
www.allitebooks.com

http://www.allitebooks.org

The Android Game
Developer's Handbook

Discover an all in one handbook to developing
immersive and cross-platform Android games

Avisekhar Roy

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

The Android Game Developer's Handbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1120816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-586-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Avisekhar Roy

Reviewer
Attilio Carotenuto

Commissioning Editor
Edward Gordon

Acquisition Editor
Rahul Nair

Content Development Editor
Anish Sukumaran

Technical Editor
Taabish Khan

Copy Editors
Sonia Mathur

Karuna Narayanan

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Disha Haria

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Avisekhar Roy is a B.Tech engineer in computer science. He has had a passion
for coding since his school days. However, he had no plans to become a game
programmer. His fate landed him in the gaming industry in 2010. Since then,
he fell in love with game development.

Avisekhar has worked in many formats of game development environment, ranging
from small companies and individual studios to corporate companies and full-scale
game development studios. He recently started his own gaming start-up in 2016 and
is currently working on games for the mobile platform.

Avisekhar has also worked with some big companies, such as Reliance Games in
India, as well as a small-scale studio called Nautilus Mobile. He is now trying to
acquire a position in the gaming industry for his own venture, Funboat Games.

I would like to mention my parents, who have supported me in
every step during the journey of my career. I would not be able to
write this book without their blessings. I would like to thank Mr.
Pritesh Dhawle for his active support in writing the book; he is
not just my partner at Funboat Games, but also an intimate friend.
I'd also like to express my gratitude to Mr. Kinshuk Sunil, who
supported me while writing this book at an early stage. There are
many more friends and well-wishers whom I would like thank for
their support.

Finally, I would like to express my gratitude toward the people who
provided their valuable analysis on specific subjects; their articles
and reports have helped me a lot to research more while writing this
book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Attilio Carotenuto is a senior game designer and developer with over 7 years of
experience in his field. He's the owner and game director at Himeki Games, an indie
studio with a focus on hardcore, premium games, currently working on An Oath to
the Stars, a Japanese-style bullet hell shooter.

Attilio previously worked at companies such as Electronic Arts Playfish, King, and
Space Ape Games, creating games that are played by millions of people every day.

He has previously worked with Packt Publishing as a technical reviewer for Building
Levels in Unity, Volodymyr Gerasimov; Unity3D UI Essentials, Simon Jackson; and Unity
3D Game Development by Example [Video], Adam Maxwell.

You can find more about his recent projects, articles, and talks on his personal
website at http://www.attiliocarotenuto.com/.

www.allitebooks.com

http://www.attiliocarotenuto.com/
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 xvii
Chapter 1: Android Game Development	 1

Android game development	 1
Features and support	 3
Challenges	 4
User experience	 4
Design constraints	 5

A game is not just an application	 5
Games versus applications	 5
Life cycle of Android application and games	 6
Performance of games and applications	 7
Memory management of games and applications	 7

Choosing the target device configuration	 8
Game scale	 8
Target audience	 9
Feature requirement	 9
Scope for portability	 10

Best practices for making an Android game	 10
Maintaining game quality	 11
Minimalistic user interface	 11
Supporting maximum resolutions	 12
Supporting maximum devices	 12
Background behavior	 13
Interruption handling	 13
Maintaining battery usage	 14
Extended support for multiple visual quality	 15
Introducing social networking and multiplayer	 15

Summary	 16

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Introduction to Different Android Platforms	 17
Exploring Android mobiles	 18
Exploring Android tablets	 22
Exploring Android televisions and STBs	 24
Exploring Android consoles	 28
Exploring Android watches	 33
Development insights on Android mobiles	 35
Development insights on Android tablets	 38
Development insights on Android TV and STBs	 39

UI and game design	 41
Overscan	 41

Development insights on Android consoles	 42
Development insights on Android watches	 42

Creating and setting up a wearable application	 43
Including the correct libraries in the project	 44
Hardware compatibility issues with Android versions	 44

Platform-specific specialties	 44
Android mobiles	 45
Android tablets	 45
Android televisions and STBs	 45
Android consoles	 46
Android watches	 46

Summary	 46
Chapter 3: Different Android Development Tools	 49

Android SDK	 50
Android Development Tool	 50
Android Virtual Device	 51

Configuring AVD	 51
Android Debug Bridge	 53

Using adb on an Android device	 54
Dalvik Debug Monitor Server	 55
Other tools	 56

