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Introduction

I have been into mathematics and statistics since high school, when numbers began to 
really interest me. Analytics, data science, and more recently text analytics came much 
later, perhaps around four or five years ago when the hype about Big Data and Analytics 
was getting bigger and crazier. Personally I think a lot of it is over-hyped, but a lot of it is 
also exciting and presents huge possibilities with regard to new jobs, new discoveries, and 
solving problems that were previously deemed impossible to solve.

Natural Language Processing (NLP) has always caught my eye because the human 
brain and our cognitive abilities are really fascinating. The ability to communicate 
information, complex thoughts, and emotions with such little effort is staggering once 
you think about trying to replicate that ability in machines. Of course, we are advancing 
by leaps and bounds with regard to cognitive computing and artificial intelligence (AI), 
but we are not there yet. Passing the Turing Test is perhaps not enough; can a machine 
truly replicate a human in all aspects?

The ability to extract useful information and actionable insights from heaps of 
unstructured and raw textual data is in great demand today with regard to applications in 
NLP and text analytics. In my journey so far, I have struggled with various problems, faced 
many challenges, and learned various lessons over time. This book contains a major 
chunk of the knowledge I’ve gained in the world of text analytics, where building a fancy 
word cloud from a bunch of text documents is not enough anymore.

Perhaps the biggest problem with regard to learning text analytics is not a lack of 
information but too much information, often called information overload. There are 
so many resources, documentation, papers, books, and journals containing so much 
theoretical material, concepts, techniques, and algorithms that they often overwhelm 
someone new to the field. What is the right technique to solve a problem? How does 
text summarization really work? Which are the best frameworks to solve multi-class text 
categorization? By combining mathematical and theoretical concepts with practical 
implementations of real-world use-cases using Python, this book tries to address this 
problem and help readers avoid the pressing issues I’ve faced in my journey so far.

This book follows a comprehensive and structured approach. First it tackles the 
basics of natural language understanding and Python constructs in the initial chapters. 
Once you’re familiar with the basics, it addresses interesting problems in text analytics 
in each of the remaining chapters, including text classification, clustering, similarity 
analysis, text summarization, and topic models. In this book we will also analyze text 
structure, semantics, sentiment, and opinions. For each topic, I cover the basic concepts 
and use some real-world scenarios and data to implement techniques covering each 
concept. The idea of this book is to give you a flavor of the vast landscape of text analytics 
and NLP and arm you with the necessary tools, techniques, and knowledge to tackle your 
own problems and start solving them. I hope you find this book helpful and wish you the 
very best in your journey through the world of text analytics!
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    CHAPTER 1   

 Natural Language Basics                          

 We have ushered in the age of Big Data where organizations and businesses are having 
difficulty managing all the data generated by various systems, processes, and transactions. 
However, the term  Big Data  is misused a lot due to the nature of its popular but vague 
definition of “the 3 V’s”—volume, variety, and velocity of data. This is because sometimes 
it is very difficult to exactly quantify what data is “Big.” Some might think a billion records 
in a  database   would be Big Data, but that number seems really minute compared to the 
 petabytes  of data being generated by various  sensors   or even social media. There is a large 
volume of unstructured textual data present across all organizations, irrespective of their 
domain. Just to take some examples, we have vast amounts of data in the form of tweets, 
status updates, comments, hashtags, articles, blogs, wikis, and much more on social 
media. Even retail and e-commerce stores generate a lot of textual data from new product 
information and metadata with customer reviews and feedback. 

 The main challenges associated with  textual data   are twofold. The first challenge 
deals with effective storage and management of this data. Usually textual data is 
unstructured and does not adhere to any specific predefined data model or schema, 
which is usually followed by relational databases. However, based on the data semantics, 
you can store it in either SQL-based database management  systems   ( DBMS  ) like  SQL 
Server   or even NoSQL-based systems like MongoDB. Organizations having enormous 
amounts of textual datasets often resort to file-based systems like Hadoop where they 
dump all the data in the Hadoop Distributed File System (HDFS) and access it as needed, 
which is one of the main principles of a  data lake . 

 The second challenge is with regard to analyzing this  data   and trying to extract 
meaningful patterns and useful insights that would be beneficial to the organization. 
Even though we have a large number of machine learning and data analysis techniques 
at our disposal, most of them are tuned to work with numerical data, hence we have 
to resort to areas like  natural language processing  ( NLP  )    and specialized techniques, 
transformations, and algorithms to analyze text data, or more specifically  natural 
language , which is quite different from programming languages that are easily 
understood by machines. Remember that textual data, being highly unstructured, does 
not follow or adhere to structured or regular syntax and patterns—hence we cannot 
directly use mathematical or statistical models to analyze it. 

Electronic supplementary material The online version of this chapter 
(doi:  10.1007/978-1-4842-2388-8_1    ) contains supplementary material, which is available 
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 Before we dive into specific  techniques and algorithms   to analyze textual data, we will be 
going over some of the main concepts and theoretical principles associated with the nature 
of text data in this chapter. The primary intent here is to get you familiarized with concepts 
and domains associated with  natural language understanding ,  processing , and  text analytics . 
We will be using the Python programming language in this book primarily for accessing and 
analyzing text data. The examples in this chapter will be pretty straightforward and fairly easy 
to follow. However, you can quickly skim over Chapter   2     in case you want to brush up on 
Python before going through this chapter. All the examples are available with this book and 
also in my GithHub repository at   https://github.com/dipanjanS/text-analytics-with-
python     which includes programs, code snippets and datasets. This chapter covers concepts 
relevant to natural language, linguistics, text data formats, syntax, semantics, and grammars 
before moving on to more advanced topics like  text corpora , NLP, and text analytics. 

     Natural Language 
  Textual data   is unstructured data but it usually belongs to a specific language following 
specific syntax and semantics. Any piece of text data—a simple word, sentence, or 
document—relates back to some natural language most of the time. In this section, we 
will be looking at the definition of natural language, the philosophy of language, language 
acquisition, and the usage of language. 

     What Is Natural Language? 
 To understand text analytics and natural language  processing  , we need to understand 
what makes a language “natural.” In simple terms, a  natural  language is one developed 
and evolved by humans through natural use and  communication  , rather than 
constructed and created artificially, like a computer programming language. 

  Human languages   like English, Japanese, and Sanskrit are natural languages. Natural 
languages can be communicated in different forms, including speech, writing, or even signs. 
There has been a lot of scholarship and effort applied toward understanding the origins, 
nature, and philosophy of language. We will discuss that briefly in the following section.  

     The Philosophy of Language 
 We now know what a natural language means. But think about the following questions. 
What are the origins of a  language  ? What makes the English language “English”? How did 
the meaning of the word  fruit  come into existence? How do humans communicate among 
themselves with language? These are definitely some heavy philosophical questions. 

 The   philosophy     of language  mainly deals with the following four problems and seeks 
answers to solve them:

•    The nature of meaning in a language  

•   The use of language  

•   Language cognition  

•   The relationship between language and reality  

http://dx.doi.org/10.1007/978-1-4842-2388-8_2
https://github.com/dipanjanS/text-analytics-with-python
https://github.com/dipanjanS/text-analytics-with-python
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•    The nature of meaning in a language  is concerned with the 
semantics of a language and the nature of meaning itself. Here, 
philosophers of language or linguistics try to find out what it 
means to actually “mean” anything—that is, how the meaning of 
any word or sentence originated and came into being and how 
different words in a language can be synonyms of each other and 
form relations. Another thing of importance here is how structure 
and syntax in the language pave the way for semantics, or to be 
more specific, how words, which have their own meanings, are 
structured together to form meaningful sentences.  Linguistics  
is the scientific study of language, a special field that deals with 
some of these problems we will be looking at in more detail later 
on. Syntax, semantics, grammars, and parse trees are some ways 
to solve these problems. The nature of meaning can be expressed 
in linguistics between two human beings, notably a sender and 
a receiver, as what the sender tries to express or communicate 
when they send a message to a receiver, and what the receiver 
ends up understanding or deducing from the context of the 
received message. Also from a non-linguistic standpoint, things 
like body language, prior experiences, and psychological effects 
are contributors to meaning of language, where each human 
being perceives or infers meaning in their own way, taking into 
account some of these factors.  

•    The use of    language    is more concerned with how language is used 
as an entity in various scenarios and communication between 
human beings. This includes analyzing speech and the usage of 
language when speaking, including the speaker’s intent, tone, 
content and actions involved in expressing a message. This is often 
termed as a  speech act  in linguistics. More advanced concepts such 
as the origins of language creation and human cognitive activities 
such as language acquisition which is responsible for learning and 
usage of languages are also of prime interest.  

•    Language cognition  specifically focuses on how the cognitive 
functions of the human brain are responsible for understanding 
and interpreting language. Considering the example of a typical 
sender and receiver, there are many actions involved from 
message communication to interpretation. Cognition tries to find 
out how the mind works in combining and relating specific words 
into sentences and then into a meaningful message and what is 
the relation of language to the thought process of the sender and 
receiver when they use the language to communicate messages.  

•    The relationship between    language     and reality  explores the 
extent of truth of expressions originating from language. Usually, 
philosophers of language try to measure how factual these 
expressions are and how they relate to certain affairs in our world 
which are true. This relationship can be expressed in several ways, 
and we will explore some of them.    
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 One of the most popular models is the  triangle of reference , which is used to explain 
how words convey meaning and ideas in the minds of the receiver and how that meaning 
relates back to a real world entity or fact. The triangle of reference was proposed by 
Charles Ogden and Ivor Richards in their book,  The Meaning of Meaning , first published 
in 1923, and is denoted in Figure  1-1 .  

 The  triangle of reference model   is also known as the  meaning of meaning  model, 
and I have depicted the same in Figure1-1 with a real example of a  couch  being perceived 
by a person which is present in front of him. A  symbol  is denoted as a linguistic symbol, 
like a word or an object that evokes thought in a person’s mind. In this case, the  symbol  
is the couch, and this evokes thoughts like  what is a couch, a piece of furniture that can 
be used for sitting on or lying down and relaxing, something that gives us comfort . These 
thoughts are known as a  reference  and through this reference the person is able to relate it 
to something that exists in the real world, termed a  referent.  In this case the referent is the 
couch which the person perceives to be present in front of him. 

 The second way to find out relationships between language and reality is known as 
the  direction of fit , and we will talk about two main directions here. The  word-to-world  
direction of fit talks about instances where the usage of language can reflect reality. This 
indicates using words to match or relate to something that is happening or has already 
happened in the real world. An example would be the sentence  The Eiffel Tower is really 
big,  which accentuates a fact in reality. The other direction of fit, known as  world-to-word , 
talks about instances where the usage of language can change reality. An example here 
would be the sentence  I am going to take a swim , where the person  I  is changing reality 
by going to take a swim by representing the same in the sentence being communicated. 
Figure  1-2  shows the relationship between both the directions of fits.  

  Figure 1-1.    The triangle of reference model       
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 It is quite clear from the preceding depiction that based on the referent that is 
perceived from the real world, a person can form a representation in the form of a symbol 
or word and consequently can communicate the same to another person, which forms a 
representation of the real world based on the received symbol, thus forming a cycle.  

     Language Acquisition  and Usage   
 By now, we have seen what natural languages mean and the concepts behind language, 
its nature, meaning, and use. In this section, we will talk in further detail about how 
language is perceived, understood, and learned using cognitive abilities by humans, and 
finally we will end our discussion with the main forms of language usage, discussed in 
brief as  speech acts . It is important to not only understand what natural language denotes 
but also how humans interpret, learn, and use the same language so that we are able to 
emulate some of these concepts programmatically in our algorithms and techniques 
when we try to extract insights from textual data. 

   Language Acquisition  and Cognitive Learning   
  Language acquisition  is defined as the process by which human beings utilize their 
cognitive abilities, knowledge, and experience to understand language based on 
hearing and perception and start using it in terms of words, phrases, and sentences to 
communicate with other human beings. In simple terms, the ability of acquiring and 
producing languages is language acquisition. 

  Figure 1-2.    The direction of fit  representation         
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 The history of language  acquisition   dates back centuries. Philosophers and scholars 
have tried to reason and understand the origins of language acquisition and came up 
with several theories, such as language being a god-gifted ability that is passed down 
from generation to generation. Plato indicated that a form of word-meaning mapping 
would have been responsible in language acquisition. Modern theories have been 
proposed by various scholars and philosophers, and some of the popular ones, most 
notably B.S. Skinner, indicated that knowledge, learning, and use of language were 
more of a behavioral consequent. Human beings, or to be more specific, children, when 
using specific words or symbols of any language, experience language based on certain 
stimuli which get reinforced in their memory thanks to consequent reactions to their 
usage repeatedly. This theory is based on  operant  or  instrumentation conditioning , 
which is a type of conditional learning where the strength of a particular behavior or 
action is modified based on its consequences such as reward or punishment, and these 
consequent stimuli help in reinforcing or controlling behavior and learning. An example 
would be that children would learn that a specific combination of sounds made up a word 
from repeated usage of it by their parents or by being rewarded by appreciation when 
they speak it correctly or by being corrected when they make a mistake while speaking 
the same. This repeated conditioning would end up reinforcing the actual meaning and 
understanding of the word in a child’s memory for the future. To sum it up, children try to 
learn and use language mostly behaviorally by imitating and hearing from adults. 

 However, this behavioral theory was challenged by renowned linguist Noam 
Chomsky, who proclaimed that it would be impossible for children to learn language just 
by imitating everything from adults. This hypothesis does stand valid in the following 
examples. Although words like  go  and  give  are valid, children often end up using an 
invalid form of the word, like  goed  or  gived  instead of  went  or  gave  in the past tense. 
It is assured that their parents didn’t utter these words in front of them, so it would be 
impossible to pick these up based on the previous theory of Skinner. Consequently, 
Chomsky proposed that children must not only be imitating words they hear but also 
extracting patterns, syntax, and rules from the same language constructs, which is 
separate from just utilizing generic cognitive abilities based on behavior. 

 Considering Chomsky’s view, cognitive  abilities   along with language-specific 
knowledge and abilities like syntax, semantics, concepts of parts of speech, and grammar 
together form what he termed a  language acquisition device  that enabled humans to 
have the ability of  language acquisition . Besides cognitive abilities, what is unique 
and important in language learning is the syntax of the language itself, which can be 
emphasized in his famous sentence  Colorless green ideas sleep furiously . If you observe 
the sentence and repeat it many times, it does not make sense.  Colorless  cannot be 
associated with green, and neither can ideas be associated with green, nor can they sleep 
furiously. However, the sentence has a grammatically correct syntax. This is precisely 
what Chomsky tried to explain—that syntax and grammar depict information that is 
independent from the meaning and semantics of words. Hence, he proposed that the 
learning and identifying of language syntax is a separate human capability compared 
to other cognitive abilities. This proposed hypothesis is also known as the  autonomy 
of syntax . These theories are still widely debated among scholars and linguists, but it is 
useful to explore how the human mind tends to acquire and learn language. We will now 
look at the typical patterns in which language is generally  used  .  
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   Language  Usage   
 The previous section talked about speech acts and how the direction of fit model 
is used for relating words and symbols to reality. In this section we will cover some 
concepts related to speech acts that highlight different ways in which language is used in 
communication. 

 There are three main categories of speech acts:  locutionary ,  illocutionary , and 
 perlocutionary  acts.  Locutionary  acts are mainly concerned with the actual delivery 
of the sentence when communicated from one human being to another by speaking 
it.  Illocutionary  acts focus further on the actual semantics and significance of the 
sentence which was communicated.  Perlocutionary  acts refer to the actual effect the 
communication had on its receiver, which is more psychological or behavioral. 

 A simple example would be the phrase  Get me the book from the table  spoken by a 
father to his child. The phrase when spoken by the father forms the locutionary act. This 
significance of this sentence is a directive, which directs the child to get the book from the 
table and forms an illocutionary act. The action the child takes after hearing this, that is, if 
he brings the book from the table to his father, forms the perlocutionary act. 

 The illocutionary act was a directive in this case. According to the philosopher John 
Searle, there are a total of five different classes of illocutionary speech acts, as follows:

•     Assertives  are speech acts that communicate how things are already 
existent in the world. They are spoken by the sender when he tries 
to assert a proposition that could be true or false in the real world. 
These assertions could be statements or declarations. A simple 
example would be  The Earth revolves round the Sun . These messages 
represent the word-to-world direction of fit discussed earlier.  

•    Directives  are speech acts that the sender communicates to the 
receiver asking or directing them to do something. This represents 
a voluntary act which the receiver might do in the future after 
receiving a directive from the sender. Directives can either be 
complied with or not complied with, since they are voluntary. These 
directives could be simple requests or even orders or commands. 
An example directive would be  Get me the book from the table , 
discussed earlier when we talked about types of speech acts.  

•    Commisives  are speech acts that commit the sender or speaker 
who utters them to some future voluntary act or action. Acts like 
promises, oaths, pledges, and vows represent commisives, and 
the direction of fit could be either way. An example commisive 
would be  I promise to be there tomorrow for the ceremony .  

•    Expressives  reveal a speaker or sender’s disposition and outlook 
toward a particular proposition communicated through the 
message. These can be various forms of expression or emotion, 
such as congratulatory, sarcastic, and so on. An example 
expressive would be  Congratulations on graduating top of the class .  
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•     Declarations    are powerful speech acts that have the capability 
to change the reality based on the declared proposition in the 
message communicated by the speaker\sender. The usual direction 
of fit is world-to-word, but it can go the other way also. An example 
declaration would be  I hereby declare him to be guilty of all charges .    

 These speech acts are the primary ways in which language is used and 
communicated among human beings, and without even realizing it, you end up using 
hundreds of them on any given day. We will now look at linguistics and some of the main 
areas of research associated with it.    

      Linguistics   
 We have touched on what natural language means, how language is learned and used, 
and the origins of language acquisition. These kinds of things are formally researched 
and studied in linguistics by researchers and scholars called  linguists . Formally,  linguistics  
is  defined   as the scientific study of language, including form and syntax of language, 
meaning, and semantics depicted by the usage of language and context of use. The origins 
of linguistics can be dated back to the 4th century BCE, when Indian scholar and linguist 
Panini formalized the Sanskrit language description. The  term    linguistics  was first defined 
to indicate the scientific study of languages in 1847, approximately before which the term 
 philology  was used to indicate the same. Although a detailed exploration of linguistics is 
not needed for text analytics, it is useful to know the different areas of linguistics because 
some of them are used extensively in natural language processing and text analytics 
algorithms. The main distinctive areas of study under linguistics are as follows:

•      Phonetics   : This is the study of the acoustic properties of sounds 
produced by the human vocal tract during speech. It includes 
studying the properties of sounds as well as how they are created 
and by human beings. The smallest individual unit of human 
speech in a specific language is called a  phoneme.  A more generic 
term across languages for this unit of speech is  phone .  

•     Phonology   : This is the study of sound patterns as interpreted in 
the human mind and used for distinguishing between different 
phonemes to find out which ones are significant. The structure, 
combination, and interpretations of phonemes are studied in 
detail, usually by taking into account a specific language at a 
time. The English language consists of around 45 phonemes. 
Phonology usually extends beyond just studying phonemes and 
includes things like accents, tone, and syllable structures.  

•     Syntax   : This is usually the study of sentences, phrases, words, and 
their structures. It includes researching how words are combined 
together grammatically to form phrases and sentences. Syntactic 
order of words used in a phrase or a sentence matter because the 
order can change the meaning entirely.  
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•     Semantics   : This involves the study of meaning in language 
and can be further subdivided into lexical and compositional 
semantics.

•     Lexical semantics : The study of the meanings of words and 
symbols using morphology and syntax.  

•    Compositional semantics : Studying relationships among 
words and combination of words and understanding the 
meanings of phrases and sentences and how they are related.     

•     Morphology   : A  morpheme  is the smallest unit of language that 
has distinctive meaning. This includes things like words, prefixes, 
suffixes, and so on which have their own distinct meanings. 
Morphology is the study of the structure and meaning of these 
distinctive units or morphemes in a language. Specific rules and 
syntaxes usually govern the way morphemes can combine together.  

•     Lexicon   : This is the study of properties of words and phrases 
used in a language and how they build the vocabulary of the 
language. These include what kinds of sounds are associated with 
meanings for words, the parts of speech words belong to, and 
their morphological forms.  

•     Pragmatics   : This is the study of how both linguistic and non-
linguistic factors like context and scenario might affect the 
meaning of an expression of a message or an utterance. This 
includes trying to infer whether there are any hidden or indirect 
meanings in the communication.  

•     Discourse analysis   : This analyzes language and exchange of 
information in the form of sentences across conversations among 
human beings. These conversations could be spoken, written, or 
even signed.  

•     Stylistics   : This is the study of language with a focus on the style of 
writing, including the tone, accent, dialogue, grammar, and type 
of voice.  

•     Semiotics   : This is the study of signs, symbols, and sign processes 
and how they communicate meaning. Things like analogy, 
metaphors, and symbolism are covered in this area.    

 Although these are the main areas of study and research, linguistics is an enormous field 
with a much bigger scope than what is mentioned here. However, things like language syntax 
and semantics are some of the most important concepts that often form the foundations to 
natural language processing. The following section looks at them more closely.  
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     Language  Syntax and Structure   
 We already know what language, syntax, and structure indicate. Syntax and structure 
usually go hand in hand, where a set of specific rules, conventions, and  principles   usually 
govern the way words are combined into phrases, phrases get combines into clauses, and 
clauses get combined into sentences. We will be talking specifically about the  English   
language syntax and structure in this section because in this book we will be dealing 
with textual data that belongs to the  English   language. But a lot of these concepts can be 
extended to other languages too. Knowledge about the structure and syntax of language is 
helpful in many areas like text processing, annotation, and parsing for further operations 
such as text classification or summarization. 

 In English, words usually combine together to form other  constituent units  . These 
constituents include words, phrases, clauses, and sentences. All these constituents 
exist together in any message and are related to each other in a hierarchical structure. 
Moreover, a sentence is a structured format of representing a collection of words provided 
they follow certain syntactic rules like grammar. Look at the bunch of words represented 
in Figure  1-3 .  

 From the collection of words in Figure  1-3 , it is very difficult to ascertain what it 
might be trying to convey or mean. Indeed, languages are not just comprised of groups of 
unstructured words. Sentences with proper syntax not only help us give proper structure 
and relate words together but also help them convey meaning based on the order or 
position of the words. Considering our previous hierarchy of sentence → clause → phrase 
→ word, we can construct the hierarchical sentence tree in Figure  1-4  using  shallow 
parsing , a technique using for finding out the constituents in a sentence.  

  Figure 1-3.    A  collection of words   without any relation or structure       

  Figure 1-4.    Structured  sentence   following the hierarchical syntax       
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 From the  hierarchical tree   in Figure  1-4 , we get the sentence  The brown fox is quick 
and he is jumping over the lazy dog . We can see that the leaf nodes of the tree consist of 
words, which are the smallest unit here, and combinations of words form phrases, which 
in turn form  clauses. Clauses      are connected together through various filler terms or words 
such as conjunctions and form the final sentence. In the next section, we will look at each 
of these constituents in further detail and understand how to analyze them and find out 
what the major syntactic categories are. 

     Words 
   Words    are the smallest units in a language that are independent and have a  meaning   of 
their own. Although  morphemes   are the smallest distinctive units, morphemes are not 
independent like words, and a word can be comprised of several morphemes. It is useful 
to annotate and tag words and analyze them into their parts of speech (POS) to see the 
major syntactic categories. Here, we will cover the main categories and significance of the 
various POS tags. Later in Chapter   3     we will examining them in further detail and looking 
at methods of generating POS tags programmatically. 

 Usually, words can fall into one of the following major categories.

•      N(oun)   : This usually denotes words that depict some object or 
entity which may be living or nonliving. Some examples would be 
 fox ,  dog ,  book , and so on. The POS tag symbol for nouns is  N .  

•    V(erb) :  Verbs   are words that are used to describe certain actions, 
states, or occurrences. There are a wide variety of further 
subcategories, such as auxiliary, reflexive, and transitive verbs (and 
many more). Some typical examples of verbs would be  running , 
 jumping ,  read , and  write . The POS tag symbol for verbs is  V .  

•    Adj(ective) : Adjectives are words used to describe or qualify other 
words, typically nouns and noun phrases. The phrase  beautiful 
flower  has the noun (N)  flower  which is described or qualified 
using the adjective (ADJ)  beautiful . The POS tag symbol for 
adjectives is  ADJ .  

•    Adv(erb) :  Adverbs   usually act as modifiers for other words 
including nouns, adjectives, verbs, or other adverbs. The phrase 
 very beautiful flower  has the adverb (ADV)  very , which modifies 
the adjective (ADJ)  beautiful , indicating the degree to which the 
flower is beautiful. The POS tag symbol for adverbs is  ADV .    

 Besides these four major categories of  parts of speech  , there are other categories 
that occur frequently in the English language. These include pronouns, prepositions, 
interjections, conjunctions, determiners, and many others. Furthermore, each POS tag 
like the noun (N) can be further subdivided into categories like  singular nouns   (NN), 
 singular proper nouns   (NNP), and  plural nouns   (NNS). We will be looking at POS tags in 
further detail in Chapter   3     when we process and parse textual data and implement POS 
taggers to annotate text. 

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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 Considering our previous example sentence ( The brown fox is quick and he is 
jumping over the lazy dog ) where we built the hierarchical syntax tree, if we were to 
annotate it using basic POS tags, it would look like Figure  1-5 .  

 In Figure  1-5  you may notice a few unfamiliar tags. The tag DET stands for 
 determiner , which is used to depict articles like  a ,  an ,  the , and so on. The tag CONJ 
indicates  conjunction , which is usually used to bind together clauses to form sentences. 
The  PRON tag   stands for  pronoun , which represents words that are used to represent or 
take the place of a noun. 

 The tags N, V, ADJ and ADV are typical open classes and represent words belonging 
to an open vocabulary.  Open classes  are word classes that consist of an infinite set of words 
and commonly accept the addition of new words to the vocabulary which are invented 
by people. Words are usually added to open classes through processes like  morphological 
derivation , invention based on usage, and creating  compound lexemes . Some popular 
nouns added fairly recently include  Internet  and  multimedia. Closed classes  consist of a 
closed and finite set of words and do not accept new additions.  Pronouns   are a closed class. 

 The following section looks at the next level of the hierarchy: phrases.  

      Phrases   
 Words have their own lexical properties like parts of speech, which we saw earlier. Using 
these words, we can order them in ways that give meaning to the words such that each 
word belongs to a corresponding phrasal  category   and one of the words is the main or head 
word. In the hierarchy tree, groups of words make up  phrases , which form the third level 
in the syntax tree. By  principle  , phrases are assumed to have at least two or more words, 
considering the pecking order of words ← phrases ← clauses ← sentences. However, a 
phrase  can  be a single word or a combination of words based on the syntax and position 
of the phrase in a clause or sentence. For example, the sentence  Dessert was good  has only 
three words, and each of them rolls up to three phrases. The word  dessert  is a noun as well 
as a  noun phrase ,  is  depicts a verb as well as a  verb phrase , and  good  represents an adjective 
as well as an  adjective phrase  describing the aforementioned dessert. 

 There are five major  categories   of phrases:

•      Noun phrase (NP)      : These are phrases where a noun acts as 
the head word. Noun phrases act as a subject or object to a 
verb. Usually a noun phrases can be a set of words that can be 
replaced by a pronoun without rendering the sentence or clause 
syntactically incorrect. Some examples would be  dessert ,  the lazy 
dog , and  the brown fox .  

  Figure 1-5.     Annotated   words with their POS tags       
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•     Verb phrase (VP)      : These phrases are lexical units that have a 
verb acting as the head word. Usually there are two forms of verb 
phrases. One form has the verb components as well as other 
entities such as nouns, adjectives, or adverbs as parts of the 
object. The verb here is known as a  finite verb . It acts as a single 
unit in the hierarchy tree and can function as the root in a clause. 
This form is prominent in  constituency grammars . The other form 
is where the finite verb acts as the root of the entire clause and 
is prominent in  dependency grammars . Another derivation of 
this includes verb phrases strictly consisting of verb components 
including main, auxiliary, infinitive, and participles. The sentence 
 He has started the engine  can be used to illustrate the two types of 
verb phrases that can be formed. They would be  has started the 
engine  and  has started , based on the two forms just discussed.  

•     Adjective phrase (ADJP)      : These are phrases with an adjective as 
the head word. Their main role is to describe or qualify nouns 
and pronouns in a sentence, and they will be either placed before 
or after the noun or pronoun. The sentence  The cat is too quick  
has an adjective phrase,  too quick , qualifying  cat , which is a noun 
phrase.  

•     Adverb phrase (ADVP)      : These phrases act like adverbs since 
the adverb acts as the head word in the phrase. Adverb phrases 
are used as modifiers for nouns, verbs, or adverbs themselves 
by providing further details that describe or qualify them. In 
the sentence  The train should be at the station pretty soon , the 
adjective phrase  pretty soon  describes when the train would be 
arriving.     

•     Prepositional phrase (PP)      : These phrases usually contain a 
preposition as the head word and other lexical components like 
nouns, pronouns, and so on. It acts like an adjective or adverb 
describing other words or phrases. The phrase  going up the stairs  
contains a prepositional phrase  up , describing the direction of the 
stairs.       

 These five major syntactic categories of phrases can be generated from words using 
several rules, some of which have been discussed, like utilizing syntax and grammars 
of different types. We will be exploring some of the popular grammars in a later section. 
 Shallow parsing  is a popular natural language processing technique to extract these 
constituents, including POS tags as well as phrases from a sentence. For our sentence  The 
brown fox is quick and he is jumping over the lazy dog , we have obtained seven phrases 
from shallow parsing, as shown in Figure  1-6 .  

  Figure 1-6.     Annotated   phrases with their tags       
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 The phrase tags fall into the categories discussed earlier, although the word  and  is a 
conjunction and is usually used to combine clauses together. In the next section, we will 
be looking at clauses, their main categories, and some conventions and syntactic rules for 
extracting clauses from sentences.  

     Clauses 
 By nature, clauses can act as  independent sentences  , or several clauses can be combined 
together to form a sentence. A  clause  is a group of words with some  relation   between 
them that usually contains a subject and a predicate. Sometimes the subject is not 
present, and the predicate usually has a verb phrase or a verb with an object. By default 
you can classify clauses into two distinct  categories  : the  main clause  and the  subordinate 
clause . The main clause is also known as an  independent  clause because it can form a 
sentence by itself and act as both sentence and clause. The subordinate or  dependent  
clause cannot exist just by itself and depends on the main clause for its meaning. They 
are usually joined with other clauses using dependent words such as subordinating 
conjunctions. 

 With regard to syntactic properties of language, clauses can be subdivided into 
several categories based on syntax:

•      Declarative   : These clauses usually occur quite frequently and 
denote statements that do not have any specific tone associated 
with them. These are just standard statements, which are declared 
with a neutral tone and which could be factual or non-factual. An 
example would be  Grass is green .  

•     Imperative   : These clauses are usually in the form of a request, 
command, rule, or advice. The tone in this case would be a 
person issuing an order to one or more people to carry out an 
order, request, or instruction. An example would be  Please do not 
talk in class .  

•    Relative : The simplest interpretation of   relative    clauses is that they 
are subordinate clauses and hence dependent on another part 
of the sentence that usually contains a word, phrase, or even a 
clause. This element usually acts as the antecedent to one of the 
words from the relative clause and relates to it. A simple example 
would be  John just mentioned that he wanted a soda , having 
the antecedent proper noun  John , which was referred to in the 
relative clause  he wanted a soda .  

•     Interrogative   : These clauses usually are in the form of questions. 
The type of these questions can be either affirmative or negative. 
Some examples would be  Did you get my mail?  and  Didn’t you go 
to school?   

•    Exclamative : These clauses are used to express shock, surprise, 
or even compliments. These expressions fall under   exclamations   , 
and these clauses often end with an exclamation mark. An 
example would be  What an amazing race!     

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 1 ■ NATURAL LANGUAGE BASICS

15

 Usually most clauses are expressed in one of the previously mentioned syntactic 
forms, though this list of clause categories is not an exhaustive list and can be further 
categorized into several other forms. Considering our example sentence  The brown 
fox is quick and he is jumping over the lazy dog , if you remember the syntax tree, the 
coordinating conjunction  and  divides the sentence into two clauses:  The brown fox is 
quick  and  he is jumping over the lazy dog.  Can you guess what categories they might fall 
into? (Hint: Look back at the definitions of declarative and relative clauses).  

     Grammar 
  Grammar  helps in enabling both syntax and structure in  language  . It primarily consists of a set 
of rules used in determining how to position words, phrases, and clauses when constructing 
sentences for any natural language. Grammar is not restricted to the written word—it also 
operates verbally.  Rules   of grammar can be specific to a region, language, or dialect or be 
somewhat universal like the Subject-Verb-Object (SVO) model. Origins of grammar have a 
rich history, starting with Sanskrit in India. In the West, the study of grammar originated with 
the Greeks, and the earliest work was the  Art of Grammar , written by Dionysius Thrax. Latin 
grammar  models   were developed from the Greek models, and gradually across several ages, 
grammars for various languages were created. It was only in the 18th century that grammar 
was considered as a serious candidate to be a field under linguistics. 

 Grammars have evolved over the  course of time  , leading to the birth of newer types 
of grammars, and various older grammars slowly lost prominence. Hence grammar is 
not just a fixed set of rules but also its evolution based on the usage of language over the 
course of time among humans. In English, there are several ways in which grammars can 
be  classified  . We will first talk about two broad classes, into which most of the popular 
grammatical frameworks can be grouped. Then we will further explore how these 
grammars represent language. 

  Grammar   can be subdivided into two main classes—dependency grammars and 
constituency grammars—based on their representations for linguistic syntax and structure. 

   Dependency grammars 
 These grammars do not focus on constituents like words, phrases, and clauses but place 
more emphasis on words. These grammars are also known as  word-based  grammars. To 
understand dependency grammars, we should first know what  dependency  means in this 
context.  Dependencies   in this context are labeled word-word relations or links that are 
usually asymmetrical. A word has a relation or depends on another word based on the 
positioning of the words in the sentence. Consequently, dependency grammars assume 
that further constituents of phrases and clauses are derived from this dependency 
structure between words. 

 The basic principle behind a dependency grammar is that in any sentence in the 
language, all the words except one word has some relationship or dependency on other 
words in the sentence. The word that has no dependency is called the  root  of the sentence. 
The verb is taken as the root of the sentence in most cases. All the other words are directly 
or indirectly linked to the root verb using  links , which are the dependencies. Although there 
are no concepts of phrases or clauses, looking at the syntax and relations between words 
and their dependents, one can determine the necessary constituents in the sentence. 
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 Dependency  grammars   always have a one-to-one relationship correspondence for 
each word in the sentence. There are two aspects to this grammar representation. One 
is the syntax or structure of the sentence, and the other is the semantics obtained from 
the relationships denoted between the words. The syntax or structure of the words and 
their interconnections can be shown using a sentence syntax or parse tree similar to that 
depicted in an earlier section. Considering our sentence  The brown fox is quick and he is 
jumping over the lazy dog , if we wanted to draw the dependency syntax tree for this, we 
would have the structure denoted in Figure  1-7 .  

 Figure  1-7  shows that the dependencies form a tree—or to be more accurate, a 
 graph —over all the words in the sentence. The graph is connected where each word has 
at least one directed edge going out or coming into it. The graph is also directed because 
each edge between two words points to one specific direction. In essence, the dependency 
tree is a  directed acyclic graph  (DAG). Every node in the tree has at most one incoming 
edge, except the root node. Because this is a directed graph, by nature dependency trees 
do not depict the order of the words in the sentence but emphasize more the relationship 
between the words in the sentence. Our sentence is annotated with the relevant POS tags 
discussed earlier, and the directed edges show the dependency. Now, if you remember, 
we just discussed earlier that there were two aspects to the representation of sentences 
using dependency grammar. Each directed edge represents a specific type of meaningful 
relationship (also known as  syntactic function ). We can annotate our sentence further 
showing the specific dependency relationship types between the  words  . 

 The same is depicted in Figure  1-8 . An important point to remember here is that 
different variations of this graph might exist based on the parser you are using because 
it depends on how the parser was initially trained, the kind of data which was used for 
training it, and the kind of tag system it uses.  

  Figure 1-7.    Dependency  grammar   based syntax tree with POS tags       
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 These dependency relationships each have their own meaning and are a part of 
a list of universal dependency types. This is discussed in an original paper,    Universal 
Stanford Dependencies: A Cross-Linguistic Typology      by de Marneffe et al, 2014). You 
can check out the exhaustive list of dependency types and their meanings at    http://
universaldependencies.org/u/dep/index.html     . If we observe some of these 
dependencies, it is not too hard to understand them. Let’s look in detail at some of the 
tags used in the dependencies for the sentence in Figure  1-8 .

•    The dependency tag  det  is pretty intuitive—it denotes the determiner 
relationship between a nominal head and the determiner. Usually 
the word with POS tag DET will also have the det dependency tag 
relation. Examples include ( fox  →  the ) and ( dog  →  the ).  

•   The dependency tag  amod  stands for  adjectival modifier  and 
stands for any adjective that modifies the meaning of a noun. 
Examples include ( fox  →  brown ) and ( dog  →  lazy ).  

•   The dependency tag  nsubj  stands for an entity that acts as a 
 subject  or agent in a clause. Examples include ( is  →  fox ) and 
( jumping  →  he ).  

•   The  dependencies    cc  and  conj  are more to do with linkages 
related to words connected by  coordinating conjunctions . 
Examples include ( is  →  and ) and ( is  →  jumping ).  

  Figure 1-8.    Dependency grammar–based  syntax   tree annotated with dependency 
relationship types       

 

http://nlp.stanford.edu/pubs/USD_LREC14_paper_camera_ready.pdf
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•   The dependency tag  aux  indicates the  auxiliary  or secondary verb 
in the clause. Example: ( jumping  →  is ).  

•   The dependency tag  acomp  stands for  adjective complement  
and acts as the complement or object to a verb in the sentence. 
Example: ( is  →  quick ).  

•   The dependency tag  prep  denotes a  prepositional  modifier, 
which usually modifies the meaning of a noun, verb, adjective, or 
preposition. Usually this representation is used for prepositions 
having a noun or noun phrase complement. Example: (jumping 
→ over).  

•   The dependency tag  pobj  is used to denote the  object of a 
preposition . This is usually the head of a noun phrase following a 
preposition in the sentence. Example: (over → dog).    

 The preceding tags have been extensively used in our sample sentence for 
annotating the various dependency relationships among the words. Now that you 
understand dependency relationships better, consider that often when representing a 
dependency grammar for sentences, instead of creating a tree with linear orders, you can 
also represent it with a normal graph because there is no concept of order of words in 
dependency grammar. Figure  1-9  depicts the  same  .  

 Figure  1-9  was created courtesy of spacy.io, which has some robust NLP modules 
also in a library that is open source. (When we cover constituency-based grammars next, 
observe that the number of nodes in dependency grammars is smaller compared to their 
constituency counterparts.) Currently there are various grammatical frameworks based 
on dependency grammar. Some popular ones include Algebraic Syntax and Operator 
Grammar.  

  Figure 1-9.    Dependency  grammar   annotated graph for our sample sentence       
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   Constituency Grammars 
 Constituency grammars are a class of grammars built upon the principle that a sentence 
can be represented by several constituents derived from it. These grammars can be used 
to  model   or represent the internal structure of sentences in terms of a hierarchically 
ordered structure of their constituents. Each and every word usually belongs to a specific 
 lexical category   in the case and forms the head word of different phrases. These phrases 
are formed based on rules called  phrase structure rules . Hence, constituency grammars 
are also called  phrase structure grammars . Phrase structure grammars were first 
introduced by Noam Chomsky in the 1950s. To understand constituency grammars we 
must know clearly what we mean by  constituents . To refresh your memory,  constituents  
are words or groups of words that have specific meaning and can act together as a 
dependent or independent unit. They can also be combined together further to form 
higher-order structures in a sentence, including phrases and clauses. 

  Phrase structure rules   form the core of constituency grammars because they talk 
about syntax and rules that govern the hierarchy and ordering of the various constituents 
in the sentences. These rules cater to two things primarily. First and foremost, they 
determine what words are used to construct the phrases or constituents. Secondly, these 
rules determine how we need to order these constituents together. If we want to analyze 
phrase structure, we should we aware of typical schema patterns of the phrase structure 
rules. The generic representation of a phrase structure rule is  S → AB , which depicts that 
the structure  S  consists of constituents  A  and  B , and the ordering is  A  followed by  B . 

 There are several  phrase structure rules  , and we will explore them one by one to 
understand how exactly we extract and order constituents in a sentence. The most 
important rule describes how to divide a sentence or a clause. The phrase structure rule 
denotes a binary division for a sentence or a clause as  S → NP VP  where  S  is the  sentence  
or clause, and it is divided into the subject, denoted by the  noun phrase  (NP) and the 
predicate, denoted by the  verb phrase  (VP). 

 We can apply more rules to break down each of the constituents further, but the top 
level of the hierarchy usually starts with a NP and VP. The rule for representing a noun 
phrase is  NP → [DET][ADJ]N [PP] , where the square brackets denote that it is optional. 
Usually a noun phrase consists of a noun (N) definitely as the head word and may 
optionally contain determinants (DET) and adjectives (ADJ) describing the noun, and a 
prepositional phrase (PP) at the right side in the syntax tree. Consequently, a noun phrase 
may contain another noun phrase as a constituent of it. Figure  1-10  shows a few examples 
that are governed by the aforementioned rules for noun phrases.  

  Figure 1-10.    Constituency syntax trees depicting structuring rules for  noun phrases         
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 The  syntax trees   in Figure  1-10  show us the various constituents a noun phrase 
typically contains. As mentioned, a noun phrase denoted by NP on the left side of the 
production rule may also appear on the right side of the production rule, as depicted 
in the preceding example. This is a property called  recursion , and we will talk about it 
toward the end of this  section  . 

 We will now look at rules for representing verb phrases. The rule is of the form 
 VP → V | MD [ VP ][ NP ][ PP ][ ADJP ][ ADVP ], where the head word is usually a verb (V) or a 
modal (MD). A  modal  is itself an auxiliary verb, but we give it a different representation 
just to distinguish it from a normal verb. This is followed by optionally another verb 
phrase (VP) or noun phrase (NP), prepositional phrase (PP), adjective phrase (ADJP), or 
adverbial phrase (ADVP). The verb phrase is always the second component when we split 
a sentence using the binary division rule, making the noun phrase the first component. 
Figure  1-11  depicts a few examples for the different types of verb phrases that can be 
typically constructed and their representations as syntax trees.  

 As depicted earlier, the syntax trees in Figure  1-11  show the representations of the 
various constituents in verb phrases. Using the property of recursion, a verb phrase may 
also contain another verb phrase inside it, as you can see in the second syntax tree. You 
can also see the hierarchy being maintained especially in the third and fourth syntax 
trees, where the NP and PP by itself are further constituents under the VP, and they can be 
further broken down into smaller constituents. 

 Since we have seen a lot of prepositional phrases being used in examples, let’s look at 
the production rules for representing prepositional phrases. The basic rule has the form 
 PP → PREP [ NP ], where PREP denotes a preposition, which acts as the head word, and it is 
optionally followed by a noun phrase (NP). Figure  1-12  depicts some representations of 
prepositional phrases and their corresponding syntax trees.  

  Figure 1-11.    Constituency syntax trees depicting structuring rules for  verb phrases         
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 These two syntax trees  show   some different representations for prepositional 
phrases. 

 Recursion is an inherent property of language that allows constituents to be 
embedded in other constituents, which are depicted by different phrasal categories that 
appear on both sides of the production rules. Recursion lets us create long constituency-
based syntax trees from sentences. A simple example is the representation of the sentence 
 The flying monkey in the circus on the trapeze by the river  depicted by the constituency 
parse tree in Figure  1-13 .  

  Figure 1-12.    Constituency syntax trees depicting structuring rules for  prepositional phrases         

  Figure 1-13.    Constituency syntax tree depicting  recursive properties   among constituents       
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 If you closely observe the syntax tree in Figure  1-13 , you will notice that it is only 
constituted of noun phrases and prepositional phrases. However, due to the inherent 
recursive property that a prepositional phrase itself can consist of a noun phrase, and the 
noun phrase can consist of a noun phrase as well as a prepositional phrase, we notice the 
hierarchical structure with multiple NPs and PPs. If you go over the production rules for 
noun phrases and prepositional phrases, you will find the constituents shown in the tree 
are in adherence with the rules. 

  Conjunctions   are used to join clauses and phrases together and form an important 
part of language syntax. Usually words, phrases, and even clauses can be combined 
together using conjunctions. The production rule can be denoted as  S → S conj S   
 S ∈{ S,NP,VP }, where two constituents can be joined together by a conjunction, denoted 
by  conj  in the rule. A simple example for a sentence consisting of a noun phrase which, by 
itself, is constructed out of two noun phrases and a conjunction, would be  The brown fox 
and the lazy dog . This is depicted in Figure  1-14  by the constituency syntax tree showing 
the adherence to the production rule.  

 Figure  1-14  shows that the top level noun phrase is the sentence by itself and has 
two noun phrases as its constituents, which are joined together by a conjunction, thus 
satisfying our aforementioned production rule. 

 What if we wanted to join two sentences or clauses together with a conjunction? 
We can do that by putting all these  rules and conventions   together to generate the 
constituency-based syntax tree for our sample sentence  The brown fox is quick and he is 
jumping over the lazy dog . This would give us the syntactic representation of our sentence 
as depicted in Figure  1-15 .  

  Figure 1-14.    Constituency syntax tree depicting noun phrases joined by a  conjunction         
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 From Figure  1-15 , you can conclude that our sentence has two main clauses or 
constituents (discussed earlier), which are joined by a  coordinating conjunction   ( and ). 
Moreover, the constituency grammar–based production rules break down the top-level 
constituents into further constituents consisting of phrases and their words. Looking at 
this syntax tree, you can see that it does show the ordering of the words in the sentence 
and is more of a hierarchical tree–based structure with un-directed edges. Hence, this 
is very different compared to the dependency grammar–based syntax tree\graph with 
unordered words and directed edges. There are several popular grammar frameworks 
based on concepts derived from constituency grammar, including Phrase Structure 
Grammar, Arc Pair Grammar, Lexical Functional Grammar, and even the famous Context-
Free Grammar, which is used extensively in describing formal language.   

      Word Order Typology      
  Typology  in linguistics is a field that specifically deals with trying to classify languages 
based on their syntax, structure, and functionality. Languages can be classified in 
several ways, and one of the most common models is to classify them according to their 
dominant word orders, also known as  word order typology . The primary word orders of 
interest occur in clauses consisting of a subject, verb, and an object. Of course, not all 
clauses use the subject, verb, and object, and often the subject and object are not used in 
certain languages. However, there exist several different classes of word orders that can 
be used to classify a wide variety of languages. A survey done by Russell Tomlin in 1986, 
summarized in Table   1-1  , shows some insights derived from his analysis.  

  Figure 1-15.    Constituency syntax tree for our sample sentence       
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 In Table   1-1  , we can observe that there are six major classes of word orders, and 
languages like English follow the Subject-Verb-Object word order class. A simple example 
would be the sentence  He ate cake , where  He  is the subject,  ate  is the verb, and  cake  
is the object. The majority of  languages   from the table follow the Subject-Object-Verb 
word order. In that case, the sentence  He cake ate  would be correct if translated to those 
languages. This is illustrated by the English-to-Hindi translation of the same sentence in 
Figure  1-16 .     

 Even if you do not understand Hindi, you can understand by the English annotation 
provided by google that the word  cake  (denoted by  kek  in the text under the Hindi 
translation) has moved from the right end to the middle of the sentence, and the verb 
 ate  denoted by  khaaya  has moved from the middle to the end of the sentence, thus 
making the word order class become Subject-Object-Verb—the correct form for the Hindi 
language. This illustration gives us an indication of the importance of word order and 
how representation of messages can be grammatically different in various languages. 

 And that brings us to the end of our discussion of the  syntax   and structure of 
languages. Next we will be looking at some of the concepts around language semantics.      

    Table 1-1.    Word Order–Based Language Classification, Surveyed by Russell Tomlin, 1986   

 Sl No.  Word Order  Language Frequency  Example Languages 

 1  Subject-Object-Verb  180 (45%)  Sanskrit, Bengali, Gothic, 
Hindi, Latin 

 2  Subject-Verb-Object  168 (42%)  English, French, Mandarin, 
Spanish 

 3  Verb-Subject-Object  37 (9%)  Hebrew, Irish, Filipino, 
Aramaic 

 4  Verb-Object-Subject  12 (3%)  Baure, Malagasy, Aneityan 

 5  Object-Verb-Subject  5 (1%)  Apalai, Hixkaryana, Arecua 

 6  Object-Subject-Verb  1 (0%)  Warao 

  Figure 1-16.    English-to-Hindi translation changes the word order class for the sentence He 
ate cake (courtesy of Google Translate)       
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     Language  Semantics   
 The simplest  definition   of  semantics  is the study of meaning. Linguistics has its own subfield 
of   linguistic     semantics , which deals with the study of meaning in language, the relationships 
between words, phrases, and symbols, and their indication, meaning, and representation 
of the knowledge they signify. In simple words, semantics is more concerned with the 
facial expressions, signs, symbols, body language, and knowledge that are transferred 
when passing messages from one entity to another. There are various representations for 
 syntax and rules   for the same, including various forms of grammar we have covered in the 
previous sections. Representing semantics using formal rules or conventions has always 
been a challenge in linguistics. However, there are different ways to represent meaning and 
knowledge obtained from language. This section looks at relations between the lexical units 
of a language—predominantly words and phrases—and explores several representations 
and concepts around formalizing representation of knowledge and meaning. 

     Lexical  Semantic   Relations 
   Lexical     semantics  is usually concerned with identifying semantic relations between 
lexical units in a language and how they are correlated to the syntax and structure of the 
language. Lexical units are usually represented by morphemes, the smallest meaningful 
and syntactically correct unit of a language. Words are inherently a subset of these 
morphemes. Each lexical unit has its own syntax, form, and meaning. They also derive 
meaning from their surrounding lexical units in phrases, clauses, and sentences. A  lexicon  
is a complete vocabulary of these lexical units. We will explore some concepts revolving 
around lexical semantics in this section. 

   Lemmas and Wordforms 
 A   lemma    is also known as the canonical or citation form for a set of words. The lemma 
is usually the base form of a set of words, known as a  lexeme  in this context. Lemma is 
the specific base form or head word that represents the lexeme.  Wordforms  are inflected 
forms of the lemma, which are part of the lexeme and can appear as one of the words 
from the lexeme in text. A simple example would the lexeme {eating, ate, eats}, which 
contains the wordforms, and their lemma is the word  eat . 

 These  words   have specific meaning based on their position among other words 
in a sentence. This is also known as  sense  of the word, or wordsense.  Wordsense  gives a 
concrete representation of the different aspects of a word’s meaning. Consider the word 
 fair  in the following sentences:  They are going to the annual fair  and  I hope the judgement 
is fair to all . Even though the word  fair  is the same in both the sentences, the meaning 
changes based on the surrounding words and context.  



CHAPTER 1 ■ NATURAL LANGUAGE BASICS

26

   Homonyms, Homographs, and Homophones 
   Homonyms    are defined as words that share the same spelling or pronunciation but have 
different meanings. An alternative definition restricts the constraint on same spelling. 
The relationship between these words is termed as  homonymy . Homonyms are often said 
to be the superset of homographs and homophones. An example of homonyms for the 
word  bat  can be demonstrated in the following sentences:  The bat hangs upside down 
from the tree  and  That baseball bat is really sturdy.  

   Homographs    are words that have the same written form or spelling but have different 
meanings. Several alternate definitions say that the  pronunciation   can also be different. 
Some examples of homographs include, the word  lead  as in  I am using a lead pencil  and 
 Please lead the soldiers to the camp , and also the word  bass  in  Turn up the bass for the song  
and  I just caught a bass today while I was out fishing . Note that in both cases, the spelling 
stays the same but the pronunciation changes based on the context in the sentences. 

   Homophones    are words that have the same pronunciation but different meanings, 
and they can have the same or different spellings. Examples would be the words  pair  
(meaning couple) and  pear  (the fruit). They sound the same but have different meanings 
and written forms. Often these words cause problems in NLP because it is very difficult to 
find out the actual context and meaning using machine intelligence.  

   Heteronyms and Heterographs 
   Heteronyms    are words that have the same written form or spelling but different 
pronunciations and meanings. By nature, they are a subset of homographs. They are also 
often called  heterophones , which means “different sound.” Examples of heteronyms are 
the words  lead  (metal, command) and  tear  (rip off something, moisture from eyes). 

   Heterographs    are words that have the same pronunciation but different meanings 
and spellings. By nature they are a subset of homonyms. Their written representation 
might be different but they sound very similar or often exactly the same when spoken. 
Some examples include the words  to ,  too , and  two , which sound similar but have 
different spellings and meanings.  

   Polysemes 
   Polysemes    are words that have the same written form or spelling and different but very 
relatable meanings. While this is very similar to homonymy, the difference is subjective 
and depends on the context, since these words are relatable to each other. A good 
example is the word  bank  which can mean (1) a financial institution, (2) the bank of the 
river, (3) the building that belongs to the financial institution, or (4) a verb meaning  to rely 
upon . These examples use the same word  bank  and are homonyms. But only (1), (3), and 
(4) are polysemes representing a common theme (the financial organization representing 
trust and security).  
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   Capitonyms 
   Capitonyms    are words that have the same written form or spelling but have different 
meanings when capitalized. They may or may not have different pronunciations. Some 
examples include the words  march  ( March  indicates the month, and  march  depicts the 
action of walking) and  may  ( May  indicates the month, and  may  is a modal verb).  

   Synonyms and Antonyms 
   Synonyms    are words that have different pronunciations and spellings but have the same 
meanings in some or all contexts. If two words or lexemes are synonyms, they can be 
substituted for each other in various contexts, and it signifies them having the same 
propositional meaning. Words that are synonyms are said to be  synonymous  to each 
other, and the state of being a synonym is called  synonymy . Perfect synonymy is, however, 
almost nonexistent. The reason is that synonymy is more of a relation between senses 
and contextual meaning rather than just words. Consider the synonyms  big ,  huge , and 
 large . They are very relatable and make perfect sense in sentences like  That milkshake 
is really  ( big/large/huge ). However, for the sentence  Bruce is my big brother , it does not 
make sense if we substitute  big  with either  huge  or  large.  That’s because the word  big  here 
has a context or sense depicting being grown up or older, and the other two synonyms 
lack this sense. Synonyms can exist for all parts of speech, including nouns, adjective, 
verbs, adverbs, and prepositions. 

   Antonyms    are pairs of words that define a binary opposite relationship. These words 
indicate specific sense and meaning that are completely opposite to each other. The state of 
being an antonym is called  antonymy . There are three types of antonyms:  graded antonyms , 
 complementary antonyms , and  relational antonyms .  Graded antonyms , as the name 
suggests, are antonyms with a certain grade or level when measured on a continuous scale, 
like the pair ( fat ,  skinny ).  Complementary antonyms  are word pairs that are opposite in their 
meaning but cannot be measured on any grade or scale. An example of a complementary 
antonym pair is ( divide ,  unite ).  Relational antonyms  are word pairs that have some 
relationship between them, and the antonymy is contextual, which is signified by this very 
relationship. An example of a relational antonym pair is ( doctor ,  patient ).  

   Hyponyms and  Hypernyms   
   Hyponyms    are words that are usually a subclass of another word. In this case, the 
hyponyms are generally words with very specific sense and context as compared to 
the word that is their superclass.  Hypernyms  are the words that act as the superclass to 
hyponyms and have a more generic sense compared to the hyponyms. An example would 
be the word  fruit , which is a hypernym, and the words  mango ,  orange , and  pear  would be 
possible hyponyms. The relationships depicted between these words are often termed 
 hyponymy  and  hypernymy .   
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     Semantic  Networks and Models   
 We have seen several ways to formalize relations between words and their senses or 
meanings. Considering lexical semantics, there are approaches to find out the sense 
and meaning of each lexical unit, but what if we want to represent the meaning of some 
concept or theory that would involve relating these lexical units together and forming 
connections between them based on their meaning?  Semantic networks  aim to tackle this 
problem of representing knowledge and concepts using a network or a graph. 

 The basic unit of semantic  network   is an  entity  or a  concept . A concept could be a 
tangible or abstract item like an idea. Sets of concepts have some relation to each other 
and can be represented with directed or undirected edges. Each  edge  denotes a specific 
type of relationship between two concepts. Let’s say we are talking about the concept  fish . 
We can have different concepts around fish based on their relationship to it. For instance, 
 fish  “ is-a ”  animal  and  fish  “ is-a ” part of  marine life . These relationships are depicted 
as  is-a  relationships. Other similar relationships include  has-a ,  part-of ,  related-to , and 
there are many more, depending on the context and semantics. These concepts and 
relationships together form a semantic network. There are several semantic models on 
the Web that have vast knowledge bases spanning different concepts. Figure  1-17  shows 
a possible representation for concepts related to  fish . This model is provided courtesy of 
Nodebox (   www.nodebox.net/perception/     ), where you can search for various concepts 
and see associated concepts to the same.  

  Figure 1-17.    Semantic  network   around the concept fish       

 

http://www.nodebox.net/perception/
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 In the  network   in Figure  1-17 , we can see some of the concepts discussed earlier 
around  fish  and also specific types of fish like eel, salmon, shark, and so on, which can 
be hyponyms to the concept  fish . These semantic networks are formally denoted and 
represented by semantic data models using graph structures, where concepts or entities 
are the nodes and the edges denote the relationships. The Semantic Web is as extension 
of the World Wide Web using semantic metadata annotations and embeddings using 
data-modeling techniques like Resource Description Framework (RDF) and Web 
Ontology Language (OWL). In linguistics, we have a rich lexical corpus and database 
called WordNet, which has an exhaustive list of different lexical entities grouped 
together based on semantic similarity (for example, synonyms) into  synsets . Semantic 
relationships between these synsets and consequently various words can be explored in 
WordNet, making it in essence a type of semantic network. We will talk about WordNet in 
more detail in a later section when we cover  text corpora .  

      Representation   of Semantics 
 So far we have seen how to represent semantics based on lexical units and how they can be 
interconnected by leveraging semantic networks. However, if we consider the normal form 
of communication via messages, whether written or spoken, if an entity sends a message 
to another entity and that entity takes some specific actions based on the message, then 
the second entity is said to have understood the meaning conveyed by that message. A 
question that might come to mind is how we formally represent the meaning or semantics 
conveyed by a simple sentence. Although it may be extremely easy for us to understand 
the meaning conveyed, representing semantics formally is not as easy as it seems. 

 Consider the example  Get me the book from the table . This sentence by nature is a 
directive, and it directs the listener to do something. Understanding the meaning conveyed 
by this sentence may involve pragmatics like  which specific book?  and  which specific table?  
besides the actual deed of getting the book from the table. Although the human mind 
is intuitive, formally representing the meanings and relationships between the various 
constituents is a challenge—but we can do it using techniques such as  propositional 
logic  (PL) and  first order logic  (FOL). Using these representations, one can represent the 
meaning indicated by different sentences, draw inference from them, and even discover 
whether one sentence entails another one based on their semantics. Representation 
of semantics is useful especially for carrying out our various NLP operations to make 
machines understand the semantics behind messages using proper representations, since 
machines lack the cognitive power we humans have been bestowed with. 

   Propositional Logic 
 Propositional logic ( PL)  , also known as   sentential logic  or  statement logic   , is defined 
as the discipline of logic that is concerned with the study of propositions, statements, 
and sentences. This includes studying logical relationships and properties between 
propositions and statements, combining multiple propositions to form more complex 
propositions, and observing how the value of propositions change based on their 
components and logical operators. A  proposition  or  statement  is usually  declarative   and 
is capable of having a binary truth value that is either true or false. Usually a statement 
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is more language-specific and concrete, and a proposition is more inclined toward the 
idea or the concepts conveyed by the statement. A simple example would be the two 
statements  The rocket was faster than the airship  and  The airship was slower than the 
rocket , which are distinct but convey the same meaning or proposition. However, the 
terms statement and proposition are often used interchangeably in propositional logic. 

 The main focus in propositional logic is to study different propositions and 
how combining various propositions with logical operators change the semantics 
of the overall proposition. These logical operators are used more like  connectors   or 
coordinating conjunctions (if you remember them from earlier). Operators include terms 
like  and ,  or , and  not , which can change the meaning of a proposition by itself or when 
combined with several propositions. A simple example would be two propositions,  The 
Earth is round  and  The Earth revolves around the Sun . These can be combined with the 
logical operator  and  to give us the proposition  The Earth is round and it revolves around 
the Sun , which gives us the indication that the two propositions on either side of the  and  
operator must be true for the combined proposition to be true. 

 The good part about propositional logic is that each proposition has its own  truth 
value , and it is not concerned with further subdividing a proposition into smaller 
chunks and verifying its logical characteristics. Each proposition is considered as an 
indivisible, whole unit with its own truth value. Logical operators may be applied on it 
and several other propositions. Subdividing parts of propositions like clauses or phrases 
are not considered here. To represent the various building blocks of propositional logic, 
we use several conventions and symbols. Uppercase letters like  P  and  Q  are used to 
denote individual statements or propositions. The different operators used and their 
corresponding symbols are listed in Table   1-2  , based on their order of precedence.  

 You can see that there are a total of five operators, with the  not  operator having the 
highest precedence, and the  iff  operator having the lowest. Logical constants are denoted 
as either being True or False. Constants and symbols are known as   atomic units   —all 
other units, more specifically the sentences and statements, are   complex units   . A  literal  is 
usually an atomic statement or its negation on applying the  not  operator. 

 Let’s look at a simple example of two sentences  P  and  Q  and apply various operators 
on them. Consider the following representations:

    P : He is hungry  

   Q : He will eat a sandwich    

   Table 1-2.    Logical Operators with Their Symbols and  Precedence     

 Sl No.  Operator Symbol  Operator Meaning  Precedence 

 1   ¬   not  Highest 

 2  ∧  and 

 3  ∨  or 

 4  →  if-then 

 5  ↔  iff (if and only if )  Lowest 



CHAPTER 1 ■ NATURAL LANGUAGE BASICS

31

 The expression  P  ∧  Q  translates to  He is hungry and he will eat a sandwich . This 
expresses that the outcome of this operation is itself also a sentence or proposition. 
This is the  conjunction  operation where  P  and  Q  are the  conjuncts . The outcome of this 
sentence is  True  only if both  P  and  Q  are  True . 

 The expression  P  ∨  Q  translates to  He is hungry or he will eat a sandwich . This 
expresses that the outcome of this operation is also another proposition formed from the 
 disjunction  operation where  P  and  Q  are the  disjuncts . The outcome of this sentence is 
 True  if either  P  or  Q  or both of them are  True . 

 The expression  P  →  Q  translates to  If he is hungry, then he will eat a sandwich . This 
is the  implication  operation which determines that  P  is the  premise  or  antecedent  and  Q  is 
the  consequent . It is just like a rule stating that  Q  will occur only if  P  has already occurred 
or is  True . 

 The expression  P  ↔  Q  translates to  He will eat a sandwich if and only if he is 
hungry  which is basically a combination of the expressions  If he is hungry then he will 
eat a sandwich  ( P  →  Q ) and  If he will eat a sandwich, he is hungry  ( Q  →  P ). This is the 
 biconditional  or  equivalence  operation that will evaluate to  True  if and only if the two 
implication operations described evaluate to  True . 

 The expression  ¬P  translates to  He is not hungry , which depicts the negation 
operation and will evaluate to  True  if and only if  P  evaluates to  False . 

 This gives us an idea of the basic operations between propositions and more complex 
operations, which can be carried out with multiple logical connectives and by adding more 
propositions. A simple example: The statements  P :  We will play football ,  Q :  The stadium is 
open , and  R :  It will rain today  can be combined and represented as  Q  ∧  ¬R  →  P  to depict 
the complex proposition  If the stadium is open and it does not rain today, then we will 
play football . The semantics of the truth value or outcome of the final proposition can be 
evaluated based on the truth value of the individual propositions and the operators. The 
various outcomes of the truth values for the different operators are depicted in Figure  1-18 .  

 Thus, using the table in Figure  1-18 , we can evaluate even more complex 
propositions by breaking them down into simpler binary operations, evaluating the truth 
value for them, and combining them step by step. 

 Besides these outcomes, other properties like  associativity ,  commutativity , and 
 distributivity  aid in evaluating complex proposition outcomes. The act of checking the 
validity of each operation and proposition and finally evaluating the outcome is also 
known as  inference . However, besides evaluating extensive truth tables all the time, we 
can also make use of several inference rules to arrive at the final outcome or conclusion. 
The main reason for doing so would be that the size of these truth tables with the various 
operations starts increasing exponentially with the number of propositions increasing. 

  Figure 1-18.     Truth values   for various logical connectors       
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Moreover, rules of inference are easier to understand and well tested, and at the heart 
of them, the same truth value tables are actually applied—but we do not have to bother 
ourselves with the internals. Usually, a sequence of inference rules, when applied, leads 
to a conclusion that is often termed as a  logical proof . The usual form of an inference rule 
is  P    Q , which indicates that  Q  can be derived by some inference operations from the set 
of statements represented by  P . The turnstile symbol ( ) indicates that  Q  is some logical 
consequence of  P . The most popular inference rules are as follows:

•      Modus Ponens   : Perhaps the most popular inference rule, it’s also 
known as the  Implication Elimination  rule. It can be represented 
as  {P  →  Q, P}           Q,  which indicates that if  P  implies  Q  and  P  is 
asserted to be  True , then it is inferred that  Q  is  True . You can 
also represent this using the representation ( (P  →  Q)  ∧  P)   → 
 Q  , which can be evaluated easily using truth tables. A simple 
example would be the statement  If it is sunny, we will play 
football , represented by  P  →  Q . Now if we say that  It is sunny , this 
indicates that  P  is  True , hence  Q  automatically is inferred as  True , 
indicating  We will play football .  

•     Modus Tollens   : This is quite similar to the previous rule and 
is represented formally as  {P  →  Q, ¬Q}           ¬P , which indicates 
that if  P  implies  Q  and  Q  is actually asserted to be  False , then it 
is inferred that  P  is  False . You can also represent this using the 
representation ( (P  →  Q)  ∧  ¬Q)   →  ¬P , which can be evaluated 
easily using truth tables. An example proposition would be  If 
he is a bachelor, he is not married , indicated by  P  →  Q . Now if we 
propose that  He is married , represented by  ¬Q , then we can infer 
 ¬P , which translates to  He is not a bachelor .  

•     Disjunctive Syllogism   : This is also known as  Disjunction 
Elimination  and is formally represented as  {P  ∨  Q, ¬P}           Q , 
which indicates that if either  P  or  Q  is  True  and  P  is  False , then  Q  
is  True . A simple example would be the statement  He is a miracle 
worker or a fraud  represented by  P  ∨  Q  and the statement  He is 
not a miracle worker  represented by  ¬P . We can then infer  He is a 
fraud , depicted by  Q .  

•     Hypothetical Syllogism   : This is often known as the  Chain Rule of 
Deduction  and is formally represented as  {P  →  Q, Q  →  R}          P  → 
 R , which tells us that if  P  implies  Q , and  Q  implies  R , we can infer 
that  P  implies  R . A really interesting example to understand this 
would be the statement  If I am sick, I can’t go to work  represented 
by  P  →  Q  and  If I can’t go to work, the building construction will 
not be complete  represented by  Q  →  R . Then we can infer  If I am 
sick, the building construction will not be complete , which can be 
represented by  P  →  R .  

https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
https://www.wikiwand.com/en/⊢
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•     Constructive Dilemma   : This inference rule is the disjunctive version 
of Modus Ponens and can be formally represented as  {(P  →  Q)  ∧ 
 (R  →  S), P  ∨  R}           Q  ∨  S , which indicates that if  P  implies  Q , and  R  
implies  S , and either  P  or  R  is  True , then it can be inferred that either 
 Q  or  S  is  True . Consider the following propositions:  If I work hard, I 
will be successful  represented by  P  →  Q , and  If I win the lottery, I will 
be rich  represented by  R  →  S . Now we propose that  I work hard or I 
win the lottery  is  True , which is represented by  P  ∨  R . We can then 
infer that  I will be successful or I will be rich , represented by  Q  ∨  S . 
The complement of this rule is  Destructive Dilemma  the disjunctive 
version of Modus Tollens.    

 This should give you a clear idea of how intuitive inference rules can be, and 
using them is much easier than going over multiple truth tables trying to find out the 
outcome of complex propositions. The interpretation we derive from inference gives 
us the semantics of the statement or proposition. A valid statement is one which would 
be  True  under all interpretations irrespective of the logical operations or various 
statements inside it. This is often termed as a  tautology . The complement of a tautology 
is a  contradiction  or an inconsistent statement which is  False  under all interpretations. 
Note that the preceding list is just an indicative list of the most popular inference rules 
and is by no way an exhaustive list. Interested readers can read up more on inference and 
propositional calculus to get an idea of several other rules and axioms which are used 
besides the ones covered here. 

 Next we will be looking at first order logic, which tries to solve some of the 
shortcomings in propositional logic.  

   First Order Logic 
  First order logic (FOL),   also known popularly as  predicate logic  and  first order predicate 
calculus , is defined as a  collection of well-defined formal systems   which is used 
extensively in deduction, inference, and representation of knowledge. FOL allows 
us to use  quantifiers and variables   in sentences, which enable us to overcome some 
of the limitations with propositional logic. If we are to consider the pros and cons 
of propositional logic (PL), considering the points in its favor, PL is declarative and 
allows us to easily represent facts using a well-formed syntax. PL also allows complex 
representations like conjunctive, disjunctive, and negated knowledge representations. 
This by nature makes PL compositional wherein a composite or complex proposition is 
built from the simple propositions that are its components along with logical connectives. 
However, there are several areas where PL is lacking. It is definitely not easy to represent 
facts in PL because for each possible atomic fact, we will need a unique symbolic 
representation. Hence, due to this limitation, PL has very limited expressive power. 
Hence, the basic idea behind FOL is to not treat propositions as atomic entities. 

https://www.wikiwand.com/en/⊢
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 FOL has a much richer syntax and necessary components for the same compared to 
PL. The basic  components   in FOL are as follows:

•     Objects : These are specific entities or terms with individual 
unique identities like people, animals, and so on.  

•    Relations : These are also known as predicates and usually hold 
among objects or sets of objects and express some form of 
relationship or connection, like  is_man ,  is_brother ,  is_mortal . 
Relations typically correspond to verbs.  

•    Functions : These are a subset of relations where there is always 
only one output value or object for some given input. Examples 
would be  height ,  weight ,  age_of .  

•    Properties : These are specific attributes of objects that help in 
distinguishing them from other objects, like round, huge, and so on.  

•    Connectives : These are the logical connectives that are similar to 
the ones in PL, which include not (¬), and (∧), or (∨), implies 
(→), and iff (if and only if ↔).  

•    Quantifiers : These include two types of quantifiers:  universal  
(∀), which stands for “for all” or “all,” and  existential  (∃), which 
stands for “there exists” or “exists.” They are used for quantifying 
entities in a logical or mathematical expression.  

•    Constant symbols : These are used to represent concrete entities or 
objects in the world. Examples would be  John ,  King ,  Red , and  7 .  

•    Variable symbols : These are used to represent variables like  x ,  y , 
and  z .  

•    Function symbols : These are used to map functions to outcomes. 
Examples would be,  age_of(John)  = 25 or  color_of(Tree)  = 
Green.  

•    Predicate symbols : These map specific entities and a relation or 
function between them to a truth value based on the outcome. 
Examples would be  color(sky, blue)  = True.    

 These are the main  components   that go into logical representations and syntax for 
FOL. Usually, objects are represented by various  terms , which could be either a  function , 
 variable , or  constant  based on the different components depicted previously. These terms 
do not need to be defined and do not return values. Various propositions are usually 
constructed using predicates and terms with the help of predicate symbols. An  n-ary 
predicate  is constructed from a function over n-terms which have either a  True  or  False  
outcome. An  atomic sentence  can be represented by an n-ary predicate, and the outcome 
is  True  or  False  depending on the semantics of the sentence—that is, if the objects 
represented by the terms have the correct relation among themselves as specified by 
the predicate. A  complex sentence  or statement is formed using several atomic sentences 
and logical connectives. A  quantified sentence  adds the quantifiers mentioned earlier to 
sentences. 

www.allitebooks.com

http://www.allitebooks.org
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  Quantifiers   are one advantage FOL has over PL, since they enable us to represent 
statements about entire sets of objects without needing to represent and enumerate each 
object by a different name. The  universal quantifier  (∀) asserts that a specific relation or 
predicate is  True  for all values associated with a specific variable. The representation ∀ x 
F(x)  indicates that  F  holds  for all  values of  x  in the domain associated with  x . An example 
would be ∀ x cat(x)  →  animal(x) , which indicates that all cats are animals. 

 Universal quantifiers are usually used with the  implies  (→) connective to form rules 
and statements. An important thing to remember is that universal quantifiers are almost 
never used in statements to indicate some relation for every entity in the world using the 
conjunction (∧) connective. An example would be the representation ∀ x dog(x)  ∧ 
 eats_meat(x) , which actually means that every entity in the world is a dog and they eat 
meat, which sounds kind of absurd! The  existential quantifier  (∃) asserts that a specific 
relation or predicate holds  True  for at least some value associated with a specific variable. 
The representation, ∃ x F(x)  indicates that  F  holds  for some  value of  x  in the domain 
associated with  x . An example would be ∃ x student(x)  ∧  pass_exam(x) , which 
indicates that there is at least one student who has passed the exam. This quantifier 
gives FOL a lot of power since we can make statements about objects or entities without 
specifically naming them. Existential quantifiers are usually used with the conjunction 
(∧) connective to form rules and statements. You should remember that existential 
quantifiers are almost never used with the implies (→) connective in statements because 
the semantics indicated by it are usually wrong. An example would be ∃ x student(x)  
→  knowledgeable(x) , which tells us if you are a student you are knowledgeable—but 
the real problem happens if you ask what about those who are not students, are they not 
knowledgeable? 

 Considering the scope for nesting of quantifiers, ordering of multiple quantifiers 
may or may not matter depending on the type of quantifiers used. For multiple universal 
quantifiers, switching the order does not change the meaning of the statement. This can be 
depicted by  ( ∀ x)( ∀ y) brother(x,y)  ↔  ( ∀ y)(  ∀ x) brother(x,y) , where  x  and  y  are 
used as variable symbols to indicate two people are brothers to each other irrespective of 
the order. Similarly, you can also switch the order of existential quantifiers like  ( ∃ x)(  ∃ y) 
F(x,y)  ↔  ( ∃ y)(  ∃ x) F(x,y) . Switching the order for mixed quantifiers in a sentence 
does matter and changes the interpretation of that sentence. This can be explained more 
clearly in the following examples, which are very popular in FOL:

•     ( ∀ x)( ∃ y) loves(x, y)  means that everyone in the world loves 
at least someone.  

•    ( ∃ y)( ∀ x) loves(x, y)  means that someone is the world is 
loved by everyone.  

•    ( ∀ y)( ∃ x) loves(x, y)  means that everyone in the world has 
at least someone who loves them.  

•    ( ∃ x)( ∀ y) loves(x, y)  means that there is at least someone in 
the world who loves everyone.    

 From the preceding examples, you can see how the statements almost look the same 
but the ordering of  quantifiers   change the meanings significantly. There are also several 
other properties showing the relationship between the quantifiers. Some of the popular 
quantifier identities and properties are as follows:
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•     ( ∀ x)  ¬ F(x)  ↔ ¬ ( ∃ x) F(x)   

•   ¬ ( ∀ x) F(x)  ↔  ( ∃ x)  ¬ F(x)   

•    ( ∀ x) F(x)  ↔ ¬  ( ∃ x)  ¬ F(x)   

•    ( ∃ x) F(x)  ↔ ¬ ( ∀ x)  ¬ F(x)   

•    ( ∀ x) (P(x)  ∧  Q(x))  ↔ ∀ x P(x)  ∧ ∀ x Q(x)   

•    ( ∃ x) (P(x)  ∨  Q(x))  ↔ ∃ x P(x)  ∨ ∃ x Q(x)     

 There are a couple of other important concepts for transformation rules in predicate 
logic. These include  instantiation  and  generalization. Universal instantiation , also known 
as  universal elimination , is a rule of inference involving the universal quantifier. It tells us 
that if  ( ∀ x) F(x)  is  True , then  F(C)  is  True  where  C  is any constant term that is present 
in the domain of  x . The variable symbol here can be replaced by any ground term. An 
example depicting this would be  ( ∀ x) drinks(John, x)  →  drinks(John, Water) . 

   Universal generalization   , also known as  universal introduction , is the inference 
rule that tells us that if  F(A)  ∧  F(B)  ∧  F(C)  ∧ … so on hold  True , then we can infer that 
 ( ∀ x) F(x)  holds  True .  Existential instantiation , also known as  existential elimination , 
is an inference rule involving the existential quantifier. It tells us that if the given 
representation  ( ∃ x) F(x)  exists, we can infer  F(C)  for a new constant or variable symbol 
 C . This is assuming that the constant or variable term  C  introduced in this rule should be 
a brand new constant that has not occurred previously in this proof or in our complete 
existing knowledge base. This process is also known as  skolemization , and the constant 
 C  is known as the  skolem constant. Existential generalization , also known as  existential 
introduction , is the inference rule that tells us that assuming  F(C)  to be  True  where  C  
is a constant term, we can then infer  ( ∃ x) F(x)  from it. This can be depicted by the 
representation  eats_fish(Cat)  →  ( ∃ x) eats_fish(x) , which can be translated as  Cats 
eat fish, therefore there exists something or someone at least who eats fish . 

 We will now look at some examples of how FOL is used to represent natural language 
statements and vice versa. The examples in Table  1-3  depict some of the typical usage of 
FOL for representing natural language statements.  
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 This gives us a good idea about the various components of FOL and the utility and 
advantages it gives us over PL. But FOL has its own limitation also. By nature, it allows us 
to quantify over variables and objects but not properties or relations.  Higher order logic 
(HOL)   allows us to quantify over relations, predicates, and functions. More specifically, 
second order logic enables us to quantify over predicates and functions and third order 
logic enables us to quantify over predicates of predicates. While they are more expressive, 
it is extremely difficult to determine the validity of all sentences in  HOL  .    

     Text Corpora 
   Text corpora    is the plural form of  text corpus . Text corpora are large and structured 
 collection   of texts or textual data, usually consisting of bodies of written or spoken text, 
often stored in electronic form. This includes converting old historic text corpora from 
physical to electronic form so that it can be analyzed and processed with ease. The 
primary purpose of text corpora is to leverage them for linguistic as well as statistical 
analysis and to use them as data for building NLP tools.   Monolingual     corpora  consist 
of textual data in only one language, and   multilingual     corpora  consist of textual data in 
multiple languages. 

   Table 1-3.    Representation of  Natural Language Statements   Using First Order Logic   

 Sl No.  FOL Representation  Natural Language Statement 

 1   ¬ eats(John, fish)   John does not eat fish 

 2   is_hot(pie)  ∧  is_delicious(pie)   The pie is hot and delicious 

 3   is_hot(pie)  ∨  is_delicious(pie)   The pie is either hot or delicious 

 4   study(John, exam)  →  pass(John, exam)   If John studies for the exam, he will 
pass the exam 

 5  ∀ x student(x)  →  pass(x, exam)   All students passed the exam 

 6  ∃ x student(x)  ∧  fail(x, exam)   There is at least one student who 
failed the exam 

 7   ( ∃ x student(x)  ∧  fail(x, exam)  ∧ 
 ( ∀ y fail(y, exam)  →  x=y))  

 There was exactly one student who 
failed the exam 

 8  ∀ x (spider(x)  ∧  black_widow(x))  → 
 poisonous(x)  

 All black widow spiders are 
poisonous 
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 To understand the significance of text corpora, it helps to understand the  origins   
of corpora and the reason behind it. It all started with the emergence of linguistics and 
people collecting data related to language to study its properties and structure. During 
the 1950s, statistical and quantitative methods were used to analyze collected data. 
But this endeavor soon reached a dead end due to the lack of large amounts of textual 
data over which statistical methods could be effectively applied. Besides that, cognitive 
learning and behavioral sciences gained a lot of focus. This empowered eminent linguist 
Noam Chomsky to build and formulate a sophisticated rule-based language model that 
formed the basis for building, annotating, and analyzing large scale text corpora. 

     Corpora  Annotation and Utilities   
 Text corpora are annotated with rich metadata, which is extremely useful for getting 
valuable insights when utilizing the corpora for NLP and text analytics. Popular 
annotations for text corpora include tagging  parts of speech (POS)   tags, word stems, 
lemmas, and many more. Here are some of the most used methods and techniques for 
annotating text corpora:

•     POS tagging : This is mainly used to annotate each word with a 
POS tag indicating the part of speech associated with it.  

•    Word stems : A  stem  for a word is a part of the word to which 
various affixes can be attached.  

•    Word lemmas : A  lemma  is the canonical or base form for a set of 
words and is also known as the  head word .  

•    Dependency grammar : This includes finding out the various 
relationships among the components in sentences and 
annotating the dependencies.  

•    Constituency grammar : This is used to add syntactic annotation 
to sentences based on their constituents including phrases and 
clauses.  

•    Semantic types and roles : The various constituents of sentences 
including words and phrases are annotated with specific 
semantic types and roles, often obtained from an ontology, which 
indicates what they do. These include things like place, person, 
time, organization, agent, recipient, theme, and so forth.    

 Advanced forms of annotations include adding syntactic and semantic structure 
for text. These are dependency and constituency grammar–based parse trees. These 
specialized corpora, also known as  treebanks , are extensively used in building POS 
taggers, syntax, and semantic parsers. Corpora are also used extensively by linguists for 
creating new dictionaries and grammars. Properties like  concordance ,  collocations , and 
 frequency counts  enable them to find out lexical information, patterns, morphosyntactic 
information, and language learning. Besides linguistics, corpora are widely used in 
developing NLP tools like text taggers, speech recognition, machine translation, spelling 
and grammar checkers, text-to-speech and speech-to-text synthesizers, information 
retrieval, entity recognition, and knowledge  extraction  .  
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     Popular Corpora 
 Several  popular   resources for text corpora have been built and have evolved over time. 
This section lists some of the most famous and popular corpora to whet your appetite. 
You can research and find out more details about the text corpora that catch your eye. 
Here are some popular text corpora built over time:

•     Key Word in Context :  KWIC   was a methodology invented in the 
1860s but used extensively around the 1950s by linguists to index 
documents and create corpora of concordances.  

•     Brown Corpus   : This was the first million-word corpus for the 
English language, published by Kucera and Francis in 1961, also 
known as “A Standard Corpus of Present-Day American English.” 
This corpus consists of text from a wide variety of sources and 
categories.  

•     LOB Corpus   : The Lancaster-Oslo-Bergen (LOB) corpus was 
compiled in the 1970s as a result of collaboration between the 
University of Lancaster, the University of Oslo, and the Norwegian 
Computing Centre for the Humanities, Bergen. The main 
motivation of this project was to provide a British counterpart 
to the Brown corpus. This corpus is also a million-word corpus 
consisting of text from a wide variety of sources and  categories  .  

•     Collins Corpus   : The Collins Birmingham University International 
Language Database (COBUILD), set up in 1980 at the University 
of Birmingham and funded by the Collins publishers, built a large 
electronic corpus of contemporary text in the English language 
that also paved the way for future corpora like the Bank of English 
and the Collins COBUILD English Language Dictionary.  

•     CHILDES   :  The Child Language Data Exchange System (CHILDES)   
is a corpus that was created by Brian and Catherine in 1984 that 
serves as a repository for language acquisition data, including 
transcripts, audio and video in 26 languages from over 130 
different corpora. This has been merged with a larger corpus 
Talkbank recently. It is used extensively for analyzing the 
language and speech of young children.  

•     WordNet   : This corpus is a semantic-oriented lexical database for 
the English language. It was created at Princeton University in 1985 
under the supervision of George Armitage. The corpus consists 
of words and synonym sets (synsets). Besides these, it consists of 
word definitions, relationships, and examples of using words and 
synsets. Overall, it is a combination of a dictionary and a thesaurus.  

•     Penn Treebank   : This corpus consists of tagged and parsed English 
sentences including annotations like POS tags and grammar-based 
parse trees typically found in treebanks. It can be also defined 
as a bank of linguistic trees and was created in the University of 
Pennsylvania, hence the name Penn Treebank.      
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•     BNC   :  The British National Corpus (BNC)   is one of the largest 
English corpora, consisting of over 100 million words of both 
written and spoken text samples from a wide variety of sources. 
This corpus is a representative sample of written and spoken 
British English of the late 20th century.  

•     ANC   :  The American National Corpus (ANC)   is a large text corpus 
in American English that consists of over 22 million words of both 
spoken and written text samples since the 1990s. It includes data 
from a wide variety of sources, including emerging sources like 
email, tweets, and web information not present in the BNC.  

•     COCA   :  The Corpus of Contemporary American English (COCA)   
is the largest text corpus in American English and consists of over 
450 million words, including spoken transcripts and written text 
from various categories and sources.  

•    Google N-gram Corpus : The  Google N-gram Corpus   consists 
of over a trillion words from various sources including books, 
web pages, and so on. The corpus consists of n-gram files up to 
5-grams for each language.     

•     Reuters     Corpus : This corpus is a collection of Reuters news articles 
and stories released in 2000 specifically for carrying out research 
in NLP and machine learning.  

•     Web, chat, email, tweets   : These are entirely new forms of text 
corpora that have sprung up into prominence with the rise of 
social media. They are obtainable on the Web from various 
sources including Twitter, Facebook, chat rooms, and so on.       

 This gives us an idea of some of the most popular text corpora and also how they 
have evolved over time. The next section talks about how to access some of these text 
corpora with the help of Python and the Natural Language Toolkit (nltk) platform.  

     Accessing Text Corpora 
 We already have an idea about what constitutes a text corpus and have looked at a list 
of several popular text corpora that exist today. In this section, we will be leveraging 
Python and the  Natural Language Toolkit    NLTK   to interface and access some of these text 
corpora. The next chapter talks more about Python and NLTK, so don’t worry if some 
of the syntax or code seems overwhelming right now. The main intent of this section is 
to give an idea of how you can access and utilize text corpora easily for your NLP and 
analytics needs. 

 I will be using the  ipython  shell (   https://ipython.org     ) for running Python code 
which provides a powerful interactive shell for running code as well as viewing charts 
and plots. We will also be using the NLTK library. You can find out more details about 
this project at    www.nltk.org     , which is all about NLTK being a complete platform and 
framework for accessing text resources, including corpora and libraries for various NLP 
and machine learning capabilities. 

https://ipython.org/
http://www.nltk.org/
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 To start with, make sure you have Python installed. You can install Python separately 
or download the popular Anaconda Python distribution from Continuum Analytics from 
   www.continuum.io/downloads     . That version comes with a complete suite of analytics 
packages, including NLTK. If you want to know more about Python and what distribution 
would be best suited for you, Chapter   2     covers these topics in more detail. 

 Assuming you have Python installed now, if you installed the Anaconda distribution, 
you will already have NLTK installed. Note that we will be using Python 2.7 in this book, 
but you are welcome to use the latest version of Python—barring a few syntax changes, 
most of the code should be reproducible in the latest edition of Python. If you did not 
install the Anaconda distribution but have Python installed, you can open your terminal 
or command prompt and run the following command to install NLTK. 

   $ pip install nltk 

   This will install the NLTK library, and you will be ready to use it. However, the default 
installation of NLTK does not include all the components required in this book. To install 
all the components and resources of NLTK, you can start your Python shell and type the 
following commands—you will see the various dependencies for  nltk  being downloaded; 
a part of the output is shown in the following code snippet: 

    In [1]: import nltk 

   In [2]: nltk.download('all') 
 [nltk_data] Downloading collection u'all' 
 [nltk_data]    |  
 [nltk_data]    | Downloading package abc to 
 [nltk_data]    |     C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data 
 [nltk_data]    |     ... 
 [nltk_data]    |   Package abc is already up-to-date! 
 [nltk_data]    | Downloading package alpino to 
 [nltk_data]    |     C:\Users\DIP.DIPSLAPTOP\AppData\Roaming\nltk_data 
 [nltk_data]    |     ... 

    The preceding command will download all the necessary resources required by 
 NLTK  . If you don’t want to download everything, you can also select the necessary 
components from a graphical user interface (GUI) using the command  nltk.download() . 
Once the necessary dependencies are downloaded, you are now ready to start accessing 
text corpora! 

