
Text Analytics
with Python

A Practical Real-World Approach to
Gaining Actionable Insights from
Your Data
—
Dipanjan Sarkar

www.allitebooks.com

http://www.allitebooks.org

Text Analytics
with Python

A Practical Real-World
Approach to Gaining Actionable

Insights from your Data

Dipanjan Sarkar

www.allitebooks.com

http://www.allitebooks.org

Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable
Insights from Your Data

Dipanjan Sarkar
Bangalore, Karnataka
India

ISBN-13 (pbk): 978-1-4842-2387-1 ISBN-13 (electronic): 978-1-4842-2388-8
DOI 10.1007/978-1-4842-2388-8

Library of Congress Control Number: 2016960760

Copyright © 2016 by Dipanjan Sarkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Mr. Sarkar
Technical Reviewer: Shanky Sharma
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

This book is dedicated to my parents, partner, well-wishers,
and especially to all the developers, practitioners, and

organizations who have created a wonderful and thriving
ecosystem around analytics and data science.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: Natural Language Basics �� 1

 ■Chapter 2: Python Refresher �� 51

 ■Chapter 3: Processing and Understanding Text �������������������������� 107

 ■Chapter 4: Text Classification ��� 167

 ■Chapter 5: Text Summarization �� 217

 ■Chapter 6: Text Similarity and Clustering ����������������������������������� 265

 ■Chapter 7: Semantic and Sentiment Analysis ���������������������������� 319

Index �� 377

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: Natural Language Basics �� 1

Natural Language �� 2

What Is Natural Language? �� 2

The Philosophy of Language ��� 2

Language Acquisition and Usage �� 5

Linguistics ��� 8

Language Syntax and Structure �� 10

Words�� 11

Phrases ��� 12

Clauses ��� 14

Grammar ��� 15

Word Order Typology ��� 23

Language Semantics ��� 25

Lexical Semantic Relations��� 25

Semantic Networks and Models ��� 28

Representation of Semantics ��� 29

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Text Corpora �� 37

Corpora Annotation and Utilities ��� 38

Popular Corpora �� 39

Accessing Text Corpora �� 40

Natural Language Processing ��� 46

Machine Translation �� 46

Speech Recognition Systems ��� 47

Question Answering Systems ��� 47

Contextual Recognition and Resolution �� 48

Text Summarization �� 48

Text Categorization ��� 49

Text Analytics �� 49

Summary ��� 50

 ■Chapter 2: Python Refresher �� 51

Getting to Know Python ��� 51

The Zen of Python ��� 54

Applications: When Should You Use Python? �� 55

Drawbacks: When Should You Not Use Python? ��� 58

Python Implementations and Versions ��� 59

Installation and Setup ��� 60

Which Python Version? ��� 60

Which Operating System? �� 61

Integrated Development Environments �� 61

Environment Setup ��� 62

Virtual Environments �� 64

Python Syntax and Structure ��� 66

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Data Structures and Types �� 69

Numeric Types �� 70

Strings �� 72

Lists �� 73

Sets��� 74

Dictionaries ��� 75

Tuples ��� 76

Files �� 77

Miscellaneous ��� 78

Controlling Code Flow ��� 78

Conditional Constructs�� 79

Looping Constructs ��� 80

Handling Exceptions ��� 82

Functional Programming ��� 84

Functions �� 84

Recursive Functions ��� 85

Anonymous Functions �� 86

Iterators �� 87

Comprehensions ��� 88

Generators �� 90

The itertools and functools Modules �� 91

Classes �� 91

Working with Text �� 94

String Literals ��� 94

String Operations and Methods �� 96

Text Analytics Frameworks ��� 104

Summary ��� 106

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 3: Processing and Understanding Text �������������������������� 107

Text Tokenization ��� 108

Sentence Tokenization �� 108

Word Tokenization��� 112

Text Normalization ��� 115

Cleaning Text �� 115

Tokenizing Text ��� 116

Removing Special Characters ��� 116

Expanding Contractions �� 118

Case Conversions ��� 119

Removing Stopwords �� 120

Correcting Words �� 121

Stemming ��� 128

Lemmatization �� 131

Understanding Text Syntax and Structure ��� 132

Installing Necessary Dependencies �� 133

Important Machine Learning Concepts ��� 134

Parts of Speech (POS) Tagging ��� 135

Shallow Parsing �� 143

Dependency-based Parsing �� 153

Constituency-based Parsing ��� 158

Summary ��� 165

 ■Chapter 4: Text Classification ��� 167

What Is Text Classification? ��� 168

Automated Text Classification ��� 170

Text Classification Blueprint �� 172

Text Normalization ��� 174

Feature Extraction ��� 177

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Bag of Words Model �� 179

TF-IDF Model �� 181

Advanced Word Vectorization Models ��� 187

Classification Algorithms ��� 193

Multinomial Naïve Bayes �� 195

Support Vector Machines �� 197

Evaluating Classification Models ��� 199

Building a Multi-Class Classification System �������������������������������������� 204

Applications and Uses ��� 214

Summary ��� 215

 ■Chapter 5: Text Summarization �� 217

Text Summarization and Information Extraction ��������������������������������� 218

Important Concepts ��� 220

Documents ��� 220

Text Normalization �� 220

Feature Extraction �� 221

Feature Matrix �� 221

Singular Value Decomposition �� 221

Text Normalization ��� 223

Feature Extraction ��� 224

Keyphrase Extraction �� 225

Collocations �� 226

Weighted Tag–Based Phrase Extraction ��� 230

Topic Modeling �� 234

Latent Semantic Indexing ��� 235

Latent Dirichlet Allocation ��� 241

Non-negative Matrix Factorization ��� 245

Extracting Topics from Product Reviews �� 246

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

Automated Document Summarization �� 250

Latent Semantic Analysis ��� 253

TextRank ��� 256

Summarizing a Product Description ��� 261

Summary ��� 263

 ■Chapter 6: Text Similarity and Clustering ����������������������������������� 265

Important Concepts ��� 266

Information Retrieval (IR) �� 266

Feature Engineering ��� 267

Similarity Measures �� 267

Unsupervised Machine Learning Algorithms �� 268

Text Normalization ��� 268

Feature Extraction ��� 270

Text Similarity �� 271

Analyzing Term Similarity �� 271

Hamming Distance ��� 274

Manhattan Distance�� 275

Euclidean Distance ��� 277

Levenshtein Edit Distance �� 278

Cosine Distance and Similarity ��� 283

Analyzing Document Similarity ��� 285

Cosine Similarity ��� 287

Hellinger-Bhattacharya Distance �� 289

Okapi BM25 Ranking �� 292

Document Clustering ��� 296

■ Contents

xiii

Clustering Greatest Movies of All Time �� 299

K-means Clustering �� 301

Affinity Propagation �� 308

Ward’s Agglomerative Hierarchical Clustering ��� 313

Summary ��� 317

 ■Chapter 7: Semantic and Sentiment Analysis ���������������������������� 319

Semantic Analysis ��� 320

Exploring WordNet ��� 321

Understanding Synsets ��� 321

Analyzing Lexical Semantic Relations �� 323

Word Sense Disambiguation ��� 330

Named Entity Recognition ��� 332

Analyzing Semantic Representations �� 336

Propositional Logic ��� 336

First Order Logic ��� 338

Sentiment Analysis �� 342

Sentiment Analysis of IMDb Movie Reviews ��������������������������������������� 343

Setting Up Dependencies �� 343

Preparing Datasets ��� 347

Supervised Machine Learning Technique ��� 348

Unsupervised Lexicon-based Techniques ��� 352

Comparing Model Performances �� 374

Summary ��� 376

Index �� 377

xv

About the Author

Dipanjan Sarkar is a data scientist at Intel, the world’s
largest silicon company, which is on a mission to make
the world more connected and productive. He primarily
works on analytics, business intelligence, application
development, and building large-scale intelligent
systems. He received his master’s degree in information
technology from the International Institute of Information
Technology, Bangalore, with a focus on data science and
software engineering. He is also an avid supporter of
self-learning, especially through massive open online
courses, and holds a data science specialization from
Johns Hopkins University on Coursera.

Sarkar has been an analytics practitioner for over four years, specializing in statistical,
predictive, and text analytics. He has also authored a couple of books on R and machine
learning, reviews technical books, and acts as a course beta tester for Coursera.
Dipanjan’s interests include learning about new technology, financial markets, disruptive
startups, data science, and more recently, artificial intelligence and deep learning. In his
spare time he loves reading, gaming, and watching popular sitcoms and football.

xvii

About the Technical
Reviewer

Shanky Sharma Currently leading the AI team at Nextremer India, Shanky Sharma’s work
entails implementing various AI and machine learning–related projects and working on
deep learning for speech recognition in Indic languages. He hopes to grow and scale new
horizons in AI and machine learning technologies. Statistics intrigue him and he loves
playing with numbers, designing algorithms, and giving solutions to people. He sees
himself as a solution provider rather than a scripter or another IT nerd who codes. He
loves heavy metal and trekking and giving back to society, which, he believes, is the task
of every engineer. He also loves teaching and helping people. He is a firm believer that we
learn more by helping others learn.

xix

Acknowledgments

This book would definitely not be a reality without the help and support from some
excellent people in my life. I would like to thank my parents, Digbijoy and Sampa,
my partner Durba, and my family and well-wishers for their constant support and
encouragement, which really motivates me and helps me strive to achieve more.

This book is based on various experiences and lessons learned over time. For that I
would like to thank my managers, Nagendra Venkatesh and Sanjeev Reddy, for believing
in me and giving me an excellent opportunity to tackle challenging problems and also
grow personally. For the wealth of knowledge I gained in text analytics in my early days,
I would like to acknowledge Dr. Mandar Mutalikdesai and Dr. Sanket Patil for not only
being good managers but excellent mentors.

A special mention goes out to my colleagues Roopak Prajapat and Sailaja
Parthasarathy for collaborating with me on various problems in text analytics. Thanks to
Tamoghna Ghosh for being a great mentor and friend who keeps teaching me something
new every day, and to my team, Raghav Bali, Tushar Sharma, Nitin Panwar, Ishan
Khurana, Ganesh Ghongane, and Karishma Chug, for making tough problems look easier
and more fun.

A lot of the content in this book would not have been possible without Christine Doig
Cardet, Brandon Rose, and all the awesome people behind Python, Continuum Analytics,
NLTK, gensim, pattern, spaCy, scikit-learn, and many more excellent open source
frameworks and libraries out there that make our lives easier. Also to my friend Jyotiska,
thank you for introducing me to Python and for learning and collaborating with me on
various occasions that have helped me become what I am today.

Last, but never least, a big thank you to the entire team at Apress, especially
to Celestin Suresh John, Sanchita Mandal, and Laura Berendson for giving me this
wonderful opportunity to share my experience and what I’ve learned with the community
and for guiding me and working tirelessly behind the scenes to make great things happen!

xxi

Introduction

I have been into mathematics and statistics since high school, when numbers began to
really interest me. Analytics, data science, and more recently text analytics came much
later, perhaps around four or five years ago when the hype about Big Data and Analytics
was getting bigger and crazier. Personally I think a lot of it is over-hyped, but a lot of it is
also exciting and presents huge possibilities with regard to new jobs, new discoveries, and
solving problems that were previously deemed impossible to solve.

Natural Language Processing (NLP) has always caught my eye because the human
brain and our cognitive abilities are really fascinating. The ability to communicate
information, complex thoughts, and emotions with such little effort is staggering once
you think about trying to replicate that ability in machines. Of course, we are advancing
by leaps and bounds with regard to cognitive computing and artificial intelligence (AI),
but we are not there yet. Passing the Turing Test is perhaps not enough; can a machine
truly replicate a human in all aspects?

The ability to extract useful information and actionable insights from heaps of
unstructured and raw textual data is in great demand today with regard to applications in
NLP and text analytics. In my journey so far, I have struggled with various problems, faced
many challenges, and learned various lessons over time. This book contains a major
chunk of the knowledge I’ve gained in the world of text analytics, where building a fancy
word cloud from a bunch of text documents is not enough anymore.

Perhaps the biggest problem with regard to learning text analytics is not a lack of
information but too much information, often called information overload. There are
so many resources, documentation, papers, books, and journals containing so much
theoretical material, concepts, techniques, and algorithms that they often overwhelm
someone new to the field. What is the right technique to solve a problem? How does
text summarization really work? Which are the best frameworks to solve multi-class text
categorization? By combining mathematical and theoretical concepts with practical
implementations of real-world use-cases using Python, this book tries to address this
problem and help readers avoid the pressing issues I’ve faced in my journey so far.

This book follows a comprehensive and structured approach. First it tackles the
basics of natural language understanding and Python constructs in the initial chapters.
Once you’re familiar with the basics, it addresses interesting problems in text analytics
in each of the remaining chapters, including text classification, clustering, similarity
analysis, text summarization, and topic models. In this book we will also analyze text
structure, semantics, sentiment, and opinions. For each topic, I cover the basic concepts
and use some real-world scenarios and data to implement techniques covering each
concept. The idea of this book is to give you a flavor of the vast landscape of text analytics
and NLP and arm you with the necessary tools, techniques, and knowledge to tackle your
own problems and start solving them. I hope you find this book helpful and wish you the
very best in your journey through the world of text analytics!

1© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_1

 CHAPTER 1

 Natural Language Basics

 We have ushered in the age of Big Data where organizations and businesses are having
difficulty managing all the data generated by various systems, processes, and transactions.
However, the term Big Data is misused a lot due to the nature of its popular but vague
definition of “the 3 V’s”—volume, variety, and velocity of data. This is because sometimes
it is very difficult to exactly quantify what data is “Big.” Some might think a billion records
in a database would be Big Data, but that number seems really minute compared to the
 petabytes of data being generated by various sensors or even social media. There is a large
volume of unstructured textual data present across all organizations, irrespective of their
domain. Just to take some examples, we have vast amounts of data in the form of tweets,
status updates, comments, hashtags, articles, blogs, wikis, and much more on social
media. Even retail and e-commerce stores generate a lot of textual data from new product
information and metadata with customer reviews and feedback.

 The main challenges associated with textual data are twofold. The first challenge
deals with effective storage and management of this data. Usually textual data is
unstructured and does not adhere to any specific predefined data model or schema,
which is usually followed by relational databases. However, based on the data semantics,
you can store it in either SQL-based database management systems (DBMS) like SQL
Server or even NoSQL-based systems like MongoDB. Organizations having enormous
amounts of textual datasets often resort to file-based systems like Hadoop where they
dump all the data in the Hadoop Distributed File System (HDFS) and access it as needed,
which is one of the main principles of a data lake .

 The second challenge is with regard to analyzing this data and trying to extract
meaningful patterns and useful insights that would be beneficial to the organization.
Even though we have a large number of machine learning and data analysis techniques
at our disposal, most of them are tuned to work with numerical data, hence we have
to resort to areas like natural language processing (NLP) and specialized techniques,
transformations, and algorithms to analyze text data, or more specifically natural
language , which is quite different from programming languages that are easily
understood by machines. Remember that textual data, being highly unstructured, does
not follow or adhere to structured or regular syntax and patterns—hence we cannot
directly use mathematical or statistical models to analyze it.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2388-8_1) contains supplementary material, which is available
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

2

 Before we dive into specific techniques and algorithms to analyze textual data, we will be
going over some of the main concepts and theoretical principles associated with the nature
of text data in this chapter. The primary intent here is to get you familiarized with concepts
and domains associated with natural language understanding , processing , and text analytics .
We will be using the Python programming language in this book primarily for accessing and
analyzing text data. The examples in this chapter will be pretty straightforward and fairly easy
to follow. However, you can quickly skim over Chapter 2 in case you want to brush up on
Python before going through this chapter. All the examples are available with this book and
also in my GithHub repository at https://github.com/dipanjanS/text-analytics-with-
python which includes programs, code snippets and datasets. This chapter covers concepts
relevant to natural language, linguistics, text data formats, syntax, semantics, and grammars
before moving on to more advanced topics like text corpora , NLP, and text analytics.

 Natural Language
 Textual data is unstructured data but it usually belongs to a specific language following
specific syntax and semantics. Any piece of text data—a simple word, sentence, or
document—relates back to some natural language most of the time. In this section, we
will be looking at the definition of natural language, the philosophy of language, language
acquisition, and the usage of language.

 What Is Natural Language?
 To understand text analytics and natural language processing , we need to understand
what makes a language “natural.” In simple terms, a natural language is one developed
and evolved by humans through natural use and communication , rather than
constructed and created artificially, like a computer programming language.

 Human languages like English, Japanese, and Sanskrit are natural languages. Natural
languages can be communicated in different forms, including speech, writing, or even signs.
There has been a lot of scholarship and effort applied toward understanding the origins,
nature, and philosophy of language. We will discuss that briefly in the following section.

 The Philosophy of Language
 We now know what a natural language means. But think about the following questions.
What are the origins of a language ? What makes the English language “English”? How did
the meaning of the word fruit come into existence? How do humans communicate among
themselves with language? These are definitely some heavy philosophical questions.

 The philosophy of language mainly deals with the following four problems and seeks
answers to solve them:

• The nature of meaning in a language

• The use of language

• Language cognition

• The relationship between language and reality

http://dx.doi.org/10.1007/978-1-4842-2388-8_2
https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

3

• The nature of meaning in a language is concerned with the
semantics of a language and the nature of meaning itself. Here,
philosophers of language or linguistics try to find out what it
means to actually “mean” anything—that is, how the meaning of
any word or sentence originated and came into being and how
different words in a language can be synonyms of each other and
form relations. Another thing of importance here is how structure
and syntax in the language pave the way for semantics, or to be
more specific, how words, which have their own meanings, are
structured together to form meaningful sentences. Linguistics
is the scientific study of language, a special field that deals with
some of these problems we will be looking at in more detail later
on. Syntax, semantics, grammars, and parse trees are some ways
to solve these problems. The nature of meaning can be expressed
in linguistics between two human beings, notably a sender and
a receiver, as what the sender tries to express or communicate
when they send a message to a receiver, and what the receiver
ends up understanding or deducing from the context of the
received message. Also from a non-linguistic standpoint, things
like body language, prior experiences, and psychological effects
are contributors to meaning of language, where each human
being perceives or infers meaning in their own way, taking into
account some of these factors.

• The use of language is more concerned with how language is used
as an entity in various scenarios and communication between
human beings. This includes analyzing speech and the usage of
language when speaking, including the speaker’s intent, tone,
content and actions involved in expressing a message. This is often
termed as a speech act in linguistics. More advanced concepts such
as the origins of language creation and human cognitive activities
such as language acquisition which is responsible for learning and
usage of languages are also of prime interest.

• Language cognition specifically focuses on how the cognitive
functions of the human brain are responsible for understanding
and interpreting language. Considering the example of a typical
sender and receiver, there are many actions involved from
message communication to interpretation. Cognition tries to find
out how the mind works in combining and relating specific words
into sentences and then into a meaningful message and what is
the relation of language to the thought process of the sender and
receiver when they use the language to communicate messages.

• The relationship between language and reality explores the
extent of truth of expressions originating from language. Usually,
philosophers of language try to measure how factual these
expressions are and how they relate to certain affairs in our world
which are true. This relationship can be expressed in several ways,
and we will explore some of them.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

4

 One of the most popular models is the triangle of reference , which is used to explain
how words convey meaning and ideas in the minds of the receiver and how that meaning
relates back to a real world entity or fact. The triangle of reference was proposed by
Charles Ogden and Ivor Richards in their book, The Meaning of Meaning , first published
in 1923, and is denoted in Figure 1-1 .

 The triangle of reference model is also known as the meaning of meaning model,
and I have depicted the same in Figure1-1 with a real example of a couch being perceived
by a person which is present in front of him. A symbol is denoted as a linguistic symbol,
like a word or an object that evokes thought in a person’s mind. In this case, the symbol
is the couch, and this evokes thoughts like what is a couch, a piece of furniture that can
be used for sitting on or lying down and relaxing, something that gives us comfort . These
thoughts are known as a reference and through this reference the person is able to relate it
to something that exists in the real world, termed a referent. In this case the referent is the
couch which the person perceives to be present in front of him.

 The second way to find out relationships between language and reality is known as
the direction of fit , and we will talk about two main directions here. The word-to-world
direction of fit talks about instances where the usage of language can reflect reality. This
indicates using words to match or relate to something that is happening or has already
happened in the real world. An example would be the sentence The Eiffel Tower is really
big, which accentuates a fact in reality. The other direction of fit, known as world-to-word ,
talks about instances where the usage of language can change reality. An example here
would be the sentence I am going to take a swim , where the person I is changing reality
by going to take a swim by representing the same in the sentence being communicated.
Figure 1-2 shows the relationship between both the directions of fits.

 Figure 1-1. The triangle of reference model

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

5

 It is quite clear from the preceding depiction that based on the referent that is
perceived from the real world, a person can form a representation in the form of a symbol
or word and consequently can communicate the same to another person, which forms a
representation of the real world based on the received symbol, thus forming a cycle.

 Language Acquisition and Usage
 By now, we have seen what natural languages mean and the concepts behind language,
its nature, meaning, and use. In this section, we will talk in further detail about how
language is perceived, understood, and learned using cognitive abilities by humans, and
finally we will end our discussion with the main forms of language usage, discussed in
brief as speech acts . It is important to not only understand what natural language denotes
but also how humans interpret, learn, and use the same language so that we are able to
emulate some of these concepts programmatically in our algorithms and techniques
when we try to extract insights from textual data.

 Language Acquisition and Cognitive Learning
 Language acquisition is defined as the process by which human beings utilize their
cognitive abilities, knowledge, and experience to understand language based on
hearing and perception and start using it in terms of words, phrases, and sentences to
communicate with other human beings. In simple terms, the ability of acquiring and
producing languages is language acquisition.

 Figure 1-2. The direction of fit representation

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

6

 The history of language acquisition dates back centuries. Philosophers and scholars
have tried to reason and understand the origins of language acquisition and came up
with several theories, such as language being a god-gifted ability that is passed down
from generation to generation. Plato indicated that a form of word-meaning mapping
would have been responsible in language acquisition. Modern theories have been
proposed by various scholars and philosophers, and some of the popular ones, most
notably B.S. Skinner, indicated that knowledge, learning, and use of language were
more of a behavioral consequent. Human beings, or to be more specific, children, when
using specific words or symbols of any language, experience language based on certain
stimuli which get reinforced in their memory thanks to consequent reactions to their
usage repeatedly. This theory is based on operant or instrumentation conditioning ,
which is a type of conditional learning where the strength of a particular behavior or
action is modified based on its consequences such as reward or punishment, and these
consequent stimuli help in reinforcing or controlling behavior and learning. An example
would be that children would learn that a specific combination of sounds made up a word
from repeated usage of it by their parents or by being rewarded by appreciation when
they speak it correctly or by being corrected when they make a mistake while speaking
the same. This repeated conditioning would end up reinforcing the actual meaning and
understanding of the word in a child’s memory for the future. To sum it up, children try to
learn and use language mostly behaviorally by imitating and hearing from adults.

 However, this behavioral theory was challenged by renowned linguist Noam
Chomsky, who proclaimed that it would be impossible for children to learn language just
by imitating everything from adults. This hypothesis does stand valid in the following
examples. Although words like go and give are valid, children often end up using an
invalid form of the word, like goed or gived instead of went or gave in the past tense.
It is assured that their parents didn’t utter these words in front of them, so it would be
impossible to pick these up based on the previous theory of Skinner. Consequently,
Chomsky proposed that children must not only be imitating words they hear but also
extracting patterns, syntax, and rules from the same language constructs, which is
separate from just utilizing generic cognitive abilities based on behavior.

 Considering Chomsky’s view, cognitive abilities along with language-specific
knowledge and abilities like syntax, semantics, concepts of parts of speech, and grammar
together form what he termed a language acquisition device that enabled humans to
have the ability of language acquisition . Besides cognitive abilities, what is unique
and important in language learning is the syntax of the language itself, which can be
emphasized in his famous sentence Colorless green ideas sleep furiously . If you observe
the sentence and repeat it many times, it does not make sense. Colorless cannot be
associated with green, and neither can ideas be associated with green, nor can they sleep
furiously. However, the sentence has a grammatically correct syntax. This is precisely
what Chomsky tried to explain—that syntax and grammar depict information that is
independent from the meaning and semantics of words. Hence, he proposed that the
learning and identifying of language syntax is a separate human capability compared
to other cognitive abilities. This proposed hypothesis is also known as the autonomy
of syntax . These theories are still widely debated among scholars and linguists, but it is
useful to explore how the human mind tends to acquire and learn language. We will now
look at the typical patterns in which language is generally used .

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

7

 Language Usage
 The previous section talked about speech acts and how the direction of fit model
is used for relating words and symbols to reality. In this section we will cover some
concepts related to speech acts that highlight different ways in which language is used in
communication.

 There are three main categories of speech acts: locutionary , illocutionary , and
 perlocutionary acts. Locutionary acts are mainly concerned with the actual delivery
of the sentence when communicated from one human being to another by speaking
it. Illocutionary acts focus further on the actual semantics and significance of the
sentence which was communicated. Perlocutionary acts refer to the actual effect the
communication had on its receiver, which is more psychological or behavioral.

 A simple example would be the phrase Get me the book from the table spoken by a
father to his child. The phrase when spoken by the father forms the locutionary act. This
significance of this sentence is a directive, which directs the child to get the book from the
table and forms an illocutionary act. The action the child takes after hearing this, that is, if
he brings the book from the table to his father, forms the perlocutionary act.

 The illocutionary act was a directive in this case. According to the philosopher John
Searle, there are a total of five different classes of illocutionary speech acts, as follows:

• Assertives are speech acts that communicate how things are already
existent in the world. They are spoken by the sender when he tries
to assert a proposition that could be true or false in the real world.
These assertions could be statements or declarations. A simple
example would be The Earth revolves round the Sun . These messages
represent the word-to-world direction of fit discussed earlier.

• Directives are speech acts that the sender communicates to the
receiver asking or directing them to do something. This represents
a voluntary act which the receiver might do in the future after
receiving a directive from the sender. Directives can either be
complied with or not complied with, since they are voluntary. These
directives could be simple requests or even orders or commands.
An example directive would be Get me the book from the table ,
discussed earlier when we talked about types of speech acts.

• Commisives are speech acts that commit the sender or speaker
who utters them to some future voluntary act or action. Acts like
promises, oaths, pledges, and vows represent commisives, and
the direction of fit could be either way. An example commisive
would be I promise to be there tomorrow for the ceremony .

• Expressives reveal a speaker or sender’s disposition and outlook
toward a particular proposition communicated through the
message. These can be various forms of expression or emotion,
such as congratulatory, sarcastic, and so on. An example
expressive would be Congratulations on graduating top of the class .

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

8

• Declarations are powerful speech acts that have the capability
to change the reality based on the declared proposition in the
message communicated by the speaker\sender. The usual direction
of fit is world-to-word, but it can go the other way also. An example
declaration would be I hereby declare him to be guilty of all charges .

 These speech acts are the primary ways in which language is used and
communicated among human beings, and without even realizing it, you end up using
hundreds of them on any given day. We will now look at linguistics and some of the main
areas of research associated with it.

 Linguistics
 We have touched on what natural language means, how language is learned and used,
and the origins of language acquisition. These kinds of things are formally researched
and studied in linguistics by researchers and scholars called linguists . Formally, linguistics
is defined as the scientific study of language, including form and syntax of language,
meaning, and semantics depicted by the usage of language and context of use. The origins
of linguistics can be dated back to the 4th century BCE, when Indian scholar and linguist
Panini formalized the Sanskrit language description. The term linguistics was first defined
to indicate the scientific study of languages in 1847, approximately before which the term
 philology was used to indicate the same. Although a detailed exploration of linguistics is
not needed for text analytics, it is useful to know the different areas of linguistics because
some of them are used extensively in natural language processing and text analytics
algorithms. The main distinctive areas of study under linguistics are as follows:

• Phonetics : This is the study of the acoustic properties of sounds
produced by the human vocal tract during speech. It includes
studying the properties of sounds as well as how they are created
and by human beings. The smallest individual unit of human
speech in a specific language is called a phoneme. A more generic
term across languages for this unit of speech is phone .

• Phonology : This is the study of sound patterns as interpreted in
the human mind and used for distinguishing between different
phonemes to find out which ones are significant. The structure,
combination, and interpretations of phonemes are studied in
detail, usually by taking into account a specific language at a
time. The English language consists of around 45 phonemes.
Phonology usually extends beyond just studying phonemes and
includes things like accents, tone, and syllable structures.

• Syntax : This is usually the study of sentences, phrases, words, and
their structures. It includes researching how words are combined
together grammatically to form phrases and sentences. Syntactic
order of words used in a phrase or a sentence matter because the
order can change the meaning entirely.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

9

• Semantics : This involves the study of meaning in language
and can be further subdivided into lexical and compositional
semantics.

• Lexical semantics : The study of the meanings of words and
symbols using morphology and syntax.

• Compositional semantics : Studying relationships among
words and combination of words and understanding the
meanings of phrases and sentences and how they are related.

• Morphology : A morpheme is the smallest unit of language that
has distinctive meaning. This includes things like words, prefixes,
suffixes, and so on which have their own distinct meanings.
Morphology is the study of the structure and meaning of these
distinctive units or morphemes in a language. Specific rules and
syntaxes usually govern the way morphemes can combine together.

• Lexicon : This is the study of properties of words and phrases
used in a language and how they build the vocabulary of the
language. These include what kinds of sounds are associated with
meanings for words, the parts of speech words belong to, and
their morphological forms.

• Pragmatics : This is the study of how both linguistic and non-
linguistic factors like context and scenario might affect the
meaning of an expression of a message or an utterance. This
includes trying to infer whether there are any hidden or indirect
meanings in the communication.

• Discourse analysis : This analyzes language and exchange of
information in the form of sentences across conversations among
human beings. These conversations could be spoken, written, or
even signed.

• Stylistics : This is the study of language with a focus on the style of
writing, including the tone, accent, dialogue, grammar, and type
of voice.

• Semiotics : This is the study of signs, symbols, and sign processes
and how they communicate meaning. Things like analogy,
metaphors, and symbolism are covered in this area.

 Although these are the main areas of study and research, linguistics is an enormous field
with a much bigger scope than what is mentioned here. However, things like language syntax
and semantics are some of the most important concepts that often form the foundations to
natural language processing. The following section looks at them more closely.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

10

 Language Syntax and Structure
 We already know what language, syntax, and structure indicate. Syntax and structure
usually go hand in hand, where a set of specific rules, conventions, and principles usually
govern the way words are combined into phrases, phrases get combines into clauses, and
clauses get combined into sentences. We will be talking specifically about the English
language syntax and structure in this section because in this book we will be dealing
with textual data that belongs to the English language. But a lot of these concepts can be
extended to other languages too. Knowledge about the structure and syntax of language is
helpful in many areas like text processing, annotation, and parsing for further operations
such as text classification or summarization.

 In English, words usually combine together to form other constituent units . These
constituents include words, phrases, clauses, and sentences. All these constituents
exist together in any message and are related to each other in a hierarchical structure.
Moreover, a sentence is a structured format of representing a collection of words provided
they follow certain syntactic rules like grammar. Look at the bunch of words represented
in Figure 1-3 .

 From the collection of words in Figure 1-3 , it is very difficult to ascertain what it
might be trying to convey or mean. Indeed, languages are not just comprised of groups of
unstructured words. Sentences with proper syntax not only help us give proper structure
and relate words together but also help them convey meaning based on the order or
position of the words. Considering our previous hierarchy of sentence → clause → phrase
→ word, we can construct the hierarchical sentence tree in Figure 1-4 using shallow
parsing , a technique using for finding out the constituents in a sentence.

 Figure 1-3. A collection of words without any relation or structure

 Figure 1-4. Structured sentence following the hierarchical syntax

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

11

 From the hierarchical tree in Figure 1-4 , we get the sentence The brown fox is quick
and he is jumping over the lazy dog . We can see that the leaf nodes of the tree consist of
words, which are the smallest unit here, and combinations of words form phrases, which
in turn form clauses. Clauses are connected together through various filler terms or words
such as conjunctions and form the final sentence. In the next section, we will look at each
of these constituents in further detail and understand how to analyze them and find out
what the major syntactic categories are.

 Words
 Words are the smallest units in a language that are independent and have a meaning of
their own. Although morphemes are the smallest distinctive units, morphemes are not
independent like words, and a word can be comprised of several morphemes. It is useful
to annotate and tag words and analyze them into their parts of speech (POS) to see the
major syntactic categories. Here, we will cover the main categories and significance of the
various POS tags. Later in Chapter 3 we will examining them in further detail and looking
at methods of generating POS tags programmatically.

 Usually, words can fall into one of the following major categories.

• N(oun) : This usually denotes words that depict some object or
entity which may be living or nonliving. Some examples would be
 fox , dog , book , and so on. The POS tag symbol for nouns is N .

• V(erb) : Verbs are words that are used to describe certain actions,
states, or occurrences. There are a wide variety of further
subcategories, such as auxiliary, reflexive, and transitive verbs (and
many more). Some typical examples of verbs would be running ,
 jumping , read , and write . The POS tag symbol for verbs is V .

• Adj(ective) : Adjectives are words used to describe or qualify other
words, typically nouns and noun phrases. The phrase beautiful
flower has the noun (N) flower which is described or qualified
using the adjective (ADJ) beautiful . The POS tag symbol for
adjectives is ADJ .

• Adv(erb) : Adverbs usually act as modifiers for other words
including nouns, adjectives, verbs, or other adverbs. The phrase
 very beautiful flower has the adverb (ADV) very , which modifies
the adjective (ADJ) beautiful , indicating the degree to which the
flower is beautiful. The POS tag symbol for adverbs is ADV .

 Besides these four major categories of parts of speech , there are other categories
that occur frequently in the English language. These include pronouns, prepositions,
interjections, conjunctions, determiners, and many others. Furthermore, each POS tag
like the noun (N) can be further subdivided into categories like singular nouns (NN),
 singular proper nouns (NNP), and plural nouns (NNS). We will be looking at POS tags in
further detail in Chapter 3 when we process and parse textual data and implement POS
taggers to annotate text.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

12

 Considering our previous example sentence (The brown fox is quick and he is
jumping over the lazy dog) where we built the hierarchical syntax tree, if we were to
annotate it using basic POS tags, it would look like Figure 1-5 .

 In Figure 1-5 you may notice a few unfamiliar tags. The tag DET stands for
 determiner , which is used to depict articles like a , an , the , and so on. The tag CONJ
indicates conjunction , which is usually used to bind together clauses to form sentences.
The PRON tag stands for pronoun , which represents words that are used to represent or
take the place of a noun.

 The tags N, V, ADJ and ADV are typical open classes and represent words belonging
to an open vocabulary. Open classes are word classes that consist of an infinite set of words
and commonly accept the addition of new words to the vocabulary which are invented
by people. Words are usually added to open classes through processes like morphological
derivation , invention based on usage, and creating compound lexemes . Some popular
nouns added fairly recently include Internet and multimedia. Closed classes consist of a
closed and finite set of words and do not accept new additions. Pronouns are a closed class.

 The following section looks at the next level of the hierarchy: phrases.

 Phrases
 Words have their own lexical properties like parts of speech, which we saw earlier. Using
these words, we can order them in ways that give meaning to the words such that each
word belongs to a corresponding phrasal category and one of the words is the main or head
word. In the hierarchy tree, groups of words make up phrases , which form the third level
in the syntax tree. By principle , phrases are assumed to have at least two or more words,
considering the pecking order of words ← phrases ← clauses ← sentences. However, a
phrase can be a single word or a combination of words based on the syntax and position
of the phrase in a clause or sentence. For example, the sentence Dessert was good has only
three words, and each of them rolls up to three phrases. The word dessert is a noun as well
as a noun phrase , is depicts a verb as well as a verb phrase , and good represents an adjective
as well as an adjective phrase describing the aforementioned dessert.

 There are five major categories of phrases:

• Noun phrase (NP) : These are phrases where a noun acts as
the head word. Noun phrases act as a subject or object to a
verb. Usually a noun phrases can be a set of words that can be
replaced by a pronoun without rendering the sentence or clause
syntactically incorrect. Some examples would be dessert , the lazy
dog , and the brown fox .

 Figure 1-5. Annotated words with their POS tags

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

13

• Verb phrase (VP) : These phrases are lexical units that have a
verb acting as the head word. Usually there are two forms of verb
phrases. One form has the verb components as well as other
entities such as nouns, adjectives, or adverbs as parts of the
object. The verb here is known as a finite verb . It acts as a single
unit in the hierarchy tree and can function as the root in a clause.
This form is prominent in constituency grammars . The other form
is where the finite verb acts as the root of the entire clause and
is prominent in dependency grammars . Another derivation of
this includes verb phrases strictly consisting of verb components
including main, auxiliary, infinitive, and participles. The sentence
 He has started the engine can be used to illustrate the two types of
verb phrases that can be formed. They would be has started the
engine and has started , based on the two forms just discussed.

• Adjective phrase (ADJP) : These are phrases with an adjective as
the head word. Their main role is to describe or qualify nouns
and pronouns in a sentence, and they will be either placed before
or after the noun or pronoun. The sentence The cat is too quick
has an adjective phrase, too quick , qualifying cat , which is a noun
phrase.

• Adverb phrase (ADVP) : These phrases act like adverbs since
the adverb acts as the head word in the phrase. Adverb phrases
are used as modifiers for nouns, verbs, or adverbs themselves
by providing further details that describe or qualify them. In
the sentence The train should be at the station pretty soon , the
adjective phrase pretty soon describes when the train would be
arriving.

• Prepositional phrase (PP) : These phrases usually contain a
preposition as the head word and other lexical components like
nouns, pronouns, and so on. It acts like an adjective or adverb
describing other words or phrases. The phrase going up the stairs
contains a prepositional phrase up , describing the direction of the
stairs.

 These five major syntactic categories of phrases can be generated from words using
several rules, some of which have been discussed, like utilizing syntax and grammars
of different types. We will be exploring some of the popular grammars in a later section.
 Shallow parsing is a popular natural language processing technique to extract these
constituents, including POS tags as well as phrases from a sentence. For our sentence The
brown fox is quick and he is jumping over the lazy dog , we have obtained seven phrases
from shallow parsing, as shown in Figure 1-6 .

 Figure 1-6. Annotated phrases with their tags

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

14

 The phrase tags fall into the categories discussed earlier, although the word and is a
conjunction and is usually used to combine clauses together. In the next section, we will
be looking at clauses, their main categories, and some conventions and syntactic rules for
extracting clauses from sentences.

 Clauses
 By nature, clauses can act as independent sentences , or several clauses can be combined
together to form a sentence. A clause is a group of words with some relation between
them that usually contains a subject and a predicate. Sometimes the subject is not
present, and the predicate usually has a verb phrase or a verb with an object. By default
you can classify clauses into two distinct categories : the main clause and the subordinate
clause . The main clause is also known as an independent clause because it can form a
sentence by itself and act as both sentence and clause. The subordinate or dependent
clause cannot exist just by itself and depends on the main clause for its meaning. They
are usually joined with other clauses using dependent words such as subordinating
conjunctions.

 With regard to syntactic properties of language, clauses can be subdivided into
several categories based on syntax:

• Declarative : These clauses usually occur quite frequently and
denote statements that do not have any specific tone associated
with them. These are just standard statements, which are declared
with a neutral tone and which could be factual or non-factual. An
example would be Grass is green .

• Imperative : These clauses are usually in the form of a request,
command, rule, or advice. The tone in this case would be a
person issuing an order to one or more people to carry out an
order, request, or instruction. An example would be Please do not
talk in class .

• Relative : The simplest interpretation of relative clauses is that they
are subordinate clauses and hence dependent on another part
of the sentence that usually contains a word, phrase, or even a
clause. This element usually acts as the antecedent to one of the
words from the relative clause and relates to it. A simple example
would be John just mentioned that he wanted a soda , having
the antecedent proper noun John , which was referred to in the
relative clause he wanted a soda .

• Interrogative : These clauses usually are in the form of questions.
The type of these questions can be either affirmative or negative.
Some examples would be Did you get my mail? and Didn’t you go
to school?

• Exclamative : These clauses are used to express shock, surprise,
or even compliments. These expressions fall under exclamations ,
and these clauses often end with an exclamation mark. An
example would be What an amazing race!

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

15

 Usually most clauses are expressed in one of the previously mentioned syntactic
forms, though this list of clause categories is not an exhaustive list and can be further
categorized into several other forms. Considering our example sentence The brown
fox is quick and he is jumping over the lazy dog , if you remember the syntax tree, the
coordinating conjunction and divides the sentence into two clauses: The brown fox is
quick and he is jumping over the lazy dog. Can you guess what categories they might fall
into? (Hint: Look back at the definitions of declarative and relative clauses).

 Grammar
 Grammar helps in enabling both syntax and structure in language . It primarily consists of a set
of rules used in determining how to position words, phrases, and clauses when constructing
sentences for any natural language. Grammar is not restricted to the written word—it also
operates verbally. Rules of grammar can be specific to a region, language, or dialect or be
somewhat universal like the Subject-Verb-Object (SVO) model. Origins of grammar have a
rich history, starting with Sanskrit in India. In the West, the study of grammar originated with
the Greeks, and the earliest work was the Art of Grammar , written by Dionysius Thrax. Latin
grammar models were developed from the Greek models, and gradually across several ages,
grammars for various languages were created. It was only in the 18th century that grammar
was considered as a serious candidate to be a field under linguistics.

 Grammars have evolved over the course of time , leading to the birth of newer types
of grammars, and various older grammars slowly lost prominence. Hence grammar is
not just a fixed set of rules but also its evolution based on the usage of language over the
course of time among humans. In English, there are several ways in which grammars can
be classified . We will first talk about two broad classes, into which most of the popular
grammatical frameworks can be grouped. Then we will further explore how these
grammars represent language.

 Grammar can be subdivided into two main classes—dependency grammars and
constituency grammars—based on their representations for linguistic syntax and structure.

 Dependency grammars
 These grammars do not focus on constituents like words, phrases, and clauses but place
more emphasis on words. These grammars are also known as word-based grammars. To
understand dependency grammars, we should first know what dependency means in this
context. Dependencies in this context are labeled word-word relations or links that are
usually asymmetrical. A word has a relation or depends on another word based on the
positioning of the words in the sentence. Consequently, dependency grammars assume
that further constituents of phrases and clauses are derived from this dependency
structure between words.

 The basic principle behind a dependency grammar is that in any sentence in the
language, all the words except one word has some relationship or dependency on other
words in the sentence. The word that has no dependency is called the root of the sentence.
The verb is taken as the root of the sentence in most cases. All the other words are directly
or indirectly linked to the root verb using links , which are the dependencies. Although there
are no concepts of phrases or clauses, looking at the syntax and relations between words
and their dependents, one can determine the necessary constituents in the sentence.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

16

 Dependency grammars always have a one-to-one relationship correspondence for
each word in the sentence. There are two aspects to this grammar representation. One
is the syntax or structure of the sentence, and the other is the semantics obtained from
the relationships denoted between the words. The syntax or structure of the words and
their interconnections can be shown using a sentence syntax or parse tree similar to that
depicted in an earlier section. Considering our sentence The brown fox is quick and he is
jumping over the lazy dog , if we wanted to draw the dependency syntax tree for this, we
would have the structure denoted in Figure 1-7 .

 Figure 1-7 shows that the dependencies form a tree—or to be more accurate, a
 graph —over all the words in the sentence. The graph is connected where each word has
at least one directed edge going out or coming into it. The graph is also directed because
each edge between two words points to one specific direction. In essence, the dependency
tree is a directed acyclic graph (DAG). Every node in the tree has at most one incoming
edge, except the root node. Because this is a directed graph, by nature dependency trees
do not depict the order of the words in the sentence but emphasize more the relationship
between the words in the sentence. Our sentence is annotated with the relevant POS tags
discussed earlier, and the directed edges show the dependency. Now, if you remember,
we just discussed earlier that there were two aspects to the representation of sentences
using dependency grammar. Each directed edge represents a specific type of meaningful
relationship (also known as syntactic function). We can annotate our sentence further
showing the specific dependency relationship types between the words .

 The same is depicted in Figure 1-8 . An important point to remember here is that
different variations of this graph might exist based on the parser you are using because
it depends on how the parser was initially trained, the kind of data which was used for
training it, and the kind of tag system it uses.

 Figure 1-7. Dependency grammar based syntax tree with POS tags

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

17

 These dependency relationships each have their own meaning and are a part of
a list of universal dependency types. This is discussed in an original paper, Universal
Stanford Dependencies: A Cross-Linguistic Typology by de Marneffe et al, 2014). You
can check out the exhaustive list of dependency types and their meanings at http://
universaldependencies.org/u/dep/index.html . If we observe some of these
dependencies, it is not too hard to understand them. Let’s look in detail at some of the
tags used in the dependencies for the sentence in Figure 1-8 .

• The dependency tag det is pretty intuitive—it denotes the determiner
relationship between a nominal head and the determiner. Usually
the word with POS tag DET will also have the det dependency tag
relation. Examples include (fox → the) and (dog → the).

• The dependency tag amod stands for adjectival modifier and
stands for any adjective that modifies the meaning of a noun.
Examples include (fox → brown) and (dog → lazy).

• The dependency tag nsubj stands for an entity that acts as a
 subject or agent in a clause. Examples include (is → fox) and
(jumping → he).

• The dependencies cc and conj are more to do with linkages
related to words connected by coordinating conjunctions .
Examples include (is → and) and (is → jumping).

 Figure 1-8. Dependency grammar–based syntax tree annotated with dependency
relationship types

http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
http://universaldependencies.org/u/dep/index.html
http://universaldependencies.org/u/dep/index.html

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

18

• The dependency tag aux indicates the auxiliary or secondary verb
in the clause. Example: (jumping → is).

• The dependency tag acomp stands for adjective complement
and acts as the complement or object to a verb in the sentence.
Example: (is → quick).

• The dependency tag prep denotes a prepositional modifier,
which usually modifies the meaning of a noun, verb, adjective, or
preposition. Usually this representation is used for prepositions
having a noun or noun phrase complement. Example: (jumping
→ over).

• The dependency tag pobj is used to denote the object of a
preposition . This is usually the head of a noun phrase following a
preposition in the sentence. Example: (over → dog).

 The preceding tags have been extensively used in our sample sentence for
annotating the various dependency relationships among the words. Now that you
understand dependency relationships better, consider that often when representing a
dependency grammar for sentences, instead of creating a tree with linear orders, you can
also represent it with a normal graph because there is no concept of order of words in
dependency grammar. Figure 1-9 depicts the same .

 Figure 1-9 was created courtesy of spacy.io, which has some robust NLP modules
also in a library that is open source. (When we cover constituency-based grammars next,
observe that the number of nodes in dependency grammars is smaller compared to their
constituency counterparts.) Currently there are various grammatical frameworks based
on dependency grammar. Some popular ones include Algebraic Syntax and Operator
Grammar.

 Figure 1-9. Dependency grammar annotated graph for our sample sentence

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

19

 Constituency Grammars
 Constituency grammars are a class of grammars built upon the principle that a sentence
can be represented by several constituents derived from it. These grammars can be used
to model or represent the internal structure of sentences in terms of a hierarchically
ordered structure of their constituents. Each and every word usually belongs to a specific
 lexical category in the case and forms the head word of different phrases. These phrases
are formed based on rules called phrase structure rules . Hence, constituency grammars
are also called phrase structure grammars . Phrase structure grammars were first
introduced by Noam Chomsky in the 1950s. To understand constituency grammars we
must know clearly what we mean by constituents . To refresh your memory, constituents
are words or groups of words that have specific meaning and can act together as a
dependent or independent unit. They can also be combined together further to form
higher-order structures in a sentence, including phrases and clauses.

 Phrase structure rules form the core of constituency grammars because they talk
about syntax and rules that govern the hierarchy and ordering of the various constituents
in the sentences. These rules cater to two things primarily. First and foremost, they
determine what words are used to construct the phrases or constituents. Secondly, these
rules determine how we need to order these constituents together. If we want to analyze
phrase structure, we should we aware of typical schema patterns of the phrase structure
rules. The generic representation of a phrase structure rule is S → AB , which depicts that
the structure S consists of constituents A and B , and the ordering is A followed by B .

 There are several phrase structure rules , and we will explore them one by one to
understand how exactly we extract and order constituents in a sentence. The most
important rule describes how to divide a sentence or a clause. The phrase structure rule
denotes a binary division for a sentence or a clause as S → NP VP where S is the sentence
or clause, and it is divided into the subject, denoted by the noun phrase (NP) and the
predicate, denoted by the verb phrase (VP).

 We can apply more rules to break down each of the constituents further, but the top
level of the hierarchy usually starts with a NP and VP. The rule for representing a noun
phrase is NP → [DET][ADJ]N [PP] , where the square brackets denote that it is optional.
Usually a noun phrase consists of a noun (N) definitely as the head word and may
optionally contain determinants (DET) and adjectives (ADJ) describing the noun, and a
prepositional phrase (PP) at the right side in the syntax tree. Consequently, a noun phrase
may contain another noun phrase as a constituent of it. Figure 1-10 shows a few examples
that are governed by the aforementioned rules for noun phrases.

 Figure 1-10. Constituency syntax trees depicting structuring rules for noun phrases

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

20

 The syntax trees in Figure 1-10 show us the various constituents a noun phrase
typically contains. As mentioned, a noun phrase denoted by NP on the left side of the
production rule may also appear on the right side of the production rule, as depicted
in the preceding example. This is a property called recursion , and we will talk about it
toward the end of this section .

 We will now look at rules for representing verb phrases. The rule is of the form
 VP → V | MD [VP][NP][PP][ADJP][ADVP], where the head word is usually a verb (V) or a
modal (MD). A modal is itself an auxiliary verb, but we give it a different representation
just to distinguish it from a normal verb. This is followed by optionally another verb
phrase (VP) or noun phrase (NP), prepositional phrase (PP), adjective phrase (ADJP), or
adverbial phrase (ADVP). The verb phrase is always the second component when we split
a sentence using the binary division rule, making the noun phrase the first component.
Figure 1-11 depicts a few examples for the different types of verb phrases that can be
typically constructed and their representations as syntax trees.

 As depicted earlier, the syntax trees in Figure 1-11 show the representations of the
various constituents in verb phrases. Using the property of recursion, a verb phrase may
also contain another verb phrase inside it, as you can see in the second syntax tree. You
can also see the hierarchy being maintained especially in the third and fourth syntax
trees, where the NP and PP by itself are further constituents under the VP, and they can be
further broken down into smaller constituents.

 Since we have seen a lot of prepositional phrases being used in examples, let’s look at
the production rules for representing prepositional phrases. The basic rule has the form
 PP → PREP [NP], where PREP denotes a preposition, which acts as the head word, and it is
optionally followed by a noun phrase (NP). Figure 1-12 depicts some representations of
prepositional phrases and their corresponding syntax trees.

 Figure 1-11. Constituency syntax trees depicting structuring rules for verb phrases

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

21

 These two syntax trees show some different representations for prepositional
phrases.

 Recursion is an inherent property of language that allows constituents to be
embedded in other constituents, which are depicted by different phrasal categories that
appear on both sides of the production rules. Recursion lets us create long constituency-
based syntax trees from sentences. A simple example is the representation of the sentence
 The flying monkey in the circus on the trapeze by the river depicted by the constituency
parse tree in Figure 1-13 .

 Figure 1-12. Constituency syntax trees depicting structuring rules for prepositional phrases

 Figure 1-13. Constituency syntax tree depicting recursive properties among constituents

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

22

 If you closely observe the syntax tree in Figure 1-13 , you will notice that it is only
constituted of noun phrases and prepositional phrases. However, due to the inherent
recursive property that a prepositional phrase itself can consist of a noun phrase, and the
noun phrase can consist of a noun phrase as well as a prepositional phrase, we notice the
hierarchical structure with multiple NPs and PPs. If you go over the production rules for
noun phrases and prepositional phrases, you will find the constituents shown in the tree
are in adherence with the rules.

 Conjunctions are used to join clauses and phrases together and form an important
part of language syntax. Usually words, phrases, and even clauses can be combined
together using conjunctions. The production rule can be denoted as S → S conj S
 S ∈{ S,NP,VP }, where two constituents can be joined together by a conjunction, denoted
by conj in the rule. A simple example for a sentence consisting of a noun phrase which, by
itself, is constructed out of two noun phrases and a conjunction, would be The brown fox
and the lazy dog . This is depicted in Figure 1-14 by the constituency syntax tree showing
the adherence to the production rule.

 Figure 1-14 shows that the top level noun phrase is the sentence by itself and has
two noun phrases as its constituents, which are joined together by a conjunction, thus
satisfying our aforementioned production rule.

 What if we wanted to join two sentences or clauses together with a conjunction?
We can do that by putting all these rules and conventions together to generate the
constituency-based syntax tree for our sample sentence The brown fox is quick and he is
jumping over the lazy dog . This would give us the syntactic representation of our sentence
as depicted in Figure 1-15 .

 Figure 1-14. Constituency syntax tree depicting noun phrases joined by a conjunction

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

23

 From Figure 1-15 , you can conclude that our sentence has two main clauses or
constituents (discussed earlier), which are joined by a coordinating conjunction (and).
Moreover, the constituency grammar–based production rules break down the top-level
constituents into further constituents consisting of phrases and their words. Looking at
this syntax tree, you can see that it does show the ordering of the words in the sentence
and is more of a hierarchical tree–based structure with un-directed edges. Hence, this
is very different compared to the dependency grammar–based syntax tree\graph with
unordered words and directed edges. There are several popular grammar frameworks
based on concepts derived from constituency grammar, including Phrase Structure
Grammar, Arc Pair Grammar, Lexical Functional Grammar, and even the famous Context-
Free Grammar, which is used extensively in describing formal language.

 Word Order Typology
 Typology in linguistics is a field that specifically deals with trying to classify languages
based on their syntax, structure, and functionality. Languages can be classified in
several ways, and one of the most common models is to classify them according to their
dominant word orders, also known as word order typology . The primary word orders of
interest occur in clauses consisting of a subject, verb, and an object. Of course, not all
clauses use the subject, verb, and object, and often the subject and object are not used in
certain languages. However, there exist several different classes of word orders that can
be used to classify a wide variety of languages. A survey done by Russell Tomlin in 1986,
summarized in Table 1-1 , shows some insights derived from his analysis.

 Figure 1-15. Constituency syntax tree for our sample sentence

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

24

 In Table 1-1 , we can observe that there are six major classes of word orders, and
languages like English follow the Subject-Verb-Object word order class. A simple example
would be the sentence He ate cake , where He is the subject, ate is the verb, and cake
is the object. The majority of languages from the table follow the Subject-Object-Verb
word order. In that case, the sentence He cake ate would be correct if translated to those
languages. This is illustrated by the English-to-Hindi translation of the same sentence in
Figure 1-16 .

 Even if you do not understand Hindi, you can understand by the English annotation
provided by google that the word cake (denoted by kek in the text under the Hindi
translation) has moved from the right end to the middle of the sentence, and the verb
 ate denoted by khaaya has moved from the middle to the end of the sentence, thus
making the word order class become Subject-Object-Verb—the correct form for the Hindi
language. This illustration gives us an indication of the importance of word order and
how representation of messages can be grammatically different in various languages.

 And that brings us to the end of our discussion of the syntax and structure of
languages. Next we will be looking at some of the concepts around language semantics.

 Table 1-1. Word Order–Based Language Classification, Surveyed by Russell Tomlin, 1986

 Sl No. Word Order Language Frequency Example Languages

 1 Subject-Object-Verb 180 (45%) Sanskrit, Bengali, Gothic,
Hindi, Latin

 2 Subject-Verb-Object 168 (42%) English, French, Mandarin,
Spanish

 3 Verb-Subject-Object 37 (9%) Hebrew, Irish, Filipino,
Aramaic

 4 Verb-Object-Subject 12 (3%) Baure, Malagasy, Aneityan

 5 Object-Verb-Subject 5 (1%) Apalai, Hixkaryana, Arecua

 6 Object-Subject-Verb 1 (0%) Warao

 Figure 1-16. English-to-Hindi translation changes the word order class for the sentence He
ate cake (courtesy of Google Translate)

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

25

 Language Semantics
 The simplest definition of semantics is the study of meaning. Linguistics has its own subfield
of linguistic semantics , which deals with the study of meaning in language, the relationships
between words, phrases, and symbols, and their indication, meaning, and representation
of the knowledge they signify. In simple words, semantics is more concerned with the
facial expressions, signs, symbols, body language, and knowledge that are transferred
when passing messages from one entity to another. There are various representations for
 syntax and rules for the same, including various forms of grammar we have covered in the
previous sections. Representing semantics using formal rules or conventions has always
been a challenge in linguistics. However, there are different ways to represent meaning and
knowledge obtained from language. This section looks at relations between the lexical units
of a language—predominantly words and phrases—and explores several representations
and concepts around formalizing representation of knowledge and meaning.

 Lexical Semantic Relations
 Lexical semantics is usually concerned with identifying semantic relations between
lexical units in a language and how they are correlated to the syntax and structure of the
language. Lexical units are usually represented by morphemes, the smallest meaningful
and syntactically correct unit of a language. Words are inherently a subset of these
morphemes. Each lexical unit has its own syntax, form, and meaning. They also derive
meaning from their surrounding lexical units in phrases, clauses, and sentences. A lexicon
is a complete vocabulary of these lexical units. We will explore some concepts revolving
around lexical semantics in this section.

 Lemmas and Wordforms
 A lemma is also known as the canonical or citation form for a set of words. The lemma
is usually the base form of a set of words, known as a lexeme in this context. Lemma is
the specific base form or head word that represents the lexeme. Wordforms are inflected
forms of the lemma, which are part of the lexeme and can appear as one of the words
from the lexeme in text. A simple example would the lexeme {eating, ate, eats}, which
contains the wordforms, and their lemma is the word eat .

 These words have specific meaning based on their position among other words
in a sentence. This is also known as sense of the word, or wordsense. Wordsense gives a
concrete representation of the different aspects of a word’s meaning. Consider the word
 fair in the following sentences: They are going to the annual fair and I hope the judgement
is fair to all . Even though the word fair is the same in both the sentences, the meaning
changes based on the surrounding words and context.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

26

 Homonyms, Homographs, and Homophones
 Homonyms are defined as words that share the same spelling or pronunciation but have
different meanings. An alternative definition restricts the constraint on same spelling.
The relationship between these words is termed as homonymy . Homonyms are often said
to be the superset of homographs and homophones. An example of homonyms for the
word bat can be demonstrated in the following sentences: The bat hangs upside down
from the tree and That baseball bat is really sturdy.

 Homographs are words that have the same written form or spelling but have different
meanings. Several alternate definitions say that the pronunciation can also be different.
Some examples of homographs include, the word lead as in I am using a lead pencil and
 Please lead the soldiers to the camp , and also the word bass in Turn up the bass for the song
and I just caught a bass today while I was out fishing . Note that in both cases, the spelling
stays the same but the pronunciation changes based on the context in the sentences.

 Homophones are words that have the same pronunciation but different meanings,
and they can have the same or different spellings. Examples would be the words pair
(meaning couple) and pear (the fruit). They sound the same but have different meanings
and written forms. Often these words cause problems in NLP because it is very difficult to
find out the actual context and meaning using machine intelligence.

 Heteronyms and Heterographs
 Heteronyms are words that have the same written form or spelling but different
pronunciations and meanings. By nature, they are a subset of homographs. They are also
often called heterophones , which means “different sound.” Examples of heteronyms are
the words lead (metal, command) and tear (rip off something, moisture from eyes).

 Heterographs are words that have the same pronunciation but different meanings
and spellings. By nature they are a subset of homonyms. Their written representation
might be different but they sound very similar or often exactly the same when spoken.
Some examples include the words to , too , and two , which sound similar but have
different spellings and meanings.

 Polysemes
 Polysemes are words that have the same written form or spelling and different but very
relatable meanings. While this is very similar to homonymy, the difference is subjective
and depends on the context, since these words are relatable to each other. A good
example is the word bank which can mean (1) a financial institution, (2) the bank of the
river, (3) the building that belongs to the financial institution, or (4) a verb meaning to rely
upon . These examples use the same word bank and are homonyms. But only (1), (3), and
(4) are polysemes representing a common theme (the financial organization representing
trust and security).

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

27

 Capitonyms
 Capitonyms are words that have the same written form or spelling but have different
meanings when capitalized. They may or may not have different pronunciations. Some
examples include the words march (March indicates the month, and march depicts the
action of walking) and may (May indicates the month, and may is a modal verb).

 Synonyms and Antonyms
 Synonyms are words that have different pronunciations and spellings but have the same
meanings in some or all contexts. If two words or lexemes are synonyms, they can be
substituted for each other in various contexts, and it signifies them having the same
propositional meaning. Words that are synonyms are said to be synonymous to each
other, and the state of being a synonym is called synonymy . Perfect synonymy is, however,
almost nonexistent. The reason is that synonymy is more of a relation between senses
and contextual meaning rather than just words. Consider the synonyms big , huge , and
 large . They are very relatable and make perfect sense in sentences like That milkshake
is really (big/large/huge). However, for the sentence Bruce is my big brother , it does not
make sense if we substitute big with either huge or large. That’s because the word big here
has a context or sense depicting being grown up or older, and the other two synonyms
lack this sense. Synonyms can exist for all parts of speech, including nouns, adjective,
verbs, adverbs, and prepositions.

 Antonyms are pairs of words that define a binary opposite relationship. These words
indicate specific sense and meaning that are completely opposite to each other. The state of
being an antonym is called antonymy . There are three types of antonyms: graded antonyms ,
 complementary antonyms , and relational antonyms . Graded antonyms , as the name
suggests, are antonyms with a certain grade or level when measured on a continuous scale,
like the pair (fat , skinny). Complementary antonyms are word pairs that are opposite in their
meaning but cannot be measured on any grade or scale. An example of a complementary
antonym pair is (divide , unite). Relational antonyms are word pairs that have some
relationship between them, and the antonymy is contextual, which is signified by this very
relationship. An example of a relational antonym pair is (doctor , patient).

 Hyponyms and Hypernyms
 Hyponyms are words that are usually a subclass of another word. In this case, the
hyponyms are generally words with very specific sense and context as compared to
the word that is their superclass. Hypernyms are the words that act as the superclass to
hyponyms and have a more generic sense compared to the hyponyms. An example would
be the word fruit , which is a hypernym, and the words mango , orange , and pear would be
possible hyponyms. The relationships depicted between these words are often termed
 hyponymy and hypernymy .

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

28

 Semantic Networks and Models
 We have seen several ways to formalize relations between words and their senses or
meanings. Considering lexical semantics, there are approaches to find out the sense
and meaning of each lexical unit, but what if we want to represent the meaning of some
concept or theory that would involve relating these lexical units together and forming
connections between them based on their meaning? Semantic networks aim to tackle this
problem of representing knowledge and concepts using a network or a graph.

 The basic unit of semantic network is an entity or a concept . A concept could be a
tangible or abstract item like an idea. Sets of concepts have some relation to each other
and can be represented with directed or undirected edges. Each edge denotes a specific
type of relationship between two concepts. Let’s say we are talking about the concept fish .
We can have different concepts around fish based on their relationship to it. For instance,
 fish “ is-a ” animal and fish “ is-a ” part of marine life . These relationships are depicted
as is-a relationships. Other similar relationships include has-a , part-of , related-to , and
there are many more, depending on the context and semantics. These concepts and
relationships together form a semantic network. There are several semantic models on
the Web that have vast knowledge bases spanning different concepts. Figure 1-17 shows
a possible representation for concepts related to fish . This model is provided courtesy of
Nodebox (www.nodebox.net/perception/), where you can search for various concepts
and see associated concepts to the same.

 Figure 1-17. Semantic network around the concept fish

http://www.nodebox.net/perception/

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

29

 In the network in Figure 1-17 , we can see some of the concepts discussed earlier
around fish and also specific types of fish like eel, salmon, shark, and so on, which can
be hyponyms to the concept fish . These semantic networks are formally denoted and
represented by semantic data models using graph structures, where concepts or entities
are the nodes and the edges denote the relationships. The Semantic Web is as extension
of the World Wide Web using semantic metadata annotations and embeddings using
data-modeling techniques like Resource Description Framework (RDF) and Web
Ontology Language (OWL). In linguistics, we have a rich lexical corpus and database
called WordNet, which has an exhaustive list of different lexical entities grouped
together based on semantic similarity (for example, synonyms) into synsets . Semantic
relationships between these synsets and consequently various words can be explored in
WordNet, making it in essence a type of semantic network. We will talk about WordNet in
more detail in a later section when we cover text corpora .

 Representation of Semantics
 So far we have seen how to represent semantics based on lexical units and how they can be
interconnected by leveraging semantic networks. However, if we consider the normal form
of communication via messages, whether written or spoken, if an entity sends a message
to another entity and that entity takes some specific actions based on the message, then
the second entity is said to have understood the meaning conveyed by that message. A
question that might come to mind is how we formally represent the meaning or semantics
conveyed by a simple sentence. Although it may be extremely easy for us to understand
the meaning conveyed, representing semantics formally is not as easy as it seems.

 Consider the example Get me the book from the table . This sentence by nature is a
directive, and it directs the listener to do something. Understanding the meaning conveyed
by this sentence may involve pragmatics like which specific book? and which specific table?
besides the actual deed of getting the book from the table. Although the human mind
is intuitive, formally representing the meanings and relationships between the various
constituents is a challenge—but we can do it using techniques such as propositional
logic (PL) and first order logic (FOL). Using these representations, one can represent the
meaning indicated by different sentences, draw inference from them, and even discover
whether one sentence entails another one based on their semantics. Representation
of semantics is useful especially for carrying out our various NLP operations to make
machines understand the semantics behind messages using proper representations, since
machines lack the cognitive power we humans have been bestowed with.

 Propositional Logic
 Propositional logic (PL) , also known as sentential logic or statement logic , is defined
as the discipline of logic that is concerned with the study of propositions, statements,
and sentences. This includes studying logical relationships and properties between
propositions and statements, combining multiple propositions to form more complex
propositions, and observing how the value of propositions change based on their
components and logical operators. A proposition or statement is usually declarative and
is capable of having a binary truth value that is either true or false. Usually a statement

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

30

is more language-specific and concrete, and a proposition is more inclined toward the
idea or the concepts conveyed by the statement. A simple example would be the two
statements The rocket was faster than the airship and The airship was slower than the
rocket , which are distinct but convey the same meaning or proposition. However, the
terms statement and proposition are often used interchangeably in propositional logic.

 The main focus in propositional logic is to study different propositions and
how combining various propositions with logical operators change the semantics
of the overall proposition. These logical operators are used more like connectors or
coordinating conjunctions (if you remember them from earlier). Operators include terms
like and , or , and not , which can change the meaning of a proposition by itself or when
combined with several propositions. A simple example would be two propositions, The
Earth is round and The Earth revolves around the Sun . These can be combined with the
logical operator and to give us the proposition The Earth is round and it revolves around
the Sun , which gives us the indication that the two propositions on either side of the and
operator must be true for the combined proposition to be true.

 The good part about propositional logic is that each proposition has its own truth
value , and it is not concerned with further subdividing a proposition into smaller
chunks and verifying its logical characteristics. Each proposition is considered as an
indivisible, whole unit with its own truth value. Logical operators may be applied on it
and several other propositions. Subdividing parts of propositions like clauses or phrases
are not considered here. To represent the various building blocks of propositional logic,
we use several conventions and symbols. Uppercase letters like P and Q are used to
denote individual statements or propositions. The different operators used and their
corresponding symbols are listed in Table 1-2 , based on their order of precedence.

 You can see that there are a total of five operators, with the not operator having the
highest precedence, and the iff operator having the lowest. Logical constants are denoted
as either being True or False. Constants and symbols are known as atomic units —all
other units, more specifically the sentences and statements, are complex units . A literal is
usually an atomic statement or its negation on applying the not operator.

 Let’s look at a simple example of two sentences P and Q and apply various operators
on them. Consider the following representations:

 P : He is hungry

 Q : He will eat a sandwich

 Table 1-2. Logical Operators with Their Symbols and Precedence

 Sl No. Operator Symbol Operator Meaning Precedence

 1 ¬ not Highest

 2 ∧ and

 3 ∨ or

 4 → if-then

 5 ↔ iff (if and only if) Lowest

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

31

 The expression P ∧ Q translates to He is hungry and he will eat a sandwich . This
expresses that the outcome of this operation is itself also a sentence or proposition.
This is the conjunction operation where P and Q are the conjuncts . The outcome of this
sentence is True only if both P and Q are True .

 The expression P ∨ Q translates to He is hungry or he will eat a sandwich . This
expresses that the outcome of this operation is also another proposition formed from the
 disjunction operation where P and Q are the disjuncts . The outcome of this sentence is
 True if either P or Q or both of them are True .

 The expression P → Q translates to If he is hungry, then he will eat a sandwich . This
is the implication operation which determines that P is the premise or antecedent and Q is
the consequent . It is just like a rule stating that Q will occur only if P has already occurred
or is True .

 The expression P ↔ Q translates to He will eat a sandwich if and only if he is
hungry which is basically a combination of the expressions If he is hungry then he will
eat a sandwich (P → Q) and If he will eat a sandwich, he is hungry (Q → P). This is the
 biconditional or equivalence operation that will evaluate to True if and only if the two
implication operations described evaluate to True .

 The expression ¬P translates to He is not hungry , which depicts the negation
operation and will evaluate to True if and only if P evaluates to False .

 This gives us an idea of the basic operations between propositions and more complex
operations, which can be carried out with multiple logical connectives and by adding more
propositions. A simple example: The statements P : We will play football , Q : The stadium is
open , and R : It will rain today can be combined and represented as Q ∧ ¬R → P to depict
the complex proposition If the stadium is open and it does not rain today, then we will
play football . The semantics of the truth value or outcome of the final proposition can be
evaluated based on the truth value of the individual propositions and the operators. The
various outcomes of the truth values for the different operators are depicted in Figure 1-18 .

 Thus, using the table in Figure 1-18 , we can evaluate even more complex
propositions by breaking them down into simpler binary operations, evaluating the truth
value for them, and combining them step by step.

 Besides these outcomes, other properties like associativity , commutativity , and
 distributivity aid in evaluating complex proposition outcomes. The act of checking the
validity of each operation and proposition and finally evaluating the outcome is also
known as inference . However, besides evaluating extensive truth tables all the time, we
can also make use of several inference rules to arrive at the final outcome or conclusion.
The main reason for doing so would be that the size of these truth tables with the various
operations starts increasing exponentially with the number of propositions increasing.

 Figure 1-18. Truth values for various logical connectors

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

32

Moreover, rules of inference are easier to understand and well tested, and at the heart
of them, the same truth value tables are actually applied—but we do not have to bother
ourselves with the internals. Usually, a sequence of inference rules, when applied, leads
to a conclusion that is often termed as a logical proof . The usual form of an inference rule
is P Q , which indicates that Q can be derived by some inference operations from the set
of statements represented by P . The turnstile symbol () indicates that Q is some logical
consequence of P . The most popular inference rules are as follows:

• Modus Ponens : Perhaps the most popular inference rule, it’s also
known as the Implication Elimination rule. It can be represented
as {P → Q, P} Q, which indicates that if P implies Q and P is
asserted to be True , then it is inferred that Q is True . You can
also represent this using the representation ((P → Q) ∧ P) →
 Q , which can be evaluated easily using truth tables. A simple
example would be the statement If it is sunny, we will play
football , represented by P → Q . Now if we say that It is sunny , this
indicates that P is True , hence Q automatically is inferred as True ,
indicating We will play football .

• Modus Tollens : This is quite similar to the previous rule and
is represented formally as {P → Q, ¬Q} ¬P , which indicates
that if P implies Q and Q is actually asserted to be False , then it
is inferred that P is False . You can also represent this using the
representation ((P → Q) ∧ ¬Q) → ¬P , which can be evaluated
easily using truth tables. An example proposition would be If
he is a bachelor, he is not married , indicated by P → Q . Now if we
propose that He is married , represented by ¬Q , then we can infer
 ¬P , which translates to He is not a bachelor .

• Disjunctive Syllogism : This is also known as Disjunction
Elimination and is formally represented as {P ∨ Q, ¬P} Q ,
which indicates that if either P or Q is True and P is False , then Q
is True . A simple example would be the statement He is a miracle
worker or a fraud represented by P ∨ Q and the statement He is
not a miracle worker represented by ¬P . We can then infer He is a
fraud , depicted by Q .

• Hypothetical Syllogism : This is often known as the Chain Rule of
Deduction and is formally represented as {P → Q, Q → R} P →
 R , which tells us that if P implies Q , and Q implies R , we can infer
that P implies R . A really interesting example to understand this
would be the statement If I am sick, I can’t go to work represented
by P → Q and If I can’t go to work, the building construction will
not be complete represented by Q → R . Then we can infer If I am
sick, the building construction will not be complete , which can be
represented by P → R .

https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

33

• Constructive Dilemma : This inference rule is the disjunctive version
of Modus Ponens and can be formally represented as {(P → Q) ∧
 (R → S), P ∨ R} Q ∨ S , which indicates that if P implies Q , and R
implies S , and either P or R is True , then it can be inferred that either
 Q or S is True . Consider the following propositions: If I work hard, I
will be successful represented by P → Q , and If I win the lottery, I will
be rich represented by R → S . Now we propose that I work hard or I
win the lottery is True , which is represented by P ∨ R . We can then
infer that I will be successful or I will be rich , represented by Q ∨ S .
The complement of this rule is Destructive Dilemma the disjunctive
version of Modus Tollens.

 This should give you a clear idea of how intuitive inference rules can be, and
using them is much easier than going over multiple truth tables trying to find out the
outcome of complex propositions. The interpretation we derive from inference gives
us the semantics of the statement or proposition. A valid statement is one which would
be True under all interpretations irrespective of the logical operations or various
statements inside it. This is often termed as a tautology . The complement of a tautology
is a contradiction or an inconsistent statement which is False under all interpretations.
Note that the preceding list is just an indicative list of the most popular inference rules
and is by no way an exhaustive list. Interested readers can read up more on inference and
propositional calculus to get an idea of several other rules and axioms which are used
besides the ones covered here.

 Next we will be looking at first order logic, which tries to solve some of the
shortcomings in propositional logic.

 First Order Logic
 First order logic (FOL), also known popularly as predicate logic and first order predicate
calculus , is defined as a collection of well-defined formal systems which is used
extensively in deduction, inference, and representation of knowledge. FOL allows
us to use quantifiers and variables in sentences, which enable us to overcome some
of the limitations with propositional logic. If we are to consider the pros and cons
of propositional logic (PL), considering the points in its favor, PL is declarative and
allows us to easily represent facts using a well-formed syntax. PL also allows complex
representations like conjunctive, disjunctive, and negated knowledge representations.
This by nature makes PL compositional wherein a composite or complex proposition is
built from the simple propositions that are its components along with logical connectives.
However, there are several areas where PL is lacking. It is definitely not easy to represent
facts in PL because for each possible atomic fact, we will need a unique symbolic
representation. Hence, due to this limitation, PL has very limited expressive power.
Hence, the basic idea behind FOL is to not treat propositions as atomic entities.

https://www.wikiwand.com/en/⊢

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

34

 FOL has a much richer syntax and necessary components for the same compared to
PL. The basic components in FOL are as follows:

• Objects : These are specific entities or terms with individual
unique identities like people, animals, and so on.

• Relations : These are also known as predicates and usually hold
among objects or sets of objects and express some form of
relationship or connection, like is_man , is_brother , is_mortal .
Relations typically correspond to verbs.

• Functions : These are a subset of relations where there is always
only one output value or object for some given input. Examples
would be height , weight , age_of .

• Properties : These are specific attributes of objects that help in
distinguishing them from other objects, like round, huge, and so on.

• Connectives : These are the logical connectives that are similar to
the ones in PL, which include not (¬), and (∧), or (∨), implies
(→), and iff (if and only if ↔).

• Quantifiers : These include two types of quantifiers: universal
(∀), which stands for “for all” or “all,” and existential (∃), which
stands for “there exists” or “exists.” They are used for quantifying
entities in a logical or mathematical expression.

• Constant symbols : These are used to represent concrete entities or
objects in the world. Examples would be John , King , Red , and 7 .

• Variable symbols : These are used to represent variables like x , y ,
and z .

• Function symbols : These are used to map functions to outcomes.
Examples would be, age_of(John) = 25 or color_of(Tree) =
Green.

• Predicate symbols : These map specific entities and a relation or
function between them to a truth value based on the outcome.
Examples would be color(sky, blue) = True.

 These are the main components that go into logical representations and syntax for
FOL. Usually, objects are represented by various terms , which could be either a function ,
 variable , or constant based on the different components depicted previously. These terms
do not need to be defined and do not return values. Various propositions are usually
constructed using predicates and terms with the help of predicate symbols. An n-ary
predicate is constructed from a function over n-terms which have either a True or False
outcome. An atomic sentence can be represented by an n-ary predicate, and the outcome
is True or False depending on the semantics of the sentence—that is, if the objects
represented by the terms have the correct relation among themselves as specified by
the predicate. A complex sentence or statement is formed using several atomic sentences
and logical connectives. A quantified sentence adds the quantifiers mentioned earlier to
sentences.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

35

 Quantifiers are one advantage FOL has over PL, since they enable us to represent
statements about entire sets of objects without needing to represent and enumerate each
object by a different name. The universal quantifier (∀) asserts that a specific relation or
predicate is True for all values associated with a specific variable. The representation ∀ x
F(x) indicates that F holds for all values of x in the domain associated with x . An example
would be ∀ x cat(x) → animal(x) , which indicates that all cats are animals.

 Universal quantifiers are usually used with the implies (→) connective to form rules
and statements. An important thing to remember is that universal quantifiers are almost
never used in statements to indicate some relation for every entity in the world using the
conjunction (∧) connective. An example would be the representation ∀ x dog(x) ∧
 eats_meat(x) , which actually means that every entity in the world is a dog and they eat
meat, which sounds kind of absurd! The existential quantifier (∃) asserts that a specific
relation or predicate holds True for at least some value associated with a specific variable.
The representation, ∃ x F(x) indicates that F holds for some value of x in the domain
associated with x . An example would be ∃ x student(x) ∧ pass_exam(x) , which
indicates that there is at least one student who has passed the exam. This quantifier
gives FOL a lot of power since we can make statements about objects or entities without
specifically naming them. Existential quantifiers are usually used with the conjunction
(∧) connective to form rules and statements. You should remember that existential
quantifiers are almost never used with the implies (→) connective in statements because
the semantics indicated by it are usually wrong. An example would be ∃ x student(x)
→ knowledgeable(x) , which tells us if you are a student you are knowledgeable—but
the real problem happens if you ask what about those who are not students, are they not
knowledgeable?

 Considering the scope for nesting of quantifiers, ordering of multiple quantifiers
may or may not matter depending on the type of quantifiers used. For multiple universal
quantifiers, switching the order does not change the meaning of the statement. This can be
depicted by (∀ x)(∀ y) brother(x,y) ↔ (∀ y)(∀ x) brother(x,y) , where x and y are
used as variable symbols to indicate two people are brothers to each other irrespective of
the order. Similarly, you can also switch the order of existential quantifiers like (∃ x)(∃ y)
F(x,y) ↔ (∃ y)(∃ x) F(x,y) . Switching the order for mixed quantifiers in a sentence
does matter and changes the interpretation of that sentence. This can be explained more
clearly in the following examples, which are very popular in FOL:

• (∀ x)(∃ y) loves(x, y) means that everyone in the world loves
at least someone.

• (∃ y)(∀ x) loves(x, y) means that someone is the world is
loved by everyone.

• (∀ y)(∃ x) loves(x, y) means that everyone in the world has
at least someone who loves them.

• (∃ x)(∀ y) loves(x, y) means that there is at least someone in
the world who loves everyone.

 From the preceding examples, you can see how the statements almost look the same
but the ordering of quantifiers change the meanings significantly. There are also several
other properties showing the relationship between the quantifiers. Some of the popular
quantifier identities and properties are as follows:

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

36

• (∀ x) ¬ F(x) ↔ ¬ (∃ x) F(x)

• ¬ (∀ x) F(x) ↔ (∃ x) ¬ F(x)

• (∀ x) F(x) ↔ ¬ (∃ x) ¬ F(x)

• (∃ x) F(x) ↔ ¬ (∀ x) ¬ F(x)

• (∀ x) (P(x) ∧ Q(x)) ↔ ∀ x P(x) ∧ ∀ x Q(x)

• (∃ x) (P(x) ∨ Q(x)) ↔ ∃ x P(x) ∨ ∃ x Q(x)

 There are a couple of other important concepts for transformation rules in predicate
logic. These include instantiation and generalization. Universal instantiation , also known
as universal elimination , is a rule of inference involving the universal quantifier. It tells us
that if (∀ x) F(x) is True , then F(C) is True where C is any constant term that is present
in the domain of x . The variable symbol here can be replaced by any ground term. An
example depicting this would be (∀ x) drinks(John, x) → drinks(John, Water) .

 Universal generalization , also known as universal introduction , is the inference
rule that tells us that if F(A) ∧ F(B) ∧ F(C) ∧ … so on hold True , then we can infer that
 (∀ x) F(x) holds True . Existential instantiation , also known as existential elimination ,
is an inference rule involving the existential quantifier. It tells us that if the given
representation (∃ x) F(x) exists, we can infer F(C) for a new constant or variable symbol
 C . This is assuming that the constant or variable term C introduced in this rule should be
a brand new constant that has not occurred previously in this proof or in our complete
existing knowledge base. This process is also known as skolemization , and the constant
 C is known as the skolem constant. Existential generalization , also known as existential
introduction , is the inference rule that tells us that assuming F(C) to be True where C
is a constant term, we can then infer (∃ x) F(x) from it. This can be depicted by the
representation eats_fish(Cat) → (∃ x) eats_fish(x) , which can be translated as Cats
eat fish, therefore there exists something or someone at least who eats fish .

 We will now look at some examples of how FOL is used to represent natural language
statements and vice versa. The examples in Table 1-3 depict some of the typical usage of
FOL for representing natural language statements.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

37

 This gives us a good idea about the various components of FOL and the utility and
advantages it gives us over PL. But FOL has its own limitation also. By nature, it allows us
to quantify over variables and objects but not properties or relations. Higher order logic
(HOL) allows us to quantify over relations, predicates, and functions. More specifically,
second order logic enables us to quantify over predicates and functions and third order
logic enables us to quantify over predicates of predicates. While they are more expressive,
it is extremely difficult to determine the validity of all sentences in HOL .

 Text Corpora
 Text corpora is the plural form of text corpus . Text corpora are large and structured
 collection of texts or textual data, usually consisting of bodies of written or spoken text,
often stored in electronic form. This includes converting old historic text corpora from
physical to electronic form so that it can be analyzed and processed with ease. The
primary purpose of text corpora is to leverage them for linguistic as well as statistical
analysis and to use them as data for building NLP tools. Monolingual corpora consist
of textual data in only one language, and multilingual corpora consist of textual data in
multiple languages.

 Table 1-3. Representation of Natural Language Statements Using First Order Logic

 Sl No. FOL Representation Natural Language Statement

 1 ¬ eats(John, fish) John does not eat fish

 2 is_hot(pie) ∧ is_delicious(pie) The pie is hot and delicious

 3 is_hot(pie) ∨ is_delicious(pie) The pie is either hot or delicious

 4 study(John, exam) → pass(John, exam) If John studies for the exam, he will
pass the exam

 5 ∀ x student(x) → pass(x, exam) All students passed the exam

 6 ∃ x student(x) ∧ fail(x, exam) There is at least one student who
failed the exam

 7 (∃ x student(x) ∧ fail(x, exam) ∧
 (∀ y fail(y, exam) → x=y))

 There was exactly one student who
failed the exam

 8 ∀ x (spider(x) ∧ black_widow(x)) →
 poisonous(x)

 All black widow spiders are
poisonous

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

38

 To understand the significance of text corpora, it helps to understand the origins
of corpora and the reason behind it. It all started with the emergence of linguistics and
people collecting data related to language to study its properties and structure. During
the 1950s, statistical and quantitative methods were used to analyze collected data.
But this endeavor soon reached a dead end due to the lack of large amounts of textual
data over which statistical methods could be effectively applied. Besides that, cognitive
learning and behavioral sciences gained a lot of focus. This empowered eminent linguist
Noam Chomsky to build and formulate a sophisticated rule-based language model that
formed the basis for building, annotating, and analyzing large scale text corpora.

 Corpora Annotation and Utilities
 Text corpora are annotated with rich metadata, which is extremely useful for getting
valuable insights when utilizing the corpora for NLP and text analytics. Popular
annotations for text corpora include tagging parts of speech (POS) tags, word stems,
lemmas, and many more. Here are some of the most used methods and techniques for
annotating text corpora:

• POS tagging : This is mainly used to annotate each word with a
POS tag indicating the part of speech associated with it.

• Word stems : A stem for a word is a part of the word to which
various affixes can be attached.

• Word lemmas : A lemma is the canonical or base form for a set of
words and is also known as the head word .

• Dependency grammar : This includes finding out the various
relationships among the components in sentences and
annotating the dependencies.

• Constituency grammar : This is used to add syntactic annotation
to sentences based on their constituents including phrases and
clauses.

• Semantic types and roles : The various constituents of sentences
including words and phrases are annotated with specific
semantic types and roles, often obtained from an ontology, which
indicates what they do. These include things like place, person,
time, organization, agent, recipient, theme, and so forth.

 Advanced forms of annotations include adding syntactic and semantic structure
for text. These are dependency and constituency grammar–based parse trees. These
specialized corpora, also known as treebanks , are extensively used in building POS
taggers, syntax, and semantic parsers. Corpora are also used extensively by linguists for
creating new dictionaries and grammars. Properties like concordance , collocations , and
 frequency counts enable them to find out lexical information, patterns, morphosyntactic
information, and language learning. Besides linguistics, corpora are widely used in
developing NLP tools like text taggers, speech recognition, machine translation, spelling
and grammar checkers, text-to-speech and speech-to-text synthesizers, information
retrieval, entity recognition, and knowledge extraction .

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

39

 Popular Corpora
 Several popular resources for text corpora have been built and have evolved over time.
This section lists some of the most famous and popular corpora to whet your appetite.
You can research and find out more details about the text corpora that catch your eye.
Here are some popular text corpora built over time:

• Key Word in Context : KWIC was a methodology invented in the
1860s but used extensively around the 1950s by linguists to index
documents and create corpora of concordances.

• Brown Corpus : This was the first million-word corpus for the
English language, published by Kucera and Francis in 1961, also
known as “A Standard Corpus of Present-Day American English.”
This corpus consists of text from a wide variety of sources and
categories.

• LOB Corpus : The Lancaster-Oslo-Bergen (LOB) corpus was
compiled in the 1970s as a result of collaboration between the
University of Lancaster, the University of Oslo, and the Norwegian
Computing Centre for the Humanities, Bergen. The main
motivation of this project was to provide a British counterpart
to the Brown corpus. This corpus is also a million-word corpus
consisting of text from a wide variety of sources and categories .

• Collins Corpus : The Collins Birmingham University International
Language Database (COBUILD), set up in 1980 at the University
of Birmingham and funded by the Collins publishers, built a large
electronic corpus of contemporary text in the English language
that also paved the way for future corpora like the Bank of English
and the Collins COBUILD English Language Dictionary.

• CHILDES : The Child Language Data Exchange System (CHILDES)
is a corpus that was created by Brian and Catherine in 1984 that
serves as a repository for language acquisition data, including
transcripts, audio and video in 26 languages from over 130
different corpora. This has been merged with a larger corpus
Talkbank recently. It is used extensively for analyzing the
language and speech of young children.

• WordNet : This corpus is a semantic-oriented lexical database for
the English language. It was created at Princeton University in 1985
under the supervision of George Armitage. The corpus consists
of words and synonym sets (synsets). Besides these, it consists of
word definitions, relationships, and examples of using words and
synsets. Overall, it is a combination of a dictionary and a thesaurus.

• Penn Treebank : This corpus consists of tagged and parsed English
sentences including annotations like POS tags and grammar-based
parse trees typically found in treebanks. It can be also defined
as a bank of linguistic trees and was created in the University of
Pennsylvania, hence the name Penn Treebank.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

40

• BNC : The British National Corpus (BNC) is one of the largest
English corpora, consisting of over 100 million words of both
written and spoken text samples from a wide variety of sources.
This corpus is a representative sample of written and spoken
British English of the late 20th century.

• ANC : The American National Corpus (ANC) is a large text corpus
in American English that consists of over 22 million words of both
spoken and written text samples since the 1990s. It includes data
from a wide variety of sources, including emerging sources like
email, tweets, and web information not present in the BNC.

• COCA : The Corpus of Contemporary American English (COCA)
is the largest text corpus in American English and consists of over
450 million words, including spoken transcripts and written text
from various categories and sources.

• Google N-gram Corpus : The Google N-gram Corpus consists
of over a trillion words from various sources including books,
web pages, and so on. The corpus consists of n-gram files up to
5-grams for each language.

• Reuters Corpus : This corpus is a collection of Reuters news articles
and stories released in 2000 specifically for carrying out research
in NLP and machine learning.

• Web, chat, email, tweets : These are entirely new forms of text
corpora that have sprung up into prominence with the rise of
social media. They are obtainable on the Web from various
sources including Twitter, Facebook, chat rooms, and so on.

 This gives us an idea of some of the most popular text corpora and also how they
have evolved over time. The next section talks about how to access some of these text
corpora with the help of Python and the Natural Language Toolkit (nltk) platform.

