
www.allitebooks.com

http://www.allitebooks.org

Testing and Securing Android
Studio Applications

Debug and secure your Android applications with
Android Studio

Belén Cruz Zapata

Antonio Hernández Niñirola

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Testing and Securing Android Studio Applications

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1190814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-880-8

www.packtpub.com

Cover image by Ravaji Babu (ravaji_babu@outlook.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Belén Cruz Zapata

Antonio Hernández Niñirola

Reviewers
Nico Küchler

Anand Mohan

Ravi Shanker

Kevin Smith

Abhinava Srivastava

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Rebecca Youé

Content Development Editor
Parita Khedekar

Technical Editor
Mrunmayee Patil

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinators
Neha Thakur

Amey Sawant

Proofreader
Ameesha Green

Indexers
Mariammal Chettiyar

Rekha Nair

Tejal Soni

Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Belén Cruz Zapata received her engineering degree in Computer Science from
the University of Murcia in Spain, with specialization in software technologies
and intelligent and knowledge technologies. She has earned an MSc degree in
Computer Science and is now working on her PhD degree in Software Engineering
Research Group from the University of Murcia.

Belén is based in Spain; however, due to the field of her PhD, she is now collaborating
with Université Mohammed V - Soussi in Rabat. Her research is focused on mobile
technologies in general and also applies to medicine.

Belén has worked as a mobile developer for several platforms, such as Android,
iOS, and the Web. She is the author of the book on Android Studio: Android Studio
Application Development, Packt Publishing.

To follow her projects, she maintains a blog at http://www.belencruz.com and
you can follow her on Twitter at @belen_cz.

I would like to thank Packt Publishing for offering me the opportunity
to write this book. I would particularly like to thank Parita Khedekar,
Rebecca Youé, and Amey Sawant for their valuable help.

I would also like to thank Antonio, the co-author of this book, for
making everything so easy; my new friends of adventure, especially
Paloma, Camilla, and Adrián, for these last months; my friends from
way back for visiting me; and finally, my family for supporting me.

www.allitebooks.com

http://www.belencruz.com
http://www.allitebooks.org

Antonio Hernández Niñirola has an engineering degree in Computer Science
and is a mobile application developer. He was born and raised in Murcia in
the southeast region of Spain and is currently living in Rabat, Morocco. He has
developed several websites and mobile applications.

After completing his degree in Computer Science, he pursued a Master's degree
in Teacher Training for Informatics and Technology. Antonio pushed his studies
further and is now a doctoral candidate under the Software Engineering Research
Group of the faculty of Computer Science at the University of Murcia, and is actually
a researcher for the Université Mohammed V - Soussi in Rabat.

You can visit his website at http://www.ninirola.es to find out more about him
and his projects.

I would like to begin by thanking Rebecca Youé, Parita Khedekar, and
Amey Sawant for their valuable input. Thank you to everyone at Packt
Publishing who make writing a book such an enjoyable experience.

Thank you Belén, the other half of this book, for making everything
much better. I would finally like to thank my family for their
support, my new friends in Morocco, my old friends in Spain,
and everyone who helped me be who I am today.

www.allitebooks.com

http://www.ninirola.es
http://www.allitebooks.org

About the Reviewers

Nico Küchler lives in Berlin, Germany. He did an apprenticeship as a
mathematical-technical software developer. He has worked for the gamble industry
and as an online shop provider. He has been working at Deutsche Post E-POST
Development GmbH for 2 years within the scope of Android app development.

He has been maintaining a project that provides a quick start with test-driven
Android app development at https://github.com/nenick/android-gradle-
template.

Anand Mohan is a geek and a start-up enthusiast. He graduated from the Indian
Institute of Information Technology, Allahabad, in 2008. He has worked with
Oracle India Pvt. Ltd. for 4 years. In 2012, Anand started his own venture, TripTern,
along with his friends, which is a company that algorithmically plans out the most
optimized travel itinerary for travelers by utilizing Big Data and machine-learning
algorithms. At TripTern, Anand has developed and implemented offline Android
applications so that travelers can modify their itinerary on the go without relying
on any data plan.

Apart from working on his start-up, Anand also likes to follow the latest trends in
technology and best security practices.

www.allitebooks.com

https://github.com/nenick/android-gradle-template
https://github.com/nenick/android-gradle-template
http://www.allitebooks.org

Ravi Shanker has always been fascinated with technology. He's been a passionate
practitioner and an avid follower of the digital revolution. He lives in Sydney,
Australia. He loves traveling, presenting, reading, and listening to music. When
not tinkering with the technology, he also wields a set of brushes and palette of
colors to put the right side of his brain to work.

Ravi has honed his skills over a decade in development, consulting, and product
and project management for start-ups to large corporations in airline, transportation,
telecom, media, and financial services. He has worked in the USA, UK, Australia,
Japan, and most of Asia-Pacific. He has also run a couple of start-ups of his own
in the past.

Ravi is often seen blogging, answering or asking questions on Stack Exchange,
posting or upvoting, and tweeting on the latest developments in digital space.
He has made presentations at meetings and interest groups and has conducted
training classes on various technologies. He's always excited at the prospect of
new and innovative developments in improving the quality of life.

Abhinava Srivastava has completed his Bachelor of Technology degree
in Computer Science Engineering from India in 2008 and has also received a
Diploma in Wireless and Mobile Computing from ACTS, C-DAC, India in 2009.

He started his career as a Software Engineer at Persistent Systems before moving
to Singapore, and is currently working with MasterCard, Singapore.

Abhinava is a core technologist by heart and loves to play with open source
technologies. He maintains his own blog at http://abhinavasblog.blogspot.in/
and keeps jotting his thoughts from time to time.

I would like to thank my family members for their continuous
support, especially my elder brother, Abhishek Srivastava, who
has been a mentor and an inspiration. Last but not least, I would
like to extend my gratitude to Packt Publishing for giving me the
opportunity to be a part of such a wonderful experience.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to Software Security	 5

Software security terms	 6
Threats, vulnerabilities, and risks	 8

Threat	 8
Vulnerability	 9
Risk	 10

Secure code-design principles	 11
Testing the basics	 12
Summary	 15

Chapter 2: Security in Android Applications	 17
The mobile environment	 17
An overview of Android security	 19
Permissions	 20
Interapplication communication	 22

Intents	 22
Content providers	 25

Summary	 26
Chapter 3: Monitoring Your Application	 27

Debugging and DDMS	 28
Threads	 29
Method profiling	 31
Heap	 33
Allocation Tracker	 35
Network Statistics	 36
File Explorer	 39
Emulator Control	 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

System Information	 40
Summary	 40

Chapter 4: Mitigating Vulnerabilities	 41
Input validation	 41

SQL injection	 43
Permissions	 44
Handling a user's data and credentials	 45
Interapplication communication	 46

Securing Intents	 46
Securing the content providers	 48

Summary	 49
Chapter 5: Preserving Data Privacy	 51

Data privacy	 51
Shared preferences	 52
Files in the internal storage	 54
Files in the external storage	 55
The database storage	 55

Encryption	 56
The encryption methods	 57
Generating a key	 58

Using encryption to store data	 59
Summary	 61

Chapter 6: Securing Communications	 63
HTTPS	 63

SSL and TLS	 66
Server and client certificates	 67
Keytool in the terminal	 68
Android Studio	 70

Code examples using HTTPS	 71
Summary	 73

Chapter 7: Authentication Methods	 75
Multifactor authentication	 75

The knowledge factor	 76
The possession factor	 77
The inherence factor	 77

Login implementations	 77
AccountManager	 80
Summary	 81

Table of Contents

[iii]

Chapter 8: Testing Your Application	 83
Testing in Android	 83
Testing the UI	 84

The uiautomator API	 85
The UiDevice class	 85
The UiSelector class	 86
The UiObject class	 86
The UiCollection class	 87
The UiScrollable class	 87

The uiautomatorviewer tool	 87
The UI test project	 89
Running UI test cases	 91
Summary	 92

Chapter 9: Unit and Functional Tests	 93
Testing activities	 93

The test case classes	 94
Instrumentation	 95
The test case methods	 96
The Assert class and method	 97

The ViewAsserts class	 98
The MoreAsserts class	 98

UI testing and TouchUtils	 99
The mock object classes	 100

Creating an activity test	 101
Creating a unit test	 102

The unit test setup	 102
The clock test	 103
The layout test	 104
The activity Intent test	 104

Creating a functional test	 105
The functional test setup	 105
The UI test	 106
The activity Intent test	 107
The state management test	 107

Getting the results	 108
Summary	 110

Chapter 10: Supporting Tools	 111
Tools for unit testing	 111

Spoon	 112
Mockito	 114
Android Mock	 115
FEST Android	 116
Robolectric	 117

Table of Contents

[iv]

Tools for functional testing	 117
Robotium	 118
Espresso	 119
Appium	 120
Calabash	 120
MonkeyTalk	 121
Bot-bot	 121
Monkey	 122
Wireshark	 123

Other tools	 124
Genymotion	 124

Summary	 126
Chapter 11: Further Considerations	 127

What to test	 127
Network access	 127
Media availability	 129
Change in orientation	 130
Service and content provider testing	 130

Developer options	 131
Getting help	 133
Summary	 135

Index	 137

Preface
Mobile applications have become very popular in the last few years thanks to a huge
increment in the use of mobile devices. From a developer's point of view, Android
has become an important source of income thanks to the different app repositories,
such as Google Play and Amazon Appstore.

With an increase in the number of applications available, users have become more
demanding about the features of the applications they are going to use. A solid
testing of the application and its security aspects are the key factors in the pursuit of
success for an application. Bugs and security issues are obviously not features that
help your application do well in the increasingly more exigent market of Android.

In this book, you are going to learn how to turn your Android application into
a solidly debugged and secure application. To achieve this, you will learn how
to use Android Studio and its most important features: testing and security.

What this book covers
Chapter 1, Introduction to Software Security, introduces the principles of
software security.

Chapter 2, Security in Android Applications, describes the distinctive features
found in mobile environments and the Android system.

Chapter 3, Monitoring Your Application, presents the debugging environment,
one of the most important features of an IDE.

Chapter 4, Mitigating Vulnerabilities, describes the measures that should be taken
to prevent attacks.

Chapter 5, Preserving Data Privacy, presents the mechanisms offered by Android
to preserve the privacy of user data.

Preface

[2]

Chapter 6, Securing Communications, explains the mechanisms offered by Android to
secure communications between an Android application and an external server.

Chapter 7, Authentication Methods, presents different types of authentication methods
used in Android mobile devices.

Chapter 8, Testing Your Application, introduces ways to test an application using
Android Studio.

Chapter 9, Unit and Functional Tests, covers unit and functional tests that allow
developers to quickly verify the state and behavior of an activity on its own.

Chapter 10, Supporting Tools, presents a set of external tools different from Android
Studio to help developers test an Android application.

Chapter 11, Further Considerations, provides some further considerations that are
useful for developers.

What you need for this book
For this book, you need a computer with a Windows, Mac OS, or Linux system. You
will also need to have Java and the Android Studio IDE installed on your system.

Who this book is for
This book is a guide for developers with some Android knowledge, but who do not
know how to test their applications using Android Studio. This book is suitable for
developers who have knowledge about software security but not about security in
mobile applications, and also for developers who do not have any knowledge about
software security. It's assumed that you are familiar with Android and it is also
recommended to be familiar with the Android Studio IDE.

Conventions
In this book, you will find a number of text styles that will help you distinguish
between different kinds of information. Here are some examples of these styles
and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To send an ordered broadcast, you can call the sendOrderedBroadcast method."

Preface

[3]

A block of code is set as follows:

Instrumentation.ActivityMonitor monitor =
 getInstrumentation().addMonitor(
 SecondActivity.class.getName(), null, false);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

@Override
protected void setUp() throws Exception {
super.setUp();

Intent intent = new
 Intent(getInstrumentation().getTargetContext(),
 MainActivity.class);
startActivity(intent, null, null);
mActivity = getActivity();

Any command-line input or output is written as follows:

adb shell monkey –p com.packt.package –v 100

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The multiplication is made when the Button1 button is clicked."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any
list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Introduction to Software
Security

You want to learn how to improve your Android applications so that they're secure
and robust. You would like to learn about mobile software security and its most
important threats and vulnerabilities. You want your users to be satisfied while
ensuring that their data is secure and that the application has no bugs. Can you
do this easily? What do you need to do in order to achieve this?

This chapter will teach you the basics of software security. We'll begin by teaching
you the different security terms that we will use in this book. You'll see the most
important threats and vulnerabilities that may affect your application. You'll then
learn about secure code design principles, as well as how to test our application
for security issues.

In this chapter, we will cover the following topics:

•	 Software security terms
•	 Threats, vulnerabilities, and risks
•	 Secure code design principles
•	 Security testing

Introduction to Software Security

[6]

Software security terms
In recent years, the Internet has experienced a huge increase in electronic commerce
(e-commerce). This increase in monetization of information in the cloud means
that attackers can now be rewarded financially, socially, and even politically for a
successful attack. There is a low risk in attempting these attacks, since there is a small
chance of getting captured and therefore, of prosecution. With a more motivated
enemy, companies and enterprises have to improve their security measures to face
these new threats. They must identify the threats and defend the vulnerabilities that
may affect the data that has a big impact on their business.

In order to understand the content of this book completely, you will first need to
understand some basic concepts about software security:

•	 Access control: This ensures selective access to resources by users that are
entitled to it.

•	 Asymmetric cryptography: This is also known as the public key
cryptography and uses algorithms that employ a pair of keys—one public
and one private. A public key is used to encrypt the data while a private
key is used to decrypt data.

•	 Authentication: This is a process through which we can confirm the identity
of a user.

•	 Authorization: This is a process through which we give someone permission
to do or have something.

•	 Availability: This means that the system and data are available to authorized
users when they may make use of it.

•	 Brute force: This is a very basic and nonoptimal cryptanalysis technique that
tries every possibility to crack a key or a password.

•	 Cipher: This is a cryptographic algorithm that may be used for encryption
and decryption.

•	 Code injection: This is an attack where the code is inserted into application
queries. This kind of attack is commonly used to alter databases via SQL
injections.

•	 Confidentiality: This specifies that the data is only available for users who
have permission to access it.

•	 Crack: This is the process through which an attacker attempts to gain access
to a machine, network, or software.

•	 Decryption: This is the process through which an encrypted message is
transformed into its original state.

Chapter 1

[7]

•	 Denial-of-service (DoS): This is a type of attack that makes an online
resource unavailable for a fixed amount of time.

•	 Distributed denial-of-service (DDoS): This type of attack is similar to the
DoS attack, but it is perpetrated from several machines and is generally
more effective than a DoS attack.

•	 Dictionary attack: This is a basic cryptanalysis technique that uses all the
words in a dictionary when trying to crack a key or password.

•	 Encryption: This is a process through which a plain piece of data is
transformed into an encrypted state, with the objective of concealing this
information in order to prevent access from unwanted sources.

•	 Hash function: This is a type of algorithm that maps data of different sizes
into data of a fixed size.

•	 Hijack attack: This is a form of attack in which an already established
communication is seized and acts as one of the original participants.

•	 Hypertext Transfer Protocol Secure (HTTPS): This is an application
level protocol based on HTTP that allows a secure transfer of sensitive
information in the form of hypertext.

•	 Integrity: This means that the information is accurate and is not changed
accidentally or deliberately.

•	 MD5: This is a very commonly used hash function.
•	 Man-in-the-middle attack: This is a type of attack where the attacker

assumes a position in the middle of a communication, intercepts and reads
the messages of a communication, and lets the victims believe that they are
directly connected to each other.

•	 Password: This is a string of characters used for authentication.
•	 Phishing: This is an attack attempt that appears to be from a reliable source

and tricks the user into entering their authentication credentials in a different
domain or application.

•	 Risk: This is the likelihood of an attack happening and succeeding.
•	 SHA1: This is a commonly used hash function.
•	 Sniffing attack: This is an attack that analyses the packets exchanged in a

network in order to extract useful information from them.
•	 Spoofing attack: This is an attack where an unauthorized entity gains access

to a system with the credentials of an authorized user.
•	 Symmetric cryptography: This is a type of cryptography that uses the same

key for encryption and decryption, and therefore, every entity shares the
same key.

Introduction to Software Security

[8]

•	 Threat: This is a circumstance that could breach security and cause harm to
the system.

•	 Vulnerability: This is a weakness that allows for a threat to occur.

Threats, vulnerabilities, and risks
There are three key terms that you need to understand. They were defined in
the previous section, but we will talk a little bit more about them since they are
commonly mixed up. These terms are threat, risk, and vulnerability and they are
discussed in the following sections.

Threat
A threat is anything that may exploit vulnerability in order to access, modify, or
destroy information. A threat is the source and type of an attack and is what we try
to defend against. Threat assessments are used to determine the best way to defend
against a determined class of threat.

When we consider a communication between two authorized entities, a source (S)
and a destination (D), threats can be categorized into the following four segments:

•	 Interception: This happens when an attacking entity has an access to a
communication between two authorized entities. The entities do not realize
that interception is happening and keep on with their communication
normally.

•	 Interruption: This refers to when the attacking entity intercepts the
communication. The source entity may not realize this is happening, while
the destination entity has no knowledge of the communication attempt.

•	 Modification: This happens when the attacking entity changes the
information sent between the two authorized entities. The destination
entity does not realize that the information has been tampered with by the
attacking entity.

•	 Fabrication: This happens when the attacking entity acts like the source
entity. The destination entity acknowledges the communication as if it was
produced by the source entity.

Chapter 1

[9]

Vulnerability
Vulnerability is a weakness or a flaw in the security system of our application
that may be used by a determined threat to access, modify, or destroy information.
Vulnerability testing is mandatory and should be performed repeatedly to ensure
the security of our application.

When a human or a system tries to exploit vulnerability, it is considered to be an
attack. Some of the most common kinds of vulnerabilities that can be exploited to
damage our system are as follows:

•	 Improper authentication: This happens when an entity claims that it has
been authenticated and the software does not check whether this is true or
false. This vulnerability affects our system of access control, since an attacker
can evade the authentication process. A very common example of exploiting
this vulnerability is modifying a cookie which has a field that determines
whether the user is logged in. Setting loggedin to true can cheat the system
into believing that the entity is already logged in and is therefore granted
access when it should not be granted.

Introduction to Software Security

[10]

•	 Buffer overflow: This happens when the software has access to a determined
amount of memory but tries to read a buffer out of the limits. For example,
if the software has a buffer of size N but tries to read the position N+2, it will
read information that may be used by another process. This grants access and
even modifies the information that belongs to a part of the memory where
the software should not have access.

•	 Cross-site scripting (XSS): This is a kind of vulnerability that allows a
third-party to inject code in our software. It is especially common in websites,
but it also applies to certain mobile applications. The most commonly used
examples of XSS are the access to cookies from a different site and the
injection of JavaScript into a different site.

•	 Input validation: When reading information provided by the user, it is
always a good idea to validate the data. Not validating the data may result in
an attacker introducing certain unexpected values that can cause an issue in
the system.

•	 SQL injection: This is a kind of input validation vulnerability. It is very
common to use a search feature in almost any application. The string that the
user introduces in the search field is then introduced in a SQL sentence. If
there is no analysis and filter of the string provided by the user, an attacker
could write a SQL query that would be executed. If this is combined with a
bad access control, the attacker could even delete the whole database.

Risk
A risk is the potential for an attack happening and being successful. The more
sensitive the information, the higher the risk of attack, as it can cause a higher level
of damage to our system. Risks are the result of a threat exploiting vulnerability
and accessing, modifying, or destroying a piece of information that we want to be
protected. Risk assessments are performed to identify the most critical dangers and
to evaluate the potential damage. This potential damage is calculated through a
state between the cost of a breach happening, which depends on how sensitive the
information is, and the probability of that event, which depends on the threats and
vulnerabilities that may affect the application.

As you can see, there is a very important relationship between these three terms;
especially when trying to correctly identify the risk that the information stored
suffers. Assessing threats and detecting vulnerabilities is crucial to the protection
of the information in our application.

Chapter 1

[11]

Secure code-design principles
In order to reduce the number of vulnerabilities of your application, a good security
design is mandatory. There are many standards and guidelines that recommend
different processes to produce secure applications. In this section, we are going
to identify the most important principles that you should follow when designing
your application:

•	 Secure defaults: Security is of the utmost importance for an average user.
When designing your application, you should make sure that the most
demanding user is going to be satisfied and, therefore, your application
should offer the best security methods available. However, there are some
users who may prefer accessibility over security and may want to reduce the
level of security. For example, you may want to add password aging to your
authentication system. This means that every established period of time, the
users should change their password to a new one. This means an additional
level of security but can be annoying for certain users. Adding an option in
the preferences to turn off this feature can be a good idea. However, always
make sure to set the default to the more secure setting, and let the user decide
whether they want to increase the risk of breaching their information.

•	 Least privileges: Privileges are sometimes conceded in excess in order
to speed up the process of development. This principle states that you
should always concede the least privileges as possible in order to minimize
security risks.

•	 Clarity: Never trust obscurity to ensure the security of your application.
Concealing the information on how your security system works is a good
idea, but it should not be granted as enough by itself; the security must come
from good cryptographic techniques and a good security design.

•	 Small surface area: If you know you may have vulnerability in a determined
section of your code, you can try to minimize the risk of a threat exploiting it
by minimizing the overall use of this section. For example, if you think that
certain functionality may be exploited, you can restrict this functionality to
authenticated users.

•	 Strong defense: When defending against a certain attack, there may be
different methods to use. One control can surely be enough but sensitive
information demands extraordinary measures. Also, using more than one
method of precaution is most of the times convenient.

Introduction to Software Security

[12]

•	 Failing securely: When developing our application, we aim for the highest
robustness. However, applications fail sometimes and we need to adapt
our code to make sure the application fails securely. When programming
for Android, we can address this issue by controlling every exception, for
example, through the correct usage of try and catch.

•	 Not trusting the third-party companies: There are many services available
that have been developed by the third-party companies with different
privacy and security policies. It is important to know that while using one
of these services, you trust the companies on how they use your information.
The principle of not trusting the third-party companies recommends that you
should only trust an external service with the minimal amount of information
possible and always implies a certain level of trust with them.

•	 Simplicity: Always try to keep your security code simple. Although it is
recommended to use code patterns, when talking about security, the safest
and more robust way is its simplicity.

•	 Address vulnerabilities: When you detect vulnerability, it is important to
address this issue correctly. You need to understand both the vulnerability
and the threat and then act accordingly.

Testing the basics
As stated by Boris Beizer, author of the book Software Testing Techniques,
Dreamtech Press:

"Bugs lurk in corners and congregate at boundaries."

Security testing can be defined as a process through which we find vulnerabilities
or flaws in our security system. Although we may do exhaustive security testing,
it does not imply that no flaws exist. In this section, we will focus on the taxonomy
of tests that can be performed in any circumstance.

Tests can be categorized into two big groups: white-box tests or structural tests
and black-box tests or functional tests. Structural testing, more commonly known
as the white-box testing, is a testing method that evaluates the internal behavior
of a component. It is focused on the analysis of the behavior of each procedure in
different moments of execution. The white-box test evaluates how the software
produces a result. Functional testing, specification testing, or black-box testing, are
methods of testing that focus on the functionality of the component rather than its
structure. When using this kind of test, the tester is aware that a certain input should
generate a particular output. This test evaluates what the software produces.

Chapter 1

[13]

The two test categories, white-box test and black-box test, are shown in the following
diagrams:

white-box

black-box

input output

There are various white-box techniques. However, the most commonly used are
control flow testing, data flow testing, basis path testing, and statement coverage
and they are explained as follows:

•	 Control flow testing: This evaluates the flow graph of the software to
indicate whether the set of tests covers every possible test case.

•	 Data flow testing: This requires an evaluation of how the program variables
are used.

•	 Basis path testing: This ensures that every possible path in a code has been
included in the test cases.

•	 Statement coverage: This consists of the evaluation of the code and the
development of individual tests that will work on every individual line
of code.