   Accessing the Brown Corpus 
 We have already talked a bit about the  Brown Corpus  , developed in 1961 at Brown 
University. This corpus consists of texts from 500 sources and has been grouped into 
various categories. The following code snippet loads the Brown Corpus into the system 
memory and shows the various available categories: 

    In [8]: # load the Brown Corpus 
 In [9]: from nltk.corpus import brown 

http://www.continuum.io/downloads
http://dx.doi.org/10.1007/978-1-4842-2388-8_2
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   In [10]: print 'Total Categories:', len(brown.categories()) 
 Total Categories: 15 

   In [11]: print brown.categories() 
 [u'adventure', u'belles_lettres', u'editorial', u'fiction', u'government', 
u'hobbies', u'humor', u'learned', u'lore', u'mystery', u'news', u'religion', 
u'reviews', u'romance', u'science_fiction'] 

    The preceding output tells us that there are a total of 15 categories in the corpus, like 
 news ,  mystery ,  lore , and so on. The following code snippet digs a little deeper into the 
 mystery  category of the Brown Corpus: 

    In [19]: # tokenized sentences 
 In [20]: brown.sents(categories='mystery') 
 Out[20]: [[u'There', u'were', u'thirty-eight', u'patients', u'on', u'the', 
u'bus', u'the', u'morning', u'I', u'left', u'for', u'Hanover', u',', 
u'most', u'of', u'them', u'disturbed', u'and', u'hallucinating', u'.'], 
[u'An', u'interne', u',', u'a', u'nurse', u'and', u'two', u'attendants', 
u'were', u'in', u'charge', u'of', u'us', u'.'], ...] 

   In [21]: # POS tagged sentences 
 In [22]: brown.tagged_sents(categories='mystery') 
 Out[22]: [[(u'There', u'EX'), (u'were', u'BED'), (u'thirty-eight', u'CD'), 
(u'patients', u'NNS'), (u'on', u'IN'), (u'the', u'AT'), (u'bus', u'NN'), 
(u'the', u'AT'), (u'morning', u'NN'), (u'I', u'PPSS'), (u'left', u'VBD'), 
(u'for', u'IN'), (u'Hanover', u'NP'), (u',', u','), (u'most', u'AP'), 
(u'of', u'IN'), (u'them', u'PPO'), (u'disturbed', u'VBN'), (u'and', u'CC'), 
(u'hallucinating', u'VBG'), (u'.', u'.')], [(u'An', u'AT'), (u'interne', 
u'NN'), (u',', u','), (u'a', u'AT'), (u'nurse', u'NN'), (u'and', u'CC'), 
(u'two', u'CD'), (u'attendants', u'NNS'), (u'were', u'BED'), (u'in', u'IN'), 
(u'charge', u'NN'), (u'of', u'IN'), (u'us', u'PPO'), (u'.', u'.')], ...] 

   In [28]: # get sentences in natural form 
 In [29]: sentences = brown.sents(categories='mystery') 
 In [30]: sentences = [' '.join(sentence_token) for sentence_token in 
sentences] 
 In [31]: print sentences[0:5] # printing first 5 sentences 
 [u'There were thirty-eight patients on the bus the morning I left for 
Hanover , most of them disturbed and hallucinating .', u'An interne , a 
nurse and two attendants were in charge of us .', u"I felt lonely and 
depressed as I stared out the bus window at Chicago's grim , dirty West Side 
.", u'It seemed incredible , as I listened to the monotonous drone of voices 
and smelled the fetid odors coming from the patients , that technically I 
was a ward of the state of Illinois , going to a hospital for the mentally 
ill .', u'I suddenly thought of Mary Jane Brennan , the way her pretty eyes 
could flash with anger , her quiet competence , the gentleness and sweetness 
that lay just beneath the surface of her defenses .'] 
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    From the preceding  snippet  , we can see the written contents of the mystery genre 
and how the sentences are available in tokenized as well as annotated formats. Suppose 
we want to see the top nouns in the  mystery  genre? We can use the next code snippet 
for obtaining them. Remember that nouns have either an NN or NP in their POS tag to 
indicate the various forms. Chapter   3     covers POS tags in further detail: 

    In [81]: # get tagged words 
 In [82]: tagged_words = brown.tagged_words(categories='mystery') 

   In [83]: # get nouns from tagged words 
 In [84]: nouns = [(word, tag) for word, tag in tagged_words if any(noun_tag 
in tag for noun_tag in ['NP', 'NN'])] 

   In [85]: print nouns[0:10] # prints the first 10 nouns 
 [(u'patients', u'NNS'), (u'bus', u'NN'), (u'morning', u'NN'), (u'Hanover', 
u'NP'), (u'interne', u'NN'), (u'nurse', u'NN'), (u'attendants', u'NNS'), 
(u'charge', u'NN'), (u'bus', u'NN'), (u'window', u'NN')] 

   In [85]: # build frequency distribution for nouns 
 In [86]: nouns_freq = nltk.FreqDist([word for word, tag in nouns]) 

   In [87]: # print top 10 occuring nouns 
 In [88]: print nouns_freq.most_common(10) 
 [(u'man', 106), (u'time', 82), (u'door', 80), (u'car', 69), (u'room', 65), 
(u'Mr.', 63), (u'way', 61), (u'office', 50), (u'eyes', 48), (u'hand', 46)] 

    That snippet prints the top ten  nouns   that occur the most and includes terms like 
 man ,  time ,  room , and so on. We have used some advanced constructs and techniques like 
list comprehensions, iterables, and tuples. The next chapter covers them in further detail, 
including how they work and their main functionality. For now, all you need to know is 
we filter out the nouns from all other words based on their POS tags and then compute 
their frequency to get the top occurring nouns in the corpus.  

   Accessing the Reuters Corpus 
 The  Reuters Corpus   consists of 10,788 Reuters news documents from around 90 different 
categories and has been grouped into train and test sets. In machine learning terminology, 
 train  sets are usually used to train a model, and  test  sets are used to test the performance of 
that model. The following code snippet shows how to access the data for the Reuters Corpus: 

    In [94]: # load the Reuters Corpus 
 In [95]: from nltk.corpus import reuters 

   In [96]: print 'Total Categories:', len(reuters.categories()) 
 Total Categories: 90 

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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   In [97]: print reuters.categories() 
 [u'acq', u'alum', u'barley', u'bop', u'carcass', u'castor-oil', u'cocoa', 
u'coconut', u'coconut-oil', u'coffee', u'copper', u'copra-cake', u'corn', 
u'cotton', u'cotton-oil', u'cpi', u'cpu', u'crude', u'dfl', u'dlr', u'dmk', 
u'earn', u'fuel', u'gas', ...] 

   In [104]: # get sentences in housing and income categories 
 In [105]: sentences = reuters.sents(categories=['housing', 'income']) 
 In [106]: sentences = [' '.join(sentence_tokens) for sentence_tokens in 
sentences] 
 In [107]: print sentences[0:5]  # prints the first 5 sentences 
 [u”YUGOSLAV ECONOMY WORSENED IN 1986 , BANK DATA SHOWS National Bank 
economic data for 1986 shows that Yugoslavia ' s trade deficit grew , the 
inflation rate rose , wages were sharply higher , the money supply expanded 
and the value of the dinar fell .”, u'The trade deficit for 1986 was 2 . 
012 billion dlrs , 25 . 7 pct higher than in 1985 .', u'The trend continued 
in the first three months of this year as exports dropped by 17 . 8 pct , 
in hard currency terms , to 2 . 124 billion dlrs .', u'Yugoslavia this year 
started quoting trade figures in dinars based on current exchange rates , 
instead of dollars based on a fixed exchange rate of 264 . 53 dinars per 
dollar .', u”Yugoslavia ' s balance of payments surplus with the convertible 
currency area fell to 245 mln dlrs in 1986 from 344 mln in 1985 .”] 

   In [109]: # fileid based access 
 In [110]: print reuters.fileids(categories=['housing', 'income']) 
 [u'test/16118', u'test/18534', u'test/18540', u'test/18664', u'test/18665', 
u'test/18672', u'test/18911', u'test/19875', u'test/20106', u'test/20116', 
u'training/1035', u'training/1036', u'training/10602', ...] 

   In [111]: print reuters.sents(fileids=[u'test/16118', u'test/18534']) 
 [[u'YUGOSLAV', u'ECONOMY', u'WORSENED', u'IN', u'1986', u',', u'BANK', 
u'DATA', u'SHOWS', u'National', u'Bank', u'economic', u'data', u'for', 
u'1986', u'shows', u'that', u'Yugoslavia', u”'“, u's', u'trade', u'deficit', 
u'grew', u',', u'the', u'inflation', u'rate', u'rose', u',', u'wages', 
u'were', u'sharply', u'higher', u',', u'the', u'money', u'supply', 
u'expanded', u'and', u'the', u'value', u'of', u'the', u'dinar', u'fell', 
u'.'], [u'The', u'trade', u'deficit', u'for', u'1986', u'was', u'2', u'.', 
u'012', u'billion', u'dlrs', u',', u'25', u'.', u'7', u'pct', u'higher', 
u'than', u'in', u'1985', u'.'], ...] 

    This gives us an idea of how to access corpora data using both categories as well as 
file  identifiers  .  

   Accessing the  WordNet   Corpus 
 The WordNet corpus is perhaps one of the most used corpora out there because it 
consists of a vast corpus of words and semantically linked synsets for each word. We 
will explore some of the basic features of the WordNet Corpus here, including synsets 
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and methods of accessing the corpus data. For more advanced analysis and coverage 
of WordNet capabilities, see Chapter   7    , which covers synsets, lemmas, hyponyms, 
hypernyms, and several other concepts covered in the semantics section earlier. The 
following code snippet should give you an idea about how to access the WordNet corpus 
data and synsets: 

    In [113]: # load the Wordnet Corpus 
 In [114]: from nltk.corpus import wordnet as wn 

   In [127]: word = 'hike' # taking hike as our word of interest 

   In [128]: # get word synsets 
 In [129]: word_synsets = wn.synsets(word) 
 In [130]: print word_synsets 
 [Synset('hike.n.01'), Synset('rise.n.09'), Synset('raise.n.01'), 
Synset('hike.v.01'), Synset('hike.v.02')] 

   In [132]: # get details for each synonym in synset 
      ...: for synset in word_synsets: 
      ...:     print 'Synset Name:', synset.name() 
      ...:     print 'POS Tag:', synset.pos() 
      ...:     print 'Definition:', synset.definition() 
      ...:     print 'Examples:', synset.examples() 
      ...:     print 
      ...:      
 Synset Name: hike.n.01 
 POS Tag: n 
 Definition: a long walk usually for exercise or pleasure 
 Examples: [u'she enjoys a hike in her spare time'] 

   Synset Name: rise.n.09 
 POS Tag: n 
 Definition: an increase in cost 
 Examples: [u'they asked for a 10% rise in rates'] 

   Synset Name: raise.n.01 
 POS Tag: n 
 Definition: the amount a salary is increased 
 Examples: [u'he got a 3% raise', u'he got a wage hike'] 

   Synset Name: hike.v.01 
 POS Tag: v 
 Definition: increase 
 Examples: [u'The landlord hiked up the rents'] 

   Synset Name: hike.v.02 
 POS Tag: v 
 Definition: walk a long way, as for pleasure or physical exercise 
 Examples: [u'We were hiking in Colorado', u'hike the Rockies'] 

http://dx.doi.org/10.1007/978-1-4842-2388-8_7
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    The preceding code snippet depicts an interesting example with the word  hike  
and its synsets, which include synonyms that are nouns as well as verbs having distinct 
meanings. WordNet makes it easy to semantically link words together with their 
synonyms as well as easily retrieve meanings and examples for various words. The 
preceding example tells us that  hike  can mean a long walk as well as an increase in price 
for salary or rent. Feel free to experiment with different words and find out their synsets, 
definitions, examples, and relationships.    

 Besides these popular corpora, there are a vast number of text corpora available that 
you can check and access with the  nltk.corpus  module. Thus, you can see how easy it is 
to access and use data from any text corpus with the help of Python and NLTK. 

 This brings us to the end of our discussion about text corpora. The following sections 
cover some ground regarding NLP and text analytics.    

     Natural Language Processing 
 I’ve mentioned the term  natural language processing  (NLP) several times in this chapter. 
By now, you may have formed some idea about what NLP means. NLP is  defined   as 
a specialized field of computer science and engineering and artificial intelligence 
with roots in computational linguistics. It is primarily concerned with designing and 
building applications and systems that enable interaction between machines and 
natural languages evolved for use by humans. This also makes NLP related to the area of 
Human-Computer Interaction ( HCI  )   .  NLP   techniques enable computers to process and 
understand natural human language and utilize it further to provide useful output. Next, 
we will be talking about some of the main applications of NLP. 

     Machine Translation 
  Machine translation   is perhaps one of the most coveted and sought-after applications 
for NLP. It is defined as the technique that helps in providing syntactic, grammatical, 
and semantically correct translation between any two pair of languages. It was perhaps 
the first major area of research and development in NLP. On a simple level, machine 
translation is the translation of natural language carried out by a machine. By default, the 
basic building blocks for the machine translation process involve simple substitution of 
words from one language to another, but in that case we ignore things like grammar and 
phrasal structure consistency. Hence, more sophisticated techniques have evolved over a 
period of time, including combining large resources of text corpora along with statistical 
and linguistic techniques. One of the most popular machine translation systems is Google 
Translate. Figure  1-19  shows a successful machine translation operation executed by 
Google  Translate   for the sentence  What is the fare to the airport?  from English to Italian.  
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 Over time, machine translation systems are getting better providing translations in 
real time as you speak or write into the application.  

     Speech  Recognition      Systems 
 This is perhaps the most difficult application for NLP. Perhaps the most difficult test of 
intelligence in artificial intelligence systems is the Turing Test. This test is defined as a 
test of intelligence for a computer. A question is posed to a computer and a human, and 
the test is passed if it is impossible to say which of the answers given was given by the 
human. Over time, a lot of progress has been made in this area by using techniques like 
speech synthesis, analysis, syntactic parsing, and contextual reasoning. But one chief 
limitation for speech recognition systems still remains: They are very domain specific and 
will not work if the user strays even a little bit from the expected scripted inputs needed 
by the system. Speech-recognition systems are now found in many places, from desktop 
computers to mobile phones to virtual assistance systems.  

     Question Answering Systems 
  Question Answering Systems (QAS)   are built upon the principle of Question Answering, 
based on using techniques from NLP and information retrieval (IR).  QAS   is primarily 
concerned with building robust and scalable systems that provide answers to questions 
given by users in natural language form. Imagine being in a foreign country, asking a 
question to your personalized assistant in your phone in pure natural language, and 
getting a similar response from it. This is the ideal state toward which researchers and 
technologists are working. Some success in this field has been achieved with personalized 
assistants like Siri and Cortana, but their scope is still limited because they understand 
only a subset of key clauses and phrases in the entire human natural language. 

  Figure 1-19.    Machine translation performed by Google Translate       
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 To build a successful QAS, you need a huge knowledgebase consisting of data about 
various domains. Efficient querying systems into this knowledgebase would be leveraged 
by the QAS to provide answers to questions in natural language form. Creating and 
maintaining a queryable vast knowledgebase is extremely difficult—hence, you find the 
rise of QAS in niche domains like food, healthcare, e-commerce, and so on. Chatbots are 
one emerging trend that makes extensive use of QAS.  

      Contextual Recognition and Resolution   
 This covers a wide area in understanding natural language and includes both syntactic 
and semantic-based reasoning.  Word sense disambiguation  is a popular application, 
where we want to find out the contextual sense of a word in a given sentence. Consider 
the word  book . It can mean  an object containing knowledge and information  when used 
as a noun, and it can also mean  to reserve a seat or a table  when used as a verb. Detecting 
these differences in sentences based on context is the main premise of word sense 
disambiguation—a daunting task covered in Chapter   7    . 

  Coreference resolution  is another problem in linguistics NLP is trying to address. By 
definition, coreference is said to occur when two or more terms or expressions in a body 
of text refer to the same entity. Then they are said to have the same  referent . Consider 
 John just told me that he is going to the exam hall . In this sentence, the pronoun  he  has the 
referent  John . Resolving such pronouns is a part of coreference resolution, and it becomes 
challenging once we have multiple referents in a body of text. For example,  John just talked 
with Jim. He told me we have a surprise test tomorrow . In this body of text, the pronoun  he  
could refer to either  John  or  Jim , thus making pinpointing the exact referent difficult.  

     Text Summarization 
 The main aim of   text summarization    is to take a corpus of text documents—which could 
be a collection of texts, paragraphs, or sentences—and reducing the content appropriately 
to create a summary that retains the key points of the collection. Summarization can 
be carried out by looking at the various documents and trying to find out the keywords, 
phrases, and sentences that have an important prominence in the whole collection. Two 
main types of techniques for text summarization include  extraction-based summarization  
and  abstraction-based summarization . With the advent of huge amounts of text and 
unstructured data, the need for text summarization in getting to valuable insights quickly 
is in great demand. 

 Text-summarization systems usually perform two main types of operations. The first 
is  generic summarization , which tries to provide a generic summary of the collection of 
documents under analysis. The second type of operation is  query-based summarization , 
which provides query-relevant text summaries where the corpus is filtered further based 
on specific queries, relevant keywords and phrases are extracted relevant to the query, 
and the summary is constructed. Chapter   5     covers this in detail .   

http://dx.doi.org/10.1007/978-1-4842-2388-8_7
http://dx.doi.org/10.1007/978-1-4842-2388-8_5
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     Text Categorization 
 The main aim of   text categorization    is identifying to which category or class a specific 
document should be placed based on the contents of the document. This is one of the 
most popular applications of NLP and machine learning because with the right data, it 
is extremely simple to understand the principles behind its internals and implement a 
working text categorization system. Both supervised and unsupervised machine learning 
techniques can be used in solving this problem, and sometimes a combination of both is 
used. This has helped build a lot of successful and practical applications, including spam 
filters and news article categorization. We will be building our own text categorization 
system in Chapter   4    .   

      Text Analytics      
 As mentioned before, with the advent of huge amounts of computing power, unstructured 
data, and success with machine learning and statistical analysis techniques, it wasn’t long 
before text analytics started garnering a lot of attention. However, text analytics poses 
some challenges compared to regular analytical methods. Free-flowing text is highly 
unstructured and rarely follows any specific pattern—like weather data or structured 
attributes in relational databases. Hence, standard statistical methods aren’t helpful when 
applied out of the box on unstructured text data. This section covers some of the main 
concepts in text analytics and also discusses the definition and scope of text analytics, 
which will give you a broad idea of what you can expect in the upcoming chapters. 

   Text analytics      , also known as  text mining , is the methodology and process followed 
to derive quality and actionable information and insights from textual data. This involves 
using NLP, information retrieval, and machine learning techniques to parse unstructured 
text data into more structured forms and deriving patterns and insights from this data 
that would be helpful for the end user. Text analytics comprises a collection of machine 
learning, linguistic, and statistical techniques that are used to model and extract 
information from text primarily for analysis needs, including business intelligence, 
exploratory, descriptive, and predictive analysis. Here are some of the main techniques 
and operations in text analytics:.

•    Text classification  

•   Text clustering  

•   Text summarization  

•   Sentiment analysis  

•   Entity extraction and recognition  

•   Similarity analysis and relation modeling    

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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 Doing text analytics is sometimes a more involved process than normal statistical 
analysis or machine learning. Before applying any learning technique or algorithm, you 
have to convert the unstructured text data into a format acceptable by those algorithms. 
By definition, a body of text under analysis is often a document, and by applying various 
techniques we usually convert this document to a vector of words, which is a numeric 
array whose values are specific weights for each word that could either be its frequency, 
its occurrence, or various other depictions—some of which we will explore in Chapter   3    . 
Often the text needs to be cleaned and processed to remove noisy terms and data, called 
 text pre-processing . 

 Once we have the data in a machine-readable and understandable format, we can 
apply relevant algorithms based on the problem to be solved at hand. The applications of 
text analytics are manifold. Some of the most popular ones include the following:

•    Spam detection  

•   News articles categorization  

•   Social media analysis and monitoring  

•   Bio-medical  

•   Security intelligence  

•   Marketing and CRM  

•   Sentiment analysis  

•   Ad placements  

•   Chatbots  

•   Virtual  assistants          

     Summary 
 Congratulations on sticking it out till the end of this long chapter! We have started on our 
journey of text analytics with Python by taking a trip into the world of natural language 
and the various concepts and domains surrounding it. You now have a good idea of what 
natural language means and its significance in our world. You have also seen concepts 
regarding the philosophy of language and language acquisition and usage. The field of 
linguistics was also touched on, providing a flavor of the origins of language studies and 
how they have been evolving over time. We covered language syntax and semantics in 
detail, including the essential concepts with interesting examples to easily understand 
them. We also talked about resources for natural language, namely text corpora, and also 
looked at some practical examples with code regarding how to interface and access corpora 
using Python and NTLK. The chapter concluded with a discussion about the various 
facets of NLP and text analytics. In the next chapter, we will talk about using Python for text 
analytics. We will touch on setting up your Python development environment, the various 
constructs of Python, and how to use it for text processing. We will also look at some of the 
popular libraries, frameworks, and platforms we will be using in this book.       

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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    CHAPTER 2   

 Python Refresher                          

 In the previous chapter, we took a journey into the world of natural language and explored 
several interesting concepts and areas associated with it. We now have a better understanding 
of the entire scope surrounding  natural language processing (NLP)  , linguistics, and text 
analytics. If you refresh your memory, we had also got our first taste of running Python  code   to 
access and use text corpora resources with the help of the NLTK platform. 

 In this chapter, we will cover a lot of ground with regard to the core components and 
functionality of Python as well as some of the important libraries and frameworks associated 
with NLP and text analytics. This chapter is aimed to be a refresher for Python and for 
providing the initial building blocks essential to get started with text analytics. This book 
assumes you have some knowledge of Python or any other  programming language  . If you are 
a Python practitioner, you can skim through the chapter, since the content here starts with 
setting up your Python development environment and moves on to the basics of Python. 

 Our main focus in the chapter will be exploring how  text data   is handled in Python, 
including data types and functions associated with it. However, we will also be covering 
several advanced concepts in Python, including list comprehensions, generators, and 
decorators, which make your life easier in developing and writing quality and reusable 
code. This chapter follows a more  hands-on approach   than the previous chapter, and we 
will cover various concepts with practical examples. 

     Getting to Know Python 
 Before we can dive into the Python ecosystem and look at the various components 
associated with it, we must look back at the origins and philosophy behind Python 
and see how it has evolved over time to be the choice of language powering many 
applications, servers, and systems today. Python is a high-level open source general-
purpose  programming language   widely used as a scripting and across different domains. 
The brainchild of Guido Van Rossum, Python was conceived in the late 1980s as a 
successor to the  ABC language  , and both were developed at the  Centrum Wiskunde and 
Informatica (CWI)  , Netherlands. Python was originally designed to be a scripting and 
interpreted language, and to this day it is still one of the most popular scripting languages 
out there. But with  object-oriented programming (OOP)   and constructs, you can use 
it just like any other object-oriented language, such as Java. The name  Python , coined 
by Guido for the language, does not refer to the snake but the hit comedy show  Monty 
Python’s Flying Circus , since he was a big fan. 
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 As mentioned, Python is a general-purpose programming language that supports 
multiple programming paradigms, including the following popular  programming 
paradigms  :

•    Object-oriented programming  

•   Functional programming  

•   Procedural programming  

•   Aspect-oriented programming    

 A lot of OOP concepts are present in Python, including classes, objects, data, and 
methods.  Principles   like abstraction, encapsulation, inheritance, and polymorphism can 
also be implemented and exhibited using Python. There are several advanced features 
in Python, including iterators, generators, list comprehensions, lambda expressions, and 
several modules like  itertools  and  functools , which provide the ability to write code 
following the functional programming paradigm. 

 Python was designed keeping in mind the fact that simple and beautiful code is 
more elegant and easy to use rather than doing premature optimization and writing 
hard-to-interpret code. Python’s standard libraries are power-packed with a wide variety 
of capabilities and features ranging from low-level hardware interfacing to handling 
files and working with text data. Easy extensibility and integration was considered when 
developing Python such that it can be easily integrated with existing applications—rich 
  application programming interfaces  (APIs)   can even be created to provide interfaces to 
other applications and tools. 

 Python offers a lot of  advantages and benefits  . Here are some of the major benefits:

•     Friendly and easy to learn : The Python programming language is 
extremely easy to understand and learn. Schools are starting to 
pick up Python as the language of choice to teach kids to code. 
The learning curve is not very steep, and you can do a lot of fun 
things in Python, from building games to automating things 
like reading and sending email. (In fact, there is a popular book 
and website dedicated to “automating the boring stuff” using 
Python at    https://automatetheboringstuff.com     .) Python also 
has a thriving and helpful developer community, which makes 
sure there is a ton of helpful resources and documentation out 
there on the Internet. The community also organizes various 
workshops and conferences throughout the world.  

•    High-level abstractions : Python is a   high-level language  (HLL)  , 
where a lot of the heavy lifting needed by writing low level code is 
eliminated by high-level abstractions. Python has a sharp focus 
on code simplicity and extensibility, and you can perform various 
operations, simple or complex, in fewer lines of code than other 
traditional compiled languages like C++ and C.  

https://automatetheboringstuff.com/
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•    Boosts productivity : Python boosts productivity by reducing time 
taken to develop, run, debug, deploy, and maintain large codebases 
compared to other languages like Java, C++, and C. Large programs 
of more than a 100 lines can be reduced to 20 lines or less on average 
by porting them to Python. High-level abstractions help developers 
focus on the problem to be solved at hand rather than worry about 
language-specific nuances. The hindrance of compiling and linking 
is also bypassed with Python. Hence, Python is often the choice of 
language especially when rapid prototyping and development are 
essential for solving an important problem in little time.  

•    Complete    robust ecosystem   : One of the main advantages of Python 
is that it is a multipurpose programming language that can be 
used for just about anything! From web applications to intelligent 
systems, Python powers a wide variety of applications and systems. 
We will talk about some of them later in this chapter. Besides being 
a multipurpose language, the wide variety of frameworks, libraries, 
and platforms that have been developed by using Python and to 
be used for Python form a complete robust ecosystem around 
Python. These libraries make life easier by giving us a wide variety of 
capabilities and functionality to perform various tasks with minimal 
code. Some examples would be libraries for handling databases, text 
data, machine learning, signal processing, image processing, deep 
learning, artificial intelligence—and the list goes on.  

•    Open source : As open source, Python is actively developed and 
updated constantly with improvements, optimizations, and new 
features. Now the Python Software Foundation (PSF) owns all 
Python-related intellectual property (IP) and administers all 
license-related issues. Being open source has boosted the Python 
ecosystem with almost all of its libraries also being open source, to 
which anyone can share, contribute, and suggest improvements 
and feedback. This helps foster healthy collaboration among 
technologists, engineers, researchers, and developers.  
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•    Easy to port, integrate, and deploy : Python is supported on 
all major operating systems (OS), including Linux, Windows, 
and macOS. Code written in one OS can easily be ported into 
another OS by simply copying the code files, and they will work 
seamlessly. Python can also be easily integrated and extended 
with existing applications and can interface with various APIs 
and devices using sockets, networks, and ports. Python can be 
used to invoke code for other languages, and there are Python 
bindings for invoking Python code from other languages. This 
helps in easy integration of Python code wherever necessary. 
The most important advantage, though, is that it is very easy to 
develop Python code and deploy it no matter how complex your 
codebase might be. If you follow the right   continuous integration  
(CI) processes   and manage your Python codebase properly, 
deployment usually involves updating your latest code and 
starting the necessary processes in your production environment. 
It is extremely easy to get proper working code in minimal time, 
which is often difficult to do with other languages.    

 All these features coupled with rapid strides in the application of Python in various 
widespread domains over the years have made Python extremely popular. Such has been 
the case that if the proper Python principles of simplicity, elegance, and minimalism are 
not followed when writing code, the code is said to be not “pythonic.” There is a known 
style and convention around writing good Python code, and lots of articles and books 
teach how to write pythonic code. Active users and developers in the Python community 
call themselves Pythonistas, Pythoneers, and many more interesting names. The thriving 
Python community makes the language all the more exciting since Python and its entire 
ecosystem is always under active improvement and development. 

     The Zen of Python 
 You may be wondering what on earth the   Zen of Python    could be, but when you become 
somewhat familiar with Python, this is one of the first things you get to know. The 
beauty of Python lies in its simplicity and elegance. The Zen of Python is a set of 20 
guiding principles, or  aphorisms , that have been influential in Python’s design. Long-
time Pythoneer Tim Peters documented 19 of them in 1999, and they can be accessed 
at    https://hg.python.org/peps/file/tip/pep-0020.txt      as a part of the Python 
Enhancement Proposals (PEP) number 20 (PEP 20). The best part is, if you already have 
Python installed, you can access the Zen of Python at any  time   by running the following 
code in the Python or IPython shell: 

    In [5]: import this 
 The Zen of Python, by Tim Peters 

https://hg.python.org/peps/file/tip/pep-0020.txt


CHAPTER 2 ■ PYTHON REFRESHER

55

   Beautiful is better than ugly. 
 Explicit is better than implicit. 
 Simple is better than complex. 
 Complex is better than complicated. 
 Flat is better than nested. 
 Sparse is better than dense. 
 Readability counts. 
 Special cases aren't special enough to break the rules. 
 Although practicality beats purity. 
 Errors should never pass silently. 
 Unless explicitly silenced. 
 In the face of ambiguity, refuse the temptation to guess. 
 There should be one-- and preferably only one --obvious way to do it. 
 Although that way may not be obvious at first unless you're Dutch. 
 Now is better than never. 
 Although never is often better than *right* now. 
 If the implementation is hard to explain, it's a bad idea. 
 If the implementation is easy to explain, it may be a good idea. 
 Namespaces are one honking great idea -- let's do more of those! 

    The above output showing the 19 principles that form the Zen of Python is included 
in the Python language itself as an easter egg. The principles are written in simple English 
and a lot of them are pretty self-explanatory, even if you have not written code before, 
and many of them contain inside jokes! Python focuses on writing simple and clean 
code that is readable. It also intends to make sure you focus a lot on error handling and 
implementing code that is easy to interpret and understand. The one principle I would 
most like you to remember is  Simple is better than complex , which is applicable not only 
for Python but for a lot of things when you are out there in the world solving problems. 
Sometimes a simple approach beats a more complex one, as long as you know what you 
are doing, because it helps you avoid overcomplicating things.  

     Applications: When Should You Use Python? 
 Python, being a general and multipurpose programming language, can be used to build 
applications and systems for different domains and solve diverse real-world problems. 
Python comes with a standard library that hosts a large number of useful libraries and 
modules that can be leveraged to solve various problems. Besides the standard library, 
thousands of third-party libraries are readily available on the Internet, encouraging open 
source and active development. The official repository for hosting third-party libraries 
and utilities for enhancing development in Python is the  Python Package Index (PyPI)  . 
Access it at    https://pypi.python.org      and check out the various packages. Currently 
there are over 80,000 packages you can install and start using. 

https://pypi.python.org/
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 Although Python can be used for solving a lot of problems, here are some of the most 
popular domains:

•      Scripting   : Python is known as a scripting language. It can be 
used to perform many tasks, such as interfacing with networks 
and hardware and handling and processing files and databases, 
performing OS operations, and receiving and sending email. 
Python is also used extensively for server-side scripting and even 
for developing entire web servers for serving web pages. A lot 
of Python scripts are used in an ad-hoc fashion for automating 
operations like network socket communication, handling email, 
parsing and extracting web pages, file sharing and transfer via 
FTP, communicating via different protocols, and several more.  

•     Web development   : There are a lot of robust and stable Python 
frameworks out there that are used extensively for web 
development, including Django, Flask, Web2Py, and Pyramid. 
You can use them for developing complete enterprise web 
applications, and Python supports various architecture styles like 
RESTful APIs and the MVC architecture. It also provides ORM 
support to interact with databases and use OOP on top of that. 
Python even has frameworks like Kivy, which support cross-
platform development for developing apps on multiple platforms 
like iOS, Android, Windows, and OS X. Python is also used for 
developing  rich internet applications (RIA)   with the Silverlight 
framework support in IronPython, a Python version that is well 
integrated with the popular Microsoft .NET framework and pyjs, 
a RIA development framework supporting a Python-to-JavaScript 
compiler and an AJAX framework.  

•     Graphical user interfaces (GUIs)   : A lot of desktop-based 
applications with GUIs can be easily built with Python. Libraries 
and APIs like tkinter, PyQt, PyGTK, and wxPython allow 
developers to develop GUI-based apps with simple as well as 
complex interfaces. Various frameworks enable developers to 
develop GUI-based apps for different OSes and platforms.  

•     Systems programming   : Being a high-level language, Python has 
a lot of interfaces to low-level OS services and protocols, and the 
abstractions on top of these services enable developers to write 
robust and portable system monitoring and administration tools. 
We can use Python to perform OS operations including creating, 
handling, searching, deleting, and managing files and directories. 
The  Python standard library (PSL)   has OS and POSIX bindings that 
can be used for handling files, multi-threading, multi-processing, 
environment variables, controlling sockets, pipes, and processes. 
This also enhances writing Python scripts for performing system-
level administration tasks with minimal effort and lines of code.  



CHAPTER 2 ■ PYTHON REFRESHER

57

•     Database programming   : Python is used a lot in connecting and 
accessing data from different types of databases, be it SQL or 
NoSQL. APIs and connectors exist for these databases like MySQL, 
MSSQL, MongoDB, Oracle, PostgreSQL, and SQLite. In fact, SQLite, 
a lightweight relational database, now comes as a part of the Python 
standard distribution itself. Popular libraries like SQLAlchemy and 
SQLObject provide interfaces to access various relational databases 
and also have ORM components to help implement OOP-style 
classes and objects on top of relational tables.  

•     Scientific computing   : Python really shows its flair for being 
multipurpose in areas like numeric and scientific computing. You 
can perform simple as well as complex mathematical operations 
with Python, including algebra and calculus. Libraries like 
 SciPy   and NumPy help researchers, scientists, and developers 
leverage highly optimized functions and interfaces for numeric 
and scientific programming. These libraries are also used as the 
base for developing complex algorithms in various domains like 
machine learning.  

•     Machine learning   : Python is regarded as one of the most popular 
languages today for machine learning. There is a wide suite of 
libraries and frameworks, like  scikit-learn ,  h2o ,  tensorflow , 
 theano , and even core libraries like  numpy  and  scipy , for not only 
implementing machine learning algorithms but also using them 
to solve real-world advanced analytics problems.  

•     Text analytics   : As mentioned, Python can handle text data 
very well, and this has led to several popular libraries like 
 nltk ,  gensim , and  pattern  for NLP, information retrieval, and 
text analytics. You can also apply standard machine learning 
algorithms to solve problems related to text analytics. This 
ecosystem of readily available packages in Python reduces time 
and efforts taken for development. We will be exploring several of 
these libraries in this book.    

 Even though the preceding list may seem a bit overwhelming, this is just scratching 
the surface of what is possible with Python. It is widely used in several other domains 
including  artificial intelligence (AI)  , game development, robotics, Internet of Things 
(IoT), computer vision, media processing, and network and system monitoring, just to 
name a few. To read some of the widespread success stories achieved with Python in 
different diverse domains like arts, science, computer science, education, and others, 
enthusiastic programmers and researchers can check out    www.python.org/about/
success/     . To find out various popular applications developed using Python, see 
   www.python.org/about/apps/      and    https://wiki.python.org/moin/Applications     , 
where you will definitely find some applications you have used—some of them are 
indispensable.  

http://www.python.org/about/success/
http://www.python.org/about/success/
http://www.python.org/about/apps/
https://wiki.python.org/moin/Applications
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     Drawbacks: When Should You Not Use Python? 
 I have been blowing the trumpet for Python till now, but you may be wondering are 
there any drawbacks? Well, like any tool or language, Python has advantages and 
disadvantages. Yes, even Python has some disadvantages, and here we will highlight 
some of them so that you are aware of them when developing and writing code in Python:

•     Execution speed performance :  Performance  is a pretty heavy term 
and can mean several things, so I’ll pinpoint the exact area to 
talk about and that is execution speed. Because Python is not a 
fully compiled language, it will always be slower than low-level 
fully compiled programming languages like C and C++. There 
are several ways you can optimize your code, including multi-
threading and multi-processing. You can also use static typing 
and C extensions for Python (known as Cython). You can consider 
using PyPy also, which is much faster than normal Python since 
it uses a just-in-time (JIT)  compiler   (see    http://pypy.org     ), 
but often, if you write well-optimized code, you can develop 
applications in Python just fine and do not need to depend on 
other languages. Remember that often the problem is not with 
the tool but the code you write—something all developers and 
engineers realize with time and experience.  

•     Global Interpreter Lock (GIL)   : The GIL is a mutual exclusion lock 
used in several programming language interpreters, like Python 
and Ruby. Interpreters using GIL only allow one single thread 
to effectively execute at a time even when run on a multi-core 
processor and thus limit the effectively of parallelism achieved by 
multi-threading depending on whether the  processes   are I\O bound 
or CPU bound and how many calls it makes outside the interpreter.  

•    Version incompatibility : If you have been following Python news, 
you know that once Python released the 3.x version from 2.7.x, 
it was backward-incompatible in several aspects, and that has 
indeed opened a huge can of worms. Several major libraries and 
packages that had been built in Python 2.7.x started breaking 
when users unknowingly updated their Python versions. Hence, a 
large chunk of enterprises and the developer community still use 
 Python 2.7.x   due to legacy code and because newer versions of 
those packages and libraries were never built. Code deprecation 
and version changes are some of the most important factors in 
systems breaking down.    

 Many of these issues are not specific to Python but apply to other languages too, so 
you should not be discouraged from using Python just because of the preceding points—
but you should definitely remember them when writing code and building systems.  

http://pypy.org/
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     Python Implementations and  Versions      
 There are several different implementations of Python and different versions of Python 
which are released periodically since it is under active development. This section discusses 
both implementations and versions and their significance, which should give you some 
idea of which Python you might want to use for your development needs. Currently, there 
are four major production-ready, robust, and stable implementations of Python:

•      CPython    is the regular old Python, which we know as just Python. 
It is both a compiler and interpreter and comes with its own 
set of standard packages and modules which were all written 
in standard C. This version can be used directly in all popular 
modern platforms. Most of the python third-party packages and 
libraries are compatible with this version.  

•    PyPy  is a faster alternative Python implementation that uses 
a JIT compiler to make the code run faster than the CPython 
implementation—sometimes delivering speedups in the range of 
10x–100x. It is also more memory efficient, supporting greenlets 
and stackless for high parallelism and concurrency.  

•    Jython  is a Python implementation for the Java platform 
supporting  Java Virtual Machine (JVM)      for any version of 
Java ideally above version 7. Using Jython you can write code 
leveraging all types of Java libraries, packages, and frameworks. 
It works best when you know more about the Java syntax and 
the OOP principles that are used extensively in Java, like classes, 
objects, and interfaces.  

•    IronPython  is the Python implementation for the popular 
Microsoft .NET framework, also termed as the  Common 
Language Runtime (CLR)        . You can use all of Microsoft’s CLR 
libraries and frameworks in IronPython, and even though you do 
not essentially have to write code in C#, it is useful to know more 
about syntax and constructs for C# to use IronPython effectively.    

 To start with I would suggest you to use the default Python which is the CPython 
implementation, and experiment with the other versions only if you are really interested in 
interfacing with other languages like C# and Java and need to use them in your codebase. 

 There are two major versions: the 2.x series and the 3.x series, where x is a number. 
Python 2.7 was the last major version in the 2.x series, released in 2010. From then on, 
future releases have included bug fixes and performance improvements but no new 
features. The latest version is Python 2.7.12, released in June 2016. The 3.x series started 
with Python 3.0, which introduced many backward-incompatible changes compared 
to Python 2.x. Each version 3 release not only has bug fixes and improvements but also 
introduces new features, such as the AsyncIO module released recently. As of this writing, 
Python 3.5.2 is the latest version in the 3.x series, released in June 2016. 
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 There are many arguments over which version of Python should be used. We 
will discuss some of them later on, but the best way to go about thinking about it is to 
consider what problem is to be solved and the entire software ecosystem you will need 
to use for that, starting from  libraries     , dependencies, and architecture to implementation 
and deployment—and also considering things like reusing existing legacy codebases.   

     Installation and Setup 
 Now that you have been acquainted with Python and know more about the language, 
its capabilities, implementations, and versions, we will be talking about which version 
of Python we will be using in the book and also discussing details on how to set up your 
development environment and handle package management and virtual environments. 
This section will give you a good head start on getting things ready for following along 
with the various hands-on examples we will be covering in this book. 

     Which Python Version? 
 The two major Python versions, as mentioned, are the 2.x series and the 3.x series. They 
are quite similar, although there have been several backward-incompatible changes in 
the 3.x version, which has led to a huge drift between people who use 2.x and people 
who use 3.x. Most legacy code and a large majority of Python packages on PyPI were 
developed in  Python 2.7.x  , and many package owners do not have the time or will to port 
all their codebases to  Python 3.x  , since the effort required would not be minimal. Some of 
the changes in 3.x are as follows:

•    All text strings are Unicode by default.  

•    print  and  exec  are now functions and no longer statements.  

•     range()    returns a memory-efficient iterable and not a list.  

•   The style for classes has changed.  

•   Library and name changes are based on convention and style 
violations.    

 To know more about changes introduced since  Python 3.0  , check    https://docs.
python.org/3/whatsnew/3.0.html     , the official documentation listing the changes. That 
link should give you a pretty good idea of what changes can break your code if you are 
porting it from Python 2 to Python 3. 

 As for the problem of selecting which version, there is no absolute answer for this. 
It purely depends on the problem you are trying to solve and the current code and 
infrastructure you have and how you will be maintaining this code in the future along 
with all its necessary dependencies. If you are starting a new project completely and 
have a fairly good idea that you do not need any external packages and libraries that are 
solely dependent on Python 2.x, you can go ahead with Python 3.x and start developing 
your system. But if you have a lot of dependencies on external packages that might break 
with Python 3.x or that are available for only Python 2.x, you have no choice but to stick 
with  Python 2.x  . Besides that, often you have to deal with legacy code that’s been around 

https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
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a long time, especially in large companies and organizations that have huge codebases. 
In that case, porting the whole code to Python 3.x would be wasted effort—kind of re-
inventing the wheel, since you are not missing out on major functionality and capabilities 
by using Python 2.x, and in fact you might even end up breaking the existing code and 
functionality without even realizing it. In the end, this is a decision left to you, the reader, 
which you must make carefully considering all scenarios. 

 We will be using Python 2.7.11 in this book just to be on the safe side, since it is a tried 
and tested version of Python in all major enterprises. You are most welcome to follow 
along even in Python 3.x—the algorithms and techniques will be the same, although 
you may have to take into account changes, such as the fact that the  print  statement is a 
function in Python 3.x and so on.  

     Which Operating System? 
 There are several popular OSes out there, and everybody has their own preference. The 
beauty of  Python   is that is can run seamlessly on any OS without much hassle. The three 
most popular OSes include the following:

•    Windows  

•   Linux  

•   OS X (now known as macOS)    

 You can choose any OS of your choice and use it for following along with the 
examples in this book. We will be using Windows as the primary OS in this book. 
This book is aimed at working professionals and practitioners, most of whom in their 
enterprise environment usually use the enterprise version of Windows. Besides that, 
several Python external packages are really easy to install on a UNIX-based OS like Linux 
and macOS. However, sometimes there are major issues in installing them for Windows, 
so I want to highlight such instances and make sure to address them such that executing 
any of the code snippets and samples here becomes easy for you. But again, you are most 
welcome to use any OS of your choice when following the examples in this book.  

     Integrated Development Environments 
   Integrated development environments  (IDEs)   are software products that enable 
developers to be highly productive by providing a complete suite of tools and capabilities 
necessary for writing, managing, and executing code. The usual components of an 
IDE include source editor, debugger, compiler, interpreter, and refactoring and build 
tools. They also have other capabilities such as code-completion, syntax highlighting, 
error highlighting and checks, objects, and variable explorers.  IDEs   can be used to 
manage entire codebases—much better than trying to write code in a simple text 
editor, which takes more time. That said, experienced developers often use simple 
plain text editors to write code, especially if they are working in server environments. 
You’ll find a list of IDEs used specially for Python at    https://wiki.python.org/moin/
IntegratedDevelopmentEnvironments     . 

 We will be using the Spyder IDE, which comes with the Anaconda Python 
distribution for writing and executing our code.  

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
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     Environment Setup 
 This section covers details regarding how to set up your Python  environment   with 
minimal effort and the main components required. 

 First, head over to the official Python website and download Python 2.7.11 from 
   www.python.org/downloads/     . Or download a complete Python distribution with over 
700 packages, known as the Anaconda Python distribution, from Continuum Analytics, 
which is built specially for data science and analytics, at    www.continuum.io/downloads     . 
This package provides a lot of advantages, especially for Windows users, where installing 
some of the packages like  numpy  and  scipy  can sometimes cause issues. You can get more 
information about Anaconda and Continuum Analytics at    https://docs.continuum.io/
anaconda/index     . Anaconda comes with conda, an open source package and environment 
management system, and Spyder (Scientific Python Development Environment), an IDE 
for writing and executing your code. 

 For other OS options, check out the relevant instructions on the website. 
 Once you have Python downloaded, start the executable and follow the instructions 

on the screen, clicking the Next button at each stage. But before starting the installation, 
remember to check the two options shown in Figure  2-1 .  

  Figure 2-1.    Installing the Anaconda Python distribution       

 

http://www.python.org/downloads/
http://www.continuum.io/downloads
https://docs.continuum.io/anaconda/index
https://docs.continuum.io/anaconda/index
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 Once the  installation   is complete, either start up Spyder by double-clicking the 
relevant icon or start the Python or IPython shell from the command prompt. Spyder 
provides a complete IDE to write and execute code in both the regular Python and 
IPython shell. Figure  2-2  shows how to run IPython from the command prompt.  

 Figure  2-2  depicts printing a regular sentence saying  Welcome to Python!  just to show 
you that Python is properly installed and working fine. The input and output execution 
history are kept in variables called  In  and  Out , indicated in the figure by the prompt 
numbers, such as  In[1] . IPython provides a lot of advantages including code completion, 
inline executions and plots, and running code snippets interactively. We will be running 
most of our snippets in the IPython shell just like the examples seen in Chapter   1    . 

 Now that you have  Anaconda   installed, you are ready to start running the code 
samples in this book. Before we move on to the next section, I want to cover package 
management briefly. You can use either the  pip  or  conda  commands to install, uninstall, 
and upgrade packages. The shell command shown in Figure  2-3  depicts installing the 
 pandas  library via  pip . Because we already have the library installed, you can use the 
 --upgrade  flag as shown in the figure.  

  Figure 2-2.    Starting IPython from the command prompt       

  Figure 2-3.    Package management using  pip         

 

 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 The  conda  package manager is better than  pip  in several aspects because it provides 
a holistic view of which dependencies are going to be upgraded and the specific versions 
and other details during installation. Also  pip  often fails to install some packages in 
Windows, but  conda  has no such issues during installation. Figure  2-4  depicts how to 
manage packages using  conda .  

 Now you have a much better idea of how to install external  packages   and libraries in 
Python. This will be useful later when we install some libraries that have been specifically 
built for text analytics. Your Python environment should now be set up and ready for 
executing code. Before we dive into the basic and advanced concepts in Python, we will 
conclude this section with a discussion about virtual environments.  

     Virtual Environments 
 A   virtual environment   , or  venv , is a complete isolated Python environment with its own 
Python interpreter, libraries, modules, and scripts. This environment is a standalone 
environment isolated from other virtual environments and the default system-level 
Python environment. Virtual environments are extremely useful when you have multiple 
projects or codebases that have dependencies on different versions of the same packages 
or libraries. For example, if my project TextApp1 depends on  nltk 2.0  and another 
project, TextApp2, depends on  nltk 3.0 , then it would be impossible to run both projects 
on the same system. Hence, the need for virtual environments that provide complete 
isolated environments that can be activated and deactivated as needed. 

  Figure 2-4.    Package management using  conda         
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 To set up a virtual environment, you need to install the  virtualenv  package as follows: 

   E:\Apress>pip install virtualenv 
 Collecting virtualenv 
   Downloading virtualenv-15.0.2-py2.py3-none-any.whl (1.8MB) 
     100% |################################| 1.8MB 290kB/s 
 Installing collected packages: virtualenv 
 Successfully installed virtualenv-15.0.2 

   Once installed, you can create a virtual environment as follows, where we create a new 
project directory called  test_proj  and create the virtual environment inside the directory: 

   E:\Apress>mkdir test_proj && chdir test_proj 
 E:\Apress\test_proj>virtualenv venv 
 New python executable in E:\Apress\test_proj\venv\Scripts\python.exe 
 Installing setuptools, pip, wheel...done. 

   Once you have installed the  virtual environment   successfully, you can activate it 
using the following command: 

   E:\Apress\test_proj>venv\Scripts\activate 
 (venv) E:\Apress\test_proj>python --version 
 Python 2.7.11 :: Continuum Analytics, Inc. 

   For other OS platforms, you may need to use the command  source venv/bin/
activate  to activate the virtual environment. 

 Once the virtual environment is active, you can see the  (venv)  notation as shown in 
the preceding code output, and any new packages you install will be placed in the  venv  
folder in complete isolation from the global system Python installation. This difference 
is illustrated by depicting different versions for the  pandas  package in the global system 
Python and the virtual environment Python in the following code: 

    C:\Users\DIP.DIPSLAPTOP>echo 'This is Global System Python' 
 'This is Global System Python' 
 C:\Users\DIP.DIPSLAPTOP>pip freeze | grep pandas 
 pandas==0.18.0 

   (venv) E:\Apress\test_proj>echo 'This is VirtualEnv Python' 
 'This is VirtualEnv Python' 
 (venv) E:\Apress\test_proj>pip install pandas 
 Collecting pandas 
   Downloading pandas-0.18.1-cp27-cp27m-win_amd64.whl (6.2MB) 
     100% |################################| 6.2MB 142kB/s 
 Installing collected packages: pandas 
 Successfully installed pandas-0.18.1 
 (venv) E:\Apress\test_proj>pip freeze | grep pandas 
 pandas==0.18.1 
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    You can see from that code how the  pandas  package has different versions in the 
same machine:  0.18.0  for global Python and  0.18.1  for the virtual environment Python. 
Hence, these isolated virtual environments can run seamlessly on the same system. 

 Once you have finished working in the virtual environment, you can deactivate it 
again as follows: 

   (venv) E:\Apress\test_proj>venv\Scripts\deactivate 
 E:\Apress\test_proj> 

   This will bring you back to the system’s default  Python   interpreter with all its 
installed libraries. This gives us a good idea about the utility and advantages of virtual 
environments, and once you start working on several projects, you should definitely 
consider using it. To find out more about virtual environments, check out    http://docs.
python-guide.org/en/latest/dev/virtualenvs/     , the official documentation for the 
 virtualenv  package. 

 This brings us to the end of our installation and setup activities, and now we will 
be looking into Python concepts, constructs, syntax, and semantics using hands-on 
examples.   

     Python  Syntax      and Structure 
 There is a defined hierarchical syntax for Python code that you should remember when 
writing code. Any big Python application or system is built using several modules, which 
are themselves comprised of Python statements. Each statement is like a command or 
direction to the system directing what operations it should perform, and these statements 
are comprised of expressions and objects. Everything in Python is an object—including 
functions, data structures, types, classes and so on. This hierarchy is visualized in 
Figure  2-5 .  

  Figure 2-5.    Python program structure hierarchy       

 

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
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 The basic statements consist of objects, expressions which usually make use of objects 
and process and perform operations on them. Objects can be anything from simple data 
types and  structures      to complex objects, including functions and reserved words that have 
their own specific roles. Python has around 37  keywords , or reserved words, which have 
their own designated roles and functions. Table   2-1   list each keyword in detail, including 
examples that should be useful and handy when you are using them in your code.  

    Table 2-1.     Python Reserved Words     

 Sl No.  Keyword  Description  Example 

 1   and   The logical AND operator   (5==5 and 1==2) == False  

 2   as   Used as a synonym to some 
object/reference 

  with open('file.txt') as f  

 3   assert   Asserts/checks if some 
expression is True 

  assert 1==2, "Not Equal"  

 4   async   Declares a function as 
 asynchronous      (co-routine) 

  async def get_data():  

 5   await   Used to invoke a co-routine   return await get_data()  

 6   break   Breaks out of an executing loop   while True:  
  break  

 7  class  Create a class (OOP)   class ClassifyText(object):  

 8   continue   Continue with the next iteration 
of the loop 

  while True:  
  if a==1: continue  

 9  def  Defines a function   def add(a,b):  
  return a+b  

 10  del  Deletes references   del arr  

 11   elif   Else-if conditional   if num==1: print '1'  
  elif num==2: print '2'  

 12  else  Else conditional   if num==1: print '1'  
  else: print 'not 1'  

 13  except  Catch  exceptions     except ValueError, e: print e  

 14  exec  Dynamic execution of code   exec 'print "Hello Python"'  

 15   False   Boolean False   False == 0  

 16   finally   Finally execute statements after 
try-except 

  finally: print 'end of 
exception'  

 17   for   The for loop   for num in arr: print num  

 18   from   Import specific components 
from modules 

  from nltk.corpus import 
brown  

 19   global   Declare variables as global   global var  

 20   if   If conditional   if num==1: print '1'  

(continued)
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 Table   2-1   shows us all of Python’s keywords that are used in statements. However, 
there are a few  caveats      to remember. The  async  and  await  keywords are only available 
in Python 3.5.x onwards. The  exec  and  print  keywords are statements only in Python 
2.x—starting from Python 3.x they are functions. The keywords  False ,  True , and  nonlocal  
were introduced starting with Python 3.x in the keywords list. 

 Python statements usually direct the interpreter as to what they should do when 
executing the statements. A bunch of statements usually forms a logical block of code. 
Various constructs including functions and loops and conditionals help in segregating 
and executing blocks of code using logic and design based on user decisions. Python also 
focuses a lot on readability—hence, indentation is an important part of Python code. By 
default, Python does not use punctuation like semicolons to indicate end of statements. It 
also uses tabs or whitespaces to indicate and delimit specific blocks of code instead of the 
traditional braces or keywords as used in languages like C, C++, Java, and so on. Python 

Table 2-1. (continued)

 Sl No.  Keyword  Description  Example 

 21   import   Import an existing module   import numpy  

 22   in   Check or  loop      through some 
existing object 

  for num in arr \ if x in y  

 23   is   Used to check for equality   type('a') is str  

 24   lambda   Create an anonymous function   lambda a: a**a  

 25   None   Represents no value or null   num = None  

 26   nonlocal   Modify variable values of an 
outer but non global scope in 
functions 

  nonlocal var  

 27   not   The logical NOT operator   not 1 == 2  

 28   or   The logical OR operator   1 or 2 == 1  

 29   pass   Used as a placeholder 
indicating an empty block 

  if a == 1: pass  

 30   print   Prints a string or other objects   print 'Hello World!'  

 31   raise   Raises an exception   raise Exception('overflow')  

 32   return   Returns object(s) from a 
function after exiting 

  return a, b  

 33   try   Tries a code block and goes to 
 except  if exception occurs 

  try: read_file()  
  except Exception, e: print e  

 34   while   The while loop   while True: print value  

 35   with   With an  object   in an expression 
perform some operation 

  with open('file.txt') as f:  
  data = f.read()  

 36   yield   Generator functionality, pause 
and return to the caller 

  def generate_func(arr):  
  for num in arr: yield num+1  
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accepts both spaces and tabs as indentation, with the usual norm being one tab or four 
spaces to indicate each specific block of code. Unindented code will always throw syntax 
errors, so anyone writing Python code must be extra careful with code formatting and 
indentation. 

 Python programs are usually structured around the hierarchy mentioned earlier. 
Each module is usually a directory with a  __init__.py  file, which makes the directory 
a package, and it may have multiple modules, each of which is an individual  Python 
( .py ) file  . Each module usually has classes and objects like functions that are invoked by 
other modules and code. All interconnected modules finally make up a complete Python 
program, application, or system. Usually you start any project by writing necessary code 
in  Python (.py) files   and making it modular as it gets bigger by adding more components.  

     Data Structures and Types 
 Python has several data types and many are used as data structures for handling data. All 
data types are derived from the default object data type in Python. This object data type 
is an abstraction used by Python for managing and handling data. Code and data are all 
stored and handled by objects and relations among objects. Each object has three things 
or properties that distinguish it from other objects:

•      Identity   : This is unique and never changes once the object is 
created and is usually represented by the object’s memory 
address.  

•     Type   : This determines the type of object (usually the data type, 
which is again a child of the base object type).  

•     Value   : The actual value stored by the object.    

 Let’s say a variable is holding a string that is one of the data types. To see the three 
properties in action, you can use the functions depicted in the following code snippet: 

    In [46]: new_string = "This is a String"  # storing a string 

   In [47]: id(new_string)  # shows the object identifier (address) 
 Out[47]: 243047144L 

   In [48]: type(new_string)  # shows the object type 
 Out[48]: str 

   In [49]: new_string  # shows the object value 
 Out[49]: 'This is a String' 

    Python has several data types, including several core data types and complex ones 
including functions and classes. In this section we will talk about the core data types of 
Python, including some that are used extensively as data structures to handle data. These 
core  data types   are as follows:
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•    Numeric  

•   Strings  

•   Lists  

•   Sets  

•   Dictionaries  

•   Tuples  

•   Files  

•   Miscellaneous    

 Although that’s not an exhaustive  list  , more than 90 percent of your time will be 
spent writing Python statements that make use of these objects. Let’s discuss each of 
them in more detail to understand their properties and behavior better. 

      Numeric Types      
 The numeric data type is perhaps the most common and basic data type in Python. All 
kinds of applications end up processing and using numbers in some form or the other. 
There are mainly three numeric types: integers, floats, and complex numbers. Integers are 
numbers that do not have a fractional part or mantissa after the decimal point. Integers 
can be represented and operated upon as follows: 

    In [52]: # representing integers and operations on them 
 In [53]: num = 123 

   In [54]: type(num) 
 Out[54]: int 

   In [55]: num + 1000  # addition 
 Out[55]: 1123 

   In [56]: num * 2  # multiplication 
 Out[56]: 246 

   In [59]: num /  2  # integer division 
 Out[59]: 61 

    There are also various types of integers, depending on their radix or base. These 
include decimal, binary, octal, and hexadecimal integers. Normal nonzero leading 
sequences of numbers are decimal integers. Integers that start with a  0 , or often  0o  to 
prevent making mistakes, are octal integers. Numbers that start with  0x  are hexadecimal, 
and those starting with  0b  are binary integers. You can also make use of the  bin() ,  hex() , 
and  oct()  functions for converting decimal integers to the respective base form. 
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 The following code snippet illustrates the various forms of integers: 

    In [94]: # decimal 
 In [95]: 1 + 1 
 Out[95]: 2 

   In [96]: # binary 
 In [97]: bin(2) 
 Out[97]: '0b10' 
 In [98]: 0b1 + 0b1 
 Out[98]: 2 
 In [99]: bin(0b1 + 0b1) 
 Out[99]: '0b10' 

   In [100]: # octal 
 In [101]: oct(8) 
 Out[101]: '010' 
 In [102]: oct(07 + 01) 
 Out[102]: '010' 
 In [103]: 0o10 
 Out[103]: 8 

   In [104]: # hexadecimal 
 In [105]: hex(16) 
 Out[105]: '0x10' 
 In [106]: 0x10 
 Out[106]: 16 
 In [116]: hex(0x16 + 0x5) 
 Out[116]: '0x1b' 

    Floating point numbers, or floats, are represented as a sequence of numbers that 
include a decimal point and some numbers following it (the mantissa), an exponent part 
( e  or  E  followed by a  +/-  sign followed by digits), or sometimes both of them. Here are 
some examples of floating point  numbers     : 

    In [126]: 1.5 + 2.6 
 Out[126]: 4.1 

   In [127]: 1e2 + 1.5e3 + 0.5 
 Out[127]: 1600.5 

   In [128]: 2.5e4 
 Out[128]: 25000.0 

   In [129]: 2.5e-2 
 Out[129]: 0.025 

    The floating point numbers have a range and precision similar to the double data 
type in the C language. 
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 Complex numbers have two components, a real and an imaginary component 
represented by floating point numbers. The imaginary literal consists of the number 
followed by the letter  j , and this symbol  j  at the end of the literal indicates the square root 
of –1. The following code snippet shows some  representations      and operations of complex 
numbers: 

    In [132]: cnum = 5 + 7j 

   In [133]: type(cnum) 
 Out[133]: complex 

   In [134]: cnum.real 
 Out[134]: 5.0 

   In [135]: cnum.imag 
 Out[135]: 7.0 

   In [136]: cnum + (1 - 0.5j) 
 Out[136]: (6+6.5j) 

         Strings 
  Strings      are sequences or collections of characters used to store and represent textual 
data—which will be our data type of choice in most examples in the book. Strings can 
be used to store both textual as well as bytes as information. Strings have a wide variety 
of methods that can be used for handling and manipulating strings, which we will see in 
detail later in this chapter. An important point to remember is that strings are  immutable , 
and any operations performed on strings always creates a new string object (remember 
the three properties of an object?) rather than just mutating and changing the value of the 
existing string object. 

 The following code snippet shows some string representations and some basic 
operations on strings: 

    In [147]: s1 = 'this is a string' 
 In [148]: s2 = 'this is "another" string' 
 In [149]: s3 = 'this is the \'third\' string' 
 In [150]: s4 = """this is a 
      ...: multiline 
      ...: string""" 

   In [151]: print s1, s2, s3, s4 
 this is a string this is "another" string this is the 'third' 
string this is a 
 multiline 
 string 
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   In [152]: print s3 + '\n' + s4 
 this is the 'third'  string      
 this is a 
 multiline 
 string 

   In [153]: ' '.join([s1, s2]) 
 Out[153]: 'this is a string this is "another" string' 

   In [154]: s1[::-1]  # reverses the string 
 Out[154]: 'gnirts a si siht' 

         Lists 
  Lists      are collections of arbitrary heterogeneous or homogenous typed objects. Lists also 
follow a sequence based on the order in which the objects are present in the list, and 
each object has its own index with which it can be accessed. Lists are similar to  arrays  in 
other languages, with the distinction that unlike arrays, which hold homogenous items 
of the same type, lists can contain different types of objects. A simple example would be 
a list containing numbers, strings, and even sublists. If a list contains objects that are lists 
themselves, these are often called  nested  lists. 

 The following code snippet shows some examples of lists: 

    In [161]: l1 = ['eggs', 'flour', 'butter'] 
 In [162]: l2 = list([1, 'drink', 10, 'sandwiches', 0.45e-2]) 
 In [163]: l3 = [1, 2, 3, ['a', 'b', 'c'], ['Hello', 'Python']] 

   In [164]: print l1, l2, l3 
 ['eggs', 'flour', 'butter'] [1, 'drink', 10, 'sandwiches', 0.0045] [1, 2, 3, 
['a', 'b', 'c'], ['Hello', 'Python']] 

    You can also perform numerous operations on lists, including indexing, slicing, 
appending, popping, and many more. Some typical operations on lists are depicted in the 
following code snippet: 

    In [167]: # indexing lists 
 In [168]: l1 
 Out[168]: ['eggs', 'flour', 'butter'] 
 In [169]: l1[0] 
 Out[169]: 'eggs' 
 In [170]: l1[1] 
 Out[170]: 'flour' 
 In [171]: l1[0] +' '+ l1[1] 
 Out[171]: 'eggs flour' 

   In [171]: # slicing lists 
 In [172]: l2[1:3] 
 Out[172]: ['drink', 10] 
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 In [173]: numbers = range(10) 
 In [174]: numbers 
 Out[174]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 In [175]: numbers[2:5] 
 Out[175]: [2, 3, 4] 
 In [180]: numbers[:] 
 Out[180]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 In [181]: numbers[::2] 
 Out[181]: [0, 2, 4, 6, 8] 

   In [181]: # concatenating and mutating lists 
 In [182]: numbers * 2 
 Out[182]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 In [183]: numbers + l2 
 Out[183]:  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 'drink', 10, 'sandwiches', 

0.0045] 

   In [184]: # handling nested lists 
 In [184]: l3 
 Out[184]: [1, 2, 3, ['a', 'b', 'c'], ['Hello', 'Python']] 
 In [185]: l3[3] 
 Out[185]: ['a', 'b', 'c'] 
 In [186]: l3[4] 
 Out[186]: ['Hello', 'Python'] 

   In [187]: l3.append(' '.join(l3[4]))  # append operation 
 In [188]: l3 
 Out[188]: [1, 2, 3, ['a', 'b', 'c'], ['Hello', 'Python'], 'Hello Python'] 

   In [189]: l3.pop(3)  # pop  operation      
 Out[189]: ['a', 'b', 'c'] 
 In [190]: l3 
 Out[190]: [1, 2, 3, ['Hello', 'Python'], 'Hello Python'] 

          Sets   
 Sets are unordered collections of unique and immutable objects. You can use the  set()  
function or the curly braces  {...}  to create a new set. Sets are typically used to remove 
duplicates from a list, test memberships, and perform mathematical set operations, 
including union, intersection, difference, and symmetric difference. 

 Some set representations and operations are shown in the following code snippet: 

    In [196]: l1 = [1,1,2,3,5,5,7,9,1] 

   In [197]: set(l1)  # makes the list as a set 
 Out[197]: {1, 2, 3, 5, 7, 9} 
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   In [198]: s1 = set(l1) 

   # membership testing 
 In [199]: 1 in s1   
 Out[199]: True 
 In [200]: 100 in s1 
 Out[200]: False 

   # initialize a second set 
 In [201]: s2 = {5, 7, 11} 

   # testing various set operations 
 In [202]: s1 - s2  # set difference 
 Out[202]: {1, 2, 3, 9} 

   In [203]: s1 | s2  # set union 
 Out[203]: {1, 2, 3, 5, 7, 9, 11} 

   In [204]: s1 & s2  # set intersection  
 Out[204]: {5, 7} 

   In [205]: s1 ^ s2  # elements which do not appear in both sets 
 Out[205]: {1, 2, 3, 9, 11}    

          Dictionaries      
 Dictionaries in Python are key-value mappings that are unordered and mutable. They 
are often known as  hashmaps ,  associative arrays , and  associative memories . Dictionaries 
are indexed using  keys , which can be any immutable object type, like numeric types or 
strings, or even tuples, which we will see later on. Remember that keys should always 
be some immutable data type. Dictionary values can be immutable or mutable objects, 
including lists and dictionaries themselves which would lead to nested dictionaries. 
Dictionaries have a lot of similarity with JSON objects, if you have worked with them 
previously. Dictionaries are often called  dicts  in Python, and the  dict()  function is also 
used to create new dictionaries. 

 The following code snippets show some representations and operations on 
dictionaries: 

    In [207]: d1 = {'eggs': 2, 'milk': 3, 'spam': 10, 'ham': 15} 
 In [208]: d1 
 Out[208]: {'eggs': 2, 'ham': 15, 'milk': 3, 'spam': 10} 

   # retrieving items based on key 
 In [209]: d1.get('eggs') 
 Out[209]: 2 
 In [210]: d1['eggs'] 
 Out[210]: 2 
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   # get is better than direct indexing since it does not throw  errors   
 In [211]: d1.get('orange')  
 In [212]: d1['orange'] 
 Traceback (most recent call last): 
   File "<ipython-input-212-ebecbf415243>", line 1, in <module> 
     d1['orange'] 
 KeyError: 'orange' 

   # setting items with a specific key 
 In [213]: d1['orange'] = 25 
 In [214]: d1 
 Out[214]: {'eggs': 2, 'ham': 15, 'milk': 3, 'orange': 25, 'spam': 10} 

   # viewing keys and values 
 In [215]: d1.keys() 
 Out[215]: ['orange', 'eggs', 'ham', 'milk', 'spam'] 
 In [216]: d1.values() 
 Out[216]: [25, 2, 15, 3, 10] 

   # create a new dictionary using dict function 
 In [219]: d2 = dict({'orange': 5, 'melon': 17, 'milk': 10}) 
 In [220]: d2 
 Out[220]: {'melon': 17, 'milk': 10, 'orange': 5} 

   # update dictionary d1 based on new key-values in d2 
 In [221]: d1.update(d2) 
 In [222]: d1 
 Out[222]:  {'eggs': 2, 'ham': 15, 'melon': 17, 'milk': 10, 'orange': 5, 

'spam': 10} 

   # complex and nested  dictionary   
 In [223]:  d3 = {'k1': 5, 'k2': [1,2,3,4,5], 'k3': {'a': 1, 'b': 2, 'c': 

[1,2,3]}} 
 In [225]: d3 
 Out[225]:  {'k1': 5, 'k2': [1, 2, 3, 4, 5], 'k3': {'a': 1, 'b': 2, 'c': 

[1, 2, 3]}} 
 In [226]: d3.get('k3') 
 Out[226]: {'a': 1, 'b': 2, 'c': [1, 2, 3]} 
 In [227]: d3.get('k3').get('c') 
 Out[227]: [1, 2, 3]       

         Tuples 
  Tuples   are also sequences like lists, but they are immutable. Typically, tuples are used 
to represent fixed collections of objects or values. Tuples are created using a comma-
separated sequence of values enclosed by parentheses, and optionally the  tuple()  
function can also be used. 
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 The following code snippet shows some representations and operations on tuples: 

    # creating a tuple with a single element  
 In [234]: single_tuple = (1,) 
 In [235]: single_tuple 
 Out[235]: (1,) 

   # original address of the tuple 
 In [239]: id(single_tuple) 
 Out[239]: 176216328L 

   # modifying contents of the tuple but its location changes (new tuple is 
created) 
 In [240]: single_tuple = single_tuple + (2, 3, 4, 5) 
 In [241]: single_tuple 
 Out[241]: (1, 2, 3, 4, 5) 
 In [242]:  id(single_tuple) # different address indicating new tuple with 

same name 
 Out[242]: 201211312L 

   # tuples are immutable hence assignment is not supported like lists 
 In [243]: single_tuple[3] = 100 
 Traceback (most recent call last): 
   File "<ipython-input-247-37d1946d4128>", line 1, in <module> 
     single_tuple[3] = 100 
 TypeError: 'tuple' object does not support item assignment 

   # accessing and unpacking tuples 
 In [243]: tup = (['this', 'is', 'list', '1'], ['this', 'is', 'list', '2']) 
 In [244]: tup[0] 
 Out[244]: ['this', 'is', 'list', '1'] 
 In [245]: l1, l2 = tup 
 In [246]: print l1, l2 
 ['this', 'is', 'list', '1'] ['this', 'is', 'list', '2']    

         Files 
  Files   are special types of objects in Python that are used mainly for interfacing with 
external objects in the filesystem, including text, binary, audio, and video files, plus 
documents, images, and many more. Some might disagree about it being a data type in 
Python, but it actually is a special data type, and the name of the type, file, suits its role 
perfectly for handling all types of external files. You usually use the  open()  function to 
open a file, and there are various modes like read and write that are specified using a 
processing mode character in the function. 

 Some examples of file handling are show in the following code snippet: 
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    In [253]: f = open('text_file.txt', 'w')   # open in write mode 
 In [254]: f.write("This is some text\n")  # write some text 
 In [255]: f.write("Hello world!") 
 In [256]: f.close()  # closes the file 

   # lists files in current directory 
 In [260]: import os 
 In [262]: os.listdir(os.getcwd()) 
 Out[262]: ['text_file.txt']   

   In [263]: f = open('text_file.txt', 'r')  # opens file in read mode 
 In [264]: data = f.readlines()  # reads in all lines from file 
 In [265]: print data  # prints the text data 
 ['This is some text\n', 'Hello world!'] 

         Miscellaneous 
 Besides the already mentioned data types and structures, there are several other Python 
data types:

•    The None type indicates no value/no data or null object.  

•   Boolean types include True and False.  

•   Decimal and Fraction types handle numbers in a better way.    

 This completes the list for Python’s core data types and data structures that you will 
be using most of the time in your code and implementations. We will now discuss some 
constructs typically used for controlling the flow of code.   

     Controlling Code Flow 
   Flow  of code   is extremely important. A lot of it is based on business logic and rules. It also 
depends on the type of implementation decisions developers take when building systems 
and applications. Python provides several control flow tools and utilities that can be used 
to control the flow of your code. Here are the most popular ones:

•    if-elif-else conditionals  

•   for loop  

•   while loop  

•   break, continue, and else in loops  

•   try-except    

 These constructs will help you understand several concepts including conditional 
code flow, looping, and handling exceptions. 
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     Conditional Constructs 
 The concept of  conditional code flow   involves executing different blocks of code 
conditionally based on some user-defined logic implemented in the code itself. It is 
extremely useful when you do not want to execute a block of statements sequentially 
one after the other but execute a part of them based on fulfilling or not fulfilling certain 
conditions. The if-elif-else statements help in achieving this. The general syntax for it is as 
follows: 

   if <conditional check 1 is True>:    # the if conditional (mandatory) 
     <code block 1>   # executed only when check 1 evaluates to True 
         ...         
     <code block 1>            
 elif <conditional check 2 is True>:  # the elif conditional (optional) 
     <code block 2>   # executed only when check 1 is False and 2 is True 
         ...        
     <code block 2>    
 else:                                # the else conditional (optional) 
     <code block 3>   # executed only when check 1 and 2 are False 
         ...      
     <code block 3>    

   An important point to remember from the preceding syntax is that the corresponding 
code blocks only execute based on satisfying the necessary conditions. Also, only the  if  
statement is mandatory, and the  elif  and  else  statements do not need to be mentioned 
unless there is a need based on conditional logic. 

 The following  examples   depict conditional code flow: 

    In [270]: var = 'spam' 
 In [271]: if var == 'spam': 
      ...:     print 'Spam' 
      ...:      
 Spam 

   In [272]: var = 'ham' 
 In [273]: if var == 'spam': 
      ...:     print 'Spam' 
      ...: elif var == 'ham': 
      ...:     print 'Ham' 
      ...:      
 Ham 



CHAPTER 2 ■ PYTHON REFRESHER

80

   In [274]: var = 'foo' 
 In [275]: if var == 'spam': 
      ...:     print 'Spam' 
      ...: elif var == 'ham': 
      ...:     print 'Ham' 
      ...: else:  
      ...:     print 'Neither Spam or Ham' 
      ...:      
 Neither Spam or Ham 

         Looping Constructs 
 There are two main types of loops in Python:  for  and  while  loops. These  looping 
constructs   are used to execute blocks of code repeatedly until some condition is satisfied 
or the loop exits based on some other statements or conditionals. 

 The  for  statement is generally used to loop through items in sequence and usually 
loops through one or many iterables sequentially, executing the same block of code in 
each turn. The  while  statement is used more as a conditional general loop, which stops 
the loop once some condition is satisfied or runs the loop till some condition is satisfied. 
Interestingly, there is an optional  else  statement at the end of the loops that is executed 
only if the loop exits normally without any break statements. The  break  statement is often 
used with a conditional to stop executing all statements in the loop immediately and exit the 
closest enclosing loop. The  continue  statement stops executing all statements below it in 
the loop and brings back control to the beginning of the loop for the next iteration. The  pass  
statement is just used as an empty placeholder—it does not do anything and is often used to 
indicate an empty code  block  . These statements constitute the core looping constructs. 

 The following snippets show the typical syntax normally used when constructing  for  
and  while  loops: 

    # the for loop 
 for item in iterable:  # loop through each item in the iterable 
     <code block>    # Code block executed repeatedly 
 else:                  # Optional else  
     <code block>     # code block executes only if loop exits normally 

without 'break' 

   # the while loop 
 while <condition>:  # loop till condition is satisfied 
     <code block>    # Code block executed repeatedly 
 else:                  # Optional else  
     <code block>     # code block executes only if loop exits normally 

without 'break' 

    The following examples show how loops work along with the other looping 
constructs including  pass ,  break , and  continue : 

    # illustrating for loops 
 In [280]: numbers = range(0,5) 
 In [281]: for number in numbers: 
      ...:     print number 
      ...:      
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 0 
 1 
 2 
 3 
 4 
 In [282]: sum = 0 
 In [283]: for number in numbers: 
      ...:     sum += number 
      ...:    
 In [284]: print sum 
 10 

   # role of the trailing else and break constructs 
 In [285]: for number in numbers: 
      ...:     print number 
      ...: else: 
      ...:     print 'loop exited normally' 
      ...:      
 0 
 1 
 2 
 3 
 4 
 loop exited normally 
 In [286]: for number in numbers: 
      ...:     if number < 3: 
      ...:         print number 
      ...:     else: 
      ...:         break 
      ...: else: 
      ...:     print 'loop exited normally' 
      ...:      
 0 
 1 
 2 

   # illustrating while loops 
 In [290]: number = 5 
 In [291]: while number > 0: 
      ...:     print number 
      ...:     number -= 1  # important! else loop will keep running 
      ...:      
 5 
 4 
 3 
 2 
 1 
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   # role of continue  construct   
 In [295]: number = 10 
 In [296]: while number > 0: 
      ...:     if number % 2 != 0: 
      ...:         number -=1 # decrement but do not print odd numbers 
      ...:         continue  # go back to beginning of loop for next 
iteration 
      ...:     print number  # print even numbers and decrement count 
      ...:     number -= 1   
      ...:      
 10 
 8 
 6 
 4 
 2 

   # role of the pass construct 
 In [297]: number = 10 
 In [298]: while number > 0: 
      ...:     if number % 2 != 0: 
      ...:         pass # don't print odds 
      ...:     else: 
      ...:         print number 
      ...:     number -=  1   
      ...:      
 10 
 8 
 6 
 4 
 2 

          Handling Exceptions   
 Exceptions are specific events that are either triggered when some unnatural error 
occurs or manually. They are used extensively for error handling, event notifications, and 
controlling code flow. Using constructs like  try-except-finally , you can make Python 
raise exceptions when executing code whenever any error occurs at runtime. This would 
also enable you to catch these exceptions and handle them as needed or ignore them 
altogether. In Python versions prior to 2.5.x, there were generally two versions of exception 
handling using the  try  construct. One would be  try-finally , and the other would involve 
 try-except  and optionally an  else  clause at the end for catching exceptions. Now we have 
a construct that includes them all, the  try-except-else-finally  construct, which can be 
used for exception handling. The syntax is depicted as follows: 

   try:                            # The try statement 
     <main code block>      # Checks for errors in this block  
 except <ExceptionType1>:        # Catch different exceptions 
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     <exception handler 1> 
 except <ExceptionType2>:        
     <exception handler 2>          
 ... 
 else:                           # Optional else statement 
     <optional else block>  # Executes only if there were no exceptions 
 finally:                        # The finally statement 
     <finally block>        # Always executes in the end 

   The flow of code in the preceding code snippet starts from the  try  statement and 
the  main code block  in it, which is executed first and checked for any exceptions. If 
any exceptions occur, they are matched based on the exception types as depicted in 
the preceding snippet. Assuming  ExceptionType1  matches, the exception handler for 
 ExceptionType1  is executed, which is  exception handler 1 . In case no exceptions were 
raised, only then the  optional else block  is executed. The  finally block  is always 
executed irrespective of any exceptions being raised or not. 

 The following  examples   depict the use of the  try-except-else-finally  construct: 

   In [311]: shopping_list = ['eggs', 'ham', 'bacon'] 
 # trying to access a non-existent item in the list 
 In [312]: try: 
      ...:     print shopping_list[3] 
      ...: except IndexError as e: 
      ...:     print 'Exception: '+str(e)+' has occurred' 
      ...: else: 
      ...:     print 'No exceptions occurred' 
      ...: finally: 
      ...:     print 'I will always execute no matter what!' 
      ...:      
 Exception: list index out of range has occurred 
 I will always execute no matter what! 
 # smooth code execution without any errors 
 In [313]: try: 
      ...:     print shopping_list[2] 
      ...: except IndexError as e: 
      ...:     print 'Exception: '+str(e)+' has occurred' 
      ...: else: 
      ...:     print 'No exceptions occurred' 
      ...: finally: 
      ...:     print 'I will always execute no matter what!' 
      ...:      
 bacon 
 No exceptions occurred 
 I will always execute no matter what! 

   This brings us to the end of our discussion on the core constructs for controlling flow 
of code in Python. The next section covers some core concepts and constructs that are 
parts of the functional programming paradigm in Python.   
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     Functional Programming 
 The functional programming paradigm is a style of programming with origins in lambda 
calculus. It treats any form of computation purely on the basis of executing and evaluating 
functions. Python is not a pure functional programming language but does have several 
constructs that can be used for functional programming. In this section we will talk 
about several of these constructs, including functions and some advanced concepts like 
generators, iterators, and comprehensions. We will also look at modules like  itertools  
and  functools  that contain implementation of functional tools based on concepts from 
Haskell and Standard ML. 

      Functions   
 A  function  can be defined as a block of code that is executed only on request by invoking 
it. Functions consist of a function definition that has the function signature (function 
name, parameters) and a group of statements inside the function that are executed when 
the function is called. The Python standard library provides a huge suite of functions to 
choose from to perform different types of operations. Besides this, users can define their 
own functions using the  def  keyword. 

 Functions usually return some value always, and even when they do not return a 
value, by default they return the  None  type. One important thing to remember is that often 
you may see methods and functions being used interchangeably, but the distinction 
between functions and methods is that methods are functions that are defined within 
class statements. Functions are also objects, since each and every type and construct in 
Python is derived from the base object type. This opens up a whole new dimension where 
you can even pass functions as parameters or arguments to other functions. Moreover, 
functions can be bound to variables and even returned as results from other functions. 
Hence functions are often known as first-class objects in Python. 

 The following code snippet shows the basic structure of a function definition in 
Python: 

   def function(params):  # params are the input parameters 
     <code block>       # code block consists of a group of statements 
     return value(s)    # optional return statement 

   The  params  indicate the list of input parameters, which are not mandatory, and in 
many functions there are actually no input parameters. You can even pass functions 
themselves as parameters. Some logic executes in the code block, which may or may not 
modify the input parameters, and finally you may return some output values or not return 
anything entirely. 

 The following code snippets demonstrate some basic examples of functions with 
fixed arguments, variable arguments, and built-in functions: 

    # function with single argument 
 In [319]: def square(number): 
      ...:     return number*number 
      ...:  

www.allitebooks.com
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 In [320]: square(5) 
 Out[320]: 25 

   # built-in function from the numpy library 
 In [321]: import numpy as np 
 In [322]: np.square(5) 
 Out[322]: 25 

   # a more complex function with variable number of arguments 
 In [323]: def squares(*args): 
      ...:     squared_args = [] 
      ...:     for item in args:  
      ...:         squared_args.append(item*item) 
      ...:     return squared_args 
      ...:  
 In [324]: squares(1,2,3,4,5) 
 Out[324]: [1, 4, 9, 16, 25] 

    The preceding example shows how to introduce variable  number   of arguments in a 
function dynamically. You can also introduce keyword arguments, where each argument 
has its own variable name and value, as illustrated in the following code snippet: 

   # assign specific keyword based arguments dynamically 
 In [325]: def person_details(**kwargs): 
      ...:     for key, value in kwargs.items(): 
      ...:         print key, '->', value 
      ...:          
 In [326]:  person_details(name='James Bond', alias='007', job='Secret Service 

Agent') 
 alias -> 007 
 job -> Secret Service Agent 
 name -> James Bond 

        Recursive Functions 
  Recursive functions   use the concept of  recursion , wherein the function calls itself inside 
its code block. Care should be taken to make sure there is a stopping condition that 
ultimately terminates the recursive calls—otherwise the function will run into an endless 
loop of execution where it goes on calling itself. Recursion makes use of the call stack at 
each recursive call, hence they are often not very efficient compared to regular functions; 
nevertheless, they are extremely powerful. 

 The following example depicts our  squares  function using recursion: 

   # using recursion to square numbers 
 In [331]: def recursive_squares(numbers): 
      ...:     if not numbers: 
      ...:         return [] 
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      ...:     else: 
      ...:          return [numbers[0]*numbers[0]] + recursive_

squares(numbers[1:]) 
      ...:      
 In [332]: recursive_squares([1, 2, 3, 4, 5]) 
 Out[332]: [1, 4, 9, 16, 25]    

        Anonymous Functions 
  Anonymous functions   are functions that do not have any name and usually consist of 
a one-line expression that denotes a function using the lambda construct. The  lambda  
keyword is used to define inline function objects that can be used just like regular 
functions, with a few differences. The general syntax for a  lambda  function is shown in the 
following code snippet: 

   lambda arg, arg2,... arg_n : <inline expression using args> 

   This expression can actually be even assigned to variables and then executed as a 
normal function call similar to functions created with  def . However, lambda functions are 
expressions and never statements like the code block inside a  def , and so it is extremely 
difficult to put complex logic inside a  lambda  function because it is always a single-lined 
inline expression. However,  lambda  functions are very powerful and are even used inside 
lists, functions, and function arguments. Besides  lambda  functions, Python also provides 
functions like  map() ,  reduce() , and  filter() , which make extensive use of  lambda  
functions and apply them to iterables usually to transform, reduce, or filter respectively. 

 The following code snippet depicts some examples of  lambda  functions used with the 
constructs we just talked about: 

    # simple lambda function to square a number 
 In [340]: lambda_square = lambda n: n*n 
 In [341]: lambda_square(5) 
 Out[341]: 25 

   # map function to square numbers using lambda 
 In [342]: map(lambda_square, [1, 2, 3, 4, 5]) 
 Out[342]: [1, 4, 9, 16, 25] 

   # lambda function to find even numbers used for filtering 
 In [343]: lambda_evens = lambda n: n%2 == 0 
 In [344]: filter(lambda_evens, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 
 Out[344]: [2, 4, 6, 8, 10] 

   # lambda function to add numbers used for adding numbers in reduce function 
 In [345]: lambda_sum = lambda x, y: x + y 
 In [346]: reduce(lambda_sum, [1, 2, 3, 4, 5]) 
 Out[346]: 15 
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   # lambda function to make a sentence from word tokens with reduce function 
 In [347]:  lambda_sentence_maker = lambda word1, word2: ' '.join([word1, 

word2]) 
 In [348]:  reduce(lambda_sentence_maker, ['I', 'am', 'making', 'a', 

'sentence', 'from', 'words!']) 
 Out[348]: 'I am making a sentence from words!' 

    The preceding examples should give you a pretty good idea about how  lambda  
functions work and how powerful they are. Using a one-line construct you can create 
free-flowing sentences from word tokens and calculate a sum of  numbers   in a list! The 
possibilities of using  lambda  functions are endless, and you can use them to solve even 
the most complex of problems.  

      Iterators   
 Iterators are constructs used to iterate through iterables.  Iterables  are objects that are 
basically sequences of other objects and data. A good example would be a  for  loop, which is 
actually an iterable that iterates through a list or sequence. Iterators are objects or constructs 
that can be used to iterate through iterables using the  next() function, which returns the next 
item from the iterable at each call. Once it has iterated through the entire iterable, it returns 
a  StopIteration  exception. We have seen how a for loop works in general, however behind 
the abstraction, the  for  loop actually calls the  iter()  function on the iterable to create an 
iterator object and then traverses through it using the  next()  function. 

 The following example illustrates how iterators work: 

    # typical for loop 
 In [350]: numbers = range(6) 
 In [351]: for number in numbers: 
      ...:     print number 
 0 
 1 
 2 
 3 
 4 
 5 

   # illustrating how iterators work behind the scenes 
 In [352]: iterator_obj = iter(numbers) 
 In [353]: while True: 
      ...:     try: 
      ...:         print iterator_obj.next() 
      ...:     except StopIteration: 
      ...:         print 'Reached end of sequence' 
      ...:         break 
 0 
 1 
 2 
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 3 
 4 
 5 
 Reached end of sequence 

   # calling next now would throw the StopIteration exception as expected 
 In [354]: iterator_obj.next() 
 Traceback (most recent call last): 
   File "<ipython-input-354-491178c4f97a>", line 1, in <module> 
     iterator_obj.next() 
  StopIteration   

         Comprehensions 
  Comprehensions   are interesting constructs that are similar to  for  loops but more 
efficient. They fall rightly into the functional programming paradigm following the set 
builder notation. Originally, the idea for list comprehensions came from Haskell, and 
after a series of lengthy discussions comprehensions were finally added and have been 
one of the most used constructs ever since. There are various types of comprehensions 
that can be applied on existing data types, including list, set, and dict comprehensions. 
The following code snippet shows the syntax of comprehensions using the very common 
list comprehensions and  for  loops, a core component in comprehensions: 

    # typical comprehension syntax 
 [ expression for item in iterable ] 

   # equivalent for loop statement 
 for item in iterable: 
     expression 

   # complex and nested iterations 
 [ expression for item1 in iterable1 if condition1 
              for item2 in iterable2 if condition2 ... 
              for itemN in iterableN if conditionN ] 

   # equivalent for loop statement 
 for item1 in iterable1: 
     if condition1: 
         for item2 in iterable2: 
             if condition2: 
                 ... 
                    for itemN in iterableN: 
                        if conditionN: 
                            expression 
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    This gives us an idea of how similar comprehensions are to looping constructs. The 
benefit we get is that they are more efficient and perform better than loops. Some caveats 
include that you cannot use assignment statements in comprehensions because, if you 
remember the syntax from earlier, they support only expressions and not statements. The 
same syntax is used by set and dictionary comprehensions too. 

