
www.allitebooks.com

http://www.allitebooks.org

Test-Driven iOS Development
with Swift

Create fully-featured and highly functional iOS apps by
writing tests first

Dr. Dominik Hauser

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Test-Driven iOS Development with Swift

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1170216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-073-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Dr. Dominik Hauser

Reviewer
Ravi Shankar

Commissioning Editor
Kunal Parikh

Acquisition Editor
Reshma Raman

Content Development Editor
Parshva Sheth

Technical Editor
Rahul C. Shah

Copy Editor
Sonia Cheema

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr. Dominik Hauser completed his PhD in physics at Heidelberg University,
Germany. While working as a university professor, he started iOS development in
his spare time. His first app on physics has been an astounding success worldwide.
Since then, he's turned himself into a full-time iOS developer, crediting a number of
successful apps to his name. He has been a Swift developer since day one and runs a
blog on iOS development at http://swiftandpainless.com/.

I would like to thank my wife, Isa. Thank you for all your support
over the years and, especially, in the last few months of writing this
book. I also want to thank all the great people in our community. I
learned so much by reading your excellent blog posts. I'm proud to
be part of this community.

www.allitebooks.com

http://swiftandpainless.com/
http://www.allitebooks.org

About the Reviewer

Ravi Shankar is a multiskilled software consultant with over 15 years of
experience in the IT industry. He has the ability to work with different technologies
and has extensive experience in product development, system maintenance, and
support. Ravi is a polyglot and self-taught programmer, with hands-on experience in
Swift, Objective-C, and Java. He believes in gaining knowledge through sharing and
helping others learn about technology.

It was pleasure to work with Nikhil, and thanks to Packt Publishing
for giving me this opportunity.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Your First Unit Tests	 1

Building your first automatic unit test	 2
What are unit tests?	 3
Implementing a unit test example	 3
Important built-in assert functions	 8

Understanding TDD	 10
The TDD workflow – red, green, and refactor	 11

Red	 12
Green	 12
Refactor	 12

TDD in Xcode	 13
An example of TDD	 13

Red – example 1	 14
Green – example 1	 15
Refactor – example 1	 16
Red – example 2	 16
Green – example 2	 17
Refactor – example 2	 17
A recap	 19

Finding information about tests in Xcode	 19
Test Navigator	 20
Tests overview	 21
Running tests	 22
The setUp() and tearDown() methods	 25
Debugging tests	 25
Breakpoint that breaks on test failure	 27
Test again feature	 28

Advantages of TDD	 28
Disadvantages of TDD	 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

What to test	 30
Summary	 31

Chapter 2: Planning and Structuring Your Test-Driven iOS App	 33
Task list view	 34
Task detail view	 36
Task input view	 36
Structure of the app	 38

The Table View Controller, the delegate and the data source	 38
Table view cells	 39
A model	 39
Other view controllers	 40
Development strategy	 40

Getting started with Xcode	 40
Setting useful Xcode behaviors for testing	 41

Useful build behaviors	 42
Testing behaviors	 43

Summary	 44
Chapter 3: A Test-Driven Data Model	 45

Implementing the ToDoItem struct	 46
Adding a title property	 46
Adding an itemDescription property	 49
Removing a hidden source of bugs	 50
Adding a timestamp property	 51
Adding a location property	 52

Implementing the Location struct	 53
Adding a coordinate property	 54

Implementing the ItemManager class	 55
Count	 55
Adding and checking items	 57
Equatable	 64
Removing all items	 74
Ensuring uniqueness	 75

Summary	 76
Chapter 4: A Test-Driven View Controller	 77

Implementing ItemListViewController	 78
Implementing ItemListDataProvider 	 87

Conducting the first tests	 87
Fake objects	 93
Using mocks	 93
Checking and unchecking items	 105

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Implementing ItemCell	 107
Implementing DetailViewController	 113
Implementing InputViewController	 119
Summary	 125

Chapter 5: Testing Network Code	 127
Implementing asynchronous tests	 128
Implementing a login request to a web service	 131
Handling errors	 140
Summary	 144

Chapter 6: Putting It All Together	 145
Connecting parts	 146

The initial View Controller	 146
Showing the input view	 147
Showing the detail view	 155

Serialization and deserialization	 159
Functional tests	 167

Adding a UI test target	 168
Recording and testing	 168

Summary	 174
Chapter 7: Code Coverage and Continuous Integration	 175

Enabling code coverage	 175
Code coverage in Xcode	 176
What code coverage is enough?	 179

Continuous integration	 179
Installing and setting up Xcode Server	 180
Adding bots	 183

Automatic deployment with fastlane	 188
Installing fastlane	 189
Setting up	 189

Summary	 190
Chapter 8: Where to Go from Here	 191

What we have learned so far	 191
Integration tests	 192
UI tests	 192
Behavior-Driven Development	 193
TDD in existing projects	 194
More information about TDD	 195
Summary	 195

Index	 197

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
iOS projects have become bigger and more complex. Many projects have already
surpassed desktop applications in their complexity. One important strategy to
manage this complexity is through the use of unit tests. By writing tests, a developer
can point out the intention of the code and provide a safety net against the
introduction of bugs.

By writing the tests first (Test-Driven Development), the developer focuses on the
problem. This way, they are forced to think about the domain and rephrase a feature
request using their own understanding by writing the test. In addition to this,
applications written using Test-Driven Development (TDD) only contain code that is
needed to solve the problem.

As a result, the code is clearer, and the developer gains more confidence that the
code actually works.

In this book, you will develop an entire iOS app using TDD. You will experience
different strategies of writing tests for models, View Controller, and networking code.

What this book covers
Chapter 1, Your First Unit Tests, walks you through your first unit tests using Xcode
and discusses the benefits of of using TDD.

Chapter 2, Planning and Structuring Your Test-Driven iOS App, introduces the app you
are going to write through the course of this book and how to set up a project in Xcode.

Chapter 3, A Test-Driven Data Model, discusses the TDD of a data model.

Chapter 4, A Test-Driven View Controller, shows you how to write tests for View
Controller, and describes how to use fake objects to isolate micro features for the test.

Preface

[vi]

Chapter 5, Testing Network Code, teaches you to test network code using stubs to fake a
server component before it is developed.

Chapter 6, Putting It All Together, walks you through the integration of all the different
parts developed in previous chapters and shows the use of functional tests.

Chapter 7, Code Coverage and Continuous Integration, shows you how to measure the
code coverage of your tests using Xcode and introduces you to continuous integration.

Chapter 8, Where to Go from Here, wraps up and shows you the possible next steps to
improve your acquired testing skills.

What you need for this book
The following hardware and software is needed to follow the code examples in
the book:

•	 Mac with El Capitan (OS X 10.11)
•	 Xcode 7

Who this book is for
If debugging iOS apps is a nerve-racking task for you and you are looking for a fix,
this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To be able to write tests for your code, you need to import the module with the @
testable keyword."

A block of code is set as follows:

func makeHeadline(string: String) -> String {
 return "This Is A Test Headline"
}

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

override func setUp() {
 super.setUp()

 viewController = ViewController()
}

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "To edit the build
scheme, click on Scheme in the toolbar in Xcode, and then click on Edit Scheme…."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/TestDriven_Development_with_Swift_
ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/TestDriven_Development_with_Swift_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TestDriven_Development_with_Swift_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TestDriven_Development_with_Swift_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Your First Unit Tests
When the iPhone platform was first introduced, applications were small and focused
on one feature. It was easy to make money with an app that only did one thing (for
example, a flash light app that only showed a white screen). The code for these apps
only had a few hundred lines and could easily be tested by tapping the screen for a
few minutes.

Since then, the App Store has changed a lot. Even now, there are small apps with
a clear focus in the App Store, but it's much harder to make money from them. A
common app is complicated and feature-rich but still needs to be easy to use. There
are companies with several developers per platform working on one app all the
time. These apps sometimes have a feature set, which is normally found in desktop
applications. It is very difficult and time consuming to test all the features on such
apps by hand.

One reason for this is that manual testing needs to be done through a user interface,
and it takes time to load the app to be tested. In addition to this, human beings are
very slow as compared to the capabilities of computers. Most often, you'll notice
that a computer waits for the next input of the user. If we could let a computer insert
values, testing could be drastically accelerated. Additionally, the computer could
test the features of the app without loading the user interface; thus, the complete app
could be tested within seconds. This is exactly what unit tests are all about.

Writing unit tests is hard at first because it is a new concept. This chapter is aimed at
helping you get started with unit tests and how they are used in Xcode. We will also
discuss Test-Driven Development (TDD), which forces us to write the tests before
the implementation code. We will see how TDD is implemented in Xcode, and we
will discuss its advantages and disadvantages.

Your First Unit Tests

[2]

We will cover the following topics in this chapter:

•	 Building your first automatic unit test
•	 Understanding TDD
•	 TDD in Xcode
•	 Advantages of TDD
•	 Disadvantages of TDD

Building your first automatic unit test
If you have done some iOS development (or application development in general)
before, the following example might seem familiar to you.

You are planning to build an app. You start collecting features, drawing some
sketches, or your project manager hands the requirements to you. At some point, you
start coding. After you have set up the project, you start implementing the required
features of the app.

Let's say the app is an input form, and the values the user puts in have to be
validated before the data can be sent to the server. The validation checks, for
example, whether the e-mail address looks like it's supposed to and the phone
number has a valid format. You implement the form and check whether everything
works. But before you can test, you need to write code that presents the form on
the screen. Then, you build and run your app in the iOS simulator. The form is
somewhere deep in the view hierarchy. So, you navigate to this view and put the
values into the form. It doesn't work. Next, you go back to the code and try to fix the
problem. Sometimes, this also means that you need to run the debugger, and build
and run to check whether the code still has errors.

Eventually, the validation works for the test data you put in. Normally, you would
need to test for all possible values to make sure that the validation not only works
for your name and your data but also for all valid data. But there is this long list of
requirements on your desk, and you are already running late. The navigation to the
form takes three taps in the simulator, and putting in all the different values just
takes too long. You are a coder after all.

If only a robot could perform this testing for you.

Chapter 1

[3]

What are unit tests?
Automatic unit tests act like a robot for you. They execute code but without the need
of navigating to the screen with the feature to test. Instead of running the app over
and over again you write tests with different input data and let the computer test
your code in the blink of an eye. Let us see how this works in a simple example.

Implementing a unit test example
Open Xcode and go to File | New | Project. Navigate to iOS | Application | Single
View Application, and click on Next. Put in the name FirstDemo, select the Swift
language, iPhone for Devices, and check Include Unit Tests. Uncheck Use Core
Data and Include UI Tests, and click on Next. The following screenshot shows the
options in Xcode:

Xcode sets up a completely ready project for development in addition to a test target
for your unit tests. Open the FirstDemoTests folder in Project Navigator. Within
the folder, there are two files: FirstDemoTests.swift and Info.plist. Select
FirstDemoTests.swift to open it in the editor.

Your First Unit Tests

[4]

What you see here is a test case. A test case is a class comprising several tests. It's
good practice to have a test case for each class in the main target.

Let's go through this file step by step:

import XCTest
@testable import FirstDemo

Every test case needs to import the XCTest framework. It defines the XCTestCase
class and the test assertions that you will see later in this chapter.

The second line imports the FirstDemo module. All the code you write for the app
will be in this module. By default, classes, structs, enums, and their methods are
defined as internal. This means that they can be accessed within the module. But
the test code lives outside of the module. To be able to write tests for your code, you
need to import the module with the @testable keyword. This keyword makes the
internal elements of the module accessible to the test case.

Next we'll take a look at the class declaration:

class FirstDemoTests: XCTestCase {

Nothing special here. This defines a class FirstDemoTests as a subclass of
XCTestCase.

The first two methods in the class are as follows:

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called before the
invocation of each test method in the class.
 }

 override func tearDown() {
 // Put teardown code here. This method is called after the
invocation of each test method in the class.
 super.tearDown()
 }

The setUp() method is called before the invocation of each test method in the class.
Here, you can insert code that should run before each test. You will see an example
of this later in this chapter.

The opposite of setUp() is tearDown(). This method is called after the invocation
of each test method in the class. If you need to clean up after your tests, put the
necessary code in this method.

Chapter 1

[5]

There are two test methods in the template provided by Apple:

 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your tests
produce the correct results.
 }

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measureBlock {
 // Put the code you want to measure the time of here.
 }
 }

}

The first method is a normal test. You will use this kind of test a lot in the course of
this book.

The second method is a performance test. It is used to test methods or functions that
perform time-critical computations. The code you put into measureBlock is called
several times, and the average duration is measured. Performance tests can be useful
when implementing or improving complex algorithms and to make sure that their
performance does not decline. We will not use performance tests in this book.

All the test methods that you write have to have the test prefix; otherwise, the
test case can't find and run them. This behavior allows easy disabling of tests: just
remove the test prefix of the method name. Later, you will take a look at other
possibilities to disable some tests without renaming or removing them.

Now, let's implement our first test. Let's assume that you have a method that counts
the vowels of a string. A possible implementation could look like this:

func numberOfVowelsInString(string: String) -> Int {
 let vowels: [Character] = ["a", "e", "i", "o", "u", "A", "E", "I",
"O", "U"]

 var numberOfVowels = 0
 for character in string.characters {
 if vowels.contains(character) {
 ++numberOfVowels
 }
 }

 return numberOfVowels
}

Your First Unit Tests

[6]

Add this method in the ViewController class in ViewController.swift.

This method does the following things:

•	 First, an array of characters is defined containing all the vowels in the English
alphabet.

Note that without the [Character] type declaration right after the
name of the constant, this would be created as an array of strings,
but we need an array of characters here.

•	 Next, we define a variable to store the number of vowels. The counting is
done by looping over the characters of the string. If the current character is
contained in the vowels array, numberOfVowels is increased by one.

•	 Finally, numberOfVowels is returned.

Open FirstDemoTests.swift, and remove the two test methods (the methods with
the test prefix). Add the following method to it:

func testNumberOfVowelsInString_ShouldReturnNumberOfVowels() {
 let viewController = ViewController()

 let string = "Dominik"

 let numberOfVowels = viewController.numberOfVowelsInString(string)

 XCTAssertEqual(numberOfVowels, 3, "should find 3 vowels in
Dominik")
}

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

This test creates an instance of ViewController and assigns it to the constant
viewController. It defines a string to use in the test. Then, it calls the function that
we want to test and assigns the result to a constant. Finally, the test method calls the
XCTAssertEqual(_, _) function to check whether the result is what we expected.

To run the tests, go to Product | Test, or use the command + U shortcut. Xcode
compiles the project and runs the test. You should see something similar to what is
shown in this screenshot:

Chapter 1

[7]

The green diamond with a checkmark on the left-hand side of the editor indicates
that the test passed. So, this is it. This is your first unit test. Step back for a moment
and celebrate. This could be the beginning of a new development paradigm for you.

Now that we have a test that proves that the method does what we intended, we are
going to improve the implementation. The method looks like it has been translated
from Objective-C. But this is Swift. We can do better. Open ViewController.
swift, and replace the numberOfVowelsInString(_:) method with this swift
implementation:

func numberOfVowelsInString(string: String) -> Int {
 let vowels: [Character] = ["a", "e", "i", "o", "u", "A", "E", "I",
"O", "U"]

 return string.characters.reduce(0) { $0 + (vowels.contains($1) ? 1
: 0) }
}

Here, we make use of the reduce function, which is defined in the array type. Run
the tests again (command + U) to make sure that this implementation works like the
one earlier.

Before we move on, let's recap what we have seen here. Firstly, we learned that
we could easily write code that tests our code. Secondly, we saw that a test helped
improve the code because we now don't have to worry about breaking the feature
when changing the implementation.

To check whether the result of the function is as we expect, we used
XCTAssertEqual(_, _). This is one of many XCTAssert functions that are defined
in the XCTest framework. The next section describes the most important ones.

Your First Unit Tests

[8]

Important built-in assert functions
Each test needs to assert some expected behavior. The use of the XCTAssert functions
tells Xcode what should happen. A test method without an XCTAssert function will
always pass as long as it compiles. The most important assert functions are:

•	 XCTAssertTrue(_:_:file:line:): Asserts that an expression is true
•	 XCTAssertFalse(_:_:file:line:): Asserts that an expression is false
•	 XCTAssertEqual(_:_:_:file:line:): Asserts that two expressions are

equal
•	 XCTAssertEqualWithAccuracy(_:_:accuracy:_:file:line:): Asserts

that two expressions are the same, taking into account the accuracy defined
in the accuracy parameter

•	 XCTAssertNotEqual(_:_:_:file:line:): Asserts that two expressions are
not equal

•	 XCTAssertNil(_:_:file:line:): Asserts that an expression is nil
•	 XCTAssertNotNil(_:_:file:line:): Asserts that an expression is not nil
•	 XCTFail(_:file:line:): Always fails

To take a look at the full list of the available XCTAssert functions, press
control, and click on the word XCTAssertEqual in the test that you have
just written. Then, select Jump to Definition in the pop-up menu.

Note that all the XCTAssert functions could be written using
XCTAssertTrue(_:_:file:line:). For example, these two lines of code are
equivalent to each other:

// This assertion is equivalent to...
XCTAssertEqual(2, 1+1, "2 should be the same as 1+1")

// ...this assertion
XCTAssertTrue(2 == 1+1, "2 should be the same as 1+1")

In all the XCTAssert functions, the last three parameters are optional. To take a look
at an example for the use of all the parameters, let's check out what a failing test
looks like in Xcode. Open FirstDemoTests.swift, and change the expected number
of vowels from 3 to 4:

XCTAssertEqual(numberOfVowels, 4, "should find 4 vowels in Dominik")

Chapter 1

[9]

Now, run the tests. The test fails. You should see something like this:

Xcode tells you that something went wrong with this test. Next to the test function,
there is a red diamond with x on it. The same symbol is in the line that actually
failed. Beneath this line is the explanation of what actually went wrong, followed by
the string you provided in the test. In this case, the first parameter, numberOfVowels,
is Optional(3), and the second parameter is Optional(4). The Optional(3)
parameter is not equal to Optional(4); therefore, the test fails.

As mentioned earlier, XCTAssertEqual(…) has two more parameters—file and
line. To take a look at the use of these additional parameters, go to View | Debug
Area | Activate Console to open the debug console. If the debug area is split in
half, click on the second right-most button in the bottom-right corner to hide the
variables' view:

We have only one test at the moment, and the debug output is already kind of
messy. Later in this chapter, we will learn that there is a better UI for the same
information in Xcode.

Your First Unit Tests

[10]

There is one line in the output that shows the failing test:

/Users/dom/Documents/development/book/FirstDemo/FirstDemoTests/
FirstDemoTests.
 swift:31: error: -[FirstDemoTests.FirstDemoTests
testNumberOfVowelsInString_ShouldReturnNumberOfVowels] :
XCTAssertEqual failed: ("Optional(3)") is not equal to ("Optional(4)")
- should find 4 vowels in Dominik

The output starts with the file and line parameters where the failing tests are
located. With the file and line parameters of the XCTAssert functions, we can
change what is printed there. Go back to the test method, and replace the assertion
with this:

XCTAssertEqual(numberOfVowels, 4, "should find 4 vowels in Dominik",
file: "FirstDemoTests.swift", line: 24)

The test method starts at line number 24.

With this change, the output is as follows:

FirstDemoTests.swift:24: error: -[FirstDemoTests.FirstDemoTests
testNumberOfVowelsInString_ShouldReturnNumberOfVowels] :
XCTAssertEqual failed: ("Optional(3)") is not equal to
("Optional(4)") - should find 4 vowels in Dominik

The debug output of the test now shows the filename and line number that we
specified in the assertion function.

As I mentioned earlier, in all XCTAssert functions, the last three
parameters are optional. In cases where you don't need the message
because the used assertion function makes clear what the failure is,
you can omit it.

Before we move on with the introduction to TDD, change the test so that is passes
again (either by changing the used test string or the expected number of vowels).

Understanding TDD
Now that we have seen what unit tests are and how they can help in development,
we are going to learn about TDD.

In 1996, Kent Beck introduced a new software development methodology called
Extreme Programming. The word "extreme" indicates that the concepts behind
Extreme Programming are totally different from the concepts used in software
development back then. It was based on 12 rules or practices.

Chapter 1

[11]

One of the rules states that developers have to write unit tests, and all parts of the
software have to be thoroughly tested. All tests have to pass before the software (or
a new feature) can be released to customers. The tests should be written before the
production code that they test.

This so called Test-First Programming leads to Test-Driven Development. As the
name suggests, in TDD, tests drive development. This means that the developer
writes code only because there is a test that fails. The tests dictate whether code has
to be written, and they also provide a measure when a feature is implemented: it is
implemented when all tests for this feature pass.

Robert C. Martin (known as Uncle Bob) has come up with three simple rules for
TDD:

•	 You are not allowed to write any production code unless it is to pass a failing
unit test

•	 You are not allowed to write any more of a unit test than is sufficient to fail;
and compilation failures are failures

•	 You are not allowed to write any more production code than is sufficient to
pass the one failing unit test

For more information, visit http://www.butunclebob.com/ArticleS.UncleBob.
TheThreeRulesOfTdd.

These rules sound kind of silly because when you start with a feature that uses a new
class or method that is not declared yet, the test will fail immediately, and you have
to add some code just to be able to finish writing the test. But by following these
rules, you will only write code that is actually needed to implement the features.
And you will only write testing code that is needed as well. All the code you write
will either end up being part of the final product or it will be a part of your test suite.

Because of the focus on just one feature at a time, you will have a working piece of
software almost all the time. So, when your boss enters your office and asks you for
a demonstration of the current status of the project, you are only a few minutes away
from a presentable (that is, compiling), thoroughly tested piece of software.

The TDD workflow – red, green, and refactor
The normal workflow of TDD comprises three steps: the red, green, and the refactor
steps, respectively. The following sections describe these steps in detail.

http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Your First Unit Tests

[12]

Red
You start by writing a failing test. It needs to test a required feature of the software
product that is not already implemented or an edge case that you want to make sure
is covered. The name "red" comes from the way most test frameworks indicate a
failing test. Xcode uses a red diamond with a white x on it.

It is very important that the test you write in this step initially fails. Otherwise,
you can't ensure that the test works and really tests the feature that you want
to implement. It could be that you have written a test that always passes and is,
therefore, useless. Or, it may be possible that the feature is already implemented.

Green
In the green step, you write the simplest code that makes the test pass. It doesn't
matter whether the code you write is good and clean. The code can also be silly and
even wrong. It is enough when all the tests pass. The name "green" refers to how
most test frameworks indicate a passing test. Xcode uses a green diamond with a
white check mark.

It is very important that you try to write the simplest code to make the tests pass.
By doing so, you only write code that you actually need and one with the easiest
possible implementation. When I say simple, this means that it should be easy to read,
understand, and change.

Often the simplest implementation will not be enough for the feature you try to
implement but still enough to make all the tests pass. This just means that you need
another failing test to further drive the development of the feature.

Refactor
During the green step, you wrote just enough code to make all the tests pass again.
As I just mentioned, it doesn't matter what the code looks like in the green step.
In the refactor step, you will improve the code. You remove duplication, extract
common values, and so on. Do what is needed to make the code as good as possible.
The tests help you to not break already implemented features while refactoring.

Don't skip this step. Always try to think how you can improve the code
after you have implemented a feature. Doing so helps to keep the code
clean and maintainable. This ensures that it is always in good shape.

As you have written only a few lines of code since the last refactor step, the changes
needed to make the code clean shouldn't take much time.

Chapter 1

[13]

TDD in Xcode
In 1998, the Swiss company Sen:te developed OCUnit, a testing framework for
Objective-C (hence, the OC prefix). OCUnit was a port of SUnit, a testing framework
that Kent Beck had written for Smalltalk in 1994.

With Xcode 2.1, Apple added OCUnit to Xcode. One reason for this step was that
they used it to develop Core Data at the same time that they developed Tiger, the OS
with which Core Data was shipped. Bill Bumgarner, an Apple engineer, wrote this
later in a blog post:

"Core Data 1.0 is not perfect, but it is a rock solid product that I'm damned proud
of. The quality and performance achieved could not have been done without the use
of unit testing. Furthermore, we were able to perform highly disruptive operations
to the codebase very late in the development cycle. The end result was a vast
increase in performance, a much cleaner code base, and rock solid release."

Apple realized how valuable unit tests can be when developing complex systems in
a changing environment. They wanted third-party developers to benefit from unit
tests as well. OCUnit could be (and has been) added to Xcode by hand before version
2.1. But by including it into the IDE, the investment in time that was needed to start
unit testing was reduced a lot, and as a result, more people started to write tests.

In 2008, OCUnit was integrated into the iPhone SDK 2.2 to allow unit testing of
iPhone apps. Four years later, OCUnit was renamed XCUnit (XC stands for Xcode).

Finally, in 2013, unit testing became a first class citizen in Xcode 5 with the
introduction of XCTest. With XCTest, Apple added specific user interface elements to
Xcode that helped with testing, which allowed the running of specific tests, finding
failing tests quickly, and getting an overview of all the tests. We will go over the
testing user interface in Xcode later in this chapter. But, first, we will take a look at
TDD using Xcode in action.

An example of TDD
For this TDD example, we are going to use the same project we created at the
beginning of this chapter. Open the FirstDemo project in Xcode, and run the tests by
hitting command + U. The one existing test should pass.

Let's say we are building an app for a blogging platform. When writing a new post,
the user puts in a headline for the post. All the words in the headline should start
with an uppercase letter.

Your First Unit Tests

[14]

To start the TDD workflow, we need a failing test. The following questions need to
be considered when writing the test:

•	 Precondition: What is the state of the system before we invoke the method?
•	 Invocation: How should the signature of the method look? What are the

input parameters (if any) of the method?
•	 Assertion: What is the expected result of the method invocation?

For the example of our blogging app, here are some possible answers for these
questions:

•	 Precondition: None
•	 Invocation: The method should take a string and returns a string. The name

could be makeHeadline
•	 Assertion: The resulting string should be the same, but all the words should

start with an uppercase letter
This is enough to get us started. Enter the Red step.

Red – example 1
Open FirstDemoTests.swift, and add the following code to the FirstDemoTests
class:

 func testMakeHeadline_ReturnsStringWithEachWordStartCapital() {
 let viewController = ViewController()

 let string = "this is A test headline"

 let headline = viewController.makeHeadline(string)
 }

This isn't a complete test method yet because we aren't really testing anything. The
assertion is missing. But we have to stop writing the test at this point because the
compiler complains that 'ViewController' does not have a member named
`makeHeadline`.

Following the TDD workflow, we need to add code until the compiler stops printing
errors. Remember 'code does not compile' within a test, means 'the test is failing'.
And a failing test means we need to write code until the test does not fail anymore.

Chapter 1

[15]

Open ViewController.swift, and add the following method to the
ViewController class:

 func makeHeadline(string: String) {

 }

The error still remains. The reason for this is that we need to compile to make the test
target aware of this change. Run the tests to check whether this change is enough to
make the test green again. We get a warning that the headline constant isn't used,
and we should change it to _. So, let's use it. Add the following assert function at the
end of the test:

XCTAssertEqual(headline, "This Is A Test Headline")

This results in another compiler error:

Cannot invoke 'XCTAssertEqual' with an argument list of type '((),
String)'

The reason for this error is that the makeHeadline(_:) method at the moment
returns Void or (). But XCTAssertEqual can only be used if both expressions are of
the same type. This makes sense as two expressions of different types can't be equal
to each other.

Go back to ViewController, and change makeHeadline(_:) to this:

 func makeHeadline(string: String) -> String {
 return ""
 }

Green – example 1
Now, the method returns an empty string. This should be enough to make the test
compile. Run the test. The test fails. But this time it's not because the code we've
written does not compile but due to the failed assertion instead. This is not a surprise
because an empty string isn't equal to "This Is A Test Headline". Following the
TDD workflow, we need to go back to the implementation, and add the simplest
code that makes the test pass.

In ViewController, change makeHeadline(_:) to read like this:

 func makeHeadline(string: String) -> String {
 return "This Is A Test Headline"
 }

www.allitebooks.com

http://www.allitebooks.org

Your First Unit Tests

[16]

This code is stupid and wrong, but it is the simplest code that makes the test pass.
Run the tests to make sure that this is actually the case.

Even though the code we just just wrote is useless for the feature we are trying to
implement it still has value for us, the developers. It tells us that we need another test.

Refactor – example 1
But before writing more tests, we need to refactor the existing ones. In the
production code, there is nothing to refactor. This code couldn't be simpler or more
elegant. In the test case, we now have two test methods. Both start by creating an
instance of ViewController. This is a repetition of code and a good candidate for
refactoring.

Add the following property at the beginning of the FirstDemoTests class:

var viewController: ViewController!

Remember that the setUp() method is called before each test is executed. So, it is
the perfect place to initialize the viewController property:

 override func setUp() {
 super.setUp()

 viewController = ViewController()
 }

Now, we can remove this let viewController = ViewController() line of
code from each test.

Red – example 2
As mentioned in the preceding section, we need another test because the production
code we have written to make the previous test pass only works for one specific
headline. But the feature we want to implement has to work for all possible
headlines. Add the following test to FirstDemoTests:

 func testMakeHeadline_ReturnsStringWithEachWordStartCapital2() {
 let string = "Here is another Example"

 let headline = viewController.makeHeadline(string)

 XCTAssertEqual(headline, "Here Is Another Example")
 }

Run the test. This new test obviously fails. Let's make the tests green.

Chapter 1

[17]

Green – example 2
Open ViewController.swift, and replace the implementation of
makeHeadline(_:) with the following lines of code:

 func makeHeadline(string: String) -> String {
 // 1
 let words = string.componentsSeparatedByString(" ")

 // 2
 var headline = ""
 for var word in words {
 let firstCharacter = word.removeAtIndex(word.startIndex)
 headline += "\(String(firstCharacter).uppercaseString)\
(word) "
 }

 // 3
 headline.removeAtIndex(headline.endIndex.predecessor())
 return headline
 }

Let's go through this implementation step by step:

1.	 Split the string into words.
2.	 Iterate over the words, and remove the first character and change it to

uppercase. Add the changed character to the beginning of the word. Add this
word with a trailing space to the headline string.

3.	 Remove the last space and return the string.

Run the tests. All the tests pass. The next thing to perform in the TDD workflow is
refactoring.

Do not skip refactoring. This step is as important as the red and the
green step. You are not done until there is nothing to refactor anymore.

Refactor – example 2
Look at the two tests you have for this feature. They are hard to read. The relevant
information for the tests is kind of unstructured. We are going to clean it up.

Your First Unit Tests

[18]

Replace the two tests with the following code:

 func testMakeHeadline_ReturnsStringWithEachWordStartCapital() {
 let inputString = "this is A test headline"
 let expectedHeadline = "This Is A Test Headline"

 let result = viewController.makeHeadline(inputString)
 XCTAssertEqual(result, expectedHeadline)
 }

 func testMakeHeadline_ReturnsStringWithEachWordStartCapital2() {
 let inputString = "Here is another Example"
 let expectedHeadline = "Here Is Another Example"

 let result = viewController.makeHeadline(inputString)
 XCTAssertEqual(result, expectedHeadline)
 }

Now, the tests are easy to read and understand. They follow a logical structure:
precondition, invocation, and assertion.

Run the tests. All the tests should still pass. But how do we know whether the tests
still test the same thing as they did earlier? In most cases, the changes we'll make
while refactoring the tests don't need to be tested themselves. But, sometimes (like in
this case), it is good to make sure that the tests still work. This means that we need a
failing test again. Go to makeHeadline(_:) and comment out (by adding // at the
beginning) the line:

headline.removeAtIndex(headline.endIndex.predecessor())

Run the tests again. Eureka! Both tests fail.

As you can see here, a failing test does not stop the tests in general. But
you can change this behavior by setting continueAfterFailure to
false in setUp().