The black-box testing design also includes different techniques. The most frequently
used techniques are equivalence partitioning, boundary value analysis, cause-effect
graphing, state transition testing, all pairs testing, and syntax testing, and they are
explained as follows:

•	 Equivalence partitioning: This divides test cases in different partitions
that present similar characteristics. This technique can help in reducing
the number of tests cases.

•	 Boundary value analysis: This is performed in order to analyze the
behavior of a component when the input is near the extreme valid values.

Introduction to Software Security

[14]

•	 Cause-effect graphing: This graphically illustrates the relationship between
circumstances or events that cause a determined effect on the system.

•	 State transition testing: This is performed through a number of inputs that
make the system execute valid or invalid state transitions.

•	 All pairs testing: This is a combinatorial method that tests every possible
combination of parameters. When the number of parameters and the possible
values for each parameter are big, this test technique can be combined with
the equivalent partitioning technique to reduce the number of test cases.

•	 Syntax testing: This analyses the specifications of a component to evaluate
its behavior with a huge number of different inputs. This process is usually
automatized due to the large number of inputs required.

When testing an application, there are different levels of testing that depend on the
size of the part of the system involved. There are five commonly known levels of
tests: unit, integration, validation, system, and acceptance.

•	 Unit tests: These tests focus on each individual component. These tests are
usually performed by the same development team and consist of a series
of tests that evaluate the behavior of a single component checking for the
correctness of the data and its integrity.

•	 Integration tests: These tests are performed by the development team.
These tests assess the communication between different components.

•	 Validation tests: These tests are performed by the fully developed
software in order to evaluate the fulfilment of functional and performance
requirements. They can also be used to assess how easy it is to maintain or
to see how the software manages errors.

•	 System tests: These tests involve the whole system. Once the software
is validated, it is integrated in the system.

•	 Acceptance tests: These tests are performed in the real environment
where the software is used. The user performs these tests and accepts
the final product.

The higher the level of testing, unit testing being the lowest and acceptance
testing the highest, the more likely it is to use black-box tests. Unit tests evaluate
components that are small and therefore easy to analyze in behavior. However,
the higher the level, the bigger the system, and therefore the more difficult and more
resource-consuming it is to apply white-box testing category. This does not mean
that you should not apply the black-box testing category while performing unit tests,
as each one complements the other.

Chapter 1

[15]

Summary
In this chapter, learned the basic and most commonly used terminologies while
discussing software security. You know the difference between threat, vulnerability,
and risk, and understand how each one is related to the other. You also learned about
the different kinds of threats and vulnerabilities that can affect a system. You now
know how to properly approach coding your security system thanks to the secure code
principles. Finally, you learned about the different methods of testing that you should
consider in order to make your application robust. Properly understanding these
definitions allows you to design better security systems for your software.

So as a developer, you have to address the security of your application, but what does
Android do for you? Android has several built-in security measures that reduce the
frequency and the potential damage that application security issues may cause. In the
next chapter, you will learn about these features and understand how they work.

Security in Android
Applications

You understand the security concepts in software and now you want to discover
how those threats and vulnerabilities are applied to a mobile environment. You
want to be aware of the special security features in the Android operating system.
You are already familiar with Android, but you need to know the components that
are critical for its security.

This chapter will show you the challenges that exist in the mobile environment.
You will learn about the Android security architecture and about what application
sandboxing means. This chapter will show you the main features in Android that
will allow you protect your location: permissions and interprocess communication.

We will be covering the following topics in this chapter:

•	 Vulnerabilities in the mobile environment
•	 Android security overview
•	 Permissions
•	 Interapplication communication

The mobile environment
Android is an operating system (OS) created for intelligent mobile devices with
a touchscreen, such as smartphones or tablets. Knowing the features of a device
is important to identify the vulnerabilities that can potentially compromise the
integrity, confidentiality, or availability of your application (app).

www.allitebooks.com

http://www.allitebooks.org

Security in Android Applications

[18]

A smartphone is a connected device and so malicious software can infect it in
several ways. The smartphone can communicate with different devices by a
wireless or wired connection. For example, it can connect to a computer by a cable
or it can connect to another mobile device by a wireless Bluetooth network. These
communications allow the user to transfer data, files, or software, which is a possible
path to infect the smartphone with malware.

A smartphone is also a connected device in the sense that it can connect to the
Internet by cellular networks like 3G or access points via Wi-Fi. Internet is therefore
another path of potential threats to the security of smartphones.

Smartphones also have internal vulnerabilities, for example, malicious apps that are
installed by the user themselves. These malicious apps can collect the smartphone's
data without the user's knowledge. Sensitive data might be exposed because of
implementation errors or because of errors that occur while sending data to the wrong
receiver. Communication between the apps installed in the smartphone can become a
way to attack them.

The following figure represents the types of existing vulnerabilities in smartphones.
The connection to the network is one of the external vulnerabilities, since network
connections are susceptible to sniffing or spoofing attacks. The connections to external
devices also involve potential vulnerabilities as mentioned earlier. Regarding internal
vulnerabilities, implementation errors can cause failures and attackers can take
advantage of them. Finally, user unawareness is also a vulnerability that affects the
internals of the smartphone. For example, installing apps from untrusted sources or
setting an imprudent configuration for Wi-Fi or Bluetooth services is a risk.

As a developer, you cannot control the risks associated with external devices
or the network, not even those related to user unawareness. Therefore, your
responsibility is to create robust apps without implementation errors that can
cause security breaches.

Chapter 2

[19]

An overview of Android security
Android provides a secure architecture to protect the system and its applications.
Android architecture is structured like a software stack in which each component
of a layer accepts that the layer following it is secure. The following figure shows
a simplified version of the Android security architecture:

Linux kernel
USB Driver – Wi-Fi Driver – Camera Driver – ...

Libraries
SSL – SQLite – Libc – ...

Android runtime
Core Libraries – Dalvik Virtual Machine

Application framework
Activity Manager – Window Manager – Location Manager – ...

Applications
Home – Contacts – E-mail – Camera – ...

Android OS is a multiuser, Linux-based platform in which each app has a different
user. Each app has its own user ID (UID) in the Linux kernel that is unique. The UID
is assigned by the system and is unknown to the app. Because of the unique UID,
Android apps run in separate processes with different permissions. This mechanism
is known as application sandboxing. The Android Application Sandbox isolates
each application's data and code execution to improve its security and prevent
malware. This means that under normal circumstances, you cannot have access
to other application's data and other applications do not have access to your
application's data. As the Application Sandbox is implemented in the Linux kernel,
the security provided by this mechanism is extended to all the layers above the
kernel (such as libraries, Android runtime, application framework, and application
runtime). For example, if a memory corruption error is generated, this error will only
have consequences for the application in which the error was produced.

Security in Android Applications

[20]

Application sandboxing is one of the main security features of Android, but we can
also find the following features in the security model:

•	 Application-defined permissions: If applications are isolated from each
other, how can they share information when required? Applications can
define permissions to allow other applications to control its data. There
are also many predefined system-based permissions cover many situations
and that will reduce the necessity of creating permissions, especially for
your application.

•	 Interprocess communication: Under normal circumstances, every
component of an application runs in the same process. However, there
are times when developers decide to run certain components in different
processes. Android provides an interprocess communication method that
is secure and robust.

•	 Support for secure networking: Network transactions are especially risky
on mobile devices that commonly use unsecured Wi-Fi networks in public
spaces. Android supports the most commonly used protocols to secure
connections under these extreme conditions.

•	 Support for cryptography: Android provides a framework that developers
can use with tested and robust implementations of commonly used
cryptographic methods.

•	 Encrypted file system: Android provides a full filesystem encryption. This
means that the information stored on an Android device is encrypted and
is therefore protected at any time against external entities. This option is
not active by default and requires a username and a password.

•	 Application signing: The installation package of every app must be signed
with a certificate, which can be a self-signed certificate. An attacker can
preserve their anonymity, since it's not necessary for a trusted third-party
to sign the certificate. Certificates are mainly used to distinguish developers
and allow the system to manage permissions. To prevent an attacker
from modifying your application, you should keep your certificate safe.
Furthermore, application updates must be signed with this same certificate.

Permissions
With application sandboxing, apps cannot access parts of the system without
permission, but even with it, Android allows data sharing with other apps or access
to some system services. An app needs to request permission to access device data
or to access system services. Permissions are a security feature of Android system,
but misused permissions make your application vulnerable.

Chapter 2

[21]

The permission needs of an app are declared in its manifest file. This manifest file
is bundled into the app's Android application package (APK), which includes its
compiled code along with other resources. The permissions requested in the manifest
file (manifest permissions) will be shown to the user when installing the app. The
user should review these permissions and accept them to complete the installation
process. If the user agrees to them, the protected resources are available to the app.

Do not request permissions that your app does not need. Reducing
the number of permissions makes your app less vulnerable.

Permissions control how an app interacts with the system by using an Android
application programming interface (API). Some of the protected APIs that need
permission include the following:

•	 Bluetooth
•	 Camera
•	 Location GPS
•	 Network and data connections
•	 NFC
•	 SMS and MMS
•	 Telephony

For example, to request permission to use the camera, you have to add the following
line code in our manifest file:

<uses-permission android:name="android.permission.CAMERA" />

The following code is used to request permission to access the Internet:

<uses-permission android:name="android.permission.INTERNET" />

The following code is used to request permission to send a SMS:

<uses-permission android:name="android.permission.SEND_SMS" />

Security in Android Applications

[22]

Interapplication communication
Apps in Android cannot access each other's data directly because of application
sandboxing, but Android's system provides some other mechanisms for the
applications to communicate with each other. Intents and content providers are
mechanisms that we can use on the Java API layer. Intents and content providers
should be used carefully to prevent attacks from malware applications. This is the
reason why it is important to understand their characteristics.

Intents
Intents are an asynchronous interprocess communication mechanism. Intent is a
message that includes the receiver and optional arguments to pass the data. The
receiver of Intent can be declared explicitly so that the Intent is sent to a particular
component, or it can be declared implicitly so that the Intent is sent to any
component that can handle it. Intents are used for intra-application communication
(in the same application), or for interapplication communication (in different
applications). The following components can receive Intents:

•	 Activities: An activity represents a screen in the app. Intents can start
activities, and these activities can return data to the invoking component.
To start an activity using Intent, you can call the startActivity method or
the startActivityForResult method to receive a result from the activity.

•	 Services: A service performs long-running background tasks without
interacting with the user. To start a service using Intent, you can call
the startService method or the bindService method to bind other
components to it.

•	 Broadcast receivers: Intents can be sent to multiple receivers through
broadcast receivers. When a receiver is started because of Intent, it runs in the
background and often delivers the message to an activity or a service. Some
system events generate broadcast messages to notify you, for example, when
the device starts charging or when the device's battery level is low. To send a
broadcast message using Intent, you can call the sendBroadcast method. To
send an ordered broadcast, you can call the sendOrderedBroadcast method.
To send a sticky broadcast, you can call the sendStickyBroadcast method.
There are three types of broadcast messages:

Chapter 2

[23]

°° Normal broadcast: In this type of broadcast, the message is delivered
to all the receivers at the same time. Soon after, the message is no
longer available.

°° Ordered broadcast: In this type of broadcast, the message is
delivered to one receiver at a time depending on its priority level.
Any receiver can stop the propagation of the message to the rest of
the receivers. Soon after, the message is no longer available.

°° Sticky broadcast: In this type of broadcast, the message is sent but it
does not disappear. An example of a sticky broadcast is the battery
level. An app can find out which was the last battery level broadcast
because it remains accessible.

Application communication by Intents allows the receiver and optional arguments
to reuse each other's features. For example, if you want to show a web page in your
app, you can create Intent to start any activity that is able to handle it. You do not
need to implement the functionality to display a web page in our app. The following
code shows you how to create Intent to display web page content:

Intent i = new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://www.packtpub.com"));
startActivity(i);

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The preceding code is an example of an implicit Intent in which a general action is
indicated: Intent.ACTION_VIEW. The Android system searches for all the apps that
match the Intent. If there is more than one application that matches the Intent and
the user has not set a default one, a dialog is displayed so that the user can choose
which one of them to use.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Security in Android Applications

[24]

Intents that are supported by a component are declared in the manifest file using the
Intent filters. The broadcast receivers can be also be declared at runtime. Intent filter
declares the types of Intents that a component can respond to. When a component
includes an Intent filter, the component is exported so it can receive Intents from
other components. Intent filter can constrict by the action of the Intent, by the type
of data, or by the category of the Intent. For example, if you want your app to behave
as a browser, you have to create an activity with the following Intent filters in your
manifest file:

<activity …>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <data android:scheme="http" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 </intent-filter>
</activity>

The following example shows you how to register a receiver to run when the device
starts charging:

<receiver…>
 <intent-filter>
 <action android:name=
 "android.intent.action.ACTION_POWER_CONNECTED" />
</intent-filter>
</receiver>

If you want to learn more about Intents, you might want to check out
the official documentation: http://developer.android.com/
guide/components/intents-filters.html.

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html

Chapter 2

[25]

Content providers
Content providers are a mechanism that allows sharing between applications and
serves as persistent internal data storage facility. The data stored through a content
provider is structured and the interface is designed to be used with a Structural
Query Language (SQL) backend. Although it is common to use a SQL database
behind content providers, file storage or REST calls can also be used. If you are
not familiar with content providers, you might want to check out the official
documentation since it is a broad topic: http://developer.android.com/guide/
topics/providers/content-providers.html. Our interest in content providers is
related to their security and permissions. Content providers are the perfect scenario
for SQL injection attacks.

To access the data of content providers, there are content resolvers that you can use
in your app. The provider's data is identified by a content URI. To access the content
provider, you should use the getContentResolver().query() method, which
receives the following parameters:

•	 Content URI: This is the URI that identifies the data (the FROM clause in SQL)
•	 Projection: This specifies the columns to retrieve for each row (the SELECT

clause in SQL)
•	 Selection: This is the criteria to select the rows (the WHERE clause in SQL)
•	 Selection arguments: This complements the criteria to select the rows
•	 Sort order: This is the sort order for the rows (the ORDER BY clause in SQL)

There are some content providers offered by the Android system itself, such as the
calendar provider and the contacts provider. To access the system content providers,
you need to request the permission in your manifest file. For example, to be able to
read the contacts, you must add the following permission to your app:

<uses-permission android:name="android.permission.READ_CONTACTS" />

To acquire the writing access permissions, you must add the following line of code
in your manifest:

<uses-permission android:name="android.permission.WRITE_CONTACTS" />

Any other content provider, not only those of the system, can indicate the required
permissions that other apps must request so that they can access the provider's data.

http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html

Security in Android Applications

[26]

Summary
In this chapter, you learned about the vulnerabilities associated with mobile
devices—both external and internal. You now understand the Android architecture
and the features provided by the system to keep it safe. You now know which
components of the Java API layer are vulnerable to attacks, so you can learn how
to mitigate them in the next chapters of this book.

In the next chapter, we will start using Android Studio IDE. As the first step to create
secure Android applications, you will learn how to monitor Android applications
in the debugging environment in order to detect incorrect behaviors.

Monitoring Your Application
You are now aware of the importance of learning how to monitor the activity of your
Android application and are also familiar with the basic console or logs that you use
to debug your application. However, there is more to learn about the debugging tool
available in Android Studio. Android Studio includes the Dalvik Debug Monitor
Server (DDMS) debugging tool. Do you want to use this debugging tool while
programming in Android Studio?

This chapter presents the debugging environment, one of the most important
features of an IDE. Monitoring your Android application allows you to detect the
incorrect behaviors and security vulnerabilities. In this chapter, you will learn about
the information available in the advanced debugging tool included in Android
Studio: DDMS.

The topics that will be covered in this chapter are as follows:

•	 Debugging and DDMS
•	 Thread and method profiling
•	 Heap usage and memory allocation
•	 Network statistics
•	 File explorer
•	 Emulator control and system information

Monitoring Your Application

[28]

Debugging and DDMS
In Android Studio, you can use different mechanisms to debug your application.
One of them is the debugger. The debugger manages the breakpoints, controls
the execution of the code, and displays information about the variables. To debug
an application, navigate to Run | Debug 'MyApplication' or click on the bug icon
present in the toolbar.

Another mechanism is the Console. The Console displays the events that are
taking place while the application is being launched. Actions such as uploading
the application package, installing the application in the device, or launching the
application are displayed in the Console.

LogCat is another useful tool to debug your application. It is an Android logging
system that displays all the log messages generated by the system in the running
device. Log messages have several levels of significance: verbose, debug,
information, warning, and error.

Finally, you also have DDMS, an excellent debugging tool available in the SDK that
is available directly in Android Studio. This tool is the main topic of this chapter.

To open the DDMS tool in Android Studio, navigate to Tools | Android | Monitor
(DDMS included). Alternatively, you can click on the Android icon present in the
toolbar, which will open a window with the DDMS perspective.

Once the perspective is open, as shown in the following screenshot, you can see the
list of connected devices to the left-hand side of the screen, along with a list of the
processes running on each device. On the right-hand side of the screen, you can see
the detailed information of the process. This information is divided into seven tabs:
Threads, Heap, Allocation Tracker, Network Statistics, File Explorer, Emulator
Control, and System Information. LogCat and Console are accessible at the bottom
of the window.

Chapter 3

[29]

Threads
The Threads tab displays the list of threads that are a part of the selected process.
Applications have one main thread, also called as the UI thread, which dispatches
the events to the user interface (UI) widgets. To perform long operations, it is
necessary to create new threads so that the main thread is not blocked. If the main
thread gets blocked, the whole UI will also get blocked.

To illustrate the working of this tool, run the following example. In Android Studio,
create a new basic project with a main layout and a main activity. Add a button to
the main layout named, for example, Start New Thread. Create a new method to
be executed when the button is clicked and add the following code in the method:

public void startNewThread(View v){
 new Thread(new Runnable() {
 public void run() {
 Thread.currentThread().setName("My example Thread");

 try{
 Thread.sleep(30000);
 } catch (InterruptedException e){
 e.printStackTrace();
 }
 }
 }).start();
}

The preceding method creates a new thread in the application, although it does
nothing and contains only a sleep instruction. You can set the thread a name
to recognize it easily. Run the application and open the DDMS perspective.

Monitoring Your Application

[30]

Select your application process from the Devices section and click on the Update
Threads icon present on the toolbar of the Devices section and the threads will be
loaded in the content of the tab. The Status column indicates the thread state, utime
indicates the total time spent by the thread executing user code, stime indicates the
total time spent by the thread executing system code, and Name indicates the name
of the thread. You can identify the main thread in the result list with the ID number 1,
as shown in the following screenshot:

Click on the Start New Thread button of your application and notice that a
new thread appears in the list as can be observed in the following screenshot,
My example Thread:

The thread is active for a period of 30 seconds. Every time you click on the Start
New Thread button, a new thread is created.

This tool is especially useful while creating threads in our application apart from
the main thread. Thanks to this tool, we can easily check whether our threads are
being executed at a certain point of the execution or whether they are performing
as expected in memory usage.

Chapter 3

[31]

Method profiling
The method profiling tool is used to measure the performance of the methods of
a selected process. With this tool, you can access the number of calls of a method
and the CPU time spent on their execution. There are two types of values available,
the exclusive time and the inclusive time:

•	 Exclusive time: This refers to the time spent in the execution of the
method itself.

•	 Inclusive time: This refers to the total time spent in the execution of
the method, which includes both the time spent by the method as well
as the time spent by any other method called inside the method.

To illustrate the working of this tool, we are going to run the following example.
Create a new basic project with a main layout and a main activity in Android Studio.
You can also reuse the project created in the previous section. Add a button to the
main layout, for example, Start Method Hierarchy. Create a new method that is
to be executed when the button is clicked and add the following code in the method:

public void startMethodHierarchy(View v){
 secondMethod();
}

Add the second and the third method in your activity, shown as follows:

private void secondMethod() {
 thirdMethod();
}

private void thirdMethod() {
 try{
 Thread.sleep(30000);
 } catch (InterruptedException e){ e.printStackTrace(); }
}

As seen in the previous code, you create a hierarchy of method calls that you will
be able to observe in the method profiling. To take a look at your method profiling
data, select your application process in the devices section and click on the Start
Method Profiling icon present on the toolbar of the Devices section. Click on the
Start Method Hierarchy button of your application and wait for a period of at least
30 seconds so that the third method finishes its execution. Once the third method
finishes its execution, you can stop the method profiling by clicking on the Stop
Method Profiling icon.

Monitoring Your Application

[32]

When you stop the method profiling, a new tab with the resultant trace will appear
within the DDMS perspective. The top of this new tab represents the method calls in
a time graph where each row belongs to each thread of the application. The bottom
of the trace represents the summary of the time spent on a method in a table.

To search for your application package and main activity, click on the Name label to
order the methods by their name, for example, com/example/myapplication/app/
MainActivity. The three methods (startMethodHierarchy, secondMethod, and
thirdMethod) should appear in the list as is shown in the following screenshot:

On expanding the detailed information of the secondMethod, you can see that the
parent is the startMethodHierarchy method and that the thirdMethod method
is its child. This information is presented in the following screenshot:

Also, examine the exclusive and inclusive real times. The preceding screenshot
reveals that the inclusive real time for thirdMethod was 30001,138 ms, because of
the sleep clause of 30 seconds. The time spent in the execution of the secondMethod
itself is 0,053 ms (exclusive real time), but since the inclusive time includes the time
spent by the children methods, its inclusive real time was 30001,191 ms.

Method profiling can be used to detect methods that are spending more time than
anticipated in their execution. With this information, you can learn which methods
are causing problems and need to be optimized. You can also learn which methods
are more time-consuming so that you can avoid unnecessary calls to them.

Chapter 3

[33]

Heap
The Heap tab stores all new objects created in the application. The garbage collector
(GC) deletes the objects that are not referred anymore, releasing unused memory.
The Heap tab displays the heap usage for a selected process.

To illustrate the working of this tool, run the following example. Create a new basic
project with a main layout and a main activity in Android Studio. Add a button to
the main layout, for example, Start Memory Consumption. Create a new method
to be executed when the button is clicked and add the following code to the method:

public void memoryConsumption(View v){
 list = new ArrayList<Button>();
 for (int i = 0; i <= 1000; i++) {
 list.add(new Button(this));
 }
}

Finally, add the declaration of the list as a global variable in the activity. This way,
you are preventing the GC to release the memory that stores the list after the method
finishes its execution. The declaration of the list as a global variable in the activity is
shown as follows:

private List<Button> list;

In this method, you are creating a large number of new objects, for example, a list
containing 1000 buttons. Using this method, you are going to examine how the
creation of the list is reflected in the heap. Run the application and open the DDMS
perspective. Select the application process in the Devices tab and click on the Update
Heap icon present on the toolbar to enable it. The heap information is shown after a
GC execution. Select the Heap tab and click on the Cause GC button, and you'll see
the heap usage.

The first table of the tab displays a summary: the total size, the allocated space,
the free space, and the number of allocated objects. The statistics table presents the
details of the objects that are allocated on the heap by its type: number of objects,
total size of the objects, size of the smallest and largest objects, median size, and
average size. We can select each type individually. This action will load the bottom
bar graph with the number of objects of that type ordered by its size in bytes. We can
then click on the graph using the right button of the mouse to change its properties:
title, colors, font, labels, and so on. We can also save it as a PNG image.

Monitoring Your Application

[34]

Observe the number of data objects allocated on the heap as shown in the following
screenshot:

Click on the Start Memory Consumption button of the application. In the DDMS
perspective, cause more GC executions and note how the number of objects increases
while the method is being executed. The following screenshot shows the heap
information when the method has already finished its execution. The allocated data
objects have grown from 24.822 to 60.821.

Finally, you can also try to change the declaration of the list so that it becomes
a local variable in the memoryConsumption method. Repeat the previous process
and note that the new data objects are released by the GC once the execution of
the method is finished.

Chapter 3

[35]

Allocation Tracker
The Allocation Tracker tab displays the memory allocations of the selected process.
The allocation tracker, unlike the heap tool, shows the specific objects being allocated
along with the thread, the method, and the line code that allocated them.