 The following examples illustrate the use of different  comprehensions  : 

    In [355]: numbers = range(6) 
 In [356]: numbers 
 Out[356]: [0, 1, 2, 3, 4, 5] 

   # simple list comprehension to compute squares 
 In [357]: [num*num for num in numbers] 
 Out[357]: [0, 1, 4, 9, 16, 25] 

   # list comprehension to check if number is divisible by 2 
 In [358]: [num%2 for num in numbers] 
 Out[358]: [0, 1, 0, 1, 0, 1] 

   # set comprehension returns distinct values of the above operation 
 In [359]: set(num%2 for num in numbers) 
 Out[359]: {0, 1} 

   # dictionary comprehension where key:value is number: square(number) 
 In [361]: {num: num*num for num in numbers} 
 Out[361]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25} 

   # a more complex comprehension showcasing above operations in a single 
comprehension 
 In [362]: [{'number': num,  
             'square': num*num,  
             'type': 'even' if num%2 == 0 else 'odd'} for num in numbers] 
 Out[362]:  
 [{'number': 0, 'square': 0, 'type': 'even'}, 
  {'number': 1, 'square': 1, 'type': 'odd'}, 
  {'number': 2, 'square': 4, 'type': 'even'}, 
  {'number': 3, 'square': 9, 'type': 'odd'}, 
  {'number': 4, 'square': 16, 'type': 'even'}, 
  {'number': 5, 'square': 25, 'type': 'odd'}] 

   # nested list comprehension - flattening a list of lists 
 In [364]: list_of_lists = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] 
 In [365]: list_of_lists 
 Out[365]: [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] 
 In [367]: [item for each_list in list_of_lists for item in each_list] 
 Out[367]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]    
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         Generators 
  Generators   are powerful, memory-efficient constructs for creating and consuming 
iterators. They exist in two variants: functions and expressions. Generators work on a 
concept known as  lazy evaluation —hence, they are more memory efficient and perform 
better in most cases because they do not require the entire object to be evaluated 
and loaded in one go, as in list comprehensions. However, the caveat is that because 
generators yield one item at a time in an ad hoc fashion, there is a chance that they may 
perform worse in terms of execution time compared to list comprehensions, unless you 
are dealing with large objects with many elements. 

 Generator functions are implemented as regular functions using the  def  statement. 
However, they use the concept of lazy evaluation and return one object at a time using 
the  yield  statement. Unlike regular functions that have a  return  statement, which once 
executed ends the execution of the code block inside the function, generators use the 
 yield  statement, which suspends and resumes execution and the state after generating 
and returning each value or object. To be more precise, generator functions yield values 
at each step rather than returning them. This ensures that the current state including 
information about the local code block scope it retained and enables the generator to 
resume from where it left off. 

 The following snippet shows some examples for generator functions: 

    In [369]: numbers = [1, 2, 3, 4, 5] 

   In [370]: def generate_squares(numbers): 
      ...:     for number in numbers: 
      ...:         yield number*number 

   In [371]: gen_obj = generate_squares(numbers) 
 In [372]: gen_obj 
 Out[372]: <generator object generate_squares at 0x000000000F2FC2D0> 
 In [373]: for item in gen_obj: 
      ...:     print item 
      ...:      
 1 
 4 
 9 
 16 
 25 

    The advantages of these generators are both memory efficiency and execution time, 
especially when iterables and objects are large in size and occupy substantial memory. 
You also do not need to load whole objects into the main memory for performing various 
operations on them. They often work very well on streaming data where you cannot keep 
all the data in memory at all times. The same applies for generator expressions, which are 
very similar to comprehensions except they are enclosed in parentheses. 
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 The following example illustrates: 

    In [381]: csv_string = 'The,fox,jumps,over,the,dog' 

   # making a sentence using list comprehension 
 In [382]: list_cmp_obj = [item for item in csv_string.split(',')] 
 In [383]: list_cmp_obj 
 Out[383]: ['The', 'fox', 'jumps', 'over', 'the', 'dog'] 
 In [384]: ' '.join(list_cmp_obj) 
 Out[384]: 'The fox jumps over the dog' 

   # making a sentence using generator expression 
 In [385]: gen_obj = (item for item in csv_string.split(',')) 
 In [386]: gen_obj 
 Out[386]: <generator object <genexpr> at 0x000000000F2FC3F0> 
 In [387]: ' '.join(gen_obj) 
 Out[387]: 'The fox jumps over the dog' 

    Both  generator   functions and expressions create generator objects that use the same 
construct as iterators and starts, stops, and resumes the function or loop at each stage, 
and once it is completed it raises the  StopIteration  exception.  

     The itertools and functools Modules 
 Various modules which are available in the Python standard library. Some of the popular 
ones include  collections ,  itertools , and  functools , which have various constructs and 
functions that can be used to boost productivity and reduce time spent writing extra code 
to solve problems. The  itertools  module is a complete module dedicated to building and 
operating on iterators. It has various functions that support different operations including 
slicing, chaining, grouping, and splitting iterators. The most comprehensive source of 
information for  itertools  is available in the official Python documentation at    https://
docs.python.org/2/library/itertools.html     . The documentation lists each function 
and its role with examples. The   functools  module   provides  with  functions, which enable 
concepts from functional programming, including wrappers and partials. These functions 
usually act on other functions, which it takes as input parameters and often returns a 
function as the result itself. The official documentation at    https://docs.python.org/2/
library/functools.html      provides extensive information on each function.   

     Classes 
 Python  classes   are constructs that enable us to write code following the OOP paradigm. 
Concepts like objects, encapsulation, methods, inheritance, and polymorphism are heavily 
used in this paradigm. If you have worked on any OOP language before, like C++ or Java, 
chances are you will find using Python classes relatively similar to using classes in other 
languages. Discussing each concept would be beyond the scope of this book, but I will briefly 
cover the basic concepts of classes and touch up on different types of objects and inheritance. 

https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/library/functools.html
https://docs.python.org/2/library/functools.html
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 Classes are basically a software model or abstraction of real-world entities that 
are objects. This abstraction leads to classes being called as a user-defined type, and 
once you define a class, you can instantiate and create instances or objects of that class. 
Each object has its own instance variables and methods that define the properties and 
behavior of that object. All classes inherit from the base object type, and you can create 
your own classes and inherit further classes from these user-defined classes. Classes are 
also ultimately objects on their own and can be bound to variables and other constructs. 

 The following snippet gives the basic syntax for a class: 

    class ClassName(BaseClass): 
     class_variable  # shared by all instances\objects 

       def __init__(self, ...): # the constructor 
         # instance variables unique to each instance\object 
         self.instance_variables = ... 

       def __str__(self):  # string representation of the instance\object 
         return repr(self) 

       def methods(self, ...):  # instance methods 
         <code block> 

    The preceding snippet tells us that the class named  ClassName  inherits from 
its parent class  BaseClass . There can be more than one parent or base class in the 
parameters separated by commas. The  __init__()  method acts as a constructor 
that instantiates and creates an object of the class using the call  ClassName(...) , 
which automatically invokes the  __init__()  method—which may optionally take 
parameters based on its definition. The  __str__()  method is optional. It prints the string 
representation of the object. You can modify the default method with your own definition, 
and it is often used to print the current state of the object variables. The  class_variable  
indicates class variables that are defined in the block just enclosing the class definition, 
and these class variables are shared by all objects or instances of the class. The  instance_
variables  are variables that are specific to each object or instance. The methods denote 
instance methods that define specific behavior of the objects. The  self  parameter is 
usually used as the first parameter in methods, which is more of a convention that refers 
to the instance or object of  ClassName  on which you call the method. 

 The following example depicts a simple  class   and how it works: 

    # class definition 
 In [401]: class Animal(object): 
      ...:     species = 'Animal' 
      ...:  
      ...:     def __init__(self, name): 
      ...:         self.name = name 
      ...:         self.attributes = [] 
      ...:  
      ...:     def add_attributes(self, attributes): 
      ...:         self.attributes.extend(attributes) \ 
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      ...:             if type(attributes) == list \ 
      ...:             else self.attributes.append(attributes) 
      ...:  
      ...:     def __str__(self): 
      ...:          return self.name+" is of type "+self.species+" and has 

attributes:"+str(self.attributes) 
      ...:      

   # instantiating the class 
 In [402]: a1 = Animal('Rover') 
 # invoking instance method 
 In [403]: a1.add_attributes(['runs', 'eats', 'dog']) 
 # user defined string representation of the Animal class 
 In [404]: str(a1) 
 Out[404]:  "Rover is of type Animal and has attributes:['runs', 'eats', 

'dog']" 

    This gives us an idea of how classes work. But what if we want to target specific 
animals like  dogs  and  foxes ? We can apply the concept of inheritance and use the  super()  
method to access the constructor of the base  Animal  class in each definition. The 
following examples illustrate the concept of inheritance: 

    # deriving class Dog from base class Animal 
 In [413]: class Dog(Animal):     
      ...:     species = 'Dog' 
      ...:  
      ...:     def __init__(self, *args): 
      ...:         super(Dog, self).__init__(*args)  

   # deriving class Fox from base class Animal 
 In [414]: class Fox(Animal):     
      ...:     species = 'Fox' 
      ...:  
      ...:     def __init__(self, *args): 
      ...:         super(Fox, self).__init__(*args) 

   # creating instance of class Dog 
 In [415]: d1 = Dog('Rover') 
 In [416]: d1.add_attributes(['lazy', 'beige', 'sleeps', 'eats']) 
 In [417]: str(d1) 
 Out[417]:  "Rover is of type Dog and has attributes:['lazy', 'beige', 

'sleeps', 'eats']"  

   # creating instance of class  Fox   
 In [418]: f1 = Fox('Silver') 
 In [419]: f1.add_attributes(['quick', 'brown', 'jumps', 'runs']) 
 In [420]: str(f1) 
 Out[420]:  "Silver is of type Fox and has attributes:['quick', 'brown', 

'jumps', 'runs']" 
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         Working with Text 
 We have seen most of the constructs, data types, structures, concepts, and programming 
paradigms associated with Python in the previous sections. This section briefly covers 
specific data types tailored to handle text data and shows how these data types and their 
associated utilities will be useful for us in the future chapters. The main data types used to 
handle text data in Python are strings, which can be normal strings, bytes storing binary 
information, or Unicode. By default, all strings are Unicode in  Python 3.x  , but they are not 
so in Python 2.x, and this is something you should definitely keep in mind when dealing 
with text in different Python distributions. Strings are a sequence of characters in Python 
similar to arrays and code with a set of attributes and methods that can be leveraged to 
manipulate and operate on text data easily, which makes Python the language of choice 
for text analytics in many scenarios. We will discuss various types of strings with several 
examples in the next section. 

     String  Literals   
 There are various types of strings, as mentioned earlier, and you saw a few examples in 
one of the previous sections regarding data types. The following BNF (Backus-Naur  Form  ) 
gives us the general lexical definitions for producing strings as seen in the official Python 
docs: 

   stringliteral   ::=  [stringprefix](shortstring | longstring) 
 stringprefix    ::=  "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR" 
                      | "b" | "B" | "br" | "Br" | "bR" | "BR" 
 shortstring     ::=  "'" shortstringitem* "'" | '"' shortstringitem* '"' 
 longstring      ::=  "'''" longstringitem* "'''" | '"""' longstringitem* 
'"""' 
 shortstringitem ::=  shortstringchar | escapeseq 
 longstringitem  ::=  longstringchar | escapeseq 
 shortstringchar ::=  <any source character except "\" or newline or the 
quote> 
 longstringchar  ::=  <any source character except "\"> 
 escapeseq       ::=  "\" <any ASCII character> 

   The preceding rules tell us that different types of string prefixes exist that can be used 
with different string types to produce string literals. In simple terms, the following types of 
string literals are used the most:

•     Short strings : These strings are usually enclosed with single ( ' ) or 
double quotes ( " ) around the characters. Some examples would 
be,  'Hello'  and  "Hello" .  

•    Long strings : These strings are usually enclosed with three 
single ( ''' ) or double quotes ( """ ) around the characters. Some 
examples would be,  """Hello, I’m a long string"""  or 
 '''Hello I\’m a long string ''' . Note the ( \’ ), indicates an 
escape sequence discussed in the next bullet.  
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•    Escape sequences in strings : These strings often have escape 
sequences embedded in them, where the rule for escape 
sequences starts with a backslash ( \ ) followed by any ASCII 
character. Hence, they perform backspace interpolation. Popular 
escape sequences include ( \n ), indicating a new line character, 
and ( \t ), indicating a tab.  

•    Bytes : These are used to represent bytestrings, which create 
objects of the  bytes  data type. These strings can be created as 
 bytes('...')  or using the  b'...'  notation. Examples would be 
 bytes('hello')  and  b'hello' .  

•    Raw strings : These strings were originally created specifically for 
regular expressions (regex) and creating regex patterns. These 
strings can be created using the  r'...'  notation and keep the 
string in its raw or native form. Hence, it does not perform any 
backspace interpolation and turns off the escape sequences. An 
example would be  r'Hello' .  

•    Unicode : These  strings   support Unicode characters in text and 
are usually non-ASCII character sequences. These strings are 
denoted with the  u'...'  notation. Besides the string notation, 
there are several specific ways to represent special  Unicode 
characters   in the string. The usual include the hex byte value 
escape sequence of the format  '\xVV' . Besides this, we also 
have Unicode escape sequences of the form  '\uVVVV'  and  '\
uVVVVVVVV',  where the first form uses 4 hex-digits for encoding 
a 16-bit character, and the second uses 8 hex digits for encoding 
a 32-bit character. Some examples would be  u 'H\xe8llo'  and  u 
'H\u00e8llo'  which represents the string  'Hèllo' .    

 The following code snippet depicts these different types of string literals and their 
output: 

    # simple string 
 In [422]: simple_string = 'hello' + " I'm a simple string" 
 In [423]: print simple_string 
 hello I'm a simple string 

   # multi-line string, note the \n (newline) escape character automatically 
created 
 In [424]: multi_line_string = """Hello I'm 
      ...: a multi-line 
      ...: string!""" 
 In [425]: multi_line_string 
 Out[425]: "Hello I'm\na multi-line\nstring!" 
 In [426]: print multi_line_string 
 Hello I'm 
 a multi-line 
 string! 
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   # Normal string with escape sequences leading to a wrong file path! 
 In [427]: escaped_string = "C:\the_folder\new_dir\file.txt" 
 In [428]:  print escaped_string  # will cause errors if we try to open a file 

here 
 C:      he_folder 
 ew_dirile.txt 

   # raw string keeping the backslashes in its normal form 
 In [429]: raw_string = r'C:\the_folder\new_dir\file.txt' 
 In [430]: print raw_string 
 C:\the_folder\new_dir\file. txt   

   # unicode string literals 
 In [431]: string_with_unicode = u'H\u00e8llo!' 
      ...: print string_with_unicode 
 Hèllo! 

         String  Operations and Methods   
 Strings are iterable sequences, which means a lot of operations can be performed on 
them, useful especially when processing and parsing textual data into easy-to-consume 
formats. Several operations can be performed on strings. I have categorized them into the 
following segments:

•    Basic operations  

•   Indexing and slicing  

•   Methods  

•   Formatting  

•   Regular expressions    

 These would cover the most frequently used techniques for working with strings and 
form the base of what we would need to get started in the next chapter (where we look at 
understanding and processing textual data based on concepts we learned in the first two 
chapters). 

   Basic Operations 
 You can perform several basic operations on strings, including concatenation and 
checking for substrings, characters, and lengths. The following code snippet illustrates 
these operations with some examples: 

    # Different ways of String concatenation 
 In [436]: 'Hello' + ' and welcome ' + 'to Python!' 
 Out[436]: 'Hello and welcome to Python!' 
 In [437]: 'Hello' ' and welcome ' 'to Python!' 
 Out[437]: 'Hello and welcome to Python!' 
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   # concatenation of variables and literals 
 In [438]: s1 = 'Python!' 
 In [439]: 'Hello ' + s1 
 Out[439]: 'Hello Python!' 
 # we cannot concatenate a variable and a literal using this method 
 In [440]: 'Hello ' s1 
   File "<ipython-input-440-2f801ddf3480>", line 1 
     'Hello ' s1 
               ^ 
 SyntaxError: invalid syntax 

   # some more ways of concatenating strings 
 In [442]: s2 = '--Python--' 
 In [443]: s2 * 5 
 Out[443]: '--Python----Python----Python----Python----Python--' 
 In [444]: s1 + s2 
 Out[444]: 'Python!--Python--' 
 In [445]: (s1 + s2)*3 
 Out[445]: 'Python!--Python--Python!--Python--Python!--Python--' 

   # concatenating several strings together in parentheses 
 In [446]: s3 = ('This ' 
      ...:       'is another way ' 
      ...:       'to concatenate ' 
      ...:       'several strings!') 
 In [447]: s3 
 Out[447]: 'This is another way to concatenate several strings!' 

   # checking for substrings in a string 
 In [448]: 'way' in s3 
 Out[448]: True 
 In [449]: 'python' in s3 
 Out[449]: False 
 # computing total length of the string 
 In [450]: len(s3) 
 Out[450]: 51 

        Indexing      and Slicing 
 As mentioned, strings are iterables—ordered sequences of characters. Hence they can 
be indexed, sliced, and iterated through similarly to other iterables such as lists. Each 
character has a specific position in the string, called its  index . Using indexes, we can 
access specific parts of the string. Accessing a single character using a specific position 
or index in the string is called  indexing , and accessing a part of a string, for example, 
a substring using a start and end index, is called  slicing . Python supports two types of 
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indexes. One starts from 0 and increases by 1 each time per character till the end of the 
string. The other starts from –1 at the end of the string and decreases by 1 each time for 
each character till the beginning of the  string     . Figure  2-6  shows the two types of indexes 
for the string  'PYTHON' .  

 To access any particular character in the string, you need to use the corresponding 
index, and slices can be extracted using the syntax  var[start:stop] , which extracts all 
characters in the string  var  from index  start  till index  stop  excluding the character at the 
 stop  index. 

 The following examples shows how to index, slice, and iterate through strings: 

    # creating a string 
 In [460]: s = 'PYTHON' 

   # depicting string indexes 
 In [461]: for index, character in enumerate(s): 
      ...:     print 'Character', character+':', 'has index:', index 
 Character P: has index: 0 
 Character Y: has index: 1 
 Character T: has index: 2 
 Character H: has index: 3 
 Character O: has index: 4 
 Character N: has index: 5 

   # string indexing 
 In [462]: s[0], s[1], s[2], s[3], s[4], s[5] 
 Out[462]: ('P', 'Y', 'T', 'H', 'O', 'N') 
 In [463]: s[-1], s[-2], s[-3], s[-4], s[-5], s[-6] 
 Out[463]: ('N', 'O', 'H', 'T', 'Y', 'P') 

   # string slicing 
 In [464]: s[:]  
 Out[464]: 'PYTHON'   # prints whole string when no indexes are specified  
 In [465]: s[1:4] 
 Out[465]: 'YTH' 
 In [466]: s[:3] 
 Out[466]: 'PYT' 
 In [467]: s[3:] 
 Out[467]: 'HON' 

  Figure 2-6.     String indexing syntax         
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 In [468]: s[-3:] 
 Out[468]: 'HON' 
 In [469]: s[:3] + s[3:] 
 Out[469]: 'PYTHON' 
 In [470]: s[:3] + s[-3:] 
 Out[470]: 'PYTHON' 

   # string slicing with offsets 
 In [472]: s[::1]  # no offset 
 Out[472]: 'PYTHON' 
 In [473]: s[::2]  # print every 2nd character in string 
 Out[473]: 'PTO' 

   # strings are immutable hence assignment throws error 
 In [476]: s[0] = 'X' 
 Traceback (most recent call last): 
   File "<ipython-input-476-2cd5921aae94>", line 1, in <module> 
     s[0] = 'X' 
 TypeError: 'str' object does not support item assignment 

   # creates a new string 
 In [477]: 'X' + s[1:]       
 Out[477]: 'XYTHON' 

       Methods 
 Strings and Unicode put a huge arsenal of  built-in methods   at your disposal, which 
you can use for performing various transformations, manipulations, and operations on 
strings. Although discussing each method in detail would be beyond the current scope, 
the official Python documentation at    https://docs.python.org/2/library/stdtypes.
html#string-methods      provides all the information you need about each and every 
method, along with syntax and definitions. Methods are extremely useful and increase 
your productivity because you do not have to spend extra time writing boilerplate code to 
handle and manipulate strings. 

 The following code snippets show some popular examples of string methods in 
action: 

    # case conversions 
 In [484]: s = 'python is great' 
 In [485]: s.capitalize() 
 Out[485]: 'Python is great' 
 In [486]: s.upper() 
 Out[486]: 'PYTHON IS GREAT' 

   # string replace 
 In [487]: s.replace('python', 'analytics') 
 Out[487]: 'analytics is great' 

https://docs.python.org/2/library/stdtypes.html#string-methods
https://docs.python.org/2/library/stdtypes.html#string-methods
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   # string splitting and joining 
 In [488]: s = 'I,am,a,comma,separated,string' 
 In [489]: s.split(',') 
 Out[489]: ['I', 'am', 'a', 'comma', 'separated', 'string'] 
 In [490]: ' '.join(s.split(',')) 
 Out[490]: 'I am a comma separated string' 

   # stripping whitespace characters 
 In [497]: s = '   I am surrounded by spaces    ' 
 In [498]: s 
 Out[498]: '   I am surrounded by spaces    ' 
 In [499]: s.strip() 
 Out[499]: 'I am surrounded by spaces' 

   # coverting to title case 
 In [500]: s = 'this is in lower case' 
 In [501]: s.title() 
 Out[501]: 'This Is In Lower Case' 

    The preceding examples just scratch the surface of the numerous  manipulations 
and operations   possible on strings. Feel free to try out other operations using different 
methods mentioned in the docs. We will use several of them in subsequent chapters.  

   Formatting 
 String  formatting   is used to substitute specific data objects and types in a string. This 
is mostly used when displaying text to the user. There are mainly two different types of 
formatting used for strings:

•     Formatting expressions : These expressions are typically of the 
syntax  '...%s...%s...' %(values) , where the  %s  denotes a 
placeholder for substituting a string from the list of strings depicted 
in  values . This is quite similar to the C style  printf  model and has 
been there in Python since the beginning. You can substitute values 
of other types with the respective alphabet following the  %  symbol, 
like  %d  for integers and  %f  for floating point numbers.  

•    Formatting methods : These  strings   take the form of  '...{}...
{}...'.format(values) , which makes use of the braces  {}  
for placeholders to place strings from  values  using the format 
method. These have been present in Python since version 2.6.x.    

 The following code snippets depict both types of string formatting using several 
examples: 

    # simple string formatting expressions 
 In [506]: 'Hello %s' %('Python!') 
 Out[506]: 'Hello Python!' 
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 In [507]: 'Hello %s' %('World!') 
 Out[507]: 'Hello World!' 

   # formatting expressions with different data types 
 In [508]:  'We have %d %s containing %.2f gallons of %s' %(2, 'bottles', 2.5, 

'milk') 
 Out[508]: 'We have 2 bottles containing 2.50 gallons of milk' 
 In [509]:  'We have %d %s containing %.2f gallons of %s' %(5, 'jugs', 10.867, 

'juice') 
 Out[509]: 'We have 5 jugs containing 10.87 gallons of juice' 

   # formatting using the format method 
 In [511]:  'Hello {} {}, it is a great {} to meet you'.format('Mr.', 'Jones', 

'pleasure') 
 Out[511]: 'Hello Mr. Jones, it is a great pleasure to meet you' 
 In [512]:  'Hello {} {}, it is a great {} to meet you'.format('Sir', 

'Arthur', 'honor') 
 Out[512]: 'Hello Sir Arthur, it is a great honor to meet you' 

   # alternative ways of using format 
 In [513]:  'I have a {food_item} and a {drink_item} with me'.format(drink_

item='soda', food_item='sandwich') 
 Out[513]: 'I have a sandwich and a soda with me' 
 In [514]:  'The {animal} has the following attributes: {attributes}'.

format(animal='dog', attributes=['lazy', 'loyal']) 
 Out[514]: "The dog has the following attributes: ['lazy', 'loyal']" 

    From the preceding  examples  , you can see that there is no hard-and-fast rule for 
formatting strings, so go ahead and experiment with different formats and use the one 
best suited for your task.  

    Regular Expressions (Regexes)   
 Regular expressions, also called  regexes , allow you to create string patterns and use them 
for searching and substituting specific pattern matches in textual data. Python offers a 
rich module named  re  for creating and using regular expressions. Entire books have been 
written on this topic because it is easy to use but difficult to master. Discussing every 
aspect of regular expressions would not be possible in these pages, but I will cover the 
main areas with sufficient examples. 

 Regular expressions or regexes are specific patterns often denoted using the 
raw string notation. These patterns match a specific set of strings based on the rules 
expressed by the patterns. These patterns then are usually compiled into bytecode that is 
then executed for matching strings using a matching engine. The  re  module also provides 
several flags that can change the way the pattern matches are executed. Some important 
flags include the following:

•     re.I  or  re.IGNORECASE  is used to match patterns ignoring case 
sensitivity.  



CHAPTER 2 ■ PYTHON REFRESHER

102

•    re.S  or  re.DOTALL  causes the period ( . ) character to match any 
character including new lines.  

•    re.U  or  re.UNICODE  helps in matching Unicode-based characters 
also (deprecated in Python 3.x).    

 For pattern matching, various rules are used in regexes. Some popular ones include 
the following:

•     .  for matching any single character  

•    ̂   for matching the start of the string  

•    $  for matching the end of the string  

•    *  for matching zero or more cases of the previous mentioned 
regex before the  *  symbol in the pattern  

•    ?  for matching zero or one case of the previous mentioned regex 
before the  ?  symbol in the pattern  

•    [...]  for matching any one of the set of characters inside the 
square brackets  

•    [^...]  for matching a character not present in the square 
brackets after the  ̂   symbol  

•    |  denotes the OR  operator   for matching either the preceding or 
the next regex  

•    +  for matching one or more cases of the previous mentioned regex 
before the  +  symbol in the pattern  

•    \d  for matching decimal digits which is also depicted as  [0-9]   

•    \D  for matching non-digits, also depicted as  [^0-9]   

•    \s  for matching white space characters  

•    \S  for matching non whitespace characters  

•    \w  for matching alphanumeric characters also depicted as 
 [a-zA-Z0-9_]   

•    \W  for matching non alphanumeric characters also depicted as 
 [^a-zA-Z0-9_]     

 Regular expressions can be compiled into pattern objects and then used with a 
variety of methods for pattern search and substitution in strings. The main methods 
offered by the  re  module for performing these operations are as follows:

•     re.compile() : This method compiles a specified regular 
expression pattern into a regular expression object that can be 
used for matching and searching. Takes a pattern and optional 
flags as input, discussed earlier.  

•    re.match() : This method is used to match patterns at the 
beginning of strings.  



CHAPTER 2 ■ PYTHON REFRESHER

103

•    re.search() : This method is used to match patterns occurring at 
any position in the string.  

•    re.findall() : This method returns all non-overlapping matches 
of the specified regex pattern in the string.  

•    re.finditer() : This method returns all matched instances in the 
form of an iterator for a specific pattern in a string when scanned 
from left to right.  

•    re.sub() : This method is used to substitute a specified regex 
pattern in a string with a replacement string. It only substitutes 
the leftmost occurrence of the pattern in the string.    

 The following  code   snippets depict some of the methods just discussed and how 
they are typically used when dealing with strings and regular expressions: 

    # importing the re module 
 In [526]: import re 

   # dealing with unicode matching using regexes 
 In [527]: s = u'H\u00e8llo' 
 In [528]: s 
 Out[528]: u'H\xe8llo' 
 In [529]: print s 
 Hèllo 
 # does not return the special unicode character even if it is alphanumeric 
 In [530]: re.findall(r'\w+', s) 
 Out[530]: [u'H', u'llo'] 
 # need to explicitly specify the unicode flag to detect it using regex 
 In [531]: re.findall(r'\w+', s, re.UNICODE) 
 Out[531]: [u'H\xe8llo'] 

   # setting up a pattern we want to use as a regex 
 # also creating two sample strings 
 In [534]: pattern = 'python' 
      ...: s1 = 'Python is an excellent language' 
      ...:  s2 = 'I love the Python language. I also use Python to build 

applications at work!' 

   # match only returns a match if regex match is found at the beginning of the 
string 
 In [535]: re.match(pattern, s1) 
 # pattern is in lower case hence ignore case flag helps 
 # in matching same pattern with different cases 
 In [536]: re.match(pattern, s1, flags=re.IGNORECASE) 
 Out[536]: <_sre.SRE_Match at 0xf378308> 
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   # printing matched string and its indices in the original string 
 In [537]: m = re.match(pattern, s1, flags=re.IGNORECASE) 
 In [538]: print 'Found match {} ranging from index {} - {} in the string 
"{}"'.format(m.group(0), m.start(), m.end(), s1) 
 Found match Python ranging from index 0 - 6 in the string "Python is an 
excellent language" 

   # match does not work when pattern is not there in the 
beginning of string s2 
 In [539]: re.match(pattern, s2, re.IGNORECASE) 

   # illustrating find and search methods using the re module 
 In [540]: re.search(pattern, s2, re.IGNORECASE) 
 Out[540]: <_sre.SRE_Match at 0xf378920> 

   In [541]: re.findall(pattern, s2, re.IGNORECASE) 
 Out[541]: ['Python', 'Python'] 

   In [542]: match_objs = re.finditer(pattern, s2, re.IGNORECASE) 
 In [543]: print "String:", s2 
      ...: for m in match_objs: 
      ...:      print 'Found match "{}" ranging from index {} - {}'.format(m.

group(0), m.start(), m.end())     
 String: I love the Python language. I also use Python to build applications 
at work! 
 Found match "Python" ranging from index 11 - 17 
 Found match "Python" ranging from index 39 - 45 

   # illustrating pattern substitution using sub and subn methods 
 In [544]: re.sub(pattern, 'Java', s2, flags=re.IGNORECASE) 
 Out[544]:  'I love the Java language. I also use Java to build applications 

at work!' 
 In [545]: re.subn(pattern, 'Java', s2, flags=re.IGNORECASE) 
 Out[545]:  ('I love the Java language. I also use Java to build applications 

at work!', 2) 

    This concludes our  discussion   on the various aspects of strings and how they can 
be utilized for working with text data. Strings form the basis for processing text, which is 
an important component in text analytics. The next section briefly discusses some of the 
popular text analytics frameworks.    

      Text Analytics   Frameworks 
 Like I’ve mentioned before, the Python ecosystem is very diverse and supports a wide 
variety of libraries, frameworks, and modules in many domains. Because we will be 
analyzing textual data and performing various operations on it, you need to know 
about dedicated frameworks and libraries for text analytics that you can just install and 
start using—just like any other built-in module in the Python standard library. These 
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frameworks have been built over a long period of time and contain various methods, 
capabilities, and features for operating on text, getting insights, and making the data 
ready for further analysis, such as applying machine learning algorithms on pre-
processed textual data. 

 Leveraging these frameworks saves a lot of effort and time that would have been 
otherwise spent on writing boilerplate code to handle, process, and manipulate text 
data. Thus, the frameworks enable developers and researchers to focus more on solving 
actual problems and the necessary logic and  algorithms   needed for doing so. We have 
already seen some of the NLTK library in the first chapter. The following list of libraries 
and frameworks are some of the most popular text analytics frameworks, and we will be 
utilizing several of them throughout the course of the book:

•     NLTK : The Natural Language  Toolkit   is a complete platform 
that contains more than 50 corpora and lexical resources. It also 
provides the necessary tools, interfaces, and methods to process 
and analyze text data.  

•    pattern : The  pattern  project started out as a research project 
at the Computational Linguistics & Psycholinguistics research 
center at the University of Antwerp. It provides tools and 
interfaces for web mining, information retrieval, NLP, machine 
learning, and network analysis. The  pattern.en  module contains 
most of the utilities for text analytics.  

•    gensim : The   gensim  library   has a rich set of capabilities for 
semantic analysis, including topic modeling and similarity 
analysis. But the best part is that it contains a Python port of 
Google’s very popular word2vec model (originally available as 
a C package), a neural network model implemented to learn 
distributed representations of words where similar words 
(semantic) occur close to each other.  

•     textblob   : This is another library that provides several capabilities 
including text processing, phrase extraction, classification, POS 
tagging, text translation, and sentiment analysis.  

•    spacy : This is one of the newer libraries, which claims to provide 
industrial-strength NLP capabilities by providing the best 
implementation of each technique and algorithm, making NLP 
tasks efficient in terms of performance and implementation.    

 Besides these, there are several other frameworks and libraries that are not dedicated 
towards text analytics but that are useful when you want to use machine learning 
techniques on textual data. These include the  scikit-learn ,  numpy , and  scipy  stack. 
Besides these, deep learning and tensor-based libraries like  theano ,  tensorflow , and 
 keras  also come in handy if you want to build advanced deep learning models based 
on deep neural nets, convnets, and LSTM-based  models  . You can install most of these 
libraries using the  pip install <library>  command from the command prompt or 
terminal. We will talk about any caveats if present in the upcoming chapters when we use 
these libraries.  
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     Summary 
 This chapter provides a birds-eye yet detailed view of the entire Python ecosystem and 
what the language offers in terms of capabilities. You read about the origins of the Python 
language and saw how it has evolved overtime. The language has benefits of being open 
source, which has resulted in an active developer community constantly striving to 
improve the language and add new features. By now, you also know when you should use 
Python and the drawbacks associated with the language—which every developer should 
keep in mind while building systems and applications. This chapter also discussed how to 
set up your own Python environment and deal with multiple virtual environments. 

 Starting from the very basics, we have taken a deep dive into the various structures 
and constructs in the Python language, including data types and controlling code flow 
using loops and conditionals. We also explored concepts in various programming 
paradigms including OOP and functional programming. Constructs like classes, 
functions, lambdas, iterators, generators, and comprehensions are tools that will come in 
handy in a lot of scenarios when writing quality Python code. You also saw how to work 
with text data using the  string  data type and its various syntaxes, methods, operations, 
and formats. We also talked about the power of regular expressions and how useful they 
can be in pattern matching and substitutions. To conclude our discussion, we looked at 
various popular text analytics frameworks, which are useful in solving problems and tasks 
dealing with NLP and analyzing and extracting insights from text data. 

 This should all get you started with programming in Python. The next chapter builds 
on the foundations of this chapter as we start to understand, process, and parse text data 
in usable formats.     
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    CHAPTER 3   

 Processing and 
Understanding Text                          

 So far, we have reviewed the main concepts and areas surrounding  natural language 
processing (NLP)   and text analytics. We also got a good grip on the Python programming 
language in the last chapter, especially on the different constructs and syntax and how to 
work with strings to manage textual data. To carry out different operations and analyze 
text, you will need to process and parse textual data into more easy-to-interpret formats. 

 All  machine learning (ML) algorithms  , be they supervised or unsupervised techniques, 
usually work with input features that are numeric in nature. Although this is a separate topic 
under feature engineering, which we shall explore in detail, to get to that, you need to clean, 
normalize, and pre-process the initial textual data. Usually text corpora and other textual 
data in their native raw format are not well formatted and standardized, and of course, we 
should expect this—after all, text data is highly unstructured! Text processing, or to be more 
specific, pre-processing, involves using a variety of techniques to convert raw text into well-
defined sequences of linguistic components that have standard structure and notation. 

 Often additional metadata is also present in the form of annotations to give more 
meaning to the text components like tags. The following list gives us an idea of some of 
the most popular  text pre-processing techniques   that we will be exploring in this chapter:

•    Tokenization  

•   Tagging  

•   Chunking  

•   Stemming  

•   Lemmatization    

 Besides these  techniques  , you also need to perform some basic operations much 
of the time, such as dealing with misspelled text, removing stopwords, and handling 
other irrelevant components based on the problem to be solved. An important thing to 
remember always is that a robust text pre-processing system is always an essential part 
of any application on NLP and text analytics. The primary reason for that is because all 
the textual components that are obtained after pre-processing—be they words, phrases, 
sentences, or any other tokens—form the basic building blocks of input that are fed into 
the further stages of the application that perform more complex analyses, including 
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learning patterns and extracting information. Hence, the popular saying “garbage in, 
garbage out” is very relevant here because if we do not process the text properly, we will 
end up getting unwanted and irrelevant results from our applications and systems. 

 Text processing also helps in cleaning and standardization of the text, which helps 
in analytical systems, like increasing the accuracy of classifiers. We also get additional 
information and metadata in the form of annotations, which are also very useful in giving 
more information about the text. We will touch upon normalizing text using various 
techniques including cleaning, removing unnecessary tokens, stems, and lemmas in this 
chapter. 

 Another important aspect is to understand textual data after processing and 
normalizing it. This will involve revisiting some of the concepts of language syntax and 
structure from Chapter   1    , where we talked about sentences, phrases, parts of speech, 
shallow parsing, and grammars. In this chapter we will look at ways to implement these 
concepts and use them on real data. We will follow a structured and definite path in this 
chapter, starting from text processing and gradually exploring the various concepts and 
techniques associated with it, and move on to understanding text structure and syntax. 
Because this book is specifically aimed towards practitioners, various code snippets and 
practical examples will also enable and equip you with the right tools and frameworks for 
implementing the concepts under discussion in solving practical problems. 

     Text Tokenization 
 Chapter   1     talked about textual structure, its components, and tokens. To be more specific, 
 tokens  are independent and minimal textual components that have some definite syntax 
and semantics. A paragraph of text or a text document has several components including 
sentences that can be further broken down into clauses, phrases, and words. The most 
popular tokenization techniques include sentence and word tokenization, which are 
used to break down a text corpus into sentences, and each sentence into words. Thus, 
tokenization can be defined as the process of breaking down or splitting textual data into 
smaller meaningful components called tokens. In the following section, we will look at 
some ways to tokenize text into sentences. 

     Sentence Tokenization 
  Sentence tokenization  is the process of splitting a text corpus into sentences that act as 
the first level of tokens which the corpus is comprised of. This is also known as  sentence 
segmentation , because we try to segment the text into meaningful sentences. Any  text 
corpus   is a body of text where each paragraph comprises several sentences. 

 There are various ways of performing sentence tokenization. Basic techniques 
include looking for specific  delimiters   between sentences, such as a period (.) or a 
newline character (\n), and sometimes even a semi-colon (;). We will use the NLTK 
framework, which provides various interfaces for performing sentence tokenization. We 
will primarily focus on the following sentence tokenizers:

•     sent_tokenize   

•    PunktSentenceTokenizer   

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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•    RegexpTokenizer   

•   Pre-trained sentence tokenization models    

 Before we can tokenize sentences, we need some text on which we can try out 
these operations. We will load some sample text and also a part of the  Gutenberg corpus   
available in NLTK itself. We load the necessary dependencies using the following snippet: 

    import nltk 
 from nltk.corpus import gutenberg 
 from pprint import pprint 

   alice = gutenberg.raw(fileids='carroll-alice.txt') 
 sample_text = 'We will discuss briefly about the basic syntax, structure and 
design philosophies. There is a defined hierarchical syntax for Python code 
which you should remember when writing code! Python is a really powerful 
programming language!' 

    We can check the length of the  Alice in Wonderland  corpus and also the first few lines 
in it using the following snippet: 

    In [124]: # Total characters in Alice in Wonderland 
      ...: print len(alice) 
 144395 

   In [125]: # First 100 characters in the corpus 
      ...: print alice[0:100] 
 [Alice's Adventures in Wonderland by Lewis Carroll 1865] 

   CHAPTER I. Down the Rabbit-Hole 

   Alice was 

    The   nltk.sent_tokenize  function   is the default sentence tokenization function that 
 nltk  recommends. It uses an instance of the  PunktSentenceTokenizer  class internally. 
However, this is not just a normal object or instance of that class—it has been pre-trained 
on several language models and works really well on many popular languages besides 
just English. 

 The following snippet shows the basic usage of this function on our  text samples  : 

    default_st = nltk.sent_tokenize 
 alice_sentences = default_st(text=alice) 
 sample_sentences = default_st(text=sample_text) 

   print 'Total sentences in sample_text:', len(sample_sentences) 
 print 'Sample text sentences :-' 
 pprint(sample_sentences) 
 print '\nTotal sentences in alice:', len(alice_sentences) 
 print 'First 5 sentences in alice:-' 
 pprint(alice_sentences[0:5]) 
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    On running the preceding snippet, you get the following output depicting the total 
number of sentences and what those sentences look like in the  text corpora  : 

    Total sentences in sample_text: 3 
 Sample text sentences :- 
 ['We will discuss briefly about the basic syntax, structure and design 
philosophies.', 
  'There is a defined hierarchical syntax for Python code which you should 
remember when writing code!', 
  'Python is a really powerful programming language!'] 

   Total sentences in alice: 1625 
 First 5 sentences in alice:- 
 [u"[Alice's Adventures in Wonderland by Lewis Carroll 1865]\n\nCHAPTER I.", 
  u"Down the Rabbit-Hole\n\nAlice was beginning to get very tired of sitting 
by her sister on the\nbank, and of having nothing to do: once or twice she 
had peeped into the\nbook her sister was reading, but it had no pictures 
or conversations in\nit, 'and what is the use of a book,' thought Alice 
'without pictures or\nconversation?'", 
  u'So she was considering in her own mind (as well as she could, for the\nhot 
day made her feel very sleepy and stupid), whether the pleasure\nof making 
a daisy-chain would be worth the trouble of getting up and\npicking the 
daisies, when suddenly a White Rabbit with pink eyes ran\nclose by her.', 
  u"There was nothing so VERY remarkable in that; nor did Alice think it so\
nVERY much out of the way to hear the Rabbit say to itself, 'Oh dear!", 
  u'Oh dear!'] 

    Now, as you can see, the tokenizer is quite intelligent and doesn’t just use periods to 
delimit sentences. It also considers other punctuation and the capitalization of  words  . 

 We can also tokenize text of other languages. If we are dealing with  German text  , 
we can use  sent_tokenize , which is already trained, or load a pre-trained tokenization 
model on German text into a  PunktSentenceTokenizer  instance and perform the same 
operation. The following snippet shows the same. We start with loading a German text 
corpus and inspecting it: 

    In [4]: from nltk.corpus import europarl_raw 
    ...:  
    ...: german_text = europarl_raw.german.raw(fileids='ep-00-01-17.de') 
    ...: # Total characters in the corpus 
    ...: print len(german_text) 
    ...: # First 100 characters in the corpus 
    ...: print german_text[0:100] 
 157171 

   Wiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 17. 
Dezember unterbrochene Sit 
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    Next, we tokenize the text corpus into sentences using both the default  sent_
tokenize  tokenizer and also a  pre-trained German language   tokenizer by loading it from 
the  nltk  resources: 

   In [5]: german_sentences_def = default_st(text=german_text, 
language='german') 
    ...:  
    ...:  # loading german text tokenizer into a PunktSentenceTokenizer 

instance   
    ...:  german_tokenizer = nltk.data.load(resource_url='tokenizers/punkt/

german.pickle') 
    ...: german_sentences = german_tokenizer.tokenize(german_text) 
    ...:  
    ...: # verify the type of german_tokenizer 
    ...: # should be PunktSentenceTokenizer 
    ...: print type(german_tokenizer) 
 <class 'nltk.tokenize.punkt.PunktSentenceTokenizer'> 

   Thus we see that indeed the  german_   tokenizer    is an instance of 
  PunktSentenceTokenizer   , which is specialized in dealing with the German language. 

 Next we check whether the sentences obtained from the default tokenizer are the 
same as the sentences obtained by this  pre-trained tokenizer  , and ideally it should be 
 True . We also print some sample tokenized sentences from the output after that: 

    In [9]: print german_sentences_def == german_sentences 
    ...: # print first 5 sentences of the corpus 
    ...: for sent in german_sentences[0:5]: 
    ...:     print sent 
 True 

   Wiederaufnahme der Sitzungsperiode Ich erkläre die am Freitag , dem 17. 
Dezember unterbrochene Sitzungsperiode des Europäischen Parlaments für 
wiederaufgenommen , wünsche Ihnen nochmals alles Gute zum Jahreswechsel und 
hoffe , daß Sie schöne Ferien hatten . 
 Wie Sie feststellen konnten , ist der gefürchtete " Millenium-Bug " nicht 
eingetreten . 
 Doch sind Bürger einiger unserer Mitgliedstaaten Opfer von schrecklichen 
Naturkatastrophen geworden . 
 Im Parlament besteht der Wunsch nach einer Aussprache im Verlauf dieser 
Sitzungsperiode in den nächsten Tagen . 
 Heute möchte ich Sie bitten - das ist auch der Wunsch einiger Kolleginnen 
und Kollegen - , allen Opfern der Stürme , insbesondere in den verschiedenen 
Ländern der Europäischen Union , in einer Schweigeminute zu gedenken . 

    Thus we see that our assumption was indeed correct, and you can tokenize 
sentences belonging to different languages in two different ways. Using the default 
  PunktSentenceTokenizer  class   is also pretty straightforward. The following snippet 
shows how to use it: 
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   In [11]: punkt_st = nltk.tokenize.PunktSentenceTokenizer() 
     ...: sample_sentences = punkt_st.tokenize(sample_text) 
     ...: pprint(sample_sentences) 
 ['We will discuss briefly about the basic syntax, structure and design 
philosophies.', 
  'There is a defined hierarchical syntax for Python code which you should 
remember when writing code!', 
  'Python is a really powerful programming language!'] 

   You can see we get a similar output, which is expected from this tokenization. 
The last tokenizer we will cover in sentence tokenization is using an instance of the 
  RegexpTokenizer  class   to tokenize text into sentences where we will use specific regular 
expression-based patterns to segment sentences. Recall the regular expressions (regex) 
from the previous chapter, in case you want to refresh your memory. The following 
 snippet   shows how to use a regex pattern to tokenize sentences: 

   In [29]: SENTENCE_TOKENS_PATTERN = r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)
(?<![A-Z]\.)(?<=\.|\?|\!)\s' 
     ...: regex_st = nltk.tokenize.RegexpTokenizer( 
     ...:             pattern=SENTENCE_TOKENS_PATTERN, 
     ...:             gaps=True) 
     ...: sample_sentences = regex_st.tokenize(sample_text) 
     ...: pprint(sample_sentences) 
 ['We will discuss briefly about the basic syntax, structure and design 
philosophies.', 
  ' There is a defined hierarchical syntax for Python code which you should 
remember  when writing code!', 
  'Python is a really powerful programming language!'] 

   That output shows that we obtained the same sentences as we had obtained using 
the other tokenizers. This gives us an idea of tokenizing text into sentences using different 
  nltk  interfaces  . In the next section we will look at tokenizing these sentences into words 
using several techniques.  

     Word Tokenization 
  Word tokenization  is the process of splitting or segmenting sentences into their 
constituent words. A  sentence  is a collection of words, and with tokenization we 
essentially split a sentence into a list of words that can be used to reconstruct the 
sentence. Word tokenization is very important in many processes, especially in cleaning 
and normalizing text where operations like  stemming   and  lemmatization   work on 
each individual word based on its respective stems and lemma. Similar to sentence 
tokenization,  nltk  provides various useful interfaces for word tokenization, and we will 
touch up on the following main  interfaces  :

•     word_tokenize   

•    TreebankWordTokenizer   
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•    RegexpTokenizer   

•   Inherited tokenizers from   RegexpTokenizer       

 For the hands-on examples, we will use the sample sentence  The brown fox wasn’t 
that quick and he couldn’t win the race  as our input to the various tokenizers. The   nltk.
word_tokenize  function   is the default and recommended word tokenizer as specified 
by  nltk . This tokenizer is actually an instance or object of the  TreebankWordTokenizer  
class in its internal implementation and acts as a wrapper to that core class. The following 
snippet illustrates its usage: 

    In [114]: sentence = "The brown fox wasn't that quick and he couldn't win 
the race" 
      ...:  
      ...: default_wt = nltk.word_tokenize 
      ...: words = default_wt(sentence) 
      ...: print words   
 ['The', 'brown', 'fox', 'was', "n't", 'that', 'quick', 'and', 'he', 'could', 
"n't", 'win', 'the', 'race'] 

   The   TreebankWordTokenizer    is based on the Penn Treebank and uses various regular 
expressions to tokenize the text. Of course, one primary assumption here is that we 
have already performed sentence tokenization beforehand. The original tokenizer used 
in the Penn Treebank is available as a  sed  script, and you can check it out at    www.cis.
upenn.edu/~treebank/tokenizer.sed      to get an idea of the  patterns   used to tokenize the 
sentences into words. Some of the main features of this tokenizer include the following:

•    Splits and separates out periods that appear at the end of a 
sentence  

•   Splits and separates commas and single quotes when followed by 
whitespaces  

•   Most punctuation characters are split and separated into 
independent tokens  

•   Splits words with standard contractions—examples would be 
 don’t  to  do  and  n’t     

 The following  snippet   shows the usage of the  TreebankWordTokenizer  for word 
tokenization: 

   In [117]: treebank_wt = nltk.TreebankWordTokenizer() 
      ...: words = treebank_wt.tokenize(sentence) 
      ...: print words 
 ['The', 'brown', 'fox', 'was', "n't", 'that', 'quick', 'and', 'he', 'could', 
"n't", 'win', 'the', 'race'] 

   From the preceding output, as expected, the output is similar to  word_tokenize()  
because both use the same tokenizing mechanism. 

http://www.cis.upenn.edu/~treebank/tokenizer.sed
http://www.cis.upenn.edu/~treebank/tokenizer.sed
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 We will now look at how to use regular expressions and the   RegexpTokenizer  class   to 
tokenize sentences into words. Remember, there are two main parameters that are useful 
in tokenization: the regex  pattern  for building the tokenizer and the  gaps  parameter, 
which, if set to  True , is used to find the gaps between the tokens. Otherwise, it is used to 
find the tokens themselves. 

 The following code snippet shows some examples of using  regular expressions   to 
perform word tokenization: 

   # pattern to identify tokens themselves 
 In [127]: TOKEN_PATTERN = r'\w+'         
      ...: regex_wt = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN, 
      ...:                                 gaps=False) 
      ...: words = regex_wt.tokenize(sentence) 
      ...: print words 
 ['The', 'brown', 'fox', 'wasn', 't', 'that', 'quick', 'and', 'he', 'couldn', 
't', 'win', 'the', 'race'] 
 # pattern to identify gaps in tokens 
 In [128]: GAP_PATTERN = r'\s+'         
      ...: regex_wt = nltk.RegexpTokenizer(pattern=GAP_PATTERN, 
      ...:                                 gaps=True) 
      ...: words = regex_wt.tokenize(sentence) 
      ...: print words 
 ['The', 'brown', 'fox', "wasn't", 'that', 'quick', 'and', 'he', "couldn't", 
'win', 'the', 'race'] 
 # get start and end indices of each token and then print them 
 In [131]: word_indices = list(regex_wt.span_tokenize(sentence)) 
      ...: print word_indices 
      ...: print [sentence[start:end] for start, end in word_indices] 
 [(0, 3), (4, 9), (10, 13), (14, 20), (21, 25), (26, 31), (32, 35), (36, 38), 
(39, 47), (48, 51), (52, 55), (56, 60)] 
 ['The', 'brown', 'fox', "wasn't", 'that', 'quick', 'and', 'he', "couldn't", 
'win', 'the', 'race'] 

   Besides the base  RegexpTokenizer  class, there are several derived classes that 
perform different types of word tokenization. The  WordPunktTokenizer  uses the pattern 
 r'\w+|[^\w\s]+'  to tokenize sentences into independent alphabetic and non-alphabetic 
tokens. The  WhitespaceTokenizer  tokenizes sentences into words based on whitespaces 
like tabs, newlines, and  spaces  . 

 The following snippet demonstrates: 

    In [132]: wordpunkt_wt = nltk.WordPunctTokenizer() 
      ...: words = wordpunkt_wt.tokenize(sentence) 
      ...: print words 
 ['The', 'brown', 'fox', 'wasn', "'", 't', 'that', 'quick', 'and', 'he', 
'couldn', "'", 't', 'win', 'the', 'race'] 
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   In [133]: whitespace_wt = nltk.WhitespaceTokenizer() 
      ...: words = whitespace_wt.tokenize(sentence) 
      ...: print words 
 ['The', 'brown', 'fox', "wasn't", 'that', 'quick', 'and', 'he', "couldn't", 
'win', 'the', 'race'] 

    This concludes our discussion on tokenization. Now that we know how to separate 
out raw text into sentences and words, we will build upon that in the next section, where 
we will normalize these tokens to get clean and standardized textual data that will be 
easier to understand, interpret, and use in NLP and ML.   

     Text Normalization 
  Text normalization   is defined as a process that consists of a series of steps that 
should be followed to wrangle, clean, and standardize textual data into a form that 
could be consumed by other NLP and analytics systems and applications as input. 
Often tokenization itself also is a part of text normalization. Besides tokenization, 
various other techniques include cleaning text, case conversion, correcting spellings, 
removing stopwords and other unnecessary terms, stemming, and lemmatization. Text 
normalization is also often called  text cleansing  or  wrangling . 

 In this section, we will discuss various techniques used in the process of text 
normalization. Before we can jump into implementing and exploring the various 
techniques, use the following code snippet to load the basic dependencies and also the 
corpus we will be using in this section: 

    import nltk 
 import re 
 import string 
 from pprint import pprint 

   corpus = ["The brown fox wasn't that quick and he couldn't win the race", 
           "Hey that's a great deal! I just bought a phone for $199", 
            "@@You'll (learn) a **lot** in the book. Python is an amazing 

 language  !@@"] 

         Cleaning Text   
 Often the textual data we want to use or analyze contains a lot of extraneous and 
unnecessary tokens and characters that should be removed before performing any 
further operations like tokenization or other normalization techniques. This includes 
extracting out meaningful text from data sources like HTML data, which consists of 
unnecessary HTML tags, or even data from XML and JSON feeds. There are many ways 
to parse and clean this data to remove unnecessary tags. You can use functions like 
 clean_html()  from  nltk  or even the  BeautifulSoup  library to parse HTML data. You can 
also use your own custom logic, including regexes, xpath, and the lxml library, to parse 
through XML data. And getting data from JSON is substantially easier because it has 
definite key-value annotations.  
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      Tokenizing Text   
 Usually, we tokenize text before or after removing unnecessary characters and symbols 
from the data. This choice depends on the problem you are trying to solve and the data 
you are dealing with. We have already looked at various tokenization techniques in the 
previous section. We will define a generic tokenization function here and run the same on 
our corpus mentioned earlier. 

 The following code snippet defines the tokenization function: 

   def tokenize_text(text): 
     sentences = nltk.sent_tokenize(text) 
     word_tokens = [nltk.word_tokenize(sentence) for sentence in sentences]  
     return word_tokens 

   This function basically takes in textual data, extracts sentences from it, and finally 
splits each sentence into further tokens, which could be words or special characters and 
punctuation. The following snippet depicts the preceding function in action: 

   In [297]: token_list = [tokenize_text(text)  
      ...:               for text in corpus] 
      ...: pprint(token_list) 
 [[['The',  'brown', 'fox', 'was', "n't", 'that', 'quick', 'and', 'he', 

'could', "n't", 
    'win', 'the', 'race']], 
  [['Hey', 'that', "'s", 'a', 'great', 'deal', '!'], 
   ['I', 'just', 'bought', 'a', 'phone', 'for', '$', '199']], 
  [['@',  '@', 'You', "'ll", '(', 'learn', ')', 'a', '**lot**', 'in', 'the', 

'book', '.'], 
   ['Python', 'is', 'an', 'amazing', 'language', '!'], 
   ['@', '@']]] 

   You can now see how each text in the corpus has been tokenized using our custom 
defined  function  . Play around with more text data and see if you can make it even better!  

     Removing Special  Characters   
 One important task in text normalization involves removing unnecessary and special 
characters. These may be special symbols or even punctuation that occurs in sentences. 
This step is often performed before or after tokenization. The main reason for doing so is 
because often punctuation or special characters do not have much significance when we 
analyze the text and utilize it for extracting features or information based on NLP and ML. 
We will implement both types of special characters removal, before and after tokenization. 

 The following snippet shows how to remove special characters  after  tokenization: 

    def remove_characters_after_tokenization(tokens): 
     pattern = re.compile('[{}]'.format(re.escape(string.punctuation))) 
     filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens]) 
     return filtered_tokens 
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   In [299]: filtered_list_1 =   [filter(None,[remove_characters_after_
tokenization(tokens)  

      ...:                                 for tokens in sentence_tokens])  
      ...:                     for sentence_tokens in token_list] 
      ...: print filtered_list_1 
 [[['The', 'brown', 'fox', 'was', 'nt', 'that', 'quick', 'and', 'he', 
'could', 'nt', 'win', 'the', 'race']], [['Hey', 'that', 's', 'a', 'great', 
'deal'], ['I', 'just', 'bought', 'a', 'phone', 'for', '199']], [['You', 
'll', 'learn', 'a', 'lot', 'in', 'the', 'book'], ['Python', 'is', 'an', 
'amazing', 'language']]] 

    Essentially, what we do here is use the  string.punctuation  attribute, which consists 
of all possible special characters/symbols, and create a regex pattern from it. We use it 
to match tokens that are symbols and characters and remove them. The  filter  function 
helps us remove empty tokens obtained after removing the special character tokens using 
the regex  sub  method. 

 The following code  snippet   shows how to remove special characters  before  
tokenization: 

    def remove_characters_before_tokenization(sentence, 
                                           keep_apostrophes=False): 
     sentence = sentence.strip() 
     if keep_apostrophes: 
          PATTERN = r'[?|$|&|*|%|@|(|)|~]' # add other characters here to 

remove them 
         filtered_sentence = re.sub(PATTERN, r'', sentence) 
     else: 
         PATTERN = r'[^a-zA-Z0-9 ]' # only extract alpha-numeric characters 
         filtered_sentence = re.sub(PATTERN, r'', sentence) 
     return filtered_sentence 

   In [304]: filtered_list_2 = [remove_characters_before_tokenization(sentence)  
      ...:                     for sentence in corpus]     
      ...: print filtered_list_2 
 ['The brown fox wasnt that quick and he couldnt win the race', 'Hey thats a 
great deal I just bought a phone for 199', 'Youll learn a lot in the book 
Python is an amazing language'] 

   In [305]: cleaned_corpus = [remove_characters_before_tokenization(sentence,    
                            keep_apostrophes=True)  
      ...:                   for sentence in corpus] 
      ...: print cleaned_corpus 
 ["The brown fox wasn't that quick and he couldn't win the race", "Hey that's 
a great deal! I just bought a phone for 199", "You'll learn a lot in the 
book. Python is an amazing language!"] 
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    The preceding outputs show two different ways of removing special characters before 
tokenization—removing all special characters versus retaining apostrophes and sentence 
periods—using regular expressions. By now, you must have realized how powerful regular 
expressions can be, as mentioned in Chapter   2    . Usually after removing these characters, 
you can take the clean text and tokenize it or apply other normalization operations on it. 
Sometimes we want to preserve the apostrophes in the sentences as a way to track them 
and expand them if needed. We will explore that in the following section.  

     Expanding  Contractions   
  Contractions  are shortened version of words or syllables. They exist in either written or 
spoken forms. Shortened versions of existing words are created by removing specific 
letters and sounds. In case of English contractions, they are often created by removing 
one of the vowels from the word. Examples would be  is not  to  isn’t  and  will not  to  won’t , 
where you can notice the apostrophe being used to denote the contraction and some 
of the vowels and other letters being removed. Usually contractions are avoided when 
used in formal writing, but informally, they are used quite extensively. Various forms of 
contractions exist that are tied down to the type of auxiliary verbs that give us normal 
contractions, negated contractions, and other special colloquial contractions, some of 
which may not involve auxiliaries. 

 By nature, contractions do pose a problem for NLP and text analytics because, to 
start with, we have a special apostrophe character in the word. Plus we have two or more 
words represented by a contraction, and this opens a whole new can of worms when 
we try to tokenize this or even standardize the words. Hence, there should be some 
definite process by which we can deal with contractions when processing text. Ideally, 
you can have a proper mapping for contractions and their corresponding expansions 
and then use it to expand all the contractions in your text. I have created a vocabulary 
for contractions and their corresponding expanded forms that you can access in the 
file  contractions.py  in a Python dictionary (available along with the code files for this 
chapter). Part of the contractions dictionary is shown below in the following snippet: 

   CONTRACTION_MAP = { 
 "isn't": "is not", 
 "aren't": "are not", 
 "can't": "cannot", 
 "can't've": "cannot have", 
 . 
 . 
 . 
 "you'll've": "you will have", 
 "you're": "you are", 
 "you've": "you have" 
 } 

   Remember, though, that some of the contractions can have multiple forms. An 
example would be that contracting  you’ll  can indicate either  you will  or  you shall . To 
simplify, I have taken one of these expanded forms for each contraction. The next step, to 
expand contractions, uses the following code snippet: 

http://dx.doi.org/10.1007/978-1-4842-2388-8_2


CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

119

    from contractions import CONTRACTION_MAP 

   def expand_contractions(sentence, contraction_mapping): 
      contractions_pattern = re.compile('({})'.format('|'.join(contraction_

mapping.keys())),  
                                       flags=re.IGNORECASE|re.DOTALL) 
     def expand_match(contraction): 
         match = contraction.group(0) 
         first_char = match[0] 
         expanded_contraction = contraction_mapping.get(match)\ 
                                 if contraction_mapping.get(match)\ 
                                 else contraction_mapping.get(match.lower())                        
         expanded_contraction = first_char+expanded_contraction[1:] 
         return expanded_contraction 

       expanded_sentence = contractions_pattern.sub(expand_match, sentence) 
     return expanded_sentence  

    The preceding snippet uses the function  expanded_match  inside the main  expand_
contractions  function to find each contraction that matches the regex pattern we 
create out of all the contractions in our  CONTRACTION_MAP  dictionary. On matching any 
contraction, we substitute it with its corresponding expanded version and retain the 
correct case of the word. 

 To see it in action, we use it on the  cleaned_corpus  of  text   we obtained in the 
previous section: 

   In [311]: expanded_corpus = [expand_contractions(sentence, CONTRACTION_MAP)  
      ...:                     for sentence in cleaned_corpus]     
      ...: print expanded_corpus 
 ['The brown fox was not that quick and he could not win the race', 'Hey that 
is a great deal! I just bought a phone for 199', 'You will learn a lot in 
the book. Python is an amazing language!'] 

   You can see how each contraction has been correctly expanded in the output just like 
we expected it. Can you build a better contraction expander? It is definitely an interesting 
problem to solve.  

     Case Conversions 
 Often we want to modify the case of  words   or sentences to make things easier, like 
matching specific words or tokens. Usually there are two types of  case conversion 
operations   that are used a lot. These are lowercase and uppercase conversions, where a 
body of text is converted completely to lowercase or uppercase. There are other forms 
also, such as sentence case or proper case. Lowercase is a form where all the letters of the 
text are small letters, and in uppercase they are all capitalized. 
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 The following snippet illustrates this concept: 

   # lower case  
 In [315]: print corpus[0].lower() 
 the brown fox wasn't that quick and he couldn't win the race 
 # upper case 
 In [316]: print corpus[0].upper() 
 THE BROWN FOX WASN'T THAT QUICK AND HE COULDN'T WIN THE RACE 

        Removing Stopwords 
   Stopwords   , sometimes written  stop words , are words that have little or no significance. 
They are usually removed from text during processing so as to retain words having 
maximum significance and context. Stopwords are usually words that end up occurring 
the most if you aggregated any corpus of text based on singular tokens and checked their 
frequencies. Words like  a, the ,  me , and so on are stopwords. There is no universal or 
exhaustive list of stopwords. Each domain or language may have its own set of stopwords. 

 The following code snippet shows a method to filter out and remove stopwords for 
English: 

   def remove_stopwords(tokens): 
     stopword_list = nltk.corpus.stopwords.words('english') 
      filtered_tokens = [token for token in tokens if token not in stopword_

list] 
     return filtered_tokens 

   In the preceding function, we leverage the use of  nltk , which has a list of stopwords 
for English, and use it to filter out all tokens that correspond to stopwords. We use our 
  tokenize_text  function   to tokenize the  expanded_corpus  we obtained in the previous 
section and then remove the necessary stopwords using the preceding function: 

   In [332]: expanded_corpus_tokens = [tokenize_text(text) 
      ...:                           for text in expanded_corpus]     
      ...: filtered_list_3 =  [[remove_stopwords(tokens)  
      ...:                         for tokens in sentence_tokens]  
      ...:                          for sentence_tokens in expanded_corpus_

tokens] 
      ...: print filtered_list_3 
 [[['The', 'brown', 'fox', 'quick', 'could', 'win', 'race']], [['Hey', 
'great', 'deal', '!'], ['I', 'bought', 'phone', '199']], [['You', 'learn', 
'lot', 'book', '.'], ['Python', 'amazing', 'language', '!']]] 

   The preceding output shows a reduced number of tokens compared to what we had 
earlier, and you can compare and check the tokens that were removed as stopwords. 
To see the list of all English stopwords in  nltk’s  vocabulary, print the contents of 
 nltk.corpus.stopwords.words(‘english’) . One important thing to remember is 
that  negations   like  not  and  no  are removed in this case  (in the first sentence) , and it is 
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often essential to preserve the same so the actual context of the sentence is not lost in 
applications like sentiment analysis, so you would need to make sure you do not remove 
such words in those scenarios.  

     Correcting  Words   
 One of the main challenges faced in text normalization is the presence of incorrect words 
in the text. The definition of incorrect here covers words that have spelling mistakes as 
well as words with several letters repeated that do not contribute much to its overall 
significance. To illustrate some examples, the word  finally  could be mistakenly written as 
 fianlly , or someone expressing intense emotion could write it as  finalllllyyyyyy . The main 
objective here would be to standardize different forms of these words to the correct form 
so that we do not end up losing vital information from different tokens in the text. This 
section covers dealing with repeated characters as well as correcting spellings. 

   Correcting  Repeating Characters   
 I will cover a method here of using a combination of syntax and semantics to correct 
incorrectly spelled words. We will first start with correcting the syntax of these words and 
then move on to semantics. 

 The first step in our algorithm would be to identify repeated characters in a word 
using a regex pattern and then use a substitution to remove the characters one by one. 
Consider the word  finalllyyy  from the earlier example. The pattern  r'(\w*)(\w)\2(\w*)'  
can be used to identify characters that occur twice among other characters in the 
word, and in each step we will try to eliminate one of the repeated characters using a 
substitution for the match by utilizing the regex match groups (groups 1, 2, and 3) using 
the pattern  r’\1\2\3’  and then keep iterating through this  process   till no repeated 
characters remain. 

 The following snippet illustrates this: 

   In [361]: old_word = 'finalllyyy' 
      ...: repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)') 
      ...: match_substitution = r'\1\2\3' 
      ...: step = 1 
      ...:  
      ...: while True: 
      ...:     # remove one repeated character 
      ...:     new_word = repeat_pattern.sub(match_substitution, 
      ...:                                   old_word) 
      ...:     if new_word != old_word: 
      ...:         print 'Step: {} Word: {}'.format(step, new_word) 
      ...:         step += 1 # update step 
      ...:         # update old word to last substituted state 
      ...:         old_word = new_word   
      ...:         continue 
      ...:     else: 
      ...:         print "Final word:", new_word 
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      ...:         break 
      ...:      
 Step: 1 Word: finalllyy 
 Step: 2 Word: finallly 
 Step: 3 Word: finally 
 Step: 4 Word: finaly 
 Final word: finaly 

   The preceding snippet shows how one repeated character is removed at each stage 
until we end up with the word  finaly  in the end. However, semantically this word is 
incorrect—the correct word was  finally , which we obtained in step 3. We will now utilize 
the WordNet corpus to check for valid words at each stage and terminate the loop once 
it is obtained. This introduces the semantic correction needed for our algorithm, as 
illustrated in the following snippet: 

   In [363]: from nltk.corpus import wordnet 
      ...: old_word = 'finalllyyy' 
      ...: repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)') 
      ...: match_substitution = r'\1\2\3' 
      ...: step = 1 
      ...:  
      ...: while True: 
      ...:     # check for semantically correct word 
      ...:     if wordnet.synsets(old_word): 
      ...:         print "Final correct word:", old_word 
      ...:         break 
      ...:     # remove one repeated character 
      ...:     new_word = repeat_pattern.sub(match_substitution, 
      ...:                                   old_word) 
      ...:     if new_word != old_word: 
      ...:         print 'Step: {} Word: {}'.format(step, new_word) 
      ...:         step += 1 # update step 
      ...:         # update old word to last substituted state 
      ...:         old_word = new_word   
      ...:         continue 
      ...:     else: 
      ...:         print "Final word:", new_word 
      ...:         break 
      ...:      
 Step: 1 Word: finalllyy 
 Step: 2 Word: finallly 
 Step: 3 Word: finally 
 Final correct word: finally 

   Thus we see from the preceding snippet that the code correctly terminated after the 
third step, and we obtained the correct word, adhering to both syntax and semantics. 

 We can build a better  version   of this code by writing the logic in a function, as shown 
in the following code, to make it more generic to deal with incorrect tokens from a list of 
tokens: 



CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

123

    from nltk.corpus import wordnet 

   def remove_repeated_characters(tokens): 
     repeat_pattern = re.compile(r'(\w*)(\w)\2(\w*)') 
     match_substitution = r'\1\2\3' 
     def replace(old_word): 
         if wordnet.synsets(old_word): 
             return old_word 
         new_word = repeat_pattern.sub(match_substitution, old_word) 
         return replace(new_word) if new_word != old_word else new_word 

       correct_tokens = [replace(word) for word in tokens] 
     return correct_tokens 

    That snippet uses the inner function  replace()  to basically emulate the behavior of 
our algorithm, illustrated earlier, and then call it repeatedly on each token in a sentence 
in the outer function  remove_repeated_characters() . 

 We can see the preceding code in action in the following snippet, with an actual 
example sentence: 

    In [369]: sample_sentence = 'My schooool is realllllyyy amaaazingggg' 
      ...: sample_sentence_tokens = tokenize_text(sample_sentence)[0] 
      ...: print sample_sentence_tokens 
 ['My', 'schooool', 'is', 'realllllyyy', 'amaaazingggg'] 

   In [370]: print remove_repeated_characters(sample_sentence_tokens)   
 ['My', 'school', 'is', 'really', 'amazing'] 

    We can see from the above  output   that our function performs as intended and 
replaces the repeating characters in each token, giving us correct tokens as desired.  

   Correcting Spellings 
 Another problem we face is incorrect or wrong spellings that occur due to human error, 
or even machine-based errors you may have seen thanks to features like auto-correcting 
text. There are various ways of dealing with incorrect spellings where the final objective 
is to have tokens of text with the correct spelling. This section will talk about one of the 
famous algorithms developed by Peter Norvig, the  director of research   at Google. You can 
find the complete detailed post explaining his algorithm and findings at    http://norvig.
com/spell-correct.html     . 

 The main objective of this exercise is that, given a word, we need to find the most 
likely word that is the correct form of that word. The approach we would follow is to 
generate a set of  candidate words   that are near to our input word and select the most 
likely word from this set as the correct word. We use a corpus of correct English words 
in this context to identify the correct word based on its frequency in the corpus from our 
final set of candidates with the nearest distance to our input word. This distance, which 
measures how near or far a word is from our input word, is also called  edit distance . The 

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
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input corpus we use is a file containing several books from the Gutenberg corpus and also 
a list of most frequent words from Wiktionary and the British National Corpus. You can 
find the file under the name  big.txt  in this chapter’s code resources or download it from 
   http://norvig.com/big.txt      and use it. 

 I’ll use the following code snippet to generate a map of frequently occurring words in 
the  English language   and their counts: 

    import re, collections 

   def tokens(text):  
     """ 
     Get all words from the corpus 
     """ 
     return re.findall('[a-z]+', text.lower())  

   WORDS = tokens(file('big.txt').read()) 
 WORD_COUNTS = collections.Counter(WORDS) 

   # top 10 words in the corpus 
 In [407]: print WORD_COUNTS.most_common(10) 
 [('the', 80030), ('of', 40025), ('and', 38313), ('to', 28766), ('in', 
22050), ('a', 21155), ('that', 12512), ('he', 12401), ('was', 11410), 
('it', 10681)] 

    Once we have our vocabulary, we define three functions that compute sets of words 
that are zero, one, and two edits away from our input word. These edits can be made by 
the means of insertions, deletions, additions, and transpositions. The following  code   
defines the functions for doing this: 

    def edits0(word):  
     """ 
     Return all strings that are zero edits away  
     from the input word (i.e., the word itself). 
     """ 
     return {word} 

   def edits1(word): 
     """ 
     Return all strings that are one edit away  
     from the input word. 
     """ 
     alphabet = 'abcdefghijklmnopqrstuvwxyz' 
     def splits(word): 
         """ 
         Return a list of all possible (first, rest) pairs  
         that the input word is made of. 
         """ 
         return [(word[:i], word[i:])  
                 for i in range(len(word)+1)] 

http://norvig.com/big.txt
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       pairs      = splits(word) 
     deletes    = [a+b[1:]           for (a, b) in pairs if b] 
     transposes = [a+b[1]+b[0]+b[2:] for (a, b) in pairs if len(b) > 1] 
     replaces   = [a+c+b[1:]          for (a, b) in pairs for c in alphabet 

if b] 
     inserts    = [a+c+b             for (a, b) in pairs for c in alphabet] 
     return set(deletes + transposes + replaces + inserts) 

   def edits2(word): 
     """Return all strings that are two edits away  
     from the input word. 
     """ 
     return {e2 for e1 in edits1(word) for e2 in edits1(e1)} 

    We also define a function called  known()     that returns a subset of words from our 
candidate set of words obtained from the edit functions, based on whether they occur in 
our vocabulary dictionary  WORD_COUNTS . This gives us a list of valid words from our set of 
candidate words: 

   def known(words): 
     """ 
     Return the subset of words that are actually  
     in our WORD_COUNTS dictionary. 
     """ 
     return {w for w in words if w in WORD_COUNTS} 

   We can see these functions in action on our test input word in the following code 
snippet, which shows lists of possible candidate words based on edit distances from the 
input word: 

    # input word 
 In [409]: word = 'fianlly' 

   # zero edit distance from input word 
 In [410]: edits0(word) 
 Out[410]: {'fianlly'} 
 # returns null set since it is not a valid word 
 In [411]: known(edits0(word)) 
 Out[411]: set() 

   # one edit distance from input word 
 In [412]: edits1(word) 
 Out[412]:  
 {'afianlly', 
  'aianlly', 
  . 
  . 
 'yianlly', 
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 'zfianlly', 
 'zianlly'} 
 # get correct words from above set 
 In [413]: known(edits1(word)) 
 Out[413]: {'finally'} 

   # two edit distances from input word 
 In [417]: edits2(word) 
 Out[417]: 
 {'fchnlly', 
  'fianjlys', 
   . 
   . 
  'fiapgnlly', 
  'finanlqly'} 
 # get correct words from above set 
 In [418]: known(edits2(word)) 
 Out[418]: {'faintly', 'finally', 'finely', 'frankly'} 

    The preceding outputs depict a set of valid candidate words that could be potential 
 replacements   for the incorrect input word. We select our candidate words from the 
preceding list by giving higher priority to words with the smallest edit distances from the 
input word. The following code snippet illustrates: 

    In [420]: candidates = (known(edits0(word)) or  
      ...:               known(edits1(word)) or  
      ...:               known(edits2(word)) or  
      ...:               [word]) 

   In [421]: candidates 
 Out[421]: {'finally'} 

    In case there is a tie in the preceding candidates, we resolve it by taking the highest 
occurring word from our vocabulary dictionary  WORD_COUNTS  using the   max(candidates, 
key=WORD_COUNTS.get)  function  . Thus we now define our function to correct words using 
the logic discussed earlier: 

   def correct(word): 
     """ 
     Get the best correct spelling for the input word 
     """ 
     # Priority is for edit distance 0, then 1, then 2 
     # else defaults to the input word itself. 
     candidates = (known(edits0(word)) or  
                   known(edits1(word)) or  
                   known(edits2(word)) or  
                   [word]) 
     return max(candidates, key=WORD_COUNTS.get) 
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   We can use the  preceding function   on incorrect words directly to correct them, as 
illustrated in the following snippet: 

    In [438]: correct('fianlly') 
 Out[438]: 'finally' 

   In [439]: correct('FIANLLY') 
 Out[439]: 'FIANLLY' 

    We see that this function is case sensitive and fails to correct words that are not 
lowercase, hence we write the following functions to make this generic to the case of 
words and correct their spelling regardless. The logic here is to preserve the original case 
of the word, convert it to lowercase, correct its spelling, and finally reconvert it back to its 
original case using the   case_of  function  : 

    def correct_match(match): 
     """ 
     Spell-correct word in match,  
     and preserve proper upper/lower/title case. 
     """ 

       word = match.group() 
     def case_of(text): 
         """ 
         Return the case-function appropriate  
         for text: upper, lower, title, or just str.: 
             """ 
         return (str.upper if text.isupper() else 
                 str.lower if text.islower() else 
                 str.title if text.istitle() else 
                 str) 
     return case_of(word)(correct(word.lower())) 

   def correct_text_generic(text): 
     """ 
     Correct all the words within a text,  
     returning the corrected text. 
     """ 
     return re.sub('[a-zA-Z]+', correct_match, text) 

    We can now use the  preceding function   to correct words irrespective of their case, as 
illustrated in the following snippet: 

    In [441]: correct_text_generic('fianlly') 
 Out[441]: 'finally' 
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   In [442]: correct_text_generic('FIANLLY') 
 Out[442]: 'FINALLY' 

    Of course, this method is not always completely accurate, and there may be words 
that might not be corrected if they do not occur in our  vocabulary dictionary  . Using more 
data would help in this case, as long as we cover different words having correct spellings 
in our vocabulary. This same algorithm is available to be used out of the box in the 
 pattern  library, as is done in the following snippet: 

    from pattern.en import suggest 

   # test on wrongly spelt words 
 In [184]: print suggest('fianlly') 
  [('finally', 1.0)] 

   In [185]: print suggest('flaot') 
  [('flat', 0.85), ('float', 0.15)] 

    Besides this, there are several robust libraries available in Python, including 
  PyEnchant   , based on the  enchant  library (   http://pythonhosted.org/pyenchant/     ), and 
 aspell-python , which is a Python wrapper around the popular GNU Aspell. Feel free to 
check them out and use them for correcting word spellings!   

     Stemming 
 Understanding the process of stemming requires understanding what word stems 
represent. Chapter   1     talked about morphemes, the smallest independent unit in any 
natural language. Morphemes consist of units that are stems and  affixes. Affixes   are units 
like prefixes, suffixes, and so on, which are attached to a word stem to change its meaning 
or create a new word altogether. Word stems are also often known as the  base form  of a 
word, and we can create new words by attaching affixes to them in a process known as 
 inflection . The reverse of this is obtaining the base form of a word from its inflected form, 
and this is known as  stemming . 

 Consider the word  JUMP . You can add affixes to it and form new words like  JUMPS , 
 JUMPED , and  JUMPING . In this case, the base word JUMP is the word stem. If we were to 
carry out stemming on any of its three inflected forms, we would get back the base form. 
This is illustrated in Figure  3-1 .  

http://pythonhosted.org/pyenchant/
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 The figure shows how the word stem is present in all its inflections since it forms 
the base on which each  inflection   is built upon using affixes. Stemming helps us in 
standardizing words to their base stem irrespective of their inflections, which helps many 
applications like classifying or clustering text, and even in information retrieval. Search 
engines make use of such techniques extensively to give better and more accurate results 
irrespective of the word form. 

 The  nltk  package has several implementations for stemmers. These stemmers are 
implemented in the  stem  module, which inherits the   StemmerI  interface   in the  nltk.stem.
api  module. You can even create your own stemmer using this class (technically it is an 
 interface ) as your base class. One of the most popular stemmers is the Porter stemmer, 
which is based on the algorithm developed by its inventor, Dr. Martin Porter. Originally, the 
algorithm is said to have had a total of five different phases for reduction of inflections to 
their stems, where each phase has its own set of rules. There also exists a Porter2 algorithm, 
which was the original stemming algorithm with some improvements suggested by Dr. 
Porter. You can see the Porter stemmer in action in the following  code   snippet: 

    # Porter Stemmer 
 In [458]: from nltk.stem import PorterStemmer 
      ...: ps = PorterStemmer() 

   In [459]: print ps.stem('jumping'), ps.stem('jumps'), ps.stem('jumped') 
 jump jump jump 

   In [460]: print ps.stem('lying') 
 lie 

   In [461]: print ps.stem('strange') 
 strang 

  Figure 3-1.    Word stem and  inflections         

 



CHAPTER 3 ■ PROCESSING AND UNDERSTANDING TEXT

130

    The  Lancaster stemmer      is based on the Lancaster stemming algorithm, also often 
known as the Paice/Husk stemmer, invented by Chris D. Paice. This stemmer is an iterative 
stemmer that has over 120 rules specifying specific removal or replacement for affixes to 
obtain the word stems. The following  snippet   shows the Lancaster stemmer in action: 

    # Lancaster Stemmer 
 In [465]: from nltk.stem import LancasterStemmer 
      ...: ls = LancasterStemmer() 

   In [466]: print ls.stem('jumping'), ls.stem('jumps'), ls.stem('jumped') 
 jump jump jump 

   In [467]: print ls.stem('lying') 
 lying 

   In [468]: print ls.stem('strange') 
 strange 

    You can see that the behavior of this stemmer is different from the Porter stemmer. 
 There are several other stemmers, including  RegexpStemmer , where you can build 

your own stemmer based on  user-defined rules  , and  SnowballStemmer , which supports 
stemming in 13 different languages besides English. 

 The following code snippet shows some ways of using them for performing 
stemming. The   RegexpStemmer    uses regular expressions to identify the morphological 
affixes in words, and any part of the string matching the same is removed: 

    # Regex based stemmer 
 In [471]: from nltk.stem import RegexpStemmer 
      ...: rs = RegexpStemmer('ing$|s$|ed$', min=4) 

   In [472]: print rs.stem('jumping'), rs.stem('jumps'), rs.stem('jumped') 
 jump jump jump 

   In [473]: print rs.stem('lying') 
 ly 

   In [474]: print rs.stem('strange') 
 strange 

    You can see how the stemming results are different from the previous stemmers 
and are based completely on our custom-defined rules based on regular expressions. 
The following snippet shows how to use the   SnowballStemmer    to stem words in 
other languages (you can find more details about the  Snowball Project   at    http://
snowballstem.org     ): 

    # Snowball Stemmer 
 In [486]: from nltk.stem import SnowballStemmer 
      ...: ss = SnowballStemmer("german") 

http://snowballstem.org/
http://snowballstem.org/
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   In [487]: print 'Supported Languages:', SnowballStemmer.languages 
 Supported Languages: (u'danish', u'dutch', u'english', u'finnish', 
u'french', u'german', u'hungarian', u'italian', u'norwegian', u'porter', 
u'portuguese', u'romanian', u'russian', u'spanish', u'swedish') 

   # stemming on German words 
 # autobahnen -> cars 
 # autobahn -> car 
 In [488]: ss.stem('autobahnen') 
 Out[488]: u'autobahn' 

   # springen -> jumping 
 # spring -> jump 
 In [489]: ss.stem('springen') 
 Out[489]: u'spring' 

    The  Porter stemmer   is used most frequently—but you should choose your stemmer 
based on your problem and after trial and error. If needed, you can even build your own 
stemmer with your own defined rules.  

     Lemmatization 
 The process of  lemmatization  is very similar to stemming—you remove word affixes to 
get to a base form of the word. But in this case, this base form is also known as the   root 
word   , but not the  root stem . The difference is that the root stem may not always be a 
lexicographically correct word; that is, it may not be present in the dictionary. The root 
word, also known as the  lemma , will always be present in the dictionary. 

 The lemmatization process is considerably slower than stemming because an 
additional step is involved where the root form or lemma is formed by removing the affix 
from the word if and only if the lemma is present in the dictionary. The   nltk  package   has 
a robust lemmatization module that uses WordNet and the word’s syntax and semantics, 
like part of speech and context, to get the root word or lemma. Remember parts of speech 
from Chapter   1    ? There were mainly three entities—nouns, verbs, and adjectives—that 
occur most frequently in natural language. 

 The following code snippet shows how to use lemmatization for words belonging to 
each of those types: 

    In [514]: from nltk.stem import WordNetLemmatizer 
      ...:  
      ...: wnl = WordNetLemmatizer() 

   # lemmatize nouns 
 In [515]: print wnl.lemmatize('cars', 'n') 
      ...: print wnl.lemmatize('men', 'n') 
 car 
 men 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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   # lemmatize verbs 
 In [516]: print wnl.lemmatize('running', 'v') 
      ...: print wnl.lemmatize('ate', 'v') 
 run 
 eat 

   # lemmatize adjectives 
 In [517]: print wnl.lemmatize('saddest', 'a') 
      ...: print wnl.lemmatize('fancier', 'a') 
 sad 
 fancy 

    The preceding snippet shows how each word is converted back to its base form using 
lemmatization. This helps us in standardizing words. The preceding code leverages the 
  WordNetLemmatizer  class  , which internally uses the  morphy()  function belonging to the 
 WordNetCorpusReader  class. This function basically finds the base form or lemma for a 
given word using the word and its part of speech by checking the  Wordnet corpus   and 
uses a recursive technique for removing affixes from the word until a match is found in 
WordNet. If no match is found, the input word itself is returned unchanged. 

 The part of  speech   is extremely important here because if that is wrong, the 
lemmatization will not be effective, as you can see in the following snippet: 

   # ineffective lemmatization 
 In [518]: print wnl.lemmatize('ate', 'n') 
      ...: print wnl.lemmatize('fancier', 'v') 
 ate 
 fancier 

   This brings us to the end of our discussion on various techniques for processing and 
 normalizing   text. By now, you have learned a great deal about how to process, normalize, 
and standardize text. In the next section, we will look at ways of analyzing and understanding 
various facets of textual data with regard to its syntactic properties and structure.   

     Understanding Text Syntax and Structure 
 Chapter   1     talked about language syntax and structure in detail. If you don’t remember, 
head over to the “Language Syntax and Structure” section and skim through it quickly to 
get an idea of the various ways of analyzing and understanding the syntax and structure 
of textual data. In this section, we will look and implement some of the concepts and 
techniques that are used for understanding text syntax and structure. This is extremely 
useful in NLP and is usually done after text  processing and normalization  . We will focus 
on implementing the following techniques:

•     Parts of speech (POS) tagging    

•   Shallow parsing  

•   Dependency-based parsing  

•   Constituency-based parsing    

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 This book is aimed at practitioners and enforces and emphasizes the best 
approaches to implementing and using techniques and algorithms in real-world 
problems. Therefore, the following sections look at the best possible ways of leveraging 
existing libraries like   nltk    and  spacy  to implement and execute some of these techniques. 
Also, because many readers may be interested in the internals and implementing 
some of these techniques on your own, we will also look at ways to do that. Remember, 
our primary focus is always to look at ways implementing the concepts in action with 
practical examples—and not re-invent the wheel. Before going further, we will look at the 
necessary dependencies and installation details for the required libraries, because some 
of them are not very straightforward. 

     Installing Necessary Dependencies 
 We will be leveraging several  libraries      and dependencies:

•    The  nltk  library, preferably version  3.1  or  3.2.1   

•   The  spacy  library  

•   The  pattern  library  

•   The Stanford parser  

•   Graphviz and necessary libraries for the same    

 We touched on installing  nltk  in Chapter   1    . You can install it directly by going to your 
terminal or command prompt and typing  pip install nltk , which will download and 
install it. Remember to install the library having a version preferably other than  3.2.0 , 
because there are some issues with several functions in that distribution, like  pos_tag() . 

