try to avoid using menus entirely, as they’re not
immediately visible to the user—remember, users have to force-
touch to see if there’s anything there at all, and they may not think
to try doing it.

You connect the button to the interface controller by following the same steps out‐
lined for a WKInterfaceButton: control-drag from the item in the outline pane into
your WKInterfaceController class and create an action; this action is called when
the button is tapped.

To test menus in the iOS simulator, you need to indicate that you want to simulate a
force touch. To do this, follow these steps:

1. Open the Hardware menu, and choose Force Touch Pressure→Deep Press.
2. Click on the screen, and the watch will react as if you’d pressed hard on it.

20 | Chapter 2: WatchKit Apps

3. Choose Hardware→Force Touch Pressure→Shallow Press to go back to regular
presses.

You can also change the force touch pressure with the Command-
Shift-1 and Command-Shift-2 keyboard shortcuts.

Tables
A table is a list of content that the user can scroll through. Tables are represented by
the WKInterfaceTable class.

Tables in WatchKit work a little differently to their equivalents in iOS. In iOS, table
views call back to a controller object to ask questions about how many rows there are
in the list, and, for each cell, what content should be displayed. This kind of interac‐
tion would generate way too much back-and-forth traffic for the Apple Watch, which
means that WKInterfaceTables are optimized to support preparing the entire content
of the list all at once.

The way that it works is as follows: at design time, you define a number of row types.
For each type of row, you lay out the controls that go in the row. You also give the row
type an identifier, which is a string, plus the name of a row controller class that will
store outlets to the controls that go in the cell.

At runtime, you tell the WKInterfaceTable about the number of cells that are in the
table, and what the row type is. Doing this creates instances of all of the row control‐
ler classes. You can then ask the table for a specific row controller, and use that
object’s outlets to access the controls in a specific label.

Unlike in iOS, cells in a WatchKit table are empty by default. You’ll
need to add controls to them yourself, and add outlets for each
control that you add to the row’s controller class.

For example, let’s say you want to add a table that displays a list of words. This will
mean that each cell will need a label, and you’ll need a way of sending the correct
word to each cell’s label.

To do this, follow these steps:

1. Drag a table from the Objects inspector into your interface.

Controls | 21

2. In one of your source code files, create a class called MyRow. Make it a subclass of
NSObject. (You can create a new file for this class, or you can add the class to an
existing .swift file.)

3. By default, tables come with a single row controller already set up. Select the row
controller in the outline—it has a yellow circular icon—and set its Identifier to
MyRow in the Attributes Inspector. Then go to the Identity Inspector, and set its
Class to MyRow.

4. Set up the row by dragging a label into the row’s interface. Then, open the MyRow
class in the Assistant, hold down the control key, and drag from the label into the
MyRow class. Create a new outlet for the label called label.

5. In your interface controller’s awakeWithContext method, add the following code:
 // An array of strings to show in the table
 let dataToDisplay = ["Hello", "World", "This", "Is", "A", "Table"]

 myTable.setNumberOfRows(dataToDisplay.count, withRowType: "MyRow")

 for i in 0 ..< dataToDisplay.count {
 let rowController = myTable.rowControllerAtIndex(i) as? MyRow

 rowController?.label.setText(dataToDisplay[i])
 }

6. Finally, run the application; you’ll see a scrollable list of words.

In addition to simply creating rows using the setNumberOfRows
method, you can also use the insertRowsAtIndexes(_, withRow
Type:) and removeRowsAtIndexes methods to add and remove
rows.

Picker Views
A picker view displays a collection of options that the user can select from, by either
swiping the screen or rotating the Digital Crown. Picker views can display text and
images in a variety of ways; they can display a rotating list of captions, a stack of
images, or a sequence of images.

Picker views are configured by creating a collection of WKPickerItem objects, which
you provide to a WKInterfacePicker object.

To add a picker item, you drag a Picker from the Object Library into your interface
controller. To provide the picker with content, you connect it to an outlet in your
interface controller’s class, and call setItems to give it the list of WKPickerItems it
should show.

22 | Chapter 2: WatchKit Apps

For example, let’s say self.picker is a variable that refers to a WKPickerView. In this
case, you could make it show the strings “Item 0,” “Item 1,” and “Item 2” in it by doing
this:

 var listContent : [WKPickerItem] = []

 for i in 0...2 {
 let item = WKPickerItem()
 item.title = "Item \(i)"
 listContent.append(item);
 }

 self.picker.setItems(listContent)

Picker items can contain images, text, or a combination of both. The specifics of
what’s shown depend on the list’s style.

As the user interacts with the picker, the picker calls whichever method is connected
in the interface builder, much like a button does when the user taps on it. This
method receives an Int, representing the index of the currently selected item. The
first item is given the index 0, the second item is given the index 1, and so on.

The WKInterfacePicker doesn’t provide a way to retrieve the
WKPickerItems that you’ve provided to it. You need to keep track of
those yourself.

 @IBAction func pickerSelectedItem(value: Int) {
 print ("Picker selected item \(value)")
 }

You can also link animated images with the picker, so that the ani‐
mation is at the first frame when the picker has selected the first
item, and at the last frame when picker is at the last item. To do
this, you provide the picker view with an animation, by using the
WKInterfacePicker’s setCoordinatedImages method. This
method takes an array of WKInterfaceImages, which are animated
as the picker rotates. To learn more about presenting an animated
image, see “Animations” on page 17.

Playing Media
In addition to showing text and images, the Apple Watch can also play back video
and audio. This is done through a media player interface controller, which you present
from your interface controller.

Playing Media | 23

Presenting any kind of media means loading it from a file. This means that if you
want to play sound or video, the file that contains that content needs to be on the
watch. The most straightforward way to do this is to embed the file in the application
by following these steps:

1. Locate the video or audio file on your computer that you want to play in the
Apple Watch app.

2. Drag it into the Project Navigator, at the lefthand side of the Xcode window.
3. Xcode will ask you which targets the file should be added to—that is, should it be

added to the iOS app, the watchOS app, or both? You can see the window in
Figure 2-8.

4. Add the project to the WatchKit app. The file will then be copied to the watch
when the app is installed.

Figure 2-8. Adding a file to the project

To access a file that’s embedded in this way, you use the NSBundle class to get the loca‐
tion of the file within the watch. For example, if you’ve got a video file called
Video.m4v included as part of the application’s resources, you can determine its URL
like so:

 guard let videoFileURL = NSBundle.mainBundle()
 .URLForResource("Video", withExtension: "m4v") else {

 print("Couldn't find the video!")

24 | Chapter 2: WatchKit Apps

 return
 }

In this example, we’ve wrapped it in a guard statement. This means
that if the file cannot be found, the code will log an error message
and bail out. Doing this means that if we get past the guard state‐
ment, the videoFileURL variable is guaranteed to have a value you
can use.

Once you have the location of a video file, you can present it using a media player:

 self.presentMediaPlayerControllerWithURL(videoFileURL, options: nil) {
 (didPlayToEnd, endTime, error) in

 print("Video player ended; played to end = \(didPlayToEnd), " +
 "end time = \(endTime), error = \(error)")

 }

When you call presentMediaPlayerControllerWithURL, you provide the URL of the
file that you want to play, and a dictionary containing additional information on how
it should be played, and a closure to run when the controller disappears. The video
will then appear, allowing the user to view it.

When the user is done playing the video, the closure is called, and receives three
parameters: a Bool value indicating whether the video was played through to the end,
an NSTimeInterval value representing where in the video the user was when the
video was closed, and an optional NSError object that describes any problem that was
encountered while playing the video.

You can also use a media player controller to play audio, without
video.

The options parameter lets you control how the user interacts with the media being
presented. For example, if you wanted to make the video automatically play, you’d
prepare a dictionary containing the WKMediaPlayerControllerOptionsAutoplayKey
key set to true:

 let options = [
 WKMediaPlayerControllerOptionsAutoplayKey: true
]

 self.presentMediaPlayerControllerWithURL(videoFileURL, options: options) {
 (didPlayToEnd, endTime, error) in

Playing Media | 25

 print("Video player ended; played to end = \(didPlayToEnd), " +
 "end time = \(endTime), error = \(error)")

 }

Using this dictionary, you can set things like whether the content loops, how video
should be scaled to fit in the available space, and at what time the media starts play‐
ing. For the full list of available options, see the section “Media Player Options” in the
WKInterfaceController documentation.

Getting Text from the User
In a lot of apps, you’ll often want to get some kind of text from the user. The Apple
Watch is way too small to fit a keyboard on the screen, which means that there are
only a couple of ways for the watch to get text input from the user.

The first method is to provide a list of predefined choices, and let the user select one.
The second method is to let users speak to the device, and get their speech transcri‐
bed into text.

WatchKit combines both of these methods into one tool, called the text input control‐
ler. The text input controller displays a list of options, which your app determines, as
well as letting the user choose an emoji image or use the Apple Watch’s built-in
microphone to dictate a reply.

To present the text input controller, you call the method presentTextInputControl
lerWithSuggestions(_, allowedInputMode: completion:), which takes three
parameters:

• The first parameter is an array of strings, each of which is an option that the user
can select. This array is optional.

• The second parameter allows you to choose whether the user can provide only
plain text, choose emoji images, or choose animated emoji images. You generally
want to provide users with as much room to express themselves as you can, so
limit their options for replying only after you’ve thought about it a great deal.

• The third parameter is a closure that’s called by the system after the user has fin‐
ished with the text input controller. This closure takes a single parameter, which
is an array of NSObjects. This array contains one or more strings and NSData
objects—strings are selected options or the results of dictation, whereas NSData
objects are images, which can be decoded using the UIImage class’s
UIImage(data:) method. This array can also be empty, which indicates that the
user chose to cancel entering text.

26 | Chapter 2: WatchKit Apps

http://bit.ly/media-options

You can also call dismissTextInputController to get rid of the
text input controller, if you decide you don’t need it anymore. Be
careful about calling this, though; if the user is in the middle of dic‐
tating something, and the input controller goes away, then you risk
annoying her.