Remove the comment symbols again to make the test pass again. Now, we need to
refactor the implementation code. The implementation we have right now looks like
it was translated from Objective-C to Swift (if you haven't used Objective-C yet, you
have to trust me on this). But Swift is different and has many concepts that make it
possible to write less code that is easier to read. Let's make the implementation more
swiftly. Replace makeHeadline(_:) with the following code:

Chapter 1

[19]

 func makeHeadline(string: String) -> String {
 let words = string.componentsSeparatedByString(" ")

 let headline = words.map { (var word) -> String in
 let firstCharacter = word.removeAtIndex(word.startIndex)
 return "\(String(firstCharacter).uppercaseString)\(word)"
 }.joinWithSeparator(" ")

 return headline
 }

In this implementation, we use the function map to iterate the words array and
return another array containing the same words but starting with uppercase letters.
The result is then transformed into a string by joining the words using a space as the
separator.

Run the tests again to make sure we didn't break anything with the refactoring. All
the tests should still pass.

A recap
In this section, we have added a feature to our project using the TDD workflow. We
started with a failing test. We made the test pass. And, finally, we refactored the code
to be clean. The steps you have seen here seem so simple and stupid that you may
think that you could skip some of the tests and still be good. But then, it's not TDD
anymore. The beauty of TDD is that the steps are so easy that you do not have to
think about them. You just have to remember what the next step is.

Because the steps and the rules are so easy, you don't have to waste your brainpower
thinking about what the steps actually mean. The only thing you have to remember
is red, green, and refactor. As a result, you can concentrate on the difficult part: write
tests, make them pass, and improve code.

Finding information about tests in Xcode
With Xcode 5 and the introduction of XCTest, unit testing became tightly integrated
into Xcode. Apple added many UI elements to navigate to tests, run specific tests,
and find information about failing tests. One key element here is the Test Navigator.

Your First Unit Tests

[20]

Test Navigator
To open the Test Navigator, click on the diamond with a minus sign (-) in the
navigator panel:

The Test Navigator shows all the tests. In the preceding screenshot, you can see
the test navigator for our demo project. In the project, there is one test target. For
complex apps, it can be useful to have more than one test target, but this is beyond
the scope of this book. Right behind the name of the test target, the number of tests is
shown. In our case, there are three tests in the target.

The demo project has only one test case with three tests.

At the bottom of the navigator is a filter control with which you can filter the shown
tests. As soon as you start typing, the shown tests are filtered using fuzzy matching.
In the control is also a button showing a diamond with an x:

If this button is clicked on, only the failing tests are shown in the list.

Chapter 1

[21]

Tests overview
Xcode also has a test overview where all the results of the tests are collected in one
place. To open it, select the Result Navigator in the navigator panel, and select the
last test in the list:

You can also select other tests in the list if you want to compare test runs with each
other. In the editor on the right-hand side, an overview of all the tests from the
selected test run are shown:

When you hover over one of the tests with the mouse pointer, a circle with an arrow
to the right appears. If you click on the arrow, Xcode opens the test in the editor.

Your First Unit Tests

[22]

In the overview, there is also a Logs tab. It shows all the tests in a tree-like structure.
Here is an example of what this looks like for one passing and two failing tests:

The logs show the test cases (in this example, one test case), the tests within the test
cases (in this example, two failing and one passing test), and in addition to this, the
time each test case and even each test needs to execute.

In TDD, it is important that the tests execute fast. You want to be able to execute the
whole test suite in less than a second. Otherwise, the whole workflow is dominated
by test execution and testing can distract your focus and concentration. You should
never be tempted to switch to another application (such as Safari) because the tests
will take half a minute.

If you notice that the test suite takes too long to be practical, open the logs and search
for the tests that slow down testing, and try to make the tests faster. Later in the
book, we will discuss strategies to speed up test execution.

Running tests
Xcode provides many different ways to execute tests. You have already seen two
ways to execute all the tests in the test suite: go to the Project | Test menu item, and
use the command + U keyboard shortcut.

Running one specific test
In TDD, you normally want to run all the tests as often as possible. Running the tests
gives you confidence that the code does what you intended when you wrote the tests.
In addition to this, you want immediate feedback (that is, a failing test) whenever
new code breaks a seemingly unrelated feature. Immediate feedback means that your
memory of the changes that broke the feature is fresh and the fix is made quickly.

Chapter 1

[23]

Nevertheless, sometimes, you need to run one specific test, but don't let it become
a habit.

To run one specific test, you can click on the diamond shown next to the test method:

When you click on it, the production code is compiled and launched in the simulator
or on the device, and the test is executed.

There is another way to execute exactly one specific test. When you open Test
Navigator and hover over one test, a circle with a play icon is shown next to the test
method name:

Again, if you click on this test, it is run exclusively.

The test framework identifies tests by the prefix of the method name. If you want
to run all tests but one, remove the test prefix from the beginning of this test
method name.

Your First Unit Tests

[24]

Running all tests in a test case
In the same way as running one specific test, you can run all the tests of a specific test
case. Click on the diamond next to the definition of the test case, or click on the play
button that appears when you hover over the test case name in the Test Navigator.

Running a group of tests
You can choose to run a group of tests by editing the build scheme. To edit the build
scheme, click on Scheme in the toolbar in Xcode, and then click on Edit Scheme…:

Then, select Test, and expand the test suite by clicking on the small triangle. On the
right-hand side is a column called Test:

The selected scheme only runs the tests that are checked. By default, all the tests are
checked, but you can uncheck some tests if you need to. But don't forget to check all
the tests again when you are finished.

Chapter 1

[25]

As an alternative, you can add a build scheme for a group of tests that you want to
run regularly without running all tests.

But as mentioned earlier, you should run the complete test suite as often as possible.

The setUp() and tearDown() methods
We have already seen the setUp() and tearDown() instance methods earlier in this
chapter. The code in the setUp()instance method is run before each test invocation.
In our example, we used setUp() to initialize the View Controller that we wanted
to test. As it was run before each test invocation, each test used its own instance of
ViewController. The changes we made to that instance in one test, didn't affect the
other test. The tests executed independently of each other.

The tearDown()instance method is run after each test invocation. Use tearDown() to
perform the necessary cleanup.

In addition to the instance methods, there are also the setUp() and tearDown()class
methods. These are run before and after all the tests of a test case, respectively.

Debugging tests
Sometimes, but usually rarely, you may need to debug your tests. As with normal
code, you can set breakpoints in test code. The debugger then stops the execution of
the code at a breakpoint. You can also set breakpoints in code that is to be tested to
check whether you have missed something or if the code you'd like to test is actually
executed.

To get a feeling of how this works, let's add an error to a test in the preceding
example and debug it. Open FirstDemoTests.swift, and replace the
testMakeHeadline_ReturnsStringWithEachWordStartCapital2() test method
with this code:

func testMakeHeadline_ReturnsStringWithEachWordStartCapital2() {
 let inputString = "Here is another Example"
 let expectedHeadline = "Here iS Another Example"

 let result = viewController.makeHeadline(inputString)
 XCTAssertEqual(result, expectedHeadline)
 }

Your First Unit Tests

[26]

Have you seen the error we have introduced? The value of the string
expectedHeadline has a typo. The letter "s" in iS is an uppercase letter, and the
letter "i" is a lowercase letter. Run the tests. The test fails and Xcode tells you what
the problem is. But for the sake of this exercise, let's set a breakpoint in the line with
the XCTAssertEqual() function. Click on the area on the left-hand side of the line
where you want to set a breakpoint. You have to click on the area next to the red
diamond. As a result, your editor will look similar to what is shown here:

Run the tests again. The execution of the tests stops at the breakpoint. Open the
debug console if it is not already open (go to View | Debug Area | Activate
Console). In the console, some test output is visible. The last line starts with (lldb)
and a blinking cursor. Put in po expectedHeadline and hit return. The term po in
the code indicates print object. The console prints the value of expectedHeadline:

(lldb) po expectedHeadline
"Here iS Another Example"

Now, print the value of result:

(lldb) po result
"Here Is Another Example"

So, with the help of the debugger, you can find out what is happening.

To learn more about the debugger, search for lldb in the Apple
documentation.

For now, keep the typo in expectedHeadline as it is, but remove the breakpoint by
dragging it with the mouse from the area to the left of the editor.

Chapter 1

[27]

Breakpoint that breaks on test failure
Xcode has a built-in breakpoint on test failures. When this breakpoint is set, the
execution of the tests is stopped, and a debug session is started whenever a test fails.

Usually, this is not what you want in TDD because failing tests are normal in TDD,
and you don't need a debugger to find out what's going on. You explicitly wrote the
test to fail at the beginning of the TDD workflow cycle.

But in case you need to debug one or more failing tests, it's good to know how this
breakpoint is activated. Open the Debug Navigator:

At the bottom of the navigator view is a button with a plus sign (+). Click on it, and
select Add Test Failure Breakpoint:

As the name suggests, this breakpoint stops the execution of the tests whenever a test
fails. We still have a failing test in our example. Run the tests to see the breakpoint in
action.

Your First Unit Tests

[28]

The debugger stops at the line with the assertion because the tests fail. Like in the
preceding example, you get a debug session so that you can put in LLDB commands
to find out why the test failed.

Remove the breakpoint again because it's not very practical while performing TDD.

Test again feature
Now, let's fix the error in the tests and learn how to run the previous test again.
Open FirstDemoTests.swift, and run only the failing test by clicking on the
diamond symbol next to the test method. The test still fails. Fix it by changing
iS to Is in expectedHeadline. Then, go to Product | Perform Action | Run
testMakeHeadline_ReturnsStringWithEachWordStartCapital2() Again or use
the shortcut control + option + command + G to run just the previous test again. The
shortcut is especially useful when you are working on one specific feature and you
need to test whether the implementation is already enough.

Advantages of TDD
TDD comes with advantages and disadvantages. These are the main advantages:

•	 You only write code that is needed: Following the rules, you have to stop
writing production code when all your tests pass. If your project needs
another feature, you need a test to drive the implementation of the feature.
The code you write is the simplest code possible. So, all the code ending up
in the product is actually needed to implement the features.

•	 More modular design: In TDD, you concentrate on one micro feature at a
time. And as you write the test first, the code automatically becomes easy to
test. Code that is easy to test has a clear interface. This results in a modular
design for your application.

•	 Easier to maintain: As the different parts of your application are decoupled
from each other and have clear interfaces, the code becomes easier to
maintain. You can exchange the implementation of a micro feature with a
better implementation without affecting another module. You could even
keep the tests and rewrite the complete application. When all the tests pass,
you are done.

Chapter 1

[29]

•	 Easier to refactor: Every feature is thoroughly tested. You don't need to be
afraid to make drastic changes because if all the tests still pass, everything
is fine. This point is very important because you, as a developer, improve
your skills each and every day. If you open the project after six months of
working on something else, most probably, you'll have many ideas on how
to improve the code. But your memory about all the different parts and how
they fit together isn't fresh anymore. So, making changes can be dangerous.
With a complete test suite, you can easily improve the code without the fear
of breaking your application.

•	 High test coverage: There is a test for every feature. This results in a high test
coverage. A high test coverage helps you gain confidence in your code.

•	 Tests document the code: The test code shows you how your code is meant
to be used. As such, it documents your code. The test code is sample code
that shows what the code does and how the interface has to be used.

•	 Less debugging: How often have you wasted a day to find a nasty bug? How
often have you copied an error message from Xcode and searched for it on
the Internet? With TDD, you write fewer bugs because the tests tell you early
on whether you've made a mistake. And the bugs you write are found much
earlier. You can concentrate on fixing the bug when your memory about
what the code is supposed to do and how it does it.

Disadvantages of TDD
Just like everything else in the world, TDD has some disadvantages. The main
ones are:

•	 No silver bullet: Tests help to find bugs, but they can't find bugs that
you introduce in the test code and in implementation code. If you haven't
understood the problem you need to solve, writing tests most probably
doesn't help.

•	 It seems slower at the beginning: If you start TDD, you will get the feeling
that you need a longer duration of time for easy implementations. You need
to think about the interfaces, write the test code, and run the tests before you
can finally start writing the code.

Your First Unit Tests

[30]

•	 All the members of a team need to do it: As TDD influences the design of
code, it is recommended that either all the members of a team use TDD or
no one at all. In addition to this, it's sometimes difficult to justify TDD to the
management because they often have the feeling that the implementation of
new features takes longer if developers write code that won't end up in the
product half of the time. It helps if the whole team agrees on the importance
of unit tests.

•	 Tests need to be maintained when requirements change: Probably, the
strongest argument against TDD is that the tests have to be maintained as
the code has to. Whenever requirements change, you need to change the
code and tests. But you are working with TDD. This means that you need
to change the tests first and then make the tests pass. So, in reality, this
disadvantage is the same as before when writing code that apparently takes a
long time.

What to test
What should be tested? When using TDD and following the rules mentioned in the
previous sections, the answer is easy—everything. You only write code because there
is a failing test.

In practice, it's not that easy. For example, should the position and color of a button
be tested? Should the view hierarchy be tested? Probably not. The color and exact
position of the button are not important for the functioning of an app. In the early
stages of development, these kind of things tend to change. With Auto Layout and
different localizations of the app, the exact position of buttons and labels depend on
many parameters.

In general, you should test the features that make the app useful for a user and those
that need to work. The user doesn't care whether the button is exactly 20 points from
the rightmost edge of the screen. All the user is interested in is that the button does
what they expect it to and the app looks good.

In addition to this, you should not test the whole application in total using unit tests.
Unit tests are meant to test small units of computation. They need to be fast and
reliable. Things, such as database access and networking, should be tested using
integration tests, where the tests drive the real finished application. Integration tests
are allowed to be slow because they are run a lot less often than unit tests. Usually,
they are run at the end of the development before the application is released, or they
are run with the help of a continues integration system each night on a server where
it doesn't matter that the complete test suite takes several minutes to execute.

Chapter 1

[31]

Summary
In this chapter, we saw unit tests in action and how they are set up in Xcode. We
learned what TDD is and why it can help build better apps. With the help of TDD,
we implemented a feature of a demo app to get used to the workflow. We saw
many different possibilities to run tests and how we can find bugs in our tests using
LLDB, the debugger built into Xcode. Finally, we discussed the advantages and
disadvantages of TDD and what should be tested with unit tests.

In the next chapter, we will take a look at an app we will build together using TDD.

[33]

Planning and Structuring
Your Test-Driven iOS App

In the previous chapter, we learned how to write unit tests, and we saw an easy
example of TDD. When starting TDD, writing unit tests is easy for most people. The
hard part is to transfer the knowledge from writing the test to driving the development.
What can be assumed? What should be done before one writes the first test? What
should be tested to end up with a complete app?

As a developer, you are used to thinking in terms of code. When you see a feature
on the requirement list for an app, your brain already starts to layout the code for
this feature. And for recurring problems in iOS development (such as building table
views), you most probably have already developed your own best practices.

In TDD, you should not think about the code while working on the test. The tests
have to describe what the unit under test should do and not how it should do it. It
should be possible to change the implementation without breaking the tests.

To practice this approach of development, we will develop a simple to-do list app in
the remainder of this book. It is, on purpose, not a very sophisticated app. We want
to concentrate on the TDD workflow, not complex implementations.

This chapter introduces the app we are going to build, and it shows the views that
the finished app will have.

Planning and Structuring Your Test-Driven iOS App

[34]

We will cover the following topics in this chapter:

•	 Task list view
•	 Task detail view
•	 Task input view
•	 Structure of an app
•	 Getting started with Xcode
•	 Setting useful Xcode behaviors for testing

Task list view
When starting the app, the user sees a list of to-do items. The items in the list consist
of a title, an optional location, and the due date. New items can be added to the list
by an add (+) button, which is shown in the navigation bar of the view. The task list
view will look like this:

Chapter 2

[35]

User stories:

•	 As a user, I want to see the list of to-do items when I open the app
•	 As a user, I want to add to-do items to the list

In a to-do list app, the user will obviously need to be able to check items when
they are finished. The checked items are shown below the unchecked items, and
it is possible to uncheck them again. The app uses the delete button in the UI of
UITableView to check and uncheck items. Checked items will be put at the end of the
list in a section with the Finished header. The user can also delete all the items from
the list by tapping the trash button. The UI for the to-do item list will look like this:

User stories:

•	 As a user, I want to check a to-do item to mark it as finished
•	 As a user, I want to see all the checked items below the unchecked items
•	 As a user, I want to uncheck a to-do item
•	 As a user, I want to delete all the to-do items

When the user taps an entry, the details of this entry is shown in the task detail view.

www.allitebooks.com

http://www.allitebooks.org

Planning and Structuring Your Test-Driven iOS App

[36]

Task detail view
The tasks detail view shows all the information that's stored for a to-do item.
The information consists of a title, due date, location (name and address), and a
description. If an address is given, a map with an address is shown. The detail view
also allows checking the item as finished. The detail view looks like this:

User stories:

•	 As a user, given that I have tapped a to-do item in the list, I want to see its
details

•	 As a user, I want to check a to-do item from its details view

Task input view
When the user selects the add (+) button in the list view, the task input view is
shown. The user can add information for the task. Only the title is required. The Save
button can only be selected when a title is given. It is not possible to add a task that
is already in the list. The Cancel button dismisses the view. The task input view will
look like this:

Chapter 2

[37]

User stories:

•	 As a user, given that I have tapped the add (+) button in the item list, I want
to see a form to put in the details (title, optional date, optional location name,
optional address, and optional description) of a to-do item

•	 As a user, I want to add a to-do item to the list of to-do items by tapping on
the Save button

We will not implement the editing and deletion of tasks. But when you have worked
through this book completely, it will be easy for you to add this feature yourself by
writing the tests first.

Keep in mind that we will not test the look and design of the app. Unit tests cannot
figure out if an app looks like it was intended. Unit tests can test features, and these
are independent of their presentation. In principle, it would be possible to write
unit tests for the position and color of UI elements. But such things are very likely to
change a lot in the early stages of development. We do not want to have failing tests
only because a button has moved 10 points.

However, we will test whether the UI elements are present on the view. If your
user cannot see the information for the tasks, or if it is not possible to add all the
information of a task, then the app does not meet the requirements.

Planning and Structuring Your Test-Driven iOS App

[38]

Structure of the app
The following diagram shows the structure of the app:

The Table View Controller, the delegate and
the data source
In iOS apps, data is often presented using a table view. Table views are highly
optimized for performance; they are easy to use and to implement. We will use a
table view for the list of to-do items.

A table view is usually represented by UITableViewController, which is also the
data source and delegate for the table view. This often leads to a massive table View
Controller because it is doing too much: presenting the view, navigating to other
view controllers, and managing the presentation of the data in the table view.

Chapter 2

[39]

It is a good practice to split up the responsibility into several classes. Therefore,
we will use a helper class to act as the data source and delegate for the table view.
The communication between the Table View Controller and the helper class will be
defined using a protocol. Protocols define what the interface of a class looks like. This
has a great benefit: if we need to replace an implementation with a better version
(maybe because we have learned how to implement the feature in a better way),
we only need to develop against the clear interface. The inner workings of the other
classes do not matter.

Table view cells
As you can see in the preceding screenshots, the to-do list items have a title and,
optionally, they can have a due date and a location name. The table view cells should
only show the set data. We will accomplish this by implementing our own custom
table view cell.

A model
The model of the application consists of the to-do item, the location, and an item
manager, which allows the addition and removal of items and is also responsible for
managing the items. Therefore, the controller will ask the item manager for the items
to present. The item manager will also be responsible for storing the items on disc.

Beginners often tend to manage the model objects within the controller. Then, the
controller has a reference to a collection of items, and the addition and removal
of items is directly done by the controller. This is not recommended because if we
decide to change the storage of the items (for example, by using Core Data), their
addition and removal would have to be changed within the controller. It is difficult
to keep an overview of such a class, and because of this reason, it is a source of bugs.

It is much easier to have a clear interface between the controller and the model
objects because if we need to change how the model objects are managed, the
controller can stay the same. We could even replace the complete model layer if we
just keep the interface the same. Later in the chapter, we will see that this decoupling
also helps to make testing easier.

Planning and Structuring Your Test-Driven iOS App

[40]

Other view controllers
The application will have two more view controllers, a task detail View Controller,
and a View Controller for the input of the task.

When the user taps a to-do item in the list, the details of the item are presented in the
task detail View Controller. From the Details screen, the user will be able to check an
item.

New to-do items will be added to the list of items using the view presented by the
input View Controller.

Development strategy
In this book, we will build the app from inside out. We will start with the model,
and then build the controllers and networking. At the end of the book, we will put
everything together.

Of course, this is not the only way to build apps. But by separating on the basis
of layers instead of features, it is easier to follow and keep an overview of what is
happening. When you later need to refresh your memory, the relevant information
you need is easier to find.

Getting started with Xcode
Now, let's start our journey by creating a project that we will implement using TDD.

Open Xcode and create a new iOS project using the Single View Application
template. In the options window, add ToDo as the product name, select Swift as
language, choose iPhone in the Devices option, and check the box next to Include
Unit Tests. Let the Use Core Data and Include UI Tests boxes stay unchecked.

Xcode creates a small iOS project with two targets: one for the implementation code
and the other for the unit tests. The template contains code that presents a single
view on screen. We could have chosen to start with the master-detail application
template because the app will show a master and a detail view. However, we have
chosen the Single View Application template because it comes with hardly any
code, and in TDD, we want to have all the implementation code demanded by
failing tests.

Chapter 2

[41]

To take a look at how the application target and test target fit together, select the
project in Project Navigator, and then select the ToDoTests target. In the General
tab, you'll find a setting for the host application that the test target should be able to
test. It should look like this:

Xcode has already set up the test target correctly to allow the testing of the
implementations that we will write in the application target.

Xcode has also set up a scheme to build the app and run the tests. Click on the Scheme
selector next to the stop button in the toolbar, and select Edit Scheme.... In the Test
action, all the test bundles of the project will be listed. In our case, only one test bundle
is shown: ToDoTests. On the right-hand side of the shown window is a column
named Test, with a checked checkbox. This means that if we run the tests while this
scheme is selected in Xcode, all the tests in the selected test suite will be run.

Setting useful Xcode behaviors for
testing
Xcode has a feature called behaviors. With the use of behaviors and tabs, Xcode can
show useful information depending on its state.

Open the Behaviors window by going to Xcode | Behaviors | Edit Behaviors. On
the left-hand side are the different stages for which you can add behaviors (Build,
Testing, Running, and so on). The following behaviors are useful when doing TDD.

The behaviors shown here are those that I find useful. Play around with the settings
to find the ones most useful for you. Overall, I recommend using behaviors because I
think they speed up development.

Planning and Structuring Your Test-Driven iOS App

[42]

Useful build behaviors
When building starts, Xcode compiles the files and links them together. To see
what is going on, you can activate the build log when the building starts. It is
recommended that you open the build log in a new tab because this allows us to
switch back to the code editor when no error occurs during the build. Select the
Starts stage and check Show tab named. Put in the name Log and select in active
window. Check the Show navigator setting and select Issue Navigator. At the
bottom of the window, check Navigate to and select current log. After you have
made these changes, the settings window should look like this:

Build and run to see what the behavior looks like.

Chapter 2

[43]

Testing behaviors
To write code, I have an Xcode tab called Coding. Usually, in this tab, the test is open
on the left-hand side, and in the Assistant Editor on the right-hand side is the code
to be tested (or in the case of TDD, the code to be written). It looks like this:

When the test starts, we want to see the code editor again. So, we add a behavior
to show the Coding tab. In addition to this, we want to see the Test Navigator and
debugger with the console view.

When the test succeeds, Xcode should show a bezel to notify us that all tests have
passed. Go to the Testing | Succeeds stage, and check the Notify using bezel or
system notification setting. In addition to this, it should hide the navigator and the
debugger because we want to concentrate on refactoring or writing the next test.

Planning and Structuring Your Test-Driven iOS App

[44]

In case testing fails (which happens a lot in TDD), Xcode should show a bezel again.
I like to hide the debugger because usually it is not the best place to figure out what
is going on in the case of a failing test. And in TDD, in most cases, we already know
what the problem is. But we want to see the failing test. Therefore, check Show
navigator and select Issue navigator. At the bottom of the window, check Navigate
to and select first new issue.

You can even make your Mac speak the announcements. Check Speak
announcements using and select the voice you like. But be careful not to annoy
your coworkers. You might need their help in the future.

Now, the project and Xcode are set up, and we can start our TDD journey.

Summary
In this chapter, we took a look at the app we are going to build throughout the
course of this book. We took a look at how the screens of the app will look when we
are finished. We created the project that we will use later on, and we learned about
Xcode behaviors.

In the next chapter, we will develop the data model of the app using TDD. We will
use structs for the model wherever we can because models are best represented in
Swift by value types. We will add some conformance to the Equatable protocol to
make the comparison of the model instances easier.

[45]

A Test-Driven Data Model
iOS apps are often developed using a design pattern called Model-View-Controller
(MVC). In this pattern, each class (or struct or enum) is either a model object, view, or a
controller. Model objects are responsible for storing data. They should be independent
from the kind of presentation by the UI. For example, it should be possible to use the
same model object for an iOS app and a command-line tool on Mac.

View objects are the presenters of the data. They are responsible for making the
objects visible (or hearable in the case of a VoiceOver-enabled app) for the user.
Views are special for the device that the app is executed on. In the case of a
cross-platform application, view objects cannot be shared. Each platform needs its
own implementation of a view layer.

Controller objects communicate between the model and view objects. They are
responsible for making the model objects presentable.

We will use MVC for our to-do app because it is one of the easiest design patterns,
and it is commonly used by Apple in its sample code.

This chapter starts our journey in the field of TDD of the model layer of our
application. It is divided in to three sections:

•	 Implementing the ToDoItem struct
•	 Implementing the Location struct
•	 Implementing the ItemManager class

A Test-Driven Data Model

[46]

Implementing the ToDoItem struct
A to-do app needs a model class/struct to store information for to-do items.

We start by adding a new test case to the test target. Open the To-Do project that
we have created in the Getting Started with Xcode section of Chapter 2, Planning and
Structuring Your Test-Driven iOS App, and select the ToDoTests group. Go to File |
New | File..., navigate to iOS | Source | Unit Test Case Class, and click on Next.
Put in the name ToDoItemTests, make it a subclass of XCTestCase, select Swift
as the language, and click on Next. In the next window, create a new folder, called
Model, and click on Create.

Now, delete the ToDoTests.swift template test case.

At the time of writing this chapter, if you delete ToDoTests.swift before you add
the first test case in a test target, you will see a pop-up from Xcode telling you that
adding the Swift file will create a mixed Swift and Objective-C target:

This is a bug in Xcode 7.0. It seems that when you add the first
Swift file to a target, Xcode assumes that there already have to
be Objective-C files. Click on Don't Create if this happens to
you because we will not use Objective-C in our tests.

Adding a title property
Open ToDoItemTests.swift and add the following import expression right below
import XCTest:

@testable import ToDo

This is needed in order to be able to test the ToDo module. The @testable keyword
makes the internal methods of the ToDo module accessible by the test case.

Remove the two template test methods—testExample() and
testPerformanceExample().

Chapter 3

[47]

The title of a to-do item is required. Let's write a test to ensure that an initializer
exists that will take a title string. Add the following test method to the end of the test
case (but within the ToDoItemTests class):

func testInit_ShouldTakeTitle() {
 ToDoItem(title: "Test title")
}

The static analyzer built into Xcode will give you a Use of unresolved
identifier 'ToDoItem' complaint:

We cannot compile this code because Xcode cannot find the ToDoItem identifier.
Remember that a not compiling test is a failing test, and as soon as we have a failing
test, we need to write implementation code to make the test pass.

To add a file for the implementation code, first click on the ToDo group in the Project
Navigator. Otherwise, the added file will be put into the test group. Go to File |
New | File..., navigate to iOS | Source | Swift File template, and click on Next.
Create a new folder called Model. In the Save As field, add the name ToDoItem.
swift, make sure that the file is added to the ToDo target and not to the ToDoTests
target, and click on Create.

Open ToDoItem.swift in the editor and add the following code:
struct ToDoItem {
}

This code is a complete implementation of a struct named ToDoItem. So, Xcode
should now be able to find the ToDoItem identifier. Run the test by either going
to Product | Test or using the command + U shortcut. The code does not compile
because there is an Extra argument 'title' in call. This means that at this
stage, we could initialize an instance of ToDoItem like this:

let item = ToDoItem()

But we want to have an initializer that takes a title. We need to add a property,
named title, of the String type to store the title:

struct ToDoItem {
 let title: String
}

A Test-Driven Data Model

[48]

Run the test again. It should pass. We have implemented the first micro feature
of our to-do app using TDD. And it wasn't even hard. For the rest of the book, we
will do this over and over again until the app is finished. But we first need to check
whether there is anything to refactor in the existing test and implementation code.
The tests and code are clean and simple. There is nothing to refactor yet.

Always remember to check whether refactoring is needed after
you have made the tests green.

But there are a few things to note about the test. First, Xcode shows a Result of
initializer is unused warning. To make this warning go away, assign the result
of the initializer to an underscore: _ = ToDoItem(title: "Test title"). This tells
Xcode that we know what we are doing. We want to call the initializer of ToDoItem,
but we do not care about its return value.

Second, there is no XCTAssert function call in the test. To add an assert, we could
rewrite the test like this:

func testInit_ShouldTakeTitle() {
 let item = ToDoItem(title: "Test title")
 XCTAssertNotNil(item, "item should not be nil")
}

But, in Swift, a nonfailable initializer cannot return nil. It always returns a valid
instance. This means that the XCTAssertNotNil() method is useless. We do not
need it to ensure that we have written enough code to implement the tested micro
feature. Following the rules of TDD mentioned in Chapter 1, Your First Unit Tests, we
are not allowed to write that code. It is not needed to drive the development, and it
does not make the code better. In the following tests, we will omit the XCTAssert
functions when they are not needed to make a test fail.

Before we proceed with the next few tests, let's set up the editor in a way that makes
the TDD workflow easier and faster. Open ToDoItemTests.swift in the editor.
Open Project Navigator, and hold down the option key while clicking on ToDoItem.
swift in the navigator to open it in the Assistant Editor. Depending on the size of
your screen and your preferences, you might prefer to hide the navigator again. With
this setup, you have the tests and the code side by side, and switching from test to
code and vice versa takes no time. In addition to this, as the relevant test is visible
while you write the code, it can guide the implementation.

Chapter 3

[49]

Adding an itemDescription property
A to-do item can have a description. We would like to have an initializer that also
takes a description string. To drive the implementation, we need a failing test for the
existence of this initializer:

func testInit_ShouldTakeTitleAndDescription() {
 _ = ToDoItem(title: "Test title",
 itemDescription: "Test description")
}

Again, this code does not compile because there is Extra argument
'itemDescription' in call. To make this test pass, we add an itemDescription
property of the String? type to ToDoItem:

struct ToDoItem {
 let title: String
 let itemDescription: String?
}

Run the tests. The testInit_ShouldTakeTitle() test fails (that is, it does not
compile) because there is Missing argument for parameter 'itemDescription'
in call. The reason for this is that we use a feature of Swift where structs have an
automatic initializer with arguments defining their properties. The initializer in the
first test only has one argument and, therefore, the test fails. To make the two tests
pass again, replace the initializer in testInit_ShouldTakeTitle() with this:

ToDoItem(title: "Test title", itemDescription: nil)

Run the tests to ensure that all the tests pass again. But, now, the initializer in the
first test looks bad. We would like to be able to have a short initializer with only one
argument in case the to-do item only has a title. So, the code needs refactoring. To
have more control over the initialization, we have to implement it ourselves. Add the
following code to ToDoItem:

init(title: String, itemDescription: String? = nil) {
 self.title = title
 self.itemDescription = itemDescription
}

This initializer has two arguments. The second argument has a default value, so we
do not need to provide both arguments. When the second argument is omitted, the
default value is used.

A Test-Driven Data Model

[50]

Before we refactor the tests, run them to make sure that they still pass. Then, remove
the second argument from the initializer in testInit_ShouldTakeTitle():

func testInit_ShouldTakeTitle() {
 _ = ToDoItem(title: "Test title")
}

Run the tests again to make sure that everything still works.