 Accessing Text Corpora
 We already have an idea about what constitutes a text corpus and have looked at a list
of several popular text corpora that exist today. In this section, we will be leveraging
Python and the Natural Language Toolkit NLTK to interface and access some of these text
corpora. The next chapter talks more about Python and NLTK, so don’t worry if some
of the syntax or code seems overwhelming right now. The main intent of this section is
to give an idea of how you can access and utilize text corpora easily for your NLP and
analytics needs.

 I will be using the ipython shell (https://ipython.org) for running Python code
which provides a powerful interactive shell for running code as well as viewing charts
and plots. We will also be using the NLTK library. You can find out more details about
this project at www.nltk.org , which is all about NLTK being a complete platform and
framework for accessing text resources, including corpora and libraries for various NLP
and machine learning capabilities.

https://ipython.org/
http://www.nltk.org/

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

41

 To start with, make sure you have Python installed. You can install Python separately
or download the popular Anaconda Python distribution from Continuum Analytics from
 www.continuum.io/downloads . That version comes with a complete suite of analytics
packages, including NLTK. If you want to know more about Python and what distribution
would be best suited for you, Chapter 2 covers these topics in more detail.

 Assuming you have Python installed now, if you installed the Anaconda distribution,
you will already have NLTK installed. Note that we will be using Python 2.7 in this book,
but you are welcome to use the latest version of Python—barring a few syntax changes,
most of the code should be reproducible in the latest edition of Python. If you did not
install the Anaconda distribution but have Python installed, you can open your terminal
or command prompt and run the following command to install NLTK.

 $ pip install nltk

 This will install the NLTK library, and you will be ready to use it. However, the default
installation of NLTK does not include all the components required in this book. To install
all the components and resources of NLTK, you can start your Python shell and type the
following commands—you will see the various dependencies for nltk being downloaded;
a part of the output is shown in the following code snippet:

 In [1]: import nltk

 In [2]: nltk.download('all')
 [nltk_data] Downloading collection u'all'
 [nltk_data] |
 [nltk_data] | Downloading package abc to
 [nltk_data] | C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data
 [nltk_data] | ...
 [nltk_data] | Package abc is already up-to-date!
 [nltk_data] | Downloading package alpino to
 [nltk_data] | C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data
 [nltk_data] | ...

 The preceding command will download all the necessary resources required by
 NLTK . If you don’t want to download everything, you can also select the necessary
components from a graphical user interface (GUI) using the command nltk.download() .
Once the necessary dependencies are downloaded, you are now ready to start accessing
text corpora!

 Accessing the Brown Corpus
 We have already talked a bit about the Brown Corpus , developed in 1961 at Brown
University. This corpus consists of texts from 500 sources and has been grouped into
various categories. The following code snippet loads the Brown Corpus into the system
memory and shows the various available categories:

 In [8]: # load the Brown Corpus
 In [9]: from nltk.corpus import brown

http://www.continuum.io/downloads
http://dx.doi.org/10.1007/978-1-4842-2388-8_2

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

42

 In [10]: print 'Total Categories:', len(brown.categories())
 Total Categories: 15

 In [11]: print brown.categories()
 [u'adventure', u'belles_lettres', u'editorial', u'fiction', u'government',
u'hobbies', u'humor', u'learned', u'lore', u'mystery', u'news', u'religion',
u'reviews', u'romance', u'science_fiction']

 The preceding output tells us that there are a total of 15 categories in the corpus, like
 news , mystery , lore , and so on. The following code snippet digs a little deeper into the
 mystery category of the Brown Corpus:

 In [19]: # tokenized sentences
 In [20]: brown.sents(categories='mystery')
 Out[20]: [[u'There', u'were', u'thirty-eight', u'patients', u'on', u'the',
u'bus', u'the', u'morning', u'I', u'left', u'for', u'Hanover', u',',
u'most', u'of', u'them', u'disturbed', u'and', u'hallucinating', u'.'],
[u'An', u'interne', u',', u'a', u'nurse', u'and', u'two', u'attendants',
u'were', u'in', u'charge', u'of', u'us', u'.'], ...]

 In [21]: # POS tagged sentences
 In [22]: brown.tagged_sents(categories='mystery')
 Out[22]: [[(u'There', u'EX'), (u'were', u'BED'), (u'thirty-eight', u'CD'),
(u'patients', u'NNS'), (u'on', u'IN'), (u'the', u'AT'), (u'bus', u'NN'),
(u'the', u'AT'), (u'morning', u'NN'), (u'I', u'PPSS'), (u'left', u'VBD'),
(u'for', u'IN'), (u'Hanover', u'NP'), (u',', u','), (u'most', u'AP'),
(u'of', u'IN'), (u'them', u'PPO'), (u'disturbed', u'VBN'), (u'and', u'CC'),
(u'hallucinating', u'VBG'), (u'.', u'.')], [(u'An', u'AT'), (u'interne',
u'NN'), (u',', u','), (u'a', u'AT'), (u'nurse', u'NN'), (u'and', u'CC'),
(u'two', u'CD'), (u'attendants', u'NNS'), (u'were', u'BED'), (u'in', u'IN'),
(u'charge', u'NN'), (u'of', u'IN'), (u'us', u'PPO'), (u'.', u'.')], ...]

 In [28]: # get sentences in natural form
 In [29]: sentences = brown.sents(categories='mystery')
 In [30]: sentences = [' '.join(sentence_token) for sentence_token in
sentences]
 In [31]: print sentences[0:5] # printing first 5 sentences
 [u'There were thirty-eight patients on the bus the morning I left for
Hanover , most of them disturbed and hallucinating .', u'An interne , a
nurse and two attendants were in charge of us .', u"I felt lonely and
depressed as I stared out the bus window at Chicago's grim , dirty West Side
.", u'It seemed incredible , as I listened to the monotonous drone of voices
and smelled the fetid odors coming from the patients , that technically I
was a ward of the state of Illinois , going to a hospital for the mentally
ill .', u'I suddenly thought of Mary Jane Brennan , the way her pretty eyes
could flash with anger , her quiet competence , the gentleness and sweetness
that lay just beneath the surface of her defenses .']

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

43

 From the preceding snippet , we can see the written contents of the mystery genre
and how the sentences are available in tokenized as well as annotated formats. Suppose
we want to see the top nouns in the mystery genre? We can use the next code snippet
for obtaining them. Remember that nouns have either an NN or NP in their POS tag to
indicate the various forms. Chapter 3 covers POS tags in further detail:

 In [81]: # get tagged words
 In [82]: tagged_words = brown.tagged_words(categories='mystery')

 In [83]: # get nouns from tagged words
 In [84]: nouns = [(word, tag) for word, tag in tagged_words if any(noun_tag
in tag for noun_tag in ['NP', 'NN'])]

 In [85]: print nouns[0:10] # prints the first 10 nouns
 [(u'patients', u'NNS'), (u'bus', u'NN'), (u'morning', u'NN'), (u'Hanover',
u'NP'), (u'interne', u'NN'), (u'nurse', u'NN'), (u'attendants', u'NNS'),
(u'charge', u'NN'), (u'bus', u'NN'), (u'window', u'NN')]

 In [85]: # build frequency distribution for nouns
 In [86]: nouns_freq = nltk.FreqDist([word for word, tag in nouns])

 In [87]: # print top 10 occuring nouns
 In [88]: print nouns_freq.most_common(10)
 [(u'man', 106), (u'time', 82), (u'door', 80), (u'car', 69), (u'room', 65),
(u'Mr.', 63), (u'way', 61), (u'office', 50), (u'eyes', 48), (u'hand', 46)]

 That snippet prints the top ten nouns that occur the most and includes terms like
 man , time , room , and so on. We have used some advanced constructs and techniques like
list comprehensions, iterables, and tuples. The next chapter covers them in further detail,
including how they work and their main functionality. For now, all you need to know is
we filter out the nouns from all other words based on their POS tags and then compute
their frequency to get the top occurring nouns in the corpus.

 Accessing the Reuters Corpus
 The Reuters Corpus consists of 10,788 Reuters news documents from around 90 different
categories and has been grouped into train and test sets. In machine learning terminology,
 train sets are usually used to train a model, and test sets are used to test the performance of
that model. The following code snippet shows how to access the data for the Reuters Corpus:

 In [94]: # load the Reuters Corpus
 In [95]: from nltk.corpus import reuters

 In [96]: print 'Total Categories:', len(reuters.categories())
 Total Categories: 90

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

44

 In [97]: print reuters.categories()
 [u'acq', u'alum', u'barley', u'bop', u'carcass', u'castor-oil', u'cocoa',
u'coconut', u'coconut-oil', u'coffee', u'copper', u'copra-cake', u'corn',
u'cotton', u'cotton-oil', u'cpi', u'cpu', u'crude', u'dfl', u'dlr', u'dmk',
u'earn', u'fuel', u'gas', ...]

 In [104]: # get sentences in housing and income categories
 In [105]: sentences = reuters.sents(categories=['housing', 'income'])
 In [106]: sentences = [' '.join(sentence_tokens) for sentence_tokens in
sentences]
 In [107]: print sentences[0:5] # prints the first 5 sentences
 [u”YUGOSLAV ECONOMY WORSENED IN 1986 , BANK DATA SHOWS National Bank
economic data for 1986 shows that Yugoslavia ' s trade deficit grew , the
inflation rate rose , wages were sharply higher , the money supply expanded
and the value of the dinar fell .”, u'The trade deficit for 1986 was 2 .
012 billion dlrs , 25 . 7 pct higher than in 1985 .', u'The trend continued
in the first three months of this year as exports dropped by 17 . 8 pct ,
in hard currency terms , to 2 . 124 billion dlrs .', u'Yugoslavia this year
started quoting trade figures in dinars based on current exchange rates ,
instead of dollars based on a fixed exchange rate of 264 . 53 dinars per
dollar .', u”Yugoslavia ' s balance of payments surplus with the convertible
currency area fell to 245 mln dlrs in 1986 from 344 mln in 1985 .”]

 In [109]: # fileid based access
 In [110]: print reuters.fileids(categories=['housing', 'income'])
 [u'test/16118', u'test/18534', u'test/18540', u'test/18664', u'test/18665',
u'test/18672', u'test/18911', u'test/19875', u'test/20106', u'test/20116',
u'training/1035', u'training/1036', u'training/10602', ...]

 In [111]: print reuters.sents(fileids=[u'test/16118', u'test/18534'])
 [[u'YUGOSLAV', u'ECONOMY', u'WORSENED', u'IN', u'1986', u',', u'BANK',
u'DATA', u'SHOWS', u'National', u'Bank', u'economic', u'data', u'for',
u'1986', u'shows', u'that', u'Yugoslavia', u”'“, u's', u'trade', u'deficit',
u'grew', u',', u'the', u'inflation', u'rate', u'rose', u',', u'wages',
u'were', u'sharply', u'higher', u',', u'the', u'money', u'supply',
u'expanded', u'and', u'the', u'value', u'of', u'the', u'dinar', u'fell',
u'.'], [u'The', u'trade', u'deficit', u'for', u'1986', u'was', u'2', u'.',
u'012', u'billion', u'dlrs', u',', u'25', u'.', u'7', u'pct', u'higher',
u'than', u'in', u'1985', u'.'], ...]

 This gives us an idea of how to access corpora data using both categories as well as
file identifiers .

 Accessing the WordNet Corpus
 The WordNet corpus is perhaps one of the most used corpora out there because it
consists of a vast corpus of words and semantically linked synsets for each word. We
will explore some of the basic features of the WordNet Corpus here, including synsets

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

45

and methods of accessing the corpus data. For more advanced analysis and coverage
of WordNet capabilities, see Chapter 7 , which covers synsets, lemmas, hyponyms,
hypernyms, and several other concepts covered in the semantics section earlier. The
following code snippet should give you an idea about how to access the WordNet corpus
data and synsets:

 In [113]: # load the Wordnet Corpus
 In [114]: from nltk.corpus import wordnet as wn

 In [127]: word = 'hike' # taking hike as our word of interest

 In [128]: # get word synsets
 In [129]: word_synsets = wn.synsets(word)
 In [130]: print word_synsets
 [Synset('hike.n.01'), Synset('rise.n.09'), Synset('raise.n.01'),
Synset('hike.v.01'), Synset('hike.v.02')]

 In [132]: # get details for each synonym in synset
 ...: for synset in word_synsets:
 ...: print 'Synset Name:', synset.name()
 ...: print 'POS Tag:', synset.pos()
 ...: print 'Definition:', synset.definition()
 ...: print 'Examples:', synset.examples()
 ...: print
 ...:
 Synset Name: hike.n.01
 POS Tag: n
 Definition: a long walk usually for exercise or pleasure
 Examples: [u'she enjoys a hike in her spare time']

 Synset Name: rise.n.09
 POS Tag: n
 Definition: an increase in cost
 Examples: [u'they asked for a 10% rise in rates']

 Synset Name: raise.n.01
 POS Tag: n
 Definition: the amount a salary is increased
 Examples: [u'he got a 3% raise', u'he got a wage hike']

 Synset Name: hike.v.01
 POS Tag: v
 Definition: increase
 Examples: [u'The landlord hiked up the rents']

 Synset Name: hike.v.02
 POS Tag: v
 Definition: walk a long way, as for pleasure or physical exercise
 Examples: [u'We were hiking in Colorado', u'hike the Rockies']

http://dx.doi.org/10.1007/978-1-4842-2388-8_7

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

46

 The preceding code snippet depicts an interesting example with the word hike
and its synsets, which include synonyms that are nouns as well as verbs having distinct
meanings. WordNet makes it easy to semantically link words together with their
synonyms as well as easily retrieve meanings and examples for various words. The
preceding example tells us that hike can mean a long walk as well as an increase in price
for salary or rent. Feel free to experiment with different words and find out their synsets,
definitions, examples, and relationships.

 Besides these popular corpora, there are a vast number of text corpora available that
you can check and access with the nltk.corpus module. Thus, you can see how easy it is
to access and use data from any text corpus with the help of Python and NLTK.

 This brings us to the end of our discussion about text corpora. The following sections
cover some ground regarding NLP and text analytics.

 Natural Language Processing
 I’ve mentioned the term natural language processing (NLP) several times in this chapter.
By now, you may have formed some idea about what NLP means. NLP is defined as
a specialized field of computer science and engineering and artificial intelligence
with roots in computational linguistics. It is primarily concerned with designing and
building applications and systems that enable interaction between machines and
natural languages evolved for use by humans. This also makes NLP related to the area of
Human-Computer Interaction (HCI) . NLP techniques enable computers to process and
understand natural human language and utilize it further to provide useful output. Next,
we will be talking about some of the main applications of NLP.

 Machine Translation
 Machine translation is perhaps one of the most coveted and sought-after applications
for NLP. It is defined as the technique that helps in providing syntactic, grammatical,
and semantically correct translation between any two pair of languages. It was perhaps
the first major area of research and development in NLP. On a simple level, machine
translation is the translation of natural language carried out by a machine. By default, the
basic building blocks for the machine translation process involve simple substitution of
words from one language to another, but in that case we ignore things like grammar and
phrasal structure consistency. Hence, more sophisticated techniques have evolved over a
period of time, including combining large resources of text corpora along with statistical
and linguistic techniques. One of the most popular machine translation systems is Google
Translate. Figure 1-19 shows a successful machine translation operation executed by
Google Translate for the sentence What is the fare to the airport? from English to Italian.

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

47

 Over time, machine translation systems are getting better providing translations in
real time as you speak or write into the application.

 Speech Recognition Systems
 This is perhaps the most difficult application for NLP. Perhaps the most difficult test of
intelligence in artificial intelligence systems is the Turing Test. This test is defined as a
test of intelligence for a computer. A question is posed to a computer and a human, and
the test is passed if it is impossible to say which of the answers given was given by the
human. Over time, a lot of progress has been made in this area by using techniques like
speech synthesis, analysis, syntactic parsing, and contextual reasoning. But one chief
limitation for speech recognition systems still remains: They are very domain specific and
will not work if the user strays even a little bit from the expected scripted inputs needed
by the system. Speech-recognition systems are now found in many places, from desktop
computers to mobile phones to virtual assistance systems.

 Question Answering Systems
 Question Answering Systems (QAS) are built upon the principle of Question Answering,
based on using techniques from NLP and information retrieval (IR). QAS is primarily
concerned with building robust and scalable systems that provide answers to questions
given by users in natural language form. Imagine being in a foreign country, asking a
question to your personalized assistant in your phone in pure natural language, and
getting a similar response from it. This is the ideal state toward which researchers and
technologists are working. Some success in this field has been achieved with personalized
assistants like Siri and Cortana, but their scope is still limited because they understand
only a subset of key clauses and phrases in the entire human natural language.

 Figure 1-19. Machine translation performed by Google Translate

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

48

 To build a successful QAS, you need a huge knowledgebase consisting of data about
various domains. Efficient querying systems into this knowledgebase would be leveraged
by the QAS to provide answers to questions in natural language form. Creating and
maintaining a queryable vast knowledgebase is extremely difficult—hence, you find the
rise of QAS in niche domains like food, healthcare, e-commerce, and so on. Chatbots are
one emerging trend that makes extensive use of QAS.

 Contextual Recognition and Resolution
 This covers a wide area in understanding natural language and includes both syntactic
and semantic-based reasoning. Word sense disambiguation is a popular application,
where we want to find out the contextual sense of a word in a given sentence. Consider
the word book . It can mean an object containing knowledge and information when used
as a noun, and it can also mean to reserve a seat or a table when used as a verb. Detecting
these differences in sentences based on context is the main premise of word sense
disambiguation—a daunting task covered in Chapter 7 .

 Coreference resolution is another problem in linguistics NLP is trying to address. By
definition, coreference is said to occur when two or more terms or expressions in a body
of text refer to the same entity. Then they are said to have the same referent . Consider
 John just told me that he is going to the exam hall . In this sentence, the pronoun he has the
referent John . Resolving such pronouns is a part of coreference resolution, and it becomes
challenging once we have multiple referents in a body of text. For example, John just talked
with Jim. He told me we have a surprise test tomorrow . In this body of text, the pronoun he
could refer to either John or Jim , thus making pinpointing the exact referent difficult.

 Text Summarization
 The main aim of text summarization is to take a corpus of text documents—which could
be a collection of texts, paragraphs, or sentences—and reducing the content appropriately
to create a summary that retains the key points of the collection. Summarization can
be carried out by looking at the various documents and trying to find out the keywords,
phrases, and sentences that have an important prominence in the whole collection. Two
main types of techniques for text summarization include extraction-based summarization
and abstraction-based summarization . With the advent of huge amounts of text and
unstructured data, the need for text summarization in getting to valuable insights quickly
is in great demand.

 Text-summarization systems usually perform two main types of operations. The first
is generic summarization , which tries to provide a generic summary of the collection of
documents under analysis. The second type of operation is query-based summarization ,
which provides query-relevant text summaries where the corpus is filtered further based
on specific queries, relevant keywords and phrases are extracted relevant to the query,
and the summary is constructed. Chapter 5 covers this in detail .

http://dx.doi.org/10.1007/978-1-4842-2388-8_7
http://dx.doi.org/10.1007/978-1-4842-2388-8_5

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

49

 Text Categorization
 The main aim of text categorization is identifying to which category or class a specific
document should be placed based on the contents of the document. This is one of the
most popular applications of NLP and machine learning because with the right data, it
is extremely simple to understand the principles behind its internals and implement a
working text categorization system. Both supervised and unsupervised machine learning
techniques can be used in solving this problem, and sometimes a combination of both is
used. This has helped build a lot of successful and practical applications, including spam
filters and news article categorization. We will be building our own text categorization
system in Chapter 4 .

 Text Analytics
 As mentioned before, with the advent of huge amounts of computing power, unstructured
data, and success with machine learning and statistical analysis techniques, it wasn’t long
before text analytics started garnering a lot of attention. However, text analytics poses
some challenges compared to regular analytical methods. Free-flowing text is highly
unstructured and rarely follows any specific pattern—like weather data or structured
attributes in relational databases. Hence, standard statistical methods aren’t helpful when
applied out of the box on unstructured text data. This section covers some of the main
concepts in text analytics and also discusses the definition and scope of text analytics,
which will give you a broad idea of what you can expect in the upcoming chapters.

 Text analytics , also known as text mining , is the methodology and process followed
to derive quality and actionable information and insights from textual data. This involves
using NLP, information retrieval, and machine learning techniques to parse unstructured
text data into more structured forms and deriving patterns and insights from this data
that would be helpful for the end user. Text analytics comprises a collection of machine
learning, linguistic, and statistical techniques that are used to model and extract
information from text primarily for analysis needs, including business intelligence,
exploratory, descriptive, and predictive analysis. Here are some of the main techniques
and operations in text analytics:.

• Text classification

• Text clustering

• Text summarization

• Sentiment analysis

• Entity extraction and recognition

• Similarity analysis and relation modeling

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 1 ■ NATURAL LANGUAGE BASICS

50

 Doing text analytics is sometimes a more involved process than normal statistical
analysis or machine learning. Before applying any learning technique or algorithm, you
have to convert the unstructured text data into a format acceptable by those algorithms.
By definition, a body of text under analysis is often a document, and by applying various
techniques we usually convert this document to a vector of words, which is a numeric
array whose values are specific weights for each word that could either be its frequency,
its occurrence, or various other depictions—some of which we will explore in Chapter 3 .
Often the text needs to be cleaned and processed to remove noisy terms and data, called
 text pre-processing .

 Once we have the data in a machine-readable and understandable format, we can
apply relevant algorithms based on the problem to be solved at hand. The applications of
text analytics are manifold. Some of the most popular ones include the following:

• Spam detection

• News articles categorization

• Social media analysis and monitoring

• Bio-medical

• Security intelligence

• Marketing and CRM

• Sentiment analysis

• Ad placements

• Chatbots

• Virtual assistants

 Summary
 Congratulations on sticking it out till the end of this long chapter! We have started on our
journey of text analytics with Python by taking a trip into the world of natural language
and the various concepts and domains surrounding it. You now have a good idea of what
natural language means and its significance in our world. You have also seen concepts
regarding the philosophy of language and language acquisition and usage. The field of
linguistics was also touched on, providing a flavor of the origins of language studies and
how they have been evolving over time. We covered language syntax and semantics in
detail, including the essential concepts with interesting examples to easily understand
them. We also talked about resources for natural language, namely text corpora, and also
looked at some practical examples with code regarding how to interface and access corpora
using Python and NTLK. The chapter concluded with a discussion about the various
facets of NLP and text analytics. In the next chapter, we will talk about using Python for text
analytics. We will touch on setting up your Python development environment, the various
constructs of Python, and how to use it for text processing. We will also look at some of the
popular libraries, frameworks, and platforms we will be using in this book.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

51© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_2

 CHAPTER 2

 Python Refresher

 In the previous chapter, we took a journey into the world of natural language and explored
several interesting concepts and areas associated with it. We now have a better understanding
of the entire scope surrounding natural language processing (NLP) , linguistics, and text
analytics. If you refresh your memory, we had also got our first taste of running Python code to
access and use text corpora resources with the help of the NLTK platform.

 In this chapter, we will cover a lot of ground with regard to the core components and
functionality of Python as well as some of the important libraries and frameworks associated
with NLP and text analytics. This chapter is aimed to be a refresher for Python and for
providing the initial building blocks essential to get started with text analytics. This book
assumes you have some knowledge of Python or any other programming language . If you are
a Python practitioner, you can skim through the chapter, since the content here starts with
setting up your Python development environment and moves on to the basics of Python.

 Our main focus in the chapter will be exploring how text data is handled in Python,
including data types and functions associated with it. However, we will also be covering
several advanced concepts in Python, including list comprehensions, generators, and
decorators, which make your life easier in developing and writing quality and reusable
code. This chapter follows a more hands-on approach than the previous chapter, and we
will cover various concepts with practical examples.

 Getting to Know Python
 Before we can dive into the Python ecosystem and look at the various components
associated with it, we must look back at the origins and philosophy behind Python
and see how it has evolved over time to be the choice of language powering many
applications, servers, and systems today. Python is a high-level open source general-
purpose programming language widely used as a scripting and across different domains.
The brainchild of Guido Van Rossum, Python was conceived in the late 1980s as a
successor to the ABC language , and both were developed at the Centrum Wiskunde and
Informatica (CWI) , Netherlands. Python was originally designed to be a scripting and
interpreted language, and to this day it is still one of the most popular scripting languages
out there. But with object-oriented programming (OOP) and constructs, you can use
it just like any other object-oriented language, such as Java. The name Python , coined
by Guido for the language, does not refer to the snake but the hit comedy show Monty
Python’s Flying Circus , since he was a big fan.

CHAPTER 2 ■ PYTHON REFRESHER

52

 As mentioned, Python is a general-purpose programming language that supports
multiple programming paradigms, including the following popular programming
paradigms :

• Object-oriented programming

• Functional programming

• Procedural programming

• Aspect-oriented programming

 A lot of OOP concepts are present in Python, including classes, objects, data, and
methods. Principles like abstraction, encapsulation, inheritance, and polymorphism can
also be implemented and exhibited using Python. There are several advanced features
in Python, including iterators, generators, list comprehensions, lambda expressions, and
several modules like itertools and functools , which provide the ability to write code
following the functional programming paradigm.

 Python was designed keeping in mind the fact that simple and beautiful code is
more elegant and easy to use rather than doing premature optimization and writing
hard-to-interpret code. Python’s standard libraries are power-packed with a wide variety
of capabilities and features ranging from low-level hardware interfacing to handling
files and working with text data. Easy extensibility and integration was considered when
developing Python such that it can be easily integrated with existing applications—rich
 application programming interfaces (APIs) can even be created to provide interfaces to
other applications and tools.

 Python offers a lot of advantages and benefits . Here are some of the major benefits:

• Friendly and easy to learn : The Python programming language is
extremely easy to understand and learn. Schools are starting to
pick up Python as the language of choice to teach kids to code.
The learning curve is not very steep, and you can do a lot of fun
things in Python, from building games to automating things
like reading and sending email. (In fact, there is a popular book
and website dedicated to “automating the boring stuff” using
Python at https://automatetheboringstuff.com .) Python also
has a thriving and helpful developer community, which makes
sure there is a ton of helpful resources and documentation out
there on the Internet. The community also organizes various
workshops and conferences throughout the world.

• High-level abstractions : Python is a high-level language (HLL) ,
where a lot of the heavy lifting needed by writing low level code is
eliminated by high-level abstractions. Python has a sharp focus
on code simplicity and extensibility, and you can perform various
operations, simple or complex, in fewer lines of code than other
traditional compiled languages like C++ and C.

https://automatetheboringstuff.com/

CHAPTER 2 ■ PYTHON REFRESHER

53

• Boosts productivity : Python boosts productivity by reducing time
taken to develop, run, debug, deploy, and maintain large codebases
compared to other languages like Java, C++, and C. Large programs
of more than a 100 lines can be reduced to 20 lines or less on average
by porting them to Python. High-level abstractions help developers
focus on the problem to be solved at hand rather than worry about
language-specific nuances. The hindrance of compiling and linking
is also bypassed with Python. Hence, Python is often the choice of
language especially when rapid prototyping and development are
essential for solving an important problem in little time.

• Complete robust ecosystem : One of the main advantages of Python
is that it is a multipurpose programming language that can be
used for just about anything! From web applications to intelligent
systems, Python powers a wide variety of applications and systems.
We will talk about some of them later in this chapter. Besides being
a multipurpose language, the wide variety of frameworks, libraries,
and platforms that have been developed by using Python and to
be used for Python form a complete robust ecosystem around
Python. These libraries make life easier by giving us a wide variety of
capabilities and functionality to perform various tasks with minimal
code. Some examples would be libraries for handling databases, text
data, machine learning, signal processing, image processing, deep
learning, artificial intelligence—and the list goes on.

• Open source : As open source, Python is actively developed and
updated constantly with improvements, optimizations, and new
features. Now the Python Software Foundation (PSF) owns all
Python-related intellectual property (IP) and administers all
license-related issues. Being open source has boosted the Python
ecosystem with almost all of its libraries also being open source, to
which anyone can share, contribute, and suggest improvements
and feedback. This helps foster healthy collaboration among
technologists, engineers, researchers, and developers.

CHAPTER 2 ■ PYTHON REFRESHER

54

• Easy to port, integrate, and deploy : Python is supported on
all major operating systems (OS), including Linux, Windows,
and macOS. Code written in one OS can easily be ported into
another OS by simply copying the code files, and they will work
seamlessly. Python can also be easily integrated and extended
with existing applications and can interface with various APIs
and devices using sockets, networks, and ports. Python can be
used to invoke code for other languages, and there are Python
bindings for invoking Python code from other languages. This
helps in easy integration of Python code wherever necessary.
The most important advantage, though, is that it is very easy to
develop Python code and deploy it no matter how complex your
codebase might be. If you follow the right continuous integration
(CI) processes and manage your Python codebase properly,
deployment usually involves updating your latest code and
starting the necessary processes in your production environment.
It is extremely easy to get proper working code in minimal time,
which is often difficult to do with other languages.

 All these features coupled with rapid strides in the application of Python in various
widespread domains over the years have made Python extremely popular. Such has been
the case that if the proper Python principles of simplicity, elegance, and minimalism are
not followed when writing code, the code is said to be not “pythonic.” There is a known
style and convention around writing good Python code, and lots of articles and books
teach how to write pythonic code. Active users and developers in the Python community
call themselves Pythonistas, Pythoneers, and many more interesting names. The thriving
Python community makes the language all the more exciting since Python and its entire
ecosystem is always under active improvement and development.

 The Zen of Python
 You may be wondering what on earth the Zen of Python could be, but when you become
somewhat familiar with Python, this is one of the first things you get to know. The
beauty of Python lies in its simplicity and elegance. The Zen of Python is a set of 20
guiding principles, or aphorisms , that have been influential in Python’s design. Long-
time Pythoneer Tim Peters documented 19 of them in 1999, and they can be accessed
at https://hg.python.org/peps/file/tip/pep-0020.txt as a part of the Python
Enhancement Proposals (PEP) number 20 (PEP 20). The best part is, if you already have
Python installed, you can access the Zen of Python at any time by running the following
code in the Python or IPython shell:

 In [5]: import this
 The Zen of Python, by Tim Peters

https://hg.python.org/peps/file/tip/pep-0020.txt

CHAPTER 2 ■ PYTHON REFRESHER

55

 Beautiful is better than ugly.
 Explicit is better than implicit.
 Simple is better than complex.
 Complex is better than complicated.
 Flat is better than nested.
 Sparse is better than dense.
 Readability counts.
 Special cases aren't special enough to break the rules.
 Although practicality beats purity.
 Errors should never pass silently.
 Unless explicitly silenced.
 In the face of ambiguity, refuse the temptation to guess.
 There should be one-- and preferably only one --obvious way to do it.
 Although that way may not be obvious at first unless you're Dutch.
 Now is better than never.
 Although never is often better than *right* now.
 If the implementation is hard to explain, it's a bad idea.
 If the implementation is easy to explain, it may be a good idea.
 Namespaces are one honking great idea -- let's do more of those!

 The above output showing the 19 principles that form the Zen of Python is included
in the Python language itself as an easter egg. The principles are written in simple English
and a lot of them are pretty self-explanatory, even if you have not written code before,
and many of them contain inside jokes! Python focuses on writing simple and clean
code that is readable. It also intends to make sure you focus a lot on error handling and
implementing code that is easy to interpret and understand. The one principle I would
most like you to remember is Simple is better than complex , which is applicable not only
for Python but for a lot of things when you are out there in the world solving problems.
Sometimes a simple approach beats a more complex one, as long as you know what you
are doing, because it helps you avoid overcomplicating things.

 Applications: When Should You Use Python?
 Python, being a general and multipurpose programming language, can be used to build
applications and systems for different domains and solve diverse real-world problems.
Python comes with a standard library that hosts a large number of useful libraries and
modules that can be leveraged to solve various problems. Besides the standard library,
thousands of third-party libraries are readily available on the Internet, encouraging open
source and active development. The official repository for hosting third-party libraries
and utilities for enhancing development in Python is the Python Package Index (PyPI) .
Access it at https://pypi.python.org and check out the various packages. Currently
there are over 80,000 packages you can install and start using.

https://pypi.python.org/

CHAPTER 2 ■ PYTHON REFRESHER

56

 Although Python can be used for solving a lot of problems, here are some of the most
popular domains:

• Scripting : Python is known as a scripting language. It can be
used to perform many tasks, such as interfacing with networks
and hardware and handling and processing files and databases,
performing OS operations, and receiving and sending email.
Python is also used extensively for server-side scripting and even
for developing entire web servers for serving web pages. A lot
of Python scripts are used in an ad-hoc fashion for automating
operations like network socket communication, handling email,
parsing and extracting web pages, file sharing and transfer via
FTP, communicating via different protocols, and several more.

• Web development : There are a lot of robust and stable Python
frameworks out there that are used extensively for web
development, including Django, Flask, Web2Py, and Pyramid.
You can use them for developing complete enterprise web
applications, and Python supports various architecture styles like
RESTful APIs and the MVC architecture. It also provides ORM
support to interact with databases and use OOP on top of that.
Python even has frameworks like Kivy, which support cross-
platform development for developing apps on multiple platforms
like iOS, Android, Windows, and OS X. Python is also used for
developing rich internet applications (RIA) with the Silverlight
framework support in IronPython, a Python version that is well
integrated with the popular Microsoft .NET framework and pyjs,
a RIA development framework supporting a Python-to-JavaScript
compiler and an AJAX framework.

• Graphical user interfaces (GUIs) : A lot of desktop-based
applications with GUIs can be easily built with Python. Libraries
and APIs like tkinter, PyQt, PyGTK, and wxPython allow
developers to develop GUI-based apps with simple as well as
complex interfaces. Various frameworks enable developers to
develop GUI-based apps for different OSes and platforms.

• Systems programming : Being a high-level language, Python has
a lot of interfaces to low-level OS services and protocols, and the
abstractions on top of these services enable developers to write
robust and portable system monitoring and administration tools.
We can use Python to perform OS operations including creating,
handling, searching, deleting, and managing files and directories.
The Python standard library (PSL) has OS and POSIX bindings that
can be used for handling files, multi-threading, multi-processing,
environment variables, controlling sockets, pipes, and processes.
This also enhances writing Python scripts for performing system-
level administration tasks with minimal effort and lines of code.

CHAPTER 2 ■ PYTHON REFRESHER

57

• Database programming : Python is used a lot in connecting and
accessing data from different types of databases, be it SQL or
NoSQL. APIs and connectors exist for these databases like MySQL,
MSSQL, MongoDB, Oracle, PostgreSQL, and SQLite. In fact, SQLite,
a lightweight relational database, now comes as a part of the Python
standard distribution itself. Popular libraries like SQLAlchemy and
SQLObject provide interfaces to access various relational databases
and also have ORM components to help implement OOP-style
classes and objects on top of relational tables.

• Scientific computing : Python really shows its flair for being
multipurpose in areas like numeric and scientific computing. You
can perform simple as well as complex mathematical operations
with Python, including algebra and calculus. Libraries like
 SciPy and NumPy help researchers, scientists, and developers
leverage highly optimized functions and interfaces for numeric
and scientific programming. These libraries are also used as the
base for developing complex algorithms in various domains like
machine learning.

• Machine learning : Python is regarded as one of the most popular
languages today for machine learning. There is a wide suite of
libraries and frameworks, like scikit-learn , h2o , tensorflow ,
 theano , and even core libraries like numpy and scipy , for not only
implementing machine learning algorithms but also using them
to solve real-world advanced analytics problems.

• Text analytics : As mentioned, Python can handle text data
very well, and this has led to several popular libraries like
 nltk , gensim , and pattern for NLP, information retrieval, and
text analytics. You can also apply standard machine learning
algorithms to solve problems related to text analytics. This
ecosystem of readily available packages in Python reduces time
and efforts taken for development. We will be exploring several of
these libraries in this book.

 Even though the preceding list may seem a bit overwhelming, this is just scratching
the surface of what is possible with Python. It is widely used in several other domains
including artificial intelligence (AI) , game development, robotics, Internet of Things
(IoT), computer vision, media processing, and network and system monitoring, just to
name a few. To read some of the widespread success stories achieved with Python in
different diverse domains like arts, science, computer science, education, and others,
enthusiastic programmers and researchers can check out www.python.org/about/
success/ . To find out various popular applications developed using Python, see
 www.python.org/about/apps/ and https://wiki.python.org/moin/Applications ,
where you will definitely find some applications you have used—some of them are
indispensable.

http://www.python.org/about/success/
http://www.python.org/about/success/
http://www.python.org/about/apps/
https://wiki.python.org/moin/Applications

CHAPTER 2 ■ PYTHON REFRESHER

58

 Drawbacks: When Should You Not Use Python?
 I have been blowing the trumpet for Python till now, but you may be wondering are
there any drawbacks? Well, like any tool or language, Python has advantages and
disadvantages. Yes, even Python has some disadvantages, and here we will highlight
some of them so that you are aware of them when developing and writing code in Python:

• Execution speed performance : Performance is a pretty heavy term
and can mean several things, so I’ll pinpoint the exact area to
talk about and that is execution speed. Because Python is not a
fully compiled language, it will always be slower than low-level
fully compiled programming languages like C and C++. There
are several ways you can optimize your code, including multi-
threading and multi-processing. You can also use static typing
and C extensions for Python (known as Cython). You can consider
using PyPy also, which is much faster than normal Python since
it uses a just-in-time (JIT) compiler (see http://pypy.org),
but often, if you write well-optimized code, you can develop
applications in Python just fine and do not need to depend on
other languages. Remember that often the problem is not with
the tool but the code you write—something all developers and
engineers realize with time and experience.

• Global Interpreter Lock (GIL) : The GIL is a mutual exclusion lock
used in several programming language interpreters, like Python
and Ruby. Interpreters using GIL only allow one single thread
to effectively execute at a time even when run on a multi-core
processor and thus limit the effectively of parallelism achieved by
multi-threading depending on whether the processes are I\O bound
or CPU bound and how many calls it makes outside the interpreter.

• Version incompatibility : If you have been following Python news,
you know that once Python released the 3.x version from 2.7.x,
it was backward-incompatible in several aspects, and that has
indeed opened a huge can of worms. Several major libraries and
packages that had been built in Python 2.7.x started breaking
when users unknowingly updated their Python versions. Hence, a
large chunk of enterprises and the developer community still use
 Python 2.7.x due to legacy code and because newer versions of
those packages and libraries were never built. Code deprecation
and version changes are some of the most important factors in
systems breaking down.

 Many of these issues are not specific to Python but apply to other languages too, so
you should not be discouraged from using Python just because of the preceding points—
but you should definitely remember them when writing code and building systems.

http://pypy.org/

CHAPTER 2 ■ PYTHON REFRESHER

59

 Python Implementations and Versions
 There are several different implementations of Python and different versions of Python
which are released periodically since it is under active development. This section discusses
both implementations and versions and their significance, which should give you some
idea of which Python you might want to use for your development needs. Currently, there
are four major production-ready, robust, and stable implementations of Python:

• CPython is the regular old Python, which we know as just Python.
It is both a compiler and interpreter and comes with its own
set of standard packages and modules which were all written
in standard C. This version can be used directly in all popular
modern platforms. Most of the python third-party packages and
libraries are compatible with this version.

• PyPy is a faster alternative Python implementation that uses
a JIT compiler to make the code run faster than the CPython
implementation—sometimes delivering speedups in the range of
10x–100x. It is also more memory efficient, supporting greenlets
and stackless for high parallelism and concurrency.

• Jython is a Python implementation for the Java platform
supporting Java Virtual Machine (JVM) for any version of
Java ideally above version 7. Using Jython you can write code
leveraging all types of Java libraries, packages, and frameworks.
It works best when you know more about the Java syntax and
the OOP principles that are used extensively in Java, like classes,
objects, and interfaces.

• IronPython is the Python implementation for the popular
Microsoft .NET framework, also termed as the Common
Language Runtime (CLR) . You can use all of Microsoft’s CLR
libraries and frameworks in IronPython, and even though you do
not essentially have to write code in C#, it is useful to know more
about syntax and constructs for C# to use IronPython effectively.

 To start with I would suggest you to use the default Python which is the CPython
implementation, and experiment with the other versions only if you are really interested in
interfacing with other languages like C# and Java and need to use them in your codebase.

 There are two major versions: the 2.x series and the 3.x series, where x is a number.
Python 2.7 was the last major version in the 2.x series, released in 2010. From then on,
future releases have included bug fixes and performance improvements but no new
features. The latest version is Python 2.7.12, released in June 2016. The 3.x series started
with Python 3.0, which introduced many backward-incompatible changes compared
to Python 2.x. Each version 3 release not only has bug fixes and improvements but also
introduces new features, such as the AsyncIO module released recently. As of this writing,
Python 3.5.2 is the latest version in the 3.x series, released in June 2016.

CHAPTER 2 ■ PYTHON REFRESHER

60

 There are many arguments over which version of Python should be used. We
will discuss some of them later on, but the best way to go about thinking about it is to
consider what problem is to be solved and the entire software ecosystem you will need
to use for that, starting from libraries , dependencies, and architecture to implementation
and deployment—and also considering things like reusing existing legacy codebases.

 Installation and Setup
 Now that you have been acquainted with Python and know more about the language,
its capabilities, implementations, and versions, we will be talking about which version
of Python we will be using in the book and also discussing details on how to set up your
development environment and handle package management and virtual environments.
This section will give you a good head start on getting things ready for following along
with the various hands-on examples we will be covering in this book.

 Which Python Version?
 The two major Python versions, as mentioned, are the 2.x series and the 3.x series. They
are quite similar, although there have been several backward-incompatible changes in
the 3.x version, which has led to a huge drift between people who use 2.x and people
who use 3.x. Most legacy code and a large majority of Python packages on PyPI were
developed in Python 2.7.x , and many package owners do not have the time or will to port
all their codebases to Python 3.x , since the effort required would not be minimal. Some of
the changes in 3.x are as follows:

• All text strings are Unicode by default.

• print and exec are now functions and no longer statements.

• range() returns a memory-efficient iterable and not a list.

• The style for classes has changed.

• Library and name changes are based on convention and style
violations.

 To know more about changes introduced since Python 3.0 , check https://docs.
python.org/3/whatsnew/3.0.html , the official documentation listing the changes. That
link should give you a pretty good idea of what changes can break your code if you are
porting it from Python 2 to Python 3.

 As for the problem of selecting which version, there is no absolute answer for this.
It purely depends on the problem you are trying to solve and the current code and
infrastructure you have and how you will be maintaining this code in the future along
with all its necessary dependencies. If you are starting a new project completely and
have a fairly good idea that you do not need any external packages and libraries that are
solely dependent on Python 2.x, you can go ahead with Python 3.x and start developing
your system. But if you have a lot of dependencies on external packages that might break
with Python 3.x or that are available for only Python 2.x, you have no choice but to stick
with Python 2.x . Besides that, often you have to deal with legacy code that’s been around

https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html

CHAPTER 2 ■ PYTHON REFRESHER

61

a long time, especially in large companies and organizations that have huge codebases.
In that case, porting the whole code to Python 3.x would be wasted effort—kind of re-
inventing the wheel, since you are not missing out on major functionality and capabilities
by using Python 2.x, and in fact you might even end up breaking the existing code and
functionality without even realizing it. In the end, this is a decision left to you, the reader,
which you must make carefully considering all scenarios.

 We will be using Python 2.7.11 in this book just to be on the safe side, since it is a tried
and tested version of Python in all major enterprises. You are most welcome to follow
along even in Python 3.x—the algorithms and techniques will be the same, although
you may have to take into account changes, such as the fact that the print statement is a
function in Python 3.x and so on.

 Which Operating System?
 There are several popular OSes out there, and everybody has their own preference. The
beauty of Python is that is can run seamlessly on any OS without much hassle. The three
most popular OSes include the following:

• Windows

• Linux

• OS X (now known as macOS)

 You can choose any OS of your choice and use it for following along with the
examples in this book. We will be using Windows as the primary OS in this book.
This book is aimed at working professionals and practitioners, most of whom in their
enterprise environment usually use the enterprise version of Windows. Besides that,
several Python external packages are really easy to install on a UNIX-based OS like Linux
and macOS. However, sometimes there are major issues in installing them for Windows,
so I want to highlight such instances and make sure to address them such that executing
any of the code snippets and samples here becomes easy for you. But again, you are most
welcome to use any OS of your choice when following the examples in this book.

 Integrated Development Environments
 Integrated development environments (IDEs) are software products that enable
developers to be highly productive by providing a complete suite of tools and capabilities
necessary for writing, managing, and executing code. The usual components of an
IDE include source editor, debugger, compiler, interpreter, and refactoring and build
tools. They also have other capabilities such as code-completion, syntax highlighting,
error highlighting and checks, objects, and variable explorers. IDEs can be used to
manage entire codebases—much better than trying to write code in a simple text
editor, which takes more time. That said, experienced developers often use simple
plain text editors to write code, especially if they are working in server environments.
You’ll find a list of IDEs used specially for Python at https://wiki.python.org/moin/
IntegratedDevelopmentEnvironments .

 We will be using the Spyder IDE, which comes with the Anaconda Python
distribution for writing and executing our code.

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

CHAPTER 2 ■ PYTHON REFRESHER

62

 Environment Setup
 This section covers details regarding how to set up your Python environment with
minimal effort and the main components required.

 First, head over to the official Python website and download Python 2.7.11 from
 www.python.org/downloads/ . Or download a complete Python distribution with over
700 packages, known as the Anaconda Python distribution, from Continuum Analytics,
which is built specially for data science and analytics, at www.continuum.io/downloads .
This package provides a lot of advantages, especially for Windows users, where installing
some of the packages like numpy and scipy can sometimes cause issues. You can get more
information about Anaconda and Continuum Analytics at https://docs.continuum.io/
anaconda/index . Anaconda comes with conda, an open source package and environment
management system, and Spyder (Scientific Python Development Environment), an IDE
for writing and executing your code.

 For other OS options, check out the relevant instructions on the website.
 Once you have Python downloaded, start the executable and follow the instructions

on the screen, clicking the Next button at each stage. But before starting the installation,
remember to check the two options shown in Figure 2-1 .

 Figure 2-1. Installing the Anaconda Python distribution

http://www.python.org/downloads/
http://www.continuum.io/downloads
https://docs.continuum.io/anaconda/index
https://docs.continuum.io/anaconda/index

CHAPTER 2 ■ PYTHON REFRESHER

63

 Once the installation is complete, either start up Spyder by double-clicking the
relevant icon or start the Python or IPython shell from the command prompt. Spyder
provides a complete IDE to write and execute code in both the regular Python and
IPython shell. Figure 2-2 shows how to run IPython from the command prompt.

 Figure 2-2 depicts printing a regular sentence saying Welcome to Python! just to show
you that Python is properly installed and working fine. The input and output execution
history are kept in variables called In and Out , indicated in the figure by the prompt
numbers, such as In[1] . IPython provides a lot of advantages including code completion,
inline executions and plots, and running code snippets interactively. We will be running
most of our snippets in the IPython shell just like the examples seen in Chapter 1 .

 Now that you have Anaconda installed, you are ready to start running the code
samples in this book. Before we move on to the next section, I want to cover package
management briefly. You can use either the pip or conda commands to install, uninstall,
and upgrade packages. The shell command shown in Figure 2-3 depicts installing the
 pandas library via pip . Because we already have the library installed, you can use the
 --upgrade flag as shown in the figure.

 Figure 2-2. Starting IPython from the command prompt

 Figure 2-3. Package management using pip

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 2 ■ PYTHON REFRESHER

64

 The conda package manager is better than pip in several aspects because it provides
a holistic view of which dependencies are going to be upgraded and the specific versions
and other details during installation. Also pip often fails to install some packages in
Windows, but conda has no such issues during installation. Figure 2-4 depicts how to
manage packages using conda .

 Now you have a much better idea of how to install external packages and libraries in
Python. This will be useful later when we install some libraries that have been specifically
built for text analytics. Your Python environment should now be set up and ready for
executing code. Before we dive into the basic and advanced concepts in Python, we will
conclude this section with a discussion about virtual environments.

 Virtual Environments
 A virtual environment , or venv , is a complete isolated Python environment with its own
Python interpreter, libraries, modules, and scripts. This environment is a standalone
environment isolated from other virtual environments and the default system-level
Python environment. Virtual environments are extremely useful when you have multiple
projects or codebases that have dependencies on different versions of the same packages
or libraries. For example, if my project TextApp1 depends on nltk 2.0 and another
project, TextApp2, depends on nltk 3.0 , then it would be impossible to run both projects
on the same system. Hence, the need for virtual environments that provide complete
isolated environments that can be activated and deactivated as needed.

 Figure 2-4. Package management using conda

CHAPTER 2 ■ PYTHON REFRESHER

65

 To set up a virtual environment, you need to install the virtualenv package as follows:

 E:\Apress>pip install virtualenv
 Collecting virtualenv
 Downloading virtualenv-15.0.2-py2.py3-none-any.whl (1.8MB)
 100% |################################| 1.8MB 290kB/s
 Installing collected packages: virtualenv
 Successfully installed virtualenv-15.0.2

 Once installed, you can create a virtual environment as follows, where we create a new
project directory called test_proj and create the virtual environment inside the directory:

 E:\Apress>mkdir test_proj && chdir test_proj
 E:\Apress\test_proj>virtualenv venv
 New python executable in E:\Apress\test_proj\venv\Scripts\python.exe
 Installing setuptools, pip, wheel...done.

 Once you have installed the virtual environment successfully, you can activate it
using the following command:

 E:\Apress\test_proj>venv\Scripts\activate
 (venv) E:\Apress\test_proj>python --version
 Python 2.7.11 :: Continuum Analytics, Inc.

 For other OS platforms, you may need to use the command source venv/bin/
activate to activate the virtual environment.

 Once the virtual environment is active, you can see the (venv) notation as shown in
the preceding code output, and any new packages you install will be placed in the venv
folder in complete isolation from the global system Python installation. This difference
is illustrated by depicting different versions for the pandas package in the global system
Python and the virtual environment Python in the following code:

 C:\Users\DIP.DIPSLAPTOP>echo 'This is Global System Python'
 'This is Global System Python'
 C:\Users\DIP.DIPSLAPTOP>pip freeze | grep pandas
 pandas==0.18.0

 (venv) E:\Apress\test_proj>echo 'This is VirtualEnv Python'
 'This is VirtualEnv Python'
 (venv) E:\Apress\test_proj>pip install pandas
 Collecting pandas
 Downloading pandas-0.18.1-cp27-cp27m-win_amd64.whl (6.2MB)
 100% |################################| 6.2MB 142kB/s
 Installing collected packages: pandas
 Successfully installed pandas-0.18.1
 (venv) E:\Apress\test_proj>pip freeze | grep pandas
 pandas==0.18.1

CHAPTER 2 ■ PYTHON REFRESHER

66

 You can see from that code how the pandas package has different versions in the
same machine: 0.18.0 for global Python and 0.18.1 for the virtual environment Python.
Hence, these isolated virtual environments can run seamlessly on the same system.

 Once you have finished working in the virtual environment, you can deactivate it
again as follows:

 (venv) E:\Apress\test_proj>venv\Scripts\deactivate
 E:\Apress\test_proj>

 This will bring you back to the system’s default Python interpreter with all its
installed libraries. This gives us a good idea about the utility and advantages of virtual
environments, and once you start working on several projects, you should definitely
consider using it. To find out more about virtual environments, check out http://docs.
python-guide.org/en/latest/dev/virtualenvs/ , the official documentation for the
 virtualenv package.

 This brings us to the end of our installation and setup activities, and now we will
be looking into Python concepts, constructs, syntax, and semantics using hands-on
examples.

 Python Syntax and Structure
 There is a defined hierarchical syntax for Python code that you should remember when
writing code. Any big Python application or system is built using several modules, which
are themselves comprised of Python statements. Each statement is like a command or
direction to the system directing what operations it should perform, and these statements
are comprised of expressions and objects. Everything in Python is an object—including
functions, data structures, types, classes and so on. This hierarchy is visualized in
Figure 2-5 .

 Figure 2-5. Python program structure hierarchy

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

CHAPTER 2 ■ PYTHON REFRESHER

67

 The basic statements consist of objects, expressions which usually make use of objects
and process and perform operations on them. Objects can be anything from simple data
types and structures to complex objects, including functions and reserved words that have
their own specific roles. Python has around 37 keywords , or reserved words, which have
their own designated roles and functions. Table 2-1 list each keyword in detail, including
examples that should be useful and handy when you are using them in your code.

 Table 2-1. Python Reserved Words

 Sl No. Keyword Description Example

 1 and The logical AND operator (5==5 and 1==2) == False

 2 as Used as a synonym to some
object/reference

 with open('file.txt') as f

 3 assert Asserts/checks if some
expression is True

 assert 1==2, "Not Equal"

 4 async Declares a function as
 asynchronous (co-routine)

 async def get_data():

 5 await Used to invoke a co-routine return await get_data()

 6 break Breaks out of an executing loop while True:
 break

 7 class Create a class (OOP) class ClassifyText(object):

 8 continue Continue with the next iteration
of the loop

 while True:
 if a==1: continue

 9 def Defines a function def add(a,b):
 return a+b

 10 del Deletes references del arr

 11 elif Else-if conditional if num==1: print '1'
 elif num==2: print '2'

 12 else Else conditional if num==1: print '1'
 else: print 'not 1'

 13 except Catch exceptions except ValueError, e: print e

 14 exec Dynamic execution of code exec 'print "Hello Python"'

 15 False Boolean False False == 0

 16 finally Finally execute statements after
try-except

 finally: print 'end of
exception'

 17 for The for loop for num in arr: print num

 18 from Import specific components
from modules

 from nltk.corpus import
brown

 19 global Declare variables as global global var

 20 if If conditional if num==1: print '1'

(continued)

CHAPTER 2 ■ PYTHON REFRESHER

68

 Table 2-1 shows us all of Python’s keywords that are used in statements. However,
there are a few caveats to remember. The async and await keywords are only available
in Python 3.5.x onwards. The exec and print keywords are statements only in Python
2.x—starting from Python 3.x they are functions. The keywords False , True , and nonlocal
were introduced starting with Python 3.x in the keywords list.

 Python statements usually direct the interpreter as to what they should do when
executing the statements. A bunch of statements usually forms a logical block of code.
Various constructs including functions and loops and conditionals help in segregating
and executing blocks of code using logic and design based on user decisions. Python also
focuses a lot on readability—hence, indentation is an important part of Python code. By
default, Python does not use punctuation like semicolons to indicate end of statements. It
also uses tabs or whitespaces to indicate and delimit specific blocks of code instead of the
traditional braces or keywords as used in languages like C, C++, Java, and so on. Python

Table 2-1. (continued)

 Sl No. Keyword Description Example

 21 import Import an existing module import numpy

 22 in Check or loop through some
existing object

 for num in arr \ if x in y

 23 is Used to check for equality type('a') is str

 24 lambda Create an anonymous function lambda a: a**a

 25 None Represents no value or null num = None

 26 nonlocal Modify variable values of an
outer but non global scope in
functions

 nonlocal var

 27 not The logical NOT operator not 1 == 2

 28 or The logical OR operator 1 or 2 == 1

 29 pass Used as a placeholder
indicating an empty block

 if a == 1: pass

 30 print Prints a string or other objects print 'Hello World!'

 31 raise Raises an exception raise Exception('overflow')

 32 return Returns object(s) from a
function after exiting

 return a, b

 33 try Tries a code block and goes to
 except if exception occurs

 try: read_file()
 except Exception, e: print e

 34 while The while loop while True: print value

 35 with With an object in an expression
perform some operation

 with open('file.txt') as f:
 data = f.read()

 36 yield Generator functionality, pause
and return to the caller

 def generate_func(arr):
 for num in arr: yield num+1

CHAPTER 2 ■ PYTHON REFRESHER

69

accepts both spaces and tabs as indentation, with the usual norm being one tab or four
spaces to indicate each specific block of code. Unindented code will always throw syntax
errors, so anyone writing Python code must be extra careful with code formatting and
indentation.

 Python programs are usually structured around the hierarchy mentioned earlier.
Each module is usually a directory with a __init__.py file, which makes the directory
a package, and it may have multiple modules, each of which is an individual Python
(.py) file . Each module usually has classes and objects like functions that are invoked by
other modules and code. All interconnected modules finally make up a complete Python
program, application, or system. Usually you start any project by writing necessary code
in Python (.py) files and making it modular as it gets bigger by adding more components.

 Data Structures and Types
 Python has several data types and many are used as data structures for handling data. All
data types are derived from the default object data type in Python. This object data type
is an abstraction used by Python for managing and handling data. Code and data are all
stored and handled by objects and relations among objects. Each object has three things
or properties that distinguish it from other objects:

• Identity : This is unique and never changes once the object is
created and is usually represented by the object’s memory
address.

• Type : This determines the type of object (usually the data type,
which is again a child of the base object type).

• Value : The actual value stored by the object.

 Let’s say a variable is holding a string that is one of the data types. To see the three
properties in action, you can use the functions depicted in the following code snippet:

 In [46]: new_string = "This is a String" # storing a string

 In [47]: id(new_string) # shows the object identifier (address)
 Out[47]: 243047144L

 In [48]: type(new_string) # shows the object type
 Out[48]: str

 In [49]: new_string # shows the object value
 Out[49]: 'This is a String'

 Python has several data types, including several core data types and complex ones
including functions and classes. In this section we will talk about the core data types of
Python, including some that are used extensively as data structures to handle data. These
core data types are as follows:

CHAPTER 2 ■ PYTHON REFRESHER

70

• Numeric

• Strings

• Lists

• Sets

• Dictionaries

• Tuples

• Files

• Miscellaneous

 Although that’s not an exhaustive list , more than 90 percent of your time will be
spent writing Python statements that make use of these objects. Let’s discuss each of
them in more detail to understand their properties and behavior better.

 Numeric Types
 The numeric data type is perhaps the most common and basic data type in Python. All
kinds of applications end up processing and using numbers in some form or the other.
There are mainly three numeric types: integers, floats, and complex numbers. Integers are
numbers that do not have a fractional part or mantissa after the decimal point. Integers
can be represented and operated upon as follows:

 In [52]: # representing integers and operations on them
 In [53]: num = 123

 In [54]: type(num)
 Out[54]: int

 In [55]: num + 1000 # addition
 Out[55]: 1123

 In [56]: num * 2 # multiplication
 Out[56]: 246

 In [59]: num / 2 # integer division
 Out[59]: 61

 There are also various types of integers, depending on their radix or base. These
include decimal, binary, octal, and hexadecimal integers. Normal nonzero leading
sequences of numbers are decimal integers. Integers that start with a 0 , or often 0o to
prevent making mistakes, are octal integers. Numbers that start with 0x are hexadecimal,
and those starting with 0b are binary integers. You can also make use of the bin() , hex() ,
and oct() functions for converting decimal integers to the respective base form.

CHAPTER 2 ■ PYTHON REFRESHER

71

 The following code snippet illustrates the various forms of integers:

 In [94]: # decimal
 In [95]: 1 + 1
 Out[95]: 2

 In [96]: # binary
 In [97]: bin(2)
 Out[97]: '0b10'
 In [98]: 0b1 + 0b1
 Out[98]: 2
 In [99]: bin(0b1 + 0b1)
 Out[99]: '0b10'

 In [100]: # octal
 In [101]: oct(8)
 Out[101]: '010'
 In [102]: oct(07 + 01)
 Out[102]: '010'
 In [103]: 0o10
 Out[103]: 8

 In [104]: # hexadecimal
 In [105]: hex(16)
 Out[105]: '0x10'
 In [106]: 0x10
 Out[106]: 16
 In [116]: hex(0x16 + 0x5)
 Out[116]: '0x1b'

 Floating point numbers, or floats, are represented as a sequence of numbers that
include a decimal point and some numbers following it (the mantissa), an exponent part
(e or E followed by a +/- sign followed by digits), or sometimes both of them. Here are
some examples of floating point numbers :

 In [126]: 1.5 + 2.6
 Out[126]: 4.1

 In [127]: 1e2 + 1.5e3 + 0.5
 Out[127]: 1600.5

 In [128]: 2.5e4
 Out[128]: 25000.0

 In [129]: 2.5e-2
 Out[129]: 0.025

 The floating point numbers have a range and precision similar to the double data
type in the C language.

CHAPTER 2 ■ PYTHON REFRESHER

72

 Complex numbers have two components, a real and an imaginary component
represented by floating point numbers. The imaginary literal consists of the number
followed by the letter j , and this symbol j at the end of the literal indicates the square root
of –1. The following code snippet shows some representations and operations of complex
numbers:

 In [132]: cnum = 5 + 7j

 In [133]: type(cnum)
 Out[133]: complex

 In [134]: cnum.real
 Out[134]: 5.0

 In [135]: cnum.imag
 Out[135]: 7.0

 In [136]: cnum + (1 - 0.5j)
 Out[136]: (6+6.5j)

 Strings
 Strings are sequences or collections of characters used to store and represent textual
data—which will be our data type of choice in most examples in the book. Strings can
be used to store both textual as well as bytes as information. Strings have a wide variety
of methods that can be used for handling and manipulating strings, which we will see in
detail later in this chapter. An important point to remember is that strings are immutable ,
and any operations performed on strings always creates a new string object (remember
the three properties of an object?) rather than just mutating and changing the value of the
existing string object.

 The following code snippet shows some string representations and some basic
operations on strings:

 In [147]: s1 = 'this is a string'
 In [148]: s2 = 'this is "another" string'
 In [149]: s3 = 'this is the \'third\' string'
 In [150]: s4 = """this is a
 ...: multiline
 ...: string"""

 In [151]: print s1, s2, s3, s4
 this is a string this is "another" string this is the 'third'
string this is a
 multiline
 string

CHAPTER 2 ■ PYTHON REFRESHER

73

 In [152]: print s3 + '\n' + s4
 this is the 'third' string
 this is a
 multiline
 string

 In [153]: ' '.join([s1, s2])
 Out[153]: 'this is a string this is "another" string'

 In [154]: s1[::-1] # reverses the string
 Out[154]: 'gnirts a si siht'

 Lists
 Lists are collections of arbitrary heterogeneous or homogenous typed objects. Lists also
follow a sequence based on the order in which the objects are present in the list, and
each object has its own index with which it can be accessed. Lists are similar to arrays in
other languages, with the distinction that unlike arrays, which hold homogenous items
of the same type, lists can contain different types of objects. A simple example would be
a list containing numbers, strings, and even sublists. If a list contains objects that are lists
themselves, these are often called nested lists.

 The following code snippet shows some examples of lists:

 In [161]: l1 = ['eggs', 'flour', 'butter']
 In [162]: l2 = list([1, 'drink', 10, 'sandwiches', 0.45e-2])
 In [163]: l3 = [1, 2, 3, ['a', 'b', 'c'], ['Hello', 'Python']]

 In [164]: print l1, l2, l3
 ['eggs', 'flour', 'butter'] [1, 'drink', 10, 'sandwiches', 0.0045] [1, 2, 3,
['a', 'b', 'c'], ['Hello', 'Python']]

 You can also perform numerous operations on lists, including indexing, slicing,
appending, popping, and many more. Some typical operations on lists are depicted in the
following code snippet:

 In [167]: # indexing lists
 In [168]: l1
 Out[168]: ['eggs', 'flour', 'butter']
 In [169]: l1[0]
 Out[169]: 'eggs'
 In [170]: l1[1]
 Out[170]: 'flour'
 In [171]: l1[0] +' '+ l1[1]
 Out[171]: 'eggs flour'

 In [171]: # slicing lists
 In [172]: l2[1:3]
 Out[172]: ['drink', 10]

CHAPTER 2 ■ PYTHON REFRESHER

74

 In [173]: numbers = range(10)
 In [174]: numbers
 Out[174]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 In [175]: numbers[2:5]
 Out[175]: [2, 3, 4]
 In [180]: numbers[:]
 Out[180]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 In [181]: numbers[::2]
 Out[181]: [0, 2, 4, 6, 8]

 In [181]: # concatenating and mutating lists
 In [182]: numbers * 2
 Out[182]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 In [183]: numbers + l2
 Out[183]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 'drink', 10, 'sandwiches',

0.0045]

 In [184]: # handling nested lists
 In [184]: l3
 Out[184]: [1, 2, 3, ['a', 'b', 'c'], ['Hello', 'Python']]
 In [185]: l3[3]
 Out[185]: ['a', 'b', 'c']
 In [186]: l3[4]
 Out[186]: ['Hello', 'Python']

 In [187]: l3.append(' '.join(l3[4])) # append operation
 In [188]: l3
 Out[188]: [1, 2, 3, ['a', 'b', 'c'], ['Hello', 'Python'], 'Hello Python']

 In [189]: l3.pop(3) # pop operation
 Out[189]: ['a', 'b', 'c']
 In [190]: l3
 Out[190]: [1, 2, 3, ['Hello', 'Python'], 'Hello Python']

 Sets
 Sets are unordered collections of unique and immutable objects. You can use the set()
function or the curly braces {...} to create a new set. Sets are typically used to remove
duplicates from a list, test memberships, and perform mathematical set operations,
including union, intersection, difference, and symmetric difference.

 Some set representations and operations are shown in the following code snippet:

 In [196]: l1 = [1,1,2,3,5,5,7,9,1]

 In [197]: set(l1) # makes the list as a set
 Out[197]: {1, 2, 3, 5, 7, 9}

CHAPTER 2 ■ PYTHON REFRESHER

75

 In [198]: s1 = set(l1)

 # membership testing
 In [199]: 1 in s1
 Out[199]: True
 In [200]: 100 in s1
 Out[200]: False

 # initialize a second set
 In [201]: s2 = {5, 7, 11}

 # testing various set operations
 In [202]: s1 - s2 # set difference
 Out[202]: {1, 2, 3, 9}

 In [203]: s1 | s2 # set union
 Out[203]: {1, 2, 3, 5, 7, 9, 11}

 In [204]: s1 & s2 # set intersection
 Out[204]: {5, 7}

 In [205]: s1 ^ s2 # elements which do not appear in both sets
 Out[205]: {1, 2, 3, 9, 11}

 Dictionaries
 Dictionaries in Python are key-value mappings that are unordered and mutable. They
are often known as hashmaps , associative arrays , and associative memories . Dictionaries
are indexed using keys , which can be any immutable object type, like numeric types or
strings, or even tuples, which we will see later on. Remember that keys should always
be some immutable data type. Dictionary values can be immutable or mutable objects,
including lists and dictionaries themselves which would lead to nested dictionaries.
Dictionaries have a lot of similarity with JSON objects, if you have worked with them
previously. Dictionaries are often called dicts in Python, and the dict() function is also
used to create new dictionaries.

 The following code snippets show some representations and operations on
dictionaries:

 In [207]: d1 = {'eggs': 2, 'milk': 3, 'spam': 10, 'ham': 15}
 In [208]: d1
 Out[208]: {'eggs': 2, 'ham': 15, 'milk': 3, 'spam': 10}

 # retrieving items based on key
 In [209]: d1.get('eggs')
 Out[209]: 2
 In [210]: d1['eggs']
 Out[210]: 2

CHAPTER 2 ■ PYTHON REFRESHER

76

 # get is better than direct indexing since it does not throw errors
 In [211]: d1.get('orange')
 In [212]: d1['orange']
 Traceback (most recent call last):
 File "<ipython-input-212-ebecbf415243>", line 1, in <module>
 d1['orange']
 KeyError: 'orange'

 # setting items with a specific key
 In [213]: d1['orange'] = 25
 In [214]: d1
 Out[214]: {'eggs': 2, 'ham': 15, 'milk': 3, 'orange': 25, 'spam': 10}

 # viewing keys and values
 In [215]: d1.keys()
 Out[215]: ['orange', 'eggs', 'ham', 'milk', 'spam']
 In [216]: d1.values()
 Out[216]: [25, 2, 15, 3, 10]

 # create a new dictionary using dict function
 In [219]: d2 = dict({'orange': 5, 'melon': 17, 'milk': 10})
 In [220]: d2
 Out[220]: {'melon': 17, 'milk': 10, 'orange': 5}

 # update dictionary d1 based on new key-values in d2
 In [221]: d1.update(d2)
 In [222]: d1
 Out[222]: {'eggs': 2, 'ham': 15, 'melon': 17, 'milk': 10, 'orange': 5,

'spam': 10}

 # complex and nested dictionary
 In [223]: d3 = {'k1': 5, 'k2': [1,2,3,4,5], 'k3': {'a': 1, 'b': 2, 'c':

[1,2,3]}}
 In [225]: d3
 Out[225]: {'k1': 5, 'k2': [1, 2, 3, 4, 5], 'k3': {'a': 1, 'b': 2, 'c':

[1, 2, 3]}}
 In [226]: d3.get('k3')
 Out[226]: {'a': 1, 'b': 2, 'c': [1, 2, 3]}
 In [227]: d3.get('k3').get('c')
 Out[227]: [1, 2, 3]

 Tuples
 Tuples are also sequences like lists, but they are immutable. Typically, tuples are used
to represent fixed collections of objects or values. Tuples are created using a comma-
separated sequence of values enclosed by parentheses, and optionally the tuple()
function can also be used.

CHAPTER 2 ■ PYTHON REFRESHER

77

 The following code snippet shows some representations and operations on tuples:

 # creating a tuple with a single element
 In [234]: single_tuple = (1,)
 In [235]: single_tuple
 Out[235]: (1,)

 # original address of the tuple
 In [239]: id(single_tuple)
 Out[239]: 176216328L

 # modifying contents of the tuple but its location changes (new tuple is
created)
 In [240]: single_tuple = single_tuple + (2, 3, 4, 5)
 In [241]: single_tuple
 Out[241]: (1, 2, 3, 4, 5)
 In [242]: id(single_tuple) # different address indicating new tuple with

same name
 Out[242]: 201211312L

 # tuples are immutable hence assignment is not supported like lists
 In [243]: single_tuple[3] = 100
 Traceback (most recent call last):
 File "<ipython-input-247-37d1946d4128>", line 1, in <module>
 single_tuple[3] = 100
 TypeError: 'tuple' object does not support item assignment

 # accessing and unpacking tuples
 In [243]: tup = (['this', 'is', 'list', '1'], ['this', 'is', 'list', '2'])
 In [244]: tup[0]
 Out[244]: ['this', 'is', 'list', '1']
 In [245]: l1, l2 = tup
 In [246]: print l1, l2
 ['this', 'is', 'list', '1'] ['this', 'is', 'list', '2']

 Files
 Files are special types of objects in Python that are used mainly for interfacing with
external objects in the filesystem, including text, binary, audio, and video files, plus
documents, images, and many more. Some might disagree about it being a data type in
Python, but it actually is a special data type, and the name of the type, file, suits its role
perfectly for handling all types of external files. You usually use the open() function to
open a file, and there are various modes like read and write that are specified using a
processing mode character in the function.

 Some examples of file handling are show in the following code snippet:

CHAPTER 2 ■ PYTHON REFRESHER

78

 In [253]: f = open('text_file.txt', 'w') # open in write mode
 In [254]: f.write("This is some text\n") # write some text
 In [255]: f.write("Hello world!")
 In [256]: f.close() # closes the file

 # lists files in current directory
 In [260]: import os
 In [262]: os.listdir(os.getcwd())
 Out[262]: ['text_file.txt']

 In [263]: f = open('text_file.txt', 'r') # opens file in read mode
 In [264]: data = f.readlines() # reads in all lines from file
 In [265]: print data # prints the text data
 ['This is some text\n', 'Hello world!']

 Miscellaneous
 Besides the already mentioned data types and structures, there are several other Python
data types:

• The None type indicates no value/no data or null object.

• Boolean types include True and False.

• Decimal and Fraction types handle numbers in a better way.

 This completes the list for Python’s core data types and data structures that you will
be using most of the time in your code and implementations. We will now discuss some
constructs typically used for controlling the flow of code.

 Controlling Code Flow
 Flow of code is extremely important. A lot of it is based on business logic and rules. It also
depends on the type of implementation decisions developers take when building systems
and applications. Python provides several control flow tools and utilities that can be used
to control the flow of your code. Here are the most popular ones:

• if-elif-else conditionals

• for loop

• while loop

• break, continue, and else in loops

• try-except

 These constructs will help you understand several concepts including conditional
code flow, looping, and handling exceptions.

CHAPTER 2 ■ PYTHON REFRESHER

79

 Conditional Constructs
 The concept of conditional code flow involves executing different blocks of code
conditionally based on some user-defined logic implemented in the code itself. It is
extremely useful when you do not want to execute a block of statements sequentially
one after the other but execute a part of them based on fulfilling or not fulfilling certain
conditions. The if-elif-else statements help in achieving this. The general syntax for it is as
follows:

 if <conditional check 1 is True>: # the if conditional (mandatory)
 <code block 1> # executed only when check 1 evaluates to True
 ...
 <code block 1>
 elif <conditional check 2 is True>: # the elif conditional (optional)
 <code block 2> # executed only when check 1 is False and 2 is True
 ...
 <code block 2>
 else: # the else conditional (optional)
 <code block 3> # executed only when check 1 and 2 are False
 ...
 <code block 3>

 An important point to remember from the preceding syntax is that the corresponding
code blocks only execute based on satisfying the necessary conditions. Also, only the if
statement is mandatory, and the elif and else statements do not need to be mentioned
unless there is a need based on conditional logic.

 The following examples depict conditional code flow:

 In [270]: var = 'spam'
 In [271]: if var == 'spam':
 ...: print 'Spam'
 ...:
 Spam

 In [272]: var = 'ham'
 In [273]: if var == 'spam':
 ...: print 'Spam'
 ...: elif var == 'ham':
 ...: print 'Ham'
 ...:
 Ham

CHAPTER 2 ■ PYTHON REFRESHER

80

 In [274]: var = 'foo'
 In [275]: if var == 'spam':
 ...: print 'Spam'
 ...: elif var == 'ham':
 ...: print 'Ham'
 ...: else:
 ...: print 'Neither Spam or Ham'
 ...:
 Neither Spam or Ham

 Looping Constructs
 There are two main types of loops in Python: for and while loops. These looping
constructs are used to execute blocks of code repeatedly until some condition is satisfied
or the loop exits based on some other statements or conditionals.

 The for statement is generally used to loop through items in sequence and usually
loops through one or many iterables sequentially, executing the same block of code in
each turn. The while statement is used more as a conditional general loop, which stops
the loop once some condition is satisfied or runs the loop till some condition is satisfied.
Interestingly, there is an optional else statement at the end of the loops that is executed
only if the loop exits normally without any break statements. The break statement is often
used with a conditional to stop executing all statements in the loop immediately and exit the
closest enclosing loop. The continue statement stops executing all statements below it in
the loop and brings back control to the beginning of the loop for the next iteration. The pass
statement is just used as an empty placeholder—it does not do anything and is often used to
indicate an empty code block . These statements constitute the core looping constructs.

 The following snippets show the typical syntax normally used when constructing for
and while loops:

 # the for loop
 for item in iterable: # loop through each item in the iterable
 <code block> # Code block executed repeatedly
 else: # Optional else
 <code block> # code block executes only if loop exits normally

without 'break'

 # the while loop
 while <condition>: # loop till condition is satisfied
 <code block> # Code block executed repeatedly
 else: # Optional else
 <code block> # code block executes only if loop exits normally

without 'break'

 The following examples show how loops work along with the other looping
constructs including pass , break , and continue :

 # illustrating for loops
 In [280]: numbers = range(0,5)
 In [281]: for number in numbers:
 ...: print number
 ...:

CHAPTER 2 ■ PYTHON REFRESHER

81

 0
 1
 2
 3
 4
 In [282]: sum = 0
 In [283]: for number in numbers:
 ...: sum += number
 ...:
 In [284]: print sum
 10

 # role of the trailing else and break constructs
 In [285]: for number in numbers:
 ...: print number
 ...: else:
 ...: print 'loop exited normally'
 ...:
 0
 1
 2
 3
 4
 loop exited normally
 In [286]: for number in numbers:
 ...: if number < 3:
 ...: print number
 ...: else:
 ...: break
 ...: else:
 ...: print 'loop exited normally'
 ...:
 0
 1
 2

 # illustrating while loops
 In [290]: number = 5
 In [291]: while number > 0:
 ...: print number
 ...: number -= 1 # important! else loop will keep running
 ...:
 5
 4
 3
 2
 1

CHAPTER 2 ■ PYTHON REFRESHER

82

 # role of continue construct
 In [295]: number = 10
 In [296]: while number > 0:
 ...: if number % 2 != 0:
 ...: number -=1 # decrement but do not print odd numbers
 ...: continue # go back to beginning of loop for next
iteration
 ...: print number # print even numbers and decrement count
 ...: number -= 1
 ...:
 10
 8
 6
 4
 2

 # role of the pass construct
 In [297]: number = 10
 In [298]: while number > 0:
 ...: if number % 2 != 0:
 ...: pass # don't print odds
 ...: else:
 ...: print number
 ...: number -= 1
 ...:
 10
 8
 6
 4
 2

 Handling Exceptions
 Exceptions are specific events that are either triggered when some unnatural error
occurs or manually. They are used extensively for error handling, event notifications, and
controlling code flow. Using constructs like try-except-finally , you can make Python
raise exceptions when executing code whenever any error occurs at runtime. This would
also enable you to catch these exceptions and handle them as needed or ignore them
altogether. In Python versions prior to 2.5.x, there were generally two versions of exception
handling using the try construct. One would be try-finally , and the other would involve
 try-except and optionally an else clause at the end for catching exceptions. Now we have
a construct that includes them all, the try-except-else-finally construct, which can be
used for exception handling. The syntax is depicted as follows:

 try: # The try statement
 <main code block> # Checks for errors in this block
 except <ExceptionType1>: # Catch different exceptions

CHAPTER 2 ■ PYTHON REFRESHER

83

 <exception handler 1>
 except <ExceptionType2>:
 <exception handler 2>
 ...
 else: # Optional else statement
 <optional else block> # Executes only if there were no exceptions
 finally: # The finally statement
 <finally block> # Always executes in the end

 The flow of code in the preceding code snippet starts from the try statement and
the main code block in it, which is executed first and checked for any exceptions. If
any exceptions occur, they are matched based on the exception types as depicted in
the preceding snippet. Assuming ExceptionType1 matches, the exception handler for
 ExceptionType1 is executed, which is exception handler 1 . In case no exceptions were
raised, only then the optional else block is executed. The finally block is always
executed irrespective of any exceptions being raised or not.

 The following examples depict the use of the try-except-else-finally construct:

 In [311]: shopping_list = ['eggs', 'ham', 'bacon']
 # trying to access a non-existent item in the list
 In [312]: try:
 ...: print shopping_list[3]
 ...: except IndexError as e:
 ...: print 'Exception: '+str(e)+' has occurred'
 ...: else:
 ...: print 'No exceptions occurred'
 ...: finally:
 ...: print 'I will always execute no matter what!'
 ...:
 Exception: list index out of range has occurred
 I will always execute no matter what!
 # smooth code execution without any errors
 In [313]: try:
 ...: print shopping_list[2]
 ...: except IndexError as e:
 ...: print 'Exception: '+str(e)+' has occurred'
 ...: else:
 ...: print 'No exceptions occurred'
 ...: finally:
 ...: print 'I will always execute no matter what!'
 ...:
 bacon
 No exceptions occurred
 I will always execute no matter what!

 This brings us to the end of our discussion on the core constructs for controlling flow
of code in Python. The next section covers some core concepts and constructs that are
parts of the functional programming paradigm in Python.

CHAPTER 2 ■ PYTHON REFRESHER

84

 Functional Programming
 The functional programming paradigm is a style of programming with origins in lambda
calculus. It treats any form of computation purely on the basis of executing and evaluating
functions. Python is not a pure functional programming language but does have several
constructs that can be used for functional programming. In this section we will talk
about several of these constructs, including functions and some advanced concepts like
generators, iterators, and comprehensions. We will also look at modules like itertools
and functools that contain implementation of functional tools based on concepts from
Haskell and Standard ML.

 Functions
 A function can be defined as a block of code that is executed only on request by invoking
it. Functions consist of a function definition that has the function signature (function
name, parameters) and a group of statements inside the function that are executed when
the function is called. The Python standard library provides a huge suite of functions to
choose from to perform different types of operations. Besides this, users can define their
own functions using the def keyword.

 Functions usually return some value always, and even when they do not return a
value, by default they return the None type. One important thing to remember is that often
you may see methods and functions being used interchangeably, but the distinction
between functions and methods is that methods are functions that are defined within
class statements. Functions are also objects, since each and every type and construct in
Python is derived from the base object type. This opens up a whole new dimension where
you can even pass functions as parameters or arguments to other functions. Moreover,
functions can be bound to variables and even returned as results from other functions.
Hence functions are often known as first-class objects in Python.

 The following code snippet shows the basic structure of a function definition in
Python:

 def function(params): # params are the input parameters
 <code block> # code block consists of a group of statements
 return value(s) # optional return statement

 The params indicate the list of input parameters, which are not mandatory, and in
many functions there are actually no input parameters. You can even pass functions
themselves as parameters. Some logic executes in the code block, which may or may not
modify the input parameters, and finally you may return some output values or not return
anything entirely.

 The following code snippets demonstrate some basic examples of functions with
fixed arguments, variable arguments, and built-in functions:

 # function with single argument
 In [319]: def square(number):
 ...: return number*number
 ...:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ PYTHON REFRESHER

85

 In [320]: square(5)
 Out[320]: 25

 # built-in function from the numpy library
 In [321]: import numpy as np
 In [322]: np.square(5)
 Out[322]: 25

 # a more complex function with variable number of arguments
 In [323]: def squares(*args):
 ...: squared_args = []
 ...: for item in args:
 ...: squared_args.append(item*item)
 ...: return squared_args
 ...:
 In [324]: squares(1,2,3,4,5)
 Out[324]: [1, 4, 9, 16, 25]

 The preceding example shows how to introduce variable number of arguments in a
function dynamically. You can also introduce keyword arguments, where each argument
has its own variable name and value, as illustrated in the following code snippet:

 # assign specific keyword based arguments dynamically
 In [325]: def person_details(**kwargs):
 ...: for key, value in kwargs.items():
 ...: print key, '->', value
 ...:
 In [326]: person_details(name='James Bond', alias='007', job='Secret Service

Agent')
 alias -> 007
 job -> Secret Service Agent
 name -> James Bond

 Recursive Functions
 Recursive functions use the concept of recursion , wherein the function calls itself inside
its code block. Care should be taken to make sure there is a stopping condition that
ultimately terminates the recursive calls—otherwise the function will run into an endless
loop of execution where it goes on calling itself. Recursion makes use of the call stack at
each recursive call, hence they are often not very efficient compared to regular functions;
nevertheless, they are extremely powerful.

 The following example depicts our squares function using recursion:

 # using recursion to square numbers
 In [331]: def recursive_squares(numbers):
 ...: if not numbers:
 ...: return []

CHAPTER 2 ■ PYTHON REFRESHER

86

 ...: else:
 ...: return [numbers[0]*numbers[0]] + recursive_

squares(numbers[1:])
 ...:
 In [332]: recursive_squares([1, 2, 3, 4, 5])
 Out[332]: [1, 4, 9, 16, 25]

 Anonymous Functions
 Anonymous functions are functions that do not have any name and usually consist of
a one-line expression that denotes a function using the lambda construct. The lambda
keyword is used to define inline function objects that can be used just like regular
functions, with a few differences. The general syntax for a lambda function is shown in the
following code snippet:

 lambda arg, arg2,... arg_n : <inline expression using args>

 This expression can actually be even assigned to variables and then executed as a
normal function call similar to functions created with def . However, lambda functions are
expressions and never statements like the code block inside a def , and so it is extremely
difficult to put complex logic inside a lambda function because it is always a single-lined
inline expression. However, lambda functions are very powerful and are even used inside
lists, functions, and function arguments. Besides lambda functions, Python also provides
functions like map() , reduce() , and filter() , which make extensive use of lambda
functions and apply them to iterables usually to transform, reduce, or filter respectively.

 The following code snippet depicts some examples of lambda functions used with the
constructs we just talked about:

 # simple lambda function to square a number
 In [340]: lambda_square = lambda n: n*n
 In [341]: lambda_square(5)
 Out[341]: 25

 # map function to square numbers using lambda
 In [342]: map(lambda_square, [1, 2, 3, 4, 5])
 Out[342]: [1, 4, 9, 16, 25]

 # lambda function to find even numbers used for filtering
 In [343]: lambda_evens = lambda n: n%2 == 0
 In [344]: filter(lambda_evens, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
 Out[344]: [2, 4, 6, 8, 10]

 # lambda function to add numbers used for adding numbers in reduce function
 In [345]: lambda_sum = lambda x, y: x + y
 In [346]: reduce(lambda_sum, [1, 2, 3, 4, 5])
 Out[346]: 15

CHAPTER 2 ■ PYTHON REFRESHER

87

 # lambda function to make a sentence from word tokens with reduce function
 In [347]: lambda_sentence_maker = lambda word1, word2: ' '.join([word1,

word2])
 In [348]: reduce(lambda_sentence_maker, ['I', 'am', 'making', 'a',

'sentence', 'from', 'words!'])
 Out[348]: 'I am making a sentence from words!'

 The preceding examples should give you a pretty good idea about how lambda
functions work and how powerful they are. Using a one-line construct you can create
free-flowing sentences from word tokens and calculate a sum of numbers in a list! The
possibilities of using lambda functions are endless, and you can use them to solve even
the most complex of problems.

 Iterators
 Iterators are constructs used to iterate through iterables. Iterables are objects that are
basically sequences of other objects and data. A good example would be a for loop, which is
actually an iterable that iterates through a list or sequence. Iterators are objects or constructs
that can be used to iterate through iterables using the next() function, which returns the next
item from the iterable at each call. Once it has iterated through the entire iterable, it returns
a StopIteration exception. We have seen how a for loop works in general, however behind
the abstraction, the for loop actually calls the iter() function on the iterable to create an
iterator object and then traverses through it using the next() function.

 The following example illustrates how iterators work:

 # typical for loop
 In [350]: numbers = range(6)
 In [351]: for number in numbers:
 ...: print number
 0
 1
 2
 3
 4
 5

 # illustrating how iterators work behind the scenes
 In [352]: iterator_obj = iter(numbers)
 In [353]: while True:
 ...: try:
 ...: print iterator_obj.next()
 ...: except StopIteration:
 ...: print 'Reached end of sequence'
 ...: break
 0
 1
 2

CHAPTER 2 ■ PYTHON REFRESHER

88

 3
 4
 5
 Reached end of sequence

 # calling next now would throw the StopIteration exception as expected
 In [354]: iterator_obj.next()
 Traceback (most recent call last):
 File "<ipython-input-354-491178c4f97a>", line 1, in <module>
 iterator_obj.next()
 StopIteration

 Comprehensions
 Comprehensions are interesting constructs that are similar to for loops but more
efficient. They fall rightly into the functional programming paradigm following the set
builder notation. Originally, the idea for list comprehensions came from Haskell, and
after a series of lengthy discussions comprehensions were finally added and have been
one of the most used constructs ever since. There are various types of comprehensions
that can be applied on existing data types, including list, set, and dict comprehensions.
The following code snippet shows the syntax of comprehensions using the very common
list comprehensions and for loops, a core component in comprehensions:

 # typical comprehension syntax
 [expression for item in iterable]

 # equivalent for loop statement
 for item in iterable:
 expression

 # complex and nested iterations
 [expression for item1 in iterable1 if condition1
 for item2 in iterable2 if condition2 ...
 for itemN in iterableN if conditionN]

 # equivalent for loop statement
 for item1 in iterable1:
 if condition1:
 for item2 in iterable2:
 if condition2:
 ...
 for itemN in iterableN:
 if conditionN:
 expression

CHAPTER 2 ■ PYTHON REFRESHER

89

 This gives us an idea of how similar comprehensions are to looping constructs. The
benefit we get is that they are more efficient and perform better than loops. Some caveats
include that you cannot use assignment statements in comprehensions because, if you
remember the syntax from earlier, they support only expressions and not statements. The
same syntax is used by set and dictionary comprehensions too.

 The following examples illustrate the use of different comprehensions :

 In [355]: numbers = range(6)
 In [356]: numbers
 Out[356]: [0, 1, 2, 3, 4, 5]

 # simple list comprehension to compute squares
 In [357]: [num*num for num in numbers]
 Out[357]: [0, 1, 4, 9, 16, 25]

 # list comprehension to check if number is divisible by 2
 In [358]: [num%2 for num in numbers]
 Out[358]: [0, 1, 0, 1, 0, 1]

 # set comprehension returns distinct values of the above operation
 In [359]: set(num%2 for num in numbers)
 Out[359]: {0, 1}

 # dictionary comprehension where key:value is number: square(number)
 In [361]: {num: num*num for num in numbers}
 Out[361]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

 # a more complex comprehension showcasing above operations in a single
comprehension
 In [362]: [{'number': num,
 'square': num*num,
 'type': 'even' if num%2 == 0 else 'odd'} for num in numbers]
 Out[362]:
 [{'number': 0, 'square': 0, 'type': 'even'},
 {'number': 1, 'square': 1, 'type': 'odd'},
 {'number': 2, 'square': 4, 'type': 'even'},
 {'number': 3, 'square': 9, 'type': 'odd'},
 {'number': 4, 'square': 16, 'type': 'even'},
 {'number': 5, 'square': 25, 'type': 'odd'}]

 # nested list comprehension - flattening a list of lists
 In [364]: list_of_lists = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
 In [365]: list_of_lists
 Out[365]: [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
 In [367]: [item for each_list in list_of_lists for item in each_list]
 Out[367]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

CHAPTER 2 ■ PYTHON REFRESHER

90

 Generators
 Generators are powerful, memory-efficient constructs for creating and consuming
iterators. They exist in two variants: functions and expressions. Generators work on a
concept known as lazy evaluation —hence, they are more memory efficient and perform
better in most cases because they do not require the entire object to be evaluated
and loaded in one go, as in list comprehensions. However, the caveat is that because
generators yield one item at a time in an ad hoc fashion, there is a chance that they may
perform worse in terms of execution time compared to list comprehensions, unless you
are dealing with large objects with many elements.