 After downloading and installing  nltk , remember to download the corpora also 
discussed in Chapter   1    . For more on downloading and installing  nltk , see    www.nltk.
org/install.html      and    www.nltk.org/data.html     , which describe how to install the data 
dependencies. You can do the same by starting the Python interpreter and using the 
following snippet: 

   import nltk 
 # download all dependencies and corpora 
 nltk.download('all', halt_on_error=False) 
 # OR use a GUI based downloader and select dependencies 
 nltk.download() 

   To install  pattern , typing  pip install pattern  should pretty much download and 
install the library and its necessary dependencies. The link    www.clips.ua.ac.be/pages/
pattern-en      offers more information about  pattern . For  spacy , you need to first install 
the package and then separately install its dependencies, also called a  language model . 
To install  spacy , type  pip install spacy  from the terminal. Once done, download 
the English language model using the command  python -m spacy.en.download  from 
the terminal, which will download around 500 MB of data in the directory of the  spacy  
package itself. For more details, refer to    https://spacy.io/docs/#getting-started     , 
which tells you how to get started with using  spacy . We will use  spacy  for tagging and 
depicting dependency-based parsing. 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.nltk.org/install.html
http://www.nltk.org/install.html
http://www.nltk.org/data.html
http://www.clips.ua.ac.be/pages/pattern-en
http://www.clips.ua.ac.be/pages/pattern-en
https://spacy.io/docs/#getting-started
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 The Stanford Parser is a Java-based implementation for a language parser developed 
at Stanford, which helps in parsing sentences to understand their underlying structure. 
We will perform both dependency and constituency grammar–based parsing using the 
Stanford Parser and  nltk , which provides an excellent wrapper to leverage and use the 
parser from Python itself without the need to write code in Java. You can refer to the 
official installation guide at    https://github.com/nltk/nltk/wiki/Installing-Third-
Party-Software           , which describes how to download and install the Stanford Parser and 
integrate it with  nltk . Personally, I have faced several issues, especially in Windows-
based systems, so I will provide one of the best-known methods for installation of the 
Stanford Parser and its necessary dependencies. 

 To start with, make sure you first download and install the Java Development Kit 
(not just JRE, also known as Java Runtime  Environment  ) by going to    www.oracle.com/
technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp     . That is the 
official website. Java SE  8u101  /  8u102  are the latest versions at the time of writing this 
book—I have used  8u102 . After installing, make sure to set the “Path” for Java by adding it 
to the  Path  system environment variable. You can also create a   JAVA_HOME  environment 
variable   pointing to the  java.exe  file belonging to the JDK. In my experience, neither 
worked for me when running the code from Python, and I had to explicitly use the 
Python  os  library to set the environment variable, which I will show when we dive into 
the implementation details. Once Java is installed, download the official Stanford Parser 
from    http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip     , 
which seems to work quite well. You can try out a later version by going to    http://nlp.
stanford.edu/software/lex-parser.shtml#Download      and checking the Release History 
section. After downloading, unzip it to a known location in your filesystem. Once done, 
you are now ready to use the parser from  nltk , which we will be exploring soon. 

  Graphviz   is not really a necessity, and we will only be using it to view the dependency 
parse tree generated by the Stanford Parser. You can download Graphviz from its official 
website at    www.graphviz.org/Download_windows.php      and install it. Next, install  pygraphviz , 
which you can get by downloading the wheel file from    www.lfd.uci.edu/~gohlke/
pythonlibs/#pygraphviz     , based on your system architecture and python version. Then 
install it using the command  pip install pygraphviz-1.3.1-cp27-none-win_amd64.
whl  for a 64-bit system running Python  2.7.x . Once installed,  pygraphviz  should be ready 
to work. Some have reported running into additional issues, though, and you may need to 
install  pydot-ng  and  graphviz  in the same order using the following snippet in the terminal: 

   pip install pydot-ng 
 pip install graphviz 

   With this, we are done installing necessary dependencies and can start 
implementing and looking at practical examples to understand text. However, we are not 
ready just yet. We still need to go through a few basic concepts of ML before we dive into 
code and examples.  

https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://www.graphviz.org/Download_windows.php
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pygraphviz
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     Important  Machine Learning Concepts   
 We will be implementing and training some of our own taggers in the following section 
using corpora and also leverage existing pre-built taggers. There are some important 
concepts related to analytics and ML that you must know in order to better understand 
the implementations:

•     Data preparation : Usually consists of pre-processing the data 
before extracting features and training  

•    Feature extraction : The process of extracting useful features from 
raw data that are used to train machine learning models  

•    Features : Various useful attributes of the data (examples could be 
age, weight, and so on for personal data)  

•    Training data : A set of data points used to train a model  

•    Testing/validation data : A set of data points on which a pre-
trained model is tested and evaluated to see how well it performs  

•    Model : Built using a combination of data/features and a machine 
learning algorithm that could be supervised or unsupervised  

•    Accuracy : How well the model predicts something (also has other 
detailed evaluation metrics like precision, recall, and F1-score)    

 These terms should be enough to get you started. Going into further detail is beyond 
the scope of this book, but you will find a lot of resources on the web about ML, in case 
you are interested in exploring machine learning further. Later chapters cover both 
supervised and unsupervised learning with regard to textual data.  

     Parts of Speech (POS) Tagging 
   Parts of speech  (POS)   are specific lexical categories to which words are assigned based on their 
syntactic context and role. Chapter   1     covered some ground on POS and mentioned the main 
POS being noun, verb, adjective, and adverb. The process of classifying and labeling POS tags 
for words called  parts of speech tagging  or  POS tagging . POS tags are used to annotate words 
and depict their POS, which is really helpful when we need to use the same annotated text 
later in NLP-based applications because we can filter by specific parts of speech and utilize 
that information to perform specific analysis, such as narrowing down upon nouns and seeing 
which ones are the most prominent, word sense disambiguation, and grammar analysis. 

 We will be using the Penn Treebank  notation   for POS tagging. You can find more 
information about various POS tags and their notation at    www.cis.uni-muenchen.
de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf     , which contains 
detailed documentation explaining each tag with examples. The Penn Treebank project 
is part of the University of Pennsylvania. Its web site at    www.cis.upenn.edu/~treebank/      
offers more information about the project. Remember there are various tags, such as 
POS tags for parts of speech assigned to words, chunk tags, which are usually assigned 
to phrases, and some tags are secondary tags used to depict relations. Table  3-1  gives a 
detailed overview of different tags with examples, in case you do not want to go through 
the detailed documentation for Penn Treebank tags. You can use this as a reference 
anytime to understand POS tags and parse trees in a better way.  

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/Penn-Treebank-Tagset.pdf
http://www.cis.upenn.edu/~treebank/
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   Table 3-1.    Parts of Speech Tags   

 Sl No.   TAG   DESCRIPTION   EXAMPLE(S)  

 1   CC   Coordinating 
Conjunction 

  and, or  

 2   CD   Cardinal Number   five, one, 2  

 3   DT   Determiner   a, the  

 4   EX   Existential  there    there were two cars  

 5   FW   Foreign Word   d'hoevre, mais  

 6   IN   Preposition/
Subordinating 
Conjunction 

  of, in, on, that  

 7   JJ   Adjective   quick, lazy  

 8   JJR   Adjective, 
comparative 

  quicker, lazier  

 9   JJS   Adjective, 
superlative 

  quickest, laziest  

 10   LS   List item marker   2)  

 11   MD   Verb, modal   could, should  

 12   NN   Noun, singular or 
mass 

  fox, dog  

 13   NNS   Noun, plural   foxes, dogs  

 14   NNP   Noun, proper 
singular 

  John, Alice  

 15   NNPS   Noun, proper plural   Vikings, Indians, 
Germans  

 16   PDT   Predeterminer   both the cats  

 17   POS   Possessive ending   boss's  

 18   PRP   Pronoun, personal   me, you  

 19   PRP$   Pronoun, possessive   our, my, your  

 20   RB   Adverb   naturally, extremely, 
hardly  

 21   RBR   Adverb, comparative   better  

 22   RBS   Adverb, superlative   best  

 23   RP   Adverb, particle   about, up  

 24   SYM   Symbol   %, $  

 25   TO   Infinitival to   how to, what to do  

 26   UH   Interjection   oh, gosh, wow  

(continued)
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 The table shows the main POS tag set used in the Penn Treebank and is the most 
widely used POS tag set in various text analytics and NLP applications. In the following 
sections, we will look at some recommended  POS   taggers and also see how we can build 
our own tagger. 

Table 3-1. (continued)

 Sl No.   TAG   DESCRIPTION   EXAMPLE(S)  

 27   VB   Verb, base form   run, give  

 28   VBD   Verb, past tense   ran, gave  

 29   VBG   Verb, gerund/
present participle 

  running, giving  

 30   VBN   Verb, past participle   given  

 31   VBP   Verb, non-3rd 
person singular 
present 

  I think, I take  

 32   VBZ   Verb, 3rd person 
singular present 

  he thinks, he takes  

 33   WDT   Wh-determiner   which, whatever  

 34   WP   Wh-pronoun, 
personal 

  who, what  

 35   WP$   Wh-pronoun, 
possessive 

  whose  

 36   WRB   Wh-adverb   where, when  

 37   NP   Noun Phrase   the brown fox  

 38   PP   Prepositional Phrase   in between, over the 
dog  

 39   VP   Verb Phrase   was jumping  

 40   ADJP   Adjective Phrase   warm and snug  

 41   ADVP   Adverb Phrase   also  

 42   SBAR   Subordinating 
Conjunction 

  whether or not  

 43   PRT   Particle   up  

 44   INTJ   Interjection   hello  

 45   PNP   Prepositional Noun 
Phrase 

  over the dog, as of 
today  

 46   -SBJ   Sentence Subject   the fox jumped over 
the dog  

 47   -OBJ   Sentence  Object     the fox jumped over 
the dog  
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   Recommended POS Taggers 
 We will discuss some recommended ways for tagging sentences here. The first method 
is using  nltk ’s recommended  pos_tag()  function, which is actually based on the Penn 
Treebank. We will reuse our interesting sentence from Chapter   1     here. The following code 
snippet depicts how to get the POS tags of a sentence using   nltk   : 

    sentence = 'The brown fox is quick and he is jumping over the lazy dog' 

   import nltk 
 tokens = nltk.word_tokenize(sentence) 
 tagged_sent = nltk.pos_tag(tokens, tagset='universal') 
 In [13]: print tagged_sent 
 [('The', u'DET'), ('brown', u'ADJ'), ('fox', u'NOUN'), ('is', u'VERB'), 
('quick', u'ADJ'), ('and', u'CONJ'), ('he', u'PRON'), ('is', u'VERB'), 
('jumping', u'VERB'), ('over', u'ADP'), ('the', u'DET'), ('lazy', u'ADJ'), 
('dog', u'NOUN')] 

    The preceding output shows us the POS tag for each word in the sentence. You 
will find the tags quite similar to the ones shown in Table 3.1. Some of them were also 
mentioned in Chapter   1     as general/universal tags. You can also use the   pattern  module   
to get POS tags of a sentence using the following code snippet: 

   from pattern.en import tag 
 tagged_sent = tag(sentence) 
 In [15]: print tagged_sent 
  [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'is', u'VBZ'), 
(u'quick', u'JJ'), (u'and', u'CC'), (u'he', u'PRP'), (u'is', u'VBZ'), 
(u'jumping', u'VBG'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'), 
(u'dog', u'NN')] 

   That output gives us tags that purely follow the Penn Treebank format, specifying the 
form of adjective, noun, or verb in more detail.  

    Building   Your Own POS Taggers 
 In this section, we will explore some techniques by which we can build our own POS 
taggers and will be leveraging some classes provided by  nltk  for doing so. For evaluating 
the performance of our taggers, we will be using some test data from the  treebank  corpus 
in  nltk . We will also be using some training data for training some of our taggers. To start, 
we will get the necessary data for training and evaluating the taggers by reading in the 
tagged  treebank  corpus: 

    from nltk.corpus import treebank 
 data = treebank.tagged_sents() 
 train_data = data[:3500] 
 test_data = data[3500:] 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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   # get a look at what each data point looks like 
 In [17]: print train_data[0] 
  [(u'Pierre', u'NNP'), (u'Vinken', u'NNP'), (u',', u','), (u'61', u'CD'), 
(u'years', u'NNS'), (u'old', u'JJ'), (u',', u','), (u'will', u'MD'), 
(u'join', u'VB'), (u'the', u'DT'), (u'board', u'NN'), (u'as', u'IN'), (u'a', 
u'DT'), (u'nonexecutive', u'JJ'), (u'director', u'NN'), (u'Nov.', u'NNP'), 
(u'29', u'CD'), (u'.', u'.')] 

   # remember tokens is obtained after tokenizing our sentence 
 tokens = nltk.word_tokenize(sentence) 
 In [18]: print tokens 
 ['The', 'brown', 'fox', 'is', 'quick', 'and', 'he', 'is', 'jumping', 'over', 
'the', 'lazy', 'dog'] 

    We will use the test data to evaluate our taggers and see how they work on our 
sample sentence by using its tokens as input. All the taggers we will be leveraging from 
 nltk  are part of the  nltk.tag  package. Each tagger is a child class of the base  TaggerI  
class, and each tagger implements a  tag()  function that takes a list of sentence tokens 
as input and returns the same list of words with their POS tags as output. Besides 
tagging, there is an  evaluate()  function that is used to evaluate the performance of the 
tagger. This is done by tagging each input test sentence and then comparing the result 
with the actual tags of the sentence. We will be using the very same function to test the 
performance of our taggers on  test_data . 

 We will first look at the  DefaultTagger , which inherits from the 
 SequentialBackoffTagger  base class and assigns the same user input POS tag to each 
word. This may seem really naïve, but it is an excellent way to form a baseline POS tagger 
and improve upon it: 

    from nltk.tag import DefaultTagger 
 dt = DefaultTagger('NN') 

   # accuracy on test data 
 In [24]: print dt.evaluate(test_data) 
 0.145415819537 
 # tagging our sample sentence 
 In [25]: print dt.tag(tokens) 
  [('The', 'NN'), ('brown', 'NN'), ('fox', 'NN'), ('is', 'NN'), ('quick', 
'NN'), ('and', 'NN'), ('he', 'NN'), ('is', 'NN'), ('jumping', 'NN'), 
('over', 'NN'), ('the', 'NN'), ('lazy', 'NN'), ('dog', 'NN')] 

    We can see from the preceding output we have obtained 14 percent accuracy in 
correctly tagging words from the treebank test dataset—which is not that great, and the 
output tags on our sample sentence are all nouns, just as we expected because we fed the 
tagger with the same tag. 

 We will now use regular expressions and the  RegexpTagger  to see if we can build a 
better performing  tagger  : 
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    from nltk.tag import RegexpTagger 
 # define regex tag patterns 
 patterns = [ 
         (r'.*ing$', 'VBG'),               # gerunds 
         (r'.*ed$', 'VBD'),                # simple past 
         (r'.*es$', 'VBZ'),                # 3rd singular present 
         (r'.*ould$', 'MD'),               # modals 
         (r'.*\'s$', 'NN$'),               # possessive nouns 
         (r'.*s$', 'NNS'),                 # plural nouns 
         (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers 
         (r'.*', 'NN')                     # nouns (default) ... ]   
 rt = RegexpTagger(patterns) 

   # accuracy on test data 
 In [27]: print rt.evaluate(test_data) 
 0.240391131765 

   # tagging our sample sentence 

   In [28]: print rt.tag(tokens) 
  [('The', 'NN'), ('brown', 'NN'), ('fox', 'NN'), ('is', 'NNS'), ('quick', 
'NN'), ('and', 'NN'), ('he', 'NN'), ('is', 'NNS'), ('jumping', 'VBG'), 
('over', 'NN'), ('the', 'NN'), ('lazy', 'NN'), ('dog', 'NN')] 

    That output shows that the accuracy has now increased to 24 percent. But can we do 
better? We will now train some n-gram taggers.  n-grams  are contiguous sequences of  n  
items from a sequence of text or speech. These items could consist of words, phonemes, 
letters, characters, or syllables.  Shingles  are n-grams where the items only consist of 
words. We will use n-grams of size 1, 2, and 3, which are also known as  unigram ,  bigram , 
and  trigram  respectively. The   UnigramTagger   ,   BigramTagger   , and   TrigramTagger    are 
classes that inherit from the base class  NGramTagger , which itself inherits from the 
  ContextTagger  class  , which inherits from the  SequentialBackoffTagger   class  . We will 
use  train_data  as training data to train the n-gram taggers based on sentence tokens and 
their POS tags. Then we will evaluate the trained taggers on  test_data  and see the result 
on tagging our sample sentence: 

    from nltk.tag import UnigramTagger 
 from nltk.tag import BigramTagger 
 from nltk.tag import TrigramTagger 

   ut = UnigramTagger(train_data) 
 bt = BigramTagger(train_data) 
 tt = TrigramTagger(train_data) 

   # testing performance of unigram tagger 
 In [31]: print ut.evaluate(test_data) 
 0.861361215994 
 In [32]: print ut.tag(tokens) 
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 [('The', u'DT'), ('brown', None), ('fox', None), ('is', u'VBZ'), ('quick', 
u'JJ'), ('and', u'CC'), ('he', u'PRP'), ('is', u'VBZ'), ('jumping', u'VBG'), 
('over', u'IN'), ('the', u'DT'), ('lazy', None), ('dog', None)] 

   # testing performance of bigram tagger 
 In [33]: print bt.evaluate(test_data) 
 0.134669377481 
 In [34]: print bt.tag(tokens) 
  [('The', u'DT'), ('brown', None), ('fox', None), ('is', None), ('quick', 
None), ('and', None), ('he', None), ('is', None), ('jumping', None), 
('over', None), ('the', None), ('lazy', None), ('dog', None)] 

   # testing performance of trigram tagger 
 In [35]: print tt.evaluate(test_data) 
 0.0806467228192 
 In [36]: print tt.tag(tokens) 
  [('The', u'DT'), ('brown', None), ('fox', None), ('is', None), ('quick', 
None), ('and', None), ('he', None), ('is', None), ('jumping', None), 
('over', None), ('the', None), ('lazy', None), ('dog', None)] 

    The preceding output clearly shows that we obtain 86 percent accuracy on the test 
set using  UnigramTagger  tagger alone, which is really good compared to our last tagger. 
The  None  tag indicates the tagger was unable to tag that word, the reason being that it was 
unable to get a similar token in the training data. Accuracies of the  bigram   and  trigram 
models   are far less because it is not always the case that the same bigrams and trigrams it 
had observed in the training data will also be present in the same way in the testing data. 

 We will now look at an approach to combine all the taggers by creating a combined 
tagger with a list of taggers and use a backoff tagger. Essentially we would create a chain of 
taggers, and each tagger would fall back on a backoff tagger if it cannot tag the  input tokens  : 

    def combined_tagger(train_data, taggers, backoff=None): 
     for tagger in taggers: 
         backoff = tagger(train_data, backoff=backoff) 
     return backoff 

   ct = combined_tagger(train_data=train_data,  
                      taggers=[UnigramTagger, BigramTagger, TrigramTagger], 
                      backoff=rt) 

   # evaluating the new combined tagger with backoff taggers 
 In [38]: print ct.evaluate(test_data)         
 0.910155871817 
 In [39]: print ct.tag(tokens) 
  [('The', u'DT'), ('brown', 'NN'), ('fox', 'NN'), ('is', u'VBZ'), ('quick', 
u'JJ'), ('and', u'CC'), ('he', u'PRP'), ('is', u'VBZ'), ('jumping', 'VBG'), 
('over', u'IN'), ('the', u'DT'), ('lazy', 'NN'), ('dog', 'NN')] 
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    We now obtain an accuracy of 91 percent on the test data, which is excellent. Also we 
see that this new tagger is able to successfully tag all the tokens in our sample sentence 
(even though a couple of them are not correct, like  brown  should be an adjective). 

 For our final tagger, we will use a supervised classification algorithm to train our 
tagger. The   ClassifierBasedPOSTagger  class   lets us train a tagger by using a supervised 
learning algorithm in the  classifier_builder  parameter. This class is inherited from the 
 ClassifierBasedTagger  and has a  feature_detector()  function that forms the core of 
the training process. This function is used to generate various features from the training 
data, like word, previous word, tag, previous tag, case, and so on. In fact, you can even 
build your own feature detector function and pass it to the  feature_detector  parameter 
when instantiating an object of the  ClassifierBasedPOSTagger  class. The classifier we 
will be using is the   NaiveBayesClassifier      , which uses the Bayes’ theorem to build a 
probabilistic classifier, assuming the features are independent. Read more about it at 
   https://en.wikipedia.org/wiki/Naive_Bayes_classifier      if you like (since going into 
more detail about the algorithm is out of our current scope). 

 The following code snippet shows a  classification-based approach   to building and 
evaluating a POS tagger: 

    from nltk.classify import NaiveBayesClassifier 
 from nltk.tag.sequential import ClassifierBasedPOSTagger 

   nbt = ClassifierBasedPOSTagger(train=train_data, 
                                 classifier_builder=NaiveBayesClassifier.

train) 

   # evaluate tagger on test data and sample sentence 
 In [41]: print nbt.evaluate(test_data) 
 0.930680607997 
 In [42]: print nbt.tag(tokens)     
  [('The', u'DT'), ('brown', u'JJ'), ('fox', u'NN'), ('is', u'VBZ'), 
('quick', u'JJ'), ('and', u'CC'), ('he', u'PRP'), ('is', u'VBZ'), 
('jumping', u'VBG'), ('over', u'IN'), ('the', u'DT'), ('lazy', u'JJ'), 
('dog', u'VBG')] 

    Using the preceding  tagger  , we get an accuracy of 93 percent on our test data—the 
highest out of all our taggers. Also if you observe the output tags for our sample sentence, 
you will see they are correct and make perfect sense. This gives us an idea of how 
powerful and effective classifier-based POS taggers can be. Feel free to use a different 
classifier, like   MaxentClassifier      , and compare the performance with this tagger. There 
are also several other ways to build and use POS taggers using  nltk  and other packages. 
Even though it is not really necessary, and this should be enough to cover your POS 
tagging needs, you can go ahead and explore other methods to compare with these 
methods and satisfy your curiosity.   

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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     Shallow Parsing 
  Shallow parsing , also known as  light parsing  or  chunking , is a technique of analyzing the 
structure of a sentence to break it down into its smallest constituents (which are tokens 
such as words) and group them together into higher-level phrases. In shallow parsing, 
there is more focus on identifying these phrases or chunks rather than diving into further 
details of the internal syntax and relations inside each chunk, like we see in grammar-
based parse trees obtained from deep parsing. The main objective of shallow parsing is to 
obtain semantically meaningful phrases and observe relations among them. 

 Refer to the “Language Syntax and Structure” section from Chapter   1     to refresh your 
memory regarding how words and phrases give structure to a sentence consisting of a 
bunch of words. A shallow parsed tree is also depicted there for our sample sentence. 
We will look at various ways of performing shallow parsing by starting with some 
recommended out-of-the-box shallow parsers. We will also implement some of our own 
shallow parsers using techniques like regular expressions, chunking, chinking, and tag-
based training. 

   Recommended Shallow Parsers 
 We will be leveraging the  pattern  package here to create a shallow parser to extract 
meaningful chunks out of sentences. The following  code   snippet shows how to perform 
shallow parsing on our sample sentence: 

    sentence = 'The brown fox is quick and he is jumping over the lazy dog' 

   from pattern.en import parsetree 
 tree = parsetree(sentence) 

   # print the shallow parsed sentence tree 
 In [5]: print tree 
    ...:  
 [Sentence('The/DT/B-NP/O brown/JJ/I-NP/O fox/NN/I-NP/O is/VBZ/B-VP/O quick/
JJ/B-ADJP/O and/CC/O/O he/PRP/B-NP/O is/VBZ/B-VP/O jumping/VBG/I-VP/O over/
IN/B-PP/B-PNP the/DT/B-NP/I-PNP lazy/JJ/I-NP/I-PNP dog/NN/I-NP/I-PNP')] 

    The preceding output is the raw shallow-parsed  sentence tree   for our sample 
sentence. Many of the tags will be quite familiar if you compare them to the earlier  POS 
tags   table. You will notice some new notations with  I ,  O , and  B  prefixes, the popular IOB 
notation used in chunking, that represent Inside, Outside, and Beginning. The  B-  prefix 
before a tag indicates it is the beginning of a chunk, and  I-  prefix indicates that it is inside 
a chunk. The  O  tag indicates that the token does not belong to any chunk. The  B-  tag is 
always used when there are subsequent tags following it of the same type without the 
presence of  O  tags between them. 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 The following  snippet   shows how to get chunks in an easier-to-understand format: 

    # print all chunks 
 In [6]: for sentence_tree in tree: 
    ...:     print sentence_tree.chunks 
 [Chunk('The brown fox/NP'), Chunk('is/VP'), Chunk('quick/ADJP'), Chunk('he/
NP'), Chunk('is jumping/VP'), Chunk('over/PP'), Chunk('the lazy dog/NP')] 

   # Depict each phrase and its internal constituents 
 In [9]: for sentence_tree in tree: 
    ...:     for chunk in sentence_tree.chunks: 
    ...:         print chunk.type, '->', [(word.string, word.type)  
    ...:                                  for word in chunk.words] 
 NP -> [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN')] 
 VP -> [(u'is', u'VBZ')] 
 ADJP -> [(u'quick', u'JJ')] 
 NP -> [(u'he', u'PRP')] 
 VP -> [(u'is', u'VBZ'), (u'jumping', u'VBG')] 
 PP -> [(u'over', u'IN')] 
 NP -> [(u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')] 

    The preceding outputs show an easier-to-understand result obtained from shallow 
parsing of our sample sentence, where each phrase and its constituents are clearly 
 shown  . 

 We can create some  generic functions   to parse and visualize shallow parsed 
sentence trees in a better way and also reuse them to parse any sentence in general. The 
following  code   shows how: 

    from pattern.en import parsetree, Chunk 
 from nltk.tree import Tree 

   # create a shallow parsed sentence tree 
 def create_sentence_tree(sentence, lemmatize=False): 
     sentence_tree = parsetree(sentence,  
                               relations=True,  
                                lemmata=lemmatize) # if you want to lemmatize 

the tokens 
     return sentence_tree[0] 

   # get various constituents of the parse tree     
 def get_sentence_tree_constituents(sentence_tree): 
     return sentence_tree.constituents() 

   # process the shallow parsed tree into an easy to understand format     
 def process_sentence_tree(sentence_tree): 

       tree_constituents = get_sentence_tree_constituents(sentence_tree) 
     processed_tree = [ 
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                         (item.type, 
                          [ 
                              (w.string, w.type) 
                              for w in item.words 
                          ] 
                         ) 
                         if type(item) == Chunk 
                         else ('-', 
                               [ 
                                    (item.string, item.type) 
                               ] 
                              )    
                              for item in tree_constituents 
                     ] 

       return processed_tree 

   # print the sentence tree using nltk's Tree syntax     
 def print_sentence_tree(sentence_tree): 

       processed_tree = process_sentence_tree(sentence_tree) 
     processed_tree = [ 
                         Tree( item[0], 
                              [ 
                                  Tree(x[1], [x[0]]) 
                                  for x in item[1] 
                              ] 
                             ) 
                             for item in processed_tree 
                      ] 

       tree = Tree('S', processed_tree ) 
     print tree 
 # visualize the sentence tree using nltk's Tree syntax     
 def visualize_sentence_tree(sentence_tree): 

       processed_tree = process_sentence_tree(sentence_tree) 
     processed_tree = [ 
                         Tree( item[0], 
                              [ 
                                  Tree(x[1], [x[0]]) 
                                  for x in item[1] 
                              ] 
                             ) 
                             for item in processed_tree 
                      ] 
     tree = Tree('S', processed_tree )    
     tree.draw() 
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    We can see the preceding functions in action on our sample sentence in the 
following  code snippet   when we execute them: 

    # raw shallow parsed tree 
 In [11]: t = create_sentence_tree(sentence) 
     ...: print t 
 Sentence('The/DT/B-NP/O/NP-SBJ-1 brown/JJ/I-NP/O/NP-SBJ-1 fox/NN/I-NP/O/NP-
SBJ-1 is/VBZ/B-VP/O/VP-1 quick/JJ/B-ADJP/O/O and/CC/O/O/O he/PRP/B-NP/O/NP-
SBJ-2 is/VBZ/B-VP/O/VP-2 jumping/VBG/I-VP/O/VP-2 over/IN/B-PP/B-PNP/O the/
DT/B-NP/I-PNP/O lazy/JJ/I-NP/I-PNP/O dog/NN/I-NP/I-PNP/O') 

   # processed shallow parsed tree 
 In [16]: pt = process_sentence_tree(t) 
     ...: pt 
 Out[16]:  
 [(u'NP', [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN')]), 
  (u'VP', [(u'is', u'VBZ')]), 
  (u'ADJP', [(u'quick', u'JJ')]), 
  ('-', [(u'and', u'CC')]), 
  (u'NP', [(u'he', u'PRP')]), 
  (u'VP', [(u'is', u'VBZ'), (u'jumping', u'VBG')]), 
  (u'PP', [(u'over', u'IN')]), 
  (u'NP', [(u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')])] 

   # print shallow parsed tree in an easy to understand format using nltk's 
Tree syntax 
 In [17]: print_sentence_tree(t) 
 (S 
   (NP (DT The) (JJ brown) (NN fox)) 
   (VP (VBZ is)) 
   (ADJP (JJ quick)) 
   (- (CC and)) 
   (NP (PRP he)) 
   (VP (VBZ is) (VBG jumping)) 
   (PP (IN over)) 
   (NP (DT the) (JJ lazy) (NN dog))) 

   # visualize the shallow parsed tree 
 In [18]: visualize_sentence_tree(t) 

  Figure 3-2.     Visual representation   of a shallow parsed tree for our sample sentence       
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     The preceding outputs show some ways of creating, representing, and visualizing 
shallow parse trees from sentences. The visual representation shown in Figure  3-2  is very 
similar to the tree shown in Chapter   1     for the same sentence. The lowest level indicates 
the values of the actual tokens; the next level indicates the  POS tags   for each token; 
and the next higher level indicates the chunk phrasal tags. Go ahead and try out these 
functions on some other sentences and compare their results. In the following sections 
we will implement some of our own shallow parsers.  

   Building Your Own Shallow Parsers 
 We will use several techniques like regular expressions and tagging-based learners to build 
our own shallow parsers. As with POS tagging, we will use some training data to train our 
parsers if needed and evaluate all our parsers on some test data and also on our sample 
sentence. The   treebank  corpus   is available in  nltk  with  chunk annotations  . We will load it 
first and prepare our training and testing datasets using the following  code snippet  : 

    from nltk.corpus import treebank_chunk 
 data = treebank_chunk.chunked_sents() 
 train_data = data[:4000] 
 test_data = data[4000:] 

   # view what a sample data point looks like 
 In [21]: print train_data[7] 
  (S 
   (NP A/DT Lorillard/NNP spokewoman/NN) 
   said/VBD 
   ,/, 
   ``/`` 
   (NP This/DT) 
   is/VBZ 
   (NP an/DT old/JJ story/NN) 
   ./.) 

    From the preceding output, you can see that our data points are sentences that are 
already annotated with phrase and  POS tags   metadata that will be useful in training 
shallow parsers. We will start with using regular expressions for shallow parsing using 
concepts of chunking and chinking. Using the process of   chunking   , we can use and 
specify specific patterns to identify what we would want to chunk or segment in a 
sentence, like phrases based on specific metadata like POS tags for each token.  Chinking  
is the reverse of chunking, where we specify which specific tokens we do not want to be 
a part of any chunk and then form the necessary chunks excluding these tokens. Let us 
consider a simple sentence and use regular expressions by leveraging the  RegexpParser  
class to create shallow parsers to illustrate both chunking and chinking for  noun phrases  : 

    simple_sentence = 'the quick fox jumped over the lazy dog' 

   from nltk.chunk import RegexpParser 
 from pattern.en import tag 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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   # get POS tagged sentence 
 tagged_simple_sent = tag(simple_sentence) 
 In [83]: print tagged_simple_sent 
 [(u'the', u'DT'), (u'quick', u'JJ'), (u'fox', u'NN'), (u'jumped', u'VBD'), 
(u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'), (u'dog', u'NN')] 

   # illustrate NP chunking based on explicit chunk patterns 
 chunk_grammar = """ 
 NP: {<DT>?<JJ>*<NN.*>} 
 """ 
 rc = RegexpParser(chunk_grammar) 
 c = rc.parse(tagged_simple_sent) 

   # view NP chunked sentence using chunking 
 In [86]: print c 
 (S 
   (NP the/DT quick/JJ fox/NN) 
   jumped/VBD 
   over/IN 
   (NP the/DT lazy/JJ dog/NN)) 

   # illustrate NP chunking based on explicit chink patterns 
 chink_grammar = """ 
 NP: {<.*>+} # chunk everything as NP 
 }<VBD|IN>+{ 
 """ 
 rc = RegexpParser(chink_grammar) 
 c = rc.parse(tagged_simple_sent) 

   # view NP chunked sentence using chinking 
 In [89]: print c 
 (S 
   (NP the/DT quick/JJ fox/NN) 
   jumped/VBD 
   over/IN 
   (NP the/DT lazy/JJ dog/NN)) 

    Thus we can see from the preceding outputs that we obtained similar results on a 
toy NP shallow parser using chunking as well as chinking. Remember that  chunks  are 
sequences of tokens that are included in a collective group (chunk), and  chinks  are tokens 
or  sequences   of tokens that are excluded from chunks. 

 We will now train a more generic regular expression-based shallow parser and 
test its performance on our test   treebank  data  . Internally, several steps are executed 
to perform this parsing. The  Tree  structures used to represent parsed sentences in 
 nltk  get converted to  ChunkString  objects. We create an object of  RegexpParser  using 
defined chunking and chinking rules. Objects of classes   ChunkRule    and  ChinkRule  
help in creating the complete shallow-parsed tree with the necessary chunks based on 
specified patterns. The following code snippet represents a shallow parser using regular 
 expression-based patterns  : 
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    # create POS tagged tokens for sample sentence 
 tagged_sentence = tag(sentence) 
 In [90]: print tagged_sentence 
 [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'is', u'VBZ'), 
(u'quick', u'JJ'), (u'and', u'CC'), (u'he', u'PRP'), (u'is', u'VBZ'), 
(u'jumping', u'VBG'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'), 
(u'dog', u'NN')] 

   # create the shallow parser 
 grammar = """ 
 NP: {<DT>?<JJ>?<NN.*>}   
 ADJP: {<JJ>} 
 ADVP: {<RB.*>} 
 PP: {<IN>}       
 VP: {<MD>?<VB.*>+} 

   """ 
 rc = RegexpParser(grammar) 
 c = rc.parse(tagged_sentence) 

   # view shallow parsed sample sentence 
 In [99]: print c 
 (S 
   (NP The/DT brown/JJ fox/NN) 
   (VP is/VBZ) 
   quick/JJ 
   and/CC 
   he/PRP 
   (VP is/VBZ jumping/VBG) 
   (PP over/IN) 
   (NP the/DT lazy/JJ dog/NN)) 

   # evaluate parser performance on test data 
 In [100]: print rc.evaluate(test_data) 
 ChunkParse score: 
     IOB Accuracy:  54.5% 
     Precision:     25.0% 
     Recall:        52.5% 
     F-Measure:     33.9% 

    From the preceding output, we can see that the parse tree for our sample sentence 
is very similar to the one we obtained from the out-of-the-box parser in the previous 
section. Also, the accuracy on the overall test data is 54.5 percent, which is quite decent 
for a start. For more details on what each performance metric signifies, refer to the 
“ Evaluating Classification Models  ” section in Chapter   4    . 

 Remember when I said annotated tagged metadata for text is useful in many ways? 
We will use the chunked and tagged   treebank  training data   now to build a shallow 
parser. We will leverage two chunking utility functions,  tree2conlltags , to get triples of 
word, tag, and chunk tags for each token, and  conlltags2tree  to generate a parse tree 

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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from these token triples. We will be using these functions to train our parser later. First 
let us see how these two functions work. Remember, the chunk tags use the  IOB format   
mentioned earlier: 

    from nltk.chunk.util import tree2conlltags, conlltags2tree 

   # look at a sample training tagged sentence 
 In [104]: train_sent = train_data[7] 
      ...: print train_sent 
 (S 
   (NP A/DT Lorillard/NNP spokewoman/NN) 
   said/VBD 
   ,/, 
   ``/`` 
   (NP This/DT) 
   is/VBZ 
   (NP an/DT old/JJ story/NN) 
   ./.) 

   # get the (word, POS tag, Chunk tag) triples for each token 
 In [106]: wtc = tree2conlltags(train_sent) 
      ...: wtc 
 Out[106]:  
 [(u'A', u'DT', u'B-NP'), 
  (u'Lorillard', u'NNP', u'I-NP'), 
  (u'spokewoman', u'NN', u'I-NP'), 
  (u'said', u'VBD', u'O'), 
  (u',', u',', u'O'), 
  (u'``', u'``', u'O'), 
  (u'This', u'DT', u'B-NP'), 
  (u'is', u'VBZ', u'O'), 
  (u'an', u'DT', u'B-NP'), 
  (u'old', u'JJ', u'I-NP'), 
  (u'story', u'NN', u'I-NP'), 
  (u'.', u'.', u'O')] 

   # get shallow parsed tree back from the WTC triples 
 In [107]: tree = conlltags2tree(wtc) 
      ...: print tree 
 (S 
   (NP A/DT Lorillard/NNP spokewoman/NN) 
   said/VBD 
   ,/, 
   ``/`` 
   (NP This/DT) 
   is/VBZ 
   (NP an/DT old/JJ story/NN)    
   ./.) 
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    Now that we know how these functions work, we will define a function   conll_tag_
chunks()    to extract  POS   and chunk tags from sentences with chunked annotations and 
also reuse our  combined_taggers()  function from POS tagging to train multiple taggers 
with backoff taggers, as shown in the following code snippet: 

    def conll_tag_chunks(chunk_sents): 
   tagged_sents = [tree2conlltags(tree) for tree in chunk_sents] 
   return [[(t, c) for (w, t, c) in sent] for sent in tagged_sents] 

   def combined_tagger(train_data, taggers, backoff=None): 
     for tagger in taggers: 
         backoff = tagger(train_data, backoff=backoff) 
     return backoff 

    We will now define a class   NGramTagChunker    that will take in tagged sentences 
as training input, get their (word, POS tag, Chunk tag) WTC triples, and train a 
 BigramTagger  with a  UnigramTagger  as the backoff tagger. We will also define a   parse()  
function   to perform shallow parsing on new sentences: 

    from nltk.tag import UnigramTagger, BigramTagger 
 from nltk.chunk import ChunkParserI 

   class NGramTagChunker(ChunkParserI): 

     def __init__(self, train_sentences,  
                tagger_classes=[UnigramTagger, BigramTagger]): 
     train_sent_tags = conll_tag_chunks(train_sentences) 
     self.chunk_tagger = combined_tagger(train_sent_tags, tagger_classes) 

     def parse(self, tagged_sentence): 
     if not tagged_sentence:  
         return None 
     pos_tags = [tag for word, tag in tagged_sentence] 
     chunk_pos_tags = self.chunk_tagger.tag(pos_tags) 
     chunk_tags = [chunk_tag for (pos_tag, chunk_tag) in chunk_pos_tags] 
     wpc_tags = [(word, pos_tag, chunk_tag) for ((word, pos_tag), chunk_tag) 
                      in zip(tagged_sentence, chunk_tags)] 
     return conlltags2tree(wpc_tags) 

    In the preceding class, the constructor   __init__()  function      is used to train the 
shallow parser using n-gram tagging based on the WTC triples for each sentence. 
Internally, it takes a list of training sentences as input, which is annotated with chunked 
parse tree metadata. It uses the  conll_tag_chunks()  function that we defined earlier to 
get a list of WTC triples for each chunked parse tree. Finally, it trains a  Bigram  tagger with 
a  Unigram  tagger as a backoff tagger using these triples and stores the training model in 
 self.chunk_tagger . Remember you can parse other n-gram-based taggers for training by 
using the   tagger_classes  parameter  . Once trained, the  parse()  function can be used to 
evaluate the tagger on test data and also shallow parse new sentences. Internally, it takes 
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a POS tagged sentence as input, separates out the POS tags from the sentence, and uses 
our trained  self.chunk_tagger  to get the IOB chunk tags for the sentence. This is then 
combined with the original sentence tokens, and we use the   conlltags2tree()  function   
to get our final shallow parsed tree. 

 The following snippet shows our parser in action: 

    # train the shallow parser 
 ntc = NGramTagChunker(train_data) 

   # test parser performance on test data 
 In [114]: print ntc.evaluate(test_data) 
 ChunkParse score: 
     IOB Accuracy:  99.6% 
     Precision:     98.4% 
     Recall:       100.0% 
     F-Measure:     99.2% 

   # parse our sample sentence 
 In [115]: tree = ntc.parse(tagged_sentence) 
      ...: print tree 
 (S 
   (NP The/DT brown/JJ fox/NN) 
   is/VBZ 
   (NP quick/JJ) 
   and/CC 
   (NP he/PRP) 
   is/VBZ 
   jumping/VBG 
   over/IN 
   (NP the/DT lazy/JJ dog/NN)) 

    That output shows that our  parser performance   on the  treebank  test set data has an 
overall accuracy of 99.6 percent—which is really excellent! 

 Let us train and evaluate our parser on the   conll2000  corpus  , which contains 
excerpts from the  Wall Street Journal  and is a much larger corpus. We will train our parser 
on the first 7,500 sentences and test its performance on the remaining 3,448 sentences. 
The following snippet shows this: 

    from nltk.corpus import conll2000 
 wsj_data = conll2000.chunked_sents() 
 train_wsj_data = wsj_data[:7500] 
 test_wsj_data = wsj_data[7500:] 
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   # look at a sample sentence in the corpus 
 In [125]: print train_wsj_data[10] 
 (S 
   (NP He/PRP) 
   (VP reckons/VBZ) 
   (NP the/DT current/JJ account/NN deficit/NN) 
   (VP will/MD narrow/VB) 
   (PP to/TO) 
   (NP only/RB #/# 1.8/CD billion/CD) 
   (PP in/IN) 
   (NP September/NNP) 
   ./.) 

   # train the shallow parser 
 tc = NGramTagChunker(train_wsj_data) 

   # test performance on the test data 
 In [126]: print tc.evaluate(test_wsj_data) 
 ChunkParse score: 
     IOB Accuracy:  66.8% 
     Precision:     77.7% 
     Recall:        45.4% 
     F-Measure:     57.3% 

    The preceding output shows that our parser achieved an overall accuracy of around 
67 percent, because this corpus is much larger than the   treebank  corpus  . You can also 
look at implementing shallow parsers using other techniques, like supervised classifiers, 
by leveraging the  ClassifierBasedTagger  class.   

     Dependency-based Parsing 
 In dependency-based parsing, we try to use dependency-based grammars to analyze 
and infer both structure and semantic dependencies and relationships between tokens 
in a sentence. (Refer to the “Dependency Grammars” subsection under “Grammar” 
in the “ Language Syntax and Structure  ” section from Chapter   1     if you need to refresh 
your memory.) Dependency-based grammars help us in annotating sentences with 
dependency tags that are one-to-one mappings between tokens signifying dependencies 
between them. A dependency grammar-based parse tree representation is a labelled 
and directed tree or  graph  , to be more precise. The nodes are always the lexical tokens, 
and the labelled edges show dependency relationships between the heads and their 
dependents. The labels on the edges indicate the grammatical role of the dependent. If 
you remember our sample sentence  The brown fox is quick and he is jumping over the 
lazy dog , Figure  3-3  from Chapter   1     is one of the many ways of depicting the dependency 
relationships.  

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 In this section we will look at some ways in which we can further understand the 
syntax and semantics between  textual tokens   using dependency grammar-based parsing. 

   Recommended Dependency Parsers 
 We will be using a couple of libraries to generate dependency-based parse trees and test 
them on our sample sentence. To start with, we will use  spacy  to analyze our sample 
sentence and generate each token and its dependencies. Figure  3-3  was generated using 
  spacy's  output   and putting some beautiful CSS to make the dependencies look clear and 
easy to understand. 

 The following  code   snippet show how to get dependencies for each token in our 
sample sentence: 

    sentence = 'The brown fox is quick and he is jumping over the lazy dog' 

   # load dependencies 
 from spacy.en import English 
 parser = English() 
 parsed_sent = parser(unicode(sentence)) 

   # generate dependency parser output 
 In [131]: dependency_pattern = '{left}<---{word}[{w_type}]---
>{right}\n--------' 
      ...: for token in parsed_sent: 
      ...:     print dependency_pattern.format(word=token.orth_,  
      ...:                                   w_type=token.dep_, 
      ...:                                   left=[t.orth_  
      ...:                                             for t  
      ...:                                             in token.lefts], 

  Figure 3-3.    Dependency grammar annotated graph for our sample sentence       
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      ...:                                   right=[t.orth_  
      ...:                                              for t  
      ...:                                              in token.rights]) 
 []<---The[det]--->[]    
 -------- 
 []<---brown[amod]--->[] 
 -------- 
 [u'The', u'brown']<---fox[nsubj]--->[] 
 -------- 
 [u'fox']<---is[ROOT]--->[u'quick', u'and', u'jumping'] 
 -------- 
 []<---quick[acomp]--->[] 
 -------- 
 []<---and[cc]--->[] 
 -------- 
 []<---he[nsubj]--->[] 
 -------- 
 []<---is[aux]--->[] 
 -------- 
 [u'he', u'is']<---jumping[conj]--->[u'over'] 
 -------- 
 []<---over[prep]--->[u'dog'] 
 -------- 
 []<---the[det]--->[] 
 -------- 
 []<---lazy[amod]--->[] 
 -------- 
 [u'the', u'lazy']<---dog[pobj]--->[] 
 -------- 

    The preceding output gives us each token and its dependency type, the left arrow 
points to the dependencies on its left, and the right arrow points to the dependencies 
on its right. You will find a lot of similarity if you match each line of the output with the 
previous figure showing the dependency tree. You can quickly look back at Chapter   1     in 
case you have forgotten what each of the dependency tags indicates. 

 Next, we will be using   nltk    and the Stanford Parser to generate the dependency tree 
for our sample sentence using the following code snippet: 

    # set java path 
 import os 
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe' 
 os.environ['JAVAHOME'] = java_path 

   # perform dependency parsing 
 from nltk.parse.stanford import StanfordDependencyParser 
 sdp = StanfordDependencyParser(path_to_jar='E:/stanford/stanford-parser-
full-2015-04-20/stanford-parser.jar', 
                                path_to_models_jar='E:/stanford/stanford-
parser-full-2015-04-20/stanford-parser-3.5.2-models.jar')     

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 result = list(sdp.raw_parse(sentence))   

   # generate annotated dependency parse tree 
 In [134]: result[0] 
 Out[134]: 

        # generate dependency triples 
 Out[136]:  
 [((u'quick', u'JJ'), u'nsubj', (u'fox', u'NN')), 
  ((u'fox', u'NN'), u'det', (u'The', u'DT')), 
  ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')), 
  ((u'quick', u'JJ'), u'cop', (u'is', u'VBZ')), 
  ((u'quick', u'JJ'), u'cc', (u'and', u'CC')), 
  ((u'quick', u'JJ'), u'conj', (u'jumping', u'VBG')), 
  ((u'jumping', u'VBG'), u'nsubj', (u'he', u'PRP')), 
  ((u'jumping', u'VBG'), u'aux', (u'is', u'VBZ')), 
  ((u'jumping', u'VBG'), u'nmod', (u'dog', u'NN')), 
  ((u'dog', u'NN'), u'case', (u'over', u'IN')), 
  ((u'dog', u'NN'), u'det', (u'the', u'DT')), 
  ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))] 

  Figure 3-4.    Annotated dependency parse tree for our  sample sentence         
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   # print simple dependency parse tree 
 In [137]: dep_tree = [parse.tree() for parse in result][0] 
      ...: print dep_tree 
 (quick (fox The brown) is and (jumping he is (dog over the lazy))) 

   # visualize simple dependency parse tree 
 In [140]: dep_tree.draw() 
 Out [140]: 

     The preceding  outputs   shows how easily we can generate dependency parse trees 
for sentences and analyze and understand relationships and dependencies amongst 
the tokens. The Stanford Parser is quite stable and robust and integrates well with  nltk . 
A side note would be that you will need  graphviz  installed to generate the annotated 
dependency tree shown in Figure  3-4 .  

   Building Your Own Dependency Parsers 
 It is not very easy to build your own dependency grammar–based parsers from scratch 
because you need sufficient data, and just checking based on grammar production 
rules would not always scale well. The following example snippet shows how to build 
your own dependency parser. To do this, we first leverage  nltk’s    DependencyGrammar  
class   to generate production rules from a user input grammar. Once this is done, we use 
  ProjectiveDependencyParser   , a projective, production  rule-based dependency   parser to 
perform the dependency based parsing: 

    import nltk 
 tokens = nltk.word_tokenize(sentence) 

   dependency_rules = """ 
 'fox' -> 'The' | 'brown' 
 'quick' -> 'fox' | 'is' | 'and' | 'jumping' 
 'jumping' -> 'he' | 'is' | 'dog' 
 'dog' -> 'over' | 'the' | 'lazy' 
 """ 
 dependency_grammar = nltk.grammar.DependencyGrammar.fromstring(dependency_
rules) 

  Figure 3-5.    Simple dependency parse tree for our sample sentence       
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   # print production rules 
 In [143]: print dependency_grammar 
 Dependency grammar with 12 productions 
   'fox' -> 'The' 
   'fox' -> 'brown' 
   'quick' -> 'fox' 
   'quick' -> 'is' 
   'quick' -> 'and' 
   'quick' -> 'jumping' 
   'jumping' -> 'he' 
   'jumping' -> 'is' 
   'jumping' -> 'dog' 
   'dog' -> 'over' 
   'dog' -> 'the' 
   'dog' -> 'lazy' 

   # build dependency parser 
 dp = nltk.ProjectiveDependencyParser(dependency_grammar) 

   # parse our sample sentence 
 res = [item for item in dp.parse(tokens)] 
 tree = res[0] 

   # print dependency parse tree 
 In [145]: print tree 
  (quick (fox The brown) is and (jumping he is (dog over the lazy))) 

    You can see that the preceding dependency parse tree is the same one as the one 
generated by the Stanford Parser. In fact, you can use  tree.draw()  to visualize the tree 
and compare it with the previous tree.  Scaling   these is always a challenge, and a lot of 
work is being done in large projects to generate these systems for rule-based dependency 
grammars. Some examples include the  Lexical Functional Grammar (LFG)   Pargram 
project and the Lexicalized Tree Adjoining Grammar XTAG project.   

      Constituency-based Parsing   
 Constituent-based grammars are used to analyze and determine the constituents 
a sentence is usually composed of. Besides determining the constituents, another 
important objective is to find out the internal structure of these constituents and see how 
they link to each other. There are usually several rules for different types of phrases based 
on the type of components they can contain, and we can use them to build parse trees. 
Refer to the “Constituency Grammars” subsection under “Grammar” in the “Language 
Syntax and Structure” section from Chapter   1     if you need to refresh your memory and 
look at some examples of sample parse trees. 

 In general, a constituency-based grammar helps specify how we can break a 
sentence into various constituents. Once that is done, it further helps in breaking down 
those constituents into further subdivisions, and this process repeats till we reach the 
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level of individual tokens or words. These grammars have various production rules and 
usually a context-free grammar (CFG) or phrase structured grammar is sufficient for this. 

 Once we have a set of grammar rules, a constituency parser can be built that will 
process input sentences according to these rules and help in building a parse tree. The 
parser is what brings the grammar to life and can be said to be a procedural interpretation 
of the grammar. There are various types of parsing algorithms, including the following:

•    Recursive Descent parsing  

•   Shift Reduce parsing  

•   Chart parsing  

•   Bottom-up parsing  

•   Top-down parsing  

•   PCFG parsing    

 Going through these in detail would be impossible given the constraints of this book. 
However,  nltk  provides some excellent information on them in its official book, available 
at    http://www.nltk.org/book/ch08.html     . I will describe some of these parsers briefly 
and look at PCFG parsing in detail when we implement our own parser later.  Recursive 
Descent parsing  usually follows a top-down parsing approach and it reads in tokens 
from the input sentence and tries to match them with the terminals from the grammar 
production rules. It keeps looking ahead by one token and advances the input read 
pointer each time it gets a match. 

  Shift Reduce parsing  follows a bottom-up parsing approach where it finds sequences 
of tokens (words/phrases) that correspond to the righthand side of grammar productions 
and then replaces it with the lefthand side for that rule. This process continues until the 
whole sentence is reduced to give us a parse tree. 

  Chart parsing  uses dynamic  programming  , which stores intermediate results and 
reuses them when needed to get significant efficiency gains. In this case, chart parsers 
store partial solutions and look them up when needed to get to the complete solution. 

   Recommended Constituency Parsers 
 We will be using  nltk  and the  StanfordParser  here to generate parse trees. We will need 
to set the Java path before we run our code to parse our sample sentence. We will print 
and also visualize the parse tree, which will be quite similar to some of the parse trees 
from Chapter   1    , based on constituency grammars. 

 The following code snippet illustrates: 

    # set java path 
 import os 
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe' 
 os.environ['JAVAHOME'] = java_path 

   sentence = 'The brown fox is quick and he is jumping over the lazy dog' 

   from nltk.parse.stanford import StanfordParser 

http://www.nltk.org/book/ch08.html
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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   # create parser object 
 scp = StanfordParser(path_to_jar='E:/stanford/stanford-parser-
full-2015-04-20/stanford-parser.jar', path_to_models_jar='E:/stanford/
stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar') 

   # get parse tree                    
 result = list(scp.raw_parse(sentence)) 

   # print the constituency parse tree 
 In [150]: print result[0] 
      ...:  
 (ROOT 
   (NP 
     (S 
       (S 
         (NP (DT The) (JJ brown) (NN fox)) 
         (VP (VBZ is) (ADJP (JJ quick)))) 
       (CC and) 
       (S 
         (NP (PRP he)) 
         (VP 
           (VBZ is) 
           (VP 
             (VBG jumping) 
             (PP (IN over) (NP (DT the) (JJ lazy) (NN dog))))))))) 

   # visualize constituency parse tree 
 In [151]: result[0].draw() 
 Out [151]: 

    The preceding output shows how to build constituency grammar–based parse trees 
for sentences. Notice the parse tree depicted in Figure  3-6  being significantly different 
from dependency parse trees and matching the constituency parse trees illustrated in 
Chapter   1    . Note the nested and hierarchical constituents shown in the tree above which 
are some of the typical characteristics of constituency parse trees.   

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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   Building Your Own Constituency Parsers 
 There are various ways of building your own constituency parsers, including creating 
your own CFG production rules and then using a parser to use that grammar. To build 
your own CFG, you can use the  nltk.CFG.fromstring  function to feed in your own 
production rules and then use parsers like  ChartParser  or  RecursiveDescentParser , 
both of which belong to the  nltk  package. Feel free to build some toy grammars and play 
around with these parsers. 

 We will look at a way to build a constituency parser that scales well and is efficient. 
The problem with regular CFG parsers, like chart and Recursive Descent parsers, is that 
they can get easily overwhelmed by the sheer number of total possible parses when 
parsing sentences and can become extremely slow. This is where weighted grammars 
like PCFG (Probabilistic Context Free Grammar) and probabilistic parsers like the Viterbi 
parser prove to be more effective. A PCFG is a context-free grammar that associates a 
probability with each of its production rules. The probability of a parse tree generated 
from a PCFG is simply the production of the individual probabilities of the productions 
used to generate it. 

  Figure 3-6.     Constituency   parse tree for our sample sentence       
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 We will use  nltk’s ViterbiParser  here to train a parser on the  treebank  corpus 
that provides annotated parse  trees   for each sentence in the corpus. This parser is a 
bottom-up PCFG parser that uses dynamic programming to find the most likely parse at 
each step. We will start our process of building our own parser by loading the necessary 
training data and dependencies: 

    import nltk 
 from nltk.grammar import Nonterminal 
 from nltk.corpus import treebank 

   # get training data 
 training_set = treebank.parsed_sents() 

   # view a sample training sentence 
 In [161]: print training_set[1] 
 (S 
   (NP-SBJ (NNP Mr.) (NNP Vinken)) 
   (VP 
     (VBZ is) 
     (NP-PRD 
       (NP (NN chairman)) 
       (PP 
         (IN of) 
         (NP 
           (NP (NNP Elsevier) (NNP N.V.)) 
           (, ,) 
           (NP (DT the) (NNP Dutch) (VBG publishing) (NN group)))))) 
   (. .)) 

    Now we will build the production rules for our grammar by extracting the 
productions from the tagged and annotated training sentences and adding them: 

    # extract the productions for all annotated training sentences 
 treebank_productions = list( 
                         set(production  
                             for sent in training_set   
                             for production in sent.productions() 
                         ) 
                     ) 

   # view sample productions 
 In [166]: treebank_productions[0:10] 
 Out[166]:  
 [VBZ -> 'cites', 
  VBD -> 'spurned', 
  PRN -> , ADVP-TMP ,, 
  NNP -> 'ACCOUNT', 
  JJ -> '36-day', 
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  NP-SBJ-2 -> NN, 
  JJ -> 'unpublished', 
  NP-SBJ-1 -> NNP, 
  JJ -> 'elusive', 
  NNS -> 'Lids'] 

   # add productions for each word, POS tag 
 for word, tag in treebank.tagged_words(): 
         t = nltk.Tree.fromstring("("+ tag + " " + word  +")") 
         for production in t.productions(): 
                 treebank_productions.append(production) 

   # build the PCFG based grammar   
 treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'),  
                                          treebank_productions) 

    Now that we have our necessary grammar with production rules, we will create 
our parser using the following  snippet   by training it on the grammar and then trying to 
evaluate it on our sample sentence: 

    # build the parser 
 viterbi_parser = nltk.ViterbiParser(treebank_grammar) 

   # get sample sentence tokens 
 tokens = nltk.word_tokenize(sentence) 

   # get parse tree 
 In [170]: result = list(viterbi_parser.parse(tokens)) 
 Traceback (most recent call last): 
   File "<ipython-input-170-c2cdab3cd56c>", line 1, in <module> 
     result = list(viterbi_parser.parse(tokens)) 
   File "C:\Anaconda2\lib\site-packages\nltk\parse\viterbi.py", line 112, in 
parse 
     self._grammar.check_coverage(tokens) 
 ValueError: Grammar does not cover some of the input words: u"'brown', 
'fox', 'lazy', 'dog'". 

    Unfortunately, we get an error when we try to parse our sample sentence tokens 
with our newly built parser. The reason is quite clear from the error: Some of the words 
in our sample sentence are not covered by the  treebank -based grammar because they 
are not present in our  treebank  corpus. Now, because this constituency-based grammar 
uses POS tags and phrase tags to build the tree based on the training data, we will add the 
token and POS tags for our sample sentence in our grammar and rebuild the parser: 

    # get tokens and their POS tags 
 from pattern.en import tag as pos_tagger 
 tagged_sent = pos_tagger(sentence) 
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   # check the tokens and their POS tags 
 In [172]: print tagged_sent 
      ...:  
 [(u'The', u'DT'), (u'brown', u'JJ'), (u'fox', u'NN'), (u'is', u'VBZ'), 
(u'quick', u'JJ'), (u'and', u'CC'), (u'he', u'PRP'), (u'is', u'VBZ'), 
(u'jumping', u'VBG'), (u'over', u'IN'), (u'the', u'DT'), (u'lazy', u'JJ'), 
(u'dog', u'NN')] 

   # extend productions for sample sentence tokens 
 for word, tag in tagged_sent: 
     t = nltk.Tree.fromstring("("+ tag + " " + word  +")") 
     for production in t.productions(): 
                 treebank_productions.append(production) 

   # rebuild grammar 
 treebank_grammar = nltk.grammar.induce_pcfg(Nonterminal('S'),  
                                          treebank_productions) 
 # rebuild parser 
 viterbi_parser = nltk.ViterbiParser(tbank_grammar) 

   # get parse tree for sample sentence 
 result = list(viterbi_parser.parse(tokens)) 

   # print the constituency parse tree 
 In [178]: print result[0] 
 (S 
   (NP-SBJ-163 (DT The) (JJ brown) (NN fox)) 
   (VP 
     (VBZ is) 
     (PRT (JJ quick)) 
     (S 
       (CC and) 
       (NP-SBJ (PRP he)) 
       (VP 
         (VBZ is) 
         (PP-1 
           (VBG jumping) 
           (NP (IN over) (DT the) (JJ lazy) (NN dog))))))) (p=2.02604e-48) 

   # visualize the constituency parse tree 
 In [179]: result[0].draw() 
 Out [179]: 
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     We are now able to successfully generate the parse tree for our sample sentence. 
You can see the visual representation of the tree in Figure  3-7 . Remember that this is a 
probabilistic PCFG  parser  , and you can see the overall probability of this tree mentioned 
in the output earlier when we printed our parse tree. The notations of the tags followed 
here are all based on the Treebank annotations we discussed earlier. Thus this shows how 
to build our own constituency-based parser.    

     Summary 
 Congratulations on reaching the end of this chapter. We have covered a major chunk 
of concepts, techniques, and implementations with regard to text processing, syntactic 
analysis, and understanding. A lot of the concepts from Chapter   1     should seem more 
relevant and clearer now that we have actually implemented them on real examples. 

 The content covered in this chapter is two-fold. We looked at concepts related to 
text processing and normalization. You now know the importance of processing and 
normalizing text, and as we move on to future chapters, you will see why it becomes 
more and more important to have well-processed and standardized textual data. We 
have covered various concepts and implemented techniques for text tokenization and 
normalization. These include cleaning and correcting text entities like spelling and 
contractions. We also built our own spelling corrector and contraction expander in the 
same context. We found out a way to leverage WordNet and correct words with repeated 
characters. Finally, we looked at various stemming and lemmatization concepts and 
techniques. The next part of our chapter was dedicated to analyzing and understanding 
text syntax and structure, where we revisited concepts from Chapter   1     including POS 
tagging, shallow parsing, dependency parsing, and constituency parsing. 

 You now know how to use taggers and parsers on real-world textual data and ways 
to implement your own taggers and parsers. We will be diving more into analyzing and 
deriving insights from text in the future chapters using various ML techniques, including 
classification, clustering, and summarization.     

  Figure 3-7.    Constituency parse tree for our sample sentence based on Treebank 
annotations       
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CHAPTER 4

Text Classification

Learning to process and understand text is one of the first steps on the journey to 
getting meaningful insights from textual data. Though it is important to understand 
how language is structured and specific text syntax patterns, that alone is not sufficient 
to be of much use to businesses and organizations who want to derive useful patterns 
and insights and get maximum use out of their vast volumes of text data. Knowledge of 
language processing coupled with concepts from analytics and machine learning (ML) 
help in building systems that can leverage text data and help solve real-world practical 
problems which benefit businesses.

Various aspects of ML include supervised learning, unsupervised learning, 
reinforcement learning, and more recently deep learning. Each of these concepts involves 
several techniques and algorithms that can be leveraged on text data and to build self-
learning systems that do not need too much manual supervision. An ML model is a 
combination of data and algorithms—you got a taste of that in Chapter 3 was we built our 
own parsers and taggers. The benefit of ML is that once a model is trained, we can directly 
use it on new and previously unseen data to start seeing useful insights and desired results.

One of the most relevant and challenging problems is text classification or 
categorization, which involves trying to organize text documents into various categories 
based on inherent properties or attributes of each text document. This is used in 
various domains, including email spam identification and news categorization. The 
concept may seem simple, and if you have a small number of documents, you can look 
at each document and gain some idea about what it is trying to indicate. Based on 
this knowledge, you can group similar documents into categories or classes. It’s more 
challenging when the number of text documents to be classified increases to several 
hundred thousands or millions. This is where techniques like feature extraction and 
supervised or unsupervised ML come in handy. Document classification is a generic 
problem not limited to text alone but also can be extended for other items like music, 
images, video, and other media.

To formalize our problem more clearly, we will have a given set of classes or 
categories and several text documents. Remember that documents are basically sentences 
or paragraphs of text. This forms a corpus. Our task would be to determine which class 
or classes each document belongs to. This entire process involves several steps which 
we will be discussing in detail later in this chapter. Briefly, for a supervised classification 
problem, we need to have some labelled data that we could use for training a text 
classification model. This data would essentially be curated documents that are already 
assigned to some specific class or category beforehand. Using this, we would essentially 
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extract features and attributes from each document and make our model learn these 
attributes corresponding to each particular document and its class/category by feeding 
it to a supervised ML algorithm. Of course, the data would need to be pre-processed and 
normalized before building the model. Once done, we would follow the same process of 
normalization and feature extraction and then feed it to the model to predict the class or 
category for new documents. However, for an unsupervised classification problem, we 
would essentially not have any pre-labelled training documents. We would use techniques 
like clustering and document similarity measures to cluster documents together based on 
their inherent properties and assign labels to them.

In this chapter, we will discuss the concept of text classification and how it can be 
formulated as a supervised ML problem. We will also talk about the various forms of 
classification and what they indicate. A clear depiction for the essential steps necessary 
to complete a text classification workflow will also be presented, and we will be covering 
some of the essential steps from the same workflow, which have not been discussed 
before, including feature extraction, classifiers, model evaluation, and finally we will put 
them all together in building a text classification system on real-world data.

What Is Text Classification?
Before we define text classification, we need to understand the scope of textual data and 
what we really mean by classification. The textual data involved here can be anything 
ranging from a phrase, sentence, or a complete document with paragraphs of text, which 
can be obtained from corpora, blogs, or anywhere from the Web. Text classification is 
also often called document classification just to cover all forms of textual content under 
the word document. The word document could be defined as some form of concrete 
representation of thoughts or events that could be in the form of writing, recorded 
speech, drawings, or presentations. I use the term document here to represent textual 
data such as sentences or paragraphs belonging to the English language.

Text classification is also often called text categorization, although I explicitly use 
the word classification here for two reasons. First, it depicts the same essence as text 
categorization, where we want to classify documents. The second reason is to also show 
that we would be using classification or a supervised ML approach here to classify or 
categorize the text. Text categorization can be done in many ways, as mentioned. We 
will be focusing explicitly on a supervised approach using classification. The process of 
classification is not restricted to text alone. It is used quite frequently in other domains 
including science, healthcare, weather forecasting, and technology.

Text or document classification is the process of assigning text documents into one 
or more classes or categories, assuming that we have a predefined set of classes. 
Documents here are textual documents, and each document can contain a sentence or 
even a paragraph of words. A text classification system would successfully be able to 
classify each document to its correct class(es) based on inherent properties of the 
document. Mathematically, we can define it like this: given some description and 
attributes d for a document D, where d DÎ , and we have a set of predefined classes or 

categories, C c c c cn= ¼{ }1 2 3, , , , . The actual document D can have many inherent 

properties and attributes that lead it to being an entity in a high-dimensional space. Using 
a subset of that space with a limit set of descriptions and features depicted by d, we 
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should be able to successfully assign the original document D to its correct class C
x
 using 

a text classification system T. This can be represented by T D Cx: ® .

We will talk more about the text classification system in detail later in the chapter. 
Figure 4-1 shows a high-level conceptual representation of the text classification process.

In Figure 4-1, we can see there are several documents representing products which 
can be assigned to various categories of food, mobile phones, and movies. Initially, 
these documents are all present together, just as a text corpus has various documents in 
it. Once it goes through a text classification system, represented as a black box here, we 
can see that each document is assigned to one specific class or category we had defined 
previously. Here the documents are just represented by their names, but in real data, they 
can contain much more, including descriptions of each product, specific attributes such 
as movie genre, product specifications, constituents, and many more properties that can 
be used as features in the text classification system to make document identification and 
classification easier.

There are various types of text classification. This chapter focuses on two major 
types, which are based on the type of content that makes up the documents:

•	 Content-based classification

•	 Request-based classification

Both types are more like different philosophies or ideals behind approaches to 
classifying text documents rather than specific technical algorithms or processes. Content-
based classification is the type of text classification where priorities or weights are given 
to specific subjects or topics in the text content that would help determine the class of the 
document. A conceptual example would be that a book with more than 30 percent of its 
content about food preparations can be classified under cooking/recipes. Request-based 
classification is influenced by user requests and is targeted towards specific user groups 
and audiences. This type of classification is governed by specific policies and ideals.

Figure 4-1. Conceptual overview of text classification
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Automated Text Classification
We now have an idea of the definition and scope of text classification. We have also 
formally defined text classification both conceptually and mathematically, where we 
talked about a “text classification system” being able to classify text documents to their 
respective categories or classes. Consider several humans doing the task of going through 
each document and classifying it. They would then be a part of the text classification 
system we are talking about. However, that would not scale very well once there were 
millions of text documents to be classified quickly. To make the process more efficient 
and faster, we can consider automating the task of text classification, which brings us to 
automated text classification.

To automate text classification, we can make use of several ML techniques and 
concepts. There are mainly two types of ML techniques that are relevant to solving this 
problem:

•	 Supervised machine learning

•	 Unsupervised machine learning

Besides these two techniques, there are also other families of learning algorithms, 
such as reinforcement learning and semi-supervised learning. Let us look at both 
supervised and unsupervised learning algorithms in more detail, from both an ML 
perspective how it can be leveraged in classifying text documents.

Unsupervised learning refers to specific ML techniques or algorithms that do not 
require any pre-labelled training data samples to build a model. We usually have a 
collection of data points, which could be text or numeric, depending on the problem we 
are trying to solve. We extract features from each of the data points using a process known 
as feature extraction and then feed the feature set for each data point into our algorithm. 
We are trying to extract meaningful patterns from the data, such as trying to group 
together similar data points using techniques like clustering or summarizing documents 
based on topic models. This is extremely useful in text document categorization and is 
also called document clustering, where we cluster documents into groups purely based 
on their features, similarity, and attributes, without training any model on previously 
labelled data. Later chapters further discuss unsupervised learning, covering topic 
models, document summarization, similarity analysis, and clustering.

Supervised learning refers to specific ML techniques or algorithms that are trained 
on pre-labelled data samples known as training data. Features or attributes are extracted 
from this data using feature extraction, and for each data point we will have its own 
feature set and corresponding class/label. The algorithm learns various patterns for each 
type of class from the training data. Once this process is complete, we have a trained 
model. This model can then be used to predict the class for future test data samples once 
we feed their features to the model. Thus the machine has actually learned, based on 
previous training data samples, how to predict the class for new unseen data samples.

There are two major types of supervised learning algorithms:

•	 Classification: The process of supervised learning is referred to 
as classification when the outcomes to be predicted are distinct 
categories, thus the outcome variable is a categorical variable in 
this case. Examples would be news categories or movie genres.
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•	 Regression: Supervised learning algorithms are known as 
regression algorithms when the outcome we want to predict is a 
continuous numeric variable. Examples would be house prices or 
people’s weights.

We will be specifically focusing on classification for our problem (hence the name of 
the chapter—we are trying to classify or categorize text documents into distinct classes or 
categories. We will be following a supervised learning approach in our implementations 
later on.

Now we are ready to define the process of automated or ML-based text classification 
mathematically. Say we have a training set of documents labelled with their corresponding 
class or category. This can be represented by TS, which is a set of paired documents and 
labels, TS d c d c d cn n= ( ) ( ) ¼ ( ){ }1 1 2 2, , ,, , ,  where d

1
, d

2
, …, d

n
 is the list of text documents, 

and their corresponding labels are c
1
, c

2
, …, c

n
 such that c C c c cnx Î = ¼{ }1 2, , ,  where c

x
 

denotes the class label for document x and C denotes the set of all possible distinct classes, 
any of which can be the class or classes for each document. Assuming we have our training 
set, we can define a supervised learning algorithm F such that when it is trained on our 
training dataset TS, we build a classification model or classifier γ such that we can say 
that F TS( ) = g . Thus the supervised learning algorithm F takes the input set of (document, 

class) pairs TS and gives us the trained classifier γ, which is our model. This process is 
known as the training process.

This model can then take a new, previously unseen document ND and predict its 
class c

ND
 such that c CNDÎ . This process is known as the prediction process and can be 

represented by g :TD cND® . Thus we can see that there are two main processes in the 

supervised text classification process:

•	 Training

•	 Prediction

An important point to remember is that some manually labelled training data 
is necessary for supervised text classification, so even though we are talking about 
automated text classification, to kick start the process we need some manual efforts. Of 
course, the benefits of this are manifold because once we have a trained classifier, we can 
keep using it to predict and classify new documents with minimal efforts and manual 
supervision.

There are various learning methods or algorithms that we will be discussing in a 
future section. These learning algorithms are not specific to text data but are generic ML 
algorithms that can be applied toward various types of data after due pre-processing 
and feature extraction. I will touch upon a couple of supervised ML algorithms and use 
them in solving a real-world text classification problem. These algorithms are usually 
trained on the training data set and often an optional validation set such that the model 
that is trained does not overfit to the training data, which basically means it would then 
not be able to generalize well and predict properly for new instances of text documents. 
Often the model is tuned on several of its internal parameters based on the learning 
algorithm and by evaluating various performance metrics like accuracy on the validation 
set or by using cross-validation where we split the training dataset itself into training and 
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validation sets by random sampling. This comprises the training process, the outcome 
of which yields a fully trained model that is ready to predict. In the prediction stage, 
we usually have new data points from the test dataset. We can use them to feed into 
the model after normalization and feature extraction and see how well the model is 
performing by evaluating its prediction performance.

There are a few types of text classification based on the number of classes to predict 
and the nature of predictions. These types of classification are based on the dataset, the 
number of classes/categories pertaining to that dataset, and the number of classes that 
can be predicted on any data point:

•	 Binary classification is when the total number of distinct classes 
or categories is two in number and any prediction can contain 
either one of those classes.

•	 Multi-class classification, also known as multinomial 
classification, refers to a problem where the total number of 
classes is more than two, and each prediction gives one class 
or category that can belong to any of those classes. This is an 
extension of the binary classification problem where the total 
number of classes is more than two.

•	 Multi-label classification refers to problems where each prediction 
can yield more than one outcome/predicted class for any data 
point.

Text Classification Blueprint
Now that we know the basic scope of automated text classification, this section will look 
at a blueprint for a complete workflow of building an automated text classifier system. 
This will consist of a series of steps that must be followed in both the training and testing 
phases mentioned in the earlier section. For building a text classification system, we 
need to make sure we have our source of data and retrieve that data so that we can start 
feeding it to our system. The following main steps outline a typical workflow for a text 
classification system, assuming we have our dataset already downloaded and ready to  
be used:

 1. Prepare train and test datasets

 2. Text normalization

 3. Feature extraction

 4. Model training

 5. Model prediction and evaluation

 6. Model deployment

These steps are carried out in that order for building a text classifier. Figure 4-2 shows 
a detailed workflow for a text classification system with the main processes highlighted in 
training and prediction.
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Notice that there are two main boxes for Training and Prediction, which are the 
two main processes involved in building a text classifier. In general, the dataset we have 
is usually divided into two or three splits called the training, validation (optional), and 
testing datasets, respectively. You can see an overlap of the Text Normalization and Feature 
Extraction modules in Figure 4-2 for both processes, indicating that no matter which 
document we want to classify and predict its class, it must go through the same series 
of transformations in both the training and prediction process. Each document is first 
pre-processed and normalized, and then specific features pertaining to the document are 
extracted. These processes are always uniform in both the training and prediction processes 
to make sure that our classification model performs consistently in its predictions.

In the Training process, each document has its own corresponding class/category 
that was manually labeled or curated beforehand. These training text documents are 
processed and normalized in the Text Normalization module, giving us clean and 
standardized training text documents. They are then passed to the Feature Extraction 
module where different types of feature-extraction techniques are used to extract 
meaningful features from the processed text documents. We will cover some popular 
feature extraction techniques in a future section. These features are usually numeric 
arrays or vectors because standard ML algorithms work on numeric vectors. Once we 
have our features, we select a supervised ML algorithm and train our model.

Training the model involves feeding the feature vectors for the documents and 
the corresponding labels such that the algorithm is able to learn various patterns 
corresponding to each class/category and can reuse this learned knowledge to predict 
classes for future new documents. Often an optional validation dataset is used to evaluate 
the performance of the classification algorithm to make sure it generalizes well with 
the data during training. A combination of these features and the ML algorithm yields a 
Classification Model, which is the end stage of the Training process. Often this model is 
tuned using various model parameters with a process called hyperparameter tuning to 
build a better performing optimal model.

Figure 4-2. Blueprint for building an automated text classification system
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The Prediction process shown in the figure involves trying to either predict classes 
for new documents or evaluating how predictions are working on testing data. The test 
dataset documents go through the same process of normalization and feature extraction, 
and the test document features are passed to the trained Classification Model, which 
predicts the possible class for each of the documents based on previously learned 
patterns. If you have the true class labels for the documents that were manually labelled, 
you can evaluate the prediction performance of the model by comparing the true labels 
and the predicted labels using various metrics like accuracy. This would give an idea of 
how well the model performs its predictions for new documents. 

Once we have a stable and working model, the last step is usually deploying the 
model, which normally involves saving the model and its necessary dependencies 
and deploying it as a service or as a running program that predicts categories for new 
documents as a batch job, or based on serving user requests if accessed as a web service. 
There are various ways to deploy ML models, and this usually depends on how you want 
to access it later on.

We will now discuss some of the main modules from the preceding blueprint and 
implement these modules so that we can integrate them all together to build a real-world 
text classifier.

Text Normalization
Chapter 3 covered text processing and normalization in detail—refer it to see the various 
methods and techniques available. In this section, we will define a normalizer module to 
normalize text documents and will be using it later when we build our classifier. Although 
various techniques are available, we will keep it fairly simple and straightforward here so 
that is it not too hard to follow our implementations step by step. We will implement and 
use the following normalization techniques in our module:

•	 Expanding contractions

•	 Text standardization through lemmatization

•	 Removing special characters and symbols

•	 Removing stopwords

We are not focusing too much on correcting spellings and other advanced 
techniques, but you can integrate the functions from the previous chapter 
implementation if you are interested. Our normalization module is implemented and 
available in normalization.py, available in the code files for this chapter. I will also be 
explaining each function here for your convenience. We will first start with loading the 
necessary dependencies. Remember that you will need our custom-defined contractions 
mapping file from Chapter 3, named contractions.py, for expanding contractions.

The following snippet shows the necessary imports and dependencies:

from contractions import CONTRACTION_MAP
import re
import nltk
import string
from nltk.stem import WordNetLemmatizer

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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stopword_list = nltk.corpus.stopwords.words('english')
wnl = WordNetLemmatizer()

We load all the English stopwords, the contraction mappings in CONTRACTION_MAP, 
and an instance of WordNetLemmatizer for carrying our lemmatization. We now define 
a function to tokenize text into tokens that will be used by our other normalization 
functions. The following function tokenizes and removes any extraneous whitespace from 
the tokens:

def tokenize_text(text):
    tokens = nltk.word_tokenize(text)
    tokens = [token.strip() for token in tokens]
    return tokens

Now we define a function for expanding contractions. This function is similar to our 
implementation from Chapter 3—it takes in a body of text and returns the same with its 
contractions expanded if there is a match. The following snippet helps us achieve this:

def expand_contractions(text, contraction_mapping):

     contractions_pattern = re.compile('({})'.format('|'.join(contraction_
mapping.keys())),

                                      flags=re.IGNORECASE|re.DOTALL)
    def expand_match(contraction):
        match = contraction.group(0)
        first_char = match[0]
        expanded_contraction = contraction_mapping.get(match)\
                                if contraction_mapping.get(match)\
                                else contraction_mapping.get(match.lower())                      
        expanded_contraction = first_char+expanded_contraction[1:]
        return expanded_contraction

    expanded_text = contractions_pattern.sub(expand_match, text)
    expanded_text = re.sub("'", "", expanded_text)
    return expanded_text

Now that we have a function for expanding contractions, we implement a function 
for standardizing our text data by bringing word tokens to their base or root form using 
lemmatization. The following functions will help us in achieving that:

from pattern.en import tag
from nltk.corpus import wordnet as wn

# Annotate text tokens with POS tags
def pos_tag_text(text):
    # convert Penn treebank tag to wordnet tag

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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    def penn_to_wn_tags(pos_tag):
        if pos_tag.startswith('J'):
            return wn.ADJ
        elif pos_tag.startswith('V'):
            return wn.VERB
        elif pos_tag.startswith('N'):
            return wn.NOUN
        elif pos_tag.startswith('R'):
            return wn.ADV
        else:
            return None

    tagged_text = tag(text)
    tagged_lower_text = [(word.lower(), penn_to_wn_tags(pos_tag))
                         for word, pos_tag in
                         tagged_text]
    return tagged_lower_text

# lemmatize text based on POS tags    
def lemmatize_text(text):

    pos_tagged_text = pos_tag_text(text)
    lemmatized_tokens = [wnl.lemmatize(word, pos_tag) if pos_tag
                         else word                    
                         for word, pos_tag in pos_tagged_text]
    lemmatized_text = ' '.join(lemmatized_tokens)
    return lemmatized_text

The preceding snippet depicts two functions implemented for lemmatization. The 
main function is lemmatize_text, which takes in a body of text data and lemmatizes 
each word of the text based on its POS tag if it is present and then returns the lemmatized 
text back to the user. For this, we need to annotate the text tokens with their POS tags. 
We use the tag function from pattern to annotate POS tags for each token and then 
further convert the POS tags from the Penn treebank syntax to WordNet syntax, since 
the WordNetLemmatizer checks for POS tag annotations based on WordNet formats. We 
convert each word token to lowercase, annotate it with its correct, converted WordNet 
POS tag, and return these annotated tokens, which are finally fed into the lemmatize_
text function.

The following function helps us remove special symbols and characters:

def remove_special_characters(text):
    tokens = tokenize_text(text)
    pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
     filtered_tokens = filter(None, [pattern.sub('', token) for token in 

tokens])
    filtered_text = ' '.join(filtered_tokens)
    return filtered_text
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We remove special characters by tokenizing the text just so we can remove some of 
the tokens that are actually contractions, but we may have failed to remove them in our 
first step, like "s" or "re". We will do this when we remove stopwords. However, you can 
also remove special characters without tokenizing the text. We remove all special symbols 
defined in string.punctuation from our text using regular expression matches. The 
following function helps us remove stopwords from our text data:

def remove_stopwords(text):
    tokens = tokenize_text(text)
     filtered_tokens = [token for token in tokens if token not in  

stopword_list]
    filtered_text = ' '.join(filtered_tokens)    
    return filtered_text

Now that we have all our functions defined, we can build our text normalization 
pipeline by chaining all these functions one after another. The following function 
implements this, where it takes in a corpus of text documents and normalizes them and 
returns a normalized corpus of text documents:

def normalize_corpus(corpus, tokenize=False):

    normalized_corpus = []    
    for text in corpus:
        text = expand_contractions(text, CONTRACTION_MAP)
        text = lemmatize_text(text)
        text = remove_special_characters(text)
        text = remove_stopwords(text)
        normalized_corpus.append(text)
        if tokenize:
            text = tokenize_text(text)
            normalized_corpus.append(text)

    return normalized_corpus

That brings us to the end of our discussion and implementation of necessary 
functions for our text normalization module. We will now look at concepts and practical 
implementation for feature extraction.

Feature Extraction
There are various feature-extraction techniques that can be applied on text data, but 
before we jump into then, let us consider what we mean by features. Why do we need 
them, and how they are useful? In a dataset, there are typically many data points. Usually 
the rows of the dataset and the columns are various features or properties of the dataset, 
with specific values for each row or observation. In ML terminology, features are unique, 
measurable attributes or properties for each observation or data point in a dataset. 
Features are usually numeric in nature and can be absolute numeric values or categorical 
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features that can be encoded as binary features for each category in the list using a 
process called one-hot encoding. The process of extracting and selecting features is both 
art and science, and this process is called feature extraction or feature engineering.

Usually extracted features are fed into ML algorithms for learning patterns that can 
be applied on future new data points for getting insights. These algorithms usually expect 
features in the form of numeric vectors because each algorithm is at heart a mathematical 
operation of optimization and minimizing loss and error when it tries to learn patterns 
from data points and observations. So, with textual data there is the added challenge of 
figuring out how to transform textual data and extract numeric features from it.

Now we will look at some feature-extraction concepts and techniques specially 
aligned towards text data.

The Vector Space Model is a concept and model that is very useful in case we are 
dealing with textual data and is very popular in information retrieval and document 
ranking. The Vector Space Model, also known as the Term Vector Model, is defined as a 
mathematical and algebraic model for transforming and representing text documents as 
numeric vectors of specific terms that form the vector dimensions. Mathematically this 
can be defines as follows. Say we have a document D in a document vector space VS. The 
number of dimensions or columns for each document will be the total number of distinct 
terms or words for all documents in the vector space. So, the vector space can be denoted

VS W W Wn= ¼{ }1 2, , ,

where there are n distinct words across all documents. Now we can represent document 
D in this vector space as

D w w wD D Dn= ¼{ }1 2, , ,

where w
Dn

 denotes the weight for word n in document D. This weight is a numeric value 
and can represent anything, ranging from the frequency of that word in the document, to 
the average frequency of occurrence, or even to the TF-IDF weight (discussed shortly).

We will be talking about and implementing the following feature-extraction 
techniques:

•	 Bag of Words model

•	 TF-IDF model

•	 Advanced word vectorization models

An important thing to remember for feature extraction is that once we build a 
feature extractor using some transformations and mathematical operations, we need to 
make sure we reuse the same process when extracting features from new documents to 
be predicted, and not rebuild the whole algorithm again based on the new documents. 
We will be depicting this also with an example for each technique. Do note that for 
implementations based on practical examples in this section, we will be making use 
of the nltk, gensim, and scikit-learn libraries, which you can install using pip as 
discussed earlier (in case you do not have them installed already).
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The implementations are divided into two major modules. The file feature_
extractors.py contains the generic functions we will be using later on when building the 
classifier, and we have used the same functions in the feature_extraction_demo.py file to 
show how each technique works with some practical examples. You can access them from 
the code files, and as always I will be presenting the same code in this chapter for ease of 
understanding. We will be using the following documents depicted in the CORPUS variable 
to extract features from and building some of the vectorization models. To illustrate how 
feature extraction will work for a new document (as a part of test dataset), we will also use 
a separate document as shown in the variable new_doc in the following snippet:

CORPUS = [
'the sky is blue',
'sky is blue and sky is beautiful',
'the beautiful sky is so blue',
'i love blue cheese'
]

new_doc = ['loving this blue sky today']

Bag of Words Model
The Bag of Words model is perhaps one of the simplest yet most powerful techniques 
to extract features from text documents. The essence of this model is to convert text 
documents into vectors such that each document is converted into a vector that 
represents the frequency of all the distinct words that are present in the document 
vector space for that specific document. Thus, considering our sample vector from the 
previous mathematical notation for D, the weight for each word is equal to its frequency 
of occurrence in that document.

An interesting thing is that we can even create the same model for individual word 
occurrences as well as occurrences for n-grams, which would make it an n-gram Bag of 
Words model such that frequency of distinct n-grams in each document would also be 
considered.

The following code snippet gives us a function that implements a Bag of Words–
based feature-extraction model that also accepts an ngram_range parameter to take into 
account n-grams as features:

from sklearn.feature_extraction.text import CountVectorizer

def bow_extractor(corpus, ngram_range=(1,1)):

    vectorizer = CountVectorizer(min_df=1, ngram_range=ngram_range)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features

The preceding function uses the CountVectorizer class. You can access its detailed 
API (Application Programming Interface) documentation at http://scikit-learn.org/
stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
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html#sklearn.feature_extraction.text.CountVectorizer, which has a whole bunch 
of various parameters for more fine-tuning based on the type of features you want to 
extract. We use its default configuration, which is enough for most scenarios, with min_df 
set to 1 indicating taking terms having a minimum frequency of 1 in the overall document 
vector space. You can set ngram_range to various parameters like (1, 3) would build 
feature vectors consisting of all unigrams, bigrams, and trigrams. The following snippet 
shows the function in action on our sample corpora of four training documents and one 
test document:

# build bow vectorizer and get features
In [371]: bow_vectorizer, bow_features = bow_extractor(CORPUS)
     ...: features = bow_features.todense()
     ...: print features
[[0 0 1 0 1 0 1 0 1]
 [1 1 1 0 2 0 2 0 0]
 [0 1 1 0 1 0 1 1 1]
 [0 0 1 1 0 1 0 0 0]]

# extract features from new document using built vectorizer
In [373]: new_doc_features = bow_vectorizer.transform(new_doc)
     ...: new_doc_features = new_doc_features.todense()
     ...: print new_doc_features
[[0 0 1 0 0 0 1 0 0]]

# print the feature names
In [374]: feature_names = bow_vectorizer.get_feature_names()
     ...: print feature_names
[u'and', u'beautiful', u'blue', u'cheese', u'is', u'love', u'sky', u'so', 
u'the']

That output shows how each text document has been converted to vectors. Each row 
represents one document from our corpus, and we do the same for both our corpora. The 
vectorizer is built using documents from CORPUS. We extract features from it and also use 
this built vectorizer to extract features from a completely new document. Each column in 
a vector represents the words depicted in feature_names, and the value is the frequency 
of that word in the document represented by the vector. It may be hard to comprehend 
this at first glance, so I have prepared the following function, which I hope you can use to 
understand the feature vectors better:

import pandas as pd

def display_features(features, feature_names):
    df = pd.DataFrame(data=features,
                      columns=feature_names)
    print df

Now you can feed the feature names and vectors to this function and see the feature 
matrix in a much easier-to-understand structure, shown here: 

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer
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In [379]: display_features(features, feature_names)
   and  beautiful  blue  cheese  is  love  sky  so  the
0    0          0     1       0   1     0    1   0    1
1    1          1     1       0   2     0    2   0    0
2    0          1     1       0   1     0    1   1    1
3    0          0     1       1   0     1    0   0    0

In [380]: display_features(new_doc_features, feature_names)
   and  beautiful  blue  cheese  is  love  sky  so  the
0    0          0     1       0   0     0    1   0    0

That makes things much clearer, right? Consider the second document of CORPUS, 
represented in the preceding in row 1 of the first table. You can see that 'sky is blue 
and sky is beautiful' has value 2 for the feature sky, 1 for beautiful, and so on. 
Values of 0 are assigned for words not present in the document. Note that for the new 
document new_doc, there is no feature for the words today, this, or loving in the 
sentence. The reason for this is what I mentioned before—that the feature-extraction 
process, model, and vocabulary are always based on the training data and will never 
change or get influenced on newer documents, which it will predict later as a part of 
testing or otherwise. You might have guessed that this is because a model is always 
trained on some training data and is never influenced by newer documents unless we 
plan on rebuilding that model. Hence, the features in this model are always limited based 
on the document vector space of the training corpus.