Removing a hidden source of bugs
To be able to use a short initializer, we need to define it ourselves. But this also
introduces a new source of potential bugs. We can remove the two micro features we
have implemented and still have both tests pass. To take a look at how this works,
open ToDoItem.swift, and comment out the properties and assignment in the
initializer:

struct ToDoItem {
 //let title: String
 //let itemDescription: String?

 init(title: String, itemDescription: String? = nil) {

 //self.title = title
 //self.itemDescription = itemDescription
 }
}

Run the tests. Both the tests still pass. The reason for this is that they do not check
whether the values of the initializer arguments are actually set to any ToDoItem
properties. We can easily extend the tests to make sure that the values are set. First,
let's change the name of the first test to testInit_ShouldSetTitle(), and replace
its contents with the following code:

let item = ToDoItem(title: "Test title")
XCTAssertEqual(item.title, "Test title",
 "Initializer should set the item title")

This test does not compile because ToDoItem does not have a property title (it is
commented out). This shows us that the test is now testing our intention. Remove the
comment signs for the title property and assignment of the title in the initializer, and
run the tests again. All the tests pass. Now, replace the second test with this one:

func testInit_ShouldSetTitleAndDescription() {
 let item = ToDoItem(title: "Test title",

Chapter 3

[51]

 itemDescription: "Test description")

 XCTAssertEqual(item.itemDescription , "Test description",
 "Initializer should set the item description")
}

Remove the remaining comment signs in ToDoItem, and run the tests again. Both the
tests pass again, and they now actually test that the initializer works.

Adding a timestamp property
A to-do item can also have a due date, represented by a timestamp. Add the
following test to make sure we can initialize a to-do item with a title, description, and
a timestamp:

func testInit_ShouldSetTitleAndDescriptionAndTimestamp() {
 let item = ToDoItem(title: "Test title",
 itemDescription: "Test description",
 timestamp: 0.0)

 XCTAssertEqual(0.0, item.timestamp,
 "Initializer should set the timestamp")
}

Again, this test does not compile because there is an extra argument in the initializer.
From the implementation of the other properties, we know that we have to add a
timestamp property in ToDoItem and set it in the initializer:

struct ToDoItem {
 let title: String
 let itemDescription: String?
 let timestamp: Double?

 init(title: String,
 itemDescription: String? = nil,
 timestamp: Double? = nil) {

 self.title = title
 self.itemDescription = itemDescription
 self.timestamp = timestamp
 }
}

Run the tests. All the tests pass. The tests are green and there is nothing to refactor.

A Test-Driven Data Model

[52]

Adding a location property
The last property that we would like to be able to set in the initializer of ToDoItem
is its location. The location has a name and can, optionally, have a coordinate. We
will use a struct to encapsulate this data into its own type. Add the following code to
ToDoItemTests:

func testInit_ShouldSetTitleAndDescriptionAndTimestampAndLocation() {
 let location = Location(name: "Test name")
}

The test is not finished, but it already fails because Location is an unresolved
identifier. There is no class, struct, or enum named Location yet. Open Project
Navigator, add a Swift File with the name Location.swift, and add it to the Model
folder. From our experience with the ToDoItem struct, we already know what is
needed to make the test green. Add the following code to Location.swift:

struct Location {
 let name: String
}

This defines a struct Location with a name property and makes the test code
compliable again. But the test is not finished yet. Add the following code to
testInit_ShouldSetTitleAndDescriptionAndTimestampAndLocation():

func testInit_ShouldTakeTitleAndDescriptionAndTimestampAndLocation() {
 let location = Location(name: "Test name")
 let item = ToDoItem(title: "Test title",
 itemDescription: "Test description",
 timestamp: 0.0,
 location: location)

 XCTAssertEqual(location.name, item.location?.name,
 "Initializer should set the location")
}

Unfortunately, we cannot use the location itself yet to check for equality, so the
following assert does not work:

XCTAssertEqual(location, item.location,
 "Initializer should set the location")

The reason for this is that the first two arguments of XCTAssertEqual() have to
conform to the Equatable protocol. We will add the protocol conformance later in
this chapter.

Chapter 3

[53]

Again, this does not compile because the initializer of ToDoItem does not have an
argument called location. Add the location property and initializer argument to
ToDoItem. The result should look like this:

struct ToDoItem {
 let title: String
 let itemDescription: String?
 let timestamp: Double?
 let location: Location?

 init(title: String,
 itemDescription: String? = nil,
 timestamp: Double? = nil,
 location: Location? = nil) {

 self.title = title
 self.itemDescription = itemDescription
 self.timestamp = timestamp
 self.location = location
 }
}

Run the tests again. All the tests pass and there is nothing to refactor.

We have now implemented a struct to hold the to-do items using TDD.

Implementing the Location struct
In the previous section, we added a struct to hold information about the location.
We will now add tests to make sure that Location has the required properties
and initializer.

The tests could be added to ToDoItemTests, but they are easier to maintain when the
test classes mirror the implementation classes/structs. So, we need a new test case class.

Open Project Navigator, select the ToDoTests group, and add a unit test case class
with the name LocationTests. Make sure that you go to iOS | Source | Unit Test
Case Class because we want to test the iOS code and Xcode sometimes navigates to
OS X | Source. Choose to store the file in the Model folder we created previously.

Set up the editor to show LocationTests.swift on the left-hand side and
Location.swift in the Assistant Editor on the right-hand side. In the test
class, add @testable import ToDo, and remove the testExample() and
testPerformanceExample() template tests.

A Test-Driven Data Model

[54]

Adding a coordinate property
To drive the addition of a coordinate property, we need a failing test. Add the
following test to LocationTests:

func testInit_ShouldSetNameAndCoordinate() {
 let testCoordinate = CLLocationCoordinate2D(latitude: 1,
 longitude: 2)
 let location = Location(name: "",
 coordinate: testCoordinate)

 XCTAssertEqual(location.coordinate?.latitude,
 testCoordinate.latitude,
 "Initializer should set latitude")
 XCTAssertEqual(location.coordinate?.longitude,
 testCoordinate.longitude,
 "Initializer should set longitude")
}

First, we create a coordinate and use it to create an instance of Location.
Then, we assert that the latitude and longitude of the location coordinate
are set to the correct values. We use the values 1 and 2 in the initializer of
CLLocationCoordinate2D because it has also an initializer that takes no arguments
(CLLocationCoordinate2D()) and sets the longitude and latitude to zero. We need
to make sure in the test that the initializer of Location assigns the coordinate
argument to its property.

The test does not compile because CLLocationCoordinate2D is an unresolved
identifier. We need to import CoreLocation in LocationTests.swift:

import XCTest
@testable import ToDo
import CoreLocation

The test still does not compile because Location does not have a coordinate
property yet. Similar to ToDoItem, we would like to have a short initializer for
locations that only have a name argument. Therefore, we need to implement the
initializer ourselves and cannot use the one provided by Swift. Replace the contents
of Location.swift with the following lines of code:

import CoreLocation

struct Location {
 let name: String
 let coordinate: CLLocationCoordinate2D?

Chapter 3

[55]

 init(name: String,
 coordinate: CLLocationCoordinate2D? = nil) {

 self.name = ""
 self.coordinate = coordinate
 }
}

Now run the tests. All the tests pass.

Note that we have intentionally set the name in the initializer to an empty string.
This is the easiest implementation that makes the tests pass. But it is clearly not
what we want. The initializer should set name of the location to the value in the name
argument. So, we need another test to make sure that name is set correctly.

Add the following test to LocationTests:

func testInit_ShouldSetName() {
 let location = Location(name: "Test name")
 XCTAssertEqual(location.name, "Test name",
 "Initializer should set the name")
}

Run the test to make sure it fails. To make the test pass, change self.name =
"" in the initializer of Location to self.name = name. Run the tests again to
check whether they all pass now. There is nothing to refactor in the tests and
implementation. Let's move on.

Implementing the ItemManager class
The to-do app will show all the to-do items in a list. The list of items will be managed by
a class called ItemManager. It will expose an interface to get, add, and remove items.

Open Project Navigator and select the ToDoTests group. Go to iOS | Source | Unit
Test Case Class to create a test case class with the name, ItemManagerTests, and
put it in the Model folder. Import the ToDo module (@testable import ToDo) and
remove the two test method templates.

Count
The requirements from Chapter 2, Planning and Structuring Your Test-Driven iOS App,
ask for a list with unchecked to-do items at the top and checked to-do items at the
bottom of the list in the app. How the items are presented is not a matter of concern
with regard to the model. But it has to be possible to get the number of unchecked
and checked to-do items from the item manager.

A Test-Driven Data Model

[56]

Add the following code to ItemManagerTests:

func testToDoCount_Initially_ShouldBeZero() {
 let sut = ItemManager()
}

The sut abbreviation stands for System Under Test. We could also write this as
itemManager, but using sut makes it easier to read, and it also allows us to copy and
paste test code into other tests when appropriate.

The test is not yet finished, but it already fails because ItemManager is an unresolved
identifier. Open Project Navigator again and select the ToDo group. Go to iOS |
Source | Swift File. This will create a Swift file and let's call it ItemManager.swift,
and select the Model folder as the file location.

Add the the following class definition:

class ItemManager {
}

This is enough to make the test code compilable. Run the tests to make sure that all
the tests pass and we can continue writing them. In testToDoCount_Initially_
ShouldBeZero(), add the assert function highlighted in the following code:

func testToDoCount_Initially_ShouldBeZero() {
 let sut = ItemManager()
 XCTAssertEqual(sut.toDoCount, 0,
 "Initially toDo count should be 0")
}

With this addition, the test method tests whether ItemManager has the toDoCount
property and if it is initially set to zero.

But the test does not compile again because Value of type 'ItemManager' has
no member called toDoCount. The simplest way to make the test pass is to add the
following property declaration to ItemManager:

let toDoCount = 0

Run the tests. All the tests pass. The code and tests look good, so we do not need to
refactor them.

In addition to the unchecked items, we also need to be able to get the number of
checked items from the item manager. Add the following test to ItemManagerTests:

func testDoneCount_Initially_ShouldBeZero() {
 let sut = ItemManager()

Chapter 3

[57]

 XCTAssertEqual(sut.doneCount, 0,
 "Initially done count should be 0")
}

To make this test pass, add the following property definition to ItemManager:

let doneCount = 0

Run the tests to check that this is enough to make them pass. If we look at the
previously written test methods, we'll see a repetition. The sut variable is initialized
in each test method. Let's refactor the test methods and remove the repetition. Add
the following property declaration to the beginning of ItemManagerTests:

var sut: ItemManager!

Then, at the end of setUp(), add this initialization of sut:

sut = ItemManager()

Now, we can remove it from the tests:

func testToDoCount_Initially_ShouldBeZero() {
 XCTAssertEqual(sut.toDoCount, 0,
 "Initially toDo count should be 0")
}

func testDoneCount_Initially_ShouldBeZero() {
 XCTAssertEqual(sut.doneCount, 0,
 "Initially done count should be 0")
}

Run the tests again to make sure that we have not broken anything with the
refactoring.

Adding and checking items
The item manager should be able to add items to the list. Therefore, it should provide
a method that takes an item. Later, we can call this method from the View Controller
that will provide a UI to add items. Add the following code to ItemManagerTests:

func testToDoCount_AfterAddingOneItem_IsOne() {
 sut.addItem(ToDoItem(title: "Test title"))
}

Here, we assume that ItemManager should have an addItem(_:) method. You
can see how TDD helps us think about the class/struct interface before a feature is
implemented.

A Test-Driven Data Model

[58]

The ItemManager class does not have an addItem(_:) method, and the test does not
compile. Let's add the simplest implementation of addItem(_:):

func addItem(item: ToDoItem) {
}

Run the tests to make sure they all pass. Now, we need to assert that after
adding an item, toDoCount is one. Add the following assert to testToDoCount_
AfterAddingOneItem_IsOne():

XCTAssertEqual(sut.toDoCount, 1, "toDoCount should be 1")

Run the tests. The tests fail because toDoCount is a constant, and therefore, it never
changes. Replace the highlighted lines in ItemManager:

class ItemManager {
 var toDoCount = 0
 let doneCount = 0

 func addItem(item: ToDoItem) {
 ++toDoCount
 }
}

We have converted the toDoCount constant to a variable and added code in
addItem(_:) to increase its value.

Run the tests. Everything works. The code and tests look good and there is nothing
to refactor.

Nevertheless, the code clearly does not do what we intend it to. The item passed into
addItem(_:) is not used or stored at all. This is a sign that we need another test.

The to-do items need to be presented to the user somehow. Therefore, ItemManager
needs to provide a method that returns an item. Add the following code to
ItemManagerTests:

func testItemAtIndex_ShouldReturnPreviouslyAddedItem() {
 let item = ToDoItem(title: "Item")
 sut.addItem(item)

 let returnedItem = sut.itemAtIndex(0)
}

Chapter 3

[59]

At this point, we have to stop writing the test because this code does not compile.
There is no itemAtIndex(_:) method in ItemManager yet. We need to add it before
we can continue with the test. Add the following to ItemManager:

func itemAtIndex(index: Int) -> ToDoItem {
 return ToDoItem(title: "")
}

It is the simplest implementation that makes the test code compilable
again. Now, add the following assert to testItemAtIndex_
ShouldReturnPreviouslyAddedItem():

XCTAssertEqual(item.title, returnedItem.title,
 "should be the same item")

The test fails because itemAtIndex(_:) returns an item with an empty title. To
fix it, we need to add an array to store the item passed into addItem(_:), and
use the same array to return the item again in itemAtIndex(_:). Replace the
implementation of ItemManager with the following code:

class ItemManager {
 var toDoCount = 0
 let doneCount = 0
 private var toDoItems = [ToDoItem]()

 func addItem(item: ToDoItem) {
 ++toDoCount
 toDoItems.append(item)
 }

 func itemAtIndex(index: Int) -> ToDoItem {
 return toDoItems[index]
 }
}

Let's go through the changes step by step. We have added a toDoItems array to store
the to-do items. The array is private because we want to encapsulate the underlying
array. In addItems(_:), the item that's passed in is added to the array, and in
itemAtIndex(_:), the item at the specified index is returned.

Run the tests. All the tests pass and there is nothing to refactor.

A Test-Driven Data Model

[60]

The user has to be able to check the items. The checked items need to be accessible
from the item manager. Add the following code to ItemManagerTests:

func testCheckingItem_ChangesCountOfToDoAndOfDoneItems() {
 sut.addItem(ToDoItem(title: "First Item"))
 sut.checkItemAtIndex(0)
}

This code does not compile because there is no checkItemAtIndex(_:) method in
ItemManager. To make the test code compilable, add it to ItemManager:

func checkItemAtIndex(index: Int) {
}

When the user checks an item, toDoCount should decrease and doneCount
should increase. Add the following asserts to testCheckingItem_
ChangesCountOfToDoAndOfDoneItems():

XCTAssertEqual(sut.toDoCount, 0, "toDoCount should be 0")
XCTAssertEqual(sut.doneCount, 1, "doneCount should be 1")

To make this test pass, we simply decrease and increase the values. A possible
implementation could look like this:

class ItemManager {
 var toDoCount = 0
 var doneCount = 0
 private var toDoItems = [ToDoItem]()

 func addItem(item: ToDoItem) {
 ++toDoCount
 toDoItems.append(item)
 }

 func itemAtIndex(index: Int) -> ToDoItem {
 return toDoItems[index]
 }

 func checkItemAtIndex(index: Int) {
 --toDoCount
 ++doneCount
 }
}

Chapter 3

[61]

This is the simplest implementation that makes the tests pass. Again, the code clearly
does not do what we have planned. When checking an item, it should be removed from
the toDoItems array. We need another test to ensure that it implements this behavior:

func testCheckingItem_RemovesItFromTheToDoItemList() {
 let firstItem = ToDoItem(title: "First")
 let secondItem = ToDoItem(title: "Second")

 sut.addItem(firstItem)
 sut.addItem(secondItem)

 sut.checkItemAtIndex(0)

 XCTAssertEqual(sut.itemAtIndex(0).title, secondItem.title)
}

This test fails. To make it pass, add the following line to checkItemAtIndex(_:):

_ = toDoItems.removeAtIndex(index)

This code uses the removeAtIndex(_:) method of the built-in array type. Run the
tests. All the tests pass. There is nothing further to refactor.

In the app, the checked items will be shown below the unchecked items. This means
that ItemManager also needs to provide a method that returns checked items. Add
the following code to ItemManagerTests:

func testDoneItemAtIndex_ShouldReturnPreviouslyCheckedItem() {
 let item = ToDoItem(title: "Item")
 sut.addItem(item)
 sut.checkItemAtIndex(0)

 let returnedItem = sut.doneItemAtIndex(0)
}

Before we can continue writing the test, we need to add doneItemAtIndex(_:) to
ItemManager:

func doneItemAtIndex(index: Int) -> ToDoItem {
 return ToDoItem(title: "")
}

Again, this is the simplest implementation to make the test pass, so let's
continue writing the test. Add the following assert to testDoneItemAtIndex_
ShouldReturnPreviouslyCheckedItem():

XCTAssertEqual(item.title, returnedItem.title,
 "should be the same item")

A Test-Driven Data Model

[62]

This test fails because we return a dummy item from doneItemAtIndex(_:). To
make it pass, replace the implementation of ItemManager with the following code:

class ItemManager {
 var toDoCount = 0
 var doneCount = 0
 private var toDoItems = [ToDoItem]()
 private var doneItems = [ToDoItem]()

 func addItem(item: ToDoItem) {
 ++toDoCount
 toDoItems.append(item)
 }

 func checkItemAtIndex(index: Int) {
 let item = toDoItems.removeAtIndex(index)
 doneItems.append(item)
 --toDoCount
 ++doneCount
 }

 func itemAtIndex(index: Int) -> ToDoItem {
 return toDoItems[index]
 }

 func doneItemAtIndex(index: Int) -> ToDoItem {
 return doneItems[index]
 }
}

We have added a doneItems array to store the checked items. In
checkItemAtIndex(_:), we take the item removed from toDoItems and add it to
doneItems. In doneItemAtIndex(_:), we simply return the item for the passed in
index from the doneItems array.

Run the tests. All the tests pass. But there is a small thing we should refactor.
The todoCount and doneCount variables are always the same as the count of the
toDoItems and doneItems arrays, respectively. So, replace the todoCount and
doneCount variables with computed properties:

var toDoCount: Int { return toDoItems.count }
var doneCount: Int { return doneItems.count }

Chapter 3

[63]

Remove the lines with the --toDoCount, ++todoCount, and ++doneCount
statements. Run the tests to make sure that everything still works.

There is something else that should be improved. To assert the equality of ToDoItem
instances, we have used assert functions like this:

XCTAssertEqual(item.title, returnedItem.title,
 "should be the same item")

But we would like to write them like this:

XCTAssertEqual(item, returnedItem, "should be the same item")

If we try to do this and run the tests, we get this error:

error: cannot invoke 'XCTAssertEqual' with an argument list of type
'(ToDoItem, ToDoItem, String)'

To figure out what this means, let's have a look at the definition of XCTAssertEqual:

public func XCTAssertEqual<T : Equatable>(@autoclosure expression1:
() -> T?, @autoclosure _ expression2: () -> T?, _ message: String =
default, file: String = default, line: UInt = default)

The important information here is <T : Equatable>. It indicates that we can only
use XCTAsserEqual to check whether two elements are equal when they have the
same type, and this type should conform to the Equatable protocol. We could stop
here and decide that we do not need to make ToDoItem conform to Equatable, just
to make the tests clearer. We can always compare each property of the items. But test
code is still code. It should be easy to read and to understand.

In addition to this, we would like to make sure that the user cannot add the same
item to the list twice because doing this does not add any value to the app. In fact,
it could be considered a bug. To check whether an item is already managed by the
list, we need to also be able to easily check whether two items represent the same
information. This again means that to-do items need to be Equatable. In the next
few sections, we will add conformance to Equatable, ToDoItem, and Location.

But before we continue, replace the assertion in the last test with the assertion we
had earlier:

XCTAssertEqual(item.title, returnedItem.title,
 "should be the same item")

Run the tests again to make sure that we start from a green state.

A Test-Driven Data Model

[64]

Equatable
Open ToDoItemTests.swift in the editor and ToDoItem.swift in the assistant
editor. We would like to be able to compare to-do items using XCTAssertEqual.
Add the following test to ToDoItemTests to drive the implementation of Equatable
conformance:

func testEqualItems_ShouldBeEqual() {
 let firstItem = ToDoItem(title: "First")
 let secondItem = ToDoItem(title: "First")

 XCTAssertEqual(firstItem, secondItem)
}

The static analyzer tells us that it Cannot invoke 'XCTAssertEqual' with an
argument list of type '(ToDoItem, ToDoItem)'. This is because ToDoItem is
not Equatable. Make ToDoItem conform to Equatable like this:

struct ToDoItem : Equatable {
 // …
}

Now, we get an error saying that ToDoItem does not conform to the Equatable
protocol. The Equatable protocol looks like this for Swift 2.0:

public protocol Equatable {
 @warn_unused_result
 public func ==(lhs: Self, rhs: Self) -> Bool
}

So, we need to implement the == equivalence operator for ToDoItem. The operator
needs to be defined in a global scope. At the end of ToDoItem.swift, outside of the
ToDoItem class, add the following code:

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 return true
}

Run the tests. The tests pass and, again, there is nothing to refactor.

The implementation of the equivalence operator is strange because it doesn't check
any properties of the items that are passed in. But following the rules of TDD, it is
good enough. Let's move on to more complicated tests:

func testWhenLocationDifferes_ShouldBeNotEqual() {
 let firstItem = ToDoItem(title: "First title",
 itemDescription: "First description",

Chapter 3

[65]

 timeStamp: 0.0,
 location: Location(name: "Home"))
 let secondItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timeStamp: 0.0,
 location: Location(name: "Office"))

 XCTAssertNotEqual(firstItem, secondItem)
}

The two items differ in terms of their location names. Run the test. It fails because the
equivalence operator always returns true. But it should return false if the locations
differ. Replace the implementation of the operator with this code:

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 if lhs.location != rhs.location {
 return false
 }
 return true
}

Again, the static analyzer complains. This is because, this time, Location does not
conform to Equatable. In fact, Location needs to be Equatable too. But before we
can move to Location and its tests, we need to have all tests pass again. Replace the
highlighted line in the equivalence operator to make all the tests pass again:

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 if lhs.location?.name != rhs.location?.name {
 return false
 }
 return true
}

For now, we just test whether the names of the locations differ. Later, when
Location conforms to Equatable, we will be able to compare locations directly.

Open LocationTests.swift in the editor and Location.swift in the Assistant
Editor. Add the following test to LocationTests:

func testEqualLocations_ShouldBeEqual() {
 let firstLocation = Location(name: "Home")
 let secondLoacation = Location(name: "Home")

 XCTAssertEqual(firstLocation, secondLoacation)
}

A Test-Driven Data Model

[66]

Again, this code does not compile because Location does not conform to
Equatable. Let's add the Equatable conformance. Replace the struct
declaration with this:

struct Location : Equatable {
 // …
}

Add the the dummy implementation of the equivalence operator in Location.
swift, but outside of the Location struct:

func ==(lhs: Location, rhs: Location) -> Bool {
 return true
}

Run the tests. All the tests pass again, and at this point, there is nothing to refactor.
Add the following test:

func testWhenLatitudeDifferes_ShouldBeNotEqual() {
 let firstCoordinate = CLLocationCoordinate2D(latitude: 1.0,
 longitude: 0.0)
 let firstLocation = Location(name: "Home",
 coordinate: firstCoordinate)

 let secondCoordinate = CLLocationCoordinate2D(latitude: 0.0
 longitude: 0.0
 let secondLocation = Location(name: "Home",
 coordinate: secondCoordinate)

 XCTAssertNotEqual(firstLocation, secondLocation)
}

The two locations differ in terms of latitude. Run the test. This test fails because
the equivalence operator always returns true. Replace the implementation of the
equivalence operator with the following code:

func ==(lhs: Location, rhs: Location) -> Bool {
 if lhs.coordinate?.latitude != rhs.coordinate?.latitude {
 return false
 }
 return true
}

Chapter 3

[67]

In case the latitude of the location's coordinates differ, the operator returns false;
otherwise, it'll return true. Run the tests. All the tests pass again. Next, we need to
make sure that the locations that differ in terms of longitude are not equal. Add the
following test:

func testWhenLongitudeDifferes_ShouldBeNotEqual() {
 let firstCoordinate = CLLocationCoordinate2D(latitude: 0.0,
 longitude: 1.0)
 let firstLocation = Location(name: "Home",
 coordinate: firstCoordinate)

 let secondCoordinate = CLLocationCoordinate2D(latitude: 0.0,
 longitude: 0.0)
 let secondLocation = Location(name: "Home",
 coordinate: secondCoordinate)

 XCTAssertNotEqual(firstLocation, secondLocation)
}

Run the test. This test fails because we will not check the longitude in the equivalence
operator yet. Add the highlighted lines to the operator:

func ==(lhs: Location, rhs: Location) -> Bool {
 if lhs.coordinate?.latitude != rhs.coordinate?.latitude {
 return false
 }
 if lhs.coordinate?.longitude != rhs.coordinate?.longitude {
 return false
 }
 return true
}

Run the tests. All the tests pass again. The last two tests that we have written are very
similar to each other. The only difference is in the definition of the first coordinate.
Let's refactor the test code to make it clearer to read and easier to maintain. First,
we create a method that performs the tests that are given different values for the
Location properties:

func performNotEqualTestWithLocationProperties(firstName: String,
 secondName: String,
 firstLongLat: (Double, Double)?,
 secondLongLat: (Double, Double)?) {

 let firstCoord: CLLocationCoordinate2D?
 if let firstLongLat = firstLongLat {

A Test-Driven Data Model

[68]

 firstCoord = CLLocationCoordinate2D(
 latitude: firstLongLat.0,
 longitude: firstLongLat.1)
 } else {
 firstCoord = nil
 }
 let firstLocation = Location(name: firstName,
 coordinate: firstCoord)

 let secondCoord: CLLocationCoordinate2D?
 if let secondLongLat = secondLongLat {
 secondCoord = CLLocationCoordinate2D(
 latitude: secondLongLat.0,
 longitude: secondLongLat.1)
 } else {
 secondCoord = nil
 }
 let secondLocation = Location(name: secondName,
 coordinate: secondCoord)

 XCTAssertNotEqual(firstLocation, secondLocation)
}

This method takes two strings and optional tuples, respectively. With this
information, it creates two Location instances and compares them using
XCTAssertNotEqual.

Now, we can replace testWhenLatitudeDifferes_ShouldBeNotEqual() with this:

func testWhenLatitudeDifferes_ShouldBeNotEqual() {
 performNotEqualTestWithLocationProperties ("Home",
 secondName: "Home",
 firstLongLat: (1.0, 0.0),
 secondLongLat: (0.0, 0.0))
}

To check whether this test still works, we need to make it fail by removing some
implementation code. If the test passes again when we re-add the code, we can be
confident that the tests still works. In Location.swift, remove the check for the
nonequality of latitude:

if lhs.coordinate?.latitude != rhs.coordinate?.latitude {
 return false
}

Chapter 3

[69]

Run the test. The test does, indeed, fail but the failure shows in the line where
XCTAssertNotEqual is located:

We would like to see the failure in the test method. In Chapter 1, Your
First Unit Tests, we discussed how to change the line for which the failure
is reported. The easiest way to do this is to add the line argument to
performNotEqualTestWithLocationProperties(…) and use it in the assertion:

func performNotEqualTestWithLocationProperties(firstName: String,
 secondName: String,
 firstCoordinate: (Double, Double),
 secondCoordinate: (Double, Double),
 line: UInt) {
 // …
 XCTAssertNotEqual(firstLocation, secondLocation, line: line)
}

A Test-Driven Data Model

[70]

In testWhenLatitudeDifferes_ShouldBeNotEqual(), we need to call this method
like this:

performNotEqualTestWithLocationProperties("Home",
 secondName: "Home",
 firstCoordinate: (1.0, 0.0),
 secondCoordinate: (0.0, 0.0),
 line: 52)

The number 52 is the line number at which the method call starts in my case. This
could be different for you. Run the tests again. The failure is now reported in the
specified line.

But we cannot be satisfied with this solution. A hardcoded value for the line number
is a bad idea. What if we want to add a test at the beginning of the class or add
something to setUp()? Then, we would have to change the line argument of all the
calls of that function. There has to be a better way of doing this.

C has some magic macros that are also available when writing Swift code. Replace
52 (or whatever you have put there) with the __LINE__ magic macro. Run the tests
again. Now, the failure is reported in the line where the magic macro is. This is good
enough even if the method call is spread over several lines.

But we can even do better by using default values for method
arguments. Add a default value to the last argument of
performNotEqualTestWithLocationProperties(…):

line: UInt = __LINE__

As the method now has a default value for the last argument, we can remove it from
the call:

performNotEqualTestWithLocationProperties("Home",
 secondName: "Home",
 firstCoordinate: (1.0, 0.0),
 secondCoordinate: (0.0, 0.0))

Run the tests again. The failure is now reported at the beginning of the call
but without the need to hardcode the line number. Add the code again to the
equivalence operator that we had to remove in order to make the test fail:

if lhs.coordinate?.latitude != rhs.coordinate?.latitude {
 return false
}

Chapter 3

[71]

Run the tests to make sure that all of them pass again. Now, replace
testWhenLongitudeDifferes_ShouldBeNotEqual() with the following code:

func testWhenLongitudeDifferes_ShouldBeNotEqual() {
 performNotEqualTestWithLocationProperties("Home",
 secondName: "Home",
 firstCoordinate: (0.0, 1.0),
 secondCoordinate: (0.0, 0.0))
}

Run the tests. All the tests pass.

If one location has a coordinate set and the other one does not, they should be
considered to be different. Add the following test to make sure that the equivalence
operator works this way:

func testWhenOneHasCoordinateAndTheOtherDoesnt_ShouldBeNotEqual() {
 performNotEqualTestWithLocationProperties("Home",
 secondName: "Home",
 firstLongLat: (0.0, 0.0),
 secondLongLat: nil)
}

Run the tests. All the tests pass. The current implementation of the equivalence
operator already works in this way.

Right now, two locations with the same coordinate but different names are
equivalent. But we want them to be considered different. Add the following test:

func testWhenNameDifferes_ShouldBeNotEqual() {
 performNotEqualTestWithLocationProperties("Home",
 secondName: "Office",
 firstLongLat: nil,
 secondLongLat: nil)
}

This test fails. Add the following if condition right before the return true line in
the implementation of the equivalence operator:

if lhs.name != rhs.name {
 return false
}

Run the tests again. All the tests pass and there is nothing to refactor.

The Location struct now conforms to Equatable. Let's go back to ToDoItem and
continue where we left off.

A Test-Driven Data Model

[72]

First, let's refactor the current implementation of the equivalence operator of
ToDoItem. Now that Location conforms to Equatable, we can check whether
the two locations are different using the != operator (which we get for free by
implementing the == operator):

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 if lhs.location != rhs.location {
 return false
 }

 return true
}

Run the tests. All the tests pass and there is nothing to refactor.

If one to-do item has a location and the other does not, they are not equal. Add the
following test to ToDoItemTests to make sure this is the case:

func testWhenOneLocationIsNilAndTheOtherIsnt_ShouldBeNotEqual() {
 let firstItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timestamp: 0.0,
 location: nil)
 let secondItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timestamp: 0.0,
 location: Location(name: "Office"))

 XCTAssertNotEqual(firstItem, secondItem)
}

The test already passes. Let's make sure that it also works the other way round.
Change the let keywords to var, and add the following code to the end of
testWhenOneLocationIsNilAndTheOtherIsnt_ShouldBeNotEqual():

firstItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timestamp: 0.0,
 location: Location(name: "Home"))
secondItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timestamp: 0.0,
 location: nil)
XCTAssertNotEqual(firstItem, secondItem)

Chapter 3

[73]

Run the tests. This also works with the current implementation of the equivalence
operator of ToDoItem.