If you want to try presenting a text input controller, add the following method to a
button’s action method (see “Responding to Actions” on page 13):

 let suggestions = ["Yes", "No", "I guess?", "Huh?"]

 self.presentTextInputControllerWithSuggestions(
 suggestions, allowedInputMode: .Plain) { (results : [AnyObject]?) in

 guard let theResults = results else {
 print ("No text provided")
 return
 }

 for result in theResults {
 print ("Result: \(result)")
 }
 }

Dictation and emoji aren’t supported by the WatchKit simulator.
You’ll need to use a real device to test them out.

Working with Multiple Interface Controllers
Often, a WatchKit app will only need a single screen’s worth of content. However, as
an app gets more complex, you won’t want to try to fit everything into one location,
and you’ll need to put some controls and information on other screens.

There are two ways that users of the Apple Watch interact with screens of content in
apps:

Hierarchical navigation
This works similarly to the way UINavigationControllers do in iOS: when you
want to show new content, you push a new screen, which slides in from the right‐
hand side. When users want to go back, they tap the Back arrow at the top left of
the watch display.

Page-based navigation
This works in a similar way to the home screen on an iPhone or iPad, in that the
user can swipe left and right to see different pages of content.

Working with Multiple Interface Controllers | 27

Hierarchical navigation works best when you need to let the user drill down into a
specific piece of information. For example, a news app could show a list of topics, and
tapping on each topic would push a screen containing the relevant headlines.

Page-based navigation is good for situations where you have different screens of con‐
tent that don’t necessarily need to connect to each other. For example, an app that dis‐
plays the locations of the user’s friends could show a screen for each friend in a page-
based way, allowing the user to swipe left and right to see each friend.

Your application can use hierarchical navigation or page-based navigation. You can’t
use both in the same app, because both of these styles of navigation rely on left-right
animations to change the screen’s content. When you push a new screen of content in
an app that uses hierarchical navigation, the new screen slides in from the right; how‐
ever, when you move from one screen to the next, the new screen would also slide in
from the right. To avoid confusion, you can’t mix and match.

Regardless of whether your app uses hierarchical or page-based navigation, the inter‐
face controllers that contain each screen’s worth of content need to be connected.
There are two main ways you can do this: you can connect the interface controllers in
the interface builder using segues, or you can give each interface controller a name
and manually summon it into existence in your code.

To create a segue, you hold down the Control button and drag from one object to
another. Only certain objects can be connected via a segue:

• Interface controllers can connect to other interface controllers via a “next page”
segue.

• Buttons, groups and table rows can connect to other interface controllers via
either “push” or “modal” segues. Once you release the mouse button, you’ll be
asked what kind of segue you want.

Hierarchical Navigation
To set up a hierarchical navigation in your app, you create a “push” segue that links a
button to another interface controller. When you tap on this object, the second inter‐
face controller will appear, and the user can go back by tapping on the back arrow.

If you want to try this out for yourself, follow these steps:

1. Add a button to your interface controller, and add a new interface controller that
you want to show when the button is tapped.

2. Hold down the Control key, then click and drag from the button to the interface
controller.

28 | Chapter 2: WatchKit Apps

3. A list of segue types will appear; click Push. This will create the segue that links
the button to the interface controller.

4. Run the app. When you tap the button, the interface controller will appear.

If you don’t want to use segues to connect screens, you can also create a hierarchical
navigation structure in code. To do this, follow these steps:

1. Select the interface controller that you want to navigate to, and go to the Identity
inspector.

2. Set the interface controller’s Identifier to something useful—for example,
detailScreen.

3. In order to present this interface controller, call the pushControllerWithName(_,
context:) method:

 self.pushControllerWithName("secondScreen", context: nil)

You can also return the user to the previous screen by calling popController, and
return the user to the very beginning by calling popToRootController.

Page-Based Navigation
The alternative to hierarchy-based navigation in a watchOS app is page-based naviga‐
tion. In page-based navigation, the watch shows a horizontally scrolling list of inter‐
face controllers, and you swipe left and right to access them. This is very similar in
terms of design to how the home screen on an iPhone works.

To create a page-based navigation flow for your application, you need to include a
“next page” segue between your interface controllers. You can do this by following
these steps:

1. Hold down the Control key, and drag from the interface controller that you’d like
to appear first in the list to another.

2. A menu containing possible segues will appear. Select “next page” in the menu
that appears.

3. Run the app. When you swipe from right to left, the second interface controller
will appear.

When the app starts up, the Apple Watch uses this chain of segues to build a horizon‐
tally scrolling collection, with the first view controller at the far left, and each inter‐
face controller connected via a “next page” segue on the right. Each screen can be
scrolled vertically, based on the content that’s stored inside it, and if the user scrolls
horizontally, he’s taken to the additional screens.

Working with Multiple Interface Controllers | 29

You can connect a chain of interface controllers like this, by linking the first screen to
the second, the second to the third, and so on.

When you want to create “next page” segues, you need to connect
the two interface controllers themselves, and not any object that’s
stored inside the interface controllers. Don’t drag from inside the
interface controller, because when you do that, you aren’t dragging
from the controller itself.

When using page-based navigation, you typically won’t often need to change the
pages. If you do want to do this, then use the Identity Inspector to give each interface
controller a name, and then call WKInterfaceController.reloadRootControllers
WithNames(_,contexts:). This method takes an array of interface controller names
and replaces the collection of pages with new interface controllers:

 WKInterfaceController.reloadRootControllersWithNames(["mainScreen",
 "additionalScreen"], contexts: nil)

Don’t call reloadRootControllersWithNames after the user has
started using the application. Changing the way that the interface is
laid out after users have gotten used to how things work is confus‐
ing, and will put them off using your app.
Instead, call reloadRootControllersWithNames at application
launch time—for example, in the init or awakeWithContext meth‐
ods of your interface controllers.

Modal Presentation
The last way to let your users get access to other screens is via a modal presentation.
When you use a modal presentation to show an interface controller, the interface
controller takes over the entire screen.

You use a modal presentation when you need to interrupt the user’s experience. For
example, if the user is in the middle of some task, like requesting an Uber, you could
present a modal interface controller to let her know that her driver was nearby.

It’s important to avoid interrupting the users’ experience with alert
screens as much as possible. Your users will only have a few sec‐
onds at a time to interact with your Watch Kit app, and slowing
them down by popping up a modal alert box will only annoy them.

You can use either segues or code to present an interface controller modally. To use a
segue, connect a button, group, or table row to an interface controller, and then create

30 | Chapter 2: WatchKit Apps

a “modal” segue. To modally present an interface controller using code, give the inter‐
face controller an identifier in the interface builder’s Identity inspector, and then call
presentControllerWithName(_, context:):

 self.presentControllerWithName("detailScreen", context: nil)

You can also present a page-based layout modally, either with
segues or with code.
To do this using segues, connect the screens that should be linked
together in a page-based navigation screen using the “next page”
segue, just as usual. Then, create a “modal” segue that connects the
screen you want to present the screen from to the first screen that
should appear.
If you’d prefer to show a page-based layout using code, call present
ControllerWithNames(_, contexts:), and pass in the array of
names of interface controllers.

If you simply need to present an alert (such as some text), you can also use the
method presentAlertControllerWithTitle(_, message:, preferredStyle:,

actions:). This method modally presents an interface controller containing a title
and message, along with a number of buttons.

To show an alert, you first prepare the buttons you want it to have. You do this by
creating an array of WKAlertAction objects, which each contain two things—the text
that the button should display and a closure that should be run if the user taps the
button:

 let actions = [
 WKAlertAction(title: "OK", style: WKAlertActionStyle.Default, handler: {
 print("OK button tapped")
 })
]

All alerts must have at least one button.

Once you have the list of actions you want to attach to the alert, you simply need to
call presentAlertControllerWithTitle, and provide the title and optional message,
as well as the list of actions and the layout that the alert should have:

 let alertTitle = "Error!"
 let alertMessage = "There was a problem!"

Working with Multiple Interface Controllers | 31

 self.presentAlertControllerWithTitle(alertTitle,
 message: alertMessage,
 preferredStyle: .Alert,
 actions: actions)

Communicating with the Device
The Apple Watch is a separate computer from the iPhone. However, to access the
wider world, your watchOS app will need to communicate with its counterpart iOS
app. To achieve this, you use a separate framework called WatchConnectivity.

This framework is available on both iOS and watchOS, and is the mechanism for
sending information to and from the other device. You use the same API on both
devices, which simplifies the work you need to do.

To start using WatchConnectivity, you import the framework as follows:

 import WatchConnectivity

All of your interaction with the other device is mediated through a WCSession object.
You don’t construct this object yourself; instead, you ask for the default session:

 let session = WCSession.defaultSession()

Additionally, to work with the session, you need to provide it with an object that con‐
forms to the WCSessionDelegate method. One way to do this is by creating an exten‐
sion that makes your interface controller conform to the protocol, like so:

 extension InterfaceController : WCSessionDelegate {

 @available(watchOSApplicationExtension 2.2, *)
 func session(session: WCSession, activationDidCompleteWithState
 activationState: WCSessionActivationState, error: NSError?) {

 print("Session activated!")
 }

 func sessionDidDeactivate(session: WCSession) {
 print("Session deactivated!")

 }

 func sessionDidBecomeInactive(session: WCSession) {
 print("Session became inactive!")
 }

 func sessionReachabilityDidChange(session: WCSession) {
 print("Reachability changed to \(session.reachable)")

 }

 }

32 | Chapter 2: WatchKit Apps

Note the @available tag on session(_, activationDidComplete
WithState: , error:). This exists to mark that the method is
only part of the protocol in watchOS 2.2 and later.

When you have an object that conforms to the WCSessionDelegate, you can provide
it to the WCSession as its delegate. In this example, self is an instance of Interface
Controller:

 session.delegate = self

A session does nothing until it’s activated. To activate it, use the activateSession
method:

 session.activateSession()

This call to activateSession is asynchronous: it can take a moment for the session
to become active. When it does, the activationDidCompleteWithState method in
WCSessionDelegate is called.