You have now started to get an idea of how to extract meaningful vector-based 
features from text data, which previously seemed impossible. Try out the preceding 
functions by setting ngram_range to (1, 3) and see the outputs.

TF-IDF Model
The Bag of Words model is good, but the vectors are completely based on absolute 
frequencies of word occurrences. This has some potential problems where words that 
may tend to occur a lot across all documents in the corpus will have higher frequencies 
and will tend to overshadow other words that may not occur as frequently but may 
be more interesting and effective as features to identify specific categories for the 
documents. This is where TF-IDF comes into the picture. TF-IDF stands for Term 
Frequency-Inverse Document Frequency, a combination of two metrics: term frequency 
and inverse document frequency. This technique was originally developed as a metric for 
ranking functions for showing search engine results based on user queries and has come 
to be a part of information retrieval and text feature extraction now.

Let us formally define TF-IDF now and look at the mathematical representations for 
it before diving into its implementation. Mathematically, TF-IDF is the product of two 
metrics and can be represented as tfidf tf idf= ´ , where term frequency (tf) and 

inverse-document frequency (idf) represent the two metrics.
Term frequency denoted by tf is what we had computed in the Bag of Words model. 

Term frequency in any document vector is denoted by the raw frequency value of that 
term in a particular document. Mathematically it can be represented as tf w D fwD

,( ) = , 

where fwD
 denotes frequency for word w in document D, which becomes the term 
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frequency (tf). There are various other representations and computations for term 
frequency, such as converting frequency to a binary feature where 1 means the term has 
occurred in the document and 0 means it has not. Sometimes you can also normalize the 
absolute raw frequency using logarithms or averaging the frequency. We will be using the 
raw frequency in our computations.

Inverse document frequency denoted by idf is the inverse of the document frequency 
for each term. It is computed by dividing the total number of documents in our corpus 
by the document frequency for each term and then applying logarithmic scaling on the 
result. In our implementation we will be adding 1 to the document frequency for each 
term just to indicate that we also have one more document in our corpus that essentially 
has every term in the vocabulary. This is to prevent potential division-by-zero errors 
and smoothen the inverse document frequencies. We also add 1 to the result of our idf 
computation to avoid ignoring terms completely that might have zero idf. Mathematically 
our implementation for idf can be represented by

idf t
C

df t
( ) = +

+ ( )
1

1
log

where idf(t) represents the idf for the term t, C represents the count of the total number of 
documents in our corpus, and df(t) represents the frequency of the number of documents 
in which the term t is present.

Thus the term frequency-inverse document frequency can be computed by 
multiplying the above two measures together. The final TF-IDF metric we will be using is 
a normalized version of the tfidf matrix we get from the product of tf and idf. We will 
normalize the tfidf matrix by dividing it with the L2 norm of the matrix, also known as the 
Euclidean norm, which is the square root of the sum of the square of each term’s tfidf 

weight. Mathematically we can represent the final tfidf feature vector as tfidf
tfidf

tfidf
= , 

where tfidf  represents the Euclidean L2 norm for the tfidf matrix.

The following code snippet shows an implementation of getting the tfidf-based 
feature vectors, considering we have our Bag of Words feature vectors we obtained in the 
previous section:

from sklearn.feature_extraction.text import TfidfTransformer

def tfidf_transformer(bow_matrix):

    transformer = TfidfTransformer(norm='l2',
                                   smooth_idf=True,
                                   use_idf=True)
    tfidf_matrix = transformer.fit_transform(bow_matrix)
    return transformer, tfidf_matrix

You can see that we have used the L2 norm option in the parameters and also made 
sure we smoothen the idfs to give weightages also to terms that may have zero idf so that 
we do not ignore them. We can see this function in action in the following code snippet:
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import numpy as np
from feature_extractors import tfidf_transformer
feature_names = bow_vectorizer.get_feature_names()

# build tfidf transformer and show train corpus tfidf features
In [388]: tfidf_trans, tdidf_features = tfidf_transformer(bow_features)
     ...: features = np.round(tdidf_features.todense(), 2)
     ...: display_features(features, feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00  0.40    0.00  0.49  0.00  0.49  0.00  0.60
1  0.44       0.35  0.23    0.00  0.56  0.00  0.56  0.00  0.00
2  0.00       0.43  0.29    0.00  0.35  0.00  0.35  0.55  0.43
3  0.00       0.00  0.35    0.66  0.00  0.66  0.00  0.00  0.00

# show tfidf features for new_doc using built tfidf transformer
In [389]: nd_tfidf = tfidf_trans.transform(new_doc_features)
     ...: nd_features = np.round(nd_tfidf.todense(), 2)
     ...: display_features(nd_features, feature_names)
   and  beautiful  blue  cheese   is  love   sky   so  the
0  0.0        0.0  0.63     0.0  0.0   0.0  0.77  0.0  0.0

Thus the preceding outputs show the tfidf feature vectors for all our sample 
documents. We use the TfidfTransformer class, which helps us in computing the tfidfs 
for each document based on the equations described earlier.

Now we will show how the internals of this class work. You will also see how to 
implement the mathematical equations described earlier to compute the tfidf-based 
feature vectors. This section is dedicated to ML experts (and curious readers who are 
interested in how things work behind the scenes). We will start with loading necessary 
dependencies and computing the term frequencies (TF) by reusing our Bag of Words-
based features for our sample corpus, which can also act as the term frequencies for our 
training CORPUS:

import scipy.sparse as sp
from numpy.linalg import norm
feature_names = bow_vectorizer.get_feature_names()

# compute term frequency
tf = bow_features.todense()
tf = np.array(tf, dtype='float64')

# show term frequencies
In [391]: display_features(tf, feature_names)
   and  beautiful  blue  cheese   is  love  sky   so  the
0  0.0        0.0   1.0     0.0  1.0   0.0  1.0  0.0  1.0
1  1.0        1.0   1.0     0.0  2.0   0.0  2.0  0.0  0.0
2  0.0        1.0   1.0     0.0  1.0   0.0  1.0  1.0  1.0
3  0.0        0.0   1.0     1.0  0.0   1.0  0.0  0.0  0.0
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We will now compute our document frequencies (DF) for each term based on the 
number of documents in which it occurs. The following snippet shows how to obtain it 
from our Bag of Words feature matrix:

# build the document frequency matrix
df = np.diff(sp.csc_matrix(bow_features, copy=True).indptr)
df = 1 + df # to smoothen idf later

# show document frequencies
In [403]: display_features([df], feature_names)
   and  beautiful  blue  cheese  is  love  sky  so  the
0    2          3     5       2   4     2    4   2    3

This tells us the document frequency (DF) for each term and you can verify it with 
the documents in CORPUS. Remember that we have added 1 to each frequency value to 
smoothen the idf values later and prevent division-by-zero errors by assuming we have a 
document (imaginary) that has all the terms once. Thus, if you check in the CORPUS, you 
will see that blue occurs 4(+1) times, sky occurs 3(+1) times, and so on, considering (+1) 
for our smoothening.

Now that we have the document frequencies, we will compute the inverse document 
frequency (idf) using our formula defined earlier. Remember to add 1 to the total count of 
documents in the corpus to add the document that we had assumed earlier to contain all 
the terms at least once for smoothening the idfs:

# compute inverse document frequencies
total_docs = 1 + len(CORPUS)
idf = 1.0 + np.log(float(total_docs) / df)

# show inverse document frequencies
In [406]: display_features([np.round(idf, 2)], feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  1.92       1.51   1.0    1.92  1.22  1.92  1.22  1.92  1.51

# compute idf diagonal matrix
total_features = bow_features.shape[1]
idf_diag = sp.spdiags(idf, diags=0, m=total_features, n=total_features)
idf = idf_diag.todense()

# print the idf diagonal matrix
In [407]: print np.round(idf, 2)
[[ 1.92  0.    0.    0.    0.    0.    0.    0.    0.  ]
 [ 0.    1.51  0.    0.    0.    0.    0.    0.    0.  ]
 [ 0.    0.    1.    0.    0.    0.    0.    0.    0.  ]
 [ 0.    0.    0.    1.92  0.    0.    0.    0.    0.  ]
 [ 0.    0.    0.    0.    1.22  0.    0.    0.    0.  ]
 [ 0.    0.    0.    0.    0.    1.92  0.    0.    0.  ]
 [ 0.    0.    0.    0.    0.    0.    1.22  0.    0.  ]
 [ 0.    0.    0.    0.    0.    0.    0.    1.92  0.  ]
 [ 0.    0.    0.    0.    0.    0.    0.    0.    1.51]]
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You can now see the idf matrix that we created based on our mathematical equation, 
and we also convert it to a diagonal matrix, which will be helpful later on when we want 
to compute the product with term frequency.

Now that we have our tfs and idfs, we can compute the tfidf feature matrix using 
matrix multiplication, as shown in the following snippet:

# compute tfidf feature matrix
tfidf = tf * idf

# show tfidf feature matrix
In [410]: display_features(np.round(tfidf, 2), feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00   1.0    0.00  1.22  0.00  1.22  0.00  1.51
1  1.92       1.51   1.0    0.00  2.45  0.00  2.45  0.00  0.00
2  0.00       1.51   1.0    0.00  1.22  0.00  1.22  1.92  1.51
3  0.00       0.00   1.0    1.92  0.00  1.92  0.00  0.00  0.00

We now have our tfidf feature matrix, but wait! It is not yet over. We have to divide it 
with the L2 norm, if you remember from our equations depicted earlier. The following 
snippet computes the tfidf norms for each document and then divides the tfidf weights 
with the norm to give us the final desired tfidf matrix:

# compute L2 norms
norms = norm(tfidf, axis=1)

# print norms for each document
In [412]: print np.round(norms, 2)
[ 2.5   4.35  3.5   2.89]

# compute normalized tfidf
norm_tfidf = tfidf / norms[:, None]

# show final tfidf feature matrix
In [415]: display_features(np.round(norm_tfidf, 2), feature_names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00  0.40    0.00  0.49  0.00  0.49  0.00  0.60
1  0.44       0.35  0.23    0.00  0.56  0.00  0.56  0.00  0.00
2  0.00       0.43  0.29    0.00  0.35  0.00  0.35  0.55  0.43
3  0.00       0.00  0.35    0.66  0.00  0.66  0.00  0.00  0.00

Compare the preceding obtained tfidf feature matrix for the documents in CORPUS 
to the feature matrix obtained using TfidfTransformer earlier. Note they are exactly the 
same, thus verifying that our mathematical implementation was correct—and in fact this 
very same implementation is adopted by scikit-learn’s TfidfTransformer behind the 
scenes using some more optimizations. Now, suppose we want to compute the tfidf-
based feature matrix for our new document new_doc. We can do it using the following 
snippet. We reuse the new_doc_features Bag of Words vector from before for the term 
frequencies:
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# compute new doc term freqs from bow freqs
nd_tf = new_doc_features
nd_tf = np.array(nd_tf, dtype='float64')

# compute tfidf using idf matrix from train corpus
nd_tfidf = nd_tf*idf
nd_norms = norm(nd_tfidf, axis=1)
norm_nd_tfidf = nd_tfidf / nd_norms[:, None]

# show new_doc tfidf feature vector
In [418]: display_features(np.round(norm_nd_tfidf, 2), feature_names)
   and  beautiful  blue  cheese   is  love   sky   so  the
0  0.0        0.0  0.63     0.0  0.0   0.0  0.77  0.0  0.0

The preceding output depicts the tfidf-based feature vector for new_doc, and you can 
see it is the same as the one obtained by TfidfTransformer.

Now that we know how the internals work, we are going to implement a generic 
function that can directly compute the tfidf-based feature vectors for documents from the 
raw documents themselves. The following snippet depicts the same:

from sklearn.feature_extraction.text import TfidfVectorizer

def tfidf_extractor(corpus, ngram_range=(1,1)):

    vectorizer = TfidfVectorizer(min_df=1,
                                 norm='l2',
                                 smooth_idf=True,
                                 use_idf=True,
                                 ngram_range=ngram_range)
    features = vectorizer.fit_transform(corpus)
    return vectorizer, features

The preceding function makes use of the TfidfVectorizer, which directly computes 
the tfidf vectors by taking the raw documents themselves as input and internally 
computing the term frequencies as well as the inverse document frequencies, eliminating 
the need to use the CountVectorizer for computing the term frequencies based on the 
Bag of Words model. Support is also present for adding n-grams to the feature vectors. We 
can see the function in action in the following snippet:

# build tfidf vectorizer and get training corpus feature vectors
In [425]: tfidf_vectorizer, tdidf_features = tfidf_extractor(CORPUS)
     ...:  display_features(np.round(tdidf_features.todense(), 2), feature_

names)
    and  beautiful  blue  cheese    is  love   sky    so   the
0  0.00       0.00  0.40    0.00  0.49  0.00  0.49  0.00  0.60
1  0.44       0.35  0.23    0.00  0.56  0.00  0.56  0.00  0.00
2  0.00       0.43  0.29    0.00  0.35  0.00  0.35  0.55  0.43
3  0.00       0.00  0.35    0.66  0.00  0.66  0.00  0.00  0.00
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# get tfidf feature vector for the new document
In [426]: nd_tfidf = tfidf_vectorizer.transform(new_doc)
     ...: display_features(np.round(nd_tfidf.todense(), 2), feature_names)    
   and  beautiful  blue  cheese   is  love   sky   so  the
0  0.0        0.0  0.63     0.0  0.0   0.0  0.77  0.0  0.0

You can see from the preceding outputs that the tfidf feature vectors match to the 
ones we obtained previously. This brings us to the end of our discussion on feature 
extraction using tfidf. Now we will look at some advanced word vectorization techniques.

Advanced Word Vectorization Models
There are various approaches to creating more advanced word vectorization models for 
extracting features from text data. Here we will discuss a couple of them that use Google’s 
popular word2vec algorithm. The word2vec model, released in 2013 by Google, is a neural 
network–based implementation that learns distributed vector representations of words 
based on continuous Bag of Words and skip-gram–based architectures. The word2vec 
framework is much faster than other neural network–based implementations and does 
not require manual labels to create meaningful representations among words. You can 
find more details on Google’s word2vec project at https://code.google.com/archive/p/
word2vec/. You can even try out some of the implementations yourself if you are interested.

We will be using the gensim library in our implementation, which is Python 
implementation for word2vec that provides several high-level interfaces for easily building 
these models. The basic idea is to provide a corpus of documents as input and get feature 
vectors for them as output. Internally, it constructs a vocabulary based on the input text 
documents and learns vector representations for words based on various techniques 
mentioned earlier, and once this is complete, it builds a model that can be used to 
extract word vectors for each word in a document. Using various techniques like average 
weighting or tfidf weighting, we can compute the averaged vector representation of a 
document using its word vectors. You can get more details about the interface for gensim‘s 
word2vec implementation at http://radimrehurek.com/gensim/models/word2vec.html.

We will be mainly focusing on the following parameters when we build our model 
from our sample training corpus:

•	 size: This parameter is used to set the size or dimension for the 
word vectors and can range from tens to thousands. You can try 
out various dimensions to see which gives the best result.

•	 window: This parameter is used to set the context or window size. 
which specifies the length of the window of words that should be 
considered for the algorithm to take into account as context when 
training.

•	 min_count: This parameter specifies the minimum word count 
needed across the corpus for the word to be considered in the 
vocabulary. This helps in removing very specific words that may 
not have much significance because they occur very rarely in the 
documents.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://radimrehurek.com/gensim/models/word2vec.html
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•	 sample: This parameter is used to downsample effects of 
occurrence of frequent words. Values between 0.01 and 0.0001 are 
usually ideal.

Once we build a model, we will define and implement two techniques of combining 
word vectors together in text documents based on certain weighing schemes. We will 
implement two techniques mentioned as follows.

•	 Averaged word vectors

•	 TF-IDF weighted word vectors

Let us start the feature-extraction process by building our word2vec model on our 
sample training corpus before going into further implementations. The following code 
snippet shows how:

import gensim
import nltk

# tokenize corpora
TOKENIZED_CORPUS = [nltk.word_tokenize(sentence)
                    for sentence in CORPUS]
tokenized_new_doc = [nltk.word_tokenize(sentence)
                    for sentence in new_doc]                        

# build the word2vec model on our training corpus
model = gensim.models.Word2Vec(TOKENIZED_CORPUS, size=10, window=10,
                               min_count=2, sample=1e-3)

As you can see, we have built the model using the parameters described earlier; you 
can play around with these and also look at other parameters from the documentation to 
change the architecture type, number of workers, and so on. Now that we have our model 
ready, we can start implementing our feature extraction techniques.

Averaged Word Vectors
The preceding model creates a vector representation for each word in the vocabulary. We 
can access them by just typing in the following code:

In [430]: print model['sky']
[ 0.01608407 -0.04819566  0.04227461 -0.03011346  0.0254148   0.01728328
  0.0155535   0.00774884 -0.02752112  0.01646519]

In [431]: print model['blue']
[-0.0472235   0.01662185 -0.01221706 -0.04724348 -0.04384995  0.00193343
 -0.03163504 -0.03423524  0.02661656  0.03033725]

Each word vector is of length 10 based on the size parameter specified earlier. But 
when we deal with sentences and text documents, they are of unequal length, and we 
must carry out some form of combining and aggregation operations to make sure the 
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number of dimensions of the final feature vectors are the same, regardless of the length of 
the text document, number of words, and so on. In this technique, we will use an average 
weighted word vectorization scheme, where for each text document we will extract all 
the tokens of the text document, and for each token in the document we will capture the 
subsequent word vector if present in the vocabulary. We will sum up all the word vectors 
and divide the result by the total number of words matched in the vocabulary to get a 
final resulting averaged word vector representation for the text document. This can be 
mathematically represented using the equation

AWV D
wv w

n

n

( ) =
( )å

1

where AVW(D) is the averaged word vector representation for document D, containing 
words w

1
, w

2
, …, w

n
, and wv(w) is the word vector representation for the word w.

The following snippet shows the pseudocode for the algorithm just described:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
matched_word_count := 0
vector := []

for word in words:
        if word in vocabulary:
                vector := vector + model[word]
                matched_word_count :=  matched_word_count + 1

averaged_word_vector := vector / matched_word_count

That snippet shows the flow of operations in a better way that is easier to understand.
We will now implement our algorithm in Python using the following code snippet:

import numpy as np    

# define function to average word vectors for a text document    
def average_word_vectors(words, model, vocabulary, num_features):

    feature_vector = np.zeros((num_features,),dtype="float64")
    nwords = 0.

    for word in words:
        if word in vocabulary:
            nwords = nwords + 1.
            feature_vector = np.add(feature_vector, model[word])
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    if nwords:
        feature_vector = np.divide(feature_vector, nwords)

    return feature_vector

# generalize above function for a corpus of documents  
def averaged_word_vectorizer(corpus, model, num_features):
    vocabulary = set(model.index2word)
     features = [average_word_vectors(tokenized_sentence, model, vocabulary, 

num_features)
                    for tokenized_sentence in corpus]
    return np.array(features)

The average_word_vectors() function must seem familiar to you—it is the concrete 
implementation of our algorithm shown using our pseudocode earlier. We also create a 
generic function averaged_word_vectorizer() to perform averaging of word vectors for 
a corpus of documents. The following snippet shows our function in action on our sample 
corpora:

# get averaged word vectors for our training CORPUS
In [445]: avg_word_vec_features = averaged_word_vectorizer(corpus=TOKENIZED_
CORPUS,
     ...:                                                  model=model,
     ...:                                                  num_features=10)
     ...: print np.round(avg_word_vec_features, 3)
[[ 0.006 -0.01   0.015 -0.014  0.004 -0.006 -0.024 -0.007 -0.001  0.   ]
 [-0.008 -0.01   0.021 -0.019 -0.002 -0.002 -0.011  0.002  0.003 -0.001]
 [-0.003 -0.007  0.008 -0.02  -0.001 -0.004 -0.014 -0.015  0.002 -0.01 ]
 [-0.047  0.017 -0.012 -0.047 -0.044  0.002 -0.032 -0.034  0.027  0.03 ]]

# get averaged word vectors for our test new_doc
In [447]: nd_avg_word_vec_features = averaged_word_
vectorizer(corpus=tokenized_new_doc,
     ...:                                                     model=model,
     ...:                                                      num_

features=10)
     ...: print np.round(nd_avg_word_vec_features, 3)
[[-0.016 -0.016  0.015 -0.039 -0.009  0.01  -0.008 -0.013  0.     0.023]]

From the preceding outputs, you can see that we have uniformly sized averaged 
word vectors for each document in the corpus, and these feature vectors can be used later 
for classification by feeding it to the ML algorithms.

TF-IDF Weighted Averaged Word Vectors
Our previous vectorizer simply sums up all the word vectors pertaining to any document 
based on the words in the model vocabulary and calculates a simple average by dividing 
with the count of matched words. This section introduces a new and novel technique 
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of weighing each matched word vector with the word TF-TDF score and summing up 
all the word vectors for a document and dividing it by the sum of all the TF-IDF weights 
of the matched words in the document. This would basically give us a TF-IDF weighted 
averaged word vector for each document.

This can be mathematically represented using the equation
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where TWA(D) is the TF-IDF weighted averaged word vector representation for document 
D, containing wordsw
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n
, where wv(w) is the word vector representation and 

tfidf(w) is the TF-IDF weight for the wordw. The following snippet shows the pseudocode 
for this algorithm:

model := the word2vec model we built
vocabulary := unique_words(model)
document := [words]
tfidfs := [tfidf(word) for each word in words]
matched_word_wts := 0
vector := []

for word in words:
        if word in vocabulary:
                word_vector := model[word]
                weighted_word_vector := tfidfs[word] x word_vector
                vector := vector + weighted_word_vector
                matched_word_wts :=  matched_word_wts + tfidfs[word]

tfidf_wtd_avgd_word_vector := vector / matched_word_wts

That pseudocode gives structure to our algorithm and shows how to implement the 
algorithm from the mathematical formula we defined earlier.

The following code snippet implements this algorithm in Python so we can use it for 
feature extraction:

# define function to compute tfidf weighted averaged word vector for a document
def tfidf_wtd_avg_word_vectors(words, tfidf_vector, tfidf_vocabulary, model, 
num_features):

    word_tfidfs = [tfidf_vector[0, tfidf_vocabulary.get(word)]
                   if tfidf_vocabulary.get(word)
                   else 0 for word in words]    
     word_tfidf_map = {word:tfidf_val for word, tfidf_val in zip(words, word_

tfidfs)}

    feature_vector = np.zeros((num_features,),dtype="float64")
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    vocabulary = set(model.index2word)
    wts = 0.
    for word in words:
        if word in vocabulary:
            word_vector = model[word]
            weighted_word_vector = word_tfidf_map[word] * word_vector
            wts = wts + word_tfidf_map[word]
            feature_vector = np.add(feature_vector, weighted_word_vector)
    if wts:
        feature_vector = np.divide(feature_vector, wts)

    return feature_vector

# generalize above function for a corpus of documents    
def tfidf_weighted_averaged_word_vectorizer(corpus, tfidf_vectors,
                                   tfidf_vocabulary, model, num_features):

    docs_tfidfs = [(doc, doc_tfidf)
                   for doc, doc_tfidf
                   in zip(corpus, tfidf_vectors)]
     features = [tfidf_wtd_avg_word_vectors(tokenized_sentence, tfidf, tfidf_

vocabulary,
                                   model, num_features)
                    for tokenized_sentence, tfidf in docs_tfidfs]
    return np.array(features)

The tfidf_wtd_avg_word_vectors() function helps us in getting the TF-IDF 
weighted averaged word vector representation for a document. We also create a 
corresponding generic function tfidf_weighted_averaged_word_vectorizer() to 
perform TF-IDF weighted averaging of word vectors for a corpus of documents. We 
can see our implemented function in action on our sample corpora using the following 
snippet:

# get tfidf weights and vocabulary from earlier results and compute result
In [453]: corpus_tfidf = tdidf_features
     ...: vocab = tfidf_vectorizer.vocabulary_
     ...: wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=TOKENIZED_CORPUS, tfidf_vectors=corpus_tfidf,
     ...:                               tfidf_vocabulary=vocab, model=model, 

num_features=10)
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     ...: print np.round(wt_tfidf_word_vec_features, 3)
[[ 0.011 -0.011  0.014 -0.011  0.007 -0.007 -0.024 -0.008 -0.004 -0.004]
 [ 0.    -0.014  0.028 -0.014  0.004 -0.003 -0.012  0.011 -0.001 -0.002]
 [-0.001 -0.008  0.007 -0.019  0.001 -0.004 -0.012 -0.018  0.001 -0.014]
 [-0.047  0.017 -0.012 -0.047 -0.044  0.002 -0.032 -0.034  0.027  0.03 ]]

# compute avgd word vector for test new_doc
In [454]: nd_wt_tfidf_word_vec_features = tfidf_weighted_averaged_word_
vectorizer(corpus=tokenized_new_doc, tfidf_vectors=nd_tfidf, tfidf_
vocabulary=vocab, model=model, num_features=10)
     ...: print np.round(nd_wt_tfidf_word_vec_features, 3)  
[[-0.012 -0.019  0.018 -0.038 -0.006  0.01  -0.006 -0.011 -0.003  0.023]]

From the preceding results, you can see how we can converted each document 
into TF-IDF weighted averaged numeric vectors. We also used our TF-IDF weights 
and vocabulary, obtained earlier when we implemented TF-IDF–based feature vector 
extraction from documents.

Now you have a good grasp on how to extract features from text data that can be used 
for training a classifier.

Classification Algorithms
Classification algorithms are supervised ML algorithms that are used to classify, 
categorize, or label data points based on what it has observed in the past. Each 
classification algorithm, being a supervised learning algorithm, requires training data. 
This training data consists of a set of training observations where each observation is a 
pair consisting of an input data point, usually a feature vector like we observed earlier, 
and a corresponding output outcome for that input observation. There are mainly three 
processes classification algorithms go through:

•	 Training is the process where the supervised learning algorithm 
analyzes and tries to infer patterns out of training data such that 
it can identify which patterns lead to a specific outcome. These 
outcomes are often known as the class labels/class variables/
response variables. We usually carry out the process of feature 
extraction or feature engineering to derive meaningful features 
from the raw data before training. These feature sets are fed to 
an algorithm of our choice, which then tries to identify and learn 
patterns from them and their corresponding outcomes. The 
result is an inferred function known as a model or a classification 
model. This model is expected to be generalized enough from 
learning patterns in the training set such that it can predict the 
classes or outcomes for new data points in the future.
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•	 Evaluation involves trying to test the prediction performance 
of our model to see how well it has trained and learned on the 
training dataset. For this we usually use a validation dataset and 
test the performance of our model by predicting on that dataset 
and testing our predictions against the actual class labels, also 
called as the ground truth. Often we also use cross-validation, 
where the data is divided into folds and a chunk of it is used 
for training, with the remainder used to validate the trained 
model. Note that we also tune the model based on the validation 
results to get to an optimal configuration that yields maximum 
accuracy and minimum error. We also evaluate our model against 
a holdout or test dataset, but we never tune our model against 
that dataset because that would lead to it being biased or overfit 
against very specific features from the dataset. The holdout or test 
dataset is something of a representative sample of what new, real 
data samples might look like for which the model will generate 
predictions and how it might perform on these new data samples. 
Later we will look at various metrics that are typically used to 
evaluate and measure model performance.

•	 Tuning, also known as hyperparameter tuning or optimization, 
is where we focus on trying to optimize a model to maximize its 
prediction power and reduce errors. Each model is at heart a 
mathematical function with several parameters that determine 
model complexity, learning capability, and so on. These are 
known as hyperparameters because they cannot be learned 
directly from data and must be set prior to running and training 
the model. Hence, the process of choosing an optimal set of 
model hyperparameters such that the performance of the model 
yields good prediction accuracy is known as model tuning, and we 
can carry it out in various ways, including randomized search and 
grid search. We will not be covering this in our implementations 
since this is more inclined towards core machine learning and is 
out of our current scope as the models we will be building work 
well with default hyperparameter configurations. But there are 
plenty of resources on the Web if you are interested in model 
tuning and optimization.

There are various types of classification algorithms, but we will not be venturing 
into each one in detail. Our focus remains text classification, and I do not want to bore 
everyone with excessive mathematical derivations for each algorithm. However, I will 
touch upon a couple of algorithms that are quite effective for text classification and 
try to explain them, keeping the mathematical formulae to the base essentials. These 
algorithms are the following:

•	 Multinomial Naïve Bayes

•	 Support vector machines
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There are also several other algorithms besides these you can look up, including 
logistic regression, decision trees, and neural networks. And ensemble techniques use 
a collection or ensemble of models to learn and predict outcomes that include random 
forests and gradient boosting, but they often don’t perform very well for text classification 
because they are very prone to overfitting. I recommend you be careful if you plan on 
experimenting with them. Besides these, deep learning–based techniques have also 
recently become popular. They use multiple hidden layers and combine several neural 
network models to build a complex classification model.

We will now briefly look at some of the concepts surrounding multinomial naïve 
Bayes and support vector machines before using them for our classification problem.

Multinomial Naïve Bayes
This algorithm is a special case of the popular naïve Bayes algorithm, which is used 
specifically for prediction and classification tasks where we have more than two classes. 
Before looking at multinomial naïve Bayes, let us look at the definition and formulation of 
the naïve Bayes algorithm. The naïve Bayes algorithm is a supervised learning algorithm 
that puts into action the very popular Bayes’ theorem. However, there is a “naïve” 
assumption here that each feature is independent of the others. Mathematically we can 
formulate this as follows: Given a response class variable y and a set of n features in the 
form of a feature vector {x
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This means that under the previous assumptions of independence among the 
features where each feature is conditionally independent of every other feature, the 
conditional distribution over the class variable which is to be predicted, y can be 
represented using the following mathematical equation as 
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where the evidence measure, Z p x= ( )  is a constant scaling factor dependent on the 
feature variables. From this equation, we can build the naïve Bayes classifier by 
combining it with a rule known as the MAP decision rule, which stands for maximum a 
posteriori. Going into the statistical details would be impossible in the current scope, but 
by using it, the classifier can be represented as a mathematical function that can assign a 
predicted class label ŷ Ck=  for some k using the following representation:
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This classifier is often said to be simple, quite evident from its name and also 
because of several assumptions we make about our data and features that might not 
be so in the real world. Nevertheless, this algorithm still works remarkably well in 
many use cases related to classification, including multi-class document classification, 
spam filtering, and so on. They can train really fast compared to other classifiers and 
also work well even when we do not have sufficient training data. Models often do not 
perform well when they have a lot of features, and this phenomenon is known as the 
curse of dimensionality. Naïve Bayes takes care of this problem by decoupling the class 
variable–related conditional feature distributions, thus leading to each distribution being 
independently estimated as a single dimension distribution.

Multinomial naïve Bayes is an extension of the preceding algorithm for predicting 
and classifying data points, where the number of distinct classes or outcomes is more 
than two. In this case the feature vectors are usually assumed to be word counts from the 
Bag of Words model, but TF-IDF–based weights will also work. One limitation is that 
negative weight-based features can‘t be fed into this algorithm. This distribution can be 
represented as p p p py y y yn= ¼{ }1 2, , ,  for each class label y, and the total number of 

features is n, which could be represented as the total vocabulary of distinct words or 
terms in text analytics. From the preceding equation, p P x yyi i= ( )|  represents the 

probability of feature i in any observation sample that has an outcome or classy. The 
parameter p

y
 can be estimated with a smoothened version of maximum likelihood 

estimation (with relative frequency of occurrences), and represented as

p̂
F

F nyi
yi

y

=
+
+

a
a

where F xyi
x TD

i=
Î
å  is the frequency of occurrence for the feature i in a sample for class 

label y in our training dataset TD, and F Fy
i

TD

yi=
=
å

1

 is the total frequency of all features for 

the class label y. There is some amount of smoothening one with the help of priors a ³ 0 , 
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which accounts for the features that are not present in the learning data points and helps 
in getting rid of zero-probability–related issues. Some specific settings for this parameter 
are used quite often. The value of a =1  is known as Laplace smoothing, and a <1  is 
known as Lidstone smoothing. The scikit-learn library provides an excellent 
implementation for multinomial naïve Bayes in the class MultinomialNB, which we will 
be leveraging when we build our text classifier later on.

Support Vector Machines
In machine learning, support vector machines (SVM) are supervised learning algorithms 
used for classification, regression, novelty, and anomaly or outlier detection. Considering 
a binary classification problem, if we have training data such that each data point or 
observation belongs to a specific class, the SVM algorithm can be trained based on this 
data such that it can assign future data points into one of the two classes. This algorithm 
represents the training data samples as points in space such that points belonging to 
either class can be separated by a wide gap between them, called a hyperplane, and 
the new data points to be predicted are assigned classes based on which side of this 
hyperplane they fall into. This process is for a typical linear classification process. 
However, SVM can also perform non-linear classification by an interesting approach 
known as a kernel trick, where kernel functions are used to operate on high-dimensional 
feature spaces that are non-linear separable. Usually, inner products between data points 
in the feature space help achieve this. 

The SVM algorithm takes in a set of training data points and constructs a hyperplane 
of a collection of hyperplanes for a high dimensional feature space. The larger the 
margins of the hyperplane, the better the separation, so this leads to lower generalization 
errors of the classifier. Let us represent this formally and mathematically. Consider a 
training dataset of n data points 

 

x y x yn n1 1, , , ,( ) ¼ ( )  such that the class variable 

yiÎ -{ }1 1,  where each value indicates the class corresponding to the point 


xi . Each data 

point 


xi  is a feature vector. The objective of the SVM algorithm is to find the max-margin 

hyperplane that separates the set of data points having class label of yi =1  from the set of 

data points having class label yi = -1  such that the distance between the hyperplane and 

sample data points from either class nearest to it is maximized. These sample data points 
are known as the support vectors. Figure 4-3, courtesy of Wikipedia, shows what the 
vector space with the hyperplane looks like.
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You can clearly see the hyperplane and the support vectors in the figure. The 
hyperplane can be defined as the set of points 



x  which satisfy w x b
��� ���

× + = 0  where 


w  is 

the normal vector to the hyperplane, as shown in Figure 4-3, and b

w
�� ���  gives us the offset 

of the hyperplane from the origin toward the support vectors highlighted in the figure. 
There are two main types of margins that help in separating out the data points belonging 
to the different classes.

When the data is linearly separable, as in Figure 4-3, we can have hard margins that 
are basically represented by the two parallel hyperplanes depicted by the dotted lines, 
which help in separating the data points belonging to the two different classes. This is 
done taking into account that the distance between them is as large as possible. The 
region bounded by these two hyperplanes forms the margin with the max-margin 
hyperplane being in the middle. These hyperplanes are shown in the figure having the 
equations w x b

��� ���
× + =1  andw x b

��� ���
× + = -1 .

Often the data points are not linearly separable, for which we can use the hinge loss 
function, which can be represented as max( ,0 1- × +( )y w x bi i

��� � ��
 and in fact the scikit-

learn implementation of SVM can be found in SVC, LinearSVC, or SGDClassifier where 
we will use the 'hinge' loss function (set by default) defined previously to optimize and 
build the model. This loss function helps us in getting the soft margins and is often known 
as a soft-margin SVM.

Figure 4-3. Two-class SVM depicting hyperplane and support vectors (courtesy: 
Wikipedia)
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For a multi-class classification problem, if we have n classes, for each class a binary 
classifier is trained and learned that helps in separating between each class and the other 
n-1 classes. During prediction, the scores (distances to hyperplanes) for each classifier 
are computed, and the maximum score is chosen for selecting the class label. Also often 
stochastic gradient descent is used for minimizing the loss function in SVM algorithms. 
Figure 4-4 shows how three classifiers are trained in total for a three-class SVM problem 
over the very popular iris dataset. This figure is built using a scikit-learn model and is 
obtained from the official documentation available at http://scikit-learn.org.

In Figure 4-4 you can clearly see that a total of three SVM classifiers have been 
trained for each of the three classes and are then combined for the final predictions 
so that data points belonging to each class can be labeled correctly. There are a lot 
of resources and books dedicated entirely towards supervised ML and classification. 
Interested readers should check them out to gain more in-depth knowledge on how these 
techniques work and how they can be applied to various problems in analytics.

Evaluating Classification Models
Training, tuning, and building models are an important part of the whole analytics 
lifecycle, but even more important is knowing how well these models are performing. 
Performance of classification models is usually based on how well they predict outcomes 
for new data points. Usually this performance is measured against a test or holdout 
dataset that consists of data points which was not used to influence or train the classifier 
in any way. This test dataset usually has several observations and corresponding labels. 

Figure 4-4. Multi-class SVM on three classes (courtesy: scikit-learn.org)

http://scikit-learn.org/
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We extract features in the same way as it was followed when training the model. These 
features are fed to the already trained model, and we obtain predictions for each data 
point. These predictions are then matched with the actual labels to see how well or how 
accurately the model has predicted.

Several metrics determine a model’s prediction performance, but we will mainly 
focus on the following metrics:

•	 Accuracy

•	 Precision

•	 Recall

•	 F1 score

Let us look at a practical example to see how these metrics can be computed. 
Consider a binary classification problem of classifying emails as either 'spam' or 'ham'. 
Assuming we have a total of 20 emails, for which we already have the actual manual 
labels, we pass it through our built classifier to get predicted labels for each email. This 
gives us 20 predicted labels. Now we want to measure the classifier performance by 
comparing each prediction with its actual label. The following code snippet sets up the 
initial dependencies and the actual and predicted labels:

from sklearn import metrics
import numpy as np
import pandas as pd
from collections import Counter

actual_labels = ['spam', 'ham', 'spam', 'spam', 'spam',
                 'ham',  'ham', 'spam', 'ham',  'spam',
                 'spam', 'ham', 'ham',  'ham',  'spam',
                 'ham',  'ham', 'spam', 'spam', 'ham']

predicted_labels = ['spam', 'spam', 'spam', 'ham',  'spam',
                    'spam', 'ham',  'ham',  'spam', 'spam',
                    'ham',  'ham',  'spam', 'ham',  'ham',
                    'ham',  'spam', 'ham',  'spam', 'spam']

ac = Counter(actual_labels)                    
pc = Counter(predicted_labels)  

Let us now see the total number of emails belonging to either 'spam' or 'ham' based 
on the actual labels and our predicted labels using the following snippet:

In [517]: print 'Actual counts:', ac.most_common()
     ...: print 'Predicted counts:', pc.most_common()
Actual counts: [('ham', 10), ('spam', 10)]
Predicted counts: [('spam', 11), ('ham', 9)]
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Thus we see that there are a total of 10 emails that are 'spam' and 10 emails that are 
'ham'. Our classifier has predicted a total of 11 emails as 'spam' and 9 as 'ham'. How 
do we now compare which email was actually 'spam' and what it was classified as? A 
confusion matrix is an excellent way to measure this performance across the two classes. 
A confusion matrix is a tabular structure that helps visualize the performance of classifiers. 
Each column in the matrix represents classified instances based on predictions, and each 
row of the matrix represents classified instances based on the actual class labels. (It can 
be vice-versa if needed.) We usually have a class label defined as the positive class, which 
could be typically the class of our interest. Figure 4-5 shows a typical two-class confusion 
matrix where (p) denotes the positive class and (n) denotes the negative class.

You can see some terms in the matrix depicted in Figure 4-5. True Positive (TP) 
indicates the number of correct hits or predictions for our positive class. False Negative 
(FN) indicates the number of instances we missed for that class by predicting it falsely as 
the negative class. False Positive (FP) is the number of instances we predicted wrongly as 
the positive class when it was actually not. True Negative (TN) is the number of instances 
we correctly predicted as the negative class.

The following code snippet constructs a confusion matrix with our data:

In [519]: cm = metrics.confusion_matrix(y_true=actual_labels,
     ...:                          y_pred=predicted_labels,
     ...:                          labels=['spam','ham'])
     ...: print pd.DataFrame(data=cm,
     ...:                    columns=pd.MultiIndex(levels=[['Predicted:'],
     ...:                                                  ['spam','ham']],
     ...:                                          labels=[[0,0],[0,1]]),
     ...:                    index=pd.MultiIndex(levels=[['Actual:'],

Figure 4-5. A confusion matrix from a two-class classification problem
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     ...:                                                ['spam','ham']],
     ...:                                        labels=[[0,0],[0,1]]))
             Predicted:    
                   spam ham
Actual: spam          5   5
        ham           6   4

We now get a confusion matrix similar to the figure. In our case, let us consider 
'spam' to be the positive class. We can now define the preceding metrics in the following 
snippet:

positive_class = 'spam'

true_positive = 5.
false_positive = 6.
false_negative = 5.
true_negative = 4.

Now that we have the necessary values from the confusion matrix, we can calculate 
our four performance metrics one by one. We have taken the values from earlier as 
floats to help with computations involving divisions. We will use the metrics module 
from scikit-learn, which is very powerful and helps in computing these metrics with a 
single function. And we will define and compute these metrics manually so that you can 
understand them clearly and see what goes on behind the scenes of those functions from 
the metrics module.

Accuracy is defined as the overall accuracy or proportion of correct predictions of the 
model, which can be depicted by the formula

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

where we have our correct predictions in the numerator divided by all the outcomes in 
the denominator. The following snippet shows the computations for accuracy:

In [522]: accuracy = np.round(
     ...:                 metrics.accuracy_score(y_true=actual_labels,
     ...:                                        y_pred=predicted_labels),2)
     ...: accuracy_manual = np.round(
     ...:                     (true_positive + true_negative) /
     ...:                       (true_positive + true_negative +
     ...:                        false_negative + false_positive),2)
     ...: print 'Accuracy:', accuracy
     ...: print 'Manually computed accuracy:', accuracy_manual
Accuracy: 0.45
Manually computed accuracy: 0.45
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Precision is defined as the number of predictions made that are actually correct 
or relevant out of all the predictions based on the positive class. This is also known as 
positive predictive value and can be depicted by the formula

Precision
TP

TP FP
=

+

where we have our correct predictions in the numerator for the positive class divided 
by all the predictions for the positive class including the false positives. The following 
snippet shows the computations for precision:

In [523]: precision = np.round(
     ...:                 metrics.precision_score(y_true=actual_labels,
     ...:                                         y_pred=predicted_labels,
     ...:                                          pos_label=positive_

class),2)
     ...: precision_manual = np.round(
     ...:                         (true_positive) /
     ...:                         (true_positive + false_positive),2)
     ...: print 'Precision:', precision
     ...: print 'Manually computed precision:', precision_manual
Precision: 0.45
Manually computed precision: 0.45

Recall is defined as the number of instances of the positive class that were correctly 
predicted. This is also known as hit rate, coverage, or sensitivity and can be depicted by 
the formula

Recall
TP

TP FN
=

+

where we have our correct predictions for the positive class in the numerator divided by 
correct and missed instances for the positive class, giving us the hit rate. The following 
snippet shows the computations for recall:

In [524]: recall = np.round(
     ...:             metrics.recall_score(y_true=actual_labels,
     ...:                                  y_pred=predicted_labels,
     ...:                                  pos_label=positive_class),2)
     ...: recall_manual = np.round(
     ...:                     (true_positive) /
     ...:                     (true_positive + false_negative),2)
     ...: print 'Recall:', recall
     ...: print 'Manually computed recall:', recall_manual
Recall: 0.5
Manually computed recall: 0.5
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F1 score is another accuracy measure that is computed by taking the harmonic mean 
of the precision and recall and can be represented as follows:

F Score
Precision Recall

Precision Recall
1

2
=

´ ´
+

We can compute the same using the following code snippet:

In [526]: f1_score = np.round(
     ...:                 metrics.f1_score(y_true=actual_labels,
     ...:                                  y_pred=predicted_labels,
     ...:                                  pos_label=positive_class),2)
     ...: f1_score_manual = np.round(
     ...:                     (2 * precision * recall) /
     ...:                     (precision + recall),2)
     ...: print 'F1 score:', f1_score
     ...: print 'Manually computed F1 score:', f1_score_manual  
F1 score: 0.48
Manually computed F1 score: 0.47

This should give you a pretty good idea about the main metrics used most often 
when evaluating classification models. We will be measuring the performance of our 
models using the very same metrics, and you may remember seeing these metrics from 
Chapter 3, when we were building some of our taggers and parsers.

Building a Multi-Class Classification System
We have gone through all the steps necessary for building a classification system, from 
normalization to feature extraction, model building, and evaluation. In this section, we 
will be putting everything together and applying it on some real-world data to build a 
multi-class text classification system. For this, we will be using the 20 newsgroups dataset 
available for download using scikit-learn. The 20 newsgroups dataset comprises 
around 18,000 newsgroups posts spread across 20 different categories or topics, thus 
making this a 20-class classification problem! Remember the more classes, the more 
complex or difficult trying to build an accurate classifier gets. It is recommended that 
you remove the headers, footers, and quotes from the text documents to prevent the 
model from overfitting or not generalizing well due to certain specific headers or email 
addresses, so we will make sure we take care of this. We will also remove documents 
that are empty or have no content after removing these three items because it would be 
pointless to try and extract features from empty documents.

Let us start with loading the necessary dataset and defining functions for building 
the training and testing datasets:

from sklearn.datasets import fetch_20newsgroups
from sklearn.cross_validation import train_test_split

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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def get_data():
    data = fetch_20newsgroups(subset='all',
                              shuffle=True,
                              remove=('headers', 'footers', 'quotes'))
    return data

def prepare_datasets(corpus, labels, test_data_proportion=0.3):
    train_X, test_X, train_Y, test_Y = train_test_split(corpus, labels,
                                                        test_size=0.33, 
random_state=42)
    return train_X, test_X, train_Y, test_Y

def remove_empty_docs(corpus, labels):
    filtered_corpus = []
    filtered_labels = []
    for doc, label in zip(corpus, labels):
        if doc.strip():
            filtered_corpus.append(doc)
            filtered_labels.append(label)

    return filtered_corpus, filtered_labels

We can now get the data, see the total number of classes in our dataset, and split our 
data into training and test datasets using the following snippet (in case you do not have 
the data downloaded, feel free to connect to the Internet and take some time to download 
the complete corpus):

# get the data
In [529]: dataset = get_data()

# print all the classes
In [530]: print dataset.target_names
['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.
pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 
'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 
'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.
christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.
misc', 'talk.religion.misc']

# get corpus of documents and their corresponding labels
In [531]: corpus, labels = dataset.data, dataset.target
     ...: corpus, labels = remove_empty_docs(corpus, labels)

# see sample document and its label index, name
In [548]: print 'Sample document:', corpus[10]
     ...: print 'Class label:',labels[10]
     ...: print 'Actual class label:', dataset.target_names[labels[10]]
Sample document: the blood of the lamb.
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This will be a hard task, because most cultures used most animals
for blood sacrifices. It has to be something related to our current
post-modernism state. Hmm, what about used computers?

Cheers,
Kent
Class label: 19
Actual class label: talk.religion.misc

# prepare train and test datasets
In [549]: train_corpus, test_corpus, train_labels, test_labels = prepare_
datasets(corpus,
     ...:                                                      labels, test_
data_proportion=0.3)

You can see from the preceding snippet how a sample document and label looks. 
Each document has its own class label, which is one of the 20 topics it is categorized into. 
The labels obtained are numbers, but we can easily map it back to the original category 
name if needed using the preceding snippet. We also split our data into train and test 
datasets, where the test dataset is 30 percent of the total data. We will build our model on 
the training data and test its performance on the test data. In the following snippet, we 
will use the normalization module we built earlier to normalize our datasets:

from normalization import normalize_corpus

norm_train_corpus = normalize_corpus(train_corpus)
norm_test_corpus = normalize_corpus(test_corpus)  

Remember, a lot of normalization steps take place that we implemented earlier 
for each document in the corpora, so it may take some time to complete. Once we have 
normalized documents, we will use our feature extractor module built earlier to start 
extracting features from our documents. We will build models for Bag of Words, TF-IDF, 
averaged word vector, and TF-IDF weighted averaged word vector features separately and 
compare their performances.

The following snippet extracts necessary features based on the different techniques:

from feature_extractors import bow_extractor, tfidf_extractor
from feature_extractors import averaged_word_vectorizer
from feature_extractors import tfidf_weighted_averaged_word_vectorizer
import nltk
import gensim

# bag of words features
bow_vectorizer, bow_train_features = bow_extractor(norm_train_corpus)  
bow_test_features = bow_vectorizer.transform(norm_test_corpus)
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# tfidf features
tfidf_vectorizer, tfidf_train_features = tfidf_extractor(norm_train_corpus)  
tfidf_test_features = tfidf_vectorizer.transform(norm_test_corpus)    

# tokenize documents
tokenized_train = [nltk.word_tokenize(text)
                   for text in norm_train_corpus]
tokenized_test = [nltk.word_tokenize(text)
                   for text in norm_test_corpus]  
# build word2vec model                  
model = gensim.models.Word2Vec(tokenized_train,
                               size=500,
                               window=100,
                               min_count=30,
                               sample=1e-3)                  

# averaged word vector features
avg_wv_train_features = averaged_word_vectorizer(corpus=tokenized_train,
                                                 model=model,
                                                 num_features=500)                  
avg_wv_test_features = averaged_word_vectorizer(corpus=tokenized_test,
                                                model=model,
                                                num_features=500)                                                

# tfidf weighted averaged word vector features
vocab = tfidf_vectorizer.vocabulary_
tfidf_wv_train_features = 
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_train, 

tfidf_vectors=tfidf_train_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)
tfidf_wv_test_features =  
tfidf_weighted_averaged_word_vectorizer(corpus=tokenized_test,

tfidf_vectors=tfidf_test_features,

tfidf_vocabulary=vocab, model=model,

num_features=500)

Once we extract all the necessary features from our text documents using the preceding 
feature extractors, we define a function that will be useful for evaluation our classification 
models based on the four metrics discussed earlier, as shown in the following snippet:

from sklearn import metrics
import numpy as np

def get_metrics(true_labels, predicted_labels):
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    print 'Accuracy:', np.round(
                        metrics.accuracy_score(true_labels,
                                               predicted_labels),
                        2)
    print 'Precision:', np.round(
                        metrics.precision_score(true_labels,
                                               predicted_labels,
                                               average='weighted'),
                        2)
    print 'Recall:', np.round(
                        metrics.recall_score(true_labels,
                                               predicted_labels,
                                               average='weighted'),
                        2)
    print 'F1 Score:', np.round(
                        metrics.f1_score(true_labels,
                                               predicted_labels,
                                               average='weighted'),
                        2)

We now define a function that trains the model using an ML algorithm and the 
training data, performs predictions on the test data using the trained model, and then 
evaluates the predictions using the preceding function to give us the model performance:

def train_predict_evaluate_model(classifier,
                                 train_features, train_labels,
                                 test_features, test_labels):
    # build model    
    classifier.fit(train_features, train_labels)
    # predict using model
    predictions = classifier.predict(test_features)
    # evaluate model prediction performance  
    get_metrics(true_labels=test_labels,
                predicted_labels=predictions)
    return predictions

We now import two ML algorithms (discussed in detail earlier) so that we can start 
building our models with them based on our extracted features. We will be using scikit-
learn as mentioned to import the necessary classification algorithms, saving us the time 
and effort that would have been spent otherwise reinventing the wheel:

from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier

mnb = MultinomialNB()
svm = SGDClassifier(loss='hinge', n_iter=100)
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Now we will train, predict, and evaluate models for all the different types of features 
using both multinomial naïve Bayes and support vector machines using the following 
snippet:

# Multinomial Naive Bayes with bag of words features
In [558]: mnb_bow_predictions = train_predict_evaluate_model(classifier=mnb,
     ...:                                             train_features=bow_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=bow_test_

features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.67
Precision: 0.72
Recall: 0.67
F1 Score: 0.65

# Support Vector Machine with bag of words features
In [559]: svm_bow_predictions = train_predict_evaluate_model(classifier=svm,
     ...:                                             train_features=bow_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=bow_test_

features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.61
Precision: 0.66
Recall: 0.61
F1 Score: 0.62

# Multinomial Naive Bayes with tfidf features                                          
In [560]: mnb_tfidf_predictions = train_predict_evaluate_
model(classifier=mnb,
     ...:                                             train_features=tfidf_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=tfidf_

test_features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.72
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Precision: 0.78
Recall: 0.72
F1 Score: 0.7

# Support Vector Machine with tfidf features
In [561]: svm_tfidf_predictions = train_predict_evaluate_
model(classifier=svm,
     ...:                                             train_features=tfidf_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=tfidf_

test_features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.77
Precision: 0.77
Recall: 0.77
F1 Score: 0.77

# Support Vector Machine with averaged word vector features
In [562]: svm_avgwv_predictions = train_predict_evaluate_
model(classifier=svm,
     ...:                                             train_features=avg_wv_

train_features,
     ...:                                             train_labels=train_

labels,
     ...:                                             test_features=avg_wv_

test_features,
     ...:                                             test_labels=test_

labels)
Accuracy: 0.55
Precision: 0.55
Recall: 0.55
F1 Score: 0.52

# Support Vector Machine with tfidf weighted averaged word vector features
In [563]: svm_tfidfwv_predictions = train_predict_evaluate_model(classifier
=svm,                  
     ...:                        
train_features=tfidf_wv_train_features,
     ...:                        
train_labels=train_labels, test_features=tfidf_wv_test_features,
     ...:                       test_labels=test_labels)
Accuracy: 0.53
Precision: 0.55
Recall: 0.53
F1 Score: 0.52
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We built a total of six models using various types of extracted features and evaluated 
the performance of the model on the test data. From the preceding results, we can see 
that the SVM-based model built using TF-IDF features yielded the best results of 77 
percent accuracy as well as precision, recall, and F1 score. We can build the confusion 
matrix for our SVM TF-IDF–based model to get an idea of the classes for which our model 
might not be performing well:

In [597]: import pandas as pd
     ...: cm = metrics.confusion_matrix(test_labels, svm_tfidf_predictions)
     ...: pd.DataFrame(cm, index=range(0,20), columns=range(0,20))  
Out[597]:

From the confusion matrix shown in Figure 4-6, we can see a large number of 
documents for class label 0 that got misclassified to class label 15, and similarly for class 
label 18, many documents got misclassified into class label 16. Many documents for class 
label 19 got misclassified into class label 15. On printing the class label names for them, 
we can observe the following output:

In [600]: class_names = dataset.target_names
     ...: print class_names[0], '->', class_names[15]
     ...: print class_names[18], '->', class_names[16]  
     ...: print class_names[19], '->', class_names[15]
alt.atheism -> soc.religion.christian
talk.politics.misc -> talk.politics.guns
talk.religion.misc -> soc.religion.christian

From the preceding output we can see that the misclassified categories are not vastly 
different from the actual correct category. Christian, religion, and atheism are based on 
some concepts related to the existence of God and religion and possibly have similar 
features. Talks about miscellaneous issues and guns related to politics also must be 

Figure 4-6. 20-class confusion matrix for our SVM based model
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having similar features. We can further analyze and look at the misclassified documents 
in detail using the following snippet (due to space constraints I only include the first few 
misclassified documents in each case):

In [621]: import re
     ...: num = 0
     ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
     ...:     if label == 0 and predicted_label == 15:
     ...:         print 'Actual Label:', class_names[label]
     ...:         print 'Predicted Label:', class_names[predicted_label]
     ...:         print 'Document:-'
     ...:         print re.sub('\n', ' ', document)
     ...:         print
     ...:         num += 1
     ...:         if num == 4:
     ...:             break
     ...:
     ...:
Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
I would like a list of Bible contadictions from those of you who dispite 
being free from Christianity are well versed in the Bible.

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
  They spent quite a bit of time on the wording of the Constitution.  They 
picked words whose meanings implied the intent.  We have already looked in 
the dictionary to define the word.  Isn't this sufficient?   But we were 
discussing it in relation to the death penalty.  And, the Constitution need 
not define each of the words within.  Anyone who doesn't know what cruel is 
can look in the dictionary (and we did).

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
Our Lord and Savior David Keresh has risen!     He has been seen 
alive!         Spread the word!     -----------------------------
-----------------------------------------------------------------

Actual Label: alt.atheism
Predicted Label: soc.religion.christian
Document:-
  "This is your god" (from John Carpenter's "They Live," natch)  

In [623]: num = 0
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     ...: for document, label, predicted_label in zip(test_corpus, test_
labels, svm_tfidf_predictions):
     ...:     if label == 18 and predicted_label == 16:
     ...:         print 'Actual Label:', class_names[label]
     ...:         print 'Predicted Label:', class_names[predicted_label]
     ...:         print 'Document:-'
     ...:         print re.sub('\n', ' ', document)
     ...:         print
     ...:         num += 1
     ...:         if num == 4:
     ...:             break
     ...:
     ...:
Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
After the initial gun battle was over, they had 50 days to come out 
peacefully. They had their high priced lawyer, and judging by the posts here 
they had some public support. Can anyone come up with a rational explanation 
why the didn't come out (even after they negotiated coming out after the 
radio sermon) that doesn't include the Davidians wanting to commit suicide/
murder/general mayhem?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
Yesterday, the FBI was saying that at least three of the bodies had gunshot 
wounds, indicating that they were shot trying to escape the fire.  Today's 
paper quotes the medical examiner as saying that there is no evidence of 
gunshot wounds in any of the recovered bodies.  At the beginning of this 
siege, it was reported that while Koresh had a class III (machine gun) 
license, today's paper quotes the government as saying, no, they didn't have 
a license.  Today's paper reports that a number of the bodies were found 
with shoulder weapons next to them, as if they had been using them while 
dying -- which doesn't sound like the sort of action I would expect from a 
suicide.  Our government lies, as it tries to cover over its incompetence 
and negligence.  Why should I believe the FBI's claims about anything else, 
when we can see that they are LYING?  This system of government is beyond 
reform.

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
  Well, for one thing most, if not all the Dividians (depending on whether 
they could show they acted in self-defense and there were no illegal 
weapons), could have gone on with their life as they were living it. No one 
was forcing them to give up their religion or even their legal weapons. The 
Dividians had survived a change in leadership before so even if Koresch 
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himself would have been convicted and sent to jail, they still could have 
carried on.   I don't think the Dividians were insane, but I don't see a 
reason for mass suicide (if the fire was intentional set by some of the 
Dividians.) We also don't know that, if the fire was intentionally set from 
inside, was it a generally know plan or was this something only an inner 
circle knew about, or was it something two or three felt they had to do 
with or without Koresch's knowledge/blessing, etc.? I don't know much about 
Masada. Were some people throwing others over? Did mothers jump over with 
their babies in their arms?

Actual Label: talk.politics.misc
Predicted Label: talk.politics.guns
Document:-
rja@mahogany126.cray.com (Russ Anderson) writes...      The fact is that 
Koresh and his followers involved themselves   in a gun battle to control 
the Mt Carmel complex. That is not   in dispute. From what I remember of the 
trial, the authories    couldn't reasonably establish who fired first, the 
big reason   behind the aquittal. Mitchell S Todd

Thus you can see how to analyze and look at documents that have been misclassified 
and then maybe go back and tune our feature extraction methods by removing certain 
words or weighing words differently to reduce or give prominence.

This brings us to the end of our discussion and implementation of our text 
classification system. Feel free to implement more models using other innovative feature-
extraction techniques or supervised learning algorithms and compare their performance.

Applications and Uses
Text classification and categorization is used in several real-world scenarios and 
applications, including the following:

•	 News articles categorization

•	 Spam filtering

•	 Music or movie genre categorization

•	 Sentiment analysis

•	 Language detection

The possibilities with text data are indeed endless, and with a little effort you can 
apply classification to solve various problems and automate otherwise time-consuming 
operations and scenarios.
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Summary
Text classification is indeed a powerful tool, and we have covered almost all aspects 
related to it in this chapter. We started off our journey with look at the definition and 
scope of text classification. Next, we defined automated text classification as a supervised 
learning problem and looked at the various types of text classification. We also briefly 
covered some ML concepts related to the various types of algorithms. A typical text 
classification system blueprint was also defined to describe the various modules and 
steps involved when building an end-to-end text classifier. Each module in the blueprint 
was then expanded upon. Normalization was touched upon in detail in Chapter 3, and 
we built a normalization module here specially for text classification. Various feature-
extraction techniques were explored in detail, including Bag of Words, TF-IDF, and 
advanced word vectorization techniques.

You should now be clear about not only the mathematical representations and 
concepts but also ways to implement them using our code samples. Various supervised 
learning methods were discussed with focus on multinomial naïve Bayes and support vector 
machines, which work well with text data, and we looked at ways to evaluate classification 
model performance and even implemented those metrics. Finally, we put everything we 
learned together into building a robust 20-class text classification system on real data, 
evaluated various models, and analyzed model performance in detail. We wrapped up our 
discussion by looking at some areas where text classification is used frequently.

We have just scratched the surface of text analytics here with classification. We 
will be looking at more ways to analyze and derive insights from textual data in future 
chapters.

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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CHAPTER 5

Text Summarization

We have come a long way on our journey through the world of text analytics and natural 
language processing (NLP). You have seen how to process and annotate textual data to 
use it for various applications. We have also ventured into the world of machine learning 
(ML) and built our own multi-class text classification system by leveraging various 
feature-extraction techniques and supervised machine learning algorithms.

In this chapter, we will tackle a slightly different problem in the world of text analytics. 
The world is rapidly evolving with regard to technology, commerce, business, and media. 
Gone are the days when we would wait for newspapers to come to our home and be updated 
about the various events around the world. We now have the Internet and various forms of 
social media that we consume to stay updated about daily events and stay connected with 
the world as well as our friends and family. With short messages and statuses, social media 
websites like Facebook and Twitter have opened up a completely different dimension to 
sharing and consuming information. We as humans tend to have short attention spans, and 
this leads us to get bored when consuming or reading large text documents and articles. This 
brings us to text summarization, an extremely important concept in text analytics that is used 
by businesses and analytical firms to shorten and summarize huge documents of text such 
that they still retain their key essence or theme and present this summarized information to 
consumers and clients. This is analogous to an elevator pitch, where an executive summary 
can describe a process, product, service, or business while retaining the core important 
themes and values in the time it takes to ride an elevator.

Say you have a whole corpus of text documents that ranges from sentences to 
paragraphs, and you are tasked with trying to derive meaningful insights from it. At first 
glance, this may seem difficult because you do not even know what to do with these 
documents, let alone use some analytical or ML techniques on the data. A good way to 
start would be to use some unsupervised learning approaches specifically aimed at text 
summarization and information extraction. Here are a few of the things you could do with 
text documents:

•	 Extract the key influential phrases from the documents

•	 Extract various diverse concepts or topics present in the 
documents

•	 Summarize the documents to provide a gist that retains the 
important parts of the whole corpus
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This chapter will cover concepts, techniques, and practical implementations of ways 
to perform all three operations. We can describe our problem formally now, which we 
will try to solve in this chapter, along with some of the concepts related to it. Given a set of 
documents, text summarization aims to reduce a document or set of documents in a corpus 
to a summary of user-specified length such that it retains the key important concepts and 
themes from the corpus. We will also discuss other ways to summarize documents and 
extract information from them, including topic models and key phrase extraction.

In this chapter, we will talk about text summarization as well as information extraction 
from text documents, which captures and summarizes the main themes or concepts 
of the document corpus. We will start with a detailed discussion of the various types of 
summarization and information extraction techniques and discuss some concepts essential 
for understanding the practical implementations later. The chapter will also briefly cover 
some background dependencies related to text processing and feature extraction before 
moving on to each technique. We will discuss the three major concepts and techniques of 
key phrase extraction, topic models, and automated text summarization.

Text Summarization and Information Extraction
Text summarization and information extraction deal with trying to extract key important 
concepts and themes from a huge corpus of text, essentially reducing it in the process. 
Before we dive deeper into the concepts and techniques, we should first understand the 
need for text summarization. The concept of information overload is one of the prime 
reasons behind the demand for text summarization. Since print and verbal media came 
into prominence, there has been an abundance of books, articles, audio, and video. 
This began all the way back in the 3rd or 4th century B.C., when people referred to a 
huge quantity of books, as there seemed to be no end to the production of books, and 
this overload of information was often met with disapproval. The Renaissance gave us 
the invention of the printing press by Gutenberg around 1440 A.D., which led to the 
mass production of books, manuscripts, articles, and pamphlets. This greatly increased 
information overload, with scholars complaining about an excess of information, which 
was becoming extremely difficult to consume, process, and manage.

In the 20th century, advances in computers and technology ushered in the digital 
age, culminating in the Internet. The Internet opened up a whole window of possibilities 
into producing and consuming information with social media, news web sites, email, and 
instant messaging capabilities. This in turn has led to an explosive increase in the amount 
of information and to unwanted information in the form of spam, unwanted statuses, and 
tweets—and even to bots posting more unwanted content across the Web.

Information overload, then, is the presence of excess data or information, which 
consumers find difficult to process in making well-informed decisions. The overload 
occurs when the amount of information as input to the system starts exceeding the 
processing capability of the system. We as humans have limited cognitive processing 
capabilities and are also wired in such a way that we cannot spend a long time reading 
a single piece of information or data because the mind tends to wander every now and 
then. Thus when we get loaded with information, it leads to a reduction in making 
qualitative decisions.
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By now you can probably guess where I am going with this concept and why we 
need summarization and information extraction. Businesses thrive on making key and 
well-informed decisions and usually they have a huge amount of data and information. 
Getting insights from it is no piece of cake, and automating it is tough because what to 
do with all that data is often unclear. Executives rarely have time to listen to long talks 
or go through pages and pages of important information. The idea of summarization 
and information extraction is to get an idea of the key important topics and themes 
of huge documents of information and summarize them into a few lines that can be 
read, understood, and interpreted easily, thus easing the process of making well-
informed decisions in shorter time frames. We need efficient and scalable processes 
and techniques that can perform this on text data, and the most popular techniques are 
keyphrase extraction, topic modeling, and automated document summarization. The 
first two techniques are more into extracting key information in the form of concepts, 
topics, and themes from documents, thus reducing them, and the last technique is all 
about summarizing large text documents into a few lines that give the key essence or 
information which the document is trying to convey. We will cover each technique in 
detail in future sections along with practical examples but right now, we will briefly talk 
about what each technique entails and their scope:

•	 Keyphrase extraction is perhaps the simplest out of the three 
techniques. It involves extracting keywords or phrases from a text 
document or corpus that capture its main concepts or themes. 
This can be said to be a simplistic form of topic modeling. You 
might have seen keywords or phrases described in a research 
paper or even some product in an online store that describes 
the entity in a few words or phrases, capturing its main idea or 
concept.

•	 Topic modeling usually involves using statistical and 
mathematical modeling techniques to extract main topics, 
themes, or concepts from a corpus of documents. Note here the 
emphasis on corpus of documents because the more diverse set 
of documents you have, the more topics or concepts you can 
generate—unlike with a single document where you will not get 
too many topics or concepts if it talks about a singular concept. 
Topic models are also often known as probabilistic statistical 
models, which use specific statistical techniques including 
singular valued decomposition and latent dirichlet allocation 
to discover connected latent semantic structures in text data 
that yield topics and concepts. They are used extensively in text 
analytics and even bioinformatics.
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•	 Automated document summarization is the process of using a 
computer program or algorithm based on statistical and ML 
techniques to summarize a document or corpus of documents 
such that we obtain a short summary that captures all the 
essential concepts and themes of the original document or 
corpus. A wide variety of techniques for building automated 
document summarizers exist, including various extraction- and 
abstraction-based techniques. The key concept behind all these 
algorithms is to find a representative subset of the original dataset 
such that the core essence of the dataset from the semantic and 
conceptual standpoints is contained in this subset. Document 
summarization usually involves trying to extract and construct 
an executive summary from a single document. But the same 
algorithms can be extended to multiple documents, though 
usually the idea is not to combine several diverse documents 
together, which would defeat the purpose of the algorithm. The 
same concept is not only applied in text analytics but also to 
image and video summarization.

We will discuss some important mathematical and ML concepts, text normalization, 
and feature extraction processes in the following sections, before moving to cover each 
technique in further detail.

Important Concepts
Several important mathematical and ML-based concepts will be useful later on because 
we will be basing several of our implementations on them. Some will be familiar to you, 
but I will briefly touch on them again for the sake of completeness so that you can refresh 
your memory. We will also cover some concepts from natural language processing in this 
section.

Documents
A document is usually an entity containing a whole body of text data with optional 
headers and other metadata information. A corpus usually consists of a collection of 
documents. These documents can be simple sentences or complete paragraphs of textual 
information. Tokenized corpus refers to a corpus where each document is tokenized or 
broken down into tokens, which are usually words.

Text Normalization
Text normalization is the process of cleaning, normalizing, and standardizing textual 
data with techniques like removing special symbols and characters, removing extraneous 
HTML tags, removing stopwords, correcting spellings, stemming, and lemmatization.
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Feature Extraction
Feature extraction is a process whereby we extract meaningful features or attributes 
from raw textual data for feeding it into a statistical or ML algorithm. This process is 
also known as vectorization because usually the end transformation of this process is 
numerical vectors from raw text tokens. The reason is that conventional algorithms 
work on numerical vectors and cannot work directly on raw text data. There are various 
feature-extraction methods including Bag of Words–based binary features that tell us 
whether a word or group of words exist or not in the document, Bag of Words–based 
frequency features that tell us the frequency of occurrence of a word or group of words in 
a document, and term frequency and inverse document frequency or TF-IDF–weighted 
features that take into account the term frequency and inverse document frequency when 
weighing each term. Refer to Chapter 4 for more on feature extraction.

Feature Matrix
A feature matrix usually refers to a mapping from a collection of documents to features 
where each row indicates a document and each column indicates a particular feature, 
usually a word or a set of words. We will represent collections of documents or sentences 
through feature matrices after feature extraction and we will often apply statistical and 
ML techniques on these matrices later on in our practical examples.

Singular Value Decomposition
Singular Value Decomposition (SVD) is a technique from linear algebra that is used quite 
frequently in summarization algorithms. SVD is the process of factorization of a matrix 
that is real or complex. Formally we can define SVD as follows. Consider a matrix M that 
has dimensions of m n´  where m denotes the number of rows and n denotes the 

number of columns. Mathematically the matrix M can be represented using SVD as a 
factorization such that

M U S Vm n m m m n n n
T

´ ´ ´ ´=

where we have the following decompositions:

•	 U is an m m´  unitary matrix such that U U IT
m m= ´  where I is the 

identity matrix. The columns of U indicate left singular vectors.

•	 S is a diagonal m x n matrix with positive real numbers on the 
diagonal of the matrix. This is also often also represented as a 
vector of m values that indicate the singular values.

•	 VT is a n n´  unitary matrix such that V V IT
n n= ´  where I is the 

identity matrix. The rows of V indicate right singular vectors.

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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This tells us that U and V are orthogonal. The singular values of S are particularly 
important in summarization algorithms. We will be using SVD particularly for low rank 
matrix approximation where we approximate the original matrix M with a matrix M



 such 

that this new matrix is a truncated version of the original matrix M with a rank k and can 
be represented by SVD as M USVT

 

=  where S


 is a truncated version of the original S 

matrix, which now consists of only the top k largest singular values, and the other singular 
values are represented by zero. We will be using a nice implementation from scipy to 
extract the top k singular values and also return the corresponding U, S and V matrices. 
The following code snippet we will be using is in the utils.py file:

from scipy.sparse.linalg import svds

def low_rank_svd(matrix, singular_count=2):

    u, s, vt = svds(matrix, k=singular_count)
    return u, s, vt

We will be using this implementation in topic modeling as well as document 
summarization in future sections. Figure 5-1 gives a nice depiction of the preceding 
process, which yields k singular vectors from the original SVD decomposition, and shows 
how we can get the low rank matrix approximation from the same.

You can clearly see that k singular values are retained in the low rank matrix 
approximation and how the original matrix M is decomposed into U, S, and V using SVD. 
In our computations, usually the rows of the matrix M will denote terms, and the columns 
will denote documents. This matrix, also known as the term-document matrix, is usually 
obtained after feature extraction by converting a document-term matrix into its transpose 
before applying SVD. I will try to keep the math to a minimum in the rest of the chapter 

Figure 5-1. Singular Value Decomposition with low rank matrix approximation
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unless it is absolutely essential to understand how the algorithms work. The following 
sections will briefly touch upon text normalization and feature extraction to highlight the 
techniques and methods that we will be using in this chapter.

Text Normalization
Chapter 3 covered text normalization in detail, and we built our own normalization 
module in Chapter 4. We will be reusing the same module in this chapter but will be 
adding a couple of enhancements specifically for the benefit of some of our algorithms. 
You can find all the text normalization–related code in the normalization.py file. The 
main steps performed in text normalization include the following:

 1. Sentence extraction

 2. Unescape HTML escape sequences

 3. Expand contractions

 4. Lemmatize text

 5. Remove special characters

 6. Remove stopwords

Steps 3–6 remain the same from Chapter 4, except step 5 where we substitute each 
special character with a blank space depicted by the code pattern.sub(' ', token) 
instead of the empty string in Chapter 4.

Step 1 is a new function where we take in a text document, remove its newlines, 
parse the text, converting it into ASCII format, and break it down into its sentence 
constituents. The function is depicted in the following snippet:

def parse_document(document):
    document = re.sub('\n', ' ', document)
    if isinstance(document, str):
        document = document
    elif isinstance(document, unicode):
         return unicodedata.normalize('NFKD', document).encode('ascii', 

'ignore')
    else:
        raise ValueError('Document is not string or unicode!')
    document = document.strip()
    sentences = nltk.sent_tokenize(document)
    sentences = [sentence.strip() for sentence in sentences]
    return sentences

Step 2 deals with unescaping special HTML characters that are escaped or encoded. 
The full list at www.theukwebdesigncompany.com/articles/entity-escape-characters.
php basically shows how some special symbols or even regular characters are escaped 
into a different code, for example, & is escaped as &#38;. So we use the following function 
to unescape them and bring them back to their original unescaped form so we can 
normalize them properly in the subsequent stages:

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://www.theukwebdesigncompany.com/articles/entity-escape-characters.php
http://www.theukwebdesigncompany.com/articles/entity-escape-characters.php
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from HTMLParser import HTMLParser

html_parser = HTMLParser()
def unescape_html(parser, text):
    return parser.unescape(text)

We also parameterize our lemmatization operation in our final normalization 
function so as to make it optional because in some scenarios it works perfectly while in 
other scenarios we may not want to use lemmatization. The complete normalization 
function is depicted as follows:

def normalize_corpus(corpus, lemmatize=True, tokenize=False):

    normalized_corpus = []    
    for text in corpus:
        text = html_parser.unescape(text)
        text = expand_contractions(text, CONTRACTION_MAP)
        if lemmatize:
            text = lemmatize_text(text)
        else:
            text = text.lower()
        text = remove_special_characters(text)
        text = remove_stopwords(text)
        if tokenize:
            text = tokenize_text(text)
            normalized_corpus.append(text)
        else:
            normalized_corpus.append(text)

    return normalized_corpus

We will be using this function for most of our normalization needs. Refer to the 
normalization.py file for all the detailed helper functions we use for normalizing text 
which we also discussed in Chapter 4.

Feature Extraction
We will use a generic function here to perform various types of feature extraction from 
text data. The types of features which we will be working with are as follows:

•	 Binary term occurrence–based features

•	 Frequency bag of words–based features

•	 TF-IDF–weighted features

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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We will use the following function in most of our practical examples in future 
sections for feature extraction from text documents. You can also find this function in the 
utils.py module in the code files associated with this chapter:

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

def build_feature_matrix(documents, feature_type='frequency'):

    feature_type = feature_type.lower().strip()  

    if feature_type == 'binary':
        vectorizer = CountVectorizer(binary=True, min_df=1,
                                     ngram_range=(1, 1))
    elif feature_type == 'frequency':
        vectorizer = CountVectorizer(binary=False, min_df=1,
                                     ngram_range=(1, 1))
    elif feature_type == 'tfidf':
        vectorizer = TfidfVectorizer(min_df=1,
                                     ngram_range=(1, 1))
    else:
         raise Exception("Wrong feature type entered. Possible values: 

'binary', 'frequency', 'tfidf'")

    feature_matrix = vectorizer.fit_transform(documents).astype(float)

    return vectorizer, feature_matrix

Now that we have covered the necessary background concepts and dependencies 
needed for this chapter, we will be deep diving into each text summarization and 
information extraction technique in detail.

Keyphrase Extraction
One of the simplest yet most powerful techniques of extracting important information 
from unstructured text documents is keyphrase extraction. Keyphrase extraction, also 
known as terminology extraction, is defined as the process or technique of extracting 
key important and relevant terms or phrases from a body of unstructured text such that 
the core topics or themes of the text document(s) are captured in these key phrases. 
This technique falls under the broad umbrella of information retrieval and extraction. 
Keyphrase extraction finds its uses in many areas, including the following:

•	 Semantic web

•	 Query-based search engines and crawlers

•	 Recommendation systems

•	 Tagging systems
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•	 Document similarity

•	 Translation

Keyphrase extraction is often the starting point for carrying out more complex 
tasks in text analytics or NLP, and the output from this can itself act as features for more 
complex systems. There are various approaches for keyphrase extraction. We will be 
covering the following two techniques:

•	 Collocations

•	 Weighted tag–based phrase extraction

An important thing to remember here is that we will be extracting phrases that are usually 
collections of words, though sometimes that can include a single word. If you are extracting 
keywords, that is also known as keyword extraction, and it is a subset of keyphrase extraction.

Collocations
The term collocation is actually a concept borrowed from analyzing corpora and 
linguistics. A collocation is a sequence or group of words that tend to occur frequently 
such that this frequency tends to be more than what could be termed as a random or 
chance occurrence. Various types of collocations can be formed based on the parts of 
speech of the various terms like nouns, verbs, and so on. There are various ways to extract 
collocations, and one of the best is to use an n-gram grouping or segmentation approach 
where we construct n-grams out of a corpus, count the frequency of each n-gram, and rank 
them based on their frequency of occurrence to get the most frequent n-gram collocations.

The idea is to have a corpus of documents, which could be paragraphs or sentences, 
tokenize them to form sentences, flatten the list of sentences to form one large sentence 
or string, over which we slide a window of size n based on the n-gram range, and 
compute n-grams across the string. Once computed, we count each n-gram based on its 
frequency of occurrence and then rank them based on their frequency. This yields the 
most frequent collocations on the basis of frequency.

We will implement this from scratch initially so that you can understand the 
algorithm better and then we will use some of nltk's built-in capabilities to show the 
same. We will start by loading some necessary dependencies and a corpus on which we 
will be computing collocations. We will use the nltk Gutenberg corpus's book, Lewis 
Carroll’s Alice in Wonderland as our corpus. We also normalize the corpus to standardize 
the text content using our normalization module specified earlier:

from nltk.corpus import gutenberg
from normalization import normalize_corpus
import nltk
from operator import itemgetter

# load corpus
alice = gutenberg.sents(fileids='carroll-alice.txt')
alice = [' '.join(ts) for ts in alice]
norm_alice = filter(None, normalize_corpus(alice, lemmatize=False))
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# print first line
In [772]: print norm_alice[0]
alice adventures wonderland lewis carroll 1865

Now that we have loaded our corpus, we will define a function to flatten the corpus into 
one big string of text. The following function will help us do that for a corpus of documents:

def flatten_corpus(corpus):
    return ' '.join([document.strip()
                     for document in corpus])

We will define a function to compute n-grams based on some input list of tokens and 
the parameter n, which determines the degree of the n-gram like a unigram, bigram, and 
so on. The following code snippet computes n-grams for an input sequence:

def compute_ngrams(sequence, n):
    return zip(*[sequence[index:]
                 for index in range(n)])

This function basically takes in a sequence of tokens and computes a list of lists 
having sequences where each list contains all items from the previous list except the 
first item removed from the previous list. It constructs n such lists and then zips them all 
together to give us the necessary n-grams. We can see the function in action on a sample 
sequence in the following snippet:

In [802]: compute_ngrams([1,2,3,4], 2)
Out[802]: [(1, 2), (2, 3), (3, 4)]

In [803]: compute_ngrams([1,2,3,4], 3)
Out[803]: [(1, 2, 3), (2, 3, 4)]

The preceding output shows bigrams and trigrams for an input sequence. We will 
now utilize this function and build upon it to generate the top n-grams based on their 
frequency of occurrence. The following code snippet helps us in getting the top n-grams:

def get_top_ngrams(corpus, ngram_val=1, limit=5):

    corpus = flatten_corpus(corpus)
    tokens = nltk.word_tokenize(corpus)

    ngrams = compute_ngrams(tokens, ngram_val)
    ngrams_freq_dist = nltk.FreqDist(ngrams)
    sorted_ngrams_fd = sorted(ngrams_freq_dist.items(),
                              key=itemgetter(1), reverse=True)
    sorted_ngrams = sorted_ngrams_fd[0:limit]
    sorted_ngrams = [(' '.join(text), freq)
                     for text, freq in sorted_ngrams]

    return sorted_ngrams



Chapter 5 ■ text Summarization

228

We make use of nltk's FreqDist class to create a counter of all the n-grams based 
on their frequency and then we sort them based on their frequency and return the top 
n-grams based on the specified user limit. We will now compute the top bigrams and 
trigrams on our corpus using the following code snippet:

# top 10 bigrams
In [805]: get_top_ngrams(corpus=norm_alice, ngram_val=2,
     ...:                limit=10)
Out[805]:
[(u'said alice', 123),
 (u'mock turtle', 56),
 (u'march hare', 31),
 (u'said king', 29),
 (u'thought alice', 26),
 (u'said hatter', 22),
 (u'white rabbit', 22),
 (u'said mock', 20),
 (u'said gryphon', 18),
 (u'said caterpillar', 18)]

# top 10 trigrams
In [806]: get_top_ngrams(corpus=norm_alice, ngram_val=3,
     ...:                limit=10)
Out[806]:
[(u'said mock turtle', 20),
 (u'said march hare', 10),
 (u'poor little thing', 6),
 (u'white kid gloves', 5),
 (u'little golden key', 5),
 (u'march hare said', 5),
 (u'certainly said alice', 5),
 (u'mock turtle said', 5),
 (u'mouse mouse mouse', 4),
 (u'join dance join', 4)]

The preceding output shows sequences of two and three words generated by 
n-grams along with the number of times they occur throughout the corpus. We can see 
most of the collocations point to people who are speaking something as “said <person>”. 
We also see the people who are popular characters in “Alice in Wonderland” like the mock 
turtle, the king, the rabbit, the hatter, and of course Alice herself being depicted in the 
aforementioned collocations. 

We will now look at nltk’s collocation finders, which enable us to find collocations 
using various measures like raw frequencies, pointwise mutual information, and so on. 
Just to explain briefly, pointwise mutual information can be computed for two events or 
terms as the logarithm of the ratio of the probability of them occurring together by the 
product of their individual probabilities assuming that they are independent of each 
other. Mathematically we can represent it like this:
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This measure is symmetric. The following code snippet shows how to compute these 
collocations using these measures:

# bigrams
from nltk.collocations import BigramCollocationFinder
from nltk.collocations import BigramAssocMeasures

finder = BigramCollocationFinder.from_documents([item.split()
                                                for item
                                                in norm_alice])
bigram_measures = BigramAssocMeasures()
# raw frequencies
In [813]: finder.nbest(bigram_measures.raw_freq, 10)
Out[813]:
[(u'said', u'alice'),
 (u'mock', u'turtle'),
 (u'march', u'hare'),
 (u'said', u'king'),
 (u'thought', u'alice'),
 (u'said', u'hatter'),
 (u'white', u'rabbit'),
 (u'said', u'mock'),
 (u'said', u'caterpillar'),
 (u'said', u'gryphon')]
# pointwise mutual information
In [814]: finder.nbest(bigram_measures.pmi, 10)  
Out[814]: 
[(u'abide', u'figures'),
 (u'acceptance', u'elegant'),
 (u'accounting', u'tastes'),
 (u'accustomed', u'usurpation'),
 (u'act', u'crawling'),
 (u'adjourn', u'immediate'),
 (u'adoption', u'energetic'),
 (u'affair', u'trusts'),
 (u'agony', u'terror'),
 (u'alarmed', u'proposal')]

# trigrams
from nltk.collocations import TrigramCollocationFinder
from nltk.collocations import TrigramAssocMeasures

finder = TrigramCollocationFinder.from_documents([item.split()
                                                for item
                                                in norm_alice])
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trigram_measures = TrigramAssocMeasures()
# raw frequencies 
In [817]: finder.nbest(trigram_measures.raw_freq, 10)
Out[817]:
[(u'said', u'mock', u'turtle'),
 (u'said', u'march', u'hare'),
 (u'poor', u'little', u'thing'),
 (u'little', u'golden', u'key'),
 (u'march', u'hare', u'said'),
 (u'mock', u'turtle', u'said'),
 (u'white', u'kid', u'gloves'),
 (u'beau', u'ootiful', u'soo'),
 (u'certainly', u'said', u'alice'),
 (u'might', u'well', u'say')]
# pointwise mutual information
In [818]: finder.nbest(trigram_measures.pmi, 10)  
Out[818]:
[(u'accustomed', u'usurpation', u'conquest'),
 (u'adjourn', u'immediate', u'adoption'),
 (u'adoption', u'energetic', u'remedies'),
 (u'ancient', u'modern', u'seaography'),
 (u'apple', u'roast', u'turkey'),
 (u'arithmetic', u'ambition', u'distraction'),
 (u'brother', u'latin', u'grammar'),
 (u'canvas', u'bag', u'tied'),
 (u'cherry', u'tart', u'custard'),
 (u'circle', u'exact', u'shape')]

Now you know how to compute collocations for a corpus using an n-gram generative 
approach. We will now look at a better way of generating key phrases based on parts of 
speech tagging and term weighing in the next section.