 Generator functions are implemented as regular functions using the def statement.
However, they use the concept of lazy evaluation and return one object at a time using
the yield statement. Unlike regular functions that have a return statement, which once
executed ends the execution of the code block inside the function, generators use the
 yield statement, which suspends and resumes execution and the state after generating
and returning each value or object. To be more precise, generator functions yield values
at each step rather than returning them. This ensures that the current state including
information about the local code block scope it retained and enables the generator to
resume from where it left off.

 The following snippet shows some examples for generator functions:

 In [369]: numbers = [1, 2, 3, 4, 5]

 In [370]: def generate_squares(numbers):
 ...: for number in numbers:
 ...: yield number*number

 In [371]: gen_obj = generate_squares(numbers)
 In [372]: gen_obj
 Out[372]: <generator object generate_squares at 0x000000000F2FC2D0>
 In [373]: for item in gen_obj:
 ...: print item
 ...:
 1
 4
 9
 16
 25

 The advantages of these generators are both memory efficiency and execution time,
especially when iterables and objects are large in size and occupy substantial memory.
You also do not need to load whole objects into the main memory for performing various
operations on them. They often work very well on streaming data where you cannot keep
all the data in memory at all times. The same applies for generator expressions, which are
very similar to comprehensions except they are enclosed in parentheses.

CHAPTER 2 ■ PYTHON REFRESHER

91

 The following example illustrates:

 In [381]: csv_string = 'The,fox,jumps,over,the,dog'

 # making a sentence using list comprehension
 In [382]: list_cmp_obj = [item for item in csv_string.split(',')]
 In [383]: list_cmp_obj
 Out[383]: ['The', 'fox', 'jumps', 'over', 'the', 'dog']
 In [384]: ' '.join(list_cmp_obj)
 Out[384]: 'The fox jumps over the dog'

 # making a sentence using generator expression
 In [385]: gen_obj = (item for item in csv_string.split(','))
 In [386]: gen_obj
 Out[386]: <generator object <genexpr> at 0x000000000F2FC3F0>
 In [387]: ' '.join(gen_obj)
 Out[387]: 'The fox jumps over the dog'

 Both generator functions and expressions create generator objects that use the same
construct as iterators and starts, stops, and resumes the function or loop at each stage,
and once it is completed it raises the StopIteration exception.

 The itertools and functools Modules
 Various modules which are available in the Python standard library. Some of the popular
ones include collections , itertools , and functools , which have various constructs and
functions that can be used to boost productivity and reduce time spent writing extra code
to solve problems. The itertools module is a complete module dedicated to building and
operating on iterators. It has various functions that support different operations including
slicing, chaining, grouping, and splitting iterators. The most comprehensive source of
information for itertools is available in the official Python documentation at https://
docs.python.org/2/library/itertools.html . The documentation lists each function
and its role with examples. The functools module provides with functions, which enable
concepts from functional programming, including wrappers and partials. These functions
usually act on other functions, which it takes as input parameters and often returns a
function as the result itself. The official documentation at https://docs.python.org/2/
library/functools.html provides extensive information on each function.

 Classes
 Python classes are constructs that enable us to write code following the OOP paradigm.
Concepts like objects, encapsulation, methods, inheritance, and polymorphism are heavily
used in this paradigm. If you have worked on any OOP language before, like C++ or Java,
chances are you will find using Python classes relatively similar to using classes in other
languages. Discussing each concept would be beyond the scope of this book, but I will briefly
cover the basic concepts of classes and touch up on different types of objects and inheritance.

https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/functools.html
https://docs.python.org/2/library/functools.html

CHAPTER 2 ■ PYTHON REFRESHER

92

 Classes are basically a software model or abstraction of real-world entities that
are objects. This abstraction leads to classes being called as a user-defined type, and
once you define a class, you can instantiate and create instances or objects of that class.
Each object has its own instance variables and methods that define the properties and
behavior of that object. All classes inherit from the base object type, and you can create
your own classes and inherit further classes from these user-defined classes. Classes are
also ultimately objects on their own and can be bound to variables and other constructs.

 The following snippet gives the basic syntax for a class:

 class ClassName(BaseClass):
 class_variable # shared by all instances\objects

 def __init__(self, ...): # the constructor
 # instance variables unique to each instance\object
 self.instance_variables = ...

 def __str__(self): # string representation of the instance\object
 return repr(self)

 def methods(self, ...): # instance methods
 <code block>

 The preceding snippet tells us that the class named ClassName inherits from
its parent class BaseClass . There can be more than one parent or base class in the
parameters separated by commas. The __init__() method acts as a constructor
that instantiates and creates an object of the class using the call ClassName(...) ,
which automatically invokes the __init__() method—which may optionally take
parameters based on its definition. The __str__() method is optional. It prints the string
representation of the object. You can modify the default method with your own definition,
and it is often used to print the current state of the object variables. The class_variable
indicates class variables that are defined in the block just enclosing the class definition,
and these class variables are shared by all objects or instances of the class. The instance_
variables are variables that are specific to each object or instance. The methods denote
instance methods that define specific behavior of the objects. The self parameter is
usually used as the first parameter in methods, which is more of a convention that refers
to the instance or object of ClassName on which you call the method.

 The following example depicts a simple class and how it works:

 # class definition
 In [401]: class Animal(object):
 ...: species = 'Animal'
 ...:
 ...: def __init__(self, name):
 ...: self.name = name
 ...: self.attributes = []
 ...:
 ...: def add_attributes(self, attributes):
 ...: self.attributes.extend(attributes) \

CHAPTER 2 ■ PYTHON REFRESHER

93

 ...: if type(attributes) == list \
 ...: else self.attributes.append(attributes)
 ...:
 ...: def __str__(self):
 ...: return self.name+" is of type "+self.species+" and has

attributes:"+str(self.attributes)
 ...:

 # instantiating the class
 In [402]: a1 = Animal('Rover')
 # invoking instance method
 In [403]: a1.add_attributes(['runs', 'eats', 'dog'])
 # user defined string representation of the Animal class
 In [404]: str(a1)
 Out[404]: "Rover is of type Animal and has attributes:['runs', 'eats',

'dog']"

 This gives us an idea of how classes work. But what if we want to target specific
animals like dogs and foxes ? We can apply the concept of inheritance and use the super()
method to access the constructor of the base Animal class in each definition. The
following examples illustrate the concept of inheritance:

 # deriving class Dog from base class Animal
 In [413]: class Dog(Animal):
 ...: species = 'Dog'
 ...:
 ...: def __init__(self, *args):
 ...: super(Dog, self).__init__(*args)

 # deriving class Fox from base class Animal
 In [414]: class Fox(Animal):
 ...: species = 'Fox'
 ...:
 ...: def __init__(self, *args):
 ...: super(Fox, self).__init__(*args)

 # creating instance of class Dog
 In [415]: d1 = Dog('Rover')
 In [416]: d1.add_attributes(['lazy', 'beige', 'sleeps', 'eats'])
 In [417]: str(d1)
 Out[417]: "Rover is of type Dog and has attributes:['lazy', 'beige',

'sleeps', 'eats']"

 # creating instance of class Fox
 In [418]: f1 = Fox('Silver')
 In [419]: f1.add_attributes(['quick', 'brown', 'jumps', 'runs'])
 In [420]: str(f1)
 Out[420]: "Silver is of type Fox and has attributes:['quick', 'brown',

'jumps', 'runs']"

CHAPTER 2 ■ PYTHON REFRESHER

94

 Working with Text
 We have seen most of the constructs, data types, structures, concepts, and programming
paradigms associated with Python in the previous sections. This section briefly covers
specific data types tailored to handle text data and shows how these data types and their
associated utilities will be useful for us in the future chapters. The main data types used to
handle text data in Python are strings, which can be normal strings, bytes storing binary
information, or Unicode. By default, all strings are Unicode in Python 3.x , but they are not
so in Python 2.x, and this is something you should definitely keep in mind when dealing
with text in different Python distributions. Strings are a sequence of characters in Python
similar to arrays and code with a set of attributes and methods that can be leveraged to
manipulate and operate on text data easily, which makes Python the language of choice
for text analytics in many scenarios. We will discuss various types of strings with several
examples in the next section.

 String Literals
 There are various types of strings, as mentioned earlier, and you saw a few examples in
one of the previous sections regarding data types. The following BNF (Backus-Naur Form)
gives us the general lexical definitions for producing strings as seen in the official Python
docs:

 stringliteral ::= [stringprefix](shortstring | longstring)
 stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"
 | "b" | "B" | "br" | "Br" | "bR" | "BR"
 shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
 longstring ::= "'''" longstringitem* "'''" | '"""' longstringitem*
'"""'
 shortstringitem ::= shortstringchar | escapeseq
 longstringitem ::= longstringchar | escapeseq
 shortstringchar ::= <any source character except "\" or newline or the
quote>
 longstringchar ::= <any source character except "\">
 escapeseq ::= "\" <any ASCII character>

 The preceding rules tell us that different types of string prefixes exist that can be used
with different string types to produce string literals. In simple terms, the following types of
string literals are used the most:

• Short strings : These strings are usually enclosed with single (') or
double quotes (") around the characters. Some examples would
be, 'Hello' and "Hello" .

• Long strings : These strings are usually enclosed with three
single (''') or double quotes (""") around the characters. Some
examples would be, """Hello, I’m a long string""" or
 '''Hello I\’m a long string ''' . Note the (\’), indicates an
escape sequence discussed in the next bullet.

CHAPTER 2 ■ PYTHON REFRESHER

95

• Escape sequences in strings : These strings often have escape
sequences embedded in them, where the rule for escape
sequences starts with a backslash (\) followed by any ASCII
character. Hence, they perform backspace interpolation. Popular
escape sequences include (\n), indicating a new line character,
and (\t), indicating a tab.

• Bytes : These are used to represent bytestrings, which create
objects of the bytes data type. These strings can be created as
 bytes('...') or using the b'...' notation. Examples would be
 bytes('hello') and b'hello' .

• Raw strings : These strings were originally created specifically for
regular expressions (regex) and creating regex patterns. These
strings can be created using the r'...' notation and keep the
string in its raw or native form. Hence, it does not perform any
backspace interpolation and turns off the escape sequences. An
example would be r'Hello' .

• Unicode : These strings support Unicode characters in text and
are usually non-ASCII character sequences. These strings are
denoted with the u'...' notation. Besides the string notation,
there are several specific ways to represent special Unicode
characters in the string. The usual include the hex byte value
escape sequence of the format '\xVV' . Besides this, we also
have Unicode escape sequences of the form '\uVVVV' and '\
uVVVVVVVV', where the first form uses 4 hex-digits for encoding
a 16-bit character, and the second uses 8 hex digits for encoding
a 32-bit character. Some examples would be u 'H\xe8llo' and u
'H\u00e8llo' which represents the string 'Hèllo' .

 The following code snippet depicts these different types of string literals and their
output:

 # simple string
 In [422]: simple_string = 'hello' + " I'm a simple string"
 In [423]: print simple_string
 hello I'm a simple string

 # multi-line string, note the \n (newline) escape character automatically
created
 In [424]: multi_line_string = """Hello I'm
 ...: a multi-line
 ...: string!"""
 In [425]: multi_line_string
 Out[425]: "Hello I'm\na multi-line\nstring!"
 In [426]: print multi_line_string
 Hello I'm
 a multi-line
 string!

CHAPTER 2 ■ PYTHON REFRESHER

96

 # Normal string with escape sequences leading to a wrong file path!
 In [427]: escaped_string = "C:\the_folder\new_dir\file.txt"
 In [428]: print escaped_string # will cause errors if we try to open a file

here
 C: he_folder
 ew_dirile.txt

 # raw string keeping the backslashes in its normal form
 In [429]: raw_string = r'C:\the_folder\new_dir\file.txt'
 In [430]: print raw_string
 C:\the_folder\new_dir\file. txt

 # unicode string literals
 In [431]: string_with_unicode = u'H\u00e8llo!'
 ...: print string_with_unicode
 Hèllo!

 String Operations and Methods
 Strings are iterable sequences, which means a lot of operations can be performed on
them, useful especially when processing and parsing textual data into easy-to-consume
formats. Several operations can be performed on strings. I have categorized them into the
following segments:

• Basic operations

• Indexing and slicing

• Methods

• Formatting

• Regular expressions

 These would cover the most frequently used techniques for working with strings and
form the base of what we would need to get started in the next chapter (where we look at
understanding and processing textual data based on concepts we learned in the first two
chapters).

 Basic Operations
 You can perform several basic operations on strings, including concatenation and
checking for substrings, characters, and lengths. The following code snippet illustrates
these operations with some examples:

 # Different ways of String concatenation
 In [436]: 'Hello' + ' and welcome ' + 'to Python!'
 Out[436]: 'Hello and welcome to Python!'
 In [437]: 'Hello' ' and welcome ' 'to Python!'
 Out[437]: 'Hello and welcome to Python!'

CHAPTER 2 ■ PYTHON REFRESHER

97

 # concatenation of variables and literals
 In [438]: s1 = 'Python!'
 In [439]: 'Hello ' + s1
 Out[439]: 'Hello Python!'
 # we cannot concatenate a variable and a literal using this method
 In [440]: 'Hello ' s1
 File "<ipython-input-440-2f801ddf3480>", line 1
 'Hello ' s1
 ^
 SyntaxError: invalid syntax

 # some more ways of concatenating strings
 In [442]: s2 = '--Python--'
 In [443]: s2 * 5
 Out[443]: '--Python----Python----Python----Python----Python--'
 In [444]: s1 + s2
 Out[444]: 'Python!--Python--'
 In [445]: (s1 + s2)*3
 Out[445]: 'Python!--Python--Python!--Python--Python!--Python--'

 # concatenating several strings together in parentheses
 In [446]: s3 = ('This '
 ...: 'is another way '
 ...: 'to concatenate '
 ...: 'several strings!')
 In [447]: s3
 Out[447]: 'This is another way to concatenate several strings!'

 # checking for substrings in a string
 In [448]: 'way' in s3
 Out[448]: True
 In [449]: 'python' in s3
 Out[449]: False
 # computing total length of the string
 In [450]: len(s3)
 Out[450]: 51

 Indexing and Slicing
 As mentioned, strings are iterables—ordered sequences of characters. Hence they can
be indexed, sliced, and iterated through similarly to other iterables such as lists. Each
character has a specific position in the string, called its index . Using indexes, we can
access specific parts of the string. Accessing a single character using a specific position
or index in the string is called indexing , and accessing a part of a string, for example,
a substring using a start and end index, is called slicing . Python supports two types of

CHAPTER 2 ■ PYTHON REFRESHER

98

indexes. One starts from 0 and increases by 1 each time per character till the end of the
string. The other starts from –1 at the end of the string and decreases by 1 each time for
each character till the beginning of the string . Figure 2-6 shows the two types of indexes
for the string 'PYTHON' .

 To access any particular character in the string, you need to use the corresponding
index, and slices can be extracted using the syntax var[start:stop] , which extracts all
characters in the string var from index start till index stop excluding the character at the
 stop index.

 The following examples shows how to index, slice, and iterate through strings:

 # creating a string
 In [460]: s = 'PYTHON'

 # depicting string indexes
 In [461]: for index, character in enumerate(s):
 ...: print 'Character', character+':', 'has index:', index
 Character P: has index: 0
 Character Y: has index: 1
 Character T: has index: 2
 Character H: has index: 3
 Character O: has index: 4
 Character N: has index: 5

 # string indexing
 In [462]: s[0], s[1], s[2], s[3], s[4], s[5]
 Out[462]: ('P', 'Y', 'T', 'H', 'O', 'N')
 In [463]: s[-1], s[-2], s[-3], s[-4], s[-5], s[-6]
 Out[463]: ('N', 'O', 'H', 'T', 'Y', 'P')

 # string slicing
 In [464]: s[:]
 Out[464]: 'PYTHON' # prints whole string when no indexes are specified
 In [465]: s[1:4]
 Out[465]: 'YTH'
 In [466]: s[:3]
 Out[466]: 'PYT'
 In [467]: s[3:]
 Out[467]: 'HON'

 Figure 2-6. String indexing syntax

CHAPTER 2 ■ PYTHON REFRESHER

99

 In [468]: s[-3:]
 Out[468]: 'HON'
 In [469]: s[:3] + s[3:]
 Out[469]: 'PYTHON'
 In [470]: s[:3] + s[-3:]
 Out[470]: 'PYTHON'

 # string slicing with offsets
 In [472]: s[::1] # no offset
 Out[472]: 'PYTHON'
 In [473]: s[::2] # print every 2nd character in string
 Out[473]: 'PTO'

 # strings are immutable hence assignment throws error
 In [476]: s[0] = 'X'
 Traceback (most recent call last):
 File "<ipython-input-476-2cd5921aae94>", line 1, in <module>
 s[0] = 'X'
 TypeError: 'str' object does not support item assignment

 # creates a new string
 In [477]: 'X' + s[1:]
 Out[477]: 'XYTHON'

 Methods
 Strings and Unicode put a huge arsenal of built-in methods at your disposal, which
you can use for performing various transformations, manipulations, and operations on
strings. Although discussing each method in detail would be beyond the current scope,
the official Python documentation at https://docs.python.org/2/library/stdtypes.
html#string-methods provides all the information you need about each and every
method, along with syntax and definitions. Methods are extremely useful and increase
your productivity because you do not have to spend extra time writing boilerplate code to
handle and manipulate strings.

 The following code snippets show some popular examples of string methods in
action:

 # case conversions
 In [484]: s = 'python is great'
 In [485]: s.capitalize()
 Out[485]: 'Python is great'
 In [486]: s.upper()
 Out[486]: 'PYTHON IS GREAT'

 # string replace
 In [487]: s.replace('python', 'analytics')
 Out[487]: 'analytics is great'

https://docs.python.org/2/library/stdtypes.html#string-methods
https://docs.python.org/2/library/stdtypes.html#string-methods

CHAPTER 2 ■ PYTHON REFRESHER

100

 # string splitting and joining
 In [488]: s = 'I,am,a,comma,separated,string'
 In [489]: s.split(',')
 Out[489]: ['I', 'am', 'a', 'comma', 'separated', 'string']
 In [490]: ' '.join(s.split(','))
 Out[490]: 'I am a comma separated string'

 # stripping whitespace characters
 In [497]: s = ' I am surrounded by spaces '
 In [498]: s
 Out[498]: ' I am surrounded by spaces '
 In [499]: s.strip()
 Out[499]: 'I am surrounded by spaces'

 # coverting to title case
 In [500]: s = 'this is in lower case'
 In [501]: s.title()
 Out[501]: 'This Is In Lower Case'

 The preceding examples just scratch the surface of the numerous manipulations
and operations possible on strings. Feel free to try out other operations using different
methods mentioned in the docs. We will use several of them in subsequent chapters.

 Formatting
 String formatting is used to substitute specific data objects and types in a string. This
is mostly used when displaying text to the user. There are mainly two different types of
formatting used for strings:

• Formatting expressions : These expressions are typically of the
syntax '...%s...%s...' %(values) , where the %s denotes a
placeholder for substituting a string from the list of strings depicted
in values . This is quite similar to the C style printf model and has
been there in Python since the beginning. You can substitute values
of other types with the respective alphabet following the % symbol,
like %d for integers and %f for floating point numbers.

• Formatting methods : These strings take the form of '...{}...
{}...'.format(values) , which makes use of the braces {}
for placeholders to place strings from values using the format
method. These have been present in Python since version 2.6.x.

 The following code snippets depict both types of string formatting using several
examples:

 # simple string formatting expressions
 In [506]: 'Hello %s' %('Python!')
 Out[506]: 'Hello Python!'

CHAPTER 2 ■ PYTHON REFRESHER

101

 In [507]: 'Hello %s' %('World!')
 Out[507]: 'Hello World!'

 # formatting expressions with different data types
 In [508]: 'We have %d %s containing %.2f gallons of %s' %(2, 'bottles', 2.5,

'milk')
 Out[508]: 'We have 2 bottles containing 2.50 gallons of milk'
 In [509]: 'We have %d %s containing %.2f gallons of %s' %(5, 'jugs', 10.867,

'juice')
 Out[509]: 'We have 5 jugs containing 10.87 gallons of juice'

 # formatting using the format method
 In [511]: 'Hello {} {}, it is a great {} to meet you'.format('Mr.', 'Jones',

'pleasure')
 Out[511]: 'Hello Mr. Jones, it is a great pleasure to meet you'
 In [512]: 'Hello {} {}, it is a great {} to meet you'.format('Sir',

'Arthur', 'honor')
 Out[512]: 'Hello Sir Arthur, it is a great honor to meet you'

 # alternative ways of using format
 In [513]: 'I have a {food_item} and a {drink_item} with me'.format(drink_

item='soda', food_item='sandwich')
 Out[513]: 'I have a sandwich and a soda with me'
 In [514]: 'The {animal} has the following attributes: {attributes}'.

format(animal='dog', attributes=['lazy', 'loyal'])
 Out[514]: "The dog has the following attributes: ['lazy', 'loyal']"

 From the preceding examples , you can see that there is no hard-and-fast rule for
formatting strings, so go ahead and experiment with different formats and use the one
best suited for your task.

 Regular Expressions (Regexes)
 Regular expressions, also called regexes , allow you to create string patterns and use them
for searching and substituting specific pattern matches in textual data. Python offers a
rich module named re for creating and using regular expressions. Entire books have been
written on this topic because it is easy to use but difficult to master. Discussing every
aspect of regular expressions would not be possible in these pages, but I will cover the
main areas with sufficient examples.

 Regular expressions or regexes are specific patterns often denoted using the
raw string notation. These patterns match a specific set of strings based on the rules
expressed by the patterns. These patterns then are usually compiled into bytecode that is
then executed for matching strings using a matching engine. The re module also provides
several flags that can change the way the pattern matches are executed. Some important
flags include the following:

• re.I or re.IGNORECASE is used to match patterns ignoring case
sensitivity.

CHAPTER 2 ■ PYTHON REFRESHER

102

• re.S or re.DOTALL causes the period (.) character to match any
character including new lines.

• re.U or re.UNICODE helps in matching Unicode-based characters
also (deprecated in Python 3.x).

 For pattern matching, various rules are used in regexes. Some popular ones include
the following:

• . for matching any single character

• ̂ for matching the start of the string

• $ for matching the end of the string

• * for matching zero or more cases of the previous mentioned
regex before the * symbol in the pattern

• ? for matching zero or one case of the previous mentioned regex
before the ? symbol in the pattern

• [...] for matching any one of the set of characters inside the
square brackets

• [^...] for matching a character not present in the square
brackets after the ̂ symbol

• | denotes the OR operator for matching either the preceding or
the next regex

• + for matching one or more cases of the previous mentioned regex
before the + symbol in the pattern

• \d for matching decimal digits which is also depicted as [0-9]

• \D for matching non-digits, also depicted as [^0-9]

• \s for matching white space characters

• \S for matching non whitespace characters

• \w for matching alphanumeric characters also depicted as
 [a-zA-Z0-9_]

• \W for matching non alphanumeric characters also depicted as
 [^a-zA-Z0-9_]

 Regular expressions can be compiled into pattern objects and then used with a
variety of methods for pattern search and substitution in strings. The main methods
offered by the re module for performing these operations are as follows:

• re.compile() : This method compiles a specified regular
expression pattern into a regular expression object that can be
used for matching and searching. Takes a pattern and optional
flags as input, discussed earlier.

• re.match() : This method is used to match patterns at the
beginning of strings.

CHAPTER 2 ■ PYTHON REFRESHER

103

• re.search() : This method is used to match patterns occurring at
any position in the string.

• re.findall() : This method returns all non-overlapping matches
of the specified regex pattern in the string.

• re.finditer() : This method returns all matched instances in the
form of an iterator for a specific pattern in a string when scanned
from left to right.

• re.sub() : This method is used to substitute a specified regex
pattern in a string with a replacement string. It only substitutes
the leftmost occurrence of the pattern in the string.

 The following code snippets depict some of the methods just discussed and how
they are typically used when dealing with strings and regular expressions:

 # importing the re module
 In [526]: import re

 # dealing with unicode matching using regexes
 In [527]: s = u'H\u00e8llo'
 In [528]: s
 Out[528]: u'H\xe8llo'
 In [529]: print s
 Hèllo
 # does not return the special unicode character even if it is alphanumeric
 In [530]: re.findall(r'\w+', s)
 Out[530]: [u'H', u'llo']
 # need to explicitly specify the unicode flag to detect it using regex
 In [531]: re.findall(r'\w+', s, re.UNICODE)
 Out[531]: [u'H\xe8llo']

 # setting up a pattern we want to use as a regex
 # also creating two sample strings
 In [534]: pattern = 'python'
 ...: s1 = 'Python is an excellent language'
 ...: s2 = 'I love the Python language. I also use Python to build

applications at work!'

 # match only returns a match if regex match is found at the beginning of the
string
 In [535]: re.match(pattern, s1)
 # pattern is in lower case hence ignore case flag helps
 # in matching same pattern with different cases
 In [536]: re.match(pattern, s1, flags=re.IGNORECASE)
 Out[536]: <_sre.SRE_Match at 0xf378308>

CHAPTER 2 ■ PYTHON REFRESHER

104

 # printing matched string and its indices in the original string
 In [537]: m = re.match(pattern, s1, flags=re.IGNORECASE)
 In [538]: print 'Found match {} ranging from index {} - {} in the string
"{}"'.format(m.group(0), m.start(), m.end(), s1)
 Found match Python ranging from index 0 - 6 in the string "Python is an
excellent language"

 # match does not work when pattern is not there in the
beginning of string s2
 In [539]: re.match(pattern, s2, re.IGNORECASE)

 # illustrating find and search methods using the re module
 In [540]: re.search(pattern, s2, re.IGNORECASE)
 Out[540]: <_sre.SRE_Match at 0xf378920>

 In [541]: re.findall(pattern, s2, re.IGNORECASE)
 Out[541]: ['Python', 'Python']

 In [542]: match_objs = re.finditer(pattern, s2, re.IGNORECASE)
 In [543]: print "String:", s2
 ...: for m in match_objs:
 ...: print 'Found match "{}" ranging from index {} - {}'.format(m.

group(0), m.start(), m.end())
 String: I love the Python language. I also use Python to build applications
at work!
 Found match "Python" ranging from index 11 - 17
 Found match "Python" ranging from index 39 - 45

 # illustrating pattern substitution using sub and subn methods
 In [544]: re.sub(pattern, 'Java', s2, flags=re.IGNORECASE)
 Out[544]: 'I love the Java language. I also use Java to build applications

at work!'
 In [545]: re.subn(pattern, 'Java', s2, flags=re.IGNORECASE)
 Out[545]: ('I love the Java language. I also use Java to build applications

at work!', 2)

 This concludes our discussion on the various aspects of strings and how they can
be utilized for working with text data. Strings form the basis for processing text, which is
an important component in text analytics. The next section briefly discusses some of the
popular text analytics frameworks.

 Text Analytics Frameworks
 Like I’ve mentioned before, the Python ecosystem is very diverse and supports a wide
variety of libraries, frameworks, and modules in many domains. Because we will be
analyzing textual data and performing various operations on it, you need to know
about dedicated frameworks and libraries for text analytics that you can just install and
start using—just like any other built-in module in the Python standard library. These

CHAPTER 2 ■ PYTHON REFRESHER

105

frameworks have been built over a long period of time and contain various methods,
capabilities, and features for operating on text, getting insights, and making the data
ready for further analysis, such as applying machine learning algorithms on pre-
processed textual data.

 Leveraging these frameworks saves a lot of effort and time that would have been
otherwise spent on writing boilerplate code to handle, process, and manipulate text
data. Thus, the frameworks enable developers and researchers to focus more on solving
actual problems and the necessary logic and algorithms needed for doing so. We have
already seen some of the NLTK library in the first chapter. The following list of libraries
and frameworks are some of the most popular text analytics frameworks, and we will be
utilizing several of them throughout the course of the book:

• NLTK : The Natural Language Toolkit is a complete platform
that contains more than 50 corpora and lexical resources. It also
provides the necessary tools, interfaces, and methods to process
and analyze text data.

• pattern : The pattern project started out as a research project
at the Computational Linguistics & Psycholinguistics research
center at the University of Antwerp. It provides tools and
interfaces for web mining, information retrieval, NLP, machine
learning, and network analysis. The pattern.en module contains
most of the utilities for text analytics.

• gensim : The gensim library has a rich set of capabilities for
semantic analysis, including topic modeling and similarity
analysis. But the best part is that it contains a Python port of
Google’s very popular word2vec model (originally available as
a C package), a neural network model implemented to learn
distributed representations of words where similar words
(semantic) occur close to each other.

• textblob : This is another library that provides several capabilities
including text processing, phrase extraction, classification, POS
tagging, text translation, and sentiment analysis.

• spacy : This is one of the newer libraries, which claims to provide
industrial-strength NLP capabilities by providing the best
implementation of each technique and algorithm, making NLP
tasks efficient in terms of performance and implementation.

 Besides these, there are several other frameworks and libraries that are not dedicated
towards text analytics but that are useful when you want to use machine learning
techniques on textual data. These include the scikit-learn , numpy , and scipy stack.
Besides these, deep learning and tensor-based libraries like theano , tensorflow , and
 keras also come in handy if you want to build advanced deep learning models based
on deep neural nets, convnets, and LSTM-based models . You can install most of these
libraries using the pip install <library> command from the command prompt or
terminal. We will talk about any caveats if present in the upcoming chapters when we use
these libraries.

CHAPTER 2 ■ PYTHON REFRESHER

106

 Summary
 This chapter provides a birds-eye yet detailed view of the entire Python ecosystem and
what the language offers in terms of capabilities. You read about the origins of the Python
language and saw how it has evolved overtime. The language has benefits of being open
source, which has resulted in an active developer community constantly striving to
improve the language and add new features. By now, you also know when you should use
Python and the drawbacks associated with the language—which every developer should
keep in mind while building systems and applications. This chapter also discussed how to
set up your own Python environment and deal with multiple virtual environments.

 Starting from the very basics, we have taken a deep dive into the various structures
and constructs in the Python language, including data types and controlling code flow
using loops and conditionals. We also explored concepts in various programming
paradigms including OOP and functional programming. Constructs like classes,
functions, lambdas, iterators, generators, and comprehensions are tools that will come in
handy in a lot of scenarios when writing quality Python code. You also saw how to work
with text data using the string data type and its various syntaxes, methods, operations,
and formats. We also talked about the power of regular expressions and how useful they
can be in pattern matching and substitutions. To conclude our discussion, we looked at
various popular text analytics frameworks, which are useful in solving problems and tasks
dealing with NLP and analyzing and extracting insights from text data.

 This should all get you started with programming in Python. The next chapter builds
on the foundations of this chapter as we start to understand, process, and parse text data
in usable formats.

107© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_3

 CHAPTER 3

 Processing and
Understanding Text

 So far, we have reviewed the main concepts and areas surrounding natural language
processing (NLP) and text analytics. We also got a good grip on the Python programming
language in the last chapter, especially on the different constructs and syntax and how to
work with strings to manage textual data. To carry out different operations and analyze
text, you will need to process and parse textual data into more easy-to-interpret formats.

 All machine learning (ML) algorithms , be they supervised or unsupervised techniques,
usually work with input features that are numeric in nature. Although this is a separate topic
under feature engineering, which we shall explore in detail, to get to that, you need to clean,
normalize, and pre-process the initial textual data. Usually text corpora and other textual
data in their native raw format are not well formatted and standardized, and of course, we
should expect this—after all, text data is highly unstructured! Text processing, or to be more
specific, pre-processing, involves using a variety of techniques to convert raw text into well-
defined sequences of linguistic components that have standard structure and notation.

 Often additional metadata is also present in the form of annotations to give more
meaning to the text components like tags. The following list gives us an idea of some of
the most popular text pre-processing techniques that we will be exploring in this chapter:

• Tokenization

• Tagging

• Chunking

• Stemming

• Lemmatization

 Besides these techniques , you also need to perform some basic operations much
of the time, such as dealing with misspelled text, removing stopwords, and handling
other irrelevant components based on the problem to be solved. An important thing to
remember always is that a robust text pre-processing system is always an essential part
of any application on NLP and text analytics. The primary reason for that is because all
the textual components that are obtained after pre-processing—be they words, phrases,
sentences, or any other tokens—form the basic building blocks of input that are fed into
the further stages of the application that perform more complex analyses, including

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

108

learning patterns and extracting information. Hence, the popular saying “garbage in,
garbage out” is very relevant here because if we do not process the text properly, we will
end up getting unwanted and irrelevant results from our applications and systems.

 Text processing also helps in cleaning and standardization of the text, which helps
in analytical systems, like increasing the accuracy of classifiers. We also get additional
information and metadata in the form of annotations, which are also very useful in giving
more information about the text. We will touch upon normalizing text using various
techniques including cleaning, removing unnecessary tokens, stems, and lemmas in this
chapter.

 Another important aspect is to understand textual data after processing and
normalizing it. This will involve revisiting some of the concepts of language syntax and
structure from Chapter 1 , where we talked about sentences, phrases, parts of speech,
shallow parsing, and grammars. In this chapter we will look at ways to implement these
concepts and use them on real data. We will follow a structured and definite path in this
chapter, starting from text processing and gradually exploring the various concepts and
techniques associated with it, and move on to understanding text structure and syntax.
Because this book is specifically aimed towards practitioners, various code snippets and
practical examples will also enable and equip you with the right tools and frameworks for
implementing the concepts under discussion in solving practical problems.

 Text Tokenization
 Chapter 1 talked about textual structure, its components, and tokens. To be more specific,
 tokens are independent and minimal textual components that have some definite syntax
and semantics. A paragraph of text or a text document has several components including
sentences that can be further broken down into clauses, phrases, and words. The most
popular tokenization techniques include sentence and word tokenization, which are
used to break down a text corpus into sentences, and each sentence into words. Thus,
tokenization can be defined as the process of breaking down or splitting textual data into
smaller meaningful components called tokens. In the following section, we will look at
some ways to tokenize text into sentences.

 Sentence Tokenization
 Sentence tokenization is the process of splitting a text corpus into sentences that act as
the first level of tokens which the corpus is comprised of. This is also known as sentence
segmentation , because we try to segment the text into meaningful sentences. Any text
corpus is a body of text where each paragraph comprises several sentences.

 There are various ways of performing sentence tokenization. Basic techniques
include looking for specific delimiters between sentences, such as a period (.) or a
newline character (\n), and sometimes even a semi-colon (;). We will use the NLTK
framework, which provides various interfaces for performing sentence tokenization. We
will primarily focus on the following sentence tokenizers:

• sent_tokenize

• PunktSentenceTokenizer

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

109

• RegexpTokenizer

• Pre-trained sentence tokenization models

 Before we can tokenize sentences, we need some text on which we can try out
these operations. We will load some sample text and also a part of the Gutenberg corpus
available in NLTK itself. We load the necessary dependencies using the following snippet:

 import nltk
 from nltk.corpus import gutenberg
 from pprint import pprint

 alice = gutenberg.raw(fileids='carroll-alice.txt')
 sample_text = 'We will discuss briefly about the basic syntax, structure and
design philosophies. There is a defined hierarchical syntax for Python code
which you should remember when writing code! Python is a really powerful
programming language!'

 We can check the length of the Alice in Wonderland corpus and also the first few lines
in it using the following snippet:

 In [124]: # Total characters in Alice in Wonderland
 ...: print len(alice)
 144395

 In [125]: # First 100 characters in the corpus
 ...: print alice[0:100]
 [Alice's Adventures in Wonderland by Lewis Carroll 1865]

 CHAPTER I. Down the Rabbit-Hole

 Alice was

 The nltk.sent_tokenize function is the default sentence tokenization function that
 nltk recommends. It uses an instance of the PunktSentenceTokenizer class internally.
However, this is not just a normal object or instance of that class—it has been pre-trained
on several language models and works really well on many popular languages besides
just English.

 The following snippet shows the basic usage of this function on our text samples :

 default_st = nltk.sent_tokenize
 alice_sentences = default_st(text=alice)
 sample_sentences = default_st(text=sample_text)

 print 'Total sentences in sample_text:', len(sample_sentences)
 print 'Sample text sentences :-'
 pprint(sample_sentences)
 print '\nTotal sentences in alice:', len(alice_sentences)
 print 'First 5 sentences in alice:-'
 pprint(alice_sentences[0:5])

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

110

 On running the preceding snippet, you get the following output depicting the total
number of sentences and what those sentences look like in the text corpora :

 Total sentences in sample_text: 3
 Sample text sentences :-
 ['We will discuss briefly about the basic syntax, structure and design
philosophies.',
 'There is a defined hierarchical syntax for Python code which you should
remember when writing code!',
 'Python is a really powerful programming language!']

 Total sentences in alice: 1625
 First 5 sentences in alice:-
 [u"[Alice's Adventures in Wonderland by Lewis Carroll 1865]\n\nCHAPTER I.",
 u"Down the Rabbit-Hole\n\nAlice was beginning to get very tired of sitting
by her sister on the\nbank, and of having nothing to do: once or twice she
had peeped into the\nbook her sister was reading, but it had no pictures
or conversations in\nit, 'and what is the use of a book,' thought Alice
'without pictures or\nconversation?'",
 u'So she was considering in her own mind (as well as she could, for the\nhot
day made her feel very sleepy and stupid), whether the pleasure\nof making
a daisy-chain would be worth the trouble of getting up and\npicking the
daisies, when suddenly a White Rabbit with pink eyes ran\nclose by her.',
 u"There was nothing so VERY remarkable in that; nor did Alice think it so\
nVERY much out of the way to hear the Rabbit say to itself, 'Oh dear!",
 u'Oh dear!']

 Now, as you can see, the tokenizer is quite intelligent and doesn’t just use periods to
delimit sentences. It also considers other punctuation and the capitalization of words .

 We can also tokenize text of other languages. If we are dealing with German text ,
we can use sent_tokenize , which is already trained, or load a pre-trained tokenization
model on German text into a PunktSentenceTokenizer instance and perform the same
operation. The following snippet shows the same. We start with loading a German text
corpus and inspecting it:

 In [4]: from nltk.corpus import europarl_raw
 ...:
 ...: german_text = europarl_raw.german.raw(fileids='ep-00-01-17.de')
 ...: # Total characters in the corpus
 ...: print len(german_text)
 ...: # First 100 characters in the corpus
 ...: print german_text[0:100]
 157171

 Wiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 17.
Dezember unterbrochene Sit

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

111

 Next, we tokenize the text corpus into sentences using both the default sent_
tokenize tokenizer and also a pre-trained German language tokenizer by loading it from
the nltk resources:

 In [5]: german_sentences_def = default_st(text=german_text,
language='german')
 ...:
 ...: # loading german text tokenizer into a PunktSentenceTokenizer

instance
 ...: german_tokenizer = nltk.data.load(resource_url='tokenizers/punkt/

german.pickle')
 ...: german_sentences = german_tokenizer.tokenize(german_text)
 ...:
 ...: # verify the type of german_tokenizer
 ...: # should be PunktSentenceTokenizer
 ...: print type(german_tokenizer)
 <class 'nltk.tokenize.punkt.PunktSentenceTokenizer'>

 Thus we see that indeed the german_ tokenizer is an instance of
 PunktSentenceTokenizer , which is specialized in dealing with the German language.

 Next we check whether the sentences obtained from the default tokenizer are the
same as the sentences obtained by this pre-trained tokenizer , and ideally it should be
 True . We also print some sample tokenized sentences from the output after that:

 In [9]: print german_sentences_def == german_sentences
 ...: # print first 5 sentences of the corpus
 ...: for sent in german_sentences[0:5]:
 ...: print sent
 True

 Wiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 17.
Dezember unterbrochene Sitzungsperiode des Europäischen Parlaments für
wiederaufgenommen , wünsche Ihnen nochmals alles Gute zum Jahreswechsel und
hoffe , daß Sie schöne Ferien hatten .
 Wie Sie feststellen konnten , ist der gefürchtete " Millenium-Bug " nicht
eingetreten .
 Doch sind Bürger einiger unserer Mitgliedstaaten Opfer von schrecklichen
Naturkatastrophen geworden .
 Im Parlament besteht der Wunsch nach einer Aussprache im Verlauf dieser
Sitzungsperiode in den nächsten Tagen .
 Heute möchte ich Sie bitten - das ist auch der Wunsch einiger Kolleginnen
und Kollegen - , allen Opfern der Stürme , insbesondere in den verschiedenen
Ländern der Europäischen Union , in einer Schweigeminute zu gedenken .

 Thus we see that our assumption was indeed correct, and you can tokenize
sentences belonging to different languages in two different ways. Using the default
 PunktSentenceTokenizer class is also pretty straightforward. The following snippet
shows how to use it:

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

112

 In [11]: punkt_st = nltk.tokenize.PunktSentenceTokenizer()
 ...: sample_sentences = punkt_st.tokenize(sample_text)
 ...: pprint(sample_sentences)
 ['We will discuss briefly about the basic syntax, structure and design
philosophies.',
 'There is a defined hierarchical syntax for Python code which you should
remember when writing code!',
 'Python is a really powerful programming language!']

 You can see we get a similar output, which is expected from this tokenization.
The last tokenizer we will cover in sentence tokenization is using an instance of the
 RegexpTokenizer class to tokenize text into sentences where we will use specific regular
expression-based patterns to segment sentences. Recall the regular expressions (regex)
from the previous chapter, in case you want to refresh your memory. The following
 snippet shows how to use a regex pattern to tokenize sentences:

 In [29]: SENTENCE_TOKENS_PATTERN = r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)
(?<![A-Z]\.)(?<=\.|\?|\!)\s'
 ...: regex_st = nltk.tokenize.RegexpTokenizer(
 ...: pattern=SENTENCE_TOKENS_PATTERN,
 ...: gaps=True)
 ...: sample_sentences = regex_st.tokenize(sample_text)
 ...: pprint(sample_sentences)
 ['We will discuss briefly about the basic syntax, structure and design
philosophies.',
 ' There is a defined hierarchical syntax for Python code which you should
remember when writing code!',
 'Python is a really powerful programming language!']

 That output shows that we obtained the same sentences as we had obtained using
the other tokenizers. This gives us an idea of tokenizing text into sentences using different
 nltk interfaces . In the next section we will look at tokenizing these sentences into words
using several techniques.

 Word Tokenization
 Word tokenization is the process of splitting or segmenting sentences into their
constituent words. A sentence is a collection of words, and with tokenization we
essentially split a sentence into a list of words that can be used to reconstruct the
sentence. Word tokenization is very important in many processes, especially in cleaning
and normalizing text where operations like stemming and lemmatization work on
each individual word based on its respective stems and lemma. Similar to sentence
tokenization, nltk provides various useful interfaces for word tokenization, and we will
touch up on the following main interfaces :

• word_tokenize

• TreebankWordTokenizer

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

113

• RegexpTokenizer

• Inherited tokenizers from RegexpTokenizer

 For the hands-on examples, we will use the sample sentence The brown fox wasn’t
that quick and he couldn’t win the race as our input to the various tokenizers. The nltk.
word_tokenize function is the default and recommended word tokenizer as specified
by nltk . This tokenizer is actually an instance or object of the TreebankWordTokenizer
class in its internal implementation and acts as a wrapper to that core class. The following
snippet illustrates its usage:

 In [114]: sentence = "The brown fox wasn't that quick and he couldn't win
the race"
 ...:
 ...: default_wt = nltk.word_tokenize
 ...: words = default_wt(sentence)
 ...: print words
 ['The', 'brown', 'fox', 'was', "n't", 'that', 'quick', 'and', 'he', 'could',
"n't", 'win', 'the', 'race']

 The TreebankWordTokenizer is based on the Penn Treebank and uses various regular
expressions to tokenize the text. Of course, one primary assumption here is that we
have already performed sentence tokenization beforehand. The original tokenizer used
in the Penn Treebank is available as a sed script, and you can check it out at www.cis.
upenn.edu/~treebank/tokenizer.sed to get an idea of the patterns used to tokenize the
sentences into words. Some of the main features of this tokenizer include the following:

• Splits and separates out periods that appear at the end of a
sentence

• Splits and separates commas and single quotes when followed by
whitespaces

• Most punctuation characters are split and separated into
independent tokens

• Splits words with standard contractions—examples would be
 don’t to do and n’t

 The following snippet shows the usage of the TreebankWordTokenizer for word
tokenization:

 In [117]: treebank_wt = nltk.TreebankWordTokenizer()
 ...: words = treebank_wt.tokenize(sentence)
 ...: print words
 ['The', 'brown', 'fox', 'was', "n't", 'that', 'quick', 'and', 'he', 'could',
"n't", 'win', 'the', 'race']

 From the preceding output, as expected, the output is similar to word_tokenize()
because both use the same tokenizing mechanism.

http://www.cis.upenn.edu/~treebank/tokenizer.sed
http://www.cis.upenn.edu/~treebank/tokenizer.sed

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

114

 We will now look at how to use regular expressions and the RegexpTokenizer class to
tokenize sentences into words. Remember, there are two main parameters that are useful
in tokenization: the regex pattern for building the tokenizer and the gaps parameter,
which, if set to True , is used to find the gaps between the tokens. Otherwise, it is used to
find the tokens themselves.

 The following code snippet shows some examples of using regular expressions to
perform word tokenization:

 # pattern to identify tokens themselves
 In [127]: TOKEN_PATTERN = r'\w+'
 ...: regex_wt = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN,
 ...: gaps=False)
 ...: words = regex_wt.tokenize(sentence)
 ...: print words
 ['The', 'brown', 'fox', 'wasn', 't', 'that', 'quick', 'and', 'he', 'couldn',
't', 'win', 'the', 'race']
 # pattern to identify gaps in tokens
 In [128]: GAP_PATTERN = r'\s+'
 ...: regex_wt = nltk.RegexpTokenizer(pattern=GAP_PATTERN,
 ...: gaps=True)
 ...: words = regex_wt.tokenize(sentence)
 ...: print words
 ['The', 'brown', 'fox', "wasn't", 'that', 'quick', 'and', 'he', "couldn't",
'win', 'the', 'race']
 # get start and end indices of each token and then print them
 In [131]: word_indices = list(regex_wt.span_tokenize(sentence))
 ...: print word_indices
 ...: print [sentence[start:end] for start, end in word_indices]
 [(0, 3), (4, 9), (10, 13), (14, 20), (21, 25), (26, 31), (32, 35), (36, 38),
(39, 47), (48, 51), (52, 55), (56, 60)]
 ['The', 'brown', 'fox', "wasn't", 'that', 'quick', 'and', 'he', "couldn't",
'win', 'the', 'race']

 Besides the base RegexpTokenizer class, there are several derived classes that
perform different types of word tokenization. The WordPunktTokenizer uses the pattern
 r'\w+|[^\w\s]+' to tokenize sentences into independent alphabetic and non-alphabetic
tokens. The WhitespaceTokenizer tokenizes sentences into words based on whitespaces
like tabs, newlines, and spaces .

 The following snippet demonstrates:

 In [132]: wordpunkt_wt = nltk.WordPunctTokenizer()
 ...: words = wordpunkt_wt.tokenize(sentence)
 ...: print words
 ['The', 'brown', 'fox', 'wasn', "'", 't', 'that', 'quick', 'and', 'he',
'couldn', "'", 't', 'win', 'the', 'race']

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

115

 In [133]: whitespace_wt = nltk.WhitespaceTokenizer()
 ...: words = whitespace_wt.tokenize(sentence)
 ...: print words
 ['The', 'brown', 'fox', "wasn't", 'that', 'quick', 'and', 'he', "couldn't",
'win', 'the', 'race']

 This concludes our discussion on tokenization. Now that we know how to separate
out raw text into sentences and words, we will build upon that in the next section, where
we will normalize these tokens to get clean and standardized textual data that will be
easier to understand, interpret, and use in NLP and ML.

 Text Normalization
 Text normalization is defined as a process that consists of a series of steps that
should be followed to wrangle, clean, and standardize textual data into a form that
could be consumed by other NLP and analytics systems and applications as input.
Often tokenization itself also is a part of text normalization. Besides tokenization,
various other techniques include cleaning text, case conversion, correcting spellings,
removing stopwords and other unnecessary terms, stemming, and lemmatization. Text
normalization is also often called text cleansing or wrangling .

 In this section, we will discuss various techniques used in the process of text
normalization. Before we can jump into implementing and exploring the various
techniques, use the following code snippet to load the basic dependencies and also the
corpus we will be using in this section:

 import nltk
 import re
 import string
 from pprint import pprint

 corpus = ["The brown fox wasn't that quick and he couldn't win the race",
 "Hey that's a great deal! I just bought a phone for $199",
 "@@You'll (learn) a **lot** in the book. Python is an amazing

 language !@@"]

 Cleaning Text
 Often the textual data we want to use or analyze contains a lot of extraneous and
unnecessary tokens and characters that should be removed before performing any
further operations like tokenization or other normalization techniques. This includes
extracting out meaningful text from data sources like HTML data, which consists of
unnecessary HTML tags, or even data from XML and JSON feeds. There are many ways
to parse and clean this data to remove unnecessary tags. You can use functions like
 clean_html() from nltk or even the BeautifulSoup library to parse HTML data. You can
also use your own custom logic, including regexes, xpath, and the lxml library, to parse
through XML data. And getting data from JSON is substantially easier because it has
definite key-value annotations.

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

116

 Tokenizing Text
 Usually, we tokenize text before or after removing unnecessary characters and symbols
from the data. This choice depends on the problem you are trying to solve and the data
you are dealing with. We have already looked at various tokenization techniques in the
previous section. We will define a generic tokenization function here and run the same on
our corpus mentioned earlier.

 The following code snippet defines the tokenization function:

 def tokenize_text(text):
 sentences = nltk.sent_tokenize(text)
 word_tokens = [nltk.word_tokenize(sentence) for sentence in sentences]
 return word_tokens

 This function basically takes in textual data, extracts sentences from it, and finally
splits each sentence into further tokens, which could be words or special characters and
punctuation. The following snippet depicts the preceding function in action:

 In [297]: token_list = [tokenize_text(text)
 ...: for text in corpus]
 ...: pprint(token_list)
 [[['The', 'brown', 'fox', 'was', "n't", 'that', 'quick', 'and', 'he',

'could', "n't",
 'win', 'the', 'race']],
 [['Hey', 'that', "'s", 'a', 'great', 'deal', '!'],
 ['I', 'just', 'bought', 'a', 'phone', 'for', '$', '199']],
 [['@', '@', 'You', "'ll", '(', 'learn', ')', 'a', '**lot**', 'in', 'the',

'book', '.'],
 ['Python', 'is', 'an', 'amazing', 'language', '!'],
 ['@', '@']]]

 You can now see how each text in the corpus has been tokenized using our custom
defined function . Play around with more text data and see if you can make it even better!

 Removing Special Characters
 One important task in text normalization involves removing unnecessary and special
characters. These may be special symbols or even punctuation that occurs in sentences.
This step is often performed before or after tokenization. The main reason for doing so is
because often punctuation or special characters do not have much significance when we
analyze the text and utilize it for extracting features or information based on NLP and ML.
We will implement both types of special characters removal, before and after tokenization.

 The following snippet shows how to remove special characters after tokenization:

 def remove_characters_after_tokenization(tokens):
 pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
 filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
 return filtered_tokens

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

117

 In [299]: filtered_list_1 = [filter(None,[remove_characters_after_
tokenization(tokens)

 ...: for tokens in sentence_tokens])
 ...: for sentence_tokens in token_list]
 ...: print filtered_list_1
 [[['The', 'brown', 'fox', 'was', 'nt', 'that', 'quick', 'and', 'he',
'could', 'nt', 'win', 'the', 'race']], [['Hey', 'that', 's', 'a', 'great',
'deal'], ['I', 'just', 'bought', 'a', 'phone', 'for', '199']], [['You',
'll', 'learn', 'a', 'lot', 'in', 'the', 'book'], ['Python', 'is', 'an',
'amazing', 'language']]]

 Essentially, what we do here is use the string.punctuation attribute, which consists
of all possible special characters/symbols, and create a regex pattern from it. We use it
to match tokens that are symbols and characters and remove them. The filter function
helps us remove empty tokens obtained after removing the special character tokens using
the regex sub method.

 The following code snippet shows how to remove special characters before
tokenization:

 def remove_characters_before_tokenization(sentence,
 keep_apostrophes=False):
 sentence = sentence.strip()
 if keep_apostrophes:
 PATTERN = r'[?|$|&|*|%|@|(|)|~]' # add other characters here to

remove them
 filtered_sentence = re.sub(PATTERN, r'', sentence)
 else:
 PATTERN = r'[^a-zA-Z0-9]' # only extract alpha-numeric characters
 filtered_sentence = re.sub(PATTERN, r'', sentence)
 return filtered_sentence

 In [304]: filtered_list_2 = [remove_characters_before_tokenization(sentence)
 ...: for sentence in corpus]
 ...: print filtered_list_2
 ['The brown fox wasnt that quick and he couldnt win the race', 'Hey thats a
great deal I just bought a phone for 199', 'Youll learn a lot in the book
Python is an amazing language']

 In [305]: cleaned_corpus = [remove_characters_before_tokenization(sentence,
 keep_apostrophes=True)
 ...: for sentence in corpus]
 ...: print cleaned_corpus
 ["The brown fox wasn't that quick and he couldn't win the race", "Hey that's
a great deal! I just bought a phone for 199", "You'll learn a lot in the
book. Python is an amazing language!"]

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

118

 The preceding outputs show two different ways of removing special characters before
tokenization—removing all special characters versus retaining apostrophes and sentence
periods—using regular expressions. By now, you must have realized how powerful regular
expressions can be, as mentioned in Chapter 2 . Usually after removing these characters,
you can take the clean text and tokenize it or apply other normalization operations on it.
Sometimes we want to preserve the apostrophes in the sentences as a way to track them
and expand them if needed. We will explore that in the following section.

 Expanding Contractions
 Contractions are shortened version of words or syllables. They exist in either written or
spoken forms. Shortened versions of existing words are created by removing specific
letters and sounds. In case of English contractions, they are often created by removing
one of the vowels from the word. Examples would be is not to isn’t and will not to won’t ,
where you can notice the apostrophe being used to denote the contraction and some
of the vowels and other letters being removed. Usually contractions are avoided when
used in formal writing, but informally, they are used quite extensively. Various forms of
contractions exist that are tied down to the type of auxiliary verbs that give us normal
contractions, negated contractions, and other special colloquial contractions, some of
which may not involve auxiliaries.

 By nature, contractions do pose a problem for NLP and text analytics because, to
start with, we have a special apostrophe character in the word. Plus we have two or more
words represented by a contraction, and this opens a whole new can of worms when
we try to tokenize this or even standardize the words. Hence, there should be some
definite process by which we can deal with contractions when processing text. Ideally,
you can have a proper mapping for contractions and their corresponding expansions
and then use it to expand all the contractions in your text. I have created a vocabulary
for contractions and their corresponding expanded forms that you can access in the
file contractions.py in a Python dictionary (available along with the code files for this
chapter). Part of the contractions dictionary is shown below in the following snippet:

 CONTRACTION_MAP = {
 "isn't": "is not",
 "aren't": "are not",
 "can't": "cannot",
 "can't've": "cannot have",
 .
 .
 .
 "you'll've": "you will have",
 "you're": "you are",
 "you've": "you have"
 }

 Remember, though, that some of the contractions can have multiple forms. An
example would be that contracting you’ll can indicate either you will or you shall . To
simplify, I have taken one of these expanded forms for each contraction. The next step, to
expand contractions, uses the following code snippet:

http://dx.doi.org/10.1007/978-1-4842-2388-8_2

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

119

 from contractions import CONTRACTION_MAP

 def expand_contractions(sentence, contraction_mapping):
 contractions_pattern = re.compile('({})'.format('|'.join(contraction_

mapping.keys())),
 flags=re.IGNORECASE|re.DOTALL)
 def expand_match(contraction):
 match = contraction.group(0)
 first_char = match[0]
 expanded_contraction = contraction_mapping.get(match)\
 if contraction_mapping.get(match)\
 else contraction_mapping.get(match.lower())
 expanded_contraction = first_char+expanded_contraction[1:]
 return expanded_contraction

 expanded_sentence = contractions_pattern.sub(expand_match, sentence)
 return expanded_sentence

 The preceding snippet uses the function expanded_match inside the main expand_
contractions function to find each contraction that matches the regex pattern we
create out of all the contractions in our CONTRACTION_MAP dictionary. On matching any
contraction, we substitute it with its corresponding expanded version and retain the
correct case of the word.

 To see it in action, we use it on the cleaned_corpus of text we obtained in the
previous section:

 In [311]: expanded_corpus = [expand_contractions(sentence, CONTRACTION_MAP)
 ...: for sentence in cleaned_corpus]
 ...: print expanded_corpus
 ['The brown fox was not that quick and he could not win the race', 'Hey that
is a great deal! I just bought a phone for 199', 'You will learn a lot in
the book. Python is an amazing language!']

 You can see how each contraction has been correctly expanded in the output just like
we expected it. Can you build a better contraction expander? It is definitely an interesting
problem to solve.

 Case Conversions
 Often we want to modify the case of words or sentences to make things easier, like
matching specific words or tokens. Usually there are two types of case conversion
operations that are used a lot. These are lowercase and uppercase conversions, where a
body of text is converted completely to lowercase or uppercase. There are other forms
also, such as sentence case or proper case. Lowercase is a form where all the letters of the
text are small letters, and in uppercase they are all capitalized.

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

120

 The following snippet illustrates this concept:

 # lower case
 In [315]: print corpus[0].lower()
 the brown fox wasn't that quick and he couldn't win the race
 # upper case
 In [316]: print corpus[0].upper()
 THE BROWN FOX WASN'T THAT QUICK AND HE COULDN'T WIN THE RACE

 Removing Stopwords
 Stopwords , sometimes written stop words , are words that have little or no significance.
They are usually removed from text during processing so as to retain words having
maximum significance and context. Stopwords are usually words that end up occurring
the most if you aggregated any corpus of text based on singular tokens and checked their
frequencies. Words like a, the , me , and so on are stopwords. There is no universal or
exhaustive list of stopwords. Each domain or language may have its own set of stopwords.

 The following code snippet shows a method to filter out and remove stopwords for
English:

 def remove_stopwords(tokens):
 stopword_list = nltk.corpus.stopwords.words('english')
 filtered_tokens = [token for token in tokens if token not in stopword_

list]
 return filtered_tokens

 In the preceding function, we leverage the use of nltk , which has a list of stopwords
for English, and use it to filter out all tokens that correspond to stopwords. We use our
 tokenize_text function to tokenize the expanded_corpus we obtained in the previous
section and then remove the necessary stopwords using the preceding function:

 In [332]: expanded_corpus_tokens = [tokenize_text(text)
 ...: for text in expanded_corpus]
 ...: filtered_list_3 = [[remove_stopwords(tokens)
 ...: for tokens in sentence_tokens]
 ...: for sentence_tokens in expanded_corpus_

tokens]
 ...: print filtered_list_3
 [[['The', 'brown', 'fox', 'quick', 'could', 'win', 'race']], [['Hey',
'great', 'deal', '!'], ['I', 'bought', 'phone', '199']], [['You', 'learn',
'lot', 'book', '.'], ['Python', 'amazing', 'language', '!']]]

 The preceding output shows a reduced number of tokens compared to what we had
earlier, and you can compare and check the tokens that were removed as stopwords.
To see the list of all English stopwords in nltk’s vocabulary, print the contents of
 nltk.corpus.stopwords.words(‘english’) . One important thing to remember is
that negations like not and no are removed in this case (in the first sentence) , and it is

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

121

often essential to preserve the same so the actual context of the sentence is not lost in
applications like sentiment analysis, so you would need to make sure you do not remove
such words in those scenarios.

 Correcting Words
 One of the main challenges faced in text normalization is the presence of incorrect words
in the text. The definition of incorrect here covers words that have spelling mistakes as
well as words with several letters repeated that do not contribute much to its overall
significance. To illustrate some examples, the word finally could be mistakenly written as
 fianlly , or someone expressing intense emotion could write it as finalllllyyyyyy . The main
objective here would be to standardize different forms of these words to the correct form
so that we do not end up losing vital information from different tokens in the text. This
section covers dealing with repeated characters as well as correcting spellings.

 Correcting Repeating Characters
 I will cover a method here of using a combination of syntax and semantics to correct
incorrectly spelled words. We will first start with correcting the syntax of these words and
then move on to semantics.

 The first step in our algorithm would be to identify repeated characters in a word
using a regex pattern and then use a substitution to remove the characters one by one.
Consider the word finalllyyy from the earlier example. The pattern r'(\w*)(\w)\2(\w*)'
can be used to identify characters that occur twice among other characters in the
word, and in each step we will try to eliminate one of the repeated characters using a
substitution for the match by utilizing the regex match groups (groups 1, 2, and 3) using
the pattern r’\1\2\3’ and then keep iterating through this process till no repeated
characters remain.

 The following snippet illustrates this:

 In [361]: old_word = 'finalllyyy'
 ...: repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')
 ...: match_substitution = r'\1\2\3'
 ...: step = 1
 ...:
 ...: while True:
 ...: # remove one repeated character
 ...: new_word = repeat_pattern.sub(match_substitution,
 ...: old_word)
 ...: if new_word != old_word:
 ...: print 'Step: {} Word: {}'.format(step, new_word)
 ...: step += 1 # update step
 ...: # update old word to last substituted state
 ...: old_word = new_word
 ...: continue
 ...: else:
 ...: print "Final word:", new_word

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

122

 ...: break
 ...:
 Step: 1 Word: finalllyy
 Step: 2 Word: finallly
 Step: 3 Word: finally
 Step: 4 Word: finaly
 Final word: finaly

 The preceding snippet shows how one repeated character is removed at each stage
until we end up with the word finaly in the end. However, semantically this word is
incorrect—the correct word was finally , which we obtained in step 3. We will now utilize
the WordNet corpus to check for valid words at each stage and terminate the loop once
it is obtained. This introduces the semantic correction needed for our algorithm, as
illustrated in the following snippet:

 In [363]: from nltk.corpus import wordnet
 ...: old_word = 'finalllyyy'
 ...: repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')
 ...: match_substitution = r'\1\2\3'
 ...: step = 1
 ...:
 ...: while True:
 ...: # check for semantically correct word
 ...: if wordnet.synsets(old_word):
 ...: print "Final correct word:", old_word
 ...: break
 ...: # remove one repeated character
 ...: new_word = repeat_pattern.sub(match_substitution,
 ...: old_word)
 ...: if new_word != old_word:
 ...: print 'Step: {} Word: {}'.format(step, new_word)
 ...: step += 1 # update step
 ...: # update old word to last substituted state
 ...: old_word = new_word
 ...: continue
 ...: else:
 ...: print "Final word:", new_word
 ...: break
 ...:
 Step: 1 Word: finalllyy
 Step: 2 Word: finallly
 Step: 3 Word: finally
 Final correct word: finally

 Thus we see from the preceding snippet that the code correctly terminated after the
third step, and we obtained the correct word, adhering to both syntax and semantics.

 We can build a better version of this code by writing the logic in a function, as shown
in the following code, to make it more generic to deal with incorrect tokens from a list of
tokens:

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

123

 from nltk.corpus import wordnet

 def remove_repeated_characters(tokens):
 repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)')
 match_substitution = r'\1\2\3'
 def replace(old_word):
 if wordnet.synsets(old_word):
 return old_word
 new_word = repeat_pattern.sub(match_substitution, old_word)
 return replace(new_word) if new_word != old_word else new_word

 correct_tokens = [replace(word) for word in tokens]
 return correct_tokens

 That snippet uses the inner function replace() to basically emulate the behavior of
our algorithm, illustrated earlier, and then call it repeatedly on each token in a sentence
in the outer function remove_repeated_characters() .

 We can see the preceding code in action in the following snippet, with an actual
example sentence:

 In [369]: sample_sentence = 'My schooool is realllllyyy amaaazingggg'
 ...: sample_sentence_tokens = tokenize_text(sample_sentence)[0]
 ...: print sample_sentence_tokens
 ['My', 'schooool', 'is', 'realllllyyy', 'amaaazingggg']

 In [370]: print remove_repeated_characters(sample_sentence_tokens)
 ['My', 'school', 'is', 'really', 'amazing']

 We can see from the above output that our function performs as intended and
replaces the repeating characters in each token, giving us correct tokens as desired.

 Correcting Spellings
 Another problem we face is incorrect or wrong spellings that occur due to human error,
or even machine-based errors you may have seen thanks to features like auto-correcting
text. There are various ways of dealing with incorrect spellings where the final objective
is to have tokens of text with the correct spelling. This section will talk about one of the
famous algorithms developed by Peter Norvig, the director of research at Google. You can
find the complete detailed post explaining his algorithm and findings at http://norvig.
com/spell-correct.html .

 The main objective of this exercise is that, given a word, we need to find the most
likely word that is the correct form of that word. The approach we would follow is to
generate a set of candidate words that are near to our input word and select the most
likely word from this set as the correct word. We use a corpus of correct English words
in this context to identify the correct word based on its frequency in the corpus from our
final set of candidates with the nearest distance to our input word. This distance, which
measures how near or far a word is from our input word, is also called edit distance . The

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

124

input corpus we use is a file containing several books from the Gutenberg corpus and also
a list of most frequent words from Wiktionary and the British National Corpus. You can
find the file under the name big.txt in this chapter’s code resources or download it from
 http://norvig.com/big.txt and use it.

 I’ll use the following code snippet to generate a map of frequently occurring words in
the English language and their counts:

 import re, collections

 def tokens(text):
 """
 Get all words from the corpus
 """
 return re.findall('[a-z]+', text.lower())

 WORDS = tokens(file('big.txt').read())
 WORD_COUNTS = collections.Counter(WORDS)

 # top 10 words in the corpus
 In [407]: print WORD_COUNTS.most_common(10)
 [('the', 80030), ('of', 40025), ('and', 38313), ('to', 28766), ('in',
22050), ('a', 21155), ('that', 12512), ('he', 12401), ('was', 11410),
('it', 10681)]

 Once we have our vocabulary, we define three functions that compute sets of words
that are zero, one, and two edits away from our input word. These edits can be made by
the means of insertions, deletions, additions, and transpositions. The following code
defines the functions for doing this:

 def edits0(word):
 """
 Return all strings that are zero edits away
 from the input word (i.e., the word itself).
 """
 return {word}

 def edits1(word):
 """
 Return all strings that are one edit away
 from the input word.
 """
 alphabet = 'abcdefghijklmnopqrstuvwxyz'
 def splits(word):
 """
 Return a list of all possible (first, rest) pairs
 that the input word is made of.
 """
 return [(word[:i], word[i:])
 for i in range(len(word)+1)]

http://norvig.com/big.txt

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

125

 pairs = splits(word)
 deletes = [a+b[1:] for (a, b) in pairs if b]
 transposes = [a+b[1]+b[0]+b[2:] for (a, b) in pairs if len(b) > 1]
 replaces = [a+c+b[1:] for (a, b) in pairs for c in alphabet

if b]
 inserts = [a+c+b for (a, b) in pairs for c in alphabet]
 return set(deletes + transposes + replaces + inserts)

 def edits2(word):
 """Return all strings that are two edits away
 from the input word.
 """
 return {e2 for e1 in edits1(word) for e2 in edits1(e1)}

 We also define a function called known() that returns a subset of words from our
candidate set of words obtained from the edit functions, based on whether they occur in
our vocabulary dictionary WORD_COUNTS . This gives us a list of valid words from our set of
candidate words:

 def known(words):
 """
 Return the subset of words that are actually
 in our WORD_COUNTS dictionary.
 """
 return {w for w in words if w in WORD_COUNTS}

 We can see these functions in action on our test input word in the following code
snippet, which shows lists of possible candidate words based on edit distances from the
input word:

 # input word
 In [409]: word = 'fianlly'

 # zero edit distance from input word
 In [410]: edits0(word)
 Out[410]: {'fianlly'}
 # returns null set since it is not a valid word
 In [411]: known(edits0(word))
 Out[411]: set()

 # one edit distance from input word
 In [412]: edits1(word)
 Out[412]:
 {'afianlly',
 'aianlly',
 .
 .
 'yianlly',

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

126

 'zfianlly',
 'zianlly'}
 # get correct words from above set
 In [413]: known(edits1(word))
 Out[413]: {'finally'}

 # two edit distances from input word
 In [417]: edits2(word)
 Out[417]:
 {'fchnlly',
 'fianjlys',
 .
 .
 'fiapgnlly',
 'finanlqly'}
 # get correct words from above set
 In [418]: known(edits2(word))
 Out[418]: {'faintly', 'finally', 'finely', 'frankly'}

 The preceding outputs depict a set of valid candidate words that could be potential
 replacements for the incorrect input word. We select our candidate words from the
preceding list by giving higher priority to words with the smallest edit distances from the
input word. The following code snippet illustrates:

 In [420]: candidates = (known(edits0(word)) or
 ...: known(edits1(word)) or
 ...: known(edits2(word)) or
 ...: [word])

 In [421]: candidates
 Out[421]: {'finally'}

 In case there is a tie in the preceding candidates, we resolve it by taking the highest
occurring word from our vocabulary dictionary WORD_COUNTS using the max(candidates,
key=WORD_COUNTS.get) function . Thus we now define our function to correct words using
the logic discussed earlier:

 def correct(word):
 """
 Get the best correct spelling for the input word
 """
 # Priority is for edit distance 0, then 1, then 2
 # else defaults to the input word itself.
 candidates = (known(edits0(word)) or
 known(edits1(word)) or
 known(edits2(word)) or
 [word])
 return max(candidates, key=WORD_COUNTS.get)

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

127

 We can use the preceding function on incorrect words directly to correct them, as
illustrated in the following snippet:

 In [438]: correct('fianlly')
 Out[438]: 'finally'

 In [439]: correct('FIANLLY')
 Out[439]: 'FIANLLY'

 We see that this function is case sensitive and fails to correct words that are not
lowercase, hence we write the following functions to make this generic to the case of
words and correct their spelling regardless. The logic here is to preserve the original case
of the word, convert it to lowercase, correct its spelling, and finally reconvert it back to its
original case using the case_of function :

 def correct_match(match):
 """
 Spell-correct word in match,
 and preserve proper upper/lower/title case.
 """

 word = match.group()
 def case_of(text):
 """
 Return the case-function appropriate
 for text: upper, lower, title, or just str.:
 """
 return (str.upper if text.isupper() else
 str.lower if text.islower() else
 str.title if text.istitle() else
 str)
 return case_of(word)(correct(word.lower()))

 def correct_text_generic(text):
 """
 Correct all the words within a text,
 returning the corrected text.
 """
 return re.sub('[a-zA-Z]+', correct_match, text)

 We can now use the preceding function to correct words irrespective of their case, as
illustrated in the following snippet:

 In [441]: correct_text_generic('fianlly')
 Out[441]: 'finally'

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

128

 In [442]: correct_text_generic('FIANLLY')
 Out[442]: 'FINALLY'

 Of course, this method is not always completely accurate, and there may be words
that might not be corrected if they do not occur in our vocabulary dictionary . Using more
data would help in this case, as long as we cover different words having correct spellings
in our vocabulary. This same algorithm is available to be used out of the box in the
 pattern library, as is done in the following snippet:

 from pattern.en import suggest

 # test on wrongly spelt words
 In [184]: print suggest('fianlly')
 [('finally', 1.0)]

 In [185]: print suggest('flaot')
 [('flat', 0.85), ('float', 0.15)]

 Besides this, there are several robust libraries available in Python, including
 PyEnchant , based on the enchant library (http://pythonhosted.org/pyenchant/), and
 aspell-python , which is a Python wrapper around the popular GNU Aspell. Feel free to
check them out and use them for correcting word spellings!

 Stemming
 Understanding the process of stemming requires understanding what word stems
represent. Chapter 1 talked about morphemes, the smallest independent unit in any
natural language. Morphemes consist of units that are stems and affixes. Affixes are units
like prefixes, suffixes, and so on, which are attached to a word stem to change its meaning
or create a new word altogether. Word stems are also often known as the base form of a
word, and we can create new words by attaching affixes to them in a process known as
 inflection . The reverse of this is obtaining the base form of a word from its inflected form,
and this is known as stemming .

 Consider the word JUMP . You can add affixes to it and form new words like JUMPS ,
 JUMPED , and JUMPING . In this case, the base word JUMP is the word stem. If we were to
carry out stemming on any of its three inflected forms, we would get back the base form.
This is illustrated in Figure 3-1 .

http://pythonhosted.org/pyenchant/
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

129

 The figure shows how the word stem is present in all its inflections since it forms
the base on which each inflection is built upon using affixes. Stemming helps us in
standardizing words to their base stem irrespective of their inflections, which helps many
applications like classifying or clustering text, and even in information retrieval. Search
engines make use of such techniques extensively to give better and more accurate results
irrespective of the word form.

 The nltk package has several implementations for stemmers. These stemmers are
implemented in the stem module, which inherits the StemmerI interface in the nltk.stem.
api module. You can even create your own stemmer using this class (technically it is an
 interface) as your base class. One of the most popular stemmers is the Porter stemmer,
which is based on the algorithm developed by its inventor, Dr. Martin Porter. Originally, the
algorithm is said to have had a total of five different phases for reduction of inflections to
their stems, where each phase has its own set of rules. There also exists a Porter2 algorithm,
which was the original stemming algorithm with some improvements suggested by Dr.
Porter. You can see the Porter stemmer in action in the following code snippet:

 # Porter Stemmer
 In [458]: from nltk.stem import PorterStemmer
 ...: ps = PorterStemmer()

 In [459]: print ps.stem('jumping'), ps.stem('jumps'), ps.stem('jumped')
 jump jump jump

 In [460]: print ps.stem('lying')
 lie

 In [461]: print ps.stem('strange')
 strang

 Figure 3-1. Word stem and inflections

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

130

 The Lancaster stemmer is based on the Lancaster stemming algorithm, also often
known as the Paice/Husk stemmer, invented by Chris D. Paice. This stemmer is an iterative
stemmer that has over 120 rules specifying specific removal or replacement for affixes to
obtain the word stems. The following snippet shows the Lancaster stemmer in action:

 # Lancaster Stemmer
 In [465]: from nltk.stem import LancasterStemmer
 ...: ls = LancasterStemmer()

 In [466]: print ls.stem('jumping'), ls.stem('jumps'), ls.stem('jumped')
 jump jump jump

 In [467]: print ls.stem('lying')
 lying

 In [468]: print ls.stem('strange')
 strange

 You can see that the behavior of this stemmer is different from the Porter stemmer.
 There are several other stemmers, including RegexpStemmer , where you can build

your own stemmer based on user-defined rules , and SnowballStemmer , which supports
stemming in 13 different languages besides English.

 The following code snippet shows some ways of using them for performing
stemming. The RegexpStemmer uses regular expressions to identify the morphological
affixes in words, and any part of the string matching the same is removed:

 # Regex based stemmer
 In [471]: from nltk.stem import RegexpStemmer
 ...: rs = RegexpStemmer('ing$|s$|ed$', min=4)

 In [472]: print rs.stem('jumping'), rs.stem('jumps'), rs.stem('jumped')
 jump jump jump

 In [473]: print rs.stem('lying')
 ly

 In [474]: print rs.stem('strange')
 strange

 You can see how the stemming results are different from the previous stemmers
and are based completely on our custom-defined rules based on regular expressions.
The following snippet shows how to use the SnowballStemmer to stem words in
other languages (you can find more details about the Snowball Project at http://
snowballstem.org):

 # Snowball Stemmer
 In [486]: from nltk.stem import SnowballStemmer
 ...: ss = SnowballStemmer("german")

http://snowballstem.org/
http://snowballstem.org/

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

131

 In [487]: print 'Supported Languages:', SnowballStemmer.languages
 Supported Languages: (u'danish', u'dutch', u'english', u'finnish',
u'french', u'german', u'hungarian', u'italian', u'norwegian', u'porter',
u'portuguese', u'romanian', u'russian', u'spanish', u'swedish')

 # stemming on German words
 # autobahnen -> cars
 # autobahn -> car
 In [488]: ss.stem('autobahnen')
 Out[488]: u'autobahn'

 # springen -> jumping
 # spring -> jump
 In [489]: ss.stem('springen')
 Out[489]: u'spring'

 The Porter stemmer is used most frequently—but you should choose your stemmer
based on your problem and after trial and error. If needed, you can even build your own
stemmer with your own defined rules.

 Lemmatization
 The process of lemmatization is very similar to stemming—you remove word affixes to
get to a base form of the word. But in this case, this base form is also known as the root
word , but not the root stem . The difference is that the root stem may not always be a
lexicographically correct word; that is, it may not be present in the dictionary. The root
word, also known as the lemma , will always be present in the dictionary.

 The lemmatization process is considerably slower than stemming because an
additional step is involved where the root form or lemma is formed by removing the affix
from the word if and only if the lemma is present in the dictionary. The nltk package has
a robust lemmatization module that uses WordNet and the word’s syntax and semantics,
like part of speech and context, to get the root word or lemma. Remember parts of speech
from Chapter 1 ? There were mainly three entities—nouns, verbs, and adjectives—that
occur most frequently in natural language.

 The following code snippet shows how to use lemmatization for words belonging to
each of those types:

 In [514]: from nltk.stem import WordNetLemmatizer
 ...:
 ...: wnl = WordNetLemmatizer()

 # lemmatize nouns
 In [515]: print wnl.lemmatize('cars', 'n')
 ...: print wnl.lemmatize('men', 'n')
 car
 men

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

132

 # lemmatize verbs
 In [516]: print wnl.lemmatize('running', 'v')
 ...: print wnl.lemmatize('ate', 'v')
 run
 eat

 # lemmatize adjectives
 In [517]: print wnl.lemmatize('saddest', 'a')
 ...: print wnl.lemmatize('fancier', 'a')
 sad
 fancy

 The preceding snippet shows how each word is converted back to its base form using
lemmatization. This helps us in standardizing words. The preceding code leverages the
 WordNetLemmatizer class , which internally uses the morphy() function belonging to the
 WordNetCorpusReader class. This function basically finds the base form or lemma for a
given word using the word and its part of speech by checking the Wordnet corpus and
uses a recursive technique for removing affixes from the word until a match is found in
WordNet. If no match is found, the input word itself is returned unchanged.

 The part of speech is extremely important here because if that is wrong, the
lemmatization will not be effective, as you can see in the following snippet:

 # ineffective lemmatization
 In [518]: print wnl.lemmatize('ate', 'n')
 ...: print wnl.lemmatize('fancier', 'v')
 ate
 fancier

 This brings us to the end of our discussion on various techniques for processing and
 normalizing text. By now, you have learned a great deal about how to process, normalize,
and standardize text. In the next section, we will look at ways of analyzing and understanding
various facets of textual data with regard to its syntactic properties and structure.

 Understanding Text Syntax and Structure
 Chapter 1 talked about language syntax and structure in detail. If you don’t remember,
head over to the “Language Syntax and Structure” section and skim through it quickly to
get an idea of the various ways of analyzing and understanding the syntax and structure
of textual data. In this section, we will look and implement some of the concepts and
techniques that are used for understanding text syntax and structure. This is extremely
useful in NLP and is usually done after text processing and normalization . We will focus
on implementing the following techniques:

• Parts of speech (POS) tagging

• Shallow parsing

• Dependency-based parsing

• Constituency-based parsing

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

133

 This book is aimed at practitioners and enforces and emphasizes the best
approaches to implementing and using techniques and algorithms in real-world
problems. Therefore, the following sections look at the best possible ways of leveraging
existing libraries like nltk and spacy to implement and execute some of these techniques.
Also, because many readers may be interested in the internals and implementing
some of these techniques on your own, we will also look at ways to do that. Remember,
our primary focus is always to look at ways implementing the concepts in action with
practical examples—and not re-invent the wheel. Before going further, we will look at the
necessary dependencies and installation details for the required libraries, because some
of them are not very straightforward.

 Installing Necessary Dependencies
 We will be leveraging several libraries and dependencies:

• The nltk library, preferably version 3.1 or 3.2.1

• The spacy library

• The pattern library

• The Stanford parser

• Graphviz and necessary libraries for the same

 We touched on installing nltk in Chapter 1 . You can install it directly by going to your
terminal or command prompt and typing pip install nltk , which will download and
install it. Remember to install the library having a version preferably other than 3.2.0 ,
because there are some issues with several functions in that distribution, like pos_tag() .

 After downloading and installing nltk , remember to download the corpora also
discussed in Chapter 1 . For more on downloading and installing nltk , see www.nltk.
org/install.html and www.nltk.org/data.html , which describe how to install the data
dependencies. You can do the same by starting the Python interpreter and using the
following snippet:

 import nltk
 # download all dependencies and corpora
 nltk.download('all', halt_on_error=False)
 # OR use a GUI based downloader and select dependencies
 nltk.download()

 To install pattern , typing pip install pattern should pretty much download and
install the library and its necessary dependencies. The link www.clips.ua.ac.be/pages/
pattern-en offers more information about pattern . For spacy , you need to first install
the package and then separately install its dependencies, also called a language model .
To install spacy , type pip install spacy from the terminal. Once done, download
the English language model using the command python -m spacy.en.download from
the terminal, which will download around 500 MB of data in the directory of the spacy
package itself. For more details, refer to https://spacy.io/docs/#getting-started ,
which tells you how to get started with using spacy . We will use spacy for tagging and
depicting dependency-based parsing.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.nltk.org/install.html
http://www.nltk.org/install.html
http://www.nltk.org/data.html
http://www.clips.ua.ac.be/pages/pattern-en
http://www.clips.ua.ac.be/pages/pattern-en
https://spacy.io/docs/#getting-started

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

134

 The Stanford Parser is a Java-based implementation for a language parser developed
at Stanford, which helps in parsing sentences to understand their underlying structure.
We will perform both dependency and constituency grammar–based parsing using the
Stanford Parser and nltk , which provides an excellent wrapper to leverage and use the
parser from Python itself without the need to write code in Java. You can refer to the
official installation guide at https://github.com/nltk/nltk/wiki/Installing-Third-
Party-Software , which describes how to download and install the Stanford Parser and
integrate it with nltk . Personally, I have faced several issues, especially in Windows-
based systems, so I will provide one of the best-known methods for installation of the
Stanford Parser and its necessary dependencies.

 To start with, make sure you first download and install the Java Development Kit
(not just JRE, also known as Java Runtime Environment) by going to www.oracle.com/
technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp . That is the
official website. Java SE 8u101 / 8u102 are the latest versions at the time of writing this
book—I have used 8u102 . After installing, make sure to set the “Path” for Java by adding it
to the Path system environment variable. You can also create a JAVA_HOME environment
variable pointing to the java.exe file belonging to the JDK. In my experience, neither
worked for me when running the code from Python, and I had to explicitly use the
Python os library to set the environment variable, which I will show when we dive into
the implementation details. Once Java is installed, download the official Stanford Parser
from http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip ,
which seems to work quite well. You can try out a later version by going to http://nlp.
stanford.edu/software/lex-parser.shtml#Download and checking the Release History
section. After downloading, unzip it to a known location in your filesystem. Once done,
you are now ready to use the parser from nltk , which we will be exploring soon.

 Graphviz is not really a necessity, and we will only be using it to view the dependency
parse tree generated by the Stanford Parser. You can download Graphviz from its official
website at www.graphviz.org/Download_windows.php and install it. Next, install pygraphviz ,
which you can get by downloading the wheel file from www.lfd.uci.edu/~gohlke/
pythonlibs/#pygraphviz , based on your system architecture and python version. Then
install it using the command pip install pygraphviz-1.3.1-cp27-none-win_amd64.
whl for a 64-bit system running Python 2.7.x . Once installed, pygraphviz should be ready
to work. Some have reported running into additional issues, though, and you may need to
install pydot-ng and graphviz in the same order using the following snippet in the terminal:

 pip install pydot-ng
 pip install graphviz

 With this, we are done installing necessary dependencies and can start
implementing and looking at practical examples to understand text. However, we are not
ready just yet. We still need to go through a few basic concepts of ML before we dive into
code and examples.

https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://www.graphviz.org/Download_windows.php
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

135

 Important Machine Learning Concepts
 We will be implementing and training some of our own taggers in the following section
using corpora and also leverage existing pre-built taggers. There are some important
concepts related to analytics and ML that you must know in order to better understand
the implementations:

• Data preparation : Usually consists of pre-processing the data
before extracting features and training

• Feature extraction : The process of extracting useful features from
raw data that are used to train machine learning models

• Features : Various useful attributes of the data (examples could be
age, weight, and so on for personal data)

• Training data : A set of data points used to train a model

• Testing/validation data : A set of data points on which a pre-
trained model is tested and evaluated to see how well it performs

• Model : Built using a combination of data/features and a machine
learning algorithm that could be supervised or unsupervised

• Accuracy : How well the model predicts something (also has other
detailed evaluation metrics like precision, recall, and F1-score)

 These terms should be enough to get you started. Going into further detail is beyond
the scope of this book, but you will find a lot of resources on the web about ML, in case
you are interested in exploring machine learning further. Later chapters cover both
supervised and unsupervised learning with regard to textual data.

 Parts of Speech (POS) Tagging
 Parts of speech (POS) are specific lexical categories to which words are assigned based on their
syntactic context and role. Chapter 1 covered some ground on POS and mentioned the main
POS being noun, verb, adjective, and adverb. The process of classifying and labeling POS tags
for words called parts of speech tagging or POS tagging . POS tags are used to annotate words
and depict their POS, which is really helpful when we need to use the same annotated text
later in NLP-based applications because we can filter by specific parts of speech and utilize
that information to perform specific analysis, such as narrowing down upon nouns and seeing
which ones are the most prominent, word sense disambiguation, and grammar analysis.

 We will be using the Penn Treebank notation for POS tagging. You can find more
information about various POS tags and their notation at www.cis.uni-muenchen.
de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf , which contains
detailed documentation explaining each tag with examples. The Penn Treebank project
is part of the University of Pennsylvania. Its web site at www.cis.upenn.edu/~treebank/
offers more information about the project. Remember there are various tags, such as
POS tags for parts of speech assigned to words, chunk tags, which are usually assigned
to phrases, and some tags are secondary tags used to depict relations. Table 3-1 gives a
detailed overview of different tags with examples, in case you do not want to go through
the detailed documentation for Penn Treebank tags. You can use this as a reference
anytime to understand POS tags and parse trees in a better way.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
http://www.cis.upenn.edu/~treebank/

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

136

 Table 3-1. Parts of Speech Tags

 Sl No. TAG DESCRIPTION EXAMPLE(S)

 1 CC Coordinating
Conjunction

 and, or

 2 CD Cardinal Number five, one, 2

 3 DT Determiner a, the

 4 EX Existential there there were two cars

 5 FW Foreign Word d'hoevre, mais

 6 IN Preposition/
Subordinating
Conjunction

 of, in, on, that

 7 JJ Adjective quick, lazy

 8 JJR Adjective,
comparative

 quicker, lazier

 9 JJS Adjective,
superlative

 quickest, laziest

 10 LS List item marker 2)

 11 MD Verb, modal could, should

 12 NN Noun, singular or
mass

 fox, dog

 13 NNS Noun, plural foxes, dogs

 14 NNP Noun, proper
singular

 John, Alice

 15 NNPS Noun, proper plural Vikings, Indians,
Germans

 16 PDT Predeterminer both the cats

 17 POS Possessive ending boss's

 18 PRP Pronoun, personal me, you

 19 PRP$ Pronoun, possessive our, my, your

 20 RB Adverb naturally, extremely,
hardly

 21 RBR Adverb, comparative better

 22 RBS Adverb, superlative best

 23 RP Adverb, particle about, up

 24 SYM Symbol %, $

 25 TO Infinitival to how to, what to do

 26 UH Interjection oh, gosh, wow

(continued)

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

137

 The table shows the main POS tag set used in the Penn Treebank and is the most
widely used POS tag set in various text analytics and NLP applications. In the following
sections, we will look at some recommended POS taggers and also see how we can build
our own tagger.