In addition to a session being active or not, the counterpart app may or may not be
reachable. For example, you might activate a WCSession, and then go for a run with
your watch, leaving your phone behind. The session remains active, but the phone is
no longer reachable from the watch. This means that before you attempt to send any
message to the other device, you need to ensure that the reachable property is true.

An iPhone can be paired with multiple watches, but only one ses‐
sion is active at a time between the phone and a watch.

Sending and Receiving Messages
The most straightforward way to send data from the watch to the phone, or from the
phone to the watch, is by sending messages. A message is a dictionary that contains
simple data: strings, numbers, dates, NSData objects, or arrays or dictionaries contain‐
ing these types.

To send a message, you first construct the dictionary that represents the message you
want to deliver. The message can be anything you like. For example:

 let message = [
 "message":"hi"
]

Once you have your message, you send it, using the sendMessage method on your
WCSession:

Communicating with the Device | 33

 WCSession.defaultSession().sendMessage(message,
 replyHandler: nil,
 errorHandler: { (error) in

 print("Got an error sending to the phone: \(error)")
 })

The sendMessage method takes three parameters: the message itself, a reply handler
closure (more on that in a moment!), and a closure that’s called if there was an error
sending the message to the other device.

When this is called, the message is transmitted over the radio link to the counterpart
app; when the message is received, the counterpart WCSession’s delegate receives the
session(_, didReceiveMessage:) method call:

 func session(session: WCSession,
 didReceiveMessage message: [String : AnyObject]) {
 print("Phone received message: \(message)")
 }

Sometimes, a message needs a reply. For example, your watchOS app may need to ask
the iOS app for a list of strings to display; the iOS app will receive the request, and
will then need to reply to that request.

To enable this, you provide a closure for the replyHandler parameter when calling
sendMessage:

 WCSession.defaultSession().sendMessage(message,
 replyHandler: { (replyMessage) in
 print("Got a reply from the phone: \(replyMessage)")
 }, errorHandler: { (error) in
 print("Got an error sending to the phone: \(error)")
 })

The replyHandle takes a single parameter: a dictionary, containing the reply sent by
the counterpart app. It’s up to you to interpret the contents of this dictionary.

When you send a message and provide a replyHandler, the counterpart app’s session
delegate receives a slightly different method call: session(_, didReceiveMessage:,
replyHandler:).

This method works identically, receiving the message sent from the other device; it
also receives a replyHandler closure, which it is required to call before the method
returns. When you call this closure, you provide the dictionary that you’d like to reply
with:

 func session(session: WCSession,
 didReceiveMessage message: [String : AnyObject],
 replyHandler: ([String : AnyObject]) -> Void) {

 print("Phone received message that needs a reply: \(message)")

34 | Chapter 2: WatchKit Apps

 let replyMessage = [
 "reply":"hello!"
]

 replyHandler(replyMessage)

 }

You must call the replyHandler before the method ends. If you
don’t, your app will crash.

Moving Between Devices Using Handoff
Handoff is a technology that’s built into iOS, OS X, and watchOS, which allows the
user to begin an activity on one of their devices and continue it on another.

For example, if you’re writing an email on your iPhone, your Mac is made aware of
this fact, and displays an icon in the Dock. If you click on that icon in the Dock, the
Mail application on OS X launches, and shows the draft email that you were just edit‐
ing. You can then finish writing the email on your Mac, and send it from there.

Handoff works in both directions—you can start an activity on your Mac and finish it
on your iPhone. It also supports handing off an activity between devices of the same
type—for example, you can hand off from an iPhone to an iPad.

Handoff also works on the Apple Watch, and it’s a powerful technology that allows
you to let users start doing something on the watch, and continue it on any of their
other devices.

Before you start adding support for handoff to your applications, it’s worth taking a
moment to think about what activities users might want to continue from one device
to another. In the case of mail, it’s likely that users might want to continue reading or
writing a specific message, but they probably won’t care about synchronizing where
in the list of messages they are. Don’t forget that when you tell the system about an
activity that the user is performing, an icon will appear on her iOS device’s lock
screen and in her Mac’s dock. This can get a little annoying, so it pays to think about
what’s important and what’s not.

Handoff works through the NSUserActivity class. A user activity contains two criti‐
cal pieces of information: a string that identifies the type of the activity and a dictio‐
nary containing the context of the activity:

Communicating with the Device | 35

• The type of the activity is a period-separated string, like com.oreilly.CoolWatch‐
App.chatting. The activity type needs to have your iOS application’s bundle identi‐
fier as its prefix (which, in this example, would be com.oreilly.CoolWatchApp).

• The context of the activity is a dictionary containing additional information that
describes details of what the user is doing. To continue our example, the context
dictionary might contain information like the username of the person the user is
chatting to.

To support receiving an activity that’s being handed off by another device, you need to
add some information to your iOS app’s Info.plist file. This file provides information
about an app (for example, its name and icon) to the rest of iOS.

To add support for a handoff activity, you first work out what you want to call the
activity. Earlier, we used com.oreilly.CoolWatchApp.chatting; again, the type identifier
can be anything you like, as long as it begins with your app’s bundle identifier. The
activity’s type identifier is never shown to the user, and is only used in your code.

Once you’ve figured out the activity type string, you create an array inside the iOS
app’s Info.plist file called NSUserActivityTypes, and add your activity type to that
array (see Figure 2-9.)

Figure 2-9. Setting up an activity type

Once this has been added to your iOS app’s Info.plist file, the iOS app has declared
that it’s capable of receiving that type of activity from other devices. To share that
activity, you use the NSUserActivity class to indicate what the user is doing.

To do this, you call updateUserActivity(_, userInfo:, webpageURL:) and pass in
the activity type and context dictionary, as in the following code:

 // Define the activity that the user is doing
 let activityType = "au.com.secretlab.SwiftDevForAppleWatch.funActivity"

 // Add some additonal information that provides more context
 let activityInfo = [
 "additionalInfoForTheApp": "tennis"
]

 // Indicate to the system that the user

36 | Chapter 2: WatchKit Apps

 // is now doing an activity
 self.updateUserActivity(activityType, userInfo: activityInfo, webpageURL: nil)

You can also optionally pass in an NSURL object that contains the
URL of a web page to load the activity in a browser; however, we’ll
be focusing on using handoff with apps in this book.

When you call updateUserActivity, all other nearby devices that belong to the user
and have an app installed that’s capable of handling that type of activity are notified
that the user is currently performing an activity; as a result, the application’s icon is
shown on the iOS lock screen, and in the OS X Dock. When the user swipes up on
the icon in the iOS lock screen, or clicks on the app in the Dock, the application is
activated, and its application delegate object receives the application(_, continueU
serActivity:, restorationHandler:) method:

 func application(application: UIApplication,
 continueUserActivity userActivity: NSUserActivity,
 restorationHandler: ([AnyObject]?) -> Void) -> Bool {

 print("Handling activity \(userActivity.activityType) " +
 "(parameters: \(userActivity.userInfo)")
 return true
 }

This method receives three parameters: the UIApplication or NSApplication object
that represents the current app, the NSUserActivity object that was prepared on the
other device, and a closure that should be called if your application created any view
controllers or windows as a result of resuming the activity (for example, if you
opened a chat window to continue the user’s conversation, you pass in that window to
the closure).

Using handoffs, you can let your user quickly and easily move between devices with a
minimum of effort. Add this feature, and your users will thank you.

Wrapping Up
In this chapter, we’ve introduced a number of fundamental watchOS elements. Inter‐
face controllers contain the content that your users will see and interact with, includ‐
ing the many different types of controls; additionally, interface controllers can be
linked together to create more complex applications.

In the next chapter, we’ll look at a more specialized type of interface seen in watchOS:
glances.

Wrapping Up | 37

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Glances

The iPhone is usually stashed away (either in a bag or pocket), and because it’s not a
wearable device, it’s not always within easy reach. With the Apple Watch, however,
users are able to find out information by simply looking at their wrists: your app can
show a screen that users can look at quickly. This screen is called a glance.

Glances show supplemental information that is related to the content that your app
provides. Not all apps need to have a glance, but having a screen of content that
shows just the most important information that your user cares about can be a tre‐
mendous benefit.

In this chapter, you’ll learn what glances are used for, how to design a glance, and
how to add a glance to your WatchKit application.

Working with Glances
A glance is just a single screen of content. Glances do not show any scrolling content,
which means that you need to be very considerate of the most important information
your user will care about; for example, if you’re making a news application for the
watch, you won’t be able to fit the entire content of a news article, or even multiple
headlines. Instead, you’ll have to select the single most important headline that the
user is likely to care about, and display only that.

Apps only get a single glance screen. You can’t create more than one screen, because
it’s being shown alongside the glances from all of the other apps that the user has on
his watch.

It’s important to show information very clearly. The user is going to be looking at
your glance while they’re on the run, and won’t have time to read more than a couple

39

of words. Don’t try to pack the screen full of text; instead, try to reduce your informa‐
tion down to numbers, symbols, pictures, or just one or two words.

Another important constraint placed upon glances is that they’re for display only. No
interactive content is allowed, and if the user taps on the glance, the watch launches
the main app. Again, this is because glances are designed for quickly showing a small
amount of highly important information; if a user wants to do something more in-
depth, she’ll use the WatchKit app. (And if she wants to do something even more in-
depth than what the WatchKit app allows, she’ll pull out her iPhone and use that
instead.)

Creating a Glance
To create a glance, you create an interface controller and designate it as the glance
interface. You do this by locating the glance interface controller in the objects library
and dragging it into the interface (Figure 3-1). (The glance interface controller is
actually just a normal interface controller, but Xcode will treat it slightly differently
because of how it’s going to be used.)

Figure 3-1. The glance interface controller, in the Object Library

If you chose to create a glance when creating the project, as we sug‐
gested you do in Chapter 1, then a glance interface controller will
have already been added to the interface for you.