You can again run the previous example created for the heap monitor to show the
results of the allocation tracker. Select the application process and in the Allocation
Tracker tab and click on the Start Tracking button to start tracking the memory
information. Now, click on the Get Allocations button. This will get the list of
allocated objects, which includes a filter on the top of the tab that you can use to filter
the objects allocated in your own classes.

Click on the Start Memory Consumption button of the application. In the DDMS
perspective, again click on the Get Allocations button and observe the new
objects that are listed in the results. The objects are the buttons created in the
memoryConsumption method.

The results table presents the allocation size, the thread, the object or class, and the
method in which each object was allocated. Click on any of the Button objects to see
more information as shown the following screenshot.

You can notice that the Button object is allocated in the main activity in the
memoryConsumption method, and the line of code that allocated it is the line number 26.

Whenever you need to examine the objects allocated in the heap, you can use the
allocation tracker. You can analyze the interactions in your application and improve
the memory usage.

The following screenshot shows the details of the Button objects:

Monitoring Your Application

[36]

Network Statistics
The Network Statistics tab displays the network resources used by our application.
Let's create a simple example to test this tool. Create a new project and add the
following permissions in your manifest file:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE" />

In the main layout, add a button named, for example, Start Network Connection.
Create a new method to be executed when the button is clicked and add the
following code:

public void startNetworkConnection(View v){
 new Thread(new Runnable() {
 public void run() {
 try{
 // Small image
 TrafficStats.setThreadStatsTag(0x0001);
 downloadURL("http://goo.gl/iGoYng");
 TrafficStats.clearThreadStatsTag();

 Thread.sleep(5000);

 // Medium image
 TrafficStats.setThreadStatsTag(0x0002);
 downloadURL("http://goo.gl/eQHDRh");
 TrafficStats.clearThreadStatsTag();

 Thread.sleep(5000);

 // Large image
 TrafficStats.setThreadStatsTag(0x0003);
 downloadURL("http://goo.gl/tUDnRv");
 TrafficStats.clearThreadStatsTag();
 } catch (IOException e){
 e.printStackTrace();
 } catch (InterruptedException ie){ ie.printStackTrace(); }
 }
 }).start();
}

Chapter 3

[37]

Using the preceding example, you are downloading three images of different sizes:
small, medium, and large. Considering that connecting to the network is a long
operation, we need to execute the code in a new thread. Using an AsyncTask class
is a better solution, but instead the Thread class is used to keep the code cleaner.
After downloading an image and before downloading the next one, you will have
to wait for a period of 5 seconds so that the results displayed later are not confusing.
Finally, to clearly separate the different downloads, we establish a different tag for
each download using the setThreadStatsTag and clearThreadStatsTag methods
of the TrafficStats class. The TrafficStats class provides network traffic
statistics such as the number of bytes or packages received and transmitted.

To download an image, you have to add the following method in your activity:

private Bitmap downloadURL(String image) throws IOException {
 InputStream is = null;

 try {
 URL url = new URL(image);
 HttpURLConnection conn = (HttpURLConnection)
 url.openConnection();
 conn.setRequestMethod("GET");

 conn.connect();
 int response = conn.getResponseCode();
 is = conn.getInputStream();

 // Convert the InputStream into a bitmap
 return BitmapFactory.decodeStream(is);
 } finally {
 if (is != null) {
 is.close();
 }
 }
}

In order to have simple code, the previous method does not execute any additional
actions on the images. The images are only downloaded.

www.allitebooks.com

http://www.allitebooks.org

Monitoring Your Application

[38]

Run the application and open the DDMS perspective. To get the network statistics
of your application, click on the Start button in the Network tab. Then, click on
the Start Network Connection button of the application to start downloading the
images. The data transfers will appear in the graph as packets are sent or received.
The following screenshot shows the results of the network statistics:

In the previous screenshot, the download of the three images can be easily identified.
The columns RX bytes and RX packets represent the total number of bytes and
packets received. The columns TX bytes and TX packets represent the total number
of bytes and packets transmitted. We can use the network statistics tool to optimize
the network requests in our application and control the packets that are being
transferred at a certain point of the execution.

Chapter 3

[39]

File Explorer
The File Explorer tab exposes the whole filesystem of the device. We can examine the
size, date, or permissions for each element. Navigate to /data/app/yourpackage to
search for your application .apk package file. To check the path in which your files
are saved when they are created on internal storage, you can use the getFilesDir()
method in your activity. The files related to your application are usually located at /
data/data/yourpackage. Let's perform an example.

Create a new project and in the main layout add a button named, for example,
Create New File. Create a new method to be executed when the button is clicked
and add the following code:

public void createNewFile(View v){
 String string = "Hello world!";
 FileOutputStream outputStream;

 try {
 outputStream = openFileOutput("MyFile", MODE_PRIVATE);
 outputStream.write(string.getBytes());
 outputStream.close();
 } catch (Exception e) { e.printStackTrace(); }
}

Using the previous code, you are creating a new text file on the internal storage of
our application. Run the application and open the File Explorer tab of the DDMS
perspective. Navigate to /data/data/yourpackage/files, which is empty. Click on
the Create New File button of your application and check that the new file has been
created at /data/data/yourpackage/files, as shown in the following screenshot:

Monitoring Your Application

[40]

Emulator Control
The Emulator Control tab makes it possible to change states or activities in the
virtual device. With this emulator, you can test your application in environments
and situations that would otherwise be impossible or time-consuming to achieve.
This allows you to check whether it is behaving as expected under the following
special conditions:

•	 Telephony Status: You can choose the voice and data status, changing its
speed and latency

•	 Telephony Actions: You can simulate an incoming calls, MMS, or SMS
•	 Location Controls: You can change the geolocation of the device

System Information
In the System Information tab, you can access Frame Render Time, CPU load,
and Memory usage of the device in the form of graphs. You can select your
application individually and compare it with the rest of applications that are
running on the device.

If you click on the graph with the right button of the mouse, you will see a pop up
with the graph properties such as colors, font, and title. The graph can be customized
here and can also be saved as a PNG image.

Summary
After going through this chapter, you know how to debug an application. You
created several examples in this chapter so you know how to interpret the data
provided by the DDMS in each of the tabs available. You now understand better
how threads, method calls, memory allocation, and network usage work in
Android applications.

In the next chapter, you will apply all that you have learned from this and the
previous chapter. You will learn how to identify and mitigate the vulnerabilities in
Android applications, and you will be able to create secure applications by following
the recommendations included in the next chapter.

Mitigating Vulnerabilities
In Chapter 1, Introduction to Software Security, we already discussed the most important
vulnerabilities that can be exploited in order to compromise your application. Now,
you need to learn what measures you can take in order to address these vulnerabilities
and make your application more secure. What easy steps can be taken in order to
achieve this?

This chapter will show you how to mitigate vulnerabilities. Removing or at least
treating vulnerabilities will significantly reduce the risks of your system. We'll begin
by learning how to validate input fields. We'll also learn how to avoid code injection,
especially the most common one: SQL injection. We'll then see recommended practices
when handling user credentials and we will learn how to make our components more
secure in order to avoid vulnerabilities in the interapplication communications.

The topics that will be covered in this chapter are as follows:

•	 Input validation
•	 Permissions
•	 Handling users' data and credentials
•	 Interapplication communication

Input validation
According to the Android development guidelines, the lack of sufficient input
validation measures is one of the most common security problems in Android
applications. There are several problems that can be derived from insufficient input
validation such as buffer overflows, null pointers, off-by-one errors, inconsistencies
in the database, and even code injection problems.

Now, we will see some tips that will help us to mitigate this vulnerability.

Mitigating Vulnerabilities

[42]

We can use the inputType attribute in order to limit the possible characters the
user can set in a field. For example, if we have an EditText field where we want
a telephone number, we can define the EditText as follows in your layout file:

<EditText
 android:id="@+id/EditTextTelephone"
 android:hint="@string/telephone"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:inputType="phone">
</EditText>

Although this should not be considered a security feature, it can help to mitigate
this vulnerability. However, in order to ensure that the field is correct, additional
measures should be taken.

For example, if we have EditText for an e-mail, we can check if its content matches
the format of an e-mail simply by using the Pattern class from the java.util.
regex package and the Pattern class from the java.util package:

public void isEmail(EditText et) {
 if (et.getText()== null) return false;
 else return Patterns.EMAIL_ADDRESS.matcher
 (et.getText().toString()).matches();
}

There are more patterns available in this class that we can use:

•	 DOMAIN_NAME: This pattern is used to check the domain names
•	 EMAIL_ADDRESS: This pattern is used to check the e-mail addresses
•	 IP_ADDRESS: This pattern is used to check the IP addresses
•	 PHONE: This pattern is intended to check the substrings that are similar to

phone numbers in text and should not be used to validate a phone number
•	 TOP_LEVEL_DOMAIN: This pattern is used to check the Internet Assigned

Numbers Authority (IANA) top-level domains
•	 WEB_URL: This pattern is used to check most parts of the web URLs

If we need to validate an input that is not in this list, we can use our own regular
expressions. There are plenty of options to do the validation, but using the Pattern
class from the java.util.regex package is recommended. To learn more about
regular expressions, which will allow you to define your own patterns, you can
check the official documentation at http://developer.android.com/reference/
java/util/regex/Pattern.html.

http://developer.android.com/reference/java/util/regex/Pattern.html
http://developer.android.com/reference/java/util/regex/Pattern.html

Chapter 4

[43]

SQL injection
One of the most common and harmful attacks is a particular kind of code injection
where unauthorized SQL queries can access or even alter our database. To illustrate
this situation, let's consider the following example where you have the following
code to check the username and password that was just entered by the user:

// We have the username/password in two EditTexts
String username = usernameEditText.getText().toString();
String password = passwordEditText.getText().toString();
// We form our query
String query =
"SELECT * FROM users WHERE username = '" + username + "' AND
password = '" + password +"'";
SQLiteDatabase db = this.getWritableDatabase();
// The method rawQuery performs the query
Cursor c = db.rawQuery(query, null);
// In c you have a cursor to the user if there was a match in the
query
if (c.getCount!=0) return true; // If there is one result, grant
access

So what's the problem with the preceding code? An attacker can simply write a
username and enter the following string in EditText for password:

'' OR '1'='1'

This will grant the user access to the username since the string query will appear
as follows:

"SELECT * FROM users WHERE username = 'admin' AND password = '' OR '1'
= '1'"

The best defense against this vulnerability is to use parameterized queries. The most
important methods that we will be using are as follows:

•	 query(Uri uri, String[] projection, String selection, String[]
selectionArgs, String sortOrder)

•	 insert(Uri uri, ContentValues)

•	 update(Uri uri, ContentValues values, String selection,
String[] selectionArgs)

•	 delete(Uri uri, String selection, String[] selectionArgs)

Mitigating Vulnerabilities

[44]

Note that if the selectionArgs parameter contains any meaningful SQL characters,
those characters are sanitized and can therefore mean no harm to the integrity of the
database. In order to execute the code used in the previous example safely, we can
use the method shown in the following code:

// We have the username/password in two EditTexts
String username = usernameEditText.getText().toString();
String password = passwordEditText.getText().toString();
// We set the URI of the table;
String tableName = "USERS";
// We set the projection
String [] projection = new String []{"username", "password"}
// We set the WHERE clause or selection
String selection = "username=? AND password=?";
// Finally we set the selection arguments
String [] selectionArgs = new String[]{username, password};
// Now we get the database
SQLiteDatabase db = this.getWritableDatabase();
// The method rawQuery performs the query
Cursor c = db.query(tableName, projection, selection, selectionArgs,
null);
// In c you have a cursor to the user if there was a match in the
query
if (c.getCount!=0) return true; // If there is one result, grant
access

Permissions
The Android sandboxing system alienates applications from each other. This means
that the applications must explicitly share resources through the use of permissions.
In order to access the additional capabilities, we need to declare the permissions
that we require in our manifest, and these permissions must be accepted by the
user after installation.

If our application does not have access to many permissions, it reduces the
vulnerabilities that may affect our application. When developing the application,
we should always try to request as few permissions as possible. For example,
try to store data locally instead of asking for a permission for external storage.
If it is not possible, we can obviously request permissions but we should address
the vulnerabilities that these permissions can lead to.

Chapter 4

[45]

If the system-defined permissions are not enough, we can create our own permission
to use, which will be defined and will require other entities to ask for permission
when required. When creating a permission, we have to consider the different
protection levels available:

•	 normal: This is the lowest possible permission level and is set by default
•	 dangerous: This permission level can be granted by the user during

installation
•	 signature: This permission level is granted by the system if a requesting app

is signed with the same certificate as the app that declared the permission
•	 signatureOrSystem: This permission level is granted by the system if a

requesting app is in the Android system image or is signed with the same
certificate as the app that declared the permission

Always try to use the signature permissions since they are transparent to the user
and grant access only to applications signed by the same developer. If we need to
use the dangerous permission level, we have to understand that this permission is
granted by the user and, therefore, needs to be well explained when defined. Users
can decide not to install the application if they do not understand the permission that
they have to grant or if they perceive it as a possible harm.

We will see some examples of creating permissions in the following sections.

Handling a user's data and credentials
The best way to handle a user's data and credentials is to minimize the use of this
information. We should have access to the user data, store user data, or transmit
user data only when it is completely necessary.

In the cases where handling user's data and credentials is necessary, there are some
considerations that we should have as developers:

•	 Consider using hash or nonreversible forms of data if the logic of your
application allows it.

•	 Do not expose user's data to other applications on the device. Try to make
the interprocess communication as strict as possible. Programming with
more flexible interprocess communication permissions can be more
comfortable, but it can also be a huge vulnerability in your system.

•	 Minimize the use of APIs that access sensitive information, especially when
the information is personal data. Different APIs have different privacy
policies and can even be malicious sometimes.

Mitigating Vulnerabilities

[46]

•	 Make sure you understand what each and every piece of data that we have to
supply to a third-party component is for. When you don't understand why a
third-party component or API requires certain data, it is better not provide it.

•	 Limit the number of times users are asked for credentials as much as
possible. Asking for credentials a number of times can make the user less
aware of possible phishing attacks.

•	 Logs are a shared resource in Android, and therefore you should be careful
about which information you write onto these logs.

•	 Avoid transmitting unnecessary information whenever it is possible. When
treating sensitive information, evaluate whether it is necessary to transmit
that information on the server. If the operation can be performed locally,
you should perform it locally.

•	 When using a username and password authentication system, be sure not
to store this information on the device. If it is strictly necessary to do so, use
cryptography methods and never store it as plain data.

You can avoid some of these problems using the Android class AccountManager. The
class AccountManager provides access to the user's online accounts that are set in the
device. Google, Facebook, and WhatsApp have their own authenticators that are used
to manage the authentication of your application. This also has an added value, that is,
to avoid the process of registration, which sometimes can drive away lazy users. You
will learn more about this authentication method in Chapter 7, Authentication Methods.

Interapplication communication
As we seen in Chapter 2, Security in Android Applications, there are ways to
communicate between Android apps as they cannot share data due to
Application sandboxing. This communication raises security challenges
that should not be overlooked.

Securing Intents
When using Intents, there are two kinds of vulnerabilities: unauthorized Intent
receipt and Intent spoofing. An unauthorized Intent receipt happens while using an
implicit Intent. As the Intent is broadcasted, there is no guarantee that the intended
recipient will receive it. A malicious application can declare an implicit Intent by
declaring all the possible actions in the intent filter. This kind of interception can
lead to DoS and phishing attacks.

Chapter 4

[47]

The best way to protect against this kind of vulnerability is to be very cautious
with implicit Intents.

If you are sharing some private information, avoid using
implicit Intents.

When possible, and especially while sharing private information, your application
should consider using explicit Intents. You can make the recipient explicit by setting
the destination class using the method setClassName (Context ctxt, String
className) as follows:

Intent i = new Intent();
i.setClassName("com.example.myapplication",
 "com.example.myapplication.MyActivity");

You can also use the setPackage (string packageName) method to limit the
access to a single package:

Intent i = new Intent();
i.setPackage("com.example.myapplication");

An application with an exported component that does not expect Intents from
a malicious application is vulnerable to Intent spoofing attacks. As a developer,
you should limit your component's exposure by setting different permission level
requirements in the manifest.

The default values of certain properties can be misleading and may change from one
version to another. It is a good idea to indicate the nature of your activity explicitly.
For example, let's make our activity PrivateActivity private:

<activity
 android:name=".PrivateActivity"
 android:exported="false">
</activity>

If we want to make our activity accessible to external applications, we can explicitly
indicate which applications have the selective access. In this case, we'll make
SelectiveActivity accessible to other applications through our own permission.
Then, we can use this permission to indicate selective access to SelectiveActivity
using the Intent filter, as shown in the following code:

<permission
 android:description="Packt permission"
 android:name="packt.permission"
 android:protectionLevel="signature"/>

Mitigating Vulnerabilities

[48]

<activity
android:name=".SelectiveActivity"
 android:exported="true"
 android:permission="packt.permission">
 <intent-filter>
 <action android:name="packt.action.NAME_ACTION"/>
 </intent-filter>
</activity>

Intent filters are not a security feature. They perform input
validation in your receiver in order to verify the data received.

Securing the content providers
In Chapter 2, Security in Android Applications we have learned about the content
provider mechanism that allows applications to share raw data. One external
component can use an authority name as a handle to perform SQL queries to both
read and/or write content. We should be careful and use a content provider only
when it is completely necessary and take the following precautions:

•	 Use separate read and write provider-level permissions. We can specify
each of them with the attribute android:readPermission and
android:writePermission. We can also use both the attributes by using
android:permission.

•	 Use path-permission to specify each URI that you want to control.
In this way, you can allow permission for a single or different URIs in
your provider.

This mechanism is also vulnerable to SQL injections. In order to easily avoid this
vulnerability, Android supports parameterized queries. The content provider
methods support parameterization. The methods that are used in parameterized
queries to a content provider are the same as to any other SQL database, and we
have already seen them in this chapter.

Chapter 4

[49]

Summary
In this chapter, you learned how to mitigate the most important vulnerabilities that
can affect our Android application. You know how to use regular expressions in
order to validate an input. You have also learned about SQL injections and how
parameterized queries can help overcome this vulnerability. We know how to handle
user and critical information. Finally, we learned how to use Intents and content
providers in the most secure way possible.

In the next chapter, you will learn how to preserve the privacy of our data. You will
learn how to handle the data when stored locally, the different possibilities, and
ways to secure them. You will also learn about cryptography and how to encrypt
local data.

Preserving Data Privacy
Most applications need to save some kind of data. You want to learn how to use
the storage options provided by the Android system, how can you protect your
data application, what security measures should be taken in each type of storage,
and how can you use encryption in Android to preserve the privacy of your data.

This chapter presents the mechanisms offered by Android to preserve user data
privacy. You will learn to handle data when it's stored on the device, what are the
risks involved with the storage, the different storage options, and how to secure
the storage. You will also learn about cryptography and how to encrypt local data.

The topics that will be covered in this chapter are:

•	 Data privacy
•	 Encryption
•	 Using encryption to store data

Data privacy
Data privacy is an important concern for applications because a lot of information is
stored and managed in the applications: contacts, e-mails, bank accounts, messages,
agenda, social networks, and so on. Some of this information can also be considered
as sensitive data. Sensitive data can be any of the following types of information:

•	 Information that allows you to identify a device or the user of that device
such as the phone number or the International Mobile Station Equipment
Identity (IMEI) number of that device

•	 Information from the resources of the device such as the GPS location
of that device

Preserving Data Privacy

[52]

•	 Information created and managed by the applications
•	 Users' personal data such as photos or messages

As a developer, your responsibility is to protect the privacy of the information that is
stored by your application. There are different mechanisms to store your application
data in Android, and each storage mechanism is meant to keep a specific kind of
information. The storage mechanisms provided by Android are shared preferences,
internal and external storage, and database storage.

Shared preferences
Shared preferences are used to save the collection of key-value pairs of the primitive
data types such as boolean, float, int, long, and string. These key-values pairs
are saved in your application data in the form of an XML file, which is stored on the
device at /data/data/yourpackage/shared_prefs/. If you only need one shared
preference file, you can get the default one by using the getPreferences() method.
If you need to create more than one shared preference file, you can specify its name
by using the getSharedPreferences() method. Both these methods are received as
parameters in the operating mode. The operating mode is static final int, which
can have the following values:

•	 MODE_PRIVATE: The shared preferences in this mode are private and only
your application can work with them

•	 MODE_WORLD_READABLE: The shared preferences in this mode can be read by
other applications

•	 MODE_WORLD_WRITEABLE: The shared preferences in this mode can be edited
by other applications

To illustrate these three modes, create a new application project and in the onCreate
method of the main activity, add the following to code to create three shared
preference files:

SharedPreferences sharedPref = getSharedPreferences("com.example.
MyPrefsFile", MODE_PRIVATE);
SharedPreferences.Editor editor = sharedPref.edit();
editor.putBoolean("KeyA", true);
editor.commit();

SharedPreferences sharedPref2 = getSharedPreferences("com.example.
MyReadablePrefsFile", MODE_WORLD_READABLE);
SharedPreferences.Editor editor2 = sharedPref2.edit();
editor2.putBoolean("KeyB", true);
editor2.commit();

Chapter 5

[53]

SharedPreferences sharedPref3 = getSharedPreferences("com.example.
MyWriteablePrefsFile", MODE_WORLD_WRITEABLE);
SharedPreferences.Editor editor3 = sharedPref3.edit();
editor3.putBoolean("KeyC", true);
editor3.commit();

The private shared preference file is named MyPrefsFile, the readable shared
preference file is named MyReadablePrefsFile, and the writeable shared preference
file is named MyWriteablePrefsFile. In each file, we save a Boolean value. Execute
the application and open the DDMS perspective. Open the File Explorer tab and
navigate to your application files under /data/data/yourpackage/. You'll see
that a new shared_prefs folder has been created and inside this folder the three
preference files have also been created, as shown in the following screenshot:

Observe the system permissions of the three preference files. The
MyReadablePrefsFile file allows any user of the system to read it and the
MyWriteablePrefsFile file allows any user of the system to write it. Creating a
shared preference file using any of these two modes is very dangerous as the privacy
of the data stored in them is not preserved. There are better mechanisms than shared
preferences to distribute data between applications such as the content providers.

Always create your shared preferences using the private mode
to reduce security holes.

The mode flag of the shared preferences determines only the system permission
of the file. The XML file is not encrypted. You can check this by downloading the
MyPrefsFile file from the DDMS perspective. Open the file using any text editor
and notice that the saved data is not encrypted and can be read. The content of the
downloaded shared preference file is as shown in the following code:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <boolean name="KeyA" value="true" />
</map>

Preserving Data Privacy

[54]

The actual user, any application with the root system permission, or any attacker that
gains access to the device is able to read this file.

Do not save sensitive data on shared preferences as they are stored
in an unencrypted file.

Files in the internal storage
Internal storage allows you to save any type of file in your application's data
directory, which is stored on the device at /data/data/yourpackage/files/.
To create a file, you can use the openFileOutput() method in which you can
specify the mode flag as a parameter. The mode flag can have the following values:

•	 MODE_PRIVATE: The file is private in this mode flag and only your application
can work with it.

•	 MODE_APPEND: In this mode flag, if the file already exists, data is written to
the end of the existing file. If the file does not exist, the system permissions
for the file are like the permissions for MODE_PRIVATE.

•	 MODE_WORLD_READABLE: The file in this mode flag can be read by other
applications.

•	 MODE_WORLD_WRITEABLE: The file in this mode flag can be edited by other
applications.

Just like the shared preferences, creating a file using the MODE_WORLD_READABLE or
MODE_WORLD_WRITEABLE flag is very dangerous as the privacy of the file content is
not preserved. In fact, both the flags were deprecated in Android API Level 17.

Do not use the flags MODE_WORLD_READABLE or MODE_WORLD_
WRITEABLE to create your files.

The created files are not encrypted, therefore you can encrypt the file content to
preserve its privacy.