Eclipse	 56
Hierarchy Viewer	 57
Draw 9-Patch	 58
ProGuard	 59
Asset optimization tools	 60

Full asset optimization	 60
Creating sprites	 61

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Tools for testing	 61
Creating a test case	 61
Setting up your test fixture	 61
Adding test preconditions	 63
Adding test methods to verify an activity	 63

Performance profiling tools	 64
Android Studio	 65

Android project view	 65
Memory and CPU monitor	 66

Cross-platform tools	 67
Cocos2d-x	 68
Unity3D	 69
Unreal Engine	 70
PhoneGap	 71
Corona	 72
Titanium	 73

Summary	 74
Chapter 4: Android Development Style and Standards
in the Industry	 75

The Android programming structure	 76
Class formation	 76
Call hierarchy	 77

Game programming specifications	 78
Gameplay programming	 78
Graphics programming	 79
Technical programming	 79

Sound programming	 80
Network programming	 80
Game tool programming	 80
Research and development programming	 81

Technical design standards	 81
Game analysis	 82
Design pattern and flow diagram	 82
Technical specification	 82
Tools and other requirements	 83
Resource analysis	 83
Testing requirements	 83
Scope analysis	 84
Risk analysis	 84
Change log	 84

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Game design standards	 85
Game overview	 85
Gameplay details	 85
Game progression	 86
Storyboard and game elements	 86
Level design	 86
Artificial intelligence	 86
Art style	 86
Technical reference	 87
Change log	 87

Other styles and standards	 87
Different styles for different development engines	 88

Different programming languages	 88
Different work principles	 88
Different target platforms	 89

Industry best practices	 89
Design standards	 89
Programming standards	 90
Testing standards	 91

Summary	 91
Chapter 5: Understanding the Game Loop and Frame Rate	 93

Introduction to the game loop	 94
User input	 94
Game update	 95
State update	 96
Rendering frames	 96

Creating a sample game loop using the Android SDK	 97
Game life cycle	 101
Game update and user interface	 102
Interrupt handling	 106
General idea of a game state machine	 107
The FPS system	 110
Hardware dependency	 112

Display or rendering	 113
Memory load/unload operations	 113

Heap memory	 113
Stack memory	 114
Register memory	 114
ROM	 114

Logical operations	 114

Table of Contents

[v]

Balance between performance and memory	 115
Controlling FPS	 116
Summary	 117

Chapter 6: Improving Performance of 2D/3D Games	 119
2D game development constraints	 119

2D art assets	 120
Sets of 2D art assets	 120
Same asset set for multiple resolutions	 120
Number of assets drawn on screen	 120
Use of font files	 121

2D rendering system	 122
2D mapping	 123
2D physics	 125

Box2D	 125
LiquidFun	 126
Performance impact on games	 126

2D collision detection	 126
Rectangle collision	 127
Rectangle and circle collision	 129
Circle and circle collision	 131
Performance comparison	 132

3D game development constraints	 133
Vertices and triangles	 133
3D transformation matrix	 133
3D object and polygon count	 134
3D rendering system	 135
3D mesh	 135
Materials, shaders, and textures	 136

Textures	 136
Shaders	 137
Materials	 137

Collision detection	 137
Primitive colliders	 137
Mesh colliders	 137

Ray casting	 138
Concept of "world"	 139

Elements of the game world	 139
Light sources in the game world	 139
Cameras in the game world	 143

The rendering pipeline in Android	 145
The 2D rendering pipeline	 145
The 3D rendering pipeline	 146

Table of Contents

[vi]

Optimizing 2D assets	 147
Size optimization	 147
Data optimization	 147
Process optimization	 148

Optimizing 3D assets	 148
Limiting the polygon count	 148
Model optimization	 148

Common game development mistakes	 149
Use of non-optimized images	 149
Use of full utility third-party libraries	 149
Use of unmanaged networking connections	 149
Using substandard programming	 150
Taking a shortcut	 150

2D/3D performance comparison	 151
Different look and feel	 151
3D processing is way heavier than 2D processing	 151
Device configuration	 152