40 | Chapter 3: Glances

Once the glance interface controller has been added to your storyboard, you add user
interface elements like labels and images, just like with any other interface controller.

When you select the glance interface controller itself (by clicking on the yellow circle
icon that appears above the interface), the Attributes Inspector of the glance’s inter‐
face controller will let you choose a template layout for both parts of the glance by
clicking on them (see Figure 3-2).

You don’t have to use a template, but it’s something you should
seriously consider. When a user starts looking at the glances pro‐
vided by the apps on his watch, having a wide variety of differently
laid-out interfaces can mean that he will need to spend more time
adjusting to different layouts as he navigates from glance to glance.
If you’re making your users slow down, then you might be defeat‐
ing the purpose of glances—which is to quickly provide important
information.

Figure 3-2. Selecting a template to use for the glance

Providing the code for the interface controller is almost identical to any other inter‐
face controller that you have in your WatchKit app. You use outlets to connect the
interface elements to properties in your code, which you use to provide content to the
interface at runtime.

One important element of coding for glance interface controllers is that they are cre‐
ated early, and then kept in memory so that they appear almost instantly when the
user needs them. When the user displays the glance, the interface controller will be
presented.

Creating a Glance | 41

This means that the interface controller’s awakeWithContext

method will be called quite some time before the willActivate
method is called. If you’re using the awakeWithContext method to
prepare your interface with the information that needs to be shown
to the user, it might be out of date by the time she sees the glance.
Instead, update your interface with the information that needs to
be presented inside the willActivate method.

Creating a Glance Scheme
To run the app and show the glance, select the Glance scheme from the scheme
picker at the top left of the Xcode window (see Figure 3-3.)

Figure 3-3. Selecting the Glance scheme

This scheme is added by default if you chose to add a Glance to your app when creat‐
ing the project. However, if you’re adding a glance interface to your app later, you’ll
need to add the scheme yourself.

To do this, follow these steps:

1. Open the Scheme manager by opening the Product menu, choosing Scheme, and
then choosing Manage Schemes.

2. Select the scheme for the WatchKit app.
3. Click the settings icon at the lower left, and choose Duplicate.
4. Rename the new scheme something appropriate, like “WatchKit App Glance.”
5. Click the Edit button, and select the Run action.
6. In the settings for the Run action, set the Watch Interface option to Glance.
7. Close the scheme editor and select the new Glance scheme.

When you build and run by pressing Command-R, the Glance interface will appear.
If you want to go back to the main application, simply change back to the previous
scheme.

42 | Chapter 3: Glances

Tapping the Glance
When the user taps on your glance, the main WatchKit application is launched. The
glance and the application are actually two separate executable files, and therefore are
two separate processes that don’t share memory.

When the app is launched from the glance, the main interface controller will be dis‐
played. In most cases, this is exactly what you want—the user was looking at some
information, and is now using your app to dig deeper.

Sometimes, however, you don’t want to show the main interface contoller. For exam‐
ple, if you’re making a calendar app and the glance shows your next meeting, you
might want to display more info about that next meeting when the glance is tapped.

The way to handle this is by using the user activity API. When new data is being pre‐
sented by your glance interface controller, call updateUserActivity(_, userInfo:,
webpageURL:):

 override func willActivate() {
 // The glance is being presented to the user.

 // Create a dictionary containing info that the main
 // app can use to display this content

 // For example, if you're making a calendar app,
 // each 'event' might have an ID number, which
 // the main app can use to look up and display full
 // information about that event.
 let info = ["calendarEventID": 99];

 // Update the activity so that, if the glance is
 // tapped, the main application will receive the
 // info dictionary
 self.updateUserActivity("au.com.secretlab." +
 "SwiftDevForAppleWatch.HelloWatch" +
 ".watchkitextension.tapped",
 userInfo: info,
 webpageURL: nil)

 super.willActivate()
 }

When the user taps on the glance, the main watch application will launch. Immedi‐
ately after launching, the handleUserActivity() method on your WatchKit app’s
main interface controller will be called. This method receives the dictionary that was
provided to the userInfo parameter of update user activity, and you can use this dic‐
tionary to configure your interface, or to present other interface controllers:

 override func handleUserActivity(userInfo: [NSObject : AnyObject]?) {
 // We've just been launched, and WatchKit is telling
 // us about the reason why we were launched.

Creating a Glance | 43

 // The userInfo dict contains the data that was
 // provided to updateUserActivity.
 print("Launched from user-activity (aka glance): \(userInfo)")
 }

You won’t receive any notification that the glance is about to launch the main applica‐
tion. Instead, you should call updateUserActivity whenever you are displaying new
information on the glance screen; if the user happens to tap on the glance, the main
app will end up displaying the correct information.

The final glance from this chapter is shown in Figure 3-4.

Figure 3-4. The glance, running on the watch

Wrapping Up
Glances let you provide the user with a quick way to see the most important informa‐
tion that your app can provide. In addition to this, you can also customize the inter‐
face that’s shown when the user receives a notification. We’ll be looking at this in the
next chapter.

44 | Chapter 3: Glances

CHAPTER 4

Notifications

When you receive an email, iMessage, or tweet, applications on your iPhone have the
ability to show a notification on the screen. These notifications are generally limited
in terms of what they can do: they can display a message, play a sound, and also
update the badge number on the application’s icon.

With an Apple Watch, notifications that appear on the phone are also displayed on
the watch. If you don’t do anything, the watch simply displays the notification mes‐
sage (if one is present) alongside the iOS application’s icon. This means that you don’t
need to take your phone out of your pocket when you feel it vibrate; instead, you just
need to quickly look at your watch.

However, WatchKit allows you to add more functionality to the notification system,
and go beyond simply displaying a message. Your app can provide a custom interface,
which takes the contents of the notification that the phone received and presents it
using interface elements that are entirely under your control.

In addition to simply presenting messages, notifications can also be actionable. Start‐
ing in iOS 8, notifications gained the ability to have actions: notifications could have
buttons attached to them, allowing the user to perform some task without having to
unlock his phone or leave his current app. These actions can be configured to appear
based on different kinds of notifications; for example, when one of your friends
checks in somewhere on the location-sharing app Swarm, the notification that Swarm
displays includes a button that lets you Like the check-in without having to launch
Swarm itself.

It’s entirely possible that most of the time users spend interacting with their watches
will be with notifications, which means that if your iOS app is going to be presenting
notifications to the user, you should spend at least some time considering how those
notifications will look on the watch. In this chapter, you’ll learn how notifications are

45

displayed to the user, and how to create and configure your own interfaces. You’ll also
learn how to deal with actionable notifications, and how to let the user take action
when a notification arrives.

Glances and notifications

Glances and notifications can seem quite similar, especially when
we start talking about the difference between short-look and long-
look notifications, which are the two types of interfaces that you
design when creating a custom notification—a short-look notifica‐
tion only appears when you quickly glance at the watch, after all.
To be clear, a glance is a screen of content that appears when you
swipe up from the bottom of the watch face. Glances are for pro‐
viding a summary of important information that relates to an app.
A notification is a screen of content that appears when your phone
receives a message. For example, when your phone receives an
iMessage from a friend, the notification will show the text of that
iMessage. When you build a custom notification, you customize
this interface that appears.

Creating Notifications for Your iOS App
In order to work with notifications on the watch, it’s important to first understand
how notifications work on the iPhone.

Notifications can come from two different sources:

• Remote notifications, also known as push notifications, are delivered by the Apple
Push Notification server to the phone.

• Local notifications are notifications that are scheduled by the application itself,
and don’t involve any communication with the Apple Push Notification server.

From the user’s perspective, remote and local notifications look like the same thing:
depending on the content of the notification, the user sees some alert text, hears a
sound, sees a badge appear on the application icon, or some combination of the
above.

Because both remote and local notifications are effectively the same from the user’s
perspective, the way that applications register their intent to show notifications is the
same for both remote and local notifications. To begin showing notifications, follow
these steps:

1. First, identify the different categories of notifications you plan on receiving. For
example, if you were making a social networking app, you might expect to have a

46 | Chapter 4: Notifications

notification for when the user receives a message, and another notification for
when someone likes their post.

2. Next, for each category of notification, identify the actions that the user can take.
To continue the social networking app example, if the user receives a message, a
potential action is to reply to that message, while if someone likes a post, a poten‐
tial action is to view the profile of that user.

3. For each action that can be taken, create a UIMutableUserNotificationAction
and prepare it in your iOS application’s application delegate’s applicationDidFi
nishLaunching method (for example, in ApplicationDelegate.swift in your
project), like so:

 let replyAction = UIMutableUserNotificationAction()
 replyAction.identifier = "replyToMessage"
 replyAction.title = "Reply"

Once you have the notifications you want for a category, you create a UIMutableUser
NotificationCategory, give it an identifier, and provide it with the actions that
should be attached to it. Different actions can be made available in different contexts
—for example, the default context applies when the notification appears on the lock
screen, and the minimal context applies in more space-constrained environments,
like when the user pulls down on a notification banner:

 let messageReceivedCategory = UIMutableUserNotificationCategory()
 messageReceivedCategory.identifier = "messageReceived"

 // The default context is the lock screen.
 messageReceivedCategory.setActions([replyAction],
 forContext: UIUserNotificationActionContext.Default)

 // The minimal context is when the user pulls down on a notification banner.
 messageReceivedCategory.setActions([replyAction],
 forContext: UIUserNotificationActionContext.Minimal)

On the Apple Watch, all notifications are shown in the default con‐
text. However, you still need to think about the minimal context,
because your notifications might also be shown on the iPhone.