Next, if the timestamp of two to-do items differs, they are different. The following
code tests whether this is the case in our implementation:

func testWhenTimestampDifferes_ShouldBeNotEqual() {
 let firstItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timestamp: 1.0)
 let secondItem = ToDoItem(title: "First title",
 itemDescription: "First description",
 timestamp: 0.0)

 XCTAssertNotEqual(firstItem, secondItem)
}

Both to-do items are equivalent to each other, except for the timestamp. The test
fails because we do not compare the timestamp in the equivalence operator yet. Add
the following if condition in the operator implementation right before the return
true statement:

if lhs.timestamp != rhs.timestamp {
 return false
}

Run the tests. All the tests pass and there is nothing to refactor. From the tests
about the equivalence of the Location instances, we already know that this
implementation is enough even if one of the timestamps is nil. So, no more tests for
the equivalence of timestamps are needed.

Now, let's make sure that two to-do items that differ in their descriptions are not
equal. Add this test:

func testWhenDescriptionDifferes_ShouldBeNotEqual() {
 let firstItem = ToDoItem(title: "First title",
 itemDescription: "First description")
 let secondItem = ToDoItem(title: "First title",
 itemDescription: "Second description")

 XCTAssertNotEqual(firstItem, secondItem)
}

A Test-Driven Data Model

[74]

Adding the following if condition to the equivalence operator right before the
return true statement, makes the test pass:

if lhs.itemDescription != rhs.itemDescription {
 return false
}

The last thing we have to check is whether two to-do items differ if their titles differ.
Add this test:

func testWhenTitleDifferes_ShouldBeNotEqual() {
 let firstItem = ToDoItem(title: "First title")
 let secondItem = ToDoItem(title: "Second title")

 XCTAssertNotEqual(firstItem, secondItem)
}

With all the experience we have gained in this section, the implementation nearly
writes itself. Add another if condition again right before the return true statement:

if lhs.title != rhs.title {
 return false
}

Run the tests. All the tests pass.

Now that ToDoItem and Location conform to Equatable, the to-do items and
locations can be used directly in XCTAssertEqual. Go through the tests and make
the necessary changes.

Removing all items
The ItemManager class needs to provide a method to remove all items. Add the
following code to ItemManagerTests:

func testRemoveAllItems_ShouldResultInCountsBeZero() {
 sut.addItem(ToDoItem(title: "First"))
 sut.addItem(ToDoItem(title: "Second"))
 sut.checkItemAtIndex(0)

 XCTAssertEqual(sut.toDoCount, 1,
 "toDoCount should be 1")
 XCTAssertEqual(sut.doneCount, 1,
 "doneCount should be 1")

 sut.removeAllItems()
}

Chapter 3

[75]

This code adds two to-do items to the manager and checks one item. Then, it asserts
that the count of the items has the expected values and calls removeAllItems().

The code does not compile because removeAllItems() is not implemented yet.
Add the minimal implementation needed to make the test code compilable:

func removeAllItems() {
}

Now, add the following assertions to testRemoveAllItems_
ShouldResultInCountsBeZero() to check whether the items have been removed:

XCTAssertEqual(sut.toDoCount, 0, "toDoCount should be 0")
XCTAssertEqual(sut.doneCount, 0, "doneCount should be 0")

To make this test pass, we need to remove all the items from the underlying arrays.
Add the following implementation in removeAllItems():

toDoItems.removeAll()
doneItems.removeAll()

Run the tests. All the tests pass and there is nothing to refactor.

Ensuring uniqueness
As mentioned earlier, we would like to make sure that each to-do item can only be
added to the list once. To ensure this behavior is implemented, add the following test
to ItemManagerTests:

func testAddingTheSameItem_DoesNotIncreaseCount() {
 sut.addItem(ToDoItem(title: "First"))
 sut.addItem(ToDoItem(title: "First"))

 XCTAssertEqual(sut.toDoCount, 1)
}

This test fails. To make the test pass, we need to check whether the item we want to
add to the list is already contained in the list. Fortunately, Swift provides a method on
the Array type that does exactly this. Replace addItem(_:) with the following code:

func addItem(item: ToDoItem) {
 if !toDoItems.contains(item) {
 toDoItems.append(item)
 }
}

Run the tests. All the tests pass, and we are finally finished with the implementation
of our model.

A Test-Driven Data Model

[76]

Summary
In this chapter, we took a look at how to implement the model layer of our app
using TDD. We followed the TDD workflow (red, green, and refactor) to guide the
implementation of the required micro features.

We implemented two model structs and a manager class. We added conformance
to the Equatable protocol for the model structs in order to make sure that the same
to-do item cannot be added to the list more than once. We also encapsulated the
internals of the manager class with methods to add, receive, and remove to-do items
from the manager.

TDD lead us to a clean, simple, and fully tested model.

In the next chapter, we will implement the controller layer and the view layer of the
Model-View-Controller design pattern using TDD.

[77]

A Test-Driven View Controller
View controllers are glue-like components that hold an app together. They are
responsible for moderating between the model and the view layer. As the moderator,
they are highly-specialized according to the needs of the module they belong to. As
a result, the controller layer is often the part that is not reusable in other parts of the
app or in other apps.

As the controller is responsible for many different tasks, it often tends to become
big. It is a good practice to construct the controller layer of one specific feature out of
different controller classes. For instance, beginners often put their networking code
into the same class that is responsible for filling the UI with information. This results
in a so-called "god" class, a class that knows and controls everything.

Such classes are hard to write, read, and maintain and should, therefore, be avoided.
To make the View Controller showing the list of items clean, we will separate the
data source and delegate of the table view out into its own class, the data provider.
The communication between the View Controller and data provider can be defined
using protocols. This way, you can swap one implementation for another by just
conforming to the protocol. In addition to this, when defining a protocol, you need
to think about how to make the API surface (that is, the number of methods that are
exposed to other classes) small and easy to understand. The result of this will be a
modular architecture with clear separation of tasks into different classes and structs.

In this chapter, we will build the different classes that make up the controller layer
of our app. In a later chapter, we will put all the modules we have implemented
together in a running app.

A Test-Driven View Controller

[78]

We'll cover the following topics in this chapter:

•	 Implementing ItemListViewController
•	 Implementing DataProvider
•	 Implementing DetailViewController
•	 Implementing InputViewController

Implementing ItemListViewController
Let's start with the list showing the to-do items. This is the most important View
Controller. It is the first view that a user sees when the app has started.

This controller is also responsible for presenting the input screen that allows the
user to add to-do items to the list and for presenting the detail screen that shows the
details of selected to-do items.

But we first need to structure the files in Project Navigator a bit in order to enable
seamless navigation between the different files. Select the three model files that we
already have (ToDoItem.swift, Location.swift, and ItemManager.swift), and
hold down the control key while you click on one of the selected files. Xcode presents
a menu similar to what's shown in this screenshot:

Chapter 4

[79]

Select New Group from Selection and let's call the group Model. Do the same in the
test target with the corresponding test cases.

With an easy to navigate project in the Project Navigator, let's return to the TDD
workflow. To drive the implementation of ItemListViewController, we need a test
case to collect the tests.

Select the ToDoTests group and add a Unit Test Case Class. Put in the name
ItemListViewControllerTests and click on Next. Create a folder called Controller
and click on Create. As seen in the previous chapters, add the @testable import
ToDo import statement, and remove the two template test methods.

The data will be presented to the user using a table view. We need a test to
make sure that ItemListViewController has a table view and it is set after
viewDidLoad(). Add the following code to ItemListViewControllerTests:

func test_TableViewIsNotNilAfterViewDidLoad() {
 let sut = ItemListViewController()
}

The static analyzer complains that ItemListViewController is an unresolved
identifier. We have seen this message so often that we already expected this to
happen. There is no ItemListViewController yet. Select the ToDo group in
Project Navigator in Xcode, and go to File | New | File. Create an iOS | Source
| Cocoa Touch Class, name it ItemListViewController, make it a subclass of
UIViewController, and click on Next. Create a folder called Controller, select it
as the destination of the new file, and click on Create. Remove the code within the
ItemListViewController class, such that it looks like this:

import UIKit

class ItemListViewController: UIViewController {
}

To make writing tests easier, set up the Xcode window, as you did earlier, with
the test case on the left-hand side and the implementation code in the Assistant
Editor on the right-hand side. Run the tests to make sure that we have set up
everything correctly.

Add the following code at the end of test_TableViewIsNotNilAfterViewDidLoad():

_ = sut.view

XCTAssertNotNil(sut.tableView)

To trigger the call of viewDidLoad(), we have to access the view property of sut.

A Test-Driven View Controller

[80]

Again, the static analyzer complains. This is because, this time, Value of type
'ItemListViewController has no member 'tableView'. To fix this, add the
tableView property:

var tableView: UITableView?

Run the test. It compiles but fails. This is because we do not test whether the
property is present but if the property is set to a value different from nil after
viewDidLoad() is called. And we have not done anything in the implementation to
set it to some value.

This is the simplest implementation to make the test pass:

override func viewDidLoad() {
 tableView = UITableView()
}

Run the tests to make sure that all the tests pass.

You might wonder why there is no call to super in
viewDidLoad(). The reason for this is that it is not required.
It's good practice to add this call because you often have
a View Controller as a superclass and use subclasses for
specific implementations of your controller code. In this case,
it is very probable that the superclass will do something in
viewDidLoad() that the subclass should also do.

Following the rules of TDD, we've done enough for now and the code looks clean.
So, there should be nothing to refactor. But at this point, we need to make a decision.
Do we want to implement the UI using Interface Builder (IB) in Xcode, or do we
want to implement it completely in code?

IB has improved a lot over the last few years, and using storyboards can speed up
the development of a small app, especially when you are not experienced in building
user interfaces in code. In addition to this, you get a preview of what the UI would
look like while you are building it. For larger projects, I would recommend that you
at least have a look at how UIs are built without IB because it is often easier to reason
and maintain.

Chapter 4

[81]

We will use IB for our project because TDD does not help a lot with UIs, and using
IB gives us a clear-cut idea about what to test and what not to because normally, you
would not test the position and color of your UI elements.

When we created the project for our app, Xcode added a storyboard file, Main.
storyboard, for the UI. Open Project Navigator and click on Main.storyboard to
open it in IB. You should see something like this:

There is already a scene for a View Controller in the storyboard. Also, there is a
ViewController.swift file from the Xcode template of a Single View Application.
We won't use it, so let's remove the file and scene. First, select ViewController.
swift and press the delete key. Then, select the View Controller scene in the
storyboard and press the delete key again.

A Test-Driven View Controller

[82]

Now, we have a clean slate to build the UI. Open the object library by going to View
| Utilities | Show Object Library, and drag View Controller onto the storyboard.
Change the class in Identity Inspector to ItemViewController. Add a table view to
the View Controller, make it fill up the scene, and add layout constraints to the edges
of the superview:

Open ItemListViewController.swift in the Assistant Editor and replace the
tableView property with this:

@IBOutlet var tableView: UITableView!

Now, hold the control key, and drag from the table view in the storyboard scene to the
tableView property to connect the two. Remove the implementation of viewDidLoad()
and run the tests. The test test_TableViewIsNotNilAfterViewDidLoad() fails
because the tableView property is nil after viewDidLoad() is called. The reason
for this is that we are not using the storyboard to instantiate the View Controller yet.
By calling the ItemListViewController() initializer, we use the simple init()
initializer. But we need to use the storyboard to create the item list View Controller.

Chapter 4

[83]

Open the storyboard and set Storyboard ID to ItemListViewController in
Identity Inspector. Replace test_TableViewIsNotNilAfterViewDidLoad()
with this code:

func test_TableViewIsNotNilAfterViewDidLoad() {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let sut = storyboard.instantiateViewControllerWithIdentifier("Item
ListViewController") as! ItemListViewController

 _ = sut.view

 XCTAssertNotNil(sut.tableView)
}

This code first gets a reference to the Main storyboard and then instantiates an
instance of ItemListViewController from the storyboard. This works because we
have set the Storyboard ID.

Run the tests. Now, all the tests pass.

As mentioned previously, we would like to put the data source and
delegate of the table view into a separate class. Add the following test to
ItemListViewControllerTests to drive the implementation:

func testViewDidLoad_ShouldSetTableViewDataSource() {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let sut = storyboard.instantiateViewControllerWithIdentifier("Item
r") as! ItemListViewController

 _ = sut.view

 XCTAssertNotNil(sut.tableView.dataSource)
 XCTAssertTrue(sut.tableView.dataSource is ItemListDataProvider)
}

The last assertion makes sure that the data source of the table view is of the
ItemListDataProvider type. To make the test compilable, we first need to add the
ItemListDataProvider class. Select the ToDo group in Project Navigator, add an
iOS | Source | Cocoa Touch Class called ItemListDataProvider as subclass of
NSObject, and select the Controller folder as the destination of the file. Remove all
the code within the class because we want to add code due to failing tests.

A Test-Driven View Controller

[84]

Now the test compiles, but it fails because we need to set an instance of
ItemListDataProvider as the data source of the table view. Let's add a property for
the data provider to ItemListViewController:

@IBOutlet var dataProvider: ItemListDataProvider!

We will connect the data provider with an element in the storyboard. Doing this has
an advantage: the data provider is instantiated when the View Controller is loaded
from the storyboard.

Open Main.storyboard and drag an Object from the object library into the scene in
the Document Outline storyboard as shown in this screenshot:

In the Identity Inspector, set the class to ItemListDataProvider. Hold down the
control key, and drag in the Document Outline from Item List View Controller to
Item List Data Provider, as show in the following screenshot:

Chapter 4

[85]

In the appearing pop-up, select dataProvider. This connects the dataProvider
property in ItemListViewController to the Item List Data Provider object in the
storyboard. Remember that we need to make sure that the data provider is set as
the data source of the table view after viewDidLoad() is called. Add the following
implementation of viewDidLoad() to ItemListViewController:

override func viewDidLoad() {
 tableView.dataSource = dataProvider
}

The static analyzer complains that ItemListDataProvider does not conform to the
UITableViewDataSource protocol. To fix this, open ItemListDataProvider and
replace the class implementation with this code:

class ItemListDataProvider: NSObject, UITableViewDataSource {

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 return 0
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell {

 return UITableViewCell()
 }
}

Run the tests. All the tests pass. Let's take a look at whether there is
something to refactor. In ItemListViewController, dataProvider is of the
ItemListDataSource type. This is needed to make the connection between IB and
the property. But now that we have the connection, we can replace the type with the
UITableViewDataSource protocol:

@IBOutlet var dataProvider: UITableViewDataSource!

With this change, ItemListViewController only knows about dataProvider and
that it conforms to the UITableViewDataSource protocol. This means that the two
classes are decoupled from each other, and there is a defined interface in the form of
the protocol.

Run the tests to make sure that everything still works.

www.allitebooks.com

http://www.allitebooks.org

A Test-Driven View Controller

[86]

There is more to refactor. We have some code duplication in the test methods.
Remove the following code from the test methods:

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let sut = storyboard.instantiateViewControllerWithIdentifier("ItemList
ViewController") as! ItemListViewController

_ = sut.view

Add the var sut: ItemListViewController! property to
ItemListViewControllerTests, and add this code to setUp():

let storyboard = UIStoryboard(name: "Main", bundle: nil)
sut = storyboard.instantiateViewControllerWithIdentifier("ItemListView
Controller") as! ItemListViewController

_ = sut.view

Run the tests again. Everything still works.

Next, we need to make sure that the data provider is also the delegate of the table
view. Add the following test to ItemListViewControllerTests:

func testViewDidLoad_ShouldSetTableViewDelegate() {
 XCTAssertNotNil(sut.tableView.delegate)
 XCTAssertTrue(sut.tableView.de-legate is ItemListDataProvider)
}

To make the test pass, add the UITableViewDelegate conformance in the
declaration of the dataProvider property, such that it looks like this:

@IBOutlet var dataProvider: protocol<UITableViewDataSource,
UITableViewDelegate>!

Add the following line at the end of viewDidLoad():

tableView.delegate = dataProvider

Run the tests. All the tests pass.

The data source and delegate need to be the same object because, otherwise, selecting
a cell could result in showing the details of a completely different item. Add the
following test:

func testViewDidLoad_ShouldSetDelegateAndDataSourceToTheSameObject() {
 XCTAssertEqual(sut.tableView.dataSource as? ItemListDataProvider,
 sut.tableView.delegate as? ItemListDataProvider)
}

Run the tests. All the tests pass. This is already implemented.

Chapter 4

[87]

Implementing ItemListDataProvider
In the previous section, we created a class to act as the data source and delegate
for the item list table view. In this section, we will implement its properties and
methods. But we first need a test case class for ItemListDataProvider.

Conducting the first tests
Open Project Navigator and select the ToDoTests group. Add a new Unit Test Case
Class, call it ItemListDataProviderTests, and choose the Controller folder as
the location to store the file. Add the @testable import ToDo import statement and
remove the two test template methods.

The table view should have two sections: one for unchecked to-do items and the
other for checked items. Add the following test to ItemListDataProviderTests:

func testNumberOfSections_IsTwo() {
 let sut = ItemListDataProvider()

 let tableView = UITableView()
 tableView.dataSource = sut

 let numberOfSections = tableView.numberOfSections
 XCTAssertEqual(numberOfSections, 2)
}

First, we create an instance of ItemListDataProvider, set up the table view,
and then we check whether the table view has the expected number of sections.
This test fails because the default number of sections for a table view is one. Open
ItemListDataProvider and add the following code:

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 2
}

This is enough to make all the tests pass again.

The number of rows in the first section should be the same as the number of to-do
items. But where do we get the to-do items from? ItemListDataProvider needs a
property of the ItemManager type to ask it for the items to present in the table view.
Add the following code to ItemListDataProviderTests:

func testNumberRowsInFirstSection_IsToDoCount() {
 let sut = ItemListDataProvider()

 let tableView = UITableView()

A Test-Driven View Controller

[88]

 tableView.dataSource = sut

 sut.itemManager?.addItem(ToDoItem(title: "First"))
}

At this point, we have to stop writing this test because the static analyzer
complains that 'ItemListDataProvider' has no member 'itemManager'.
Open ItemListDataProvider and add the var itemManager: ItemManager?
property. This makes the test compilable again. Add the following code at the end of
testNumberRowsInFirstSection_IsToDoCount():

XCTAssertEqual(tableView.numberOfRowsInSection(0), 1)

sut.itemManager?.addItem(ToDoItem(title: "Second"))

XCTAssertEqual(tableView.numberOfRowsInSection(0), 2)

First, we check whether the number of rows in the first section is equal to one after
we have added an item to the item manager. Then, we add another item and check
whether the the number of rows is equal to two. Run the test. This test fails because
the number of row in the table view is always zero as we have not implemented
the corresponding data source method to return the correct values. Open
ItemListDataProvider and replace tableView(_:numberOfRowsInSection:) with
the following code:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 return itemManager?.toDoCount ?? 0
}

This implementation returns the number of to-do items from itemManager if
itemManager is not nil; otherwise, it returns zero. Run the tests. Oh, they still fail
because the number of rows in the first section is always zero.

The reason for this is that the property required to hold a reference to the item
manager is optional, and we never set a value for this property. Therefore, the value
of itemManager is always nil, and the number of rows returned from the data
source method is always zero.

At this point, it is not clear who is going to set the item manager to itemManager.
We will decide this in a later chapter when we put all the modules together
to form a complete app. For the tests, we will set itemManager in them. Add
the following line right below let sut = ItemListDataProvider() in
testNumberRowsInFirstSection_IsToDoCount():

sut.itemManager = ItemManager()

Chapter 4

[89]

Run the tests. Now, the first assertion passes but the second one, asserting
that the number of rows is two after we have added another item, fails.
The reason for this is that table views seem to cache the values returned from
tableView(_:numberOfRowsInSection:). This is one of the many performance
optimizations that are built into table views. We, as developers, need to tell the table
view that the data source has changed by calling reloadData(). Add the following
code right after the line where the second to-do item is added to the item manager:

tableView.reloadData()

Run the tests. All the tests pass. Before we move on, let's check whether there is
something to refactor. The implementation code looks nice and clean now. But
the tests show some duplication. To refactor, let's first add two properties to
ItemListDataProviderTests:

var sut: ItemListDataProvider!
var tableView: UITableView!

Then, add the following setup code to setUp():

sut = ItemListDataProvider()
sut.itemManager = ItemManager()

tableView = UITableView()
tableView.dataSource = sut

Finally, remove the following code from the test methods because it is no
longer needed:

let sut = ItemListDataProvider()
sut.itemManager = ItemManager()

let tableView = UITableView()
tableView.dataSource = sut

Run the tests again to make sure that everything still works.

If the user checks an item in the first section, it should appear in the second section.
Add the following test that makes sure the number of rows in the second section is
the same as the number of completed items in the item manager:

func testNumberRowsInSecondSection_IsDoneCount() {
 sut.itemManager?.addItem(ToDoItem(title: "First"))
 sut.itemManager?.addItem(ToDoItem(title: "Second"))
 sut.itemManager?.checkItemAtIndex(0)

A Test-Driven View Controller

[90]

 XCTAssertEqual(tableView.numberOfRowsInSection(1), 1)

 sut.itemManager?.checkItemAtIndex(0)
 tableView.reloadData()

 XCTAssertEqual(tableView.numberOfRowsInSection(1), 2)
}

This test is similar to the earlier test. First, we add items to the item manager, and then
we check an item and see whether the number of rows in the second section matches
our expectations. Run the test. The test fails. But look closely. The first assertion passes.
This is because the implementation of tableView(_:numberOfRowsInSection:)
returns the number of to-do items, and when the first assertion is called, this is the
same as the expected number of done items. This example shows that it is important
to start from a failing test. Otherwise, we cannot be sure if we are testing the real
thing. So, remove the second assertion and make the test red by replacing
tableView(_:numberOfRowsInSection:) with this code:

func tableView(tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {
 let numberOfRows: Int
 switch section {
 case 0:
 numberOfRows = itemManager?.toDoCount ?? 0
 case 1:
 numberOfRows = 0
 default:
 numberOfRows = 0
 }
 return numberOfRows
}

Run the tests. Now, the assertion fails because the number of rows in the second
section is always zero. To make the test pass, replace the assignment in the case 1
with this line of code:

numberOfRows = 1

Run the tests again. The tests pass. Now, add again the
XCTAssertEqual(tableView.numberOfRowsInSection(1), 2) assertion at the end
of testNumberRowsInSecondSection_IsDoneCount(). The test fails again. This is a
good thing because it means that we are actually testing whether the number of rows
represents the number of items in the item manager. Replace the assignment in case
1 one more time with this line of code:

numberOfRows = itemManager?.doneCount ?? 0

Chapter 4

[91]

Run the tests again. All the tests pass. Let's check whether there is something
to refactor. Indeed, there is. The implementation does not look good. There is a
question mark at the end of itemManager, and in the switch statement, we need to
implement the default case even though we know that there will never be more
than two sections.

To improve the code, we start by adding an enum for the sections. Add the
following code in ItemListDataProvider.swift but outside the
ItemListDataProvider class:

enum Section: Int {
 case ToDo
 case Done
}

Now, replace the implementation of tableView(_:numberOfRowsInSection:)
with the following code:

func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 guard let itemManager = itemManager else { return 0 }
 guard let itemSection = Section(rawValue: section) else {
 fatalError()
 }

 let numberOfRows: Int

 switch itemSection {
 case .ToDo:
 numberOfRows = itemManager.toDoCount
 case .Done:
 numberOfRows = itemManager.doneCount
 }
 return numberOfRows
}

This looks much better. We check in the beginning whether itemManager is nil
using guard and return zero if this is the case. Then, we create itemSection from the
argument section. The guard statement makes it clear that a value for the section
argument can only be 0 or 1 because the Section enum only has two cases.

Run the tests to make sure that everything still works.

A Test-Driven View Controller

[92]

The to-do items should be presented in the table view using a custom table view cell
because the cells provided by UIKit can only show an image and two text strings. But
we need to show three text strings because we want to show the title, location, and
the due date.

Add the following test to make sure that tableView(_:cellForRowAtIndexPath:)
returns our custom cell:

func testCellForRow_ReturnsItemCell() {

 sut.itemManager?.addItem(ToDoItem(title: "First"))
 tableView.reloadData()

 let cell = tableView.cellForRowAtIndexPath(NSIndexPath(forRow: 0,
 inSection: 0))

 XCTAssertTrue(cell is ItemCell)
}

Xcode complains that ItemCell is an undeclared type. Open Project Navigator, add
an iOS | Source | Cocoa Touch Class, call it ItemCell, and make it a subclass of
UITableViewCell. Store it in the Controller folder, and ensure that it is added to
the ToDo target and not to the ToDoTests target. Remove all the template code, such
that the file looks like this:

import UIKit

class ItemCell: UITableViewCell {
}

Now, the test compiles but still fails. Replace the return statement in
tableView(_:cellForRowAtIndexPath:) with the following line of code:

return ItemCell()

This change is enough to make the tests pass. But it is clearly not enough for the
feature that we want to implement. For performance reasons, table view cells need to
be dequeued. Before we can write a test that makes sure that the cell is dequeued, we
need to introduce a very important concept in unit testing—fake objects.

Chapter 4

[93]

Fake objects
Ideally, a unit test should test one micro feature and nothing else. But in
object-oriented programming (OOP), objects talk to each other, exchange data, and
react to the changes of their neighbors. As a result, when writing a test, it is often
difficult to isolate one specific module from another. But without isolation, a test
does not test just one micro feature but many.

To isolate modules from each other, we can use a concept called fake objects. Fake
objects act as placeholders for real objects or modules, but they are controlled by
test code. This means a test sets up fake objects, controls their behavior, and tests
whether the system under the test reacts as expected.

The most important fake objects are mocks, stubs, and fakes. These are explained
as follows:

•	 Mocks act as recorders. They register whether the system under a test calls
the expected methods of another instance with expected arguments. For
example, if we have class A that should call method b() of class B when
something happens, we would create a mock for B that sets a Boolean value
to true in case b() is called. In the test, we use this Boolean value to assert
whether b() has been called.

•	 Stubs are used when we need defined return values from a method. In a test
it is often useful to have a fixed hardcoded return value for a method that the
system under the test, calls. The test then asserts that the system under test
reacts in the expected way to the defined return value. This makes it easy to
test many different scenarios without complicated setups.

•	 Fakes act as stand-ins for real objects that a system under test communicates
with. They are needed to make code compile, but they are not needed to
assert that something expected has happened. Fakes are often used when
they are easier to set up than the real objects or when we need to make sure
that the test is independent of the implementation of the real object.

For the next test, we will need a table view mock.

Using mocks
As mentioned in the previous section, table view cells should be dequeued. To make
sure that this happens, we need a test. The dequeuing is done by calling the dequeue
ReusableCellWithIdentifier(_:forIndexPath:) method on the table view. The
table view then checks whether there is a cell that can be reused. If not, it creates a
new cell and returns it. We are going to use a table view mock to register when the
method is called.

A Test-Driven View Controller

[94]

In Swift, classes can be defined within other classes. In the case of mocks, this is
useful because this way, the mocks are only visible and accessible at the point at
which they are needed.

Add the following code to ItemListDataProviderTests.swift but outside of the
ItemListDataProviderTests class:

extension ItemListDataProviderTests {

 class MockTableView : UITableView {

 var cellGotDequeued = false

 override func dequeueReusableCellWithIdentifier(
 identifier: String,
 forIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 cellGotDequeued = true

 return super.dequeueReusableCellWithIdentifier(
 identifier,
 forIndexPath: indexPath)
 }
 }
}

We have used an extension of ItemListDataProviderTests to define a mock of
UITableView. Our mock uses a Boolean property to register when dequeueReusable
CellWithIdentifier(_:forIndexPath:) is called.

Add the following test to ItemListDataProviderTests:

func testCellForRow_DequeuesCell() {
 let mockTableView = MockTableView()

 mockTableView.dataSource = sut
 mockTableView.registerClass(ItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 sut.itemManager?.addItem(ToDoItem(title: "First"))
 mockTableView.reloadData()

 _ = mockTableView.cellForRowAtIndexPath(NSIndexPath(forRow: 0,
 inSection: 0))

 XCTAssertTrue(mockTableView.cellGotDequeued)
}

Chapter 4

[95]

In the test, we first create an instance and set up our table view mock. Then, we add
an item to the item manager of sut. Next, we call cellForRowAtIndexPath(_:) to
trigger the method call that we want to test. Finally, we assert that the table view cell
is dequeued.

Run this test. It fails because, right now, the cell is not dequeued. Replace the
implementation of tableView(_:cellForRowAtIndexPath:) with this code:

func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",
 forIndexPath: indexPath)

 return cell
}

Run the tests. Now, the last added test succeeds. But testCellForRow_
ReturnsItemCell() fails. The reason for this is that we need to register a cell
when we want to make use of automatic dequeuing of cells in UITableView. There
are three ways to register a cell. Firstly, we can do this in code, just like we did
in testCellForRow_DequeuesCell(). Secondly, by registering a nib for the cell.
Thirdly, by adding a cell with the used reuse identifier to the storyboard. We will
implement the third way because we are already using a storyboard for the app.

Open Main.storyboard in the editor, and add a table view cell to the table view:

A Test-Driven View Controller

[96]

In Identity Inspector, change the class of the cell to ItemCell:

In the Attribute Inspector, set Identifier to ItemCell:

Next, we need to set up the test case such that it uses the storyboard to create the
table view. First, add the following property to ItemListDataProviderTests:

var controller: ItemListViewController!

Then, replace setUp() with the following code:

override func setUp() {
 super.setUp()

 sut = ItemListDataProvider()
 sut.itemManager = ItemManager()

 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 controller = storyboard.instantiateViewControllerWithIdentifier("I
temListViewController") as! ItemListViewController

 _ = controller.view

 tableView = controller.tableView
 tableView.dataSource = sut
}

Chapter 4

[97]

Instead of creating a table view using an UITableView initializer, we instantiate an
instance of ItemListViewController from the storyboard and use its table view.
The _ = controller.view call is needed because, otherwise, the table view is nil.

Run the tests. All the tests pass and there is nothing to refactor.

After the cell is dequeued, the name, location, and the due date should be set
to labels in the cell. A common pattern in the implementation of table view
cells in iOS is to implement a configCellWithItem(_:) method in the
cell class. The table view data source then just needs to call this method in
tableView(_:cellForRowAtIndexPath:). There is one drawback of this pattern:
the table view cell, which belongs to the view layer, needs to have information on the
structure of the model layer. This is not a big problem because the table view cell is
already specific to the data it has to present. Nevertheless, if you prefer, you can use
a protocol to decouple the item cell from the item object.

To make sure that configCellWithItem(_:) is called after the cell is dequeued, we
will write a test that uses a table view cell mock. Add the following mock class after
the table view mock:

class MockItemCell : ItemCell {

 var configCellGotCalled = false

 func configCellWithItem(item: ToDoItem) {
 configCellGotCalled = true
 }
}

The mock registers when configCellWithItem(_:) is called by
setting configCellGotCalled to true. Add the following test to
ItemListDataProviderTests:

func testConfigCell_GetsCalledInCellForRow() {

 let mockTableView = MockTableView()

 mockTableView.dataSource = sut
 mockTableView.registerClass(MockItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 let toDoItem = ToDoItem(title: "First",
 itemDescription: "First description")
 sut.itemManager?.addItem(toDoItem)
 mockTableView.reloadData()

A Test-Driven View Controller

[98]

 let cell = mockTableView.cellForRowAtIndexPath(NSIndexPath(forRow:
0,
 inSection: 0)) as! MockItemCell

 XCTAssertTrue(cell.configCellGotCalled)
}

In this test, we use a mock for the table view and for the table view cell. After setting
up the table view, we add an item to the item manager. Then, we get the first cell of
the table view. This triggers the call of tableView(_:cellForRowAtIndexPath:).
Finally, we assert that configCellGotCalled of our table view cell mock is true.

Run the tests to make sure that this test fails. A failing test means that we need to
write implementation code.

Add the following line to tableView(_:cellForRowAtIndexPath:) before the cell
is returned:

cell.configCellWithItem(ToDoItem(title: ""))

The static analyzer will complain that 'UITableViewCell' has no member
'configCellWithItem'. Obviously, we have forgotten to cast the cell to ItemCell.
Add the cast at the end of the line where the cell is dequeued:

let cell = tableView.dequeueReusableCellWithIdentifier("ItemCell",
 forIndexPath: indexPath) as! ItemCell

Now, the static analyzer complains that 'ItemCell' has no member
'configCellWithItem'. Open ItemCell.swift and add the following empty
method definition to ItemCell:

func configCellWithItem(item: ToDoItem) {
}

Xcode complains in MockItemCell that configCellWithItem(_:) needs the
override keyword. In Swift, whenever you override a method of the superclass, you
need to add this keyword. This is a safety feature. In Objective-C, it could happen
that you accidentally overrode a method because you didn't know that the method
was defined in the superclass. This is not possible in Swift.