Processor	 152
RAM	 152
GPU	 153
Display quality	 153
Battery capacity	 153

Summary	 154
Chapter 7: Working with Shaders	 155

Introduction to shaders	 156
What is a shader?	 156
Necessity of shaders	 156
Scope of shaders	 158

How shaders work	 158
Types of shaders	 159

Pixel shaders	 159
Vertex shaders	 159
Geometry shaders	 159
Tessellation shaders	 159

Android library shaders	 160
Writing custom shaders	 161
Shaders through OpenGL	 163
Use of shaders in games	 169

Shaders in a 2D game space	 169
Shaders in a 3D game space	 170

Summary	 173

Table of Contents

[vii]

Chapter 8: Performance and Memory Optimization	 175
Fields of optimization in Android games	 176

Resource optimization	 176
Art optimization	 176
Sound optimization	 177
Data file optimization	 177

Design optimization	 177
Game design optimization	 177
Technical design optimization	 178

Memory optimization	 178
Don't create unnecessary objects during runtime	 179
Use primitive data types as far as possible	 180
Don't use unmanaged static objects	 180
Don't create unnecessary classes or interfaces	 180
Use the minimum possible abstraction	 181
Keep a check on services	 181
Optimize bitmaps	 181
Release unnecessary memory blocks	 182
Use external tools such as zipalign and ProGuard	 182

Performance optimization	 183
Using minimum objects possible per task	 183
Using minimum floating points	 184
Using fewer abstraction layers	 185
Using enhanced loops wherever possible	 185
Avoid getter/setters of variables for internal use	 185
Use static final for constants	 185
Using minimum possible inner classes	 186

Relationship between performance and memory management	 186
Memory management in Android	 186

Shared application memory	 187
Memory allocation and deallocation	 187
Application memory distribution	 188

Processing segments in Android	 188
Application priority	 188

Active process	 189
Visible process	 190
Active services	 190
Background process	 190
Void process	 190

Application services	 191
Service life cycle	 191

Resource processing	 191
Drawable resources	 192
Layout resources	 192
Color resources	 192
Menu resources	 192

Table of Contents

[viii]

Tween animation resources	 192
Other resources	 192

Different memory segments	 193
Stack memory	 193
Heap memory	 194
Register memory	 195

Importance of memory optimization	 195
Optimizing overall performance	 196

Choosing the base resolution	 196
Defining the portability range	 197
Program structure	 197
Managing the database	 197
Managing the network connection	 198

Increasing the frame rate	 198
Importance of performance optimization	 198
Common optimization mistakes	 199

Programming mistakes	 199
Design mistakes	 200
Wrong game data structure	 200
Using game services incorrectly	 200

Best optimization practices	 201
Design constraints	 201
Development optimization	 201
Data structure model	 202
Asset-using techniques	 202

Art assets	 203
Audio assets	 203
Other assets	 204

Handling cache data	 204
Summary	 205

Chapter 9: Testing Code and Debugging	 207
Android AVDs	 207

Name of the AVD	 209
AVD resolution	 209
AVD display size	 210
Android version API level	 210
Android target version	 210
CPU architecture	 210
RAM amount	 210
Hardware input options	 211

Table of Contents

[ix]

Other options	 211
Extended AVD settings	 211

Android DDMS	 211
Connecting an Android device filesystem	 212
Profiling methods	 213
Thread information monitoring	 213
Heap information monitoring	 213
Tracking memory allocation	 213
Monitoring and managing network traffic	 214
Tracking log information using Logcat	 214
Emulating device operations	 214

Android device testing and debugging	 215
Device testing	 215

Prototype testing	 216
Full or complete testing	 216
Regression testing	 216
Release testing or run testing	 216

Device debugging	 217
Use of breakpoints	 217

Monitoring the memory footprint	 217
Checking log messages	 218

Dalvik message log	 218
ART message log	 218

Checking heap updates	 219
Tracking memory allocation	 220
Checking overall memory usage	 221

Private RAM	 221
Proportional set size (PSS)	 221

Tracking memory leaks	 222
Strategic placement of different debug statements	 222

Memory allocation	 222
Tracking the object state at runtime	 223
Checking the program flow	 223
Tracking object values	 223

Exception handling in Android games	 224
Syntax	 224
Scope	 226

Null pointer exceptions	 226
Index out of bound exceptions	 227
Arithmetic exceptions	 228
Input/output exceptions	 228
Network exceptions	 229
Custom exceptions	 229