Once all of the categories have been created, you need to create a UIUserNotifica
tionSettings object. This object describes to iOS what the user will see when a noti‐
fication appears; that is, if they will see a message, hear a sound, or see a badge on the
app icon (or some combination of the three.) The settings object also contains the
collection of category objects:

 let settings = UIUserNotificationSettings(
 forTypes: [

Creating Notifications for Your iOS App | 47

 UIUserNotificationType.Alert,
 UIUserNotificationType.Badge,
 UIUserNotificationType.Sound
], categories: [messageReceivedCategory]
)

Once the settings object is prepared, you call registerUserNotificationSettings
on the shared UIApplication object, like so:

 UIApplication.sharedApplication()
 .registerUserNotificationSettings(settings)

At this point, the system will display the alert box that asks for permission to display
alerts, play sounds, and update the badge. If the user chooses to not allow this by
declining to grant permission to the app, no notifications will be shown, either on the
iPhone or the watch.

There’s one additional step needed for remote notifications. Once
you’ve registered your intent to show notifications to the user, you
then need to call registerForRemoteNotifications() on the
shared UIApplication object. This kicks off an additional process,
in which the phone will contact the Apple Push Notification service
and deliver a device identifier token to the application delegate,
which your app then needs to deliver to a server that you control.
Registering for and delivering push notifications is outside of the
scope of this book, as we’re focusing on how the Apple Watch dis‐
plays notifications in general. To learn more about how to imple‐
ment remote notifications, see the Local and Remote Notification
Programming Guide in the Xcode documentation.

When a notification arrives, the identifier of the notification’s category is included
alongside any other information, like the alert title. The category identifier is used by
the system to work out which action buttons should be attached, if applicable. On the
lock screen, any actions that were added to the category’s default context are accessi‐
ble by swiping on the notification right to left; if the user has unlocked her phone and
a notification banner appears, any actions that were added to the category’s minimal
context appear when she pulls down on the banner.

Presenting Notifications
There are two types of interfaces that the watch presents for a notification: a short-
look interface, and a long-look interface.

When a notification comes in, the watch vibrates and shows the short-look notifica‐
tion. If the user looks at the notification for a couple of seconds (which the watch

48 | Chapter 4: Notifications

http://bit.ly/loc-remote
http://bit.ly/loc-remote

detects based on information coming from the built-in motion sensors), the watch
loads the long-look notification and presents it.

The short-look interface can’t be customized. Instead, when you want to customize
the way that the notification is presented to the user, you provide your own long-look
interface, which replaces the default interface.

Creating Custom Notification Interfaces
The custom long-look notification interface is managed by a special of WKInterface
Controller subclass called WKUserNotificationInterfaceController. This class
works identically to regular interface controllers, but has two additional methods:
didReceiveRemoteNotification and didReceiveLocalNotification. These meth‐
ods are called when the iOS application that your WatchKit app is paired with dis‐
plays a remote or local notification, and they serve as your opportunity to update the
interface controller’s UI elements to show useful information.

WKUserNotificationInterfaceController is created by the system, and may be
reused for multiple notifications. This means that in the didReceiveRemoteNotifica
tion and didReceiveLocalNotification methods, the interface may have already
been loaded, and is about to be displayed to the user in just a moment. If this inter‐
face controller was previously used to show an earlier notification, it may contain
out-of-date information. It’s up to you to load the most current information being
shown to the user, and you need to do so as fast as you can, or the user will see out-
of-date content.

Custom long-look notification interfaces all use a similar layout. From top to bottom,
the screen shows:

• The sash, which is a colored bar that contains the app icon and the title of the
notification

• The content area, which is the region in which you can put your own UI content
• The bottom of the interface controller, which shows the list of buttons for each

action registered with the notification, as well as a Dismiss button at the very bot‐
tom

Figure 4-1 shows a notification comprising all three of these elements. The sash
shows the iMessage icon and the word “Messages,” the content area shows the mes‐
sage itself, and beneath the content area, a Reply button appears above the standard
Dismiss button.

Presenting Notifications | 49

Figure 4-1. A notification received by the Apple Watch

You can’t change the structure of this interface beyond the interface
elements you put in the content area, the buttons in the bottom of
the interface, and the color of the sash.

Static and Dynamic Notification Interfaces
When you create a custom long-look interface, you create at least one interface, called
the static interface. You can also create a dynamic interface, which is controlled by
your WKUserInterfaceController.

The static interface just shows the alert text of the notification in a WKInterfaceLa
bel, along with the list of actions, but you can customize its design by configuring the
position and style of the alert label, and also by adding your own static text and
images. The goal of the static interface is to allow your notifications to look like they
fit in with the visual design of your parent iOS application.

The dynamic interface, which is optional, is a WKUserNotificationInterfaceCon
troller subclass that you write; in the didReceiveRemoteNotification and didRe
ceiveLocalNotification methods, you receive the contents of the dictionary or
UILocalNotification object that the application received (depending on whether
the notification was a remote notification or a local notification), and populate the
interface according to your own requirements.

50 | Chapter 4: Notifications

The main reason for this split between static and dynamic inter‐
faces for your custom notifications is power consumption. Launch‐
ing additional code means that the Apple Watch needs to consume
additional CPU resources to load, run, and manage a process on
the watch that updates the interface.
As the saying goes, the best way to optimize code is to never run
that code at all; if the notification is guaranteed to never need code
to run, WatchKit can simply display it without having to use these
extra resources. This can save a large amount of power.
Because of this, the system may decide to display the static interface
even if a dynamic interface is available. If the watch is low on
power, or if the code that prepares the dynamic interface takes too
long to run, the system will fall back to the static interface.
It’s worth keeping in mind that many notifications don’t actually
need a dynamic interface. Consider carefully if you really do need
to update your interface from code.

Setting Up for Testing Notifications
In the real world, a notification UI is presented as a result of the iOS app receiving a
notification. That can be fiddly to set up when you’re developing and testing your
notification interface, so Xcode provides a way to test different notifications in the
Apple Watch simulator.

First, you create a file that contains the same information that the Apple Push Notifi‐
cation server sends to the phone. This information is represented in the human-
readable JSON format. Next, in the Run action for the scheme that you use for
running the Notification in the Apple Watch simulator, you select this new push noti‐
fication file. When the app launches, the Apple Watch simulator is given the push
notification data from the file you wrote, and uses that to display a notification.

If you chose to create a notifications interface when creating the
project, you don’t need to follow these steps. However, if you’re
adding a custom notification interface to an existing project, or if
you want to test multiple different types of notifications, read on.

To create a test notification file, follow these steps:

1. Create the file by opening the File menu, and choose New→File. Select the Apple
Watch category, and choose Notification Simulation File. Create the new file.

2. Customize the notification to suit your needs by opening the file and modifying
the notification:

Setting Up for Testing Notifications | 51

a. The aps dictionary contains information used by iOS and by the Apple Watch
to present the static notification. The body key is the notification message
itself, while the title key is optional and determines the notification title.

b. The WatchKit Simulator Actions dictionary is used only by the Apple
Watch simulator, and allows you to control which actions are attached to the
notification.
Actions are handled in this way when using simulated notifications, because
when real notifications are delivered to the phone, the iOS app is responsible
for determining which actions are attached to different notifications. When
using simulated notifications, like we’re doing here, there’s no iOS app to pro‐
vide info about which actions apply, so you need to add them yourself.

3. Any other keys you add are available for your code to use, and are delivered
inside the dictionary that handleRemoteNotification receives as a parameter.

To test notifications in the Apple Watch simulator, you need to add a new scheme that
makes the simulator display a notification. This is very similar to adding a scheme for
the glance interface (see “Creating a Glance Scheme” on page 42).

1. Open the Scheme manager by opening the Product menu, choosing Scheme, and
then choosing Manage Schemes.

2. Select the scheme for the WatchKit app.
3. Click the settings icon at the lower left, and choose Duplicate.
4. Rename the new scheme something appropriate, like “WatchKit App Notifica‐

tion.”
5. Click the Edit button, and select the Run action.
6. In the settings for the Run action, set the Watch Interface option to

Notification.
7. Set the Notification Payload to the file you just created.
8. Close the scheme editor, and select the new Notification scheme.

Creating the Interface Controller
If you want to customize the long-look interface for your notifications, you need to
create and configure an interface controller. To do this, follow these steps:

1. Create a subclass of WKUserNotificationInterfaceController: from the File
menu, choose New→File, choose the Source category, and create a new Cocoa
Touch subclass.

52 | Chapter 4: Notifications

Make the Subclass of be WKUserNotificationInterfaceController.
2. Add a new notification interface controller to the storyboard by opening your

app’s main storyboard and dragging in a new notification interface controller
from the Object Library. This will add the static interface for the notification.

3. Select the arrow that’s connected to the interface. In the Attributes Inspector, set
the Name of the category to the identifier of one of the UIMutableUserNotifica
tionCategory objects that the iOS app registers for.

If you don’t specify a notification category, and instead just leave it
blank, then the notification interface will be used as the “default”
interface, and will appear for all notifications that don’t have their
own specific notification interface controllers.

You create multiple notification interface controllers, one for each different notifica‐
tion category your app has. If you have more than one category, simply drag in multi‐
ple notification interface controllers, and configure each category to use the
appropriate identifier in the Name field.

By default, a notification interface controller only has the static interface, and it
doesn’t use the WKUserNotificationInterfaceController subclass. Again, it’s worth
remembering that many notifications don’t need a code-driven interface. If you
decide that you don’t need to add a dynamic interface, you can skip the first step of
this process, and just add the static interface.

If you do decide that you need a dynamic interface, follow these steps:

1. Select the notification category arrow, and turn on “Has Dynamic Interface” in
the Attributes Inspector. A new interface will appear, connected to the static
interface.

2. Select the dynamic interface, and then select the interface controller by clicking
on the yellow circular icon. Open the Identity Inspector, and in the Class field,
type the name of your WKUserNotificationInterfaceController. Once that’s
done, you can set up your interface controller just like any other, by dragging
controls into the interface and connecting them via outlets.

Finally, your WKUserNotificationInterfaceController class needs to add methods
that run when a notification is received.