Weighted Tag–Based Phrase Extraction
Here’s a slightly different approach to extracting keyphrases. This method borrows 
concepts from a couple of papers, namely K. Barker and N. Cornachhia’s “Using Noun 
Phrase Heads to Extract Document Keyphrases” and “KEA: Practical Automatic Keyphrase 
Extraction” by Ian Witten et al., which you can refer to for further details on their 
experimentations and approaches. We follow a two-step process in our algorithm here:

 1. Extract all noun phrases chunks using shallow parsing

 2. Compute TF-IDF weights for each chunk and return the top 
weighted phrases
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For the first step, we will use a simple pattern based on parts of speech (POS) tags 
to extract noun phrase chunks. You will be familiar with this from Chapter 3 where we 
explored chunking and shallow parsing. Before discussing our algorithm, let us define the 
corpus on which we will be testing our implementation. We use a sample description of 
elephants taken from Wikipedia as shown in the following code:

toy_text = """
Elephants are large mammals of the family Elephantidae
and the order Proboscidea. Two species are traditionally recognised,
the African elephant and the Asian elephant. Elephants are scattered
throughout sub-Saharan Africa, South Asia, and Southeast Asia. Male
African elephants are the largest extant terrestrial animals. All
elephants have a long trunk used for many purposes,
particularly breathing, lifting water and grasping objects. Their
incisors grow into tusks, which can serve as weapons and as tools
for moving objects and digging. Elephants' large ear flaps help
to control their body temperature. Their pillar-like legs can
carry their great weight. African elephants have larger ears
and concave backs while Asian elephants have smaller ears
and convex or level backs.  
"""

Now that we have our corpus ready, we will use the pattern, " NP: {<DT>? <JJ>* 
<NN.*>+}" for extracting all possible noun phrases from our corpus of documents/
sentences. You can always experiment with more sophisticated patterns later, 
incorporating verb, adjective, or even adverb phrases. However, I will keep things simple 
and concise here to focus on the core logic. Once we have our pattern, we will define a 
function to parse and extract these phrases using the following snippet (we also load the 
necessary dependencies at this point):

from normalization import parse_document
import itertools
import nltk
from normalization import stopword_list
from gensim import corpora, models

def get_chunks(sentences, grammar = r'NP: {<DT>? <JJ>* <NN.*>+}'):
    # build chunker based on grammar pattern
    all_chunks = []
    chunker = nltk.chunk.regexp.RegexpParser(grammar)

    for sentence in sentences:
        # POS tag sentences
        tagged_sents = nltk.pos_tag_sents(
                            [nltk.word_tokenize(sentence)])

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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        # extract chunks
        chunks = [chunker.parse(tagged_sent)
                  for tagged_sent in tagged_sents]
        # get word, pos tag, chunk tag triples              
        wtc_sents = [nltk.chunk.tree2conlltags(chunk)
                     for chunk in chunks]    

        flattened_chunks = list(
                            itertools.chain.from_iterable(
                                wtc_sent for wtc_sent in wtc_sents)
                           )
        # get valid chunks based on tags
        valid_chunks_tagged = [(status, [wtc for wtc in chunk])
                        for status, chunk
                        in itertools.groupby(flattened_chunks,
                                              lambda (word,pos,chunk): chunk 

!= 'O')]
        # append words in each chunk to make phrases
        valid_chunks = [' '.join(word.lower()
                                for word, tag, chunk
                                in wtc_group
                                    if word.lower()
                                        not in stopword_list)
                                    for status, wtc_group
                                    in valid_chunks_tagged
                                        if status]
        # append all valid chunked phrases                                    
        all_chunks.append(valid_chunks)

    return all_chunks

The comments in the preceding function are self-explanatory. Basically, we have a 
defined grammar pattern for chunking or extracting noun phrases. We define a chunker 
over the same pattern, and for each sentence in the document, we first annotate it with 
its POS tags (hence, we should not normalize the text) and then build a shallow parse tree 
with noun phrases as the chunks and all other POS tag–based words as chinks, which 
are not parts of any chunks. Once this is done, we use the tree2conlltags function to 
generate (w,t,c) triples, which are words, POS tags, and the IOB-formatted chunk tags 
discussed in Chapter 3. We remove all tags with chunk tag of 'O' since they are basically 
words or terms that do not belong to any chunk (if you remember our discussion of 
shallow parsing in Chapter 3). Finally, from these valid chunks, we combine the chunked 
terms to generate phrases from each chunk group. We can see this function in action on 
our corpus in the following snippet:

sentences = parse_document(toy_text)          
valid_chunks = get_chunks(sentences)
# print all valid chunks
In [834]: print valid_chunks
 [['elephants', 'large mammals', 'family elephantidae', 'order 
proboscidea'], ['species', 'african elephant', 'asian elephant'], 

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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['elephants', 'sub-saharan africa', 'south asia', 'southeast asia'], 
['male african elephants', 'extant terrestrial animals'], ['elephants', 
'long trunk', 'many purposes', 'breathing', 'water', 'grasping objects'], 
['incisors', 'tusks', 'weapons', 'tools', 'objects', 'digging'], 
['elephants', 'large ear flaps', 'body temperature'], ['pillar-like legs', 
'great weight'], ['african elephants', 'ears', 'backs', 'asian elephants', 
'ears', 'convex', 'level backs']]

The preceding output shows all the valid keyphrases per sentence of our document. 
You can already see, since we targeted noun phrases, all phrases talk about noun based 
entities. We will now build on top of our get_chunks() function by implementing the 
necessary logic for step 2, where we will build a TF-IDF–based model on our keyphrases 
using gensim and then compute TF-IDF–based weights for each keyphrase based on its 
occurrence in the corpus. Finally, we will sort these keyphrases based on their TF-IDF 
weights and show the top n keyphrases where n is specified by the user:

def get_tfidf_weighted_keyphrases(sentences,
                                  grammar=r'NP: {<DT>? <JJ>* <NN.*>+}',
                                  top_n=10):
    # get valid chunks
    valid_chunks = get_chunks(sentences, grammar=grammar)
    # build tf-idf based model                                
    dictionary = corpora.Dictionary(valid_chunks)
    corpus = [dictionary.doc2bow(chunk) for chunk in valid_chunks]
    tfidf = models.TfidfModel(corpus)
    corpus_tfidf = tfidf[corpus]
    # get phrases and their tf-idf weights
    weighted_phrases = {dictionary.get(id): round(value,3)
                        for doc in corpus_tfidf
                        for id, value in doc}
    weighted_phrases = sorted(weighted_phrases.items(),
                              key=itemgetter(1), reverse=True)
    # return top weighted phrases
    return weighted_phrases[:top_n]

We can now test this function on our toy corpus from before by using the following 
code snippet to generate the top ten keyphrases:

# top 10 tf-idf weighted keyphrases for toy_text
In [836]: get_tfidf_weighted_keyphrases(sentences, top_n=10)
Out[836]:
[(u'pillar-like legs', 0.707),
 (u'male african elephants', 0.707),
 (u'great weight', 0.707),
 (u'extant terrestrial animals', 0.707),
 (u'large ear flaps', 0.684),
 (u'body temperature', 0.684),
 (u'ears', 0.667),
 (u'species', 0.577),
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 (u'african elephant', 0.577),
 (u'asian elephant', 0.577)]

Interestingly we see various types of elephants being depicted in the keyphrases, 
like Asian and African elephants, and also typical attributes of elephants like "great 
weight", "large ear flaps", and "pillar like legs". Thus you can get an idea of 
how keyphrase extraction can extract key important concepts from text documents and 
summarize them. Try out these functions on other corpora to see interesting results!

Topic Modeling
We have seen how keyphrases can be extracted using a couple of techniques. Though 
these phrases point out key pivotal points from a document or corpus, it is simplistic and 
often does not portray the various themes or concepts in a corpus, particularly when we 
have different distinguishing themes or concepts in a corpus of documents. Topic models 
have been designed specifically for the purpose of extracting various distinguishing 
concepts or topics from a large corpus containing various types of documents, where 
each document talks about one or more concepts. These concepts can be anything 
from thoughts to opinions, facts, outlooks, statements, and so on. The main aim of topic 
modeling is to use mathematical and statistical techniques to discover hidden and latent 
semantic structures in a corpus.

Topic modeling involves extracting features from document terms and using 
mathematical structures and frameworks like matrix factorization and SVD to generate 
clusters or groups of terms that are distinguishable from each other, and these cluster of 
words form topics or concepts. These concepts can be used to interpret the main themes 
of a corpus and also make semantic connections among words that co-occur together 
frequently in various documents. There are various frameworks and algorithms to build 
topic models. We will cover the following three methods:

•	 Latent semantic indexing

•	 Latent Dirichlet allocation

•	 Non-negative matrix factorization

The first two methods are quite popular and have been around a long time. The last 
technique, non-negative matrix factorization, is a very recent technique that is extremely 
effective and gives excellent results. We will leverage gensim and scikit-learn for our 
practical implementations and also look at how to build our own topic model based on 
latent semantic indexing. This will give you an idea of how these techniques work and 
also how to convert mathematical frameworks into practical implementations. We will 
use the following toy corpus initially to test our topic models:

toy_corpus = ["The fox jumps over the dog",
"The fox is very clever and quick",
"The dog is slow and lazy",
"The cat is smarter than the fox and the dog",
"Python is an excellent programming language",
"Java and Ruby are other programming languages",
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"Python and Java are very popular programming languages",
"Python programs are smaller than Java programs"]

You can see that we have eight documents in the preceding corpus: the first four 
talk about various animals, and the last four are about programming languages. Thus 
this shows that there are two distinct topics in the corpus. We generalized that using 
our brains, but the following sections will try to extract that same information using 
computational methods. Once we build some topic modeling frameworks, we will use the 
same to generate topics on real product reviews from Amazon.

Latent Semantic Indexing
Our first technique is latent semantic indexing (LSI), which has been around since the 
1970s when it was first developed as a statistical technique to correlate and find out 
semantically linked terms from corpora. LSI is not just used for text summarization 
but also in information retrieval and search. LSI uses the very popular SVD technique 
discussed earlier in the “Important Concepts” section. The main principle behind LSI is 
that similar terms tend to be used in the same context and hence tend to co-occur more. 
The term LSI comes from the fact that this technique has the ability to uncover latent 
hidden terms which correlate semantically to form topics.

We will now try to implement an LSI by leveraging gensim and extract topics from the 
toy corpus. To start, we load the necessary dependencies and normalize the toy corpus 
using the following code snippet:

from gensim import corpora, models
from normalization import normalize_corpus
import numpy as np

norm_tokenized_corpus = normalize_corpus(toy_corpus, tokenize=True)
# view the normalized tokenized corpus
In [841]: norm_tokenized_corpus
Out[841]:
[[u'fox', u'jump', u'dog'],
 [u'fox', u'clever', u'quick'],
 [u'dog', u'slow', u'lazy'],
 [u'cat', u'smarter', u'fox', u'dog'],
 [u'python', u'excellent', u'programming', u'language'],
 [u'java', u'ruby', u'programming', u'language'],
 [u'python', u'java', u'popular', u'programming', u'language'],
 [u'python', u'program', u'small', u'java', u'program']]

We now build a dictionary or vocabulary, which gensim uses to map each unique 
term into a numeric value. Once built, we convert the preceding tokenized corpus into 
a numeric Bag of Words vector representation where each term and its frequency in a 
sentence is depicted by a tuple (term, frequency), as seen in the following snippet:

# build the dictionary
dictionary = corpora.Dictionary(norm_tokenized_corpus)
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# view the dictionary mappings
In [846]: print dictionary.token2id
{u'program': 17, u'lazy': 5, u'clever': 4, u'java': 13, u'programming': 10, 
u'language': 11, u'python': 9, u'smarter': 7, u'fox': 1, u'dog': 2, u'cat': 
8, u'jump': 0, u'popular': 15, u'slow': 6, u'excellent': 12, u'quick': 3, 
u'small': 16, u'ruby': 14}

# convert tokenized documents into bag of words vectors
corpus = [dictionary.doc2bow(text) for text in norm_tokenized_corpus]
# view the converted vectorized corpus
In [849]: corpus
Out[849]: 
[[(0, 1), (1, 1), (2, 1)],
 [(1, 1), (3, 1), (4, 1)],
 [(2, 1), (5, 1), (6, 1)],
 [(1, 1), (2, 1), (7, 1), (8, 1)],
 [(9, 1), (10, 1), (11, 1), (12, 1)],
 [(10, 1), (11, 1), (13, 1), (14, 1)],
 [(9, 1), (10, 1), (11, 1), (13, 1), (15, 1)],
 [(9, 1), (13, 1), (16, 1), (17, 2)]]

We will now build a TF-IDF–weighted model over this corpus where each term in 
each document will contain its TF-IDF weight. This is analogous to feature extraction or 
vector space transformation where each document is represented by a TF-IDF vector of 
its terms, as we have done in the past. Once this is done, we build an LSI model on these 
features and take an input of the number of topics we want to generate. This number 
is based on intuition and trial and error, so feel free to play around with this parameter 
when you build topic models on corpora. We will set this parameter to 2, based on the 
number of topics we expect our toy corpus to contain:

# build tf-idf feature vectors
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]

# fix the number of topics
total_topics = 2

# build the topic model
lsi = models.LsiModel(corpus_tfidf,
                      id2word=dictionary,
                      num_topics=total_topics)

Now that our topic modeling framework is built, we can see the generated topics in 
the following code snippet:

In [855]: for index, topic in lsi.print_topics(total_topics):
     ...:     print 'Topic #'+str(index+1)
     ...:     print topic
     ...:     print  
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Topic #1
-0.459*"language" + -0.459*"programming" + -0.344*"java" + -0.344*"python" + 
-0.336*"popular" + -0.318*"excellent" + -0.318*"ruby" + -0.148*"program" + 
-0.074*"small" + -0.000*"clever"

Topic #2
0.459*"dog" + 0.459*"fox" + 0.444*"jump" + 0.322*"smarter" + 0.322*"cat" + 
0.208*"lazy" + 0.208*"slow" + 0.208*"clever" + 0.208*"quick" + -0.000*"ruby"

Let’s take a moment to understand those results. At first, ignoring the weights, 
you can see that the first topic contains terms related to programming languages and 
the second topic contains terms related to animals, which is in line with the main two 
concepts from our toy corpus mentioned earlier. If you now look at the weights, higher 
weightage and same sign exists for the terms that contribute toward each of the topics. 
The first topic has related terms with negative weights, and the second topic has related 
terms with positive weights. The sign just indicates the direction of the topic, that is, 
similar correlated terms in the topics will have the same sign or direction. The following 
function helps display the topics in a better way with or without thresholds:

def print_topics_gensim(topic_model, total_topics=1,
                        weight_threshold=0.0001,
                        display_weights=False,
                        num_terms=None):

    for index in range(total_topics):
        topic = topic_model.show_topic(index)
        topic = [(word, round(wt,2))
                 for word, wt in topic
                 if abs(wt) >= weight_threshold]
        if display_weights:
            print 'Topic #'+str(index+1)+' with weights'
            print topic[:num_terms] if num_terms else topic
        else:
            print 'Topic #'+str(index+1)+' without weights'
            tw = [term for term, wt in topic]
            print tw[:num_terms] if num_terms else tw
        print

We can try out this function on our toy corpus topic model using the following 
snippet to see how we can get the topics and play around with the parameters:

# print topics without weights
In [860]: print_topics_gensim(topic_model=lsi,
     ...:                     total_topics=total_topics,
     ...:                     num_terms=5,
     ...:                     display_weights=False)
Topic #1 without weights
[u'language', u'programming', u'java', u'python', u'popular']
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Topic #2 without weights
[u'dog', u'fox', u'jump', u'smarter', u'cat']

# print topics with their weights
In [861]: print_topics_gensim(topic_model=lsi,
     ...:                     total_topics=total_topics,
     ...:                     num_terms=5,
     ...:                     display_weights=True)
Topic #1 with weights
[(u'language', -0.46), (u'programming', -0.46), (u'java', -0.34), 
(u'python', -0.34), (u'popular', -0.34)]

Topic #2 with weights
[(u'dog', 0.46), (u'fox', 0.46), (u'jump', 0.44), (u'smarter', 0.32), 
(u'cat', 0.32)]

We have successfully built a topic modeling framework using LSI that can distinguish 
and show topics from a corpus of documents. Now we will use SVD to build our own LSI 
topic model framework from the ground up using the mathematical concepts discussed 
at the beginning of this chapter. We will start by building a TF-IDF feature matrix, which 
is actually a document-term matrix (if you remember from our classification exercise in 
Chapter 4). We will transpose this to form a term-document matrix before computing 
SVD using the following snippet. Besides this, we also fix the number of topics we want 
to generate and extract the term names from the features so we can map them with their 
weights:

from utils import build_feature_matrix, low_rank_svd

# build the term document tf-idf weighted matrix
norm_corpus = normalize_corpus(toy_corpus)
vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
                                    feature_type='tfidf')
td_matrix = tfidf_matrix.transpose()                    
td_matrix = td_matrix.multiply(td_matrix > 0)

# fix total topics and get the terms used in the term-document matrix
total_topics = 2
feature_names = vectorizer.get_feature_names()

Once this is done, we compute the SVD for our term-document matrix using our low_
rank_svd() function such that we build a low ranked matrix approximation taking only the 
top k singular vectors, which will be equal to our number of topics in this case. Using the 
S and U components, we multiply them together to generate each term and its weightage 
per topic giving us the necessary weights per topic similar to what you saw earlier:

u, s, vt = low_rank_svd(td_matrix, singular_count=total_topics)
weights = u.transpose() * s[:, None]

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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Now that we have our term weights, we need to connect them back to our terms. We 
define two utility functions for generating these topics by connecting the terms with their 
weights and then printing these topics using a function with configurable parameters:

# get topics with their terms and weights
def get_topics_terms_weights(weights, feature_names):
    feature_names = np.array(feature_names)
    sorted_indices = np.array([list(row[::-1])
                           for row
                           in np.argsort(np.abs(weights))])
    sorted_weights = np.array([list(wt[index])
                               for wt, index
                               in zip(weights,sorted_indices)])
    sorted_terms = np.array([list(feature_names[row])
                             for row
                             in sorted_indices])

    topics = [np.vstack((terms.T,
                     term_weights.T)).T
              for terms, term_weights
              in zip(sorted_terms, sorted_weights)]    

    return topics            

# print all the topics from a corpus                      
def print_topics_udf(topics, total_topics=1,
                     weight_threshold=0.0001,
                     display_weights=False,
                     num_terms=None):

    for index in range(total_topics):
        topic = topics[index]
        topic = [(term, float(wt))
                 for term, wt in topic]
        topic = [(word, round(wt,2))
                 for word, wt in topic
                 if abs(wt) >= weight_threshold]

        if display_weights:
            print 'Topic #'+str(index+1)+' with weights'
            print topic[:num_terms] if num_terms else topic
        else:
            print 'Topic #'+str(index+1)+' without weights'
            tw = [term for term, wt in topic]
            print tw[:num_terms] if num_terms else tw
        print
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We are now ready to see our function in action. The following snippet utilizes the 
previously defined functions to generate topics using our LSI implementation using SVD 
by connecting the terms with their weights for each topic:

In [871]: topics = get_topics_terms_weights(weights, feature_names)        
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  weight_threshold=0,
     ...:                  display_weights=True)
Topic #1 with weights
[(u'dog', 0.72), (u'fox', 0.72), (u'jump', 0.43), (u'smarter', 0.34), 
(u'cat', 0.34), (u'slow', 0.23), (u'lazy', 0.23), (u'quick', 0.23), 
(u'clever', 0.23), (u'program', 0.0), (u'java', 0.0), (u'excellent', -0.0), 
(u'small', 0.0), (u'popular', 0.0), (u'python', 0.0), (u'programming', 
-0.0), (u'language', -0.0), (u'ruby', 0.0)]

Topic #2 with weights
[(u'programming', -0.73), (u'language', -0.73), (u'python', -0.56), 
(u'java', -0.56), (u'popular', -0.34), (u'ruby', -0.33), (u'excellent', 
-0.33), (u'program', -0.21), (u'small', -0.11), (u'fox', 0.0), (u'dog', 
0.0), (u'jump', 0.0), (u'clever', 0.0), (u'quick', 0.0), (u'lazy', 0.0), 
(u'slow', 0.0), (u'smarter', 0.0), (u'cat', 0.0)]

From the preceding output we see that both topics have all the terms, but notice 
the weights more minutely. Do you see any difference? Of course, the terms in topic one 
related to programming have zero value, indicating they do not contribute to the topic at 
all. Let us put a proper threshold and get only the relevant terms per topic as follows:

# applying a scoring threshold
In [874]: topics = get_topics_terms_weights(weights, feature_names)        
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  weight_threshold=0.15,
     ...:                  display_weights=True)
Topic #1 with weights
[(u'dog', 0.72), (u'fox', 0.72), (u'jump', 0.43), (u'smarter', 0.34), 
(u'cat', 0.34), (u'slow', 0.23), (u'lazy', 0.23), (u'quick', 0.23), 
(u'clever', 0.23)]

Topic #2 with weights
[(u'programming', -0.73), (u'language', -0.73), (u'python', -0.56), 
(u'java', -0.56), (u'popular', -0.34), (u'ruby', -0.33), (u'excellent', 
-0.33), (u'program', -0.21)]

 In [875]: topics = get_topics_terms_weights(weights, feature_names)        
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  weight_threshold=0.15,
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     ...:                  display_weights=False)
Topic #1 without weights
[u'dog', u'fox', u'jump', u'smarter', u'cat', u'slow', u'lazy', u'quick', 
u'clever']

Topic #2 without weights
[u'programming', u'language', u'python', u'java', u'popular', u'ruby', 
u'excellent', u'program']

This gives us much better depiction of the topics, similar to the ones obtained 
earlier, where each topic clearly has distinguishable concepts from the other. Thus you 
can see how simple matrix computations helped us in implementing a powerful topic 
model framework! We define the following function as a generic reusable topic modeling 
framework using LSI:

def train_lsi_model_gensim(corpus, total_topics=2):

    norm_tokenized_corpus = normalize_corpus(corpus, tokenize=True)
    dictionary = corpora.Dictionary(norm_tokenized_corpus)
    mapped_corpus = [dictionary.doc2bow(text)
                     for text in norm_tokenized_corpus]
    tfidf = models.TfidfModel(mapped_corpus)
    corpus_tfidf = tfidf[mapped_corpus]
    lsi = models.LsiModel(corpus_tfidf,
                          id2word=dictionary,
                          num_topics=total_topics)
    return lsi

We will use the preceding function later to extract topics from product reviews. Let us 
now look at the next technique to build topic models using latent Dirichlet allocation.

Latent Dirichlet Allocation
The latent Dirichlet allocation (LDA) technique is a generative probabilistic model where 
each document is assumed to have a combination of topics similar to a probabilistic 
latent semantic indexing model—but in this case, the latent topics contain a Dirichlet 
prior over them. The math behind in this technique is pretty involved, so I will try 
to summarize it because going it specific detail would be out of the current scope. I 
recommend readers to go through this excellent talk by Christine Doig available at 
http://chdoig.github.io/pygotham-topic-modeling/#/, from which we will be 
borrowing some excellent pictorial representations. The plate notation for the LDA model 
is depicted in Figure 5-2.

http://chdoig.github.io/pygotham-topic-modeling/#/
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Figure 5-3 shows a good representation of how each of the parameters connects back 
to the text documents and terms. It is assumed that we have M documents, N number of 
words in the documents, and K total number of topics we want to generate.

Figure 5-2. LDA plate notation (courtesy of C. Doig, Introduction to Topic Modeling in 
Python)

Figure 5-3. End-to-end LDA framework (courtesy of C. Doig, Introduction to Topic 
Modeling in Python)
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The black box in the figure represents the core algorithm that makes use of the previously 
mentioned parameters to extract K topics from the documents. The following steps give a very 
simplistic explanation of what happens in the algorithm for everyone's benefit:

 1. Initialize the necessary parameters.

 2. For each document, randomly initialize each word to one of 
the K topics.

 3. Start an iterative process as follows and repeat it several times.

 4. For each document D:

 a. For each word W in document:

•	 For each topic T:

•	 Compute P T D|( ) , which is proportion of words in  

D assigned to topic T.

•	 Compute P W T|( ) , which is proportion of 

assignments to topic T over all documents having 
the word W.

•	 Reassign word W with topic T with probability 
P T D P W T| |( )´ ( )  considering all other words and 

their topic assignments.

Once this runs for several iterations, we should have topic mixtures for each document 
and then generate the constituents of each topic from the terms that point to that topic. We 
use gensim in the following implementation to build an LDA-based topic model:

def train_lda_model_gensim(corpus, total_topics=2):

    norm_tokenized_corpus = normalize_corpus(corpus, tokenize=True)
    dictionary = corpora.Dictionary(norm_tokenized_corpus)
    mapped_corpus = [dictionary.doc2bow(text)
                     for text in norm_tokenized_corpus]
    tfidf = models.TfidfModel(mapped_corpus)
    corpus_tfidf = tfidf[mapped_corpus]
    lda = models.LdaModel(corpus_tfidf,
                          id2word=dictionary,
                          iterations=1000,
                          num_topics=total_topics)
    return lda  

# use the function to generate topics on toy corpus
In [922]: lda_gensim = train_lda_model_gensim(toy_corpus,
     ...:                                     total_topics=2)
     ...:
     ...: print_topics_gensim(topic_model=lda_gensim,
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     ...:                     total_topics=2,
     ...:                     num_terms=5,
     ...:                     display_weights=True)  
Topic #1 with weights
[(u'fox', 0.08), (u'dog', 0.08), (u'jump', 0.07), (u'clever', 0.07), 
(u'quick', 0.07)]

Topic #2 with weights
[(u'programming', 0.08), (u'language', 0.08), (u'java', 0.07), (u'python', 
0.07), (u'ruby', 0.07)]

You can play around with various model parameters in the LdaModel class, which 
belongs to gensim's ldamodel module. This implementation works best with a corpus 
that has many documents. We see how the concepts are quite distinguishing across the 
two topics just as before, but note in this case the weights are positive, making it easier 
to interpret than LSI. Even scikit-learn has finally included an LDA-based topic model 
implementation in its library. The following snippet makes use of the same to build an 
LDA topic model:

from sklearn.decomposition import LatentDirichletAllocation

# get tf-idf based features
norm_corpus = normalize_corpus(toy_corpus)
vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
                                    feature_type='tfidf')                    
# build LDA model
total_topics = 2
lda = LatentDirichletAllocation(n_topics=total_topics,
                                max_iter=100,
                                learning_method='online',
                                learning_offset=50.,
                                random_state=42)
lda.fit(tfidf_matrix)

# get terms and their weights
feature_names = vectorizer.get_feature_names()
weights = lda.components_

# generate topics from their terms and weights
topics = get_topics_terms_weights(weights, feature_names)

In that snippet, the LDA model is applied on the document-term TF-IDF feature 
matrix, which is decomposed into two matrices, namely a document-topic matrix and a 
topic-term matrix. We use the topic-term matrix stored in lda.components_ to retrieve 
the weights for each term per topic. Once we have these weights, we use our get_topics_
terms_weights() function from our LSI modeling to build the topics based on the 
terms and weights per topic. We can now view the topics using our print_topics_udf() 
function, which we implemented earlier:
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In [926]: topics = get_topics_terms_weights(weights, feature_names)
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  num_terms=8,
     ...:                  display_weights=True)
Topic #1 with weights
[(u'fox', 1.86), (u'dog', 1.86), (u'jump', 1.19), (u'clever', 1.12), 
(u'quick', 1.12), (u'lazy', 1.12), (u'slow', 1.12), (u'cat', 1.06)]

Topic #2 with weights
[(u'programming', 1.8), (u'language', 1.8), (u'java', 1.64), (u'python', 
1.64), (u'program', 1.3), (u'ruby', 1.11), (u'excellent', 1.11), 
(u'popular', 1.06)]

We can now see similar results for the two topics with distinguishable concepts 
where the first topic is about the animals and their characteristics from the first four 
documents and the second topic is all about programming languages and their attributes 
from the last four documents.

Non-negative Matrix Factorization
The last technique we will look at is non-negative matrix factorization (NNMF), which is 
another matrix decomposition technique similar to SVD, though NNMF operates on non-
negative matrices and works well for multivariate data. NNMF can be formally defined 
like so: Given a non-negative matrix V, the objective is to find two non-negative matrix 
factors W and H such that when they are multiplied, they can approximately reconstruct 
V. Mathematically this is represented by 

V WH»

such that all three matrices are non-negative. To get to this approximation, we usually 
use a cost function like the Euclidean distance or L2 norm between two matrices, or the 
Frobenius norm which is a slight modification of the L2 norm. This can be represented as

argmin
W H

V WH
,

1

2
2-

where we have our three non-negative matrices V, W, and H. This can be further 
simplified as follows:

1

2

2

i j
ij ijV WH

,
å -( )

This implementation is available in the NMF class in the scikit-learn 
decomposition module that we will be using in the section.
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We can build an NNMF-based topic model using the following snippet on our toy 
corpus which gives us the feature names and their weights just like in LDA:

from sklearn.decomposition import NMF
# build tf-idf document-term matrix
norm_corpus = normalize_corpus(toy_corpus)
vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
                                    feature_type='tfidf')                    
# build topic model
total_topics = 2
nmf = NMF(n_components=total_topics,
          random_state=42, alpha=.1, l1_ratio=.5)
nmf.fit(tfidf_matrix)      
# get terms and their weights
feature_names = vectorizer.get_feature_names()
weights = nmf.components_

Now that we have our terms and their weights, we can use our defined functions 
from before to print the topics as follows:

In [928]: topics = get_topics_terms_weights(weights, feature_names)
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  num_terms=None,
     ...:                  display_weights=True)
Topic #1 with weights
[(u'programming', 0.55), (u'language', 0.55), (u'python', 0.4), (u'java', 
0.4), (u'popular', 0.24), (u'ruby', 0.23), (u'excellent', 0.23), 
(u'program', 0.09), (u'small', 0.03)]

Topic #2 with weights
[(u'dog', 0.57), (u'fox', 0.57), (u'jump', 0.35), (u'smarter', 0.26), 
(u'cat', 0.26), (u'quick', 0.13), (u'slow', 0.13), (u'clever', 0.13), 
(u'lazy', 0.13)]

What we have observed is that non-negative matrix factorization works the best even 
with small corpora with few documents compared to the other methods, but again, this 
depends on the type of data you are dealing with.

Extracting Topics from Product Reviews
We will now utilize our earlier functions and build topic models using the three 
techniques on some real-world data. For this, I have extracted some reviews for a 
particular product from Amazon. Data enthusiasts can get more information about the 
source of this data from http://jmcauley.ucsd.edu/data/amazon/, which contains 
various product reviews based on product types and categories. The product of our 
interest is the very popular video game The Elder Scrolls V: Skyrim developed by Bethesda 

http://jmcauley.ucsd.edu/data/amazon/
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Softworks. It is perhaps one of the best role-playing games out there. (You can view the 
product information and its reviews on Amazon at www.amazon.com/dp/B004HYK956 if 
you are interested.) In our case, the extracted reviews are available in a CSV file named 
amazon_skyrim_reviews.csv, available along with the code files of this chapter. Let us 
first load the reviews before extracting topics:

import pandas as pd
import numpy as np
# load reviews                
CORPUS = pd.read_csv('amazon_skyrim_reviews.csv')                    
CORPUS = np.array(CORPUS['Reviews'])

# view sample review
In [946]: print CORPUS[12]
I base the value of a game on the amount of enjoyable gameplay I can get out 
of it and this one was definitely worth the price!

Now that we have our corpus of product reviews loaded, let us set the number of 
topics to 5 and extract topics using all the three techniques implemented in the earlier 
sections. The following code snippet achieves the same:

# set number of topics
total_topics = 5

# Technique 1: Latent Semantic Indexing
In [958]: lsi_gensim = train_lsi_model_gensim(CORPUS,
     ...:                                     total_topics=total_topics)
     ...: print_topics_gensim(topic_model=lsi_gensim,
     ...:                     total_topics=total_topics,
     ...:                     num_terms=10,
     ...:                     display_weights=False)
Topic #1 without weights
[u'skyrim', u'one', u'quest', u'like', u'play', u'oblivion', u'go', u'get', 
u'time', u'level']

Topic #2 without weights
[u'recommend', u'love', u'ever', u'best', u'great', u'level', u'highly', 
u'play', u'elder', u'scroll']

Topic #3 without weights
[u'recommend', u'highly', u'fun', u'love', u'ever', u'wonderful', u'best', 
u'everyone', u'series', u'scroll']

Topic #4 without weights
[u'fun', u'scroll', u'elder', u'recommend', u'highly', u'wonderful', u'fan', 
u'graphic', u'series', u'cool']

Topic #5 without weights

http://www.amazon.com/dp/B004HYK956
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[u'fun', u'love', u'elder', u'scroll', u'highly', u'5', u'dont', u'hour', 
u'series', u'hundred']

# Technique 2a: Latent Dirichlet Allocation (gensim)
In [959]: lda_gensim = train_lda_model_gensim(CORPUS,
     ...:                                     total_topics=total_topics)
     ...: print_topics_gensim(topic_model=lda_gensim,
     ...:                     total_topics=total_topics,
     ...:                     num_terms=10,
     ...:                     display_weights=False)
Topic #1 without weights
[u'quest', u'good', u'skyrim', u'love', u'make', u'best', u'time', u'go', 
u'play', u'every']

Topic #2 without weights
[u'good', u'play', u'get', u'really', u'like', u'one', u'hour', u'buy', 
u'go', u'skyrim']

Topic #3 without weights
[u'fun', u'gameplay', u'skyrim', u'best', u'want', u'time', u'one', u'play', 
u'review', u'like']

Topic #4 without weights
[u'love', u'play', u'one', u'much', u'great', u'ever', u'like', u'fun', 
u'recommend', u'level']

Topic #5 without weights
[u'great', u'long', u'love', u'scroll', u'elder', u'oblivion', u'play', 
u'month', u'never', u'skyrim']

# Technique 2b: Latent Dirichlet Allocation (scikit-learn)
In [960]: norm_corpus = normalize_corpus(CORPUS)
     ...: vectorizer, tfidf_matrix = build_feature_matrix(norm_corpus,
     ...:                                     feature_type='tfidf')
     ...: feature_names = vectorizer.get_feature_names()
     ...:
     ...:
     ...: lda = LatentDirichletAllocation(n_topics=total_topics,
     ...:                                 max_iter=100,
     ...:                                 learning_method='online',
     ...:                                 learning_offset=50.,
     ...:                                 random_state=42)
     ...: lda.fit(tfidf_matrix)
     ...: weights = lda.components_
     ...: topics = get_topics_terms_weights(weights, feature_names)
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  num_terms=10,
     ...:                  display_weights=False)
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Topic #1 without weights
[u'statrs', u'expression', u'demand', u'unnecessary', u'mining', u'12yr', 
u'able', u'snowy', u'shopkeepers', u'arpg']

Topic #2 without weights
[u'game', u'play', u'get', u'one', u'skyrim', u'great', u'like', u'time', 
u'quest', u'much']

Topic #3 without weights
[u'de', u'pagar', u'cr\xe9dito', u'momento', u'responsabilidad', u'compras', 
u'para', u'futuras', u'recomiendo', u'skyrimseguridad']

Topic #4 without weights
[u'booklet', u'proudly', u'ending', u'destiny', u'estatic', u'humungous', 
u'chirstmas', u'bloodthey', u'accolade', u'scaled']

Topic #5 without weights
[u'game', u'play', u'fun', u'good', u'buy', u'one', u'whatnot', u'titles', 
u'haveseen', u'best']

# Technique 3: Non-negative Matrix Factorization
In [961]: nmf = NMF(n_components=total_topics,
     ...:           random_state=42, alpha=.1, l1_ratio=.5)
     ...: nmf.fit(tfidf_matrix)      
     ...:
     ...: feature_names = vectorizer.get_feature_names()
     ...: weights = nmf.components_
     ...:
     ...: topics = get_topics_terms_weights(weights, feature_names)
     ...: print_topics_udf(topics=topics,
     ...:                  total_topics=total_topics,
     ...:                  num_terms=10,
     ...:                  display_weights=False)
Topic #1 without weights
[u'game', u'get', u'skyrim', u'play', u'time', u'like', u'quest', u'one', 
u'go', u'much']

Topic #2 without weights
[u'game', u'best', u'ever', u'fun', u'play', u'hour', u'great', u'rpg', 
u'definitely', u'one']

Topic #3 without weights
[u'write', u'review', u'describe', u'justice', u'word', u'game', u'simply', 
u'try', u'period', u'really']

Topic #4 without weights
[u'scroll', u'elder', u'series', u'always', u'love', u'pass', u'buy', 
u'franchise', u'game', u'best']

Topic #5 without weights
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[u'recommend', u'love', u'game', u'highly', u'great', u'play', u'wonderful', 
u'like', u'oblivion', u'would']

The preceding outputs show five topics per technique. If you observe them closely, 
you will notice that there will always be some overlap between topics, but they bring out 
distinguishing concepts from the review. We can conclude a few observations:

•	 All topic modeling techniques bring out concepts related to 
people describing this game with adjectives like wonderful, great, 
and highly recommendable.

•	 They also describe the game's genre as RPG (role-playing game) 
or ARPG (action role-playing game).

•	 Game features like gameplay and graphics are associated with 
positive words like good, great, fun, and cool.

•	 The word oblivion comes up in many of the topic models. This is 
in reference to the previous game of the Elder Scrolls series, called 
The Elder Scrolls IV: Oblivion. This is an indication of customers 
comparing this game with its predecessor in the reviews.

Go ahead and play around with these functions and the data. You might even try 
building topic models on new data sources. Remember, topic modeling often acts as 
a starting point to digging deeper into the data to uncover patterns by querying with 
specific topic concepts or even clustering and grouping text documents and analyzing 
their similarity.

Automated Document Summarization
We briefly talked about document summarization at the beginning of this chapter, 
in trying to extract the gist from a large document or corpus such that it retains the 
core essence or meaning of the corpus. The idea of document summarization is a bit 
different from keyphrase extraction or topic modeling. The end result is still in the form 
of some document, but with a few sentences based on the length we might want the 
summary to be. This is similar to having a research paper with an abstract or an executive 
summary. The main objective of automated document summarization is to perform 
this summarization without involving human inputs except for running any computer 
programs. Mathematical and statistical models help in building and automating the task 
of summarizing documents by observing their content and context.

There are mainly two broad approaches towards document summarization using 
automated techniques:
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•	 Extraction-based techniques: These methods use mathematical 
and statistical concepts like SVD to extract some key subset of 
content from the original document such that this subset of 
content contains the core information and acts as the focal point 
of the entire document. This content could be words, phrases, 
or sentences. The end result from this approach is a short 
executive summary of a couple of lines are taken or extracted 
from the original document. No new content is generated in this 
technique—hence the name extraction-based.

•	 Abstraction-based techniques: These methods are more complex 
and sophisticated and leverage language semantics to create 
representations. They also make use of NLG techniques where the 
machine uses knowledge bases and semantic representations to 
generate text on its own and creates summaries just like a human 
would write them.

Most research today exists for extraction-based techniques because it is 
comparatively harder to build abstraction-based summarizers. But some advances have 
been made in that area with regard to creating abstract summaries mimicking humans. 
Let us look at an implementation of document summarization by leveraging gensim's 
summarization module. We will be using our Wikipedia description of elephants as the 
document on which we will test all our summarization techniques. We start by loading 
the necessary dependencies and the corpus as follows:

from normalization import normalize_corpus, parse_document
from utils import build_feature_matrix, low_rank_svd
import numpy as np

toy_text = """
Elephants are large mammals of the family Elephantidae
and the order Proboscidea. Two species are traditionally recognised,
the African elephant and the Asian elephant. Elephants are scattered
throughout sub-Saharan Africa, South Asia, and Southeast Asia. Male
African elephants are the largest extant terrestrial animals. All
elephants have a long trunk used for many purposes,
particularly breathing, lifting water and grasping objects. Their
incisors grow into tusks, which can serve as weapons and as tools 
for moving objects and digging. Elephants' large ear flaps help
to control their body temperature. Their pillar-like legs can
carry their great weight. African elephants have larger ears
and concave backs while Asian elephants have smaller ears
and convex or level backs.  
"""



Chapter 5 ■ text Summarization

252

We now define a function to summarize an input document to a fraction of its 
original size, which will be taken as a user input parameter summary_ratio in the 
following function. The output will be the summarized document:

from gensim.summarization import summarize, keywords

def text_summarization_gensim(text, summary_ratio=0.5):

    summary = summarize(text, split=True, ratio=summary_ratio)
    for sentence in summary:
        print sentence

We will now parse our input document to remove the newlines and extract sentences 
and then pass the complete document to the preceding function where gensim takes care 
of normalization and summarizes the document, as shown in the following snippet:

In [978]: docs = parse_document(toy_text)
     ...: text = ' '.join(docs)
     ...: text_summarization_gensim(text, summary_ratio=0.4)
Two species are traditionally recognised,  the African elephant and the 
Asian elephant.
All  elephants have a long trunk used for many purposes,  particularly 
breathing, lifting water and grasping objects.
African elephants have larger ears  and concave backs while Asian elephants 
have smaller ears  and convex or level backs.

If you observe the preceding output and compare it with the original document, 
we had a total of nine sentences in the original document, and it has been summarize 
to a total of three sentences. But if you read the summarized document, you will see the 
core meaning and themes of the document have been retained, which include the two 
species of elephants, how they are distinguishable from each other, and their common 
characteristics. This summarization implementation from gensim is based on a popular 
algorithm called TextRank.

Now that we have seen how interesting text summarization can be, let us look at a 
couple of extraction-based summarization algorithms. We will be mainly focusing on the 
following two techniques:

•	 Latent semantic analysis

•	 TextRank

We will first explore the concepts and math behind each technique and then 
implement those using Python. Finally, we will test them on our toy document from 
before. Before we deep dive into the techniques, let us prepare our toy document by 
parsing and normalizing it as follows:

# parse and normalize document
sentences = parse_document(toy_text)
norm_sentences = normalize_corpus(sentences,lemmatize=True)
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# check total sentences in document
In [992]: total_sentences = len(norm_sentences)
     ...: print 'Total Sentences in Document:', total_sentences
Total Sentences in Document: 9

Once we have a working summarization algorithm, we will also construct a generic 
function for each technique and test it on a real product description from Wikipedia in a 
future section.

Latent Semantic Analysis
Here, we will be looking at summarizing text documents by utilizing document sentences, 
the terms in each sentence of the document, and applying SVD to them using some sort 
of feature weights like Bag of Words or TF-IDF weights. The core principle behind latent 
semantic analysis (LSA) is that in any document, there exists a latent structure among 
terms which are related contextually and hence should also be correlated in the same 
singular space. The approach we follow in our implementation is taken from the popular 
paper published in 2004 by J. Steinberger and K. Jezek, “Using latent semantic analysis in 
text summarization and summary evaluation,” which proposes some improvements over 
some excellent work done by Y. Gong and X. Liu’s “Generic Text Summarization Using 
Relevance Measure and Latent Semantic Analysis,” published in 2001. I recommend you 
to read these two papers if you are interested in learning more about this technique. 

The main idea in our implementation is to use SVD such that, if you remember the 
equation from SVD where M USVT=  such that U and V are the orthogonal matrices and S 

was the diagonal matrix, which can also be represented as a vector of the singular values. 
The original matrix can be represented as a term-document matrix, where the rows will be 
terms and each column will be a document, that is, a sentence from our document in this 
case. The values can be any type of weighting, like Bag of Words model-based frequencies, 
TF-IDFS, or binary occurrences. We will use our low_rank_svd() function to create a low 
rank matrix approximation for M based on the number of concepts k, which will be our 
number of singular values. The same k columns from matrix U will point to the term 
vectors for each of the k concepts, and in case of matrix V, the k rows based on the top k 
singular values point to sentence vectors. Once we have U, S, and VT from the SVD for the 
top k singular values based on the number of concepts k, we perform the following 
computations. Remember, the input parameters we need are the number of concepts k 
and the number of sentences n which we want the final summary to contain:

•	 Get the sentence vectors from the matrix V (k rows).

•	 Get the top k singular values from S.

•	 Apply a threshold-based approach to remove singular values that 
are less than half of the largest singular value if any exist. This is 
a heuristic, and you can play around with this value if you want. 

Mathematically, S iff S Si i= < ( )0
1

2
max .

•	 Multiply each term sentence column from V squared with its 
corresponding singular value from S also squared, to get sentence 
weights per topic.
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•	 Compute the sum of the sentence weights across the topics and 
take the square root of the final score to get the salience scores for 
each sentence in the document.

The preceding salience score computations for each sentence can be mathematically 
represented as

SS SV
i

k

i i
T=

=
å

1

where SS denotes the saliency score for each sentence by taking the dot product between 
the singular values and the sentence vectors from VT. Once we have these scores, we sort 
them in descending order, pick the top n sentences corresponding to the highest scores, 
and combine them to form our final summary based on the order in which they were 
present in the original document. Let us implement the above steps in our code using the 
following snippet:

# set the number of sentences and topics for summarized document
num_sentences = 3
num_topics = 3

# build document term matrix based on bag of words features
vec, dt_matrix = build_feature_matrix(sentences,
                                      feature_type='frequency')
# convert to term document matrix
td_matrix = dt_matrix.transpose()
td_matrix = td_matrix.multiply(td_matrix > 0)

# get low rank SVD components
u, s, vt = low_rank_svd(td_matrix, singular_count=num_topics)  

# remove singular values below threshold                                        
sv_threshold = 0.5
min_sigma_value = max(s) * sv_threshold
s[s < min_sigma_value] = 0

# compute salience scores for all sentences in document
salience_scores = np.sqrt(np.dot(np.square(s), np.square(vt)))

# print salience score for each sentence
In [996]: print np.round(salience_scores, 2)
[ 2.93  3.28  1.67  1.8   2.24  4.51  0.71  1.22  5.24]

# rank sentences based on their salience scores
top_sentence_indices = salience_scores.argsort()[-num_sentences:][::-1]
top_sentence_indices.sort()
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# view top sentence index positions
In [997]: print top_sentence_indices
[1 5 8]

# get document summary by combining above sentences
In [998]: for index in top_sentence_indices:
     ...:     print sentences[index]
Two species are traditionally recognised,  the African elephant and the 
Asian elephant.
Their  incisors grow into tusks, which can serve as weapons and as 
tools  for moving objects and digging.
African elephants have larger ears  and concave backs while Asian elephants 
have smaller ears  and convex or level backs.

You can see how a few matrix operations give us a concise and excellent summarized 
document that covers the main topics from the document about elephants. Compare 
it with the one generated earlier using gensim. Do you see some similarity between the 
summaries?

We will now build a generic reusable function for LSA using the previous algorithm 
so that we can use it on our product description document later on and you can also use 
this function on your own data:

def lsa_text_summarizer(documents, num_sentences=2,
                        num_topics=2, feature_type='frequency',
                        sv_threshold=0.5):

    vec, dt_matrix = build_feature_matrix(documents,
                                          feature_type=feature_type)

    td_matrix = dt_matrix.transpose()
    td_matrix = td_matrix.multiply(td_matrix > 0)

    u, s, vt = low_rank_svd(td_matrix, singular_count=num_topics)  
    min_sigma_value = max(s) * sv_threshold
    s[s < min_sigma_value] = 0

    salience_scores = np.sqrt(np.dot(np.square(s), np.square(vt)))
    top_sentence_indices = salience_scores.argsort()[-num_sentences:][::-1]
    top_sentence_indices.sort()

    for index in top_sentence_indices:
        print sentences[index]

This concludes our discussion on LSA, and we will move on to the next technique for 
extraction-based document summarization.
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TextRank
The TextRank summarization algorithm internally uses the popular PageRank algorithm, 
which is used by Google for ranking web sites and pages and measures their importance. 
It is used by the Google search engine when providing relevant web pages based on 
search queries. To understand TextRank better, we need to understand some of the 
concepts surrounding PageRank.

The core algorithm in PageRank is a graph-based scoring or ranking algorithm, where 
pages are scored or ranked based on their importance. Web sites and pages contain further 
links embedded in them, which link to more pages with more links, and this continues 
across the Internet. This can be represented as a graph-based model where vertices 
indicate the web pages, and edges indicate links among them. This can be used to form a 
voting or recommendation system such that when one vertex links to another one in the 
graph, it is basically casting a vote. Vertex importance is decided not only on the number 
of votes or edges but also the importance of the vertices that are connected to it and their 
importance. This helps in determining the score or rank for each vertex or page. This is 
evident from Figure 5-4, which represents a sample of pages with their importance.

In Figure 5-4, we can see that vertex denoting Page B has a higher score than Page C, 
even if it has fewer edges compared to Page C, because Page A is an important page 
which is connected to Page B. Thus we can now formally define PageRank as follows. 

Figure 5-4. PageRank scores for a simple network
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Consider a directed graph represented as G V E= ( ),  such that V represents the set of 

vertices or pages and E represents the set of edges or links, and E is a subset ofV V´ . 

Assuming we have a given page V
i
 for which we want to compute the PageRank, we can 

mathematically define it as

PR V d d
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Out V
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where for the vertex/page V
i
 we have PR(V

i
), which indicates the PageRank score, In(V

i
) 

represents the set of pages which point to this vertex/page, Out(V
i
) represents the set of 

pages which the vertex/page V
i
 points to, and d is the damping factor usually having a 

value between 0 to 1—ideally it is set to 0.85. 
Coming back to the TextRank algorithm, when summarizing a document, we will 

have sentences, keywords, or phrases as the vertices of the algorithm based on the type of 
summarization we are trying to do. We might have multiple links between these vertices, 
and the modification which we make from the original PageRank algorithm is to have a 
weight coefficient say w

ij
 between the edge connecting two vertices V

i
 and V

j
 such that 

this weight indicates the strength of this connection between them. Thus we now formally 
define the new function for computing TextRank of vertices as
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where TR indicates the weighted PageRank score for a vertex now defined as the TextRank 
for that vertex. Thus we can now formulate the algorithm and identify the main steps we 
will be following:

 1. Tokenize and extract sentences from the document to be 
summarized.

 2. Decide on the number of sentences k that we want in the final 
summary.

 3. Build document term feature matrix using weights like TF-IDF 
or Bag of Words.

 4. Compute a document similarity matrix by multiplying the 
matrix with its transpose.

 5. Use these documents (sentences in our case) as the vertices 
and the similarities between each pair of documents as the 
weight or score coefficient mentioned earlier and feed them to 
the PageRank algorithm.

 6. Get the score for each sentence.

 7. Rank the sentences based on score and return the top k 
sentences.
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The following code snippet shows how to construct the connected graph among all 
the sentences from our toy document by making use of the document similarity scores 
and the documents themselves as the vertices. We will use the networkx library to help 
us plot this graph. Remember, each document is a sentence in our case which will also be 
the vertices in the graph:

import networkx

# define number of sentences in final summary
num_sentences = 3

# construct weighted document term matrix
vec, dt_matrix = build_feature_matrix(norm_sentences,
                                      feature_type='tfidf')

# construct the document similarity matrix
similarity_matrix = (dt_matrix * dt_matrix.T)
# view the document similarity matrix
In [1011]: print np.round(similarity_matrix.todense(), 2)
[[ 1.    0.    0.03  0.05  0.03  0.    0.15  0.    0.06]
 [ 0.    1.    0.    0.07  0.    0.    0.    0.    0.11]
 [ 0.03  0.    1.    0.03  0.02  0.    0.03  0.    0.04]
 [ 0.05  0.07  0.03  1.    0.03  0.    0.04  0.    0.11]
 [ 0.03  0.    0.02  0.03  1.    0.07  0.03  0.    0.04]
 [ 0.    0.    0.    0.    0.07  1.    0.    0.    0.  ]
 [ 0.15  0.    0.03  0.04  0.03  0.    1.    0.    0.05]
 [ 0.    0.    0.    0.    0.    0.    0.    1.    0.  ]
 [ 0.06  0.11  0.04  0.11  0.04  0.    0.05  0.    1.  ]]

# build the similarity graph
similarity_graph = networkx.from_scipy_sparse_matrix(similarity_matrix)
# view the similarity graph
In [1013]: networkx.draw_networkx(similarity_graph)
Out [1013]:

In Figure 5-5, we can see how the sentences of our toy document are now linked to 
each other based on document similarities. The graph gives an idea how well connected 
some sentences are to other sentences.
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We will now compute the PageRank scores for all the sentences, rank them, and 
build our summary using the top three sentences:

# compute pagerank scores for all the sentences
scores = networkx.pagerank(similarity_graph)

# rank sentences based on their scores
ranked_sentences = sorted(((score, index)
                            for index, score
                            in scores.items()),
                          reverse=True)
# view the ranked sentences
In [1030]: ranked_sentences
Out[1030]:

Figure 5-5. Similarity graph showing connections between sentences
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[(0.11889477617125277, 8),
 (0.11456045476451866, 3),
 (0.11285293843138654, 0),
 (0.11210156056437962, 6),
 (0.11139550507847462, 4),
 (0.1111111111111111, 7),
 (0.10709498606197024, 5),
 (0.10610242758495998, 2),
 (0.10588624023194664, 1)]

# get the top sentence indices for our summary
top_sentence_indices = [ranked_sentences[index][1]
                        for index in range(num_sentences)]
top_sentence_indices.sort()

# view the top sentence indices
In [1032]: print top_sentence_indices
 [0, 3, 8]

# construct the document summary
In [1033]: for index in top_sentence_indices:
      ...:     print sentences[index]
Elephants are large mammals of the family Elephantidae  and the order 
Proboscidea.
Male  African elephants are the largest extant terrestrial animals.
African elephants have larger ears  and concave backs while Asian elephants 
have smaller ears  and convex or level backs.

We finally get our desired summary by using the TextRank algorithm. The content 
is also quite meaningful where it talks about elephants being mammals, their taxonomy, 
and how Asian and African elephants can be distinguished.

We will now define a generic function as follows to compute TextRank-based 
summaries on any document:

def textrank_text_summarizer(documents, num_sentences=2,
                             feature_type='frequency'):

    vec, dt_matrix = build_feature_matrix(norm_sentences,
                                      feature_type='tfidf')
    similarity_matrix = (dt_matrix * dt_matrix.T)

    similarity_graph = networkx.from_scipy_sparse_matrix(similarity_matrix)
    scores = networkx.pagerank(similarity_graph)  

    ranked_sentences = sorted(((score, index)
                                for index, score
                                in scores.items()),
                              reverse=True)
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    top_sentence_indices = [ranked_sentences[index][1]
                            for index in range(num_sentences)]
    top_sentence_indices.sort()

    for index in top_sentence_indices:
        print sentences[index]  

We have covered two document-summarization techniques and also built generic 
reusable functions to compute automated document summaries for any text document. 
In the following section, we will summarize a product description from a wiki page.

Summarizing a Product Description
Building on what we talked about in the product reviews from the topic modeling section, 
here we will be summarizing a description for the same product—a role-playing video 
game named The Elder Scrolls V: Skyrim. We have taken several lines from the Wikipedia 
page containing the product's detailed description. In this section, we will perform 
automated document summarization on the product description utilizing our functions 
from the previous section. We will start with loading the product description and 
normalizing the content:

# load the document
DOCUMENT = """
The Elder Scrolls V: Skyrim is an open world action role-playing video game
developed by Bethesda Game Studios and published by Bethesda Softworks.
It is the fifth installment in The Elder Scrolls series, following
The Elder Scrolls IV: Oblivion. Skyrim's main story revolves around
the player character and their effort to defeat Alduin the World-Eater,
a dragon who is prophesied to destroy the world.
The game is set two hundred years after the events of Oblivion
and takes place in the fictional province of Skyrim. The player completes 
quests
and develops the character by improving skills.
Skyrim continues the open world tradition of its predecessors by allowing the
player to travel anywhere in the game world at any time, and to
ignore or postpone the main storyline indefinitely. The player may freely roam
over the land of Skyrim, which is an open world environment consisting
of wilderness expanses, dungeons, cities, towns, fortresses and villages.
Players may navigate the game world more quickly by riding horses, 
or by utilizing a fast-travel system which allows them to warp to previously
Players have the option to develop their character. At the beginning of the game,
players create their character by selecting one of several races,
including humans, orcs, elves and anthropomorphic cat or lizard-like 
creatures,



Chapter 5 ■ text Summarization

262

and then customizing their character's appearance.discovered locations. Over the
course of the game, players improve their character's skills, which are 
numerical
representations of their ability in certain areas. There are eighteen skills
divided evenly among the three schools of combat, magic, and stealth.
Skyrim is the first entry in The Elder Scrolls to include Dragons in the game's
wilderness. Like other creatures, Dragons are generated randomly in the world
and will engage in combat.
"""

# normalize the document
In [1045]: sentences = parse_document(DOCUMENT)
      ...: norm_sentences = normalize_corpus(sentences,lemmatize=True)
      ...: print "Total Sentences:", len(norm_sentences)
Total Sentences: 13

We can see that there are a total of 13 sentences in this description. Let us now 
generate the document summaries using our functions in the following code snippet:

# LSA document summarization
In [1053]: lsa_text_summarizer(norm_sentences, num_sentences=3,
      ...:                     num_topics=5, feature_type='frequency',
      ...:                     sv_threshold=0.5)  
The Elder Scrolls V: Skyrim is an open world action role-playing video 
game  developed by Bethesda Game Studios and published by Bethesda 
Softworks.
Players may navigate the game world more quickly by riding horses,  or 
by utilizing a fast-travel system which allows them to warp to 
previously  Players have the option to develop their character.
At the beginning of the game,  players create their character by selecting 
one of several races,  including humans, orcs, elves and anthropomorphic 
cat or lizard-like creatures,  and then customizing their character's 
appearance.discovered locations.

# TextRank document summarization
In [1054]: textrank_text_summarizer(norm_sentences, num_sentences=3,
      ...:                          feature_type='tfidf')  
The Elder Scrolls V: Skyrim is an open world action role-playing video 
game  developed by Bethesda Game Studios and published by Bethesda 
Softworks.
Players may navigate the game world more quickly by riding horses,  or 
by utilizing a fast-travel system which allows them to warp to 
previously  Players have the option to develop their character.
Skyrim is the first entry in The Elder Scrolls to include Dragons in the 
game's  wilderness.
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You can see from the preceding outputs that we were successfully able to summarize 
our product description from 13 to 3 lines, and this short summary depicts the core 
essence of the product description, like the name of the game and its various features 
regarding its gameplay and characters.

This concludes our discussion on automated text summarization. I encourage you to 
try out these techniques on more documents and test it with various different parameters 
like more number of topics, different feature types like TF-IDF, Bag of Words, binary 
occurrences, and even word vectors.

Summary
In this chapter, we covered some interesting areas in NLP and text analytics with 
regard to information extraction, document summarization, and topic modeling. We 
started with an overview of the evolution of information and learned about concepts 
like information overload leading to the need for text summarization and information 
retrieval. We talked about the various ways we can extract key information from textual 
data and ways of summarizing large documents. We covered important mathematical 
concepts like SVD and low rank matrix approximation and utilized them in several of our 
algorithms. We mainly covered three approaches towards reducing information overload, 
including keyphrase extraction, topic models, and automated document summarization. 
Keyphrase extraction includes methods like collocations and weighted tagged term–
based approaches for getting keyphrases or terms from corpora. We built several topic 
modeling techniques, including latent semantic indexing, latent Dirichlet allocation, 
and the very recently implemented non-negative matrix factorization. Finally, we looked 
at two extraction-based techniques for automated document summarization: LSA and 
TextRank. We implemented each method and observed results on real-world data to 
get a good idea of how these methods worked and how effective simple mathematical 
operations can be in generating actionable insights.
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CHAPTER 6

Text Similarity and 
Clustering

Previous chapters have covered several techniques of analyzing text and extracting interesting 
insights. We have looked at supervised machine learning (ML) techniques that are used to 
classify or categorize text documents into several pre-assumed categories. Unsupervised 
techniques like topic models and document summarization have also been also covered, 
which involved trying to extract and retrieve key themes and information from large text 
documents and corpora. In this chapter, we will be looking at several other techniques and 
use-cases that leverage unsupervised learning and information retrieval concepts.

If you refresh your memory of Chapter 4, text categorization is indeed an interesting 
problem that has several applications, most notably in the classification of news articles 
and email. But one constraint in text classification is that we need some training data with 
manually labeled categories because we use supervised learning algorithms to build our 
classification model. The efforts of building this dataset are definitely not easy, because 
to build a good model, you need a sizeable amount of training data. For this, we need to 
spend time and manual effort in labeling data, building a model, and then finally using it to 
classify new documents. Can we instead make the machine do it? Yes, as a matter of fact, we 
can. This chapter specifically addresses looking at the content of text documents, analyzing 
their similarity using various measures, and clustering similar documents together.

Text data is unstructured and highly noisy. We get the benefits of well-labeled 
training data and supervised learning when performing text classification. But document 
clustering is an unsupervised learning process, where we are trying to segment and 
categorize documents into separate categories by making the machine learn about the 
various text documents, their features, similarities, and the differences among them. 
This makes document clustering more challenging, albeit interesting. Consider having 
a corpus of documents that talk about various different concepts and ideas. Humans are 
wired in such a way that we use our learning from the past and apply it to distinguish 
documents from each other. For example, the sentence The fox is smarter than the 
dog is more similar to The fox is faster than the dog than it is to Python is an excellent 
programming language. We can easily spot and intuitively figure out specific keyphrases 
like Python, fox, dog, programming, and so on, which help us determine which sentences 
or documents are more similar. But can we do that programmatically? In this chapter, 
we will focus on several concepts related to text similarity, distance metrics, and 
unsupervised ML algorithms to answer the following questions:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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•	 How do we measure similarity between documents?

•	 How can we use distance measures to find the most relevant 
documents?

•	 When is a distance measure called a metric?

•	 How do we cluster or group similar documents?

•	 Can we visualize document clusters?

Although we will be focused on trying to answer these questions, we will cover 
essential concepts and information needed to understand various techniques for 
solving these problems. We will also use some practical examples to illustrate concepts 
related to text similarity, distance metrics, and document clustering. Also, many of these 
techniques can be combined with some of the techniques we learned previously and 
vice versa. For example, concepts of text similarity using distance metrics are also used 
to build document clusters. You can also use features from topic models for measuring 
text similarity. Besides this, clustering is often a starting point to get a feel for the possible 
groups or categories that your data might consist of, or to even visualize these clusters 
or groups of similar text documents. This can then be plugged in to other systems 
like supervised classification systems, or you can even combine them both and build 
weighted classifiers. The possibilities are indeed endless!

In this chapter, we will first cover some important concepts related to distance 
measures, metrics, and unsupervised learning and brush up on text normalization and 
feature extraction. Once the basics are covered, our objective will be to understand and 
analyze term similarity, document similarity, and finally document clustering.

Important Concepts
Our main objectives in this chapter are to understand text similarity and clustering. 
Before moving on to the actual techniques and algorithms, this section will discuss some 
important concepts related to information retrieval, document similarity measures, and 
machine learning. Even though some of these concepts might be familiar to you from the 
previous chapters, all of them will be useful to us as we gradually journey through this 
chapter. Without further ado, let’s get started.

Information Retrieval (IR)
Information retrieval (IR) is the process of retrieving or fetching relevant sources of 
information from a corpus or set of entities that hold information based on some 
demand. For example, it could be a query or search that users enter in a search engine 
and then get relevant search items pertaining to their query. In fact, search engines are 
the most popular use-case or application of IR.

The relevancy of documents with information compared to the demand can 
be measured in several ways. It can include looking for specific keywords from the 
search text or using some similarity measures to see the similarity rank or score of the 
documents with respect to the entered query. This makes is quite different from string 
matching or matching regular expressions because more than often the words in a search 
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string can have different order, context, and semantics in the collection of documents 
(entities), and these words can even have multiple different resolutions or possibilities 
based on synonyms, antonyms, and negation modifiers.

Feature Engineering
Feature engineering or feature extraction is something which you know quite well by 
now. Methods like Bag of Words, TF-IDF, and word vectorization models are typically 
used to represent or model documents in the form of numeric vectors so that applying 
mathematical or machine learning techniques become much easier. You can use various 
document representations using these feature-extraction techniques or even map each 
letter or a word to a corresponding unique numeric identifier.

Similarity Measures
Similarity measures are used frequently in text similarity analysis and clustering. Any 
similarity or distance measure usually measures the degree of closeness between two 
entities, which can be any text format like documents, sentences, or even terms. This 
measure of similarity can be useful in identifying similar entities and distinguishing 
clearly different entities from each other. Similarity measures are very effective, and 
sometimes choosing the right measure can make a lot of difference in the performance 
of your final analytics system. Various scoring or ranking algorithms have also been 
invented based on these distance measures. Two main factors determine the degree of 
similarity between entities:

•	 Inherent properties or features of the entities

•	 Measure formula and properties

There are several distance measures that measure similarity, and we will be covering 
several of them in future sections. However, an important thing to remember is that all 
distance measures of similarity are not distance metrics of similarity. The excellent paper 
by A. Huang, “Similarity Measures for Text Document Clustering,” talks about this in 
detail. Consider a distance measure d and two entities (say they are documents in our 
context) x and y. The distance between x and y, which is used to determine the degree of 
similarity between them, can be represented as d(x, y), but the measure d can be called as 
a distance metric of similarity if and only if it satisfies the following four conditions:

 1. The distance measured between any two entities, say x and y, 
must be always non-negative, that is, d x y,( ) ³ 0 .

 2. The distance between two entities should always be zero if 
and only if they are both identical, that is, d x y iff x y,( ) ³ =0 .

 3. This distance measure should always be symmetric, which 
means that the distance from x to y is always the same as the 
distance from y to x. Mathematically this is represented as 
d x y d y x, ,( ) = ( ) .
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 4. This distance measure should satisfy the triangle inequality 
property, which can be mathematically represented 
d x z d x y d y z, , ,( ) £ ( )+ ( ) .

This tells us important criteria and gives us a good framework we can use to check 
whether a distance measure can be used as a distance metric for measuring similarity. I 
don’t have room here to go into more detail, but you may be interested in knowing that 
the very popular KL-divergence measure, also known as Kullback-Leibler divergence, is 
a distance measure that violates the third property, where this measure is asymmetric, 
hence it kind of does not make sense to use it as a measure of similarity for text 
documents—but otherwise, this is extremely useful in differentiating between various 
distributions and patterns.

Unsupervised Machine Learning Algorithms
Unsupervised machine learning algorithms are the family of ML algorithms that try to 
discover latent hidden structures and patterns in data from their various attributes and 
features. Besides this, several unsupervised learning algorithms are also used to reduce 
the feature space, which is often of a higher dimension to one with a lower dimension. 
The data on which these algorithms operate is essentially unlabeled data that does not 
have any pre-determined category or class. We apply these algorithms with the intent 
of finding patterns and distinguishing features that might help us in grouping various 
data points into groups or clusters. These algorithms are popularly known as clustering 
algorithms. Even the topic models covered in Chapter 5 belong to the unsupervised 
learning family of algorithms.

This concludes our discussion on the important concepts and background 
information necessary for this chapter. We will now move on to a brief coverage of text 
normalization and feature extraction, where we introduce a few things which are specific 
to this chapter.

Text Normalization
We will need to normalize our text documents and corpora as usual before we perform 
any further analyses or NLP. For this we will reuse our normalization module from 
Chapter 5 but with a few more additions specifically aimed toward this chapter. The 
complete normalization module is available in the code files for this chapter in the file 
normalization.py, but I will still be highlighting the new additions in our normalization 
module in this section for your benefit.

To start, we have updated our stopwords list with several new words that have been 
carefully selected after analyzing many corpora. The following code snippet illustrates:

stopword_list = nltk.corpus.stopwords.words('english')
stopword_list = stopword_list + ['mr', 'mrs', 'come', 'go', 'get', 'tell', 
'listen', 'one', 'two', 'three', 'four', 'five',  
'six', 'seven', 'eight',  
'nine', 'zero', 'join', 'find', 'make', 'say', 'ask',  
'tell', 'see', 'try', 'back', 'also']

http://dx.doi.org/10.1007/978-1-4842-2388-8_5
http://dx.doi.org/10.1007/978-1-4842-2388-8_5
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You can see the new additions are words that are mostly generic verbs or nouns without 
a lot of significance. This will be useful to us in feature extraction during text clustering. We 
also add a new function in our normalization pipeline, which is to only extract text tokens 
from a body of text for which we use regular expressions, as depicted in the following function:

import re

def keep_text_characters(text):
    filtered_tokens = []
    tokens = tokenize_text(text)
    for token in tokens:
        if re.search('[a-zA-Z]', token):
            filtered_tokens.append(token)
    filtered_text = ' '.join(filtered_tokens)
    return filtered_text

We add this in our final normalization function along with the other functions that 
we have reused from previous chapters, including expanding contractions, unescaping 
HTML, tokenization, removing stopwords, special characters, and lemmatization. The 
updated normalization function is shown in the following snippet:

def normalize_corpus(corpus, lemmatize=True,
                     only_text_chars=False,
                     tokenize=False):

    normalized_corpus = []    
    for text in corpus:
        text = html_parser.unescape(text)
        text = expand_contractions(text, CONTRACTION_MAP)
        if lemmatize:
            text = lemmatize_text(text)
        else:
            text = text.lower()
        text = remove_special_characters(text)
        text = remove_stopwords(text)
        if only_text_chars:
            text = keep_text_characters(text)

        if tokenize:
            text = tokenize_text(text)
            normalized_corpus.append(text)
        else:
            normalized_corpus.append(text)

    return normalized_corpus

Thus, as you can see, the preceding function is very similar to the one from Chapter 5  
with only the addition of keeping text characters using the keep_text_characters() 
function, which can be executed by setting the only_text_chars parameter to True.

http://dx.doi.org/10.1007/978-1-4842-2388-8_5
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Feature Extraction
We will also be using a feature-extraction function similar to the one used in Chapter 5. 
The code will be very similar to our previous feature extractor, except we will be adding 
some new parameters in this chapter. The function can be found in the utils.py file and 
is also shown in the following snippet:

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

def build_feature_matrix(documents, feature_type='frequency',
                         ngram_range=(1, 1), min_df=0.0, max_df=1.0):

    feature_type = feature_type.lower().strip()  

    if feature_type == 'binary':
        vectorizer = CountVectorizer(binary=True, min_df=min_df,
                                     max_df=max_df, ngram_range=ngram_range)
    elif feature_type == 'frequency':
        vectorizer = CountVectorizer(binary=False, min_df=min_df,
                                     max_df=max_df, ngram_range=ngram_range)
    elif feature_type == 'tfidf':
        vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df,
                                     ngram_range=ngram_range)
    else:
        raise Exception("Wrong feature type entered. Possible values: 
'binary', 'frequency',  
                         'tfidf'")

    feature_matrix = vectorizer.fit_transform(documents).astype(float)

    return vectorizer, feature_matrix

You can see from the function definition that we have capabilities for Bag of Words 
frequency, occurrences, and also TF-IDF–based features. The new additions in this 
function include the addition of the min_df, max_df and ngram_range parameters and 
also accepting them as optional arguments. The ngram_range is useful when we want 
to add bigrams, trigrams, and so on as additional features. The min_df parameter can 
be expressed by a threshold value within a range of [0.0, 1.0] and it will ignore terms 
as features that will have a document frequency strictly lower than the input threshold 
value. The max_df parameter can also be expressed by a threshold value within a range 
of [0.0, 1.0] and it will ignore terms as features that will have a document frequency 
strictly higher than the input threshold value. The intuition behind this would be that 
these words, if they occur in almost all the documents, tend to have little value that would 
help us in distinguishing among various types of documents. We will now deep dive into 
the various techniques for text similarity.

http://dx.doi.org/10.1007/978-1-4842-2388-8_5
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Text Similarity
The main objective of text similarity is to analyze and measure how two entities of text are 
close or far apart from each other. These entities of text can be simple tokens or terms, 
like words, or whole documents, which may include sentences or paragraphs of text. 
There are various ways of analyzing text similarity, and we can classify the intent of text 
similarity broadly into the following two areas:

•	 Lexical similarity: This involves observing the contents of the 
text documents with regard to syntax, structure, and content and 
measuring their similarity based on these parameters.

•	 Semantic similarity: This involves trying to find out the semantics, 
meaning, and context of the documents and then trying to see 
how close they are to each other. Dependency grammars and 
entity recognition are handy tools that can help in this.

Note that the most popular area is lexical similarity, because the techniques 
are more straightforward, easy to implement, and you can also cover several parts of 
semantic similarity using simple models like the Bag of Words. Usually distance metrics 
will be used to measure similarity scores between text entities, and we will be mainly 
covering the following two broad areas of text similarity:

•	 Term similarity: Here we will measure similarity between 
individual tokens or words.

•	 Document similarity: Here we will be measuring similarity 
between entire text documents.

The idea is to implement and use several distance metrics and see how we can 
measure and analyze similarity among entities that are just simple words, and then 
how things change when we measure similarity among documents that are groups of 
individual words.

Analyzing Term Similarity
We will start with analyzing term similarity—or similarity between individual word 
tokens, to be more precise. Even though this is not used a lot in practical applications, 
it can be used as an excellent starting point for understanding text similarity. Of course, 
several applications and use-cases like autocompleters, spell check, and correctors use 
some of these techniques to correct misspelled terms. Here we will be taking a couple of 
words and measuring the similarity between then using different word representations as 
well as distance metrics. The word representations we will be using are as follows:

•	 Character vectorization

•	 Bag of Characters vectorization
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For character vectorization, it is an extremely simple process of just mapping each 
character of the term to a corresponding unique number. We can do that using the 
function depicted in the following snippet:

import numpy as np

def vectorize_terms(terms):
    terms = [term.lower() for term in terms]
    terms = [np.array(list(term)) for term in terms]
    terms = [np.array([ord(char) for char in term])
                for term in terms]
    return terms

The function takes input a list of words or terms and returns the corresponding 
character vectors for the words. Bag of Characters vectorization is very similar to the Bag 
of Words model except here we compute the frequency of each character in the word. 
Sequence or word orders are not taken into account. The following function helps in 
computing this:

from scipy.stats import itemfreq

def boc_term_vectors(word_list):
    word_list = [word.lower() for word in word_list]
    unique_chars = np.unique(
                        np.hstack([list(word)
                        for word in word_list]))
    word_list_term_counts = [{char: count for char, count in 
itemfreq(list(word))}
                             for word in word_list]

    boc_vectors = [np.array([int(word_term_counts.get(char, 0))
                            for char in unique_chars])
                   for word_term_counts in word_list_term_counts]
    return list(unique_chars), boc_vectors

In that function, we take in a list of words or terms and then extract the unique 
characters from all the words. This becomes our feature list, just like we do in Bag of 
Words, where instead of characters, unique words are our features. Once we have this list 
of unique_chars, we get the count for each of the characters in each word and build our 
Bag of Characters vectors.

We can now see our previous functions in action in the following snippet. We will be 
using a total of four example terms and computing the similarity among them later on:

root = 'Believe'
term1 = 'beleive'
term2 = 'bargain'
term3 = 'Elephant'    
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terms = [root, term1, term2, term3]

# Character vectorization
vec_root, vec_term1, vec_term2, vec_term3 = vectorize_terms(terms)
# show vector representations
In [103]: print '''
     ...: root: {}
     ...: term1: {}
     ...: term2: {}
     ...: term3: {}
     ...: '''.format(vec_root, vec_term1, vec_term2, vec_term3)
root: [ 98 101 108 105 101 118 101]
term1: [ 98 101 108 101 105 118 101]
term2: [ 98  97 114 103  97 105 110]
term3: [101 108 101 112 104  97 110 116]

# Bag of characters vectorization
features, (boc_root, boc_term1, boc_term2, boc_term3) = boc_term_
vectors(terms)
# show features and vector representations
In [105]: print 'Features:', features
     ...: print '''
     ...: root: {}
     ...: term1: {}
     ...: term2: {}
     ...: term3: {}
     ...: '''.format(boc_root, boc_term1, boc_term2, boc_term3)
Features: ['a', 'b', 'e', 'g', 'h', 'i', 'l', 'n', 'p', 'r', 't', 'v']

root: [0 1 3 0 0 1 1 0 0 0 0 1]
term1: [0 1 3 0 0 1 1 0 0 0 0 1]
term2: [2 1 0 1 0 1 0 1 0 1 0 0]
term3: [1 0 2 0 1 0 1 1 1 0 1 0]

Thus you can see how we can easily transform text terms into numeric vector 
representations. We will now be using several distance metrics to compute similarity 
between the root word and the other three words mentioned in the preceding snippet. 
There are a lot of distance metrics out there that you can use to compute and measure 
similarities. We will be covering the following five metrics in this section:

•	 Hamming distance

•	 Manhattan distance

•	 Euclidean distance

•	 Levenshtein edit distance

•	 Cosine distance and similarity
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We will be looking at the concepts for each distance metric and using the power of 
numpy arrays to implement the necessary computations and mathematical formulae. 
Once we do that, we will put them in action by measuring the similarity of our example 
terms. First, though, we will set up some necessary variables storing the root term, 
the other terms with which its similarity will be measures, and their various vector 
representations using the following snippet:

root_term = root
root_vector = vec_root
root_boc_vector = boc_root

terms = [term1, term2, term3]
vector_terms = [vec_term1, vec_term2, vec_term3]
boc_vector_terms = [boc_term1, boc_term2, boc_term3]

We are now ready to start computing similarity metrics and will be using the 
preceding terms and their vector representations to measure similarities.

Hamming Distance
The Hamming distance is a very popular distance metric used frequently in information 
theory and communication systems. It is distance measured between two strings under 
the assumption that they are of equal length. Formally, it is defined as the number of 
positions that have different characters or symbols between two strings of equal length. 
Considering two terms u and v of length n, we can mathematically denote Hamming 
distance as

hd u v u v
i

n

i i,( ) = ¹( )
=
å

1

and you can also normalize it if you want by dividing the number of mismatches by the 
total length of the terms to give the normalized hamming distance, which is represented 
as

norm hd u v
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n
i

n

i i
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whereas you already know n denotes the length of the terms.
The following function computes the Hamming distance between two terms and 

also has the capability to compute the normalized distance:

def hamming_distance(u, v, norm=False):
    if u.shape != v.shape:
        raise ValueError('The vectors must have equal lengths.')
    return (u != v).sum() if not norm else (u != v).mean()
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We will now measure the Hamming distance between our root term and the other 
terms using the following code snippet:

# compute Hamming distance
In [115]: for term, vector_term in zip(terms, vector_terms):
     ...:     print 'Hamming distance between root: {} and term: {} is {}'.
format(root_term,
     ...:                      term, hamming_distance(root_vector, vector_
term, norm=False))

Hamming distance between root: Believe and term: believe is 2
Hamming distance between root: Believe and term: bargain is 6
Traceback (most recent call last):
  File "<ipython-input-115-3391bd2c4b7e>", line 4, in <module>
    hamming_distance(root_vector, vector_term, norm=False))
ValueError: The vectors must have equal lengths.

# compute normalized Hamming distance
In [117]: for term, vector_term in zip(terms, vector_terms):
     ...:     print 'Normalized Hamming distance between root: {} and term: 
{} is
     ...:                                               {}'.format(root_term, 

term,
     ...:              round(hamming_distance(root_vector, vector_term, 

norm=True), 2))

Normalized Hamming distance between root: Believe and term: believe is 0.29
Normalized Hamming distance between root: Believe and term: bargain is 0.86
Traceback (most recent call last):
  File "<ipython-input-117-7dfc67d08c3f>", line 4, in <module>
    round(hamming_distance(root_vector, vector_term, norm=True), 2))
ValueError: The vectors must have equal lengths

You can see from the preceding output that terms 'Believe' and 'believe' 
ignoring their case are most similar to each other with the Hamming distance of 2 or 0.29, 
compared to the term 'bargain' giving scores of 6 or 0.86 (here, the smaller the score, 
the more similar are the terms). The term 'Elephant' throws an exception because the 
length of that term (term3) is 8 compared to length 7 of the root term 'Believe', hence 
Hamming distance can’t be computed because the base assumption of strings being of 
equal length is violated.

Manhattan Distance
The Manhattan distance metric is similar to the Hamming distance conceptually, where 
instead of counting the number of mismatches, we subtract the difference between each 
pair of characters at each position of the two strings. Formally, Manhattan distance is 
also known as city block distance, L1 norm, taxicab metric and is defined as the distance 
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between two points in a grid based on strictly horizontal or vertical paths instead of 
the diagonal distance conventionally calculated by the Euclidean distance metric. 
Mathematically it can be denoted as

md u v u v u v
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where u and v are the two terms of length n. The same assumption of the two terms 
having equal length from Hamming distance holds good here. We can also compute the 
normalized Manhattan distance by dividing the sum of the absolute differences by the 
term length. This can be denoted by
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where n is the length of each of the terms u and v. The following function helps us in 
implementing Manhattan distance with the capability to also compute the normalized 
Manhattan distance:

def manhattan_distance(u, v, norm=False):
    if u.shape != v.shape:
        raise ValueError('The vectors must have equal lengths.')
    return abs(u - v).sum() if not norm else abs(u - v).mean()

We will now compute the Manhattan distance between our root term and the other 
terms using the previous function, as shown in the following code snippet:

# compute Manhattan distance
In [120]: for term, vector_term in zip(terms, vector_terms):
     ...:      print 'Manhattan distance between root: {} and term: {} is 

{}'.format(root_term,
     ...:                       term, manhattan_distance(root_vector,  

vector_term, norm=False))

Manhattan distance between root: Believe and term: believe is 8
Manhattan distance between root: Believe and term: bargain is 38
Traceback (most recent call last):
  File "<ipython-input-120-b228f24ad6a2>", line 4, in <module>
    manhattan_distance(root_vector, vector_term, norm=False))
ValueError: The vectors must have equal lengths.

# compute normalized Manhattan distance
In [122]: for term, vector_term in zip(terms, vector_terms):
     ...:      print 'Normalized Manhattan distance between root: {} and 

term: {} is {}'.format(root_term,
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     ...:              term,
     ...:               round(manhattan_distance(root_vector, vector_term,  

norm=True),2))
     ...:
     ...:
Normalized Manhattan distance between root: Believe and term: believe is 1.14
Normalized Manhattan distance between root: Believe and term: bargain is 5.43
Traceback (most recent call last):
  File "<ipython-input-122-d13a48d56a22>", line 4, in <module>
    round(manhattan_distance(root_vector, vector_term, norm=True),2))
ValueError: The vectors must have equal lengths.

From those results you can see that as expected, the distance between 'Believe' 
and 'believe' ignoring their case is most similar to each other, with a score of 8 or 
1.14, as compared to 'bargain', which gives a score of 38 or 5.43 (here the smaller the 
score, the more similar the words). The term 'Elephant' yields an error because it has 
a different length compared to the base term just as we noticed earlier when computing 
Hamming distances.

Euclidean Distance
We briefly mentioned the Euclidean distance when comparing it with the Manhattan 
distance in the earlier section. Formally, the Euclidean distance is also known as the 
Euclidean norm, L2 norm, or L2 distance and is defined as the shortest straight-line 
distance between two points. Mathematically this can be denoted as
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where the two points u and v are vectorized text terms in our scenario, each having 
length n. The following function helps us in computing the Euclidean distance between 
two terms:

def euclidean_distance(u, v):
    if u.shape != v.shape:
        raise ValueError('The vectors must have equal lengths.')
    distance = np.sqrt(np.sum(np.square(u - v)))
    return distance

We can now compare the Euclidean distance among our terms by using the 
preceding function as depicted in the following code snippet:

# compute Euclidean distance
In [132]: for term, vector_term in zip(terms, vector_terms):
     ...:     print 'Euclidean distance between root: {} and term: {} is 
{}'.format(root_term,
     ...:                          term, round(euclidean_distance(root_

vector, vector_term),2))
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Euclidean distance between root: Believe and term: believe is 5.66
Euclidean distance between root: Believe and term: bargain is 17.94
Traceback (most recent call last):
  File "<ipython-input-132-90a4dbe8ce60>", line 4, in <module>
    round(euclidean_distance(root_vector, vector_term),2))
ValueError: The vectors must have equal lengths.

From the preceding outputs you can see that the terms 'Believe' and 'believe' 
are the most similar with a score of 5.66 compared to 'bargain' giving us a score of 17.94, 
and 'Elephant' throws a ValueError because the base assumption that strings being 
compared should have equal lengths holds good for this distance metric also.

So far, all the distance metrics we have used work on strings or terms of the same 
length and fail when they are not of equal length. So how do we deal with this problem? 
We will now look at a couple of distance metrics that work even with strings of unequal 
length to measure similarity.

Levenshtein Edit Distance
The Levenshtein edit distance, often known as just Levenshtein distance, belongs to the 
family of edit distance–based metrics and is used to measure the distance between two 
sequence of strings based on their differences—similar to the concept behind Hamming 
distance. The Levenshtein edit distance between two terms can be defined as the 
minimum number of edits needed in the form of additions, deletions, or substitutions 
to change or convert one term to the other. These substitutions are character-based 
substitutions, where a single character can be edited in a single operation. Also, as 
mentioned before, the length of the two terms need not be equal here. Mathematically, 
we can represent the Levenshtein edit distance between two terms as ld

u, v
(|u|, |v|) such 

that u and v are our two terms where |u| and |v| are their lengths. This distance can be 
represented by the following formula
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where i and j are basically indices for the terms u and v. The third equation in the minimum 
above has a cost function denoted by Cu vi j¹  such that it has the following conditions
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and this denotes the indicator function, which depicts the cost associated with two 
characters being matched for the two terms (the equation represents the match or 
mismatch operation). The first equation in the previous minimum stands for the deletion 



Chapter 6 ■ text Similarity and CluStering

279

operation, and the second equation represents the insertion operation. The function 
ld

u, v
(i, j) thus covers all the three operations of insertion, deletion, and addition as we 

mentioned earlier and it denotes the Levenshtein distance as measured between the first 
i characters for the term u and the first j characters of the term v. There are also several 
interesting boundary conditions with regard to the Levenshtein edit distance:

•	 The minimum value that the edit distance between two terms can 
take is the difference in length of the two terms.

•	 The maximum value of the edit distance between two terms can 
be the length of the term that is larger.

•	 If the two terms are equal, the edit distance is zero.

•	 Hamming distance between two terms is an upper bound for 
Levenshtein edit distance if and only if the two terms have equal 
length.

•	 This being a distance metric also satisfies the triangle inequality 
property, discussed earlier when we talked about distance 
metrics.

There are various ways of implementing Levenshtein distance computations for 
terms. Here we will start with an example of two of our terms. Considering the root term 
'believe' and another term 'beleive' (we ignore case in our computations). The edit 
distance would be 2 because we would need the following two operations:

•	 'beleive' → 'beliive' (substitution of e to i)

•	 'beliive' → 'believe' (substitution of i to e)

To implement this, we build a matrix that will basically compute the Levenshtein 
distance between all the characters of both terms by comparing each character of the 
first term with the characters of the second term. For computation, we follow a dynamic 
programming approach to get the edit distance between the two terms based on the 
last computed value. For the given two terms, the Levenshtein edit distance matrix our 
algorithm should generate is shown in Figure 6-1.

Figure 6-1. Levenshtein edit distance matrix between terms
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You can see in Figure 6-1 that the edit distances are computed for each pair of 
characters in the terms, as mentioned earlier, and the final edit distance value highlighted 
in the figure gives us the actual edit distance between the two terms. This algorithm is 
also known as the Wagner-Fischer algorithm and is available in the paper by R. Wagner 
and M. Fischer titled “The String-to-String Correction Problem,” which you can refer to 
if you are more interested in the details. The pseudocode for the same is shown in the 
snippet below, courtesy of the paper:

function levenshtein_distance(char u[1..m], char v[1..n]):
# for all i and j, d[i,j] will hold the Levenshtein distance between the 
first i characters of  
# u and the first j characters of v, note that d has (m+1)*(n+1) values
int d[0..m, 0..n]

# set each element in d to zero
d[0..m, 0..n] := 0

# source prefixes can be transformed into empty string by dropping all 
characters
for i from 1 to m:
   d[i, 0] := i

# target prefixes can be reached from empty source prefix by inserting every 
character
for j from 1 to n:
    d[0, j] := j

# build the edit distance matrix
for j from 1 to n:
    for i from 1 to m:
        if s[i] = t[j]:
            substitutionCost := 0
        else:
            substitutionCost := 1
            d[i, j] := minimum(d[i-1, j] + 1,                   # deletion
                               d[i, j-1] + 1,                   # insertion
                               d[i-1, j-1] + substitutionCost)  # substitution

# the final value of the matrix is the edit distance between the terms
return d[m, n]

You can see from the preceding function definition pseudocode how we have 
captured the necessary formulae we used earlier to define Levenshtein edit distance.

We will now implement this pseudocode in Python. The preceding algorithm uses 
O(mn) space because it stores the entire distance matrix, but it is enough to just store the 
previous and current row of distances to get to the final result. We will do the same in our 
code but we will also store the results in a matrix so that we can visualize it in the end. The 
following function implements Levenshtein edit distance as mentioned:
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import copy
import pandas as pd

def levenshtein_edit_distance(u, v):
    # convert to lower case
    u = u.lower()
    v = v.lower()
    # base cases
    if u == v: return 0
    elif len(u) == 0: return len(v)
    elif len(v) == 0: return len(u)
    # initialize edit distance matrix
    edit_matrix = []
    # initialize two distance matrices
    du = [0] * (len(v) + 1)
    dv = [0] * (len(v) + 1)
    # du: the previous row of edit distances
    for i in range(len(du)):
        du[i] = i
    # dv : the current row of edit distances    
    for i in range(len(u)):
        dv[0] = i + 1
        # compute cost as per algorithm
        for j in range(len(v)):
            cost = 0 if u[i] == v[j] else 1
            dv[j + 1] = min(dv[j] + 1, du[j + 1] + 1, du[j] + cost)
        # assign dv to du for next iteration
        for j in range(len(du)):
            du[j] = dv[j]
        # copy dv to the edit matrix
        edit_matrix.append(copy.copy(dv))
    # compute the final edit distance and edit matrix    
    distance = dv[len(v)]
    edit_matrix = np.array(edit_matrix)
    edit_matrix = edit_matrix.T
    edit_matrix = edit_matrix[1:,]
    edit_matrix = pd.DataFrame(data=edit_matrix,
                               index=list(v),
                               columns=list(u))
    return distance, edit_matrix

That function returns both the final Levenshtein edit distance and the complete edit 
matrix between the two terms u and v, which are taken as input. Remember, we need to 
pass the terms directly in their raw string format and not their vector representations. 
Also, we do not consider case of strings here and convert them to lowercase.