Table 3-1. (continued)

 Sl No. TAG DESCRIPTION EXAMPLE(S)

 27 VB Verb, base form run, give

 28 VBD Verb, past tense ran, gave

 29 VBG Verb, gerund/
present participle

 running, giving

 30 VBN Verb, past participle given

 31 VBP Verb, non-3rd
person singular
present

 I think, I take

 32 VBZ Verb, 3rd person
singular present

 he thinks, he takes

 33 WDT Wh-determiner which, whatever

 34 WP Wh-pronoun,
personal

 who, what

 35 WP$ Wh-pronoun,
possessive

 whose

 36 WRB Wh-adverb where, when

 37 NP Noun Phrase the brown fox

 38 PP Prepositional Phrase in between, over the
dog

 39 VP Verb Phrase was jumping

 40 ADJP Adjective Phrase warm and snug

 41 ADVP Adverb Phrase also

 42 SBAR Subordinating
Conjunction

 whether or not

 43 PRT Particle up

 44 INTJ Interjection hello

 45 PNP Prepositional Noun
Phrase

 over the dog, as of
today

 46 -SBJ Sentence Subject the fox jumped over
the dog

 47 -OBJ Sentence Object the fox jumped over
the dog

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

138

 Recommended POS Taggers
 We will discuss some recommended ways for tagging sentences here. The first method
is using nltk ’s recommended pos_tag() function, which is actually based on the Penn
Treebank. We will reuse our interesting sentence from Chapter 1 here. The following code
snippet depicts how to get the POS tags of a sentence using nltk :

 sentence = 'The brown fox is quick and he is jumping over the lazy dog'

 import nltk
 tokens = nltk.word_tokenize(sentence)
 tagged_sent = nltk.pos_tag(tokens, tagset='universal')
 In [13]: print tagged_sent
 [('The', u'DET'), ('brown', u'ADJ'), ('fox', u'NOUN'), ('is', u'VERB'),
('quick', u'ADJ'), ('and', u'CONJ'), ('he', u'PRON'), ('is', u'VERB'),
('jumping', u'VERB'), ('over', u'ADP'), ('the', u'DET'), ('lazy', u'ADJ'),
('dog', u'NOUN')]

 The preceding output shows us the POS tag for each word in the sentence. You
will find the tags quite similar to the ones shown in Table 3.1. Some of them were also
mentioned in Chapter 1 as general/universal tags. You can also use the pattern module
to get POS tags of a sentence using the following code snippet:

 from pattern.en import tag
 tagged_sent = tag(sentence)
 In [15]: print tagged_sent
 [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'is', u'VBZ'),
(u'quick', u'JJ'), (u'and', u'CC'), (u'he', u'PRP'), (u'is', u'VBZ'),
(u'jumping', u'VBG'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'),
(u'dog', u'NN')]

 That output gives us tags that purely follow the Penn Treebank format, specifying the
form of adjective, noun, or verb in more detail.

 Building Your Own POS Taggers
 In this section, we will explore some techniques by which we can build our own POS
taggers and will be leveraging some classes provided by nltk for doing so. For evaluating
the performance of our taggers, we will be using some test data from the treebank corpus
in nltk . We will also be using some training data for training some of our taggers. To start,
we will get the necessary data for training and evaluating the taggers by reading in the
tagged treebank corpus:

 from nltk.corpus import treebank
 data = treebank.tagged_sents()
 train_data = data[:3500]
 test_data = data[3500:]

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

139

 # get a look at what each data point looks like
 In [17]: print train_data[0]
 [(u'Pierre', u'NNP'), (u'Vinken', u'NNP'), (u',', u','), (u'61', u'CD'),
(u'years', u'NNS'), (u'old', u'JJ'), (u',', u','), (u'will', u'MD'),
(u'join', u'VB'), (u'the', u'DT'), (u'board', u'NN'), (u'as', u'IN'), (u'a',
u'DT'), (u'nonexecutive', u'JJ'), (u'director', u'NN'), (u'Nov.', u'NNP'),
(u'29', u'CD'), (u'.', u'.')]

 # remember tokens is obtained after tokenizing our sentence
 tokens = nltk.word_tokenize(sentence)
 In [18]: print tokens
 ['The', 'brown', 'fox', 'is', 'quick', 'and', 'he', 'is', 'jumping', 'over',
'the', 'lazy', 'dog']

 We will use the test data to evaluate our taggers and see how they work on our
sample sentence by using its tokens as input. All the taggers we will be leveraging from
 nltk are part of the nltk.tag package. Each tagger is a child class of the base TaggerI
class, and each tagger implements a tag() function that takes a list of sentence tokens
as input and returns the same list of words with their POS tags as output. Besides
tagging, there is an evaluate() function that is used to evaluate the performance of the
tagger. This is done by tagging each input test sentence and then comparing the result
with the actual tags of the sentence. We will be using the very same function to test the
performance of our taggers on test_data .

 We will first look at the DefaultTagger , which inherits from the
 SequentialBackoffTagger base class and assigns the same user input POS tag to each
word. This may seem really naïve, but it is an excellent way to form a baseline POS tagger
and improve upon it:

 from nltk.tag import DefaultTagger
 dt = DefaultTagger('NN')

 # accuracy on test data
 In [24]: print dt.evaluate(test_data)
 0.145415819537
 # tagging our sample sentence
 In [25]: print dt.tag(tokens)
 [('The', 'NN'), ('brown', 'NN'), ('fox', 'NN'), ('is', 'NN'), ('quick',
'NN'), ('and', 'NN'), ('he', 'NN'), ('is', 'NN'), ('jumping', 'NN'),
('over', 'NN'), ('the', 'NN'), ('lazy', 'NN'), ('dog', 'NN')]

 We can see from the preceding output we have obtained 14 percent accuracy in
correctly tagging words from the treebank test dataset—which is not that great, and the
output tags on our sample sentence are all nouns, just as we expected because we fed the
tagger with the same tag.

 We will now use regular expressions and the RegexpTagger to see if we can build a
better performing tagger :

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

140

 from nltk.tag import RegexpTagger
 # define regex tag patterns
 patterns = [
 (r'.*ing$', 'VBG'), # gerunds
 (r'.*ed$', 'VBD'), # simple past
 (r'.*es$', 'VBZ'), # 3rd singular present
 (r'.*ould$', 'MD'), # modals
 (r'.*\'s$', 'NN$'), # possessive nouns
 (r'.*s$', 'NNS'), # plural nouns
 (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers
 (r'.*', 'NN') # nouns (default) ...]
 rt = RegexpTagger(patterns)

 # accuracy on test data
 In [27]: print rt.evaluate(test_data)
 0.240391131765

 # tagging our sample sentence

 In [28]: print rt.tag(tokens)
 [('The', 'NN'), ('brown', 'NN'), ('fox', 'NN'), ('is', 'NNS'), ('quick',
'NN'), ('and', 'NN'), ('he', 'NN'), ('is', 'NNS'), ('jumping', 'VBG'),
('over', 'NN'), ('the', 'NN'), ('lazy', 'NN'), ('dog', 'NN')]

 That output shows that the accuracy has now increased to 24 percent. But can we do
better? We will now train some n-gram taggers. n-grams are contiguous sequences of n
items from a sequence of text or speech. These items could consist of words, phonemes,
letters, characters, or syllables. Shingles are n-grams where the items only consist of
words. We will use n-grams of size 1, 2, and 3, which are also known as unigram , bigram ,
and trigram respectively. The UnigramTagger , BigramTagger , and TrigramTagger are
classes that inherit from the base class NGramTagger , which itself inherits from the
 ContextTagger class , which inherits from the SequentialBackoffTagger class . We will
use train_data as training data to train the n-gram taggers based on sentence tokens and
their POS tags. Then we will evaluate the trained taggers on test_data and see the result
on tagging our sample sentence:

 from nltk.tag import UnigramTagger
 from nltk.tag import BigramTagger
 from nltk.tag import TrigramTagger

 ut = UnigramTagger(train_data)
 bt = BigramTagger(train_data)
 tt = TrigramTagger(train_data)

 # testing performance of unigram tagger
 In [31]: print ut.evaluate(test_data)
 0.861361215994
 In [32]: print ut.tag(tokens)

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

141

 [('The', u'DT'), ('brown', None), ('fox', None), ('is', u'VBZ'), ('quick',
u'JJ'), ('and', u'CC'), ('he', u'PRP'), ('is', u'VBZ'), ('jumping', u'VBG'),
('over', u'IN'), ('the', u'DT'), ('lazy', None), ('dog', None)]

 # testing performance of bigram tagger
 In [33]: print bt.evaluate(test_data)
 0.134669377481
 In [34]: print bt.tag(tokens)
 [('The', u'DT'), ('brown', None), ('fox', None), ('is', None), ('quick',
None), ('and', None), ('he', None), ('is', None), ('jumping', None),
('over', None), ('the', None), ('lazy', None), ('dog', None)]

 # testing performance of trigram tagger
 In [35]: print tt.evaluate(test_data)
 0.0806467228192
 In [36]: print tt.tag(tokens)
 [('The', u'DT'), ('brown', None), ('fox', None), ('is', None), ('quick',
None), ('and', None), ('he', None), ('is', None), ('jumping', None),
('over', None), ('the', None), ('lazy', None), ('dog', None)]

 The preceding output clearly shows that we obtain 86 percent accuracy on the test
set using UnigramTagger tagger alone, which is really good compared to our last tagger.
The None tag indicates the tagger was unable to tag that word, the reason being that it was
unable to get a similar token in the training data. Accuracies of the bigram and trigram
models are far less because it is not always the case that the same bigrams and trigrams it
had observed in the training data will also be present in the same way in the testing data.

 We will now look at an approach to combine all the taggers by creating a combined
tagger with a list of taggers and use a backoff tagger. Essentially we would create a chain of
taggers, and each tagger would fall back on a backoff tagger if it cannot tag the input tokens :

 def combined_tagger(train_data, taggers, backoff=None):
 for tagger in taggers:
 backoff = tagger(train_data, backoff=backoff)
 return backoff

 ct = combined_tagger(train_data=train_data,
 taggers=[UnigramTagger, BigramTagger, TrigramTagger],
 backoff=rt)

 # evaluating the new combined tagger with backoff taggers
 In [38]: print ct.evaluate(test_data)
 0.910155871817
 In [39]: print ct.tag(tokens)
 [('The', u'DT'), ('brown', 'NN'), ('fox', 'NN'), ('is', u'VBZ'), ('quick',
u'JJ'), ('and', u'CC'), ('he', u'PRP'), ('is', u'VBZ'), ('jumping', 'VBG'),
('over', u'IN'), ('the', u'DT'), ('lazy', 'NN'), ('dog', 'NN')]

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

142

 We now obtain an accuracy of 91 percent on the test data, which is excellent. Also we
see that this new tagger is able to successfully tag all the tokens in our sample sentence
(even though a couple of them are not correct, like brown should be an adjective).

 For our final tagger, we will use a supervised classification algorithm to train our
tagger. The ClassifierBasedPOSTagger class lets us train a tagger by using a supervised
learning algorithm in the classifier_builder parameter. This class is inherited from the
 ClassifierBasedTagger and has a feature_detector() function that forms the core of
the training process. This function is used to generate various features from the training
data, like word, previous word, tag, previous tag, case, and so on. In fact, you can even
build your own feature detector function and pass it to the feature_detector parameter
when instantiating an object of the ClassifierBasedPOSTagger class. The classifier we
will be using is the NaiveBayesClassifier , which uses the Bayes’ theorem to build a
probabilistic classifier, assuming the features are independent. Read more about it at
 https://en.wikipedia.org/wiki/Naive_Bayes_classifier if you like (since going into
more detail about the algorithm is out of our current scope).

 The following code snippet shows a classification-based approach to building and
evaluating a POS tagger:

 from nltk.classify import NaiveBayesClassifier
 from nltk.tag.sequential import ClassifierBasedPOSTagger

 nbt = ClassifierBasedPOSTagger(train=train_data,
 classifier_builder=NaiveBayesClassifier.

train)

 # evaluate tagger on test data and sample sentence
 In [41]: print nbt.evaluate(test_data)
 0.930680607997
 In [42]: print nbt.tag(tokens)
 [('The', u'DT'), ('brown', u'JJ'), ('fox', u'NN'), ('is', u'VBZ'),
('quick', u'JJ'), ('and', u'CC'), ('he', u'PRP'), ('is', u'VBZ'),
('jumping', u'VBG'), ('over', u'IN'), ('the', u'DT'), ('lazy', u'JJ'),
('dog', u'VBG')]

 Using the preceding tagger , we get an accuracy of 93 percent on our test data—the
highest out of all our taggers. Also if you observe the output tags for our sample sentence,
you will see they are correct and make perfect sense. This gives us an idea of how
powerful and effective classifier-based POS taggers can be. Feel free to use a different
classifier, like MaxentClassifier , and compare the performance with this tagger. There
are also several other ways to build and use POS taggers using nltk and other packages.
Even though it is not really necessary, and this should be enough to cover your POS
tagging needs, you can go ahead and explore other methods to compare with these
methods and satisfy your curiosity.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

143

 Shallow Parsing
 Shallow parsing , also known as light parsing or chunking , is a technique of analyzing the
structure of a sentence to break it down into its smallest constituents (which are tokens
such as words) and group them together into higher-level phrases. In shallow parsing,
there is more focus on identifying these phrases or chunks rather than diving into further
details of the internal syntax and relations inside each chunk, like we see in grammar-
based parse trees obtained from deep parsing. The main objective of shallow parsing is to
obtain semantically meaningful phrases and observe relations among them.

 Refer to the “Language Syntax and Structure” section from Chapter 1 to refresh your
memory regarding how words and phrases give structure to a sentence consisting of a
bunch of words. A shallow parsed tree is also depicted there for our sample sentence.
We will look at various ways of performing shallow parsing by starting with some
recommended out-of-the-box shallow parsers. We will also implement some of our own
shallow parsers using techniques like regular expressions, chunking, chinking, and tag-
based training.

 Recommended Shallow Parsers
 We will be leveraging the pattern package here to create a shallow parser to extract
meaningful chunks out of sentences. The following code snippet shows how to perform
shallow parsing on our sample sentence:

 sentence = 'The brown fox is quick and he is jumping over the lazy dog'

 from pattern.en import parsetree
 tree = parsetree(sentence)

 # print the shallow parsed sentence tree
 In [5]: print tree
 ...:
 [Sentence('The/DT/B-NP/O brown/JJ/I-NP/O fox/NN/I-NP/O is/VBZ/B-VP/O quick/
JJ/B-ADJP/O and/CC/O/O he/PRP/B-NP/O is/VBZ/B-VP/O jumping/VBG/I-VP/O over/
IN/B-PP/B-PNP the/DT/B-NP/I-PNP lazy/JJ/I-NP/I-PNP dog/NN/I-NP/I-PNP')]

 The preceding output is the raw shallow-parsed sentence tree for our sample
sentence. Many of the tags will be quite familiar if you compare them to the earlier POS
tags table. You will notice some new notations with I , O , and B prefixes, the popular IOB
notation used in chunking, that represent Inside, Outside, and Beginning. The B- prefix
before a tag indicates it is the beginning of a chunk, and I- prefix indicates that it is inside
a chunk. The O tag indicates that the token does not belong to any chunk. The B- tag is
always used when there are subsequent tags following it of the same type without the
presence of O tags between them.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

144

 The following snippet shows how to get chunks in an easier-to-understand format:

 # print all chunks
 In [6]: for sentence_tree in tree:
 ...: print sentence_tree.chunks
 [Chunk('The brown fox/NP'), Chunk('is/VP'), Chunk('quick/ADJP'), Chunk('he/
NP'), Chunk('is jumping/VP'), Chunk('over/PP'), Chunk('the lazy dog/NP')]

 # Depict each phrase and its internal constituents
 In [9]: for sentence_tree in tree:
 ...: for chunk in sentence_tree.chunks:
 ...: print chunk.type, '->', [(word.string, word.type)
 ...: for word in chunk.words]
 NP -> [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN')]
 VP -> [(u'is', u'VBZ')]
 ADJP -> [(u'quick', u'JJ')]
 NP -> [(u'he', u'PRP')]
 VP -> [(u'is', u'VBZ'), (u'jumping', u'VBG')]
 PP -> [(u'over', u'IN')]
 NP -> [(u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')]

 The preceding outputs show an easier-to-understand result obtained from shallow
parsing of our sample sentence, where each phrase and its constituents are clearly
 shown .

 We can create some generic functions to parse and visualize shallow parsed
sentence trees in a better way and also reuse them to parse any sentence in general. The
following code shows how:

 from pattern.en import parsetree, Chunk
 from nltk.tree import Tree

 # create a shallow parsed sentence tree
 def create_sentence_tree(sentence, lemmatize=False):
 sentence_tree = parsetree(sentence,
 relations=True,
 lemmata=lemmatize) # if you want to lemmatize

the tokens
 return sentence_tree[0]

 # get various constituents of the parse tree
 def get_sentence_tree_constituents(sentence_tree):
 return sentence_tree.constituents()

 # process the shallow parsed tree into an easy to understand format
 def process_sentence_tree(sentence_tree):

 tree_constituents = get_sentence_tree_constituents(sentence_tree)
 processed_tree = [

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

145

 (item.type,
 [
 (w.string, w.type)
 for w in item.words
]
)
 if type(item) == Chunk
 else ('-',
 [
 (item.string, item.type)
]
)
 for item in tree_constituents
]

 return processed_tree

 # print the sentence tree using nltk's Tree syntax
 def print_sentence_tree(sentence_tree):

 processed_tree = process_sentence_tree(sentence_tree)
 processed_tree = [
 Tree(item[0],
 [
 Tree(x[1], [x[0]])
 for x in item[1]
]
)
 for item in processed_tree
]

 tree = Tree('S', processed_tree)
 print tree
 # visualize the sentence tree using nltk's Tree syntax
 def visualize_sentence_tree(sentence_tree):

 processed_tree = process_sentence_tree(sentence_tree)
 processed_tree = [
 Tree(item[0],
 [
 Tree(x[1], [x[0]])
 for x in item[1]
]
)
 for item in processed_tree
]
 tree = Tree('S', processed_tree)
 tree.draw()

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

146

 We can see the preceding functions in action on our sample sentence in the
following code snippet when we execute them:

 # raw shallow parsed tree
 In [11]: t = create_sentence_tree(sentence)
 ...: print t
 Sentence('The/DT/B-NP/O/NP-SBJ-1 brown/JJ/I-NP/O/NP-SBJ-1 fox/NN/I-NP/O/NP-
SBJ-1 is/VBZ/B-VP/O/VP-1 quick/JJ/B-ADJP/O/O and/CC/O/O/O he/PRP/B-NP/O/NP-
SBJ-2 is/VBZ/B-VP/O/VP-2 jumping/VBG/I-VP/O/VP-2 over/IN/B-PP/B-PNP/O the/
DT/B-NP/I-PNP/O lazy/JJ/I-NP/I-PNP/O dog/NN/I-NP/I-PNP/O')

 # processed shallow parsed tree
 In [16]: pt = process_sentence_tree(t)
 ...: pt
 Out[16]:
 [(u'NP', [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN')]),
 (u'VP', [(u'is', u'VBZ')]),
 (u'ADJP', [(u'quick', u'JJ')]),
 ('-', [(u'and', u'CC')]),
 (u'NP', [(u'he', u'PRP')]),
 (u'VP', [(u'is', u'VBZ'), (u'jumping', u'VBG')]),
 (u'PP', [(u'over', u'IN')]),
 (u'NP', [(u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')])]

 # print shallow parsed tree in an easy to understand format using nltk's
Tree syntax
 In [17]: print_sentence_tree(t)
 (S
 (NP (DT The) (JJ brown) (NN fox))
 (VP (VBZ is))
 (ADJP (JJ quick))
 (- (CC and))
 (NP (PRP he))
 (VP (VBZ is) (VBG jumping))
 (PP (IN over))
 (NP (DT the) (JJ lazy) (NN dog)))

 # visualize the shallow parsed tree
 In [18]: visualize_sentence_tree(t)

 Figure 3-2. Visual representation of a shallow parsed tree for our sample sentence

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

147

 The preceding outputs show some ways of creating, representing, and visualizing
shallow parse trees from sentences. The visual representation shown in Figure 3-2 is very
similar to the tree shown in Chapter 1 for the same sentence. The lowest level indicates
the values of the actual tokens; the next level indicates the POS tags for each token;
and the next higher level indicates the chunk phrasal tags. Go ahead and try out these
functions on some other sentences and compare their results. In the following sections
we will implement some of our own shallow parsers.

 Building Your Own Shallow Parsers
 We will use several techniques like regular expressions and tagging-based learners to build
our own shallow parsers. As with POS tagging, we will use some training data to train our
parsers if needed and evaluate all our parsers on some test data and also on our sample
sentence. The treebank corpus is available in nltk with chunk annotations . We will load it
first and prepare our training and testing datasets using the following code snippet :

 from nltk.corpus import treebank_chunk
 data = treebank_chunk.chunked_sents()
 train_data = data[:4000]
 test_data = data[4000:]

 # view what a sample data point looks like
 In [21]: print train_data[7]
 (S
 (NP A/DT Lorillard/NNP spokewoman/NN)
 said/VBD
 ,/,
 ``/``
 (NP This/DT)
 is/VBZ
 (NP an/DT old/JJ story/NN)
 ./.)

 From the preceding output, you can see that our data points are sentences that are
already annotated with phrase and POS tags metadata that will be useful in training
shallow parsers. We will start with using regular expressions for shallow parsing using
concepts of chunking and chinking. Using the process of chunking , we can use and
specify specific patterns to identify what we would want to chunk or segment in a
sentence, like phrases based on specific metadata like POS tags for each token. Chinking
is the reverse of chunking, where we specify which specific tokens we do not want to be
a part of any chunk and then form the necessary chunks excluding these tokens. Let us
consider a simple sentence and use regular expressions by leveraging the RegexpParser
class to create shallow parsers to illustrate both chunking and chinking for noun phrases :

 simple_sentence = 'the quick fox jumped over the lazy dog'

 from nltk.chunk import RegexpParser
 from pattern.en import tag

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

148

 # get POS tagged sentence
 tagged_simple_sent = tag(simple_sentence)
 In [83]: print tagged_simple_sent
 [(u'the', u'DT'), (u'quick', u'JJ'), (u'fox', u'NN'), (u'jumped', u'VBD'),
(u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')]

 # illustrate NP chunking based on explicit chunk patterns
 chunk_grammar = """
 NP: {<DT>?<JJ>*<NN.*>}
 """
 rc = RegexpParser(chunk_grammar)
 c = rc.parse(tagged_simple_sent)

 # view NP chunked sentence using chunking
 In [86]: print c
 (S
 (NP the/DT quick/JJ fox/NN)
 jumped/VBD
 over/IN
 (NP the/DT lazy/JJ dog/NN))

 # illustrate NP chunking based on explicit chink patterns
 chink_grammar = """
 NP: {<.*>+} # chunk everything as NP
 }<VBD|IN>+{
 """
 rc = RegexpParser(chink_grammar)
 c = rc.parse(tagged_simple_sent)

 # view NP chunked sentence using chinking
 In [89]: print c
 (S
 (NP the/DT quick/JJ fox/NN)
 jumped/VBD
 over/IN
 (NP the/DT lazy/JJ dog/NN))

 Thus we can see from the preceding outputs that we obtained similar results on a
toy NP shallow parser using chunking as well as chinking. Remember that chunks are
sequences of tokens that are included in a collective group (chunk), and chinks are tokens
or sequences of tokens that are excluded from chunks.

 We will now train a more generic regular expression-based shallow parser and
test its performance on our test treebank data . Internally, several steps are executed
to perform this parsing. The Tree structures used to represent parsed sentences in
 nltk get converted to ChunkString objects. We create an object of RegexpParser using
defined chunking and chinking rules. Objects of classes ChunkRule and ChinkRule
help in creating the complete shallow-parsed tree with the necessary chunks based on
specified patterns. The following code snippet represents a shallow parser using regular
 expression-based patterns :

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

149

 # create POS tagged tokens for sample sentence
 tagged_sentence = tag(sentence)
 In [90]: print tagged_sentence
 [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'is', u'VBZ'),
(u'quick', u'JJ'), (u'and', u'CC'), (u'he', u'PRP'), (u'is', u'VBZ'),
(u'jumping', u'VBG'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'),
(u'dog', u'NN')]

 # create the shallow parser
 grammar = """
 NP: {<DT>?<JJ>?<NN.*>}
 ADJP: {<JJ>}
 ADVP: {<RB.*>}
 PP: {<IN>}
 VP: {<MD>?<VB.*>+}

 """
 rc = RegexpParser(grammar)
 c = rc.parse(tagged_sentence)

 # view shallow parsed sample sentence
 In [99]: print c
 (S
 (NP The/DT brown/JJ fox/NN)
 (VP is/VBZ)
 quick/JJ
 and/CC
 he/PRP
 (VP is/VBZ jumping/VBG)
 (PP over/IN)
 (NP the/DT lazy/JJ dog/NN))

 # evaluate parser performance on test data
 In [100]: print rc.evaluate(test_data)
 ChunkParse score:
 IOB Accuracy: 54.5%
 Precision: 25.0%
 Recall: 52.5%
 F-Measure: 33.9%

 From the preceding output, we can see that the parse tree for our sample sentence
is very similar to the one we obtained from the out-of-the-box parser in the previous
section. Also, the accuracy on the overall test data is 54.5 percent, which is quite decent
for a start. For more details on what each performance metric signifies, refer to the
“ Evaluating Classification Models ” section in Chapter 4 .

 Remember when I said annotated tagged metadata for text is useful in many ways?
We will use the chunked and tagged treebank training data now to build a shallow
parser. We will leverage two chunking utility functions, tree2conlltags , to get triples of
word, tag, and chunk tags for each token, and conlltags2tree to generate a parse tree

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

150

from these token triples. We will be using these functions to train our parser later. First
let us see how these two functions work. Remember, the chunk tags use the IOB format
mentioned earlier:

 from nltk.chunk.util import tree2conlltags, conlltags2tree

 # look at a sample training tagged sentence
 In [104]: train_sent = train_data[7]
 ...: print train_sent
 (S
 (NP A/DT Lorillard/NNP spokewoman/NN)
 said/VBD
 ,/,
 ``/``
 (NP This/DT)
 is/VBZ
 (NP an/DT old/JJ story/NN)
 ./.)

 # get the (word, POS tag, Chunk tag) triples for each token
 In [106]: wtc = tree2conlltags(train_sent)
 ...: wtc
 Out[106]:
 [(u'A', u'DT', u'B-NP'),
 (u'Lorillard', u'NNP', u'I-NP'),
 (u'spokewoman', u'NN', u'I-NP'),
 (u'said', u'VBD', u'O'),
 (u',', u',', u'O'),
 (u'``', u'``', u'O'),
 (u'This', u'DT', u'B-NP'),
 (u'is', u'VBZ', u'O'),
 (u'an', u'DT', u'B-NP'),
 (u'old', u'JJ', u'I-NP'),
 (u'story', u'NN', u'I-NP'),
 (u'.', u'.', u'O')]

 # get shallow parsed tree back from the WTC triples
 In [107]: tree = conlltags2tree(wtc)
 ...: print tree
 (S
 (NP A/DT Lorillard/NNP spokewoman/NN)
 said/VBD
 ,/,
 ``/``
 (NP This/DT)
 is/VBZ
 (NP an/DT old/JJ story/NN)
 ./.)

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

151

 Now that we know how these functions work, we will define a function conll_tag_
chunks() to extract POS and chunk tags from sentences with chunked annotations and
also reuse our combined_taggers() function from POS tagging to train multiple taggers
with backoff taggers, as shown in the following code snippet:

 def conll_tag_chunks(chunk_sents):
 tagged_sents = [tree2conlltags(tree) for tree in chunk_sents]
 return [[(t, c) for (w, t, c) in sent] for sent in tagged_sents]

 def combined_tagger(train_data, taggers, backoff=None):
 for tagger in taggers:
 backoff = tagger(train_data, backoff=backoff)
 return backoff

 We will now define a class NGramTagChunker that will take in tagged sentences
as training input, get their (word, POS tag, Chunk tag) WTC triples, and train a
 BigramTagger with a UnigramTagger as the backoff tagger. We will also define a parse()
function to perform shallow parsing on new sentences:

 from nltk.tag import UnigramTagger, BigramTagger
 from nltk.chunk import ChunkParserI

 class NGramTagChunker(ChunkParserI):

 def __init__(self, train_sentences,
 tagger_classes=[UnigramTagger, BigramTagger]):
 train_sent_tags = conll_tag_chunks(train_sentences)
 self.chunk_tagger = combined_tagger(train_sent_tags, tagger_classes)

 def parse(self, tagged_sentence):
 if not tagged_sentence:
 return None
 pos_tags = [tag for word, tag in tagged_sentence]
 chunk_pos_tags = self.chunk_tagger.tag(pos_tags)
 chunk_tags = [chunk_tag for (pos_tag, chunk_tag) in chunk_pos_tags]
 wpc_tags = [(word, pos_tag, chunk_tag) for ((word, pos_tag), chunk_tag)
 in zip(tagged_sentence, chunk_tags)]
 return conlltags2tree(wpc_tags)

 In the preceding class, the constructor __init__() function is used to train the
shallow parser using n-gram tagging based on the WTC triples for each sentence.
Internally, it takes a list of training sentences as input, which is annotated with chunked
parse tree metadata. It uses the conll_tag_chunks() function that we defined earlier to
get a list of WTC triples for each chunked parse tree. Finally, it trains a Bigram tagger with
a Unigram tagger as a backoff tagger using these triples and stores the training model in
 self.chunk_tagger . Remember you can parse other n-gram-based taggers for training by
using the tagger_classes parameter . Once trained, the parse() function can be used to
evaluate the tagger on test data and also shallow parse new sentences. Internally, it takes

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

152

a POS tagged sentence as input, separates out the POS tags from the sentence, and uses
our trained self.chunk_tagger to get the IOB chunk tags for the sentence. This is then
combined with the original sentence tokens, and we use the conlltags2tree() function
to get our final shallow parsed tree.

 The following snippet shows our parser in action:

 # train the shallow parser
 ntc = NGramTagChunker(train_data)

 # test parser performance on test data
 In [114]: print ntc.evaluate(test_data)
 ChunkParse score:
 IOB Accuracy: 99.6%
 Precision: 98.4%
 Recall: 100.0%
 F-Measure: 99.2%

 # parse our sample sentence
 In [115]: tree = ntc.parse(tagged_sentence)
 ...: print tree
 (S
 (NP The/DT brown/JJ fox/NN)
 is/VBZ
 (NP quick/JJ)
 and/CC
 (NP he/PRP)
 is/VBZ
 jumping/VBG
 over/IN
 (NP the/DT lazy/JJ dog/NN))

 That output shows that our parser performance on the treebank test set data has an
overall accuracy of 99.6 percent—which is really excellent!

 Let us train and evaluate our parser on the conll2000 corpus , which contains
excerpts from the Wall Street Journal and is a much larger corpus. We will train our parser
on the first 7,500 sentences and test its performance on the remaining 3,448 sentences.
The following snippet shows this:

 from nltk.corpus import conll2000
 wsj_data = conll2000.chunked_sents()
 train_wsj_data = wsj_data[:7500]
 test_wsj_data = wsj_data[7500:]

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

153

 # look at a sample sentence in the corpus
 In [125]: print train_wsj_data[10]
 (S
 (NP He/PRP)
 (VP reckons/VBZ)
 (NP the/DT current/JJ account/NN deficit/NN)
 (VP will/MD narrow/VB)
 (PP to/TO)
 (NP only/RB #/# 1.8/CD billion/CD)
 (PP in/IN)
 (NP September/NNP)
 ./.)

 # train the shallow parser
 tc = NGramTagChunker(train_wsj_data)

 # test performance on the test data
 In [126]: print tc.evaluate(test_wsj_data)
 ChunkParse score:
 IOB Accuracy: 66.8%
 Precision: 77.7%
 Recall: 45.4%
 F-Measure: 57.3%

 The preceding output shows that our parser achieved an overall accuracy of around
67 percent, because this corpus is much larger than the treebank corpus . You can also
look at implementing shallow parsers using other techniques, like supervised classifiers,
by leveraging the ClassifierBasedTagger class.

 Dependency-based Parsing
 In dependency-based parsing, we try to use dependency-based grammars to analyze
and infer both structure and semantic dependencies and relationships between tokens
in a sentence. (Refer to the “Dependency Grammars” subsection under “Grammar”
in the “ Language Syntax and Structure ” section from Chapter 1 if you need to refresh
your memory.) Dependency-based grammars help us in annotating sentences with
dependency tags that are one-to-one mappings between tokens signifying dependencies
between them. A dependency grammar-based parse tree representation is a labelled
and directed tree or graph , to be more precise. The nodes are always the lexical tokens,
and the labelled edges show dependency relationships between the heads and their
dependents. The labels on the edges indicate the grammatical role of the dependent. If
you remember our sample sentence The brown fox is quick and he is jumping over the
lazy dog , Figure 3-3 from Chapter 1 is one of the many ways of depicting the dependency
relationships.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

154

 In this section we will look at some ways in which we can further understand the
syntax and semantics between textual tokens using dependency grammar-based parsing.

 Recommended Dependency Parsers
 We will be using a couple of libraries to generate dependency-based parse trees and test
them on our sample sentence. To start with, we will use spacy to analyze our sample
sentence and generate each token and its dependencies. Figure 3-3 was generated using
 spacy's output and putting some beautiful CSS to make the dependencies look clear and
easy to understand.

 The following code snippet show how to get dependencies for each token in our
sample sentence:

 sentence = 'The brown fox is quick and he is jumping over the lazy dog'

 # load dependencies
 from spacy.en import English
 parser = English()
 parsed_sent = parser(unicode(sentence))

 # generate dependency parser output
 In [131]: dependency_pattern = '{left}<---{word}[{w_type}]---
>{right}\n--------'
 ...: for token in parsed_sent:
 ...: print dependency_pattern.format(word=token.orth_,
 ...: w_type=token.dep_,
 ...: left=[t.orth_
 ...: for t
 ...: in token.lefts],

 Figure 3-3. Dependency grammar annotated graph for our sample sentence

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

155

 ...: right=[t.orth_
 ...: for t
 ...: in token.rights])
 []<---The[det]--->[]

 []<---brown[amod]--->[]

 [u'The', u'brown']<---fox[nsubj]--->[]

 [u'fox']<---is[ROOT]--->[u'quick', u'and', u'jumping']

 []<---quick[acomp]--->[]

 []<---and[cc]--->[]

 []<---he[nsubj]--->[]

 []<---is[aux]--->[]

 [u'he', u'is']<---jumping[conj]--->[u'over']

 []<---over[prep]--->[u'dog']

 []<---the[det]--->[]

 []<---lazy[amod]--->[]

 [u'the', u'lazy']<---dog[pobj]--->[]

 The preceding output gives us each token and its dependency type, the left arrow
points to the dependencies on its left, and the right arrow points to the dependencies
on its right. You will find a lot of similarity if you match each line of the output with the
previous figure showing the dependency tree. You can quickly look back at Chapter 1 in
case you have forgotten what each of the dependency tags indicates.

 Next, we will be using nltk and the Stanford Parser to generate the dependency tree
for our sample sentence using the following code snippet:

 # set java path
 import os
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe'
 os.environ['JAVAHOME'] = java_path

 # perform dependency parsing
 from nltk.parse.stanford import StanfordDependencyParser
 sdp = StanfordDependencyParser(path_to_jar='E:/stanford/stanford-parser-
full-2015-04-20/stanford-parser.jar',
 path_to_models_jar='E:/stanford/stanford-
parser-full-2015-04-20/stanford-parser-3.5.2-models.jar')

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

156

 result = list(sdp.raw_parse(sentence))

 # generate annotated dependency parse tree
 In [134]: result[0]
 Out[134]:

 # generate dependency triples
 Out[136]:
 [((u'quick', u'JJ'), u'nsubj', (u'fox', u'NN')),
 ((u'fox', u'NN'), u'det', (u'The', u'DT')),
 ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')),
 ((u'quick', u'JJ'), u'cop', (u'is', u'VBZ')),
 ((u'quick', u'JJ'), u'cc', (u'and', u'CC')),
 ((u'quick', u'JJ'), u'conj', (u'jumping', u'VBG')),
 ((u'jumping', u'VBG'), u'nsubj', (u'he', u'PRP')),
 ((u'jumping', u'VBG'), u'aux', (u'is', u'VBZ')),
 ((u'jumping', u'VBG'), u'nmod', (u'dog', u'NN')),
 ((u'dog', u'NN'), u'case', (u'over', u'IN')),
 ((u'dog', u'NN'), u'det', (u'the', u'DT')),
 ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]

 Figure 3-4. Annotated dependency parse tree for our sample sentence

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

157

 # print simple dependency parse tree
 In [137]: dep_tree = [parse.tree() for parse in result][0]
 ...: print dep_tree
 (quick (fox The brown) is and (jumping he is (dog over the lazy)))

 # visualize simple dependency parse tree
 In [140]: dep_tree.draw()
 Out [140]:

 The preceding outputs shows how easily we can generate dependency parse trees
for sentences and analyze and understand relationships and dependencies amongst
the tokens. The Stanford Parser is quite stable and robust and integrates well with nltk .
A side note would be that you will need graphviz installed to generate the annotated
dependency tree shown in Figure 3-4 .

 Building Your Own Dependency Parsers
 It is not very easy to build your own dependency grammar–based parsers from scratch
because you need sufficient data, and just checking based on grammar production
rules would not always scale well. The following example snippet shows how to build
your own dependency parser. To do this, we first leverage nltk’s DependencyGrammar
class to generate production rules from a user input grammar. Once this is done, we use
 ProjectiveDependencyParser , a projective, production rule-based dependency parser to
perform the dependency based parsing:

 import nltk
 tokens = nltk.word_tokenize(sentence)

 dependency_rules = """
 'fox' -> 'The' | 'brown'
 'quick' -> 'fox' | 'is' | 'and' | 'jumping'
 'jumping' -> 'he' | 'is' | 'dog'
 'dog' -> 'over' | 'the' | 'lazy'
 """
 dependency_grammar = nltk.grammar.DependencyGrammar.fromstring(dependency_
rules)

 Figure 3-5. Simple dependency parse tree for our sample sentence

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

158

 # print production rules
 In [143]: print dependency_grammar
 Dependency grammar with 12 productions
 'fox' -> 'The'
 'fox' -> 'brown'
 'quick' -> 'fox'
 'quick' -> 'is'
 'quick' -> 'and'
 'quick' -> 'jumping'
 'jumping' -> 'he'
 'jumping' -> 'is'
 'jumping' -> 'dog'
 'dog' -> 'over'
 'dog' -> 'the'
 'dog' -> 'lazy'

 # build dependency parser
 dp = nltk.ProjectiveDependencyParser(dependency_grammar)

 # parse our sample sentence
 res = [item for item in dp.parse(tokens)]
 tree = res[0]

 # print dependency parse tree
 In [145]: print tree
 (quick (fox The brown) is and (jumping he is (dog over the lazy)))

 You can see that the preceding dependency parse tree is the same one as the one
generated by the Stanford Parser. In fact, you can use tree.draw() to visualize the tree
and compare it with the previous tree. Scaling these is always a challenge, and a lot of
work is being done in large projects to generate these systems for rule-based dependency
grammars. Some examples include the Lexical Functional Grammar (LFG) Pargram
project and the Lexicalized Tree Adjoining Grammar XTAG project.

 Constituency-based Parsing
 Constituent-based grammars are used to analyze and determine the constituents
a sentence is usually composed of. Besides determining the constituents, another
important objective is to find out the internal structure of these constituents and see how
they link to each other. There are usually several rules for different types of phrases based
on the type of components they can contain, and we can use them to build parse trees.
Refer to the “Constituency Grammars” subsection under “Grammar” in the “Language
Syntax and Structure” section from Chapter 1 if you need to refresh your memory and
look at some examples of sample parse trees.

 In general, a constituency-based grammar helps specify how we can break a
sentence into various constituents. Once that is done, it further helps in breaking down
those constituents into further subdivisions, and this process repeats till we reach the

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

159

level of individual tokens or words. These grammars have various production rules and
usually a context-free grammar (CFG) or phrase structured grammar is sufficient for this.

 Once we have a set of grammar rules, a constituency parser can be built that will
process input sentences according to these rules and help in building a parse tree. The
parser is what brings the grammar to life and can be said to be a procedural interpretation
of the grammar. There are various types of parsing algorithms, including the following:

• Recursive Descent parsing

• Shift Reduce parsing

• Chart parsing

• Bottom-up parsing

• Top-down parsing

• PCFG parsing

 Going through these in detail would be impossible given the constraints of this book.
However, nltk provides some excellent information on them in its official book, available
at http://www.nltk.org/book/ch08.html . I will describe some of these parsers briefly
and look at PCFG parsing in detail when we implement our own parser later. Recursive
Descent parsing usually follows a top-down parsing approach and it reads in tokens
from the input sentence and tries to match them with the terminals from the grammar
production rules. It keeps looking ahead by one token and advances the input read
pointer each time it gets a match.

 Shift Reduce parsing follows a bottom-up parsing approach where it finds sequences
of tokens (words/phrases) that correspond to the righthand side of grammar productions
and then replaces it with the lefthand side for that rule. This process continues until the
whole sentence is reduced to give us a parse tree.

 Chart parsing uses dynamic programming , which stores intermediate results and
reuses them when needed to get significant efficiency gains. In this case, chart parsers
store partial solutions and look them up when needed to get to the complete solution.

 Recommended Constituency Parsers
 We will be using nltk and the StanfordParser here to generate parse trees. We will need
to set the Java path before we run our code to parse our sample sentence. We will print
and also visualize the parse tree, which will be quite similar to some of the parse trees
from Chapter 1 , based on constituency grammars.

 The following code snippet illustrates:

 # set java path
 import os
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe'
 os.environ['JAVAHOME'] = java_path

 sentence = 'The brown fox is quick and he is jumping over the lazy dog'

 from nltk.parse.stanford import StanfordParser

http://www.nltk.org/book/ch08.html
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

160

 # create parser object
 scp = StanfordParser(path_to_jar='E:/stanford/stanford-parser-
full-2015-04-20/stanford-parser.jar', path_to_models_jar='E:/stanford/
stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar')

 # get parse tree
 result = list(scp.raw_parse(sentence))

 # print the constituency parse tree
 In [150]: print result[0]
 ...:
 (ROOT
 (NP
 (S
 (S
 (NP (DT The) (JJ brown) (NN fox))
 (VP (VBZ is) (ADJP (JJ quick))))
 (CC and)
 (S
 (NP (PRP he))
 (VP
 (VBZ is)
 (VP
 (VBG jumping)
 (PP (IN over) (NP (DT the) (JJ lazy) (NN dog)))))))))

 # visualize constituency parse tree
 In [151]: result[0].draw()
 Out [151]:

 The preceding output shows how to build constituency grammar–based parse trees
for sentences. Notice the parse tree depicted in Figure 3-6 being significantly different
from dependency parse trees and matching the constituency parse trees illustrated in
Chapter 1 . Note the nested and hierarchical constituents shown in the tree above which
are some of the typical characteristics of constituency parse trees.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

161

 Building Your Own Constituency Parsers
 There are various ways of building your own constituency parsers, including creating
your own CFG production rules and then using a parser to use that grammar. To build
your own CFG, you can use the nltk.CFG.fromstring function to feed in your own
production rules and then use parsers like ChartParser or RecursiveDescentParser ,
both of which belong to the nltk package. Feel free to build some toy grammars and play
around with these parsers.

 We will look at a way to build a constituency parser that scales well and is efficient.
The problem with regular CFG parsers, like chart and Recursive Descent parsers, is that
they can get easily overwhelmed by the sheer number of total possible parses when
parsing sentences and can become extremely slow. This is where weighted grammars
like PCFG (Probabilistic Context Free Grammar) and probabilistic parsers like the Viterbi
parser prove to be more effective. A PCFG is a context-free grammar that associates a
probability with each of its production rules. The probability of a parse tree generated
from a PCFG is simply the production of the individual probabilities of the productions
used to generate it.

 Figure 3-6. Constituency parse tree for our sample sentence

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

162

 We will use nltk’s ViterbiParser here to train a parser on the treebank corpus
that provides annotated parse trees for each sentence in the corpus. This parser is a
bottom-up PCFG parser that uses dynamic programming to find the most likely parse at
each step. We will start our process of building our own parser by loading the necessary
training data and dependencies:

 import nltk
 from nltk.grammar import Nonterminal
 from nltk.corpus import treebank

 # get training data
 training_set = treebank.parsed_sents()

 # view a sample training sentence
 In [161]: print training_set[1]
 (S
 (NP-SBJ (NNP Mr.) (NNP Vinken))
 (VP
 (VBZ is)
 (NP-PRD
 (NP (NN chairman))
 (PP
 (IN of)
 (NP
 (NP (NNP Elsevier) (NNP N.V.))
 (, ,)
 (NP (DT the) (NNP Dutch) (VBG publishing) (NN group))))))
 (. .))

 Now we will build the production rules for our grammar by extracting the
productions from the tagged and annotated training sentences and adding them:

 # extract the productions for all annotated training sentences
 treebank_productions = list(
 set(production
 for sent in training_set
 for production in sent.productions()
)
)

 # view sample productions
 In [166]: treebank_productions[0:10]
 Out[166]:
 [VBZ -> 'cites',
 VBD -> 'spurned',
 PRN -> , ADVP-TMP ,,
 NNP -> 'ACCOUNT',
 JJ -> '36-day',

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

163

 NP-SBJ-2 -> NN,
 JJ -> 'unpublished',
 NP-SBJ-1 -> NNP,
 JJ -> 'elusive',
 NNS -> 'Lids']

 # add productions for each word, POS tag
 for word, tag in treebank.tagged_words():
 t = nltk.Tree.fromstring("("+ tag + " " + word +")")
 for production in t.productions():
 treebank_productions.append(production)

 # build the PCFG based grammar
 treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'),
 treebank_productions)

 Now that we have our necessary grammar with production rules, we will create
our parser using the following snippet by training it on the grammar and then trying to
evaluate it on our sample sentence:

 # build the parser
 viterbi_parser = nltk.ViterbiParser(treebank_grammar)

 # get sample sentence tokens
 tokens = nltk.word_tokenize(sentence)

 # get parse tree
 In [170]: result = list(viterbi_parser.parse(tokens))
 Traceback (most recent call last):
 File "<ipython-input-170-c2cdab3cd56c>", line 1, in <module>
 result = list(viterbi_parser.parse(tokens))
 File "C:\Anaconda2\lib\site-packages\nltk\parse\viterbi.py", line 112, in
parse
 self._grammar.check_coverage(tokens)
 ValueError: Grammar does not cover some of the input words: u"'brown',
'fox', 'lazy', 'dog'".

 Unfortunately, we get an error when we try to parse our sample sentence tokens
with our newly built parser. The reason is quite clear from the error: Some of the words
in our sample sentence are not covered by the treebank -based grammar because they
are not present in our treebank corpus. Now, because this constituency-based grammar
uses POS tags and phrase tags to build the tree based on the training data, we will add the
token and POS tags for our sample sentence in our grammar and rebuild the parser:

 # get tokens and their POS tags
 from pattern.en import tag as pos_tagger
 tagged_sent = pos_tagger(sentence)

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

164

 # check the tokens and their POS tags
 In [172]: print tagged_sent
 ...:
 [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'is', u'VBZ'),
(u'quick', u'JJ'), (u'and', u'CC'), (u'he', u'PRP'), (u'is', u'VBZ'),
(u'jumping', u'VBG'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'),
(u'dog', u'NN')]

 # extend productions for sample sentence tokens
 for word, tag in tagged_sent:
 t = nltk.Tree.fromstring("("+ tag + " " + word +")")
 for production in t.productions():
 treebank_productions.append(production)

 # rebuild grammar
 treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'),
 treebank_productions)
 # rebuild parser
 viterbi_parser = nltk.ViterbiParser(tbank_grammar)

 # get parse tree for sample sentence
 result = list(viterbi_parser.parse(tokens))

 # print the constituency parse tree
 In [178]: print result[0]
 (S
 (NP-SBJ-163 (DT The) (JJ brown) (NN fox))
 (VP
 (VBZ is)
 (PRT (JJ quick))
 (S
 (CC and)
 (NP-SBJ (PRP he))
 (VP
 (VBZ is)
 (PP-1
 (VBG jumping)
 (NP (IN over) (DT the) (JJ lazy) (NN dog))))))) (p=2.02604e-48)

 # visualize the constituency parse tree
 In [179]: result[0].draw()
 Out [179]:

CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

165

 We are now able to successfully generate the parse tree for our sample sentence.
You can see the visual representation of the tree in Figure 3-7 . Remember that this is a
probabilistic PCFG parser , and you can see the overall probability of this tree mentioned
in the output earlier when we printed our parse tree. The notations of the tags followed
here are all based on the Treebank annotations we discussed earlier. Thus this shows how
to build our own constituency-based parser.

 Summary
 Congratulations on reaching the end of this chapter. We have covered a major chunk
of concepts, techniques, and implementations with regard to text processing, syntactic
analysis, and understanding. A lot of the concepts from Chapter 1 should seem more
relevant and clearer now that we have actually implemented them on real examples.

 The content covered in this chapter is two-fold. We looked at concepts related to
text processing and normalization. You now know the importance of processing and
normalizing text, and as we move on to future chapters, you will see why it becomes
more and more important to have well-processed and standardized textual data. We
have covered various concepts and implemented techniques for text tokenization and
normalization. These include cleaning and correcting text entities like spelling and
contractions. We also built our own spelling corrector and contraction expander in the
same context. We found out a way to leverage WordNet and correct words with repeated
characters. Finally, we looked at various stemming and lemmatization concepts and
techniques. The next part of our chapter was dedicated to analyzing and understanding
text syntax and structure, where we revisited concepts from Chapter 1 including POS
tagging, shallow parsing, dependency parsing, and constituency parsing.

 You now know how to use taggers and parsers on real-world textual data and ways
to implement your own taggers and parsers. We will be diving more into analyzing and
deriving insights from text in the future chapters using various ML techniques, including
classification, clustering, and summarization.

 Figure 3-7. Constituency parse tree for our sample sentence based on Treebank
annotations

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

167© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_4

CHAPTER 4

Text Classification

Learning to process and understand text is one of the first steps on the journey to
getting meaningful insights from textual data. Though it is important to understand
how language is structured and specific text syntax patterns, that alone is not sufficient
to be of much use to businesses and organizations who want to derive useful patterns
and insights and get maximum use out of their vast volumes of text data. Knowledge of
language processing coupled with concepts from analytics and machine learning (ML)
help in building systems that can leverage text data and help solve real-world practical
problems which benefit businesses.

Various aspects of ML include supervised learning, unsupervised learning,
reinforcement learning, and more recently deep learning. Each of these concepts involves
several techniques and algorithms that can be leveraged on text data and to build self-
learning systems that do not need too much manual supervision. An ML model is a
combination of data and algorithms—you got a taste of that in Chapter 3 was we built our
own parsers and taggers. The benefit of ML is that once a model is trained, we can directly
use it on new and previously unseen data to start seeing useful insights and desired results.

One of the most relevant and challenging problems is text classification or
categorization, which involves trying to organize text documents into various categories
based on inherent properties or attributes of each text document. This is used in
various domains, including email spam identification and news categorization. The
concept may seem simple, and if you have a small number of documents, you can look
at each document and gain some idea about what it is trying to indicate. Based on
this knowledge, you can group similar documents into categories or classes. It’s more
challenging when the number of text documents to be classified increases to several
hundred thousands or millions. This is where techniques like feature extraction and
supervised or unsupervised ML come in handy. Document classification is a generic
problem not limited to text alone but also can be extended for other items like music,
images, video, and other media.

To formalize our problem more clearly, we will have a given set of classes or
categories and several text documents. Remember that documents are basically sentences
or paragraphs of text. This forms a corpus. Our task would be to determine which class
or classes each document belongs to. This entire process involves several steps which
we will be discussing in detail later in this chapter. Briefly, for a supervised classification
problem, we need to have some labelled data that we could use for training a text
classification model. This data would essentially be curated documents that are already
assigned to some specific class or category beforehand. Using this, we would essentially

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

168

extract features and attributes from each document and make our model learn these
attributes corresponding to each particular document and its class/category by feeding
it to a supervised ML algorithm. Of course, the data would need to be pre-processed and
normalized before building the model. Once done, we would follow the same process of
normalization and feature extraction and then feed it to the model to predict the class or
category for new documents. However, for an unsupervised classification problem, we
would essentially not have any pre-labelled training documents. We would use techniques
like clustering and document similarity measures to cluster documents together based on
their inherent properties and assign labels to them.

In this chapter, we will discuss the concept of text classification and how it can be
formulated as a supervised ML problem. We will also talk about the various forms of
classification and what they indicate. A clear depiction for the essential steps necessary
to complete a text classification workflow will also be presented, and we will be covering
some of the essential steps from the same workflow, which have not been discussed
before, including feature extraction, classifiers, model evaluation, and finally we will put
them all together in building a text classification system on real-world data.

What Is Text Classification?
Before we define text classification, we need to understand the scope of textual data and
what we really mean by classification. The textual data involved here can be anything
ranging from a phrase, sentence, or a complete document with paragraphs of text, which
can be obtained from corpora, blogs, or anywhere from the Web. Text classification is
also often called document classification just to cover all forms of textual content under
the word document. The word document could be defined as some form of concrete
representation of thoughts or events that could be in the form of writing, recorded
speech, drawings, or presentations. I use the term document here to represent textual
data such as sentences or paragraphs belonging to the English language.

Text classification is also often called text categorization, although I explicitly use
the word classification here for two reasons. First, it depicts the same essence as text
categorization, where we want to classify documents. The second reason is to also show
that we would be using classification or a supervised ML approach here to classify or
categorize the text. Text categorization can be done in many ways, as mentioned. We
will be focusing explicitly on a supervised approach using classification. The process of
classification is not restricted to text alone. It is used quite frequently in other domains
including science, healthcare, weather forecasting, and technology.

Text or document classification is the process of assigning text documents into one
or more classes or categories, assuming that we have a predefined set of classes.
Documents here are textual documents, and each document can contain a sentence or
even a paragraph of words. A text classification system would successfully be able to
classify each document to its correct class(es) based on inherent properties of the
document. Mathematically, we can define it like this: given some description and
attributes d for a document D, where d DÎ , and we have a set of predefined classes or

categories, C c c c cn= ¼{ }1 2 3, , , , . The actual document D can have many inherent

properties and attributes that lead it to being an entity in a high-dimensional space. Using
a subset of that space with a limit set of descriptions and features depicted by d, we

Chapter 4 ■ text ClassifiCation

169

should be able to successfully assign the original document D to its correct class C
x
 using

a text classification system T. This can be represented by T D Cx: ® .

We will talk more about the text classification system in detail later in the chapter.
Figure 4-1 shows a high-level conceptual representation of the text classification process.

In Figure 4-1, we can see there are several documents representing products which
can be assigned to various categories of food, mobile phones, and movies. Initially,
these documents are all present together, just as a text corpus has various documents in
it. Once it goes through a text classification system, represented as a black box here, we
can see that each document is assigned to one specific class or category we had defined
previously. Here the documents are just represented by their names, but in real data, they
can contain much more, including descriptions of each product, specific attributes such
as movie genre, product specifications, constituents, and many more properties that can
be used as features in the text classification system to make document identification and
classification easier.

There are various types of text classification. This chapter focuses on two major
types, which are based on the type of content that makes up the documents:

•	 Content-based classification

•	 Request-based classification

Both types are more like different philosophies or ideals behind approaches to
classifying text documents rather than specific technical algorithms or processes. Content-
based classification is the type of text classification where priorities or weights are given
to specific subjects or topics in the text content that would help determine the class of the
document. A conceptual example would be that a book with more than 30 percent of its
content about food preparations can be classified under cooking/recipes. Request-based
classification is influenced by user requests and is targeted towards specific user groups
and audiences. This type of classification is governed by specific policies and ideals.

Figure 4-1. Conceptual overview of text classification

Chapter 4 ■ text ClassifiCation

170

Automated Text Classification
We now have an idea of the definition and scope of text classification. We have also
formally defined text classification both conceptually and mathematically, where we
talked about a “text classification system” being able to classify text documents to their
respective categories or classes. Consider several humans doing the task of going through
each document and classifying it. They would then be a part of the text classification
system we are talking about. However, that would not scale very well once there were
millions of text documents to be classified quickly. To make the process more efficient
and faster, we can consider automating the task of text classification, which brings us to
automated text classification.

To automate text classification, we can make use of several ML techniques and
concepts. There are mainly two types of ML techniques that are relevant to solving this
problem:

•	 Supervised machine learning

•	 Unsupervised machine learning

Besides these two techniques, there are also other families of learning algorithms,
such as reinforcement learning and semi-supervised learning. Let us look at both
supervised and unsupervised learning algorithms in more detail, from both an ML
perspective how it can be leveraged in classifying text documents.

Unsupervised learning refers to specific ML techniques or algorithms that do not
require any pre-labelled training data samples to build a model. We usually have a
collection of data points, which could be text or numeric, depending on the problem we
are trying to solve. We extract features from each of the data points using a process known
as feature extraction and then feed the feature set for each data point into our algorithm.
We are trying to extract meaningful patterns from the data, such as trying to group
together similar data points using techniques like clustering or summarizing documents
based on topic models. This is extremely useful in text document categorization and is
also called document clustering, where we cluster documents into groups purely based
on their features, similarity, and attributes, without training any model on previously
labelled data. Later chapters further discuss unsupervised learning, covering topic
models, document summarization, similarity analysis, and clustering.

Supervised learning refers to specific ML techniques or algorithms that are trained
on pre-labelled data samples known as training data. Features or attributes are extracted
from this data using feature extraction, and for each data point we will have its own
feature set and corresponding class/label. The algorithm learns various patterns for each
type of class from the training data. Once this process is complete, we have a trained
model. This model can then be used to predict the class for future test data samples once
we feed their features to the model. Thus the machine has actually learned, based on
previous training data samples, how to predict the class for new unseen data samples.

There are two major types of supervised learning algorithms:

•	 Classification: The process of supervised learning is referred to
as classification when the outcomes to be predicted are distinct
categories, thus the outcome variable is a categorical variable in
this case. Examples would be news categories or movie genres.

Chapter 4 ■ text ClassifiCation

171

•	 Regression: Supervised learning algorithms are known as
regression algorithms when the outcome we want to predict is a
continuous numeric variable. Examples would be house prices or
people’s weights.

We will be specifically focusing on classification for our problem (hence the name of
the chapter—we are trying to classify or categorize text documents into distinct classes or
categories. We will be following a supervised learning approach in our implementations
later on.

Now we are ready to define the process of automated or ML-based text classification
mathematically. Say we have a training set of documents labelled with their corresponding
class or category. This can be represented by TS, which is a set of paired documents and
labels, TS d c d c d cn n= () () ¼ (){ }1 1 2 2, , ,, , , where d

1
, d

2
, …, d

n
 is the list of text documents,

and their corresponding labels are c
1
, c

2
, …, c

n
 such that c C c c cnx Î = ¼{ }1 2, , , where c

x

denotes the class label for document x and C denotes the set of all possible distinct classes,
any of which can be the class or classes for each document. Assuming we have our training
set, we can define a supervised learning algorithm F such that when it is trained on our
training dataset TS, we build a classification model or classifier γ such that we can say
that F TS() = g . Thus the supervised learning algorithm F takes the input set of (document,

class) pairs TS and gives us the trained classifier γ, which is our model. This process is
known as the training process.

This model can then take a new, previously unseen document ND and predict its
class c

ND
 such that c CNDÎ . This process is known as the prediction process and can be

represented by g :TD cND® . Thus we can see that there are two main processes in the

supervised text classification process:

•	 Training

•	 Prediction

An important point to remember is that some manually labelled training data
is necessary for supervised text classification, so even though we are talking about
automated text classification, to kick start the process we need some manual efforts. Of
course, the benefits of this are manifold because once we have a trained classifier, we can
keep using it to predict and classify new documents with minimal efforts and manual
supervision.

There are various learning methods or algorithms that we will be discussing in a
future section. These learning algorithms are not specific to text data but are generic ML
algorithms that can be applied toward various types of data after due pre-processing
and feature extraction. I will touch upon a couple of supervised ML algorithms and use
them in solving a real-world text classification problem. These algorithms are usually
trained on the training data set and often an optional validation set such that the model
that is trained does not overfit to the training data, which basically means it would then
not be able to generalize well and predict properly for new instances of text documents.
Often the model is tuned on several of its internal parameters based on the learning
algorithm and by evaluating various performance metrics like accuracy on the validation
set or by using cross-validation where we split the training dataset itself into training and

Chapter 4 ■ text ClassifiCation

172

validation sets by random sampling. This comprises the training process, the outcome
of which yields a fully trained model that is ready to predict. In the prediction stage,
we usually have new data points from the test dataset. We can use them to feed into
the model after normalization and feature extraction and see how well the model is
performing by evaluating its prediction performance.

There are a few types of text classification based on the number of classes to predict
and the nature of predictions. These types of classification are based on the dataset, the
number of classes/categories pertaining to that dataset, and the number of classes that
can be predicted on any data point:

•	 Binary classification is when the total number of distinct classes
or categories is two in number and any prediction can contain
either one of those classes.

•	 Multi-class classification, also known as multinomial
classification, refers to a problem where the total number of
classes is more than two, and each prediction gives one class
or category that can belong to any of those classes. This is an
extension of the binary classification problem where the total
number of classes is more than two.

•	 Multi-label classification refers to problems where each prediction
can yield more than one outcome/predicted class for any data
point.

Text Classification Blueprint
Now that we know the basic scope of automated text classification, this section will look
at a blueprint for a complete workflow of building an automated text classifier system.
This will consist of a series of steps that must be followed in both the training and testing
phases mentioned in the earlier section. For building a text classification system, we
need to make sure we have our source of data and retrieve that data so that we can start
feeding it to our system. The following main steps outline a typical workflow for a text
classification system, assuming we have our dataset already downloaded and ready to
be used:

 1. Prepare train and test datasets

 2. Text normalization

 3. Feature extraction

 4. Model training

 5. Model prediction and evaluation

 6. Model deployment

These steps are carried out in that order for building a text classifier. Figure 4-2 shows
a detailed workflow for a text classification system with the main processes highlighted in
training and prediction.

Chapter 4 ■ text ClassifiCation

173

Notice that there are two main boxes for Training and Prediction, which are the
two main processes involved in building a text classifier. In general, the dataset we have
is usually divided into two or three splits called the training, validation (optional), and
testing datasets, respectively. You can see an overlap of the Text Normalization and Feature
Extraction modules in Figure 4-2 for both processes, indicating that no matter which
document we want to classify and predict its class, it must go through the same series
of transformations in both the training and prediction process. Each document is first
pre-processed and normalized, and then specific features pertaining to the document are
extracted. These processes are always uniform in both the training and prediction processes
to make sure that our classification model performs consistently in its predictions.

In the Training process, each document has its own corresponding class/category
that was manually labeled or curated beforehand. These training text documents are
processed and normalized in the Text Normalization module, giving us clean and
standardized training text documents. They are then passed to the Feature Extraction
module where different types of feature-extraction techniques are used to extract
meaningful features from the processed text documents. We will cover some popular
feature extraction techniques in a future section. These features are usually numeric
arrays or vectors because standard ML algorithms work on numeric vectors. Once we
have our features, we select a supervised ML algorithm and train our model.

Training the model involves feeding the feature vectors for the documents and
the corresponding labels such that the algorithm is able to learn various patterns
corresponding to each class/category and can reuse this learned knowledge to predict
classes for future new documents. Often an optional validation dataset is used to evaluate
the performance of the classification algorithm to make sure it generalizes well with
the data during training. A combination of these features and the ML algorithm yields a
Classification Model, which is the end stage of the Training process. Often this model is
tuned using various model parameters with a process called hyperparameter tuning to
build a better performing optimal model.

Figure 4-2. Blueprint for building an automated text classification system

Chapter 4 ■ text ClassifiCation

174

The Prediction process shown in the figure involves trying to either predict classes
for new documents or evaluating how predictions are working on testing data. The test
dataset documents go through the same process of normalization and feature extraction,
and the test document features are passed to the trained Classification Model, which
predicts the possible class for each of the documents based on previously learned
patterns. If you have the true class labels for the documents that were manually labelled,
you can evaluate the prediction performance of the model by comparing the true labels
and the predicted labels using various metrics like accuracy. This would give an idea of
how well the model performs its predictions for new documents.

Once we have a stable and working model, the last step is usually deploying the
model, which normally involves saving the model and its necessary dependencies
and deploying it as a service or as a running program that predicts categories for new
documents as a batch job, or based on serving user requests if accessed as a web service.
There are various ways to deploy ML models, and this usually depends on how you want
to access it later on.

We will now discuss some of the main modules from the preceding blueprint and
implement these modules so that we can integrate them all together to build a real-world
text classifier.

Text Normalization
Chapter 3 covered text processing and normalization in detail—refer it to see the various
methods and techniques available. In this section, we will define a normalizer module to
normalize text documents and will be using it later when we build our classifier. Although
various techniques are available, we will keep it fairly simple and straightforward here so
that is it not too hard to follow our implementations step by step. We will implement and
use the following normalization techniques in our module:

•	 Expanding contractions

•	 Text standardization through lemmatization

•	 Removing special characters and symbols

•	 Removing stopwords

We are not focusing too much on correcting spellings and other advanced
techniques, but you can integrate the functions from the previous chapter
implementation if you are interested. Our normalization module is implemented and
available in normalization.py, available in the code files for this chapter. I will also be
explaining each function here for your convenience. We will first start with loading the
necessary dependencies. Remember that you will need our custom-defined contractions
mapping file from Chapter 3, named contractions.py, for expanding contractions.

The following snippet shows the necessary imports and dependencies:

from contractions import CONTRACTION_MAP
import re
import nltk
import string
from nltk.stem import WordNetLemmatizer

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

175

stopword_list = nltk.corpus.stopwords.words('english')
wnl = WordNetLemmatizer()

We load all the English stopwords, the contraction mappings in CONTRACTION_MAP,
and an instance of WordNetLemmatizer for carrying our lemmatization. We now define
a function to tokenize text into tokens that will be used by our other normalization
functions. The following function tokenizes and removes any extraneous whitespace from
the tokens:

def tokenize_text(text):
 tokens = nltk.word_tokenize(text)
 tokens = [token.strip() for token in tokens]
 return tokens

Now we define a function for expanding contractions. This function is similar to our
implementation from Chapter 3—it takes in a body of text and returns the same with its
contractions expanded if there is a match. The following snippet helps us achieve this:

def expand_contractions(text, contraction_mapping):

 contractions_pattern = re.compile('({})'.format('|'.join(contraction_
mapping.keys())),

 flags=re.IGNORECASE|re.DOTALL)
 def expand_match(contraction):
 match = contraction.group(0)
 first_char = match[0]
 expanded_contraction = contraction_mapping.get(match)\
 if contraction_mapping.get(match)\
 else contraction_mapping.get(match.lower())
 expanded_contraction = first_char+expanded_contraction[1:]
 return expanded_contraction

 expanded_text = contractions_pattern.sub(expand_match, text)
 expanded_text = re.sub("'", "", expanded_text)
 return expanded_text

Now that we have a function for expanding contractions, we implement a function
for standardizing our text data by bringing word tokens to their base or root form using
lemmatization. The following functions will help us in achieving that:

from pattern.en import tag
from nltk.corpus import wordnet as wn

Annotate text tokens with POS tags
def pos_tag_text(text):
 # convert Penn treebank tag to wordnet tag

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

176

 def penn_to_wn_tags(pos_tag):
 if pos_tag.startswith('J'):
 return wn.ADJ
 elif pos_tag.startswith('V'):
 return wn.VERB
 elif pos_tag.startswith('N'):
 return wn.NOUN
 elif pos_tag.startswith('R'):
 return wn.ADV
 else:
 return None

 tagged_text = tag(text)
 tagged_lower_text = [(word.lower(), penn_to_wn_tags(pos_tag))
 for word, pos_tag in
 tagged_text]
 return tagged_lower_text

lemmatize text based on POS tags
def lemmatize_text(text):

 pos_tagged_text = pos_tag_text(text)
 lemmatized_tokens = [wnl.lemmatize(word, pos_tag) if pos_tag
 else word
 for word, pos_tag in pos_tagged_text]
 lemmatized_text = ' '.join(lemmatized_tokens)
 return lemmatized_text

The preceding snippet depicts two functions implemented for lemmatization. The
main function is lemmatize_text, which takes in a body of text data and lemmatizes
each word of the text based on its POS tag if it is present and then returns the lemmatized
text back to the user. For this, we need to annotate the text tokens with their POS tags.
We use the tag function from pattern to annotate POS tags for each token and then
further convert the POS tags from the Penn treebank syntax to WordNet syntax, since
the WordNetLemmatizer checks for POS tag annotations based on WordNet formats. We
convert each word token to lowercase, annotate it with its correct, converted WordNet
POS tag, and return these annotated tokens, which are finally fed into the lemmatize_
text function.

The following function helps us remove special symbols and characters:

def remove_special_characters(text):
 tokens = tokenize_text(text)
 pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
 filtered_tokens = filter(None, [pattern.sub('', token) for token in

tokens])
 filtered_text = ' '.join(filtered_tokens)
 return filtered_text

Chapter 4 ■ text ClassifiCation

177

We remove special characters by tokenizing the text just so we can remove some of
the tokens that are actually contractions, but we may have failed to remove them in our
first step, like "s" or "re". We will do this when we remove stopwords. However, you can
also remove special characters without tokenizing the text. We remove all special symbols
defined in string.punctuation from our text using regular expression matches. The
following function helps us remove stopwords from our text data:

def remove_stopwords(text):
 tokens = tokenize_text(text)
 filtered_tokens = [token for token in tokens if token not in

stopword_list]
 filtered_text = ' '.join(filtered_tokens)
 return filtered_text

Now that we have all our functions defined, we can build our text normalization
pipeline by chaining all these functions one after another. The following function
implements this, where it takes in a corpus of text documents and normalizes them and
returns a normalized corpus of text documents:

def normalize_corpus(corpus, tokenize=False):

 normalized_corpus = []
 for text in corpus:
 text = expand_contractions(text, CONTRACTION_MAP)
 text = lemmatize_text(text)
 text = remove_special_characters(text)
 text = remove_stopwords(text)
 normalized_corpus.append(text)
 if tokenize:
 text = tokenize_text(text)
 normalized_corpus.append(text)

 return normalized_corpus

That brings us to the end of our discussion and implementation of necessary
functions for our text normalization module. We will now look at concepts and practical
implementation for feature extraction.

Feature Extraction
There are various feature-extraction techniques that can be applied on text data, but
before we jump into then, let us consider what we mean by features. Why do we need
them, and how they are useful? In a dataset, there are typically many data points. Usually
the rows of the dataset and the columns are various features or properties of the dataset,
with specific values for each row or observation. In ML terminology, features are unique,
measurable attributes or properties for each observation or data point in a dataset.
Features are usually numeric in nature and can be absolute numeric values or categorical

Chapter 4 ■ text ClassifiCation

178

features that can be encoded as binary features for each category in the list using a
process called one-hot encoding. The process of extracting and selecting features is both
art and science, and this process is called feature extraction or feature engineering.

Usually extracted features are fed into ML algorithms for learning patterns that can
be applied on future new data points for getting insights. These algorithms usually expect
features in the form of numeric vectors because each algorithm is at heart a mathematical
operation of optimization and minimizing loss and error when it tries to learn patterns
from data points and observations. So, with textual data there is the added challenge of
figuring out how to transform textual data and extract numeric features from it.

Now we will look at some feature-extraction concepts and techniques specially
aligned towards text data.

The Vector Space Model is a concept and model that is very useful in case we are
dealing with textual data and is very popular in information retrieval and document
ranking. The Vector Space Model, also known as the Term Vector Model, is defined as a
mathematical and algebraic model for transforming and representing text documents as
numeric vectors of specific terms that form the vector dimensions. Mathematically this
can be defines as follows. Say we have a document D in a document vector space VS. The
number of dimensions or columns for each document will be the total number of distinct
terms or words for all documents in the vector space. So, the vector space can be denoted

VS W W Wn= ¼{ }1 2, , ,

where there are n distinct words across all documents. Now we can represent document
D in this vector space as

D w w wD D Dn= ¼{ }1 2, , ,

where w
Dn

 denotes the weight for word n in document D. This weight is a numeric value
and can represent anything, ranging from the frequency of that word in the document, to
the average frequency of occurrence, or even to the TF-IDF weight (discussed shortly).

We will be talking about and implementing the following feature-extraction
techniques:

•	 Bag of Words model

•	 TF-IDF model

•	 Advanced word vectorization models

An important thing to remember for feature extraction is that once we build a
feature extractor using some transformations and mathematical operations, we need to
make sure we reuse the same process when extracting features from new documents to
be predicted, and not rebuild the whole algorithm again based on the new documents.
We will be depicting this also with an example for each technique. Do note that for
implementations based on practical examples in this section, we will be making use
of the nltk, gensim, and scikit-learn libraries, which you can install using pip as
discussed earlier (in case you do not have them installed already).

Chapter 4 ■ text ClassifiCation

179

The implementations are divided into two major modules. The file feature_
extractors.py contains the generic functions we will be using later on when building the
classifier, and we have used the same functions in the feature_extraction_demo.py file to
show how each technique works with some practical examples. You can access them from
the code files, and as always I will be presenting the same code in this chapter for ease of
understanding. We will be using the following documents depicted in the CORPUS variable
to extract features from and building some of the vectorization models. To illustrate how
feature extraction will work for a new document (as a part of test dataset), we will also use
a separate document as shown in the variable new_doc in the following snippet:

CORPUS = [
'the sky is blue',
'sky is blue and sky is beautiful',
'the beautiful sky is so blue',
'i love blue cheese'
]

new_doc = ['loving this blue sky today']

Bag of Words Model
The Bag of Words model is perhaps one of the simplest yet most powerful techniques
to extract features from text documents. The essence of this model is to convert text
documents into vectors such that each document is converted into a vector that
represents the frequency of all the distinct words that are present in the document
vector space for that specific document. Thus, considering our sample vector from the
previous mathematical notation for D, the weight for each word is equal to its frequency
of occurrence in that document.

An interesting thing is that we can even create the same model for individual word
occurrences as well as occurrences for n-grams, which would make it an n-gram Bag of
Words model such that frequency of distinct n-grams in each document would also be
considered.

The following code snippet gives us a function that implements a Bag of Words–
based feature-extraction model that also accepts an ngram_range parameter to take into
account n-grams as features:

from sklearn.feature_extraction.text import CountVectorizer

def bow_extractor(corpus, ngram_range=(1,1)):

 vectorizer = CountVectorizer(min_df=1, ngram_range=ngram_range)
 features = vectorizer.fit_transform(corpus)
 return vectorizer, features

The preceding function uses the CountVectorizer class. You can access its detailed
API (Application Programming Interface) documentation at http://scikit-learn.org/
stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

Chapter 4 ■ text ClassifiCation

180

html#sklearn.feature_extraction.text.CountVectorizer, which has a whole bunch
of various parameters for more fine-tuning based on the type of features you want to
extract. We use its default configuration, which is enough for most scenarios, with min_df
set to 1 indicating taking terms having a minimum frequency of 1 in the overall document
vector space. You can set ngram_range to various parameters like (1, 3) would build
feature vectors consisting of all unigrams, bigrams, and trigrams. The following snippet
shows the function in action on our sample corpora of four training documents and one
test document:

build bow vectorizer and get features
In [371]: bow_vectorizer, bow_features = bow_extractor(CORPUS)
 ...: features = bow_features.todense()
 ...: print features
[[0 0 1 0 1 0 1 0 1]
 [1 1 1 0 2 0 2 0 0]
 [0 1 1 0 1 0 1 1 1]
 [0 0 1 1 0 1 0 0 0]]

extract features from new document using built vectorizer
In [373]: new_doc_features = bow_vectorizer.transform(new_doc)
 ...: new_doc_features = new_doc_features.todense()
 ...: print new_doc_features
[[0 0 1 0 0 0 1 0 0]]

print the feature names
In [374]: feature_names = bow_vectorizer.get_feature_names()
 ...: print feature_names
[u'and', u'beautiful', u'blue', u'cheese', u'is', u'love', u'sky', u'so',
u'the']

That output shows how each text document has been converted to vectors. Each row
represents one document from our corpus, and we do the same for both our corpora. The
vectorizer is built using documents from CORPUS. We extract features from it and also use
this built vectorizer to extract features from a completely new document. Each column in
a vector represents the words depicted in feature_names, and the value is the frequency
of that word in the document represented by the vector. It may be hard to comprehend
this at first glance, so I have prepared the following function, which I hope you can use to
understand the feature vectors better:

import pandas as pd

def display_features(features, feature_names):
 df = pd.DataFrame(data=features,
 columns=feature_names)
 print df

Now you can feed the feature names and vectors to this function and see the feature
matrix in a much easier-to-understand structure, shown here:

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer

Chapter 4 ■ text ClassifiCation

181

In [379]: display_features(features, feature_names)
 and beautiful blue cheese is love sky so the
0 0 0 1 0 1 0 1 0 1
1 1 1 1 0 2 0 2 0 0
2 0 1 1 0 1 0 1 1 1
3 0 0 1 1 0 1 0 0 0

In [380]: display_features(new_doc_features, feature_names)
 and beautiful blue cheese is love sky so the
0 0 0 1 0 0 0 1 0 0

That makes things much clearer, right? Consider the second document of CORPUS,
represented in the preceding in row 1 of the first table. You can see that 'sky is blue
and sky is beautiful' has value 2 for the feature sky, 1 for beautiful, and so on.
Values of 0 are assigned for words not present in the document. Note that for the new
document new_doc, there is no feature for the words today, this, or loving in the
sentence. The reason for this is what I mentioned before—that the feature-extraction
process, model, and vocabulary are always based on the training data and will never
change or get influenced on newer documents, which it will predict later as a part of
testing or otherwise. You might have guessed that this is because a model is always
trained on some training data and is never influenced by newer documents unless we
plan on rebuilding that model. Hence, the features in this model are always limited based
on the document vector space of the training corpus.

You have now started to get an idea of how to extract meaningful vector-based
features from text data, which previously seemed impossible. Try out the preceding
functions by setting ngram_range to (1, 3) and see the outputs.

TF-IDF Model
The Bag of Words model is good, but the vectors are completely based on absolute
frequencies of word occurrences. This has some potential problems where words that
may tend to occur a lot across all documents in the corpus will have higher frequencies
and will tend to overshadow other words that may not occur as frequently but may
be more interesting and effective as features to identify specific categories for the
documents. This is where TF-IDF comes into the picture. TF-IDF stands for Term
Frequency-Inverse Document Frequency, a combination of two metrics: term frequency
and inverse document frequency. This technique was originally developed as a metric for
ranking functions for showing search engine results based on user queries and has come
to be a part of information retrieval and text feature extraction now.

Let us formally define TF-IDF now and look at the mathematical representations for
it before diving into its implementation. Mathematically, TF-IDF is the product of two
metrics and can be represented as tfidf tf idf= ´ , where term frequency (tf) and

inverse-document frequency (idf) represent the two metrics.
Term frequency denoted by tf is what we had computed in the Bag of Words model.

Term frequency in any document vector is denoted by the raw frequency value of that
term in a particular document. Mathematically it can be represented as tf w D fwD

,() = ,

where fwD
 denotes frequency for word w in document D, which becomes the term

Chapter 4 ■ text ClassifiCation

182

frequency (tf). There are various other representations and computations for term
frequency, such as converting frequency to a binary feature where 1 means the term has
occurred in the document and 0 means it has not. Sometimes you can also normalize the
absolute raw frequency using logarithms or averaging the frequency. We will be using the
raw frequency in our computations.

Inverse document frequency denoted by idf is the inverse of the document frequency
for each term. It is computed by dividing the total number of documents in our corpus
by the document frequency for each term and then applying logarithmic scaling on the
result. In our implementation we will be adding 1 to the document frequency for each
term just to indicate that we also have one more document in our corpus that essentially
has every term in the vocabulary. This is to prevent potential division-by-zero errors
and smoothen the inverse document frequencies. We also add 1 to the result of our idf
computation to avoid ignoring terms completely that might have zero idf. Mathematically
our implementation for idf can be represented by

idf t
C

df t
() = +

+ ()
1

1
log

where idf(t) represents the idf for the term t, C represents the count of the total number of
documents in our corpus, and df(t) represents the frequency of the number of documents
in which the term t is present.

Thus the term frequency-inverse document frequency can be computed by
multiplying the above two measures together. The final TF-IDF metric we will be using is
a normalized version of the tfidf matrix we get from the product of tf and idf. We will
normalize the tfidf matrix by dividing it with the L2 norm of the matrix, also known as the
Euclidean norm, which is the square root of the sum of the square of each term’s tfidf

weight. Mathematically we can represent the final tfidf feature vector as tfidf
tfidf

tfidf
= ,

where tfidf represents the Euclidean L2 norm for the tfidf matrix.

The following code snippet shows an implementation of getting the tfidf-based
feature vectors, considering we have our Bag of Words feature vectors we obtained in the
previous section:

from sklearn.feature_extraction.text import TfidfTransformer

def tfidf_transformer(bow_matrix):

 transformer = TfidfTransformer(norm='l2',
 smooth_idf=True,
 use_idf=True)
 tfidf_matrix = transformer.fit_transform(bow_matrix)
 return transformer, tfidf_matrix

You can see that we have used the L2 norm option in the parameters and also made
sure we smoothen the idfs to give weightages also to terms that may have zero idf so that
we do not ignore them. We can see this function in action in the following code snippet:

Chapter 4 ■ text ClassifiCation

183

import numpy as np
from feature_extractors import tfidf_transformer
feature_names = bow_vectorizer.get_feature_names()

build tfidf transformer and show train corpus tfidf features
In [388]: tfidf_trans, tdidf_features = tfidf_transformer(bow_features)
 ...: features = np.round(tdidf_features.todense(), 2)
 ...: display_features(features, feature_names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 0.40 0.00 0.49 0.00 0.49 0.00 0.60
1 0.44 0.35 0.23 0.00 0.56 0.00 0.56 0.00 0.00
2 0.00 0.43 0.29 0.00 0.35 0.00 0.35 0.55 0.43
3 0.00 0.00 0.35 0.66 0.00 0.66 0.00 0.00 0.00

show tfidf features for new_doc using built tfidf transformer
In [389]: nd_tfidf = tfidf_trans.transform(new_doc_features)
 ...: nd_features = np.round(nd_tfidf.todense(), 2)
 ...: display_features(nd_features, feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 0.63 0.0 0.0 0.0 0.77 0.0 0.0

Thus the preceding outputs show the tfidf feature vectors for all our sample
documents. We use the TfidfTransformer class, which helps us in computing the tfidfs
for each document based on the equations described earlier.

Now we will show how the internals of this class work. You will also see how to
implement the mathematical equations described earlier to compute the tfidf-based
feature vectors. This section is dedicated to ML experts (and curious readers who are
interested in how things work behind the scenes). We will start with loading necessary
dependencies and computing the term frequencies (TF) by reusing our Bag of Words-
based features for our sample corpus, which can also act as the term frequencies for our
training CORPUS:

import scipy.sparse as sp
from numpy.linalg import norm
feature_names = bow_vectorizer.get_feature_names()

compute term frequency
tf = bow_features.todense()
tf = np.array(tf, dtype='float64')

show term frequencies
In [391]: display_features(tf, feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
1 1.0 1.0 1.0 0.0 2.0 0.0 2.0 0.0 0.0
2 0.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0
3 0.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0

Chapter 4 ■ text ClassifiCation

184

We will now compute our document frequencies (DF) for each term based on the
number of documents in which it occurs. The following snippet shows how to obtain it
from our Bag of Words feature matrix:

build the document frequency matrix
df = np.diff(sp.csc_matrix(bow_features, copy=True).indptr)
df = 1 + df # to smoothen idf later

show document frequencies
In [403]: display_features([df], feature_names)
 and beautiful blue cheese is love sky so the
0 2 3 5 2 4 2 4 2 3

This tells us the document frequency (DF) for each term and you can verify it with
the documents in CORPUS. Remember that we have added 1 to each frequency value to
smoothen the idf values later and prevent division-by-zero errors by assuming we have a
document (imaginary) that has all the terms once. Thus, if you check in the CORPUS, you
will see that blue occurs 4(+1) times, sky occurs 3(+1) times, and so on, considering (+1)
for our smoothening.

Now that we have the document frequencies, we will compute the inverse document
frequency (idf) using our formula defined earlier. Remember to add 1 to the total count of
documents in the corpus to add the document that we had assumed earlier to contain all
the terms at least once for smoothening the idfs:

compute inverse document frequencies
total_docs = 1 + len(CORPUS)
idf = 1.0 + np.log(float(total_docs) / df)

show inverse document frequencies
In [406]: display_features([np.round(idf, 2)], feature_names)
 and beautiful blue cheese is love sky so the
0 1.92 1.51 1.0 1.92 1.22 1.92 1.22 1.92 1.51

compute idf diagonal matrix
total_features = bow_features.shape[1]
idf_diag = sp.spdiags(idf, diags=0, m=total_features, n=total_features)
idf = idf_diag.todense()

print the idf diagonal matrix
In [407]: print np.round(idf, 2)
[[1.92 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1.51 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1.92 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1.22 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1.92 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1.22 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.92 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1.51]]

Chapter 4 ■ text ClassifiCation

185

You can now see the idf matrix that we created based on our mathematical equation,
and we also convert it to a diagonal matrix, which will be helpful later on when we want
to compute the product with term frequency.

Now that we have our tfs and idfs, we can compute the tfidf feature matrix using
matrix multiplication, as shown in the following snippet:

compute tfidf feature matrix
tfidf = tf * idf

show tfidf feature matrix
In [410]: display_features(np.round(tfidf, 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 1.0 0.00 1.22 0.00 1.22 0.00 1.51
1 1.92 1.51 1.0 0.00 2.45 0.00 2.45 0.00 0.00
2 0.00 1.51 1.0 0.00 1.22 0.00 1.22 1.92 1.51
3 0.00 0.00 1.0 1.92 0.00 1.92 0.00 0.00 0.00

We now have our tfidf feature matrix, but wait! It is not yet over. We have to divide it
with the L2 norm, if you remember from our equations depicted earlier. The following
snippet computes the tfidf norms for each document and then divides the tfidf weights
with the norm to give us the final desired tfidf matrix:

compute L2 norms
norms = norm(tfidf, axis=1)

print norms for each document
In [412]: print np.round(norms, 2)
[2.5 4.35 3.5 2.89]

compute normalized tfidf
norm_tfidf = tfidf / norms[:, None]

show final tfidf feature matrix
In [415]: display_features(np.round(norm_tfidf, 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 0.40 0.00 0.49 0.00 0.49 0.00 0.60
1 0.44 0.35 0.23 0.00 0.56 0.00 0.56 0.00 0.00
2 0.00 0.43 0.29 0.00 0.35 0.00 0.35 0.55 0.43
3 0.00 0.00 0.35 0.66 0.00 0.66 0.00 0.00 0.00

Compare the preceding obtained tfidf feature matrix for the documents in CORPUS
to the feature matrix obtained using TfidfTransformer earlier. Note they are exactly the
same, thus verifying that our mathematical implementation was correct—and in fact this
very same implementation is adopted by scikit-learn’s TfidfTransformer behind the
scenes using some more optimizations. Now, suppose we want to compute the tfidf-
based feature matrix for our new document new_doc. We can do it using the following
snippet. We reuse the new_doc_features Bag of Words vector from before for the term
frequencies:

Chapter 4 ■ text ClassifiCation

186

compute new doc term freqs from bow freqs
nd_tf = new_doc_features
nd_tf = np.array(nd_tf, dtype='float64')

compute tfidf using idf matrix from train corpus
nd_tfidf = nd_tf*idf
nd_norms = norm(nd_tfidf, axis=1)
norm_nd_tfidf = nd_tfidf / nd_norms[:, None]

show new_doc tfidf feature vector
In [418]: display_features(np.round(norm_nd_tfidf, 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 0.63 0.0 0.0 0.0 0.77 0.0 0.0

The preceding output depicts the tfidf-based feature vector for new_doc, and you can
see it is the same as the one obtained by TfidfTransformer.

Now that we know how the internals work, we are going to implement a generic
function that can directly compute the tfidf-based feature vectors for documents from the
raw documents themselves. The following snippet depicts the same:

from sklearn.feature_extraction.text import TfidfVectorizer

def tfidf_extractor(corpus, ngram_range=(1,1)):

 vectorizer = TfidfVectorizer(min_df=1,
 norm='l2',
 smooth_idf=True,
 use_idf=True,
 ngram_range=ngram_range)
 features = vectorizer.fit_transform(corpus)
 return vectorizer, features

The preceding function makes use of the TfidfVectorizer, which directly computes
the tfidf vectors by taking the raw documents themselves as input and internally
computing the term frequencies as well as the inverse document frequencies, eliminating
the need to use the CountVectorizer for computing the term frequencies based on the
Bag of Words model. Support is also present for adding n-grams to the feature vectors. We
can see the function in action in the following snippet:

build tfidf vectorizer and get training corpus feature vectors
In [425]: tfidf_vectorizer, tdidf_features = tfidf_extractor(CORPUS)
 ...: display_features(np.round(tdidf_features.todense(), 2), feature_

names)
 and beautiful blue cheese is love sky so the
0 0.00 0.00 0.40 0.00 0.49 0.00 0.49 0.00 0.60
1 0.44 0.35 0.23 0.00 0.56 0.00 0.56 0.00 0.00
2 0.00 0.43 0.29 0.00 0.35 0.00 0.35 0.55 0.43
3 0.00 0.00 0.35 0.66 0.00 0.66 0.00 0.00 0.00

Chapter 4 ■ text ClassifiCation

187

get tfidf feature vector for the new document
In [426]: nd_tfidf = tfidf_vectorizer.transform(new_doc)
 ...: display_features(np.round(nd_tfidf.todense(), 2), feature_names)
 and beautiful blue cheese is love sky so the
0 0.0 0.0 0.63 0.0 0.0 0.0 0.77 0.0 0.0

You can see from the preceding outputs that the tfidf feature vectors match to the
ones we obtained previously. This brings us to the end of our discussion on feature
extraction using tfidf. Now we will look at some advanced word vectorization techniques.