Add the keyword to the method definition, such that it looks like this:

override func configCellWithItem(item: ToDoItem) {
 configCellGotCalled = true
}

Now run the tests. All the tests are green again.

Chapter 4

[99]

Let's check whether there is something to refactor. The testConfigCell_
GetsCalledInCellForRow()test right now just asserts that the method is called. But
we can do better. The method configCellWithItem(_:) gets called with an item as
a parameter. This item should be used to fill the label of the cell. We'll extend the test
to also test whether the method is called with the expected item.

Replace the table view cell mock with the following code:

class MockItemCell : ItemCell {

 var toDoItem: ToDoItem?

 override func configCellWithItem(item: ToDoItem) {
 toDoItem = item
 }
}

Then, replace the assertion in testConfigCell_GetsCalledInCellForRow() with
this line of code:

XCTAssertEqual(cell.toDoItem, toDoItem)

The test now fails because we do not use the item from the item manager yet.
Replace tableView(_:cellForRowAtIndexPath:) with the following code:

func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("ItemC
ell",
 forIndexPath: indexPath) as! ItemCell

 if let toDoItem = itemManager?.itemAtIndex(indexPath.row) {
 cell.configCellWithItem(toDoItem)
 }

 return cell
}

After dequeuing the cell, we get toDoItem from the item manager and call
configCellWithItem(_:) if it succeeds.

Run the tests. All the tests pass. We are now confident that the cell is called with the
right to-do item to configure its labels.

A Test-Driven View Controller

[100]

Earlier in this chapter, we tested that the number of rows in the first section
correspond to the number of unchecked to-do items and the number of rows in
the second section to the number of checked to-do items. Now, we need to test
that the configuration of the cell in the second section passes a checked item to the
configuration method.

Add the following test to ItemListDataProviderTests:

func testCellInSectionTwo_GetsConfiguredWithDoneItem() {

 let mockTableView = MockTableView()

 mockTableView.dataSource = sut
 mockTableView.registerClass(MockItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 let firstItem = ToDoItem(title: "First",
 itemDescription: "First description")
 sut.itemManager?.addItem(firstItem)

 let secondItem = ToDoItem(title: "Second",
 itemDescription: "Second description")
 sut.itemManager?.addItem(secondItem)

 sut.itemManager?.checkItemAtIndex(1)
 mockTableView.reloadData()

 let cell = mockTableView.cellForRowAtIndexPath(
 NSIndexPath(forRow: 0, inSection: 1)) as! MockItemCell

 XCTAssertEqual(cell.toDoItem, secondItem)
}

The test is similar to the earlier one. The main difference is that we add two to-do
items to the item manager, and check the second to populate the second section of
the table view.

Run the test. The test crashes because the runtime unexpectedly found nil
while unwrapping an Optional value. This is strange because similar
code worked before this. The reason for this crash is that UIKit optimizes the
second section because the table view has a frame of CGRect.zero. As a result,
cellForRowAtIndexPath(_:) returns nil, and the as! forced unwrapping lets the
runtime crash.

Chapter 4

[101]

Replace the definition of the table view mock in the test with the following code:

let mockTableView = MockTableView(
 frame: CGRect(x: 0, y: 0, width: 320, height: 480),
 style: .Plain)

Run the tests again. It doesn't crash anymore but the test fails. We need to write some
implementation code.

In the implementation of tableView(_:numberOfRowsInSection:), we introduced
an enum for the table view sections, which has improved the code a lot. We will take
advantage of the enum in the implementation of tableView(_:cellForRowAtInd
exPath:). Replace the code of tableView(_:cellForRowAtIndexPath:) with the
following code:

func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",
 forIndexPath: indexPath) as! ItemCell

 guard let itemManager = itemManager else { fatalError() }
 guard let section = Section(rawValue: indexPath.section) else
 {
 fatalError()
 }

 let item: ToDoItem
 switch section {
 case .ToDo:
 item = itemManager.itemAtIndex(indexPath.row)
 case .Done:
 item = itemManager.doneItemAtIndex(indexPath.row)
 }

 cell.configCellWithItem(item)

 return cell
}

After dequeuing the cell, we use guard to make sure that the item manager is
present and the index path section has a supported value. Then, we switch on the
section and assign a to-do item to a constant that is used to configure the cell. Finally,
the cell is returned.

A Test-Driven View Controller

[102]

Run the tests. All the tests pass.

Look at the previous tests that we have written. They have duplicated code. Let's
clean it up a bit. Add the following code to MockTableView:

class func mockTableViewWithDataSource(
 dataSource: UITableViewDataSource) -> MockTableView {

 let mockTableView = MockTableView(
 frame: CGRect(x: 0, y: 0, width: 320, height: 480),
 style: .Plain)

 mockTableView.dataSource = dataSource
 mockTableView.registerClass(MockItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 return mockTableView
}

This class method creates a mock table view, sets the data source, and registers the
mock table view cell.

Now, we can replace the initialization and setup of the mock table view in
testCellForRow_DequeuesCell(), testConfigCell_GetsCalledInCellForRow(),
and testCellInSectionTwo_GetsConfiguredWithDoneItem() with:

let mockTableView = MockTableView.mockTableViewWithDataSource(sut)

Run the tests to make sure that everything still works.

When a table view allows the deletion of cells and a user swipes on a cell to the
left, on the right-hand side, a red button will appear with the Delete title. In our
application, we want to use this button to check and uncheck items. The button title
should show the actions that the button is going to perform. Let's write a test to make
sure that this is the case for the first section:

func testDeletionButtonInFirstSection_ShowsTitleCheck() {

 let deleteButtonTitle = tableView.delegate?.tableView?(tableView,
 titleForDeleteConfirmationButtonForRowAtIndexPath:
 NSIndexPath(forRow: 0, inSection: 0))

 XCTAssertEqual(deleteButtonTitle, "Check")
}

Chapter 4

[103]

Run the tests. The test fails. In ItemListDataProvider add the method:

func tableView(tableView: UITableView,
 titleForDeleteConfirmationButtonForRowAtIndexPath indexPath:
 NSIndexPath) -> String? {

 return "Check"
}

Now, the tests pass. But if you followed the implementation of ItemListDataProvider
carefully, this could surprise you. Open ItemListDataProvider and have a look at the
declaration of the class. Right now, the class only conforms to the table view data source
protocol. But why does the test code then compile, and why does the test pass?

In setUp() of ItemListDataProviderTests, we set the data source to the system
under test, which is an instance of ItemListDataProvider. But the delegate of
the table view is still set to the dataProvider object that got initialized when the
storyboard scene got loaded. Let's write a test to verify whether this assumption is
true. If this is true, the data source and delegate of the table view should be of the
ItemListDataProvider type, but they should be different objects:

func testDataSourceAndDelegate_AreNotTheSameObject() {
 XCTAssert(tableView.dataSource is ItemListDataProvider)
 XCTAssert(tableView.delegate is ItemListDataProvider)

 XCTAssertNotEqual(tableView.dataSource as? ItemListDataProvider,
 tableView.delegate as? ItemListDataProvider)
}

Run the tests. All the tests pass. Now that we know what is going on, we can
delete this test again and fix this behavior. The instantiation from the storyboard,
and the fact that we declared the dataProvider property to conform to
UITableViewDataSource and UITableViewDelegete resulted in a coincidental
passing test. We need to enforce the explicit conformance of ItemListDataProvider
to UITableViewDelegate. This is quite simple to perform. In setUp(), add the
following line right below the setting of the table view data source:

tableView.delegate = sut

The static analyzer complains that ItemListDataProvider does not conform to
UITableViewDelegate. Add the conformance to it like this:

class ItemListDataProvider: NSObject, UITableViewDataSource,
UITableViewDelegate {
 // …
}

A Test-Driven View Controller

[104]

Now, everything works as expected. Let's move on with the implementation.

In the second section, the title of the Delete button should be Uncheck. Add the
following test to ItemListDataProviderTests:

func testDeletionButtonInFirstSection_ShowsTitleUncheck() {
 let deleteButtonTitle = tableView.delegate?.tableView?(tableView,
 titleForDeleteConfirmationButtonForRowAtIndexPath:
 NSIndexPath(forRow: 0, inSection: 1))

 XCTAssertEqual(deleteButtonTitle, "Uncheck")
}

Run the tests. The last test fails because of a missing implementation. Replace
tableView(_:titleForDeleteConfirmationButtonForRowAtIndexPath:)
with this:

func tableView(tableView: UITableView,
 titleForDeleteConfirmationButtonForRowAtIndexPath indexPath:
 NSIndexPath) -> String? {

 guard let section = Section(rawValue: indexPath.section) else
 {
 fatalError()
 }

 let buttonTitle: String
 switch section {
 case .ToDo:
 buttonTitle = "Check"
 case .Done:
 buttonTitle = "Uncheck"
 }

 return buttonTitle
}

Here, we used guard again as well as the Section enum to make the code clean and
easy to read.

Run the tests. All the tests pass.

Chapter 4

[105]

Checking and unchecking items
The last thing we need to make sure in ItemListDataProvider is that we can check
and uncheck items and they then change sections. Unfortunately, like in the last test,
we need to invoke the responsible data source method directly in the test. We would
like to have some kind of high-level methods to call to simulate the user tapping the
Check and Uncheck button, such as in numberOfRowsInSection(_:), but UIKit
does not provide these. We will see how to use UI tests to simulate the taps of the
user later in the book. Here, we will use the data source method to do this. Add the
following test to ItemListDataProviderTests:

func testCheckingAnItem_ChecksItInTheItemManager() {

 sut.itemManager?.addItem(ToDoItem(title: "First"))

 tableView.dataSource?.tableView?(tableView,
 commitEditingStyle: .Delete,
 forRowAtIndexPath: NSIndexPath(forRow: 0, inSection: 0))

 XCTAssertEqual(sut.itemManager?.toDoCount, 0)
 XCTAssertEqual(sut.itemManager?.doneCount, 1)
 XCTAssertEqual(tableView.numberOfRowsInSection(0), 0)
 XCTAssertEqual(tableView.numberOfRowsInSection(1), 1)
}

This test fails because we have not implemented tableView(_:commitEditingStyl
e:forRowAtIndexPath:) yet. Add the following code to ItemListDataProvider:

func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {

 itemManager?.checkItemAtIndex(indexPath.row)
 tableView.reloadData()
}

Run the tests. All the tests pass and there is nothing to refactor.

Next, we need to write a test for the unchecking of a to-do item. Add the following
test to ItemListDataProviderTests:

func testUncheckingAnItem_UnchecksItInTheItemManager() {

 sut.itemManager?.addItem(ToDoItem(title: "First"))
 sut.itemManager?.checkItemAtIndex(0)
 tableView.reloadData()

A Test-Driven View Controller

[106]

 tableView.dataSource?.tableView?(tableView,
 commitEditingStyle: .Delete,
 forRowAtIndexPath: NSIndexPath(forRow: 0, inSection: 1))

 XCTAssertEqual(sut.itemManager?.toDoCount, 1)
 XCTAssertEqual(sut.itemManager?.doneCount, 0)
 XCTAssertEqual(tableView.numberOfRowsInSection(0), 1)
 XCTAssertEqual(tableView.numberOfRowsInSection(1), 0)
}

This test results in a crash because the code in tableView(_:commitEditingS
tyle:forRowAtIndexPath:) tries to remove an item for the unchecked items,
but the corresponding array in the item manager is already empty. Replace the
implementation of tableView(_:commitEditingStyle:forRowAtIndexPath:)
with the following code:

func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {

 guard let itemManager = itemManager else { fatalError() }
 guard let section = Section(rawValue: indexPath.section) else
 {
 fatalError()
 }

 switch section {
 case .ToDo:
 itemManager.checkItemAtIndex(indexPath.row)
 case .Done:
 itemManager.uncheckItemAtIndex(indexPath.row)
 }
 tableView.reloadData()
}

This implementation code results in a message from the static analyzer that
'ItemManager' has no member 'uncheckItemAtIndex'. Uh. Looks like we forgot
to add it in the previous chapter. Let's add it now. Add the following method to
ItemManager:

func uncheckItemAtIndex(index: Int) {

 let item = doneItems.removeAtIndex(index)
 toDoItems.append(item)
}

Run the tests. All the tests pass and there is nothing to refactor.

Chapter 4

[107]

Implementing ItemCell
We have tests that make sure that configCellWithItem(_:) gets called when the
cell is prepared. Now, we need tests to make sure that the information is set to the
label of ItemCell. You may ask, "What label?" Yes, you are correct, we also need
tests to make sure that ItemCell has labels in order to present the information.

Select the ToDoTests group in Project Navigator and add a new test case. Call it
ItemCellTests and put it in the Controller folder. Add the import @testable
import ToDo statement and remove the two template test methods.

To be able to present the data on screen, ItemCell needs labels. We will add the
labels in Interface Builder (IB). This means that to test whether the label is set up
when the table view cell is loaded, we need to set up the loading similar to how it
will be in the app. The table view needs a data source, but we don't want to set up
the real data source because then we will also need an item manager. Instead, we
will use a fake object to act as the data source.

Add the following code to ItemCellTests.swift but outside of the
ItemCellTests class:

extension ItemCellTests {
 class FakeDataSource: NSObject, UITableViewDataSource {

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 return 1
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell {

 return UITableViewCell()
 }
 }
}

This is the minimal implementation a table view data source needs. Note that we
are returning a plain UITableViewCell. We will see in a minute why this does not
matter. Add the following test to ItemCellTests:

func testSUT_HasNameLabel() {

 let storyboard = UIStoryboard(name: "Main", bundle: nil)

A Test-Driven View Controller

[108]

 let controller = storyboard.
instantiateViewControllerWithIdentifier(
 "ItemListViewController") as! ItemListViewController

 _ = controller.view

 let tableView = controller.tableView
 tableView.dataSource = FakeDataSource()

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",
 forIndexPath: NSIndexPath(forRow: 0, inSection: 0)) as!
ItemCell

 XCTAssertNotNil(cell.titleLabel)
}

This code creates an instance of the View Controller from the storyboard and
sets FakeDataSource to its table view data source. Then, it dequeues a cell from
the table view and asserts that this cell has titleLabel. This code does not compile
because 'ItemCell' has no member 'titleLabel'. Open ItemCell.swift
in Assistant Editor, and add the property declaration: @IBOutlet weak var
titleLabel: UILabel!.

Run the tests. The last test fails because the property is not connected to the
storyboard yet. Open Main.storyboard and add a label to ItemCell:

Open ItemCell.swift in Assistant Editor and hold down the control key while you
drag from the label to the property to connect the two.

Run the tests. Now, all the tests pass.

The item cell also needs to show the location if one is set. Add the following test to
ItemCellTests:

func testSUT_HasLocationLabel() {

Chapter 4

[109]

 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let controller = storyboard.
instantiateViewControllerWithIdentifier(
 "ItemListViewController") as! ItemListViewController

 _ = controller.view

 let tableView = controller.tableView
 tableView.dataSource = FakeDataSource()

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",
 forIndexPath: NSIndexPath(forRow: 0, inSection: 0)) as!
ItemCell

 XCTAssertNotNil(cell.locationLabel)
}

To make this test pass, we need to perform the same steps as we did for the Title
label. Add the @IBOutlet weak var locationLabel: UILabel! property to
ItemCell, add UILabel to the cell in Main.storyboard, and connect the two by
control-dragging from IB to the property.

Run the tests. All the tests pass. There is a lot of duplication in the last two tests. We
need to refactor them. First, add the property var tableView: UITableView! to
ItemCellTests. Then, add the following code to the end of setUp():

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let controller = storyboard.instantiateViewControllerWithIdentifier(
 "ItemListViewController") as! ItemListViewController

_ = controller.view

tableView = controller.tableView
tableView.dataSource = FakeDataSource()

Remove the following code from the two test methods:

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let controller = storyboard.instantiateViewControllerWithIdentifier(
 "ItemListViewController") as! ItemListViewController

_ = controller.view

let tableView = controller.tableView
tableView.dataSource = FakeDataSource()

A Test-Driven View Controller

[110]

Run the tests to make sure that everything still works.

We need a third label. The steps are exactly the same as those in the last tests. Make
the changes yourself (don't forget the test) and call the label dateLabel.

Now that we have the labels in the item cell, we need to fill them with information
when the cell is configured. Add the following test to ItemCellTests:

func testConfigWithItem_SetsTitle() {

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",
 forIndexPath: NSIndexPath(forRow: 0, inSection: 0)) as!
ItemCell

 cell.configCellWithItem(ToDoItem(title: "First"))
 XCTAssertEqual(cell.titleLabel.text, "First")
}

First, we dequeue a cell and then we call configCellWithItem(_:) on it. Run the
tests. The last test fails.

To make the test pass, add the following line to configCellWithItem(_:):

titleLabel.text = item.title

Now, all tests pass again and there is nothing to refactor.

Instead of writing two more tests for the other labels, we will add the assertions
to the existing tests. Rename the test method to testConfigWithItem_
SetsLabelTexts(), and replace it with this code:

func testConfigWithItem_SetsLabelTexts() {

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",
 forIndexPath: NSIndexPath(forRow: 0, inSection: 0)) as!
ItemCell

 cell.configCellWithItem(ToDoItem(title: "First", itemDescription:
nil, timestamp: 1456150025, location: Location(name: "Home")))

 XCTAssertEqual(cell.titleLabel.text, "First")
 XCTAssertEqual(cell.locationLabel.text, "Home")
 XCTAssertEqual(cell.dateLabel.text, "02/22/2016")
}

Chapter 4

[111]

To make this test pass, replace configCellWithItem(_:) with the following code:

func configCellWithItem(item: ToDoItem) {
 titleLabel.text = item.title
 locationLabel.text = item.location?.name

 if let timestamp = item.timestamp {
 let date = NSDate(timeIntervalSince1970: timestamp)
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"

 dateLabel.text = dateFormatter.stringFromDate(date)
 }
}

Run the tests. All the tests pass. But we need to refactor them. It is not a good idea to
create a date formatter every time configCellWithItem(_:) gets called because the
date formatter is the same for all the cells. To improve the code, add the following
property to ItemCell:

lazy var dateFormatter: NSDateFormatter = {
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 return dateFormatter
}()

The lazy keyword indicates that this property is set the first time it is accessed. Now,
you can delete the local definition of the date formatter:

let dateFormatter = NSDateFormatter()
dateFormatter.dateFormat = "MM/dd/yyyy"

Run the tests. Everything still works.

From the screenshots seen in Chapter 2, Planning and Structuring Your Test-Driven
iOS App, we know that the title labels of the cells with the checked items were
struck through. An item itself doesn't know that it is checked. The state of an item is
managed by the item manager. This means that we need a way to put the state of the
item into the configCellWithItem(_:) method.

Add the following test to check whether the title of the label has been struck through
and the other labels are empty:

func testTitle_ForCheckedTasks_IsStrokeThrough() {

 let cell = tableView.dequeueReusableCellWithIdentifier(
 "ItemCell",

A Test-Driven View Controller

[112]

 forIndexPath: NSIndexPath(forRow: 0, inSection: 0)) as!
ItemCell

 let toDoItem = ToDoItem(title: "First",
 itemDescription: nil,
 timestamp: 1456150025,
 location: Location(name: "Home"))

 cell.configCellWithItem(toDoItem, checked: true)

 let attributedString = NSAttributedString(string: "First",
 attributes: [NSStrikethroughStyleAttributeName:
NSUnderlineStyle.StyleSingle.rawValue])

 XCTAssertEqual(cell.titleLabel.attributedText, attributedString)
 XCTAssertNil(cell.locationLabel.text)
 XCTAssertNil(cell.dateLabel.text)
}

This test looks a bit like the previous one. The main difference between them is that
we call configCellWithItem(_:checked:) with an additional argument, and we
assert that attributedText of titleLabel is set to the expected attributed string.

This test does not compile. Replace the method signature of configCellWithItem
to this:

func configCellWithItem(item: ToDoItem, checked: Bool = false) {
 // …
}

Open ItemListDataProviderTests.swift, and also change the signature of the
overridden method in MockItemCell. Run the tests. The last added test fails. To
make it pass, replace configCellWithItem(_:checked:) with the following code:

func configCellWithItem(item: ToDoItem,
 checked: Bool = false) {

 if checked {
 let attributedTitle = NSAttributedString(string: item.
title,
 attributes: [NSStrikethroughStyleAttributeName:
NSUnderlineStyle.StyleSingle.rawValue])

 titleLabel.attributedText = attributedTitle
 locationLabel.text = nil
 dateLabel.text = nil

Chapter 4

[113]

 } else {
 titleLabel.text = item.title
 locationLabel.text = item.location?.name

 if let timestamp = item.timestamp {
 let date = NSDate(timeIntervalSince1970: timestamp)

 dateLabel.text = dateFormatter.stringFromDate(date)
 }
 }
}

In case checked is true, we set the attributed text to the Title label. Otherwise,
we use the code that we had earlier. Run the tests. Everything works and there is
nothing to refactor.

For now, we are finished with the to-do item list. In Chapter 6, Putting It All
Together, we will connect the list View Controller and data source with the rest
of the application.

In the remaining sections of this chapter, we will implement the other two view
controllers. But we won't go into as much detail as we have until now because the
tests and the implementation are similar to the one we have already written.

Implementing DetailViewController
We start the implementation of DetailViewController with the creation of a test
case. Select the ToDoTests group in Project Navigator, and go to iOS | Source |
Unit Test Case Class. Let's name it DetailViewControllerTests, and select the
Controller folder as the destination location. Import the @testable import ToDo
main module and delete the two template test methods.

Going by the screenshots we've seen in Chapter 2, Planning and Structuring Your
Test-Driven iOS App, we know that DetailViewController needs a map view, four
labels, and a button. Here, we will only show the TDD process for one label and the
button. Add the following code to DetailViewControllerTests:

func test_HasTitleLabel() {
 let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
 let sut = storyboard.instantiateViewControllerWithIdentifier(
 "DetailViewController") as! DetailViewController
}

A Test-Driven View Controller

[114]

At this point, we have to stop writing the test because there is no
DetailViewController yet. Select the ToDo group in Project Navigator and add an
iOS | Source | Cocoa Touch Class with the name DetailViewController. Choose
the Controller folder as destination location. As we did earlier, remove everything
from the class except the minimal class definition:

import UIKit

class DetailViewController: UIViewController {
}

Now, add the following to the end of test_HasTitleLabel():

_ = sut.view

XCTAssertNotNil(sut.titleLabel)

The test does not compile because there is no titleLabel in
DetailViewController. Add the following property to DetailViewController:

@IBOutlet weak var titleLabel: UILabel!

Run the tests. The last test fails because the storyboard doesn't contain a view
controller with identifier 'DetailViewController'. Let's fix this. Open
Main.storyboard and add a View Controller to it. In Identity Inspector, change its
Class and the Storyboard ID to DetailViewController.

Run the tests again. It still fails because the titleLabel property is nil. Again, open
Main.storyboard and add a label to the View Controller scene. In Assistant Editor,
open DetailViewController, and connect the label in the storyboard to the outlet
by holding down the control key while you drag from the label to the outlet.

Run the tests. Now, all the tests pass.

We already know that we need tests for the other labels and map view.
So, let's put the setup code into setUp(). First, add the property
var sut: DetailViewController! to DetailViewControllerTests
and add the following code to setUp():

let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
sut = storyboard.instantiateViewControllerWithIdentifier(
 "DetailViewController") as! DetailViewController
_ = sut.view

Chapter 4

[115]

Replace test_HasTitleLabel() with the following:

func test_HasTitleLabel() {
 XCTAssertNotNil(sut.titleLabel)
}

Run the tests again to make sure we didn't break anything during refactoring.
Everything still works.

Add the remaining three labels using TDD.

For the map view, we need to add the MapKit framework. Select the project in
Project Navigator, and switch on Maps in the Capabilities tab:

Add the following test to DetailViewControllerTests:

func test_HasMapView() {
 XCTAssertNotNil(sut.mapView)
}

To make the test pass, first import MapKit in DetailViewController:

import MapKit

A Test-Driven View Controller

[116]

Then, add the outlet @IBOutlet weak var mapView: MKMapView! and a map view
element in the storyboard and connect the two (by control-dragging). Run the tests to
make sure everything works.

When presenting DetailViewController, ItemListViewController needs
to be able to set the item to be shown. As the user will be able to check items
in the details view, we will pass the item manager plus the selected index to
DetailViewController. And we will assume that the details can only be presented
for unchecked items. This makes sense for the app because checked items are not
that important anymore for the user. If we later decide that we also want to show the
details for checked items, we can still add this feature.

We will now write a test that ensures that we can pass the data to
DetailViewController, and the information is shown in the labels. Add the
following code to DetailViewControllerTests:

func testSettingItemInfo_SetsTextsToLabels() {

 let coordinate = CLLocationCoordinate2D(latitude: 51.2277,
longitude: 6.7735)

 let itemManager = ItemManager()
 itemManager.addItem(ToDoItem(title: "The title",
 itemDescription: "The description",
 timestamp: 1456150025,
 location: Location(name: "Home", coordinate: coordinate)))

 sut.itemInfo = (itemManager, 0)
}

We have two errors in this code already. Firstly, CLLocationCoordinate2D(lati
tude:longitude:) is defined in Core Location. So, we need to add this module to
the test code. Add the following import statement right below the existing import
statements:

import CoreLocation

Secondly, 'DetailViewController' has no member 'itemInfo'. Add the
following property declaration to DetailViewController:

var itemInfo: (ItemManager, Int)?

With this change, there are no errors from the static analyzer anymore. Let's
move on.

Chapter 4

[117]

We will fill the labels with the information from the to-do item in
viewWillAppear(_:). Because of this, we need to trigger the call of that method
in the test. It is not recommended that you call this method directly. Instead, you
can ask the View Controller to begin and end the appearance transition. Add the
following code to testSettingItemInfo_SetsTextsToLabels():

sut.beginAppearanceTransition(true, animated: true)
sut.endAppearanceTransition()

XCTAssertEqual(sut.titleLabel.text, "The title")
XCTAssertEqual(sut.dateLabel.text, "02/22/2016")
XCTAssertEqual(sut.locationLabel.text, "Home")
XCTAssertEqual(sut.descriptionLabel.text, "The description")
XCTAssertEqualWithAccuracy(sut.mapView.centerCoordinate.latitude,
 coordinate.latitude,
 accuracy: 0.001)

With beginAppearanceTransition(_:animated:) and
endAppearanceTransition(), we trigger the call of viewWillAppear(_:) (and
viewDidAppear(_:) and similar methods for the presentation of the view hierarchy).
Then, we assert that the information from the to-do item is set to the labels and map
view of DetailViewController. Run the tests. The last test fails because we haven't
implemented viewWillAppear(_:) yet. Open DetailViewController and add the
implementation:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 guard let itemInfo = itemInfo else { return }
 let item = itemInfo.0.itemAtIndex(itemInfo.1)

 titleLabel.text = item.title
 locationLabel.text = item.location?.name
 descriptionLabel.text = item.itemDescription

 if let timestamp = item.timestamp {
 let date = NSDate(timeIntervalSince1970: timestamp)
 dateLabel.text = dateFormatter.stringFromDate(date)
 }

 if let coordinate = item.location?.coordinate {
 let region = MKCoordinateRegionMakeWithDistance(coordinate,
 100, 100)
 mapView.region = region
 }
}

A Test-Driven View Controller

[118]

Add the definition of the date formatter below the existing properties:

let dateFormatter: NSDateFormatter = {
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 return dateFormatter
}()

Run the tests. All the tests pass again and there is nothing to refactor.

Next, we need to implement the Check button. When the user taps the Check
button, the item should be checked in the item manager. Add the following test to
DetailViewControllerTests:

func testCheckItem_ChecksItemInItemManager() {

 let itemManager = ItemManager()
 itemManager.addItem(ToDoItem(title: "The title"))

 sut.itemInfo = (itemManager, 0)

 sut.checkItem()

 XCTAssertEqual(itemManager.toDoCount, 0)
 XCTAssertEqual(itemManager.doneCount, 1)
}

This test does not compile because there is no checkItem() method in
DetailViewController. Add the minimal implementation to make the test compile:

func checkItem() {
}

Now, the test compiles but it fails because the method does nothing. To make the test
pass, add the following code to checkItem():

if let itemInfo = itemInfo {
 itemInfo.0.checkItemAtIndex(itemInfo.1)
}

Run the tests. All the tests pass and there is nothing to refactor. Next, we need to
implement InputViewController.

Chapter 4

[119]

Implementing InputViewController
Add a test case with the name InputViewControllerTests, import the ToDo module,
and remove the two template methods. If you have problems with this task, go back to
the beginning of the previous sections where we explained it in more detail.

You have taken a look at the first steps of the TDD of controllers several times now.
Therefore, we will perform several steps at once now and put the setup code directly
in setUp(). Firstly, add the property var sut: InputViewController!. Secondly,
add the View Controller InputViewController. Again, if you are unsure about how
to do this, have a look at the previous sections. Next, add the following setup code to
setUp():

let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
sut = storyboard.instantiateViewControllerWithIdentifier(
 "InputViewController") as! InputViewController

_ = sut.view

Add the following test:

func test_HasTitleTextField() {
 XCTAssertNotNil(sut.titleTextField)
}

This test does not compile because InputViewController does not have a member
called titleTextField. To make the test compile, add the property @IBOutlet
weak var titleTextField: UITextField! to InputViewController. If you run
the test, it still does not pass. We already know what is needed to make it pass from
the implementation of DetailViewController. Firstly, add a View Controller to
the storyboard. Change its Class and Storyboard ID to InputViewController.
Secondly, add a text field to the storyboard scene and connect it to the outlet in
InputViewController. This should be enough to make the test pass.

Now, add the rest of the text fields and the two buttons (dateTextField,
locationTextField, addressTextField, descriptionTextField, saveButton,
and cancelButton) in a test-driven way. Make sure that all tests pass before you
move on, and don't forget to refactor your code and tests if needed.

A Test-Driven View Controller

[120]

In the address field, the user can put in addresses for the to-do items. The app
should then fetch the coordinate and store it in the to-do items' location. Apple
provides the CLGeocoder class in CoreLocation for this task. In the test, we want
to mock this class to be independent from the Internet connection. Import the
CoreLocation module (import CoreLocation), and add the following code to
InputViewControllerTests.swift outside of InputViewControllerTests:

extension InputViewControllerTests {
 class MockGeocoder: CLGeocoder {

 var completionHandler: CLGeocodeCompletionHandler?

 override func geocodeAddressString(addressString: String,
 completionHandler: CLGeocodeCompletionHandler) {

 self.completionHandler = completionHandler
 }
 }
}

The only thing the mock does is to capture the completion handler when
geocodeAddressString(_:completionHandler:) is called. This way, we can call
the completion handler in the test and check whether the system under the test
works as expected.

The signature of the completion handler looks like this:

public typealias CLGeocodeCompletionHandler = ([CLPlacemark]?,
NSError?) -> Void

The first argument is an optional array of place marks, which are sorted from the
best to worst match. In the test, we would like to return a place mark with a defined
coordinate to check whether the to-do item is created correctly. The problem is that
all the properties in CLPlacemark are readonly, and it does not have an initializer
that we can use to set the coordinate. Therefore, we need another mock that allows
us to override the location property. Add the following class definition to the
InputViewControllerTests extension:

class MockPlacemark : CLPlacemark {

 var mockCoordinate: CLLocationCoordinate2D?

 override var location: CLLocation? {
 guard let coordinate = mockCoordinate else
 { return CLLocation() }

Chapter 4

[121]

 return CLLocation(latitude: coordinate.latitude,
 longitude: coordinate.longitude)
 }
}

Now, we are ready for the test. The test is a bit complicated. To clearly show you
what is going on, we will show the complete test, and then add implementation code
until the test passes. By doing this, we are not going to follow the TDD workflow
because we will get errors from the static analyzer before we have even finished
writing the test method. But this way makes it easier to see what is going on. Firstly,
add a property for our place mark mock to InputViewControllerTests:

var placemark: MockPlacemark!