The following snippet computes the Levenshtein edit distance between our example 
terms using the preceding function:
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In [223]: for term in terms:
     ...:     edit_d, edit_m = levenshtein_edit_distance(root_term, term)
     ...:      print 'Computing distance between root: {} and term: {}'. 

format(root_term,
     ...:                                                             term)
     ...:     print 'Levenshtein edit distance is {}'.format(edit_d)
     ...:     print 'The complete edit distance matrix is depicted below'
     ...:     print edit_m
     ...:     print '-'*30    

Computing distance between root: Believe and term: beleive
Levenshtein edit distance is 2
The complete edit distance matrix is depicted below
   b  e  l  i  e  v  e
b  0  1  2  3  4  5  6
e  1  0  1  2  3  4  5
l  2  1  0  1  2  3  4
e  3  2  1  1  1  2  3
i  4  3  2  1  2  2  3
v  5  4  3  2  2  2  3
e  6  5  4  3  2  3  2
------------------------------
Computing distance between root: Believe and term: bargain
Levenshtein edit distance is 6
The complete edit distance matrix is depicted below
   b  e  l  i  e  v  e
b  0  1  2  3  4  5  6
a  1  1  2  3  4  5  6
r  2  2  2  3  4  5  6
g  3  3  3  3  4  5  6
a  4  4  4  4  4  5  6
i  5  5  5  4  5  5  6
n  6  6  6  5  5  6  6
------------------------------
Computing distance between root: Believe and term: Elephant
Levenshtein edit distance is 7
The complete edit distance matrix is depicted below
   b  e  l  i  e  v  e
e  1  1  2  3  4  5  6
l  2  2  1  2  3  4  5
e  3  2  2  2  2  3  4
p  4  3  3  3  3  3  4
h  5  4  4  4  4  4  4
a  6  5  5  5  5  5  5
n  7  6  6  6  6  6  6
t  8  7  7  7  7  7  7
------------------------------
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You can see from the preceding outputs that 'Believe' and 'beleive' are the 
closest to each other, with an edit distance of 2 and the distances between 'Believe', 
'bargain', and 'Elephant' are 6, indicating a total of 6 edit operations needed. The edit 
distance matrices provide a more detailed insight into how the algorithm computes the 
distances per iteration.

Cosine Distance and Similarity
The Cosine distance is a metric that can be actually derived from the Cosine similarity and 
vice versa. Considering we have two terms such that they are represented in their 
vectorized forms, Cosine similarity gives us the measure of the cosine of the angle 
between them when they are represented as non-zero positive vectors in an inner 
product space. Thus term vectors having similar orientation will have scores closer to 1 
( cos0 ) indicating the vectors are very close to each other in the same direction (near to 
zero degree angle between them). Term vectors having a similarity score close to 0 
( cos90 ) indicate unrelated terms with a near orthogonal angle between then. Term 
vectors with a similarity score close to –1 ( cos180 ) indicate terms that are completely 
oppositely oriented to each other. Figure 6-2 illustrates this more clearly, where u and v 
are our term vectors in the vector space.

Thus you can see from the position of the vectors, the plots show more clearly how 
the vectors are close or far apart from each other, and the cosine of the angle between 
them gives us the Cosine similarity metric. Now we can formally define Cosine similarity 
as the dot product of the two term vectors u and v, divided by the product of their L2 
norms. Mathematically, we can represent the dot product between two vectors as

u v u v× = ( )cos q

where θ is the angle between u and v and u  represents the L2 norm for vector u and v  

is the L2 norm for vector v. Thus we can derive the Cosine similarity from the above 
formula as

Figure 6-2. Cosine similarity representations for term vectors



Chapter 6 ■ text Similarity and CluStering

284

cs u v
u v

u v

u v

u v

i

n

i i

i

n

i
i

n

i

, cos( ) = ( ) = ×
= =

= =

å

å å
q 1

1

2

1

2

where cs(u, v) is the Cosine similarity score between u and v. Here u
i
 and v

i
 are the 

various features or components of the two vectors, and the total number of these features 
or components is n. In our case, we will be using the Bag of Characters vectorization to 
build these term vectors, and n will be the number of unique characters across the terms 
under analysis. An important thing to note here is that the Cosine similarity score usually 
ranges from –1 to +1, but if we use the Bag of Characters–based character frequencies for 
terms or Bag of Words–based word frequencies for documents, the score will range from 0 
to 1 because the frequency vectors can never be negative, and hence the angle between 
the two vectors cannot exceed 90 . The Cosine distance is complimentary to the 
similarity score can be computed by the formula,
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where cd(u, v) denotes the Cosine distance between the term vectors u and v. The 
following function implements computation of Cosine distance based on the preceding 
formulae:

def cosine_distance(u, v):
    distance = 1.0 - (np.dot(u, v) /
                         (np.sqrt(sum(np.square(u))) * np.sqrt(sum(np.

square(v))))
                     )
    return distance

We will now test the similarity between our example terms using their Bag of 
Character representations, which we created earlier, available in the boc_root_vector 
and the boc_vector_terms variables, as depicted in the following code snippet:

In [235]: for term, boc_term in zip(terms, boc_vector_terms):
     ...:     print 'Analyzing similarity between root: {} and term: {}'. 
format(root_term,
     ...:                                                            term)
     ...:     distance = round(cosine_distance(root_boc_vector, boc_term),2)
     ...:     similarity = 1 - distance                                   
     ...:     print 'Cosine distance  is {}'.format(distance)
     ...:     print 'Cosine similarity  is {}'.format(similarity)
     ...:     print '-'*40
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Analyzing similarity between root: Believe and term: believe
Cosine distance  is -0.0
Cosine similarity  is 1.0
----------------------------------------
Analyzing similarity between root: Believe and term: bargain
Cosine distance  is 0.82
Cosine similarity  is 0.18
----------------------------------------
Analyzing similarity between root: Believe and term: Elephant
Cosine distance  is 0.39
Cosine similarity  is 0.61
----------------------------------------

These vector representations do not take order of characters into account, hence 
the similarity between the terms "Believe" and "believe" is 1.0 or a perfect 100 percent 
because it contains the same characters with the same frequency. You can see how this 
can be used in combination with a semantic dictionary like WordNet to provide correct 
spelling suggestions by suggesting semantically and syntactically correct words from 
a vocabulary when users type a misspelled word, by measuring the similarity between 
the words. You can even try our different features here instead of single character 
frequencies, like taking two characters at a time and computing their frequencies to build 
the term vectors. This takes into account some of the sequences that characters maintain 
in various terms. Try out different possibilities and compare the results! This distance 
measure works very well when measuring similarity between large documents or 
sentences, and we will see that in the next section when we discuss document similarity.

Analyzing Document Similarity
We analyzed similarity between terms using various similarity and distance metrics in 
the previous sections. We also saw how vectorization was useful so that mathematical 
computations become much easier, especially when computing distances between 
vectors. In this section, we will try to analyze similarities between documents. By now, 
you must already know that a document is defined as a body of text which can be 
comprised of sentences or paragraphs of text. For analyzing document similarity, we will 
be using our utils module to extract features from document using the build_feature_
matrix() function. We will vectorize documents using their TF-IDFs similarly to what 
we did previously when we classified text documents or summarized entire documents. 
Once we have the vector representations of the various documents, we will compute 
similarity between the documents using several distance or similarity metrics. The 
metrics we will cover in this section are as follows:

•	 Cosine similarity

•	 Hellinger-Bhattacharya distance

•	 Okapi BM25 ranking
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As usual, we will cover the concepts behind each metric, look at its mathematical 
representations and definitions, and then implement it using Python. We will also test 
our metrics on a toy corpus here with nine documents and a separate corpus with three 
documents, which will be our query documents. For each of these three documents, we 
will try to find out the most similar documents from the corpus of nine documents, which 
will act as our index. Consider this to be a mini-simulation of what happens in a search 
engine when you search with a sentence and the most relevant results are returned to you 
from its index of web pages. In our case, the queries are in the form of three documents, 
and relevant documents for each of these three will be returned from the index of nine 
documents based on similarity metrics.

We will start with loading the necessary dependencies and the corpus of documents 
on which we will be testing our various metrics, as shown in the following code snippet:

from normalization import normalize_corpus
from utils import build_feature_matrix
import numpy as np

# load the toy corpus index
toy_corpus = ['The sky is blue',
'The sky is blue and beautiful',
'Look at the bright blue sky!',
'Python is a great Programming language',
'Python and Java are popular Programming languages',
'Among Programming languages, both Python and Java are the most used in 
Analytics',
'The fox is quicker than the lazy dog',
'The dog is smarter than the fox',
'The dog, fox and cat are good friends']

# load the docs for which we will be measuring similarities
query_docs = ['The fox is definitely smarter than the dog',
            'Java is a static typed programming language unlike Python',
            'I love to relax under the beautiful blue sky!']  

From that snippet you can see that we have various documents in our corpus index 
that talk about the sky, programming languages, and animals. We also have three query 
documents for which we want to get the most relevant documents from the toy_corpus 
index, based on similarity computations. Before we start looking at metrics, we will 
normalize the documents and vectorize them by extracting their TF-IDF features, as 
shown in the following snippet:

# normalize and extract features from the toy corpus
norm_corpus = normalize_corpus(toy_corpus, lemmatize=True)
tfidf_vectorizer, tfidf_features = build_feature_matrix(norm_corpus,
                                                         feature_

type='tfidf',
                                                        ngram_range=(1, 1),
                                                         min_df=0.0, max_

df=1.0)
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# normalize and extract features from the query corpus
norm_query_docs =  normalize_corpus(query_docs, lemmatize=True)            
query_docs_tfidf = tfidf_vectorizer.transform(norm_query_docs)

Now that we have our documents normalized and vectorized with TF-IDF–based 
vector representations, we will look at how to compute similarity for each of the metrics 
we specified at the beginning of this section.

Cosine Similarity
We have seen the concepts with regards to computing Cosine similarity and also 
implemented the same for term similarity. Here, we will reuse the same concepts to 
compute the Cosine similarity scores for documents instead of terms. The document 
vectors will be the Bag of Words model–based vectors with TF-IDF values instead of 
term frequencies. We have also taken only unigrams here, but you can experiment with 
bigrams and so on as document features during the vectorization process. For each of 
the three query documents, we will compute its similarity with the nine documents in 
toy_corpus and return the n most similar documents where n is a user input parameter.

We will define a function that will take in the vectorized corpus and the document 
corpus for which we want to compute similarities. We will get the similarity scores using the 
dot product operation as before and finally we will sort them in reverse order and get the 
top n documents with the highest similarity score. The following function implements this:

def compute_cosine_similarity(doc_features, corpus_features,
                              top_n=3):
    # get document vectors
    doc_features = doc_features.toarray()[0]
    corpus_features = corpus_features.toarray()
    # compute similarities
    similarity = np.dot(doc_features,
                        corpus_features.T)
    # get docs with highest similarity scores
    top_docs = similarity.argsort()[::-1][:top_n]
    top_docs_with_score = [(index, round(similarity[index], 3))
                            for index in top_docs]
    return top_docs_with_score

In that function, corpus_features are the vectorized documents belonging to the 
toy_corpus index from which we want to retrieve similar documents. These documents 
will be retrieved on the basis of their similarity score with doc_features, which basically 
represents the vectorized document belonging to each of the query_docs, as shown in the 
following snippet:

# get Cosine similarity results for our example documents
In [243]: print 'Document Similarity Analysis using Cosine Similarity'
     ...: print '='*60
     ...: for index, doc in enumerate(query_docs):
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     ...:    
     ...:     doc_tfidf = query_docs_tfidf[index]
     ...:     top_similar_docs = compute_cosine_similarity(doc_tfidf,
     ...:                                              tfidf_features,
     ...:                                              top_n=2)
     ...:     print 'Document',index+1 ,':', doc
     ...:     print 'Top', len(top_similar_docs), 'similar docs:'
     ...:     print '-'*40
     ...:     for doc_index, sim_score in top_similar_docs:
     ...:          print 'Doc num: {} Similarity Score: {}\nDoc: {}'.

format(doc_index+1,
     ...:                                                
sim_score, toy_corpus[doc_index])  
     ...:         print '-'*40      
     ...:     print  

Document Similarity Analysis using Cosine Similarity
============================================================
Document 1 : The fox is definitely smarter than the dog
Top 2 similar docs:
----------------------------------------
Doc num: 8 Similarity Score: 1.0
Doc: The dog is smarter than the fox
----------------------------------------
Doc num: 7 Similarity Score: 0.426
Doc: The fox is quicker than the lazy dog
----------------------------------------

Document 2 : Java is a static typed programming language unlike Python
Top 2 similar docs:
----------------------------------------
Doc num: 5 Similarity Score: 0.837
Doc: Python and Java are popular Programming languages
----------------------------------------
Doc num: 6 Similarity Score: 0.661
Doc: Among Programming languages, both Python and Java are the most used in 
Analytics
----------------------------------------

Document 3 : I love to relax under the beautiful blue sky!
Top 2 similar docs:
----------------------------------------
Doc num: 2 Similarity Score: 1.0
Doc: The sky is blue and beautiful
----------------------------------------
Doc num: 1 Similarity Score: 0.72
Doc: The sky is blue
----------------------------------------
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The preceding output depicts the top two most relevant documents for each of the 
query documents based on Cosine similarity scores, and you can see that the outputs 
are quite what were expected. Documents about animals are similar to the document 
that mentions the fox and the dog; documents about Python and Java are most similar to 
the query document talking about them; and the beautiful blue sky is indeed similar to 
documents that talk about the sky being blue and beautiful! 

Also note the Cosine similarity scores in the preceding outputs, where 1.0 indicates 
perfect similarity, 0.0 indicates no similarity, and any score between them indicates some 
level of similarity based on how large that score is. For instance, in the last example, 
the main document vectors are ['sky', 'blue', 'beautiful'] and because they all 
match with the first document from the toy corpus, we get a 1.0 or 100 percent similarity 
score, and only ['sky', 'blue'] match from the second most similar document, and 
we get a 0.72 or 72 percent similarity score. And you should remember our discussion 
from earlier where I mentioned briefly that Cosine similarity using Bag of Words–based 
vectors only looks at token weights and does not consider order or sequence of the terms, 
which is quite desirable in large documents because the same content may be depicted 
in different ways, and capturing sequences there might lead to loss of information due to 
unwanted mismatches. 

We recommend using scikit-learn’s cosine_similarity() utility function, which 
you can find under the sklearn.metrics.pairwise module. It uses similar logic as our 
implementation but is much more optimized and performs well on large corpora of 
documents. You can also use gensim’s similarities module or the cossim() function 
directly available in the gensim.matutils module.

Hellinger-Bhattacharya Distance
The Hellinger-Bhattacharya distance (HB-distance) is also called the Hellinger distance or the 
Bhattacharya distance. The Bhattacharya distance, originally introduced by A. Bhattacharya, 
is used to measure the similarity between two discrete or continuous probability 
distributions. E. Hellinger introduced the Hellinger integral in 1909, which is used in the 
computation of the Hellinger distance. Overall, the Hellinger-Bhattacharya distance is an 
f-divergence, which in the theory of probability is defined as a function D P Qf ||( ) , which 

can be used to measure the difference between P and Q probability distributions. There are 
many instances of f-divergences, including KL-divergence and HB-distance. Remember that 
KL-divergence is not a distance metric because it violates the symmetric condition from the 
four conditions necessary for a distance measure to be a metric.

HB-distance is computable for both continuous and discrete probability 
distributions. In our case, we will be using the TF-IDF–based vectors as our document 
distributions. This makes it discrete distributions because we have specific TF-IDF values 
for specific feature terms, unlike continuous distributions. We can define the Hellinger-
Bhattacharya distance mathematically as

hbd u v u v,( ) = -
1

2 2
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where hbd(u, v) denotes the Hellinger-Bhattacharya distance between the document 
vectors u and v, and it is equal to the Euclidean or L2 norm of the difference of the square 
root of the vectors divided by the square root of 2. Considering the document vectors u and 
v to be discrete with n number of features, we can further expand the above formula into

hbd u v u v
i

n

i i,( ) = -( )
=
å1

2 1

2

such that u u u un= ¼( )1 2, , ,  and v v v vn= ¼( )1 2, , ,  are the document vectors having 

length n indicating n features, which are the TF-IDF weights of the various terms in the 
documents. As with the previous computation of Cosine similarity, we will build our 
function on the same principles; basically we will accept as input a corpus of document 
vectors and a single document vector for which we want to get the n most similar 
documents from the corpus based on their HB-distances. The function implements the 
preceding concepts in Python in the following snippet:

def compute_hellinger_bhattacharya_distance(doc_features, corpus_features,
                                            top_n=3):
    # get document vectors                                            
    doc_features = doc_features.toarray()[0]
    corpus_features = corpus_features.toarray()
    # compute hb distances
    distance = np.hstack(
                    np.sqrt(0.5 *
                            np.sum(
                                np.square(np.sqrt(doc_features) -
                                          np.sqrt(corpus_features)),
                                axis=1)))
    # get docs with lowest distance scores                            
    top_docs = distance.argsort()[:top_n]
    top_docs_with_score = [(index, round(distance[index], 3))
                            for index in top_docs]
    return top_docs_with_score

From the preceding implementation, you case see that we sort the documents based 
on their scores in ascending order, unlike Cosine similarity, where 1.0 indicates perfect 
similarity—since this is a distance metric between distributions, a value of 0 indicates 
perfect similarity, and higher values indicate some dissimilarity being present. We can 
now apply this function to our example corpora, compute their HB-distances, and see the 
results in the following snippet:

# get Hellinger-Bhattacharya distance based similarities for our example 
documents
In [246]: print 'Document Similarity Analysis using Hellinger-Bhattacharya 
distance'
     ...: print '='*60
     ...: for index, doc in enumerate(query_docs):
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     ...:    
     ...:     doc_tfidf = query_docs_tfidf[index]
     ...:      top_similar_docs = compute_hellinger_bhattacharya_

distance(doc_tfidf,
     ...:                                              tfidf_features,
     ...:                                              top_n=2)
     ...:     print 'Document',index+1 ,':', doc
     ...:     print 'Top', len(top_similar_docs), 'similar docs:'
     ...:     print '-'*40
     ...:     for doc_index, sim_score in top_similar_docs:
     ...:          print 'Doc num: {} Distance Score: {}\nDoc: {}'.

format(doc_index+1,
     ...:                                         sim_score, toy_corpus[doc_

index])  
     ...:         print '-'*40      
     ...:     print        
     ...:
     ...:
Document Similarity Analysis using Hellinger-Bhattacharya distance
============================================================
Document 1 : The fox is definitely smarter than the dog
Top 2 similar docs:
----------------------------------------
Doc num: 8 Distance Score: 0.0
Doc: The dog is smarter than the fox
----------------------------------------
Doc num: 7 Distance Score: 0.96
Doc: The fox is quicker than the lazy dog
----------------------------------------

Document 2 : Java is a static typed programming language unlike Python
Top 2 similar docs:
----------------------------------------
Doc num: 5 Distance Score: 0.53
Doc: Python and Java are popular Programming languages
----------------------------------------
Doc num: 4 Distance Score: 0.766
Doc: Python is a great Programming language
----------------------------------------

Document 3 : I love to relax under the beautiful blue sky!
Top 2 similar docs:
----------------------------------------
Doc num: 2 Distance Score: 0.0
Doc: The sky is blue and beautiful
----------------------------------------
Doc num: 1 Distance Score: 0.602
Doc: The sky is blue
----------------------------------------
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You can see from the preceding outputs that documents with lower HB-distance 
scores are more similar to the query documents, and the result documents are quite 
similar to what we obtained using Cosine similarity. Compare the results and try out 
these functions with larger corpora! I recommend using gensim’s hellinger() function, 
available in the gensim.matutils module (which uses the same logic as our preceding 
function) when building large-scale systems for analyzing similarity.

Okapi BM25 Ranking
There are several techniques that are quite popular in information retrieval and 
search engines, including PageRank and Okapi BM25. The acronym BM stands for best 
matching. This technique is also known as BM25, but for the sake of completeness I refer 
to it as Okapi BM25, because originally although the concepts behind the BM25 function 
were merely theoretical, the City University in London built the Okapi Information 
Retrieval system in the 1980s–90s, which implemented this technique to retrieve 
documents on actual real-world data. This technique can also be called a framework 
or model based on probabilistic relevancy and was developed by several people in the 
1970s–80s, including computer scientists S. Robertson and K. Jones. There are several 
functions that rank documents based on different factors, and BM25 is one of them. Its 
newer variant is BM25F; other variants include BM15 and BM25+.

The Okapi BM25 can be formally defined as a document ranking and retrieval function 
based on a Bag of Words–based model for retrieving relevant documents based on a user 
input query. This query can be itself a document containing a sentence or collection of 
sentences, or it can even be a couple of words. The Okapi BM25 is actually not just a single 
function but is a framework consisting of a whole collection of scoring functions combined 
together. Say we have a query document QD such that QD q q qn= ¼( )1 2, , ,  containing n 

terms or keywords and we have a corpus document CD in the corpus of documents from 
which we want to get the most relevant documents to the query document based on 
similarity scores, just as we have done earlier. Assuming we have these, we can 
mathematically define the BM25 score between these two documents as
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where the function bm25(CD, QD) computes the BM25 rank or score of the document 
CD based on the query document QD. The function idf(q

i
)  gives us the inverse document 

frequency (IDF) of the term q
i
 in the corpus that contains CD and from which we want 

to retrieve the relevant documents. If you remember, we computed IDFs in Chapter 4 
when we implemented the TF-IDF feature extractor. Just to refresh your memory, it can 
represented by

idf t
C

df t
( ) = +

+ ( )
1

1
log

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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where idf(t) represents the idf for the term t and C represents the count of the total 
number of documents in our corpus and df(t) represents the frequency of the number 
of documents in which the term t is present. There are various other methods of 
implementing IDF, but we will be using this one, and on a side note the end outcome 
from the different implementations is very similar. The function f(q

i
, CD) gives us the 

frequency of the term q
i
 in the corpus document CD. The expression |CD| indicates the 

total length of the document CD which is measured by its number of words, and the 
term avgdl represents the average document length of the corpus from which we will be 
retrieving documents. Besides that, you will also observe there are two free parameters, 
k

1
, which is usually in the range of [1.2, 2.0], and b, which is usually taken as 0.75. We 

will be taking the value of k
1
 to be 1.5 in our implementation.

There are several steps we must go through to successfully implement and compute 
BM25 scores for documents:

 1. Build a function to get inverse document frequency (IDF) 
values for terms in corpus.

 2. Build a function for computing BM25 scores for query 
document and corpus documents.

 3. Get Bag of Words–based features for corpus documents and 
query documents.

 4. Compute average length of corpus documents and IDFs of the 
terms in the corpus documents using function from point 1.

 5. Compute BM25 scores, rank relevant documents, and fetch 
the n most relevant documents for each query document 
using the function in point 2.

We will start with implementing a function to extract and compute inverse document 
frequencies of all the terms in a corpus of documents by using its Bag of Words features, 
which will contain the term frequencies, and then convert them to IDFs using the formula 
mentioned earlier. The following function implements this:

import scipy.sparse as sp

def compute_corpus_term_idfs(corpus_features, norm_corpus):

    dfs = np.diff(sp.csc_matrix(corpus_features, copy=True).indptr)
    dfs = 1 + dfs # to smoothen idf later
    total_docs = 1 + len(norm_corpus)
    idfs = 1.0 + np.log(float(total_docs) / dfs)
    return idfs

We will now implement the main function for computing BM25 score for all 
the documents in our corpus based on the query document and retrieving the top n 
relevant documents from the corpus based on their BM25 score. The following function 
implements the BM25 scoring framework:
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def compute_bm25_similarity(doc_features, corpus_features,
                            corpus_doc_lengths, avg_doc_length,
                            term_idfs, k1=1.5, b=0.75, top_n=3):
    # get corpus bag of words features
    corpus_features = corpus_features.toarray()
    # convert query document features to binary features
    # this is to keep a note of which terms exist per document
    doc_features = doc_features.toarray()[0]
    doc_features[doc_features >= 1] = 1

    # compute the document idf scores for present terms
    doc_idfs = doc_features * term_idfs
    # compute numerator expression in BM25 equation
    numerator_coeff = corpus_features * (k1 + 1)
    numerator = np.multiply(doc_idfs, numerator_coeff)
    # compute denominator expression in BM25 equation
    denominator_coeff =  k1 * (1 - b +
                                (b * (corpus_doc_lengths /
                                        avg_doc_length)))
    denominator_coeff = np.vstack(denominator_coeff)
    denominator = corpus_features + denominator_coeff
    # compute the BM25 score combining the above equations
    bm25_scores = np.sum(np.divide(numerator,
                                   denominator),
                         axis=1)
    # get top n relevant docs with highest BM25 score                    
    top_docs = bm25_scores.argsort()[::-1][:top_n]
    top_docs_with_score = [(index, round(bm25_scores[index], 3))
                            for index in top_docs]
    return top_docs_with_score

The comments in the function are self-explanatory and explain how the BM25 
scoring function is implemented. In simple terms, we first compute the numerator 
expression in the BM25 mathematical equation we specified earlier and then compute 
the denominator expression. Finally, we divide the numerator by the denominator to get 
the BM25 scores for all the corpus documents. Then we sort them in descending order 
and return the top n relevant documents with the highest BM25 score. In the following 
snippet, we will test our function on our example corpora and see how it performs for 
each of the query documents:

# build bag of words based features first
vectorizer, corpus_features = build_feature_matrix(norm_corpus,
                                                   feature_type='frequency')
query_docs_features = vectorizer.transform(norm_query_docs)

# get average document length of the corpus (avgdl)
doc_lengths = [len(doc.split()) for doc in norm_corpus]  
avg_dl = np.average(doc_lengths)
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# Get the corpus term idfs
corpus_term_idfs = compute_corpus_term_idfs(corpus_features,
                                            norm_corpus)

# analyze document similarity using BM25 framework
In [253]: print 'Document Similarity Analysis using BM25'
     ...: print '='*60
     ...: for index, doc in enumerate(query_docs):
     ...:    
     ...:     doc_features = query_docs_features[index]
     ...:     top_similar_docs = compute_bm25_similarity(doc_features,
     ...:                                                corpus_features,
     ...:                                                doc_lengths,
     ...:                                                avg_dl,
     ...:                                                corpus_term_idfs,
     ...:                                                k1=1.5, b=0.75,
     ...:                                                top_n=2)
     ...:     print 'Document',index+1 ,':', doc
     ...:     print 'Top', len(top_similar_docs), 'similar docs:'
     ...:     print '-'*40
     ...:     for doc_index, sim_score in top_similar_docs:
     ...:          print 'Doc num: {} BM25 Score: {}\nDoc: {}'.format(doc_

index+1,
     ...:                                      sim_score, toy_corpus[doc_

index])  
     ...:         print '-'*40      
     ...:     print

Document Similarity Analysis using BM25
============================================================
Document 1 : The fox is definitely smarter than the dog
Top 2 similar docs:
----------------------------------------
Doc num: 8 BM25 Score: 7.334
Doc: The dog is smarter than the fox
----------------------------------------
Doc num: 7 BM25 Score: 3.88
Doc: The fox is quicker than the lazy dog
----------------------------------------

Document 2 : Java is a static typed programming language unlike Python
Top 2 similar docs:
----------------------------------------
Doc num: 5 BM25 Score: 7.248
Doc: Python and Java are popular Programming languages
----------------------------------------
Doc num: 6 BM25 Score: 6.042
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Doc: Among Programming languages, both Python and Java are the most used in 
Analytics
----------------------------------------

Document 3 : I love to relax under the beautiful blue sky!
Top 2 similar docs:
----------------------------------------
Doc num: 2 BM25 Score: 7.334
Doc: The sky is blue and beautiful
----------------------------------------
Doc num: 1 BM25 Score: 4.984
Doc: The sky is blue
----------------------------------------

You can now see how for each query document, we get expected and relevant 
documents that have similar concepts just like the query documents. You can see that 
the results are quite similar to the previous methods—because, of course, they are 
all similarity and ranking metrics and are expected to return similar results. Notice 
the BM25 scores of the relevant documents. The higher the score, the more relevant 
is the document. Unfortunately, I was not able to find any production-ready scalable 
implementation of the BM25 ranking framework in nltk or scikit-learn. However, 
gensim seems to have a bm25 module under the gensim.summarization package and if 
you are interested you can give it a try. But the core of the algorithm is based on what we 
implemented, and this should work pretty well on its own! 

Try loading a bigger corpus of documents and test out these functions on some 
sample query strings and documents. In fact, information retrieval frameworks like Solr 
and Elasticsearch are built on top of Lucene, which use these types of ranking algorithms 
to return relevant documents from an index of stored documents—and you can build 
your own search engine using them! Interested readers can check out www.elastic.co/
blog/found-bm-vs-lucene-default-similarity by elastic.co, the company behind the 
popular Elasticsearch product, which tells that the performance of BM25 is much better 
than the default similarity ranking implementation of Lucene.

Document Clustering
Document clustering or cluster analysis is an interesting area in NLP and text analytics 
that applies unsupervised ML concepts and techniques. The main premise of document 
clustering is similar to that of document categorization, where you start with a whole 
corpus of documents and are tasked with segregating them into various groups based 
on some distinctive properties, attributes, and features of the documents. Document 
classification needs pre-labeled training data to build a model and then categorize 
documents. Document clustering uses unsupervised ML algorithms to group the 
documents into various clusters. The properties of these clusters are such that documents 
inside one cluster are more similar and related to each other compared to documents 
belonging to other clusters. Figure 6-3, courtesy of scikit-learn, visualizes an example 
of clustering data points into three clusters based on its features.

http://www.elastic.co/blog/found-bm-vs-lucene-default-similarity
http://www.elastic.co/blog/found-bm-vs-lucene-default-similarity
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The cluster analysis in Figure 6-3 depicts three clusters among the data points, 
which are visualized using different colors. An important thing to remember here is 
that clustering is an unsupervised learning technique, and from Figure 6-3 it is pretty 
clear that there will always be some overlap among the clusters because there is no such 
definition of a perfect cluster. All the techniques are based on math, heuristics, and some 
inherent attributes toward generating clusters, and they are never a 100 percent perfect. 
Hence, there are several techniques or methods for finding clusters. Some popular 
clustering algorithms are briefly described as follows:

•	 Hierarchical clustering models: These clustering models are also 
known as connectivity-based clustering methods and are based on 
the concept that similar objects will be closer to related objects 
in the vector space than unrelated objects, which will be farther 
away from them. Clusters are formed by connecting objects based 
on their distance and they can be visualized using a dendrogram. 
The output of these models is a complete, exhaustive hierarchy 
of clusters. They are mainly subdivided into agglomerative and 
divisive clustering models.

Figure 6-3. Sample cluster analysis results (courtesy: scikit-learn)
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•	 Centroid-based clustering models: These models build clusters in 
such a way that each cluster has a central representative member 
that represents each cluster and has the features that distinguish 
that particular cluster from the rest. There are various algorithms 
in this, like k-means, k-medoids, and so on, where we need to set 
the number of clusters 'k' in advance, and distance metrics like 
squares of distances from each data point to the centroid need 
to be minimized. The disadvantage of these models is that you 
need to specify the 'k' number of clusters in advance, which 
may lead to local minima, and you may not get a true clustered 
representation of your data.

•	 Distribution-based clustering models: These models make use 
of concepts from probability distributions when clustering data 
points. The idea is that objects having similar distributions can 
be clustered into the same group or cluster. Gaussian mixture 
models (GMM) use algorithms like the Expectation-Maximization 
algorithm for building these clusters. Feature and attribute 
correlations and dependencies can also be captured using these 
models, but it is prone to overfitting.

•	 Density-based clustering models: These clustering models 
generate clusters from data points that are grouped together at 
areas of high density compared to the rest of the data points, 
which may occur randomly across the vector space in sparsely 
populated areas. These sparse areas are treated as noise and 
are used as border points to separate clusters. Two popular 
algorithms in this area include DBSCAN and OPTICS.

Several other clustering models have been recently introduced, including algorithms 
like BIRCH and CLARANS. Entire books and journals have been written just for clustering 
alone—it is a very interesting topic offering a lot of value. Covering each and every 
method would be impossible for us in the current scope, so we will cover a total of 
three different clustering algorithms, illustrating them with real-world data for better 
understanding:

•	 K-means clustering

•	 Affinity propagation

•	 Ward’s agglomerative hierarchical clustering

For each algorithm, we will be covering its theoretical concepts as we have done 
previously with other methods. We will also illustrate how each method works by 
applying each clustering algorithm on some real-world data pertaining to movies and 
their synopses. We will also look at detailed cluster statistics and focus on visualizing the 
clusters using tried-and-tested methods, because it is often difficult to visualize results 
from clustering, and practitioners often face challenges in this area.
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Clustering Greatest Movies of All Time
We will be clustering a total of 100 different popular movies based on their IMDb synopses 
as our raw data. IMDb, also known as the Internet Movie Database (www.imdb.com), is an 
online database that hosts extensive detailed information about movies, video games, 
and television shows. It also aggregates reviews and synopses for movies and shows and 
has several curated lists. The list we are interested in is available at www.imdb.com/list/
ls055592025/, titled Top 100 Greatest Movies of All Time (The Ultimate List). We will be 
clustering these movies into groups using the IMDb synopsis and description of each movie.

Before we begin our analysis, I would like to thank Brandon Rose for helping me out 
with getting this data, which he personally retrieved and curated, and also for giving me 
some excellent pointers on visualizing clusters. He has done some detailed clustering 
analysis with this data himself. If you are interested, you can get the raw data and also see 
his document clustering analysis in his repository at https://github.com/brandomr/
document_cluster, which is also described in further detail in his personal blog, which is 
dedicated to analytics, at http://brandonrose.org.

We have downloaded data pertaining to the top 100 movie titles and their synopses 
from IMDb from the repository mentioned earlier. We parsed and cleaned it up and also 
added the synopses for a few movies that were missing from the original data. We added 
these synopses and movie descriptions from Wikipedia. Once parsed, we stored them 
in a data frame and saved it as a .csv file called movie_data.csv, which you can find in 
the code files for this chapter. We will be loading and using the data from this file in our 
clustering analysis, starting with loading and looking at the contents of our movie data 
points in the following snippet:

import pandas as pd
import numpy as np

# load movie data
movie_data = pd.read_csv('movie_data.csv')

# view movie data
In [256]: print movie_data.head()

                     Title                                     Synopsis
0             The Godfather  In late summer 1945, guests are gathered...
1  The Shawshank Redemption  In 1947, Andy Dufresne (Tim Robbins),...
2          Schindler's List  The relocation of Polish Jews from...
3               Raging Bull  The film opens in 1964, where an older...
4                Casablanca  In the early years of World War II...

# print sample movie and its synopsis
In [268]: print 'Movie:', movie_titles[0]
     ...: print 'Movie Synopsis:', movie_synopses[0][:1000]
     ...:
Movie: The Godfather

http://www.imdb.com/
http://www.imdb.com/list/ls055592025
http://www.imdb.com/list/ls055592025
https://github.com/brandomr/document_cluster
https://github.com/brandomr/document_cluster
http://brandonrose.org/
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Movie Synopsis: In late summer 1945, guests are gathered for the wedding 
reception of Don Vito Corleone's daughter Connie (Talia Shire) and Carlo 
Rizzi (Gianni Russo). Vito (Marlon Brando), the head of the Corleone Mafia 
family, is known to friends and associates as "Godfather." He and Tom Hagen 
(Robert Duvall), the Corleone family lawyer, are hearing requests for favors 
because, according to Italian tradition, "no Sicilian can refuse a request 
on his daughter's wedding day." One of the men who asks the Don for a favor 
is Amerigo Bonasera, a successful mortician and acquaintance of the Don, 
whose daughter was brutally beaten by two young men because she refused 
their advances; the men received minimal punishment. The Don is disappointed 
in Bonasera, who'd avoided most contact with the Don due to Corleone's 
nefarious business dealings. The Don's wife is godmother to Bonasera's 
shamed daughter, a relationship the Don uses to extract new loyalty from the 
undertaker. The Don agrees to have his men punish

You can see that we have our movie titles and their corresponding synopses, which 
we load into a data frame and then store them in variables. A sample movie and a part of 
its corresponding synopsis are also depicted in the preceding output. The main idea is to 
cluster these movies into groups using their synopsis as raw input. We will extract features 
from these synopses and use unsupervised learning algorithms on them to cluster them 
together. The movie titles are just for representation and will be useful when we would 
want to visualize and display clusters and their statistics. The data to be fed to the clustering 
algorithms will be features extracted from the movie synopses just to make things clearer. 
Before we can jump into each of the clustering methods, we will follow the same process of 
normalization and feature extraction that we have followed in all our other processes:

from normalization import normalize_corpus
from utils import build_feature_matrix

# normalize corpus
norm_movie_synopses = normalize_corpus(movie_synopses,
                                       lemmatize=True,
                                       only_text_chars=True)

# extract tf-idf features
vectorizer, feature_matrix = build_feature_matrix(norm_movie_synopses,
                                                  feature_type='tfidf',
                                                  min_df=0.24, max_df=0.85,
                                                  ngram_range=(1, 2))
# view number of features
In [275]: print feature_matrix.shape
(100, 307)

# get feature names
feature_names = vectorizer.get_feature_names()
# print sample features
In [277]: print feature_names[:20]  



Chapter 6 ■ text Similarity and CluStering

301

[u'able', u'accept', u'across', u'act', u'agree', u'alive', u'allow', 
u'alone', u'along', u'already', u'although', u'always', u'another', 
u'anything', u'apartment', u'appear', u'approach', u'arm', u'army', 
u'around']

We keep text tokens in our normalized text and extract TF-IDF–based features 
for unigrams and bigrams such that each feature occurs in at least in 25 percent of the 
documents and at most 85 percent of the documents using the terms min_df and max_df. 
We can see that we have a total of 100 rows for the 100 movies and a total of 307 features 
for each movie. Some sample features are also printed in the preceding snippet. We will 
start our clustering analysis next, now that we have our features and documents ready.

K-means Clustering
The k-means clustering algorithm is a centroid-based clustering model that tries to cluster 
data into groups or clusters of equal variance. The criteria or measure that this algorithm 
tries to minimize is inertia, also known as within-cluster sum-of-squares. Perhaps the one 
main disadvantage of this algorithm is that the number of clusters k need to be specified 
in advance, as is the case with all other centroid-based clustering models. This algorithm 
is perhaps the most popular clustering algorithm out there and is frequently used due to 
its ease of use as well as the fact that it is scalable with large amounts of data.

We can now formally define the k-means clustering algorithm along with its 
mathematical notations. Consider that we have a dataset X with N data points or samples 
and we want to group them into K clusters where K is a user-specified parameter. The 
k-means clustering algorithm will segregate the N data points into K disjoint separate 
clusters C

k
, and each of these clusters can be described by the means of the cluster 

samples. These means become the cluster centroids μ
k
 such that these centroids are not 

bound by the condition that they have to be actual data points from the N samples in 
X. The algorithm chooses these centroids and builds the clusters in such a way that the 
inertia or within-cluster sums of squares are minimized. Mathematically, this can be 
represented as

min
i

K

x C
n i

n i

x
= Î
å å -

1
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with regard to clusters C
i
 and centroids μ

i
 such that i kÎ ¼{ }1 2, , , . This optimization is 

an NP hard problem for all you algorithm enthusiasts out there. Lloyd’s algorithm is a 
solution to this problem, which is an iterative procedure consisting of the following steps.

 1. Choose initial k centroids μ
k
 by taking k random samples from 

the dataset X.

 2. Update clusters by assigning each data point or sample to its 
nearest centroid point. Mathematically, we can represent this 
as C x x all xk n n k n l= - £ -{ }: m m  where C

k
 denotes the 

clusters.



Chapter 6 ■ text Similarity and CluStering

302

 3. Recalculate and update clusters based on the new cluster data 
points for each cluster obtained from step 2. Mathematically, 
this can be represented as

 mk
k x C

nC
x

n k

=
Î
å1  

where μ
k
 denotes the centroids.

The preceding steps are repeated in an iterative fashion till the outputs of steps 2 and 
3 do not change anymore. One caveat of this method is that even though the optimization 
is guaranteed to converge, it might lead to a local minimum, hence in reality, this algorithm 
is run multiple times with several epochs and iterations, and the results might be averaged 
from them if needed. The convergence and occurrence of local minimum are highly 
dependent on the initialization of the initial centroids in step 1. One way is to make multiple 
iterations with multiple random initializations and take the average. Another way would be 
to use the kmeans++ scheme as implemented in scikit-learn, which initializes the initial 
centroids to be far apart from each other and has proven to be effective. We will now use 
k-means clustering to cluster the movie data from earlier, in the following code snippet:

from sklearn.cluster import KMeans
# define the k-means clustering function
def k_means(feature_matrix, num_clusters=5):
    km = KMeans(n_clusters=num_clusters,
                max_iter=10000)
    km.fit(feature_matrix)
    clusters = km.labels_
    return km, clusters
# set k = 5, lets say we want 5 clusters from the 100 movies
num_clusters = 5    

# get clusters and assigned the cluster labels to the movies
km_obj, clusters = k_means(feature_matrix=feature_matrix,
                           num_clusters=num_clusters)
movie_data['Cluster'] = clusters

That snippet uses our implemented k-means function to cluster the movies based 
on the TF-IDF features from the movie synopses, and we assign the cluster label for each 
movie from the outcome of this cluster analysis by storing it in the movie_data dataframe 
in the 'Cluster' column. You can see that we have taken k to be 5 in our analysis. We can 
now see the total number of movies for each of the 5 clusters using the following snippet:

In [284]: from collections import Counter
     ...: # get the total number of movies per cluster
     ...: c = Counter(clusters)
     ...: print c.items()
[(0, 29), (1, 5), (2, 21), (3, 15), (4, 30)]

You can see that there are five cluster labels as expected, from 0 to 5, and each of 
them has some movies belonging to the cluster whose counts are mentioned as the 
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second element of each tuple in the preceding list. But can we do more than just see 
cluster counts? Of course we can! We will now define some functions to extract detailed 
cluster analysis information, print them, and then visualize the clusters. We will start by 
defining a function to extract important information from our cluster analysis:

def get_cluster_data(clustering_obj, movie_data,
                     feature_names, num_clusters,
                     topn_features=10):

    cluster_details = {}  
    # get cluster centroids
    ordered_centroids = clustering_obj.cluster_centers_.argsort()[:, ::-1]
    # get key features for each cluster
    # get movies belonging to each cluster
    for cluster_num in range(num_clusters):
        cluster_details[cluster_num] = {}
        cluster_details[cluster_num]['cluster_num'] = cluster_num
        key_features = [feature_names[index]
                        for index
                        in ordered_centroids[cluster_num, :topn_features]]
        cluster_details[cluster_num]['key_features'] = key_features

         movies = movie_data[movie_data['Cluster'] == cluster_num]['Title'].
values.tolist()

        cluster_details[cluster_num]['movies'] = movies

    return cluster_details

The preceding function is pretty self-explanatory. What it does is basically extract the 
key features per cluster that were essential in defining the cluster from the centroids. It also 
retrieves the movie titles that belong to each cluster and stores everything in a dictionary.

We will now define a function that uses this data structure and prints the results in a 
clear format:

def print_cluster_data(cluster_data):
    # print cluster details
    for cluster_num, cluster_details in cluster_data.items():
        print 'Cluster {} details:'.format(cluster_num)
        print '-'*20
        print 'Key features:', cluster_details['key_features']
        print 'Movies in this cluster:'
        print ', '.join(cluster_details['movies'])
        print '='*40

Before we analyze the results of our k-means clustering algorithm, we will also 
define a function to visualize the clusters. If you remember, we talked earlier about 
challenges associated with visualizing clusters. This happens because we deal with 
multidimensional feature spaces and unstructured text data. Numeric feature vectors 
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themselves may not make any sense to readers if they were visualized directly. So, there 
are some techniques like principal component analysis (PCA) or multidimensional scaling 
(MDS) to reduce the dimensionality such that we can visualize these clusters in 2- or 
3-dimensional plots. We will be using MDS in our implementation for visualizing clusters.

MDS is an approach towards non-linear dimensionality reduction such that the 
results can be visualized better in lower dimensional systems. The main idea is having a 
distance matrix such that distances between various data points are captured. We will be 
using Cosine similarity for this. MDS tries to build a lower-dimensional representation 
of our data with higher numbers of features in the vector space such that the distances 
between the various data points obtained using Cosine similarity in the higher 
dimensional feature space is still similar in this lower-dimensional representation.

The scikit-learn implementation for MDS has two types of algorithms: metric and 
non-metric. We will be using the metric approach because we will use the Cosine 
similarity–based distance metric to build the input similarity matrix between the various 
movies. Mathematically, MDS can be defined as follows: Let S be our similarity matrix 
between the various data points (movies) obtained using Cosine similarity on the feature 
matrix and X be the coordinates of the n input data points (movies). Disparities are 
represented by d̂ t Sij ij= ( ) , which is usually some optimal transformation of the similarity 
values or could even be the raw similarity values themselves. The objective function for 
MDS, called stress, is defined as sum d X Xdi j ij ij< ( )- ( )ˆ . We implement MDS-based 

visualization for clusters in the following function:

import matplotlib.pyplot as plt
from sklearn.manifold import MDS
from sklearn.metrics.pairwise import cosine_similarity
import random
from matplotlib.font_manager import FontProperties

def plot_clusters(num_clusters, feature_matrix,
                  cluster_data, movie_data,
                  plot_size=(16,8)):
    # generate random color for clusters                  
    def generate_random_color():
        color = '#%06x' % random.randint(0, 0xFFFFFF)
        return color
    # define markers for clusters    
    markers = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd']
    # build cosine distance matrix
    cosine_distance = 1 - cosine_similarity(feature_matrix)
    # dimensionality reduction using MDS
    mds = MDS(n_components=2, dissimilarity="precomputed",
              random_state=1)
    # get coordinates of clusters in new low-dimensional space
    plot_positions = mds.fit_transform(cosine_distance)  
    x_pos, y_pos = plot_positions[:, 0], plot_positions[:, 1]
    # build cluster plotting data
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    cluster_color_map = {}
    cluster_name_map = {}
    for cluster_num, cluster_details in cluster_data.items():
        # assign cluster features to unique label
        cluster_color_map[cluster_num] = generate_random_color()
         cluster_name_map[cluster_num] = ', '.join(cluster_details['key_

features'][:5]).strip()
    # map each unique cluster label with its coordinates and movies
    cluster_plot_frame = pd.DataFrame({'x': x_pos,
                                       'y': y_pos,
                                        'label': movie_data['Cluster'].

values.tolist(),
                                        'title': movie_data['Title'].values.

tolist()
                                        })
    grouped_plot_frame = cluster_plot_frame.groupby('label')
    # set plot figure size and axes
    fig, ax = plt.subplots(figsize=plot_size)
    ax.margins(0.05)
    # plot each cluster using co-ordinates and movie titles
    for cluster_num, cluster_frame in grouped_plot_frame:
         marker = markers[cluster_num] if cluster_num < len(markers) \
                  else np.random.choice(markers, size=1)[0]
         ax.plot(cluster_frame['x'], cluster_frame['y'],
                 marker=marker, linestyle='', ms=12,
                 label=cluster_name_map[cluster_num],
                 color=cluster_color_map[cluster_num], mec='none')
         ax.set_aspect('auto')
         ax.tick_params(axis= 'x', which='both', bottom='off', top='off',        
                        labelbottom='off')
         ax.tick_params(axis= 'y', which='both', left='off', top='off',        
                        labelleft='off')
    fontP = FontProperties()
    fontP.set_size('small')    
     ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.01), 

fancybox=True,
              shadow=True, ncol=5, numpoints=1, prop=fontP)
    #add labels as the film titles
    for index in range(len(cluster_plot_frame)):
        ax.text(cluster_plot_frame.ix[index]['x'],
                cluster_plot_frame.ix[index]['y'],
                cluster_plot_frame.ix[index]['title'], size=8)  
    # show the plot          
    plt.show()

The function is quite big, but the self-explanatory comments explain each step 
clearly. We build our similarity matrix first using the Cosine similarity between 
documents, get the cosine distances, and then transform the high dimensional feature 
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space into 2 dimensions using MDS. Then we plot the clusters using matplotlib with 
a bit of necessary formatting to view the results in a nice way. This function is a generic 
function and will work with any clustering algorithm with a dynamic number of clusters. 
Each cluster will have its own color, symbol, and label in the terms of top distinguishing 
features in the legend. The actual plot will plot each movie with its corresponding cluster 
label with its own color and symbol.

We are now ready to analyze the cluster results of our k-means clustering using the 
preceding functions. The following code snippet depicts the detailed analysis results for 
k-means clustering:

# get clustering analysis data
cluster_data =  get_cluster_data(clustering_obj=km_obj, movie_data=movie_
data,
                                  feature_names=feature_names, num_

clusters=num_clusters,
                                 topn_features=5)  

# print clustering analysis results
In [294]: print_cluster_data(cluster_data)

Cluster 0 details:
--------------------
Key features: [u'car', u'police', u'house', u'father', u'room']
Movies in this cluster:
Psycho, Sunset Blvd., Vertigo, West Side Story, E.T. the Extra-Terrestrial, 
2001: A Space Odyssey, The Silence of the Lambs, Singin' in the Rain, It's 
a Wonderful Life, Some Like It Hot, Gandhi, To Kill a Mockingbird, Butch 
Cassidy and the Sundance Kid, The Exorcist, The French Connection, It 
Happened One Night, Rain Man, Fargo, Close Encounters of the Third Kind, 
Nashville, The Graduate, American Graffiti, Pulp Fiction, The Maltese 
Falcon, A Clockwork Orange, Rebel Without a Cause, Rear Window, The Third 
Man, North by Northwest
========================================
Cluster 1 details:
--------------------
Key features: [u'water', u'attempt', u'cross', u'death', u'officer']
Movies in this cluster:
Chinatown, Apocalypse Now, Jaws, The African Queen, Mutiny on the Bounty
========================================
Cluster 2 details:
--------------------
Key features: [u'family', u'love', u'marry', u'war', u'child']
Movies in this cluster:
The Godfather, Gone with the Wind, The Godfather: Part II, The Sound of 
Music, A Streetcar Named Desire, The Philadelphia Story, An American in 
Paris, Ben-Hur, Doctor Zhivago, High Noon, The Pianist, Goodfellas, The 
King's Speech, A Place in the Sun, Out of Africa, Terms of Endearment, 
Giant, The Grapes of Wrath, Wuthering Heights, Double Indemnity, Yankee 
Doodle Dandy
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========================================
Cluster 3 details:
--------------------
Key features: [u'apartment', u'new', u'woman', u'york', u'life']
Movies in this cluster:
Citizen Kane, Titanic, 12 Angry Men, Rocky, The Best Years of Our Lives, My 
Fair Lady, The Apartment, City Lights, Midnight Cowboy, Mr. Smith Goes to 
Washington, Annie Hall, Good Will Hunting, Tootsie, Network, Taxi Driver
========================================
Cluster 4 details:
--------------------
Key features: [u'kill', u'soldier', u'men', u'army', u'war']
Movies in this cluster:
The Shawshank Redemption, Schindler's List, Raging Bull, Casablanca, One 
Flew Over the Cuckoo's Nest, The Wizard of Oz, Lawrence of Arabia, On the 
Waterfront, Forrest Gump, Star Wars, The Bridge on the River Kwai, Dr. 
Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Amadeus, 
The Lord of the Rings: The Return of the King, Gladiator, From Here to 
Eternity, Saving Private Ryan, Unforgiven, Raiders of the Lost Ark, Patton, 
Braveheart, The Good, the Bad and the Ugly, The Treasure of the Sierra 
Madre, Platoon, Dances with Wolves, The Deer Hunter, All Quiet on the 
Western Front, Shane, The Green Mile, Stagecoach
========================================

# visualize the clusters
In [295]: plot_clusters(num_clusters=num_clusters,
     ...:               feature_matrix=feature_matrix,
     ...:               cluster_data=cluster_data,
     ...:               movie_data=movie_data,
     ...:               plot_size=(16,8))

Figure 6-4. Visualizing the output of K-means clustering on IMDb movie data
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The preceding output shows the key features for each cluster and the movies in each 
cluster, and you can also see the same in the visualization in Figure 6-4 (there is a lot 
in that figure—if the text appears too small, check out the kmeans_clustering.png file, 
available along with the code files for this chapter). Each cluster is depicted by the main 
themes that define that cluster by its top features, and you can see popular movies like 
The Godfather and The Godfather: Part II in the same cluster along with other movies 
like Ben-Hur and so on which talk about 'family', 'love', 'war', and so on. Movies 
like Star Wars, The Lord of the Rings, The Deer Hunter, Gladiator, Forrest Gump, and so 
on are clustered together associated with themes like 'kill', 'soldier', 'army', and 
'war'. Definitely interesting results considering the data used for clustering was just a few 
paragraphs of synopsis per movie. Look more closely at the results and the visualization. 
Can you notice any other interesting patterns?

Affinity Propagation
The k-means algorithm, although very popular, has the drawback that the user has to pre-
define the number of clusters. What if in reality there are more clusters or lesser clusters? 
There are some ways of checking the cluster quality and seeing what the value of the 
optimum k might be. Interested readers can check out the elbow method and the silhouette 
coefficient, which are popular methods of determining the optimum k. Here we will talk 
about an algorithm that tries to build clusters based on inherent properties of the data 
without any pre-assumptions about the number of clusters. The affinity propagation (AP) 
algorithm is based on the concept of “message passing” among the various data points to 
be clustered, and no pre-assumption is needed about the number of possible clusters.

AP creates these clusters from the data points by passing messages between pairs 
of data points until convergence is achieved. The entire dataset is then represented by a 
small number of exemplars that act as representatives for samples. These exemplars are 
analogous to the centroids you obtain from k-means or k-medoids. The messages that 
are sent between pairs represent how suitable one of the points might be in being the 
exemplar or representative of the other data point. This keeps getting updated in every 
iteration until convergence is achieved, with the final exemplars being the representatives 
of each cluster. Remember, one drawback of this method is that it is computationally 
intensive because messages are passed between each pair of data points across the entire 
dataset and can take substantial time to converge for large datasets.

We can now define the steps involved in the AP algorithm (courtesy of Wikipedia and 
scikit-learn). Consider that we have a dataset X with n data points such that 
X x x xn= ¼{ }1 2, , , , and let sim(x, y) be the similarity function that quantifies the similarity 

between two points x and y. In our implementation, we will be using Cosine similarity 
again for this. The AP algorithm iteratively proceeds by executing two message-passing 
steps as follows:

 1. Responsibility updates are sent around, which can be 
mathematically represented as 

r i k sim i k a i k sim i k
k k
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where the responsibility matrix is R and r(i, k) is a measure which quantifies 
how well x

k
 can serve as being the representative or exemplar for x

i
 in 

comparison to the other candidates.

 2. Availability updates are then sent around which can be 
mathematically represented as
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availability for i k=  is represented as 
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where the availability matrix is A and a(i, k) represents 
how appropriate it would be for x

i
 to pick x

k
 as its exemplar, 

considering all the other points’ preference to pick x
k
 as an 

exemplar.

Those two steps keep occurring per iteration until convergence is achieved. The 
following function implements AP such that it takes in a feature matrix and returns the 
necessary clusters for each sample based on its features and the other samples:

from sklearn.cluster import AffinityPropagation

def affinity_propagation(feature_matrix):
    sim = feature_matrix * feature_matrix.T
    sim = sim.todense()
    ap = AffinityPropagation()
    ap.fit(sim)
    clusters = ap.labels_          
    return ap, clusters

We will now use this function to cluster our movies based on their synopses and 
then we will print the number of movies in each cluster and the total number of clusters 
formed by this algorithm:

# get clusters using affinity propagation
ap_obj, clusters = affinity_propagation(feature_matrix=feature_matrix)
movie_data['Cluster'] = clusters

# get the total number of movies per cluster
In [299]: c = Counter(clusters)  
     ...: print c.items()
[(0, 5), (1, 6), (2, 12), (3, 6), (4, 2), (5, 7), (6, 10), (7, 7), (8, 4), 
(9, 8), (10, 3), (11, 4), (12, 5), (13, 7), (14, 4), (15, 3), (16, 7)]

# get total clusters
In [300]: total_clusters = len(c)
     ...: print 'Total Clusters:', total_clusters
Total Clusters: 17
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From the preceding results, we can see that a total of 17 clusters have been created 
by AP on our movie data containing 100 movies. Each cluster has movies ranging from as 
low as 2 to as high as 12 movies. We shall now extract detailed cluster information, display 
cluster statistics, and visualize the clusters similar to what we did for k-means clustering, 
using our utility functions that we implemented in the K-means clustering section:

# get clustering analysis data
cluster_data =  get_cluster_data(clustering_obj=ap_obj, movie_data=movie_
data,
                                  feature_names=feature_names, num_

clusters=total_clusters,
                                 topn_features=5)

# print clustering analysis results
In [302]: print_cluster_data(cluster_data)
     ...:
Cluster 0 details:
--------------------
Key features: [u'able', u'always', u'cover', u'end', u'charge']
Movies in this cluster:
The Godfather, The Godfather: Part II, Doctor Zhivago, The Pianist, 
Goodfellas
========================================
Cluster 1 details:
--------------------
Key features: [u'alive', u'accept', u'around', u'agree', u'attack']
Movies in this cluster:
Casablanca, One Flew Over the Cuckoo's Nest, Titanic, 2001: A Space Odyssey, 
The Silence of the Lambs, Good Will Hunting
========================================
Cluster 2 details:
--------------------
Key features: [u'apartment', u'film', u'final', u'fall', u'due']
Movies in this cluster:
The Shawshank Redemption, Vertigo, West Side Story, Rocky, Tootsie, 
Nashville, The Graduate, The Maltese Falcon, A Clockwork Orange, Taxi 
Driver, Rear Window, The Third Man
========================================
Cluster 3 details:
--------------------
Key features: [u'arrest', u'film', u'evening', u'final', u'fall']
Movies in this cluster:
The Wizard of Oz, Psycho, E.T. the Extra-Terrestrial, My Fair Lady, Ben-Hur, 
Close Encounters of the Third Kind
========================================
Cluster 4 details:
--------------------
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Key features: [u'become', u'film', u'city', u'army', u'die']
Movies in this cluster:
12 Angry Men, Mr. Smith Goes to Washington
========================================
Cluster 5 details:
--------------------
Key features: [u'behind', u'city', u'father', u'appear', u'allow']
Movies in this cluster:
Forrest Gump, Amadeus, Gladiator, Braveheart, The Exorcist, A Place in the 
Sun, Double Indemnity
========================================
Cluster 6 details:
--------------------
Key features: [u'body', u'allow', u'although', u'city', u'break']
Movies in this cluster:
Schindler's List, Gone with the Wind, Lawrence of Arabia, Star Wars, The 
Lord of the Rings: The Return of the King, From Here to Eternity, Raiders of 
the Lost Ark, The Best Years of Our Lives, The Deer Hunter, Stagecoach
========================================
Cluster 7 details:
--------------------
Key features: [u'brother', u'bring', u'close', u'although', u'car']
Movies in this cluster:
Gandhi, Unforgiven, To Kill a Mockingbird, The Good, the Bad and the Ugly, 
Butch Cassidy and the Sundance Kid, High Noon, Shane
========================================
Cluster 8 details:
--------------------
Key features: [u'child', u'everyone', u'attempt', u'fall', u'face']
Movies in this cluster:
Chinatown, Jaws, The African Queen, Mutiny on the Bounty
========================================
Cluster 9 details:
--------------------
Key features: [u'continue', u'bring', u'daughter', u'break', u'allow']
Movies in this cluster:
The Bridge on the River Kwai, Dr. Strangelove or: How I Learned to Stop 
Worrying and Love the Bomb, Apocalypse Now, Saving Private Ryan, Patton, 
Platoon, Dances with Wolves, All Quiet on the Western Front
========================================
Cluster 10 details:
--------------------
Key features: [u'despite', u'drop', u'family', u'confront', u'drive']
Movies in this cluster:
The Treasure of the Sierra Madre, City Lights, Midnight Cowboy
========================================
Cluster 11 details:
--------------------



Chapter 6 ■ text Similarity and CluStering

312

Key features: [u'discover', u'always', u'feel', u'city', u'act']
Movies in this cluster:
Raging Bull, It Happened One Night, Rain Man, Rebel Without a Cause
========================================
Cluster 12 details:
--------------------
Key features: [u'discuss', u'alone', u'drop', u'business', u'consider']
Movies in this cluster:
Singin' in the Rain, An American in Paris, The Apartment, Annie Hall, 
Network
========================================
Cluster 13 details:
--------------------
Key features: [u'due', u'final', u'day', u'ever', u'eventually']
Movies in this cluster:
On the Waterfront, It's a Wonderful Life, Some Like It Hot, The French 
Connection, Fargo, Pulp Fiction, North by Northwest
========================================
Cluster 14 details:
--------------------
Key features: [u'early', u'able', u'end', u'charge', u'allow']
Movies in this cluster:
A Streetcar Named Desire, The King's Speech, Giant, The Grapes of Wrath
========================================
Cluster 15 details:
--------------------
Key features: [u'enter', u'eventually', u'cut', u'accept', u'even']
Movies in this cluster:
The Philadelphia Story, The Green Mile, American Graffiti
========================================
Cluster 16 details:
--------------------
Key features: [u'far', u'allow', u'apartment', u'anything', u'car']
Movies in this cluster:
Citizen Kane, Sunset Blvd., The Sound of Music, Out of Africa, Terms of 
Endearment, Wuthering Heights, Yankee Doodle Dandy
========================================

# visualize the clusters
In [304]: plot_clusters(num_clusters=num_clusters, feature_matrix=feature_
matrix,
     ...:               cluster_data=cluster_data, movie_data=movie_data,
     ...:               plot_size=(16,8))
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The preceding outputs show the contents of the different clusters and their 
visualization. If the visual text in Figure 6-5 is too small, you can always refer to the file 
affinity_prop_clustering.png, which contains the plot depicted in higher resolution. 
You can see from the results that we now have a total of 17 clusters, and there are some 
similarities where you will see similar movies that were grouped together in k-means 
clustering are in similar clusters here also, and there are also notable differences where 
many movies now have their own cluster. Are these clustering results better than the 
previous one? Well a lot depends on human perspective, and since I have yet to watch 
several of these movies, I leave this decision to you, dear reader! An important point to 
note here is that a few keywords from the exemplars or centroids for each cluster may not 
always depict the true essence or theme of that cluster, so a good idea here would be to 
build topic models on each cluster and see the kind of topics you can extract from each 
cluster that would make a better representation of each cluster (another example where 
you can see how we can connect various text analytics techniques together).

Ward’s Agglomerative Hierarchical Clustering
The hierarchical clustering family of algorithms is a bit different from the other clustering 
models we’ve discussed. Hierarchical clustering tries to build a nested hierarchy of 
clusters by either merging or splitting them in succession. There are two main strategies 
for Hierarchical clustering:

•	 Agglomerative: These algorithms follow a bottom-up approach 
where initially all data points belong to their own individual 
cluster, and then from this bottom layer, we start merging clusters 
together, building a hierarchy of clusters as we go up.

Figure 6-5. Visualizing the output of Affinity Propagation clustering on IMDb movie data
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•	 Divisive: These algorithms follow a top-down approach where 
initially all the data points belong to a single huge cluster and 
then we start recursively dividing them up as we move down 
gradually, and this produces a hierarchy of clusters going from the 
top-down.

Merges and splits normally happen using a greedy algorithm, and the end result 
of the hierarchy of clusters can be visualized as a tree structure, called a dendrogram. 
Figure 6-6 shows an example of how a dendrogram is constructed using agglomerative 
hierarchical clustering for a sample of documents.

Figure 6-6 clearly highlights how six separate data points start off as six clusters, 
and then we slowly start grouping them in each step following a bottom-up approach. 
We will be using an agglomerative hierarchical clustering algorithm in this section. In 
agglomerative clustering, for deciding which clusters we should combine when starting 
from the individual data point clusters, we need two things:

•	 A distance metric to measure the similarity or dissimilarity degree 
between data points. We will be using the Cosine distance/
similarity in our implementation.

•	 A linkage criterion that determines the metric to be used for the 
merging strategy of clusters. We will be using Ward’s method here.

Figure 6-6. Agglomerative hierarchical clustering representation
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The Ward’s linkage criterion minimizes the sum of squared differences within all the 
clusters and is a variance minimizing approach. This is also known as Ward’s minimum 
variance method and was initially presented by J. Ward. The idea is to minimize the 
variances within each cluster using an objective function like the L2 norm distance 
between two points. We can start with computing the initial cluster distances between 
each pair of points using the formula

d d C C C Cij i j i j= { }( ) = -,
2

where initially C
i
 indicates cluster i with one document, and at each iteration, we find the 

pairs of clusters that lead to the least increase in variance for that cluster once merged. A 
weighted squared Euclidean distance or L2 norm as depicted in the preceding formula 
would suffice for this algorithm. We use Cosine similarity to compute the cosine distances 
between each pair of movies for our dataset. The following function implements Ward’s 
agglomerative hierarchical clustering.:

from scipy.cluster.hierarchy import ward, dendrogram

def ward_hierarchical_clustering(feature_matrix):

    cosine_distance = 1 - cosine_similarity(feature_matrix)
    linkage_matrix = ward(cosine_distance)
    return linkage_matrix

To view the results of the hierarchical clustering, we need to plot a dendrogram using 
the preceding linkage matrix, and so we implement the following function to build and 
plot a dendrogram from the hierarchical clustering linkage matrix:

def plot_hierarchical_clusters(linkage_matrix, movie_data, figure_
size=(8,12)):
    # set size
    fig, ax = plt.subplots(figsize=figure_size)
    movie_titles = movie_data['Title'].values.tolist()
    # plot dendrogram
    ax = dendrogram(linkage_matrix, orientation="left", labels=movie_titles)
    plt.tick_params(axis= 'x',  
                    which='both',  
                    bottom='off',
                    top='off',
                    labelbottom='off')
    plt.tight_layout()
    plt.savefig('ward_hierachical_clusters.png', dpi=200)

We are now ready to perform hierarchical clustering on our movie data! The 
following code snippet shows Ward’s clustering in action:
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In [307]:# build ward's linkage matrix    
     ...:linkage_matrix = ward_hierarchical_clustering(feature_matrix)
     ...: # plot the dendrogram
     ...: plot_hierarchical_clusters(linkage_matrix=linkage_matrix,
     ...:                            movie_data=movie_data,
     ...:                            figure_size=(8,10))

Figure 6-7. Ward's clustering dendrogram on our IMDb movie data
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The dendrogram in Figure 6-7 shows the clustering analysis results. The colors 
indicate that there are three main clusters, which further get subdivided into more 
granular clusters maintaining a hierarchy. (If you have trouble reading the small fonts, look 
at the file ward_hierachical_clusters.png available with the code files in this chapter). 
You will notice a lot of similarities with the results of the previous clustering algorithms.

The green colored movies like Raiders of the Lost Ark, The Lord of the Rings, Star 
Wars, The Godfather, The Godfather: Part II, Pulp Fiction, A Clockwork Orange, and 
Platoon are definitely some of the top movies and in fact classics in the action, adventure, 
war, and crime-based genres. 

The red colored movies include comedy-based movies like City Lights, The 
Apartment, and My Fair Lady, and also several movies that belong to the drama genre 
including Mutiny on the Bounty, 12 Angry Men, Annie Hall, Midnight Cowboy, Titanic, 
and An American in Paris, with several of them having romantic plots too. Several of them 
are even musicals, including Yankee Doodle Dandy, An American in Paris, Singin' in the 
Rain, and My Fair Lady. It is definitely interesting indeed that with just movie synopses, 
our algorithm has clustered movies with similar attributes and genres together!

The blue colored movies give us similar results, in that Braveheart and Gladiator are 
action, drama, and war classics. We also have some classics related to drama, romance, 
and biographies like The Sound of Music, Wuthering Heights, Terms of Endearment, and 
Out of Africa. Toward the top of the dendrogram you will observe movies related to 
science fiction and fantasy, like 2001: A Space Odyssey, Close Encounters of the Third Kind, 
and E.T. the Extra-Terrestrial, all close to each other. 

Can you find more interesting patterns? Which movies do you think do not belong 
together in the same clusters? Can we build better clusters? Can we recommend similar 
movies to watch based on clustering movies together? These are some interesting 
questions to ponder, and I will leave them for you to look at and explore further.

Summary
I would like to really commend your efforts on staying with me till the end of this 
chapter. We covered a lot here, including several topics in the challenging but very 
interesting unsupervised machine learning domain. You now know how text similarity 
can be computed and you learned about various kinds of distance measures and 
metrics. We also looked at important concepts related to distance metrics and measures 
and properties that make a measure into a metric. We explored concepts related to 
unsupervised ML and saw how we can incorporate such techniques in document 
clustering. Various ways of measuring term and document similarity were also 
covered, and we implemented several of these techniques by successfully converting 
mathematical equations into code using the power of Python and several open source 
libraries. We touched on document clustering in detail, looking at the various concepts 
and types of clustering models. Finally, we took a real-world example of clustering the top 
hundred greatest movies of all time using IMDb movie synopses data and used different 
clustering models like k-means, affinity propagation, and Ward’s hierarchical clustering 
to build, analyze, and visualize clusters. This should be enough for you to get started 
with analyzing document similarity and clustering, and you can even start combining 
various techniques from the chapters covered so far. (Hint: Topic models with clustering, 
building classifiers by combining supervised and unsupervised learning, and augmenting 
recommendation systems using document clusters—just to name a few!)
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    CHAPTER 7   

 Semantic and Sentiment 
Analysis                          

 Natural language understanding has gained significant importance in the last decade 
with the advent of machine learning (ML) and further advances like   deep learning    and 
artificial intelligence. Computers and other machines can be programmed to learn 
things and perform specific operations. The key limitation is their inability to perceive, 
understand, and comprehend things like humans do. With the resurgence in popularity 
of neural networks and advances made in computer architecture, we now have deep 
learning and artificial intelligence evolving rapidly to make some efforts into trying to 
engineer machines into learning, perceiving, understanding, and performing actions on 
their own. You may have seen or heard several of these efforts, such as self-driving cars, 
computers beating experienced players in games like chess and Go, and the proliferation 
of chatbots on the Internet. 

 In Chapters   4    –  6    , we have looked at various computational, language processing, and 
ML techniques to classify, cluster, and summarize text. Back in Chapter   3     we developed 
certain methods and programs to analyze and understand text syntax and structure. 
This chapter will deal with methods that try to answer the question  Can we analyze and 
understand the meaning and sentiment behind a body of text?  

  Natural Language Processing (NLP)   has a wide variety of applications that try to use 
natural language understanding to infer the meaning and context behind text and use it to 
solve various problems. We discussed several of these applications briefly in Chapter   1    . 
To refresh your memory, the following applications require extensive understanding of 
text from the semantic perspective:

•    Question Answering Systems  

•   Contextual recognition  

•   Speech recognition (for some applications)    

   Text semantics    specifically deals with understanding the meaning of text or language. 
When combined into sentences, words have lexical relations and contextual relations 
between them lead to various types of relationships and hierarchies, and semantics sits 
at the heart of all this in trying to analyze and understand these relationships and infer 
meaning from them. We will be exploring various types of semantic relationships in natural 
language and look at some NLP-based techniques for inferring and extracting meaningful 

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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semantic information from text. Semantics is purely concerned with context and meaning, 
and the structure or format of text holds little significance here. But sometimes even the 
syntax or arrangement of words helps us in inferring the context of words and helps us 
differentiate things like  lead  as a metal from  lead  as in the lead of a movie. 

   Sentiment analysis    is perhaps the most popular application of text analytics, with a 
vast number of tutorials, web sites, and applications that focus on analyzing sentiment of 
various text resources ranging from corporate surveys to movie reviews. The key aspect of 
sentiment analysis is to analyze a body of text for understanding the opinion expressed by 
it and other factors like mood and modality. Usually sentiment analysis works best on text 
that has a subjective context than on that with only an objective context. This is because 
when a body of text has an objective context or perspective to it, the text usually depicts some 
normal statements or facts without expressing any emotion, feelings, or mood. Subjective 
text contains text that is usually expressed by a human having typical moods, emotions, and 
feelings. Sentiment analysis is widely used, especially as a part of social media analysis for 
any domain, be it a business, a recent movie, or a product launch, to understand its reception 
by the people and what they think of it based on their opinions or, you guessed it, sentiment. 

 In this chapter, we will be covering several aspects from both semantic and 
sentiment analysis for textual data. We will start with exploring WordNet, a lexical 
database, and introduce a new concept called  synsets . We will also explore various 
semantic relationships and representations in natural language and we will cover 
techniques such as  word sense disambiguation  and  named entity recognition . In 
sentiment analysis, we will be looking at how to use supervised ML techniques to analyze 
sentiment and also at several unsupervised lexical techniques with more detailed insights 
into natural language sentiment, mood, and modality. 

     Semantic Analysis 
 We have seen how terms or words get grouped into phrases that further form clauses 
and finally sentences. Chapter   3     showed various structural components in natural 
language, including  parts of speech (POS), chunking, and grammars  . All these concepts 
fall under the syntactic and structural analysis of text data. Whereas we do explore 
relationships of words, phrases, and clauses, these are purely based on their position, 
syntax, and structure. Semantic analysis is more about understanding the actual context 
and meaning behind words in text and how they relate to other words to convey some 
information as a whole. As mentioned in Chapter   1    , the definition of semantics itself is 
the study of meaning, and linguistic semantics is a complete branch under linguistics 
that deals with the study of meaning in  natural language  , including exploring various 
relationships between words, phrases and symbols. Besides this, there are also various 
ways to represent semantics associated with statements and propositions. We will be 
broadly covering the following topics under semantic analysis:

•    Exploring WordNet and synsets  

•   Analyzing lexical semantic relations  

•   Word sense disambiguation  

•   Named entity recognition  

•   Analyzing semantic representations    

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://dx.doi.org/10.1007/978-1-4842-2388-8_1


CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

321

 The main objective of these topics is to give you a clear understanding of the 
resources you can leverage for semantic analysis as well as how to use these resources. 
We will explore various concepts related to semantic analysis, which was covered 
in Chapter   1    , with actual examples. You can refresh your memory by revisiting the 
“Language Semantics” section in Chapter   1    . Without any further delay, let's get started!  

     Exploring  WordNet   
  WordNet   is a huge lexical database for the English Language. The database is a part of 
Princeton University, and you can read more about it at    https://wordnet.princeton.edu     . 
It was originally created in around 1985, in Princeton University’s Cognitive Science 
Laboratory under the direction of Professor G. A. Miller. This lexical database consists 
of nouns, adjective, verbs, and adverbs, and related lexical terms are grouped together 
based on some common concepts into sets, known as  cognitive synonym sets  or  synsets . 
Each synset expresses a unique, distinct concept. At a high level, WordNet can be 
compared to a thesaurus or a dictionary that provides words and their synonyms. On a 
lower level, it is much more than that, with synsets and their corresponding terms having 
detailed relationships and hierarchies based on their semantic meaning and similar 
concepts. WordNet is used extensively as a lexical database, in text analytics, NLP, and 
artificial intelligence (AI)-based applications. 

 The WordNet database consists of over 155,000 words, represented in more than 
117,000 synsets, and contains over 206,000 word-sense pairs. The database is roughly 12 
MB in size and can be accessed through various interfaces and APIs. The official web site 
has a  web application interface   for accessing various details related to words, synsets, 
and concepts related to the entered word. You can access it at    http://wordnetweb.
princeton.edu/perl/webwn      or download it from    https://wordnet.princeton.edu/
wordnet/download/     . The download contains various packages, files, and tools related to 
WordNet. We will be accessing WordNet programmatically using the interface provided 
by the  nltk  package. We will start by exploring synsets and then various semantic 
relationships using synsets. 

     Understanding  Synsets   
 We will start exploring WordNet by looking at synsets since they are perhaps one of the 
most important concepts and structures that tie everything together. In general, based on 
concepts from NLP and information retrieval, a synset is a collection or set of data entities 
that are considered to be semantically similar. This doesn’t mean that they will be exactly 
the same, but they will be centered on similar context and concepts. Specifically in the 
context of WordNet, a synset is a set or collection of synonyms that are interchangeable 
and revolve around a specific concept. Synsets not only consist of simple words, but 
also collocations.   Polysemous    word forms (words that sound and look the same but 
have different but relatable meanings) are assigned to different synsets based on their 
meaning. Synsets are connected to other synsets using semantic relations, which we shall 
explore in a future section. Typically each synset has the term, a definition explaining 
the meaning of the term, and some optional examples and related lemmas (collection 
of synonyms) to the term. Some terms may have multiple synsets associated with them, 
where each synset has a particular context. 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
https://wordnet.princeton.edu/
http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
https://wordnet.princeton.edu/wordnet/download/
https://wordnet.princeton.edu/wordnet/download/
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 Let’s look at a real example by using  nltk ’s WordNet interface to explore synsets 
associated with the term,  'fruit'  .  We can do this using the following code snippet: 

    from nltk.corpus import wordnet as wn 
 import pandas as pd 

   term = 'fruit' 
 synsets = wn.synsets(term) 
 # display total synsets 
 In [75]: print 'Total Synsets:', len(synsets) 
 Total Synsets: 5 

    We can see that there are a total of five synsets associated with the term  'fruit'  .  
What can these synsets indicate? We can dig deeper into each synset and its components 
using the following code snippet: 

    In [76]: for synset in synsets: 
     ...:     print 'Synset:', synset 
     ...:     print 'Part of speech:', synset.lexname() 
     ...:     print 'Definition:', synset.definition() 
     ...:     print 'Lemmas:', synset.lemma_names() 
     ...:     print 'Examples:', synset.examples() 
     ...:     print 
     ...:  
     ...:  
 Synset: Synset('fruit.n.01') 
 Part of speech: noun.plant 
 Definition: the ripened reproductive body of a seed plant 
 Lemmas: [u'fruit'] 
 Examples: [] 

   Synset: Synset('yield.n.03') 
 Part of speech: noun.artifact 
 Definition: an amount of a product 
 Lemmas: [u'yield', u'fruit'] 
 Examples: [] 

   Synset: Synset('fruit.n.03') 
 Part of speech: noun.event 
 Definition: the consequence of some effort or action 
 Lemmas: [u'fruit'] 
 Examples: [u'he lived long enough to see the fruit of his policies'] 

   Synset: Synset('fruit.v.01') 
 Part of speech: verb.creation 
 Definition: cause to bear fruit 
 Lemmas: [u'fruit'] 
 Examples: [] 
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   Synset: Synset('fruit.v.02') 
 Part of speech: verb.creation 
 Definition: bear fruit 
 Lemmas: [u'fruit'] 
 Examples: [u'the trees fruited early this year'] 

    The preceding output shows us details pertaining to each synset associated with 
the term  'fruit' , and the definitions give us the sense of each synset and the lemma 
associated with it. The part of speech for each synset is also mentioned, which includes 
nouns and verbs. Some examples are also depicted in the preceding output that show 
how the term is used in actual sentences. Now that we understand synsets better, let’s 
start exploring various semantic relationships as mentioned.     

     Analyzing  Lexical Semantic Relations   
  Text semantics  refers to the study of meaning and context. Synsets give a nice abstraction 
over various terms and provide useful information like definition, examples, POS, and 
lemmas. But can we explore semantic relationships among entities using synsets? The 
answer is definitely yes. We will be talking about many of the concepts related to semantic 
relations (covered in detail in the “Lexical Semantic Relations” subsection under the 
“Language Semantics” section in Chapter   1    . It would be useful for you to review that 
section to better understand each of the concepts when we illustrate them with real-world 
examples here. We will be using  nltk 's  wordnet  resource here, but you can use the same 
WordNet resource from the  pattern  package, which includes an interface similar to  nltk . 

    Entailments      
 The term  entailment  usually refers to some event or action that logically involves or is 
associated with some other action or event that has taken place or will take place. Ideally 
this applies very well to verbs indicating some specific action. The following snippet 
shows how to get entailments: 

   # entailments 
 In [80]: for action in ['walk', 'eat', 'digest']: 
     ...:     action_syn = wn.synsets(action, pos='v')[0] 
     ...:     print action_syn, '-- entails -->', action_syn.entailments() 
 Synset('walk.v.01') -- entails --> [Synset('step.v.01')] 
 Synset('eat.v.01') -- entails --> [Synset('chew.v.01'), 
Synset('swallow.v.01')] 
 Synset('digest.v.01') -- entails --> [Synset('consume.v.02')] 

   You can see how related synsets depict the concept of entailment in that output. 
Related actions are depicted in entailment, where actions like  walking  involve or entail 
 stepping , and  eating  entails  chewing  and  swallowing .  

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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   Homonyms and  Homographs         
 On a high level,  homonyms  refer to words or terms having the same written form or 
pronunciation but different meanings. Homonyms are a superset of homographs, which 
are words with same spelling but may have different pronunciation and meaning. The 
following code snippet shows how we can get homonyms/homographs: 

   In [81]: for synset in wn.synsets('bank'): 
     ...:     print synset.name(),'-',synset.definition() 
     ...:  
     ...:  
 bank.n.01 - sloping land (especially the slope beside a body of water) 
 depository_financial_institution.n.01 - a financial institution that accepts 
deposits and channels the money into lending activities 
 bank.n.03 - a long ridge or pile 
 bank.n.04 - an arrangement of similar objects in a row or in tiers 
 ... 
 ... 
 deposit.v.02 - put into a bank account 
 bank.v.07 - cover with ashes so to control the rate of burning 
 trust.v.01 - have confidence or faith in 

   The preceding output shows a part of the result obtained for the various homographs 
for the term  'bank'  .  You can see that there are various different meanings associated with 
the word  'bank' , which is the core intuition behind homographs.           

    Synonyms   and  Antonyms      
  Synonyms  are words having similar meaning and context, and  antonyms  are words having 
opposite or contrasting meaning, as you may know already. The following snippet depicts 
synonyms and antonyms: 

    In [82]: term = 'large' 
     ...: synsets = wn.synsets(term) 
     ...: adj_large = synsets[1] 
     ...: adj_large = adj_large.lemmas()[0] 
     ...: adj_large_synonym = adj_large.synset() 
     ...: adj_large_antonym = adj_large.antonyms()[0].synset() 
     ...: # print synonym and antonym 
     ...: print 'Synonym:', adj_large_synonym.name() 
     ...: print 'Definition:', adj_large_synonym.definition() 
     ...: print 'Antonym:', adj_large_antonym.name() 
     ...: print 'Definition:', adj_large_antonym.definition() 
 Synonym: large.a.01 
 Definition: above average in size or number or quantity or magnitude or 
extent 
 Antonym: small.a.01 
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 Definition: limited or below average in number or quantity or magnitude or 
extent 

   In [83]: term = 'rich' 
     ...: synsets = wn.synsets(term)[:3] 
     ...: # print synonym and antonym for different synsets 
     ...: for synset in synsets: 
     ...:     rich = synset.lemmas()[0] 
     ...:     rich_synonym = rich.synset() 
     ...:     rich_antonym = rich.antonyms()[0].synset() 
     ...:     print 'Synonym:', rich_synonym.name() 
     ...:     print 'Definition:', rich_synonym.definition() 
     ...:     print 'Antonym:', rich_antonym.name() 
     ...:     print 'Definition:', rich_antonym.definition() 
 Synonym: rich_people.n.01 
 Definition: people who have possessions and wealth (considered as a group) 
 Antonym: poor_people.n.01 
 Definition: people without possessions or wealth (considered as a group) 

   Synonym: rich.a.01 
 Definition: possessing material wealth 
 Antonym: poor.a.02 
 Definition: having little money or few possessions 

   Synonym: rich.a.02 
 Definition: having an abundant supply of desirable qualities or substances 
(especially natural resources) 
 Antonym: poor.a.04 
 Definition: lacking in specific resources, qualities or substances 

    The preceding outputs show sample  synonyms   and  antonyms   for the term  'large'  
and the term  'rich'  .  Additionally, we explore several synsets associated with the term 
or concept  'rich' , which rightly give us distinct synonyms and their corresponding 
antonyms.     

    Hyponyms   and  Hypernyms      
 Synsets represent terms with unique semantics and concepts and are linked or related 
to each other based on some similarity and context. Several of these synsets represent 
abstract and generic concepts also besides concrete entities. Usually they are interlinked 
together in the form of a hierarchical structure representing  is-a  relationships. Hyponyms 
and hypernyms help us explore related concepts by navigating through this hierarchy. 
To be more specific,  hyponyms  refer to entities or concepts that are a subclass of a higher 
order concept or entity and have very specific sense or context compared to its superclass. 
The following snippet shows the hyponyms for the entity  'tree' : 
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    term = 'tree' 
 synsets = wn.synsets(term) 
 tree = synsets[0] 
 # print the entity and its meaning 
 In [86]: print 'Name:', tree.name() 
     ...: print 'Definition:', tree.definition() 
 Name: tree.n.01 
 Definition: a tall perennial woody plant having a main trunk and branches 
forming a distinct elevated crown; includes both gymnosperms and angiosperms 
 # print total hyponyms and some sample hyponyms for 'tree' 
 In [87]: hyponyms = tree.hyponyms() 
     ...: print 'Total Hyponyms:', len(hyponyms) 
     ...: print 'Sample Hyponyms' 
     ...: for hyponym in hyponyms[:10]: 
     ...:     print hyponym.name(), '-', hyponym.definition() 

   Total Hyponyms: 180 
 Sample  Hyponyms      
 aalii.n.01 - a small Hawaiian tree with hard dark wood 
 acacia.n.01 - any of various spiny trees or shrubs of the genus Acacia 
 african_walnut.n.01 - tropical African timber tree with wood that resembles 
mahogany 
 albizzia.n.01 - any of numerous trees of the genus Albizia 
 alder.n.02 - north temperate shrubs or trees having toothed leaves and 
conelike fruit; bark is used in tanning and dyeing and the wood is rot-
resistant 
 angelim.n.01 - any of several tropical American trees of the genus  Andira   
 angiospermous_tree.n.01 - any tree having seeds and ovules contained in the 
ovary 
 anise_tree.n.01 - any of several evergreen shrubs and small trees of the 
genus Illicium 
 arbor.n.01 - tree (as opposed to shrub) 
 aroeira_blanca.n.01 - small resinous tree or shrub of Brazil 

    The preceding output tells us that there are a total of 180 hyponyms for  'tree' , 
and we see some of the sample hyponyms and their definitions. We can see that each 
hyponym is a specific type of tree, as expected. Hyponyms are entities or concepts that act 
as the superclass to hyponyms and have a more generic sense or context. The following 
snippet shows the immediate superclass hyponym for  'tree' : 

   In [88]: hypernyms = tree.hypernyms() 
     ...: print hypernyms 
 [Synset('woody_plant.n.01')] 

   You can even navigate up the entire entity/concept hierarchy depicting all the 
hyponyms or parent classes for  'tree'  using the following code snippet: 

    # get total hierarchy pathways for 'tree' 
 In [91]: hypernym_paths = tree.hypernym_paths() 
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     ...: print 'Total Hypernym paths:', len(hypernym_paths) 
 Total Hypernym paths: 1 

   # print the entire hypernym hierarchy 
 In [92]: print 'Hypernym Hierarchy' 
     ...: print ' -> '.join(synset.name() for synset in hypernym_paths[0])    
 Hypernym Hierarchy 
 entity.n.01 -> physical_entity.n.01 -> object.n.01 -> whole.n.02 -> living_
thing.n.01 -> organism.n.01 -> plant.n.02 -> vascular_plant.n.01 -> woody_
plant.n.01 -> tree.n.01 

    From the preceding output, you can see that  'entity'  is the most generic concept 
in which  'tree'  is present, and the complete hypernym hierarchy showing the 
corresponding hypernym or superclass at each level is shown. As you navigate further 
down, you get into more specific concepts/entities, and if you go in the reverse direction 
you will get into more generic concepts/entities.           

    Holonyms   and  Meronyms      
  Holonyms  are entities that contain a specific entity of our interest. Basically  holonym  refers 
to the relationship between a term or entity that denotes the whole and a term denoting a 
specific part of the whole. The following snippet shows the holonyms for  'tree' : 

   In [94]: member_holonyms = tree.member_holonyms()     
     ...: print 'Total Member Holonyms:', len(member_holonyms) 
     ...: print 'Member Holonyms for [tree]:-' 
     ...: for holonym in member_holonyms: 
     ...:     print holonym.name(), '-', holonym.definition() 
 Total Member Holonyms: 1 
 Member Holonyms for [tree]:- 
 forest.n.01 - the trees and other plants in a large densely wooded area 

   From the output, we can see that  'forest'  is a holonym for  'tree' , which is 
semantically correct because, of course, a forest is a collection of trees.  Meronyms  are 
semantic relationships that relate a term or entity as a part or constituent of another term 
or entity. The following snippet depicts different types of meronyms for  'tree' : 

    # part based meronyms for tree 
 In [95]: part_meronyms = tree.part_meronyms() 
     ...: print 'Total Part Meronyms:', len(part_meronyms) 
     ...: print 'Part Meronyms for [tree]:-' 
     ...: for meronym in part_meronyms: 
     ...:     print meronym.name(), '-', meronym.definition() 
 Total Part Meronyms: 5 
 Part Meronyms for [tree]:- 
 burl.n.02 - a large rounded outgrowth on the trunk or branch of a tree 
 crown.n.07 - the upper branches and leaves of a tree or other plant 
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 limb.n.02 - any of the main branches arising from the trunk or a bough of a 
tree 
 stump.n.01 - the base part of a tree that remains standing after the tree 
has been felled 
 trunk.n.01 - the main stem of a tree; usually covered with bark; the bole is 
usually the part that is commercially useful for lumber 

   # substance based meronyms for tree 
 In [96]: substance_meronyms = tree.substance_meronyms()     
     ...: print 'Total Substance Meronyms:', len(substance_meronyms) 
     ...: print 'Substance Meronyms for [tree]:-' 
     ...: for meronym in substance_meronyms: 
     ...:     print meronym.name(), '-', meronym.definition() 
 Total Substance Meronyms: 2 
 Substance Meronyms for [tree]:- 
 heartwood.n.01 - the older inactive central wood of a tree or woody plant; 
usually darker and denser than the surrounding sapwood 
 sapwood.n.01 - newly formed outer wood lying between the cambium and the 
heartwood of a tree or woody plant; usually light colored; active in water 
conduction 

    The preceding output shows various meronyms that include various constituents of 
trees like  stump  and  trunk  and also various derived substances from trees like  heartwood  
and  sapwood .           