Advanced Word Vectorization Models
There are various approaches to creating more advanced word vectorization models for
extracting features from text data. Here we will discuss a couple of them that use Google’s
popular word2vec algorithm. The word2vec model, released in 2013 by Google, is a neural
network–based implementation that learns distributed vector representations of words
based on continuous Bag of Words and skip-gram–based architectures. The word2vec
framework is much faster than other neural network–based implementations and does
not require manual labels to create meaningful representations among words. You can
find more details on Google’s word2vec project at https://code.google.com/archive/p/
word2vec/. You can even try out some of the implementations yourself if you are interested.

We will be using the gensim library in our implementation, which is Python
implementation for word2vec that provides several high-level interfaces for easily building
these models. The basic idea is to provide a corpus of documents as input and get feature
vectors for them as output. Internally, it constructs a vocabulary based on the input text
documents and learns vector representations for words based on various techniques
mentioned earlier, and once this is complete, it builds a model that can be used to
extract word vectors for each word in a document. Using various techniques like average
weighting or tfidf weighting, we can compute the averaged vector representation of a
document using its word vectors. You can get more details about the interface for gensim‘s
word2vec implementation at http://radimrehurek.com/gensim/models/word2vec.html.

We will be mainly focusing on the following parameters when we build our model
from our sample training corpus:

•	 size: This parameter is used to set the size or dimension for the
word vectors and can range from tens to thousands. You can try
out various dimensions to see which gives the best result.

•	 window: This parameter is used to set the context or window size.
which specifies the length of the window of words that should be
considered for the algorithm to take into account as context when
training.

•	 min_count: This parameter specifies the minimum word count
needed across the corpus for the word to be considered in the
vocabulary. This helps in removing very specific words that may
not have much significance because they occur very rarely in the
documents.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://radimrehurek.com/gensim/models/word2vec.html

Chapter 4 ■ text ClassifiCation

188

•	 sample: This parameter is used to downsample effects of
occurrence of frequent words. Values between 0.01 and 0.0001 are
usually ideal.

Once we build a model, we will define and implement two techniques of combining
word vectors together in text documents based on certain weighing schemes. We will
implement two techniques mentioned as follows.

•	 Averaged word vectors

•	 TF-IDF weighted word vectors

Let us start the feature-extraction process by building our word2vec model on our
sample training corpus before going into further implementations. The following code
snippet shows how:

import gensim
import nltk

tokenize corpora
TOKENIZED_CORPUS = [nltk.word_tokenize(sentence)
 for sentence in CORPUS]
tokenized_new_doc = [nltk.word_tokenize(sentence)
 for sentence in new_doc]

build the word2vec model on our training corpus
model = gensim.models.Word2Vec(TOKENIZED_CORPUS, size=10, window=10,
 min_count=2, sample=1e-3)

As you can see, we have built the model using the parameters described earlier; you
can play around with these and also look at other parameters from the documentation to
change the architecture type, number of workers, and so on. Now that we have our model
ready, we can start implementing our feature extraction techniques.

Averaged Word Vectors
The preceding model creates a vector representation for each word in the vocabulary. We
can access them by just typing in the following code:

In [430]: print model['sky']
[0.01608407 -0.04819566 0.04227461 -0.03011346 0.0254148 0.01728328
 0.0155535 0.00774884 -0.02752112 0.01646519]

In [431]: print model['blue']
[-0.0472235 0.01662185 -0.01221706 -0.04724348 -0.04384995 0.00193343
 -0.03163504 -0.03423524 0.02661656 0.03033725]

Each word vector is of length 10 based on the size parameter specified earlier. But
when we deal with sentences and text documents, they are of unequal length, and we
must carry out some form of combining and aggregation operations to make sure the

Chapter 4 ■ text ClassifiCation

189

number of dimensions of the final feature vectors are the same, regardless of the length of
the text document, number of words, and so on. In this technique, we will use an average
weighted word vectorization scheme, where for each text document we will extract all
the tokens of the text document, and for each token in the document we will capture the
subsequent word vector if present in the vocabulary. We will sum up all the word vectors
and divide the result by the total number of words matched in the vocabulary to get a
final resulting averaged word vector representation for the text document. This can be
mathematically represented using the equation

AWV D
wv w

n

n

() =
()å

1

where AVW(D) is the averaged word vector representation for document D, containing
words w

1
, w

2
, …, w

n
, and wv(w) is the word vector representation for the word w.

The following snippet shows the pseudocode for the algorithm just described:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
matched_word_count := 0
vector := []

for word in words:
 if word in vocabulary:
 vector := vector + model[word]
 matched_word_count := matched_word_count + 1

averaged_word_vector := vector / matched_word_count

That snippet shows the flow of operations in a better way that is easier to understand.
We will now implement our algorithm in Python using the following code snippet:

import numpy as np

define function to average word vectors for a text document
def average_word_vectors(words, model, vocabulary, num_features):

 feature_vector = np.zeros((num_features,),dtype="float64")
 nwords = 0.

 for word in words:
 if word in vocabulary:
 nwords = nwords + 1.
 feature_vector = np.add(feature_vector, model[word])

Chapter 4 ■ text ClassifiCation

190

 if nwords:
 feature_vector = np.divide(feature_vector, nwords)

 return feature_vector

generalize above function for a corpus of documents
def averaged_word_vectorizer(corpus, model, num_features):
 vocabulary = set(model.index2word)
 features = [average_word_vectors(tokenized_sentence, model, vocabulary,

num_features)
 for tokenized_sentence in corpus]
 return np.array(features)

The average_word_vectors() function must seem familiar to you—it is the concrete
implementation of our algorithm shown using our pseudocode earlier. We also create a
generic function averaged_word_vectorizer() to perform averaging of word vectors for
a corpus of documents. The following snippet shows our function in action on our sample
corpora:

get averaged word vectors for our training CORPUS
In [445]: avg_word_vec_features = averaged_word_vectorizer(corpus=TOKENIZED_
CORPUS,
 ...: model=model,
 ...: num_features=10)
 ...: print np.round(avg_word_vec_features, 3)
[[0.006 -0.01 0.015 -0.014 0.004 -0.006 -0.024 -0.007 -0.001 0.]
 [-0.008 -0.01 0.021 -0.019 -0.002 -0.002 -0.011 0.002 0.003 -0.001]
 [-0.003 -0.007 0.008 -0.02 -0.001 -0.004 -0.014 -0.015 0.002 -0.01]
 [-0.047 0.017 -0.012 -0.047 -0.044 0.002 -0.032 -0.034 0.027 0.03]]

get averaged word vectors for our test new_doc
In [447]: nd_avg_word_vec_features = averaged_word_
vectorizer(corpus=tokenized_new_doc,
 ...: model=model,
 ...: num_

features=10)
 ...: print np.round(nd_avg_word_vec_features, 3)
[[-0.016 -0.016 0.015 -0.039 -0.009 0.01 -0.008 -0.013 0. 0.023]]

From the preceding outputs, you can see that we have uniformly sized averaged
word vectors for each document in the corpus, and these feature vectors can be used later
for classification by feeding it to the ML algorithms.

TF-IDF Weighted Averaged Word Vectors
Our previous vectorizer simply sums up all the word vectors pertaining to any document
based on the words in the model vocabulary and calculates a simple average by dividing
with the count of matched words. This section introduces a new and novel technique

Chapter 4 ■ text ClassifiCation

191

of weighing each matched word vector with the word TF-TDF score and summing up
all the word vectors for a document and dividing it by the sum of all the TF-IDF weights
of the matched words in the document. This would basically give us a TF-IDF weighted
averaged word vector for each document.

This can be mathematically represented using the equation

TWA D
wv w tfidf w

n

n

() =
()´ ()å

1

where TWA(D) is the TF-IDF weighted averaged word vector representation for document
D, containing wordsw

1
, w

2
, …, w

n
, where wv(w) is the word vector representation and

tfidf(w) is the TF-IDF weight for the wordw. The following snippet shows the pseudocode
for this algorithm:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
tfidfs := [tfidf(word) for each word in words]
matched_word_wts := 0
vector := []

for word in words:
 if word in vocabulary:
 word_vector := model[word]
 weighted_word_vector := tfidfs[word] x word_vector
 vector := vector + weighted_word_vector
 matched_word_wts := matched_word_wts + tfidfs[word]

tfidf_wtd_avgd_word_vector := vector / matched_word_wts

That pseudocode gives structure to our algorithm and shows how to implement the
algorithm from the mathematical formula we defined earlier.

The following code snippet implements this algorithm in Python so we can use it for
feature extraction:

define function to compute tfidf weighted averaged word vector for a document
def tfidf_wtd_avg_word_vectors(words, tfidf_vector, tfidf_vocabulary, model,
num_features):

 word_tfidfs = [tfidf_vector[0, tfidf_vocabulary.get(word)]
 if tfidf_vocabulary.get(word)
 else 0 for word in words]
 word_tfidf_map = {word:tfidf_val for word, tfidf_val in zip(words, word_

tfidfs)}

 feature_vector = np.zeros((num_features,),dtype="float64")

Chapter 4 ■ text ClassifiCation

192

 vocabulary = set(model.index2word)
 wts = 0.
 for word in words:
 if word in vocabulary:
 word_vector = model[word]
 weighted_word_vector = word_tfidf_map[word] * word_vector
 wts = wts + word_tfidf_map[word]
 feature_vector = np.add(feature_vector, weighted_word_vector)
 if wts:
 feature_vector = np.divide(feature_vector, wts)

 return feature_vector

generalize above function for a corpus of documents
def tfidf_weighted_averaged_word_vectorizer(corpus, tfidf_vectors,
 tfidf_vocabulary, model, num_features):

 docs_tfidfs = [(doc, doc_tfidf)
 for doc, doc_tfidf
 in zip(corpus, tfidf_vectors)]
 features = [tfidf_wtd_avg_word_vectors(tokenized_sentence, tfidf, tfidf_

vocabulary,
 model, num_features)
 for tokenized_sentence, tfidf in docs_tfidfs]
 return np.array(features)

The tfidf_wtd_avg_word_vectors() function helps us in getting the TF-IDF
weighted averaged word vector representation for a document. We also create a
corresponding generic function tfidf_weighted_averaged_word_vectorizer() to
perform TF-IDF weighted averaging of word vectors for a corpus of documents. We
can see our implemented function in action on our sample corpora using the following
snippet:

get tfidf weights and vocabulary from earlier results and compute result
In [453]: corpus_tfidf = tdidf_features
 ...: vocab = tfidf_vectorizer.vocabulary_
 ...: wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=TOKENIZED_CORPUS, tfidf_vectors=corpus_tfidf,
 ...: tfidf_vocabulary=vocab, model=model,

num_features=10)

Chapter 4 ■ text ClassifiCation

193

 ...: print np.round(wt_tfidf_word_vec_features, 3)
[[0.011 -0.011 0.014 -0.011 0.007 -0.007 -0.024 -0.008 -0.004 -0.004]
 [0. -0.014 0.028 -0.014 0.004 -0.003 -0.012 0.011 -0.001 -0.002]
 [-0.001 -0.008 0.007 -0.019 0.001 -0.004 -0.012 -0.018 0.001 -0.014]
 [-0.047 0.017 -0.012 -0.047 -0.044 0.002 -0.032 -0.034 0.027 0.03]]

compute avgd word vector for test new_doc
In [454]: nd_wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=tokenized_new_doc, tfidf_vectors=nd_tfidf, tfidf_
vocabulary=vocab, model=model, num_features=10)
 ...: print np.round(nd_wt_tfidf_word_vec_features, 3)
[[-0.012 -0.019 0.018 -0.038 -0.006 0.01 -0.006 -0.011 -0.003 0.023]]

From the preceding results, you can see how we can converted each document
into TF-IDF weighted averaged numeric vectors. We also used our TF-IDF weights
and vocabulary, obtained earlier when we implemented TF-IDF–based feature vector
extraction from documents.

Now you have a good grasp on how to extract features from text data that can be used
for training a classifier.

Classification Algorithms
Classification algorithms are supervised ML algorithms that are used to classify,
categorize, or label data points based on what it has observed in the past. Each
classification algorithm, being a supervised learning algorithm, requires training data.
This training data consists of a set of training observations where each observation is a
pair consisting of an input data point, usually a feature vector like we observed earlier,
and a corresponding output outcome for that input observation. There are mainly three
processes classification algorithms go through:

•	 Training is the process where the supervised learning algorithm
analyzes and tries to infer patterns out of training data such that
it can identify which patterns lead to a specific outcome. These
outcomes are often known as the class labels/class variables/
response variables. We usually carry out the process of feature
extraction or feature engineering to derive meaningful features
from the raw data before training. These feature sets are fed to
an algorithm of our choice, which then tries to identify and learn
patterns from them and their corresponding outcomes. The
result is an inferred function known as a model or a classification
model. This model is expected to be generalized enough from
learning patterns in the training set such that it can predict the
classes or outcomes for new data points in the future.

Chapter 4 ■ text ClassifiCation

194

•	 Evaluation involves trying to test the prediction performance
of our model to see how well it has trained and learned on the
training dataset. For this we usually use a validation dataset and
test the performance of our model by predicting on that dataset
and testing our predictions against the actual class labels, also
called as the ground truth. Often we also use cross-validation,
where the data is divided into folds and a chunk of it is used
for training, with the remainder used to validate the trained
model. Note that we also tune the model based on the validation
results to get to an optimal configuration that yields maximum
accuracy and minimum error. We also evaluate our model against
a holdout or test dataset, but we never tune our model against
that dataset because that would lead to it being biased or overfit
against very specific features from the dataset. The holdout or test
dataset is something of a representative sample of what new, real
data samples might look like for which the model will generate
predictions and how it might perform on these new data samples.
Later we will look at various metrics that are typically used to
evaluate and measure model performance.

•	 Tuning, also known as hyperparameter tuning or optimization,
is where we focus on trying to optimize a model to maximize its
prediction power and reduce errors. Each model is at heart a
mathematical function with several parameters that determine
model complexity, learning capability, and so on. These are
known as hyperparameters because they cannot be learned
directly from data and must be set prior to running and training
the model. Hence, the process of choosing an optimal set of
model hyperparameters such that the performance of the model
yields good prediction accuracy is known as model tuning, and we
can carry it out in various ways, including randomized search and
grid search. We will not be covering this in our implementations
since this is more inclined towards core machine learning and is
out of our current scope as the models we will be building work
well with default hyperparameter configurations. But there are
plenty of resources on the Web if you are interested in model
tuning and optimization.

There are various types of classification algorithms, but we will not be venturing
into each one in detail. Our focus remains text classification, and I do not want to bore
everyone with excessive mathematical derivations for each algorithm. However, I will
touch upon a couple of algorithms that are quite effective for text classification and
try to explain them, keeping the mathematical formulae to the base essentials. These
algorithms are the following:

•	 Multinomial Naïve Bayes

•	 Support vector machines

Chapter 4 ■ text ClassifiCation

195

There are also several other algorithms besides these you can look up, including
logistic regression, decision trees, and neural networks. And ensemble techniques use
a collection or ensemble of models to learn and predict outcomes that include random
forests and gradient boosting, but they often don’t perform very well for text classification
because they are very prone to overfitting. I recommend you be careful if you plan on
experimenting with them. Besides these, deep learning–based techniques have also
recently become popular. They use multiple hidden layers and combine several neural
network models to build a complex classification model.

We will now briefly look at some of the concepts surrounding multinomial naïve
Bayes and support vector machines before using them for our classification problem.

Multinomial Naïve Bayes
This algorithm is a special case of the popular naïve Bayes algorithm, which is used
specifically for prediction and classification tasks where we have more than two classes.
Before looking at multinomial naïve Bayes, let us look at the definition and formulation of
the naïve Bayes algorithm. The naïve Bayes algorithm is a supervised learning algorithm
that puts into action the very popular Bayes’ theorem. However, there is a “naïve”
assumption here that each feature is independent of the others. Mathematically we can
formulate this as follows: Given a response class variable y and a set of n features in the
form of a feature vector {x

1
, x

2
, …, x

n
}, using Bayes’ theorem we can denote the probability

of the occurrence of y given the features as

P y x x x
P y P x x x y

P x x xn
n

n

| , , ,
, , , |

, , ,1 2
1 2

1 2

¼() = ()´ ¼()
¼()

under the assumption that P x y x x x x x P x yi i i n i| , , , , , , , |1 2 1 1¼ ¼() = ()- + , and for all i we

can represent this as

P y x x x
P y P x y

P x x xn
i

n

i

n

| , , ,
|

, , ,1 2
1

1 2

¼() =
()´ ()

¼()
=
Õ

where i ranges from 1 to n. In simple terms, this can be written as

posterior
prior likelihood

evidence
=

´ and now, since P(x
1
, x

2
, …, x

n
) is constant, the model can be

expressed like this:

P y x x x P y P x yn
i

n

i| , , , |1 2
1

¼()µ ()´ ()
=
Õ

This means that under the previous assumptions of independence among the
features where each feature is conditionally independent of every other feature, the
conditional distribution over the class variable which is to be predicted, y can be
represented using the following mathematical equation as

Chapter 4 ■ text ClassifiCation

196

P y x x x
Z
P y P x yn

i

n

i| , , , |1 2
1

1
¼() = ()´ ()

=
Õ

where the evidence measure, Z p x= () is a constant scaling factor dependent on the
feature variables. From this equation, we can build the naïve Bayes classifier by
combining it with a rule known as the MAP decision rule, which stands for maximum a
posteriori. Going into the statistical details would be impossible in the current scope, but
by using it, the classifier can be represented as a mathematical function that can assign a
predicted class label ŷ Ck= for some k using the following representation:

ˆ |
, , ,

y argmax P C P x C
k K

k
i

n

i k= ()´ ()
Î ¼{ } =

Õ
1 2 1

This classifier is often said to be simple, quite evident from its name and also
because of several assumptions we make about our data and features that might not
be so in the real world. Nevertheless, this algorithm still works remarkably well in
many use cases related to classification, including multi-class document classification,
spam filtering, and so on. They can train really fast compared to other classifiers and
also work well even when we do not have sufficient training data. Models often do not
perform well when they have a lot of features, and this phenomenon is known as the
curse of dimensionality. Naïve Bayes takes care of this problem by decoupling the class
variable–related conditional feature distributions, thus leading to each distribution being
independently estimated as a single dimension distribution.

Multinomial naïve Bayes is an extension of the preceding algorithm for predicting
and classifying data points, where the number of distinct classes or outcomes is more
than two. In this case the feature vectors are usually assumed to be word counts from the
Bag of Words model, but TF-IDF–based weights will also work. One limitation is that
negative weight-based features can‘t be fed into this algorithm. This distribution can be
represented as p p p py y y yn= ¼{ }1 2, , , for each class label y, and the total number of

features is n, which could be represented as the total vocabulary of distinct words or
terms in text analytics. From the preceding equation, p P x yyi i= ()| represents the

probability of feature i in any observation sample that has an outcome or classy. The
parameter p

y
 can be estimated with a smoothened version of maximum likelihood

estimation (with relative frequency of occurrences), and represented as

p̂
F

F nyi
yi

y

=
+
+

a
a

where F xyi
x TD

i=
Î
å is the frequency of occurrence for the feature i in a sample for class

label y in our training dataset TD, and F Fy
i

TD

yi=
=
å

1

 is the total frequency of all features for

the class label y. There is some amount of smoothening one with the help of priors a ³ 0 ,

Chapter 4 ■ text ClassifiCation

197

which accounts for the features that are not present in the learning data points and helps
in getting rid of zero-probability–related issues. Some specific settings for this parameter
are used quite often. The value of a =1 is known as Laplace smoothing, and a <1 is
known as Lidstone smoothing. The scikit-learn library provides an excellent
implementation for multinomial naïve Bayes in the class MultinomialNB, which we will
be leveraging when we build our text classifier later on.

Support Vector Machines
In machine learning, support vector machines (SVM) are supervised learning algorithms
used for classification, regression, novelty, and anomaly or outlier detection. Considering
a binary classification problem, if we have training data such that each data point or
observation belongs to a specific class, the SVM algorithm can be trained based on this
data such that it can assign future data points into one of the two classes. This algorithm
represents the training data samples as points in space such that points belonging to
either class can be separated by a wide gap between them, called a hyperplane, and
the new data points to be predicted are assigned classes based on which side of this
hyperplane they fall into. This process is for a typical linear classification process.
However, SVM can also perform non-linear classification by an interesting approach
known as a kernel trick, where kernel functions are used to operate on high-dimensional
feature spaces that are non-linear separable. Usually, inner products between data points
in the feature space help achieve this.

The SVM algorithm takes in a set of training data points and constructs a hyperplane
of a collection of hyperplanes for a high dimensional feature space. The larger the
margins of the hyperplane, the better the separation, so this leads to lower generalization
errors of the classifier. Let us represent this formally and mathematically. Consider a
training dataset of n data points

 

x y x yn n1 1, , , ,() ¼ () such that the class variable

yiÎ -{ }1 1, where each value indicates the class corresponding to the point


xi . Each data

point


xi is a feature vector. The objective of the SVM algorithm is to find the max-margin

hyperplane that separates the set of data points having class label of yi =1 from the set of

data points having class label yi = -1 such that the distance between the hyperplane and

sample data points from either class nearest to it is maximized. These sample data points
are known as the support vectors. Figure 4-3, courtesy of Wikipedia, shows what the
vector space with the hyperplane looks like.

Chapter 4 ■ text ClassifiCation

198

You can clearly see the hyperplane and the support vectors in the figure. The
hyperplane can be defined as the set of points



x which satisfy w x b
��� ���

× + = 0 where


w is

the normal vector to the hyperplane, as shown in Figure 4-3, and b

w
�� ��� gives us the offset

of the hyperplane from the origin toward the support vectors highlighted in the figure.
There are two main types of margins that help in separating out the data points belonging
to the different classes.

When the data is linearly separable, as in Figure 4-3, we can have hard margins that
are basically represented by the two parallel hyperplanes depicted by the dotted lines,
which help in separating the data points belonging to the two different classes. This is
done taking into account that the distance between them is as large as possible. The
region bounded by these two hyperplanes forms the margin with the max-margin
hyperplane being in the middle. These hyperplanes are shown in the figure having the
equations w x b

��� ���
× + =1 andw x b

��� ���
× + = -1 .

Often the data points are not linearly separable, for which we can use the hinge loss
function, which can be represented as max(,0 1- × +()y w x bi i

��� � ��
 and in fact the scikit-

learn implementation of SVM can be found in SVC, LinearSVC, or SGDClassifier where
we will use the 'hinge' loss function (set by default) defined previously to optimize and
build the model. This loss function helps us in getting the soft margins and is often known
as a soft-margin SVM.

Figure 4-3. Two-class SVM depicting hyperplane and support vectors (courtesy:
Wikipedia)

Chapter 4 ■ text ClassifiCation

199

For a multi-class classification problem, if we have n classes, for each class a binary
classifier is trained and learned that helps in separating between each class and the other
n-1 classes. During prediction, the scores (distances to hyperplanes) for each classifier
are computed, and the maximum score is chosen for selecting the class label. Also often
stochastic gradient descent is used for minimizing the loss function in SVM algorithms.
Figure 4-4 shows how three classifiers are trained in total for a three-class SVM problem
over the very popular iris dataset. This figure is built using a scikit-learn model and is
obtained from the official documentation available at http://scikit-learn.org.

In Figure 4-4 you can clearly see that a total of three SVM classifiers have been
trained for each of the three classes and are then combined for the final predictions
so that data points belonging to each class can be labeled correctly. There are a lot
of resources and books dedicated entirely towards supervised ML and classification.
Interested readers should check them out to gain more in-depth knowledge on how these
techniques work and how they can be applied to various problems in analytics.

Evaluating Classification Models
Training, tuning, and building models are an important part of the whole analytics
lifecycle, but even more important is knowing how well these models are performing.
Performance of classification models is usually based on how well they predict outcomes
for new data points. Usually this performance is measured against a test or holdout
dataset that consists of data points which was not used to influence or train the classifier
in any way. This test dataset usually has several observations and corresponding labels.

Figure 4-4. Multi-class SVM on three classes (courtesy: scikit-learn.org)

http://scikit-learn.org/

Chapter 4 ■ text ClassifiCation

200

We extract features in the same way as it was followed when training the model. These
features are fed to the already trained model, and we obtain predictions for each data
point. These predictions are then matched with the actual labels to see how well or how
accurately the model has predicted.

Several metrics determine a model’s prediction performance, but we will mainly
focus on the following metrics:

•	 Accuracy

•	 Precision

•	 Recall

•	 F1 score

Let us look at a practical example to see how these metrics can be computed.
Consider a binary classification problem of classifying emails as either 'spam' or 'ham'.
Assuming we have a total of 20 emails, for which we already have the actual manual
labels, we pass it through our built classifier to get predicted labels for each email. This
gives us 20 predicted labels. Now we want to measure the classifier performance by
comparing each prediction with its actual label. The following code snippet sets up the
initial dependencies and the actual and predicted labels:

from sklearn import metrics
import numpy as np
import pandas as pd
from collections import Counter

actual_labels = ['spam', 'ham', 'spam', 'spam', 'spam',
 'ham', 'ham', 'spam', 'ham', 'spam',
 'spam', 'ham', 'ham', 'ham', 'spam',
 'ham', 'ham', 'spam', 'spam', 'ham']

predicted_labels = ['spam', 'spam', 'spam', 'ham', 'spam',
 'spam', 'ham', 'ham', 'spam', 'spam',
 'ham', 'ham', 'spam', 'ham', 'ham',
 'ham', 'spam', 'ham', 'spam', 'spam']

ac = Counter(actual_labels)
pc = Counter(predicted_labels)

Let us now see the total number of emails belonging to either 'spam' or 'ham' based
on the actual labels and our predicted labels using the following snippet:

In [517]: print 'Actual counts:', ac.most_common()
 ...: print 'Predicted counts:', pc.most_common()
Actual counts: [('ham', 10), ('spam', 10)]
Predicted counts: [('spam', 11), ('ham', 9)]

Chapter 4 ■ text ClassifiCation

201

Thus we see that there are a total of 10 emails that are 'spam' and 10 emails that are
'ham'. Our classifier has predicted a total of 11 emails as 'spam' and 9 as 'ham'. How
do we now compare which email was actually 'spam' and what it was classified as? A
confusion matrix is an excellent way to measure this performance across the two classes.
A confusion matrix is a tabular structure that helps visualize the performance of classifiers.
Each column in the matrix represents classified instances based on predictions, and each
row of the matrix represents classified instances based on the actual class labels. (It can
be vice-versa if needed.) We usually have a class label defined as the positive class, which
could be typically the class of our interest. Figure 4-5 shows a typical two-class confusion
matrix where (p) denotes the positive class and (n) denotes the negative class.

You can see some terms in the matrix depicted in Figure 4-5. True Positive (TP)
indicates the number of correct hits or predictions for our positive class. False Negative
(FN) indicates the number of instances we missed for that class by predicting it falsely as
the negative class. False Positive (FP) is the number of instances we predicted wrongly as
the positive class when it was actually not. True Negative (TN) is the number of instances
we correctly predicted as the negative class.

The following code snippet constructs a confusion matrix with our data:

In [519]: cm = metrics.confusion_matrix(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: labels=['spam','ham'])
 ...: print pd.DataFrame(data=cm,
 ...: columns=pd.MultiIndex(levels=[['Predicted:'],
 ...: ['spam','ham']],
 ...: labels=[[0,0],[0,1]]),
 ...: index=pd.MultiIndex(levels=[['Actual:'],

Figure 4-5. A confusion matrix from a two-class classification problem

Chapter 4 ■ text ClassifiCation

202

 ...: ['spam','ham']],
 ...: labels=[[0,0],[0,1]]))
 Predicted:
 spam ham
Actual: spam 5 5
 ham 6 4

We now get a confusion matrix similar to the figure. In our case, let us consider
'spam' to be the positive class. We can now define the preceding metrics in the following
snippet:

positive_class = 'spam'

true_positive = 5.
false_positive = 6.
false_negative = 5.
true_negative = 4.

Now that we have the necessary values from the confusion matrix, we can calculate
our four performance metrics one by one. We have taken the values from earlier as
floats to help with computations involving divisions. We will use the metrics module
from scikit-learn, which is very powerful and helps in computing these metrics with a
single function. And we will define and compute these metrics manually so that you can
understand them clearly and see what goes on behind the scenes of those functions from
the metrics module.

Accuracy is defined as the overall accuracy or proportion of correct predictions of the
model, which can be depicted by the formula

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

where we have our correct predictions in the numerator divided by all the outcomes in
the denominator. The following snippet shows the computations for accuracy:

In [522]: accuracy = np.round(
 ...: metrics.accuracy_score(y_true=actual_labels,
 ...: y_pred=predicted_labels),2)
 ...: accuracy_manual = np.round(
 ...: (true_positive + true_negative) /
 ...: (true_positive + true_negative +
 ...: false_negative + false_positive),2)
 ...: print 'Accuracy:', accuracy
 ...: print 'Manually computed accuracy:', accuracy_manual
Accuracy: 0.45
Manually computed accuracy: 0.45

Chapter 4 ■ text ClassifiCation

203

Precision is defined as the number of predictions made that are actually correct
or relevant out of all the predictions based on the positive class. This is also known as
positive predictive value and can be depicted by the formula

Precision
TP

TP FP
=

+

where we have our correct predictions in the numerator for the positive class divided
by all the predictions for the positive class including the false positives. The following
snippet shows the computations for precision:

In [523]: precision = np.round(
 ...: metrics.precision_score(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: pos_label=positive_

class),2)
 ...: precision_manual = np.round(
 ...: (true_positive) /
 ...: (true_positive + false_positive),2)
 ...: print 'Precision:', precision
 ...: print 'Manually computed precision:', precision_manual
Precision: 0.45
Manually computed precision: 0.45

Recall is defined as the number of instances of the positive class that were correctly
predicted. This is also known as hit rate, coverage, or sensitivity and can be depicted by
the formula

Recall
TP

TP FN
=

+

where we have our correct predictions for the positive class in the numerator divided by
correct and missed instances for the positive class, giving us the hit rate. The following
snippet shows the computations for recall:

In [524]: recall = np.round(
 ...: metrics.recall_score(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: pos_label=positive_class),2)
 ...: recall_manual = np.round(
 ...: (true_positive) /
 ...: (true_positive + false_negative),2)
 ...: print 'Recall:', recall
 ...: print 'Manually computed recall:', recall_manual
Recall: 0.5
Manually computed recall: 0.5

Chapter 4 ■ text ClassifiCation

204

F1 score is another accuracy measure that is computed by taking the harmonic mean
of the precision and recall and can be represented as follows:

F Score
Precision Recall

Precision Recall
1

2
=

´ ´
+

We can compute the same using the following code snippet:

In [526]: f1_score = np.round(
 ...: metrics.f1_score(y_true=actual_labels,
 ...: y_pred=predicted_labels,
 ...: pos_label=positive_class),2)
 ...: f1_score_manual = np.round(
 ...: (2 * precision * recall) /
 ...: (precision + recall),2)
 ...: print 'F1 score:', f1_score
 ...: print 'Manually computed F1 score:', f1_score_manual
F1 score: 0.48
Manually computed F1 score: 0.47

This should give you a pretty good idea about the main metrics used most often
when evaluating classification models. We will be measuring the performance of our
models using the very same metrics, and you may remember seeing these metrics from
Chapter 3, when we were building some of our taggers and parsers.

Building a Multi-Class Classification System
We have gone through all the steps necessary for building a classification system, from
normalization to feature extraction, model building, and evaluation. In this section, we
will be putting everything together and applying it on some real-world data to build a
multi-class text classification system. For this, we will be using the 20 newsgroups dataset
available for download using scikit-learn. The 20 newsgroups dataset comprises
around 18,000 newsgroups posts spread across 20 different categories or topics, thus
making this a 20-class classification problem! Remember the more classes, the more
complex or difficult trying to build an accurate classifier gets. It is recommended that
you remove the headers, footers, and quotes from the text documents to prevent the
model from overfitting or not generalizing well due to certain specific headers or email
addresses, so we will make sure we take care of this. We will also remove documents
that are empty or have no content after removing these three items because it would be
pointless to try and extract features from empty documents.

Let us start with loading the necessary dataset and defining functions for building
the training and testing datasets:

from sklearn.datasets import fetch_20newsgroups
from sklearn.cross_validation import train_test_split

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 4 ■ text ClassifiCation

205

def get_data():
 data = fetch_20newsgroups(subset='all',
 shuffle=True,
 remove=('headers', 'footers', 'quotes'))
 return data

def prepare_datasets(corpus, labels, test_data_proportion=0.3):
 train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels,
 test_size=0.33,
random_state=42)
 return train_X, test_X, train_Y, test_Y

def remove_empty_docs(corpus, labels):
 filtered_corpus = []
 filtered_labels = []
 for doc, label in zip(corpus, labels):
 if doc.strip():
 filtered_corpus.append(doc)
 filtered_labels.append(label)

 return filtered_corpus, filtered_labels

We can now get the data, see the total number of classes in our dataset, and split our
data into training and test datasets using the following snippet (in case you do not have
the data downloaded, feel free to connect to the Internet and take some time to download
the complete corpus):

get the data
In [529]: dataset = get_data()

print all the classes
In [530]: print dataset.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.
pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale',
'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey',
'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.
christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.
misc', 'talk.religion.misc']

get corpus of documents and their corresponding labels
In [531]: corpus, labels = dataset.data, dataset.target
 ...: corpus, labels = remove_empty_docs(corpus, labels)

see sample document and its label index, name
In [548]: print 'Sample document:', corpus[10]
 ...: print 'Class label:',labels[10]
 ...: print 'Actual class label:', dataset.target_names[labels[10]]
Sample document: the blood of the lamb.

Chapter 4 ■ text ClassifiCation

206

This will be a hard task, because most cultures used most animals
for blood sacrifices. It has to be something related to our current
post-modernism state. Hmm, what about used computers?

Cheers,
Kent
Class label: 19
Actual class label: talk.religion.misc

prepare train and test datasets
In [549]: train_corpus, test_corpus, train_labels, test_labels = prepare_
datasets(corpus,
 ...: labels, test_
data_proportion=0.3)

You can see from the preceding snippet how a sample document and label looks.
Each document has its own class label, which is one of the 20 topics it is categorized into.
The labels obtained are numbers, but we can easily map it back to the original category
name if needed using the preceding snippet. We also split our data into train and test
datasets, where the test dataset is 30 percent of the total data. We will build our model on
the training data and test its performance on the test data. In the following snippet, we
will use the normalization module we built earlier to normalize our datasets:

from normalization import normalize_corpus

norm_train_corpus = normalize_corpus(train_corpus)
norm_test_corpus = normalize_corpus(test_corpus)

Remember, a lot of normalization steps take place that we implemented earlier
for each document in the corpora, so it may take some time to complete. Once we have
normalized documents, we will use our feature extractor module built earlier to start
extracting features from our documents. We will build models for Bag of Words, TF-IDF,
averaged word vector, and TF-IDF weighted averaged word vector features separately and
compare their performances.

The following snippet extracts necessary features based on the different techniques:

from feature_extractors import bow_extractor, tfidf_extractor
from feature_extractors import averaged_word_vectorizer
from feature_extractors import tfidf_weighted_averaged_word_vectorizer
import nltk
import gensim

bag of words features
bow_vectorizer, bow_train_features = bow_extractor(norm_train_corpus)
bow_test_features = bow_vectorizer.transform(norm_test_corpus)

Chapter 4 ■ text ClassifiCation

207

tfidf features
tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus)
tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus)

tokenize documents
tokenized_train = [nltk.word_tokenize(text)
 for text in norm_train_corpus]
tokenized_test = [nltk.word_tokenize(text)
 for text in norm_test_corpus]
build word2vec model
model = gensim.models.Word2Vec(tokenized_train,
 size=500,
 window=100,
 min_count=30,
 sample=1e-3)

averaged word vector features
avg_wv_train_features = averaged_word_vectorizer(corpus=tokenized_train,
 model=model,
 num_features=500)
avg_wv_test_features = averaged_word_vectorizer(corpus=tokenized_test,
 model=model,
 num_features=500)

tfidf weighted averaged word vector features
vocab = tfidf_vectorizer.vocabulary_
tfidf_wv_train_features =
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_train,

tfidf_vectors=tfidf_train_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)
tfidf_wv_test_features =
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_test,

tfidf_vectors=tfidf_test_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)

Once we extract all the necessary features from our text documents using the preceding
feature extractors, we define a function that will be useful for evaluation our classification
models based on the four metrics discussed earlier, as shown in the following snippet:

from sklearn import metrics
import numpy as np

def get_metrics(true_labels, predicted_labels):

Chapter 4 ■ text ClassifiCation

208

 print 'Accuracy:', np.round(
 metrics.accuracy_score(true_labels,
 predicted_labels),
 2)
 print 'Precision:', np.round(
 metrics.precision_score(true_labels,
 predicted_labels,
 average='weighted'),
 2)
 print 'Recall:', np.round(
 metrics.recall_score(true_labels,
 predicted_labels,
 average='weighted'),
 2)
 print 'F1 Score:', np.round(
 metrics.f1_score(true_labels,
 predicted_labels,
 average='weighted'),
 2)

We now define a function that trains the model using an ML algorithm and the
training data, performs predictions on the test data using the trained model, and then
evaluates the predictions using the preceding function to give us the model performance:

def train_predict_evaluate_model(classifier,
 train_features, train_labels,
 test_features, test_labels):
 # build model
 classifier.fit(train_features, train_labels)
 # predict using model
 predictions = classifier.predict(test_features)
 # evaluate model prediction performance
 get_metrics(true_labels=test_labels,
 predicted_labels=predictions)
 return predictions

We now import two ML algorithms (discussed in detail earlier) so that we can start
building our models with them based on our extracted features. We will be using scikit-
learn as mentioned to import the necessary classification algorithms, saving us the time
and effort that would have been spent otherwise reinventing the wheel:

from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier

mnb = MultinomialNB()
svm = SGDClassifier(loss='hinge', n_iter=100)

Chapter 4 ■ text ClassifiCation

209

Now we will train, predict, and evaluate models for all the different types of features
using both multinomial naïve Bayes and support vector machines using the following
snippet:

Multinomial Naive Bayes with bag of words features
In [558]: mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb,
 ...: train_features=bow_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=bow_test_

features,
 ...: test_labels=test_

labels)
Accuracy: 0.67
Precision: 0.72
Recall: 0.67
F1 Score: 0.65

Support Vector Machine with bag of words features
In [559]: svm_bow_predictions = train_predict_evaluate_model(classifier=svm,
 ...: train_features=bow_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=bow_test_

features,
 ...: test_labels=test_

labels)
Accuracy: 0.61
Precision: 0.66
Recall: 0.61
F1 Score: 0.62

Multinomial Naive Bayes with tfidf features
In [560]: mnb_tfidf_predictions = train_predict_evaluate_
model(classifier=mnb,
 ...: train_features=tfidf_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=tfidf_

test_features,
 ...: test_labels=test_

labels)
Accuracy: 0.72

Chapter 4 ■ text ClassifiCation

210

Precision: 0.78
Recall: 0.72
F1 Score: 0.7

Support Vector Machine with tfidf features
In [561]: svm_tfidf_predictions = train_predict_evaluate_
model(classifier=svm,
 ...: train_features=tfidf_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=tfidf_

test_features,
 ...: test_labels=test_

labels)
Accuracy: 0.77
Precision: 0.77
Recall: 0.77
F1 Score: 0.77

Support Vector Machine with averaged word vector features
In [562]: svm_avgwv_predictions = train_predict_evaluate_
model(classifier=svm,
 ...: train_features=avg_wv_

train_features,
 ...: train_labels=train_

labels,
 ...: test_features=avg_wv_

test_features,
 ...: test_labels=test_

labels)
Accuracy: 0.55
Precision: 0.55
Recall: 0.55
F1 Score: 0.52

Support Vector Machine with tfidf weighted averaged word vector features
In [563]: svm_tfidfwv_predictions = train_predict_evaluate_model(classifier
=svm,
 ...:
train_features=tfidf_wv_train_features,
 ...:
train_labels=train_labels, test_features=tfidf_wv_test_features,
 ...: test_labels=test_labels)
Accuracy: 0.53
Precision: 0.55
Recall: 0.53
F1 Score: 0.52

Chapter 4 ■ text ClassifiCation

211

We built a total of six models using various types of extracted features and evaluated
the performance of the model on the test data. From the preceding results, we can see
that the SVM-based model built using TF-IDF features yielded the best results of 77
percent accuracy as well as precision, recall, and F1 score. We can build the confusion
matrix for our SVM TF-IDF–based model to get an idea of the classes for which our model
might not be performing well:

In [597]: import pandas as pd
 ...: cm = metrics.confusion_matrix(test_labels, svm_tfidf_predictions)
 ...: pd.DataFrame(cm, index=range(0,20), columns=range(0,20))
Out[597]:

From the confusion matrix shown in Figure 4-6, we can see a large number of
documents for class label 0 that got misclassified to class label 15, and similarly for class
label 18, many documents got misclassified into class label 16. Many documents for class
label 19 got misclassified into class label 15. On printing the class label names for them,
we can observe the following output:

In [600]: class_names = dataset.target_names
 ...: print class_names[0], '->', class_names[15]
 ...: print class_names[18], '->', class_names[16]
 ...: print class_names[19], '->', class_names[15]
alt.atheism -> soc.religion.christian
talk.politics.misc -> talk.politics.guns
talk.religion.misc -> soc.religion.christian

From the preceding output we can see that the misclassified categories are not vastly
different from the actual correct category. Christian, religion, and atheism are based on
some concepts related to the existence of God and religion and possibly have similar
features. Talks about miscellaneous issues and guns related to politics also must be

Figure 4-6. 20-class confusion matrix for our SVM based model

Chapter 4 ■ text ClassifiCation

212

having similar features. We can further analyze and look at the misclassified documents
in detail using the following snippet (due to space constraints I only include the first few
misclassified documents in each case):

In [621]: import re
 ...: num = 0
 ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
 ...: if label == 0 and predicted_label == 15:
 ...: print 'Actual Label:', class_names[label]
 ...: print 'Predicted Label:', class_names[predicted_label]
 ...: print 'Document:-'
 ...: print re.sub('\n', ' ', document)
 ...: print
 ...: num += 1
 ...: if num == 4:
 ...: break
 ...:
 ...:
Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
I would like a list of Bible contadictions from those of you who dispite
being free from Christianity are well versed in the Bible.

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
 They spent quite a bit of time on the wording of the Constitution. They
picked words whose meanings implied the intent. We have already looked in
the dictionary to define the word. Isn't this sufficient? But we were
discussing it in relation to the death penalty. And, the Constitution need
not define each of the words within. Anyone who doesn't know what cruel is
can look in the dictionary (and we did).

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
Our Lord and Savior David Keresh has risen! He has been seen
alive! Spread the word! -----------------------------

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
 "This is your god" (from John Carpenter's "They Live," natch)

In [623]: num = 0

Chapter 4 ■ text ClassifiCation

213

 ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
 ...: if label == 18 and predicted_label == 16:
 ...: print 'Actual Label:', class_names[label]
 ...: print 'Predicted Label:', class_names[predicted_label]
 ...: print 'Document:-'
 ...: print re.sub('\n', ' ', document)
 ...: print
 ...: num += 1
 ...: if num == 4:
 ...: break
 ...:
 ...:
Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
After the initial gun battle was over, they had 50 days to come out
peacefully. They had their high priced lawyer, and judging by the posts here
they had some public support. Can anyone come up with a rational explanation
why the didn't come out (even after they negotiated coming out after the
radio sermon) that doesn't include the Davidians wanting to commit suicide/
murder/general mayhem?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
Yesterday, the FBI was saying that at least three of the bodies had gunshot
wounds, indicating that they were shot trying to escape the fire. Today's
paper quotes the medical examiner as saying that there is no evidence of
gunshot wounds in any of the recovered bodies. At the beginning of this
siege, it was reported that while Koresh had a class III (machine gun)
license, today's paper quotes the government as saying, no, they didn't have
a license. Today's paper reports that a number of the bodies were found
with shoulder weapons next to them, as if they had been using them while
dying -- which doesn't sound like the sort of action I would expect from a
suicide. Our government lies, as it tries to cover over its incompetence
and negligence. Why should I believe the FBI's claims about anything else,
when we can see that they are LYING? This system of government is beyond
reform.

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
 Well, for one thing most, if not all the Dividians (depending on whether
they could show they acted in self-defense and there were no illegal
weapons), could have gone on with their life as they were living it. No one
was forcing them to give up their religion or even their legal weapons. The
Dividians had survived a change in leadership before so even if Koresch

Chapter 4 ■ text ClassifiCation

214

himself would have been convicted and sent to jail, they still could have
carried on. I don't think the Dividians were insane, but I don't see a
reason for mass suicide (if the fire was intentional set by some of the
Dividians.) We also don't know that, if the fire was intentionally set from
inside, was it a generally know plan or was this something only an inner
circle knew about, or was it something two or three felt they had to do
with or without Koresch's knowledge/blessing, etc.? I don't know much about
Masada. Were some people throwing others over? Did mothers jump over with
their babies in their arms?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
rja@mahogany126.cray.com (Russ Anderson) writes... The fact is that
Koresh and his followers involved themselves in a gun battle to control
the Mt Carmel complex. That is not in dispute. From what I remember of the
trial, the authories couldn't reasonably establish who fired first, the
big reason behind the aquittal. Mitchell S Todd

Thus you can see how to analyze and look at documents that have been misclassified
and then maybe go back and tune our feature extraction methods by removing certain
words or weighing words differently to reduce or give prominence.

This brings us to the end of our discussion and implementation of our text
classification system. Feel free to implement more models using other innovative feature-
extraction techniques or supervised learning algorithms and compare their performance.

Applications and Uses
Text classification and categorization is used in several real-world scenarios and
applications, including the following:

•	 News articles categorization

•	 Spam filtering

•	 Music or movie genre categorization

•	 Sentiment analysis

•	 Language detection

The possibilities with text data are indeed endless, and with a little effort you can
apply classification to solve various problems and automate otherwise time-consuming
operations and scenarios.

Chapter 4 ■ text ClassifiCation

215

Summary
Text classification is indeed a powerful tool, and we have covered almost all aspects
related to it in this chapter. We started off our journey with look at the definition and
scope of text classification. Next, we defined automated text classification as a supervised
learning problem and looked at the various types of text classification. We also briefly
covered some ML concepts related to the various types of algorithms. A typical text
classification system blueprint was also defined to describe the various modules and
steps involved when building an end-to-end text classifier. Each module in the blueprint
was then expanded upon. Normalization was touched upon in detail in Chapter 3, and
we built a normalization module here specially for text classification. Various feature-
extraction techniques were explored in detail, including Bag of Words, TF-IDF, and
advanced word vectorization techniques.

You should now be clear about not only the mathematical representations and
concepts but also ways to implement them using our code samples. Various supervised
learning methods were discussed with focus on multinomial naïve Bayes and support vector
machines, which work well with text data, and we looked at ways to evaluate classification
model performance and even implemented those metrics. Finally, we put everything we
learned together into building a robust 20-class text classification system on real data,
evaluated various models, and analyzed model performance in detail. We wrapped up our
discussion by looking at some areas where text classification is used frequently.

We have just scratched the surface of text analytics here with classification. We
will be looking at more ways to analyze and derive insights from textual data in future
chapters.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

217© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_5

CHAPTER 5

Text Summarization

We have come a long way on our journey through the world of text analytics and natural
language processing (NLP). You have seen how to process and annotate textual data to
use it for various applications. We have also ventured into the world of machine learning
(ML) and built our own multi-class text classification system by leveraging various
feature-extraction techniques and supervised machine learning algorithms.

In this chapter, we will tackle a slightly different problem in the world of text analytics.
The world is rapidly evolving with regard to technology, commerce, business, and media.
Gone are the days when we would wait for newspapers to come to our home and be updated
about the various events around the world. We now have the Internet and various forms of
social media that we consume to stay updated about daily events and stay connected with
the world as well as our friends and family. With short messages and statuses, social media
websites like Facebook and Twitter have opened up a completely different dimension to
sharing and consuming information. We as humans tend to have short attention spans, and
this leads us to get bored when consuming or reading large text documents and articles. This
brings us to text summarization, an extremely important concept in text analytics that is used
by businesses and analytical firms to shorten and summarize huge documents of text such
that they still retain their key essence or theme and present this summarized information to
consumers and clients. This is analogous to an elevator pitch, where an executive summary
can describe a process, product, service, or business while retaining the core important
themes and values in the time it takes to ride an elevator.

Say you have a whole corpus of text documents that ranges from sentences to
paragraphs, and you are tasked with trying to derive meaningful insights from it. At first
glance, this may seem difficult because you do not even know what to do with these
documents, let alone use some analytical or ML techniques on the data. A good way to
start would be to use some unsupervised learning approaches specifically aimed at text
summarization and information extraction. Here are a few of the things you could do with
text documents:

•	 Extract the key influential phrases from the documents

•	 Extract various diverse concepts or topics present in the
documents

•	 Summarize the documents to provide a gist that retains the
important parts of the whole corpus

Chapter 5 ■ text Summarization

218

This chapter will cover concepts, techniques, and practical implementations of ways
to perform all three operations. We can describe our problem formally now, which we
will try to solve in this chapter, along with some of the concepts related to it. Given a set of
documents, text summarization aims to reduce a document or set of documents in a corpus
to a summary of user-specified length such that it retains the key important concepts and
themes from the corpus. We will also discuss other ways to summarize documents and
extract information from them, including topic models and key phrase extraction.

In this chapter, we will talk about text summarization as well as information extraction
from text documents, which captures and summarizes the main themes or concepts
of the document corpus. We will start with a detailed discussion of the various types of
summarization and information extraction techniques and discuss some concepts essential
for understanding the practical implementations later. The chapter will also briefly cover
some background dependencies related to text processing and feature extraction before
moving on to each technique. We will discuss the three major concepts and techniques of
key phrase extraction, topic models, and automated text summarization.

Text Summarization and Information Extraction
Text summarization and information extraction deal with trying to extract key important
concepts and themes from a huge corpus of text, essentially reducing it in the process.
Before we dive deeper into the concepts and techniques, we should first understand the
need for text summarization. The concept of information overload is one of the prime
reasons behind the demand for text summarization. Since print and verbal media came
into prominence, there has been an abundance of books, articles, audio, and video.
This began all the way back in the 3rd or 4th century B.C., when people referred to a
huge quantity of books, as there seemed to be no end to the production of books, and
this overload of information was often met with disapproval. The Renaissance gave us
the invention of the printing press by Gutenberg around 1440 A.D., which led to the
mass production of books, manuscripts, articles, and pamphlets. This greatly increased
information overload, with scholars complaining about an excess of information, which
was becoming extremely difficult to consume, process, and manage.

In the 20th century, advances in computers and technology ushered in the digital
age, culminating in the Internet. The Internet opened up a whole window of possibilities
into producing and consuming information with social media, news web sites, email, and
instant messaging capabilities. This in turn has led to an explosive increase in the amount
of information and to unwanted information in the form of spam, unwanted statuses, and
tweets—and even to bots posting more unwanted content across the Web.

Information overload, then, is the presence of excess data or information, which
consumers find difficult to process in making well-informed decisions. The overload
occurs when the amount of information as input to the system starts exceeding the
processing capability of the system. We as humans have limited cognitive processing
capabilities and are also wired in such a way that we cannot spend a long time reading
a single piece of information or data because the mind tends to wander every now and
then. Thus when we get loaded with information, it leads to a reduction in making
qualitative decisions.

Chapter 5 ■ text Summarization

219

By now you can probably guess where I am going with this concept and why we
need summarization and information extraction. Businesses thrive on making key and
well-informed decisions and usually they have a huge amount of data and information.
Getting insights from it is no piece of cake, and automating it is tough because what to
do with all that data is often unclear. Executives rarely have time to listen to long talks
or go through pages and pages of important information. The idea of summarization
and information extraction is to get an idea of the key important topics and themes
of huge documents of information and summarize them into a few lines that can be
read, understood, and interpreted easily, thus easing the process of making well-
informed decisions in shorter time frames. We need efficient and scalable processes
and techniques that can perform this on text data, and the most popular techniques are
keyphrase extraction, topic modeling, and automated document summarization. The
first two techniques are more into extracting key information in the form of concepts,
topics, and themes from documents, thus reducing them, and the last technique is all
about summarizing large text documents into a few lines that give the key essence or
information which the document is trying to convey. We will cover each technique in
detail in future sections along with practical examples but right now, we will briefly talk
about what each technique entails and their scope:

•	 Keyphrase extraction is perhaps the simplest out of the three
techniques. It involves extracting keywords or phrases from a text
document or corpus that capture its main concepts or themes.
This can be said to be a simplistic form of topic modeling. You
might have seen keywords or phrases described in a research
paper or even some product in an online store that describes
the entity in a few words or phrases, capturing its main idea or
concept.

•	 Topic modeling usually involves using statistical and
mathematical modeling techniques to extract main topics,
themes, or concepts from a corpus of documents. Note here the
emphasis on corpus of documents because the more diverse set
of documents you have, the more topics or concepts you can
generate—unlike with a single document where you will not get
too many topics or concepts if it talks about a singular concept.
Topic models are also often known as probabilistic statistical
models, which use specific statistical techniques including
singular valued decomposition and latent dirichlet allocation
to discover connected latent semantic structures in text data
that yield topics and concepts. They are used extensively in text
analytics and even bioinformatics.

Chapter 5 ■ text Summarization

220

•	 Automated document summarization is the process of using a
computer program or algorithm based on statistical and ML
techniques to summarize a document or corpus of documents
such that we obtain a short summary that captures all the
essential concepts and themes of the original document or
corpus. A wide variety of techniques for building automated
document summarizers exist, including various extraction- and
abstraction-based techniques. The key concept behind all these
algorithms is to find a representative subset of the original dataset
such that the core essence of the dataset from the semantic and
conceptual standpoints is contained in this subset. Document
summarization usually involves trying to extract and construct
an executive summary from a single document. But the same
algorithms can be extended to multiple documents, though
usually the idea is not to combine several diverse documents
together, which would defeat the purpose of the algorithm. The
same concept is not only applied in text analytics but also to
image and video summarization.

We will discuss some important mathematical and ML concepts, text normalization,
and feature extraction processes in the following sections, before moving to cover each
technique in further detail.

Important Concepts
Several important mathematical and ML-based concepts will be useful later on because
we will be basing several of our implementations on them. Some will be familiar to you,
but I will briefly touch on them again for the sake of completeness so that you can refresh
your memory. We will also cover some concepts from natural language processing in this
section.

Documents
A document is usually an entity containing a whole body of text data with optional
headers and other metadata information. A corpus usually consists of a collection of
documents. These documents can be simple sentences or complete paragraphs of textual
information. Tokenized corpus refers to a corpus where each document is tokenized or
broken down into tokens, which are usually words.

Text Normalization
Text normalization is the process of cleaning, normalizing, and standardizing textual
data with techniques like removing special symbols and characters, removing extraneous
HTML tags, removing stopwords, correcting spellings, stemming, and lemmatization.

Chapter 5 ■ text Summarization

221

Feature Extraction
Feature extraction is a process whereby we extract meaningful features or attributes
from raw textual data for feeding it into a statistical or ML algorithm. This process is
also known as vectorization because usually the end transformation of this process is
numerical vectors from raw text tokens. The reason is that conventional algorithms
work on numerical vectors and cannot work directly on raw text data. There are various
feature-extraction methods including Bag of Words–based binary features that tell us
whether a word or group of words exist or not in the document, Bag of Words–based
frequency features that tell us the frequency of occurrence of a word or group of words in
a document, and term frequency and inverse document frequency or TF-IDF–weighted
features that take into account the term frequency and inverse document frequency when
weighing each term. Refer to Chapter 4 for more on feature extraction.

Feature Matrix
A feature matrix usually refers to a mapping from a collection of documents to features
where each row indicates a document and each column indicates a particular feature,
usually a word or a set of words. We will represent collections of documents or sentences
through feature matrices after feature extraction and we will often apply statistical and
ML techniques on these matrices later on in our practical examples.

Singular Value Decomposition
Singular Value Decomposition (SVD) is a technique from linear algebra that is used quite
frequently in summarization algorithms. SVD is the process of factorization of a matrix
that is real or complex. Formally we can define SVD as follows. Consider a matrix M that
has dimensions of m n´ where m denotes the number of rows and n denotes the

number of columns. Mathematically the matrix M can be represented using SVD as a
factorization such that

M U S Vm n m m m n n n
T

´ ´ ´ ´=

where we have the following decompositions:

•	 U is an m m´ unitary matrix such that U U IT
m m= ´ where I is the

identity matrix. The columns of U indicate left singular vectors.

•	 S is a diagonal m x n matrix with positive real numbers on the
diagonal of the matrix. This is also often also represented as a
vector of m values that indicate the singular values.

•	 VT is a n n´ unitary matrix such that V V IT
n n= ´ where I is the

identity matrix. The rows of V indicate right singular vectors.

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

Chapter 5 ■ text Summarization

222

This tells us that U and V are orthogonal. The singular values of S are particularly
important in summarization algorithms. We will be using SVD particularly for low rank
matrix approximation where we approximate the original matrix M with a matrix M



 such

that this new matrix is a truncated version of the original matrix M with a rank k and can
be represented by SVD as M USVT

 

= where S


 is a truncated version of the original S

matrix, which now consists of only the top k largest singular values, and the other singular
values are represented by zero. We will be using a nice implementation from scipy to
extract the top k singular values and also return the corresponding U, S and V matrices.
The following code snippet we will be using is in the utils.py file:

from scipy.sparse.linalg import svds

def low_rank_svd(matrix, singular_count=2):

 u, s, vt = svds(matrix, k=singular_count)
 return u, s, vt

We will be using this implementation in topic modeling as well as document
summarization in future sections. Figure 5-1 gives a nice depiction of the preceding
process, which yields k singular vectors from the original SVD decomposition, and shows
how we can get the low rank matrix approximation from the same.

You can clearly see that k singular values are retained in the low rank matrix
approximation and how the original matrix M is decomposed into U, S, and V using SVD.
In our computations, usually the rows of the matrix M will denote terms, and the columns
will denote documents. This matrix, also known as the term-document matrix, is usually
obtained after feature extraction by converting a document-term matrix into its transpose
before applying SVD. I will try to keep the math to a minimum in the rest of the chapter

Figure 5-1. Singular Value Decomposition with low rank matrix approximation

Chapter 5 ■ text Summarization

223

unless it is absolutely essential to understand how the algorithms work. The following
sections will briefly touch upon text normalization and feature extraction to highlight the
techniques and methods that we will be using in this chapter.

Text Normalization
Chapter 3 covered text normalization in detail, and we built our own normalization
module in Chapter 4. We will be reusing the same module in this chapter but will be
adding a couple of enhancements specifically for the benefit of some of our algorithms.
You can find all the text normalization–related code in the normalization.py file. The
main steps performed in text normalization include the following:

 1. Sentence extraction

 2. Unescape HTML escape sequences

 3. Expand contractions

 4. Lemmatize text

 5. Remove special characters

 6. Remove stopwords

Steps 3–6 remain the same from Chapter 4, except step 5 where we substitute each
special character with a blank space depicted by the code pattern.sub(' ', token)
instead of the empty string in Chapter 4.

Step 1 is a new function where we take in a text document, remove its newlines,
parse the text, converting it into ASCII format, and break it down into its sentence
constituents. The function is depicted in the following snippet:

def parse_document(document):
 document = re.sub('\n', ' ', document)
 if isinstance(document, str):
 document = document
 elif isinstance(document, unicode):
 return unicodedata.normalize('NFKD', document).encode('ascii',

'ignore')
 else:
 raise ValueError('Document is not string or unicode!')
 document = document.strip()
 sentences = nltk.sent_tokenize(document)
 sentences = [sentence.strip() for sentence in sentences]
 return sentences

Step 2 deals with unescaping special HTML characters that are escaped or encoded.
The full list at www.theukwebdesigncompany.com/articles/entity-escape-characters.
php basically shows how some special symbols or even regular characters are escaped
into a different code, for example, & is escaped as &. So we use the following function
to unescape them and bring them back to their original unescaped form so we can
normalize them properly in the subsequent stages:

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://www.theukwebdesigncompany.com/articles/entity-escape-characters.php
http://www.theukwebdesigncompany.com/articles/entity-escape-characters.php

Chapter 5 ■ text Summarization

224

from HTMLParser import HTMLParser

html_parser = HTMLParser()
def unescape_html(parser, text):
 return parser.unescape(text)

We also parameterize our lemmatization operation in our final normalization
function so as to make it optional because in some scenarios it works perfectly while in
other scenarios we may not want to use lemmatization. The complete normalization
function is depicted as follows:

def normalize_corpus(corpus, lemmatize=True, tokenize=False):

 normalized_corpus = []
 for text in corpus:
 text = html_parser.unescape(text)
 text = expand_contractions(text, CONTRACTION_MAP)
 if lemmatize:
 text = lemmatize_text(text)
 else:
 text = text.lower()
 text = remove_special_characters(text)
 text = remove_stopwords(text)
 if tokenize:
 text = tokenize_text(text)
 normalized_corpus.append(text)
 else:
 normalized_corpus.append(text)

 return normalized_corpus

We will be using this function for most of our normalization needs. Refer to the
normalization.py file for all the detailed helper functions we use for normalizing text
which we also discussed in Chapter 4.

Feature Extraction
We will use a generic function here to perform various types of feature extraction from
text data. The types of features which we will be working with are as follows:

•	 Binary term occurrence–based features

•	 Frequency bag of words–based features

•	 TF-IDF–weighted features

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

Chapter 5 ■ text Summarization

225

We will use the following function in most of our practical examples in future
sections for feature extraction from text documents. You can also find this function in the
utils.py module in the code files associated with this chapter:

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

def build_feature_matrix(documents, feature_type='frequency'):

 feature_type = feature_type.lower().strip()

 if feature_type == 'binary':
 vectorizer = CountVectorizer(binary=True, min_df=1,
 ngram_range=(1, 1))
 elif feature_type == 'frequency':
 vectorizer = CountVectorizer(binary=False, min_df=1,
 ngram_range=(1, 1))
 elif feature_type == 'tfidf':
 vectorizer = TfidfVectorizer(min_df=1,
 ngram_range=(1, 1))
 else:
 raise Exception("Wrong feature type entered. Possible values:

'binary', 'frequency', 'tfidf'")

 feature_matrix = vectorizer.fit_transform(documents).astype(float)

 return vectorizer, feature_matrix

Now that we have covered the necessary background concepts and dependencies
needed for this chapter, we will be deep diving into each text summarization and
information extraction technique in detail.

Keyphrase Extraction
One of the simplest yet most powerful techniques of extracting important information
from unstructured text documents is keyphrase extraction. Keyphrase extraction, also
known as terminology extraction, is defined as the process or technique of extracting
key important and relevant terms or phrases from a body of unstructured text such that
the core topics or themes of the text document(s) are captured in these key phrases.
This technique falls under the broad umbrella of information retrieval and extraction.
Keyphrase extraction finds its uses in many areas, including the following:

•	 Semantic web

•	 Query-based search engines and crawlers

•	 Recommendation systems

•	 Tagging systems

Chapter 5 ■ text Summarization

226

•	 Document similarity

•	 Translation

Keyphrase extraction is often the starting point for carrying out more complex
tasks in text analytics or NLP, and the output from this can itself act as features for more
complex systems. There are various approaches for keyphrase extraction. We will be
covering the following two techniques:

•	 Collocations

•	 Weighted tag–based phrase extraction

An important thing to remember here is that we will be extracting phrases that are usually
collections of words, though sometimes that can include a single word. If you are extracting
keywords, that is also known as keyword extraction, and it is a subset of keyphrase extraction.

Collocations
The term collocation is actually a concept borrowed from analyzing corpora and
linguistics. A collocation is a sequence or group of words that tend to occur frequently
such that this frequency tends to be more than what could be termed as a random or
chance occurrence. Various types of collocations can be formed based on the parts of
speech of the various terms like nouns, verbs, and so on. There are various ways to extract
collocations, and one of the best is to use an n-gram grouping or segmentation approach
where we construct n-grams out of a corpus, count the frequency of each n-gram, and rank
them based on their frequency of occurrence to get the most frequent n-gram collocations.

The idea is to have a corpus of documents, which could be paragraphs or sentences,
tokenize them to form sentences, flatten the list of sentences to form one large sentence
or string, over which we slide a window of size n based on the n-gram range, and
compute n-grams across the string. Once computed, we count each n-gram based on its
frequency of occurrence and then rank them based on their frequency. This yields the
most frequent collocations on the basis of frequency.

We will implement this from scratch initially so that you can understand the
algorithm better and then we will use some of nltk's built-in capabilities to show the
same. We will start by loading some necessary dependencies and a corpus on which we
will be computing collocations. We will use the nltk Gutenberg corpus's book, Lewis
Carroll’s Alice in Wonderland as our corpus. We also normalize the corpus to standardize
the text content using our normalization module specified earlier:

from nltk.corpus import gutenberg
from normalization import normalize_corpus
import nltk
from operator import itemgetter

load corpus
alice = gutenberg.sents(fileids='carroll-alice.txt')
alice = [' '.join(ts) for ts in alice]
norm_alice = filter(None, normalize_corpus(alice, lemmatize=False))

Chapter 5 ■ text Summarization

227

print first line
In [772]: print norm_alice[0]
alice adventures wonderland lewis carroll 1865

Now that we have loaded our corpus, we will define a function to flatten the corpus into
one big string of text. The following function will help us do that for a corpus of documents:

def flatten_corpus(corpus):
 return ' '.join([document.strip()
 for document in corpus])

We will define a function to compute n-grams based on some input list of tokens and
the parameter n, which determines the degree of the n-gram like a unigram, bigram, and
so on. The following code snippet computes n-grams for an input sequence:

def compute_ngrams(sequence, n):
 return zip(*[sequence[index:]
 for index in range(n)])

This function basically takes in a sequence of tokens and computes a list of lists
having sequences where each list contains all items from the previous list except the
first item removed from the previous list. It constructs n such lists and then zips them all
together to give us the necessary n-grams. We can see the function in action on a sample
sequence in the following snippet:

In [802]: compute_ngrams([1,2,3,4], 2)
Out[802]: [(1, 2), (2, 3), (3, 4)]

In [803]: compute_ngrams([1,2,3,4], 3)
Out[803]: [(1, 2, 3), (2, 3, 4)]

The preceding output shows bigrams and trigrams for an input sequence. We will
now utilize this function and build upon it to generate the top n-grams based on their
frequency of occurrence. The following code snippet helps us in getting the top n-grams:

def get_top_ngrams(corpus, ngram_val=1, limit=5):

 corpus = flatten_corpus(corpus)
 tokens = nltk.word_tokenize(corpus)

 ngrams = compute_ngrams(tokens, ngram_val)
 ngrams_freq_dist = nltk.FreqDist(ngrams)
 sorted_ngrams_fd = sorted(ngrams_freq_dist.items(),
 key=itemgetter(1), reverse=True)
 sorted_ngrams = sorted_ngrams_fd[0:limit]
 sorted_ngrams = [(' '.join(text), freq)
 for text, freq in sorted_ngrams]

 return sorted_ngrams

Chapter 5 ■ text Summarization

228

We make use of nltk's FreqDist class to create a counter of all the n-grams based
on their frequency and then we sort them based on their frequency and return the top
n-grams based on the specified user limit. We will now compute the top bigrams and
trigrams on our corpus using the following code snippet:

top 10 bigrams
In [805]: get_top_ngrams(corpus=norm_alice, ngram_val=2,
 ...: limit=10)
Out[805]:
[(u'said alice', 123),
 (u'mock turtle', 56),
 (u'march hare', 31),
 (u'said king', 29),
 (u'thought alice', 26),
 (u'said hatter', 22),
 (u'white rabbit', 22),
 (u'said mock', 20),
 (u'said gryphon', 18),
 (u'said caterpillar', 18)]

top 10 trigrams
In [806]: get_top_ngrams(corpus=norm_alice, ngram_val=3,
 ...: limit=10)
Out[806]:
[(u'said mock turtle', 20),
 (u'said march hare', 10),
 (u'poor little thing', 6),
 (u'white kid gloves', 5),
 (u'little golden key', 5),
 (u'march hare said', 5),
 (u'certainly said alice', 5),
 (u'mock turtle said', 5),
 (u'mouse mouse mouse', 4),
 (u'join dance join', 4)]

The preceding output shows sequences of two and three words generated by
n-grams along with the number of times they occur throughout the corpus. We can see
most of the collocations point to people who are speaking something as “said <person>”.
We also see the people who are popular characters in “Alice in Wonderland” like the mock
turtle, the king, the rabbit, the hatter, and of course Alice herself being depicted in the
aforementioned collocations.

We will now look at nltk’s collocation finders, which enable us to find collocations
using various measures like raw frequencies, pointwise mutual information, and so on.
Just to explain briefly, pointwise mutual information can be computed for two events or
terms as the logarithm of the ratio of the probability of them occurring together by the
product of their individual probabilities assuming that they are independent of each
other. Mathematically we can represent it like this:

Chapter 5 ■ text Summarization

229

pmi x y
p x y

p x p y
,

,() = ()
() ()

log

This measure is symmetric. The following code snippet shows how to compute these
collocations using these measures:

bigrams
from nltk.collocations import BigramCollocationFinder
from nltk.collocations import BigramAssocMeasures

finder = BigramCollocationFinder.from_documents([item.split()
 for item
 in norm_alice])
bigram_measures = BigramAssocMeasures()
raw frequencies
In [813]: finder.nbest(bigram_measures.raw_freq, 10)
Out[813]:
[(u'said', u'alice'),
 (u'mock', u'turtle'),
 (u'march', u'hare'),
 (u'said', u'king'),
 (u'thought', u'alice'),
 (u'said', u'hatter'),
 (u'white', u'rabbit'),
 (u'said', u'mock'),
 (u'said', u'caterpillar'),
 (u'said', u'gryphon')]
pointwise mutual information
In [814]: finder.nbest(bigram_measures.pmi, 10)
Out[814]:
[(u'abide', u'figures'),
 (u'acceptance', u'elegant'),
 (u'accounting', u'tastes'),
 (u'accustomed', u'usurpation'),
 (u'act', u'crawling'),
 (u'adjourn', u'immediate'),
 (u'adoption', u'energetic'),
 (u'affair', u'trusts'),
 (u'agony', u'terror'),
 (u'alarmed', u'proposal')]

trigrams
from nltk.collocations import TrigramCollocationFinder
from nltk.collocations import TrigramAssocMeasures

finder = TrigramCollocationFinder.from_documents([item.split()
 for item
 in norm_alice])

Chapter 5 ■ text Summarization

230

trigram_measures = TrigramAssocMeasures()
raw frequencies
In [817]: finder.nbest(trigram_measures.raw_freq, 10)
Out[817]:
[(u'said', u'mock', u'turtle'),
 (u'said', u'march', u'hare'),
 (u'poor', u'little', u'thing'),
 (u'little', u'golden', u'key'),
 (u'march', u'hare', u'said'),
 (u'mock', u'turtle', u'said'),
 (u'white', u'kid', u'gloves'),
 (u'beau', u'ootiful', u'soo'),
 (u'certainly', u'said', u'alice'),
 (u'might', u'well', u'say')]
pointwise mutual information
In [818]: finder.nbest(trigram_measures.pmi, 10)
Out[818]:
[(u'accustomed', u'usurpation', u'conquest'),
 (u'adjourn', u'immediate', u'adoption'),
 (u'adoption', u'energetic', u'remedies'),
 (u'ancient', u'modern', u'seaography'),
 (u'apple', u'roast', u'turkey'),
 (u'arithmetic', u'ambition', u'distraction'),
 (u'brother', u'latin', u'grammar'),
 (u'canvas', u'bag', u'tied'),
 (u'cherry', u'tart', u'custard'),
 (u'circle', u'exact', u'shape')]

Now you know how to compute collocations for a corpus using an n-gram generative
approach. We will now look at a better way of generating key phrases based on parts of
speech tagging and term weighing in the next section.

Weighted Tag–Based Phrase Extraction
Here’s a slightly different approach to extracting keyphrases. This method borrows
concepts from a couple of papers, namely K. Barker and N. Cornachhia’s “Using Noun
Phrase Heads to Extract Document Keyphrases” and “KEA: Practical Automatic Keyphrase
Extraction” by Ian Witten et al., which you can refer to for further details on their
experimentations and approaches. We follow a two-step process in our algorithm here:

 1. Extract all noun phrases chunks using shallow parsing

 2. Compute TF-IDF weights for each chunk and return the top
weighted phrases

Chapter 5 ■ text Summarization

231

For the first step, we will use a simple pattern based on parts of speech (POS) tags
to extract noun phrase chunks. You will be familiar with this from Chapter 3 where we
explored chunking and shallow parsing. Before discussing our algorithm, let us define the
corpus on which we will be testing our implementation. We use a sample description of
elephants taken from Wikipedia as shown in the following code:

toy_text = """
Elephants are large mammals of the family Elephantidae
and the order Proboscidea. Two species are traditionally recognised,
the African elephant and the Asian elephant. Elephants are scattered
throughout sub-Saharan Africa, South Asia, and Southeast Asia. Male
African elephants are the largest extant terrestrial animals. All
elephants have a long trunk used for many purposes,
particularly breathing, lifting water and grasping objects. Their
incisors grow into tusks, which can serve as weapons and as tools
for moving objects and digging. Elephants' large ear flaps help
to control their body temperature. Their pillar-like legs can
carry their great weight. African elephants have larger ears
and concave backs while Asian elephants have smaller ears
and convex or level backs.
"""

Now that we have our corpus ready, we will use the pattern, " NP: {<DT>? <JJ>*
<NN.*>+}" for extracting all possible noun phrases from our corpus of documents/
sentences. You can always experiment with more sophisticated patterns later,
incorporating verb, adjective, or even adverb phrases. However, I will keep things simple
and concise here to focus on the core logic. Once we have our pattern, we will define a
function to parse and extract these phrases using the following snippet (we also load the
necessary dependencies at this point):

from normalization import parse_document
import itertools
import nltk
from normalization import stopword_list
from gensim import corpora, models

def get_chunks(sentences, grammar = r'NP: {<DT>? <JJ>* <NN.*>+}'):
 # build chunker based on grammar pattern
 all_chunks = []
 chunker = nltk.chunk.regexp.RegexpParser(grammar)

 for sentence in sentences:
 # POS tag sentences
 tagged_sents = nltk.pos_tag_sents(
 [nltk.word_tokenize(sentence)])

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 5 ■ text Summarization

232

 # extract chunks
 chunks = [chunker.parse(tagged_sent)
 for tagged_sent in tagged_sents]
 # get word, pos tag, chunk tag triples
 wtc_sents = [nltk.chunk.tree2conlltags(chunk)
 for chunk in chunks]

 flattened_chunks = list(
 itertools.chain.from_iterable(
 wtc_sent for wtc_sent in wtc_sents)
)
 # get valid chunks based on tags
 valid_chunks_tagged = [(status, [wtc for wtc in chunk])
 for status, chunk
 in itertools.groupby(flattened_chunks,
 lambda (word,pos,chunk): chunk

!= 'O')]
 # append words in each chunk to make phrases
 valid_chunks = [' '.join(word.lower()
 for word, tag, chunk
 in wtc_group
 if word.lower()
 not in stopword_list)
 for status, wtc_group
 in valid_chunks_tagged
 if status]
 # append all valid chunked phrases
 all_chunks.append(valid_chunks)

 return all_chunks

The comments in the preceding function are self-explanatory. Basically, we have a
defined grammar pattern for chunking or extracting noun phrases. We define a chunker
over the same pattern, and for each sentence in the document, we first annotate it with
its POS tags (hence, we should not normalize the text) and then build a shallow parse tree
with noun phrases as the chunks and all other POS tag–based words as chinks, which
are not parts of any chunks. Once this is done, we use the tree2conlltags function to
generate (w,t,c) triples, which are words, POS tags, and the IOB-formatted chunk tags
discussed in Chapter 3. We remove all tags with chunk tag of 'O' since they are basically
words or terms that do not belong to any chunk (if you remember our discussion of
shallow parsing in Chapter 3). Finally, from these valid chunks, we combine the chunked
terms to generate phrases from each chunk group. We can see this function in action on
our corpus in the following snippet:

sentences = parse_document(toy_text)
valid_chunks = get_chunks(sentences)
print all valid chunks
In [834]: print valid_chunks
 [['elephants', 'large mammals', 'family elephantidae', 'order
proboscidea'], ['species', 'african elephant', 'asian elephant'],

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3

Chapter 5 ■ text Summarization

233

['elephants', 'sub-saharan africa', 'south asia', 'southeast asia'],
['male african elephants', 'extant terrestrial animals'], ['elephants',
'long trunk', 'many purposes', 'breathing', 'water', 'grasping objects'],
['incisors', 'tusks', 'weapons', 'tools', 'objects', 'digging'],
['elephants', 'large ear flaps', 'body temperature'], ['pillar-like legs',
'great weight'], ['african elephants', 'ears', 'backs', 'asian elephants',
'ears', 'convex', 'level backs']]

The preceding output shows all the valid keyphrases per sentence of our document.
You can already see, since we targeted noun phrases, all phrases talk about noun based
entities. We will now build on top of our get_chunks() function by implementing the
necessary logic for step 2, where we will build a TF-IDF–based model on our keyphrases
using gensim and then compute TF-IDF–based weights for each keyphrase based on its
occurrence in the corpus. Finally, we will sort these keyphrases based on their TF-IDF
weights and show the top n keyphrases where n is specified by the user:

def get_tfidf_weighted_keyphrases(sentences,
 grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',
 top_n=10):
 # get valid chunks
 valid_chunks = get_chunks(sentences, grammar=grammar)
 # build tf-idf based model
 dictionary = corpora.Dictionary(valid_chunks)
 corpus = [dictionary.doc2bow(chunk) for chunk in valid_chunks]
 tfidf = models.TfidfModel(corpus)
 corpus_tfidf = tfidf[corpus]
 # get phrases and their tf-idf weights
 weighted_phrases = {dictionary.get(id): round(value,3)
 for doc in corpus_tfidf
 for id, value in doc}
 weighted_phrases = sorted(weighted_phrases.items(),
 key=itemgetter(1), reverse=True)
 # return top weighted phrases
 return weighted_phrases[:top_n]

We can now test this function on our toy corpus from before by using the following
code snippet to generate the top ten keyphrases:

top 10 tf-idf weighted keyphrases for toy_text
In [836]: get_tfidf_weighted_keyphrases(sentences, top_n=10)
Out[836]:
[(u'pillar-like legs', 0.707),
 (u'male african elephants', 0.707),
 (u'great weight', 0.707),
 (u'extant terrestrial animals', 0.707),
 (u'large ear flaps', 0.684),
 (u'body temperature', 0.684),
 (u'ears', 0.667),
 (u'species', 0.577),

Chapter 5 ■ text Summarization

234

 (u'african elephant', 0.577),
 (u'asian elephant', 0.577)]

Interestingly we see various types of elephants being depicted in the keyphrases,
like Asian and African elephants, and also typical attributes of elephants like "great
weight", "large ear flaps", and "pillar like legs". Thus you can get an idea of
how keyphrase extraction can extract key important concepts from text documents and
summarize them. Try out these functions on other corpora to see interesting results!

Topic Modeling
We have seen how keyphrases can be extracted using a couple of techniques. Though
these phrases point out key pivotal points from a document or corpus, it is simplistic and
often does not portray the various themes or concepts in a corpus, particularly when we
have different distinguishing themes or concepts in a corpus of documents. Topic models
have been designed specifically for the purpose of extracting various distinguishing
concepts or topics from a large corpus containing various types of documents, where
each document talks about one or more concepts. These concepts can be anything
from thoughts to opinions, facts, outlooks, statements, and so on. The main aim of topic
modeling is to use mathematical and statistical techniques to discover hidden and latent
semantic structures in a corpus.

Topic modeling involves extracting features from document terms and using
mathematical structures and frameworks like matrix factorization and SVD to generate
clusters or groups of terms that are distinguishable from each other, and these cluster of
words form topics or concepts. These concepts can be used to interpret the main themes
of a corpus and also make semantic connections among words that co-occur together
frequently in various documents. There are various frameworks and algorithms to build
topic models. We will cover the following three methods:

•	 Latent semantic indexing

•	 Latent Dirichlet allocation

•	 Non-negative matrix factorization

The first two methods are quite popular and have been around a long time. The last
technique, non-negative matrix factorization, is a very recent technique that is extremely
effective and gives excellent results. We will leverage gensim and scikit-learn for our
practical implementations and also look at how to build our own topic model based on
latent semantic indexing. This will give you an idea of how these techniques work and
also how to convert mathematical frameworks into practical implementations. We will
use the following toy corpus initially to test our topic models:

toy_corpus = ["The fox jumps over the dog",
"The fox is very clever and quick",
"The dog is slow and lazy",
"The cat is smarter than the fox and the dog",
"Python is an excellent programming language",
"Java and Ruby are other programming languages",

Chapter 5 ■ text Summarization

235

"Python and Java are very popular programming languages",
"Python programs are smaller than Java programs"]

You can see that we have eight documents in the preceding corpus: the first four
talk about various animals, and the last four are about programming languages. Thus
this shows that there are two distinct topics in the corpus. We generalized that using
our brains, but the following sections will try to extract that same information using
computational methods. Once we build some topic modeling frameworks, we will use the
same to generate topics on real product reviews from Amazon.

Latent Semantic Indexing
Our first technique is latent semantic indexing (LSI), which has been around since the
1970s when it was first developed as a statistical technique to correlate and find out
semantically linked terms from corpora. LSI is not just used for text summarization
but also in information retrieval and search. LSI uses the very popular SVD technique
discussed earlier in the “Important Concepts” section. The main principle behind LSI is
that similar terms tend to be used in the same context and hence tend to co-occur more.
The term LSI comes from the fact that this technique has the ability to uncover latent
hidden terms which correlate semantically to form topics.

We will now try to implement an LSI by leveraging gensim and extract topics from the
toy corpus. To start, we load the necessary dependencies and normalize the toy corpus
using the following code snippet:

from gensim import corpora, models
from normalization import normalize_corpus
import numpy as np

norm_tokenized_corpus = normalize_corpus(toy_corpus, tokenize=True)
view the normalized tokenized corpus
In [841]: norm_tokenized_corpus
Out[841]:
[[u'fox', u'jump', u'dog'],
 [u'fox', u'clever', u'quick'],
 [u'dog', u'slow', u'lazy'],
 [u'cat', u'smarter', u'fox', u'dog'],
 [u'python', u'excellent', u'programming', u'language'],
 [u'java', u'ruby', u'programming', u'language'],
 [u'python', u'java', u'popular', u'programming', u'language'],
 [u'python', u'program', u'small', u'java', u'program']]

We now build a dictionary or vocabulary, which gensim uses to map each unique
term into a numeric value. Once built, we convert the preceding tokenized corpus into
a numeric Bag of Words vector representation where each term and its frequency in a
sentence is depicted by a tuple (term, frequency), as seen in the following snippet:

build the dictionary
dictionary = corpora.Dictionary(norm_tokenized_corpus)

Chapter 5 ■ text Summarization

236

view the dictionary mappings
In [846]: print dictionary.token2id
{u'program': 17, u'lazy': 5, u'clever': 4, u'java': 13, u'programming': 10,
u'language': 11, u'python': 9, u'smarter': 7, u'fox': 1, u'dog': 2, u'cat':
8, u'jump': 0, u'popular': 15, u'slow': 6, u'excellent': 12, u'quick': 3,
u'small': 16, u'ruby': 14}

convert tokenized documents into bag of words vectors
corpus = [dictionary.doc2bow(text) for text in norm_tokenized_corpus]
view the converted vectorized corpus
In [849]: corpus
Out[849]:
[[(0, 1), (1, 1), (2, 1)],
 [(1, 1), (3, 1), (4, 1)],
 [(2, 1), (5, 1), (6, 1)],
 [(1, 1), (2, 1), (7, 1), (8, 1)],
 [(9, 1), (10, 1), (11, 1), (12, 1)],
 [(10, 1), (11, 1), (13, 1), (14, 1)],
 [(9, 1), (10, 1), (11, 1), (13, 1), (15, 1)],
 [(9, 1), (13, 1), (16, 1), (17, 2)]]

We will now build a TF-IDF–weighted model over this corpus where each term in
each document will contain its TF-IDF weight. This is analogous to feature extraction or
vector space transformation where each document is represented by a TF-IDF vector of
its terms, as we have done in the past. Once this is done, we build an LSI model on these
features and take an input of the number of topics we want to generate. This number
is based on intuition and trial and error, so feel free to play around with this parameter
when you build topic models on corpora. We will set this parameter to 2, based on the
number of topics we expect our toy corpus to contain:

build tf-idf feature vectors
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]

fix the number of topics
total_topics = 2

build the topic model
lsi = models.LsiModel(corpus_tfidf,
 id2word=dictionary,
 num_topics=total_topics)

Now that our topic modeling framework is built, we can see the generated topics in
the following code snippet:

In [855]: for index, topic in lsi.print_topics(total_topics):
 ...: print 'Topic #'+str(index+1)
 ...: print topic
 ...: print

Chapter 5 ■ text Summarization

237

Topic #1
-0.459*"language" + -0.459*"programming" + -0.344*"java" + -0.344*"python" +
-0.336*"popular" + -0.318*"excellent" + -0.318*"ruby" + -0.148*"program" +
-0.074*"small" + -0.000*"clever"

Topic #2
0.459*"dog" + 0.459*"fox" + 0.444*"jump" + 0.322*"smarter" + 0.322*"cat" +
0.208*"lazy" + 0.208*"slow" + 0.208*"clever" + 0.208*"quick" + -0.000*"ruby"

Let’s take a moment to understand those results. At first, ignoring the weights,
you can see that the first topic contains terms related to programming languages and
the second topic contains terms related to animals, which is in line with the main two
concepts from our toy corpus mentioned earlier. If you now look at the weights, higher
weightage and same sign exists for the terms that contribute toward each of the topics.
The first topic has related terms with negative weights, and the second topic has related
terms with positive weights. The sign just indicates the direction of the topic, that is,
similar correlated terms in the topics will have the same sign or direction. The following
function helps display the topics in a better way with or without thresholds:

def print_topics_gensim(topic_model, total_topics=1,
 weight_threshold=0.0001,
 display_weights=False,
 num_terms=None):

 for index in range(total_topics):
 topic = topic_model.show_topic(index)
 topic = [(word, round(wt,2))
 for word, wt in topic
 if abs(wt) >= weight_threshold]
 if display_weights:
 print 'Topic #'+str(index+1)+' with weights'
 print topic[:num_terms] if num_terms else topic
 else:
 print 'Topic #'+str(index+1)+' without weights'
 tw = [term for term, wt in topic]
 print tw[:num_terms] if num_terms else tw
 print

We can try out this function on our toy corpus topic model using the following
snippet to see how we can get the topics and play around with the parameters:

print topics without weights
In [860]: print_topics_gensim(topic_model=lsi,
 ...: total_topics=total_topics,
 ...: num_terms=5,
 ...: display_weights=False)
Topic #1 without weights
[u'language', u'programming', u'java', u'python', u'popular']

Chapter 5 ■ text Summarization

238

Topic #2 without weights
[u'dog', u'fox', u'jump', u'smarter', u'cat']

print topics with their weights
In [861]: print_topics_gensim(topic_model=lsi,
 ...: total_topics=total_topics,
 ...: num_terms=5,
 ...: display_weights=True)
Topic #1 with weights
[(u'language', -0.46), (u'programming', -0.46), (u'java', -0.34),
(u'python', -0.34), (u'popular', -0.34)]

Topic #2 with weights
[(u'dog', 0.46), (u'fox', 0.46), (u'jump', 0.44), (u'smarter', 0.32),
(u'cat', 0.32)]

We have successfully built a topic modeling framework using LSI that can distinguish
and show topics from a corpus of documents. Now we will use SVD to build our own LSI
topic model framework from the ground up using the mathematical concepts discussed
at the beginning of this chapter. We will start by building a TF-IDF feature matrix, which
is actually a document-term matrix (if you remember from our classification exercise in
Chapter 4). We will transpose this to form a term-document matrix before computing
SVD using the following snippet. Besides this, we also fix the number of topics we want
to generate and extract the term names from the features so we can map them with their
weights:

from utils import build_feature_matrix, low_rank_svd

build the term document tf-idf weighted matrix
norm_corpus = normalize_corpus(toy_corpus)
vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
 feature_type='tfidf')
td_matrix = tfidf_matrix.transpose()
td_matrix = td_matrix.multiply(td_matrix > 0)

fix total topics and get the terms used in the term-document matrix
total_topics = 2
feature_names = vectorizer.get_feature_names()

Once this is done, we compute the SVD for our term-document matrix using our low_
rank_svd() function such that we build a low ranked matrix approximation taking only the
top k singular vectors, which will be equal to our number of topics in this case. Using the
S and U components, we multiply them together to generate each term and its weightage
per topic giving us the necessary weights per topic similar to what you saw earlier:

u, s, vt = low_rank_svd(td_matrix, singular_count=total_topics)
weights = u.transpose() * s[:, None]

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

Chapter 5 ■ text Summarization

239

Now that we have our term weights, we need to connect them back to our terms. We
define two utility functions for generating these topics by connecting the terms with their
weights and then printing these topics using a function with configurable parameters:

get topics with their terms and weights
def get_topics_terms_weights(weights, feature_names):
 feature_names = np.array(feature_names)
 sorted_indices = np.array([list(row[::-1])
 for row
 in np.argsort(np.abs(weights))])
 sorted_weights = np.array([list(wt[index])
 for wt, index
 in zip(weights,sorted_indices)])
 sorted_terms = np.array([list(feature_names[row])
 for row
 in sorted_indices])

 topics = [np.vstack((terms.T,
 term_weights.T)).T
 for terms, term_weights
 in zip(sorted_terms, sorted_weights)]

 return topics

print all the topics from a corpus
def print_topics_udf(topics, total_topics=1,
 weight_threshold=0.0001,
 display_weights=False,
 num_terms=None):

 for index in range(total_topics):
 topic = topics[index]
 topic = [(term, float(wt))
 for term, wt in topic]
 topic = [(word, round(wt,2))
 for word, wt in topic
 if abs(wt) >= weight_threshold]

 if display_weights:
 print 'Topic #'+str(index+1)+' with weights'
 print topic[:num_terms] if num_terms else topic
 else:
 print 'Topic #'+str(index+1)+' without weights'
 tw = [term for term, wt in topic]
 print tw[:num_terms] if num_terms else tw
 print

Chapter 5 ■ text Summarization

240

We are now ready to see our function in action. The following snippet utilizes the
previously defined functions to generate topics using our LSI implementation using SVD
by connecting the terms with their weights for each topic:

In [871]: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: weight_threshold=0,
 ...: display_weights=True)
Topic #1 with weights
[(u'dog', 0.72), (u'fox', 0.72), (u'jump', 0.43), (u'smarter', 0.34),
(u'cat', 0.34), (u'slow', 0.23), (u'lazy', 0.23), (u'quick', 0.23),
(u'clever', 0.23), (u'program', 0.0), (u'java', 0.0), (u'excellent', -0.0),
(u'small', 0.0), (u'popular', 0.0), (u'python', 0.0), (u'programming',
-0.0), (u'language', -0.0), (u'ruby', 0.0)]

Topic #2 with weights
[(u'programming', -0.73), (u'language', -0.73), (u'python', -0.56),
(u'java', -0.56), (u'popular', -0.34), (u'ruby', -0.33), (u'excellent',
-0.33), (u'program', -0.21), (u'small', -0.11), (u'fox', 0.0), (u'dog',
0.0), (u'jump', 0.0), (u'clever', 0.0), (u'quick', 0.0), (u'lazy', 0.0),
(u'slow', 0.0), (u'smarter', 0.0), (u'cat', 0.0)]

From the preceding output we see that both topics have all the terms, but notice
the weights more minutely. Do you see any difference? Of course, the terms in topic one
related to programming have zero value, indicating they do not contribute to the topic at
all. Let us put a proper threshold and get only the relevant terms per topic as follows:

applying a scoring threshold
In [874]: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: weight_threshold=0.15,
 ...: display_weights=True)
Topic #1 with weights
[(u'dog', 0.72), (u'fox', 0.72), (u'jump', 0.43), (u'smarter', 0.34),
(u'cat', 0.34), (u'slow', 0.23), (u'lazy', 0.23), (u'quick', 0.23),
(u'clever', 0.23)]

Topic #2 with weights
[(u'programming', -0.73), (u'language', -0.73), (u'python', -0.56),
(u'java', -0.56), (u'popular', -0.34), (u'ruby', -0.33), (u'excellent',
-0.33), (u'program', -0.21)]

 In [875]: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: weight_threshold=0.15,

Chapter 5 ■ text Summarization

241

 ...: display_weights=False)
Topic #1 without weights
[u'dog', u'fox', u'jump', u'smarter', u'cat', u'slow', u'lazy', u'quick',
u'clever']

Topic #2 without weights
[u'programming', u'language', u'python', u'java', u'popular', u'ruby',
u'excellent', u'program']

This gives us much better depiction of the topics, similar to the ones obtained
earlier, where each topic clearly has distinguishable concepts from the other. Thus you
can see how simple matrix computations helped us in implementing a powerful topic
model framework! We define the following function as a generic reusable topic modeling
framework using LSI:

def train_lsi_model_gensim(corpus, total_topics=2):

 norm_tokenized_corpus = normalize_corpus(corpus, tokenize=True)
 dictionary = corpora.Dictionary(norm_tokenized_corpus)
 mapped_corpus = [dictionary.doc2bow(text)
 for text in norm_tokenized_corpus]
 tfidf = models.TfidfModel(mapped_corpus)
 corpus_tfidf = tfidf[mapped_corpus]
 lsi = models.LsiModel(corpus_tfidf,
 id2word=dictionary,
 num_topics=total_topics)
 return lsi

We will use the preceding function later to extract topics from product reviews. Let us
now look at the next technique to build topic models using latent Dirichlet allocation.