Chapter 5

[55]

Files in the external storage
External storage refers to a world-readable part of storage in an Android device. We
tend to think about external storage as an SD card, but actually, external storage can
also be a non-removable storage. External storage may not always be available, for
example, if the SD card is removed in case the storage was provided by an SD card,
or if the storage has been mounted to a PC. For this reason, you must always check
external storage state before using it, using the following code:

String exStorageState = Environment.getExternalStorageState();

In the external storage, there are two types of files: public and private. These two
terms should not be confused with the file permissions. The public and private files
in external storage are discussed in detail as follows:

•	 Public files: These files in the external storage are files that can be shared
with other applications, such as pictures, music, or ringtones. To fetch
the path of the directories in which these types of files should be stored,
you can use the Environment.getExternalStoragePublicDirectory()
method. You indicate the type of the public content you want to work with
as a parameter. Some examples for this type flag are DIRECTORY_PICTURES,
DIRECTORY_ALARMS, DIRECTORY_DOCUMENTS, DIRECTORY_MUSIC, and
DIRECTORY_RINGTONES.

•	 Private files: These files on the external storage are files that belong to your
application and hence, they have no utility outside your application. These
files are removed when your application is uninstalled. Remember that
although these types of files belong to your application, their permissions
are still world readable. To get the path of your private directory, you can
use the context.getExternalFilesDir() method.

Do not save sensitive information on external storage
because files in it are globally readable and writeable.

The database storage
SQLite databases allow you to store your data in a private database. The database is
a .db file, which is created in the internal storage directory of your application. The
specific path for this file is /data/data/yourpackage/databases/. Databases are
private but not encrypted and thus, the user or any attacker that gains access to the
device can read the database content.

Preserving Data Privacy

[56]

Sensitive data should be encrypted and very sensitive data should
not be saved on the device.

Encryption
Encryption is the process of encoding data into a form that cannot be understood
by unauthorized users. Sensitive data stored in the device should be encrypted to
preserve its security. You can encode data to save it as shared preferences, as files
in the internal storage, in databases, or even in external storage. But you should
remember that sensitive data must not be stored on external storage. There are
two types of encryption methods:

•	 Symmetric: In symmetric encryption, the keys for encoding and decoding
are the same. Some examples of well-known symmetric algorithms are DES,
Triple DES, AES, Serpent, Twofish, and Blowfish.

•	 Asymmetric or public-key: In asymmetric or public-key encryption, the key
for encoding is different from the key for decoding. The encryption key can
be public and hence, anyone can encode data using the public key. But only
the owner of the private key is able to decode it. Some examples of well-
known asymmetric algorithms are RSA, Diffie-Hellman, ElGamal, and DSA.

Using a symmetric algorithm is enough to encrypt our data since nobody else
needs the public encryption key. The following figure explains how symmetric
encryption works:

Chapter 5

[57]

Let's see an example of how to encrypt some information. The class that provides
implementations for encryption and decryption is the Cipher class from the javax.
crypto package. To use this class, you need to create an instance indicating the
encryption algorithm and optionally the mode or the padding. You can see both
examples in the following code snippets:

Cipher c = Cipher.getInstance("AES");
Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

The next step is to initialize the instance using the init method of the Cipher class.
This method receives the operation—encrypt or decrypt—and the key to use for the
encryption, as shown in the following code snippets:

c.init(Cipher.ENCRYPT_MODE, key);
c.init(Cipher.DECRYPT_MODE, key);

To perform the operation, use the doFinal method, as shown in the following
code snippet:

byte[] finalBytes = c.doFinal(initialBytes);

Both methods—init and doFinal—admit more parameters that can be consulted
in the Android reference at http://developer.android.com/reference/javax/
crypto/Cipher.html.

The encryption methods
The following code shows the complete method to encrypt a text using the
encryption methods discussed in the preceding section:

public byte[] encrypt(String text, Key key)
throws NoSuchPaddingException, NoSuchAlgorithmException,
InvalidKeyException, BadPaddingException, IllegalBlockSizeException
{
 Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");
 c.init(Cipher.ENCRYPT_MODE, key);
 byte[] encodedBytes = c.doFinal(text.getBytes());

 return encodedBytes;
}

http://developer.android.com/reference/javax/crypto/Cipher.html
http://developer.android.com/reference/javax/crypto/Cipher.html

Preserving Data Privacy

[58]

The following code shows the complete method to decrypt a text using the
decryption methods discussed in the preceding section:

public String decrypt(byte[] text, Key key)
throws NoSuchPaddingException, NoSuchAlgorithmException,
InvalidKeyException, BadPaddingException, IllegalBlockSizeException
{
 Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");
 c.init(Cipher.DECRYPT_MODE, key);
 byte[] decodedBytes = c.doFinal(text);

 return new String(decodedBytes);
}

Generating a key
To generate a key in order to encrypt or decrypt your data, you can just write down
your own key as a String data type. For example, you can use the following line of
code but with a different key:

private final String key = "12345678901234567890123456789012";

To obtain a Key object so that it can be passed as a parameter to your encryption and
decryption methods, you can use the SecretKeySpec class. The simplest constructor
of this class receives the key bytes and algorithm name, as shown in the following
line of code:

SecretKeySpec sks = new SecretKeySpec(key.getBytes(), "AES");

Although writing your own key is simple, keeping it visible in your code is not
secure. Any attacker that gains access to your code can get the key. The right way
to generate your key is by using the SecureRandom and KeyGenerator classes. The
objective is to obfuscate the key.

The SecureRandom class, as specified in the Android reference, generates
cryptographically secure pseudorandom numbers. Using the default constructor
is recommended so that an instance of the strongest provider is returned. Setting
a seed may also be insecure because it may replace the strong default seed. The
KeyGenerator class generates symmetric cryptographic keys. You should remember
to save the generated keys so that you can use them later, even when the application
is closed and restarted.

You should invoke the SecureRandom class using the default
constructor and without setting any seed.

Chapter 5

[59]

The following code shows the complete method to generate a key for both
encryption and decryption:

public SecretKeySpec generateKey() throws NoSuchAlgorithmException
{
 SecureRandom secureRandom = new SecureRandom();
 KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
 keyGenerator.init(256, secureRandom);
 SecretKeySpec sks = new SecretKeySpec(key.getEncoded(), "AES");
 return sks;
}

Using encryption to store data
Using all the methods discussed in the earlier sections, you can now encrypt any
information in your application, as shown in the following code:

String myData = "My secret information";

SecretKeySpec sks = generateKey();
byte[] encoded = encrypt(myData, sks);
String decoded = decrypt(encoded, sks);

Log.d("MAIN - Encoded: ",
Base64.encodeToString(encoded, Base64.DEFAULT));
Log.d("MAIN - Decoded: ", decoded);

The results generated in LogCat are shown in the following screenshot:

The previous example can be adapted to encrypt the content of a file on the internal
storage of your application, as shown in the following code:

String myData = "My secret information in my internal file";
SecretKeySpec sks = generateKey();
byte[] encoded = encrypt(myData, sks);

FileOutputStream fos =
openFileOutput("MyEncryptedFile.txt", Context.MODE_PRIVATE);
fos.write(encoded);
fos.close();

Preserving Data Privacy

[60]

On executing the code in your main activity, the MyEncryptedFile.txt file will be
created in the internal storage, as seen in the following screenshot. Download the file
and open it in any text editor. Notice that the content is not understandable because
it is encoded.

It is mandatory for you to store the persistent data encrypted retaining the key that
has been used for encoding. The key cannot be saved in the internal storage as it is
considered to be sensitive data. In Android 4.3, the KeyStore facility was provided
but KeyStore only stores public or private keys. Symmetric keys cannot be stored in
KeyStore. To provide additional protection, the key should not be directly accessible
to the application.

The key used to encrypt your data should be kept in a safe place.
If you lose the key, the data cannot be decoded.

The best solution to keep your key safe is to send it to your server so that the key is
never allocated in the device itself. The user or any attacker that gains physical access
to the device cannot obtain the key. In Chapter 6, Securing Communications, you will
learn how to protect your external communications.

An alternative solution is to generate the key from a password that the user has to
introduce when starting his/her application. The key is therefore not stored in the
device and is remembered by the user. This solution is very secure but it requires
the user to introduce a password every time the application is started, affecting the
usability of your application. In Chapter 7, Authentication Methods, you will learn
more about the authentication methods. To generate a key from a password, you can
use the PBKDF2 algorithm implemented in the SecretKeyFactory class, as shown
in the following code snippet:

SecretKeyFactory skf = SecretKeyFactory.getInstance("PBKDF2WithHmacS
HA1");

Chapter 5

[61]

The key is generated creating a PBEKeySpec object, which receives the password, a
byte array as salt, the iteration count of the algorithm, and the derived key length.
The method to generate a key of this type is as shown in the following code:

private static byte[] salt = "3r4ghe69".getBytes();

public SecretKeySpec generatePassKey(String password)
throws NoSuchAlgorithmException, InvalidKeySpecException {
 KeySpec keySpec =
 new PBEKeySpec(password.toCharArray(), salt, 500, 256);

 SecretKeyFactory skf = SecretKeyFactory.getInstance("PBKDF2WithHmac
SHA1");

 SecretKey key = skf.generateSecret(keySpec);
 SecretKeySpec sks = new SecretKeySpec(key.getEncoded(), "AES");
 return sks;
}

The salt byte array can also be stored in the internal storage.

Summary
In this chapter, you learned more about the different types of storage for our data
application in Android. You also learned about the characteristics and risks of each
type of storage. You also know how to encrypt the user data and manage the local
storage. You have created the necessary methods to encrypt your sensitive data
and use it in your application.

In the next chapter, you will learn how to preserve the privacy of your data when
it is sent or received over a network from an internal or external device. You will
also learn how to secure the network using protocols such as HTTPS.

Securing Communications
This chapter presents the mechanisms offered by Android to secure communications
between an Android application and an external entity. By the end of this chapter,
you will know how to secure connections. You will see some implementations
through code examples using Android Studio.

Most applications need to share some sort of data. You should learn how to
protect this data especially when sensitive information such as personal data
or authentication information is being transferred.

The topics that will be covered in this chapter are:

•	 HTTPS
•	 SSL and TSL
•	 Server and client certificates
•	 Android Studio
•	 Code examples using HTTPS

HTTPS
Hypertext Transfer Protocol Secure (HTTPS) is considered an application layer
protocol based on HTTP. It is designed to transfer the hypertext data securely.
HTTPS is largely used by bank entities, online shops, and in general, any online
service that requires sending protected data.

Securing Communications

[64]

First of all, you need to understand what HTTPS being an application layer
protocol means. There are two important conceptual models that standardize the
internal functions of a communication system. These models are the Open Systems
Interconnection (OSI) model and the Transmission Control Protocol/Internet
protocol suite (TCP/IP) model. The OSI model consists of seven abstraction layers
while the TCP/IP model is simplified into only five layers. Each layer does not
represent a protocol but a level in which a protocol is encapsulated. For simplicity and
as its use is more common, we will focus on the TCP/IP model, discussed as follows:

•	 The physical layer: This layer defines the most basic form of
communication—the electrical and physical specifications. The connection
is defined between two directly connected elements over a physically
established communication medium (cable, air, and so on.). The IEEE 802.11
specifications over which Wi-Fi, Bluetooth, and even USB work are some
examples of the protocols that operate in the physical layer.

•	 The link layer: This layer defines the communication established between
two elements that are in the same local network. Notice that there might be
several physical elements (routers, switches, and furthermore) between these
two elements. The Media Access Control (MAC) protocols, such as Ethernet,
ISDN, or DSL work in this layer.

•	 The internet layer: This layer is responsible for establishing communication
between two elements across multiple networks. There are two main
functions carried out in this layer: host identification and packet routing. The
most known example of a protocol working in this layer is IP, with IPv4 and
IPv6 being the most extended versions of IP.

•	 The transport layer: This layer defines the communication between two
processes in different hosts that can potentially be several networks apart.
This layer uses ports for the purpose of providing communication channels
needed by the applications. The most common protocols that work on
the transport layer are TCP and UDP. While TCP is connection-oriented
and is in charge of identifying lost packages and resending them, UDP is
connectionless and does not perform these checks.

•	 The application layer: This is the layer that applications use in order to
provide user services. This layer is the most important for developers, since
it is usually the one we will be working with. The model of this layer enables
you to treat the transport layer and lower layers as a black box; they provide
a service and you do not need to worry about them. There are hundreds of
protocols that work over the application layer, for example HTTP and its
secure version HTTPS, File Transfer Protocol (FTP), Simple Mail Transfer
Protocol (SMTP), and so on. The application layer in the TCP/IP model can
be compared to a combination of the application layer, presentation layer,
and session layer in the OSI model, as shown in the following figure:

Chapter 6

[65]

HTTPS is considered to be an application layer protocol that uses cryptographic
methods based on Secure Sockets Layer (SSL) or his elder brother Transport
Layer Security (TLS) to ensure the security of sensitive hypertext data. However,
technically, it is not a protocol itself but the result of combining HTTP in the
application layer with SSL or TLS in the transport layer. The security is therefore
not provided in the application layer but in the transport layer. HTTPS also specifies
that the transport layer should use the TCP protocol to ensure that every package
is received correctly, as shown in the following figure:

Although HTTPS is based on the application layer protocol HTTP, there are some
differences between the two of them. The most important are:

•	 URLs start with http:// when using the HTTP protocol and with https://
when using the HTTPS protocol

•	 By default, HTTP uses the TCP port 80. On the other hand, HTTPS uses port
443 by default

•	 HTTP is vulnerable to man-in-the-middle attacks and eavesdropping, and is
designed to solve these vulnerabilities and minimize the risks

Securing Communications

[66]

If you want to learn more about the differences between HTTP and HTTPS, you
can use a packet analyzer to see how the exchange of hypertext is performed with
each protocol, as shown in the following screenshot. To do this, we recommend
Wireshark (http://www.wireshark.org/), a free and open source software (OSS).
You will learn more about this tool in Chapter 10, Supporting Tools.

SSL and TLS
SSL is a cryptographic protocol that supports secure connections over a network.
SSL was originally designed by Netscape. There are three main versions of SSL and
being the latest one, SSL 3.0 is the most commonly used over the Internet. SSL 3.0 is
supported by 99.5 percent of the websites on the Internet.

TLS is an update of SSL 3.0. It is compatible with SSL 3.0 but it weakens the security
level. The most extended version of TLS is TLS 1.0 although there are two updates: TLS
1.1 and TLS 1.2. TLS 1.0 is supported by 99.3 percent of the websites on the Internet.

An SSL or TSL connection is always initiated by the client. Data transferred under
the SSL protocol is encrypted using a symmetrical algorithm like Data Encryption
Standard (DES). An asymmetrical algorithm is used to exchange the keys for the
symmetrical algorithm. The basic steps to establish an SSL connection are as follows:

1.	 Client -> server: The client initiates the communication with the server
sending a "Hello" message. This message contains different cryptographic
options available to the client sorted by preference of use.

2.	 Server -> client: The server responds by sending a Hello message. In this
case, the message contains the cryptographic method and the compression
method chosen.

http://www.wireshark.org/

Chapter 6

[67]

3.	 Server -> client: The server sends their digital certificate. The standard is
to use an X.509 certificate. If the server requires a certificate from the client,
a Certificate Request message is sent.

4.	 Client -> server: The client cross-checks the certificate received from the
server with a list of known authorities. If the authority is not recognized, the
client can ask the user for permission to manually accept the certificate. The
client also assesses if the connection parameters are adequate. If everything is
acceptable, the client generates a symmetric random key, which is cyphered
with the server public key received in step 3. The cyphered symmetric key is
then sent to the server.

5.	 Client -> server: The server receives the encrypted symmetric key and
proceeds to decrypt it using his private key.

6.	 Client <-> server: Now both the client and the server know the symmetric
key and can start a secure connection.

Server and client certificates
In this section, you will learn more about how certificates are used and generated. A
certificate is a digitally signed statement from an authority that grants a certain value
to the public key of the subject. They are used in asymmetric encryption methods.

X.509 certificate is a standard format and must have the following information:

•	 Version: This is the X.509 version number
•	 Serial number: This is the sequence number of the certificate
•	 Signature algorithm: This is the identifier of the algorithm used to sign

the certificate
•	 Issuer: This is the name of the authority that signs the certificate
•	 Validity: This is the period of time during which the certificate should be

considered valid
•	 Subject: This is the name of the subject of the public key
•	 Subject public key: This is the public key itself and its related information

You will now learn how to create a self-signed X.509 certificate with no additional
installation necessary whatsoever. You will see two easy ways to generate a certificate:
using a tool available in every Java Development Kit (JDK) called Keytool from the
terminal and using the same tool from Android Studio in a more visual way. There
are many other options to create certificates like the OpenSSL client.

Securing Communications

[68]

Keytool in the terminal
Open your operating system terminal or go to Tools | Open Terminal in Android
Studio, and write the following command:

keytool -genkey -keyalg RSA -alias selfsigned -keystore my_keystore.jks
-storepass password -validity 360 -keysize 2048

The parameter –genkey is the action the tool and is going to perform. In this case, it
will generate a key. The parameter –keyalg specifies the algorithm to be used; in this
case, we want to use RSA. The parameter –alias is for the name or alias of the keys
being generated. The parameter –keystore indicates which JKS file is going to be used
to store the keys. The parameter –storepass indicates the master password used to
access the JKS file. If the file is being created just like the one created in this example,
you can set the password, but if the keystore already exists, you should introduce its
password. The parameter –validity specifies the number of days the certificate is
valid. Finally, with the parameter –keysize, you can indicate the size of the key in bits.
In this example, the parameter –keysize has a value of 2048 because we have used an
RSA algorithm whose keys are normally between 1024 and 2048 bits.

The execution of the previous command will prompt a sequence of questions.
Make sure that when asked for your first name and last name, you answer with the
domain name of the server you want to get the certificate from. If you have problems
executing this, you can add the keytool to the path of the system. The application is
available in the /bin folder of your JDK installation folder and can also be executed
directly from there:

What is your first and last name?

 [Unknown]: www.mydomain.com

What is the name of your organizational unit?

 [Unknown]: My Application

What is the name of your organization?

 [Unknown]: My Company

What is the name of your City or Locality?

 [Unknown]: Murcia

What is the name of your State or Province?

 [Unknown]: Murcia

What is the two-letter country code for this unit?

 [Unknown]: ES

Chapter 6

[69]

Is <CN=www.mydomain.com, OU=My Application, O=My Company, L=Murcia,
ST=Murcia, C=ES> correct?

 [no]: y

Enter key password for <my_keystore>

 (RETURN if same as keystore password):

This process will generate a my_keystore.jks file in a JKS format. This file contains
both private key and public key certificates so make sure not to share it as your
private key is what should be kept from other entities. In order to extract the
certificate, you can execute the following command:

keytool –export –alias selfsigned –file certificate.crt –keystore my_
keystore.jks –storepass password

This will generate a file called certificate.crt, which contains the certificate.
Using the very same tool, we can print its contents using the following command:

keytool –printcert –file certificate.crt

This will print the information of our self-signed certificate:

Owner: CN=www.mydomain.com, OU=My Application, O=My Company, L=Murcia,
ST=Murcia, C=ES

Issuer: CN=www.mydomain.com, OU=My Application, O=My Company, L=Murcia,
ST=Murcia, C=ES

Serial number: 71e760d8

Valid from: Tue Jun 03 17:42:47 BST 2014 until: Fri May 29 17:42:47 BST
2015

Certificate fingerprints:

 MD5: 63:34:55:9F:11:74:3A:02:EB:D3:8F:E2:7B:A3:1B:25

 SHA1: CA:CF:6E:75:83:F9:01:D9:13:45:A5:DE:D2:95:EB:2E:31:BA:2D:B4

 SHA256: 5A:A8:68:87:3D:89:B2:26:60:0F:55:DB:68:F1:24:6E:81:33:8B:3B:B2:
57:07:36:D4:06:B2:1A:C3:03:DE:F0

Algorithm: SHA256withRSA

Version: 3

You can see how Owner and Issuer are the same since the certificate is self-signed.
If it was signed by a different CA, Issuer would be that CA.

Securing Communications

[70]

Android Studio
Android Studio has a tool to sign your APK. This option internally makes use of
keytool to create a certificate with which the APK is later signed. You can use the
first step of this process to generate your certificate. Navigate to Build | Generate
Signed APK. A wizard will appear asking you to select an already existing certificate
or create a new one. Click on Create New and the following window will appear:

As you can see, it asks for the exact same information we filled in using the keytool.
You can follow the same instructions as in the previous section to fill the information
required in this form.

If you want to learn more about certificates and certificate authorities, you can
check the section on App Signing in the Android development documentation
since the signature of apps also uses the certificates and certificate authorities
at http://developer.android.com/tools/publishing/app-signing.html.

http://developer.android.com/tools/publishing/app-signing.html

Chapter 6

[71]

Code examples using HTTPS
You already understand how HTTPS works theoretically, but how can an Android
developer use secure connections using HTTPS?

To establish an HTTP connection, all you need to do is run the following three lines
of code:

URL url = new URL("http://wikipedia.org");
HttpURLConnection connection = (HttpURLConnection) url.
openConnection();
InputStream in = connection.getInputStream();

Wikipedia supports secure communications, so let's change the code to make it use
HTTPS instead of HTTP, as shown in the following code:

URL url = new URL("https://wikipedia.org");
HttpsURLConnection connection = (HttpsURLConnection) url.
openConnection();
InputStream in = connection.getInputStream();

Can you see the difference? Well, if you can see the difference, congratulations!
You have a very sharp eye. If you can't, here is a little hint: check the protocol in the
URL again and the HttpURLConnection class. Now you see the little s after http in
the URL and in the class name, and yes, that is all you need to do to start a secure
communication with a server that supports HTTPS.

Easy right? Well, that is not entirely true. You may work with certificates that are
signed by a trusted Certificate Authority (CA) or you may not work with certificates
signed by a trusted CA. There are three different cases where this can happen:

•	 The CA that issued the certificate is unknown
•	 The certificate was self-signed
•	 The server is missing an intermediate CA

If the issuer of the certificate is an unknown CA, an SSLHandshakException will
occur. If you know this is going to happen, you can create HttpsURLConnection,
which trusts certain CAs that are not in the list of the system-trusted CAs. The class
TrustManager is used by the system in order to validate unknown certificates. In
the following example, we will create KeyStore, which contains our trusted CAs.
With KeyStore, we will initiate TrustManager, which trusts the CAs included in
KeyStore. With TrustManager created, we will initiate an SSL connection, shown
as follows:

Securing Communications

[72]

// First we read the certificate from a file
CertificateFactory cf = CertificateFactory.getInstance("X.509");
InputStream certificate = new BufferedInputStream(new
FileInputStream("my_keystore.jks"));
Certificate ca = cf.generateCertificate(certificate);

// Now we create the KeyStore containing the certificate
String type = KeyStore.getDefaultType();
KeyStore keyStore = KeyStore.getInstance(type);
keyStore.load(null, null);
keyStore.setCertificateEntry("CA", ca);

// Now we can initiate the TrustManager with our KeyStore
String algorithm = TrustManagerFactory.getDefaultAlgorithm();
TrustManagerFactory tmf = TrustManagerFactory.getInstance(algorithm);
tmf.init(keyStore);

// With the TrustManager we initiate a SSLContext
SSLContext context = SSLContext.getInstance("TLS");
context.init(null, tmf.getTrustManagers(), null);

// Now we can initiate the connection using the SSLContext
URL url = new URL("https://www.mydomain.com");
HttpsURLConnection connection = (HttpsURLConnection) url.
openConnection();
connection.setSSLSocketFactory(context.getSocketFactory());
InputStream in = urlConnection.getInputStream();

As you can see, the last four lines of the code are similar to what we were doing
before worrying about the certificate authorities. We have removed some try clauses
for the sake of clean code, but if you copy the code to Android Studio, just follow its
suggestions to treat exceptions.

In this example, we used the certificate that we generated using the Java tool—
keytool. If you remember, the certificate we generated was self-signed, which is
the second case and not the first. From a coding perspective, both situations are
similar. In the first one, CA is not recognized so we create TrustManager in order
to acknowledge it. In the second case, it is exactly the same, but the issuer of the
certificate is also the subject.