    Semantic Relationships and Similarity   
 In the previous sections, we have looked at various concepts related to lexical semantic 
relationships. We will now look at ways to connect similar entities based on their 
semantic relationships and also measure semantic similarity between them. Semantic 
similarity is different from the conventional similarity metrics discussed in Chapter   6    . We 
will use some sample synsets related to living entities as shown in the following snippet 
for our analysis: 

    tree = wn.synset('tree.n.01') 
 lion = wn.synset('lion.n.01') 
 tiger = wn.synset('tiger.n.02') 
 cat = wn.synset('cat.n.01') 
 dog = wn.synset('dog.n.01') 
 # create entities and extract names and definitions 
 entities = [tree, lion, tiger, cat, dog] 
 entity_names = [entity.name().split('.')[0] for entity in entities] 
 entity_definitions = [entity.definition() for entity in entities] 

   # print entities and their definitions 
 In [99]: for entity, definition in zip(entity_names, entity_definitions):    
     ...:     print entity, '-', definition 

http://dx.doi.org/10.1007/978-1-4842-2388-8_6
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 tree - a tall perennial woody plant having a main trunk and branches forming 
a distinct elevated crown; includes both gymnosperms and angiosperms 
 lion - large gregarious predatory feline of Africa and India having a tawny 
coat with a shaggy mane in the male 
 tiger - large feline of forests in most of Asia having a tawny coat with 
black stripes; endangered 
 cat - feline mammal usually having thick soft fur and no ability to roar: 
domestic cats; wildcats 
 dog - a member of the genus Canis (probably descended from the common wolf) 
that has been domesticated by man since prehistoric times; occurs in many 
breeds 

    Now that we know our entities a bit better from these definitions explaining them, we 
will try to correlate the entities based on common hypernyms. For each pair of entities, 
we will try to find the lowest common hypernym in the relationship hierarchy tree. 
Correlated entities are expected to have very specific hypernyms, and unrelated entities 
should have very abstract or generic hypernyms. The following code snippet illustrates: 

   common_hypernyms = []    
 for entity in entities: 
     # get pairwise lowest common hypernyms 
     common_hypernyms.append([entity.lowest_common_hypernyms(compared_entity)[0] 
                                       .name().split('.')[0] 
                              for compared_entity in entities]) 
 # build pairwise lower common hypernym matrix 
 common_hypernym_frame = pd.DataFrame(common_hypernyms, 
                                      index=entity_names,  
                                      columns=entity_names) 
 # print the matrix 
 In [101]: print common_hypernym_frame     
      ...:  
            tree       lion      tiger        cat        dog 
 tree       tree   organism   organism   organism   organism 
 lion   organism       lion    big_cat     feline  carnivore 
 tiger  organism    big_cat      tiger     feline  carnivore 
 cat    organism     feline     feline        cat  carnivore 
 dog    organism  carnivore  carnivore  carnivore        dog 

   Ignoring the main diagonal of the matrix, for each pair of entities, we can see their 
lowest common hypernym which depicts the nature of relationship between them.  Trees  are 
unrelated to the other animals except that they are all living organisms. Hence we get the 
 'organism'  relationship amongst them.  Cats  are related to  lions  and  tigers  with respect to 
being feline creatures, and we can see the same in the preceding output.  Tigers  and  lions  are 
connected to each other with the  'big cat'  relationship. Finally, we can see  dogs  having the 
relationship of  'carnivore'  with the other animals since they all typically eat meat. 

 We can also measure the semantic similarity between these entities using various 
semantic concepts. We will use  'path similarity' , which returns a value between  [0, 1]  
based on the shortest path connecting two terms based on their hypernym/hyponym based 
taxonomy. The following snippet shows us how to generate this similarity matrix:    
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    similarities = [] 
 for entity in entities: 
     # get pairwise similarities 
     similarities.append([round(entity.path_similarity(compared_entity), 2) 
                          for compared_entity in entities])         
 # build pairwise similarity matrix                              
 similarity_frame = pd.DataFrame(similarities, 
                                 index=entity_names,  
                                 columns=entity_names) 
 # print the matrix 
 print similarity_frame  

          tree  lion  tiger   cat   dog 
 tree   1.00  0.07   0.07  0.08  0.13 
 lion   0.07  1.00   0.33  0.25  0.17 
 tiger  0.07  0.33   1.00  0.25  0.17 
 cat    0.08  0.25   0.25  1.00  0.20 
 dog    0.13  0.17   0.17  0.20  1.00 

    From the preceding output, as expected,  lion  and  tiger  are the most similar with a 
value of 0.33, followed by their semantic similarity with  cat  having a value of 0.25. And 
 tree  has the lowest semantic similarity values when compared with other animals.    

 This concludes our discussion on analyzing lexical semantic relations. I encourage 
you to try exploring more concepts with different examples by leveraging WordNet.    

      Word Sense Disambiguation      
 In the previous section, we looked at homographs and homonyms, which are basically words 
that look or sound similar but have very different meanings. This meaning is contextual 
based on how it has been used and also depends on the word semantics, also called  word 
sense . Identifying the correct sense or semantics of a word based on its usage is called  word 
sense disambiguation  with the assumption that the word has multiple meanings based on its 
context. This is a very popular problem in NLP and is used in various applications, such as 
improving the relevance of search engine results, coherence, and so on. 

 There are various ways to solve this problem, including lexical and dictionary-based 
methods and supervised and unsupervised ML methods. Covering everything would be 
out of the current scope, so I will be showing word sense disambiguation using the Lesk 
algorithm, a classic algorithm invented by M. E. Lesk in 1986. The basic principle behind 
this algorithm is to leverage dictionary or vocabulary definitions for a word we want to 
disambiguate in a body of text and compare the words in these definitions with a section 
of text surrounding our word of interest. We will be using the WordNet definitions for 
words instead of a dictionary. The main objective for us would be to return the synset 
with the maximum number of overlapping words or terms between the context sentence 
and the different definitions from each synset for the word we target for disambiguation. 
The following snippet leverages  nltk  to depict how to use word sense disambiguation for 
various examples:       
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    from nltk.wsd import lesk 
 from nltk import word_tokenize 

   # sample text and word to disambiguate 
 samples = [('The fruits on that plant have ripened', 'n'), 
             ('He finally reaped the fruit of his hard work as he won the 

race', 'n')] 
 word = 'fruit' 
 # perform word sense disambiguation 
 In [106]: for sentence, pos_tag in samples: 
      ...:     word_syn = lesk(word_tokenize(sentence.lower()), word, pos_tag) 
      ...:     print 'Sentence:', sentence 
      ...:     print 'Word synset:', word_syn 
      ...:     print 'Corresponding definition:', word_syn.definition() 
      ...:     print 
 Sentence: The fruits on that plant have ripened 
 Word synset: Synset('fruit.n.01') 
 Corresponding definition: the ripened reproductive body of a seed plant 

   Sentence: He finally reaped the fruit of his hard work as he won the race 
 Word synset: Synset('fruit.n.03') 
 Corresponding definition: the consequence of some effort or  action      

   # sample text and word to disambiguate 
 samples = [('Lead is a very soft, malleable metal', 'n'), 
            ('John is the actor who plays the lead in that movie', 'n'), 
            ('This road leads to nowhere', 'v')] 
 word = 'lead' 
 # perform word sense disambiguation 
 In [108]: for sentence, pos_tag in samples: 
      ...:      word_syn = lesk(word_tokenize(sentence.lower()), word, 

pos_tag) 
      ...:     print 'Sentence:', sentence 
      ...:     print 'Word synset:', word_syn 
      ...:     print 'Corresponding definition:', word_syn.definition() 
      ...:     print 
 Sentence: Lead is a very soft, malleable metal 
 Word synset: Synset('lead.n.02') 
 Corresponding definition: a soft heavy toxic malleable metallic element; 
bluish white when freshly cut but tarnishes readily to dull grey 

   Sentence: John is the actor who plays the lead in that movie 
 Word synset: Synset('star.n.04') 
 Corresponding definition: an actor who plays a principal role 

   Sentence: This road leads to nowhere 
 Word synset: Synset('run.v.23') 
 Corresponding definition: cause something to pass or lead  somewhere      
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    We try to disambiguate two words,  'fruit'  and  'lead'  in various text documents 
in the preceding examples. You can see how we use the Lesk algorithm to get the correct 
word sense for the word we are disambiguating based on its usage and context in each 
document. This tells you how  fruit  can mean both an entity that is consumed as well as 
some consequence one faces on applying efforts. We also see how  lead  can mean the soft 
metal, causing something/someone to go somewhere, or even an actor who plays the 
main role in a play or movie.  

      Named Entity Recognition      
 In any text document, there are particular terms that represent entities that are more 
informative and have a unique context compared to the rest of the text. These entities are 
known as  named entities , which more specifically refers to terms that represent real-world 
objects like people, places, organizations, and so on, which are usually denoted by proper 
names. We can find these typically by looking at the noun phrases in text documents. 
 Named entity recognition , also known as  entity chunking/extraction , is a popular technique 
used in information extraction to identify and segment named entities and classify or 
categorize them under various predefined classes. Some of these classes that are used 
most frequently are shown in Figure  7-1  (courtesy of  nltk  and The Stanford NLP group).  

 There is some overlap between  GPE  and  LOCATION . The  GPE  entities are usually more 
generic and represent geo-political entities like cities, states, countries, and continents. 
 LOCATION  can also refer to these entities (it varies across different NER systems) along 
with very specific locations like a mountain, river, or hill-station.  FACILITY  on the other 
hand refers to popular monuments or artifacts that are usually man-made. The remaining 
categories are pretty self-explanatory from their names and the examples depicted in 
Figure  7-1 . 

 The Bundesliga is perhaps the most popular top-level professional association 
football league in Germany, and FC Bayern Munchen is one of the most popular clubs 
in this league with a global presence. We will now take a sample description of this club 

  Figure 7-1.    Common named entities with  examples            
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from Wikipedia and try to extract named entities from it. We will reuse our normalization 
module (accessible as  normalization.py  in the code files) from the last chapter in 
this section to parse the document to remove unnecessary new lines. We will start by 
leveraging  nltk ’s Named Entity Chunker:       

    # sample document 
 text = """ 
 Bayern Munich, or FC Bayern, is a German sports club based in Munich,  
 Bavaria, Germany. It is best known for its professional football team,  
 which plays in the Bundesliga, the top tier of the German football  
 league system, and is the most successful club in German football  
 history, having won a record 26 national titles and 18 national cups.  
 FC Bayern was founded in 1900 by eleven football players led by Franz John.  
 Although Bayern won its first national championship in 1932, the club  
 was not selected for the Bundesliga at its inception in 1963. The club  
 had its period of greatest success in the middle of the 1970s when,  
 under the captaincy of Franz Beckenbauer, it won the European Cup three  
 times in a row (1974-76). Overall, Bayern has reached ten UEFA Champions  
 League finals, most recently winning their fifth title in 2013 as part  
 of a continental treble.  
 """ 

   import nltk 
 from normalization import parse_document 
 import pandas as pd 

   # tokenize sentences 
 sentences = parse_document(text) 
 tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in 
sentences]  

   # tag sentences and use nltk's Named Entity Chunker 
 tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_
sentences] 
 ne_chunked_sents = [nltk.ne_chunk(tagged) for tagged in tagged_sentences]       

   # extract all named entities 
 named_entities = [] 
 for ne_tagged_sentence in ne_chunked_sents: 
     for tagged_tree in ne_tagged_sentence: 
         # extract only chunks having NE labels 
         if hasattr(tagged_tree, 'label'):  
                  entity_name = ' '.join(c[0] for c in tagged_tree.leaves()) # 

get NE name 
                 entity_type = tagged_tree.label() # get NE category 
                 named_entities.append((entity_name, entity_type)) 
 # get unique named entities                 
 named_entities = list(set(named_entities)) 
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 # store named entities in a data frame 
 entity_frame = pd.DataFrame(named_entities,  
                             columns=['Entity Name', 'Entity Type']) 
 # display results 
 In [116]: print entity_frame     
           Entity Name   Entity Type 
 0              Bayern        PERSON 
 1          Franz John        PERSON 
 2   Franz Beckenbauer        PERSON 
 3              Munich  ORGANIZATION 
 4            European  ORGANIZATION 
 5          Bundesliga  ORGANIZATION 
 6              German           GPE 
 7             Bavaria           GPE 
 8             Germany           GPE 
 9           FC Bayern  ORGANIZATION 
 10               UEFA  ORGANIZATION 
 11             Munich           GPE 
 12             Bayern           GPE 
 13            Overall           GPE 

    The Named Entity Chunker identifies named entities from the preceding text 
document, and we extract these named entities from the tagged annotated sentences 
and display them in the data frame as shown. You can clearly see how it has correctly 
identified  PERSON ,  ORGANIZATION , and  GPE  related named entities, although a few of them 
are incorrectly identified.       

 We will now use the Stanford NER tagger on the same text and compare the results. 
For this, you need to have Java installed and then download the Stanford NER resources 
from    http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip     . Unzip them 
to a location of your choice (I used  E:/stanford  in my system). Once done, you can use 
 nltk ’s interface to access this, similar to what we did in Chapter   3     for constituency and 
dependency parsing. For more details on Stanford NER, visit    http://nlp.stanford.edu/
software/CRF-NER.shtml     , the official web site, which also contains the latest version of 
their Named Entity Recognizer (I used an older version):       

    from nltk.tag import StanfordNERTagger 
 import os 

   # set java path in environment variables 
 java_path = r'C:\Program Files\Java\jdk1.8.0_102\bin\java.exe' 
 os.environ['JAVAHOME'] = java_path 

   # load stanford NER 
 sn = StanfordNERTagger('E:/stanford/stanford-ner-2014-08-27/classifiers/
english.all.3class.distsim.crf.ser.gz', 
                         path_to_jar='E:/stanford/stanford-ner-2014-08-27/

stanford-ner.jar') 

http://nlp.stanford.edu/software/stanford-ner-2014-08-27.zip
http://dx.doi.org/10.1007/978-1-4842-2388-8_3
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
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   # tag sentences                        
 ne_annotated_sentences = [sn.tag(sent) for sent in tokenized_sentences] 

   # extract named entities 
 named_entities = [] 
 for sentence in ne_annotated_sentences: 
     temp_entity_name = '' 
     temp_named_entity = None 
     for term, tag in sentence: 
         # get terms with NE tags 
         if tag != 'O':  
              temp_entity_name = ' '.join([temp_entity_name, term]).strip() # 

get NE name 
              temp_named_entity = (temp_entity_name, tag) # get NE and its 

category 
         else: 
             if temp_named_entity: 
                 named_entities.append(temp_named_entity) 
                 temp_entity_name = '' 
                 temp_named_entity = None 

   # get unique named entities 
 named_entities = list(set(named_entities)) 
 # store named entities in a data frame 
 entity_frame = pd.DataFrame(named_entities,  
                             columns=['Entity Name', 'Entity Type']) 

   # display results 
 In [118]: print entity_frame                        
          Entity Name   Entity Type 
 0         Franz John        PERSON 
 1  Franz Beckenbauer        PERSON 
 2            Germany      LOCATION 
 3             Bayern  ORGANIZATION 
 4            Bavaria      LOCATION 
 5             Munich      LOCATION 
 6          FC Bayern  ORGANIZATION 
 7               UEFA  ORGANIZATION 
 8      Bayern Munich  ORGANIZATION 

    The preceding output depicts various named entities obtained from our document. 
You can compare this with the results obtained from  nltk ’s NER chunker. The results here 
are definitely better—there are no misclassifications and each category is also assigned 
correctly. Some really interesting points: It has correctly identified  Munich  as a  LOCATION  
and  Bayern Munich  as an  ORGANIZATION . Does this mean the second NER tagger is better? 
Not really. It depends on the type of corpus you are analyzing, and you can even build 
your own NER tagger using supervised learning by training on pre-tagged corpora similar 
to what we did in Chapter   3    . In fact, both the taggers just discussed have been trained on 
pre-tagged corpora like CoNLL, MUC, and Penn Treebank.         

http://dx.doi.org/10.1007/978-1-4842-2388-8_3
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     Analyzing Semantic Representations 
 We usually communicate in the form of messages in spoken form or in written form 
with other people or interfaces. Each of these  messages   is typically a collection of words, 
phrases, or sentences, and they have their own semantics and context. So far, we’ve talked 
about semantics and relations between various lexical units. But how do we represent the 
meaning of semantics conveyed by a message or messages? How do humans understand 
what someone is telling them? How do we believe in statements and propositions and 
evaluate outcomes and what action to take? It feels easy because the brain helps us with 
logic and reasoning—but computationally can we do the same? 

 The answer is yes we can.  Frameworks   like propositional logic and first-order logic 
help us in representation of semantics. We discussed this in detail in Chapter   1     in the 
subsection “Representation of Semantics” under the “Language Semantics” section. I 
encourage you to go through that once more to refresh your memory. In the following 
sections, we will look at ways to represent propositional and first order logic and prove or 
disprove propositions, statements, and predicates using practical examples and code. 

     Propositional  Logic      
 We have already discussed propositional logic (PL) as the study of propositions, 
statements, and sentences. A  proposition  is usually declarative, having a binary value 
of being either true or false. There also exist various logical operators like conjunction, 
disjunction, implication, and equivalence, and we also study the effects of applying these 
operators on multiple propositions to understand their behavior and outcome. 

 Let us consider our example from Chapter   1     with regard to two propositions  P  and  Q  
such that they can be represented as follows: 

  P : He is hungry 
  Q : He will eat a sandwich 
 We will now try to build the truth tables for various operations on these propositions 

using  nltk  based on the various logical operators discussed in Chapter   1     (refer to the 
“Propositional Logic” section for more details) and derive outcomes computationally: 

    import nltk 
 import pandas as pd 
 import os 

   # assign symbols and propositions 
 symbol_P = 'P' 
 symbol_Q = 'Q' 
 proposition_P = 'He is hungry' 
 propositon_Q = 'He will eat a sandwich' 
 # assign various truth values to the propositions 
 p_statuses = [False, False, True, True] 
 q_statuses = [False, True, False, True] 
 # assign the various expressions combining the logical operators 
 conjunction = '(P & Q)' 
 disjunction = '(P | Q)' 
 implication = '(P -> Q)' 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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 equivalence = '(P <-> Q)' 
 expressions = [conjunction, disjunction, implication, equivalence] 

   # evaluate each expression using propositional logic 
 results = [] 
 for status_p, status_q in zip(p_statuses, q_statuses): 
     dom = set([]) 
     val = nltk.Valuation([(symbol_P, status_p),  
                           (symbol_Q, status_q)]) 
     assignments = nltk.Assignment(dom) 
     model = nltk.Model(dom, val) 
     row = [status_p, status_q] 
     for expression in expressions: 
         # evaluate each expression based on proposition truth values 
         result = model.evaluate(expression, assignments)  
         row.append(result) 
     results.append(row)       
 # build the result table 
 columns = [symbol_P, symbol_Q, conjunction,  
            disjunction, implication, equivalence]            
 result_frame = pd.DataFrame(results, columns=columns) 

   # display results 
 In [125]: print 'P:', proposition_P 
      ...: print 'Q:', propositon_Q 
      ...: print 
      ...: print 'Expression Outcomes:-' 
      ...: print result_frame  
 P: He is hungry 
 Q: He will eat a sandwich 

   Expression Outcomes:- 
        P      Q (P & Q) (P | Q) (P -> Q) (P <-> Q) 
 0  False  False   False   False     True      True 
 1  False   True   False    True     True     False 
 2   True  False   False    True    False     False 
 3   True   True    True    True     True      True 

    The preceding output depicts the various truth values of the two propositions, and 
when we combine them with various logical operators, you will find the results matching 
with what we manually evaluated in Chapter   1    . For example,  P & Q  indicates  He is hungry 
and he will eat a sandwich  is  True  only when both of the individual propositions is  True . 
We use  nltk ’s  Valuation  class to create a dictionary of the propositions and their various 
outcome states. We use the  Model  class to evaluate each expression, where the  evaluate()  
function internally calls the recursive function  satisfy() , which helps in evaluating the 
outcome of each expression with the propositions based on the assigned truth values.            

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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     First Order  Logic      
 PL has several limitations, like the inability to represent facts or complex relationships 
and inferences. PL also has limited expressive power because for each new proposition 
we would need a unique symbolic representation, and it becomes very difficult to 
generalize facts. This is where first order logic (FOL) works really well with features 
like functions, quantifiers, relations, connectives, and symbols. It definitely provides a 
richer and more powerful representation for semantic information. The “First Order 
Logic” subsection under “Representation of Semantics” in Chapter   1     provides detailed 
information about how  FOL works.   

 In this section, we will build several FOL representations similar to what we did 
manually in Chapter   1     using mathematical representations. Here we will build them 
in our code using similar syntax and leverage  nltk  and some theorem provers to prove 
the outcome of various expressions based on predefined conditions and relationships, 
similar to what we did for PL. The key takeaway for you from this section should be 
getting to know how to represent FOL representations in Python and how to perform FOL 
inference using proofs based on some goal and predefined rules and events. There are 
several theorem provers you can use for evaluating expressions and proving theorems. 
The  nltk  package has three main different types of provers:  Prover9 ,  TableauProver , and 
 ResolutionProver . The first one is a free-to-use prover available for download at    www.
cs.unm.edu/~mccune/prover9/download/     . You can extract the contents in a location of 
your choice (I used  E:/prover9 ). We will be using both  ResolutionProver  and  Prover9  
in our examples. The following snippet helps in setting up the necessary dependencies 
for FOL expressions and evaluations: 

   import  nltk      
 import os 
 # for reading FOL expressions 
 read_expr = nltk.sem.Expression.fromstring 
 # initialize theorem provers (you can choose any) 
 os.environ['PROVER9'] = r'E:/prover9/bin' 
 prover = nltk.Prover9() 
 # I use the following one for our examples 
 prover = nltk.ResolutionProver()    

   Now that we have our dependencies ready, let us evaluate a few FOL expressions. 
Consider a simple expression that  If an entity jumps over another entity, the reverse cannot 
happen . Assuming the entities to be  x  and  y , we can represent this is FOL as ∀ x  ∀ y 
(jumps_over(x, y)  → ¬ jumps_over(y, x))  which signifies that for all  x  and  y , if  x  jumps 
over  y , it implies that  y  cannot jump over  x . Consider now that we have two entities  fox  
and  dog  such that the  fox  jumps over the  dog  is an event which has taken place and can 
be represented by  jumps_over(fox, dog) . Our end goal or objective is to evaluate the 
outcome of  jumps_over(dog, fox)  considering the preceding expression and the event 
that has occurred. The following snippet shows us how we can do this: 

    # set the rule expression 
 rule = read_expr('all x. all y. (jumps_over(x, y) -> -jumps_over(y, x))') 
 # set the event occured 

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://www.cs.unm.edu/~mccune/prover9/download/
http://www.cs.unm.edu/~mccune/prover9/download/
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 event = read_expr('jumps_over(fox, dog)') 
 # set the outcome we want to evaluate -- the goal 
 test_outcome = read_expr('jumps_over(dog, fox)') 

   # get the  result      
 In [132]: prover.prove(goal=test_outcome,  
      ...:              assumptions=[event, rule], 
      ...:              verbose=True) 
 [1] {-jumps_over(dog,fox)}                    A  
 [2] {jumps_over(fox,dog)}                     A  
 [3] {-jumps_over(z4,z3), -jumps_over(z3,z4)}  A  
 [4] {-jumps_over(dog,fox)}                    (2, 3)  

   Out[132]: False 

    The preceding output depicts the final result for our goal  test_outcome  is  False , that 
is, the  dog  cannot jump over the  fox  if the  fox  has already jumped over the  dog  based on 
our rule expression and the events assigned to the assumptions parameter in the prover 
already given. The sequence of steps that lead to the result is also shown in the output. 
Let us now consider another FOL expression rule ∀ x studies(x, exam)  →  pass(x, 
exam) , which tells us that for all instances of  x , if  x  studies for the exam, he/she will pass 
the exam. Let us represent this rule and consider two students,  John  and  Pierre , such 
that  John  does not study for the exam and  Pierre  does. Can we then find out the outcome 
whether they will pass the exam based on the given expression rule? The following 
snippet shows us how:       

    # set the rule expression                           
 rule = read_expr('all x. (studies(x, exam) -> pass(x, exam))')  
 # set the events and outcomes we want to determine 
 event1 = read_expr('-studies(John, exam)')   
 test_outcome1 = read_expr('pass(John, exam)')  
 event2 = read_expr('studies(Pierre, exam)')   
 test_outcome2 = read_expr('pass(Pierre, exam)') 

   # get results 
 In [134]: prover.prove(goal=test_outcome1,  
      ...:              assumptions=[event1, rule], 
      ...:              verbose=True)  
 [1] {-pass(John,exam)}                  A  
 [2] {-studies(John,exam)}               A  
 [3] {-studies(z6,exam), pass(z6,exam)}  A  
 [4] {-studies(John,exam)}               (1, 3)  

   Out[134]: False 

   In [135]: prover.prove(goal=test_outcome2,  
      ...:              assumptions=[event2, rule], 
      ...:              verbose=True)    
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 [1] {-pass(Pierre,exam)}                A  
 [2] {studies(Pierre,exam)}              A  
 [3] {-studies(z8,exam), pass(z8,exam)}  A  
 [4] {-studies(Pierre,exam)}             (1, 3)  
 [5] {pass(Pierre,exam)}                 (2, 3)  
 [6] {}                                  (1, 5)  

   Out[135]:  True      

    Thus you can see from the above evaluations that  Pierre  does pass the exam 
because he studied for the exam, unlike  John  who doesn't pass the exam since he did not 
study for it. 

 Let us consider a more complex example with several entities. They perform several 
actions as follows:

•    There are two dogs  rover  ( r ) and  alex  ( a )  

•   There is one cat  garfield  ( g )  

•   There is one fox  felix  ( f )  

•   Two animals, alex ( a ) and felix ( f ) run, denoted by function 
 runs()   

•   Two animals  rover  ( r ) and  garfield  ( g ) sleep, denoted by 
function  sleeps()   

•   Two animals,  felix  ( f ) and  alex  ( a ) can jump over the other two, 
denoted by function  jumps_over()     

 Taking all these assumptions, the following snippet builds an FOL-based model 
with the previously mentioned domain and assignment values based on the entities 
and functions. Once we build this model, we evaluate various FOL-based expressions to 
determine their outcome and prove some theorems like we did earlier: 

    # define symbols (entities\functions) and their values 
 rules = """ 
     rover => r 
     felix => f 
     garfield => g 
     alex => a 
     dog => {r, a} 
     cat => {g} 
     fox => {f} 
     runs => {a, f} 
     sleeps => {r, g} 
     jumps_over => {(f, g), (a, g), (f, r), (a, r)} 
     """ 
 val = nltk.Valuation.fromstring(rules) 
 # view the valuation object of symbols and their assigned values 
(dictionary)       
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 In [143]: print val 
 {'rover': 'r', 'runs': set([('f',), ('a',)]), 'alex': 'a', 'sleeps': 
set([('r',), ('g',)]), 'felix': 'f', 'fox': set([('f',)]), 'dog': 
set([('a',), ('r',)]), 'jumps_over': set([('a', 'g'), ('f', 'g'), ('a', 
'r'), ('f', 'r')]), 'cat': set([('g',)]), 'garfield': 'g'} 

   # define domain and build FOL based model 
 dom = {'r', 'f', 'g', 'a'} 
 m = nltk.Model(dom, val) 

   # evaluate various expressions 
 In [148]: print m.evaluate('jumps_over(felix, rover) & dog(rover) & 
runs(rover)', None) 
 False 

   In [149]: print m.evaluate('jumps_over(felix, rover) & dog(rover) & 
-runs(rover)', None) 
 True 

   In [150]: print m.evaluate('jumps_over(alex, garfield) & dog(alex) & 
cat(garfield) & sleeps(garfield)', None) 
 True 

   # assign rover to x and felix to y in the domain 
 g = nltk.Assignment(dom, [('x', 'r'), ('y', 'f')])    

   # evaluate more expressions based on above assigned symbols 
 In [152]: print m.evaluate('runs(y) & jumps_over(y, x) & sleeps(x)', g)    
 True 

   In [153]: print m.evaluate('exists y. (fox(y) & runs(y))', g)  
 True 

    The preceding snippet depicts the evaluation of various expressions based on the 
valuation of different symbols based on the rules and domain. We create various FOL-
based expressions and see their outcome based on the predefined assumptions. For 
example, the first expression gives us  False  because  rover  never  runs()  and the second 
and third expressions are  True  because they satisfy all the conditions like  felix  and  alex  
can  jump over rover  or  garfield  and  rover  is a  dog  that does not  run  and  garfield  is 
a  cat . The second set of expressions is evaluated based on assigning  felix  and  rover  to 
specific symbols in our domain ( dom ), and we pass that variable ( g ) when evaluating the 
expressions. We can even satisfy open formulae or expressions using the  satisfiers()  
function as shown here:       

    # who are the animals who run? 
 In [154]: formula = read_expr('runs(x)') 
      ...: print m.satisfiers(formula, 'x', g)  
 set(['a', 'f']) 
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   # animals who run and are also a fox? 
 In [155]: formula = read_expr('runs(x) & fox(x)') 
      ...: print m.satisfiers(formula, 'x', g) 
 set(['f']) 

    The preceding outputs are self-explanatory wherein we evaluate open-ended 
questions like  which animals run ? And also  which animals can run and are also foxes ? 
We get the relevant symbols in our outputs, which you can map back to the actual 
animal names (Hint:  a: alex, f: felix ). I encourage you to experiment with more 
propositions and FOL expressions by building your own assumptions, domain, and rules.   

     Sentiment Analysis 
 We will now discuss several concepts, techniques, and examples with regard to our second 
major topic in this chapter, sentiment analysis.  Textual data  , even though unstructured, 
mainly has two broad types of data points: factual based (objective) and opinion based 
(subjective). We briefly talked about these two categories at the beginning of this chapter 
when I introduced the concept of sentiment analysis and how it works best on text that has 
a subjective context. In general, social media, surveys, and feedback data all are heavily 
opinionated and express the beliefs, judgement, emotion, and feelings of human beings. 
Sentiment analysis, also popularly known as  opinion analysis/mining , is  defined   as the 
process of using techniques like NLP, lexical resources, linguistics, and machine learning 
(ML) to extract subjective and opinion related information like emotions, attitude, mood, 
modality, and so on and try to use these to compute the polarity expressed by a text 
document. By  polarity , I mean to find out whether the document expresses a positive, 
negative, or a neutral sentiment. More advanced analysis involves trying to find out more 
complex emotions like sadness, happiness, anger, and sarcasm. 

 Typically, sentiment analysis for text data can be computed on several levels, 
including on an individual sentence level, paragraph level, or the entire document as a 
whole. Often sentiment is computed on the document as a whole or some aggregations 
are done after computing the sentiment for individual sentences.   Polarity analysis       usually 
involves trying to assign some scores contributing to the positive and negative emotions 
expressed in the document and then finally assigning a label to the document based on 
the aggregate score. We will depict two major  techniques   for sentiment analysis here:

•    Supervised machine learning  

•   Unsupervised lexicon-based    

 The key idea is to learn the various techniques typically used to tackle sentiment 
analysis problems so that you can apply them to solve your own problems. We will 
see how to re-use the concepts of supervised machine learning based classification 
algorithms from Chapter   4     here to classify documents to their associated sentiment. We 
will also use  lexicons , which are dictionaries or vocabularies specially constructed to 
be used for sentiment analysis, and compute sentiment without using any supervised 
techniques. We will be carrying out our experiments on a large real-world dataset 
pertaining to movie reviews, which will make this task more interesting. We will compare 
the performance of the various algorithms and also try to perform some detailed analytics 
besides just analyzing polarity, which includes analyzing the subjectivity, mood, and 
modality of the movie reviews. Without further delay, let’s get started!  

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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     Sentiment Analysis of  IMDb Movie Reviews   
 We will be using a dataset of movie reviews obtained from the Internet Movie Database 
(IMDb) for sentiment analysis. This dataset, containing over 50,000 movie reviews, can be 
obtained from    http://ai.stanford.edu/~amaas/data/sentiment/     , courtesy of Stanford 
University and A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, Andrew Ng, and C. Potts, 
and this dataset was used in their famous paper, “Learning Word Vectors for Sentiment 
Analysis.” We will be using 50,000 movie reviews from this dataset, which contain the 
review and a corresponding sentiment polarity label which is either positive or negative. 
A positive review is basically a movie review which was rated with more than six stars in 
IMDb, and a negative  review   was rated with less than five stars in IMDb. An important 
thing to remember here before we begin our exercise is the fact that many of these reviews, 
even though labeled positive or negative, might have some elements of negative or positive 
context respectively. Hence, there is a possibility for some overlap in many reviews, which 
make this task harder. Sentiment is not a quantitative number that you can compute and 
prove mathematically. It expresses complex emotions, feelings, and judgement, and hence 
you should never focus on trying to get a cent-percent perfect model but a model that 
generalizes well on data and works decently. We will start with setting up some necessary 
dependencies and utilities before moving on to the various techniques. 

      Setting Up Dependencies    
 There are several utility functions, data, and package dependencies that we need to set 
up before we jump into sentiment analysis. We will need our movie review dataset, some 
specific packages that we will be using in our implementations, and we will be defining 
some utility functions for text normalization, feature extracting, and model evaluation, 
similar to what we have used in previous chapters. 

   Getting and Formatting the  Data   
 We will use the IMDb movie review dataset officially available in raw text files for each 
set (training and testing) from    http://ai.stanford.edu/~amaas/data/sentiment/      as 
mentioned. You can download and unzip the files to a location of your choice and use 
the  review_data_extractor.py  file included along with the code files of this chapter to 
extract each review from the unzipped directory, parse them, and neatly format them into 
a data frame, which is then stored as a csv file named  movie_reviews.csv . Otherwise, 
you can directly download the parsed and formatted file from    https://github.com/
dipanjanS/text-analytics-with-python/tree/master/Chapter-7     , which contains all 
datasets and code used and is the official repository for this book. The data frame consists 
of two columns,  review  and  sentiment , for each data point, which indicates the review 
for a movie and its corresponding sentiment (positive or negative).  

    Text Normalization   
 We will be normalizing and standardizing our text data similar to what we did in Chapter 
  6     as a part of text pre-processing and normalization. For this we will be re-using our 
 normalization.py  module from Chapter   6     with a few additions. This mainly includes 

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
https://github.com/dipanjanS/text-analytics-with-python/tree/master/Chapter-7
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
http://dx.doi.org/10.1007/978-1-4842-2388-8_6
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adding an HTML stripper to remove unnecessary HTML characters from text documents, 
as shown here: 

    from HTMLParser import HTMLParser 

   class MLStripper(HTMLParser): 
     def __init__(self): 
         self.reset() 
         self.fed = [] 
     def handle_data(self, d): 
         self.fed.append(d) 
     def get_data(self): 
         return ' '.join(self.fed) 

   def strip_html(text): 
     html_stripper = MLStripper() 
     html_stripper.feed(text) 
     return html_stripper.get_data() 

    We also add a new function to normalize special accented characters and convert 
them into regular ASCII characters so as to standardize the text across all documents. The 
following snippet helps us achieve this: 

   def normalize_accented_characters(text): 
     text = unicodedata.normalize('NFKD',  
                                  text.decode('utf-8') 
                                  ).encode('ascii', 'ignore') 
     return  text   

   The overall text normalization function is depicted in the following snippet and it 
re-uses the expand contractions, lemmatization, HTML unescaping, special characters 
removal, and stopwords removal functions from the previous chapter's normalization 
module: 

    def normalize_corpus(corpus, lemmatize=True,  
                      only_text_chars=False, 
                      tokenize=False): 

       normalized_corpus = []     
     for index, text in enumerate(corpus): 
         text = normalize_accented_characters(text) 
         text = html_parser.unescape(text) 
         text = strip_html(text) 
         text = expand_contractions(text, CONTRACTION_MAP) 
         if lemmatize: 
             text = lemmatize_text(text) 
         else: 
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             text = text.lower() 
         text = remove_special_characters(text) 
         text = remove_stopwords(text) 
         if only_text_chars: 
             text = keep_text_characters(text) 

           if tokenize: 
             text = tokenize_text(text) 
             normalized_corpus.append(text) 
         else: 
             normalized_corpus.append(text) 

       return normalized_ corpus   

    To re-use this code, you can make use of the  normalization.py  and  contractions.
py  files provided with the code files of this chapter.  

   Feature  Extraction   
 We will be reusing the same feature-extraction function we used in Chapter   6    , and it is 
available as a part of the  utils.py  module. The function is shown here for the sake of 
completeness: 

    from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer 

   def build_feature_matrix(documents, feature_type='frequency', 
                          ngram_range=(1, 1), min_df=0.0, max_df=1.0): 

       feature_type = feature_type.lower().strip()   

       if feature_type == 'binary': 
         vectorizer = CountVectorizer(binary=True, min_df=min_df, 
                                      max_df=max_df, ngram_range=ngram_range) 
     elif feature_type == 'frequency': 
         vectorizer = CountVectorizer(binary=False, min_df=min_df, 
                                      max_df=max_df, ngram_range=ngram_range) 
     elif feature_type == 'tfidf': 
         vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df,  
                                      ngram_range=ngram_range) 
     else: 
          raise Exception("Wrong feature type entered. Possible values: 

'binary', 'frequency', 'tfidf'") 

       feature_matrix = vectorizer.fit_transform(documents).astype(float) 
     return vectorizer, feature_ matrix   

http://dx.doi.org/10.1007/978-1-4842-2388-8_6
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    You can experiment with various features provided by this function, which include 
Bag of Words-based frequencies, occurrences, and TF-IDF based features.  

    Model Performance Evaluation   
 We will be evaluating our models based on precision, recall, accuracy, and F1-score, 
similar to our evaluation methods in Chapter   4     for text classification. Additionally we 
will be looking at the confusion matrix and detailed classification reports for each class, 
that is, the positive and negative classes to evaluate model performance. You can refer to 
the “Evaluating Classification Models” section in Chapter   4     to refresh your memory on 
the various model-evaluation metrics. The following function will help us in getting the 
model accuracy, precision, recall, and F1-score: 

    from sklearn import metrics 
 import numpy as np 
 import pandas as pd 

   def display_evaluation_metrics(true_labels, predicted_labels, positive_
class=1): 
     print 'Accuracy:', np.round( 
                         metrics.accuracy_score(true_labels,  
                                                predicted_labels), 
                         2) 
     print 'Precision:', np.round( 
                         metrics.precision_score(true_labels,  
                                                predicted_labels, 
                                                pos_label=positive_class, 
                                                average='binary'), 
                         2) 
     print 'Recall:', np.round( 
                         metrics.recall_score(true_labels,  
                                                predicted_labels, 
                                                pos_label=positive_class, 
                                                average='binary'), 
                         2) 
     print 'F1 Score:', np.round( 
                         metrics.f1_score(true_labels,  
                                                predicted_labels, 
                                                pos_label=positive_class, 
                                                average='binary'), 
                         2) 

    We will also define a function to help us build the confusion matrix for evaluating 
the model predictions against the actual sentiment labels for the reviews. The following 
function will help us achieve that:    

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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   def display_confusion_matrix(true_labels, predicted_labels, classes=[1,0]): 
     cm = metrics.confusion_matrix(y_true=true_labels,  
                                   y_pred=predicted_labels,  
                                   labels=classes) 
     cm_frame = pd.DataFrame(data=cm,  
                              columns=pd.MultiIndex(levels=[['Predicted:'], 

classes],  
                                                   labels=[[0,0],[0,1]]),  
                              index=pd.MultiIndex(levels=[['Actual:'], 

classes],  
                                                 labels=[[0,0],[0,1]]))  
     print cm_frame   

   Finally, we will define a function for getting a detailed classification report per 
sentiment category (positive and negative) by displaying the precision, recall, F1-score, 
and support (number of reviews) for each of the classes: 

   def display_classification_report(true_labels, predicted_labels, 
classes=[1,0]): 
     report = metrics.classification_report(y_true=true_labels,  
                                            y_pred=predicted_labels,  
                                            labels=classes)  
     print report 

   You will find all the preceding functions in the  utils.py  module along with the other 
code files for this chapter and you can re-use them as needed. Besides this, you need to 
make sure you have  nltk  and  pattern  installed—which you should already have by this 
point of time because we have used them numerous times in our previous chapters.      

     Preparing  Datasets   
 We will be loading our movie reviews data and preparing two datasets, namely training 
and testing, similar to what we did in Chapter   4    . We will train our supervised model on 
the training data and evaluate model performance on the testing data. For unsupervised 
models, we will directly evaluate them on the testing data so as to compare their 
performance with the supervised model. Besides that, we will also pick some sample 
positive and negative reviews to see how the different models perform on them: 

    import pandas as pd 
 import numpy as np 
 # load movie reviews data 
 dataset = pd.read_csv(r'E:/aclImdb/movie_reviews.csv') 
 # print sample data 
 In [235]: print dataset.head() 
                                               review sentiment 
 0  One of the other reviewers has mentioned that ...  positive 
 1  A wonderful little production. <br /><br />The...  positive 
 2  I thought this was a wonderful way to spend ti...  positive 

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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 3  Basically there's a family where a little boy ...  negative 
 4  Petter Mattei's "Love in the Time of Money" is...  positive 

   # prepare training and testing datasets 
 train_data = dataset[:35000] 
 test_data = dataset[35000:]    

   train_reviews = np.array(train_data['review']) 
 train_sentiments = np.array(train_data['sentiment']) 
 test_reviews = np.array(test_data['review']) 
 test_sentiments = np.array(test_data['sentiment']) 

   # prepare sample dataset for experiments 
 sample_docs = [100, 5817, 7626, 7356, 1008, 7155, 3533, 13010] 
 sample_data = [(test_reviews[index], 
                 test_sentiments[index]) 
                   for index in sample_docs] 

    We have taken a total of 35,000 reviews out of the 50,000 to be our training dataset 
and we will evaluate our models and test them on the remaining 15,000 reviews. This is in 
line with a typical 70:30 separation used for training and testing dataset building. We have 
also extracted a total of eight reviews from the test dataset and we will be looking closely 
at the results for these documents as well as evaluating the model performance on the 
complete test dataset in the following sections.     

     Supervised Machine Learning  Technique   
 As mentioned before, in this section we will be building a model to analyze sentiment 
using supervised ML. This model will learn from past reviews and their corresponding 
sentiment from the training dataset so that it can predict the sentiment for new reviews 
from the test dataset. The basic principle here is to use the same concepts we used for 
 text classification   such that the classes to predict here are positive and negative sentiment 
corresponding to the movie reviews. 

 We will be following the same workflow which we followed in Chapter   4     for  text 
classification   (refer to Figure 4-2 in Chapter   4    ) in the “Text Classification Blueprint” 
section. The following points summarize these steps:

    1.    Model training

   a.    Normalize training data  

   b.    Extract features and build feature set and feature 
vectorizer  

   c.    Use supervised learning algorithm (SVM) to build a 
predictive model      

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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    2.    Model testing

   a.    Normalize testing data  

   b.    Extract features using training feature vectorizer  

   c.    Predict the sentiment for testing reviews using training 
model  

   d.    Evaluate model performance         

 To start, we will be building our training model using the steps in point 1. We will be 
using our normalization and feature- extraction   modules discussed in previous sections: 

    from normalization import normalize_corpus 
 from utils import build_feature_matrix 

   # normalization 
 norm_train_reviews = normalize_corpus(train_reviews, lemmatize=True, only_
text_chars=True) 
 # feature extraction                                                                             
 vectorizer, train_features = build_feature_matrix(documents=norm_train_
reviews, 
                                                    feature_type='tfidf', 

ngram_range=(1, 1),  
                                                   min_df=0.0, max_df=1.0)    

    We will now build our model using the   support vector machine  (SVM)   algorithm which 
we used for text classification in Chapter   4    . Refer to the “Support Vector Machines” subsection 
under the “Classification Algorithms” section in Chapter   4     to refresh your memory: 

   from sklearn.linear_model import SGDClassifier 
 # build the model 
 svm = SGDClassifier(loss='hinge', n_iter=200) 
 svm.fit(train_features, train_sentiments) 

   The preceding snippet trainings the classifier and builds the model that is in the 
 svm  variable, which we can now use for predicting sentiment for new movie reviews (not 
used for training) from the test dataset. Let us normalize and extract  features   from the test 
dataset first as mentioned in step 2 in our workflow: 

   # normalize reviews                         
 norm_test_reviews = normalize_corpus(test_reviews, lemmatize=True, only_
text_chars=True)   
 # extract features                                      
 test_features = vectorizer.transform(norm_test_reviews) 

   Now that we have our features for the entire test dataset, before we predict the 
sentiment and measure model prediction performance for the entire test dataset, let us 
look at some of the  predictions   for the sample documents we extracted earlier: 

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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    # predict sentiment for sample docs from test data 
 In [253]: for doc_index in sample_docs: 
      ...:     print 'Review:-' 
      ...:     print test_reviews[doc_index] 
      ...:     print 'Actual Labeled Sentiment:', test_sentiments[doc_index] 
      ...:     doc_features = test_features[doc_index] 
      ...:     predicted_sentiment = svm.predict(doc_features)[0] 
      ...:     print 'Predicted Sentiment:', predicted_sentiment 
      ...:     print 
      ...:  
      ...:  
 Review:- 
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin  scorsese   
 Actual Labeled Sentiment: negative 
 Predicted Sentiment: negative 

   Review:- 
 I hope this group of film-makers never re-unites. 
 Actual Labeled Sentiment: negative 
 Predicted Sentiment: negative 

   Review:- 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 
 Actual Labeled Sentiment: negative 
 Predicted Sentiment: negative 

   Review:- 
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment: positive 

   Review:- 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment: positive 

   Review:- 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-)    



CHAPTER 7 ■ SEMANTIC AND SENTIMENT ANALYSIS

351

 Actual Labeled Sentiment: positive 
 Predicted Sentiment: positive 

   Review:- 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment: negative 

   Review:- 
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 
 Actual Labeled Sentiment: positive 
 Predicted Sentiment:  negative   

    You can look at each review, its actual labeled sentiment, and our predicted sentiment 
in the preceding output and see that we have some negative and positive reviews, and our 
model is able to correctly identify the sentiment for most of the sampled reviews except 
the last two reviews. If you look closely at the last two reviews, some part of the review has 
a negative sentiment ( "worst horror film" ,  "voted this movie to be bad" ) but the 
general sentiment or opinion of the person who wrote the review was intended positive. 
These are the examples I mentioned earlier about the overlap of  positive and negative 
emotions  , which makes it difficult for the model to predict the actual sentiment! 

 Let us now predict the sentiment for all our  test dataset reviews   and evaluate our 
model performance: 

    # predict the sentiment for test dataset movie reviews 
 predicted_sentiments = svm.predict(test_features)        

   # evaluate model prediction performance 
 from utils import display_evaluation_metrics, display_confusion_matrix, 
display_classification_report 

   # show performance metrics 
 In [270]: display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                            predicted_labels=predicted_sentiments, 
      ...:                            positive_class='positive')   
 Accuracy: 0.89 
 Precision: 0.88 
 Recall: 0.9 
 F1 Score: 0.89 

   # show confusion matrix 
 In [271]: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                          predicted_labels=predicted_sentiments, 
      ...:                          classes=['positive', 'negative']) 
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                  Predicted:          
                    positive negative 
 Actual: positive       6770      740 
         negative        912     6578 

   # show detailed per-class classification report 
 In [272]: display_classification_report(true_labels=test_sentiments, 
      ...:                                predicted_labels=predicted_

sentiments, 
      ...:                               classes=['positive', 'negative'])     
              precision    recall  f1-score   support 

      positive       0.88      0.90      0.89      7510 
    negative       0.90      0.88      0.89      7490 

   avg / total       0.89      0.89      0.89     15000 

    The preceding outputs show the various  performance metrics   that depict the 
performance of our SVM model with regard to predicting sentiment for movie reviews. 
We have an average sentiment prediction accuracy of 89 percent, which is really good if 
you compare it with standard baselines for text classification using supervised techniques. 
The classification report also shows a per-class detailed report, and we see that our F1-
score (harmonic mean of precision and recall) is 89 percent for both positive and negative 
sentiment. The support metric shows the number of reviews having positive (7510) 
sentiment and negative (7490) sentiment. The  confusion matrix   shows how many reviews 
for which we predicted the correct sentiment ( positive : 6770/7510,  negative : 6578/7490) 
and the number of reviews for which we predicted the wrong sentiment ( positive : 740/7510, 
 negative : 912/7490). Do try out building more models with different features (Chapter 
  4     talks about different feature-extraction techniques) and different supervised learning 
algorithms. Can you get a better model which predicts sentiment more accurately?  

     Unsupervised Lexicon-based  Techniques   
 So far, we used labeled training data to learn patterns using features from the movie 
reviews and their corresponding sentiment. Then we applied this knowledge learned on 
new movie reviews (the testing dataset) to predict their sentiment. Often, you may not 
have the convenience of a well-labeled training dataset. In those situations, you need 
to use unsupervised techniques for predicting the sentiment by using knowledgebases, 
ontologies, databases, and lexicons that have detailed information specially curated and 
prepared just for sentiment analysis. 

 As mentioned, a  lexicon   is a dictionary, vocabulary, or a book of words. In our case, 
lexicons are special dictionaries or vocabularies that have been created for analyzing 
sentiment. Most of these lexicons have a list of positive and negative polar words with 
some score associated with them, and using various techniques like the position of words, 
surrounding words, context, parts of speech, phrases, and so on, scores are assigned to 
the text documents for which we want to compute the sentiment. After aggregating these 
scores, we get the final sentiment. More advanced analyses can also be done, including 
detecting the subjectivity, mood, and modality. Various popular lexicons are used for 
sentiment analysis, including the following:

http://dx.doi.org/10.1007/978-1-4842-2388-8_4
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•    AFINN lexicon  

•   Bing Liu’s lexicon  

•   MPQA subjectivity lexicon  

•   SentiWordNet  

•   VADER lexicon  

•   Pattern lexicon    

 This is not an exhaustive list of lexicons that can be leveraged for sentiment analysis, 
and there are several other lexicons which can be easily obtained from the Internet. 
We will briefly discuss each lexicon and will be using the last three lexicons to analyze 
the sentiment for our testing dataset in more detail. Although these techniques are 
unsupervised, you can also use them to analyze and evaluate the sentiment for the 
training dataset too, but for the sake of consistency and to compare model performances 
with the supervised model, we will be performing all our analyses on the testing dataset. 

    AFINN Lexicon      
 The AFINN lexicon was curated and created by Finn Årup Nielsen, and more details are 
mentioned in his paper “A New ANEW: Evaluation of a Word List for Sentiment Analysis 
in Microblogs.” The latest version, known as AFINN-111, consists of a total of 2477 words 
and phrases with their own scores based on sentiment polarity. The polarity basically 
indicates how positive, negative, or neutral the term might be with some numerical 
score. You can download it from    www2.imm.dtu.dk/pubdb/views/publication_details.
php?id=6010     . It also talks about the lexicon in further details. The author of this lexicon 
has also built a Python wrapper over the AFINN lexicon, which you can directly use to 
predict the sentiment of text data. The repository is available from GitHub at    https://
github.com/fnielsen/afinn     . You can install the  afinn  library directly and start 
analyzing sentiment. This library even has support for emoticons and smileys. Following 
is a sample of the AFINN-111 lexicon: 

   abandon        -2 
 abandoned      -2 
 abandons       -2 
 abducted       -2 
 abduction      -2 
 ... 
 ... 
 youthful        2 
 yucky          -2 
 yummy           3 
 zealot         -2 
 zealots        -2 
 zealous         2 

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
https://github.com/fnielsen/afinn
https://github.com/fnielsen/afinn
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   The basic idea is to load the entire list of polar words and phrases in the lexicon 
along with their corresponding score (sample shown above) in memory and then find the 
same words/phrases and score them accordingly in a text document. Finally, these scores 
are aggregated, and the final sentiment and score can be obtained for a text document. 
Following is an example snippet based on the official documentation: 

    from afinn import Afinn 
 afn = Afinn(emoticons=True)  

   In [281]: print afn.score('I really hated the plot of this movie') 
 -3.0 
 In [282]: print afn.score('I really hated the plot of this movie :(') 
 -5.0 

    Thus you can use the  score()  function directly to evaluate the sentiment of your text 
documents, and from the preceding output you can see that they even give proper weightage 
to emoticons, which are used extensively in social media like Twitter and Facebook.        

    Bing Liu’s Lexicon      
 This lexicon has been developed by Bing Liu over several years and is discussed in 
further details in his paper, by Nitin Jindal and Bing Liu, “Identifying Comparative 
Sentences in Text Documents.” You can get more details about the lexicon at    https://
www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon     , which also includes a 
link to download it as an archive (RAR format). This lexicon consists of over 6800 words 
divided into two files named  positive-words.txt , containing around 2000+ words/
phrases, and  negative-words.txt , which contains around 4800+ words/phrases. The 
key idea is to leverage these words to contribute to the positive or negative polarity of 
any text document when they are identified in that document. This lexicon also includes 
many misspelled words, taking into account that words or terms are often misspelled on 
popular social media web sites.         

    MPQA Subjectivity Lexicon      
 MPQA stands for Multi-Perspective Question Answering, and it hosts a plethora of 
resources maintained by the University of Pittsburgh. It contains resources including 
opinion corpora, subjectivity lexicon, sense annotations, argument-based lexicon, and 
debate datasets. A lot of these can be leveraged for complex analysis of human emotions 
and sentiment. The subjectivity lexicon is maintained by Theresa Wilson, Janyce Wiebe, 
and Paul Hoffmann, and is discussed in detail in their paper, “Recognizing Contextual 
Polarity in Phrase-Level Sentiment Analysis,” which focuses on contextual polarity. You 
can download the subjectivity lexicon from    http://mpqa.cs.pitt.edu/lexicons/subj_
lexicon/     , which is their official website. It has subjectivity clues present in the dataset 
named  subjclueslen1-HLTEMNLP05.tff , which is available once you extract the archive. 
Some sample lines from the dataset are depicted as follows: 

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
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   type=weaksubj len=1 word1=abandoned pos1=adj stemmed1=n 
priorpolarity=negative 
 type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n 
priorpolarity=negative 
 type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y 
priorpolarity=negative 
 type=strongsubj len=1 word1=abase pos1=verb stemmed1=y 
priorpolarity=negative 
 ... 
 ... 
 type=strongsubj len=1 word1=zealously pos1=anypos stemmed1=n 
priorpolarity=negative 
 type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n 
priorpolarity=positive 
 type=strongsubj len=1 word1=zest pos1=noun stemmed1=n priorpolarity=positive  

   To understand this data, you can refer to the  readme  file provided along with the 
dataset. Basically, the clues in this dataset were curated and collected manually with 
efforts by the above-mentioned maintainers of this project. The various parameters 
mentioned above are explained briefly as follows:

•     type : This has values that are either  strongsubj  indicating the 
presence of a strongly subjective context or  weaksubj  which 
indicates the presence of a weak/part subjective context.  

•    len : This points to the number of words in the term of the clue (all 
are single words of length 1 for now).  

•    word1 : The actual term present as a token or a stem of the actual 
token.  

•    pos1 : The part of speech for the term (clue) and it can be  noun , 
 verb ,  adj ,  adverb , or  anypos .  

•    stemmed1 : This indicates if the clue (term) is stemmed ( y ) or not 
stemmed ( n ). If it is stemmed, it can match all its other variants 
having the same  pos1  tag.  

•    priorpolarity : This has values of negative, positive, both, or 
neutral, and indicates the polarity of the sentiment associated 
with this clue (term).    

 The idea is to load this lexicon into a database or memory (hint: Python dictionary 
works well) and then use it similarly to the previous lexicons to analyze the sentiment 
associated with any text document.        
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    SentiWordNet      
 We know that WordNet is perhaps one of the most popular corpora for the English 
language, used extensively in semantic analysis, and it introduces the concept of synsets. 
The SentiWordNet lexicon is a lexical resource used for sentiment analysis and opinion 
mining. For each synset present in WordNet, the SentiWordNet lexicon assigns three 
sentiment scores to it, including a positive polarity score, a negative polarity score, 
and an objectivity score. You can find more details on the official web site    http://
sentiwordnet.isti.cnr.it     , which includes research papers explaining the lexicon in 
detail and also a link to download the lexicon. The  nltk  package in Python provides an 
interface directly for accessing the SentiWordNet lexicon, and we will be using this to 
analyze the sentiment of our movie reviews. The following snippet shows an example 
synset and its sentiment scores using SentiWordNet: 

   import nltk 
 from nltk.corpus import sentiwordnet as swn 
 # get synset for 'good' 
 good = swn.senti_synsets('good', 'n')[0]   
 # print synset sentiment scores 
 In [287]: print 'Positive Polarity Score:', good.pos_score() 
      ...: print 'Negative Polarity Score:', good.neg_score() 
      ...: print 'Objective Score:', good.obj_score() 
 Positive Polarity Score: 0.5 
 Negative Polarity Score: 0.0 
 Objective Score: 0.5 

   Now that we know how to use the  sentiwordnet  interface, we define a function 
that can take in a body of text (movie review in our case) and analyze its sentiment by 
leveraging   sentiwordnet :      

    from normalization import normalize_accented_characters, html_parser, strip_
html 

   def analyze_sentiment_sentiwordnet_lexicon(review, 
                                            verbose=False): 
     # pre-process text 
     review = normalize_accented_characters(review) 
     review = html_parser.unescape(review) 
     review = strip_html(review) 
     # tokenize and POS tag text tokens 
     text_tokens = nltk.word_tokenize(review) 
     tagged_text = nltk.pos_tag(text_tokens) 
     pos_score = neg_score = token_count = obj_score = 0 
     # get wordnet synsets based on POS tags 
     # get sentiment scores if synsets are found 
     for word, tag in tagged_text: 
         ss_set = None 

http://sentiwordnet.isti.cnr.it/
http://sentiwordnet.isti.cnr.it/
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         if 'NN' in tag and swn.senti_synsets(word, 'n'): 
             ss_set = swn.senti_synsets(word, 'n')[0] 
         elif 'VB' in tag and swn.senti_synsets(word, 'v'): 
             ss_set = swn.senti_synsets(word, 'v')[0] 
         elif 'JJ' in tag and swn.senti_synsets(word, 'a'): 
             ss_set = swn.senti_synsets(word, 'a')[0] 
         elif 'RB' in tag and swn.senti_synsets(word, 'r'): 
             ss_set = swn.senti_synsets(word, 'r')[0] 
         # if senti-synset is found     
         if ss_set: 
             # add scores for all found synsets 
             pos_score += ss_set.pos_score() 
             neg_score += ss_set.neg_score() 
             obj_score += ss_set.obj_score() 
             token_count += 1 

       # aggregate final  scores      
     final_score = pos_score - neg_score 
     norm_final_score = round(float(final_score) / token_count, 2) 
     final_sentiment = 'positive' if norm_final_score >= 0 else 'negative' 
     if verbose: 
         norm_obj_score = round(float(obj_score) / token_count, 2) 
         norm_pos_score = round(float(pos_score) / token_count, 2) 
         norm_neg_score = round(float(neg_score) / token_count, 2) 
         # to display results in a nice table 
         sentiment_frame = pd.DataFrame([[final_sentiment, norm_obj_score, 
                                          norm_pos_score, norm_neg_score, 
                                          norm_final_score]], 
                                           columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],  
                                                        ['Predicted Sentiment',

 'Objectivity', 
                                                         'Positive', 'Negative',

 'Overall']],  
                                                       labels=[[0,0,0,0,0],

[0,1,2,3,4]])) 
                                                      print sentiment_frame 

       return final_ sentiment      

    The comments in the preceding function are pretty self-explanatory. We take in a 
body of text (a movie review), do some initial pre-processing, and then tokenize and POS 
tag the tokens. For each pair of (word, tag) we check if any senti-synsets exist for the same 
word and its corresponding tag. If there is a match, we take the first senti-synset and store 
its sentiment scores in corresponding variables, and finally we aggregate its scores. We 
can now see the preceding function in action for our sample reviews (in the  sample_data  
variable we created earlier from the test data) in the following snippet: 
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    # detailed sentiment analysis for sample reviews 
 In [292]: for review, review_sentiment in sample_data:   
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 
      ...:     print 'Labeled Sentiment:', review_sentiment     
      ...:     print     
      ...:      final_sentiment = analyze_sentiment_sentiwordnet_

lexicon(review, 
      ...:                                                               

verbose=True) 
      ...:     print '-'*60     
      ...:  
      ...:  
 Review:       
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 

   Labeled Sentiment:  negative      

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            negative        0.83     0.08     0.09   -0.01 
 ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            negative        0.71     0.04     0.25   -0.21 
 ------------------------------------------------------------ 
 Review: 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            negative        0.81     0.04     0.15   -0.11 
 ------------------------------------------------------------ 
 Review: 
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.76     0.18     0.06    0.13 
 ------------------------------------------------------------ 
 Review: 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 

   Labeled Sentiment:  positive      

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.84     0.14     0.03    0.11 
 ------------------------------------------------------------ 
 Review: 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-)       

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.75      0.2     0.05    0.15 
 ------------------------------------------------------------ 
 Review: 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.73     0.21     0.06    0.15 
 ------------------------------------------------------------ 
 Review: 
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 

   Labeled Sentiment: positive 
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        SENTIMENT STATS:                                       
   Predicted Sentiment Objectivity Positive Negative Overall 
 0            positive        0.79     0.13     0.08    0.05 
 ------------------------------------------------------------ 

    You can see detailed statistics related to each sentiment score and also the overall 
sentiment and compare it with the actual labeled sentiment for each review in the 
preceding output. Interestingly, we were able to predict the sentiment correctly for all 
our sampled reviews as compared to the supervised learning technique. But how well 
does this technique perform for our complete test movie reviews dataset? The following 
snippet will give us the answer!       

    # predict sentiment for test movie reviews dataset 
 sentiwordnet_predictions = [analyze_sentiment_sentiwordnet_lexicon(review) 
                             for review in test_reviews] 

   from utils import display_evaluation_metrics, display_confusion_matrix, 
display_classification_report 

   # get model performance statistics 
 In [295]: print 'Performance metrics:' 
      ...:       display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                             predicted_labels=sentiwordnet_

predictions, 
      ...:                            positive_class='positive')   
      ...: print '\nConfusion Matrix:'                            
      ...: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                           predicted_labels=sentiwordnet_

predictions, 
      ...:                          classes=['positive', 'negative']) 
      ...: print '\nClassification report:'                          
      ...: display_classification_report(true_labels=test_sentiments, 
      ...:                                predicted_labels=sentiwordnet_

predictions, 
      ...:                               classes=['positive', 'negative'])  
 Performance metrics: 
 Accuracy: 0.59 
 Precision: 0.56 
 Recall: 0.92 
 F1 Score: 0.7 

   Confusion Matrix: 
                  Predicted:          
                    positive negative 
 Actual: positive       6941      569 
         negative       5510     1980 

   Classification report:       
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              precision    recall  f1-score   support 

      positive       0.56      0.92      0.70      7510 
    negative       0.78      0.26      0.39      7490 

   avg / total       0.67      0.59      0.55     15000 

    Our model has a sentiment prediction accuracy of around 60% and an F1-score of 
70% approximately. If you look at the detailed classification report and the confusion 
matrix, you will observe that we correctly classify 6941/7510 positive movie reviews as 
positive, but we incorrectly classify 5510/7490 negative movie reviews as positive—which 
is quite high! A way to redress this would be to change our logic slightly in our function 
and relax the threshold for overall sentiment score to decide whether a document will 
have an overall positive or negative sentiment from 0 to maybe 0.1 or higher. Experiment 
with this threshold and see what kind of results you get.        

    VADER Lexicon      
 VADER stands for Valence Aware Dictionary and sEntiment Reasoner. It is a lexicon 
with a rule-based sentiment analysis framework that was specially built for analyzing 
sentiment from social media resources. This lexicon was developed by C. J. Hutto and 
Eric Gilbert, and you will find further details in the paper, “VADER: A Parsimonious Rule-
based Model for Sentiment Analysis of Social Media Text.” You can read more about it 
and even download the dataset or install the library from    https://github.com/cjhutto/
vaderSentiment     , which contains all the resources pertaining to the VADER lexicon. 
The file  vader_sentiment_lexicon.txt  contains all the necessary sentiment scores 
associated with various terms, including words, emoticons, and even slang language-
based tokens (like  lol ,  wtf ,  nah , and so on). There are over 9000 lexical features from 
which it was further curated to 7500 lexical features in this lexicon with proper validated 
valence scores. Each feature was rated on a scale from  "[-4] Extremely Negative"  to 
 "[4] Extremely Positive" , with allowance for  "[0] Neutral (or Neither, N/A)" . 
This curation was done by keeping all lexical features which had a non-zero mean rating 
and whose standard deviation was less than 2.5, which was determined by the aggregate 
of ten independent raters. A sample of the VADER lexicon is depicted as follows:          

   )-:<   -2.2   0.4     [-2, -2, -2, -2, -2, -2, -3, -3, -2, -2] 
 )-:{   -2.1   0.9434  [-1, -3, -2, -1, -2, -2, -3, -4, -1, -2] 
 ):     -1.8   0.87178 [-1, -3, -1, -2, -1, -3, -1, -3, -1, -2] 
 ... 
 ... 
 resolved      0.7   0.78102  [1, 2, 0, 1, 1, 0, 2, 0, 0, 0] 
 resolvent     0.7   0.78102  [1, 0, 1, 2, 0, -1, 1, 1, 1, 1] 
 resolvents    0.4   0.66332  [2, 0, 0, 1, 0, 0, 1, 0, 0, 0] 
 ... 
 ... 
 }:-(   -2.1   0.7       [-2, -1, -2, -2, -2, -4, -2, -2, -2, -2] 
 }:-)    0.3   1.61555   [1, 1, -2, 1, -1, -3, 2, 2, 1, 1] 

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment
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   Each line in the preceding lexicon depicts a unique term, which can be a word 
or even an emoticon. The first term indicates the word/emoticon, the second column 
indicates the mean or average score, the third column indicates the standard deviation, 
and the final column indicates a list of scores given by ten independent scorers. The  nltk  
package has a nice interface for leveraging the VADER lexicon, and the following function 
makes use of the same for analyzing sentiment for any text document:       

    from nltk.sentiment.vader import SentimentIntensityAnalyzer 

   def analyze_sentiment_vader_lexicon(review,  
                                     threshold=0.1, 
                                     verbose=False): 
     # pre-process text 
     review = normalize_accented_characters(review) 
     review = html_parser.unescape(review) 
     review = strip_html(review) 
     # analyze the sentiment for review 
     analyzer = SentimentIntensityAnalyzer() 
     scores = analyzer.polarity_scores(review) 
     # get aggregate scores and final sentiment 
     agg_score = scores['compound'] 
     final_sentiment = 'positive' if agg_score >= threshold\ 
                                    else 'negative' 
     if verbose: 
         # display detailed sentiment statistics 
         positive = str(round(scores['pos'], 2)*100)+'%' 
         final = round(agg_score, 2) 
         negative = str(round(scores['neg'], 2)*100)+'%' 
         neutral = str(round(scores['neu'], 2)*100)+'%' 
         sentiment_frame = pd.DataFrame([[final_sentiment, final, positive, 
                                         negative, neutral]], 
                   columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'], 
                                                [ 'Predicted Sentiment', 

'Polarity Score', 
                                                 'Positive', 'Negative', 
                                                 'Neutral']],  
                                        labels=[[0,0,0,0,0],[0,1,2,3,4]])) 
         print sentiment_frame 

       return final_ sentiment      

    That function helps in computing the sentiment and various statistics associated with 
it for any text document (movie reviews in our case). The comments explain the main 
sections of the function, which include text-preprocessing, getting the necessary sentiment 
scores using the VADER lexicon, aggregating them, and computing the final sentiment 
(positive/negative) using a specific threshold we talked about earlier. A threshold of 0.1 
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seemed to work best on an average, but you can experiment further with it. The following 
snippet shows us how to use this function on our sampled test movie reviews:       

    # get detailed sentiment statistics 
 In [301]: for review, review_sentiment in sample_data: 
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 
      ...:     print 'Labeled Sentiment:', review_sentiment     
      ...:     print     
      ...:     final_sentiment = analyze_sentiment_vader_lexicon(review, 
      ...:                                                    threshold=0.1, 
      ...:                                                    verbose=True) 
      ...:     print '-'*60  

   Review: 
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            negative           0.03    20.0%    18.0%   62.0% 
 ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.44    33.0%     0.0%   67.0% 
 ------------------------------------------------------------ 
 Review:       
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            negative           -0.8     0.0%    40.0%   60.0% 
 ------------------------------------------------------------ 
 Review:       
 Add this little gem to your list of holiday regulars. It is<br /><br />sweet, 
funny, and endearing 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.82    40.0%     0.0%   60.0% 
 ------------------------------------------------------------ 
 Review: 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.71    31.0%     0.0%   69.0% 
 ------------------------------------------------------------ 
 Review:       
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-) 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.99    37.0%     2.0%   61.0% 
 ------------------------------------------------------------ 
 Review: 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            negative          -0.16    17.0%    14.0%   69.0% 
 ------------------------------------------------------------ 
 Review:       
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                          
   Predicted Sentiment Polarity Score Positive Negative Neutral 
 0            positive           0.49    11.0%    11.0%   77.0% 
 ------------------------------------------------------------ 

    The preceding statistics are similar to our previous function except the  Positive , 
 Negative , and  Neutral  columns indicate the percentage or proportion of the document 
that is positive, negative, or neutral, and the final score is determined based on the 
polarity score and the threshold. The following snippet shows the model sentiment 
prediction performance on the entire test movie reviews dataset:       

    # predict sentiment for test movie reviews dataset 
 vader_predictions = [analyze_sentiment_vader_lexicon(review, threshold=0.1) 
                      for review in test_reviews] 

   # get model performance statistics 
 In [302]: print 'Performance metrics:' 
      ...: display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                            predicted_labels=vader_predictions, 
      ...:                            positive_class='positive')   
      ...: print '\nConfusion Matrix:'                            
      ...: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                          predicted_labels=vader_predictions, 
      ...:                          classes=['positive', 'negative']) 
      ...: print '\nClassification report:'                          
      ...: display_classification_report(true_labels=test_sentiments, 
      ...:                               predicted_labels=vader_predictions, 
      ...:                               classes=['positive', 'negative'])  
 Performance metrics:       
 Accuracy: 0.7 
 Precision: 0.65 
 Recall: 0.86 
 F1 Score: 0.74 

   Confusion Matrix: 
                  Predicted:          
                    positive negative 
 Actual: positive       6434     1076 
         negative       3410     4080 

   Classification report: 
              precision    recall  f1-score   support 

      positive       0.65      0.86      0.74      7510 
    negative       0.79      0.54      0.65      7490 

   avg / total       0.72      0.70      0.69     15000 
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    The preceding metrics depict that our model has a sentiment prediction accuracy of 
around 70 percent and an F1-score close to 75 percent, which is definitely better than our 
previous model. Also notice that we are able to correctly predict positive sentiment for 
6434 out of 7510 positive movie reviews, and negative sentiment correctly for 4080 out of 
7490 negative movie reviews.        

    Pattern Lexicon   
 The  pattern   package   is a complete package for NLP, text analytics, and information 
retrieval. We discussed it in detail in previous chapters and have also used it several 
times to solve several problems. This package is developed by CLiPS (Computational 
Linguistics & Psycholinguistics), a research center associated with the Linguistics 
Department of the Faculty of Arts of the University of Antwerp. It has a sentiment module 
associated with it, along with modules for analyzing mood and modality of a body of text. 

 For sentiment analysis, it analyzes any body of text by decomposing it into sentences 
and then tokenizing it and tagging the various tokens with necessary parts of speech. 
It then uses its own subjectivity-based sentiment lexicon, which you can access from 
its official repository at    https://github.com/clips/pattern/blob/master/pattern/
text/en/en-sentiment.xml     . It contains scores like polarity, subjectivity, intensity, and 
confidence, along with other tags like the part of speech, WordNet identifier, and so 
on. It then leverages this lexicon to compute the overall polarity and subjectivity score 
associated with a text document. A threshold of 0.1 is recommended by  pattern  itself to 
compute the final sentiment of a document as positive, and anything below it as negative. 

 You can also analyze the mood and modality of text  documents   by leveraging the 
mood and modality functions provided by the  pattern  package. The mood function 
helps in determining the mood expressed by a particular text document. This function 
returns  INDICATIVE ,  IMPERATIVE ,  CONDITIONAL , or  SUBJUNCTIVE  for any text based on its 
content. The table in Figure  7-2  talks about each type of mood in further detail, courtesy 
of the official documentation provided by CLiPS  pattern . The column  Use  talks about 
the typical usage patterns for each type of mood, and the examples provide some actual 
examples from the English language.  

 Modality for any text represents the degree of certainty expressed by the text as 
a whole. This value is a number that ranges between 0 and 1. Values > 0.5 indicate 
factual texts having a high certainty, and < 0.5 indicate wishes and hopes and have a low 

  Figure 7-2.    Different types of mood and their examples (figure courtesy of CLiPS pattern)          

 

https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
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certainty associated with them. We will define a function now to analyze the sentiment 
for text documents using the  pattern lexicon:   

    from pattern.en import sentiment, mood, modality 

   def analyze_sentiment_pattern_lexicon(review, threshold=0.1, 
                                       verbose=False): 
     # pre-process text 
     review = normalize_accented_characters(review) 
     review = html_parser.unescape(review) 
     review = strip_html(review) 
     # analyze sentiment for the text document 
     analysis = sentiment(review) 
     sentiment_score = round(analysis[0], 2) 
     sentiment_subjectivity = round(analysis[1], 2) 
     # get final sentiment 
     final_sentiment = 'positive' if sentiment_score >= threshold\ 
                                    else 'negative' 
     if verbose:    
         # display detailed sentiment statistics 
         sentiment_frame = pd.DataFrame([[final_sentiment, sentiment_score, 
                                         sentiment_subjectivity]], 
                                          columns=pd.MultiIndex(levels

=[['SENTIMENT STATS:'],  
                                                      ['Predicted Sentiment', 

'Polarity Score', 
                                                      'Subjectivity Score']],  
                                                       labels=[[0,0,0],

[0,1,2]])) 
         print sentiment_frame 
         assessment = analysis.assessments 
         assessment_frame = pd.DataFrame(assessment,  
                                    columns=pd.MultiIndex(levels=[['DETAILED 

ASSESSMENT STATS:'],  
                                                         ['Key Terms', 'Polarity 

Score', 
                                                       'Subjectivity Score', 

'Type']],  
                                                       labels=[[0,0,0,0],

[0,1,2,3]]))    
                                                      print assessment_frame 
                                                      print 

       return final_sentiment   
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    We will now test the function we defined to analyze the sentiment of our sample 
test movie reviews and observe the results. We take a threshold of 0.1 as the cut-off to 
decide between positive and negative sentiment for a document based on the aggregated 
sentiment polarity score, based on several experiments and recommendations from the 
official documentation:    

    # get detailed sentiment statistics 
 In [303]: for review, review_sentiment in sample_data: 
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 
      ...:     print 'Labeled Sentiment:', review_sentiment     
      ...:     print     
      ...:     final_sentiment = analyze_sentiment_pattern_lexicon(review, 
      ...:                                                         
threshold=0.1, 
      ...:                                                         
verbose=True) 
      ...:     print '-'* 60   

   Review: 
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative           0.06               0.62 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                    [worst]           -1.0              1.000  None 
 1                     [best]            1.0              0.300  None 
 2                      [top]            0.5              0.500  None 
 3                   [acting]            0.0              0.000  None 
 4                     [more]            0.5              0.500  None 
 5                    [great]            0.8              0.750  None 
 6                 [appalled]           -0.8              1.000  None 
 7                    [silly]           -0.5              0.875   None   

   ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 
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   Labeled Sentiment: negative 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative            0.0                0.0 
 Empty DataFrame 
 Columns: [(DETAILED ASSESSMENT STATS:, Key Terms), (DETAILED ASSESSMENT 
STATS:, Polarity Score), (DETAILED ASSESSMENT STATS:, Subjectivity Score), 
(DETAILED ASSESSMENT STATS:, Type)] 
 Index: []    

   ------------------------------------------------------------ 
 Review: 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 

   Labeled Sentiment: negative 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative          -0.36                0.5 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                   [stupid]          -0.80                1.0  None 
 1                   [acting]           0.00                0.0  None 
 2                  [average]          -0.15                0.4  None 
 3                 [worse, !]          -0.50                0.6  None 

   ------------------------------------------------------------ 
 Review:    
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive           0.19               0.67 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                   [little]        -0.1875                0.5  None 
 1                    [funny]         0.2500                1.0  None 
 2                [endearing]         0.5000                0.5  None 

   ------------------------------------------------------------ 
 Review:    
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive            0.4               0.71 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0              [mesmerizing]       0.300000           0.700000  None 
 1                [certainly]       0.214286           0.571429  None 
 2              [fascinating]       0.700000           0.850000  None 

   ------------------------------------------------------------ 
 Review: 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-)    

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive           0.66               0.73 
    DETAILED ASSESSMENT STATS:                                         
                     Key Terms Polarity Score Subjectivity Score  Type 
 0                   [perfect]       1.000000           1.000000  None 
 1                    [better]       0.500000           0.500000  None 
 2                   [best, !]       1.000000           0.300000  None 
 3                    [lovely]       0.500000           0.750000  None 
 4                 [much, fun]       0.300000           0.200000  None 
 5                 [excellent]       1.000000           1.000000  None 
 6                      [easy]       0.433333           0.833333  None 
 7                      [love]       0.500000           0.600000  None 
 8                      [sure]       0.500000           0.888889  None 
 9              [excellent, !]       1.000000           1.000000  None 
 10                      [:-)]       0.500000           1.000000  mood 

   ------------------------------------------------------------ 
 Review:    
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. 
You really should Get this one. 
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   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            positive           0.17               0.55 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                      [bad]           -0.7           0.666667  None 
 1            [very, good, !]            1.0           0.780000  None 
 2                   [really]            0.2           0.200000  None 

   ------------------------------------------------------------ 
 Review:    
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 

   Labeled Sentiment: positive 

        SENTIMENT STATS:                                   
   Predicted Sentiment Polarity Score Subjectivity Score 
 0            negative          -0.04               0.63 
   DETAILED ASSESSMENT STATS:                                         
                    Key Terms Polarity Score Subjectivity Score  Type 
 0                    [worst]      -1.000000                1.0  None 
 1                    [cheap]       0.400000                0.7  None 
 2       [really, !, !, !, !]       0.488281                0.2   None   

   ------------------------------------------------------------ 

    The preceding analysis shows the sentiment, polarity, and subjectivity scores for 
each sampled review. Besides this, we also see key terms and emotions and their polarity 
scores, which mainly contributed to the overall sentiment of each review. You can see 
that even exclamations and emoticons are also given importance and weightage when 
computing sentiment and polarity. The following snippet depicts the mood and modality 
for the sampled test movie reviews:    

    In [304]: for review, review_sentiment in sample_data: 
      ...:     print 'Review:' 
      ...:     print review 
      ...:     print 'Labeled Sentiment:', review_sentiment  
      ...:     print 'Mood:', mood(review) 
      ...:     mod_score = modality(review) 
      ...:     print 'Modality Score:', round(mod_score, 2) 
      ...:     print 'Certainty:', 'Strong' if mod_score > 0.5 \ 
      ...:                                 else 'Medium' if mod_score > 0.35 \ 
      ...:                                                     else 'Low' 
      ...:     print '-'*60   
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   Review:    
 Worst movie, (with the best reviews given it) I've ever seen. Over the top 
dialog, acting, and direction. more slasher flick than thriller.With all the 
great reviews this movie got I'm appalled that it turned out so silly. shame 
on you martin scorsese 
 Labeled Sentiment: negative 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 I hope this group of film-makers never re-unites. 
 Labeled Sentiment: negative 
 Mood: subjunctive 
 Modality Score: -0.25 
 Certainty:  Low   
 ------------------------------------------------------------ 
 Review: 
 no comment - stupid movie, acting average or worse... screenplay - no sense 
at all... SKIP IT! 
 Labeled Sentiment: negative 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 Add this little gem to your list of holiday regulars. It is<br /><br 
/>sweet, funny, and endearing 
 Labeled Sentiment: positive 
 Mood: imperative 
 Modality Score: 1.0 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 a mesmerizing film that certainly keeps your attention... Ben Daniels is 
fascinating (and courageous) to watch. 
 Labeled Sentiment: positive 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty: Strong 
 ------------------------------------------------------------ 
 Review: 
 This movie is perfect for all the romantics in the world. John Ritter has 
never been better and has the best line in the movie! "Sam" hits close to 
home, is lovely to look at and so much fun to play along with. Ben Gazzara 
was an excellent cast and easy to fall in love with. I'm sure I've met 
Arthur in my travels somewhere. All around, an excellent choice to pick up 
any evening.!:-) 
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 Labeled Sentiment: positive 
 Mood: indicative 
 Modality Score: 0.58 
 Certainty:  Strong   
 ------------------------------------------------------------ 
 Review: 
 I don't care if some people voted this movie to be bad. If you want the 
Truth this is a Very Good Movie! It has every thing a movie should have. You 
really should Get this one. 
 Labeled Sentiment: positive 
 Mood: conditional 
 Modality Score: 0.28 
 Certainty:  Low   
 ------------------------------------------------------------ 
 Review: 
 Worst horror film ever but funniest film ever rolled in one you have got 
to see this film it is so cheap it is unbeliaveble but you have to see it 
really!!!! P.s watch the carrot 
 Labeled Sentiment: positive 
 Mood: indicative 
 Modality Score: 0.75 
 Certainty:  Strong   
 ------------------------------------------------------------ 

    The preceding output depicts the mood, modality score, and the certainty factor 
expressed by each review. It is interesting to see phrases like  "Add this little gem…"  
are correctly associated with the right mood, which is an  imperative , and  "I hope 
this…"  is correctly associated with  subjunctive  mood. The other reviews have more of an 
 indicative  disposition, which is quite obvious since it expresses the beliefs of the review 
who wrote the movie review. Certainty is lower in cases of reviews that use words like 
 "hope" ,  "if" , and higher in case of strongly opinionated reviews. 

 Finally, we will evaluate the  sentiment prediction performance   of this model on our 
entire test review dataset as we have done before for our other models. The following 
snippet achieves the same: 

    # predict sentiment for test movie reviews dataset 
 pattern_predictions =  [analyze_sentiment_pattern_lexicon(review, 

threshold=0.1) 
                        for review in test_reviews]    

   # get model performance statistics 
 In [307]: print 'Performance metrics:' 
      ...: display_evaluation_metrics(true_labels=test_sentiments, 
      ...:                            predicted_labels=pattern_predictions, 
      ...:                            positive_class='positive')   
      ...: print '\nConfusion Matrix:'                            
      ...: display_confusion_matrix(true_labels=test_sentiments, 
      ...:                          predicted_labels=pattern_predictions, 
      ...:                          classes=['positive', 'negative']) 
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      ...: print '\nClassification report:'                          
      ...: display_classification_report(true_labels=test_sentiments, 
      ...:                                predicted_labels=pattern_

predictions, 
      ...:                               classes=['positive', 'negative']) 
 Performance metrics:    
 Accuracy: 0.77 
 Precision: 0.76 
 Recall: 0.79 
 F1 Score: 0.77 

   Confusion Matrix: 
                  Predicted:          
                    positive negative 
 Actual: positive       5958     1552 
         negative       1924     5566 

   Classification report: 
              precision    recall  f1-score   support 

      positive       0.76      0.79      0.77      7510 
    negative       0.78      0.74      0.76      7490 

   avg / total       0.77      0.77      0.77     15000 

    This model gives a better and more balanced  performance   toward predicting the 
sentiment of both positive and negative classes. We have an average sentiment prediction 
accuracy of 77 percent and an average F1-score of 77 percent for this model. Although 
the number of correct positive predictions has dropped from our previous model to 
5958/7510 reviews, the number of correct predictions for negative reviews has increased 
significantly to 5566/7490 reviews.   

     Comparing Model  Performances   
 We have built a supervised classification model and three unsupervised lexicon-based 
models to predict sentiment for movie reviews. For each model, we looked at its detailed 
analysis and statistics for calculating sentiment. We also evaluated each model on 
standard metrics like precision, recall, accuracy, and F1-score. In this section, we will 
briefly look at how each model’s performance compares against the other models. 
Figure  7-3  shows the model performance metrics and a visualization comparing the 
metrics across all the models.  
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 From the visualization and the table in Figure  7-3 , it is clear that the supervised 
model using SVM gives us the best results, which are expected because it was trained on 
35,000 training movie reviews. Pattern lexicon performs the best among the unsupervised 
techniques for our test movie reviews. Does this mean these models will always perform 
the best? Absolutely not. It depends on the data you are analyzing. Remember to consider 
various models and also to evaluate all the metrics when evaluating any model, and not 
just one or two. Some of the models in the chart have really high recall but low precision, 
which indicates these models have a tendency to make more wrong predictions or 
false positives. You can re-use these benchmarks and evaluate more sentiment analysis 
models as you experiment with different features, lexicons, and techniques.      

  Figure 7-3.    Comparison of sentiment analysis model  performances         
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     Summary 
 In this final chapter, we have covered a variety of topics focused on semantic and 
sentiment analysis of textual data. We revisited several of our concepts from Chapter 
  1     with regard to language semantics. We looked at the WordNet corpus in detail and 
explored the concept of synsets with practical examples. We also analyzed various lexical 
semantic relations from Chapter   1     here, using synsets and real-world examples. We 
looked at relationships including entailments, homonyms and homographs, synonyms 
and antonyms, hyponyms and hypernyms, and holonyms and meronyms. Semantic 
relations and similarity computation techniques were also discussed in detail, with 
examples that leveraged common hypernyms among various synsets. Some popular 
techniques widely used in semantic and information extraction were discussed, including 
word sense disambiguation and named entity recognition, with examples. Besides 
semantic relations, we also revisited concepts related to semantic representations, 
namely propositional logic and first order logic. We leveraged the use of theorem provers 
and evaluated actual propositions and logical expressions computationally. 

 Next, we introduced the concept of sentiment analysis and opinion mining and saw 
how it is used in various domains like social media, surveys, and feedback data. We took 
a practical example of analyzing sentiment on actual movie reviews from IMDb and built 
several models that included supervised machine learning and unsupervised lexicon-
based models. We looked at each technique and its results in detail and compared the 
performance across all our models. 

 This brings us to the end of this book. I hope the various concepts and techniques 
discussed here will be helpful to and that you can use the knowledge and techniques 
from this book when you tackle challenging problems in the world of text analytics and 
natural language processing. You may have seen by now that there is a lot of unexplored 
territory out there in the world of analyzing unstructured text data. I wish you the very 
best and would like to leave you with the parting thought from Occam’s razor:  Sometimes 
the simplest solution is the best solution .     

http://dx.doi.org/10.1007/978-1-4842-2388-8_1
http://dx.doi.org/10.1007/978-1-4842-2388-8_1
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  Sentiment analysis 
 description , 320, 342  
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 polarity analysis , 342  
 techniques , 342  
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  Sets , 74–75   
  Shallow parsing 
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Models , 149  
 expression-based patterns , 148  
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 IOB format , 150  
 noun phrases , 147  
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 sentence tree , 143  
 snippet , 144  
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 treebank training data , 149  
 visual representation , 146   

  Singular Value Decomposition (SVD) 
 description , 221  
 extraction-based techniques , 251  
 low rank matrix approximation , 222  
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  Speech recognition system , 47   
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  Stemming 
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          T 
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classifi cation )  
 blueprint , 172–174  
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 automated 
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 sense disambiguation , 330–331  
 singular nouns , 11  
 singular proper nouns , 11  
 verbs , 11   

  Word tokenization 
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