Implement didReceiveLocalNotification and didReceiveRemoteNotification

(these methods are run when a local or remote notification is received by the iOS app,
and receive the notification info as well as a completion block). After you finish using

Creating the Interface Controller | 53

the notification info to set up your dynamic interface, you call the completion block
to signal that WatchKit should use a dynamic interface:

 override func didReceiveLocalNotification(
 localNotification: UILocalNotification, withCompletion
 completionHandler: ((WKUserNotificationInterfaceType) -> Void)) {
 // The iOS app received a local notification; set up our interface

 // When done, call completionHandler and pass .Custom.
 completionHandler(.Custom)
 }

 override func didReceiveRemoteNotification(
 remoteNotification: [NSObject : AnyObject], withCompletion
 completionHandler: ((WKUserNotificationInterfaceType) -> Void)) {
 // The iOS app received a local notification; set up our interface

 // When done, call completionHandler and pass .Custom.
 completionHandler(.Custom)
 }

If you don’t call the completion block fast enough—in about a
quarter of a second or less—the system will fall back to using the
static interface. This means that you don’t have time to talk to the
network, for example, before calling the completion block.

The notification from this chapter is shown in Figure 4-2.

Figure 4-2. The custom long-look notification, running on the watch

54 | Chapter 4: Notifications

Wrapping Up
If your iOS app receives notifications, creating a custom notification interface for the
watchOS app can go a long way toward improving the user experience. When you
create a custom notification interface, you have full control over what the user sees,
and can provide much more useful information than the default interface can pro‐
vide.

In the next chapter, we’ll look at another feature that lets you get the most important
information to the user: complications!

Wrapping Up | 55

CHAPTER 5

Complications

With all of the other features built into the Apple Watch, it’s easy to forget that it’s a
wristwatch at heart. Out of all of the other screens that are present in the watch, the
one that will be viewed the most is the watch face: that screen that shows the time.

However, good watches do more than just show the time. They show the date, the
weather, a stopwatch, and more (see Figure 5-1). These little gadgets on the clockfaces
are called complications, so named because their original implementation in
clockwork-based watches dramatically complicated the internals of the watch.

Figure 5-1. Several complications on the watch face (except for the watch dial and
hands, everything in this image is a complication)

57

On the Apple Watch, the user can select a variety of different watch faces, and some
faces can include complications. These complications include things like the date, the
next event on the calendar, and so on; you can see an example of several complica‐
tions in Figure 5-1. Your watchOS applications can provide complications as well,
and in this chapter, we’ll look at how to create them.

Designing a Complication
Before we set out to build a complication, it’s worth taking a moment to discuss what
a complication is for. Because they’re shown on the watch face, a complication’s role is
focused on time. A complication needs to present some time-related data to the user;
for example, the Weather complication shows the current weather, the Calendar com‐
plication shows the next event, and so on.

Not all apps need to have a complication. If the content presented
by your app isn’t timely—that is, it can’t be linked to a specific date
and time—consider not including one.
Content being timely doesn’t necessarily mean that it directly
relates to time, like a calendar entry does. For example, it makes
sense for the weather complication to be a complication because it
shows the current weather right now, and Time Travel allows you to
see future predictions of the weather.
If your app’s content can’t be meaningfully discussed in terms of the
data that it presents now and the data it will present in an hour’s
time, you may want to reconsider whether your app should provide
a complication.

Building complications for apps means taking into consideration a number of design
constraints that the Apple Watch faces. A typical user will look at the watch several
times a day, but each time will only look at it for a few seconds—often for less than a
second. This means that any information that the complication needs to display must
be already ready to show; the watch doesn’t have time to wake up your app to let it
determine what to show.

On top of this, there’s a reasonable chance that when the watch determines that it
should wake up and show the watch face, the user isn’t even looking at the watch.
This means that it doesn’t make sense for your watch to spend much energy prepar‐
ing the content, because it may not be delivered.

When you’re making a complication, you don’t provide a design for its interface.
Instead, you use one of several pre-prepared templates for content; these can show
text, images, or a combination of the two. The specific templates that you can use
depend on which family of complication you’re providing content to.

58 | Chapter 5: Complications

Finally, the last thing to consider is Time Travel. When a user rotates the Digital
Crown, the time shown on the clock face changes; the watch then shows what the
screen would look like if it were the selected time. This lets the user scroll through
what’s coming up, or scroll back to see what conditions were like a little while ago. Of
course, this is only possible if you can predict what a complication will be showing in
the future; a complication that shows your most recently received email can’t partici‐
pate in Time Travel, because you can’t know what email you’ll receive next. However,
the Weather app can participate in Time Travel, because predictions can be made
ahead of time.

You can see a screenshot of Time Travel in action in Figure 5-2. In this image, time
has been wound forward by nine hours; as a result, several complications have
changed from their former state that reflected the present.

Figure 5-2. Time Travel in action

You’ll notice that the watch dial has changed to reflect the new time, along with the
date and the time shown in the other country; additionally, the temperature has
changed, because what’s being shown is the prediction of what the temperature will be
in nine hours’ time. Note also that the battery level at the top left has become dim‐
med, because the Apple Watch isn’t able to predict what the battery level will be with
any reasonable degree of confidence.

These design constraints mean that building a complication is significantly different
than building any other part of your watchOS app. When you build the app, you’re
building interface controllers that present a user interface and supply it with data, one
screen at a time. When you design a constraint, however, you’re only supplying data;

Designing a Complication | 59

additionally, if you’re participating in Time Travel (and you should), then you supply
multiple pieces of data.

The Data Provider
When your app provides a complication, you create a class that conforms to the
CLKComplicationDataSource protocol. This protocol defines the methods that
watchOS will call in order to get data from your app for display on the watch face.

You don’t actually create an instance of this class; instead, you provide the name of
the class in your project settings, and watchOS will instantiate the class when it needs
to.

Because a complication’s entire purpose is to provide timely information, all data
shown on the watch face is tied to a specific moment in time. These are represented
by timeline entries: objects that contain information to be shown to the user, alongside
the specific time and date at which point the information is correct.

The data provider object’s purpose is to respond to requests from watchOS for time‐
line entries. Complications always have at least one timeline entry, but they can often
have more than one. This is how Time Travel works; when a complication is loaded,
watchOS asks the complication’s data source class for as many timeline entries as pos‐
sible, so that when the user rotates the Digital Crown, the appropriate timeline entry
can be displayed.

The data source class is repeatedly asked for more timeline entries as time goes by.
The specific times are controlled by watchOS, in order to make sure that there’s
timely information, ready to display, the moment the user looks at the watch face.

The data source is expected to respond to queries as fast as possi‐
ble. Don’t access the network or query the device. If the data that
your complication needs to provide comes from the network, your
iOS app or main watchOS app should query the data ahead of time,
and store it somewhere that the complication can access it. This is a
bit beyond the scope of this chapter, but for more information, see
the “Leveraging iOS Technologies” section in the App Program‐
ming Guide for watchOS.

Adding a complication to an existing project. If you followed the instructions in Chap‐
ter 2, your project will already be set up to provide a complication. If you’re working
with an existing project that you want to add a complication to, you can add it by
following these steps:

1. Add a new file to your project by opening the File menu and choosing
New→File. Create a new Cocoa Touch Class, and make it a subclass of NSObject.

60 | Chapter 5: Complications

http://bit.ly/leverage-ios
http://bit.ly/leverage-ios

2. In the newly created file, make the file conform to the CLKComplicationData
Source protocol:

 class ComplicationController: NSObject,
 CLKComplicationDataSource {

3. Select your project at the top of the Project Navigator.
4. Select the WatchKit Extension in the list of targets.
5. Scroll down to the Complications Configuration section of the page, and set the

Data Source Class to the class you just created (see Figure 5-3).
6. For the example in this chapter, turn on the Utilitarian Large family in the list of

checkboxes.

Figure 5-3. Configuring a project to have a complication

Templates and Timelines
To show information to the user, a timeline entry uses a template. A template is an
object that contains text, images, or both, and watchOS provides a number of differ‐
ent types of templates. You can’t create your own custom templates; instead, you use
the templates that are available to you.

Different templates are available for different complication families. Each watch face
is capable of displaying different types of complications; however, it doesn’t make a
lot of sense to have to create a new complication for each of the available watch faces.
Instead, complications are grouped into families of different shapes and sizes, and
each watch face can support different families.

This means that your complications need to be designed for specific families; if you
create a complication that supports only the Utilitarian Large and Utilitarian Small
families, your complication won’t be available on the Modular watch face. You can

Designing a Complication | 61

make your complication support all available families, but doing so requires specific
code for each family that you support.

Building a Complication
Because complications are, well, a little complicated, we’ll work through an example
complication from start to finish. This complication, which will work with the Utili‐
tiarian watch face, displays the name of the next meal; for example, if you look at your
watch early in the morning, it will say “breakfast,” around noon it will say “lunch,”
and in the evening it will say “supper.” You can see a screenshot of the complication in
Figure 5-4.

Figure 5-4. The demo complication we’ll be building in this chapter

This section assumes your data source class is called Complication
Controller, because that’s the name of the file that Xcode creates if
you choose to add a complication when creating a project.

To get started, we’ll first create some code that isn’t specifically related to complica‐
tions, but will provide us with the data that the complication will show. Specifically,
we need to think about the data that the complication will present.

Overthinking Our Food
Let’s stop thinking about the Apple Watch for a moment, and think about how daily
meals work. In most Western cultures, there are three main meals per day: breakfast,

62 | Chapter 5: Complications

lunch, and dinner. There are also several other meals: a midnight snack, afternoon
tea, elevenses, and so on. All of these usually happen at a particular time: breakfast is
eaten in the morning—say, around 7AM—while dinner is eaten in the evening.

However, there’s a distinction that needs to be made between a general kind of meal,
like evening dinners, and a specific meal, like the one that you’ll hopefully have
tomorrow tonight. Meals repeat: you had breakfast yesterday, hopefully, and all things
going well, you’ll have one tomorrow. Specific meal occurrences happen only once: the
breakfast that I had this morning has already happened, and will never happen again.

The data that’s shown in a complication relates to this second kind of data: specific
events, which are shown on the watch face. The Apple Watch needs to know about
the precise date of the event, so that when a user glances at his wrist, he can immedi‐
ately be shown the correct information.