Chapter 6

[73]

If the server is missing an intermediate CA, there will also be an
SSLHandshakeException since there is a missing CA in the trust chain. There are
two ways you can solve this situation:

•	 From the server side: You can reconfigure the server to include the missing
CA in the trust chain. This is obviously possible only if you administrate
the server.

•	 From the client side: The only problem you have is that there is a missing
CA, therefore, that CA is an unknown CA. You can therefore use the
class TrustManager as we did in the first two cases to trust the missing
CA directly.

Summary
In this chapter, you learned about network communications in your Android
application. Now you understand how the most common protocols to secure
connections work. You also learned how to use the APIs that Android offers
to secure your application's communications. Finally, you learned about
certificate generation.

In the next chapter, you will learn about authentication methods. You will see
how two-key and three-key authentication methods work. You will also learn
about using biometric authentication in your application.

Authentication Methods
This chapter presents different types of authentication methods used in Android
mobile devices. This chapter will help readers choose the proper authentication
method for their mobile application.

First, you will learn about multifactor authentication and the different authentication
factors, such as the knowledge factor, the possession factor, and the inherence factor.
You will then learn how to make your own implementation of a login system for
your Android application. You will also learn about authenticating different services
using AccountManager.

The topics that will be covered in this chapter are:

•	 Multifactor authentication
•	 Login implementations
•	 AccountManager

Multifactor authentication
If you think of an authentication method, the first method that will come to your
mind will always be the combination of a username and a password. While its
simplicity makes it one of the most extended authentication methods in all kinds
of software, it is not the safest method. The multifactor authentication approach
combines a set of authentication methods. Access is granted only if each method
derives a positive result. Two-factor authentication and three-factor authentication
involve two and three authentication factors, respectively. Although two-factor
authentication and above are often considered to be strong authentication methods
and are in fact more secure, you can also achieve strong authentication for your
service using only one authentication factor. There are three kinds of authentication
factors that serve as a taxonomy for authentication techniques: the knowledge factor,
the possession factor, and the inherence factor.

Authentication Methods

[76]

The knowledge factor
The combination of a username and password is an example of a knowledge factor.
When using a knowledge factor, the user is required to provide information he/she
knows in order to grant access: something the user knows.

The most widely used methods are:

•	 Username/password: The combination of a certain kind of identifier for the
user, generally a username or an e-mail address, and a password is the most
extended authentication technique. While the username or e-mail address
may be public, the password should always remain a secret.

•	 Pattern: Patterns are used as authentication methods since the human brain
is more likely to remember graphical patterns than strings of characters or
numbers. There are several types of patterns that often involve a 3 x 3 grid
although bigger grids are also used.

•	 PIN: The PIN is a very basic password that has been traditionally used in the
banking system for ATMs, credit cards, and so on. It consists of an array of
digits. It is technically an implementation of the password techniques, where
only digits are allowed.

The pattern and PIN techniques are available by default as the access control to your
Android system, as shown in the following screenshot:

Chapter 7

[77]

The possession factor
The most basic and well-known example of a possession factor is a key that opens a
door. In order to authenticate a user trying to access a resource, they are required to
provide a physical object they possess: something the user has.

There are several examples of possession factors. The most typical techniques based
on a possession factor are physical tokens such as smartcards or magnetic cards.
The technique most commonly used in Android is probably the cryptographic keys.
We already learned about cryptographic keys in the earlier chapters, and although
these keys are digital and the user does not have material access to them, they are
considered as something the user possesses. There are other algorithms like Time-based
One-Time Password (TOTP). TOTP consists of combining a secret key with the
current timestamp to generate a password that is temporarily valid.

The inherence factor
The inherence factor is based on something the user is. The techniques based on this
factor are the ones that are used frequently, but the ones with the brightest future.
Biometric authentication measures the distinctive characteristics of individuals to
identify the user.

There are two types of biometric identifiers:

•	 Physiological characteristics: This is when the shape of the body is
measured. The most commonly known examples are the fingerprint analysis,
face recognition, and iris or retina recognition. In Android, there are several
implementations of face recognition, and some smartphones come with
a hardware support for fingerprint scan like the HTC One Max.

•	 Behavioral characteristics: This is when the behavior of a person is
measured. Physiological characteristics are more consolidated than
behavioral characteristics. The most extended behavioral characteristic
is voice recognition. There are different implementations of voice
recognition for Android.

Login implementations
We will now see a small example on how to perform authentication using Android.
The example we are going to see here uses the login and password combination
technique. We are going to start with a very simple example and increase the
functionalities as well as the complexities in every iteration.

Authentication Methods

[78]

First of all, we will define EditText and Button, shown as follows:

<EditText
 android:id="@+id/etUsername"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
<EditText
 android:id="@+id/etPassword"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:inputType="textPassword"/>
<Button
 android:id="@+id/bLogin"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="login"
 android:text="Login"/>

Now, we are going to check whether the combination of a username and password
is good or not. To start, we will simply check whether both the username and
password are admin, shown as follows:

EditText username = (EditText)findViewById(R.id.etUsername);
EditText password = (EditText)findViewById(R.id.etPassword);

String sUsername = username.getText().toString();
String sPassword = password.getText().toString();

if (sUsername.equals("admin") && sPassword.equals("admin")) {
 // Grant access
} else {
 Toast.makeText(getApplicationContext(), "Wrong password",
 Toast.LENGTH_SHORT).show();
}

This is obviously not a good example of a secure authentication method but from
the example, we can learn some useful things. For example, the inputType
parameter of EditText can be set to textPassword when using a password field.

Chapter 7

[79]

You are normally going to make a request to your server in order to authenticate
the user. For example, in this case, we use SimpleHTTPClient to make the request,
shown as follows:

EditText username = (EditText)findViewById(R.id.etUsername);
EditText password = (EditText)findViewById(R.id.etPassword);

String sUsername = username.getText().toString();
String sPassword = password.getText().toString();

ArrayList<NameValuePair> params = new ArrayList<NameValuePair>();
params.add(new BasicNameValuePair("username", sUsername);
params.add(new BasicNameValuePair("password", sPassword);
String response = SimpleHttpClient.executeHttpPost(
 "http://www.mydomain.com/login",
 params);
// Analyze response with what the server is supposed to answer

You have to realize that this implementation also has big problems, even bigger than
the previous one. In this case, the username and password are being transferred
online and any attacker could see them in plain text. In order to avoid this, we can
use an HTTPS connection as we have seen in the previous chapter.

There are some login implementations that hash the username and password before
sending them to the server in order to increase the security, for example, using the
SHA1 hash shown as follows:

EditText username = (EditText)findViewById(R.id.editText1);
EditText password = (EditText)findViewById(R.id.editText2);

String sUsername = SHA1.Sha1Hash(username.getText().toString());
String sPassword = SHA1.Sha1Hash(password.getText().toString());

ArrayList<NameValuePair> params = new ArrayList<NameValuePair>();
params.add(new BasicNameValuePair("username", sUsername);
params.add(new BasicNameValuePair("password", sPassword);

String response = SimpleHttpClient.executeHttpPost(
 "http://www.mydomain.com/login",
 params);
// Analyze response with what the server is supposed to answer

Authentication Methods

[80]

The problem with this implementation is that the hashed username and password
can still be sniffed by an attacker as they are still being transferred in plain text. This
is a common mistake. So when you store passwords, you want to make sure you
store their hashed versions. The correct solution would be to send the password
using a secure connection. Later, when you want to check if the password is right,
you apply the hash function to the password provided by the user and compare
it to the stored hashed password to see whether they match.

In Chapter 6, Securing Communications, we saw how to establish an HTTPS connection
between your application and a server. You can use that information and the
preceding example to create a secure login implementation for your application.

AccountManager
The AccountManager class provides access to all the registered users' online
accounts. This way, the user only needs to provide his/her credentials once for each
account and then he/she can grant access to these applications in a simpler way.
Using the AccountManager class, you can get a token that can be used as a form of
authentication in different services.

The steps that you need to take in order to make use of this feature are as follows:

1.	 First, you need to modify the manifest file and add permission to use
credentials:
<uses-permission
 android:name="android.permission.USE_CREDENTIALS">
</uses-permission>

2.	 Once your application can use credentials, you can get an instance of
AccountManager using the get(Context c) method:
AccountManager am = AccountManager.get(this);

3.	 Now, you have an instance of AccountManager, but you need to
know which accounts are available. To do this, you can use the
getAccountsByType(String s) method. The String parameter is the name
of the account type. In this case, we will look for the Facebook accounts:
Account [] accounts = am.getAccountsByType("com.facebook.auth.
login");

4.	 You can also use null as the parameter to obtain all the available accounts:
Account [] accounts = am.getAccountsByType(null);

Chapter 7

[81]

5.	 The getAccountsByName method should also be called if the application
is using a previously saved account selection in order to make sure that
this account still exists in the device. You can check this by looking up the
account in the array of accounts returned by getAccountsByName.

6.	 Once you have a list of the available accounts, you should ask the user which
account is to be used. When the selection is done, you can call the method,
shown as follows:
getAuthToken(Account account, String authTokenType, Bundle
options, Activity activity, AccountManagerCallback<Bundle>
callback, Handler handler).

7.	 You will get an authentication token in the AccountManagerFuture<Bundle>
object for a particular account, which will automatically prompt the user for
acceptance if it is required.

8.	 In case the token request returns an error, there could be a cached instance
of an authentication token that may be being used. You can call the
invalidateAuthToken(String accountType, String authToken)
method to remove an obsolete token. Once the obsolete token is removed,
you can again request a new token using the getAuthToken method.

Summary
In this chapter, you learned about multifactor authentication and the different
techniques available in each authentication factor. You also learned how to make
your own implementation of a simple login system. Finally, you learned how you
can get authentication tokens to access different services by using AccountManager.

In the next chapter, you will learn how to start testing your application, test your
user interface, and use the test environment in Android Studio.

Testing Your Application
You have learned how to create secure applications. Now, you want to ensure
the quality of your Android application. What elements can be tested in Android?
How test cases are developed? Does Android Studio support testing?

This chapter introduces the ways of testing an application in Android. In Android,
we can design tests to evaluate the user interface (UI), activities, services, and
content providers. In this chapter, we will learn about UI testing.

The topics that will be covered in the chapter are as follows:

•	 Testing in Android
•	 The uiautomator API
•	 The uiautomatorviewer tool
•	 The UI test project
•	 Running UI test cases

Testing in Android
The security and quality of Android applications are the key factors to its success.
Testing helps you discover bugs and errors in your application, measure its accuracy,
and also improve security.

Testing Your Application

[84]

Android testing is based on JUnit. JUnit is a framework to write repeatable tests
in Java. It evaluates whether the class that is to be tested is working as expected.
There are two types of tests to be created in an Android application:

•	 Tests that can run on the Java Virtual Machine (JVM): If you want to test
standard Java classes that do not call the Android API, you can use plain
JUnit tests. The execution of this type of test is faster because it does not
require any time for deployment on an Android device, especially when
running on an emulator.

•	 Tests that require the Android SDK: If you need to evaluate classes
that use Android API, tests have to be run on an Android device using
the Android JUnit extensions. From now on, we will be using this kind
of test since we want to learn how to check Android classes such as
activities or the UI components.

Tests are implemented in methods contained in test classes. These tests are organized
in test packages. By convention, the test package name is the same as your application
package suffixed with .test. Test class names are the same as the element to be tested
suffixed with Test. For example, the test class that evaluates your MainActivity file
should be named MainActivityTest. Test method names are prefixed with test.
Some examples of method names are testLayout() and testOnClick().

Testing the UI
The UI can be evaluated using the white-box testing or black-box testing. In the
white-box testing, UI components are checked in the activities that manage them.
Activity testing will be explained in the next chapter, that is, Chapter 9, Unit and
Functional Tests. The black-box testing is based on the uiautomator API. This API
includes classes to capture and manipulate components in the application under
test. This type of test does not require you to know the internal implementation
of the application.

Android Studio does not directly support the uiautomator framework, but since it
is available in the Android SDK, we can use it anyway. The steps to complete the
testing process are as follows:

1.	 Install the application under test on a device (real device or an emulator).
2.	 Analyze the UI components of the application under test, employing the

uiautomatorviewer tool.

Chapter 8

[85]

3.	 Create a Java test project to implement your test cases using the
uiautomator API.

4.	 Compile the test project into a JAR file and install it on the device.
5.	 Run the implemented tests.

We are going to proceed with a complete UI testing example in the successive
sections, but first let's learn about the uiautomator API.

The uiautomator API
The uiautomator API is included in the uiautomator.jar library, which can
be found in your Android SDK installation folder, under the <android-sdk>/
platforms/ directory. The API includes a TestCase class that extends the JUnit
TestCase class: UiAutomatorTestCase. To manipulate the UI components, the
UiDevice, UiSelector, UiObject, UiCollection, and UiScrollable classes
are also supplied to the API.

The UiDevice class
The UiDevice class represents the device. We can get the UiDevice instance
by calling the getUiDevice() method. With this instance object, you can check
properties such as the orientation or the display size. You can also perform
device-level actions such as clicking on the Home button or taking a screenshot.
Some examples of the available methods are as follows:

•	 click(int x, int y): This method performs a click at the specified
coordinates

•	 getDisplaySizeDp(): This method returns the display size in
device-independent pixels

•	 pressBack(): This method simulates a press on the back button
•	 pressHome(): This method simulates a press on the home button
•	 sleep(): This method simulates a press on the power button to set

the screen off
•	 takeScreenshot(File storepath): This method takes a screenshot

of the current screen
•	 wakeUp(): This method simulates a press on the power button to set

the screen on

Testing Your Application

[86]

The UiSelector class
The UiSelector class represents the search criteria to query any UI element on
the screen. If no component is found, UiAutomatorObjectNotFoundException is
thrown. If more than one component is found, the first one in the layout hierarchy
is returned. The UiSelector class offers methods to refine the search. Some of the
methods are as follows:

•	 checked(boolean val): This method matches elements that are checked.
•	 childSelector(UiSelector selector): This method adds a child selector

criteria to the current selector.
•	 className(String className): This method matches elements of

the specified class. For example, you can search for buttons using the
following code:
new UiSelector().className("android.widget.Button")

•	 resourceID(String id): This method matches the element with the
specified ID.

•	 text(String text): This method matches elements containing the
indicated visible text. For example, you can refine the previous search
for buttons by adding a second filter, as shown in the following code:

new UiSelector().className("android.widget.Button")
.text("Continue")

The UiObject class
The UiObject class represents a UI element. The UiObject instances are obtained
from the UiSelector instances. The class UiObject provides methods to perform
actions on the UI elements. Some examples of the methods are as follows:

•	 click(): This method performs a click at the center of the UI element
•	 exists(): This method checks whether the element exists
•	 getText(): This method returns the text of the element
•	 isChecked(): This method returns whether the element is currently

checked or not
•	 setText(String text): This method sets the text whether the element

allows it (whether it's an editable field)

Chapter 8

[87]

The UiCollection class
The UiCollection class represents a collection of items. The UiCollection
instances are obtained from the UiSelector instances that return a container of other
child UI elements. The methods provided by this class are all related to the selection
of children, shown as follows:

•	 getChildByDescription(UiSelector childPattern,String text): This
method searches for a child by its description and returns a UiObject object

•	 getChildByInstance(UiSelector childPattern, int instance):
This method searches for a child by its instance number and returns
a UiObject object

•	 getChildByText(UiSelector childPattern, String text): This
method searches for a child by its visible text and returns a UiObject object

•	 getChildCount(UiSelector childPattern): This method returns the
child count

The UiScrollable class
The UiScrollable class represents a scrollable collection of items. This class
is useful to simulate scrolling and brings hidden elements into view. The
UiScrollable instances are obtained from the UiSelector instances. This class
presents methods similar to the methods of the UiCollection class and also
provides methods to simulate scrolling:

•	 scrollBackward(): This method performs a backward scroll
•	 scrollForward(): This method performs a forward scroll
•	 scrollToBeginning(): This method scrolls to the beginning
•	 scrollToEnd(): This method scrolls to the end

The uiautomatorviewer tool
The uiautomatorviewer tool serves to take a snapshot of the current screen on an
Android device that is connected to the development machine. The snapshot allows
you to examine the layout components that are included in the screen. You can learn
about how they are structured and their properties such as IDs, texts, classes, and
furthermore. The uiautomatorviewer tool is included in the tools directory of the
Android SDK installation: <android-sdk>/tools/.

www.allitebooks.com

http://www.allitebooks.org

Testing Your Application

[88]

Let's look at an example to show how this tool works. Since we are performing
black-box testing, the uiautomatorviewer tool can be applied to any application
although it is not developed by us, nor do we have its source code. We are going
to use the default Android clock application by following this procedure:

1.	 Open Android Studio and launch an Android Virtual Device (AVD) in
the emulator. You can also use a real device connected to your computer.

2.	 When the device is completely loaded, open the application drawer and
select the Clock application.

3.	 Back in the Android Studio IDE, click on the Tools menu and select the
Open Terminal option to open the terminal panel.

4.	 Using the terminal, navigate to the Android tools folder where the
uiautomatorviewer executable is found. In Unix-based systems,
you can find it by using the command:
$ cd androidSDK/tools/

5.	 Launch uiautomatorviewer by using the command:
$./uiautomatorviewer

6.	 The uiautomatorviewer tool is now open and shows an empty window.
Click on the button icon from the top bar, which hints at the Device
Screenshot (uiautomator dump). This button is marked in red in the
following screenshot. This option will take a snapshot of the clock
application that is being displayed in the foreground in the emulator.

In the uiautomator viewer, we can inspect the layout elements of the screen.
The following screenshot shows the uiautomator viewer after capturing the screen
from the clock application. On the left side of the viewer, the snapshot is displayed.
You can hover the mouse over it to navigate and select the UI components. On
the top-right part of the viewer, the layout hierarchy is listed. We can expand and
collapse the layouts and select individual elements. In the following screenshot of
our example, the layout containing the hour is selected. On the bottom-right part
of the viewer, the properties of the selected component are detailed.

Chapter 8

[89]

The UI test project
The test code to evaluate the UI of an application has to be included in a normal Java
project. This Java project will be built into a JAR file, which will be copied in the
Android device to evaluate the application under test. Since Android Studio does not
support the uiautomator framework, for this section you can use any other tool that
allows you create a Java project. The required steps are as follows:

1.	 Create a standard Java project. This is the test project where the test code
will be implemented using the uiautomator API. You can call this project
UITestProject.

2.	 Import the JUnit library into your test project. Currently, JUnit 3.8 is the
supported version.

Testing Your Application

[90]

3.	 Import the Android library as an external JAR into your test project. This JAR
is named android.jar and is stored in your Android SDK installation folder
under <android-sdk>/platforms/<sdk>/.

4.	 Import the uiautomator library as an external JAR into your test project.
This JAR is named uiautomator.jar and is stored in your Android SDK
installation folder under <android-sdk>/platforms/<sdk>/.

5.	 Create a new class in the source folder of your test project. You can name
the class ClockTest.java. This class is used to implement your test case
and therefore, has to extend the UiAutomatorTestCase class.

6.	 Add your test code in the ClockTest class.

Your UI test code is now ready. For our example, let's add some simple code just to
demonstrate how UI testing works. Create a test method named testOpenAlarms
to evaluate the alarm button in the clock application. To perform a click on the alarm
button, we need to indicate its ID, which can be extracted from uiautomatorviewer,
as shown in the following screenshot:

The resourceId method of the UiSelector class can be used to find the UI
component whose ID is com.android.deskclock:id/alarms_button. The
object created can be checked and if everything is fine, a click is simulated on it:

public class ClockTest extends UiAutomatorTestCase {

 public void testOpenAlarms() throws UiObjectNotFoundException {

 UiObject alarmButton = new UiObject(new UiSelector().
 resourceId("com.android.deskclock:id/alarms_button"));

 if(alarmButton.exists() && alarmButton.isEnabled()) {
 alarmButton.click();
 }
 }
}

Chapter 8

[91]

Running UI test cases
The Java test project created in the previous section has to be compiled into a JAR file
to run your test cases. The JAR file has to be copied onto the same Android device in
which the application under test is running. Follow the next steps to run your test case:

1.	 Open the terminal panel in Android Studio (Tools | Open Terminal).
2.	 Navigate to the Android Studios tools folder where the android executable

is found:
$ cd androidSDK/tools/

3.	 Get the ID of the Android target that you want to use in your project. Execute
the android executable with the list of the target actions. This command will
list the available Android targets along with their IDs:
$./android list targets

4.	 Execute the android executable with the create uitest-project action.
This command receives the name of the output project (-n), the ID of the
Android target (-t), and the path of your Java test project (-p) as parameters.
This step is to generate the project's build file as a test project:
$./android create uitest-project –n UITest -t 1

-p /Users/myUser/workspace/UITestProject

The UI test projects can only target API 16 and above; otherwise,
an error will be prompted.

As a result, the UITestProject/build.xml file is generated and the /Users/
myUser/workspace/UITestProject/build.xml file is added.

5.	 Build the JAR file from the project using the build.xml file obtained before.
6.	 Copy the JAR file into the device using the adb utility:

$ cd androidSDK/platform-tools/

$./adb push
 /Users/myUser/workspace/UITestProject/bin/UITest.jar
 /data/local/tmp

7.	 Finally, execute the next command to run the UI test case on the
connected device:

$./adb shell uiautomator runtest UITest.jar
 -c com.example.ClockTest

Testing Your Application

[92]

If you observe the device while the UI test is being executed, you will see how the
actions implemented in the testOpenAlarms test method are simulated. The results
are shown in the terminal panel as you can see in the following screenshot, in which
the test case execution has been successful:

Summary
In this chapter, you learned about testing in Android. You developed black-box
testing for your user interface. You also learned how to create a test case for your
application UI and how you can run it on a device.

In the next chapter, you will learn more about testing in Android. You will develop
test cases to evaluate the activities of your application. You will use unit and
functional tests and set up the testing environment using Android Studio.

Unit and Functional Tests
You already learned about Android testing in the previous chapter. You know how
to develop a black-box test of the UI of your application. Now you want to learn how
to implement the white-box testing for your application. Are there different types of
activity testing? Does Android Studio support activity testing? How can you get the
results of your test cases? We will be covering these points in this chapter.

In this chapter, you will learn how to use unit tests that allow developers to quickly
verify the state and behavior of an activity on its own. The chapter will also cover
functional tests; their main purpose is to check the interaction between components.

The topics that will be covered in this chapter are as follows:

•	 Differences between unit and functional tests
•	 Android testing API
•	 Creating a simple unit test case
•	 Creating a simple functional test
•	 Getting the test results

Testing activities
There are two possible modes of testing activities:

•	 Functional testing: In functional testing, the activity being tested is created
using the system infrastructure. The test code can communicate with the
Android system, send events to the UI, or launch another activity.

•	 Unit testing: In unit testing, the activity being tested is created with minimal
connection to the system infrastructure. The activity is tested in isolation.

In this chapter, we will explore the Android testing API to learn about the classes
and methods that will help you test the activities of your application.

Unit and Functional Tests

[94]

The test case classes
The Android testing API is based on JUnit. Android JUnit extensions are included
in the android.test package. The following figure presents the main classes that
are involved when testing activities:

Let's learn more about these classes:

•	 TestCase: This JUnit class belongs to the junit.framework. The
TestCase package represents a general test case. This class is extended
by the Android API.

•	 InstrumentationTestCase: This class and its subclasses belong to
the android.test package. It represents a test case that has access
to instrumentation.

•	 ActivityTestCase: This class is used to test activities, but for more useful
classes, you should use one of its subclasses instead of the main class.

•	 ActivityInstrumentationTestCase2: This class provides functional testing
of an activity and is parameterized with the activity under test. For example,
to evaluate your MainActivity, you have to create a test class named
MainActivityTest that extends the ActivityInstrumentationTestCase2
class, shown as follows:
public class MainActivityTest
extends ActivityInstrumentationTestCase2<MainActivity>

Chapter 9

[95]

•	 ActivityUnitTestCase: This class provides unit testing of an activity and
is parameterized with the activity under test. For example, to evaluate your
MainActivity, you can create a test class named MainActivityUnitTest
that extends the ActivityUnitTestCase class, shown as follows:

public class MainActivityUnitTest
extends ActivityUnitTestCase<MainActivity>

There is a new term that has emerged from the previous classes called
Instrumentation.