This is needed because the test would crash since the place mark is
accessed outside of its definition scope. Add the following test method to
InputViewControllerTests:

func testSave_UsesGeocoderToGetCoordinateFromAddress() {
 sut.titleTextField.text = "Test Title"
 sut.dateTextField.text = "02/22/2016"
 sut.locationTextField.text = "Office"
 sut.addressTextField.text = "Infinite Loop 1, Cupertino"
 sut.descriptionTextField.text = "Test Description"

 let mockGeocoder = MockGeocoder()
 sut.geocoder = mockGeocoder

 sut.itemManager = ItemManager()

 sut.save()

 placemark = MockPlacemark()
 let coordinate = CLLocationCoordinate2DMake(37.3316851,
 -122.0300674)
 placemark.mockCoordinate = coordinate
 mockGeocoder.completionHandler?([placemark], nil)

 let item = sut.itemManager?.itemAtIndex(0)

 let testItem = ToDoItem(title: "Test Title",
 itemDescription: "Test Description",
 timestamp: 1456095600,
 location: Location(name: "Office", coordinate: coordinate))

 XCTAssertEqual(item, testItem)
}

A Test-Driven View Controller

[122]

Let's take a look at what is going on here. Firstly, we set the text values to the text
fields. Then, we create a geocoder mock and set it to a property of the sut. This is
called a dependency injection. We inject the instance from the test that should be
used to fetch the coordinate for the given address. To add an item to the list of to-do
items, InputViewController needs to have an item manager. In the test, we set it to
a new instance. Next, we call the method we want to test (save()). This should call
geocodeAddressString(_:completionHandler:) of our geocoder mock, and as a
result, the mock should capture the completion handler from the implementation.
In the next step, we call the completion handler with a place mark that has a
given coordinate. We expect that the completion handler uses the place mark and
information from the text fields to create a to-do item. In the rest of the test methods,
we assert that this is actually the case.

Now, let's make the test pass. InputViewController needs a geocoder. Import
CoreLocation to InputViewController and add this property:

lazy var geocoder = CLGeocoder()

Lazy properties are set the first time they are accessed. This way, we can set
our mock to geocoder before we access it in the test the first time. We inject the
dependency in the test. In the implementation code, we can use geocoder as it
would be a normal property.

Next, we add a property to hold a reference to the item manager:

var itemManager: ItemManager?

To make the test compilable, add the minimal implementation of the save method:

func save() {
}

Now, we need to create a to-do item and add it to the item manager within save().
Add the following code to save():

guard let titleString = titleTextField.text
 where titleString.characters.count > 0 else { return }
let date: NSDate?
if let dateText = self.dateTextField.text
 where dateText.characters.count > 0 {
 date = dateFormatter.dateFromString(dateText)
} else {
 date = nil
}

Chapter 4

[123]

let descriptionString: String?
if descriptionTextField.text?.characters.count > 0 {
 descriptionString = descriptionTextField.text
} else {
 descriptionString = nil
}
if let locationName = locationTextField.text
 where locationName.characters.count > 0 {
 if let address = addressTextField.text
 where address.characters.count > 0 {

 geocoder.geocodeAddressString(address) {
 [unowned self] (placeMarks, error) -> Void in

 let placeMark = placeMarks?.first

 let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: Location(name: locationName,
 coordinate: placeMark?.location?.
coordinate))

 self.itemManager?.addItem(item)
 }
 }
}

Let's go over the code step by step.

Firstly, we use a guard to get the string from the Title text field. If there is nothing
in the field, we immediately return from the method. Next, we get the date and
description of the to-do item from the corresponding text fields. The date is created
from the string in the text field using a date formatter. Add the date formatter right
above save():

let dateFormatter: NSDateFormatter = {
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 return dateFormatter
}()

A Test-Driven View Controller

[124]

Then, we check whether a name is given in the Location text field. If this is the case,
we check whether an address is given in the Address text field. In this case, we get the
coordinate from the geocoder, create the to-do item, and add it to the item manager.

Run the tests. All the tests pass and there is nothing to refactor.

The implementation of save() is not finished yet. The minimal input a user has to
give is the title. Add tests for the to-do items with less information given by the user
(or download the source code for the book and have a look at it).

The last test for this chapter is that the Save button is connected to the save() action.
Add the following test to InputViewControllerTests:

func test_SaveButtonHasSaveAction() {
 let saveButton: UIButton = sut.saveButton

 guard let actions = saveButton.actionsForTarget(sut,
 forControlEvent: .TouchUpInside) else {
 XCTFail(); return
 }

 XCTAssertTrue(actions.contains("save"))
}

We get the Save button and guard that it has at least one action. If not, we fail
the test using XCTFail(). Then, we assert that the actions array has a method,
the "save" selector.

Run the tests. The last test fails.

Change the signature of the save method to @IBAction func save(), and connect
it to the Save button in the storyboard scene (by control-dragging from the button in
the storyboard to the IBAction in code).

Run the tests again. Now, all the tests pass.

Chapter 4

[125]

Summary
In this chapter, we took a look at how to implement a View Controller with a table
view using TDD. We split the table View Controller into code that manages the view
hierarchy and code for the data source, and the delegate of the table view.

We discussed how to write tests to drive the development of sub views, outlets,
and actions and how to use fake objects to isolate the micro feature to be tested. The
usage of mock objects allowed us to create fast, isolated, and reliable tests. This way,
we were able to write tests for the table view cell without the need to instantiate the
real data source of the table view.

Next, we implemented the detail View Controller using TDD. We added MapKit
to the project in order to show the location of the to-do item in case a user added
an address.

Finally, we wrote tests to drive the implementation of the input View Controller. We
also took a look at how to stub an asynchronous API to make the test execution fast.

In this chapter, we set up the system under tests using code and instantiating from a
storyboard. You should now be able to use both techniques depending on the feature
you test.

In the next chapter, we will take a look at how to build the network layer of the app
using TDD without a finished server side.

[127]

Testing Network Code
Most apps in the App Store perform networking in one way or the other. Apple
provides a great class for network requests—NSURLSession. Its requests are
asynchronous. This means that the response is delivered on a background thread.
If that wasn't the case, the UI would freeze while the app waits for a response from
the server.

The main topic of this chapter is how to test an asynchronous API. There are
two ways to write tests for asynchronous API calls. Firstly, using asynchronous
tests provided by the XCTest framework. Secondly, using stubs as we did in the
previous chapter.

Both methods have their advantages. Asynchronous tests let us test whether the web
server is implemented as described in the documentation. In addition to this, the
tests are closer to the implementation of the finished app and, therefore, are more
likely to find bugs that would end up in the final version.

On the flip side, stubs let us develop the network layer of our app even before the
web service is implemented. We just need the documentation of the API calls and the
expected responses. As the tests do not depend on communication with a server, the
test execution is significantly faster.

You should have both kinds of tests in your iOS development toolbox.

This chapter covers the following topics:

•	 Implementing asynchronous tests
•	 Implementing a login request to a web service
•	 Handling errors

Testing Network Code

[128]

Implementing asynchronous tests
In the previous chapter, we wrote a stub for CLGeocoder. Now, we will write a test
that asserts that the geocoder built into CoreLocation works as we expect it to. The
fetching of coordinates from a geocoder is asynchronous. This means that we have to
write a test that can deal with asynchronous interfaces.

But let's first structure the files a bit in the Project Navigator of Xcode. Select
all the controller files in the main target (ItemListViewController.swift,
ItemListDataProvider.swift, ItemCell.swift, DetailViewController.swift,
and InputViewController.swift), and control + left-click to create a group from
the selection. Let's call this group Controller. Do the same with the corresponding
test cases in the test target.

Now, let's get started with the test. We start naïvely. Add the following test to
InputViewControllerTests:

func test_GeocoderWorksAsExpected() {

 CLGeocoder().geocodeAddressString("Infinite Loop 1, Cupertino") {
 (placemarks, error) -> Void in
 let placemark = placemarks?.first

 let coordinate = placemark?.location?.coordinate
 guard let latitude = coordinate?.latitude else {
 XCTFail()
 return
 }

 guard let longitude = coordinate?.longitude else {
 XCTFail()
 return
 }

 XCTAssertEqualWithAccuracy(latitude, 37.3316851,
 accuracy: 0.000001)
 XCTAssertEqualWithAccuracy(longitude, -122.0300674,
 accuracy: 0.000001)
 }
}

Run the tests. All the tests pass. So, it looks like that the geocoder works as we
thought it would. But wait a minute. We have skipped the red phase. In TDD,
we first have to have a failing test. Otherwise, we cannot be sure whether the test
actually works.

Chapter 5

[129]

We have no access to the source of CLGeocoder, so we cannot change the
implementation to make the test fail. The only thing we can do is to change the
assertion. Replace the assertions within the closure with this code:

XCTAssertEqualWithAccuracy(latitude, 0.0, accuracy: 0.000001)
XCTAssertEqualWithAccuracy(longitude, 0.0, accuracy: 0.000001)

Run the tests again. Uh!? The tests still pass. To figure out what is going on, add a
breakpoint in the line of the first assertion:

Run the tests again. During the execution of this test, the debugger should now stop
at this line, so open the debugger console to investigate what is going on.

The debugger never reaches the breakpoint.

The reason for this is that the geocodeAddressString(_:completionHandler:)
call is asynchronous. This means that the closure is called sometime in the future on
a different thread, and the execution of the tests moves on. The test is finished before
the callback block is executed, and the assertions never get called. We need to change
the test to make it asynchronous.

Replace test_GeocoderWorksAsExpected() with the following lines of code:

func test_GeocoderWorksAsExpected() {
 let expectation = expectationWithDescription("Wait for geocode")

 CLGeocoder().geocodeAddressString("Infinite Loop 1, Cupertin") {
 (placemarks, error) -> Void in
 let placemark = placemarks?.first

 let coordinate = placemark?.location?.coordinate
 guard let latitude = coordinate?.latitude else {
 XCTFail()
 return
 }

 guard let longitude = coordinate?.longitude else {
 XCTFail()
 return
 }

Testing Network Code

[130]

 XCTAssertEqualWithAccuracy(latitude, 0.0,
 accuracy: 0.000001)
 XCTAssertEqualWithAccuracy(longitude, 0.0,
 accuracy: 0.000001)

 expectation.fulfill()
 }

 waitForExpectationsWithTimeout(3, handler: nil)
}

The new lines are highlighted. We create an expectation using
expectationWithDescription(_:). At the end of the test, we call
waitForExpectationsWithTimeout(_:handler:) with a timeout of 3 seconds. This
tells the test runner that it should stop at this point and wait until either all the If not
all expectations are fulfilled when the timeout duration has passed, the test fails. In
the callback closure, we fulfill the expectation after the assertions are called.

Now, run the tests again. The last test fails because the coordinate we get from the
geocoder does not match the values we put into the 0.0 and 0.0 assertions. Replace
the assertions again with the correct ones that we had when we first wrote the test:

XCTAssertEqualWithAccuracy(latitude, 37.3316851,
 accuracy: 0.000001)
XCTAssertEqualWithAccuracy(longitude, -122.0300674,
 accuracy: 0.000001)

Run the tests again. All the tests pass, and CLGeocoder works as expected.

We have just taken a look at how we can use XCTest to test asynchronous APIs. This
can be used to test many different aspects of iOS development (for example, sending
NSNotifications, fetching data from a web server, writing data to a database in the
background, and so on). Whenever something asynchronous takes place, we can add
expectations and set them as fulfilled when the asynchronous callback is executed.

This is very powerful. But keep in mind that unit tests should be fast and reliable.
Therefore, it is often better to use mocks and stubs to eliminate the asynchronous
nature of the API. We don't want to have failing tests only because the web server we
try to talk to is down at the moment. In addition to this, we want to be able to run the
tests in the plane without any Internet connection.

In the following sections, we will use stubs to eliminate the asynchrony of the APIs
that we are dealing with. The additional benefit is, that we can develop the network
layer of our app without a finished web server at hand. The only thing we need is a
finished API documentation that is not going to change.

Chapter 5

[131]

Implementing a login request to a web
service
Let's assume that a colleague is developing a web service, but it is not finished yet.
However, we already know what the API will look like. There will be an endpoint
for the login. The URL will be https://awesometodos.com/login; it will take two
parameters, a username and password, and it will return a token that has to be used
with each call to the API.

We need a test that asserts that the token, returned from the login call, is stored
somewhere for later use. Tokens should be stored in the iOS keychain. Keychain
access is managed by a very low-level API. This means that it is a bit complicated to
build a class accessing keychain items (but it's easier than you might think). Because
of this, there are a lot of available open source frameworks for reading from and
writing to the keychain. Implementing keychain access is beyond the scope of this
book. Instead, we will add a protocol that defines the methods that the keychain
manager should implement and use a mock for the tests.

But first, add a new iOS | Source | Unit Test Case Class, and call it
APIClientTests. Import the main module such that it can be tested (@testable
import ToDo), and remove the two template tests.

We will break the login feature into several micro features. As mentioned previously,
the login should make a HTTPS request to https://awesometodos.com/login with
username and password as query parameters. Let's write a test for this:

Add the following code to APIClientTests:

func testLogin_MakesRequestWithUsernameAndPassword() {

 let sut = APIClient()
}

The static analyzer tells us that we need a APIClient class. Add an iOS | Source |
Swift File to the main target, and call it APIClient.swift. Add the following code
to it:

class APIClient {
}

This is enough to make the static analyzer happy.

Testing Network Code

[132]

We need to be able to inject a fake object that fakes the network call
because the server side isn't finished yet. Add the following code to
testLogin_MakesRequestWithUsernameAndPassword():

let mockURLSession = MockURLSession()

This code does not compile because the mock class is missing. Add the following
code to APIClientTests.swift but outside of the class definition:

extension APIClientTests {

 class MockURLSession {

 typealias Handler = (NSData!, NSURLResponse!, NSError!)
 -> Void

 var completionHandler: Handler?
 var url: NSURL?

 func dataTaskWithURL(url: NSURL,
 completionHandler: (NSData?, NSURLResponse?, NSError?) ->
Void) -> NSURLSessionDataTask {

 self.url = url
 self.completionHandler = completionHandler
 return NSURLSession.sharedSession().
dataTaskWithURL(url)
 }
 }
}

This mock class implements the dataTaskWithURL(_:completionHandler:)
method because this is the method we want to use in the implementation of the
network requests. The mock class catches the URL and completion handler. This
enables us to check the URL and call the completion handler with the test data. Next,
we want to inject the mock class into the implementation. Add the following code at
the end of testLogin_MakesRequestWithUsernameAndPassword():

sut.session = mockURLSession

To make this code compilable, we need to add a session property. Open APIClient
and add this property:

lazy var session: NSURLSession = NSURLSession.sharedSession()

Chapter 5

[133]

Try to run the tests. The test will still not compile. The reason for this is that
it complains with the cannot assign value of type 'APIClientTests.
MockURLSession' to type 'NSURLSession' message. This makes sense. We have
to change the type of session in order to be able to set it either as an instance of
NSURLSession or an instance of our mock class. The key is to use a protocol. Add the
following code in APIClient.swift but outside of APIClient:

protocol ToDoURLSession {
 func dataTaskWithURL(url: NSURL,
 completionHandler: (NSData?, NSURLResponse?, NSError?) ->
Void) -> NSURLSessionDataTask
}

Here, NSURLSession already implements the protocol method. To make it conform
to the protocol, add the following extension in APIClient.swift (but outside of the
class definition):

extension NSURLSession : ToDoURLSession { }

Next, we have to tell the compiler that the mock class conforms to that protocol as
well. Change the definition of the mock class to the following one:

class MockURLSession : ToDoURLSession {
 // …
}

Finally, we have to change the type of the session property. In APIClient, replace
the NSURLSession type with ToDoURLSession like this:

lazy var session: ToDoURLSession = NSURLSession.sharedSession()

Run the tests. Now, the test compiles, and we can continue to write it. APIClient
needs a method that does the login. Add the following code to testLogin_
MakesRequestWithUsernameAndPassword():

let completion = { (error: ErrorType?) in }
sut.loginUserWithName("dasdom",
 password: "1234",
 completion: completion)

This does not compile because the loginUserWithName(_:password:completion:)
method is missing. Open APIClient, and add the following code:

func loginUserWithName(username: String,
 password: String,
 completion: (ErrorType?) -> Void) {

}

Testing Network Code

[134]

This is enough to make the test compilable again.

To make sure that the login method makes an HTTPS request, add the following
assert at the end of testLogin_MakesRequestWithUsernameAndPassword():

XCTAssertNotNil(mockURLSession.completionHandler)

To make this test pass, add the following code to loginUserWithName(_:password:
completion):

guard let url = NSURL(string: "") else
{ fatalError() }
session.dataTaskWithURL(url) { (data, response, error) -> Void
in

}

This code uses the session property to create a data task. Run the tests. All the tests
pass again. But the URL in the data task is just an empty string and not the value we
expect. To drive the correct implementation, add the following code at the end of
testLogin_MakesRequestWithUsernameAndPassword():

guard let url = mockURLSession.url else { XCTFail(); return }
let urlComponents = NSURLComponents(URL: url,
 resolvingAgainstBaseURL: true)
XCTAssertEqual(urlComponents?.host, "awesometodos.com")

This code gets the URL components from mockURLSession (remember that our
session mock catches the URL and completion handler) and asserts that the host of
the URL is awesometodos.com.

Run this test. It fails. To make it pass, change the definition of the URL in loginUser
WithName(_:password:completion:) to the following one:

guard let url = NSURL(string: "https://awesometodos.com") else
{ fatalError() }

Run the tests again. Now all the tests pass, and there is nothing to refactor. Next,
let's add a test for the path of the URL. Add the following assertion at the end of
testLogin_MakesRequestWithUsernameAndPassword():

XCTAssertEqual(urlComponents?.path, "/login")

To make the test pass again, replace the definition of the URL with this:

guard let url = NSURL(string: "https://awesometodos.com/login")
else
{ fatalError() }

Chapter 5

[135]

Run the tests to make sure that all the tests pass. Next, we need to make sure that
username and password are passed as parameters in the URL query. Add the
following assertion to testLogin_MakesRequestWithUsernameAndPassword():

XCTAssertEqual(urlComponents?.query,
 "username=dasdom&password=1234")

Run this test. The test fails because we do not use username and password to
construct the URL. To make the test pass, replace the URL with the following one:

guard let url = NSURL(string: "https://awesometodos.com/
login?username=\(username)&password=\(password)") else
{ fatalError() }

Now, the tests pass again. But if you have worked with a web service before, you
might have realized that there is a problem with our code. Some characters have a
special meaning when they are used in a URL. For example, the & character splits the
URL query in query items. But the user could use this character in their password.
We need to encode the query items. Let's refactor the test to drive the change of the
implementation code. First, we change the call of loginUserWithName(_:password:
completion:) to use special characters in username and password:

sut.loginUserWithName("dasdöm",
 password: "%&34",
 completion: completion)

Next, replace the assertion for the query with the following code:

let allowedCharacters = NSCharacterSet(charactersInString: "/%&=?$#+-
~@<>|*,.()[]{}^!").invertedSet
guard let expectedUsername = "dasdöm".
stringByAddingPercentEncodingWithAllowedCharacters(allowedCharacters)
else {
 fatalError()
}
guard let expectedPassword = "%&34".
stringByAddingPercentEncodingWithAllowedCharacters(allowedCharacters)
else {
 fatalError()
}
XCTAssertEqual(urlComponents?.percentEncodedQuery,
 "username=\(expectedUsername)&password=\(expectedPassword)")

Testing Network Code

[136]

With these changes, we assert that the username and the password are
properly encoded to be used in a URL query. Run the tests. The test crashes
because we chose to call fatalError() in case the URL cannot be constructed
for the string. To remove the crash and make the test pass, replace the contents of
loginUserWithName(_:password:completion:) with the following lines of code:

let allowedCharacters = NSCharacterSet(charactersInString: "/%&=?$#+-
~@<>|*,.()[]{}^!").invertedSet
guard let encodedUsername = username.
stringByAddingPercentEncodingWithAllowedCharacters(allowedCharacters)
else {
 fatalError()
}
guard let encodedPassword = password.
stringByAddingPercentEncodingWithAllowedCharacters(allowedCharacters)
else {
 fatalError()
}
guard let url = NSURL(string: "https://awesometodos.com/
login?username=\(encodedUsername)&password=\(encodedPassword)") else
{ fatalError() }
session.dataTaskWithURL(url) { (data, response, error) -> Void
in

}

With this code, we encode the username and password before we construct the URL.
Run the tests. Now, all the tests pass again.

Now that we have tested (and implemented) that a request is created, we need to
make sure that the request is sent to the server. The dataTaskWithURL(_:completi
onHandler:) method returns an instance of NSURLSessionDataTask. To initiate the
request, loginUserWithName(_:password:completion:) needs to call resume()
on the data task after it has been created. We can test this using another mock object.
Add the following mock for NSURLSessionDataTask in the extension where we
already have the NSURLSession mock:

class MockURLSessionDataTask : NSURLSessionDataTask {
 var resumeGotCalled = false

 override func resume() {
 resumeGotCalled = true
 }
}

This mock registers when resume() is called.

Chapter 5

[137]

Add a property for the session data task to MockURLSession, and replace the return
statement in dataTaskWithURL(_:completionHandler:):

class MockURLSession : ToDoURLSession {

 typealias Handler = (NSData!, NSURLResponse!, NSError!)
 -> Void

 var completionHandler: Handler?
 var url: NSURL?
 var dataTask = MockURLSessionDataTask()

 func dataTaskWithURL(url: NSURL,
 completionHandler: (NSData?, NSURLResponse?, NSError?) ->
Void)
 -> NSURLSessionDataTask {
 self.url = url
 self.completionHandler = completionHandler
 return dataTask
 }
}

Now, add the following test:

func testLogin_CallsResumeOfDataTask() {
 let sut = APIClient()

 let mockURLSession = MockURLSession()
 sut.session = mockURLSession

 let completion = { (error: ErrorType?) in }
 sut.loginUserWithName("dasdom",
 password: "1234",
 completion: completion)

 XCTAssertTrue(mockURLSession.dataTask.resumeGotCalled)
}

To make this test pass, replace the code that creates the data task with the following
lines of code:

let task = session.dataTaskWithURL(url) { (data, response,
error) -> Void in
 // ...
}
task.resume()

Testing Network Code

[138]

With this change, we assign the return value of dataTaskWithURL(_:completionHa
ndler:) to a constant and call resume() on this constant. Run the tests. All the tests
pass. But we need to refactor the tests. Both tests in APIClientTests have the same
setup code. Add the following properties and change setUp() to this code:

var sut: APIClient!
var mockURLSession: MockURLSession!

override func setUp() {
 super.setUp()

 sut = APIClient()

 mockURLSession = MockURLSession()
 sut.session = mockURLSession
}

Then, remove the following setup code from both tests:

let sut = APIClient()

let mockURLSession = MockURLSession()
sut.session = mockURLSession

Run the tests again to make sure that we haven't introduced a bug during
refactoring.

Next, we need to make sure that our implementation calls the keychain manager
when it gets a token from the login service. As mentioned previously, we are not
going to implement a class for keychain access in the course of this book. Rather
than doing this, we will use a mock to simulate it for the test. We start by adding a
protocol for the methods we expect the keychain manager to implement. Add an iOS
| Source | Swift File and call it KeychainAccessible.swift. Add the following
protocol definition:

protocol KeychainAccessible {
 func setPassword(password: String,
 account: String)

 func deletePasswortForAccount(account: String)

 func passwordForAccount(account: String) -> String?
}

This protocol defines three methods: the first to add a password, the second to delete
a password, and the third to get a password for a specific account.

Chapter 5

[139]

Now, add the following mock for the keychain manager to the extension in
APIClientTests.swift:

class MockKeychainMananger : KeychainAccessible {
 var passwordDict = [String:String]()

 func setPassword(password: String,
 account: String) {
 passwordDict[account] = password
 }

 func deletePasswortForAccount(account: String) {
 passwordDict.removeValueForKey(account)
 }

 func passwordForAccount(account: String) -> String? {
 return passwordDict[account]
 }
}

We need a way to inject our keychain manager mock into APIClient. Add the
following property to APIClient:

var keychainManager: KeychainAccessible?

With these changes made, we are ready for the test. Add the following test to
APIClientTests:

func testLogin_SetsToken() {

 let mockKeychainManager = MockKeychainManager()
 sut.keychainManager = mockKeychainManager

 let completion = { (error: ErrorType?) in }
 sut.loginUserWithName("dasdom",
 password: "1234",
 completion: completion)

 let responseDict = ["token" : "1234567890"]
 let responseData = try! NSJSONSerialization.dataWithJSONObject(res
ponseDict, options: [])
 mockURLSession.completionHandler?(responseData, nil, nil)

 let token = mockKeychainManager.passwordForAccount("token")
 XCTAssertEqual(token, responseDict["token"])
}

Testing Network Code

[140]

First, we instantiate an instance of the keychain manager mock. Then, we call the
login method, and call the stored completion handler with the JSON data containing
the response we expect from the real web service. Finally, we assert that the token is
written to the keychain using the keychain manager.

Run the test. The test fails because the completion handler in the implementation
does nothing right now. Add the following code to the completion handler of
dataTaskWithURL(_:completionHandler:):

let responseDict = try! NSJSONSerialization.JSONObjectWithData(data!,
 options: [])
let token = responseDict["token"] as! String
self.keychainManager?.setPassword(token,
 account: "token")

This code gets the dictionary from the response data and puts the value for the "token"
key into the keychain manager. Run the tests. All the tests pass. There is nothing to
refactor even though the code looks bad. Whenever you see an exclamation mark in
the Swift code, you need to figure out whether it is really needed or if the developer (in
this case, us) has just been lazy. The preceding code has two main issues. Firstly, we
use try! to bypass the need for proper error handling. Secondly, we expect to always
get something in the data parameter, and therefore, we use data! to force-unwrap the
value. Let's refactor this code using tests to guide the implementation instead.

Handling errors
Using try! instead of try in the call to JSONObjectWithData(_:options:), we tell
the compiler: "Trust me on this: This method will never fail.". Let's write a test that
feeds in wrong data and asserts that an error is thrown:

func testLogin_ThrowsErrorWhenJSONIsInvalid() {

 var theError: ErrorType?
 let completion = { (error: ErrorType?) in
 theError = error
 }
 sut.loginUserWithName("dasdom",
 password: "1234",
 completion: completion)

 let responseData = NSData()
 mockURLSession.completionHandler?(responseData, nil, nil)

 XCTAssertNotNil(theError)
}

Chapter 5

[141]

In the test, we call the completion handler with an empty data object.

Run the tests. The implementation code crashes because the deserialization fails and
throws an error. Let's change the code that it handles the thrown error correctly.
Replace the contents of the completion handler with this:

do {
 let responseDict = try NSJSONSerialization.
JSONObjectWithData(data!,
 options: [])

 let token = responseDict["token"] as! String
 self.keychainManager?.setPassword(token,
 account: "token")
} catch {
 completion(error)
}

With this code, we can catch the error if there is one, and pass it to the completion
block of the login method. Run the tests. All the tests pass again.

Next, we need to make sure that the implementation code can handle a nil data
value. Add the following test:

func testLogin_ThrowsErrorWhenDataIsNil() {

 var theError: ErrorType?
 let completion = { (error: ErrorType?) in
 theError = error
 }
 sut.loginUserWithName("dasdom",
 password: "1234",
 completion: completion)

 mockURLSession.completionHandler?(nil, nil, nil)

 XCTAssertNotNil(theError)
}

Run the test. It crashes again in the completion handler of the data task. The reason
for this crash is that we try to force-unwrap data value and it is nil this time.

Testing Network Code

[142]

Replace the contents of the completion handler of the data task with this:

if let theData = data {
 do {
 let responseDict = try NSJSONSerialization.
JSONObjectWithData(theData,
 options: [])

 let token = responseDict["token"] as! String
 self.keychainManager?.setPassword(token,
 account: "token")
 } catch {
 completion(error)
 }
}

In this code, we use if let to conditionally unwrap the data if it is not nil.

Run the tests. The crash is gone but the test still fails. The reason for this is that we
do not call the completion block of the login method in case the token cannot be
extracted from the response data. To make the test pass, we need to define the errors
we want to throw. Add the following enum to the end of APIClient.swift:

enum WebserviceError : ErrorType {
 case DataEmptyError
}

Now, add the following else clause in the completion handler of the data task:

if let theData = data {
 // …
} else {
 completion(WebserviceError.DataEmptyError)
}

Run the tests. All the tests pass and there is nothing to refactor.

There is one error left that we need to handle. The completion handler of the data task
is called with an error parameter. The web service returns any error that has occurred
on the server side in this parameter. Our code has to handle this error. Add the
following test to make sure that the implementation handles the error when it is set:

func testLogin_ThrowsErrorWhenResponseHasError() {

 var theError: ErrorType?
 let completion = { (error: ErrorType?) in

Chapter 5

[143]

 theError = error
 }
 sut.loginUserWithName("dasdom",
 password: "1234",
 completion: completion)

 let responseDict = ["token" : "1234567890"]
 let responseData = try! NSJSONSerialization.dataWithJSONObject(re
sponseDict,
 options: [])
 let error = NSError(domain: "SomeError", code:
 1234, userInfo: nil)
 mockURLSession.completionHandler?(responseData, nil, error)

 XCTAssertNotNil(theError)
}

Note that we call the completion handler with valid response data. If we pass in nil
as data in this test, it would already pass, even though we haven't written the code to
handle the response error.

To make this test pass, add the ResponseError case to the WebserviceError enum,
and add the following code to the beginning of the completion handler of the
data task:

if error != nil {
 completion(WebserviceError.ResponseError)
 return
}

Run the tests. All the tests pass and there is nothing to refactor.

There are still some tests and implementations for the APIClient class that are
missing. We could add tests to fetch an item from and post an item to the web
service; for example, to make it possible to access the to-do items from a web
application. We won't add the tests in this book because they would look similar to
the tests we have already written. But you should add the tests yourself to practice
the TDD workflow.

Testing Network Code

[144]

Summary
In this chapter, we wrote tests using test expectations provided by XCTest. We also
used stubs to fake a server. We took a look at how both ways bring us closer to our
goal: a finished app with as few bugs as possible.

We used dependency injection to catch the completion handler of the session
data task in our fake URL session. This way, we could feed test data into the
implementation code and assert that the code is implemented as expected. As we
controlled the data that the completion handler received, we were able to simulate all
kinds of errors and drive the implementation of the correct error handling.

Using the keychain access as an example, we took a look at how to write tests for
features that are yet to be implemented.

In the following chapter, we will put the different parts of the last few chapters
together and finally see the app running.

[145]

Putting It All Together
In previous chapters, we implemented the different parts of our app using TDD.
Now, it is time to put all the the parts together to develop a complete app.

This part of the implementation using TDD is the most exciting one. Usually, when
not using TDD, you build and run the app in the simulator all the time to check
whether your code works and changes bring the app closer to its final state.

In TDD, most of the development is done without running the app on the simulator
or device. The tests guide the implementation. This has one big advantage: you
can implement parts of the app that need to talk to a component that has not been
implemented yet. For example, you can write and verify the complete data model
before a View Controller or view is able to bring the data on the screen.

In this chapter, we will put the different parts of our code together to form the final
app. In addition to this, we will take a look at how functional tests can help to find
bugs we missed when writing the unit tests.

This chapter covers the following topics:

•	 Connecting parts
•	 Serialization and deserialization
•	 Functional tests

Putting It All Together

[146]

Connecting parts
We will now put the different parts together and implement transitions between
them. We need tests for the initial view that is shown after the app is started and for
the navigation from this view to the other two views. The tests have to ensure that
the view controllers are passed the data they need to populate their UIs.

The initial View Controller
When you build and run the app now on the simulator, you only see a black screen.
The reason for that is we haven't specified which screen the app should show after it
is started. Let's write a test for this. Because this is a test about the storyboard, add an
iOS | Source | Unit Test Case Class to the test target, and call it StoryboardTests.
Import the main module using the @testable keyword and remove the two
template tests.