This means that we have two separate kinds of data in the app: Meals and MealOccur
rences. A Meal is simply an association between a meal’s name and the hour of the
day it will occur, while a MealOccurrence is the name of a meal and a specific NSDate.
We could create classes for these two different types, but because we’re just working
with some pretty simple data, we can also use tuples for the same effect and with
quite a bit less typing.

Implementing the Complication
To get started, we’ll first implement the data structures that the complication will
work with, along with the code that provides the necessary data:

1. Open ComplicationController.swift.
2. If there’s any code in the ComplicationController class, delete it. (The template

file that comes with the project contains a number of placeholder methods; we’ll
be writing all of ours from scratch.)

3. Add the following code to the ComplicationController class:

 // A "Meal" is an hour of the day, and the name of
 // the meal to eat at that hour.
 typealias Meal = (hour: Int, name: String)

 // A MealOccurrence is a specific meal that's eaten
 // at a specific date and time.
 typealias MealOccurrence = (name: String, date: NSDate)

We can now define the list of meals that happen over the course of the day. We’ll store
this as an array of Meals.

Add the following array to ComplicationController:

Building a Complication | 63

 // Define the list of meals.
 let meals : [Meal] = [
 (7, "Breakfast"),
 (9, "Second Breakfast"),
 (10, "Brunch"),
 (11, "Elevenses"),
 (13, "Lunch"),
 (16, "Tea"),
 (19, "Dinner"),
 (21, "Supper"),
 (23, "Snack")
]

Now that each meal has an associated hour of the day, we can write code that uses the
meals list to determine the next MealOccurrence—the name of the next meal, and
the time at which it should be eaten—that will happen after a specified date:

 func nextMealOccurrenceAfterDate(date: NSDate) -> MealOccurrence {
 // Determine the next MealOccurrence that happens after the provided date.

 let calendar = NSCalendar.currentCalendar()

 // Determine the date's hour value.
 let hour = calendar.components(NSCalendarUnit.Hour, fromDate: date).hour

 // Find the next Meal whose hour is after this date's hour.
 var selectedMeal : Meal? = nil

 for meal in meals {
 if meal.hour > hour {
 selectedMeal = meal
 break
 }
 }

 // Stores the calculated date of this next meal's occurrence.
 var mealDate : NSDate

 if selectedMeal == nil {

 // No more meals take place today. The next meal will be the first
 // meal that occurs tomorrow.
 selectedMeal = meals[0]
 }

 // Calculate the date for this meal.

 // Start by getting a new date where the time is set to the start of
 // the meal's hour
 mealDate = calendar.dateBySettingHour(
 selectedMeal!.hour, minute: 0, second: 0,
 ofDate: NSDate(), options: [])!

64 | Chapter 5: Complications

 // If this date is *before* the specified date...
 if mealDate.earlierDate(date) == mealDate {
 // ...then we've wrapped around to the start of the day.
 // We should add one day to the date.
 mealDate = calendar.dateByAddingUnit(
 .Day, value: 1, toDate: mealDate, options: [])!
 }

 // Return the MealOccurrence - its name, and the time at which it's eaten.
 return (selectedMeal!.name, mealDate)
 }

Presenting the Complication
Now that we have a source of time-related information to show, we can start present‐
ing data in the complication.

The visible thing that a complication displays is called a template. At runtime,
watchOS will ask the data provider class to create and prepare a timeline entry, which
consists of a template paired with an NSDate. For this complication, we’ll implement a
method that prepares a template based on a given date. This isn’t part of the CLKCom
plicationDataSource protocol, but because it’ll be called from multiple places, it’s
best to put it in a separate method.

When you create a template for display in a complication, you need to give it the data
that it needs to show. This is done through text providers and image providers. A text
provider shows either a string or a date in the complication, while an image provider
displays an image. Different providers do different things; for example, the CLKSimple
TextProvider just shows a string of text, while a CLKTimeTextProvider shows the
time value in an NSDate.

Different kinds of templates support different types of providers. For example, the
CLKComplicationTemplateCircularSmallSimpleText template can display a single
text provider, while larger, more complex templates like CLKComplicationTemplateMo
dularLargeColumns support up to six text providers or three image providers.

In this complication, we’ll use the CLKComplicationTemplateUtilitarianLargeFlat
template, which can present either a single text provider or a single image provider.
We’ll give it a text provider to show the name of the next MealOccurrence.

Importantly, the method that prepares a template given a MealOc
currence will also support being given a nil value. This will be
used later, when watchOS needs a template to show in the compli‐
cation before any data has been requested yet.

Building a Complication | 65

Add the following method to the ComplicationController class:

 func templateForMeal(mealOccurrence : MealOccurrence?,
 inComplication complication: CLKComplication) -> CLKComplicationTemplate {

 // Given a meal occurrence, creates and prepares a complication template.

 // Different complication families require different kinds of templates.
 // If you want to support different families, add more cases to this
 // switch statement.

 let mealName = mealOccurrence?.name ?? "Next Meal"

 switch complication.family {
 case .UtilitarianLarge:

 // Create the template
 let t = CLKComplicationTemplateUtilitarianLargeFlat()

 t.textProvider = CLKSimpleTextProvider(
 text: mealName)

 return t;
 default:
 fatalError("Unsupported complication family: \(complication.family)")
 }

 }

Creating Timeline Entries
Now that we have templates to show, we simply need to create timeline entries when
watchOS requests them. There are a few methods that are part of the CLKComplica
tionDataSource protocol that are required:

• getSupportedTimeTravelDirectionsForComplication is called to determine
what time travel directions are supported, if any; that is, if the complication
should appear if Time Travel is showing a time in the future, or if it’s showing a
time in the past

• getCurrentTimelineEntryForComplication is called to get the current timeline
entry

• getPlaceholderTemplateForComplication is called to get a template to show on
the selection screen; it doesn’t need to show actual data, but rather should show
some placeholder information

The second method, getCurrentTimelineEntryForComplication, is responsible for
returning the current timeline entry. This is the timeline entry that the user will see
when she glances at her wrist (and when she’s not using Time Travel.)

66 | Chapter 5: Complications

Add the following method to ComplicationController:

 func getCurrentTimelineEntryForComplication(complication: CLKComplication,
 withHandler handler: (CLKComplicationTimelineEntry?) -> Void) {

 // Provides the current entry on the timeline.

 // Get the current date.
 let date = NSDate()

 // Get the next meal that happens after this date.
 let meal = nextMealOccurrenceAfterDate(date)

 // Get the template for this meal occurrence.
 let template = templateForMeal(meal, inComplication: complication)

 // Create an entry using this date and template.
 let entry = CLKComplicationTimelineEntry(date: date,
 complicationTemplate: template)

 // Provide it to watchOS.
 handler(entry)

 }

Once you have a template, you construct a timeline entry by creating an instance of
the CLKComplicationTimelineEntry class. This simply combines the date of the
timeline entry with the template to use.

You might notice that we don’t return this value. Instead, the
method receives a handler closure to call, which takes the template
as a parameter. You need to call this closure before the method
exits.

Next, we’ll implement the method that returns the placeholder template. This tem‐
plate is used on the selection screen, before any data is loaded.

Add the following method to ComplicationController:

 func getPlaceholderTemplateForComplication(complication: CLKComplication,
 withHandler handler: (CLKComplicationTemplate?) -> Void) {

 // Provides a placeholder template for the complication, used in the
 // complication selection screen.

 // Passing in 'nil' here because we're not actually trying to
 // show information, we just want the placeholder template.
 let template = templateForMeal(nil, inComplication: complication)

Building a Complication | 67

 handler(template)
 }

In this method, we aren’t creating a timeline entry; instead, we’re just returning a
static template to show.

Supporting Time Travel
Finally, we’ll implement support for Time Travel. To be specific, we’ll make this com‐
plication capable of future time travel; that is, the user can Time Travel into the future
and see what future meals will be.

Doing this involves two steps: first, we indicate to watchOS that this complication is
capable of participating in Time Travel, and second, we implement a method that
returns the list of future timeline entries that should be shown when the user Time
Travels.

Add the following method to ComplicationController:

 func getSupportedTimeTravelDirectionsForComplication(
 complication: CLKComplication,
 withHandler handler: (CLKComplicationTimeTravelDirections) -> Void) {
 // Provides the direction of time travel that this complication can do.
 // In this case, we support forward time travel.
 handler([.Forward])
 }

Complications can also indicate that they support backward time
travel by returning .Backward in the list passed to the completion
handler. Complications can also indicate that they support both
forward and backward time travel by returning a list that contains
both .Forward and .Backward.

Next, add the following method to ComplicationController:

 func getTimelineEntriesForComplication(complication: CLKComplication,
 afterDate date: NSDate, limit: Int,
 withHandler handler: ([CLKComplicationTimelineEntry]?) -> Void) {

 // Provides the list of timeline entries that will take place in the
 // future.

 var timelineEntries : [CLKComplicationTimelineEntry] = []

 // We'll create the list of timeline entries by figuring out the next meal
 // after nextMealDate, and then setting nextMealDate to that next
 // meal's date. We can then repeat the process.
 var nextMealDate = date

 // We've been asked to create no more than 'limit' entries.

68 | Chapter 5: Complications

 for _ in 0..<limit {

 // Get the next meal after nextMealDate
 let nextOccurrence = nextMealOccurrenceAfterDate(nextMealDate)

 // Create the template and timeline entry for this meal
 let template = templateForMeal(
 nextOccurrence, inComplication: complication)
 let entry = CLKComplicationTimelineEntry(
 date: nextOccurrence.date, complicationTemplate: template)

 // Add it to the list
 timelineEntries.append(entry)

 // Next meal should be after this meal's date
 nextMealDate = nextOccurrence.date

 }

 // Provide the list to watchOS
 handler(timelineEntries)

 }

This method is responsible for providing an array of timeline entries, each of which
must be after the provided date. No more than limit entries should be returned.