Instrumentation
The execution of an application is ruled by the life cycle, which is determined by
the Android system. For example, the life cycle of an activity is controlled by the
invocation of some methods: onCreate(), onResume(), onDestroy(), and so on.
These methods are called by the Android system and your code cannot invoke them,
except while testing. The mechanism to allow your test code to invoke callback
methods is known as Android instrumentation.

Android instrumentation is a set of methods to control a component independent of
its normal lifecycle. To invoke the callback methods from your test code, you have
to use the classes that are instrumented. For example, to start the activity under
test, you can use the getActivity() method that returns the activity instance.
For each test method invocation, the activity will not be created until the first time
this method is called. Instrumentation is necessary to test activities considering the
lifecycle of an activity is based on the callback methods. These callback methods
include the UI events as well.

From an instrumented test case, you can use the getInstrumentation() method
to get access to an Instrumentation object. This class provides methods related to
the system interaction with the application. The complete documentation about this
class can be found at: http://developer.android.com/reference/android/app/
Instrumentation.html. Some of the most important methods are as follows:

•	 The addMonitor method: This method adds a monitor to get information
about a particular type of Intent and can be used to look for the creation of
an activity. A monitor can be created indicating IntentFilter or displaying
the name of the activity to the monitor. Optionally, the monitor can block
the activity start to return its canned result. You can use the following call
definitions to add a monitor:
ActivityMonitor addMonitor (IntentFilter filter, ActivityResult
 result, boolean block).
ActivityMonitor addMonitor (String cls, ActivityResult result,
 boolean block).

http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/app/Instrumentation.html

Unit and Functional Tests

[96]

The following line is an example line code to add a monitor:

Instrumentation.ActivityMonitor monitor =
 getInstrumentation().addMonitor(
 SecondActivity.class.getName(), null, false);

•	 The activity lifecycle methods: The methods to call the activity lifecycle
methods are: callActivityOnCreate, callActivityOnDestroy,
callActivityOnPause, callActivityOnRestart, callActivityOnResume,
callActivityOnStart, finish, and so on. For example, you can pause an
activity using the following line code:
getInstrumentation().callActivityOnPause(mActivity);

•	 The getTargetContext method: This method returns the context for
the application.

•	 The startActivitySync method: This method starts a new activity and waits
for it to begin running. The function returns when the new activity has gone
through the full initialization after the call to its onCreate method.

•	 The waitForIdleSync method: This method waits for the application to be
idle synchronously.

The test case methods
JUnit's TestCase class provides the following protected methods that can be
overridden by the subclasses:

•	 setUp(): This method is used to initialize the fixture state of the test case.
It is executed before every test method is run. If you override this method,
the first line of code will call the superclass. A standard setUp method
should follow the given code definition:
@Override
protected void setUp() throws Exception {
 super.setUp();
 // Initialize the fixture state
}

•	 tearDown(): This method is used to tear down the fixture state of the test
case. You should use this method to release resources. It is executed after
running every test method. If you override this method, the last line of the
code will call the superclass, shown as follows:

@Override
protected void tearDown() throws Exception {
 // Tear down the fixture state
 super.tearDown();
}

Chapter 9

[97]

The fixture state is usually implemented as a group of member variables but it can
also consist of database or network connections. If you open or init connections in
the setUp method, they should be closed or released in the tearDown method. When
testing activities in Android, you have to initialize the activity under test in the
setUp method. This can be done with the getActivity() method.

The Assert class and method
JUnit's TestCase class extends the Assert class, which provides a set of
assert methods to check for certain conditions. When an assert method fails,
AssertionFailedException is thrown. The test runner will handle the multiple
assertion exceptions to present the testing results. Optionally, you can specify
the error message that will be shown if the assert fails. You can read the Android
reference of the TestCase class to examine all the available methods at
http://developer.android.com/reference/junit/framework/Assert.html.
The assertion methods provided by the Assert superclass are as follows:

•	 assertEquals: This method checks whether the two values provided are
equal. It receives the actual and expected value that is to be compared with
each other. This method is overloaded to support values of different types,
such as short, String, char, int, byte, boolean, float, double, long, or
Object. For example, the following assertion method throws an exception
since both values are not equal:
assertEquals(true, false);

•	 assertTrue or assertFalse: These methods check whether the given
Boolean condition is true or false.

•	 assertNull or assertNotNull: These methods check whether an object
is null or not.

•	 assertSame or assertNotSame: These methods check whether two objects
refer to the same object or not.

•	 fail: This method fails a test. It can be used to make sure that a part of code
is never reached, for example, if you want to test that a method throws an
exception when it receives a wrong value, as shown in the following code
snippet:

try{
 dontAcceptNullValuesMethod(null);
 fail("No exception was thrown");
} catch (NullPointerExceptionn e) {
 // OK
}

http://developer.android.com/reference/junit/framework/Assert.html

Unit and Functional Tests

[98]

The Android testing API, which extends JUnit, provides additional and more
powerful assertion classes: ViewAsserts and MoreAsserts.

The ViewAsserts class
The assertion methods offered by JUnit's Assert class are not enough if you
want to test some special Android objects such as the ones related to the UI. The
ViewAsserts class implements more sophisticated methods related to the Android
views, that is, for the View objects. The whole list with all the assertion methods
can be explored in the Android reference about this class at http://developer.
android.com/reference/android/test/ViewAsserts.html. Some of them are
described as follows:

•	 assertBottomAligned or assertLeftAligned or assertRightAligned
or assertTopAligned(View first, View second): These methods check
that the two specified View objects are bottom, left, right, or top aligned,
respectively

•	 assertGroupContains or assertGroupNotContains(ViewGroup parent,
View child): These methods check whether the specified ViewGroup object
contains the specified child View

•	 assertHasScreenCoordinates(View origin, View view, int x,
int y): This method checks that the specified View object has a particular
position on the origin screen

•	 assertHorizontalCenterAligned or assertVerticalCenterAligned(V
iew reference View view): These methods check that the specified View
object is horizontally or vertically aligned with respect to the reference view

•	 assertOffScreenAbove or assertOffScreenBelow(View origin, View
view): These methods check that the specified View object is above or below
the visible screen

•	 assertOnScreen(View origin, View view): This method checks that the
specified View object is loaded on the screen even if it is not visible

The MoreAsserts class
The Android API extends some of the basic assertion methods from the Assert
class to present some additional methods. Some of the methods included in the
MoreAsserts class are:

•	 assertContainsRegex(String expectedRegex, String actual):
This method checks that the expected regular expression (regex)
contains the actual given string

http://developer.android.com/reference/android/test/ViewAsserts.html
http://developer.android.com/reference/android/test/ViewAsserts.html

Chapter 9

[99]

•	 assertContentsInAnyOrder(Iterable<?> actual, Object… expected):
This method checks that the iterable object contains the given objects and in
any order

•	 assertContentsInOrder(Iterable<?> actual, Object… expected):
This method checks that the iterable object contains the given objects,
but in the same order

•	 assertEmpty: This method checks if a collection is empty
•	 assertEquals: This method extends the assertEquals method from

JUnit to cover collections: the Set objects, int arrays, String arrays,
Object arrays, and so on

•	 assertMatchesRegex(String expectedRegex, String actual):
This method checks whether the expected regex matches the given
actual string exactly

Opposite methods such as assertNotContainsRegex, assertNotEmpty,
assertNotEquals, and assertNotMatchesRegex are included as well. All these
methods are overloaded to optionally include a custom error message. The Android
reference about the MoreAsserts class can be inspected to learn more about these
assert methods at http://developer.android.com/reference/android/test/
MoreAsserts.html.

UI testing and TouchUtils
The test code is executed in two different threads as the application under test,
although, both the threads run in the same process. When testing the UI of an
application, UI objects can be referenced from the test code, but you cannot change
their properties or send events. There are two strategies to invoke methods that
should run in the UI thread:

•	 Activity.runOnUiThread(): This method creates a Runnable object in the
UI thread in which you can add the code in the run() method. For example,
if you want to request the focus of a UI component:
public void testComponent() {
 mActivity.runOnUiThread(
 new Runnable() {
 public void run() {
 mComponent.requestFocus();
 }
 }
);
 …
}

http://developer.android.com/reference/android/test/MoreAsserts.html
http://developer.android.com/reference/android/test/MoreAsserts.html

Unit and Functional Tests

[100]

•	 @UiThreadTest: This annotation affects the whole method because it is
executed on the UI thread. Considering the annotation refers to an entire
method, statements that do not interact with the UI are not allowed in it.
For example, consider the previous example using this annotation, shown
as follows:

@UiThreadTest
public void testComponent () {
 mComponent.requestFocus();
 …
}

There is also a helper class that provides methods to perform touch interactions on
the view of your application: TouchUtils. The touch events are sent to the UI thread
safely from the test thread; therefore, the methods of the TouchUtils class should
not be invoked in the UI thread. Some of the methods provided by this helper class
are as follows:

•	 The clickView method: This method simulates a click on the center of a view
•	 The drag, dragQuarterScreenDown, dragViewBy, dragViewTo,

dragViewToTop methods: These methods simulate a click on an UI element
and then drag it accordingly

•	 The longClickView method: This method simulates a long press click on the
center of a view

•	 The scrollToTop or scrollToBottom methods: These methods scroll a
ViewGroup to the top or bottom

The mock object classes
The Android testing API provides some classes to create mock system objects. Mock
objects are fake objects that simulate the behavior of real objects but are totally
controlled by the test. They allow isolation of tests from the rest of the system. Mock
objects can, for example, simulate a part of the system that has not been implemented
yet, or a part that is not practical to be tested.

In Android, the following mock classes can be found: MockApplication,
MockContext, MockContentProvider, MockCursor, MockDialogInterface,
MockPackageManager, MockResources, and MockContentResolver. These classes
are under the android.test.mock package. The methods of these objects are
nonfunctional and throw an exception if they are called. You have to override the
methods that you want to use.

Chapter 9

[101]

Creating an activity test
In this section, we will create an example application so that we can learn how
to implement the test cases to evaluate it. Some of the methods presented in the
previous section will be put into practice. You can download the example code files
from your account at http://www.packtpub.com.

Our example is a simple alarm application that consists of two activities:
MainActivity and SecondActivity. The MainActivity implements a self-built
digital clock using text views and buttons. The purpose of creating a self-built
digital clock is to have more code and elements to use in our tests. The layout of
MainActivity is a relative one that includes two text views: one for the hour (the
tvHour ID) and one for the minutes (the tvMinute ID). There are two buttons below
the clock: one to subtract 10 minutes from the clock (the bMinus ID) and one to add
10 minutes to the clock (the bPlus ID). There is also an edit text field to specify the
alarm name. Finally, there is a button to launch the second activity (the bValidate
ID). Each button has a pertinent method that receives the click event when the button
is pressed. The layout looks like the following screenshot:

The SecondActivity receives the hour from the MainActivity and shows its
value in a text view simulating that the alarm was saved. The objective to create
this second activity is to be able to test the launch of another activity in our test case.

http://www.packtpub.com

Unit and Functional Tests

[102]

Open Android Studio and the Android project under test. You can create a blank
project with a main activity and layout. Later in this chapter, we will add an example
code to run the test cases. In the project structure, there is a folder and a package
where the tests will be saved: /src/androidTest/java/<your_package>. If you
don't have this package, you should add it.

Creating a unit test
A unit test evaluates the activity in isolation. Unit tests are used, for example, to
check a method of the activity or to check that the activity has the correct layout.
In this section, we are going to create a unit test for the main activity of our
example project.

Create a new class in the test package of your application named
MainActivityUnitTest. This class extends the ActivityUnitTestCase class,
which is the test case class to create unit tests. The test class has to be parameterized
with the activity under test and you also need to add the test case constructor,
shown as follows:

public class MainActivityUnitTest
 extends ActivityUnitTestCase<MainActivity> {

 public MainActivityUnitTest() {
 super(MainActivity.class);
 }

For this unit test example, we will create the setUp method, and then we will test
the buttons to manage the clock, main layout, and launch of the second activity.

The unit test setup
The fixture state of our test case includes the reference to the activity under test
and the layout objects that will be used in the test methods, shown as follows:

private MainActivity mActivity;
private TextView mHour, mMinute;
private Button mValidate, mMinus, mPlus;

The getActivity() method initializes the activity under test, but remember that
in unit tests, the activity is tested in isolation and therefore, it is not automatically
started by the system. The activity has to be started in your own code via an
Intent object. The code for the setUp method is as follows:

Chapter 9

[103]

@Override
protected void setUp() throws Exception {
super.setUp();

Intent intent = new
 Intent(getInstrumentation().getTargetContext(),
 MainActivity.class);
startActivity(intent, null, null);
mActivity = getActivity();

mHour = (TextView) mActivity.findViewById(R.id.tvHour);
mMinute = (TextView) mActivity.findViewById(R.id.tvMinute);
mValidate = (Button) mActivity.findViewById(R.id.bValidate);
mMinus = (Button) mActivity.findViewById(R.id.bMinus);
mPlus = (Button) mActivity.findViewById(R.id.bPlus);
}

Layout elements are accessed by their ID as usual. Because the test code is included
in a different package, you have to import the R class from the application package.

The clock test
Let's start implementing test methods. First, we will check whether the clock works
properly. The test method consists of clicking on both the buttons, that is, - 10 min
and + 10 min and checking whether the values for the hour and minute texts are the
expected ones. Since the activity runs in isolation, the TouchUtils library cannot be
used, but the performClick method can be invoked instead, as follows:

public void testClock() {
 mMinus.performClick();
 assertEquals("11", mHour.getText());
 assertEquals("50", mMinute.getText());

 mPlus.performClick();
 mPlus.performClick();
 mMinus.performClick();
 assertEquals("00", mHour.getText());
 assertEquals("00", mMinute.getText());
}

From the default layout values, the initial hour is 00:00. On clicking the minus button
once, the resultant hour is 11:50. On clicking the plus button twice and the minus
button once, the final hour is again 00:00. The conditions are checked using the
assertEquals method.

Unit and Functional Tests

[104]

If you want to test complex UI events, do not use unit tests; you should
create a functional test (ActivityInstrumentationTestCase2
test case).

The layout test
The second test method to be implemented is used to test whether the layout is
correct. The text of the UI elements can be checked, or the assertion methods of
the class ViewAsserts can also be invoked. A simple example of a UI test for our
example is shown as follows:

public void testUI() {
 assertNotNull("Hour text view not found", mHour);
 assertEquals("Wrong button label", "Validate",
 mValidate.getText());
 ViewAsserts.assertBottomAligned(mHour, mMinute);
}

The activity Intent test
The last test method we will implement is going to check whether the second activity
is properly launched. First, the Validate button is clicked to execute the code that
will create Intent of the second activity. The getStartedActivityIntent method
will return if any Intent was launched. The code snippet for the test method is
as follows:

public void testSecondActivityLaunch() {
 mValidate.performClick();

 Intent triggeredIntent = getStartedActivityIntent();
 assertNotNull("Intent was null", triggeredIntent);

 String payload = triggeredIntent.getExtras().getString("hour");
 assertEquals("Wrong data passed to SecondActivity", "00",
 payload);
}

In the test method, Intent is checked to evaluate whether it is null. Furthermore,
the data passed to the second activity can be examined as well.

The created Intent is not really sent to the system because the activity
runs in isolation.

Chapter 9

[105]

Creating a functional test
A functional test evaluates the activity and its communication with the Android
system. The UI events or changes in the life cycle should be checked in a functional
test. In this section, we will create a functional test for the main activity of our
example project.

Create a new class in the test package of your application named MainActivityTest.
This class extends the ActivityInstrumentationTestCase2 class and has to be
parameterized with the activity under test, shown as follows:

public class MainActivityTest
 extends ActivityInstrumentationTestCase2<MainActivity> {

 public MainActivityTest() {
 super(MainActivity.class);
}

For this example of functional tests, we will evaluate the UI (white-box testing),
launch of the second activity, and state management.

The functional test setup
The fixture state of our test case includes the reference to the activity under test and
the layout objects that will be used in the test methods, shown as follows:

private MainActivity mActivity;
private TextView mHour, mMinute;
private Button mValidate;
private EditText mName;

Unlike unit testing, the getActivity() method is enough to start the activity under
test. The setUp method code is shown as follows:

@Override
protected void setUp() throws Exception {
 super.setUp();

 setActivityInitialTouchMode(false);
 mActivity = getActivity();

 mHour = (TextView) mActivity.findViewById(R.id.tvHour);
 mMinute = (TextView) mActivity.findViewById(R.id.tvMinute);
 mValidate = (Button) mActivity.findViewById(R.id.bValidate);
 mName = (EditText) mActivity.findViewById(R.id.etName);
}

Unit and Functional Tests

[106]

The setActivityInitialTouchMode method sets the initial touch mode for the
activity. Setting the mode as false is necessary to set off the touch mode in the
device so that the key events are not ignored. This method should be called before
starting the activity with the getActivity method and also because it cannot be
executed on the UI thread.

The UI test
In the first test method, as an example of UI testing, we will evaluate EditText
containing the name of the alarm. The steps to be implemented for this test are
as follows:

1.	 Request the focus of the edit text element. This step interacts with View of
the application and therefore, it should run in the UI thread, that is, the main
thread of the application. To run some code in the UI thread, you can use the
runOnUiThread() method of the activity under test.

2.	 Send key events to write the alarm name. Only an instrumented class allows
to send key events to the activity under test. Thanks to instrumentation, it is
not necessary to run these calls in the UI thread either.

3.	 Test that the text of the edit field is the same as expected.

The UI test method is shown as follows:

public void testEditTextName() {
 mActivity.runOnUiThread(new Runnable() {
 public void run() {
 mName.requestFocus();
 }
 });

 sendKeys(KeyEvent.KEYCODE_A);
 sendKeys(KeyEvent.KEYCODE_L);
 sendKeys(KeyEvent.KEYCODE_1);

 getInstrumentation().waitForIdleSync();
 assertEquals("Wrong alarm name", "al1",
 mName.getText().toString());
}

The waitForIdleSync method is called to wait for the application to be idle.
Thus, we know for sure that the text has been completely inserted in the field.

Chapter 9

[107]

The activity Intent test
Unlike unit tests, when a new Intent is created, it is sent to the Android system. To
monitor the launched activity, we can register an ActivityMonitor object using
instrumentation. Another difference between functional and unit tests is that in
a functional test, we can use the TouchUtils library to send a click event on a UI
element, shown as follows:

public void testSecondActivityLaunch() {
 Instrumentation.ActivityMonitor monitor =
 getInstrumentation().addMonitor(SecondActivity.class.getName(),
 null, false);

 TouchUtils.clickView(this, mValidate);

 SecondActivity secondActivity =
 (SecondActivity) monitor.waitForActivityWithTimeout(2000);
 assertNotNull(secondActivity);

 getInstrumentation().removeMonitor(monitor);
 sendKeys(KeyEvent.KEYCODE_BACK);
}

Our code performs the following steps for this test method:

1.	 Creates the activity monitor.
2.	 Sends a click event to the Validate button.
3.	 When the monitor receives the launched activity, it verifies that the activity

was launched.
4.	 Deletes the monitor.
5.	 Closes the second activity by sending a click event to the device's back button.

The state management test
This last test method checks whether the activity state is preserved when the activity
is, for example, paused or restarted. For this example, we will evaluate how our main
activity behaves when it is paused and resumed. The expected behavior is that the
hours and minutes are maintained. Performing a reliable test is necessary to directly
change the text views between the pausing and resuming of the activity. This change
ensures that the activity actually restores the previous state. The code of this method
is as follows:

Unit and Functional Tests

[108]

@UiThreadTest
public void testStateManagement() {
 mHour.setText("02");
 assertEquals("02", mHour.getText());

 getInstrumentation().callActivityOnPause(mActivity);
 mHour.setText("11");
 getInstrumentation().callActivityOnResume(mActivity);
 assertEquals("02", mHour.getText());
}

Notice the @UiThreadTest annotation before the method. Methods annotated
with @UiThreadTest are executed in the UI thread. In the previous test method,
the setText method on the text view has to be executed on the UI thread. If the
@UiThreadTest annotation is not added, you have to use the runOnUiThread()
method instead.

Getting the results
We already have an application and two test cases created in our Android project.
The structure of the project can be seen in the following screenshot. Run the
application once to check that there are no errors and install the application on the
device. In this section, we will be running the test cases and examining the results.

Chapter 9

[109]

In Android Studio, select the package containing the test cases. Click on it using the
right mouse button, and select the Run 'Tests in <your_package>' option. In the
bottom part of Android Studio, open the Run tab to see the test execution. On the left
part of this tab, you can inspect the test execution state. From the buttons on the left
side, you can stop the test execution or rerun it. The next screenshot shows the initial
state of the tests being initialized. On the right part of the tab, the commands and
results are listed in the console.

While a test method is being executed, it is also revealed on the left panel along with
its execution state such as whether the test is still being evaluated, and whether the
test was passed or not passed. When the test execution is completed, all the results
are displayed. By deselecting the Hide Passed icon (highlighted in the previous
screenshot), you can see all the test methods. Over the console, a color bar is also
shown in green or red to indicate whether all the tests were passed or whether
there were any fails. In our example, all the tests were passed as you can see in
the following screenshot:

Try to insert an error in any test method, for example, by changing the following line
of code from the testStateManagement() test method:

assertEquals("30", mMinute.getText());

Unit and Functional Tests

[110]

Change the preceding line of code to the following:

assertEquals("40", mMinute.getText());

Run the tests and notice that now the fail is indicated in the results. The following
screenshot shows how the fail is displayed:

Summary
In this chapter, you learned more about Android testing. You now understand the
structure of the Android testing API and we know its main classes and methods.
You also learned about the importance of instrumentation to test activities of the
Android applications. We set up the testing environment using Android Studio
and followed the complete process of testing.

In the next chapter, you will learn about some external tools different from Android
Studio. These tools will help us secure and test our Android applications.

Supporting Tools
In this chapter, you will learn about the external tools different from those available
in Android Studio that will help us test our Android applications. The chapter will
cover test tools to perform unit and functional tests. It will also cover tools that
help us secure our application in different ways. We will end this chapter with
an alternative tool that allows you to emulate an Android device.

The topics that are going to be covered in this chapter are:

•	 Tools for unit testing Android applications
•	 Tools for functional testing Android applications
•	 Tools for securing Android applications
•	 Some other tools

Tools for unit testing
As we have seen in Chapter 9, Unit and Functional Tests, unit testing is performed with
minimal connection to the system infrastructure and tests the different components
in isolation. We will see different tools that allow us to easily perform unit tests on
Android applications. They are as follows:

•	 Spoon
•	 Mockito
•	 Android Mock
•	 FEST Android
•	 Robolectric

Supporting Tools

[112]

Spoon
Spoon is not a new form of unit testing. Instead, it makes use of the existing unit
testing instrumentation such as JUnit to run tests on multiple devices. With Spoon,
you can test your application on many devices at the same time. When the test
is completed, you will receive a summary generated by Spoon with all the
information regarding the test performed on the devices. You can also use
Spoon for functional testing.

For a device to be considered by Spoon to run tests on, it has to be visible to the
Android Debug Bridge (adb) devices. You can even perform the tests on different
types of devices at the same time, such as smartphones, tablets, phablets, and so on,
and in different versions of Android. The greater the diversity of the devices, the
more useful the summary will be. With a big sample of devices, you can find more
potential issues to be addressed. We can see an example with eight devices in the
following figure:

If you want to access the summary of the testing performed on a single device,
you can do it with the Device View. Spoon makes a Device View available for
each device in the sample so that you can see the results of a device individually.
To access the Device View, you can simply click on the name of a device. We can
see this view in the following figure:

Chapter 10

[113]

If you want to access the summary of a specific test performed on all the devices in
the sample, you can do it through the Test View. The Test View displays the result
of a single test on every device. In case of an error, it will show the information that
was generated by the error. To access the Test View, you can click on the icon with
the shape of a smartphone on the Device View. We can see an example of this view
in the following screenshot:

Supporting Tools

[114]

If you want to check the view of the application at any point in time, you can
use the Screenshot feature. This feature allows you to take a screenshot of the
information being displayed to the user at any given moment during the execution.
The screenshots are available in both the Device View if you want to see all the
screenshots taken in a single device, and the Test View if you want to see the
screenshots taken of each test in every device.