Add the following test to StoryboardTests:

func testInitialViewController_IsItemListViewController() {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)

 let navigationController = storyboard.
instantiateInitialViewController() as! UINavigationController
 let rootViewController = navigationController.viewControllers[0]

 XCTAssertTrue(rootViewController is ItemListViewController)
}

This test gets a reference to the Main storyboard, instantiates its initial
View Controller (which should be a navigation controller), and gets its
root View Controller. Then, it asserts that the root View Controller is of the
ItemListViewController type.

Run the test. The test crashes with an unexpectedly found nil while
unwrapping an Optional value error in the line where we try to initialize the
initial View Controller. The reason for this is that we have not told Xcode which the
initial View Controller is.

Chapter 6

[147]

Open Main.storyboard, select the item list View Controller, and open Attribute
Inspector. Check the checkbox next to Is Initial View Controller:

With the item list View Controller still selected, go to Editor | Embed
In | Navigation Controller. With these changes in the storyboard, the
initial View Controller will be a navigation controller with an instance of
ItemListViewController as its root View Controller.

Run the tests again. All the tests pass and there is nothing to refactor.

Showing the input view
The user should be able to add an item to the list view. As shown in the mock-ups in
Chapter 2, Planning and Structuring Your Test-Driven iOS App, there should be an Add
button in the navigation bar that presents the input View Controller. We will add
the following tests to ItemListViewControllerTests because these are tests about
ItemListViewController.

Putting It All Together

[148]

Open ItemListViewControllerTests and add this test:

func testItemListViewController_HasAddBarButtonWithSelfAsTarget() {
 XCTAssertEqual(sut.navigationItem.rightBarButtonItem?.target as?
UIViewController,
 sut)
}

To make this test pass, we need to add a bar button item to the item list View
Controller. Open Main.storyboard, drag a Bar Button Item to the navigation
bar of the item list View Controller, and set the value of System Item to Add:

Open ItemListViewController in the Assistant Editor and control-drag from the
button to below viewDidLoad():

Chapter 6

[149]

Set the value of Connection to Action, Name to addItem, and Type to
UIBarButtonItem.

Run the tests again. The tests pass and there is nothing to refactor.

Next, we want to make sure that the input View Controller is presented when the
user taps the Add button. Add the following test to ItemListViewControllerTests:

func testAddItem_PresentsAddItemViewController() {

 XCTAssertNil(sut.presentedViewController)

 guard let addButton = sut.navigationItem.rightBarButtonItem else
 { XCTFail(); return }

 sut.performSelector(addButton.action, withObject: addButton)

 XCTAssertNotNil(sut.presentedViewController)
 XCTAssertTrue(sut.presentedViewController is InputViewController)
}

Before we do anything in the test, we make sure that sut does not present a View
Controller on screen. Then, we get a reference to the Add button and perform its
selector on sut. This makes sense because from the previous test, we know that sut
is the target for this button. Run the test to make sure it fails.

To make the test pass, add the following line to the addItem method:

presentViewController(InputViewController(),
 animated: true,
 completion: nil)

Run the test. It still fails. To figure out what is going on, go to View | Debug Area |
Activate Console. You should see a line with information similar to this:

Warning: Attempt to present <ToDo.InputViewController: 0x7b684990> on
<ToDo.ItemListViewController: 0x7b882790> whose view is not in the window
hierarchy!

The reason for this warning is that we have just instantiated the View Controller, but
it is not shown anywhere. It is only possible to present a View Controller from another
View Controller whose view is in the view hierarchy. When the app is running outside
of the test, this is not an issue because if the user can tap the Add button, the item list
View Controller must be visible on the screen and, therefore, its view has to be in the
view hierarchy. So, we need to figure out how write a test for this.

Putting It All Together

[150]

In fact, it is quite easy. We can add the view to the view hierarchy by setting the
View Controller to the rootViewController property of the key window. Add the
following line in testAddItem_PresentsAddItemViewController() right below
the guard statement:

UIApplication.sharedApplication().keyWindow?.rootViewController = sut

Run the tests again. Now, all the tests pass. But the code looks strange. We instantiate
an instance of InputViewController using its initializer. This bypasses the
storyboard. As a result, the outlet connections we created in Chapter 4, A Test-Driven
View Controller, are all nil. This means that we wouldn't be able to put in the data for
the to-do item we want to add.

So, we need another test to make sure that the implementation code instantiates the
input View Controller instance using the storyboard. Add the following code at the
end of testAddItem_PresentsAddItemViewController():

let inputViewController = sut.presentedViewController as!
InputViewController
XCTAssertNotNil(inputViewController.titleTextField)

Run the test to make sure it is red. To make the test pass, replace the contents of
addItem(_:) with the following code:

if let nextViewController = storyboard?.instantiateViewControllerWithI
dentifier("InputViewController")
as? InputViewController {
 presentViewController(nextViewController, animated: true,
completion: nil)
}

This code instantiates an instance of InputViewController from the storyboard and
presents it on the screen. Run the tests. All the tests pass.

To be able to add items to the list, ItemListViewController and
InputViewController need to share the same item manager. This is possible
because ItemManager is a class and, therefore, both View Controllers can hold a
reference to the same instance. If we had used a struct instead, adding an item in
InputViewController would not have changed the item manager referenced by
ItemListViewController.

Let's write a test to make sure that both view controllers refer to the same object. Add
the following test to ItemListViewControllerTests:

func testItemListVC_SharesItemManagerWithInputVC() {

 XCTAssertNil(sut.presentedViewController)

Chapter 6

[151]

 guard let addButton = sut.navigationItem.rightBarButtonItem else
 { XCTFail(); return }

 UIApplication.sharedApplication().keyWindow?.rootViewController =
sut

 sut.performSelector(addButton.action, withObject: addButton)

 XCTAssertNotNil(sut.presentedViewController)
 XCTAssertTrue(sut.presentedViewController is InputViewController)

 let inputViewController = sut.presentedViewController as!
InputViewController

 guard let inputItemManager = inputViewController.itemManager else
 { XCTFail(); return }
 XCTAssertTrue(sut.itemManager === inputItemManager)
}

The first part of the test is exactly the same as it was in the earlier test before.
The different lines are highlighted. After presenting the input View Controller
on the screen, we assert that itemManager in inputViewControler refers to the
same object as the sut.

This test does not compile because Value of type 'ItemListViewController'
has no member 'itemManger'. Add the following property to make it compile:

let itemManager = ItemManager()

Run the test. It compiles but fails because itemManager of inputViewController is
nil. Add the following line in addItem(_:) right before the next View Controller
is presented:

nextViewController.itemManager = ItemManager()

Run the test. It still fails, but this time it's because the item manager of sut and input
View Controller do not refer to the same object. Replace the line you just added with
this one:

nextViewController.itemManager = self.itemManager

Run all the tests. All the tests pass.

If you look at the last two tests, there is a lot of duplicated code. The tests need
refactoring. This is left as an exercise for you. You should be able to extract the
duplicated code with the knowledge you have gained till now.

Putting It All Together

[152]

Now, let's check whether we can add a to-do item to the list. Build and run the
app. Tap the plus (+) button, and put a title into the text field connected to the
titleTextField property. Tap the save button (the one that is connected to the
save action). Nothing happens. The reason for this is that we did not add the code to
dismiss the View Controller when the Save button was tapped. We need a test for this.

Open InputViewControllerTests.swift, and add the following definition of a
mock class below the other mock classes:

class MockInputViewController : InputViewController {

 var dismissGotCalled = false

 override func dismissViewControllerAnimated(flag: Bool,
 completion: (() -> Void)?) {

 dismissGotCalled = true
 }
}

The mock class is a subclass of InputViewController. The correct term for such a
mock is partial mock because it only mocks parts of the behavior of its super class.
With this in place, we can write the test:

func testSave_DismissesViewController() {
 let mockInputViewController = MockInputViewController()

 mockInputViewController.titleTextField = UITextField()
 mockInputViewController.dateTextField = UITextField()
 mockInputViewController.locationTextField = UITextField()
 mockInputViewController.addressTextField = UITextField()
 mockInputViewController.descriptionTextField = UITextField()

 mockInputViewController.titleTextField.text = "Test Title"
 mockInputViewController.save()

 XCTAssertTrue(mockInputViewController.dismissGotCalled)
}

Chapter 6

[153]

As we do not instantiate from the storyboard, we need to set the text fields in the test;
otherwise, the test would crash because it would try to access text fields that are nil.
After this, we set a test title to the title text field and call save. This should dismiss
the View Controller.

Run the test. It fails. To make it pass is quite easy to do. Add the following line at
the end of save():

dismissViewControllerAnimated(true, completion: nil)

Now, run all the tests. All the test pass.

Let's take a look at what the app looks like now. Build and run the app in the
simulator, tap the Add button, put in a title, and hit Save. The input View Controller
is dismissed but no item is added to the list. There are two problems concerning this
micro feature. Firstly, the item manager defined in ItemListViewController is not
shared as an item manager with the data provider. Secondly, after an item has been
added to the list, we need to tell the table view to reload its data.

Let's write a test for the first problem:

func testViewDidLoad_SetsItemManagerToDataProvider() {
 XCTAssertTrue(sut.itemManager === sut.dataProvider.itemManager)
}

This test does not compile because the data provider is of the
protocol<UITableViewDataSource, UITableViewDelegate> type. The compiler
cannot know that it also has a itemManager property. To fix this, add the following
protocol to ItemDataProvider.swift outside of the class definition:

@objc protocol ItemManagerSettable {
 var itemManager: ItemManager? { get set }
}

Now, the static analyzer tells us that this property cannot be a member of an @
objc protocol because its type cannot be represented in Objective-C.
But we need to declare the protocol to be @objc because we've set the data provider
from the storyboard. The solution is to make ItemManager a subclass of NSObject:

class ItemManager: NSObject {
 // ….
}

Putting It All Together

[154]

Now, we can make ItemListDataProvider conform to ItemManagerSettable
like this:

class ItemListDataProvider: NSObject, UITableViewDataSource,
UITableViewDelegate, ItemManagerSettable {
 // ….
}

We can finally add the protocol in the declaration of the data provider in
ItemListViewController:

@IBOutlet var dataProvider: protocol<UITableViewDataSource,
UITableViewDelegate, ItemManagerSettable>!

Run the test. Finally, the test compiles but it fails. To make it pass, add the following
line at the end of viewDidLoad() in ItemListViewController:

dataProvider.itemManager = itemManager

Now, run all the tests. All the tests pass again and there is nothing to refactor.

On to the next problem: we need to make sure that the table view is reloaded
when an item is added to the item manager. A perfect place for the reload is
viewWillAppear(_:). As an exercise, add this test to ItemListViewControllerTests.
You may need a mock for the table view to register when reloadData() is called. A
reminder: to trigger viewWillAppear(_:), do this in your test:

sut.beginAppearanceTransition(true, animated: true)
sut.endAppearanceTransition()

Write the test as an exercise.

To make the test pass, add the following code to ItemListViewController:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 tableView.reloadData()
}

Chapter 6

[155]

Finally, build and run the app again and add an item to the list. You should see
something like this:

Showing the detail view
When the user taps a cell, the detail view should be shown on the screen, with the
information of the corresponding to-do item. The selection of the cell is managed by
the data provider because it is the delegate for the table view. The presentation of the
detail View Controller is managed by the item list View Controller. This means that
the data provider has to communicate the selection of a cell to the list View Controller.
There are several different ways to achieve this. We will use a notification because it
will be interesting to take a look at how we can test the sending of notifications.

Communication with notifications has two partners—the sender and the receiver.
In our case, the sender is the data provider. Let's write a test that ensures that a
notification is sent when the user selects a cell. Open ItemDataProviderTests and
add the following test method:

func testSelectingACell_SendsNotification() {
 let item = ToDoItem(title: "First")
 sut.itemManager?.addItem(item)

 expectationForNotification("ItemSelectedNotification",
 object: nil) { (notification) -> Bool in

Putting It All Together

[156]

 guard let index = notification.userInfo?["index"] as? Int else
{ return false }
 return index == 0
 }

 tableView.delegate?.tableView!(tableView, didSelectRowAtIndexPath:
NSIndexPath(forRow: 0, inSection: 0))

 waitForExpectationsWithTimeout(3, handler: nil)
}

First, we add an item to the item manager to create a cell that we can select. Then, we
create an expectation for a notification. When a notification with that name is sent,
the closure is called. In the closure, we check whether the user information contains
an index and the index is equal to 0. If it is, the closure returns true; otherwise it'll
return false. A return value of true means that the expectation is fulfilled. Next,
we call didSelectRowAtIndexPath on the table view's delegate and wait for the
expectation to be fulfilled.

Run the test. It fails. To make the test pass, add the following code to
ItemDataProvider:

func tableView(tableView: UITableView, didSelectRowAtIndexPath
indexPath: NSIndexPath) {

 guard let itemSection = Section(rawValue: indexPath.section) else
 { fatalError() }

 switch itemSection {
 case .ToDo:
 NSNotificationCenter.defaultCenter().postNotificationName(
 "ItemSelectedNotification",
 object: self,
 userInfo: ["index": indexPath.row])

 default:
 break
 }
}

This code is straightforward. We get the section, and if the tap is in the to-do section,
we send the notification with the tapped row in the user info.

Run all the tests. All the tests pass and there is nothing to refactor.

Chapter 6

[157]

The receiver of the notification should be the item list View Controller,
and it'll push the detail View Controller onto the navigation stack when
it receives the message. To test this, we need another mock. Add the
following code in ItemListViewControllerTests.swift but outside of
ItemListViewControllerTests:

extension ItemListViewControllerTests {
 class MockNavigationController : UINavigationController {

 var pushedViewController: UIViewController?

 override func pushViewController(viewController:
UIViewController,
 animated: Bool) {
 pushedViewController = viewController
 super.pushViewController(viewController, animated:
animated)
 }
 }
}

This is a mock for UINavigationController, and it simply registers when a View
Controller is pushed onto the navigation stack.

Add the following test to ItemListViewControllerTests:

func testItemSelectedNotification_PushesDetailVC() {

 let mockNavigationController = MockNavigationController(rootViewCo
ntroller: sut)

 UIApplication.sharedApplication().keyWindow?.rootViewController =
mockNavigationController

 _ = sut.view

 NSNotificationCenter.defaultCenter().postNotificationName(
 "ItemSelectedNotification",
 object: self,
 userInfo: ["index": 1])

 guard let detailViewController = mockNavigationController.
pushedViewController as? DetailViewController else { XCTFail(); return
}

Putting It All Together

[158]

 guard let detailItemManager = detailViewController.itemInfo?.0
else
 { XCTFail(); return }

 guard let index = detailViewController.itemInfo?.1 else
 { XCTFail(); return }

 _ = detailViewController.view

 XCTAssertNotNil(detailViewController.titleLabel)
 XCTAssertTrue(detailItemManager === sut.itemManager)
 XCTAssertEqual(index, 1)
}

These are many lines of code. Let's go through them step by step. Firstly, we create
an instance of our navigation controller mock and set its root View Controller to
be the sut property. As seen earlier, in order to be able to push a View Controller
onto the navigation stack, the view of the pushing View Controller has to be in the
view hierarchy. Then, we access the view property of sut to trigger viewDidLoad()
because we assume that sut is added as an observer to NSNotificationCenter.
defaultCenter() in viewDidLoad(). With this setup, we can send the notification
using NSNotificationCenter.defaultCenter(). Next we get the pushed View
Controller and assert that it is of the DetailViewController type. Then, we check
whether the item info is passed to the pushed View Controller. Finally, we check
whether titleLabel of the detail View Controller is not nil and if it shares the item
manager with the item list View Controller.

Run the test. The test fails. To make the test pass, we first need to add the
ItemListViewController as an observer to NSNotificationCenter.
defaultCenter(). Add the following code at the end of viewDidLoad():

NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "showDetails:",
 name: "ItemSelectedNotification",
 object: nil)

Next, we have to implement showDetails(_:). Add the following method to
ItemListViewController:

func showDetails(sender: NSNotification) {
 guard let index = sender.userInfo?["index"] as? Int else
 { fatalError() }

 if let nextViewController = storyboard?.
instantiateViewControllerWithIdentifier(

Chapter 6

[159]

 "DetailViewController") as? DetailViewController {

 nextViewController.itemInfo = (itemManager, index)
 navigationController?.pushViewController(nextViewController,
 animated: true)
 }
}

Run all the tests. All the tests pass and there is nothing to refactor.

Serialization and deserialization
You may notice that the to-do item you put in is gone when you restart the app.
Such an app is useless for the user. The app needs to store the to-do items somehow
and reload them when it is opened the next time. There are different possibilities to
implement this. We could use Core Data, serialize the data using NSCoding, or use
a third-party framework. In this book, we will write the date into a property list
(plist). A plist has the advantage that it can be opened and altered with Xcode or any
other editor.

The data model we have implemented uses structs. Unfortunately, structs cannot
be written to a plist. We have to convert the data into NSArrays and NSDictionarys.
Add the following code to ToDoItemTests:

func test_HasPlistDictionaryProperty() {
 let item = ToDoItem(title: "First")
 let dictionary = item.plistDict
}

The static analyzer complains that there is no property with the name plistDict.
Let's add it. Open ToDoItem and add the property:

var plistDict: String {
 return ""
}

We use a calculated property here because we don't want to initialize it during
initialization, and the value should be calculated from the current values of the other
properties. Add the following assertions at the end of the test:

XCTAssertNotNil(dictionary)
XCTAssertTrue(dictionary is NSDictionary)

Putting It All Together

[160]

As mentioned previously, to be able to write the date into a plist, it needs to be of the
NSDictionary type. Run the test. It fails because, right now, the calculated property
is of the String type. Replace the property with this code:

var plistDict: NSDictionary {
 return [:]
}

Run all the tests. All the tests pass and there is nothing to refactor.

Now, we need to make sure that we can recreate an item from plistDict. Add the
following code to ToDoItemTests:

func test_CanBeCreatedFromPlistDictionary() {
 let location = Location(name: "Home")
 let item = ToDoItem(title: "The Title",
 itemDescription: "The Description",
 timestamp: 1.0,
 location: location)

 let dict = item.plistDict
 let recreatedItem = ToDoItem(dict: dict)
}

We have to stop writing the test because the static analyzer complains. The ToDoItem
struct does not have an initializer with a parameter named dict. Open ToDoItem.
swift and add the following code to the ToDoItem struct:

init?(dict: NSDictionary) {
 return nil
}

This is enough to make the test compilable. Now, add the assertion to the test:

XCTAssertEqual(item, recreatedItem)

That assertion asserts that the recreated item is the same as the item used to create
plistDict. Run the test. The test fails because we haven't implemented writing the
data of the struct to NSDictionary and creating a to-do item from NSDictionary. To
write the complete information needed to recreate a to-do item into a dictionary, we
first have to make sure that an instance of Location can be written to and recreated
from an NSDictionary.

Chapter 6

[161]

In TDD, it is important to always have only one failing test. So, before we can move to
the tests for Location, we have to disable the last test we wrote. During test execution,
the test runner searches for methods in the test cases that begin with test. Change the
name of the previous test method to xtest_CanBeCreatedFromPlistDictionary().
Run the tests to make sure that all, tests, except this one, are executed.

Now, open LocationTests and add the following code:

func test_CanBeSerializedAndDeserialized() {
 let location = Location(name: "Home",
 coordinate: CLLocationCoordinate2DMake(50.0, 6.0))

 let dict = location.plistDict
}

Again, the static analyzer complains because the property is missing. We already
know how to make this compilable again. Add this code to Location:

var plistDict: NSDictionary {
 return [:]
}

With this change, the test compiles. Add the following code to the end of the test:

XCTAssertNotNil(dict)
let recreatedLocation = Location(dict: dict)

Again, this does not compile because Location does not have an initializer with one
parameter called dict. Let's add it:

init?(dict: NSDictionary) {
 return nil
}

The test passes again. But it is not finished yet. We need to make sure that the
recreated location is the same as the one we used to create the NSDictionary. Add
the assertion at the end of the test:

XCTAssertEqual(location, recreatedLocation)

Run the test. It fails. To make it pass, the plistDict property has to have all the
information needed to recreate the location. Replace the calculated property with
this code:

private let nameKey = "nameKey"
private let latitudeKey = "latitudeKey"
private let longitudeKey = "longitudeKey"

Putting It All Together

[162]

var plistDict: NSDictionary {
 var dict = [String:AnyObject]()

 dict[nameKey] = name

 if let coordinate = coordinate {
 dict[latitudeKey] = coordinate.latitude
 dict[longitudeKey] = coordinate.longitude
 }
 return dict
}

The code explains itself. It just puts all the information of a location into an
instance of NSDictionary. Now, replace the initializer with the dict argument
with the following:

init?(dict: NSDictionary) {
 guard let name = dict[nameKey] as? String else
 { return nil }

 let coordinate: CLLocationCoordinate2D?
 if let latitude = dict[latitudeKey] as? Double,
 longitude = dict[longitudeKey] as? Double {
 coordinate = CLLocationCoordinate2DMake(
 latitude, longitude)
 } else {
 coordinate = nil
 }

 self.name = name
 self.coordinate = coordinate
}

Run the tests. All the tests pass again.

As the location can be written to NSDictionary, we can use it for the serialization of
ToDoItem. Open ToDoItemTests again, and remove x at the beginning of the method
name of xtest_CanBeCreatedFromPlistDictionary(). Run the tests to make sure
that this test fails.

Now, replace the implementation of the calculated plistDict property in ToDoItem
with this code:

private let titleKey = "titleKey"
private let itemDescriptionKey = "itemDescriptionKey"

Chapter 6

[163]

private let timestampKey = "timestampKey"
private let locationKey = "locationKey"

var plistDict: NSDictionary {
 var dict = [String:AnyObject]()
 dict[titleKey] = title
 if let itemDescription = itemDescription {
 dict[itemDescriptionKey] = itemDescription
 }
 if let timestamp = timeStamp {
 dict[timestampKey] = timestamp
 }
 if let location = location {
 let locationDict = location.plistDict
 dict[locationKey] = locationDict
 }
 return dict
}

Again, this is straightforward. We put all the values stored in the properties into
a dictionary and return it. To recreate a to-do item from a plist dictionary, replace
init?(dict:) with this:

init?(dict: NSDictionary) {
 guard let title = dict[titleKey] as? String else
 { return nil }

 self.title = title

 self.itemDescription = dict[itemDescriptionKey] as? String
 self.timestamp = dict[timestampKey] as? Double
 if let locationDict = dict[locationKey] as? NSDictionary {
 self.location = Location(dict: locationDict)
 } else {
 self.location = nil
 }
}

In this init method, we fill the properties of ToDoItem with the values from the
dictionary. Run the tests. All the tests pass and there is nothing to refactor.

Putting It All Together

[164]

The next step is to write the list of checked and unchecked to-do items to the disk,
and restore them when the app is started again. To drive the implementation, we will
write a test that creates two to-do items and adds them to an item manager, sets the
item manager to nil, and then creates a new one. The created item manager should
then have the same items as the one that got destroyed. Open ItemManagerTests
and add the following test in it:

func test_ToDoItemsGetSerialized() {
 var itemManager: ItemManager? = ItemManager()

 let firstItem = ToDoItem(title: "First")
 itemManager!.addItem(firstItem)

 let secondItem = ToDoItem(title: "Second")
 itemManager!.addItem(secondItem)

 NSNotificationCenter.defaultCenter().postNotificationName(
 UIApplicationWillResignActiveNotification, object: nil)

 itemManager = nil

 XCTAssertNil(itemManager)

 itemManager = ItemManager()
 XCTAssertEqual(itemManager?.toDoCount, 2)
 XCTAssertEqual(itemManager?.itemAtIndex(0), firstItem)
 XCTAssertEqual(itemManager?.itemAtIndex(1), secondItem)
}

In this test, we first create an item manager, add two to-do items, and send
UIApplicationWillResignActiveNotification to signal to the app that it should
write the data to disk. Next, we set the item manager to nil to destroy it. Then, we
create a new item manager and assert that it has the same items.

Run the test. The test crashes because we try to access a to-do item in the item
manager but there is no item yet.

Before we write the code that writes the to-do items to disk, add the following code
to tearDown(), right before super.tearDown():

sut.removeAllItems()
sut = nil

This is needed because, otherwise, all the tests would end up writing their to-do
items to disk, and the tests would not start from a clean state.

Chapter 6

[165]

As mentioned previously, the item manager should register as an observer for
UIApplicationWillResignActiveNotification and write the data to disk when
the notification is sent. Add the following init method to ItemManager:

override init() {
 super.init()

 NSNotificationCenter.defaultCenter().addObserver(
 self,
 selector: "save",
 name: UIApplicationWillResignActiveNotification,
 object: nil)
}

The constant UIApplicationWillResignActiveNotification is defined in UIKit,
so replace import Foundation with import UIKit. Next, add the following
calculated property to create a path URL for the plist:

var toDoPathURL: NSURL {
 let fileURLs = NSFileManager.defaultManager().URLsForDirectory(
 .DocumentDirectory, inDomains: .UserDomainMask)

 guard let documentURL = fileURLs.first else {
 print("Something went wrong. Documents url could not be
found")
 fatalError()
 }

 return documentURL.URLByAppendingPathComponent("toDoItems.plist")
}

This code gets the document directory of the app and appends the toDoItems.plist
path component. Now, we can write the save method:

func save() {
 var nsToDoItems = [AnyObject]()

 for item in toDoItems {
 nsToDoItems.append(item.plistDict)
 }

 if nsToDoItems.count > 0 {
 (nsToDoItems as NSArray).writeToURL(toDoPathURL,
 atomically: true)
 } else {

Putting It All Together

[166]

 do {
 try NSFileManager.defaultManager().
removeItemAtURL(toDoPathURL)
 } catch {
 print(error)
 }
 }
}

Firstly, we create an AnyObject array and append the dictionaries of the to-do items
to it. If the array has at least one item, we write it to disk. Otherwise, we remove
whatever is stored at the location of the file path.

When a new item manager is created, we have to read the data from the plist and fill
the toDoItems array. The perfect place to read the data in is the init method. Add
the following code at the end of init():

if let nsToDoItems = NSArray(contentsOfURL: toDoPathURL) {

 for dict in nsToDoItems {
 if let toDoItem = ToDoItem(dict: dict as! NSDictionary) {
 toDoItems.append(toDoItem)
 }
 }
}

Before we can run the tests, we need to do some housekeeping. We have added the
item manager as an observer to NSNotification.defaultCenter(). Like good
citizens, we have to remove it when we aren't interested in notifications anymore.
Add the following deinit method to ItemManager:

deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self)
 save()
}

In addition to removing the observer, we call save() to trigger the save operation.

Chapter 6

[167]

There are many lines of code needed to make one test pass. We could have broken
these down into smaller steps. In fact, you should experiment with the test and the
implementation and see what happens when you comment out parts of it.

Run all tests. Uh!? A lot of unrelated tests fail. We haven't changed the code the other
tests are testing. But we changed the way ItemManager works. If you have a look at
ItemListDataProviderTests and DetailViewControllerTests, we add items to
an item manager instance in there. This means that we need to clean up after the tests
have been executed. Open ItemListDataProviderTests and add the following
code to tearDown(), right before super.tearDown():

sut.itemManager?.removeAllItems()
sut.itemManager = nil

Now, add the following to tearDown() in DetailViewControllerTests:

sut.itemInfo?.0.removeAllItems()

Run the tests again. All the tests pass. We will move to the next section, but you
should implement the tests and code for the serialization and deserialization of the
done items in the ItemManager.

Functional tests
Until now, we have written unit tests to drive the implementation. Unit tests test a
small micro feature (a unit of the project) under controlled circumstances.

On the other side of the spectrum are functional tests, which test the functionalities
of the app in terms of how a user would approach them. The user does not care how
the app they're using is implemented. The user cares about what they can do with
the app. Functional tests help make sure that the app works as expected.

In this section, we will add a functional test using UI tests, which were introduced
with Xcode 7. We will take one functionality (adding a to-do item) and write a test
from the user's perspective.

Putting It All Together

[168]

Adding a UI test target
First, we need to add a UI test target to our project. In Project Navigator, select the
project and click on the button at the bottom of the view showing the target list:

From the template chooser, go to iOS | Test | iOS UI Testing Bundle. Let the name
remain as Xcode suggests it, click on Next, and then on Finish.

Recording and testing
Open Project Navigator and scroll down to the ToDoUITests group. In the group,
you'll find a file called ToDoUITests.swift. Click on it to open it in the editor. The
structure of the file is similar to the other test cases. In fact, the UI test class is a
subclass of XCTextCase, like all our other test cases. Have a look at setUp(). You'll
see this line:

XCUIApplication().launch()

This line launches the app for the UI test. Here, you can already see the difference
between unit tests and UI tests. A unit test just loads the classes it needs for the test.
It doesn't matter how the classes are put together or how the user interacts with the
app. In UI tests, the test runner needs to launch the app in order to be able to interact
with the real UI. The user interacts with the same UI when they start the app.

Chapter 6

[169]

Before we write the functional test, open Main.storyboard and add Auto Layout
constraints to position the views. Then, add placeholders to the text fields of the input
View Controller. The scene in the storyboard should then look something like this:

Now, go back to ToDoUITests, remove the comment, and position the cursor within
the method. At the bottom of the editor, you'll see a red dot:

Click on it to start recording the UI test. Xcode compiles the app and launches it in
the simulator. When the app is running, click on the Add button to navigate to the
input screen. Then, put in values for all the fields and click on Save. Remember to
put in the date in the 02/22/2016 format because this is the format we used when
we built InputViewController.

Putting It All Together

[170]

While you where interacting with the UI, Xcode recorded your actions. Open
ToDoUITests and have a look at the code. The recording doesn't always produce
the same code but, in general, it should look like this:

let app = XCUIApplication()
app.navigationBars["ToDo.ItemListView"].buttons["Add"].tap()

let titleTextField = app.textFields["Title"]
titleTextField.tap()
titleTextField.typeText("Meeting")

let dateTextField = app.textFields["Date"]
dateTextField.tap()
dateTextField.typeText("02/22/2016")

let locationNameTextField = app.textFields["Location Name"]
locationNameTextField.tap()
locationNameTextField.typeText("Office")

let addressTextField = app.textFields["Address"]
addressTextField.tap()
addressTextField.typeText("Infinite Loop 1, Cupertino")

let descriptionTextField = app.textFields["Description"]
descriptionTextField.tap()
descriptionTextField.typeText("Bring iPad")
app.buttons["Save"].tap()

Let's take a look at what happens when we run the test. Click on the diamond next to
the beginning of the test method and switch to the simulator. Like magic, Xcode will
run your app and interact with the UI.

But there is something strange. After the test runner has tapped Save, the input
screen is dismissed and the list view is shown. But where is the item? It is not added
to the list. It looks like we have a bug in our code.

Let's add assertions to the test to make sure we fix this bug. Add the following code
at the end of the test:

XCTAssertTrue(app.tables.staticTexts["Meeting"].exists)
XCTAssertTrue(app.tables.staticTexts["02/22/2016"].exists)
XCTAssertTrue(app.tables.staticTexts["Office"].exists)

Now, open InputViewController and let's see if we can spot the problem. If you
would like to find the bug yourself, add breakpoints and step through the code (and
stop reading further until you have found it).

Chapter 6

[171]

Did you find it? As described earlier, the geocoder is asynchronous. This means that
the call back closure is executed on a different thread. The main thread does not wait
until the geocoder has finished its work and dismisses the View Controller before an
item can be added to the item manager.