Latent Dirichlet Allocation
The latent Dirichlet allocation (LDA) technique is a generative probabilistic model where
each document is assumed to have a combination of topics similar to a probabilistic
latent semantic indexing model—but in this case, the latent topics contain a Dirichlet
prior over them. The math behind in this technique is pretty involved, so I will try
to summarize it because going it specific detail would be out of the current scope. I
recommend readers to go through this excellent talk by Christine Doig available at
http://chdoig.github.io/pygotham-topic-modeling/#/, from which we will be
borrowing some excellent pictorial representations. The plate notation for the LDA model
is depicted in Figure 5-2.

http://chdoig.github.io/pygotham-topic-modeling/#/

Chapter 5 ■ text Summarization

242

Figure 5-3 shows a good representation of how each of the parameters connects back
to the text documents and terms. It is assumed that we have M documents, N number of
words in the documents, and K total number of topics we want to generate.

Figure 5-2. LDA plate notation (courtesy of C. Doig, Introduction to Topic Modeling in
Python)

Figure 5-3. End-to-end LDA framework (courtesy of C. Doig, Introduction to Topic
Modeling in Python)

Chapter 5 ■ text Summarization

243

The black box in the figure represents the core algorithm that makes use of the previously
mentioned parameters to extract K topics from the documents. The following steps give a very
simplistic explanation of what happens in the algorithm for everyone's benefit:

 1. Initialize the necessary parameters.

 2. For each document, randomly initialize each word to one of
the K topics.

 3. Start an iterative process as follows and repeat it several times.

 4. For each document D:

 a. For each word W in document:

•	 For each topic T:

•	 Compute P T D|() , which is proportion of words in

D assigned to topic T.

•	 Compute P W T|() , which is proportion of

assignments to topic T over all documents having
the word W.

•	 Reassign word W with topic T with probability
P T D P W T| |()´ () considering all other words and

their topic assignments.

Once this runs for several iterations, we should have topic mixtures for each document
and then generate the constituents of each topic from the terms that point to that topic. We
use gensim in the following implementation to build an LDA-based topic model:

def train_lda_model_gensim(corpus, total_topics=2):

 norm_tokenized_corpus = normalize_corpus(corpus, tokenize=True)
 dictionary = corpora.Dictionary(norm_tokenized_corpus)
 mapped_corpus = [dictionary.doc2bow(text)
 for text in norm_tokenized_corpus]
 tfidf = models.TfidfModel(mapped_corpus)
 corpus_tfidf = tfidf[mapped_corpus]
 lda = models.LdaModel(corpus_tfidf,
 id2word=dictionary,
 iterations=1000,
 num_topics=total_topics)
 return lda

use the function to generate topics on toy corpus
In [922]: lda_gensim = train_lda_model_gensim(toy_corpus,
 ...: total_topics=2)
 ...:
 ...: print_topics_gensim(topic_model=lda_gensim,

Chapter 5 ■ text Summarization

244

 ...: total_topics=2,
 ...: num_terms=5,
 ...: display_weights=True)
Topic #1 with weights
[(u'fox', 0.08), (u'dog', 0.08), (u'jump', 0.07), (u'clever', 0.07),
(u'quick', 0.07)]

Topic #2 with weights
[(u'programming', 0.08), (u'language', 0.08), (u'java', 0.07), (u'python',
0.07), (u'ruby', 0.07)]

You can play around with various model parameters in the LdaModel class, which
belongs to gensim's ldamodel module. This implementation works best with a corpus
that has many documents. We see how the concepts are quite distinguishing across the
two topics just as before, but note in this case the weights are positive, making it easier
to interpret than LSI. Even scikit-learn has finally included an LDA-based topic model
implementation in its library. The following snippet makes use of the same to build an
LDA topic model:

from sklearn.decomposition import LatentDirichletAllocation

get tf-idf based features
norm_corpus = normalize_corpus(toy_corpus)
vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
 feature_type='tfidf')
build LDA model
total_topics = 2
lda = LatentDirichletAllocation(n_topics=total_topics,
 max_iter=100,
 learning_method='online',
 learning_offset=50.,
 random_state=42)
lda.fit(tfidf_matrix)

get terms and their weights
feature_names = vectorizer.get_feature_names()
weights = lda.components_

generate topics from their terms and weights
topics = get_topics_terms_weights(weights, feature_names)

In that snippet, the LDA model is applied on the document-term TF-IDF feature
matrix, which is decomposed into two matrices, namely a document-topic matrix and a
topic-term matrix. We use the topic-term matrix stored in lda.components_ to retrieve
the weights for each term per topic. Once we have these weights, we use our get_topics_
terms_weights() function from our LSI modeling to build the topics based on the
terms and weights per topic. We can now view the topics using our print_topics_udf()
function, which we implemented earlier:

Chapter 5 ■ text Summarization

245

In [926]: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: num_terms=8,
 ...: display_weights=True)
Topic #1 with weights
[(u'fox', 1.86), (u'dog', 1.86), (u'jump', 1.19), (u'clever', 1.12),
(u'quick', 1.12), (u'lazy', 1.12), (u'slow', 1.12), (u'cat', 1.06)]

Topic #2 with weights
[(u'programming', 1.8), (u'language', 1.8), (u'java', 1.64), (u'python',
1.64), (u'program', 1.3), (u'ruby', 1.11), (u'excellent', 1.11),
(u'popular', 1.06)]

We can now see similar results for the two topics with distinguishable concepts
where the first topic is about the animals and their characteristics from the first four
documents and the second topic is all about programming languages and their attributes
from the last four documents.

Non-negative Matrix Factorization
The last technique we will look at is non-negative matrix factorization (NNMF), which is
another matrix decomposition technique similar to SVD, though NNMF operates on non-
negative matrices and works well for multivariate data. NNMF can be formally defined
like so: Given a non-negative matrix V, the objective is to find two non-negative matrix
factors W and H such that when they are multiplied, they can approximately reconstruct
V. Mathematically this is represented by

V WH»

such that all three matrices are non-negative. To get to this approximation, we usually
use a cost function like the Euclidean distance or L2 norm between two matrices, or the
Frobenius norm which is a slight modification of the L2 norm. This can be represented as

argmin
W H

V WH
,

1

2
2-

where we have our three non-negative matrices V, W, and H. This can be further
simplified as follows:

1

2

2

i j
ij ijV WH

,
å -()

This implementation is available in the NMF class in the scikit-learn
decomposition module that we will be using in the section.

Chapter 5 ■ text Summarization

246

We can build an NNMF-based topic model using the following snippet on our toy
corpus which gives us the feature names and their weights just like in LDA:

from sklearn.decomposition import NMF
build tf-idf document-term matrix
norm_corpus = normalize_corpus(toy_corpus)
vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
 feature_type='tfidf')
build topic model
total_topics = 2
nmf = NMF(n_components=total_topics,
 random_state=42, alpha=.1, l1_ratio=.5)
nmf.fit(tfidf_matrix)
get terms and their weights
feature_names = vectorizer.get_feature_names()
weights = nmf.components_

Now that we have our terms and their weights, we can use our defined functions
from before to print the topics as follows:

In [928]: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: num_terms=None,
 ...: display_weights=True)
Topic #1 with weights
[(u'programming', 0.55), (u'language', 0.55), (u'python', 0.4), (u'java',
0.4), (u'popular', 0.24), (u'ruby', 0.23), (u'excellent', 0.23),
(u'program', 0.09), (u'small', 0.03)]

Topic #2 with weights
[(u'dog', 0.57), (u'fox', 0.57), (u'jump', 0.35), (u'smarter', 0.26),
(u'cat', 0.26), (u'quick', 0.13), (u'slow', 0.13), (u'clever', 0.13),
(u'lazy', 0.13)]

What we have observed is that non-negative matrix factorization works the best even
with small corpora with few documents compared to the other methods, but again, this
depends on the type of data you are dealing with.

Extracting Topics from Product Reviews
We will now utilize our earlier functions and build topic models using the three
techniques on some real-world data. For this, I have extracted some reviews for a
particular product from Amazon. Data enthusiasts can get more information about the
source of this data from http://jmcauley.ucsd.edu/data/amazon/, which contains
various product reviews based on product types and categories. The product of our
interest is the very popular video game The Elder Scrolls V: Skyrim developed by Bethesda

http://jmcauley.ucsd.edu/data/amazon/

Chapter 5 ■ text Summarization

247

Softworks. It is perhaps one of the best role-playing games out there. (You can view the
product information and its reviews on Amazon at www.amazon.com/dp/B004HYK956 if
you are interested.) In our case, the extracted reviews are available in a CSV file named
amazon_skyrim_reviews.csv, available along with the code files of this chapter. Let us
first load the reviews before extracting topics:

import pandas as pd
import numpy as np
load reviews
CORPUS = pd.read_csv('amazon_skyrim_reviews.csv')
CORPUS = np.array(CORPUS['Reviews'])

view sample review
In [946]: print CORPUS[12]
I base the value of a game on the amount of enjoyable gameplay I can get out
of it and this one was definitely worth the price!

Now that we have our corpus of product reviews loaded, let us set the number of
topics to 5 and extract topics using all the three techniques implemented in the earlier
sections. The following code snippet achieves the same:

set number of topics
total_topics = 5

Technique 1: Latent Semantic Indexing
In [958]: lsi_gensim = train_lsi_model_gensim(CORPUS,
 ...: total_topics=total_topics)
 ...: print_topics_gensim(topic_model=lsi_gensim,
 ...: total_topics=total_topics,
 ...: num_terms=10,
 ...: display_weights=False)
Topic #1 without weights
[u'skyrim', u'one', u'quest', u'like', u'play', u'oblivion', u'go', u'get',
u'time', u'level']

Topic #2 without weights
[u'recommend', u'love', u'ever', u'best', u'great', u'level', u'highly',
u'play', u'elder', u'scroll']

Topic #3 without weights
[u'recommend', u'highly', u'fun', u'love', u'ever', u'wonderful', u'best',
u'everyone', u'series', u'scroll']

Topic #4 without weights
[u'fun', u'scroll', u'elder', u'recommend', u'highly', u'wonderful', u'fan',
u'graphic', u'series', u'cool']

Topic #5 without weights

http://www.amazon.com/dp/B004HYK956

Chapter 5 ■ text Summarization

248

[u'fun', u'love', u'elder', u'scroll', u'highly', u'5', u'dont', u'hour',
u'series', u'hundred']

Technique 2a: Latent Dirichlet Allocation (gensim)
In [959]: lda_gensim = train_lda_model_gensim(CORPUS,
 ...: total_topics=total_topics)
 ...: print_topics_gensim(topic_model=lda_gensim,
 ...: total_topics=total_topics,
 ...: num_terms=10,
 ...: display_weights=False)
Topic #1 without weights
[u'quest', u'good', u'skyrim', u'love', u'make', u'best', u'time', u'go',
u'play', u'every']

Topic #2 without weights
[u'good', u'play', u'get', u'really', u'like', u'one', u'hour', u'buy',
u'go', u'skyrim']

Topic #3 without weights
[u'fun', u'gameplay', u'skyrim', u'best', u'want', u'time', u'one', u'play',
u'review', u'like']

Topic #4 without weights
[u'love', u'play', u'one', u'much', u'great', u'ever', u'like', u'fun',
u'recommend', u'level']

Topic #5 without weights
[u'great', u'long', u'love', u'scroll', u'elder', u'oblivion', u'play',
u'month', u'never', u'skyrim']

Technique 2b: Latent Dirichlet Allocation (scikit-learn)
In [960]: norm_corpus = normalize_corpus(CORPUS)
 ...: vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
 ...: feature_type='tfidf')
 ...: feature_names = vectorizer.get_feature_names()
 ...:
 ...:
 ...: lda = LatentDirichletAllocation(n_topics=total_topics,
 ...: max_iter=100,
 ...: learning_method='online',
 ...: learning_offset=50.,
 ...: random_state=42)
 ...: lda.fit(tfidf_matrix)
 ...: weights = lda.components_
 ...: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: num_terms=10,
 ...: display_weights=False)

Chapter 5 ■ text Summarization

249

Topic #1 without weights
[u'statrs', u'expression', u'demand', u'unnecessary', u'mining', u'12yr',
u'able', u'snowy', u'shopkeepers', u'arpg']

Topic #2 without weights
[u'game', u'play', u'get', u'one', u'skyrim', u'great', u'like', u'time',
u'quest', u'much']

Topic #3 without weights
[u'de', u'pagar', u'cr\xe9dito', u'momento', u'responsabilidad', u'compras',
u'para', u'futuras', u'recomiendo', u'skyrimseguridad']

Topic #4 without weights
[u'booklet', u'proudly', u'ending', u'destiny', u'estatic', u'humungous',
u'chirstmas', u'bloodthey', u'accolade', u'scaled']

Topic #5 without weights
[u'game', u'play', u'fun', u'good', u'buy', u'one', u'whatnot', u'titles',
u'haveseen', u'best']

Technique 3: Non-negative Matrix Factorization
In [961]: nmf = NMF(n_components=total_topics,
 ...: random_state=42, alpha=.1, l1_ratio=.5)
 ...: nmf.fit(tfidf_matrix)
 ...:
 ...: feature_names = vectorizer.get_feature_names()
 ...: weights = nmf.components_
 ...:
 ...: topics = get_topics_terms_weights(weights, feature_names)
 ...: print_topics_udf(topics=topics,
 ...: total_topics=total_topics,
 ...: num_terms=10,
 ...: display_weights=False)
Topic #1 without weights
[u'game', u'get', u'skyrim', u'play', u'time', u'like', u'quest', u'one',
u'go', u'much']

Topic #2 without weights
[u'game', u'best', u'ever', u'fun', u'play', u'hour', u'great', u'rpg',
u'definitely', u'one']

Topic #3 without weights
[u'write', u'review', u'describe', u'justice', u'word', u'game', u'simply',
u'try', u'period', u'really']

Topic #4 without weights
[u'scroll', u'elder', u'series', u'always', u'love', u'pass', u'buy',
u'franchise', u'game', u'best']

Topic #5 without weights

Chapter 5 ■ text Summarization

250

[u'recommend', u'love', u'game', u'highly', u'great', u'play', u'wonderful',
u'like', u'oblivion', u'would']

The preceding outputs show five topics per technique. If you observe them closely,
you will notice that there will always be some overlap between topics, but they bring out
distinguishing concepts from the review. We can conclude a few observations:

•	 All topic modeling techniques bring out concepts related to
people describing this game with adjectives like wonderful, great,
and highly recommendable.

•	 They also describe the game's genre as RPG (role-playing game)
or ARPG (action role-playing game).

•	 Game features like gameplay and graphics are associated with
positive words like good, great, fun, and cool.

•	 The word oblivion comes up in many of the topic models. This is
in reference to the previous game of the Elder Scrolls series, called
The Elder Scrolls IV: Oblivion. This is an indication of customers
comparing this game with its predecessor in the reviews.

Go ahead and play around with these functions and the data. You might even try
building topic models on new data sources. Remember, topic modeling often acts as
a starting point to digging deeper into the data to uncover patterns by querying with
specific topic concepts or even clustering and grouping text documents and analyzing
their similarity.

Automated Document Summarization
We briefly talked about document summarization at the beginning of this chapter,
in trying to extract the gist from a large document or corpus such that it retains the
core essence or meaning of the corpus. The idea of document summarization is a bit
different from keyphrase extraction or topic modeling. The end result is still in the form
of some document, but with a few sentences based on the length we might want the
summary to be. This is similar to having a research paper with an abstract or an executive
summary. The main objective of automated document summarization is to perform
this summarization without involving human inputs except for running any computer
programs. Mathematical and statistical models help in building and automating the task
of summarizing documents by observing their content and context.

There are mainly two broad approaches towards document summarization using
automated techniques:

Chapter 5 ■ text Summarization

251

•	 Extraction-based techniques: These methods use mathematical
and statistical concepts like SVD to extract some key subset of
content from the original document such that this subset of
content contains the core information and acts as the focal point
of the entire document. This content could be words, phrases,
or sentences. The end result from this approach is a short
executive summary of a couple of lines are taken or extracted
from the original document. No new content is generated in this
technique—hence the name extraction-based.

•	 Abstraction-based techniques: These methods are more complex
and sophisticated and leverage language semantics to create
representations. They also make use of NLG techniques where the
machine uses knowledge bases and semantic representations to
generate text on its own and creates summaries just like a human
would write them.

Most research today exists for extraction-based techniques because it is
comparatively harder to build abstraction-based summarizers. But some advances have
been made in that area with regard to creating abstract summaries mimicking humans.
Let us look at an implementation of document summarization by leveraging gensim's
summarization module. We will be using our Wikipedia description of elephants as the
document on which we will test all our summarization techniques. We start by loading
the necessary dependencies and the corpus as follows:

from normalization import normalize_corpus, parse_document
from utils import build_feature_matrix, low_rank_svd
import numpy as np

toy_text = """
Elephants are large mammals of the family Elephantidae
and the order Proboscidea. Two species are traditionally recognised,
the African elephant and the Asian elephant. Elephants are scattered
throughout sub-Saharan Africa, South Asia, and Southeast Asia. Male
African elephants are the largest extant terrestrial animals. All
elephants have a long trunk used for many purposes,
particularly breathing, lifting water and grasping objects. Their
incisors grow into tusks, which can serve as weapons and as tools
for moving objects and digging. Elephants' large ear flaps help
to control their body temperature. Their pillar-like legs can
carry their great weight. African elephants have larger ears
and concave backs while Asian elephants have smaller ears
and convex or level backs.
"""

Chapter 5 ■ text Summarization

252

We now define a function to summarize an input document to a fraction of its
original size, which will be taken as a user input parameter summary_ratio in the
following function. The output will be the summarized document:

from gensim.summarization import summarize, keywords

def text_summarization_gensim(text, summary_ratio=0.5):

 summary = summarize(text, split=True, ratio=summary_ratio)
 for sentence in summary:
 print sentence

We will now parse our input document to remove the newlines and extract sentences
and then pass the complete document to the preceding function where gensim takes care
of normalization and summarizes the document, as shown in the following snippet:

In [978]: docs = parse_document(toy_text)
 ...: text = ' '.join(docs)
 ...: text_summarization_gensim(text, summary_ratio=0.4)
Two species are traditionally recognised, the African elephant and the
Asian elephant.
All elephants have a long trunk used for many purposes, particularly
breathing, lifting water and grasping objects.
African elephants have larger ears and concave backs while Asian elephants
have smaller ears and convex or level backs.

If you observe the preceding output and compare it with the original document,
we had a total of nine sentences in the original document, and it has been summarize
to a total of three sentences. But if you read the summarized document, you will see the
core meaning and themes of the document have been retained, which include the two
species of elephants, how they are distinguishable from each other, and their common
characteristics. This summarization implementation from gensim is based on a popular
algorithm called TextRank.

Now that we have seen how interesting text summarization can be, let us look at a
couple of extraction-based summarization algorithms. We will be mainly focusing on the
following two techniques:

•	 Latent semantic analysis

•	 TextRank

We will first explore the concepts and math behind each technique and then
implement those using Python. Finally, we will test them on our toy document from
before. Before we deep dive into the techniques, let us prepare our toy document by
parsing and normalizing it as follows:

parse and normalize document
sentences = parse_document(toy_text)
norm_sentences = normalize_corpus(sentences,lemmatize=True)

Chapter 5 ■ text Summarization

253

check total sentences in document
In [992]: total_sentences = len(norm_sentences)
 ...: print 'Total Sentences in Document:', total_sentences
Total Sentences in Document: 9

Once we have a working summarization algorithm, we will also construct a generic
function for each technique and test it on a real product description from Wikipedia in a
future section.

Latent Semantic Analysis
Here, we will be looking at summarizing text documents by utilizing document sentences,
the terms in each sentence of the document, and applying SVD to them using some sort
of feature weights like Bag of Words or TF-IDF weights. The core principle behind latent
semantic analysis (LSA) is that in any document, there exists a latent structure among
terms which are related contextually and hence should also be correlated in the same
singular space. The approach we follow in our implementation is taken from the popular
paper published in 2004 by J. Steinberger and K. Jezek, “Using latent semantic analysis in
text summarization and summary evaluation,” which proposes some improvements over
some excellent work done by Y. Gong and X. Liu’s “Generic Text Summarization Using
Relevance Measure and Latent Semantic Analysis,” published in 2001. I recommend you
to read these two papers if you are interested in learning more about this technique.

The main idea in our implementation is to use SVD such that, if you remember the
equation from SVD where M USVT= such that U and V are the orthogonal matrices and S

was the diagonal matrix, which can also be represented as a vector of the singular values.
The original matrix can be represented as a term-document matrix, where the rows will be
terms and each column will be a document, that is, a sentence from our document in this
case. The values can be any type of weighting, like Bag of Words model-based frequencies,
TF-IDFS, or binary occurrences. We will use our low_rank_svd() function to create a low
rank matrix approximation for M based on the number of concepts k, which will be our
number of singular values. The same k columns from matrix U will point to the term
vectors for each of the k concepts, and in case of matrix V, the k rows based on the top k
singular values point to sentence vectors. Once we have U, S, and VT from the SVD for the
top k singular values based on the number of concepts k, we perform the following
computations. Remember, the input parameters we need are the number of concepts k
and the number of sentences n which we want the final summary to contain:

•	 Get the sentence vectors from the matrix V (k rows).

•	 Get the top k singular values from S.

•	 Apply a threshold-based approach to remove singular values that
are less than half of the largest singular value if any exist. This is
a heuristic, and you can play around with this value if you want.

Mathematically, S iff S Si i= < ()0
1

2
max .

•	 Multiply each term sentence column from V squared with its
corresponding singular value from S also squared, to get sentence
weights per topic.

Chapter 5 ■ text Summarization

254

•	 Compute the sum of the sentence weights across the topics and
take the square root of the final score to get the salience scores for
each sentence in the document.

The preceding salience score computations for each sentence can be mathematically
represented as

SS SV
i

k

i i
T=

=
å

1

where SS denotes the saliency score for each sentence by taking the dot product between
the singular values and the sentence vectors from VT. Once we have these scores, we sort
them in descending order, pick the top n sentences corresponding to the highest scores,
and combine them to form our final summary based on the order in which they were
present in the original document. Let us implement the above steps in our code using the
following snippet:

set the number of sentences and topics for summarized document
num_sentences = 3
num_topics = 3

build document term matrix based on bag of words features
vec, dt_matrix = build_feature_matrix(sentences,
 feature_type='frequency')
convert to term document matrix
td_matrix = dt_matrix.transpose()
td_matrix = td_matrix.multiply(td_matrix > 0)

get low rank SVD components
u, s, vt = low_rank_svd(td_matrix, singular_count=num_topics)

remove singular values below threshold
sv_threshold = 0.5
min_sigma_value = max(s) * sv_threshold
s[s < min_sigma_value] = 0

compute salience scores for all sentences in document
salience_scores = np.sqrt(np.dot(np.square(s), np.square(vt)))

print salience score for each sentence
In [996]: print np.round(salience_scores, 2)
[2.93 3.28 1.67 1.8 2.24 4.51 0.71 1.22 5.24]

rank sentences based on their salience scores
top_sentence_indices = salience_scores.argsort()[-num_sentences:][::-1]
top_sentence_indices.sort()

Chapter 5 ■ text Summarization

255

view top sentence index positions
In [997]: print top_sentence_indices
[1 5 8]

get document summary by combining above sentences
In [998]: for index in top_sentence_indices:
 ...: print sentences[index]
Two species are traditionally recognised, the African elephant and the
Asian elephant.
Their incisors grow into tusks, which can serve as weapons and as
tools for moving objects and digging.
African elephants have larger ears and concave backs while Asian elephants
have smaller ears and convex or level backs.

You can see how a few matrix operations give us a concise and excellent summarized
document that covers the main topics from the document about elephants. Compare
it with the one generated earlier using gensim. Do you see some similarity between the
summaries?

We will now build a generic reusable function for LSA using the previous algorithm
so that we can use it on our product description document later on and you can also use
this function on your own data:

def lsa_text_summarizer(documents, num_sentences=2,
 num_topics=2, feature_type='frequency',
 sv_threshold=0.5):

 vec, dt_matrix = build_feature_matrix(documents,
 feature_type=feature_type)

 td_matrix = dt_matrix.transpose()
 td_matrix = td_matrix.multiply(td_matrix > 0)

 u, s, vt = low_rank_svd(td_matrix, singular_count=num_topics)
 min_sigma_value = max(s) * sv_threshold
 s[s < min_sigma_value] = 0

 salience_scores = np.sqrt(np.dot(np.square(s), np.square(vt)))
 top_sentence_indices = salience_scores.argsort()[-num_sentences:][::-1]
 top_sentence_indices.sort()

 for index in top_sentence_indices:
 print sentences[index]

This concludes our discussion on LSA, and we will move on to the next technique for
extraction-based document summarization.

Chapter 5 ■ text Summarization

256

TextRank
The TextRank summarization algorithm internally uses the popular PageRank algorithm,
which is used by Google for ranking web sites and pages and measures their importance.
It is used by the Google search engine when providing relevant web pages based on
search queries. To understand TextRank better, we need to understand some of the
concepts surrounding PageRank.

The core algorithm in PageRank is a graph-based scoring or ranking algorithm, where
pages are scored or ranked based on their importance. Web sites and pages contain further
links embedded in them, which link to more pages with more links, and this continues
across the Internet. This can be represented as a graph-based model where vertices
indicate the web pages, and edges indicate links among them. This can be used to form a
voting or recommendation system such that when one vertex links to another one in the
graph, it is basically casting a vote. Vertex importance is decided not only on the number
of votes or edges but also the importance of the vertices that are connected to it and their
importance. This helps in determining the score or rank for each vertex or page. This is
evident from Figure 5-4, which represents a sample of pages with their importance.

In Figure 5-4, we can see that vertex denoting Page B has a higher score than Page C,
even if it has fewer edges compared to Page C, because Page A is an important page
which is connected to Page B. Thus we can now formally define PageRank as follows.

Figure 5-4. PageRank scores for a simple network

Chapter 5 ■ text Summarization

257

Consider a directed graph represented as G V E= (), such that V represents the set of

vertices or pages and E represents the set of edges or links, and E is a subset ofV V´ .

Assuming we have a given page V
i
 for which we want to compute the PageRank, we can

mathematically define it as

PR V d d
PR V

Out V
i

j In V

j

ji

() = -()+ ´
()

Î ()
å1

(

where for the vertex/page V
i
 we have PR(V

i
), which indicates the PageRank score, In(V

i
)

represents the set of pages which point to this vertex/page, Out(V
i
) represents the set of

pages which the vertex/page V
i
 points to, and d is the damping factor usually having a

value between 0 to 1—ideally it is set to 0.85.
Coming back to the TextRank algorithm, when summarizing a document, we will

have sentences, keywords, or phrases as the vertices of the algorithm based on the type of
summarization we are trying to do. We might have multiple links between these vertices,
and the modification which we make from the original PageRank algorithm is to have a
weight coefficient say w

ij
 between the edge connecting two vertices V

i
 and V

j
 such that

this weight indicates the strength of this connection between them. Thus we now formally
define the new function for computing TextRank of vertices as

TR V d d
w TR V

wi
V In V

ji j

V Out V
jkj i

k j

() = -()+ ´
()

Î ()
Î ()

å å
1

where TR indicates the weighted PageRank score for a vertex now defined as the TextRank
for that vertex. Thus we can now formulate the algorithm and identify the main steps we
will be following:

 1. Tokenize and extract sentences from the document to be
summarized.

 2. Decide on the number of sentences k that we want in the final
summary.

 3. Build document term feature matrix using weights like TF-IDF
or Bag of Words.

 4. Compute a document similarity matrix by multiplying the
matrix with its transpose.

 5. Use these documents (sentences in our case) as the vertices
and the similarities between each pair of documents as the
weight or score coefficient mentioned earlier and feed them to
the PageRank algorithm.

 6. Get the score for each sentence.

 7. Rank the sentences based on score and return the top k
sentences.

Chapter 5 ■ text Summarization

258

The following code snippet shows how to construct the connected graph among all
the sentences from our toy document by making use of the document similarity scores
and the documents themselves as the vertices. We will use the networkx library to help
us plot this graph. Remember, each document is a sentence in our case which will also be
the vertices in the graph:

import networkx

define number of sentences in final summary
num_sentences = 3

construct weighted document term matrix
vec, dt_matrix = build_feature_matrix(norm_sentences,
 feature_type='tfidf')

construct the document similarity matrix
similarity_matrix = (dt_matrix * dt_matrix.T)
view the document similarity matrix
In [1011]: print np.round(similarity_matrix.todense(), 2)
[[1. 0. 0.03 0.05 0.03 0. 0.15 0. 0.06]
 [0. 1. 0. 0.07 0. 0. 0. 0. 0.11]
 [0.03 0. 1. 0.03 0.02 0. 0.03 0. 0.04]
 [0.05 0.07 0.03 1. 0.03 0. 0.04 0. 0.11]
 [0.03 0. 0.02 0.03 1. 0.07 0.03 0. 0.04]
 [0. 0. 0. 0. 0.07 1. 0. 0. 0.]
 [0.15 0. 0.03 0.04 0.03 0. 1. 0. 0.05]
 [0. 0. 0. 0. 0. 0. 0. 1. 0.]
 [0.06 0.11 0.04 0.11 0.04 0. 0.05 0. 1.]]

build the similarity graph
similarity_graph = networkx.from_scipy_sparse_matrix(similarity_matrix)
view the similarity graph
In [1013]: networkx.draw_networkx(similarity_graph)
Out [1013]:

In Figure 5-5, we can see how the sentences of our toy document are now linked to
each other based on document similarities. The graph gives an idea how well connected
some sentences are to other sentences.

Chapter 5 ■ text Summarization

259

We will now compute the PageRank scores for all the sentences, rank them, and
build our summary using the top three sentences:

compute pagerank scores for all the sentences
scores = networkx.pagerank(similarity_graph)

rank sentences based on their scores
ranked_sentences = sorted(((score, index)
 for index, score
 in scores.items()),
 reverse=True)
view the ranked sentences
In [1030]: ranked_sentences
Out[1030]:

Figure 5-5. Similarity graph showing connections between sentences

Chapter 5 ■ text Summarization

260

[(0.11889477617125277, 8),
 (0.11456045476451866, 3),
 (0.11285293843138654, 0),
 (0.11210156056437962, 6),
 (0.11139550507847462, 4),
 (0.1111111111111111, 7),
 (0.10709498606197024, 5),
 (0.10610242758495998, 2),
 (0.10588624023194664, 1)]

get the top sentence indices for our summary
top_sentence_indices = [ranked_sentences[index][1]
 for index in range(num_sentences)]
top_sentence_indices.sort()

view the top sentence indices
In [1032]: print top_sentence_indices
 [0, 3, 8]

construct the document summary
In [1033]: for index in top_sentence_indices:
 ...: print sentences[index]
Elephants are large mammals of the family Elephantidae and the order
Proboscidea.
Male African elephants are the largest extant terrestrial animals.
African elephants have larger ears and concave backs while Asian elephants
have smaller ears and convex or level backs.

We finally get our desired summary by using the TextRank algorithm. The content
is also quite meaningful where it talks about elephants being mammals, their taxonomy,
and how Asian and African elephants can be distinguished.

We will now define a generic function as follows to compute TextRank-based
summaries on any document:

def textrank_text_summarizer(documents, num_sentences=2,
 feature_type='frequency'):

 vec, dt_matrix = build_feature_matrix(norm_sentences,
 feature_type='tfidf')
 similarity_matrix = (dt_matrix * dt_matrix.T)

 similarity_graph = networkx.from_scipy_sparse_matrix(similarity_matrix)
 scores = networkx.pagerank(similarity_graph)

 ranked_sentences = sorted(((score, index)
 for index, score
 in scores.items()),
 reverse=True)

Chapter 5 ■ text Summarization

261

 top_sentence_indices = [ranked_sentences[index][1]
 for index in range(num_sentences)]
 top_sentence_indices.sort()

 for index in top_sentence_indices:
 print sentences[index]

We have covered two document-summarization techniques and also built generic
reusable functions to compute automated document summaries for any text document.
In the following section, we will summarize a product description from a wiki page.

Summarizing a Product Description
Building on what we talked about in the product reviews from the topic modeling section,
here we will be summarizing a description for the same product—a role-playing video
game named The Elder Scrolls V: Skyrim. We have taken several lines from the Wikipedia
page containing the product's detailed description. In this section, we will perform
automated document summarization on the product description utilizing our functions
from the previous section. We will start with loading the product description and
normalizing the content:

load the document
DOCUMENT = """
The Elder Scrolls V: Skyrim is an open world action role-playing video game
developed by Bethesda Game Studios and published by Bethesda Softworks.
It is the fifth installment in The Elder Scrolls series, following
The Elder Scrolls IV: Oblivion. Skyrim's main story revolves around
the player character and their effort to defeat Alduin the World-Eater,
a dragon who is prophesied to destroy the world.
The game is set two hundred years after the events of Oblivion
and takes place in the fictional province of Skyrim. The player completes
quests
and develops the character by improving skills.
Skyrim continues the open world tradition of its predecessors by allowing the
player to travel anywhere in the game world at any time, and to
ignore or postpone the main storyline indefinitely. The player may freely roam
over the land of Skyrim, which is an open world environment consisting
of wilderness expanses, dungeons, cities, towns, fortresses and villages.
Players may navigate the game world more quickly by riding horses,
or by utilizing a fast-travel system which allows them to warp to previously
Players have the option to develop their character. At the beginning of the game,
players create their character by selecting one of several races,
including humans, orcs, elves and anthropomorphic cat or lizard-like
creatures,

Chapter 5 ■ text Summarization

262

and then customizing their character's appearance.discovered locations. Over the
course of the game, players improve their character's skills, which are
numerical
representations of their ability in certain areas. There are eighteen skills
divided evenly among the three schools of combat, magic, and stealth.
Skyrim is the first entry in The Elder Scrolls to include Dragons in the game's
wilderness. Like other creatures, Dragons are generated randomly in the world
and will engage in combat.
"""

normalize the document
In [1045]: sentences = parse_document(DOCUMENT)
 ...: norm_sentences = normalize_corpus(sentences,lemmatize=True)
 ...: print "Total Sentences:", len(norm_sentences)
Total Sentences: 13

We can see that there are a total of 13 sentences in this description. Let us now
generate the document summaries using our functions in the following code snippet:

LSA document summarization
In [1053]: lsa_text_summarizer(norm_sentences, num_sentences=3,
 ...: num_topics=5, feature_type='frequency',
 ...: sv_threshold=0.5)
The Elder Scrolls V: Skyrim is an open world action role-playing video
game developed by Bethesda Game Studios and published by Bethesda
Softworks.
Players may navigate the game world more quickly by riding horses, or
by utilizing a fast-travel system which allows them to warp to
previously Players have the option to develop their character.
At the beginning of the game, players create their character by selecting
one of several races, including humans, orcs, elves and anthropomorphic
cat or lizard-like creatures, and then customizing their character's
appearance.discovered locations.

TextRank document summarization
In [1054]: textrank_text_summarizer(norm_sentences, num_sentences=3,
 ...: feature_type='tfidf')
The Elder Scrolls V: Skyrim is an open world action role-playing video
game developed by Bethesda Game Studios and published by Bethesda
Softworks.
Players may navigate the game world more quickly by riding horses, or
by utilizing a fast-travel system which allows them to warp to
previously Players have the option to develop their character.
Skyrim is the first entry in The Elder Scrolls to include Dragons in the
game's wilderness.

Chapter 5 ■ text Summarization

263

You can see from the preceding outputs that we were successfully able to summarize
our product description from 13 to 3 lines, and this short summary depicts the core
essence of the product description, like the name of the game and its various features
regarding its gameplay and characters.

This concludes our discussion on automated text summarization. I encourage you to
try out these techniques on more documents and test it with various different parameters
like more number of topics, different feature types like TF-IDF, Bag of Words, binary
occurrences, and even word vectors.

Summary
In this chapter, we covered some interesting areas in NLP and text analytics with
regard to information extraction, document summarization, and topic modeling. We
started with an overview of the evolution of information and learned about concepts
like information overload leading to the need for text summarization and information
retrieval. We talked about the various ways we can extract key information from textual
data and ways of summarizing large documents. We covered important mathematical
concepts like SVD and low rank matrix approximation and utilized them in several of our
algorithms. We mainly covered three approaches towards reducing information overload,
including keyphrase extraction, topic models, and automated document summarization.
Keyphrase extraction includes methods like collocations and weighted tagged term–
based approaches for getting keyphrases or terms from corpora. We built several topic
modeling techniques, including latent semantic indexing, latent Dirichlet allocation,
and the very recently implemented non-negative matrix factorization. Finally, we looked
at two extraction-based techniques for automated document summarization: LSA and
TextRank. We implemented each method and observed results on real-world data to
get a good idea of how these methods worked and how effective simple mathematical
operations can be in generating actionable insights.

265© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_6

CHAPTER 6

Text Similarity and
Clustering

Previous chapters have covered several techniques of analyzing text and extracting interesting
insights. We have looked at supervised machine learning (ML) techniques that are used to
classify or categorize text documents into several pre-assumed categories. Unsupervised
techniques like topic models and document summarization have also been also covered,
which involved trying to extract and retrieve key themes and information from large text
documents and corpora. In this chapter, we will be looking at several other techniques and
use-cases that leverage unsupervised learning and information retrieval concepts.

If you refresh your memory of Chapter 4, text categorization is indeed an interesting
problem that has several applications, most notably in the classification of news articles
and email. But one constraint in text classification is that we need some training data with
manually labeled categories because we use supervised learning algorithms to build our
classification model. The efforts of building this dataset are definitely not easy, because
to build a good model, you need a sizeable amount of training data. For this, we need to
spend time and manual effort in labeling data, building a model, and then finally using it to
classify new documents. Can we instead make the machine do it? Yes, as a matter of fact, we
can. This chapter specifically addresses looking at the content of text documents, analyzing
their similarity using various measures, and clustering similar documents together.

Text data is unstructured and highly noisy. We get the benefits of well-labeled
training data and supervised learning when performing text classification. But document
clustering is an unsupervised learning process, where we are trying to segment and
categorize documents into separate categories by making the machine learn about the
various text documents, their features, similarities, and the differences among them.
This makes document clustering more challenging, albeit interesting. Consider having
a corpus of documents that talk about various different concepts and ideas. Humans are
wired in such a way that we use our learning from the past and apply it to distinguish
documents from each other. For example, the sentence The fox is smarter than the
dog is more similar to The fox is faster than the dog than it is to Python is an excellent
programming language. We can easily spot and intuitively figure out specific keyphrases
like Python, fox, dog, programming, and so on, which help us determine which sentences
or documents are more similar. But can we do that programmatically? In this chapter,
we will focus on several concepts related to text similarity, distance metrics, and
unsupervised ML algorithms to answer the following questions:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

Chapter 6 ■ text Similarity and CluStering

266

•	 How do we measure similarity between documents?

•	 How can we use distance measures to find the most relevant
documents?

•	 When is a distance measure called a metric?

•	 How do we cluster or group similar documents?

•	 Can we visualize document clusters?

Although we will be focused on trying to answer these questions, we will cover
essential concepts and information needed to understand various techniques for
solving these problems. We will also use some practical examples to illustrate concepts
related to text similarity, distance metrics, and document clustering. Also, many of these
techniques can be combined with some of the techniques we learned previously and
vice versa. For example, concepts of text similarity using distance metrics are also used
to build document clusters. You can also use features from topic models for measuring
text similarity. Besides this, clustering is often a starting point to get a feel for the possible
groups or categories that your data might consist of, or to even visualize these clusters
or groups of similar text documents. This can then be plugged in to other systems
like supervised classification systems, or you can even combine them both and build
weighted classifiers. The possibilities are indeed endless!

In this chapter, we will first cover some important concepts related to distance
measures, metrics, and unsupervised learning and brush up on text normalization and
feature extraction. Once the basics are covered, our objective will be to understand and
analyze term similarity, document similarity, and finally document clustering.

Important Concepts
Our main objectives in this chapter are to understand text similarity and clustering.
Before moving on to the actual techniques and algorithms, this section will discuss some
important concepts related to information retrieval, document similarity measures, and
machine learning. Even though some of these concepts might be familiar to you from the
previous chapters, all of them will be useful to us as we gradually journey through this
chapter. Without further ado, let’s get started.

Information Retrieval (IR)
Information retrieval (IR) is the process of retrieving or fetching relevant sources of
information from a corpus or set of entities that hold information based on some
demand. For example, it could be a query or search that users enter in a search engine
and then get relevant search items pertaining to their query. In fact, search engines are
the most popular use-case or application of IR.

The relevancy of documents with information compared to the demand can
be measured in several ways. It can include looking for specific keywords from the
search text or using some similarity measures to see the similarity rank or score of the
documents with respect to the entered query. This makes is quite different from string
matching or matching regular expressions because more than often the words in a search

Chapter 6 ■ text Similarity and CluStering

267

string can have different order, context, and semantics in the collection of documents
(entities), and these words can even have multiple different resolutions or possibilities
based on synonyms, antonyms, and negation modifiers.

Feature Engineering
Feature engineering or feature extraction is something which you know quite well by
now. Methods like Bag of Words, TF-IDF, and word vectorization models are typically
used to represent or model documents in the form of numeric vectors so that applying
mathematical or machine learning techniques become much easier. You can use various
document representations using these feature-extraction techniques or even map each
letter or a word to a corresponding unique numeric identifier.

Similarity Measures
Similarity measures are used frequently in text similarity analysis and clustering. Any
similarity or distance measure usually measures the degree of closeness between two
entities, which can be any text format like documents, sentences, or even terms. This
measure of similarity can be useful in identifying similar entities and distinguishing
clearly different entities from each other. Similarity measures are very effective, and
sometimes choosing the right measure can make a lot of difference in the performance
of your final analytics system. Various scoring or ranking algorithms have also been
invented based on these distance measures. Two main factors determine the degree of
similarity between entities:

•	 Inherent properties or features of the entities

•	 Measure formula and properties

There are several distance measures that measure similarity, and we will be covering
several of them in future sections. However, an important thing to remember is that all
distance measures of similarity are not distance metrics of similarity. The excellent paper
by A. Huang, “Similarity Measures for Text Document Clustering,” talks about this in
detail. Consider a distance measure d and two entities (say they are documents in our
context) x and y. The distance between x and y, which is used to determine the degree of
similarity between them, can be represented as d(x, y), but the measure d can be called as
a distance metric of similarity if and only if it satisfies the following four conditions:

 1. The distance measured between any two entities, say x and y,
must be always non-negative, that is, d x y,() ³ 0 .

 2. The distance between two entities should always be zero if
and only if they are both identical, that is, d x y iff x y,() ³ =0 .

 3. This distance measure should always be symmetric, which
means that the distance from x to y is always the same as the
distance from y to x. Mathematically this is represented as
d x y d y x, ,() = () .

Chapter 6 ■ text Similarity and CluStering

268

 4. This distance measure should satisfy the triangle inequality
property, which can be mathematically represented
d x z d x y d y z, , ,() £ ()+ () .

This tells us important criteria and gives us a good framework we can use to check
whether a distance measure can be used as a distance metric for measuring similarity. I
don’t have room here to go into more detail, but you may be interested in knowing that
the very popular KL-divergence measure, also known as Kullback-Leibler divergence, is
a distance measure that violates the third property, where this measure is asymmetric,
hence it kind of does not make sense to use it as a measure of similarity for text
documents—but otherwise, this is extremely useful in differentiating between various
distributions and patterns.

Unsupervised Machine Learning Algorithms
Unsupervised machine learning algorithms are the family of ML algorithms that try to
discover latent hidden structures and patterns in data from their various attributes and
features. Besides this, several unsupervised learning algorithms are also used to reduce
the feature space, which is often of a higher dimension to one with a lower dimension.
The data on which these algorithms operate is essentially unlabeled data that does not
have any pre-determined category or class. We apply these algorithms with the intent
of finding patterns and distinguishing features that might help us in grouping various
data points into groups or clusters. These algorithms are popularly known as clustering
algorithms. Even the topic models covered in Chapter 5 belong to the unsupervised
learning family of algorithms.

This concludes our discussion on the important concepts and background
information necessary for this chapter. We will now move on to a brief coverage of text
normalization and feature extraction, where we introduce a few things which are specific
to this chapter.

Text Normalization
We will need to normalize our text documents and corpora as usual before we perform
any further analyses or NLP. For this we will reuse our normalization module from
Chapter 5 but with a few more additions specifically aimed toward this chapter. The
complete normalization module is available in the code files for this chapter in the file
normalization.py, but I will still be highlighting the new additions in our normalization
module in this section for your benefit.

To start, we have updated our stopwords list with several new words that have been
carefully selected after analyzing many corpora. The following code snippet illustrates:

stopword_list = nltk.corpus.stopwords.words('english')
stopword_list = stopword_list + ['mr', 'mrs', 'come', 'go', 'get', 'tell',
'listen', 'one', 'two', 'three', 'four', 'five',
'six', 'seven', 'eight',
'nine', 'zero', 'join', 'find', 'make', 'say', 'ask',
'tell', 'see', 'try', 'back', 'also']

http://dx.doi.org/10.1007/978-1-4842-2388-8_5
http://dx.doi.org/10.1007/978-1-4842-2388-8_5

Chapter 6 ■ text Similarity and CluStering

269

You can see the new additions are words that are mostly generic verbs or nouns without
a lot of significance. This will be useful to us in feature extraction during text clustering. We
also add a new function in our normalization pipeline, which is to only extract text tokens
from a body of text for which we use regular expressions, as depicted in the following function:

import re

def keep_text_characters(text):
 filtered_tokens = []
 tokens = tokenize_text(text)
 for token in tokens:
 if re.search('[a-zA-Z]', token):
 filtered_tokens.append(token)
 filtered_text = ' '.join(filtered_tokens)
 return filtered_text

We add this in our final normalization function along with the other functions that
we have reused from previous chapters, including expanding contractions, unescaping
HTML, tokenization, removing stopwords, special characters, and lemmatization. The
updated normalization function is shown in the following snippet:

def normalize_corpus(corpus, lemmatize=True,
 only_text_chars=False,
 tokenize=False):

 normalized_corpus = []
 for text in corpus:
 text = html_parser.unescape(text)
 text = expand_contractions(text, CONTRACTION_MAP)
 if lemmatize:
 text = lemmatize_text(text)
 else:
 text = text.lower()
 text = remove_special_characters(text)
 text = remove_stopwords(text)
 if only_text_chars:
 text = keep_text_characters(text)

 if tokenize:
 text = tokenize_text(text)
 normalized_corpus.append(text)
 else:
 normalized_corpus.append(text)

 return normalized_corpus

Thus, as you can see, the preceding function is very similar to the one from Chapter 5
with only the addition of keeping text characters using the keep_text_characters()
function, which can be executed by setting the only_text_chars parameter to True.

http://dx.doi.org/10.1007/978-1-4842-2388-8_5

Chapter 6 ■ text Similarity and CluStering

270

Feature Extraction
We will also be using a feature-extraction function similar to the one used in Chapter 5.
The code will be very similar to our previous feature extractor, except we will be adding
some new parameters in this chapter. The function can be found in the utils.py file and
is also shown in the following snippet:

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

def build_feature_matrix(documents, feature_type='frequency',
 ngram_range=(1, 1), min_df=0.0, max_df=1.0):

 feature_type = feature_type.lower().strip()

 if feature_type == 'binary':
 vectorizer = CountVectorizer(binary=True, min_df=min_df,
 max_df=max_df, ngram_range=ngram_range)
 elif feature_type == 'frequency':
 vectorizer = CountVectorizer(binary=False, min_df=min_df,
 max_df=max_df, ngram_range=ngram_range)
 elif feature_type == 'tfidf':
 vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df,
 ngram_range=ngram_range)
 else:
 raise Exception("Wrong feature type entered. Possible values:
'binary', 'frequency',
 'tfidf'")

 feature_matrix = vectorizer.fit_transform(documents).astype(float)

 return vectorizer, feature_matrix

You can see from the function definition that we have capabilities for Bag of Words
frequency, occurrences, and also TF-IDF–based features. The new additions in this
function include the addition of the min_df, max_df and ngram_range parameters and
also accepting them as optional arguments. The ngram_range is useful when we want
to add bigrams, trigrams, and so on as additional features. The min_df parameter can
be expressed by a threshold value within a range of [0.0, 1.0] and it will ignore terms
as features that will have a document frequency strictly lower than the input threshold
value. The max_df parameter can also be expressed by a threshold value within a range
of [0.0, 1.0] and it will ignore terms as features that will have a document frequency
strictly higher than the input threshold value. The intuition behind this would be that
these words, if they occur in almost all the documents, tend to have little value that would
help us in distinguishing among various types of documents. We will now deep dive into
the various techniques for text similarity.

http://dx.doi.org/10.1007/978-1-4842-2388-8_5

Chapter 6 ■ text Similarity and CluStering

271

Text Similarity
The main objective of text similarity is to analyze and measure how two entities of text are
close or far apart from each other. These entities of text can be simple tokens or terms,
like words, or whole documents, which may include sentences or paragraphs of text.
There are various ways of analyzing text similarity, and we can classify the intent of text
similarity broadly into the following two areas:

•	 Lexical similarity: This involves observing the contents of the
text documents with regard to syntax, structure, and content and
measuring their similarity based on these parameters.

•	 Semantic similarity: This involves trying to find out the semantics,
meaning, and context of the documents and then trying to see
how close they are to each other. Dependency grammars and
entity recognition are handy tools that can help in this.

Note that the most popular area is lexical similarity, because the techniques
are more straightforward, easy to implement, and you can also cover several parts of
semantic similarity using simple models like the Bag of Words. Usually distance metrics
will be used to measure similarity scores between text entities, and we will be mainly
covering the following two broad areas of text similarity:

•	 Term similarity: Here we will measure similarity between
individual tokens or words.

•	 Document similarity: Here we will be measuring similarity
between entire text documents.

The idea is to implement and use several distance metrics and see how we can
measure and analyze similarity among entities that are just simple words, and then
how things change when we measure similarity among documents that are groups of
individual words.

Analyzing Term Similarity
We will start with analyzing term similarity—or similarity between individual word
tokens, to be more precise. Even though this is not used a lot in practical applications,
it can be used as an excellent starting point for understanding text similarity. Of course,
several applications and use-cases like autocompleters, spell check, and correctors use
some of these techniques to correct misspelled terms. Here we will be taking a couple of
words and measuring the similarity between then using different word representations as
well as distance metrics. The word representations we will be using are as follows:

•	 Character vectorization

•	 Bag of Characters vectorization

Chapter 6 ■ text Similarity and CluStering

272

For character vectorization, it is an extremely simple process of just mapping each
character of the term to a corresponding unique number. We can do that using the
function depicted in the following snippet:

import numpy as np

def vectorize_terms(terms):
 terms = [term.lower() for term in terms]
 terms = [np.array(list(term)) for term in terms]
 terms = [np.array([ord(char) for char in term])
 for term in terms]
 return terms

The function takes input a list of words or terms and returns the corresponding
character vectors for the words. Bag of Characters vectorization is very similar to the Bag
of Words model except here we compute the frequency of each character in the word.
Sequence or word orders are not taken into account. The following function helps in
computing this:

from scipy.stats import itemfreq

def boc_term_vectors(word_list):
 word_list = [word.lower() for word in word_list]
 unique_chars = np.unique(
 np.hstack([list(word)
 for word in word_list]))
 word_list_term_counts = [{char: count for char, count in
itemfreq(list(word))}
 for word in word_list]

 boc_vectors = [np.array([int(word_term_counts.get(char, 0))
 for char in unique_chars])
 for word_term_counts in word_list_term_counts]
 return list(unique_chars), boc_vectors

In that function, we take in a list of words or terms and then extract the unique
characters from all the words. This becomes our feature list, just like we do in Bag of
Words, where instead of characters, unique words are our features. Once we have this list
of unique_chars, we get the count for each of the characters in each word and build our
Bag of Characters vectors.

We can now see our previous functions in action in the following snippet. We will be
using a total of four example terms and computing the similarity among them later on:

root = 'Believe'
term1 = 'beleive'
term2 = 'bargain'
term3 = 'Elephant'

Chapter 6 ■ text Similarity and CluStering

273

terms = [root, term1, term2, term3]

Character vectorization
vec_root, vec_term1, vec_term2, vec_term3 = vectorize_terms(terms)
show vector representations
In [103]: print '''
 ...: root: {}
 ...: term1: {}
 ...: term2: {}
 ...: term3: {}
 ...: '''.format(vec_root, vec_term1, vec_term2, vec_term3)
root: [98 101 108 105 101 118 101]
term1: [98 101 108 101 105 118 101]
term2: [98 97 114 103 97 105 110]
term3: [101 108 101 112 104 97 110 116]

Bag of characters vectorization
features, (boc_root, boc_term1, boc_term2, boc_term3) = boc_term_
vectors(terms)
show features and vector representations
In [105]: print 'Features:', features
 ...: print '''
 ...: root: {}
 ...: term1: {}
 ...: term2: {}
 ...: term3: {}
 ...: '''.format(boc_root, boc_term1, boc_term2, boc_term3)
Features: ['a', 'b', 'e', 'g', 'h', 'i', 'l', 'n', 'p', 'r', 't', 'v']

root: [0 1 3 0 0 1 1 0 0 0 0 1]
term1: [0 1 3 0 0 1 1 0 0 0 0 1]
term2: [2 1 0 1 0 1 0 1 0 1 0 0]
term3: [1 0 2 0 1 0 1 1 1 0 1 0]

Thus you can see how we can easily transform text terms into numeric vector
representations. We will now be using several distance metrics to compute similarity
between the root word and the other three words mentioned in the preceding snippet.
There are a lot of distance metrics out there that you can use to compute and measure
similarities. We will be covering the following five metrics in this section:

•	 Hamming distance

•	 Manhattan distance

•	 Euclidean distance

•	 Levenshtein edit distance

•	 Cosine distance and similarity

Chapter 6 ■ text Similarity and CluStering

274

We will be looking at the concepts for each distance metric and using the power of
numpy arrays to implement the necessary computations and mathematical formulae.
Once we do that, we will put them in action by measuring the similarity of our example
terms. First, though, we will set up some necessary variables storing the root term,
the other terms with which its similarity will be measures, and their various vector
representations using the following snippet:

root_term = root
root_vector = vec_root
root_boc_vector = boc_root

terms = [term1, term2, term3]
vector_terms = [vec_term1, vec_term2, vec_term3]
boc_vector_terms = [boc_term1, boc_term2, boc_term3]

We are now ready to start computing similarity metrics and will be using the
preceding terms and their vector representations to measure similarities.

Hamming Distance
The Hamming distance is a very popular distance metric used frequently in information
theory and communication systems. It is distance measured between two strings under
the assumption that they are of equal length. Formally, it is defined as the number of
positions that have different characters or symbols between two strings of equal length.
Considering two terms u and v of length n, we can mathematically denote Hamming
distance as

hd u v u v
i

n

i i,() = ¹()
=
å

1

and you can also normalize it if you want by dividing the number of mismatches by the
total length of the terms to give the normalized hamming distance, which is represented
as

norm hd u v
u v

n
i

n

i i

_ ,() =
¹()

=
å

1

whereas you already know n denotes the length of the terms.
The following function computes the Hamming distance between two terms and

also has the capability to compute the normalized distance:

def hamming_distance(u, v, norm=False):
 if u.shape != v.shape:
 raise ValueError('The vectors must have equal lengths.')
 return (u != v).sum() if not norm else (u != v).mean()

Chapter 6 ■ text Similarity and CluStering

275

We will now measure the Hamming distance between our root term and the other
terms using the following code snippet:

compute Hamming distance
In [115]: for term, vector_term in zip(terms, vector_terms):
 ...: print 'Hamming distance between root: {} and term: {} is {}'.
format(root_term,
 ...: term, hamming_distance(root_vector, vector_
term, norm=False))

Hamming distance between root: Believe and term: believe is 2
Hamming distance between root: Believe and term: bargain is 6
Traceback (most recent call last):
 File "<ipython-input-115-3391bd2c4b7e>", line 4, in <module>
 hamming_distance(root_vector, vector_term, norm=False))
ValueError: The vectors must have equal lengths.

compute normalized Hamming distance
In [117]: for term, vector_term in zip(terms, vector_terms):
 ...: print 'Normalized Hamming distance between root: {} and term:
{} is
 ...: {}'.format(root_term,

term,
 ...: round(hamming_distance(root_vector, vector_term,

norm=True), 2))

Normalized Hamming distance between root: Believe and term: believe is 0.29
Normalized Hamming distance between root: Believe and term: bargain is 0.86
Traceback (most recent call last):
 File "<ipython-input-117-7dfc67d08c3f>", line 4, in <module>
 round(hamming_distance(root_vector, vector_term, norm=True), 2))
ValueError: The vectors must have equal lengths

You can see from the preceding output that terms 'Believe' and 'believe'
ignoring their case are most similar to each other with the Hamming distance of 2 or 0.29,
compared to the term 'bargain' giving scores of 6 or 0.86 (here, the smaller the score,
the more similar are the terms). The term 'Elephant' throws an exception because the
length of that term (term3) is 8 compared to length 7 of the root term 'Believe', hence
Hamming distance can’t be computed because the base assumption of strings being of
equal length is violated.

Manhattan Distance
The Manhattan distance metric is similar to the Hamming distance conceptually, where
instead of counting the number of mismatches, we subtract the difference between each
pair of characters at each position of the two strings. Formally, Manhattan distance is
also known as city block distance, L1 norm, taxicab metric and is defined as the distance

Chapter 6 ■ text Similarity and CluStering

276

between two points in a grid based on strictly horizontal or vertical paths instead of
the diagonal distance conventionally calculated by the Euclidean distance metric.
Mathematically it can be denoted as

md u v u v u v
i

n

i i,() = - = -
=
å1

1

where u and v are the two terms of length n. The same assumption of the two terms
having equal length from Hamming distance holds good here. We can also compute the
normalized Manhattan distance by dividing the sum of the absolute differences by the
term length. This can be denoted by

norm md u v
u v

n

u v

n
i

n

i i

_ ,() =
-

=
-

=
å

1 1

where n is the length of each of the terms u and v. The following function helps us in
implementing Manhattan distance with the capability to also compute the normalized
Manhattan distance:

def manhattan_distance(u, v, norm=False):
 if u.shape != v.shape:
 raise ValueError('The vectors must have equal lengths.')
 return abs(u - v).sum() if not norm else abs(u - v).mean()

We will now compute the Manhattan distance between our root term and the other
terms using the previous function, as shown in the following code snippet:

compute Manhattan distance
In [120]: for term, vector_term in zip(terms, vector_terms):
 ...: print 'Manhattan distance between root: {} and term: {} is

{}'.format(root_term,
 ...: term, manhattan_distance(root_vector,

vector_term, norm=False))

Manhattan distance between root: Believe and term: believe is 8
Manhattan distance between root: Believe and term: bargain is 38
Traceback (most recent call last):
 File "<ipython-input-120-b228f24ad6a2>", line 4, in <module>
 manhattan_distance(root_vector, vector_term, norm=False))
ValueError: The vectors must have equal lengths.

compute normalized Manhattan distance
In [122]: for term, vector_term in zip(terms, vector_terms):
 ...: print 'Normalized Manhattan distance between root: {} and

term: {} is {}'.format(root_term,

Chapter 6 ■ text Similarity and CluStering

277

 ...: term,
 ...: round(manhattan_distance(root_vector, vector_term,

norm=True),2))
 ...:
 ...:
Normalized Manhattan distance between root: Believe and term: believe is 1.14
Normalized Manhattan distance between root: Believe and term: bargain is 5.43
Traceback (most recent call last):
 File "<ipython-input-122-d13a48d56a22>", line 4, in <module>
 round(manhattan_distance(root_vector, vector_term, norm=True),2))
ValueError: The vectors must have equal lengths.

From those results you can see that as expected, the distance between 'Believe'
and 'believe' ignoring their case is most similar to each other, with a score of 8 or
1.14, as compared to 'bargain', which gives a score of 38 or 5.43 (here the smaller the
score, the more similar the words). The term 'Elephant' yields an error because it has
a different length compared to the base term just as we noticed earlier when computing
Hamming distances.

Euclidean Distance
We briefly mentioned the Euclidean distance when comparing it with the Manhattan
distance in the earlier section. Formally, the Euclidean distance is also known as the
Euclidean norm, L2 norm, or L2 distance and is defined as the shortest straight-line
distance between two points. Mathematically this can be denoted as

ed u v u v u v
i

n

i i,() = - = -()
=
å2

1

2

where the two points u and v are vectorized text terms in our scenario, each having
length n. The following function helps us in computing the Euclidean distance between
two terms:

def euclidean_distance(u, v):
 if u.shape != v.shape:
 raise ValueError('The vectors must have equal lengths.')
 distance = np.sqrt(np.sum(np.square(u - v)))
 return distance

We can now compare the Euclidean distance among our terms by using the
preceding function as depicted in the following code snippet:

compute Euclidean distance
In [132]: for term, vector_term in zip(terms, vector_terms):
 ...: print 'Euclidean distance between root: {} and term: {} is
{}'.format(root_term,
 ...: term, round(euclidean_distance(root_

vector, vector_term),2))

Chapter 6 ■ text Similarity and CluStering

278

Euclidean distance between root: Believe and term: believe is 5.66
Euclidean distance between root: Believe and term: bargain is 17.94
Traceback (most recent call last):
 File "<ipython-input-132-90a4dbe8ce60>", line 4, in <module>
 round(euclidean_distance(root_vector, vector_term),2))
ValueError: The vectors must have equal lengths.

From the preceding outputs you can see that the terms 'Believe' and 'believe'
are the most similar with a score of 5.66 compared to 'bargain' giving us a score of 17.94,
and 'Elephant' throws a ValueError because the base assumption that strings being
compared should have equal lengths holds good for this distance metric also.

So far, all the distance metrics we have used work on strings or terms of the same
length and fail when they are not of equal length. So how do we deal with this problem?
We will now look at a couple of distance metrics that work even with strings of unequal
length to measure similarity.

Levenshtein Edit Distance
The Levenshtein edit distance, often known as just Levenshtein distance, belongs to the
family of edit distance–based metrics and is used to measure the distance between two
sequence of strings based on their differences—similar to the concept behind Hamming
distance. The Levenshtein edit distance between two terms can be defined as the
minimum number of edits needed in the form of additions, deletions, or substitutions
to change or convert one term to the other. These substitutions are character-based
substitutions, where a single character can be edited in a single operation. Also, as
mentioned before, the length of the two terms need not be equal here. Mathematically,
we can represent the Levenshtein edit distance between two terms as ld

u, v
(|u|, |v|) such

that u and v are our two terms where |u| and |v| are their lengths. This distance can be
represented by the following formula

ld i j

i j if i j

ld i j

ld i ju v

u v

u v
,

,

,

,

,
,

, ,

() =

() () =
-() +
-

max min

min

0

1 1

1(() +
- -() +

ì

í
ï

î
ï

ü

ý
ï

þ
ï

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
¹

1

1 1ld i j C

otherwise

u v u vi j, , ïï

where i and j are basically indices for the terms u and v. The third equation in the minimum
above has a cost function denoted by Cu vi j¹ such that it has the following conditions

C
if u v

if u vu v

i j

i j
i j¹ =

¹
=

ì
í
ï

îï

ü
ý
ï

þï

1

0

and this denotes the indicator function, which depicts the cost associated with two
characters being matched for the two terms (the equation represents the match or
mismatch operation). The first equation in the previous minimum stands for the deletion

Chapter 6 ■ text Similarity and CluStering

279

operation, and the second equation represents the insertion operation. The function
ld

u, v
(i, j) thus covers all the three operations of insertion, deletion, and addition as we

mentioned earlier and it denotes the Levenshtein distance as measured between the first
i characters for the term u and the first j characters of the term v. There are also several
interesting boundary conditions with regard to the Levenshtein edit distance:

•	 The minimum value that the edit distance between two terms can
take is the difference in length of the two terms.

•	 The maximum value of the edit distance between two terms can
be the length of the term that is larger.

•	 If the two terms are equal, the edit distance is zero.

•	 Hamming distance between two terms is an upper bound for
Levenshtein edit distance if and only if the two terms have equal
length.

•	 This being a distance metric also satisfies the triangle inequality
property, discussed earlier when we talked about distance
metrics.

There are various ways of implementing Levenshtein distance computations for
terms. Here we will start with an example of two of our terms. Considering the root term
'believe' and another term 'beleive' (we ignore case in our computations). The edit
distance would be 2 because we would need the following two operations:

•	 'beleive' → 'beliive' (substitution of e to i)

•	 'beliive' → 'believe' (substitution of i to e)

To implement this, we build a matrix that will basically compute the Levenshtein
distance between all the characters of both terms by comparing each character of the
first term with the characters of the second term. For computation, we follow a dynamic
programming approach to get the edit distance between the two terms based on the
last computed value. For the given two terms, the Levenshtein edit distance matrix our
algorithm should generate is shown in Figure 6-1.

Figure 6-1. Levenshtein edit distance matrix between terms

Chapter 6 ■ text Similarity and CluStering

280

You can see in Figure 6-1 that the edit distances are computed for each pair of
characters in the terms, as mentioned earlier, and the final edit distance value highlighted
in the figure gives us the actual edit distance between the two terms. This algorithm is
also known as the Wagner-Fischer algorithm and is available in the paper by R. Wagner
and M. Fischer titled “The String-to-String Correction Problem,” which you can refer to
if you are more interested in the details. The pseudocode for the same is shown in the
snippet below, courtesy of the paper:

function levenshtein_distance(char u[1..m], char v[1..n]):
for all i and j, d[i,j] will hold the Levenshtein distance between the
first i characters of
u and the first j characters of v, note that d has (m+1)*(n+1) values
int d[0..m, 0..n]

set each element in d to zero
d[0..m, 0..n] := 0

source prefixes can be transformed into empty string by dropping all
characters
for i from 1 to m:
 d[i, 0] := i

target prefixes can be reached from empty source prefix by inserting every
character
for j from 1 to n:
 d[0, j] := j

build the edit distance matrix
for j from 1 to n:
 for i from 1 to m:
 if s[i] = t[j]:
 substitutionCost := 0
 else:
 substitutionCost := 1
 d[i, j] := minimum(d[i-1, j] + 1, # deletion
 d[i, j-1] + 1, # insertion
 d[i-1, j-1] + substitutionCost) # substitution

the final value of the matrix is the edit distance between the terms
return d[m, n]

You can see from the preceding function definition pseudocode how we have
captured the necessary formulae we used earlier to define Levenshtein edit distance.

We will now implement this pseudocode in Python. The preceding algorithm uses
O(mn) space because it stores the entire distance matrix, but it is enough to just store the
previous and current row of distances to get to the final result. We will do the same in our
code but we will also store the results in a matrix so that we can visualize it in the end. The
following function implements Levenshtein edit distance as mentioned:

Chapter 6 ■ text Similarity and CluStering

281

import copy
import pandas as pd

def levenshtein_edit_distance(u, v):
 # convert to lower case
 u = u.lower()
 v = v.lower()
 # base cases
 if u == v: return 0
 elif len(u) == 0: return len(v)
 elif len(v) == 0: return len(u)
 # initialize edit distance matrix
 edit_matrix = []
 # initialize two distance matrices
 du = [0] * (len(v) + 1)
 dv = [0] * (len(v) + 1)
 # du: the previous row of edit distances
 for i in range(len(du)):
 du[i] = i
 # dv : the current row of edit distances
 for i in range(len(u)):
 dv[0] = i + 1
 # compute cost as per algorithm
 for j in range(len(v)):
 cost = 0 if u[i] == v[j] else 1
 dv[j + 1] = min(dv[j] + 1, du[j + 1] + 1, du[j] + cost)
 # assign dv to du for next iteration
 for j in range(len(du)):
 du[j] = dv[j]
 # copy dv to the edit matrix
 edit_matrix.append(copy.copy(dv))
 # compute the final edit distance and edit matrix
 distance = dv[len(v)]
 edit_matrix = np.array(edit_matrix)
 edit_matrix = edit_matrix.T
 edit_matrix = edit_matrix[1:,]
 edit_matrix = pd.DataFrame(data=edit_matrix,
 index=list(v),
 columns=list(u))
 return distance, edit_matrix

That function returns both the final Levenshtein edit distance and the complete edit
matrix between the two terms u and v, which are taken as input. Remember, we need to
pass the terms directly in their raw string format and not their vector representations.
Also, we do not consider case of strings here and convert them to lowercase.

The following snippet computes the Levenshtein edit distance between our example
terms using the preceding function:

Chapter 6 ■ text Similarity and CluStering

282

In [223]: for term in terms:
 ...: edit_d, edit_m = levenshtein_edit_distance(root_term, term)
 ...: print 'Computing distance between root: {} and term: {}'.

format(root_term,
 ...: term)
 ...: print 'Levenshtein edit distance is {}'.format(edit_d)
 ...: print 'The complete edit distance matrix is depicted below'
 ...: print edit_m
 ...: print '-'*30

Computing distance between root: Believe and term: beleive
Levenshtein edit distance is 2
The complete edit distance matrix is depicted below
 b e l i e v e
b 0 1 2 3 4 5 6
e 1 0 1 2 3 4 5
l 2 1 0 1 2 3 4
e 3 2 1 1 1 2 3
i 4 3 2 1 2 2 3
v 5 4 3 2 2 2 3
e 6 5 4 3 2 3 2

Computing distance between root: Believe and term: bargain
Levenshtein edit distance is 6
The complete edit distance matrix is depicted below
 b e l i e v e
b 0 1 2 3 4 5 6
a 1 1 2 3 4 5 6
r 2 2 2 3 4 5 6
g 3 3 3 3 4 5 6
a 4 4 4 4 4 5 6
i 5 5 5 4 5 5 6
n 6 6 6 5 5 6 6

Computing distance between root: Believe and term: Elephant
Levenshtein edit distance is 7
The complete edit distance matrix is depicted below
 b e l i e v e
e 1 1 2 3 4 5 6
l 2 2 1 2 3 4 5
e 3 2 2 2 2 3 4
p 4 3 3 3 3 3 4
h 5 4 4 4 4 4 4
a 6 5 5 5 5 5 5
n 7 6 6 6 6 6 6
t 8 7 7 7 7 7 7

Chapter 6 ■ text Similarity and CluStering

283

You can see from the preceding outputs that 'Believe' and 'beleive' are the
closest to each other, with an edit distance of 2 and the distances between 'Believe',
'bargain', and 'Elephant' are 6, indicating a total of 6 edit operations needed. The edit
distance matrices provide a more detailed insight into how the algorithm computes the
distances per iteration.

Cosine Distance and Similarity
The Cosine distance is a metric that can be actually derived from the Cosine similarity and
vice versa. Considering we have two terms such that they are represented in their
vectorized forms, Cosine similarity gives us the measure of the cosine of the angle
between them when they are represented as non-zero positive vectors in an inner
product space. Thus term vectors having similar orientation will have scores closer to 1
(cos0) indicating the vectors are very close to each other in the same direction (near to
zero degree angle between them). Term vectors having a similarity score close to 0
(cos90) indicate unrelated terms with a near orthogonal angle between then. Term
vectors with a similarity score close to –1 (cos180) indicate terms that are completely
oppositely oriented to each other. Figure 6-2 illustrates this more clearly, where u and v
are our term vectors in the vector space.

Thus you can see from the position of the vectors, the plots show more clearly how
the vectors are close or far apart from each other, and the cosine of the angle between
them gives us the Cosine similarity metric. Now we can formally define Cosine similarity
as the dot product of the two term vectors u and v, divided by the product of their L2
norms. Mathematically, we can represent the dot product between two vectors as

u v u v× = ()cos q

where θ is the angle between u and v and u represents the L2 norm for vector u and v

is the L2 norm for vector v. Thus we can derive the Cosine similarity from the above
formula as

Figure 6-2. Cosine similarity representations for term vectors

Chapter 6 ■ text Similarity and CluStering

284

cs u v
u v

u v

u v

u v

i

n

i i

i

n

i
i

n

i

, cos() = () = ×
= =

= =

å

å å
q 1

1

2

1

2

where cs(u, v) is the Cosine similarity score between u and v. Here u
i
 and v

i
 are the

various features or components of the two vectors, and the total number of these features
or components is n. In our case, we will be using the Bag of Characters vectorization to
build these term vectors, and n will be the number of unique characters across the terms
under analysis. An important thing to note here is that the Cosine similarity score usually
ranges from –1 to +1, but if we use the Bag of Characters–based character frequencies for
terms or Bag of Words–based word frequencies for documents, the score will range from 0
to 1 because the frequency vectors can never be negative, and hence the angle between
the two vectors cannot exceed 90 . The Cosine distance is complimentary to the
similarity score can be computed by the formula,

cd u v cs u v
u v

u v

u v

u

i

n

i i

i

n

i
i

n
, , cos() = - () = - () = -

×
= - =

= =

å

å
1 1 1 1 1

1

2

1

q

ååvi
2

where cd(u, v) denotes the Cosine distance between the term vectors u and v. The
following function implements computation of Cosine distance based on the preceding
formulae:

def cosine_distance(u, v):
 distance = 1.0 - (np.dot(u, v) /
 (np.sqrt(sum(np.square(u))) * np.sqrt(sum(np.

square(v))))
)
 return distance

We will now test the similarity between our example terms using their Bag of
Character representations, which we created earlier, available in the boc_root_vector
and the boc_vector_terms variables, as depicted in the following code snippet:

In [235]: for term, boc_term in zip(terms, boc_vector_terms):
 ...: print 'Analyzing similarity between root: {} and term: {}'.
format(root_term,
 ...: term)
 ...: distance = round(cosine_distance(root_boc_vector, boc_term),2)
 ...: similarity = 1 - distance
 ...: print 'Cosine distance is {}'.format(distance)
 ...: print 'Cosine similarity is {}'.format(similarity)
 ...: print '-'*40

Chapter 6 ■ text Similarity and CluStering

285

Analyzing similarity between root: Believe and term: believe
Cosine distance is -0.0
Cosine similarity is 1.0
--
Analyzing similarity between root: Believe and term: bargain
Cosine distance is 0.82
Cosine similarity is 0.18
--
Analyzing similarity between root: Believe and term: Elephant
Cosine distance is 0.39
Cosine similarity is 0.61
--

These vector representations do not take order of characters into account, hence
the similarity between the terms "Believe" and "believe" is 1.0 or a perfect 100 percent
because it contains the same characters with the same frequency. You can see how this
can be used in combination with a semantic dictionary like WordNet to provide correct
spelling suggestions by suggesting semantically and syntactically correct words from
a vocabulary when users type a misspelled word, by measuring the similarity between
the words. You can even try our different features here instead of single character
frequencies, like taking two characters at a time and computing their frequencies to build
the term vectors. This takes into account some of the sequences that characters maintain
in various terms. Try out different possibilities and compare the results! This distance
measure works very well when measuring similarity between large documents or
sentences, and we will see that in the next section when we discuss document similarity.

Analyzing Document Similarity
We analyzed similarity between terms using various similarity and distance metrics in
the previous sections. We also saw how vectorization was useful so that mathematical
computations become much easier, especially when computing distances between
vectors. In this section, we will try to analyze similarities between documents. By now,
you must already know that a document is defined as a body of text which can be
comprised of sentences or paragraphs of text. For analyzing document similarity, we will
be using our utils module to extract features from document using the build_feature_
matrix() function. We will vectorize documents using their TF-IDFs similarly to what
we did previously when we classified text documents or summarized entire documents.
Once we have the vector representations of the various documents, we will compute
similarity between the documents using several distance or similarity metrics. The
metrics we will cover in this section are as follows:

•	 Cosine similarity

•	 Hellinger-Bhattacharya distance

•	 Okapi BM25 ranking

Chapter 6 ■ text Similarity and CluStering

286

As usual, we will cover the concepts behind each metric, look at its mathematical
representations and definitions, and then implement it using Python. We will also test
our metrics on a toy corpus here with nine documents and a separate corpus with three
documents, which will be our query documents. For each of these three documents, we
will try to find out the most similar documents from the corpus of nine documents, which
will act as our index. Consider this to be a mini-simulation of what happens in a search
engine when you search with a sentence and the most relevant results are returned to you
from its index of web pages. In our case, the queries are in the form of three documents,
and relevant documents for each of these three will be returned from the index of nine
documents based on similarity metrics.

We will start with loading the necessary dependencies and the corpus of documents
on which we will be testing our various metrics, as shown in the following code snippet:

from normalization import normalize_corpus
from utils import build_feature_matrix
import numpy as np

load the toy corpus index
toy_corpus = ['The sky is blue',
'The sky is blue and beautiful',
'Look at the bright blue sky!',
'Python is a great Programming language',
'Python and Java are popular Programming languages',
'Among Programming languages, both Python and Java are the most used in
Analytics',
'The fox is quicker than the lazy dog',
'The dog is smarter than the fox',
'The dog, fox and cat are good friends']

load the docs for which we will be measuring similarities
query_docs = ['The fox is definitely smarter than the dog',
 'Java is a static typed programming language unlike Python',
 'I love to relax under the beautiful blue sky!']

From that snippet you can see that we have various documents in our corpus index
that talk about the sky, programming languages, and animals. We also have three query
documents for which we want to get the most relevant documents from the toy_corpus
index, based on similarity computations. Before we start looking at metrics, we will
normalize the documents and vectorize them by extracting their TF-IDF features, as
shown in the following snippet:

normalize and extract features from the toy corpus
norm_corpus = normalize_corpus(toy_corpus, lemmatize=True)
tfidf_vectorizer, tfidf_features = build_feature_matrix(norm_corpus,
 feature_

type='tfidf',
 ngram_range=(1, 1),
 min_df=0.0, max_

df=1.0)

Chapter 6 ■ text Similarity and CluStering

287

normalize and extract features from the query corpus
norm_query_docs = normalize_corpus(query_docs, lemmatize=True)
query_docs_tfidf = tfidf_vectorizer.transform(norm_query_docs)

Now that we have our documents normalized and vectorized with TF-IDF–based
vector representations, we will look at how to compute similarity for each of the metrics
we specified at the beginning of this section.

Cosine Similarity
We have seen the concepts with regards to computing Cosine similarity and also
implemented the same for term similarity. Here, we will reuse the same concepts to
compute the Cosine similarity scores for documents instead of terms. The document
vectors will be the Bag of Words model–based vectors with TF-IDF values instead of
term frequencies. We have also taken only unigrams here, but you can experiment with
bigrams and so on as document features during the vectorization process. For each of
the three query documents, we will compute its similarity with the nine documents in
toy_corpus and return the n most similar documents where n is a user input parameter.

We will define a function that will take in the vectorized corpus and the document
corpus for which we want to compute similarities. We will get the similarity scores using the
dot product operation as before and finally we will sort them in reverse order and get the
top n documents with the highest similarity score. The following function implements this:

def compute_cosine_similarity(doc_features, corpus_features,
 top_n=3):
 # get document vectors
 doc_features = doc_features.toarray()[0]
 corpus_features = corpus_features.toarray()
 # compute similarities
 similarity = np.dot(doc_features,
 corpus_features.T)
 # get docs with highest similarity scores
 top_docs = similarity.argsort()[::-1][:top_n]
 top_docs_with_score = [(index, round(similarity[index], 3))
 for index in top_docs]
 return top_docs_with_score

In that function, corpus_features are the vectorized documents belonging to the
toy_corpus index from which we want to retrieve similar documents. These documents
will be retrieved on the basis of their similarity score with doc_features, which basically
represents the vectorized document belonging to each of the query_docs, as shown in the
following snippet:

get Cosine similarity results for our example documents
In [243]: print 'Document Similarity Analysis using Cosine Similarity'
 ...: print '='*60
 ...: for index, doc in enumerate(query_docs):

Chapter 6 ■ text Similarity and CluStering

288

 ...:
 ...: doc_tfidf = query_docs_tfidf[index]
 ...: top_similar_docs = compute_cosine_similarity(doc_tfidf,
 ...: tfidf_features,
 ...: top_n=2)
 ...: print 'Document',index+1 ,':', doc
 ...: print 'Top', len(top_similar_docs), 'similar docs:'
 ...: print '-'*40
 ...: for doc_index, sim_score in top_similar_docs:
 ...: print 'Doc num: {} Similarity Score: {}\nDoc: {}'.

format(doc_index+1,
 ...:
sim_score, toy_corpus[doc_index])
 ...: print '-'*40
 ...: print

Document Similarity Analysis using Cosine Similarity
==
Document 1 : The fox is definitely smarter than the dog
Top 2 similar docs:
--
Doc num: 8 Similarity Score: 1.0
Doc: The dog is smarter than the fox
--
Doc num: 7 Similarity Score: 0.426
Doc: The fox is quicker than the lazy dog
--

Document 2 : Java is a static typed programming language unlike Python
Top 2 similar docs:
--
Doc num: 5 Similarity Score: 0.837
Doc: Python and Java are popular Programming languages
--
Doc num: 6 Similarity Score: 0.661
Doc: Among Programming languages, both Python and Java are the most used in
Analytics
--

Document 3 : I love to relax under the beautiful blue sky!
Top 2 similar docs:
--
Doc num: 2 Similarity Score: 1.0
Doc: The sky is blue and beautiful
--
Doc num: 1 Similarity Score: 0.72
Doc: The sky is blue
--

Chapter 6 ■ text Similarity and CluStering

289

The preceding output depicts the top two most relevant documents for each of the
query documents based on Cosine similarity scores, and you can see that the outputs
are quite what were expected. Documents about animals are similar to the document
that mentions the fox and the dog; documents about Python and Java are most similar to
the query document talking about them; and the beautiful blue sky is indeed similar to
documents that talk about the sky being blue and beautiful!

Also note the Cosine similarity scores in the preceding outputs, where 1.0 indicates
perfect similarity, 0.0 indicates no similarity, and any score between them indicates some
level of similarity based on how large that score is. For instance, in the last example,
the main document vectors are ['sky', 'blue', 'beautiful'] and because they all
match with the first document from the toy corpus, we get a 1.0 or 100 percent similarity
score, and only ['sky', 'blue'] match from the second most similar document, and
we get a 0.72 or 72 percent similarity score. And you should remember our discussion
from earlier where I mentioned briefly that Cosine similarity using Bag of Words–based
vectors only looks at token weights and does not consider order or sequence of the terms,
which is quite desirable in large documents because the same content may be depicted
in different ways, and capturing sequences there might lead to loss of information due to
unwanted mismatches.

We recommend using scikit-learn’s cosine_similarity() utility function, which
you can find under the sklearn.metrics.pairwise module. It uses similar logic as our
implementation but is much more optimized and performs well on large corpora of
documents. You can also use gensim’s similarities module or the cossim() function
directly available in the gensim.matutils module.

Hellinger-Bhattacharya Distance
The Hellinger-Bhattacharya distance (HB-distance) is also called the Hellinger distance or the
Bhattacharya distance. The Bhattacharya distance, originally introduced by A. Bhattacharya,
is used to measure the similarity between two discrete or continuous probability
distributions. E. Hellinger introduced the Hellinger integral in 1909, which is used in the
computation of the Hellinger distance. Overall, the Hellinger-Bhattacharya distance is an
f-divergence, which in the theory of probability is defined as a function D P Qf ||() , which

can be used to measure the difference between P and Q probability distributions. There are
many instances of f-divergences, including KL-divergence and HB-distance. Remember that
KL-divergence is not a distance metric because it violates the symmetric condition from the
four conditions necessary for a distance measure to be a metric.