The method creates this list by repeatedly calculating the next meal occurrence after
the date; once it has the next meal, it stores its date, and then looks for the next meal
after this date. This continues until limit timeline entries have been created.

If your complication supports backward Time Travel, you will need
to implement getTimelineEntriesForComplication(complica

tion: CLKComplication, beforeDate: NSDate, limit: Int,

withHandler:) as well—this method returns a list of timeline
entries in the past.

With that, the complication is ready, and you can now test it! Open the Scheme
chooser, and select the Complication scheme from the list. Then click the Play button,
or press Command-R to build and run the app. The Watch simulator will open, but
instead of showing your app, the watch face will appear.

To test your complication, you’ll need to add it to the simulator’s watch face. On the
Apple Watch, you do this by pressing hard on the watch face, which opens the watch
face chooser; you then select the watch face you want to use, tap Configure, and then
choose which complications should appear.

Building a Complication | 69

You do a similar thing on the simulator, but with one main difference—instead of
pressing hard in real life, you tell the simulator whether you want to perform a shal‐
low press or a deep press by pressing Command-Shift-1 and Command-Shift-2:

1. Press Command-Shift-2 to switch to Deep Press mode.
2. Tap the watch face, and the watch face chooser will appear.
3. Press Command-Shift-1 to switch back to Shallow Press mode.
4. Switch to the Utility watch face.
5. Tap Customize.
6. There are three pages of customizations that can be made to the Utility watch‐

face; swipe from right to left until you reach the third and final one.
7. Tap the complication at the bottom of the watch face, and scroll the trackpad (if

you have one) or your mouse until you find your complication.
8. Press Command-Shift-H to simulate pressing the Digital Crown, and you’ll

return to the watch face chooser screen. Press it again, and you’ll return to the
watch face.

9. Scroll your trackpad or mouse to activate Time Travel. The complication will
show future meals.

Wrapping Up
Complications provide you with an incredibly powerful way to let your user see
information that’s most useful to them. Because your app provides the data well in
advance of the user seeing it, the watch is able to very quickly show the latest infor‐
mation; additionally, through Time Travel, the user can peek ahead and see what’s
coming up, or what’s happened in the past.

70 | Chapter 5: Complications

Index

A
action methods, 14
alerts, 31
animations, 17, 23
Apple Push Notification, 1, 46, 48, 51
Apple Watch

communicating with, 32-37
described, 1
designing interfaces on, 12
and handoff with other devices, 35-37
and screen size, 13
sending and receiving data, 33
working with iPhones, 2, 11, 45

Apple Watch apps, 2
(see also WatchKit app; watchOS apps)
build and run on devices and simulators, 4
design constraints for, 3
life cycle of, 2
starting a project, 4-6

Apple Watch simulator, 4, 51, 52
architecture, watchOS app, 3
attributed text, 16
audio and video play back, 23-26
awakeWithContext method, 15, 22, 42

B
building Apple Watch apps, 4, 7

C
communication with Apple Watch, 32-37
complications, watch face

adding to an existing project, 60
building, 62-70
creating timeline entries, 66

data provider for, 60
described, 1, 3, 57
and design constraints, 59
designing, 58-62
display templates for, 61, 65
families, 61
implementation, 63
supporting Time Travel, 68
testing, 69

D
data provider for complications, 60
design constraints, 3, 58, 59
devices

building and running apps on, 4, 8
moving activities with handoff, 35-37

didDeactivate method, 15
dynamic notification interface, 50, 53

F
force touch simulation, 20

G
glances

compared to notifications, 46
creating an interface controller, 40-42
customizing display, 43
described, 1, 3, 39
using a template for, 41

H
handoff technology, 35-37
hierarchical navigation, 27-29

71

I
image providers, 65
images, 17
interface controllers

creating in WatchKit, 15
for glances, 40-42
methods for, 15
as model presentation, 30
for notifications, 52
presenting media, 23-26
screen navigation, 27-30
using segues to connect, 28

iOS apps
and the Apple Watch, 1
creating notifications for, 46-48
receiving notifications, 52
working with watchOS apps, 2, 8, 32

iOS simulator, 6, 7
iPhone

notifications, 46
sending and receiving data with watch,

33-35
working with Apple Watch, 2, 11, 45

L
labels, 16
life cycle, Apple Watch apps, 2
local and remote notifications, 46, 48
long-look notification interfaces, 49, 52

M
media player interface controller, 23-26
menus, 19-21
messages, data, 33-35
methods, interface controller, 15, 53
model presentation display, 30

N
navigation, interface controllers, 27-29
notifications

actionable, 45, 47
Apple Push Notification, 1, 46, 48
applied in context, 47
compared to glances, 46
creating an interface controller for, 52
displaying, 47
introduction to, 1, 45
for iOS apps, 46-48

on the iPhone, 46
local and remote, 46, 48
testing, 51

notifications, interfaces
customizing, 49-51
short-look and long-look, 48-51, 52
static and dynamic, 50, 53

O
outlets, 14

P
page-based navigation, 27, 29
picker views, 22
push notifications, 46

R
reply handler closure, 34
running Apple Watch apps, 4, 7

S
screen content display, 27-31, 39
segues, 28, 30
send and receive data messages, 33-35
session activation, 32
short-look notification interfaces, 48
simulating, 4, 6
Simulator, 6, 7
static notification interface, 50, 53

T
tables, 21
templates for complications, 65
text input controller, 26
text providers, 65
text, receiving from user, 26
Time Travel, 2, 59, 60, 68
timeline entries, 60, 61, 66

U
Uber app, 3
updates, 16
user activity, 35, 43
user experiences, 20, 30, 41, 46, 55

V
video and audio play back, 23-26

72 | Index

W
watch faces, 61

(see also complications)
WatchConnectivity, 3, 32
WatchKit app, 1

(see also Apple Watch apps; watchOS apps)
building for a device, 8
creating an interface controller, 15
displaying content, 11-13
and multiple interface controllers, 27-31
providing communication, 32
receiving text from user, 26
responding to actions, 13-14

WatchKit app design controls
images and animations, 17-19
menus, 19-21

picker views, 22
playing media, 23-26
tables, 21
text and labels, 16

watchOS apps, 11
(see also Apple Watch apps; WatchKit app)
architecture, 3
components, 1
working with iOS apps, 2, 8, 32

Weather app, 3, 59
willActivate method, 15, 42
WKInterfaceController, 15

X
Xcode, 5, 8

Index | 73

About the Authors
Dr. Jon Manning and Dr. Paris Buttfield-Addison are cofounders of the game and
app development studio Secret Lab. They’re based on the side of a mountain in
Hobart, Tasmania, Australia.

Through Secret Lab, they’ve worked on award-winning apps of all sorts, ranging from
iPad games for children to instant-messaging clients to math games about frogs.
Together they’ve written numerous books on game development, iOS software devel‐
opment, and Mac software development. Secret Lab can be found online and on
Twitter at @thesecretlab.

Paris has a BA in medieval history, a BComp with first class honors, and a PhD in
computing/HCI, where he focused on the use of tablet technology.

Jon has a BComp with first class honors, and a PhD in computing/HCI, where he
explored manipulation on social media sites.

Paris and Jon formerly worked with Meebo (which was acquired by Google) as prod‐
uct manager and senior software engineer, respectively. Both have written more than
a dozen technical, game design, and mobile development books, mostly for O’Reilly
Media. Paris can be found on Twitter at @parisba and Jon can be found at @des‐
plesda.

Colophon
The animal on the cover of Swift Development for the Apple Watch is an alpine swift
(Tachymarptis melba). The fastest member of the swift family, alpine swifts are native
to southern Europe and the Himalayas and migrate as far as southern Africa.

Although alpine swifts have very short legs that are useful for clinging to rocky surfa‐
ces, they prefer never to settle on the ground. Instead, swifts spend the majority of
their lives in the air and can stay aloft for up to six months at a time. All essential
functions—eating, drinking, and sleeping—can be performed during flight.

The need to roost is the only thing that will compel an alpine swift to land, and they
prefer to build their nests on the sides of cliffs or mountains. Alpine swifts pair for
life and will return to the same sites year after year to rebuild and repair nests. Swifts
have taken well to the development of cities along the Mediterranean, where old
buildings provide excellent spaces for roosting and laying eggs.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://www.secretlab.com.au
http://www.twitter.com/thesecretlab
http://twitter.com/parisba
https://twitter.com/desplesda
https://twitter.com/desplesda
http://animals.oreilly.com

The cover image is from Wood’s Illustrated Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.allitebooks.com

http://www.allitebooks.org

	Copyright
	Table of Contents
	Preface
	Audience
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Understanding the Apple Watch
	How Users Interact with Apple Watch
	How the Apple Watch Works with iPhone
	App Life Cycle
	A watchOS App’s Architecture
	Designing for the Apple Watch
	Dealing with the Device and Simulator
	Diving In
	Building for Simulator
	Building for the Device

	Chapter 2. WatchKit Apps
	Displaying Content on the Watch
	Responding to Actions
	Controls
	Text and Labels
	Images
	Menus
	Tables
	Picker Views

	Playing Media
	Getting Text from the User
	Working with Multiple Interface Controllers
	Hierarchical Navigation
	Page-Based Navigation
	Modal Presentation

	Communicating with the Device
	Sending and Receiving Messages
	Moving Between Devices Using Handoff

	Wrapping Up

	Chapter 3. Glances
	Working with Glances
	Creating a Glance
	Creating a Glance Scheme
	Tapping the Glance

	Wrapping Up

	Chapter 4. Notifications
	Creating Notifications for Your iOS App
	Presenting Notifications
	Creating Custom Notification Interfaces

	Static and Dynamic Notification Interfaces
	Setting Up for Testing Notifications
	Creating the Interface Controller
	Wrapping Up

	Chapter 5. Complications
	Designing a Complication
	The Data Provider
	Templates and Timelines

	Building a Complication
	Overthinking Our Food
	Implementing the Complication
	Presenting the Complication
	Creating Timeline Entries
	Supporting Time Travel

	Wrapping Up

	Index
	About the Authors
	Colophon