Let's fix this bug. First, remove the following line of code:

dismissViewControllerAnimated(true, completion: nil)

Next, change the code according to the highlighted lines in the following code:

// ...

if let locationName = locationTextField.text
 where locationName.characters.count > 0 {
 if let address = addressTextField.text
 where address.characters.count > 0 {

 geocoder.geocodeAddressString(address) {
 [unowned self] (placeMarks, error) -> Void in

 let placeMark = placeMarks?.first

 let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: Location(name: locationName,
 coordinate: placeMark?.location?.
coordinate))

 dispatch_async(dispatch_get_main_queue(), {
 () -> Void in
 self.itemManager?.addItem(item)
 self.dismissViewControllerAnimated(true,
 completion: nil)
 })
 }
 } else {
 let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: Location(name: locationName))

 self.itemManager?.addItem(item)
 dismissViewControllerAnimated(true, completion: nil)
 }
} else {

Putting It All Together

[172]

 let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: nil)

 self.itemManager?.addItem(item)
 dismissViewControllerAnimated(true, completion: nil)
}

Run the test. Now, the test passes. We have just recorded and written our first
functional test. You should add the missing functional tests, for example, in order to
check and uncheck items and show their details.

To make sure we haven't broken anything due to these changes, let's
run all the tests again. Bummer. The test execution crashes in testSave_
UsesGeocoderToGetCoordinateFromAddress() when we try to access the item at
index 0. The reason for this crash is that we call addItem(_:) in the save() method
on a different thread. This means that the assertions are executed before the item is
added to the item manager. We need to make the test asynchronous to account for
the change in the implementation.

Open InputViewControllerTests and replace MockInputViewController with
this code:

class MockInputViewController : InputViewController {

 var dismissGotCalled = false
 var completionHandler: (() -> Void)?

 override func dismissViewControllerAnimated(flag: Bool,
 completion: (() -> Void)?) {

 dismissGotCalled = true
 completionHandler?()
 }
}

By making this change, we have added the ability to get notified when
dismissViewControllerAnimated(_:) is called. We need to change the test to
use the input View Controller mock and add code to make the test asynchronous.
Replace testSave_UsesGeocoderToGetCoordinateFromAddress() with the
following code:

func testSave_UsesGeocoderToGetCoordinateFromAddress() {
 let mockInputViewController = MockInputViewController()

Chapter 6

[173]

 mockInputViewController.titleTextField = UITextField()
 mockInputViewController.dateTextField = UITextField()
 mockInputViewController.locationTextField = UITextField()
 mockInputViewController.addressTextField = UITextField()
 mockInputViewController.descriptionTextField = UITextField()

 mockInputViewController.titleTextField.text = "Test Title"
 mockInputViewController.dateTextField.text = "02/22/2016"
 mockInputViewController.locationTextField.text = "Office"
 mockInputViewController.addressTextField.text = "Infinite Loop 1,
Cupertino"
 mockInputViewController.descriptionTextField.text = "Test
Description"

 let mockGeocoder = MockGeocoder()
 mockInputViewController.geocoder = mockGeocoder

 mockInputViewController.itemManager = ItemManager()

 let expectation = expectationWithDescription("bla")

 mockInputViewController.completionHandler = {
 expectation.fulfill()
 }

 mockInputViewController.save()

 placemark = MockPlacemark()
 let coordinate = CLLocationCoordinate2DMake(37.3316851,
-122.0300674)
 placemark.mockCoordinate = coordinate
 mockGeocoder.completionHandler?([placemark], nil)

 waitForExpectationsWithTimeout(1, handler: nil)

 let item = mockInputViewController.itemManager?.itemAtIndex(0)

 let testItem = ToDoItem(title: "Test Title",
 itemDescription: "Test Description",
 timestamp: 1456095600,
 location: Location(name: "Office", coordinate: coordinate))

 XCTAssertEqual(item, testItem)
}

Putting It All Together

[174]

This looks more complicated than it is. We have just replaced sut with an instance
of MockInputViewController. As seen earlier, because we are not using the
storyboard, we need to set the text fields. The highlighted lines of code show the
changes needed to make the test asynchronous.

Run all the tests. Now, all the tests pass.

Summary
In this chapter, we took a look at how tests guide the final steps to create the
complete app. We used tests to drive the implementation of the navigation
between the view controllers of the app. We also implemented the serialization and
deserialization of the to-do items.

Finally, we used functional tests to make sure that the app worked from the user
perspective, and we found a critical bug by doing so.

In the next chapter, we will take a look at the code coverage of our tests. This means
that we will get a better insight into how much of the code is covered by tests. We will
also set up continuous integration in order to improve the feedback about our code.

[175]

Code Coverage and
Continuous Integration

We now have about 80 tests and the code that makes tests pass. But do the tests
really test all the code? Using TDD, the code coverage of our tests should be quite
high. Should.

Instead of guessing, we would rather have numbers that tell us how good the code
coverage of our tests really is. Before Xcode 7, it was quite difficult to measure the
coverage of a test suite. But with version 7, Apple added this feature to Xcode.

In this chapter, we will measure the code coverage of our tests, and we will take a
look how we can use Xcode Server and fastlane to automate everyday tasks in our
lives as iOS developers. The chapter is structured like this:

•	 Enabling code coverage
•	 Continuous integration
•	 Automatic deployment with fastlane

Enabling code coverage
Measuring the code coverage of our tests gives us a feeling of completeness about
our test suite. When following the TDD workflow, as we don't write any code
without a failing test, the code coverage of our project should be very high. We don't
expect it to be 100%, meaning that all the code paths are executed in the tests because
the static analyzer forces us to write code that we don't expect to be executed. For
example, in the code we wrote, we often used guard to make sure that the value we
wanted to access was not nil. We could have written tests for a case where the value
was nil. But in my opinion, these tests give no additional value.

Code Coverage and Continuous Integration

[176]

Nevertheless, we will examine the parts of the project without code coverage and
discuss whether we need to add tests to cover them.

Code coverage in Xcode
Xcode has added native support for the measurement of code coverage of tests with
version 7. To enable it, select Edit Scheme... in the Scheme selector in Xcode:

In the following pop-up window, select the Test phase and check Gather
coverage data:

Chapter 7

[177]

That is all! If you have tried to add the gathering of code coverage in Xcode 6, you
will most probably be impressed by how easy this is in Xcode 7. Close the window,
and run all the tests to measure the code coverage.

After the tests have finished, select Report Navigator, click on Test, and select the
Coverage tab:

This opens the Coverage data view. On the left-hand side, you can see the files in the
project, and on the right-hand side, the corresponding coverage value is shown. The
worst coverage is in AppDelegate.swift. Click on the triangle next to the filename
to expand its details. The details show the coverage data for all the methods in the
file. It immediately becomes clear why the code coverage in AppDelegate.swift is
that low. We left the methods from the template in AppDelegate even though we
don't need them.

Let's remove the unused methods. Open AppDelegate.swift. The only really
required method here is application(_:didFinishLaunchingWithOptions:).
Remove all the other methods, run all the tests, and open the code coverage for the
new test run. Now AppDelegate has 100% test coverage. Great!

Code Coverage and Continuous Integration

[178]

Let's take a look at another file where the code coverage is not 100%. Open
DetailViewController.swift and go to Editor | Show Code Coverage. If you
cannot find the menu item but instead there is an item called Hide Code Coverage,
your editor is already set up correctly. With this setting, Xcode shows the coverage
data in the editor next to the code:

The numbers show how often this code block has been executed during the test's
run. If the number is 0, it means that this line did not get executed. In the case of
DetailViewController.swift the following line has no code coverage:

guard let itemInfo = itemInfo else { return }

To take a look at what is going on here, let's replace this line with the following
equivalent implementation:

guard let itemInfo = itemInfo
 else { return }

Run the tests again to collect the coverage data. The code coverage is zero in
the line with the else clause. The reason for this is that we did not write a test
for the case when itemInfo was nil. Do we need this test? In my opinion, in
this case, it does not make sense to add a test for this because we just return
from viewWillAppear(_:) when itemInfo is nil. In addition to this, in our
app, the only controller that creates an instance of DetailViewController is
ItemListViewController, and we already have a test that this controller sets the
itemInfo dictionary.

Chapter 7

[179]

In fact, it is a development error if we forget to set itemInfo because then the detail
View Controller cannot show any useful data. So, instead of adding a test, we'd
rather make sure that the app crashes when there isn't itemInfo at this point. Then,
such an error would show up as a crash during development. We also find the error
faster than in a case where we just return from viewWillAppear(_:) and wonder
why the UI is not populated with data.

To make the app crash in case there is no itemInfo, replace the guard statement
with the following:

guard let itemInfo = itemInfo
 else { fatalError() }

What code coverage is enough?
What value for code coverage is enough? This question cannot be answered because
it mostly depends on the project and people working on the project. In fact, it is often
better to ignore the code coverage data altogether because it only has a limited value
to decide whether tests are missing. But if you search the Internet for this question,
you will find a lot of different opinions on the topic. You might have to find you own
answer to this question.

In my opinion, the one and only measurement to answer whether there are enough
tests, is your confidence. If you are confident that the code you've written is working
because you've tested all the relevant aspects of it, then you have enough tests.

But, nevertheless, the code coverage data can help you to figure out whether you
have missed something in your test that you thought would already be tested.

Continuous integration
During development using TDD, we test our code all the time. In fact, we only write
code if a failing test tells us to. But let's face it; sometimes, you're not in the right
mood or believe that without tests, you are faster (which is rarely the case) and need
to fix that bug now. Whatever the reason behind why you don't write a test first
is, you still want the test harness to prevent you from breaking existing features.
The idea is to always have a compliable, presentable app in your source code
management system.

Continuous integration helps with this task. A continuous integration server can be
configured to compile the project and run all the tests whenever someone makes a
change to the repository. Or, you can configure it to compile and run the tests every
night at 2 AM, for example. This way, when you arrive at your office at 8 AM, you
can check whether the project is still in good shape.

Code Coverage and Continuous Integration

[180]

In this section, we will use Xcode Server to set up continuous integration for our
ToDo app. Xcode Server can be downloaded from the App Store for about $20. But
if you are a registered iOS or OS X developer, you can download it from Apple's
website for free.

Installing and setting up Xcode Server
Download OS X Server from https://developer.apple.com/osx/download/,
or search for it in the App Store. Make sure that the developer in the App Store
is iTunes S.a.r.l.. After downloading and installing it, open Sever.app from the
Applications folder, and follow the setup instructions. Go to the Xcode section
under Services, and click on Choose Xcode.... Select the Xcode version you use for
development. When you set up OS X Server on a remote Mac, you need to download
Xcode first from the App Store.

When OS X Server is finished with setting up Xcode, you should see a window
similar to this:

https://developer.apple.com/osx/download/

Chapter 7

[181]

Click on the big switch in the right-top corner to start Xcode Server. After a few
seconds, the status should change to Available on your local network:

To enable continuous integration, the Xcode Server needs access to the repository of
the app. If the project is already hosted by a web service, such as GitHub, you can
give Xcode Server access to this repository. We will use a different approach here.
We will host the repository of our app on Xcode Server.

Click on the Repositories button. Then, click on Edit Repository Access and allow
access over HTTPS and SSH:

Code Coverage and Continuous Integration

[182]

Now, open Xcode, navigate to Xcode | Preferences, and select the Accounts tab.
Click on the + button at the bottom and select Add Server...:

Select the server shown in the list or enter the address of your localhost (127.0.0.1)
and click on Next. Enter the username and password of the admin account of
your Mac.

Chapter 7

[183]

Before we can add the Xcode Server as the location for a remote repository, we need
to make sure that the project is already managed by Git. Open Terminal.app, and
navigate to the directory of the ToDo project. Enter the following command and
press return:

ls –a

When you see .git in the output, you already have a Git repository for the project.
If not, put in the following command and press return:

git init

This command creates a Git repository for the project. Next, put in the following
command and press return:

git add -A .; git commit -m "Initial commit"

Quit Xcode and open the ToDo project again.

We have now a local Git repository for our project. Next, we will add a remote
repository on the Xcode Server. In Xcode, go to Source Control | ToDo – master |
Configure ToDo. Select the Remotes tab, click on the plus (+) button in the bottom-
left corner, and choose Create New Remote.... Select the server you have added in
Accounts and click on Create.

Adding bots
We will now add a bot. Bots are the implementation of continuous integrations
shipped with Xcode.

Go to Product | Create Bot.... Make sure that the checkbox next to Share scheme is
checked and the server you have created is selected as Server; then, click on Next.

In the window that appears, Xcode will ask you to provide credentials for Xcode
Server. Click on Sign In, put in your username and password (the same you used
when you set up the server in Account Preferences in Xcode), and click on Next.
Change the selection in Schedule to On Commit and click on Next. Specify the
devices you want the test to run on. The more devices you select here, the longer
the integration will take. So, for a start, select Specific iOS Devices and check one
simulator. Click on Next. In the window that appears, you can select a pre and post
trigger. This means that you can add actions before and after the integration is run.
We won't use the trigger here. Click on Create.

Code Coverage and Continuous Integration

[184]

Xcode will open a commit window because it has changed the project to enable
continuous integration. Add the Added Bot commit message and click on the
Commit button:

The bot will immediately start the integration. To take a look at what is going on,
expand the bot by clicking the triangle next to it in the Report Navigator, and select
the currently running integration:

Chapter 7

[185]

Sometimes, the integration seems to be stuck. In this case,
stop the integration by clicking on x next to the progress
bar, and have a look at the log section of the integration to
find out what is going on.

Code Coverage and Continuous Integration

[186]

When the integration is finished, it will present you with a summary:

The summary shows the number of ERRORS, WARNINGS, ISSUES, and TESTS.
In addition to this, it shows the created .ipa, archive, and the summary for all the
devices you have selected to run the tests on.

At the top of the window, you can select detailed information on the integration. For
example, under Coverage, you will find information on the code coverage we have
enabled in the previous section.

Chapter 7

[187]

Out of curiosity, let's make a test fail, and then take a look at what this looks like in
the integration summary. Open Location.swift, and remove the following lines
from the implementation of the equal operator:

if lhs.name != rhs.name {
 return false
}

Go to Source Control | Commit..., add the Added bug for test purposes commit
message, and click on Commit. Next, go to Source Control | Push... and click Push.
The integration will automatically start after a few seconds. Select the running
integration and wait until it is finished.

Code Coverage and Continuous Integration

[188]

In the summary view of the integration, you can already see which test has failed:

Two tests fail because of the bug we have introduced. Before we continue, make the
tests pass again.

UI testing was introduced in Xcode 7, and there are still some
strange bugs at the time of writing. Sometimes, UI tests fail during
integration without a particular reason. Because of this, I will
disable UI tests for continuous integrations until they are more
reliable. To do this, remove the UI tests from the build scheme.

Automatic deployment with fastlane
Automatic deployment is the ability to create a beta or an App Store version of an app
with just one click or command. It is of great benefit to be able to ship a version without
all the hassle of provisioning profiles and code signing (often referred to as code
signing hell). Felix Krause, a developer, started a project named fastlane.tools
to make deployment on iOS as easy as running a command in Terminal.app. We will
use fastlane in this section to set up automatic deployment for our ToDo app.

Chapter 7

[189]

To run the commands in this section, you need a paid
developer account.

Installing fastlane
Go to fastlane.tools (put fastlane.tools in your browser) and follow the
installation guide. We won't repeat the steps here because fastlane is still in active
development, and the probability that the installation process changes before this
book is published is very high.

Setting up
Open Terminal.app and navigate to the folder with the ToDo project. Put in the
following command, press enter, and follow the instructions on the screen:

fastlane init

When you are asked if you want to setup deliver or snapshot, put in n for No. But
we want to use sigh to automatically create and download provisioning profiles for
the app. The next step is to add the app to your developer portal. Put the following
command into Terminal.app and press enter:

produce

You will be asked for the credentials of your Apple ID. The password you provide
here will be stored in the keychain. When asked about the app name, put in a good
name for the app. This name will be used to create the app in iTunes Connect. If
there is already an app with that name in the App Store, fastlane will tell you so. In
this case, run produce again and choose another name.

Before we can create a beta build and load it to TestFlight, the app needs an icon file
that is 120 x 120 in size. Create your own icon or use this:

Code Coverage and Continuous Integration

[190]

Add the icon by navigating to Assets.xcassets | AppIcon | iPhone App iOS 7-9 60
pt | 2x.

To create a beta build and load it to TestFlight, use this simple command:

fastlane beta

Fastlane fetches the required provisioning profile, builds the app, and loads it into
TestFlight. The whole process takes a while. But everything runs automatically and
you can do something else until the upload is finished.

If this is your first upload, fastlane will print something like this:

This build could not be used for external testing because the build is
not approved.

You can now open iTunes Connect, and submit the build for beta review. This is how
you can perform automatic deployments using fastlane.

Among others, fastlane is also able to upload the App Store description and
screenshots for your app, and it can submit these for review. Have a look at the
https://github.com/fastlane/fastlane GitHub page to get some knowledge
about the many different tools in fastlane and how they can help you with your day-
to-day development tasks.

Summary
In this chapter, we learned how to activate code coverage. We used the data from a
measurement to improve our code. By activating the presentation of the coverage
data in the editor, we figured out which lines aren't tested by the test suite.

Next, we set up Xcode Server and added a bot to get the advantage of a continuous
integration server. We took a look at how we can use Xcode Server to host our
repository.

Finally, we used fastlane to automatically create and load provisioning profiles and
build and submit our app for the TestFlight review.

In the next and final chapter, we will discuss what we can do to learn more about
testing and the other approaches that are included in writing tests.

https://github.com/fastlane/fastlane

[191]

Where to Go from Here
You learned how to write tests for models, view controllers, and networking
code using the TDD workflow. Of course, an introductory book can only cover an
overview of the wide topic of TDD.

There is more to learn (as always). This chapter starts with a recap of what we have
covered in the book so far. Then, it'll go on to describe certain possible topics that
you can take a look at next.

This chapter covers the following topics:

•	 What we have learned so far
•	 Integration tests
•	 UI tests
•	 Behavior-Driven Development
•	 TDD in existing projects
•	 More information on TDD

What we have learned so far
In the course of this book, we have mainly written unit tests. As the name suggests,
unit tests test small units in isolation. The advantage of using unit tests for TDD is
the immediate feedback that is received in the TDD workflow. We wrote a test, ran it,
and immediately got feedback about the status of our code.

We used mocks, stubs, and fakes to separate the units from the rest of the code. This
allowed us to focus the tests on one micro feature at a time.

Where to Go from Here

[192]

Using TDD, we build a model, View Controller, and the network layer of our app.
Next, we put all the parts together to form a real iOS app. We have seen how to use
UI tests to implement functional testing that focuses on individual features rather
than units.

Finally, we also used Xcode Server and fastlane to automate the whole development
and deployment process.

But, as you might have guessed, there is more. This book is, at best, only the beginning
of your journey to becoming a testing expert. The next few sections will give you some
guidance on where you can go in order to gain more experience in testing.

Integration tests
In Chapter 6, Putting It All Together, we saw that unit tests could only test micro features
in isolation. The next step would be to use integration tests to make sure that individual
features play well together. In integration tests, you do not mock other components.
Instead, you use the real implementation and write tests that make sure that the
different parts of the code base interact with each other in the way you anticipated.

You can also use XCTest to implement integration tests. But the setup is more
complicated than in the tests we have seen in this book. You use real classes and
structs, and even network requests can fetch real data from a web service. What
makes integration tests more complicated is that you don't want to change data in a
real database during the test. This means that everything you do in the test has to be
reverted when the test is finished. Or, you may have to use a different database or
web service for the test.

The disadvantage of integration tests in respect to unit tests is that it is much
harder to find the reason for a failing test. This means that integration tests are
complementary to a unit test suite. Integration tests should only fail because of an
error in the integration, not because one of the units has a bug. So, you should not
skip writing unit tests.

UI tests
We have written one UI test in Chapter 6, Putting It All Together, to implement a
functional test for the input of new to-do items. But the other features of the UI aren't
tested yet. Unit tests can test whether an element is on the screen, but doing this is
cumbersome. It is much easer to use the new UI tests that were introduced in Xcode 7.

Chapter 8

[193]

As you might have already noticed, UI tests are slow. They need to start the app and
wait until the UI is loaded before they can interact with it. In addition to this, the
app is closed and reopened after each test to make sure that each tests starts with
a defined state. As a result, you should not test each UI element in isolation. You'd
rather write tests for a complete function of the app (for example, adding a to-do
item to the list).

In the case of the ToDo app implemented in this book, a useful UI test would test
whether a to-do item can be checked in the list and if a user can show the details of a
to-do item. Go ahead; add the tests yourself using the recording feature of Xcode.

But, as described, you should add a separate scheme for the UI tests to keep the main
testing suite fast.

Behavior-Driven Development
Behavior-Driven Development (BDD) is sort of similar to TDD, but you focus on
testing the behavior of your app instead. The main difference is the way the tests are
written. Using XCTest, you mainly use the method name to describe what the test
does. BDD frameworks usually allow you to write the expected behavior as a text
string, and therefore, make the tests easier to read.

It is often said that the tests become so clear that people who are not familiar with
programming can write them. Here is an example that uses the Quick framework
and its matcher framework, Nimble:

class ToDoItemSpec: QuickSpec {
 override func spec() {
 describe("to-do item") {

 it("can be created with a title") {
 let item = ToDoItem(title: "Test title")
 expect(item).toNot(beNil())
 }

 it("can be created with a title and a description") {
 let item = ToDoItem(title: "Test title",
 itemDescription: "Test description")
 expect(item).toNot(beNil())
 }
 }
 }
}

Where to Go from Here

[194]

These two tests are equivalent to the one that we wrote in Chapter 3, A Test-Driven
Data Model:

func testInit_ShouldTakeTitle() {
 let item = ToDoItem(title: "Test title")
 XCTAssertNotNil(item)
}

func testInit_ShouldTakeTitleAndDescription() {
 _ = ToDoItem(title: "Test title",
 itemDescription: "Test description")
}

Quick can do a lot more to make your tests easier to read. Search for Quick on GitHub
and see yourself. Even if you don't want to use BDD, the Quick documentation has a
lot of general and valuable information about testing.

TDD in existing projects
You most probably already have projects that have been implemented without any
tests. It is much harder to add tests to an existing project than it is to write them
first. When you don't keep in mind that you need to write a test for code sometime
in the future, the code itself becomes hard to test. It is often easier to tie the different
parts of the app together instead of keeping them separated with a clear and defined
interface to each other. As a result, it becomes hard to separate micro features in
order to test them with unit tests. In addition to this, testing methods with many side
effects can be cumbersome to deal with.

When writing the tests initially, you automatically think about the tests. The code
naturally becomes easier to test and more modular.

Back to your existing projects. What could you do to add tests? The way to go is to
start small. Don't rewrite all the methods using TDD. This won't work, and you will
most probably remove all the tests when you realize how hard this is.

Instead, when you find a bug in the code, try to write a failing test for the bug, and
make the test pass. This way, you improve your code, and make sure that this bug
never returns without being noticed. Unfortunately, this method will not work all the
time as your code might have a lot of coupling. But you should try it anyway. Take
some time to think about what you would have to change to make this feature testable.

Chapter 8

[195]

A second approach is to add features using TDD. You may have many ideas about
how you could improve your app. Let's say, in the example of the ToDo app, you
would like to add the ability to share the number of ToDo items on Twitter to show
all your friends and followers how busy you are. Even if the app doesn't have any
tests, we could break this feature into several micro features and write tests for them
before we implement the code.

The most important thing is to start writing tests. The tests don't have to be perfect.
A nonperfect test is better than no test. Later, you may realize that some of the tests
could be improved and even deleted. That is not a problem. Just keep adding tests.
The more tests you write, the better your tests become.

More information about TDD
You probably want to learn more about TDD and iOS. For example, we haven't
discussed how to use TDD in an app using Core Data.

There are many blogs and screencasts on the Internet about TDD and iOS (for example,
http://qualitycoding.org, http://iosunittesting.com and http://masilotti.
com). With the experience you have gained by reading through this book, you now have
a good foundation of how to follow these articles and find your own testing style.

Maybe, by learning more and more about testing in iOS, you might start a blog to
share what you have learned. I'm looking forward to reading about your experiments
and findings. Let me know where I can find it. You can find me on Twitter at @dasdom.

Summary
This chapter gave you a short overview of the possible steps involved in becoming a
testing expert. I hope you enjoyed reading the book as much as I enjoyed writing it. I
also hope that you are eager to learn more about testing, in general, as well as TDD.

http://qualitycoding.org
http://iosunittesting.com
http://masilotti.com
http://masilotti.com

[197]

Index
A
asynchronous tests

implementing 128-130
automatic deployment

with fastlane 188
automatic unit test

building 2

B
Behavior-Driven Development

(BDD) 193, 194
behaviors

build log, activating 42
setting, for testing 41
testing 43

bots
adding 183-188

breakpoint
setting, on test failure 27

built-in assert functions 8-10

C
code coverage

enabling, in Xcode 175-179
usage 179

code signing hell 188
continuous integration

about 179
bots, adding 183-188
Xcode Server, installing 180-183

Core Data 1.0 13

D
deserialization 159-167
DetailViewController

implementing 113-118

E
errors

handling 140-143
Extreme Programming 10

F
fake objects

about 92, 93
fakes 93
mocks 93
stubs 93

fastlane
installing 189
setting up 189, 190
URL 190
used, for automatic deployment 188

FirstDemoTests class 4
functional tests

about 167
recording 168-174
testing 168-174
UI test target, adding 168

fuzzy matching 20

I
InputViewController

implementing 119-24

[198]

integration tests 192
Interface Builder (IB) 80, 107
iOS

with TDD 195
ItemListDataProvider

fake objects 93
implementing 87
ItemCell, implementing 107-113
items, checking 105, 106
items, unchecking 105, 106
mocks, using 93-104
tests, writing 87-92

ItemListViewController
implementing 78-86

ItemManager class
Equatable protocol, implementing 64-74
implementing 55
items, adding 57-63
items, checking 57-63
items, removing 74
to-do items, checking 75
to-do items, counting 55-57

L
Location struct

coordinate property, adding 54, 55
implementing 53

login request
implementing, to web service 131-140

M
mocks

using 93-104
Model-View-Controller (MVC) 45

O
object-oriented programming (OOP) 93
OCUnit 13

P
partial mock 152
property list (plist) 159

S
serialization 159-167
setUp() method 25
System Under Test (sut) 56

T
task detail view 36
task input view 36, 37
task list view 34, 35
Test-Driven Development (TDD)

about 1, 10
advantages 28, 29
disadvantages 29, 30
example, demonstrating TDD

workflow 14-19
in Xcode 13
reference link 11, 195
rules 11
with iOS 195
workflow 11
writing, for existing projects 194

tearDown() method 25
Test Navigator

using 20
tests

debugging 25, 26
executing 22
executing, in test case 24
group of tests, executing 24
information, obtaining in Xcode 19
overview, obtaining 21, 22
specific test, executing 22, 23
test again feature 28

ToDoItem struct
hidden source for bugs, removing 50, 51
implementing 46
itemDescription property, adding 49, 50
location property, adding 52, 53
timestamp property, adding 51
title property, adding 46-48

to-do list app
creating, with Xcode 40, 41
data source 38, 39
delegate 38, 39

[199]

detail view, displaying 155-158
development strategy 40
initial View Controller,

implementing 146, 147
input view, displaying 147-154
model 39
structure 38
table view cells 39
Table View Controller 38, 39
task detail view 36
task input view 36, 37
task list view 34, 35
view controllers 40

U
UI tests 192, 193
unit tests

about 3
built-in assert functions 8-10
considerations, for testing 30
implementing 3-7

V
view controllers

about 77
DetailViewController,

implementing 113-118
InputViewController,

implementing 119-124
ItemListViewController,

implementing 78-86

W
web service

login request, implementing 131-140
workflow, TDD

about 11
green 12
red 12
refactor 12

X
Xcode

behaviors, setting 41
breakpoint, setting 27
code coverage, enabling 176-79
setUp() method 25
tearDown() method 25
test again feature 28
test information, obtaining 19
Test Navigator 20
test overview, obtaining 21, 22
tests, debugging 25, 26
tests, executing 22
to-do list app, creating with 40, 41
used, with TDD 13

Xcode Server
installing 180-183
setting up 180-183
URL 180

XCTestCase class 4

Thank you for buying
Test-Driven iOS Development with Swift

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Swift
ISBN: 978-1-78439-250-5 Paperback: 266 pages

Build a solid foundation in Swift to develop smart
and robust iOS and OS X applications

1.	 Key features: Practically write expressive,
understandable, and maintainable Swift code.

2.	 Discover and optimize the features of Swift to
write cleaner and better code.

3.	 This is a step-by-step guide full of practical
examples to create efficient IOS applications.

Mastering Swift 2
ISBN: 978-1-78588-603-4 Paperback: 408 pages

Dive into the latest release of the Swift programming
language with this advanced Apple development
book for creating exceptional iOS and os X
applications

1.	 Harness the latest and most advanced features
of Swift 2 to develop quality iOS and OSX
applications.

2.	 Comprehensive coverage of all the advanced
features of Swift and guidance on advanced
design techniques.

3.	 Dive deep into protocol extensions, learn new
error handling model, and use featured Swift
design patterns to write more efficient code.

Please check www.PacktPub.com for information on our titles

Swift Essentials
ISBN: 978-1-78439-670-1 Paperback: 228 pages

Get up and running lightning fast with this practical
guide to building applications with Swift

1.	 Rapidly learn how to program Apple's newest
programming language, Swift, from the basics
through to working applications.

2.	 Create graphical iOS applications using Xcode
and storyboard.

3.	 Build a network client for GitHub repositories,
with full source code on GitHub.

Object–Oriented Programming
with Swift 2
ISBN: 978-1-78588-569-3 Paperback: 332 pages

Get to grips with object-oriented programming
with Swift to efficiently build powerful real-world
applications

1.	 Leverage the most efficient object-oriented
design patterns in your Swift applications.

2.	 Write robust, safer, and better code using the
blueprints that generate objects.

3.	 Build a platform with object-oriented code by
using real-world elements and represent them
in your app.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Your First Unit Tests
	Building your first automatic unit test
	What are unit tests?
	Implementing a unit test example
	Important built-in assert functions

	Understanding TDD
	The TDD workflow – red, green, and refactor
	Red
	Green
	Refactor

	TDD in Xcode
	An example of TDD
	Red – example 1
	Green – example 1
	Refactor – example 1
	Red – example 2
	Green – example 2
	Refactor – example 2
	A recap

	Finding information about tests in Xcode
	Test Navigator
	Tests overview
	Running tests
	The setUp() and tearDown() methods
	Debugging tests
	Breakpoint that breaks on test failure
	Test again feature

	Advantages of TDD
	Disadvantages of TDD
	What to test
	Summary

	Chapter 2: Planning and Structuring Your Test-Driven iOS App
	Task list view
	Task detail view
	Task input view
	Structure of the app
	The Table View Controller, the delegate and the data source
	Table view cells
	A model
	Other view controllers
	Development strategy

	Getting started with Xcode
	Setting useful Xcode behaviors for testing
	Useful build behaviors
	Testing behaviors

	Summary

	Chapter 3: A Test-Driven Data Model
	Implementing the ToDoItem struct
	Adding a title property
	Adding an itemDescription property
	Removing a hidden source of bugs
	Adding a timestamp property
	Adding a location property

	Implementing the Location struct
	Adding a coordinate property

	Implementing the ItemManager class
	Count
	Adding and checking items
	Equatable
	Removing all items
	Ensuring uniqueness

	Summary

	Chapter 4: A Test-Driven View Controller
	Implementing ItemListViewController
	Implementing ItemListDataProvider
	Conducting the first tests
	Fake objects
	Using mocks
	Checking and unchecking items
	Implementing ItemCell

	Implementing DetailViewController
	Implementing InputViewController
	Summary

	Chapter 5: Testing Network Code
	Implementing asynchronous tests
	Implementing a login request to a web service
	Handling errors
	Summary

	Chapter 6: Putting It All Together
	Connecting parts
	The initial View Controller
	Showing the input view
	Showing the detail view

	Serialization and deserialization
	Functional tests
	Adding a UI test target
	Recording and testing

	Summary

	Chapter 7: Code Coverage and Continuous Integration
	Enabling code coverage
	Code coverage in Xcode
	What code coverage is enough?

	Continuous integration
	Installing and setting up Xcode Server
	Adding bots

	Automatic deployment with fastlane
	Installing fastlane
	Setting up

	Summary

	Chapter 8: Where to Go from Here
	What we have learned so far
	Integration tests
	UI tests
	Behavior-Driven Development
	TDD in existing projects
	More information about TDD
	Summary

	Index