HB-distance is computable for both continuous and discrete probability
distributions. In our case, we will be using the TF-IDF–based vectors as our document
distributions. This makes it discrete distributions because we have specific TF-IDF values
for specific feature terms, unlike continuous distributions. We can define the Hellinger-
Bhattacharya distance mathematically as

hbd u v u v,() = -
1

2 2

Chapter 6 ■ text Similarity and CluStering

290

where hbd(u, v) denotes the Hellinger-Bhattacharya distance between the document
vectors u and v, and it is equal to the Euclidean or L2 norm of the difference of the square
root of the vectors divided by the square root of 2. Considering the document vectors u and
v to be discrete with n number of features, we can further expand the above formula into

hbd u v u v
i

n

i i,() = -()
=
å1

2 1

2

such that u u u un= ¼()1 2, , , and v v v vn= ¼()1 2, , , are the document vectors having

length n indicating n features, which are the TF-IDF weights of the various terms in the
documents. As with the previous computation of Cosine similarity, we will build our
function on the same principles; basically we will accept as input a corpus of document
vectors and a single document vector for which we want to get the n most similar
documents from the corpus based on their HB-distances. The function implements the
preceding concepts in Python in the following snippet:

def compute_hellinger_bhattacharya_distance(doc_features, corpus_features,
 top_n=3):
 # get document vectors
 doc_features = doc_features.toarray()[0]
 corpus_features = corpus_features.toarray()
 # compute hb distances
 distance = np.hstack(
 np.sqrt(0.5 *
 np.sum(
 np.square(np.sqrt(doc_features) -
 np.sqrt(corpus_features)),
 axis=1)))
 # get docs with lowest distance scores
 top_docs = distance.argsort()[:top_n]
 top_docs_with_score = [(index, round(distance[index], 3))
 for index in top_docs]
 return top_docs_with_score

From the preceding implementation, you case see that we sort the documents based
on their scores in ascending order, unlike Cosine similarity, where 1.0 indicates perfect
similarity—since this is a distance metric between distributions, a value of 0 indicates
perfect similarity, and higher values indicate some dissimilarity being present. We can
now apply this function to our example corpora, compute their HB-distances, and see the
results in the following snippet:

get Hellinger-Bhattacharya distance based similarities for our example
documents
In [246]: print 'Document Similarity Analysis using Hellinger-Bhattacharya
distance'
 ...: print '='*60
 ...: for index, doc in enumerate(query_docs):

Chapter 6 ■ text Similarity and CluStering

291

 ...:
 ...: doc_tfidf = query_docs_tfidf[index]
 ...: top_similar_docs = compute_hellinger_bhattacharya_

distance(doc_tfidf,
 ...: tfidf_features,
 ...: top_n=2)
 ...: print 'Document',index+1 ,':', doc
 ...: print 'Top', len(top_similar_docs), 'similar docs:'
 ...: print '-'*40
 ...: for doc_index, sim_score in top_similar_docs:
 ...: print 'Doc num: {} Distance Score: {}\nDoc: {}'.

format(doc_index+1,
 ...: sim_score, toy_corpus[doc_

index])
 ...: print '-'*40
 ...: print
 ...:
 ...:
Document Similarity Analysis using Hellinger-Bhattacharya distance
==
Document 1 : The fox is definitely smarter than the dog
Top 2 similar docs:
--
Doc num: 8 Distance Score: 0.0
Doc: The dog is smarter than the fox
--
Doc num: 7 Distance Score: 0.96
Doc: The fox is quicker than the lazy dog
--

Document 2 : Java is a static typed programming language unlike Python
Top 2 similar docs:
--
Doc num: 5 Distance Score: 0.53
Doc: Python and Java are popular Programming languages
--
Doc num: 4 Distance Score: 0.766
Doc: Python is a great Programming language
--

Document 3 : I love to relax under the beautiful blue sky!
Top 2 similar docs:
--
Doc num: 2 Distance Score: 0.0
Doc: The sky is blue and beautiful
--
Doc num: 1 Distance Score: 0.602
Doc: The sky is blue
--

Chapter 6 ■ text Similarity and CluStering

292

You can see from the preceding outputs that documents with lower HB-distance
scores are more similar to the query documents, and the result documents are quite
similar to what we obtained using Cosine similarity. Compare the results and try out
these functions with larger corpora! I recommend using gensim’s hellinger() function,
available in the gensim.matutils module (which uses the same logic as our preceding
function) when building large-scale systems for analyzing similarity.

Okapi BM25 Ranking
There are several techniques that are quite popular in information retrieval and
search engines, including PageRank and Okapi BM25. The acronym BM stands for best
matching. This technique is also known as BM25, but for the sake of completeness I refer
to it as Okapi BM25, because originally although the concepts behind the BM25 function
were merely theoretical, the City University in London built the Okapi Information
Retrieval system in the 1980s–90s, which implemented this technique to retrieve
documents on actual real-world data. This technique can also be called a framework
or model based on probabilistic relevancy and was developed by several people in the
1970s–80s, including computer scientists S. Robertson and K. Jones. There are several
functions that rank documents based on different factors, and BM25 is one of them. Its
newer variant is BM25F; other variants include BM15 and BM25+.

The Okapi BM25 can be formally defined as a document ranking and retrieval function
based on a Bag of Words–based model for retrieving relevant documents based on a user
input query. This query can be itself a document containing a sentence or collection of
sentences, or it can even be a couple of words. The Okapi BM25 is actually not just a single
function but is a framework consisting of a whole collection of scoring functions combined
together. Say we have a query document QD such that QD q q qn= ¼()1 2, , , containing n

terms or keywords and we have a corpus document CD in the corpus of documents from
which we want to get the most relevant documents to the query document based on
similarity scores, just as we have done earlier. Assuming we have these, we can
mathematically define the BM25 score between these two documents as

bm CD QD idf q
f q CD k

f q CD k b bi

n

i
i

i

25
1

11

1

1

,
,

,

() = () × () × +()

() + × - + ×=
å CCD

avgdl

æ

è
ç

ö

ø
÷

where the function bm25(CD, QD) computes the BM25 rank or score of the document
CD based on the query document QD. The function idf(q

i
) gives us the inverse document

frequency (IDF) of the term q
i
 in the corpus that contains CD and from which we want

to retrieve the relevant documents. If you remember, we computed IDFs in Chapter 4
when we implemented the TF-IDF feature extractor. Just to refresh your memory, it can
represented by

idf t
C

df t
() = +

+ ()
1

1
log

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

Chapter 6 ■ text Similarity and CluStering

293

where idf(t) represents the idf for the term t and C represents the count of the total
number of documents in our corpus and df(t) represents the frequency of the number
of documents in which the term t is present. There are various other methods of
implementing IDF, but we will be using this one, and on a side note the end outcome
from the different implementations is very similar. The function f(q

i
, CD) gives us the

frequency of the term q
i
 in the corpus document CD. The expression |CD| indicates the

total length of the document CD which is measured by its number of words, and the
term avgdl represents the average document length of the corpus from which we will be
retrieving documents. Besides that, you will also observe there are two free parameters,
k

1
, which is usually in the range of [1.2, 2.0], and b, which is usually taken as 0.75. We

will be taking the value of k
1
 to be 1.5 in our implementation.

There are several steps we must go through to successfully implement and compute
BM25 scores for documents:

 1. Build a function to get inverse document frequency (IDF)
values for terms in corpus.

 2. Build a function for computing BM25 scores for query
document and corpus documents.

 3. Get Bag of Words–based features for corpus documents and
query documents.

 4. Compute average length of corpus documents and IDFs of the
terms in the corpus documents using function from point 1.

 5. Compute BM25 scores, rank relevant documents, and fetch
the n most relevant documents for each query document
using the function in point 2.

We will start with implementing a function to extract and compute inverse document
frequencies of all the terms in a corpus of documents by using its Bag of Words features,
which will contain the term frequencies, and then convert them to IDFs using the formula
mentioned earlier. The following function implements this:

import scipy.sparse as sp

def compute_corpus_term_idfs(corpus_features, norm_corpus):

 dfs = np.diff(sp.csc_matrix(corpus_features, copy=True).indptr)
 dfs = 1 + dfs # to smoothen idf later
 total_docs = 1 + len(norm_corpus)
 idfs = 1.0 + np.log(float(total_docs) / dfs)
 return idfs

We will now implement the main function for computing BM25 score for all
the documents in our corpus based on the query document and retrieving the top n
relevant documents from the corpus based on their BM25 score. The following function
implements the BM25 scoring framework:

Chapter 6 ■ text Similarity and CluStering

294

def compute_bm25_similarity(doc_features, corpus_features,
 corpus_doc_lengths, avg_doc_length,
 term_idfs, k1=1.5, b=0.75, top_n=3):
 # get corpus bag of words features
 corpus_features = corpus_features.toarray()
 # convert query document features to binary features
 # this is to keep a note of which terms exist per document
 doc_features = doc_features.toarray()[0]
 doc_features[doc_features >= 1] = 1

 # compute the document idf scores for present terms
 doc_idfs = doc_features * term_idfs
 # compute numerator expression in BM25 equation
 numerator_coeff = corpus_features * (k1 + 1)
 numerator = np.multiply(doc_idfs, numerator_coeff)
 # compute denominator expression in BM25 equation
 denominator_coeff = k1 * (1 - b +
 (b * (corpus_doc_lengths /
 avg_doc_length)))
 denominator_coeff = np.vstack(denominator_coeff)
 denominator = corpus_features + denominator_coeff
 # compute the BM25 score combining the above equations
 bm25_scores = np.sum(np.divide(numerator,
 denominator),
 axis=1)
 # get top n relevant docs with highest BM25 score
 top_docs = bm25_scores.argsort()[::-1][:top_n]
 top_docs_with_score = [(index, round(bm25_scores[index], 3))
 for index in top_docs]
 return top_docs_with_score

The comments in the function are self-explanatory and explain how the BM25
scoring function is implemented. In simple terms, we first compute the numerator
expression in the BM25 mathematical equation we specified earlier and then compute
the denominator expression. Finally, we divide the numerator by the denominator to get
the BM25 scores for all the corpus documents. Then we sort them in descending order
and return the top n relevant documents with the highest BM25 score. In the following
snippet, we will test our function on our example corpora and see how it performs for
each of the query documents:

build bag of words based features first
vectorizer, corpus_features = build_feature_matrix(norm_corpus,
 feature_type='frequency')
query_docs_features = vectorizer.transform(norm_query_docs)

get average document length of the corpus (avgdl)
doc_lengths = [len(doc.split()) for doc in norm_corpus]
avg_dl = np.average(doc_lengths)

Chapter 6 ■ text Similarity and CluStering

295

Get the corpus term idfs
corpus_term_idfs = compute_corpus_term_idfs(corpus_features,
 norm_corpus)

analyze document similarity using BM25 framework
In [253]: print 'Document Similarity Analysis using BM25'
 ...: print '='*60
 ...: for index, doc in enumerate(query_docs):
 ...:
 ...: doc_features = query_docs_features[index]
 ...: top_similar_docs = compute_bm25_similarity(doc_features,
 ...: corpus_features,
 ...: doc_lengths,
 ...: avg_dl,
 ...: corpus_term_idfs,
 ...: k1=1.5, b=0.75,
 ...: top_n=2)
 ...: print 'Document',index+1 ,':', doc
 ...: print 'Top', len(top_similar_docs), 'similar docs:'
 ...: print '-'*40
 ...: for doc_index, sim_score in top_similar_docs:
 ...: print 'Doc num: {} BM25 Score: {}\nDoc: {}'.format(doc_

index+1,
 ...: sim_score, toy_corpus[doc_

index])
 ...: print '-'*40
 ...: print

Document Similarity Analysis using BM25
==
Document 1 : The fox is definitely smarter than the dog
Top 2 similar docs:
--
Doc num: 8 BM25 Score: 7.334
Doc: The dog is smarter than the fox
--
Doc num: 7 BM25 Score: 3.88
Doc: The fox is quicker than the lazy dog
--

Document 2 : Java is a static typed programming language unlike Python
Top 2 similar docs:
--
Doc num: 5 BM25 Score: 7.248
Doc: Python and Java are popular Programming languages
--
Doc num: 6 BM25 Score: 6.042

Chapter 6 ■ text Similarity and CluStering

296

Doc: Among Programming languages, both Python and Java are the most used in
Analytics
--

Document 3 : I love to relax under the beautiful blue sky!
Top 2 similar docs:
--
Doc num: 2 BM25 Score: 7.334
Doc: The sky is blue and beautiful
--
Doc num: 1 BM25 Score: 4.984
Doc: The sky is blue
--

You can now see how for each query document, we get expected and relevant
documents that have similar concepts just like the query documents. You can see that
the results are quite similar to the previous methods—because, of course, they are
all similarity and ranking metrics and are expected to return similar results. Notice
the BM25 scores of the relevant documents. The higher the score, the more relevant
is the document. Unfortunately, I was not able to find any production-ready scalable
implementation of the BM25 ranking framework in nltk or scikit-learn. However,
gensim seems to have a bm25 module under the gensim.summarization package and if
you are interested you can give it a try. But the core of the algorithm is based on what we
implemented, and this should work pretty well on its own!

Try loading a bigger corpus of documents and test out these functions on some
sample query strings and documents. In fact, information retrieval frameworks like Solr
and Elasticsearch are built on top of Lucene, which use these types of ranking algorithms
to return relevant documents from an index of stored documents—and you can build
your own search engine using them! Interested readers can check out www.elastic.co/
blog/found-bm-vs-lucene-default-similarity by elastic.co, the company behind the
popular Elasticsearch product, which tells that the performance of BM25 is much better
than the default similarity ranking implementation of Lucene.

Document Clustering
Document clustering or cluster analysis is an interesting area in NLP and text analytics
that applies unsupervised ML concepts and techniques. The main premise of document
clustering is similar to that of document categorization, where you start with a whole
corpus of documents and are tasked with segregating them into various groups based
on some distinctive properties, attributes, and features of the documents. Document
classification needs pre-labeled training data to build a model and then categorize
documents. Document clustering uses unsupervised ML algorithms to group the
documents into various clusters. The properties of these clusters are such that documents
inside one cluster are more similar and related to each other compared to documents
belonging to other clusters. Figure 6-3, courtesy of scikit-learn, visualizes an example
of clustering data points into three clusters based on its features.

http://www.elastic.co/blog/found-bm-vs-lucene-default-similarity
http://www.elastic.co/blog/found-bm-vs-lucene-default-similarity

Chapter 6 ■ text Similarity and CluStering

297

The cluster analysis in Figure 6-3 depicts three clusters among the data points,
which are visualized using different colors. An important thing to remember here is
that clustering is an unsupervised learning technique, and from Figure 6-3 it is pretty
clear that there will always be some overlap among the clusters because there is no such
definition of a perfect cluster. All the techniques are based on math, heuristics, and some
inherent attributes toward generating clusters, and they are never a 100 percent perfect.
Hence, there are several techniques or methods for finding clusters. Some popular
clustering algorithms are briefly described as follows:

•	 Hierarchical clustering models: These clustering models are also
known as connectivity-based clustering methods and are based on
the concept that similar objects will be closer to related objects
in the vector space than unrelated objects, which will be farther
away from them. Clusters are formed by connecting objects based
on their distance and they can be visualized using a dendrogram.
The output of these models is a complete, exhaustive hierarchy
of clusters. They are mainly subdivided into agglomerative and
divisive clustering models.

Figure 6-3. Sample cluster analysis results (courtesy: scikit-learn)

Chapter 6 ■ text Similarity and CluStering

298

•	 Centroid-based clustering models: These models build clusters in
such a way that each cluster has a central representative member
that represents each cluster and has the features that distinguish
that particular cluster from the rest. There are various algorithms
in this, like k-means, k-medoids, and so on, where we need to set
the number of clusters 'k' in advance, and distance metrics like
squares of distances from each data point to the centroid need
to be minimized. The disadvantage of these models is that you
need to specify the 'k' number of clusters in advance, which
may lead to local minima, and you may not get a true clustered
representation of your data.

•	 Distribution-based clustering models: These models make use
of concepts from probability distributions when clustering data
points. The idea is that objects having similar distributions can
be clustered into the same group or cluster. Gaussian mixture
models (GMM) use algorithms like the Expectation-Maximization
algorithm for building these clusters. Feature and attribute
correlations and dependencies can also be captured using these
models, but it is prone to overfitting.

•	 Density-based clustering models: These clustering models
generate clusters from data points that are grouped together at
areas of high density compared to the rest of the data points,
which may occur randomly across the vector space in sparsely
populated areas. These sparse areas are treated as noise and
are used as border points to separate clusters. Two popular
algorithms in this area include DBSCAN and OPTICS.

Several other clustering models have been recently introduced, including algorithms
like BIRCH and CLARANS. Entire books and journals have been written just for clustering
alone—it is a very interesting topic offering a lot of value. Covering each and every
method would be impossible for us in the current scope, so we will cover a total of
three different clustering algorithms, illustrating them with real-world data for better
understanding:

•	 K-means clustering

•	 Affinity propagation

•	 Ward’s agglomerative hierarchical clustering

For each algorithm, we will be covering its theoretical concepts as we have done
previously with other methods. We will also illustrate how each method works by
applying each clustering algorithm on some real-world data pertaining to movies and
their synopses. We will also look at detailed cluster statistics and focus on visualizing the
clusters using tried-and-tested methods, because it is often difficult to visualize results
from clustering, and practitioners often face challenges in this area.

Chapter 6 ■ text Similarity and CluStering

299

Clustering Greatest Movies of All Time
We will be clustering a total of 100 different popular movies based on their IMDb synopses
as our raw data. IMDb, also known as the Internet Movie Database (www.imdb.com), is an
online database that hosts extensive detailed information about movies, video games,
and television shows. It also aggregates reviews and synopses for movies and shows and
has several curated lists. The list we are interested in is available at www.imdb.com/list/
ls055592025/, titled Top 100 Greatest Movies of All Time (The Ultimate List). We will be
clustering these movies into groups using the IMDb synopsis and description of each movie.

Before we begin our analysis, I would like to thank Brandon Rose for helping me out
with getting this data, which he personally retrieved and curated, and also for giving me
some excellent pointers on visualizing clusters. He has done some detailed clustering
analysis with this data himself. If you are interested, you can get the raw data and also see
his document clustering analysis in his repository at https://github.com/brandomr/
document_cluster, which is also described in further detail in his personal blog, which is
dedicated to analytics, at http://brandonrose.org.

We have downloaded data pertaining to the top 100 movie titles and their synopses
from IMDb from the repository mentioned earlier. We parsed and cleaned it up and also
added the synopses for a few movies that were missing from the original data. We added
these synopses and movie descriptions from Wikipedia. Once parsed, we stored them
in a data frame and saved it as a .csv file called movie_data.csv, which you can find in
the code files for this chapter. We will be loading and using the data from this file in our
clustering analysis, starting with loading and looking at the contents of our movie data
points in the following snippet:

import pandas as pd
import numpy as np

load movie data
movie_data = pd.read_csv('movie_data.csv')

view movie data
In [256]: print movie_data.head()

 Title Synopsis
0 The Godfather In late summer 1945, guests are gathered...
1 The Shawshank Redemption In 1947, Andy Dufresne (Tim Robbins),...
2 Schindler's List The relocation of Polish Jews from...
3 Raging Bull The film opens in 1964, where an older...
4 Casablanca In the early years of World War II...

print sample movie and its synopsis
In [268]: print 'Movie:', movie_titles[0]
 ...: print 'Movie Synopsis:', movie_synopses[0][:1000]
 ...:
Movie: The Godfather

http://www.imdb.com/
http://www.imdb.com/list/ls055592025
http://www.imdb.com/list/ls055592025
https://github.com/brandomr/document_cluster
https://github.com/brandomr/document_cluster
http://brandonrose.org/

Chapter 6 ■ text Similarity and CluStering

300

Movie Synopsis: In late summer 1945, guests are gathered for the wedding
reception of Don Vito Corleone's daughter Connie (Talia Shire) and Carlo
Rizzi (Gianni Russo). Vito (Marlon Brando), the head of the Corleone Mafia
family, is known to friends and associates as "Godfather." He and Tom Hagen
(Robert Duvall), the Corleone family lawyer, are hearing requests for favors
because, according to Italian tradition, "no Sicilian can refuse a request
on his daughter's wedding day." One of the men who asks the Don for a favor
is Amerigo Bonasera, a successful mortician and acquaintance of the Don,
whose daughter was brutally beaten by two young men because she refused
their advances; the men received minimal punishment. The Don is disappointed
in Bonasera, who'd avoided most contact with the Don due to Corleone's
nefarious business dealings. The Don's wife is godmother to Bonasera's
shamed daughter, a relationship the Don uses to extract new loyalty from the
undertaker. The Don agrees to have his men punish

You can see that we have our movie titles and their corresponding synopses, which
we load into a data frame and then store them in variables. A sample movie and a part of
its corresponding synopsis are also depicted in the preceding output. The main idea is to
cluster these movies into groups using their synopsis as raw input. We will extract features
from these synopses and use unsupervised learning algorithms on them to cluster them
together. The movie titles are just for representation and will be useful when we would
want to visualize and display clusters and their statistics. The data to be fed to the clustering
algorithms will be features extracted from the movie synopses just to make things clearer.
Before we can jump into each of the clustering methods, we will follow the same process of
normalization and feature extraction that we have followed in all our other processes:

from normalization import normalize_corpus
from utils import build_feature_matrix

normalize corpus
norm_movie_synopses = normalize_corpus(movie_synopses,
 lemmatize=True,
 only_text_chars=True)

extract tf-idf features
vectorizer, feature_matrix = build_feature_matrix(norm_movie_synopses,
 feature_type='tfidf',
 min_df=0.24, max_df=0.85,
 ngram_range=(1, 2))
view number of features
In [275]: print feature_matrix.shape
(100, 307)

get feature names
feature_names = vectorizer.get_feature_names()
print sample features
In [277]: print feature_names[:20]

Chapter 6 ■ text Similarity and CluStering

301

[u'able', u'accept', u'across', u'act', u'agree', u'alive', u'allow',
u'alone', u'along', u'already', u'although', u'always', u'another',
u'anything', u'apartment', u'appear', u'approach', u'arm', u'army',
u'around']

We keep text tokens in our normalized text and extract TF-IDF–based features
for unigrams and bigrams such that each feature occurs in at least in 25 percent of the
documents and at most 85 percent of the documents using the terms min_df and max_df.
We can see that we have a total of 100 rows for the 100 movies and a total of 307 features
for each movie. Some sample features are also printed in the preceding snippet. We will
start our clustering analysis next, now that we have our features and documents ready.

K-means Clustering
The k-means clustering algorithm is a centroid-based clustering model that tries to cluster
data into groups or clusters of equal variance. The criteria or measure that this algorithm
tries to minimize is inertia, also known as within-cluster sum-of-squares. Perhaps the one
main disadvantage of this algorithm is that the number of clusters k need to be specified
in advance, as is the case with all other centroid-based clustering models. This algorithm
is perhaps the most popular clustering algorithm out there and is frequently used due to
its ease of use as well as the fact that it is scalable with large amounts of data.

We can now formally define the k-means clustering algorithm along with its
mathematical notations. Consider that we have a dataset X with N data points or samples
and we want to group them into K clusters where K is a user-specified parameter. The
k-means clustering algorithm will segregate the N data points into K disjoint separate
clusters C

k
, and each of these clusters can be described by the means of the cluster

samples. These means become the cluster centroids μ
k
 such that these centroids are not

bound by the condition that they have to be actual data points from the N samples in
X. The algorithm chooses these centroids and builds the clusters in such a way that the
inertia or within-cluster sums of squares are minimized. Mathematically, this can be
represented as

min
i

K

x C
n i

n i

x
= Î
å å -

1

2m

with regard to clusters C
i
 and centroids μ

i
 such that i kÎ ¼{ }1 2, , , . This optimization is

an NP hard problem for all you algorithm enthusiasts out there. Lloyd’s algorithm is a
solution to this problem, which is an iterative procedure consisting of the following steps.

 1. Choose initial k centroids μ
k
 by taking k random samples from

the dataset X.

 2. Update clusters by assigning each data point or sample to its
nearest centroid point. Mathematically, we can represent this
as C x x all xk n n k n l= - £ -{ }: m m where C

k
 denotes the

clusters.

Chapter 6 ■ text Similarity and CluStering

302

 3. Recalculate and update clusters based on the new cluster data
points for each cluster obtained from step 2. Mathematically,
this can be represented as

 mk
k x C

nC
x

n k

=
Î
å1

where μ
k
 denotes the centroids.

The preceding steps are repeated in an iterative fashion till the outputs of steps 2 and
3 do not change anymore. One caveat of this method is that even though the optimization
is guaranteed to converge, it might lead to a local minimum, hence in reality, this algorithm
is run multiple times with several epochs and iterations, and the results might be averaged
from them if needed. The convergence and occurrence of local minimum are highly
dependent on the initialization of the initial centroids in step 1. One way is to make multiple
iterations with multiple random initializations and take the average. Another way would be
to use the kmeans++ scheme as implemented in scikit-learn, which initializes the initial
centroids to be far apart from each other and has proven to be effective. We will now use
k-means clustering to cluster the movie data from earlier, in the following code snippet:

from sklearn.cluster import KMeans
define the k-means clustering function
def k_means(feature_matrix, num_clusters=5):
 km = KMeans(n_clusters=num_clusters,
 max_iter=10000)
 km.fit(feature_matrix)
 clusters = km.labels_
 return km, clusters
set k = 5, lets say we want 5 clusters from the 100 movies
num_clusters = 5

get clusters and assigned the cluster labels to the movies
km_obj, clusters = k_means(feature_matrix=feature_matrix,
 num_clusters=num_clusters)
movie_data['Cluster'] = clusters

That snippet uses our implemented k-means function to cluster the movies based
on the TF-IDF features from the movie synopses, and we assign the cluster label for each
movie from the outcome of this cluster analysis by storing it in the movie_data dataframe
in the 'Cluster' column. You can see that we have taken k to be 5 in our analysis. We can
now see the total number of movies for each of the 5 clusters using the following snippet:

In [284]: from collections import Counter
 ...: # get the total number of movies per cluster
 ...: c = Counter(clusters)
 ...: print c.items()
[(0, 29), (1, 5), (2, 21), (3, 15), (4, 30)]

You can see that there are five cluster labels as expected, from 0 to 5, and each of
them has some movies belonging to the cluster whose counts are mentioned as the

Chapter 6 ■ text Similarity and CluStering

303

second element of each tuple in the preceding list. But can we do more than just see
cluster counts? Of course we can! We will now define some functions to extract detailed
cluster analysis information, print them, and then visualize the clusters. We will start by
defining a function to extract important information from our cluster analysis:

def get_cluster_data(clustering_obj, movie_data,
 feature_names, num_clusters,
 topn_features=10):

 cluster_details = {}
 # get cluster centroids
 ordered_centroids = clustering_obj.cluster_centers_.argsort()[:, ::-1]
 # get key features for each cluster
 # get movies belonging to each cluster
 for cluster_num in range(num_clusters):
 cluster_details[cluster_num] = {}
 cluster_details[cluster_num]['cluster_num'] = cluster_num
 key_features = [feature_names[index]
 for index
 in ordered_centroids[cluster_num, :topn_features]]
 cluster_details[cluster_num]['key_features'] = key_features

 movies = movie_data[movie_data['Cluster'] == cluster_num]['Title'].
values.tolist()

 cluster_details[cluster_num]['movies'] = movies

 return cluster_details

The preceding function is pretty self-explanatory. What it does is basically extract the
key features per cluster that were essential in defining the cluster from the centroids. It also
retrieves the movie titles that belong to each cluster and stores everything in a dictionary.

We will now define a function that uses this data structure and prints the results in a
clear format:

def print_cluster_data(cluster_data):
 # print cluster details
 for cluster_num, cluster_details in cluster_data.items():
 print 'Cluster {} details:'.format(cluster_num)
 print '-'*20
 print 'Key features:', cluster_details['key_features']
 print 'Movies in this cluster:'
 print ', '.join(cluster_details['movies'])
 print '='*40

Before we analyze the results of our k-means clustering algorithm, we will also
define a function to visualize the clusters. If you remember, we talked earlier about
challenges associated with visualizing clusters. This happens because we deal with
multidimensional feature spaces and unstructured text data. Numeric feature vectors

Chapter 6 ■ text Similarity and CluStering

304

themselves may not make any sense to readers if they were visualized directly. So, there
are some techniques like principal component analysis (PCA) or multidimensional scaling
(MDS) to reduce the dimensionality such that we can visualize these clusters in 2- or
3-dimensional plots. We will be using MDS in our implementation for visualizing clusters.

MDS is an approach towards non-linear dimensionality reduction such that the
results can be visualized better in lower dimensional systems. The main idea is having a
distance matrix such that distances between various data points are captured. We will be
using Cosine similarity for this. MDS tries to build a lower-dimensional representation
of our data with higher numbers of features in the vector space such that the distances
between the various data points obtained using Cosine similarity in the higher
dimensional feature space is still similar in this lower-dimensional representation.

The scikit-learn implementation for MDS has two types of algorithms: metric and
non-metric. We will be using the metric approach because we will use the Cosine
similarity–based distance metric to build the input similarity matrix between the various
movies. Mathematically, MDS can be defined as follows: Let S be our similarity matrix
between the various data points (movies) obtained using Cosine similarity on the feature
matrix and X be the coordinates of the n input data points (movies). Disparities are
represented by d̂ t Sij ij= () , which is usually some optimal transformation of the similarity
values or could even be the raw similarity values themselves. The objective function for
MDS, called stress, is defined as sum d X Xdi j ij ij< ()- ()ˆ . We implement MDS-based

visualization for clusters in the following function:

import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.metrics.pairwise import cosine_similarity
import random
from matplotlib.font_manager import FontProperties

def plot_clusters(num_clusters, feature_matrix,
 cluster_data, movie_data,
 plot_size=(16,8)):
 # generate random color for clusters
 def generate_random_color():
 color = '#%06x' % random.randint(0, 0xFFFFFF)
 return color
 # define markers for clusters
 markers = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd']
 # build cosine distance matrix
 cosine_distance = 1 - cosine_similarity(feature_matrix)
 # dimensionality reduction using MDS
 mds = MDS(n_components=2, dissimilarity="precomputed",
 random_state=1)
 # get coordinates of clusters in new low-dimensional space
 plot_positions = mds.fit_transform(cosine_distance)
 x_pos, y_pos = plot_positions[:, 0], plot_positions[:, 1]
 # build cluster plotting data

Chapter 6 ■ text Similarity and CluStering

305

 cluster_color_map = {}
 cluster_name_map = {}
 for cluster_num, cluster_details in cluster_data.items():
 # assign cluster features to unique label
 cluster_color_map[cluster_num] = generate_random_color()
 cluster_name_map[cluster_num] = ', '.join(cluster_details['key_

features'][:5]).strip()
 # map each unique cluster label with its coordinates and movies
 cluster_plot_frame = pd.DataFrame({'x': x_pos,
 'y': y_pos,
 'label': movie_data['Cluster'].

values.tolist(),
 'title': movie_data['Title'].values.

tolist()
 })
 grouped_plot_frame = cluster_plot_frame.groupby('label')
 # set plot figure size and axes
 fig, ax = plt.subplots(figsize=plot_size)
 ax.margins(0.05)
 # plot each cluster using co-ordinates and movie titles
 for cluster_num, cluster_frame in grouped_plot_frame:
 marker = markers[cluster_num] if cluster_num < len(markers) \
 else np.random.choice(markers, size=1)[0]
 ax.plot(cluster_frame['x'], cluster_frame['y'],
 marker=marker, linestyle='', ms=12,
 label=cluster_name_map[cluster_num],
 color=cluster_color_map[cluster_num], mec='none')
 ax.set_aspect('auto')
 ax.tick_params(axis= 'x', which='both', bottom='off', top='off',
 labelbottom='off')
 ax.tick_params(axis= 'y', which='both', left='off', top='off',
 labelleft='off')
 fontP = FontProperties()
 fontP.set_size('small')
 ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.01),

fancybox=True,
 shadow=True, ncol=5, numpoints=1, prop=fontP)
 #add labels as the film titles
 for index in range(len(cluster_plot_frame)):
 ax.text(cluster_plot_frame.ix[index]['x'],
 cluster_plot_frame.ix[index]['y'],
 cluster_plot_frame.ix[index]['title'], size=8)
 # show the plot
 plt.show()

The function is quite big, but the self-explanatory comments explain each step
clearly. We build our similarity matrix first using the Cosine similarity between
documents, get the cosine distances, and then transform the high dimensional feature

Chapter 6 ■ text Similarity and CluStering

306

space into 2 dimensions using MDS. Then we plot the clusters using matplotlib with
a bit of necessary formatting to view the results in a nice way. This function is a generic
function and will work with any clustering algorithm with a dynamic number of clusters.
Each cluster will have its own color, symbol, and label in the terms of top distinguishing
features in the legend. The actual plot will plot each movie with its corresponding cluster
label with its own color and symbol.

We are now ready to analyze the cluster results of our k-means clustering using the
preceding functions. The following code snippet depicts the detailed analysis results for
k-means clustering:

get clustering analysis data
cluster_data = get_cluster_data(clustering_obj=km_obj, movie_data=movie_
data,
 feature_names=feature_names, num_

clusters=num_clusters,
 topn_features=5)

print clustering analysis results
In [294]: print_cluster_data(cluster_data)

Cluster 0 details:

Key features: [u'car', u'police', u'house', u'father', u'room']
Movies in this cluster:
Psycho, Sunset Blvd., Vertigo, West Side Story, E.T. the Extra-Terrestrial,
2001: A Space Odyssey, The Silence of the Lambs, Singin' in the Rain, It's
a Wonderful Life, Some Like It Hot, Gandhi, To Kill a Mockingbird, Butch
Cassidy and the Sundance Kid, The Exorcist, The French Connection, It
Happened One Night, Rain Man, Fargo, Close Encounters of the Third Kind,
Nashville, The Graduate, American Graffiti, Pulp Fiction, The Maltese
Falcon, A Clockwork Orange, Rebel Without a Cause, Rear Window, The Third
Man, North by Northwest
==
Cluster 1 details:

Key features: [u'water', u'attempt', u'cross', u'death', u'officer']
Movies in this cluster:
Chinatown, Apocalypse Now, Jaws, The African Queen, Mutiny on the Bounty
==
Cluster 2 details:

Key features: [u'family', u'love', u'marry', u'war', u'child']
Movies in this cluster:
The Godfather, Gone with the Wind, The Godfather: Part II, The Sound of
Music, A Streetcar Named Desire, The Philadelphia Story, An American in
Paris, Ben-Hur, Doctor Zhivago, High Noon, The Pianist, Goodfellas, The
King's Speech, A Place in the Sun, Out of Africa, Terms of Endearment,
Giant, The Grapes of Wrath, Wuthering Heights, Double Indemnity, Yankee
Doodle Dandy

Chapter 6 ■ text Similarity and CluStering

307

==
Cluster 3 details:

Key features: [u'apartment', u'new', u'woman', u'york', u'life']
Movies in this cluster:
Citizen Kane, Titanic, 12 Angry Men, Rocky, The Best Years of Our Lives, My
Fair Lady, The Apartment, City Lights, Midnight Cowboy, Mr. Smith Goes to
Washington, Annie Hall, Good Will Hunting, Tootsie, Network, Taxi Driver
==
Cluster 4 details:

Key features: [u'kill', u'soldier', u'men', u'army', u'war']
Movies in this cluster:
The Shawshank Redemption, Schindler's List, Raging Bull, Casablanca, One
Flew Over the Cuckoo's Nest, The Wizard of Oz, Lawrence of Arabia, On the
Waterfront, Forrest Gump, Star Wars, The Bridge on the River Kwai, Dr.
Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Amadeus,
The Lord of the Rings: The Return of the King, Gladiator, From Here to
Eternity, Saving Private Ryan, Unforgiven, Raiders of the Lost Ark, Patton,
Braveheart, The Good, the Bad and the Ugly, The Treasure of the Sierra
Madre, Platoon, Dances with Wolves, The Deer Hunter, All Quiet on the
Western Front, Shane, The Green Mile, Stagecoach
==

visualize the clusters
In [295]: plot_clusters(num_clusters=num_clusters,
 ...: feature_matrix=feature_matrix,
 ...: cluster_data=cluster_data,
 ...: movie_data=movie_data,
 ...: plot_size=(16,8))

Figure 6-4. Visualizing the output of K-means clustering on IMDb movie data

Chapter 6 ■ text Similarity and CluStering

308

The preceding output shows the key features for each cluster and the movies in each
cluster, and you can also see the same in the visualization in Figure 6-4 (there is a lot
in that figure—if the text appears too small, check out the kmeans_clustering.png file,
available along with the code files for this chapter). Each cluster is depicted by the main
themes that define that cluster by its top features, and you can see popular movies like
The Godfather and The Godfather: Part II in the same cluster along with other movies
like Ben-Hur and so on which talk about 'family', 'love', 'war', and so on. Movies
like Star Wars, The Lord of the Rings, The Deer Hunter, Gladiator, Forrest Gump, and so
on are clustered together associated with themes like 'kill', 'soldier', 'army', and
'war'. Definitely interesting results considering the data used for clustering was just a few
paragraphs of synopsis per movie. Look more closely at the results and the visualization.
Can you notice any other interesting patterns?

Affinity Propagation
The k-means algorithm, although very popular, has the drawback that the user has to pre-
define the number of clusters. What if in reality there are more clusters or lesser clusters?
There are some ways of checking the cluster quality and seeing what the value of the
optimum k might be. Interested readers can check out the elbow method and the silhouette
coefficient, which are popular methods of determining the optimum k. Here we will talk
about an algorithm that tries to build clusters based on inherent properties of the data
without any pre-assumptions about the number of clusters. The affinity propagation (AP)
algorithm is based on the concept of “message passing” among the various data points to
be clustered, and no pre-assumption is needed about the number of possible clusters.

AP creates these clusters from the data points by passing messages between pairs
of data points until convergence is achieved. The entire dataset is then represented by a
small number of exemplars that act as representatives for samples. These exemplars are
analogous to the centroids you obtain from k-means or k-medoids. The messages that
are sent between pairs represent how suitable one of the points might be in being the
exemplar or representative of the other data point. This keeps getting updated in every
iteration until convergence is achieved, with the final exemplars being the representatives
of each cluster. Remember, one drawback of this method is that it is computationally
intensive because messages are passed between each pair of data points across the entire
dataset and can take substantial time to converge for large datasets.

We can now define the steps involved in the AP algorithm (courtesy of Wikipedia and
scikit-learn). Consider that we have a dataset X with n data points such that
X x x xn= ¼{ }1 2, , , , and let sim(x, y) be the similarity function that quantifies the similarity

between two points x and y. In our implementation, we will be using Cosine similarity
again for this. The AP algorithm iteratively proceeds by executing two message-passing
steps as follows:

 1. Responsibility updates are sent around, which can be
mathematically represented as

r i k sim i k a i k sim i k
k k

, , max , ,()¬ ()- ()+ (){ }¢ ¢
¢¹

Chapter 6 ■ text Similarity and CluStering

309

where the responsibility matrix is R and r(i, k) is a measure which quantifies
how well x

k
 can serve as being the representative or exemplar for x

i
 in

comparison to the other candidates.

 2. Availability updates are then sent around which can be
mathematically represented as

a i k r k k r i k
i i k

, min , , max , ,
,

()¬ ()+ ()()
æ

è
çç

ö

ø
÷÷¢

¢Ï{ }
å0 0 for i ≠ k and

availability for i k= is represented as

a k k r i k
i k

, max (, ,)()¬ ()¢
¢¹
å 0

where the availability matrix is A and a(i, k) represents
how appropriate it would be for x

i
 to pick x

k
 as its exemplar,

considering all the other points’ preference to pick x
k
 as an

exemplar.

Those two steps keep occurring per iteration until convergence is achieved. The
following function implements AP such that it takes in a feature matrix and returns the
necessary clusters for each sample based on its features and the other samples:

from sklearn.cluster import AffinityPropagation

def affinity_propagation(feature_matrix):
 sim = feature_matrix * feature_matrix.T
 sim = sim.todense()
 ap = AffinityPropagation()
 ap.fit(sim)
 clusters = ap.labels_
 return ap, clusters

We will now use this function to cluster our movies based on their synopses and
then we will print the number of movies in each cluster and the total number of clusters
formed by this algorithm:

get clusters using affinity propagation
ap_obj, clusters = affinity_propagation(feature_matrix=feature_matrix)
movie_data['Cluster'] = clusters

get the total number of movies per cluster
In [299]: c = Counter(clusters)
 ...: print c.items()
[(0, 5), (1, 6), (2, 12), (3, 6), (4, 2), (5, 7), (6, 10), (7, 7), (8, 4),
(9, 8), (10, 3), (11, 4), (12, 5), (13, 7), (14, 4), (15, 3), (16, 7)]

get total clusters
In [300]: total_clusters = len(c)
 ...: print 'Total Clusters:', total_clusters
Total Clusters: 17

Chapter 6 ■ text Similarity and CluStering

310

From the preceding results, we can see that a total of 17 clusters have been created
by AP on our movie data containing 100 movies. Each cluster has movies ranging from as
low as 2 to as high as 12 movies. We shall now extract detailed cluster information, display
cluster statistics, and visualize the clusters similar to what we did for k-means clustering,
using our utility functions that we implemented in the K-means clustering section:

get clustering analysis data
cluster_data = get_cluster_data(clustering_obj=ap_obj, movie_data=movie_
data,
 feature_names=feature_names, num_

clusters=total_clusters,
 topn_features=5)

print clustering analysis results
In [302]: print_cluster_data(cluster_data)
 ...:
Cluster 0 details:

Key features: [u'able', u'always', u'cover', u'end', u'charge']
Movies in this cluster:
The Godfather, The Godfather: Part II, Doctor Zhivago, The Pianist,
Goodfellas
==
Cluster 1 details:

Key features: [u'alive', u'accept', u'around', u'agree', u'attack']
Movies in this cluster:
Casablanca, One Flew Over the Cuckoo's Nest, Titanic, 2001: A Space Odyssey,
The Silence of the Lambs, Good Will Hunting
==
Cluster 2 details:

Key features: [u'apartment', u'film', u'final', u'fall', u'due']
Movies in this cluster:
The Shawshank Redemption, Vertigo, West Side Story, Rocky, Tootsie,
Nashville, The Graduate, The Maltese Falcon, A Clockwork Orange, Taxi
Driver, Rear Window, The Third Man
==
Cluster 3 details:

Key features: [u'arrest', u'film', u'evening', u'final', u'fall']
Movies in this cluster:
The Wizard of Oz, Psycho, E.T. the Extra-Terrestrial, My Fair Lady, Ben-Hur,
Close Encounters of the Third Kind
==
Cluster 4 details:

Chapter 6 ■ text Similarity and CluStering

311

Key features: [u'become', u'film', u'city', u'army', u'die']
Movies in this cluster:
12 Angry Men, Mr. Smith Goes to Washington
==
Cluster 5 details:

Key features: [u'behind', u'city', u'father', u'appear', u'allow']
Movies in this cluster:
Forrest Gump, Amadeus, Gladiator, Braveheart, The Exorcist, A Place in the
Sun, Double Indemnity
==
Cluster 6 details:

Key features: [u'body', u'allow', u'although', u'city', u'break']
Movies in this cluster:
Schindler's List, Gone with the Wind, Lawrence of Arabia, Star Wars, The
Lord of the Rings: The Return of the King, From Here to Eternity, Raiders of
the Lost Ark, The Best Years of Our Lives, The Deer Hunter, Stagecoach
==
Cluster 7 details:

Key features: [u'brother', u'bring', u'close', u'although', u'car']
Movies in this cluster:
Gandhi, Unforgiven, To Kill a Mockingbird, The Good, the Bad and the Ugly,
Butch Cassidy and the Sundance Kid, High Noon, Shane
==
Cluster 8 details:

Key features: [u'child', u'everyone', u'attempt', u'fall', u'face']
Movies in this cluster:
Chinatown, Jaws, The African Queen, Mutiny on the Bounty
==
Cluster 9 details:

Key features: [u'continue', u'bring', u'daughter', u'break', u'allow']
Movies in this cluster:
The Bridge on the River Kwai, Dr. Strangelove or: How I Learned to Stop
Worrying and Love the Bomb, Apocalypse Now, Saving Private Ryan, Patton,
Platoon, Dances with Wolves, All Quiet on the Western Front
==
Cluster 10 details:

Key features: [u'despite', u'drop', u'family', u'confront', u'drive']
Movies in this cluster:
The Treasure of the Sierra Madre, City Lights, Midnight Cowboy
==
Cluster 11 details:

Chapter 6 ■ text Similarity and CluStering

312

Key features: [u'discover', u'always', u'feel', u'city', u'act']
Movies in this cluster:
Raging Bull, It Happened One Night, Rain Man, Rebel Without a Cause
==
Cluster 12 details:

Key features: [u'discuss', u'alone', u'drop', u'business', u'consider']
Movies in this cluster:
Singin' in the Rain, An American in Paris, The Apartment, Annie Hall,
Network
==
Cluster 13 details:

Key features: [u'due', u'final', u'day', u'ever', u'eventually']
Movies in this cluster:
On the Waterfront, It's a Wonderful Life, Some Like It Hot, The French
Connection, Fargo, Pulp Fiction, North by Northwest
==
Cluster 14 details:

Key features: [u'early', u'able', u'end', u'charge', u'allow']
Movies in this cluster:
A Streetcar Named Desire, The King's Speech, Giant, The Grapes of Wrath
==
Cluster 15 details:

Key features: [u'enter', u'eventually', u'cut', u'accept', u'even']
Movies in this cluster:
The Philadelphia Story, The Green Mile, American Graffiti
==
Cluster 16 details:

Key features: [u'far', u'allow', u'apartment', u'anything', u'car']
Movies in this cluster:
Citizen Kane, Sunset Blvd., The Sound of Music, Out of Africa, Terms of
Endearment, Wuthering Heights, Yankee Doodle Dandy
==

visualize the clusters
In [304]: plot_clusters(num_clusters=num_clusters, feature_matrix=feature_
matrix,
 ...: cluster_data=cluster_data, movie_data=movie_data,
 ...: plot_size=(16,8))

Chapter 6 ■ text Similarity and CluStering

313

The preceding outputs show the contents of the different clusters and their
visualization. If the visual text in Figure 6-5 is too small, you can always refer to the file
affinity_prop_clustering.png, which contains the plot depicted in higher resolution.
You can see from the results that we now have a total of 17 clusters, and there are some
similarities where you will see similar movies that were grouped together in k-means
clustering are in similar clusters here also, and there are also notable differences where
many movies now have their own cluster. Are these clustering results better than the
previous one? Well a lot depends on human perspective, and since I have yet to watch
several of these movies, I leave this decision to you, dear reader! An important point to
note here is that a few keywords from the exemplars or centroids for each cluster may not
always depict the true essence or theme of that cluster, so a good idea here would be to
build topic models on each cluster and see the kind of topics you can extract from each
cluster that would make a better representation of each cluster (another example where
you can see how we can connect various text analytics techniques together).

Ward’s Agglomerative Hierarchical Clustering
The hierarchical clustering family of algorithms is a bit different from the other clustering
models we’ve discussed. Hierarchical clustering tries to build a nested hierarchy of
clusters by either merging or splitting them in succession. There are two main strategies
for Hierarchical clustering:

•	 Agglomerative: These algorithms follow a bottom-up approach
where initially all data points belong to their own individual
cluster, and then from this bottom layer, we start merging clusters
together, building a hierarchy of clusters as we go up.

Figure 6-5. Visualizing the output of Affinity Propagation clustering on IMDb movie data

Chapter 6 ■ text Similarity and CluStering

314

•	 Divisive: These algorithms follow a top-down approach where
initially all the data points belong to a single huge cluster and
then we start recursively dividing them up as we move down
gradually, and this produces a hierarchy of clusters going from the
top-down.

Merges and splits normally happen using a greedy algorithm, and the end result
of the hierarchy of clusters can be visualized as a tree structure, called a dendrogram.
Figure 6-6 shows an example of how a dendrogram is constructed using agglomerative
hierarchical clustering for a sample of documents.

Figure 6-6 clearly highlights how six separate data points start off as six clusters,
and then we slowly start grouping them in each step following a bottom-up approach.
We will be using an agglomerative hierarchical clustering algorithm in this section. In
agglomerative clustering, for deciding which clusters we should combine when starting
from the individual data point clusters, we need two things:

•	 A distance metric to measure the similarity or dissimilarity degree
between data points. We will be using the Cosine distance/
similarity in our implementation.

•	 A linkage criterion that determines the metric to be used for the
merging strategy of clusters. We will be using Ward’s method here.

Figure 6-6. Agglomerative hierarchical clustering representation

Chapter 6 ■ text Similarity and CluStering

315

The Ward’s linkage criterion minimizes the sum of squared differences within all the
clusters and is a variance minimizing approach. This is also known as Ward’s minimum
variance method and was initially presented by J. Ward. The idea is to minimize the
variances within each cluster using an objective function like the L2 norm distance
between two points. We can start with computing the initial cluster distances between
each pair of points using the formula

d d C C C Cij i j i j= { }() = -,
2

where initially C
i
 indicates cluster i with one document, and at each iteration, we find the

pairs of clusters that lead to the least increase in variance for that cluster once merged. A
weighted squared Euclidean distance or L2 norm as depicted in the preceding formula
would suffice for this algorithm. We use Cosine similarity to compute the cosine distances
between each pair of movies for our dataset. The following function implements Ward’s
agglomerative hierarchical clustering.:

from scipy.cluster.hierarchy import ward, dendrogram

def ward_hierarchical_clustering(feature_matrix):

 cosine_distance = 1 - cosine_similarity(feature_matrix)
 linkage_matrix = ward(cosine_distance)
 return linkage_matrix

To view the results of the hierarchical clustering, we need to plot a dendrogram using
the preceding linkage matrix, and so we implement the following function to build and
plot a dendrogram from the hierarchical clustering linkage matrix:

def plot_hierarchical_clusters(linkage_matrix, movie_data, figure_
size=(8,12)):
 # set size
 fig, ax = plt.subplots(figsize=figure_size)
 movie_titles = movie_data['Title'].values.tolist()
 # plot dendrogram
 ax = dendrogram(linkage_matrix, orientation="left", labels=movie_titles)
 plt.tick_params(axis= 'x',
 which='both',
 bottom='off',
 top='off',
 labelbottom='off')
 plt.tight_layout()
 plt.savefig('ward_hierachical_clusters.png', dpi=200)

We are now ready to perform hierarchical clustering on our movie data! The
following code snippet shows Ward’s clustering in action:

Chapter 6 ■ text Similarity and CluStering

316

In [307]:# build ward's linkage matrix
 ...:linkage_matrix = ward_hierarchical_clustering(feature_matrix)
 ...: # plot the dendrogram
 ...: plot_hierarchical_clusters(linkage_matrix=linkage_matrix,
 ...: movie_data=movie_data,
 ...: figure_size=(8,10))

Figure 6-7. Ward's clustering dendrogram on our IMDb movie data

Chapter 6 ■ text Similarity and CluStering

317

The dendrogram in Figure 6-7 shows the clustering analysis results. The colors
indicate that there are three main clusters, which further get subdivided into more
granular clusters maintaining a hierarchy. (If you have trouble reading the small fonts, look
at the file ward_hierachical_clusters.png available with the code files in this chapter).
You will notice a lot of similarities with the results of the previous clustering algorithms.

The green colored movies like Raiders of the Lost Ark, The Lord of the Rings, Star
Wars, The Godfather, The Godfather: Part II, Pulp Fiction, A Clockwork Orange, and
Platoon are definitely some of the top movies and in fact classics in the action, adventure,
war, and crime-based genres.

The red colored movies include comedy-based movies like City Lights, The
Apartment, and My Fair Lady, and also several movies that belong to the drama genre
including Mutiny on the Bounty, 12 Angry Men, Annie Hall, Midnight Cowboy, Titanic,
and An American in Paris, with several of them having romantic plots too. Several of them
are even musicals, including Yankee Doodle Dandy, An American in Paris, Singin' in the
Rain, and My Fair Lady. It is definitely interesting indeed that with just movie synopses,
our algorithm has clustered movies with similar attributes and genres together!

The blue colored movies give us similar results, in that Braveheart and Gladiator are
action, drama, and war classics. We also have some classics related to drama, romance,
and biographies like The Sound of Music, Wuthering Heights, Terms of Endearment, and
Out of Africa. Toward the top of the dendrogram you will observe movies related to
science fiction and fantasy, like 2001: A Space Odyssey, Close Encounters of the Third Kind,
and E.T. the Extra-Terrestrial, all close to each other.

Can you find more interesting patterns? Which movies do you think do not belong
together in the same clusters? Can we build better clusters? Can we recommend similar
movies to watch based on clustering movies together? These are some interesting
questions to ponder, and I will leave them for you to look at and explore further.

Summary
I would like to really commend your efforts on staying with me till the end of this
chapter. We covered a lot here, including several topics in the challenging but very
interesting unsupervised machine learning domain. You now know how text similarity
can be computed and you learned about various kinds of distance measures and
metrics. We also looked at important concepts related to distance metrics and measures
and properties that make a measure into a metric. We explored concepts related to
unsupervised ML and saw how we can incorporate such techniques in document
clustering. Various ways of measuring term and document similarity were also
covered, and we implemented several of these techniques by successfully converting
mathematical equations into code using the power of Python and several open source
libraries. We touched on document clustering in detail, looking at the various concepts
and types of clustering models. Finally, we took a real-world example of clustering the top
hundred greatest movies of all time using IMDb movie synopses data and used different
clustering models like k-means, affinity propagation, and Ward’s hierarchical clustering
to build, analyze, and visualize clusters. This should be enough for you to get started
with analyzing document similarity and clustering, and you can even start combining
various techniques from the chapters covered so far. (Hint: Topic models with clustering,
building classifiers by combining supervised and unsupervised learning, and augmenting
recommendation systems using document clusters—just to name a few!)

319© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8_7

 CHAPTER 7

 Semantic and Sentiment
Analysis

 Natural language understanding has gained significant importance in the last decade
with the advent of machine learning (ML) and further advances like deep learning and
artificial intelligence. Computers and other machines can be programmed to learn
things and perform specific operations. The key limitation is their inability to perceive,
understand, and comprehend things like humans do. With the resurgence in popularity
of neural networks and advances made in computer architecture, we now have deep
learning and artificial intelligence evolving rapidly to make some efforts into trying to
engineer machines into learning, perceiving, understanding, and performing actions on
their own. You may have seen or heard several of these efforts, such as self-driving cars,
computers beating experienced players in games like chess and Go, and the proliferation
of chatbots on the Internet.

 In Chapters 4 – 6 , we have looked at various computational, language processing, and
ML techniques to classify, cluster, and summarize text. Back in Chapter 3 we developed
certain methods and programs to analyze and understand text syntax and structure.
This chapter will deal with methods that try to answer the question Can we analyze and
understand the meaning and sentiment behind a body of text?

 Natural Language Processing (NLP) has a wide variety of applications that try to use
natural language understanding to infer the meaning and context behind text and use it to
solve various problems. We discussed several of these applications briefly in Chapter 1 .
To refresh your memory, the following applications require extensive understanding of
text from the semantic perspective:

• Question Answering Systems

• Contextual recognition

• Speech recognition (for some applications)

 Text semantics specifically deals with understanding the meaning of text or language.
When combined into sentences, words have lexical relations and contextual relations
between them lead to various types of relationships and hierarchies, and semantics sits
at the heart of all this in trying to analyze and understand these relationships and infer
meaning from them. We will be exploring various types of semantic relationships in natural
language and look at some NLP-based techniques for inferring and extracting meaningful

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

320

semantic information from text. Semantics is purely concerned with context and meaning,
and the structure or format of text holds little significance here. But sometimes even the
syntax or arrangement of words helps us in inferring the context of words and helps us
differentiate things like lead as a metal from lead as in the lead of a movie.

 Sentiment analysis is perhaps the most popular application of text analytics, with a
vast number of tutorials, web sites, and applications that focus on analyzing sentiment of
various text resources ranging from corporate surveys to movie reviews. The key aspect of
sentiment analysis is to analyze a body of text for understanding the opinion expressed by
it and other factors like mood and modality. Usually sentiment analysis works best on text
that has a subjective context than on that with only an objective context. This is because
when a body of text has an objective context or perspective to it, the text usually depicts some
normal statements or facts without expressing any emotion, feelings, or mood. Subjective
text contains text that is usually expressed by a human having typical moods, emotions, and
feelings. Sentiment analysis is widely used, especially as a part of social media analysis for
any domain, be it a business, a recent movie, or a product launch, to understand its reception
by the people and what they think of it based on their opinions or, you guessed it, sentiment.

 In this chapter, we will be covering several aspects from both semantic and
sentiment analysis for textual data. We will start with exploring WordNet, a lexical
database, and introduce a new concept called synsets . We will also explore various
semantic relationships and representations in natural language and we will cover
techniques such as word sense disambiguation and named entity recognition . In
sentiment analysis, we will be looking at how to use supervised ML techniques to analyze
sentiment and also at several unsupervised lexical techniques with more detailed insights
into natural language sentiment, mood, and modality.

 Semantic Analysis
 We have seen how terms or words get grouped into phrases that further form clauses
and finally sentences. Chapter 3 showed various structural components in natural
language, including parts of speech (POS), chunking, and grammars . All these concepts
fall under the syntactic and structural analysis of text data. Whereas we do explore
relationships of words, phrases, and clauses, these are purely based on their position,
syntax, and structure. Semantic analysis is more about understanding the actual context
and meaning behind words in text and how they relate to other words to convey some
information as a whole. As mentioned in Chapter 1 , the definition of semantics itself is
the study of meaning, and linguistic semantics is a complete branch under linguistics
that deals with the study of meaning in natural language , including exploring various
relationships between words, phrases and symbols. Besides this, there are also various
ways to represent semantics associated with statements and propositions. We will be
broadly covering the following topics under semantic analysis:

• Exploring WordNet and synsets

• Analyzing lexical semantic relations

• Word sense disambiguation

• Named entity recognition

• Analyzing semantic representations

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

321

 The main objective of these topics is to give you a clear understanding of the
resources you can leverage for semantic analysis as well as how to use these resources.
We will explore various concepts related to semantic analysis, which was covered
in Chapter 1 , with actual examples. You can refresh your memory by revisiting the
“Language Semantics” section in Chapter 1 . Without any further delay, let's get started!

 Exploring WordNet
 WordNet is a huge lexical database for the English Language. The database is a part of
Princeton University, and you can read more about it at https://wordnet.princeton.edu .
It was originally created in around 1985, in Princeton University’s Cognitive Science
Laboratory under the direction of Professor G. A. Miller. This lexical database consists
of nouns, adjective, verbs, and adverbs, and related lexical terms are grouped together
based on some common concepts into sets, known as cognitive synonym sets or synsets .
Each synset expresses a unique, distinct concept. At a high level, WordNet can be
compared to a thesaurus or a dictionary that provides words and their synonyms. On a
lower level, it is much more than that, with synsets and their corresponding terms having
detailed relationships and hierarchies based on their semantic meaning and similar
concepts. WordNet is used extensively as a lexical database, in text analytics, NLP, and
artificial intelligence (AI)-based applications.

 The WordNet database consists of over 155,000 words, represented in more than
117,000 synsets, and contains over 206,000 word-sense pairs. The database is roughly 12
MB in size and can be accessed through various interfaces and APIs. The official web site
has a web application interface for accessing various details related to words, synsets,
and concepts related to the entered word. You can access it at http://wordnetweb.
princeton.edu/perl/webwn or download it from https://wordnet.princeton.edu/
wordnet/download/ . The download contains various packages, files, and tools related to
WordNet. We will be accessing WordNet programmatically using the interface provided
by the nltk package. We will start by exploring synsets and then various semantic
relationships using synsets.

 Understanding Synsets
 We will start exploring WordNet by looking at synsets since they are perhaps one of the
most important concepts and structures that tie everything together. In general, based on
concepts from NLP and information retrieval, a synset is a collection or set of data entities
that are considered to be semantically similar. This doesn’t mean that they will be exactly
the same, but they will be centered on similar context and concepts. Specifically in the
context of WordNet, a synset is a set or collection of synonyms that are interchangeable
and revolve around a specific concept. Synsets not only consist of simple words, but
also collocations. Polysemous word forms (words that sound and look the same but
have different but relatable meanings) are assigned to different synsets based on their
meaning. Synsets are connected to other synsets using semantic relations, which we shall
explore in a future section. Typically each synset has the term, a definition explaining
the meaning of the term, and some optional examples and related lemmas (collection
of synonyms) to the term. Some terms may have multiple synsets associated with them,
where each synset has a particular context.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
https://wordnet.princeton.edu/
http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
https://wordnet.princeton.edu/wordnet/download/
https://wordnet.princeton.edu/wordnet/download/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

322

 Let’s look at a real example by using nltk ’s WordNet interface to explore synsets
associated with the term, 'fruit' . We can do this using the following code snippet:

 from nltk.corpus import wordnet as wn
 import pandas as pd

 term = 'fruit'
 synsets = wn.synsets(term)
 # display total synsets
 In [75]: print 'Total Synsets:', len(synsets)
 Total Synsets: 5

 We can see that there are a total of five synsets associated with the term 'fruit' .
What can these synsets indicate? We can dig deeper into each synset and its components
using the following code snippet:

 In [76]: for synset in synsets:
 ...: print 'Synset:', synset
 ...: print 'Part of speech:', synset.lexname()
 ...: print 'Definition:', synset.definition()
 ...: print 'Lemmas:', synset.lemma_names()
 ...: print 'Examples:', synset.examples()
 ...: print
 ...:
 ...:
 Synset: Synset('fruit.n.01')
 Part of speech: noun.plant
 Definition: the ripened reproductive body of a seed plant
 Lemmas: [u'fruit']
 Examples: []

 Synset: Synset('yield.n.03')
 Part of speech: noun.artifact
 Definition: an amount of a product
 Lemmas: [u'yield', u'fruit']
 Examples: []

 Synset: Synset('fruit.n.03')
 Part of speech: noun.event
 Definition: the consequence of some effort or action
 Lemmas: [u'fruit']
 Examples: [u'he lived long enough to see the fruit of his policies']

 Synset: Synset('fruit.v.01')
 Part of speech: verb.creation
 Definition: cause to bear fruit
 Lemmas: [u'fruit']
 Examples: []

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

323

 Synset: Synset('fruit.v.02')
 Part of speech: verb.creation
 Definition: bear fruit
 Lemmas: [u'fruit']
 Examples: [u'the trees fruited early this year']

 The preceding output shows us details pertaining to each synset associated with
the term 'fruit' , and the definitions give us the sense of each synset and the lemma
associated with it. The part of speech for each synset is also mentioned, which includes
nouns and verbs. Some examples are also depicted in the preceding output that show
how the term is used in actual sentences. Now that we understand synsets better, let’s
start exploring various semantic relationships as mentioned.

 Analyzing Lexical Semantic Relations
 Text semantics refers to the study of meaning and context. Synsets give a nice abstraction
over various terms and provide useful information like definition, examples, POS, and
lemmas. But can we explore semantic relationships among entities using synsets? The
answer is definitely yes. We will be talking about many of the concepts related to semantic
relations (covered in detail in the “Lexical Semantic Relations” subsection under the
“Language Semantics” section in Chapter 1 . It would be useful for you to review that
section to better understand each of the concepts when we illustrate them with real-world
examples here. We will be using nltk 's wordnet resource here, but you can use the same
WordNet resource from the pattern package, which includes an interface similar to nltk .

 Entailments
 The term entailment usually refers to some event or action that logically involves or is
associated with some other action or event that has taken place or will take place. Ideally
this applies very well to verbs indicating some specific action. The following snippet
shows how to get entailments:

 # entailments
 In [80]: for action in ['walk', 'eat', 'digest']:
 ...: action_syn = wn.synsets(action, pos='v')[0]
 ...: print action_syn, '-- entails -->', action_syn.entailments()
 Synset('walk.v.01') -- entails --> [Synset('step.v.01')]
 Synset('eat.v.01') -- entails --> [Synset('chew.v.01'),
Synset('swallow.v.01')]
 Synset('digest.v.01') -- entails --> [Synset('consume.v.02')]

 You can see how related synsets depict the concept of entailment in that output.
Related actions are depicted in entailment, where actions like walking involve or entail
 stepping , and eating entails chewing and swallowing .

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

324

 Homonyms and Homographs
 On a high level, homonyms refer to words or terms having the same written form or
pronunciation but different meanings. Homonyms are a superset of homographs, which
are words with same spelling but may have different pronunciation and meaning. The
following code snippet shows how we can get homonyms/homographs:

 In [81]: for synset in wn.synsets('bank'):
 ...: print synset.name(),'-',synset.definition()
 ...:
 ...:
 bank.n.01 - sloping land (especially the slope beside a body of water)
 depository_financial_institution.n.01 - a financial institution that accepts
deposits and channels the money into lending activities
 bank.n.03 - a long ridge or pile
 bank.n.04 - an arrangement of similar objects in a row or in tiers
 ...
 ...
 deposit.v.02 - put into a bank account
 bank.v.07 - cover with ashes so to control the rate of burning
 trust.v.01 - have confidence or faith in

 The preceding output shows a part of the result obtained for the various homographs
for the term 'bank' . You can see that there are various different meanings associated with
the word 'bank' , which is the core intuition behind homographs.

 Synonyms and Antonyms
 Synonyms are words having similar meaning and context, and antonyms are words having
opposite or contrasting meaning, as you may know already. The following snippet depicts
synonyms and antonyms:

 In [82]: term = 'large'
 ...: synsets = wn.synsets(term)
 ...: adj_large = synsets[1]
 ...: adj_large = adj_large.lemmas()[0]
 ...: adj_large_synonym = adj_large.synset()
 ...: adj_large_antonym = adj_large.antonyms()[0].synset()
 ...: # print synonym and antonym
 ...: print 'Synonym:', adj_large_synonym.name()
 ...: print 'Definition:', adj_large_synonym.definition()
 ...: print 'Antonym:', adj_large_antonym.name()
 ...: print 'Definition:', adj_large_antonym.definition()
 Synonym: large.a.01
 Definition: above average in size or number or quantity or magnitude or
extent
 Antonym: small.a.01

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

325

 Definition: limited or below average in number or quantity or magnitude or
extent

 In [83]: term = 'rich'
 ...: synsets = wn.synsets(term)[:3]
 ...: # print synonym and antonym for different synsets
 ...: for synset in synsets:
 ...: rich = synset.lemmas()[0]
 ...: rich_synonym = rich.synset()
 ...: rich_antonym = rich.antonyms()[0].synset()
 ...: print 'Synonym:', rich_synonym.name()
 ...: print 'Definition:', rich_synonym.definition()
 ...: print 'Antonym:', rich_antonym.name()
 ...: print 'Definition:', rich_antonym.definition()
 Synonym: rich_people.n.01
 Definition: people who have possessions and wealth (considered as a group)
 Antonym: poor_people.n.01
 Definition: people without possessions or wealth (considered as a group)

 Synonym: rich.a.01
 Definition: possessing material wealth
 Antonym: poor.a.02
 Definition: having little money or few possessions

 Synonym: rich.a.02
 Definition: having an abundant supply of desirable qualities or substances
(especially natural resources)
 Antonym: poor.a.04
 Definition: lacking in specific resources, qualities or substances

 The preceding outputs show sample synonyms and antonyms for the term 'large'
and the term 'rich' . Additionally, we explore several synsets associated with the term
or concept 'rich' , which rightly give us distinct synonyms and their corresponding
antonyms.

 Hyponyms and Hypernyms
 Synsets represent terms with unique semantics and concepts and are linked or related
to each other based on some similarity and context. Several of these synsets represent
abstract and generic concepts also besides concrete entities. Usually they are interlinked
together in the form of a hierarchical structure representing is-a relationships. Hyponyms
and hypernyms help us explore related concepts by navigating through this hierarchy.
To be more specific, hyponyms refer to entities or concepts that are a subclass of a higher
order concept or entity and have very specific sense or context compared to its superclass.
The following snippet shows the hyponyms for the entity 'tree' :

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

326

 term = 'tree'
 synsets = wn.synsets(term)
 tree = synsets[0]
 # print the entity and its meaning
 In [86]: print 'Name:', tree.name()
 ...: print 'Definition:', tree.definition()
 Name: tree.n.01
 Definition: a tall perennial woody plant having a main trunk and branches
forming a distinct elevated crown; includes both gymnosperms and angiosperms
 # print total hyponyms and some sample hyponyms for 'tree'
 In [87]: hyponyms = tree.hyponyms()
 ...: print 'Total Hyponyms:', len(hyponyms)
 ...: print 'Sample Hyponyms'
 ...: for hyponym in hyponyms[:10]:
 ...: print hyponym.name(), '-', hyponym.definition()

 Total Hyponyms: 180
 Sample Hyponyms
 aalii.n.01 - a small Hawaiian tree with hard dark wood
 acacia.n.01 - any of various spiny trees or shrubs of the genus Acacia
 african_walnut.n.01 - tropical African timber tree with wood that resembles
mahogany
 albizzia.n.01 - any of numerous trees of the genus Albizia
 alder.n.02 - north temperate shrubs or trees having toothed leaves and
conelike fruit; bark is used in tanning and dyeing and the wood is rot-
resistant
 angelim.n.01 - any of several tropical American trees of the genus Andira
 angiospermous_tree.n.01 - any tree having seeds and ovules contained in the
ovary
 anise_tree.n.01 - any of several evergreen shrubs and small trees of the
genus Illicium
 arbor.n.01 - tree (as opposed to shrub)
 aroeira_blanca.n.01 - small resinous tree or shrub of Brazil

 The preceding output tells us that there are a total of 180 hyponyms for 'tree' ,
and we see some of the sample hyponyms and their definitions. We can see that each
hyponym is a specific type of tree, as expected. Hyponyms are entities or concepts that act
as the superclass to hyponyms and have a more generic sense or context. The following
snippet shows the immediate superclass hyponym for 'tree' :

 In [88]: hypernyms = tree.hypernyms()
 ...: print hypernyms
 [Synset('woody_plant.n.01')]

 You can even navigate up the entire entity/concept hierarchy depicting all the
hyponyms or parent classes for 'tree' using the following code snippet:

 # get total hierarchy pathways for 'tree'
 In [91]: hypernym_paths = tree.hypernym_paths()

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

327

 ...: print 'Total Hypernym paths:', len(hypernym_paths)
 Total Hypernym paths: 1

 # print the entire hypernym hierarchy
 In [92]: print 'Hypernym Hierarchy'
 ...: print ' -> '.join(synset.name() for synset in hypernym_paths[0])
 Hypernym Hierarchy
 entity.n.01 -> physical_entity.n.01 -> object.n.01 -> whole.n.02 -> living_
thing.n.01 -> organism.n.01 -> plant.n.02 -> vascular_plant.n.01 -> woody_
plant.n.01 -> tree.n.01

 From the preceding output, you can see that 'entity' is the most generic concept
in which 'tree' is present, and the complete hypernym hierarchy showing the
corresponding hypernym or superclass at each level is shown. As you navigate further
down, you get into more specific concepts/entities, and if you go in the reverse direction
you will get into more generic concepts/entities.

 Holonyms and Meronyms
 Holonyms are entities that contain a specific entity of our interest. Basically holonym refers
to the relationship between a term or entity that denotes the whole and a term denoting a
specific part of the whole. The following snippet shows the holonyms for 'tree' :

 In [94]: member_holonyms = tree.member_holonyms()
 ...: print 'Total Member Holonyms:', len(member_holonyms)
 ...: print 'Member Holonyms for [tree]:-'
 ...: for holonym in member_holonyms:
 ...: print holonym.name(), '-', holonym.definition()
 Total Member Holonyms: 1
 Member Holonyms for [tree]:-
 forest.n.01 - the trees and other plants in a large densely wooded area

 From the output, we can see that 'forest' is a holonym for 'tree' , which is
semantically correct because, of course, a forest is a collection of trees. Meronyms are
semantic relationships that relate a term or entity as a part or constituent of another term
or entity. The following snippet depicts different types of meronyms for 'tree' :

 # part based meronyms for tree
 In [95]: part_meronyms = tree.part_meronyms()
 ...: print 'Total Part Meronyms:', len(part_meronyms)
 ...: print 'Part Meronyms for [tree]:-'
 ...: for meronym in part_meronyms:
 ...: print meronym.name(), '-', meronym.definition()
 Total Part Meronyms: 5
 Part Meronyms for [tree]:-
 burl.n.02 - a large rounded outgrowth on the trunk or branch of a tree
 crown.n.07 - the upper branches and leaves of a tree or other plant

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

328

 limb.n.02 - any of the main branches arising from the trunk or a bough of a
tree
 stump.n.01 - the base part of a tree that remains standing after the tree
has been felled
 trunk.n.01 - the main stem of a tree; usually covered with bark; the bole is
usually the part that is commercially useful for lumber

 # substance based meronyms for tree
 In [96]: substance_meronyms = tree.substance_meronyms()
 ...: print 'Total Substance Meronyms:', len(substance_meronyms)
 ...: print 'Substance Meronyms for [tree]:-'
 ...: for meronym in substance_meronyms:
 ...: print meronym.name(), '-', meronym.definition()
 Total Substance Meronyms: 2
 Substance Meronyms for [tree]:-
 heartwood.n.01 - the older inactive central wood of a tree or woody plant;
usually darker and denser than the surrounding sapwood
 sapwood.n.01 - newly formed outer wood lying between the cambium and the
heartwood of a tree or woody plant; usually light colored; active in water
conduction

 The preceding output shows various meronyms that include various constituents of
trees like stump and trunk and also various derived substances from trees like heartwood
and sapwood .

 Semantic Relationships and Similarity
 In the previous sections, we have looked at various concepts related to lexical semantic
relationships. We will now look at ways to connect similar entities based on their
semantic relationships and also measure semantic similarity between them. Semantic
similarity is different from the conventional similarity metrics discussed in Chapter 6 . We
will use some sample synsets related to living entities as shown in the following snippet
for our analysis:

 tree = wn.synset('tree.n.01')
 lion = wn.synset('lion.n.01')
 tiger = wn.synset('tiger.n.02')
 cat = wn.synset('cat.n.01')
 dog = wn.synset('dog.n.01')
 # create entities and extract names and definitions
 entities = [tree, lion, tiger, cat, dog]
 entity_names = [entity.name().split('.')[0] for entity in entities]
 entity_definitions = [entity.definition() for entity in entities]

 # print entities and their definitions
 In [99]: for entity, definition in zip(entity_names, entity_definitions):
 ...: print entity, '-', definition

http://dx.doi.org/10.1007/978-1-4842-2388-8_6

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

329

 tree - a tall perennial woody plant having a main trunk and branches forming
a distinct elevated crown; includes both gymnosperms and angiosperms
 lion - large gregarious predatory feline of Africa and India having a tawny
coat with a shaggy mane in the male
 tiger - large feline of forests in most of Asia having a tawny coat with
black stripes; endangered
 cat - feline mammal usually having thick soft fur and no ability to roar:
domestic cats; wildcats
 dog - a member of the genus Canis (probably descended from the common wolf)
that has been domesticated by man since prehistoric times; occurs in many
breeds

 Now that we know our entities a bit better from these definitions explaining them, we
will try to correlate the entities based on common hypernyms. For each pair of entities,
we will try to find the lowest common hypernym in the relationship hierarchy tree.
Correlated entities are expected to have very specific hypernyms, and unrelated entities
should have very abstract or generic hypernyms. The following code snippet illustrates:

 common_hypernyms = []
 for entity in entities:
 # get pairwise lowest common hypernyms
 common_hypernyms.append([entity.lowest_common_hypernyms(compared_entity)[0]
 .name().split('.')[0]
 for compared_entity in entities])
 # build pairwise lower common hypernym matrix
 common_hypernym_frame = pd.DataFrame(common_hypernyms,
 index=entity_names,
 columns=entity_names)
 # print the matrix
 In [101]: print common_hypernym_frame
 ...:
 tree lion tiger cat dog
 tree tree organism organism organism organism
 lion organism lion big_cat feline carnivore
 tiger organism big_cat tiger feline carnivore
 cat organism feline feline cat carnivore
 dog organism carnivore carnivore carnivore dog

 Ignoring the main diagonal of the matrix, for each pair of entities, we can see their
lowest common hypernym which depicts the nature of relationship between them. Trees are
unrelated to the other animals except that they are all living organisms. Hence we get the
 'organism' relationship amongst them. Cats are related to lions and tigers with respect to
being feline creatures, and we can see the same in the preceding output. Tigers and lions are
connected to each other with the 'big cat' relationship. Finally, we can see dogs having the
relationship of 'carnivore' with the other animals since they all typically eat meat.

 We can also measure the semantic similarity between these entities using various
semantic concepts. We will use 'path similarity' , which returns a value between [0, 1]
based on the shortest path connecting two terms based on their hypernym/hyponym based
taxonomy. The following snippet shows us how to generate this similarity matrix:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

330

 similarities = []
 for entity in entities:
 # get pairwise similarities
 similarities.append([round(entity.path_similarity(compared_entity), 2)
 for compared_entity in entities])
 # build pairwise similarity matrix
 similarity_frame = pd.DataFrame(similarities,
 index=entity_names,
 columns=entity_names)
 # print the matrix
 print similarity_frame

 tree lion tiger cat dog
 tree 1.00 0.07 0.07 0.08 0.13
 lion 0.07 1.00 0.33 0.25 0.17
 tiger 0.07 0.33 1.00 0.25 0.17
 cat 0.08 0.25 0.25 1.00 0.20
 dog 0.13 0.17 0.17 0.20 1.00

 From the preceding output, as expected, lion and tiger are the most similar with a
value of 0.33, followed by their semantic similarity with cat having a value of 0.25. And
 tree has the lowest semantic similarity values when compared with other animals.

 This concludes our discussion on analyzing lexical semantic relations. I encourage
you to try exploring more concepts with different examples by leveraging WordNet.

 Word Sense Disambiguation
 In the previous section, we looked at homographs and homonyms, which are basically words
that look or sound similar but have very different meanings. This meaning is contextual
based on how it has been used and also depends on the word semantics, also called word
sense . Identifying the correct sense or semantics of a word based on its usage is called word
sense disambiguation with the assumption that the word has multiple meanings based on its
context. This is a very popular problem in NLP and is used in various applications, such as
improving the relevance of search engine results, coherence, and so on.

 There are various ways to solve this problem, including lexical and dictionary-based
methods and supervised and unsupervised ML methods. Covering everything would be
out of the current scope, so I will be showing word sense disambiguation using the Lesk
algorithm, a classic algorithm invented by M. E. Lesk in 1986. The basic principle behind
this algorithm is to leverage dictionary or vocabulary definitions for a word we want to
disambiguate in a body of text and compare the words in these definitions with a section
of text surrounding our word of interest. We will be using the WordNet definitions for
words instead of a dictionary. The main objective for us would be to return the synset
with the maximum number of overlapping words or terms between the context sentence
and the different definitions from each synset for the word we target for disambiguation.
The following snippet leverages nltk to depict how to use word sense disambiguation for
various examples:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

331

 from nltk.wsd import lesk
 from nltk import word_tokenize

 # sample text and word to disambiguate
 samples = [('The fruits on that plant have ripened', 'n'),
 ('He finally reaped the fruit of his hard work as he won the

race', 'n')]
 word = 'fruit'
 # perform word sense disambiguation
 In [106]: for sentence, pos_tag in samples:
 ...: word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag)
 ...: print 'Sentence:', sentence
 ...: print 'Word synset:', word_syn
 ...: print 'Corresponding definition:', word_syn.definition()
 ...: print
 Sentence: The fruits on that plant have ripened
 Word synset: Synset('fruit.n.01')
 Corresponding definition: the ripened reproductive body of a seed plant

 Sentence: He finally reaped the fruit of his hard work as he won the race
 Word synset: Synset('fruit.n.03')
 Corresponding definition: the consequence of some effort or action

 # sample text and word to disambiguate
 samples = [('Lead is a very soft, malleable metal', 'n'),
 ('John is the actor who plays the lead in that movie', 'n'),
 ('This road leads to nowhere', 'v')]
 word = 'lead'
 # perform word sense disambiguation
 In [108]: for sentence, pos_tag in samples:
 ...: word_syn = lesk(word_tokenize(sentence.lower()), word,

pos_tag)
 ...: print 'Sentence:', sentence
 ...: print 'Word synset:', word_syn
 ...: print 'Corresponding definition:', word_syn.definition()
 ...: print
 Sentence: Lead is a very soft, malleable metal
 Word synset: Synset('lead.n.02')
 Corresponding definition: a soft heavy toxic malleable metallic element;
bluish white when freshly cut but tarnishes readily to dull grey

 Sentence: John is the actor who plays the lead in that movie
 Word synset: Synset('star.n.04')
 Corresponding definition: an actor who plays a principal role

 Sentence: This road leads to nowhere
 Word synset: Synset('run.v.23')
 Corresponding definition: cause something to pass or lead somewhere

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

332

 We try to disambiguate two words, 'fruit' and 'lead' in various text documents
in the preceding examples. You can see how we use the Lesk algorithm to get the correct
word sense for the word we are disambiguating based on its usage and context in each
document. This tells you how fruit can mean both an entity that is consumed as well as
some consequence one faces on applying efforts. We also see how lead can mean the soft
metal, causing something/someone to go somewhere, or even an actor who plays the
main role in a play or movie.

 Named Entity Recognition
 In any text document, there are particular terms that represent entities that are more
informative and have a unique context compared to the rest of the text. These entities are
known as named entities , which more specifically refers to terms that represent real-world
objects like people, places, organizations, and so on, which are usually denoted by proper
names. We can find these typically by looking at the noun phrases in text documents.
 Named entity recognition , also known as entity chunking/extraction , is a popular technique
used in information extraction to identify and segment named entities and classify or
categorize them under various predefined classes. Some of these classes that are used
most frequently are shown in Figure 7-1 (courtesy of nltk and The Stanford NLP group).

 There is some overlap between GPE and LOCATION . The GPE entities are usually more
generic and represent geo-political entities like cities, states, countries, and continents.
 LOCATION can also refer to these entities (it varies across different NER systems) along
with very specific locations like a mountain, river, or hill-station. FACILITY on the other
hand refers to popular monuments or artifacts that are usually man-made. The remaining
categories are pretty self-explanatory from their names and the examples depicted in
Figure 7-1 .

 The Bundesliga is perhaps the most popular top-level professional association
football league in Germany, and FC Bayern Munchen is one of the most popular clubs
in this league with a global presence. We will now take a sample description of this club

 Figure 7-1. Common named entities with examples

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

333

from Wikipedia and try to extract named entities from it. We will reuse our normalization
module (accessible as normalization.py in the code files) from the last chapter in
this section to parse the document to remove unnecessary new lines. We will start by
leveraging nltk ’s Named Entity Chunker:

 # sample document
 text = """
 Bayern Munich, or FC Bayern, is a German sports club based in Munich,
 Bavaria, Germany. It is best known for its professional football team,
 which plays in the Bundesliga, the top tier of the German football
 league system, and is the most successful club in German football
 history, having won a record 26 national titles and 18 national cups.
 FC Bayern was founded in 1900 by eleven football players led by Franz John.
 Although Bayern won its first national championship in 1932, the club
 was not selected for the Bundesliga at its inception in 1963. The club
 had its period of greatest success in the middle of the 1970s when,
 under the captaincy of Franz Beckenbauer, it won the European Cup three
 times in a row (1974-76). Overall, Bayern has reached ten UEFA Champions
 League finals, most recently winning their fifth title in 2013 as part
 of a continental treble.
 """

 import nltk
 from normalization import parse_document
 import pandas as pd

 # tokenize sentences
 sentences = parse_document(text)
 tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in
sentences]

 # tag sentences and use nltk's Named Entity Chunker
 tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_
sentences]
 ne_chunked_sents = [nltk.ne_chunk(tagged) for tagged in tagged_sentences]

 # extract all named entities
 named_entities = []
 for ne_tagged_sentence in ne_chunked_sents:
 for tagged_tree in ne_tagged_sentence:
 # extract only chunks having NE labels
 if hasattr(tagged_tree, 'label'):
 entity_name = ' '.join(c[0] for c in tagged_tree.leaves()) #

get NE name
 entity_type = tagged_tree.label() # get NE category
 named_entities.append((entity_name, entity_type))
 # get unique named entities
 named_entities = list(set(named_entities))

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

334

 # store named entities in a data frame
 entity_frame = pd.DataFrame(named_entities,
 columns=['Entity Name', 'Entity Type'])
 # display results
 In [116]: print entity_frame
 Entity Name Entity Type
 0 Bayern PERSON
 1 Franz John PERSON
 2 Franz Beckenbauer PERSON
 3 Munich ORGANIZATION
 4 European ORGANIZATION
 5 Bundesliga ORGANIZATION
 6 German GPE
 7 Bavaria GPE
 8 Germany GPE
 9 FC Bayern ORGANIZATION
 10 UEFA ORGANIZATION
 11 Munich GPE
 12 Bayern GPE
 13 Overall GPE

 The Named Entity Chunker identifies named entities from the preceding text
document, and we extract these named entities from the tagged annotated sentences
and display them in the data frame as shown. You can clearly see how it has correctly
identified PERSON , ORGANIZATION , and GPE related named entities, although a few of them
are incorrectly identified.

 We will now use the Stanford NER tagger on the same text and compare the results.
For this, you need to have Java installed and then download the Stanford NER resources
from http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip . Unzip them
to a location of your choice (I used E:/stanford in my system). Once done, you can use
 nltk ’s interface to access this, similar to what we did in Chapter 3 for constituency and
dependency parsing. For more details on Stanford NER, visit http://nlp.stanford.edu/
software/CRF-NER.shtml , the official web site, which also contains the latest version of
their Named Entity Recognizer (I used an older version):

 from nltk.tag import StanfordNERTagger
 import os

 # set java path in environment variables
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe'
 os.environ['JAVAHOME'] = java_path

 # load stanford NER
 sn = StanfordNERTagger('E:/stanford/stanford-ner-2014-08-27/classifiers/
english.all.3class.distsim.crf.ser.gz',
 path_to_jar='E:/stanford/stanford-ner-2014-08-27/

stanford-ner.jar')

http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

335

 # tag sentences
 ne_annotated_sentences = [sn.tag(sent) for sent in tokenized_sentences]

 # extract named entities
 named_entities = []
 for sentence in ne_annotated_sentences:
 temp_entity_name = ''
 temp_named_entity = None
 for term, tag in sentence:
 # get terms with NE tags
 if tag != 'O':
 temp_entity_name = ' '.join([temp_entity_name, term]).strip() #

get NE name
 temp_named_entity = (temp_entity_name, tag) # get NE and its

category
 else:
 if temp_named_entity:
 named_entities.append(temp_named_entity)
 temp_entity_name = ''
 temp_named_entity = None

 # get unique named entities
 named_entities = list(set(named_entities))
 # store named entities in a data frame
 entity_frame = pd.DataFrame(named_entities,
 columns=['Entity Name', 'Entity Type'])

 # display results
 In [118]: print entity_frame
 Entity Name Entity Type
 0 Franz John PERSON
 1 Franz Beckenbauer PERSON
 2 Germany LOCATION
 3 Bayern ORGANIZATION
 4 Bavaria LOCATION
 5 Munich LOCATION
 6 FC Bayern ORGANIZATION
 7 UEFA ORGANIZATION
 8 Bayern Munich ORGANIZATION

 The preceding output depicts various named entities obtained from our document.
You can compare this with the results obtained from nltk ’s NER chunker. The results here
are definitely better—there are no misclassifications and each category is also assigned
correctly. Some really interesting points: It has correctly identified Munich as a LOCATION
and Bayern Munich as an ORGANIZATION . Does this mean the second NER tagger is better?
Not really. It depends on the type of corpus you are analyzing, and you can even build
your own NER tagger using supervised learning by training on pre-tagged corpora similar
to what we did in Chapter 3 . In fact, both the taggers just discussed have been trained on
pre-tagged corpora like CoNLL, MUC, and Penn Treebank.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

336

 Analyzing Semantic Representations
 We usually communicate in the form of messages in spoken form or in written form
with other people or interfaces. Each of these messages is typically a collection of words,
phrases, or sentences, and they have their own semantics and context. So far, we’ve talked
about semantics and relations between various lexical units. But how do we represent the
meaning of semantics conveyed by a message or messages? How do humans understand
what someone is telling them? How do we believe in statements and propositions and
evaluate outcomes and what action to take? It feels easy because the brain helps us with
logic and reasoning—but computationally can we do the same?

 The answer is yes we can. Frameworks like propositional logic and first-order logic
help us in representation of semantics. We discussed this in detail in Chapter 1 in the
subsection “Representation of Semantics” under the “Language Semantics” section. I
encourage you to go through that once more to refresh your memory. In the following
sections, we will look at ways to represent propositional and first order logic and prove or
disprove propositions, statements, and predicates using practical examples and code.

 Propositional Logic
 We have already discussed propositional logic (PL) as the study of propositions,
statements, and sentences. A proposition is usually declarative, having a binary value
of being either true or false. There also exist various logical operators like conjunction,
disjunction, implication, and equivalence, and we also study the effects of applying these
operators on multiple propositions to understand their behavior and outcome.

 Let us consider our example from Chapter 1 with regard to two propositions P and Q
such that they can be represented as follows:

 P : He is hungry
 Q : He will eat a sandwich
 We will now try to build the truth tables for various operations on these propositions

using nltk based on the various logical operators discussed in Chapter 1 (refer to the
“Propositional Logic” section for more details) and derive outcomes computationally:

 import nltk
 import pandas as pd
 import os

 # assign symbols and propositions
 symbol_P = 'P'
 symbol_Q = 'Q'
 proposition_P = 'He is hungry'
 propositon_Q = 'He will eat a sandwich'
 # assign various truth values to the propositions
 p_statuses = [False, False, True, True]
 q_statuses = [False, True, False, True]
 # assign the various expressions combining the logical operators
 conjunction = '(P & Q)'
 disjunction = '(P | Q)'
 implication = '(P -> Q)'

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

337

 equivalence = '(P <-> Q)'
 expressions = [conjunction, disjunction, implication, equivalence]

 # evaluate each expression using propositional logic
 results = []
 for status_p, status_q in zip(p_statuses, q_statuses):
 dom = set([])
 val = nltk.Valuation([(symbol_P, status_p),
 (symbol_Q, status_q)])
 assignments = nltk.Assignment(dom)
 model = nltk.Model(dom, val)
 row = [status_p, status_q]
 for expression in expressions:
 # evaluate each expression based on proposition truth values
 result = model.evaluate(expression, assignments)
 row.append(result)
 results.append(row)
 # build the result table
 columns = [symbol_P, symbol_Q, conjunction,
 disjunction, implication, equivalence]
 result_frame = pd.DataFrame(results, columns=columns)

 # display results
 In [125]: print 'P:', proposition_P
 ...: print 'Q:', propositon_Q
 ...: print
 ...: print 'Expression Outcomes:-'
 ...: print result_frame
 P: He is hungry
 Q: He will eat a sandwich

 Expression Outcomes:-
 P Q (P & Q) (P | Q) (P -> Q) (P <-> Q)
 0 False False False False True True
 1 False True False True True False
 2 True False False True False False
 3 True True True True True True

 The preceding output depicts the various truth values of the two propositions, and
when we combine them with various logical operators, you will find the results matching
with what we manually evaluated in Chapter 1 . For example, P & Q indicates He is hungry
and he will eat a sandwich is True only when both of the individual propositions is True .
We use nltk ’s Valuation class to create a dictionary of the propositions and their various
outcome states. We use the Model class to evaluate each expression, where the evaluate()
function internally calls the recursive function satisfy() , which helps in evaluating the
outcome of each expression with the propositions based on the assigned truth values.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

338

 First Order Logic
 PL has several limitations, like the inability to represent facts or complex relationships
and inferences. PL also has limited expressive power because for each new proposition
we would need a unique symbolic representation, and it becomes very difficult to
generalize facts. This is where first order logic (FOL) works really well with features
like functions, quantifiers, relations, connectives, and symbols. It definitely provides a
richer and more powerful representation for semantic information. The “First Order
Logic” subsection under “Representation of Semantics” in Chapter 1 provides detailed
information about how FOL works.