To make use of this feature, you need to include the spoon-client.jar library
in your application. When you want to take a screenshot, you can call the static
screenshot(Activity, String) method of the Spoon class, shown as follows:

Spoon.screenshot(activity, "login_activity");

If you want to know more about Spoon or want to download the tool,
you can follow this link:
http://square.github.io/spoon/

Mockito
Mockito is a mock testing framework for Java that can be used in conjunction with
JUnit and other unit testing frameworks. It has been compatible with Android since
Version 1.9.5. Mockito allows the use of automatic unit testing to enhance the quality
of our code. Most unit testing frameworks are based on an expect-run-verify pattern.
Mockito removes the specification of expectations reducing the pattern to run-verify.

We already know that unit tests are performed over an isolated class. This means
that their interaction with other classes should be eliminated when possible. As seen
in Chapter 9, Unit and Functional Tests, you can achieve these interactions using mock
objects also known as stubs. Mockito allows you to create mock objects using the
mock() method.

You can also initialize a mock object using the @Mock annotation and the
MockitoAnnotations class. You can call the MockitoAnnotations.initMocks()
method to initiate the mock objects that were defined with the @Mock annotation.

The verify() method can be called on a mock object to verify that a certain method
was called. To specify a condition and a return value when the condition is met,
you can use the when() method in conjunction with the thenReturn() method.

http://square.github.io/spoon/

Chapter 10

[115]

For example, let's say we want to check whether the test method was called in the
following code:

// Create the mock object
TestClass testClassMock = Mockito.mock(TestClass.class);

// Call a method on the mock object
boolean result = testClassMock.test("hello world");

// Test the return value
assertTrue (result);

// Check that the method test() was called
Mockito.verify(testClassMock).test("hello world");

Mockito cannot be used to test final classes, anonymous classes, and primitive types.

If you want to learn more about Mockito, visit its website:
https://code.google.com/p/mockito/

Android Mock
Android Mock is similar to Mockito. Android Mock is also a framework to mock
classes and interfaces. It works with the Android Dalvik Virtual Machine. It is based
on the Java mocking framework EasyMock and uses the same grammar and syntax.

In order to learn about the grammar and syntax of Android Mock, we will repeat
the same example as we did with Mockito:

public class MockingTest extends TestCase {
 // Create the mock object
 @UsesMocks(TestClass.class)
 TestClass testClassMock =
 AndroidMock.createMock(TestClass.class);

 // Tells the mock object that the method test will be called and
 // the value true will be expected
 AndroidMock.expect(testClassMock.test("hello
 world")).andReturn(true);

https://code.google.com/p/mockito/

Supporting Tools

[116]

 // Make the mock object ready to be tested
 AndroidMock.replay(testClassMock);

 // Test the return value
 assertTrue (testClassMock.test("hello world"));

 // Test that the method test() was called
 AndroidMock.verify(testClassMock);
}

As you can see, the main difference in Android Mock and Mockito is that Android
Mock follows the pattern expectation-run-verify.

If you want to learn more about Android Mock, you can visit the
project website: https://code.google.com/p/android-mock/.

FEST Android
FEST Android is a library that extends the FEST functionality to Android. FEST is a
unit test framework for Java. It is basically a simpler form of making assertions. In the
following code, we see the differences between JUnit, FEST, and FEST for Android:

// Assertion using JUNIT
assertEquals(View.GONE, view.getVisibility());

// Assertion using FEST
assertThat(view.getVisibility()).isEqualTo(View.GONE);

// Assertion using FEST for Android
assertThat(view).isGone();

FEST for Android offers assertions that are executed directly on objects instead
of properties. This makes it possible to chain together several assertions, shown
as follows:

assertThat(layout).isVisible().isVertical().hasChildCount(3);

There are many available assertions for typical Android objects, such as
LinearLayout, ActionBar, Fragment, and MenuItem.

If you want to learn more about FEST, you can visit the project website
at https://code.google.com/p/fest/. If you want to learn more
about FEST for Android, you can visit the URL at http://square.
github.io/fest-android/.

https://code.google.com/p/android-mock/
https://code.google.com/p/fest/
http://square.github.io/fest-android/
http://square.github.io/fest-android/

Chapter 10

[117]

Robolectric
Robolectric allows you to run unit tests of your Android application on your
workstation's Java Virtual Machine. This has one main advantage, that is, speed.
Running unit tests in Android means that the application needs to be loaded either
on the Android emulator or on your device.

Robolectric takes a different path than mock frameworks such as Mockito and
instead of mocking out the Android SDK, Robolectric rewrites the Android SDK
classes and makes it possible to run them on a regular JVM. It can, however, be used
in conjunction with mocking testing frameworks such as Mockito or Android Mock.

Robolectric makes use of the @RunWith annotation from JUnit 4, shown as follows:

@RunWith(RobolectricTestRunner.class)
public class Test1 {
 // Your tests
}

If you want to learn more about Robolectric, you can visit the project
website at http://robolectric.org/.

Tools for functional testing
In Chapter 9, Unit and Functional Tests, you learned how functional tests are
performed with full connection to the system infrastructure. In this section,
we will look at the different tools that allow us to easily perform functional
tests in Android applications:

•	 Robotium
•	 Espresso
•	 Appium
•	 Calabash
•	 MonkeyTalk
•	 Bot-bot
•	 Monkey
•	 Wireshark

http://robolectric.org/

Supporting Tools

[118]

Robotium
Robotium runs on the official Android testing framework. It adds the necessary
features to run through an entire Android application. It has full support for
both native and hybrid applications.

Now, we will see the steps needed to run a test using Robotium on our
Android application:

1.	 Add the Robotium JAR to your Build Path.
2.	 Create a test case using the JUnit TestCase class.
3.	 Write the test case code.
4.	 Run the test case.

Tests with Robotium are performed using the com.robotium.solo.Solo class
available in the Robotium library.

We will now see an example of the white-box testing using Robotium. In this
example, we have two EditText fields: one where the user can input a numeric
value ValueEditText and another one that will display the value of the input
multiplied by 2, ResultEditText. The multiplication is made when the Button1
button is clicked:

public class TestMain extends
 ActivityInstrumentationTestCase2<MainActivity> {

 // Declaration of the Solo object
 private Solo mSolo;

 // Constructor
 public TestMain() {
 super(Main.class);
 }

 // Set Up
 @Override
 protected void setUp() throws Exception {
 super.setUp();
 // Initiate the instance of Solo
 mSolo = new Solo(getInstrumentation(), getActivity());
 }

Chapter 10

[119]

 // White-Box Test Code
 public void testWhiteBox() {
 EditText valueEditText =
 (EditText) solo.getView(R.id.ValueEditText);
 EditText resultEditText =
 (EditText) solo.getView(R.id.ResultEditText);

 // Clears the Edit Text
 mSolo.clearEditText(valueEditText);
 // Sets the value of the EditText to 10
 mSolo.enterText(valueEditText, String.valueOf(10));

 // Clicks on Button1
 mSolo.clickOnButton("Button1");

 // Assert to check if it worked
 assertEquals(String.valueOf(20),
 resultEditText.getText().toString());
 }
}

If you want to learn more about Robotium, you can visit the project
website at https://code.google.com/p/robotium/. If you
want to learn how to use Robotium, we recommend the official
getting started guide: https://code.google.com/p/robotium/
wiki/Getting_Started.

Espresso
Espresso is an API that lets you test state expectations, assertions, and interactions.
There are many actions that can be performed with Espresso using a simple syntax.
Let's see how the example we used for Robotium will be executed with Espresso:

public void testWhiteBox() {

 // Type the text "10" in the ValueEditText
 onView(withId(R.id.ValueEditText)).perform(typeText("10"));

 // Click the button Button1
 onView(withId(R.id.Button1)).perform(click());

 // Check if the value displayed is "20"
 onView(withText("20").check(matches(isDisplayed()));
}

https://code.google.com/p/robotium/
https://code.google.com/p/robotium/wiki/Getting_Started
https://code.google.com/p/robotium/wiki/Getting_Started

Supporting Tools

[120]

To make use of the Espresso library in Android Studio, you need to follow
these steps:

1.	 Add the Espresso JAR as a library dependency.
2.	 Add this instrumentation to your project AndroidManifest.xml:

<instrumentation
android:name="com.google.android.apps.common.testing.testrunner.
GoogleInstrumentationTestRunner"
android:targetPackage="YOUR_PACKAGE"/>

3.	 Configure tests to run with GoogleInstrumentationTestRunner.

If you want to learn more about Espresso, you can visit the project
website at https://code.google.com/p/android-test-kit/
wiki/Espresso. If you have 15 minutes to spare, we recommend
their Google Test Automation Conference 2013 presentation at
https://www.youtube.com/watch?v=T7ugmCuNxDU.

Appium
Appium is an open source framework that allows automated testing. Appium works
with both native and hybrid Android applications. It even works with iOS. Appium
is a good solution if you need to test in both Android and iOS.

To download or just learn more about Appium, you can visit their
website at http://appium.io/. If you want to see examples for
Appium, visit their GitHub at https://github.com/appium/
appium/tree/master/sample-code/examples.

Calabash
Just like Appium, Calabash is also a multiplatform framework that performs
automated tests. It works with Android native applications, hybrid applications,
and iOS native applications. Calabash allows you to take screenshots of the current
view in a determined instant. One of the things that separate Calabash from the
other testing frameworks is that it supports Cucumber. Cucumber allows people
with less expertise in this matter to easily define the behavior of the application
using natural language, for example:

When I touch the "addition" button
Then I should see "20"

https://code.google.com/p/android-test-kit/wiki/Espresso
https://code.google.com/p/android-test-kit/wiki/Espresso
https://www.youtube.com/watch?v=T7ugmCuNxDU
http://appium.io/
https://github.com/appium/appium/tree/master/sample-code/examples
https://github.com/appium/appium/tree/master/sample-code/examples

Chapter 10

[121]

The Calabash tool is based on ActivityInstrumentationTestCase2 from the
Android SDK.

If you want to know more about Calabash, you can visit the
project website: http://calaba.sh/. To learn more about the
Cucumber project, visit their website: http://cukes.info/.

MonkeyTalk
MonkeyTalk is yet another multiplatform automated test framework. MonkeyTalk
supports more features than Appium and Calabash. However, the version with
every feature available is a subscription-licensed product that is currently offered
in a free beta version but will be charged when the beta is over.

If you want to download MonkeyTalk or just learn more about it, you
can visit the project website at http://www.cloudmonkeymobile.
com/monkeytalk. To see an example using the MonkeyTalk
framework with an Android application, watch the following YouTube
video: https://www.youtube.com/watch?v=pjDGctTnThQ.

Bot-bot
Bot-bot is an Android automation testing tool with two interesting features: record
and replay. You do not need to add any kind of library or dependency to your
project, since the only thing bot-bot needs is an APK of the application you want
to test. The record feature allows you to store the sequence of events that were
triggered. It works both on a simulator and a real device. The recorded test cases
can be exported in the CSV format and replayed using the bot-bot tool.

Bot-bot consists of three elements:

•	 The bot-bot server: This server is used to store and modify the actions
taken on the Android application. It includes a simple HTML interface
that allows you to view recorded sessions, view recorded entries of a
session, modify or create assertions, export recorded sessions in CSV,
and delete recorded sessions.

•	 The bot-bot recorder: This recorder tracks the user actions on the Android
application that are being tested, and sends these tasks to the bot-bot server.
It supports recording of actions on TextBoxes, Adapters, and Spinners. It
also records clicks on elements and views. It does not support actions on
WebViews.

http://calaba.sh/
http://cukes.info/
http://www.cloudmonkeymobile.com/monkeytalk
http://www.cloudmonkeymobile.com/monkeytalk
https://www.youtube.com/watch?v=pjDGctTnThQ

Supporting Tools

[122]

•	 The bot-bot runner: This runner takes the exported sessions in the CSV
format and interprets them. The bot-bot runner then executes the actions
on the Android application and generates an HTML report that shows
the execution of the test cases defined.

The following screenshot shows an example of a generated HTML report by the
bot-bot runner:

Bot-bot is perfectly integrated with Robotium.

If you want to download the bot-bot application, you can visit their
website: http://imaginea.github.io/bot-bot/. To learn
how to use the bot-bot tool, we recommend the official Get Started
guide: http://imaginea.github.io/bot-bot/pages/get_
started.html.

Monkey
Monkey is a command-line tool that runs on your Android emulator or device.
It generates random user events and system-level events to stress test your
application. Although the interactions are random, they are based on a seeding
system and therefore you can repeat the same sequence of actions using the
same seed. This is important since otherwise, you would not be able to repeat
the sequence that produced an error to check whether it was fixed.

http://imaginea.github.io/bot-bot/
http://imaginea.github.io/bot-bot/pages/get_started.html
http://imaginea.github.io/bot-bot/pages/get_started.html

Chapter 10

[123]

There are four main categories of options in Monkey:

•	 Basic configuration options: An example of this can be the help or
verbosity level

•	 Operational constraints: An example of this can be the packages in which
the stress test will be performed

•	 Event types: An example of this can be the number of events, random seed,
and delay between events

•	 Debugging options: An example of this can be killing the process after an
error or ignoring the security exceptions

To launch the Monkey, you need to use a command line on your development
machine shown as follows:

adb shell monkey –p com.packt.package –v 100

The –p argument states the package where the Monkey will send random events.
The –v parameter states the number of random events that will be sent.

There are many other parameters for Monkey. If you want to learn
about these parameters, you can visit the official Android guide:
http://developer.android.com/tools/help/monkey.
html.

Wireshark
Wireshark, formerly known as Ethereal, is a protocol analyzer used to perform
analysis and solve problems related to network connectivity. Its functionality is
similar to the tool tcpdump, but Wireshark provides a more intuitive GUI.

You can use Wireshark in combination with your Android emulator to check
what information is being transferred to and from your Android application. The
main issue with this tool is that you need to know what packages to expect, since
otherwise the task of filtering can become really difficult. The best advice we can
give is to close the browser and other programs in your computer that may generate
network traffic to keep it to a minimum.

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

Supporting Tools

[124]

In this book, we already discussed Wireshark in Chapter 6, Securing Communications.
One of the topics we discussed was that we can use Wireshark to test whether
the data we are sending is being encrypted properly or not. Other alternatives to
Wireshark are Fiddler for Windows and Charles proxy for OS X. A screenshot of
Wireshark is shown in the following figure:

If you want to download or learn more about Wireshark, visit
their website: http://www.wireshark.org/.

Other tools
In this last section, we will see a tool that is not directly related to application testing
or security testing. However, it can significantly improve our testing experience.

Genymotion
Genymotion is an alternative and unofficial Android emulator. It is basically a virtual
emulator that creates a virtual image of Android and is often considered much faster
than the official Android emulator. It is available for Windows, Linux, and Mac
OS. If you are using Windows or Linux, you only need to install the Genymotion
distribution package. However, if you are using Mac OS, you need to download and
install VirtualBox manually. The following is a screenshot captured from the virtual
device manager that lists all the virtual devices available:

http://www.wireshark.org/

Chapter 10

[125]

If you want to get started with using Genymotion, you can visit
our blog: http://belencruz.com/2014/01/first-look-
at-genymotion-android-emulator/. To download and learn
more about Genymotion, visit the project website: http://www.
genymotion.com/. If you are using Mac OS and need to download
VirtualBox, follow this link: https://www.virtualbox.org/.

http://belencruz.com/2014/01/first-look-at-genymotion-android-emulator/
http://belencruz.com/2014/01/first-look-at-genymotion-android-emulator/
http://www.genymotion.com/
http://www.genymotion.com/
https://www.virtualbox.org/

Supporting Tools

[126]

Summary
In this chapter, you learned about the external tools that help us perform tests on
our Android applications. The chapter covered several automated unit testing tools
and several automated functional testing tools. You also learned how to stress test
our applications using Monkey and what tools we will need if we want to check the
network connectivity of our application. An alternative Android emulator that is in
most cases faster than the official one was reviewed too.

In the next chapter, which is the last chapter, you will learn about some tips that are
very useful for developers. You will also learn how to get help in case you need it.

Further Considerations
This chapter provides some further considerations that are useful for developers.
We will review what are the most important parts of our application that we need
to test. This chapter also contains information about how to get help for more
advanced topics.

The topics that will be covered in this chapter are:

•	 What to test
•	 Developer options
•	 Getting help

What to test
In the previous chapters, you learned about the Android testing API working with
Android Studio. Apart from knowing about activity and UI testing, considering
what parts of your application should be evaluated is also important.

Network access
If your application depends on the network access, you should examine the
behavior of your application when different network states are given. Consider
the following suggestions:

Further Considerations

[128]

•	 If your application completely depends on the network when it is launched
and there is no network access, it should at least show a default home screen.
Your application should not show a blank screen with any information on
it. Let the user know that he/she should review the device connectivity. The
network state can be checked using the ConnectivityManager class in the
following code:
ConnectivityManager connManager = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo netInfo = connManager.getActiveNetworkInfo();
if (netInfo != null && netInfo.isConnected()) {
 // Connect
} else {
 // display default screen
}

•	 When there are problems accessing the network that affect the normal
behavior of your application, let the user know this by displaying a message.

•	 When performing long network operations, the user should also be able
to use your application. Check that your application continues working
properly even while performing long network operations.

•	 Your application's data should maintain its consistency. If your application
sends or receives any kind of information to or from your server, this
information should be correctly synchronized. Check that your application
and server can recover from a network failure and maintain the consistency
of your application's data.

•	 To mitigate network failures, your application can cache some of the
information. Check the management of the cached information and its usage
when there is no network access.

•	 A good policy is to change the behavior of your application depending on
the type of network access, for example, it should be able to detect whether
the device is connected to a Wi-Fi or 3G network and work accordingly. You
should test whether your application follows the defined policy and whether
it is able to react to changes in the connection type. The connection type can
be checked using the following code:
boolean wifiConnected =
 netInfo.getType() == ConnectivityManager.TYPE_WIFI;
boolean mobileConnected =
 netInfo.getType() == ConnectivityManager.TYPE_MOBILE;

•	 If there is a network failure, your application should retry after a while.
You should check which behavior is appropriate for your application
and whether it is capable of recovering from failures.

Chapter 11

[129]

Media availability
If your application depends on external media, your code should check the
availability of that media. While designing your tests, you should evaluate whether
your application behaves correctly if the media is not available.

For example, if your application works with an external storage, you can check its
state by using the Environment.getExternalStorageState method, as it was
shown in Chapter 5, Preserving Data Privacy. To test the external storage availability,
you can configure the AVD to run on the emulator from Android Studio, as it is
shown in the following screenshot:

Further Considerations

[130]

Change in orientation
If a device supports multiple orientations, your application should be prepared for
the same. You have to decide whether your application will block the orientation
changes or not. If your application supports orientation changes, consider the
following suggestions:

•	 When there is an orientation change, the current activity is destroyed and
restarted. Check that the activity state is maintained. For example, if your
activity contains an input field that the user can edit, its content has to be
preserved when the device orientation changes.

•	 Your UI should also adapt to the device's current orientation. The position
and distribution of your UI elements are different on a portrait orientation
than on a landscape one. You should check that the design of your UI is
perfectly displayed in both the orientations.

You can change the emulator orientation by pressing Ctrl + F11 in Windows or
Linux, or Fn + Ctrl + F11 in Mac OS. To check the orientation changes, you can
override the onConfigurationChanged method of your activities, shown as follows:

@Override
public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 if (newConfig.orientation ==
 Configuration.ORIENTATION_LANDSCAPE) {
 …
} else if (newConfig.orientation ==
 Configuration.ORIENTATION_PORTRAIT){
 …
 }
}

Service and content provider testing
In Android, we can test the UI, activities, services, and content providers. In
Chapter 9, Unit and Functional Tests, activity testing was explained. But you should
not forget about services testing and content providers testing. The classes in the
Android testing API used to evaluate services and content providers are listed in
the following figure:

Chapter 11

[131]

The AndroidTestCase class and its subclasses belong to the android.test package.
It represents a test case to be used in the Android environment. Since this class is
generic, you should use one of its subclasses. The ProviderTestCase2 class is used
to test content providers. The ServiceTestCase class is used to test services.

Developer options
The Android system provides a set of on-device developer options that will help
you test your application. These options are available in the Settings menu of any
Android device. On Android 4.2 and higher, the developer options are hidden. Click
on the About phone option in the Settings menu and click on the Build number
seven times to make them available. The following screenshot shows the Developer
options in Android's Settings menu:

Further Considerations

[132]

The Developer options are organized into seven categories, described as follows:

•	 General: This option is not present in any category. For example, you can
get a bug report by selecting the Take bug report option.

•	 Debugging: This category includes useful tools to debug your application.
For example, when you want to test your application on a real device, you
should check the USB debugging option contained in this category. You can
also select a debug app (Select debug app) or allow mock locations (Allow
mock locations).

•	 Input: This category contains two tools. These are Show touches to provide
a visual feedback for touches on the screen, and Pointer location to overlay
the touch data on the screen.

•	 Drawing: This category includes options to change the graphical behavior
of the application and the system itself, such as Show surface updates,
Show layout bounds, Force RTL layout direction, and Simulate secondary
displays. You may want to disable animations that take place when an
application is opened. To do so, you can set to Animation off the following
options: Window animation scale, Transition animation scale, and
Animator duration scale.

•	 Hardware accelerated rendering: In this section, you can change the
behavior of the Graphics Processing Unit (GPU). The options available are
Force GPU rendering, Show GPU view updates, Show hardware layers
updates, Debug GPU overdraw, Debug non-rectangular clip operation,
Force 4xMSAA, and Disable HW overlays.

•	 Monitoring: This category contains options that allow you to track possible
problems or malfunctions. The options available are Strict mode enabled,
Show CPU usage, Profile GPU rendering, and Enable OpenGL traces.

•	 Apps: This category includes options to manage the behavior of applications
when they are running in the background. Activating Don't keep activities
will destroy every activity when the user leaves it. The background process
limit allows you to control the number of processes that can be executed in
the background. If you activate the option Show all ANRs, applications
will display a dialog when they don't respond.

Chapter 11

[133]

Getting help
If you want to access the Android Studio documentation, you can do it through the
IntelliJ IDEA web help. You can go to Help | Online Documentation, or access the
web page http://www.jetbrains.com/idea/documentation/. You can also go
to Help | Help Topics to directly open the documentation contents tree, or visit
the web page http://www.jetbrains.com/idea/webhelp/intellij-idea.html.

Android's official documentation is provided by Google and is available at
http://developer.android.com/. The Android documentation includes
every kind of guide to learn how to program Android applications. It also includes
design guidelines and even tips on distributing and promoting your application.

Some of the important references of all the previous chapters are listed as follows:

•	 Chapter 1, Introduction to Software Security:
°° Glossary of terms at http://www.sans.org/security-resources/

glossary-of-terms/

•	 Chapter 2, Security in Android Applications:
°° Content providers at http://developer.android.com/guide/

topics/providers/content-providers.html

°° Intent filters at http://developer.android.com/guide/
components/intents-filters.html

•	 Chapter 3, Monitoring Your Application:
°° DDMS at http://developer.android.com/tools/debugging/

ddms.html

•	 Chapter 4, Mitigating Vulnerabilities:
°° The Pattern class at http://developer.android.com/reference/

java/util/regex/Pattern.html

°° Storing data at http://developer.android.com/training/
articles/security-tips.html#StoringData

http://www.jetbrains.com/idea/documentation/
http://www.jetbrains.com/idea/webhelp/intellij-idea.html
http://developer.android.com/
http://www.sans.org/security-resources/glossary-of-terms/
http://www.sans.org/security-resources/glossary-of-terms/
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/reference/java/util/regex/Pattern.html
http://developer.android.com/reference/java/util/regex/Pattern.html
http://developer.android.com/training/articles/security-tips.html#StoringData
http://developer.android.com/training/articles/security-tips.html#StoringData

Further Considerations

[134]

•	 Chapter 5, Preserving Data Privacy:
°° Cipher at http://developer.android.com/reference/javax/

crypto/Cipher.html

°° Storage options at http://developer.android.com/guide/topics/
data/data-storage.html#filesInternal

•	 Chapter 6, Securing Communications:
°° Using cryptography at http://developer.android.com/training/

articles/security-tips.html#Crypto

°° Security with HTTPS and SSL at http://developer.android.com/
training/articles/security-ssl.html

•	 Chapter 7, Authentication Methods:
°° AccountManager at http://developer.android.com/reference/

android/accounts/AccountManager.html

•	 Chapter 8, Testing Your Application:
°° UI testing at http://developer.android.com/tools/testing/

testing_ui.html

°° uiautomator at http://developer.android.com/tools/help/
uiautomator/index.html

•	 Chapter 9, Unit and Functional Tests:
°° Creating unit tests at http://developer.android.com/training/

activity-testing/activity-unit-testing.html

°° Creating functional tests at http://developer.android.com/
training/activity-testing/activity-functional-testing.
html

°° ViewAsserts at http://developer.android.com/reference/
android/test/ViewAsserts.html

°° MoreAsserts at http://developer.android.com/reference/
android/test/MoreAsserts.html

http://developer.android.com/reference/javax/crypto/Cipher.html
http://developer.android.com/reference/javax/crypto/Cipher.html
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/training/articles/security-tips.html#Crypto
http://developer.android.com/training/articles/security-tips.html#Crypto
http://developer.android.com/training/articles/security-ssl.html
http://developer.android.com/training/articles/security-ssl.html
http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/tools/testing/testing_ui.html
http://developer.android.com/tools/testing/testing_ui.html
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/training/activity-testing/activity-unit-testing.html
http://developer.android.com/training/activity-testing/activity-unit-testing.html
http://developer.android.com/training/activity-testing/activity-functional-testing.html
http://developer.android.com/training/activity-testing/activity-functional-testing.html
http://developer.android.com/training/activity-testing/activity-functional-testing.html
http://developer.android.com/reference/android/test/ViewAsserts.html
http://developer.android.com/reference/android/test/ViewAsserts.html
http://developer.android.com/reference/android/test/MoreAsserts.html
http://developer.android.com/reference/android/test/MoreAsserts.html

Chapter 11

[135]

•	 Chapter 10, Supporting Tools:

°° Spoon at http://square.github.io/spoon/
°° Mockito at https://code.google.com/p/mockito/
°° Android Mock at https://code.google.com/p/android-mock/
°° FEST Android at http://square.github.io/fest-android/
°° Robolectric at http://robolectric.org/
°° Robotium at https://code.google.com/p/robotium/
°° Espresso at https://code.google.com/p/android-test-kit/

wiki/Espresso

°° Appium at http://appium.io/
°° Calabash at http://calaba.sh/
°° MonkeyTalk at http://www.cloudmonkeymobile.com/monkeytalk
°° Bot-bot at http://imaginea.github.io/bot-bot/
°° Monkey at http://developer.android.com/tools/help/monkey.

html

°° Wireshark at http://www.wireshark.org/
°° Genymotion at http://www.genymotion.com/

Summary
In this chapter, you learned about which parts of our application are more important
to evaluate and test. We reviewed the developer options available in Android and
how to access them. We also learned how to get additional help using the official
documentation and other sources.

http://square.github.io/spoon/
https://code.google.com/p/mockito/
https://code.google.com/p/android-mock/
http://square.github.io/fest-android/
http://robolectric.org/
https://code.google.com/p/robotium/
https://code.google.com/p/android-test-kit/wiki/Espresso
https://code.google.com/p/android-test-kit/wiki/Espresso
http://appium.io/
http://calaba.sh/
http://www.cloudmonkeymobile.com/monkeytalk
http://imaginea.github.io/bot-bot/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://www.wireshark.org/
http://www.genymotion.com/

Index
Symbols
.db file 55
-p parameter 123
@UiThreadTest() method 100
-v parameter 123

A
acceptance tests 14
access control 6
AccountManager class

about 80
using 80, 81

activity 22
ActivityInstrumentationTestCase2 class 94
activity lifecycle methods 96
Activity.runOnUiThread() method 99
activity test

creating 101
executing 108, 109
functional test, creating 105
unit test, creating 102

ActivityTestCase class 94
ActivityUnitTestCase class 95
addMonitor method 95
Allocation Tracker tab

displaying 35
All pairs testing technique 14
Android 17
Android application

testing 84
Android application package (APK) 21
Android Application Sandbox 19
Android Debug Bridge (adb) 112
Android instrumentation 95

Android Mock
about 115
URL 116

Android SDK
used, for testing Android application 84

Android security
features 20
overview 19

Android Studio
about 70
help, obtaining 133
URL, for documentation 133

Android Virtual Device (AVD) 88
API 21
application (app) 17
Appium

about 120
URL, for downloading 120, 121

application layer 64
application programming interface. See API
application sandboxing 19
Assert class

about 97, 98
MoreAsserts class 98, 99
ViewAsserts class 98

assert method
about 97, 98
assertEquals method 97
assertFalse method 97
assertNotNull method 97
assertNotSame method 97
assertNull method 97
assertSame method 97
assertTrue method 97
fail method 97

asymmetric cryptography 6

[138]

asymmetric encryption 56
authentication 6
authentication factors

inherence factor 77
knowledge factor 76
possession factor 77

authorization 6
availability 6

B
basis path testing 13
biometric authentication 77
biometric identifiers

behavioral characteristics 77
physiological characteristics 77

black-box tests
about 12, 84
all pairs testing 14
boundary value analysis 13
cause-effect graphing 14
equivalence partitioning 13
state transition testing 14
syntax testing 14

bot-bot
about 121, 122
bot-bot recorder 121
bot-bot runner 122
bot-bot server 121
URL, for downloading 122

boundary value analysis technique 13
broadcast messages, types

normal 23
ordered 23
sticky 23

broadcast receivers 22
brute force 6

C
Calabash 120
categories, developer options

Apps 132
Debugging 132
Drawing 132
General 132

Hardware accelerated rendering 132
Input 132
Monitoring 132

cause-effect graphing technique 14
certificate

about 20, 67
creating 67
using 67

Certificate Authority (CA) 71
Cipher 6
code injection 6
confidentiality 6
Console 28
content providers

about 25
securing 48
securing, precautions 48
testing 130, 131
URL, for official documentation 25

control flow testing 13
crack 6
cross-site scripting (XSS) 10
cryptographic keys 77

D
Dalvik Debug Monitor Server. See DDMS
dangerous permission level 45
data

storing, encryption used 59, 60
database storage 55
Data Encryption Standard (DES) 66
data flow testing 13
data privacy 51, 52
DDMS 28
debugger 28
debugging 28
decryption 6
Denial-of-service (DoS) 7
developer options

about 131
categories 132

Device View 112
dictionary attack 7
Distributed denial-of-service (DDoS) 7
doFinal method 57

[139]

E
electronic commerce (e-commerce) 6
Emulator Control tab

about 40
Location Controls 40
Telephony Actions 40
Telephony Status 40

encryption
about 7, 56, 57
asymmetric encryption 56
key, generating 58, 59
symmetric encryption 56
used, for storing data 59, 60
using 57, 58

equivalence partitioning technique 13
Espresso

about 119
reference link 120

exclusive time 31
expect-run-verify pattern 114
external storage

about 55
private files 55
public files 55

F
fabrication, threat 8
features, Android security

application-defined permissions 20
application signing 20
encrypted file system 20
interprocess communication 20
support for cryptography 20
support for secure networking 20

FEST Android
about 116
URL 116

File Explorer tab 39
File Transfer Protocol (FTP) 64
functional tests. See also black-box tests

about 93
activity Intent test method,

implementing 107
creating 105
setting up 105

state management test method,
implementing 107

tools, using 117
UI test method, implementing 106

G
garbage collector (GC) 33
Genymotion

about 124
URL 125

getAccountsByName method 81
getActivity() method 95, 102
getContentResolver().query() method

about 25
content URI 25
projection 25
selection 25
selection arguments 25
sort order 25

getInstrumentation() method 95
getPreferences() method 52
getSharedPreferences() method 52
getTargetContext method 96
getUiDevice() method 85
Graphics Processing Unit (GPU) 132

H
hash function 7
Heap tab

displaying 33, 34
help, Android Studio

obtaining 133
Hijack attack 7
HTTP

versus HTTPS 65
Hypertext Transfer Protocol Secure

(HTTPS)
about 7, 63-65
Android Studio 70
certificate, creating 67
examples 71, 72
Keytool 68, 69
SSL 66
TLS 66
versus HTTP 65

[140]

I
inclusive time 31
inherence factor 76, 77
init method 57
input validation

about 41, 42
SQL injection 43, 44

instrumentation 95
Instrumentation class

activity lifecycle methods 96
addMonitor method 95
getTargetContext method 96
startActivitySync method 96
URL, for documentation 95
waitForIdleSync method 96

InstrumentationTestCase class 94
integration tests 14
integrity 7
Intents

about 22-24
securing 46, 47
URL, for official documentation 24
vulnerabilities 46

Intent spoofing 46
interapplication communication

about 22, 46
content providers 25
content providers, securing 48
Intents 22-24
Intents, securing 46, 47

interception, threat 8
internal storage 54
International Mobile Station Equipment

Identity (IMEI) 51
Internet Assigned Numbers Authority

(IANA) 42
internet layer 64
interruption, threat 8

J
Java Development Kit (JDK) 67
Java Virtual Machine. See JVM
JUnit 83
JVM

about 84
Android application, testing on 84

K
key

generating, for encryption 58, 59
KeyGenerator class 58
Keytool 67-69
keytool command

-alias parameter 68
-genkey parameter 68
-keyalg parameter 68
-keysize parameter 68
-keystore parameter 68
-storepass parameter 68
-validity parameter 68

knowledge factor
pattern 76
PIN 76
username/password 76

L
link layer 64
LogCat 28
login implementations 77-79

M
man-in-the-middle attack 7
MD5 7
Media Access Control (MAC) 64
media availability

testing 129
method profiling tool 31, 32
mobile environment 17
Mockito

about 114
URL 115

mock() method 114
mock object classes

about 100
MockApplication class 100
MockContentProvider class 100
MockContentResolver class 100
MockContext class 100
MockCursor class 100
MockDialogInterface class 100
MockPackageManager class 100
MockResources class 100

[141]

mode flag, internal storage
MODE_APPEND 54
MODE_PRIVATE 54
MODE_WORLD_READABLE 54
MODE_WORLD_WRITEABLE 54

modification, threat 8
Monkey

about 122, 123
basic configuration options 123
debugging options 123
event types 123
operational constraints 123
URL, for parameters 123

MonkeyTalk
about 121
URL, for downloading 121

MoreAsserts class
about 98, 99
assertContainsRegex() method 98
assertContentsInAnyOrder() method 99
assertContentsInOrder() method 99
assertEmpty() method 99
assertEquals() method 99
assertMatchesRegex() method 99
URL 99

multifactor authentication 75
my_keystore.jks file 69
MyPrefsFile file 53
MyReadablePrefsFile file 53
MyWriteablePrefsFile file 53

N
network access

testing 127, 128
Network Statistics tab

displaying 36-38
normal broadcast 23
normal permission level 45

O
onCreate method 96
openFileOutput() method 54
open source software (OSS) 66
Open Systems Interconnection model. See

OSI model

operating mode, shared preferences
MODE_PRIVATE 52
MODE_WORLD_READABLE 52

operating system (OS) 17
ordered broadcast 23
orientation changes

testing 130
OSI model

about 64
versus TCP/IP model 64

P
password 7
pattern 76
Pattern class

DOMAIN_NAME pattern 42
EMAIL_ADDRESS pattern 42
IP_ADDRESS pattern 42
PHONE pattern 42
TOP_LEVEL_DOMAIN pattern 42
WEB_URL pattern 42

PBKDF2 algorithm 60
permission level

dangerous 45
normal 45
signature 45
signatureOrSystem 45

permissions 20, 44, 45
phishing 7
physical layer 64
PIN 76
possession factor 77
private files 55
public files 55

R
regular expressions

URL, for documentation 42
resourceId method 90
risk 7, 10
Robolectric

about 117
URL 117

Robotium
about 118, 119
reference link 119

[142]

S
Screenshot feature 114
SecretKeySpec class 58
secure code-design, principles

address vulnerabilities 12
clarity 11
failing securely 12
least privileges 11
secure defaults 11
simplicity 12
small surface area 11
strong defense 11
no trust, on third-party companies 12

SecureRandom class 58
Secure Sockets Layer. See SSL
security testing

about 12
black-box tests 12
white-box tests 12

sensitive data 51
service

about 22
testing 130, 131

setUp() method 96
SHA1 7
shared preferences 52-54
signatureOrSystem permission level 45
signature permission level 45
Simple Mail Transfer Protocol. See SMTP
smartphone

about 18
vulnerabilities 18

SMTP 64
sniffing attack 7
software security

terms 6-8
specification testing. See black-box tests
spoofing attack 7
Spoon

about 112-114
URL, for downloading 114

spoon-client.jar library 114
SQL 25
SQL injection 10, 43, 44
SSL 65, 66
SSL 3.0 66

SSL connection
establishing 66

SSLHandshakeException 73
startActivitySync method 96
statement coverage 13
State transition testing technique 14
sticky broadcast 23
storage options

database storage 52, 55
external storage 52, 55
internal storage 52, 54
shared preferences 52-54

Structural Query Language. See SQL
structural tests. See white-box tests
symmetric cryptography 7
symmetric encryption 56
Syntax testing technique 14
System Information tab 40
system tests 14

T
tcpdump 123
TCP/IP model

about 64
application layer 64
internet layer 64
link layer 64
physical layer 64
transport layer 64
versus OSI model 64

tearDown() method 96
terms, software security

access control 6
asymmetric cryptography 6
authentication 6
authorization 6
availability 6
brute force 6
Cipher 6
code injection 6
confidentiality 6
crack 6
decryption 6
Denial-of-service (DoS) 7
dictionary attack 7
Distributed denial-of-service (DDoS) 7

[143]

encryption 7
hash function 7
Hijack attack 7
Hypertext Transfer Protocol Secure

(HTTPS) 7
integrity 7
man-in-the-middle attack 7
MD5 7
password 7
phishing 7
risk 7
SHA1 7
Sniffing attack 7
spoofing attack 7
symmetric cryptography 7
threat 8
vulnerability 8

test case classes
about 94
ActivityInstrumentationTestCase2 class 94
ActivityTestCase class 94
ActivityUnitTestCase class 95
InstrumentationTestCase class 94
TestCase class 94

test case methods
about 96
setUp() method 96
tearDown() method 96

testing activities
Assert class 97, 98
assert method 97, 98
functional testing 93
instrumentation 95, 96
mock object classes 100
test case classes 94, 95
test case methods 96
TouchUtils 99, 100
UI testing 99, 100
unit testing 93

testing, Android application
Android SDK, using 84
on JVM 84

testing, content provider 130, 131
testing levels

acceptance tests 14
integration tests 14

system tests 14
unit tests 14
validation tests 14

testing, media availability 129
testing, network access 127, 128
testing, orientation changes 130
testing, services 130, 131
Test View 113
Threads tab 29, 30
threat

about 8
fabrication 8
interception 8
interruption 8
modification 8

three-factor authentication 75
Time-based One-Time Password (TOTP) 77
TLS 65, 66
tools

Genymotion 124
tools, functional testing

Appium 117, 120
bot-bot 121, 122
Bot-bot 117
Calabash 117, 120
Espresso 117, 119
Monkey 117, 122, 123
MonkeyTalk 117, 121
Robotium 117-119
Wireshark 117, 123

tools, unit testing
Android Mock 111, 115
FEST Android 111, 116
Mockito 111, 114
Robolectric 111, 117
Spoon 111-114

TouchUtils 99, 100
TouchUtils class

clickView method 100
drag method 100
dragQuarterScreenDown method 100
dragViewBy method 100
dragViewTo method 100
dragViewToTop method 100
longClickView method 100
scrollToBottom method 100
scrollToTop method 100

[144]

TrafficStats class 37
Transmission Control Protocol/Internet

protocol model. See TCP/IP model
transport layer 64
Transport Layer Security. See TLS
TrustManager class 71
two-factor authentication 75

U
UI 83
uiautomator API

about 84, 85
UiCollection class 87
UiDevice class 85
UiObject class 86
UiScrollable class 87
UiSelector class 86

uiautomator.jar library 85
uiautomatorviewer tool 87, 88
UiCollection class

about 87
getChildByDescription(UiSelector

childPattern, String text) method 87
getChildByInstance(UiSelector childPattern,

int instance) method 87
getChildByText(UiSelector childPattern,

String text) method 87
getChildCount(UiSelector childPattern)

method 87
UiDevice class

about 85
click(int x, int y) method 85
getDisplaySizeDp() method 85
pressBack() method 85
pressHome() method 85
sleep() method 85
takeScreenshot(File storepath) method 85
wakeUp() method 85

UiObject class
about 86
click() method 86
exists() method 86
getText() method 86
isChecked() method 86

setText(String text) method 86
UiScrollable class

about 87
scrollBackward() method 87
scrollForward() method 87
scrollToBeginning() method 87
scrollToEnd() method 87

UiSelector class
about 86
checked(boolean val) method 86
childSelector(UiSelector selector)

method 86
className(String className) method 86
resourceID(String id) method 86
text(String text) method 86

UI test cases
executing 91, 92

UI testing
about 84, 99, 100
black-box testing 84
uiautomator API 85
uiautomatorviewer tool 87, 88
white-box testing 84

UI test project
creating 89, 90

UI thread 29
unauthorized Intent receipt 46
unit tests

about 14, 93
activity Intent test method,

implementing 104
clock test method, implementing 103
creating 102
layout test method, implementing 104
setting up 102, 103
tools, using 111

unknown CA
solving 73

user ID (UID) 19
user interface (UI) 29, 83
username/password 76
user's data and credentials

handling 45, 46
handling, considerations 45

[145]

V
validation tests 14
values, method profiling tool

exclusive time 31
inclusive time 31

verify() method 114
ViewAsserts class

about 98
assertBottomAligned() method 98
assertGroupContains() method 98
assertGroupNotContains() method 98
assertHasScreenCoordinates() method 98
assertHorizontalCenterAligned()

method 98
assertLeftAligned() method 98
assertOffScreenAbove() method 98
assertOffScreenBelow() method 98
assertOnScreen() method 98
assertRightAligned() method 98
assertTopAligned() method 98
assertVerticalCenterAligned() method 98
URL 98

VirtualBox
URL, for downloading 125

vulnerabilities, Intents
Intent spoofing 46
unauthorized Intent receipt 46

vulnerabilities, smartphone 18
vulnerability

about 8, 9
buffer overflow 10
cross-site scripting (XSS) 10
improper authentication 9
Input validation 10
SQL injection 10

W
waitForIdleSync method 96
when() method 114
white-box tests

about 12, 84
basis path testing 13
control flow testing 13
data flow testing 13
statement coverage 13

Wireshark
about 123
URL 66
URL, for downloading 124

X
X.509 certificate

issuer 67
serial number 67
signature algorithm 67
subject 67
subject public key 67
validity 67
version 67

Thank you for buying
Testing and Securing Android

Studio Applications

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android Studio Application
Development
ISBN: 978-1-78328-527-3 Paperback: 110 pages

Create visually appealing applications using the new
IntelliJ IDE Android Studio

1.	 Familiarize yourself with Android Studio IDE.

2.	 Enhance the user interface for your app using
the graphical editor feature.

3.	 Explore the various features involved
in developing an Android app and
implement them.

Android Security Cookbook
ISBN: 978-1-78216-716-7 Paperback: 350 pages

Practical recipes to delve into Android's security
mechanisms by troubleshooting common
vulnerabilities in applications and Android
OS versions

1.	 Analyze the security of Android applications
and devices, and exploit common
vulnerabilities in applications and Android
operating systems.

2.	 Develop custom vulnerability assessment tools
using the Drozer Android Security Assessment
Framework.

3.	 Reverse-engineer Android applications for
security vulnerabilities.

Please check www.PacktPub.com for information on our titles

Learning Pentesting for Android
Devices
ISBN: 978-1-78328-898-4 Paperback: 154 pages

A practical guide to learning penetration testing for
Android devices and applications

1.	 Explore the security vulnerabilities in Android
applications and exploit them.

2.	 Venture into the world of Android forensics
and get control of devices using exploits.

3.	 Hands-on approach covers security
vulnerabilities in Android using methods
such as Traffic Analysis, SQLite vulnerabilities,
and Content Providers Leakage.

Android Application
Programming with OpenCV
ISBN: 978-1-84969-520-6 Paperback: 130 pages

Build Android apps to capture, manipulate, and track
objects in 2D and 3D

1.	 Set up OpenCV and an Android development
environment on Windows, Mac, or Linux.

2.	 Capture and display real-time videos and
still images.

3.	 Manipulate image data using OpenCV
and Apache Commons Math.

4.	 Track objects and render 2D and 3D graphics
on top of them.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Software Security
	Software security terms
	Threats, vulnerabilities, and risks
	Threat
	Vulnerability
	Risk

	Secure code-design principles
	Testing the basics
	Summary

	Chapter 2: Security in Android Applications
	The mobile environment
	An overview of Android security
	Permissions
	Interapplication communication
	Intents
	Content providers

	Summary

	Chapter 3: Monitoring Your Application
	Debugging and DDMS
	Threads
	Method profiling
	Heap
	Allocation Tracker
	Network Statistics
	File Explorer
	Emulator Control
	System Information
	Summary

	Chapter 4: Mitigating Vulnerabilities
	Input validation
	SQL injection

	Permissions
	Handling a user's data and credentials
	Interapplication communication
	Securing Intents
	Securing the content providers

	Summary

	Chapter 5: Preserving Data Privacy
	Data privacy
	Shared preferences
	Files in the internal storage
	Files in external storage
	The database storage

	Encryption
	The encryption methods
	Generating a key

	Using encryption to store data
	Summary

	Chapter 6: Securing Communications
	HTTPS
	SSL and TLS
	Server and client certificates
	Keytool in the terminal
	Android Studio

	Code examples using HTTPS
	Summary

	Chapter 7: Authentication Methods
	Multifactor authentication
	The knowledge factor
	The possession factor
	The inherence factor

	Login implementations
	AccountManager
	Summary

	Chapter 8: Testing Your Application
	Testing in Android
	Testing the UI
	The uiautomator API
	The UiDevice class
	The UiSelector class
	The UiObject class
	The UiCollection class
	The UiScrollable class

	The uiautomatorviewer tool

	The UI test project
	Running UI test cases
	Summary

	Chapter 9: Unit and Functional Tests
	Testing activities
	The test case classes
	Instrumentation
	The test case methods
	The Assert class and method
	The ViewAsserts class
	The MoreAsserts class

	UI testing and TouchUtils
	The mock object classes

	Creating an activity test
	Creating a unit test
	Unit test setup
	Clock test
	Layout test
	The activity Intent test

	Creating a functional test
	The functional test setup
	The UI test
	The activity Intent test
	The state management test

	Getting the results

	Summary

	Chapter 10: Supporting Tools
	Tools for unit testing
	Spoon
	Mockito
	Android Mock
	FEST Android
	Robolectric

	Tools for functional testing
	Robotium
	Espresso
	Appium
	Calabash
	MonkeyTalk
	Bot-bot
	Monkey
	Wireshark

	Other tools
	Genymotion

	Summary

	Chapter 11: Further Considerations
	What to test
	Network access
	Media availability
	Change in orientation
	Service and content provider testing

	Developer options
	Getting help
	Summary

	Index