 In this section, we will build several FOL representations similar to what we did
manually in Chapter 1 using mathematical representations. Here we will build them
in our code using similar syntax and leverage nltk and some theorem provers to prove
the outcome of various expressions based on predefined conditions and relationships,
similar to what we did for PL. The key takeaway for you from this section should be
getting to know how to represent FOL representations in Python and how to perform FOL
inference using proofs based on some goal and predefined rules and events. There are
several theorem provers you can use for evaluating expressions and proving theorems.
The nltk package has three main different types of provers: Prover9 , TableauProver , and
 ResolutionProver . The first one is a free-to-use prover available for download at www.
cs.unm.edu/~mccune/prover9/download/ . You can extract the contents in a location of
your choice (I used E:/prover9). We will be using both ResolutionProver and Prover9
in our examples. The following snippet helps in setting up the necessary dependencies
for FOL expressions and evaluations:

 import nltk
 import os
 # for reading FOL expressions
 read_expr = nltk.sem.Expression.fromstring
 # initialize theorem provers (you can choose any)
 os.environ['PROVER9'] = r'E:/prover9/bin'
 prover = nltk.Prover9()
 # I use the following one for our examples
 prover = nltk.ResolutionProver()

 Now that we have our dependencies ready, let us evaluate a few FOL expressions.
Consider a simple expression that If an entity jumps over another entity, the reverse cannot
happen . Assuming the entities to be x and y , we can represent this is FOL as ∀ x ∀ y
(jumps_over(x, y) → ¬ jumps_over(y, x)) which signifies that for all x and y , if x jumps
over y , it implies that y cannot jump over x . Consider now that we have two entities fox
and dog such that the fox jumps over the dog is an event which has taken place and can
be represented by jumps_over(fox, dog) . Our end goal or objective is to evaluate the
outcome of jumps_over(dog, fox) considering the preceding expression and the event
that has occurred. The following snippet shows us how we can do this:

 # set the rule expression
 rule = read_expr('all x. all y. (jumps_over(x, y) -> -jumps_over(y, x))')
 # set the event occured

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.cs.unm.edu/~mccune/prover9/download/
http://www.cs.unm.edu/~mccune/prover9/download/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

339

 event = read_expr('jumps_over(fox, dog)')
 # set the outcome we want to evaluate -- the goal
 test_outcome = read_expr('jumps_over(dog, fox)')

 # get the result
 In [132]: prover.prove(goal=test_outcome,
 ...: assumptions=[event, rule],
 ...: verbose=True)
 [1] {-jumps_over(dog,fox)} A
 [2] {jumps_over(fox,dog)} A
 [3] {-jumps_over(z4,z3), -jumps_over(z3,z4)} A
 [4] {-jumps_over(dog,fox)} (2, 3)

 Out[132]: False

 The preceding output depicts the final result for our goal test_outcome is False , that
is, the dog cannot jump over the fox if the fox has already jumped over the dog based on
our rule expression and the events assigned to the assumptions parameter in the prover
already given. The sequence of steps that lead to the result is also shown in the output.
Let us now consider another FOL expression rule ∀ x studies(x, exam) → pass(x,
exam) , which tells us that for all instances of x , if x studies for the exam, he/she will pass
the exam. Let us represent this rule and consider two students, John and Pierre , such
that John does not study for the exam and Pierre does. Can we then find out the outcome
whether they will pass the exam based on the given expression rule? The following
snippet shows us how:

 # set the rule expression
 rule = read_expr('all x. (studies(x, exam) -> pass(x, exam))')
 # set the events and outcomes we want to determine
 event1 = read_expr('-studies(John, exam)')
 test_outcome1 = read_expr('pass(John, exam)')
 event2 = read_expr('studies(Pierre, exam)')
 test_outcome2 = read_expr('pass(Pierre, exam)')

 # get results
 In [134]: prover.prove(goal=test_outcome1,
 ...: assumptions=[event1, rule],
 ...: verbose=True)
 [1] {-pass(John,exam)} A
 [2] {-studies(John,exam)} A
 [3] {-studies(z6,exam), pass(z6,exam)} A
 [4] {-studies(John,exam)} (1, 3)

 Out[134]: False

 In [135]: prover.prove(goal=test_outcome2,
 ...: assumptions=[event2, rule],
 ...: verbose=True)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

340

 [1] {-pass(Pierre,exam)} A
 [2] {studies(Pierre,exam)} A
 [3] {-studies(z8,exam), pass(z8,exam)} A
 [4] {-studies(Pierre,exam)} (1, 3)
 [5] {pass(Pierre,exam)} (2, 3)
 [6] {} (1, 5)

 Out[135]: True

 Thus you can see from the above evaluations that Pierre does pass the exam
because he studied for the exam, unlike John who doesn't pass the exam since he did not
study for it.

 Let us consider a more complex example with several entities. They perform several
actions as follows:

• There are two dogs rover (r) and alex (a)

• There is one cat garfield (g)

• There is one fox felix (f)

• Two animals, alex (a) and felix (f) run, denoted by function
 runs()

• Two animals rover (r) and garfield (g) sleep, denoted by
function sleeps()

• Two animals, felix (f) and alex (a) can jump over the other two,
denoted by function jumps_over()

 Taking all these assumptions, the following snippet builds an FOL-based model
with the previously mentioned domain and assignment values based on the entities
and functions. Once we build this model, we evaluate various FOL-based expressions to
determine their outcome and prove some theorems like we did earlier:

 # define symbols (entities\functions) and their values
 rules = """
 rover => r
 felix => f
 garfield => g
 alex => a
 dog => {r, a}
 cat => {g}
 fox => {f}
 runs => {a, f}
 sleeps => {r, g}
 jumps_over => {(f, g), (a, g), (f, r), (a, r)}
 """
 val = nltk.Valuation.fromstring(rules)
 # view the valuation object of symbols and their assigned values
(dictionary)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

341

 In [143]: print val
 {'rover': 'r', 'runs': set([('f',), ('a',)]), 'alex': 'a', 'sleeps':
set([('r',), ('g',)]), 'felix': 'f', 'fox': set([('f',)]), 'dog':
set([('a',), ('r',)]), 'jumps_over': set([('a', 'g'), ('f', 'g'), ('a',
'r'), ('f', 'r')]), 'cat': set([('g',)]), 'garfield': 'g'}

 # define domain and build FOL based model
 dom = {'r', 'f', 'g', 'a'}
 m = nltk.Model(dom, val)

 # evaluate various expressions
 In [148]: print m.evaluate('jumps_over(felix, rover) & dog(rover) &
runs(rover)', None)
 False

 In [149]: print m.evaluate('jumps_over(felix, rover) & dog(rover) &
-runs(rover)', None)
 True

 In [150]: print m.evaluate('jumps_over(alex, garfield) & dog(alex) &
cat(garfield) & sleeps(garfield)', None)
 True

 # assign rover to x and felix to y in the domain
 g = nltk.Assignment(dom, [('x', 'r'), ('y', 'f')])

 # evaluate more expressions based on above assigned symbols
 In [152]: print m.evaluate('runs(y) & jumps_over(y, x) & sleeps(x)', g)
 True

 In [153]: print m.evaluate('exists y. (fox(y) & runs(y))', g)
 True

 The preceding snippet depicts the evaluation of various expressions based on the
valuation of different symbols based on the rules and domain. We create various FOL-
based expressions and see their outcome based on the predefined assumptions. For
example, the first expression gives us False because rover never runs() and the second
and third expressions are True because they satisfy all the conditions like felix and alex
can jump over rover or garfield and rover is a dog that does not run and garfield is
a cat . The second set of expressions is evaluated based on assigning felix and rover to
specific symbols in our domain (dom), and we pass that variable (g) when evaluating the
expressions. We can even satisfy open formulae or expressions using the satisfiers()
function as shown here:

 # who are the animals who run?
 In [154]: formula = read_expr('runs(x)')
 ...: print m.satisfiers(formula, 'x', g)
 set(['a', 'f'])

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

342

 # animals who run and are also a fox?
 In [155]: formula = read_expr('runs(x) & fox(x)')
 ...: print m.satisfiers(formula, 'x', g)
 set(['f'])

 The preceding outputs are self-explanatory wherein we evaluate open-ended
questions like which animals run ? And also which animals can run and are also foxes ?
We get the relevant symbols in our outputs, which you can map back to the actual
animal names (Hint: a: alex, f: felix). I encourage you to experiment with more
propositions and FOL expressions by building your own assumptions, domain, and rules.

 Sentiment Analysis
 We will now discuss several concepts, techniques, and examples with regard to our second
major topic in this chapter, sentiment analysis. Textual data , even though unstructured,
mainly has two broad types of data points: factual based (objective) and opinion based
(subjective). We briefly talked about these two categories at the beginning of this chapter
when I introduced the concept of sentiment analysis and how it works best on text that has
a subjective context. In general, social media, surveys, and feedback data all are heavily
opinionated and express the beliefs, judgement, emotion, and feelings of human beings.
Sentiment analysis, also popularly known as opinion analysis/mining , is defined as the
process of using techniques like NLP, lexical resources, linguistics, and machine learning
(ML) to extract subjective and opinion related information like emotions, attitude, mood,
modality, and so on and try to use these to compute the polarity expressed by a text
document. By polarity , I mean to find out whether the document expresses a positive,
negative, or a neutral sentiment. More advanced analysis involves trying to find out more
complex emotions like sadness, happiness, anger, and sarcasm.

 Typically, sentiment analysis for text data can be computed on several levels,
including on an individual sentence level, paragraph level, or the entire document as a
whole. Often sentiment is computed on the document as a whole or some aggregations
are done after computing the sentiment for individual sentences. Polarity analysis usually
involves trying to assign some scores contributing to the positive and negative emotions
expressed in the document and then finally assigning a label to the document based on
the aggregate score. We will depict two major techniques for sentiment analysis here:

• Supervised machine learning

• Unsupervised lexicon-based

 The key idea is to learn the various techniques typically used to tackle sentiment
analysis problems so that you can apply them to solve your own problems. We will
see how to re-use the concepts of supervised machine learning based classification
algorithms from Chapter 4 here to classify documents to their associated sentiment. We
will also use lexicons , which are dictionaries or vocabularies specially constructed to
be used for sentiment analysis, and compute sentiment without using any supervised
techniques. We will be carrying out our experiments on a large real-world dataset
pertaining to movie reviews, which will make this task more interesting. We will compare
the performance of the various algorithms and also try to perform some detailed analytics
besides just analyzing polarity, which includes analyzing the subjectivity, mood, and
modality of the movie reviews. Without further delay, let’s get started!

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

343

 Sentiment Analysis of IMDb Movie Reviews
 We will be using a dataset of movie reviews obtained from the Internet Movie Database
(IMDb) for sentiment analysis. This dataset, containing over 50,000 movie reviews, can be
obtained from http://ai.stanford.edu/~amaas/data/sentiment/ , courtesy of Stanford
University and A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, Andrew Ng, and C. Potts,
and this dataset was used in their famous paper, “Learning Word Vectors for Sentiment
Analysis.” We will be using 50,000 movie reviews from this dataset, which contain the
review and a corresponding sentiment polarity label which is either positive or negative.
A positive review is basically a movie review which was rated with more than six stars in
IMDb, and a negative review was rated with less than five stars in IMDb. An important
thing to remember here before we begin our exercise is the fact that many of these reviews,
even though labeled positive or negative, might have some elements of negative or positive
context respectively. Hence, there is a possibility for some overlap in many reviews, which
make this task harder. Sentiment is not a quantitative number that you can compute and
prove mathematically. It expresses complex emotions, feelings, and judgement, and hence
you should never focus on trying to get a cent-percent perfect model but a model that
generalizes well on data and works decently. We will start with setting up some necessary
dependencies and utilities before moving on to the various techniques.

 Setting Up Dependencies
 There are several utility functions, data, and package dependencies that we need to set
up before we jump into sentiment analysis. We will need our movie review dataset, some
specific packages that we will be using in our implementations, and we will be defining
some utility functions for text normalization, feature extracting, and model evaluation,
similar to what we have used in previous chapters.

 Getting and Formatting the Data
 We will use the IMDb movie review dataset officially available in raw text files for each
set (training and testing) from http://ai.stanford.edu/~amaas/data/sentiment/ as
mentioned. You can download and unzip the files to a location of your choice and use
the review_data_extractor.py file included along with the code files of this chapter to
extract each review from the unzipped directory, parse them, and neatly format them into
a data frame, which is then stored as a csv file named movie_reviews.csv . Otherwise,
you can directly download the parsed and formatted file from https://github.com/
dipanjanS/text-analytics-with-python/tree/master/Chapter-7 , which contains all
datasets and code used and is the official repository for this book. The data frame consists
of two columns, review and sentiment , for each data point, which indicates the review
for a movie and its corresponding sentiment (positive or negative).

 Text Normalization
 We will be normalizing and standardizing our text data similar to what we did in Chapter
 6 as a part of text pre-processing and normalization. For this we will be re-using our
 normalization.py module from Chapter 6 with a few additions. This mainly includes

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_6

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

344

adding an HTML stripper to remove unnecessary HTML characters from text documents,
as shown here:

 from HTMLParser import HTMLParser

 class MLStripper(HTMLParser):
 def __init__(self):
 self.reset()
 self.fed = []
 def handle_data(self, d):
 self.fed.append(d)
 def get_data(self):
 return ' '.join(self.fed)

 def strip_html(text):
 html_stripper = MLStripper()
 html_stripper.feed(text)
 return html_stripper.get_data()

 We also add a new function to normalize special accented characters and convert
them into regular ASCII characters so as to standardize the text across all documents. The
following snippet helps us achieve this:

 def normalize_accented_characters(text):
 text = unicodedata.normalize('NFKD',
 text.decode('utf-8')
).encode('ascii', 'ignore')
 return text

 The overall text normalization function is depicted in the following snippet and it
re-uses the expand contractions, lemmatization, HTML unescaping, special characters
removal, and stopwords removal functions from the previous chapter's normalization
module:

 def normalize_corpus(corpus, lemmatize=True,
 only_text_chars=False,
 tokenize=False):

 normalized_corpus = []
 for index, text in enumerate(corpus):
 text = normalize_accented_characters(text)
 text = html_parser.unescape(text)
 text = strip_html(text)
 text = expand_contractions(text, CONTRACTION_MAP)
 if lemmatize:
 text = lemmatize_text(text)
 else:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

345

 text = text.lower()
 text = remove_special_characters(text)
 text = remove_stopwords(text)
 if only_text_chars:
 text = keep_text_characters(text)

 if tokenize:
 text = tokenize_text(text)
 normalized_corpus.append(text)
 else:
 normalized_corpus.append(text)

 return normalized_ corpus

 To re-use this code, you can make use of the normalization.py and contractions.
py files provided with the code files of this chapter.

 Feature Extraction
 We will be reusing the same feature-extraction function we used in Chapter 6 , and it is
available as a part of the utils.py module. The function is shown here for the sake of
completeness:

 from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

 def build_feature_matrix(documents, feature_type='frequency',
 ngram_range=(1, 1), min_df=0.0, max_df=1.0):

 feature_type = feature_type.lower().strip()

 if feature_type == 'binary':
 vectorizer = CountVectorizer(binary=True, min_df=min_df,
 max_df=max_df, ngram_range=ngram_range)
 elif feature_type == 'frequency':
 vectorizer = CountVectorizer(binary=False, min_df=min_df,
 max_df=max_df, ngram_range=ngram_range)
 elif feature_type == 'tfidf':
 vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df,
 ngram_range=ngram_range)
 else:
 raise Exception("Wrong feature type entered. Possible values:

'binary', 'frequency', 'tfidf'")

 feature_matrix = vectorizer.fit_transform(documents).astype(float)
 return vectorizer, feature_ matrix

http://dx.doi.org/10.1007/978-1-4842-2388-8_6

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

346

 You can experiment with various features provided by this function, which include
Bag of Words-based frequencies, occurrences, and TF-IDF based features.

 Model Performance Evaluation
 We will be evaluating our models based on precision, recall, accuracy, and F1-score,
similar to our evaluation methods in Chapter 4 for text classification. Additionally we
will be looking at the confusion matrix and detailed classification reports for each class,
that is, the positive and negative classes to evaluate model performance. You can refer to
the “Evaluating Classification Models” section in Chapter 4 to refresh your memory on
the various model-evaluation metrics. The following function will help us in getting the
model accuracy, precision, recall, and F1-score:

 from sklearn import metrics
 import numpy as np
 import pandas as pd

 def display_evaluation_metrics(true_labels, predicted_labels, positive_
class=1):
 print 'Accuracy:', np.round(
 metrics.accuracy_score(true_labels,
 predicted_labels),
 2)
 print 'Precision:', np.round(
 metrics.precision_score(true_labels,
 predicted_labels,
 pos_label=positive_class,
 average='binary'),
 2)
 print 'Recall:', np.round(
 metrics.recall_score(true_labels,
 predicted_labels,
 pos_label=positive_class,
 average='binary'),
 2)
 print 'F1 Score:', np.round(
 metrics.f1_score(true_labels,
 predicted_labels,
 pos_label=positive_class,
 average='binary'),
 2)

 We will also define a function to help us build the confusion matrix for evaluating
the model predictions against the actual sentiment labels for the reviews. The following
function will help us achieve that:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

347

 def display_confusion_matrix(true_labels, predicted_labels, classes=[1,0]):
 cm = metrics.confusion_matrix(y_true=true_labels,
 y_pred=predicted_labels,
 labels=classes)
 cm_frame = pd.DataFrame(data=cm,
 columns=pd.MultiIndex(levels=[['Predicted:'],

classes],
 labels=[[0,0],[0,1]]),
 index=pd.MultiIndex(levels=[['Actual:'],

classes],
 labels=[[0,0],[0,1]]))
 print cm_frame

 Finally, we will define a function for getting a detailed classification report per
sentiment category (positive and negative) by displaying the precision, recall, F1-score,
and support (number of reviews) for each of the classes:

 def display_classification_report(true_labels, predicted_labels,
classes=[1,0]):
 report = metrics.classification_report(y_true=true_labels,
 y_pred=predicted_labels,
 labels=classes)
 print report

 You will find all the preceding functions in the utils.py module along with the other
code files for this chapter and you can re-use them as needed. Besides this, you need to
make sure you have nltk and pattern installed—which you should already have by this
point of time because we have used them numerous times in our previous chapters.

 Preparing Datasets
 We will be loading our movie reviews data and preparing two datasets, namely training
and testing, similar to what we did in Chapter 4 . We will train our supervised model on
the training data and evaluate model performance on the testing data. For unsupervised
models, we will directly evaluate them on the testing data so as to compare their
performance with the supervised model. Besides that, we will also pick some sample
positive and negative reviews to see how the different models perform on them:

 import pandas as pd
 import numpy as np
 # load movie reviews data
 dataset = pd.read_csv(r'E:/aclImdb/movie_reviews.csv')
 # print sample data
 In [235]: print dataset.head()
 review sentiment
 0 One of the other reviewers has mentioned that ... positive
 1 A wonderful little production.

The... positive
 2 I thought this was a wonderful way to spend ti... positive

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

348

 3 Basically there's a family where a little boy ... negative
 4 Petter Mattei's "Love in the Time of Money" is... positive

 # prepare training and testing datasets
 train_data = dataset[:35000]
 test_data = dataset[35000:]

 train_reviews = np.array(train_data['review'])
 train_sentiments = np.array(train_data['sentiment'])
 test_reviews = np.array(test_data['review'])
 test_sentiments = np.array(test_data['sentiment'])

 # prepare sample dataset for experiments
 sample_docs = [100, 5817, 7626, 7356, 1008, 7155, 3533, 13010]
 sample_data = [(test_reviews[index],
 test_sentiments[index])
 for index in sample_docs]

 We have taken a total of 35,000 reviews out of the 50,000 to be our training dataset
and we will evaluate our models and test them on the remaining 15,000 reviews. This is in
line with a typical 70:30 separation used for training and testing dataset building. We have
also extracted a total of eight reviews from the test dataset and we will be looking closely
at the results for these documents as well as evaluating the model performance on the
complete test dataset in the following sections.

 Supervised Machine Learning Technique
 As mentioned before, in this section we will be building a model to analyze sentiment
using supervised ML. This model will learn from past reviews and their corresponding
sentiment from the training dataset so that it can predict the sentiment for new reviews
from the test dataset. The basic principle here is to use the same concepts we used for
 text classification such that the classes to predict here are positive and negative sentiment
corresponding to the movie reviews.

 We will be following the same workflow which we followed in Chapter 4 for text
classification (refer to Figure 4-2 in Chapter 4) in the “Text Classification Blueprint”
section. The following points summarize these steps:

 1. Model training

 a. Normalize training data

 b. Extract features and build feature set and feature
vectorizer

 c. Use supervised learning algorithm (SVM) to build a
predictive model

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

349

 2. Model testing

 a. Normalize testing data

 b. Extract features using training feature vectorizer

 c. Predict the sentiment for testing reviews using training
model

 d. Evaluate model performance

 To start, we will be building our training model using the steps in point 1. We will be
using our normalization and feature- extraction modules discussed in previous sections:

 from normalization import normalize_corpus
 from utils import build_feature_matrix

 # normalization
 norm_train_reviews = normalize_corpus(train_reviews, lemmatize=True, only_
text_chars=True)
 # feature extraction
 vectorizer, train_features = build_feature_matrix(documents=norm_train_
reviews,
 feature_type='tfidf',

ngram_range=(1, 1),
 min_df=0.0, max_df=1.0)

 We will now build our model using the support vector machine (SVM) algorithm which
we used for text classification in Chapter 4 . Refer to the “Support Vector Machines” subsection
under the “Classification Algorithms” section in Chapter 4 to refresh your memory:

 from sklearn.linear_model import SGDClassifier
 # build the model
 svm = SGDClassifier(loss='hinge', n_iter=200)
 svm.fit(train_features, train_sentiments)

 The preceding snippet trainings the classifier and builds the model that is in the
 svm variable, which we can now use for predicting sentiment for new movie reviews (not
used for training) from the test dataset. Let us normalize and extract features from the test
dataset first as mentioned in step 2 in our workflow:

 # normalize reviews
 norm_test_reviews = normalize_corpus(test_reviews, lemmatize=True, only_
text_chars=True)
 # extract features
 test_features = vectorizer.transform(norm_test_reviews)

 Now that we have our features for the entire test dataset, before we predict the
sentiment and measure model prediction performance for the entire test dataset, let us
look at some of the predictions for the sample documents we extracted earlier:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

350

 # predict sentiment for sample docs from test data
 In [253]: for doc_index in sample_docs:
 ...: print 'Review:-'
 ...: print test_reviews[doc_index]
 ...: print 'Actual Labeled Sentiment:', test_sentiments[doc_index]
 ...: doc_features = test_features[doc_index]
 ...: predicted_sentiment = svm.predict(doc_features)[0]
 ...: print 'Predicted Sentiment:', predicted_sentiment
 ...: print
 ...:
 ...:
 Review:-
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese
 Actual Labeled Sentiment: negative
 Predicted Sentiment: negative

 Review:-
 I hope this group of film-makers never re-unites.
 Actual Labeled Sentiment: negative
 Predicted Sentiment: negative

 Review:-
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!
 Actual Labeled Sentiment: negative
 Predicted Sentiment: negative

 Review:-
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing
 Actual Labeled Sentiment: positive
 Predicted Sentiment: positive

 Review:-
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.
 Actual Labeled Sentiment: positive
 Predicted Sentiment: positive

 Review:-
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

351

 Actual Labeled Sentiment: positive
 Predicted Sentiment: positive

 Review:-
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.
 Actual Labeled Sentiment: positive
 Predicted Sentiment: negative

 Review:-
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot
 Actual Labeled Sentiment: positive
 Predicted Sentiment: negative

 You can look at each review, its actual labeled sentiment, and our predicted sentiment
in the preceding output and see that we have some negative and positive reviews, and our
model is able to correctly identify the sentiment for most of the sampled reviews except
the last two reviews. If you look closely at the last two reviews, some part of the review has
a negative sentiment ("worst horror film" , "voted this movie to be bad") but the
general sentiment or opinion of the person who wrote the review was intended positive.
These are the examples I mentioned earlier about the overlap of positive and negative
emotions , which makes it difficult for the model to predict the actual sentiment!

 Let us now predict the sentiment for all our test dataset reviews and evaluate our
model performance:

 # predict the sentiment for test dataset movie reviews
 predicted_sentiments = svm.predict(test_features)

 # evaluate model prediction performance
 from utils import display_evaluation_metrics, display_confusion_matrix,
display_classification_report

 # show performance metrics
 In [270]: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=predicted_sentiments,
 ...: positive_class='positive')
 Accuracy: 0.89
 Precision: 0.88
 Recall: 0.9
 F1 Score: 0.89

 # show confusion matrix
 In [271]: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=predicted_sentiments,
 ...: classes=['positive', 'negative'])

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

352

 Predicted:
 positive negative
 Actual: positive 6770 740
 negative 912 6578

 # show detailed per-class classification report
 In [272]: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=predicted_

sentiments,
 ...: classes=['positive', 'negative'])
 precision recall f1-score support

 positive 0.88 0.90 0.89 7510
 negative 0.90 0.88 0.89 7490

 avg / total 0.89 0.89 0.89 15000

 The preceding outputs show the various performance metrics that depict the
performance of our SVM model with regard to predicting sentiment for movie reviews.
We have an average sentiment prediction accuracy of 89 percent, which is really good if
you compare it with standard baselines for text classification using supervised techniques.
The classification report also shows a per-class detailed report, and we see that our F1-
score (harmonic mean of precision and recall) is 89 percent for both positive and negative
sentiment. The support metric shows the number of reviews having positive (7510)
sentiment and negative (7490) sentiment. The confusion matrix shows how many reviews
for which we predicted the correct sentiment (positive : 6770/7510, negative : 6578/7490)
and the number of reviews for which we predicted the wrong sentiment (positive : 740/7510,
 negative : 912/7490). Do try out building more models with different features (Chapter
 4 talks about different feature-extraction techniques) and different supervised learning
algorithms. Can you get a better model which predicts sentiment more accurately?

 Unsupervised Lexicon-based Techniques
 So far, we used labeled training data to learn patterns using features from the movie
reviews and their corresponding sentiment. Then we applied this knowledge learned on
new movie reviews (the testing dataset) to predict their sentiment. Often, you may not
have the convenience of a well-labeled training dataset. In those situations, you need
to use unsupervised techniques for predicting the sentiment by using knowledgebases,
ontologies, databases, and lexicons that have detailed information specially curated and
prepared just for sentiment analysis.

 As mentioned, a lexicon is a dictionary, vocabulary, or a book of words. In our case,
lexicons are special dictionaries or vocabularies that have been created for analyzing
sentiment. Most of these lexicons have a list of positive and negative polar words with
some score associated with them, and using various techniques like the position of words,
surrounding words, context, parts of speech, phrases, and so on, scores are assigned to
the text documents for which we want to compute the sentiment. After aggregating these
scores, we get the final sentiment. More advanced analyses can also be done, including
detecting the subjectivity, mood, and modality. Various popular lexicons are used for
sentiment analysis, including the following:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

353

• AFINN lexicon

• Bing Liu’s lexicon

• MPQA subjectivity lexicon

• SentiWordNet

• VADER lexicon

• Pattern lexicon

 This is not an exhaustive list of lexicons that can be leveraged for sentiment analysis,
and there are several other lexicons which can be easily obtained from the Internet.
We will briefly discuss each lexicon and will be using the last three lexicons to analyze
the sentiment for our testing dataset in more detail. Although these techniques are
unsupervised, you can also use them to analyze and evaluate the sentiment for the
training dataset too, but for the sake of consistency and to compare model performances
with the supervised model, we will be performing all our analyses on the testing dataset.

 AFINN Lexicon
 The AFINN lexicon was curated and created by Finn Årup Nielsen, and more details are
mentioned in his paper “A New ANEW: Evaluation of a Word List for Sentiment Analysis
in Microblogs.” The latest version, known as AFINN-111, consists of a total of 2477 words
and phrases with their own scores based on sentiment polarity. The polarity basically
indicates how positive, negative, or neutral the term might be with some numerical
score. You can download it from www2.imm.dtu.dk/pubdb/views/publication_details.
php?id=6010 . It also talks about the lexicon in further details. The author of this lexicon
has also built a Python wrapper over the AFINN lexicon, which you can directly use to
predict the sentiment of text data. The repository is available from GitHub at https://
github.com/fnielsen/afinn . You can install the afinn library directly and start
analyzing sentiment. This library even has support for emoticons and smileys. Following
is a sample of the AFINN-111 lexicon:

 abandon -2
 abandoned -2
 abandons -2
 abducted -2
 abduction -2
 ...
 ...
 youthful 2
 yucky -2
 yummy 3
 zealot -2
 zealots -2
 zealous 2

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
https://github.com/fnielsen/afinn
https://github.com/fnielsen/afinn

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

354

 The basic idea is to load the entire list of polar words and phrases in the lexicon
along with their corresponding score (sample shown above) in memory and then find the
same words/phrases and score them accordingly in a text document. Finally, these scores
are aggregated, and the final sentiment and score can be obtained for a text document.
Following is an example snippet based on the official documentation:

 from afinn import Afinn
 afn = Afinn(emoticons=True)

 In [281]: print afn.score('I really hated the plot of this movie')
 -3.0
 In [282]: print afn.score('I really hated the plot of this movie :(')
 -5.0

 Thus you can use the score() function directly to evaluate the sentiment of your text
documents, and from the preceding output you can see that they even give proper weightage
to emoticons, which are used extensively in social media like Twitter and Facebook.

 Bing Liu’s Lexicon
 This lexicon has been developed by Bing Liu over several years and is discussed in
further details in his paper, by Nitin Jindal and Bing Liu, “Identifying Comparative
Sentences in Text Documents.” You can get more details about the lexicon at https://
www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon , which also includes a
link to download it as an archive (RAR format). This lexicon consists of over 6800 words
divided into two files named positive-words.txt , containing around 2000+ words/
phrases, and negative-words.txt , which contains around 4800+ words/phrases. The
key idea is to leverage these words to contribute to the positive or negative polarity of
any text document when they are identified in that document. This lexicon also includes
many misspelled words, taking into account that words or terms are often misspelled on
popular social media web sites.

 MPQA Subjectivity Lexicon
 MPQA stands for Multi-Perspective Question Answering, and it hosts a plethora of
resources maintained by the University of Pittsburgh. It contains resources including
opinion corpora, subjectivity lexicon, sense annotations, argument-based lexicon, and
debate datasets. A lot of these can be leveraged for complex analysis of human emotions
and sentiment. The subjectivity lexicon is maintained by Theresa Wilson, Janyce Wiebe,
and Paul Hoffmann, and is discussed in detail in their paper, “Recognizing Contextual
Polarity in Phrase-Level Sentiment Analysis,” which focuses on contextual polarity. You
can download the subjectivity lexicon from http://mpqa.cs.pitt.edu/lexicons/subj_
lexicon/ , which is their official website. It has subjectivity clues present in the dataset
named subjclueslen1-HLTEMNLP05.tff , which is available once you extract the archive.
Some sample lines from the dataset are depicted as follows:

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

355

 type=weaksubj len=1 word1=abandoned pos1=adj stemmed1=n
priorpolarity=negative
 type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n
priorpolarity=negative
 type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y
priorpolarity=negative
 type=strongsubj len=1 word1=abase pos1=verb stemmed1=y
priorpolarity=negative
 ...
 ...
 type=strongsubj len=1 word1=zealously pos1=anypos stemmed1=n
priorpolarity=negative
 type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n
priorpolarity=positive
 type=strongsubj len=1 word1=zest pos1=noun stemmed1=n priorpolarity=positive

 To understand this data, you can refer to the readme file provided along with the
dataset. Basically, the clues in this dataset were curated and collected manually with
efforts by the above-mentioned maintainers of this project. The various parameters
mentioned above are explained briefly as follows:

• type : This has values that are either strongsubj indicating the
presence of a strongly subjective context or weaksubj which
indicates the presence of a weak/part subjective context.

• len : This points to the number of words in the term of the clue (all
are single words of length 1 for now).

• word1 : The actual term present as a token or a stem of the actual
token.

• pos1 : The part of speech for the term (clue) and it can be noun ,
 verb , adj , adverb , or anypos .

• stemmed1 : This indicates if the clue (term) is stemmed (y) or not
stemmed (n). If it is stemmed, it can match all its other variants
having the same pos1 tag.

• priorpolarity : This has values of negative, positive, both, or
neutral, and indicates the polarity of the sentiment associated
with this clue (term).

 The idea is to load this lexicon into a database or memory (hint: Python dictionary
works well) and then use it similarly to the previous lexicons to analyze the sentiment
associated with any text document.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

356

 SentiWordNet
 We know that WordNet is perhaps one of the most popular corpora for the English
language, used extensively in semantic analysis, and it introduces the concept of synsets.
The SentiWordNet lexicon is a lexical resource used for sentiment analysis and opinion
mining. For each synset present in WordNet, the SentiWordNet lexicon assigns three
sentiment scores to it, including a positive polarity score, a negative polarity score,
and an objectivity score. You can find more details on the official web site http://
sentiwordnet.isti.cnr.it , which includes research papers explaining the lexicon in
detail and also a link to download the lexicon. The nltk package in Python provides an
interface directly for accessing the SentiWordNet lexicon, and we will be using this to
analyze the sentiment of our movie reviews. The following snippet shows an example
synset and its sentiment scores using SentiWordNet:

 import nltk
 from nltk.corpus import sentiwordnet as swn
 # get synset for 'good'
 good = swn.senti_synsets('good', 'n')[0]
 # print synset sentiment scores
 In [287]: print 'Positive Polarity Score:', good.pos_score()
 ...: print 'Negative Polarity Score:', good.neg_score()
 ...: print 'Objective Score:', good.obj_score()
 Positive Polarity Score: 0.5
 Negative Polarity Score: 0.0
 Objective Score: 0.5

 Now that we know how to use the sentiwordnet interface, we define a function
that can take in a body of text (movie review in our case) and analyze its sentiment by
leveraging sentiwordnet :

 from normalization import normalize_accented_characters, html_parser, strip_
html

 def analyze_sentiment_sentiwordnet_lexicon(review,
 verbose=False):
 # pre-process text
 review = normalize_accented_characters(review)
 review = html_parser.unescape(review)
 review = strip_html(review)
 # tokenize and POS tag text tokens
 text_tokens = nltk.word_tokenize(review)
 tagged_text = nltk.pos_tag(text_tokens)
 pos_score = neg_score = token_count = obj_score = 0
 # get wordnet synsets based on POS tags
 # get sentiment scores if synsets are found
 for word, tag in tagged_text:
 ss_set = None

http://sentiwordnet.isti.cnr.it/
http://sentiwordnet.isti.cnr.it/

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

357

 if 'NN' in tag and swn.senti_synsets(word, 'n'):
 ss_set = swn.senti_synsets(word, 'n')[0]
 elif 'VB' in tag and swn.senti_synsets(word, 'v'):
 ss_set = swn.senti_synsets(word, 'v')[0]
 elif 'JJ' in tag and swn.senti_synsets(word, 'a'):
 ss_set = swn.senti_synsets(word, 'a')[0]
 elif 'RB' in tag and swn.senti_synsets(word, 'r'):
 ss_set = swn.senti_synsets(word, 'r')[0]
 # if senti-synset is found
 if ss_set:
 # add scores for all found synsets
 pos_score += ss_set.pos_score()
 neg_score += ss_set.neg_score()
 obj_score += ss_set.obj_score()
 token_count += 1

 # aggregate final scores
 final_score = pos_score - neg_score
 norm_final_score = round(float(final_score) / token_count, 2)
 final_sentiment = 'positive' if norm_final_score >= 0 else 'negative'
 if verbose:
 norm_obj_score = round(float(obj_score) / token_count, 2)
 norm_pos_score = round(float(pos_score) / token_count, 2)
 norm_neg_score = round(float(neg_score) / token_count, 2)
 # to display results in a nice table
 sentiment_frame = pd.DataFrame([[final_sentiment, norm_obj_score,
 norm_pos_score, norm_neg_score,
 norm_final_score]],
 columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],
 ['Predicted Sentiment',

 'Objectivity',
 'Positive', 'Negative',

 'Overall']],
 labels=[[0,0,0,0,0],

[0,1,2,3,4]]))
 print sentiment_frame

 return final_ sentiment

 The comments in the preceding function are pretty self-explanatory. We take in a
body of text (a movie review), do some initial pre-processing, and then tokenize and POS
tag the tokens. For each pair of (word, tag) we check if any senti-synsets exist for the same
word and its corresponding tag. If there is a match, we take the first senti-synset and store
its sentiment scores in corresponding variables, and finally we aggregate its scores. We
can now see the preceding function in action for our sample reviews (in the sample_data
variable we created earlier from the test data) in the following snippet:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

358

 # detailed sentiment analysis for sample reviews
 In [292]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print
 ...: final_sentiment = analyze_sentiment_sentiwordnet_

lexicon(review,
 ...:

verbose=True)
 ...: print '-'*60
 ...:
 ...:
 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 negative 0.83 0.08 0.09 -0.01
 --
 Review:
 I hope this group of film-makers never re-unites.

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 negative 0.71 0.04 0.25 -0.21
 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 negative 0.81 0.04 0.15 -0.11
 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

359

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.76 0.18 0.06 0.13
 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.84 0.14 0.03 0.11
 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.75 0.2 0.05 0.15
 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.73 0.21 0.06 0.15
 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot

 Labeled Sentiment: positive

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

360

 SENTIMENT STATS:
 Predicted Sentiment Objectivity Positive Negative Overall
 0 positive 0.79 0.13 0.08 0.05
 --

 You can see detailed statistics related to each sentiment score and also the overall
sentiment and compare it with the actual labeled sentiment for each review in the
preceding output. Interestingly, we were able to predict the sentiment correctly for all
our sampled reviews as compared to the supervised learning technique. But how well
does this technique perform for our complete test movie reviews dataset? The following
snippet will give us the answer!

 # predict sentiment for test movie reviews dataset
 sentiwordnet_predictions = [analyze_sentiment_sentiwordnet_lexicon(review)
 for review in test_reviews]

 from utils import display_evaluation_metrics, display_confusion_matrix,
display_classification_report

 # get model performance statistics
 In [295]: print 'Performance metrics:'
 ...: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=sentiwordnet_

predictions,
 ...: positive_class='positive')
 ...: print '\nConfusion Matrix:'
 ...: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=sentiwordnet_

predictions,
 ...: classes=['positive', 'negative'])
 ...: print '\nClassification report:'
 ...: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=sentiwordnet_

predictions,
 ...: classes=['positive', 'negative'])
 Performance metrics:
 Accuracy: 0.59
 Precision: 0.56
 Recall: 0.92
 F1 Score: 0.7

 Confusion Matrix:
 Predicted:
 positive negative
 Actual: positive 6941 569
 negative 5510 1980

 Classification report:

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

361

 precision recall f1-score support

 positive 0.56 0.92 0.70 7510
 negative 0.78 0.26 0.39 7490

 avg / total 0.67 0.59 0.55 15000

 Our model has a sentiment prediction accuracy of around 60% and an F1-score of
70% approximately. If you look at the detailed classification report and the confusion
matrix, you will observe that we correctly classify 6941/7510 positive movie reviews as
positive, but we incorrectly classify 5510/7490 negative movie reviews as positive—which
is quite high! A way to redress this would be to change our logic slightly in our function
and relax the threshold for overall sentiment score to decide whether a document will
have an overall positive or negative sentiment from 0 to maybe 0.1 or higher. Experiment
with this threshold and see what kind of results you get.

 VADER Lexicon
 VADER stands for Valence Aware Dictionary and sEntiment Reasoner. It is a lexicon
with a rule-based sentiment analysis framework that was specially built for analyzing
sentiment from social media resources. This lexicon was developed by C. J. Hutto and
Eric Gilbert, and you will find further details in the paper, “VADER: A Parsimonious Rule-
based Model for Sentiment Analysis of Social Media Text.” You can read more about it
and even download the dataset or install the library from https://github.com/cjhutto/
vaderSentiment , which contains all the resources pertaining to the VADER lexicon.
The file vader_sentiment_lexicon.txt contains all the necessary sentiment scores
associated with various terms, including words, emoticons, and even slang language-
based tokens (like lol , wtf , nah , and so on). There are over 9000 lexical features from
which it was further curated to 7500 lexical features in this lexicon with proper validated
valence scores. Each feature was rated on a scale from "[-4] Extremely Negative" to
 "[4] Extremely Positive" , with allowance for "[0] Neutral (or Neither, N/A)" .
This curation was done by keeping all lexical features which had a non-zero mean rating
and whose standard deviation was less than 2.5, which was determined by the aggregate
of ten independent raters. A sample of the VADER lexicon is depicted as follows:

)-:< -2.2 0.4 [-2, -2, -2, -2, -2, -2, -3, -3, -2, -2]
)-:{ -2.1 0.9434 [-1, -3, -2, -1, -2, -2, -3, -4, -1, -2]
): -1.8 0.87178 [-1, -3, -1, -2, -1, -3, -1, -3, -1, -2]
 ...
 ...
 resolved 0.7 0.78102 [1, 2, 0, 1, 1, 0, 2, 0, 0, 0]
 resolvent 0.7 0.78102 [1, 0, 1, 2, 0, -1, 1, 1, 1, 1]
 resolvents 0.4 0.66332 [2, 0, 0, 1, 0, 0, 1, 0, 0, 0]
 ...
 ...
 }:-(-2.1 0.7 [-2, -1, -2, -2, -2, -4, -2, -2, -2, -2]
 }:-) 0.3 1.61555 [1, 1, -2, 1, -1, -3, 2, 2, 1, 1]

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

362

 Each line in the preceding lexicon depicts a unique term, which can be a word
or even an emoticon. The first term indicates the word/emoticon, the second column
indicates the mean or average score, the third column indicates the standard deviation,
and the final column indicates a list of scores given by ten independent scorers. The nltk
package has a nice interface for leveraging the VADER lexicon, and the following function
makes use of the same for analyzing sentiment for any text document:

 from nltk.sentiment.vader import SentimentIntensityAnalyzer

 def analyze_sentiment_vader_lexicon(review,
 threshold=0.1,
 verbose=False):
 # pre-process text
 review = normalize_accented_characters(review)
 review = html_parser.unescape(review)
 review = strip_html(review)
 # analyze the sentiment for review
 analyzer = SentimentIntensityAnalyzer()
 scores = analyzer.polarity_scores(review)
 # get aggregate scores and final sentiment
 agg_score = scores['compound']
 final_sentiment = 'positive' if agg_score >= threshold\
 else 'negative'
 if verbose:
 # display detailed sentiment statistics
 positive = str(round(scores['pos'], 2)*100)+'%'
 final = round(agg_score, 2)
 negative = str(round(scores['neg'], 2)*100)+'%'
 neutral = str(round(scores['neu'], 2)*100)+'%'
 sentiment_frame = pd.DataFrame([[final_sentiment, final, positive,
 negative, neutral]],
 columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'],
 ['Predicted Sentiment',

'Polarity Score',
 'Positive', 'Negative',
 'Neutral']],
 labels=[[0,0,0,0,0],[0,1,2,3,4]]))
 print sentiment_frame

 return final_ sentiment

 That function helps in computing the sentiment and various statistics associated with
it for any text document (movie reviews in our case). The comments explain the main
sections of the function, which include text-preprocessing, getting the necessary sentiment
scores using the VADER lexicon, aggregating them, and computing the final sentiment
(positive/negative) using a specific threshold we talked about earlier. A threshold of 0.1

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

363

seemed to work best on an average, but you can experiment further with it. The following
snippet shows us how to use this function on our sampled test movie reviews:

 # get detailed sentiment statistics
 In [301]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print
 ...: final_sentiment = analyze_sentiment_vader_lexicon(review,
 ...: threshold=0.1,
 ...: verbose=True)
 ...: print '-'*60

 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 negative 0.03 20.0% 18.0% 62.0%
 --
 Review:
 I hope this group of film-makers never re-unites.

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.44 33.0% 0.0% 67.0%
 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 negative -0.8 0.0% 40.0% 60.0%
 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet,
funny, and endearing

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

364

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.82 40.0% 0.0% 60.0%
 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.71 31.0% 0.0% 69.0%
 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.99 37.0% 2.0% 61.0%
 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 negative -0.16 17.0% 14.0% 69.0%
 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

365

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Positive Negative Neutral
 0 positive 0.49 11.0% 11.0% 77.0%
 --

 The preceding statistics are similar to our previous function except the Positive ,
 Negative , and Neutral columns indicate the percentage or proportion of the document
that is positive, negative, or neutral, and the final score is determined based on the
polarity score and the threshold. The following snippet shows the model sentiment
prediction performance on the entire test movie reviews dataset:

 # predict sentiment for test movie reviews dataset
 vader_predictions = [analyze_sentiment_vader_lexicon(review, threshold=0.1)
 for review in test_reviews]

 # get model performance statistics
 In [302]: print 'Performance metrics:'
 ...: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=vader_predictions,
 ...: positive_class='positive')
 ...: print '\nConfusion Matrix:'
 ...: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=vader_predictions,
 ...: classes=['positive', 'negative'])
 ...: print '\nClassification report:'
 ...: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=vader_predictions,
 ...: classes=['positive', 'negative'])
 Performance metrics:
 Accuracy: 0.7
 Precision: 0.65
 Recall: 0.86
 F1 Score: 0.74

 Confusion Matrix:
 Predicted:
 positive negative
 Actual: positive 6434 1076
 negative 3410 4080

 Classification report:
 precision recall f1-score support

 positive 0.65 0.86 0.74 7510
 negative 0.79 0.54 0.65 7490

 avg / total 0.72 0.70 0.69 15000

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

366

 The preceding metrics depict that our model has a sentiment prediction accuracy of
around 70 percent and an F1-score close to 75 percent, which is definitely better than our
previous model. Also notice that we are able to correctly predict positive sentiment for
6434 out of 7510 positive movie reviews, and negative sentiment correctly for 4080 out of
7490 negative movie reviews.

 Pattern Lexicon
 The pattern package is a complete package for NLP, text analytics, and information
retrieval. We discussed it in detail in previous chapters and have also used it several
times to solve several problems. This package is developed by CLiPS (Computational
Linguistics & Psycholinguistics), a research center associated with the Linguistics
Department of the Faculty of Arts of the University of Antwerp. It has a sentiment module
associated with it, along with modules for analyzing mood and modality of a body of text.

 For sentiment analysis, it analyzes any body of text by decomposing it into sentences
and then tokenizing it and tagging the various tokens with necessary parts of speech.
It then uses its own subjectivity-based sentiment lexicon, which you can access from
its official repository at https://github.com/clips/pattern/blob/master/pattern/
text/en/en-sentiment.xml . It contains scores like polarity, subjectivity, intensity, and
confidence, along with other tags like the part of speech, WordNet identifier, and so
on. It then leverages this lexicon to compute the overall polarity and subjectivity score
associated with a text document. A threshold of 0.1 is recommended by pattern itself to
compute the final sentiment of a document as positive, and anything below it as negative.

 You can also analyze the mood and modality of text documents by leveraging the
mood and modality functions provided by the pattern package. The mood function
helps in determining the mood expressed by a particular text document. This function
returns INDICATIVE , IMPERATIVE , CONDITIONAL , or SUBJUNCTIVE for any text based on its
content. The table in Figure 7-2 talks about each type of mood in further detail, courtesy
of the official documentation provided by CLiPS pattern . The column Use talks about
the typical usage patterns for each type of mood, and the examples provide some actual
examples from the English language.

 Modality for any text represents the degree of certainty expressed by the text as
a whole. This value is a number that ranges between 0 and 1. Values > 0.5 indicate
factual texts having a high certainty, and < 0.5 indicate wishes and hopes and have a low

 Figure 7-2. Different types of mood and their examples (figure courtesy of CLiPS pattern)

https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

367

certainty associated with them. We will define a function now to analyze the sentiment
for text documents using the pattern lexicon:

 from pattern.en import sentiment, mood, modality

 def analyze_sentiment_pattern_lexicon(review, threshold=0.1,
 verbose=False):
 # pre-process text
 review = normalize_accented_characters(review)
 review = html_parser.unescape(review)
 review = strip_html(review)
 # analyze sentiment for the text document
 analysis = sentiment(review)
 sentiment_score = round(analysis[0], 2)
 sentiment_subjectivity = round(analysis[1], 2)
 # get final sentiment
 final_sentiment = 'positive' if sentiment_score >= threshold\
 else 'negative'
 if verbose:
 # display detailed sentiment statistics
 sentiment_frame = pd.DataFrame([[final_sentiment, sentiment_score,
 sentiment_subjectivity]],
 columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],
 ['Predicted Sentiment',

'Polarity Score',
 'Subjectivity Score']],
 labels=[[0,0,0],

[0,1,2]]))
 print sentiment_frame
 assessment = analysis.assessments
 assessment_frame = pd.DataFrame(assessment,
 columns=pd.MultiIndex(levels=[['DETAILED

ASSESSMENT STATS:'],
 ['Key Terms', 'Polarity

Score',
 'Subjectivity Score',

'Type']],
 labels=[[0,0,0,0],

[0,1,2,3]]))
 print assessment_frame
 print

 return final_sentiment

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

368

 We will now test the function we defined to analyze the sentiment of our sample
test movie reviews and observe the results. We take a threshold of 0.1 as the cut-off to
decide between positive and negative sentiment for a document based on the aggregated
sentiment polarity score, based on several experiments and recommendations from the
official documentation:

 # get detailed sentiment statistics
 In [303]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print
 ...: final_sentiment = analyze_sentiment_pattern_lexicon(review,
 ...:
threshold=0.1,
 ...:
verbose=True)
 ...: print '-'* 60

 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative 0.06 0.62
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [worst] -1.0 1.000 None
 1 [best] 1.0 0.300 None
 2 [top] 0.5 0.500 None
 3 [acting] 0.0 0.000 None
 4 [more] 0.5 0.500 None
 5 [great] 0.8 0.750 None
 6 [appalled] -0.8 1.000 None
 7 [silly] -0.5 0.875 None

 --
 Review:
 I hope this group of film-makers never re-unites.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

369

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative 0.0 0.0
 Empty DataFrame
 Columns: [(DETAILED ASSESSMENT STATS:, Key Terms), (DETAILED ASSESSMENT
STATS:, Polarity Score), (DETAILED ASSESSMENT STATS:, Subjectivity Score),
(DETAILED ASSESSMENT STATS:, Type)]
 Index: []

 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!

 Labeled Sentiment: negative

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative -0.36 0.5
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [stupid] -0.80 1.0 None
 1 [acting] 0.00 0.0 None
 2 [average] -0.15 0.4 None
 3 [worse, !] -0.50 0.6 None

 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.19 0.67
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [little] -0.1875 0.5 None
 1 [funny] 0.2500 1.0 None
 2 [endearing] 0.5000 0.5 None

 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

370

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.4 0.71
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [mesmerizing] 0.300000 0.700000 None
 1 [certainly] 0.214286 0.571429 None
 2 [fascinating] 0.700000 0.850000 None

 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.66 0.73
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [perfect] 1.000000 1.000000 None
 1 [better] 0.500000 0.500000 None
 2 [best, !] 1.000000 0.300000 None
 3 [lovely] 0.500000 0.750000 None
 4 [much, fun] 0.300000 0.200000 None
 5 [excellent] 1.000000 1.000000 None
 6 [easy] 0.433333 0.833333 None
 7 [love] 0.500000 0.600000 None
 8 [sure] 0.500000 0.888889 None
 9 [excellent, !] 1.000000 1.000000 None
 10 [:-)] 0.500000 1.000000 mood

 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have.
You really should Get this one.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

371

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 positive 0.17 0.55
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [bad] -0.7 0.666667 None
 1 [very, good, !] 1.0 0.780000 None
 2 [really] 0.2 0.200000 None

 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot

 Labeled Sentiment: positive

 SENTIMENT STATS:
 Predicted Sentiment Polarity Score Subjectivity Score
 0 negative -0.04 0.63
 DETAILED ASSESSMENT STATS:
 Key Terms Polarity Score Subjectivity Score Type
 0 [worst] -1.000000 1.0 None
 1 [cheap] 0.400000 0.7 None
 2 [really, !, !, !, !] 0.488281 0.2 None

 --

 The preceding analysis shows the sentiment, polarity, and subjectivity scores for
each sampled review. Besides this, we also see key terms and emotions and their polarity
scores, which mainly contributed to the overall sentiment of each review. You can see
that even exclamations and emoticons are also given importance and weightage when
computing sentiment and polarity. The following snippet depicts the mood and modality
for the sampled test movie reviews:

 In [304]: for review, review_sentiment in sample_data:
 ...: print 'Review:'
 ...: print review
 ...: print 'Labeled Sentiment:', review_sentiment
 ...: print 'Mood:', mood(review)
 ...: mod_score = modality(review)
 ...: print 'Modality Score:', round(mod_score, 2)
 ...: print 'Certainty:', 'Strong' if mod_score > 0.5 \
 ...: else 'Medium' if mod_score > 0.35 \
 ...: else 'Low'
 ...: print '-'*60

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

372

 Review:
 Worst movie, (with the best reviews given it) I've ever seen. Over the top
dialog, acting, and direction. more slasher flick than thriller.With all the
great reviews this movie got I'm appalled that it turned out so silly. shame
on you martin scorsese
 Labeled Sentiment: negative
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --
 Review:
 I hope this group of film-makers never re-unites.
 Labeled Sentiment: negative
 Mood: subjunctive
 Modality Score: -0.25
 Certainty: Low
 --
 Review:
 no comment - stupid movie, acting average or worse... screenplay - no sense
at all... SKIP IT!
 Labeled Sentiment: negative
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --
 Review:
 Add this little gem to your list of holiday regulars. It is

sweet, funny, and endearing
 Labeled Sentiment: positive
 Mood: imperative
 Modality Score: 1.0
 Certainty: Strong
 --
 Review:
 a mesmerizing film that certainly keeps your attention... Ben Daniels is
fascinating (and courageous) to watch.
 Labeled Sentiment: positive
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --
 Review:
 This movie is perfect for all the romantics in the world. John Ritter has
never been better and has the best line in the movie! "Sam" hits close to
home, is lovely to look at and so much fun to play along with. Ben Gazzara
was an excellent cast and easy to fall in love with. I'm sure I've met
Arthur in my travels somewhere. All around, an excellent choice to pick up
any evening.!:-)

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

373

 Labeled Sentiment: positive
 Mood: indicative
 Modality Score: 0.58
 Certainty: Strong
 --
 Review:
 I don't care if some people voted this movie to be bad. If you want the
Truth this is a Very Good Movie! It has every thing a movie should have. You
really should Get this one.
 Labeled Sentiment: positive
 Mood: conditional
 Modality Score: 0.28
 Certainty: Low
 --
 Review:
 Worst horror film ever but funniest film ever rolled in one you have got
to see this film it is so cheap it is unbeliaveble but you have to see it
really!!!! P.s watch the carrot
 Labeled Sentiment: positive
 Mood: indicative
 Modality Score: 0.75
 Certainty: Strong
 --

 The preceding output depicts the mood, modality score, and the certainty factor
expressed by each review. It is interesting to see phrases like "Add this little gem…"
are correctly associated with the right mood, which is an imperative , and "I hope
this…" is correctly associated with subjunctive mood. The other reviews have more of an
 indicative disposition, which is quite obvious since it expresses the beliefs of the review
who wrote the movie review. Certainty is lower in cases of reviews that use words like
 "hope" , "if" , and higher in case of strongly opinionated reviews.

 Finally, we will evaluate the sentiment prediction performance of this model on our
entire test review dataset as we have done before for our other models. The following
snippet achieves the same:

 # predict sentiment for test movie reviews dataset
 pattern_predictions = [analyze_sentiment_pattern_lexicon(review,

threshold=0.1)
 for review in test_reviews]

 # get model performance statistics
 In [307]: print 'Performance metrics:'
 ...: display_evaluation_metrics(true_labels=test_sentiments,
 ...: predicted_labels=pattern_predictions,
 ...: positive_class='positive')
 ...: print '\nConfusion Matrix:'
 ...: display_confusion_matrix(true_labels=test_sentiments,
 ...: predicted_labels=pattern_predictions,
 ...: classes=['positive', 'negative'])

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

374

 ...: print '\nClassification report:'
 ...: display_classification_report(true_labels=test_sentiments,
 ...: predicted_labels=pattern_

predictions,
 ...: classes=['positive', 'negative'])
 Performance metrics:
 Accuracy: 0.77
 Precision: 0.76
 Recall: 0.79
 F1 Score: 0.77

 Confusion Matrix:
 Predicted:
 positive negative
 Actual: positive 5958 1552
 negative 1924 5566

 Classification report:
 precision recall f1-score support

 positive 0.76 0.79 0.77 7510
 negative 0.78 0.74 0.76 7490

 avg / total 0.77 0.77 0.77 15000

 This model gives a better and more balanced performance toward predicting the
sentiment of both positive and negative classes. We have an average sentiment prediction
accuracy of 77 percent and an average F1-score of 77 percent for this model. Although
the number of correct positive predictions has dropped from our previous model to
5958/7510 reviews, the number of correct predictions for negative reviews has increased
significantly to 5566/7490 reviews.

 Comparing Model Performances
 We have built a supervised classification model and three unsupervised lexicon-based
models to predict sentiment for movie reviews. For each model, we looked at its detailed
analysis and statistics for calculating sentiment. We also evaluated each model on
standard metrics like precision, recall, accuracy, and F1-score. In this section, we will
briefly look at how each model’s performance compares against the other models.
Figure 7-3 shows the model performance metrics and a visualization comparing the
metrics across all the models.

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

375

 From the visualization and the table in Figure 7-3 , it is clear that the supervised
model using SVM gives us the best results, which are expected because it was trained on
35,000 training movie reviews. Pattern lexicon performs the best among the unsupervised
techniques for our test movie reviews. Does this mean these models will always perform
the best? Absolutely not. It depends on the data you are analyzing. Remember to consider
various models and also to evaluate all the metrics when evaluating any model, and not
just one or two. Some of the models in the chart have really high recall but low precision,
which indicates these models have a tendency to make more wrong predictions or
false positives. You can re-use these benchmarks and evaluate more sentiment analysis
models as you experiment with different features, lexicons, and techniques.

 Figure 7-3. Comparison of sentiment analysis model performances

CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

376

 Summary
 In this final chapter, we have covered a variety of topics focused on semantic and
sentiment analysis of textual data. We revisited several of our concepts from Chapter
 1 with regard to language semantics. We looked at the WordNet corpus in detail and
explored the concept of synsets with practical examples. We also analyzed various lexical
semantic relations from Chapter 1 here, using synsets and real-world examples. We
looked at relationships including entailments, homonyms and homographs, synonyms
and antonyms, hyponyms and hypernyms, and holonyms and meronyms. Semantic
relations and similarity computation techniques were also discussed in detail, with
examples that leveraged common hypernyms among various synsets. Some popular
techniques widely used in semantic and information extraction were discussed, including
word sense disambiguation and named entity recognition, with examples. Besides
semantic relations, we also revisited concepts related to semantic representations,
namely propositional logic and first order logic. We leveraged the use of theorem provers
and evaluated actual propositions and logical expressions computationally.

 Next, we introduced the concept of sentiment analysis and opinion mining and saw
how it is used in various domains like social media, surveys, and feedback data. We took
a practical example of analyzing sentiment on actual movie reviews from IMDb and built
several models that included supervised machine learning and unsupervised lexicon-
based models. We looked at each technique and its results in detail and compared the
performance across all our models.

 This brings us to the end of this book. I hope the various concepts and techniques
discussed here will be helpful to and that you can use the knowledge and techniques
from this book when you tackle challenging problems in the world of text analytics and
natural language processing. You may have seen by now that there is a lot of unexplored
territory out there in the world of analyzing unstructured text data. I wish you the very
best and would like to leave you with the parting thought from Occam’s razor: Sometimes
the simplest solution is the best solution .

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1

377© Dipanjan Sarkar 2016
D. Sarkar, Text Analytics with Python, DOI 10.1007/978-1-4842-2388-8

 A
 Adjective phrase (ADJP) , 13
 Advanced word vectorization models ,

187–188
 Adverb phrase (ADVP) , 13
 Affi nity propagation (AP)

 description , 308
 exemplars , 308
 feature matrix , 309
 K-means clustering, movie data ,

310–313
 message-passing steps , 308–309
 number of movies, clusters , 309

 AFINN lexicon , 353–354
 Th e American National Corpus (ANC) , 40
 Anonymous functions , 86–87
 Antonyms , 27, 324–325
 Application programming interfaces

(APIs) , 52
 Artifi cial intelligence (AI) , 57
 Automated document summarization

 abstraction-based techniques , 251
 defi nition , 220
 elephants , 251
 extraction-based techniques , 251
 gensim, normalization , 252
 LSA , 253–255
 mathematical and statistical models ,

250
 product description , 261–263
 Python , 252
 summary_ratio , 252
 TextRank , 256–258, 260–261

 Automated text classifi cation
 binary classifi cation , 172
 description , 170
 learning methods , 171

 multi-class classifi cation , 172
 prediction process , 171
 reinforcement learning , 170
 semi-supervised learning , 170
 supervised learning , 170–171
 training process , 171–172
 unsupervised learning , 170

 Averaged word vectors , 188–190

 B
 Backus-Naur Form (BNF) , 94
 Bag of Words model , 179–182, 185–186
 BigramTagger , 140
 Bing Liu’s lexicon , 354
 Blueprint, text classifi cation , 172–174
 Th e British National Corpus (BNC) , 40

 C
 Case conversion operations , 119
 Centroid-based clustering

models , 298
 Centrum Wiskunde and Informatica

(CWI) , 51
 Th e Child Language Data Exchange

System (CHILDES) , 39
 ChunkRule , 148
 Classifi cation algorithms

 evaluation , 194
 multinomial naïve Bayes , 195–197
 supervised ML algorithms , 193
 SVM , 197–199
 training , 193
 tuning , 194
 types , 194

 Classifi erBasedPOSTagger class , 142
 Cleaning text , 115

 Index

■ INDEX

378

 Collocations , 226–230
 Common Language Runtime (CLR) , 59
 Comprehensions , 88–89
 Conda package management , 64
 conll_tag_chunks() , 151
 Constituency-based parsing , 158–159,

161–163, 165
 Continuous integration (CI) processes , 54
 Contractions , 118–119
 Th e Corpus of Contemporary American

English (COCA) , 40
 Cosine distance and similarity , 283–285,

287, 289
 CPython , 59

 D
 Database management systems (DBMS) ,

1
 Deep learning , 319
 Density-based clustering models , 298
 Dependency-based parsing

 code , 154–155
 Language Syntax and Structure , 153
 nltk , 155
 rule-based dependency , 157
 sample sentence , 156–157
 scaling , 158
 spacy’s output , 154
 textual tokens , 154
 tree/graph , 153

 DependencyGrammar class , 157
 Dictionaries , 75–76
 Distribution-based clustering models , 298
 Document clustering

 AP (see Affi nity propagation (AP))
 BIRCH and CLARANS , 298
 centroid-based clustering models , 298
 defi nition , 296
 density-based clustering

models , 298
 distribution-based clustering

models , 298
 hierarchical clustering models , 297
 IMDb , 299
 K-meansclustering (see K-means

clustering)
 movie data , 299–300
 normalization and feature

extraction , 300–301
 scikit-learn , 296

 Ward’s hierarchicalclustering
(see Ward’s agglomerative
hierarchical clustering)

 Document similarity
 build_feature_matrix() , 285
 corpus of , 286
 cosine distance and similarity , 287,

289
 HB-distance , 289–291
 mathematical computations , 285
 Okapi BM25 , 292–296
 TF-IDF features , 286
 toy_corpus index , 286

 E
 Entailments , 323
 Euclidean distance , 277–278

 F
 Feature-extraction techniques

 advanced word vectorization models ,
187–188

 averaged word vectors , 188–190
 Bag of Words model , 179–181
 defi nition , 177
 implementations, modules , 179
 TF-IDFmodel (see Term Frequency-

Inverse Document Frequency
(TF-IDF) model)

 TF-IDF weighted averaged word
vectors , 190–193

 Vector Space Model , 178
 First order logic (FOL) , 33, 338–341
 Flow of code , 78
 FOL . See First order logic (FOL)
 Functions , 84–85
 functools module , 91

 G
 Gaussian mixture models (GMM) , 298
 Generators , 90–91
 gensim library , 105
 Global Interpreter Lock (GIL) , 58
 Grammar

 classifi cation , 15
 constituency , 20–21

 conjunctions , 22
 coordinating conjunction , 23

■ INDEX

379

 lexical category , 19
 model , 19
 noun phrases , 19
 phrase structure rules , 19
 prepositional phrases , 21
 recursive properties , 21
 rules and conventions , 22
 syntax trees , 20
 verb phrases , 20

 course of time , 15
 dependencies , 15–18
 models , 15
 rules , 15
 syntax and structure, language , 15

 Graphical user interfaces (GUIs) , 56

 H
 Hamming distance , 274–275
 Handling exceptions , 82–83
 Hellinger-Bhattacharya distance

(HB-distance) , 289–291
 Hierarchical clustering models , 297, 313
 Higher order logic (HOL) , 37
 High-level language (HLL) , 52
 Holonyms , 327–328
 Homographs , 324
 Homonyms , 324
 Human-computer interaction (HCI) , 46
 Hypernyms , 325–327
 Hyperparameter tuning , 173, 194
 Hyponyms , 325–327

 I
 IMDb . See Internet Movie Database

(IMDb)
 Indexing , 97–99
 Information retrieval (IR) , 266
 Integrated development environments

(IDEs) , 61
 Internet Movie Database (IMDb) movie

reviews , 299, 307, 316–317
 datasets , 347–348
 feature-extraction , 345
 getting and formatting, data , 343
 lexicons (see Lexicons)
 model performance metrics and

visualization , 346–347, 374–375
 positive and negative , 343
 setting up dependencies , 343

 supervisedML (see Supervised
machine learning technique)

 text normalization , 343–345
 Iterators , 87–88

 J
 JAVA_HOME environment variable , 134
 Java Runtime Environment (JRE) , 134
 Java Virtual Machine (JVM) , 59

 K
 Keyphrase extraction

 collocations , 226–230
 defi nition , 219, 225
 text analytics , 226
 weighted tag–based phrase

extraction , 230–233
 K-means clustering

 analysis data , 306–307
 data structure , 303
 defi nition , 301
 functions , 303
 IMDb movie data , 307
 iterative procedure , 301
 movie data , 302
 multidimensional

scaling (MDS) , 304–306
 Kullback-Leibler divergence , 268

 L
 Lancaster stemmer , 130
 Language semantics

 antonyms , 27
 capitonyms , 27
 defi nition , 25
 FOL

 collection of well-defi ned formal
systems , 33

 components , 34
 HOL , 37
 natural language statements , 37
 quantifi ers and variables , 33, 35
 universal generalization , 36

 heterographs , 26
 heteronyms , 26
 homographs , 26
 homonyms , 26
 homophones , 26

■ INDEX

380

 hypernyms , 27
 hyponyms , 27
 lemma , 25
 lexical , 25
 linguistic , 25
 networks and models , 28–29
 PL (see Propositional logic (PL))
 polysemes , 26
 representation , 29
 synonyms , 27
 syntax and rules , 25
 wordforms , 25

 Language syntax and structure
 clauses , 11

 categories , 14
 declarative , 14
 exclamations , 14
 imperative , 14
 independent sentences , 14
 interrogative , 14
 relationship , 14
 relative , 14

 collection of words , 10
 constituent units , 10
 English , 10
 grammar (see Grammar)
 hierarchical tree , 11
 phrases , 12–13
 rules, conventions and principles , 10
 sentence , 10
 word order typology , 23–24

 Latent dirichlet allocation (LDA)
 algorithm , 243
 black box , 243
 end-to-end framework , 242
 gensim , 243
 get_topics_terms_weights()

function , 244
 LdaModel class , 244
 parameters , 242
 plate notation , 241–242
 print_topics_udf() function , 244

 Latent semantic analysis
(LSA) , 253–255

 Latent semantic indexing (LSI)
 description , 235
 dictionary , 235–236
 framework , 236
 function, thresholds , 237
 gensim and toy corpus , 235

 low_rank_svd() function , 238
 matrix computations , 241
 parameters , 237–238
 terms and weights , 239–240
 TF-IDF feature matrix , 238
 TF-IDF–weighted model , 236
 thresholds , 240–241

 Lemmatization
 nltk package , 131
 normalizing , 132
 root word , 131
 speech , 132
 wordnet corpus , 132

 Levenshtein edit distance , 278–283
 Lexical Functional Grammar

(LFG) , 158
 Lexical semantics , 25
 Lexical similarity , 271
 Lexicons

 AFINN , 353–354
 Bing Liu , 354
 description , 352
 MPQA subjectivity , 354–355
 pattern (see Pattern lexicon)
 SentiWordNet , 356–361
 VADER , 361–366

 Linguistics
 defi nition , 8
 discourse analysis , 9
 lexicon , 9
 morphology , 9
 phonetics , 8
 Phonology , 8
 pragmatics , 9
 semantics , 9
 semiotics , 9
 stylistics , 9
 syntax , 8
 term , 8

 Lists , 73–74
 Looping constructs , 80, 82
 LSA . See Latent semantic analysis (LSA)

 M
 Machine learning (ML) algorithms , 107
 Manhattan distance , 275–277
 max(candidates, key=WORD_COUNTS.

get) function , 126
 MaxentClassifi er , 142
 Meronyms , 327–328

Language semantics (cont.)

■ INDEX

381

 Multi-class text classifi cation system
 confusion matrix and SVM , 211
 feature-extraction techniques , 206–207
 metrics, prediction performance ,

207–208
 misclassifi ed documents , 212–214
 multinomial naïve Bayes and SVM ,

209–210
 normalization , 206
 scikit-learn , 208
 training and testing datasets , 204–206

 Multinomial naïve Bayes , 195–197
 Multi-Perspective Question Answering

(MPQA) subjectivity lexicon ,
354–355

 N
 Named entity recognition , 332–335
 Natural language

 acquisition
 and cognitive learning , 5–6
 and usage , 5

 analysis, data , 1
 communication , 2
 database , 1
 DBMS , 1
 direction, fi t representation , 5
 human languages , 2
 linguistics (see Linguistics)
 NLP , 1
 NLP (see Natural language

processing (NLP))
 origins of language , 2
 philosophy , 2–3
 processing , 2
 semantics (see Language semantics)
 sensors , 1
 SQL Server , 1
 syntax and structure , 11

 phrases , 13
 techniques and algorithms , 2
 textcorpora (see Text corpora/text

corpus)
 triangle of reference model , 4
 usage , 7–8

 Natural language processing (NLP) , 1, 51,
107, 319

 contextual recognition and
resolution , 48

 defi nition , 46

 HCI , 46
 machine translation , 46
 QAS , 47
 speech recognition , 47
 text analytics , 49–50
 text categorization , 49
 text summarization , 48

 Th e Natural Language Toolkit
(NLTK) , 40, 105

 NGramTagChunker , 151
 Non-negative matrix factorization

(NNMF) , 245–246
 Normalization

 contractions , 174–176
 corpus, text documents , 177
 lemmatization , 176
 stopwords , 177
 symbols and characters , 176
 techniques , 174

 Noun phrase (NP) , 12
 Numeric types , 70–72

 O
 Object-oriented programming (OOP) , 51
 Okapi BM25 ranking , 292–296

 P
 Parts of speech (POS) tagging , 38, 132,

135, 137
 Pattern lexicon

 description , 366
 mood and modality, sampled test

movie reviews , 371–373
 mood and modality, text

documents , 366–367
 sentiment prediction

performance , 373–374
 sentiment statistics , 368–371

 Phrases
 adjective phrase (ADJP) , 13
 adverb phrase (ADVP) , 13
 annotated , 13
 categories , 12
 noun phrase (NP) , 12
 prepositional phrase (PP) , 13
 principle , 12
 verb phrase (VP) , 13

 Pip package management , 63
 PL . See Propositional logic (PL)

■ INDEX

382

 Polarity analysis , 342
 Polysemous , 321
 Popular corpora

 ANC , 40
 BNC , 40
 Brown Corpus , 39
 CHILDES , 39
 COCA , 40
 Collins Corpus , 39
 Google N-gram Corpus , 40
 KWIC , 39
 LOB Corpus , 39
 Penn Treebank , 39
 reuters , 40
 Web, chat, email, tweets , 40
 WordNet , 39

 Porter stemmer , 131
 POS taggers

 bigram models , 141
 building , 138–140, 142
 classifi cation-based approach , 142
 ContextTagger class , 140
 input tokens , 141
 MaxentClassifi er , 142
 NaiveBayesClassifi er , 142
 nltk , 138
 pattern module , 138
 trigram models , 141

 Prepositional phrase (PP) , 13
 ProjectiveDependencyParser , 157
 Propositional logic (PL) , 336–337

 atomic units , 30
 complex units , 30
 connectors , 30
 constructive dilemma , 33
 declarative , 29
 Disjunctive Syllogism , 32
 Hypothetical Syllogism , 32
 Modus Ponens , 32
 Modus Tollens , 32
 operators with symbols and

precedence , 30
 sentential logic/statement logic , 29
 truth values , 31

 PunktSentenceTokenizer , 111
 PyEnchant , 128
 Python

 ABC language , 51
 advantages and benefi ts , 52
 built-in methods , 99
 classes , 91–93
 code , 51

 conditional code fl ow , 79
 database programming , 57
 data types , 69–70
 dictionaries , 75–76
 disadvantages , 58
 environment , 62–64
 formatting , 100–101
 hands-on approach , 51
 identity , 69
 implementations and

versions , 59–60
 lists , 73–74
 machine learning , 57
 manipulations and operations , 100
 numeric types , 70–72
 OS , 61
 principles , 52
 programming language , 51
 programming paradigms , 52
 Scientifi c computing , 57
 scripting , 56
 strings , 72–73
 structure , 66–68
 syntax , 66–68
 systems programming , 56
 text analytics , 57
 text data , 51
 type , 69
 value , 69
 versions , 59–60
 virtual environment , 64–66
 web development , 56

 Python 2.7.x , 58, 60
 Python 2.x , 60
 Python 3.0 , 60
 Python 3.x , 60, 94
 Python Package Index (PyPI) , 55
 Python Reserved Words , 67–68
 Python standard library (PSL) , 56

 Q
 Question Answering Systems (QAS) , 47

 R
 range() , 60
 Recursive functions , 85–86
 RegexpStemmer , 130
 RegexpTokenizer class , 112, 114
 Regular expressions (Regexes) , 101–104
 Repeating characters , 121–123

■ INDEX

383

 Rich internet applications (RIA) , 56
 Robust ecosystem , 53

 S
 SciPy libraries , 57
 Semantic analysis , 271

 FOL , 338–341
 frameworks , 336
 messages , 336
 named entity recognition , 332–335
 natural language , 320
 parts of speech (POS), chunking, and

grammars , 320
 PL , 336–337
 WordNet (see WordNet)
 word sense disambiguation , 330–331

 Sentence tokenization
 delimiters , 108
 German text , 110
 Gutenberg corpus , 109
 nltk interfaces , 112
 nltk.sent_tokenize function , 109
 pre-trained German language , 111
 pre-trained tokenizer , 111
 PunktSentenceTokenizer class , 111
 snippet , 112
 text corpora , 110
 text samples , 109

 Sentiment analysis
 description , 320, 342
 IMDb moviereviews (see Internet

Movie Database (IMDb) movie
reviews)

 polarity analysis , 342
 techniques , 342
 textual data , 342

 SentiWordNet , 356–361
 Sets , 74–75
 Shallow parsing

 chunking process , 147
 code snippet , 143–147
 conll2000 corpus , 152
 conlltags2tree() function , 152
 Evaluating Classifi cation

Models , 149
 expression-based patterns , 148
 generic functions , 144
 IOB format , 150
 noun phrases , 147
 parse() function , 151
 parser performance , 152

 POS tags , 143, 147, 151
 sentence tree , 143
 snippet , 144
 tagger_classes parameter , 151
 tokens/sequences , 148
 treebank corpus , 153
 treebank training data , 149
 visual representation , 146

 Singular Value Decomposition (SVD)
 description , 221
 extraction-based techniques , 251
 low rank matrix approximation , 222
 LSA , 253
 LSI , 235, 238, 240
 NNMF , 245

 Slicing , 97–99
 SnowballStemmer , 130
 Special characters removal , 116–117
 Speech recognition system , 47
 Spelling correction

 candidate words , 123
 case_of function , 127
 code , 124–125
 director of research , 123
 English language , 124
 preceding function , 127
 replacements , 126
 vocabulary dictionary , 128

 StemmerI interface , 129
 Stemming

 affi xes , 128
 code , 129–130
 infl ections , 129
 snippet , 130
 Snowball Project , 130
 user-defi ned rules , 130

 Stopwords , 120
 Strings indexing syntax , 72–73, 98

 literals , 94–96
 operations and methods , 96

 Supervised machine learning technique
 confusion matrix , 352
 normalization and

feature-extraction , 349
 performance metrics , 352
 positive and negative emotions , 351
 predictions , 349–351
 support vector machine (SVM) , 349
 test dataset reviews , 351–352
 text classifi cation , 348

 Support vector machines (SVM) , 197–199,
209–211

■ INDEX

384

 SVD . See Singular Value Decomposition
(SVD)

 SVM . See Support vector machines (SVM)
 Synonyms , 324–325

 T
 Term frequency-inverse document

frequency (TF-IDF) model
 Bag of Words feature vectors , 182
 CORPUS , 183–184
 CountVectorizer , 186
 defi nition , 181–182
 diagonal matrix , 185
 Euclidean norm , 182
 mathematical equations , 183
 matrix multiplication , 185
 tfi df feature vectors , 183
 tfi df weights , 185
 Tfi dfTransformer class , 183
 Tfi dfTransformer , 185–186
 Tfi dfVectorizer , 186

 Text analytics , 49–50, 104–105
 textblob , 105
 Text classifi cation

 applications and uses , 214
 automated (see Automated text

classifi cation)
 blueprint , 172–174
 conceptual representation , 169
 defi nition , 168
 documents , 167
 feature-extraction (see Feature-

extraction techniques)
 inherent properties , 167–168
 learning , 167
 machine learning (ML) , 167
 normalization , 174–177
 prediction performance, metrics

 accuracy , 202
 confusion matrix , 201–202
 emails, spam and ham , 200–201
 F1 score , 204
 precision , 203
 recall , 203

 products , 169
 types , 169

 Text corpora/text corpus
 access

 Brown Corpus , 41, 43
 NLTK , 40–41

 Reuters Corpus , 43–44
 WordNet , 44, 46

 annotation and utilities , 38
 collection of texts/data , 37
 monolingual , 37
 multilingual , 37
 origins , 38
 popular , 39–40

 Text normalization , 115, 220, 223–224
 Text pre-processing techniques , 107
 TextRank , 256–258, 260–261
 Text semantics , 319
 Text similarity

 Bag of Characters vectorization , 272
 character vectorization , 272
 cosine distance and similarity ,

283–285
 description , 265
 distance metrics , 273
 Euclidean distance , 277–278
 feature-extraction , 267, 270
 Hamming distance , 274–275
 information retrieval (IR) , 266
 Levenshtein edit

distance , 278–283
 Manhattan distance , 275–277
 normalization , 268–269
 similarity measures , 267
 terms and computing , 272–273
 text data , 265
 unsupervised machine learning

algorithms , 268
 vector representations , 274

 Text summarization
 description , 217–218
 documents , 220
 feature extraction , 221, 224–225
 feature matrix , 221
 information extraction

 automated
documentsummarization
(see Automated document
summarization)

 information overload , 218
 Internet , 218
 Keyphraseextraction (see

 Keyphrase extraction)
 production of books , 218
 techniques , 219
 topicmodeling (see Topic

modeling)

■ INDEX

385

 information overload , 218
 normalization , 220, 223–224
 social media , 217
 SVD , 221–223

 Text syntax
 Graphviz , 134
 installation , 133–134
 libraries , 133–134
 machine learning concepts , 134
 nltk , 133
 processing and normalization , 132

 TF-IDF weighted averaged word vectors ,
190–193

 tokenize_text function , 120
 Tokenizing text , 116
 Topic modeling

 defi nition , 219
 frameworks and algorithms , 234
 gensim and scikit-learn , 234
 LDA (see Latent Dirichlet allocation

(LDA))
 LSI (see Latent semantic indexing

(LSI))
 NNMF , 245–246
 product reviews , 246–250

 treebank corpus , 147
 treebank data , 148
 TreebankWordTokenizer , 113
 TrigramTagger , 140
 Tuples , 76–77

 U
 Unicode characters , 95
 UnigramTagger , 140

 V
 VADERlexicon . See Valence Aware

Dictionary and sEntiment
Reasoner (VADER) lexicon

 Valence Aware Dictionary and sEntiment
Reasoner (VADER) lexicon ,
361–366

 Vector Space Model , 178
 Verb phrase (VP) , 13

 W, X, Y
 Ward’s agglomerative hierarchical

clustering

 cosine similarity , 315
 defi ntion , 313
 dendrogram , 314
 distance metric , 314
 IMDb movie data , 316–317
 linkage criterion , 314, 315

 Ward’s minimum variance
method , 315

 Weighted tag–based phrase
extraction , 230–233

 WordNet
 defi nition , 321
 entailments , 323
 holonyms and meronyms , 327–328
 homonyms and homographs , 324
 hyponyms and hypernyms , 325–327
 lexical semantic relations , 323
 semantic relationships and

similarity , 328–330
 synonyms and antonyms , 324–325
 synsets , 321, 323
 web application interface , 321

 WordNetLemmatizer class , 132
 Word order typology , 23–24
 Words

 Adverbs , 11
 annotated, POS tags , 12
 correction , 121
 meaning , 11
 morphemes , 11
 N(oun) , 11
 parts of speech , 11
 plural nouns , 11
 pronouns , 12
 PRON tag , 12
 sense disambiguation , 330–331
 singular nouns , 11
 singular proper nouns , 11
 verbs , 11

 Word tokenization
 interfaces , 112–113
 lemmatization , 112
 nltk.word_tokenize function , 113
 patterns , 113
 regular expressions , 114
 snippet , 113
 stemming , 112

 Z
 Zen of Python , 54

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Natural Language Basics
	Natural Language
	What Is Natural Language?
	The Philosophy of Language
	Language Acquisition and Usage
	Language Acquisition and Cognitive Learning
	Language Usage

	Linguistics
	Language Syntax and Structure
	Words
	Phrases
	Clauses
	Grammar
	Dependency grammars
	Constituency Grammars

	Word Order Typology

	Language Semantics
	Lexical Semantic Relations
	Lemmas and Wordforms
	Homonyms, Homographs, and Homophones
	Heteronyms and Heterographs
	Polysemes
	Capitonyms
	Synonyms and Antonyms
	Hyponyms and Hypernyms

	Semantic Networks and Models
	Representation of Semantics
	Propositional Logic
	First Order Logic

	Text Corpora
	Corpora Annotation and Utilities
	Popular Corpora
	Accessing Text Corpora
	Accessing the Brown Corpus
	Accessing the Reuters Corpus
	Accessing the WordNet Corpus

	Natural Language Processing
	Machine Translation
	Speech Recognition Systems
	Question Answering Systems
	Contextual Recognition and Resolution
	Text Summarization
	Text Categorization

	Text Analytics
	Summary

	Chapter 2: Python Refresher
	Getting to Know Python
	The Zen of Python
	Applications: When Should You Use Python?
	Drawbacks: When Should You Not Use Python?
	Python Implementations and Versions

	Installation and Setup
	Which Python Version?
	Which Operating System?
	Integrated Development Environments
	Environment Setup
	Virtual Environments

	Python Syntax and Structure
	Data Structures and Types
	Numeric Types
	Strings
	Lists
	Sets
	Dictionaries
	Tuples
	Files
	Miscellaneous

	Controlling Code Flow
	Conditional Constructs
	Looping Constructs
	Handling Exceptions

	Functional Programming
	Functions
	Recursive Functions
	Anonymous Functions
	Iterators
	Comprehensions
	Generators
	The itertools and functools Modules

	Classes
	Working with Text
	String Literals
	String Operations and Methods
	Basic Operations
	Indexing and Slicing
	Methods
	Formatting
	Regular Expressions (Regexes)

	Text Analytics Frameworks
	Summary

	Chapter 3: Processing and Understanding Text
	Text Tokenization
	Sentence Tokenization
	Word Tokenization

	Text Normalization
	Cleaning Text
	Tokenizing Text
	Removing Special Characters
	Expanding Contractions
	Case Conversions
	Removing Stopwords
	Correcting Words
	Correcting Repeating Characters
	Correcting Spellings

	Stemming
	Lemmatization

	Understanding Text Syntax and Structure
	Installing Necessary Dependencies
	Important Machine Learning Concepts
	Parts of Speech (POS) Tagging
	Recommended POS Taggers
	Building Your Own POS Taggers

	Shallow Parsing
	Recommended Shallow Parsers
	Building Your Own Shallow Parsers

	Dependency-based Parsing
	Recommended Dependency Parsers
	Building Your Own Dependency Parsers

	Constituency-based Parsing
	Recommended Constituency Parsers
	Building Your Own Constituency Parsers

	Summary

	Chapter 4: Text Classification
	What Is Text Classification?
	Automated Text Classification
	Text Classification Blueprint
	Text Normalization
	Feature Extraction
	Bag of Words Model
	TF-IDF Model
	Advanced Word Vectorization Models
	Averaged Word Vectors
	TF-IDF Weighted Averaged Word Vectors

	Classification Algorithms
	Multinomial Naïve Bayes
	Support Vector Machines

	Evaluating Classification Models
	Building a Multi-Class Classification System
	Applications and Uses
	Summary

	Chapter 5: Text Summarization
	Text Summarization and Information Extraction
	Important Concepts
	Documents
	Text Normalization
	Feature Extraction
	Feature Matrix
	Singular Value Decomposition

	Text Normalization
	Feature Extraction
	Keyphrase Extraction
	Collocations
	Weighted Tag–Based Phrase Extraction

	Topic Modeling
	Latent Semantic Indexing
	Latent Dirichlet Allocation
	Non-negative Matrix Factorization
	Extracting Topics from Product Reviews

	Automated Document Summarization
	Latent Semantic Analysis
	TextRank
	Summarizing a Product Description

	Summary

	Chapter 6: Text Similarity and Clustering
	Important Concepts
	Information Retrieval (IR)
	Feature Engineering
	Similarity Measures
	Unsupervised Machine Learning Algorithms

	Text Normalization
	Feature Extraction
	Text Similarity
	Analyzing Term Similarity
	Hamming Distance
	Manhattan Distance
	Euclidean Distance
	Levenshtein Edit Distance
	Cosine Distance and Similarity

	Analyzing Document Similarity
	Cosine Similarity
	Hellinger-Bhattacharya Distance
	Okapi BM25 Ranking

	Document Clustering
	Clustering Greatest Movies of All Time
	K-means Clustering
	Affinity Propagation
	Ward’s Agglomerative Hierarchical Clustering

	Summary

	Chapter 7: Semantic and Sentiment Analysis
	Semantic Analysis
	Exploring WordNet
	Understanding Synsets
	Analyzing Lexical Semantic Relations
	Entailments
	Homonyms and Homographs
	Synonyms and Antonyms
	Hyponyms and Hypernyms
	Holonyms and Meronyms
	Semantic Relationships and Similarity

	Word Sense Disambiguation
	Named Entity Recognition
	Analyzing Semantic Representations
	Propositional Logic
	First Order Logic

	Sentiment Analysis
	Sentiment Analysis of IMDb Movie Reviews
	Setting Up Dependencies
	Getting and Formatting the Data
	Text Normalization
	Feature Extraction
	Model Performance Evaluation

	Preparing Datasets
	Supervised Machine Learning Technique
	Unsupervised Lexicon-based Techniques
	AFINN Lexicon
	Bing Liu’s Lexicon
	MPQA Subjectivity Lexicon
	SentiWordNet
	VADER Lexicon
	Pattern Lexicon

	Comparing Model Performances

	Summary

	Index