Table of Contents

[x]

Debugging for Android while working with cross-platform engines	 230
Best testing practices	 230

Tools and APIs	 230
Testing techniques	 231

Local test	 231
Instrumented test	 232

Summary	 232
Chapter 10: Scope for Android in VR Games	 233

Understanding VR	 234
Evolution of VR	 234
Modern VR systems	 235
Use of VR	 235

Video games	 235
Education and learning	 236
Architectural design	 236
Fine arts	 236
Urban design	 236
Motion pictures	 236
Medical therapy	 237

VR in Android games	 237
History of Android VR games	 237
Technical specifications	 237
Current Android VR game industry	 238

Future of Android in VR	 238
Google Daydream	 238

Game development for VR devices	 239
VR game design	 239
VR target audience	 239
VR game development constraints	 240

Introduction to the Cardboard SDK	 240
Cardboard headset components	 241
Cardboard application working principle	 241
Upgrades and variations	 241

Basic guide to develop games with the Cardboard SDK	 242
Launching and exiting the VR game	 242

Hitting the Back button	 242
Hitting the Home button	 243

VR device adaptation	 243
Display properties	 243
In-game components	 243
Game controls	 244

Control concepts	 244

Table of Contents

[xi]

VR game development through Google VR	 246
Google VR using the Android SDK	 246
Google VR using Android NDK	 248

Android VR development best practices	 248
Draw call limitations	 248
Triangle count limitations	 249
Keeping a steady FPS	 249
Overcoming overheating problems	 249
Better audio experience	 250
Setting up proper project settings	 250
Using a proper test environment	 250

Challenges with the Android VR game market	 250
Low target audience	 251
Limited game genres	 251
Long game sessions	 251
Limited device support	 251
Real-time constraints	 252

Expanded VR gaming concepts and development	 252
Summary	 253

Chapter 11: Android Game Development Using C++
and OpenGL	 255

Introduction to the Android NDK	 256
How the NDK works	 256

Native shared library	 256
Native static library	 257

Build dependency	 257
Android SDK	 257
C++ compiler	 257
Python	 258
Gradle	 258
Cygwin	 258
Java	 258

Native project build configuration	 258
Android.mk configuration	 258
Application.mk configuration	 260

C++ for games – pros and cons	 261
Advantages of using C++	 261

Universal game programming language	 261
Cross-platform portability	 261
Faster execution	 262
CPU architecture support	 262

Disadvantages of using C++	 262
High program complexity	 262

Table of Contents

[xii]

Platform-dependent compiler	 263
Manual memory management	 263

Conclusion	 263
Native code performance	 264
Rendering using OpenGL	 265

OpenGL versions	 265
OpenGL 1.x	 265
OpenGL 2.0	 265
OpenGL 3.0	 266
OpenGL 3.1	 266
Detecting and setting the OpenGL version	 266

Texture compression and OpenGL	 267
ATC	 267
PVRTC	 267
DXTC	 267

OpenGL manifest configuration	 268
Choosing the target OpenGL ES version	 269

Performance	 269
Texture support	 269
Device support	 269
Rendering feature	 270
Programming comfort	 270

Different CPU architecture support	 270
Available CPU architectures	 270

ARM	 270
x86	 271
Neon	 271
MIPS	 271

Advantages and disadvantages of integrating multiple
architecture support	 271

Summary	 272
Chapter 12: Polishing Android Games	 273

Requirements for polishing	 274
Development polishing	 274

Memory optimization	 274
Performance optimization	 274
Portability	 275

Art polishing	 275
UI polishing	 275
Animation polishing	 275
Marketing graphics	 275

Design polishing	 276
Designing UX	 276
Polishing the game flow	 276
Polishing the metagame	 276

Table of Contents

[xiii]

Game economy balance	 276
Game difficulty balance	 277

Play testing	 277
User gameplay difficulty levels	 277
User actions during gameplay	 278
User actions while browsing the game	 278
Whether the user is paying or not	 278
Whether the game is running smoothly	 279
Whether the user can adopt the gameplay	 279
User retention	 280

Taking care of the UX	 280
Visual effects	 280
Sound effects	 281

Theme music	 281
SFXs	 281

Transaction effects	 281
Action feedback	 281

Android-specific polishing	 282
Optimum use of hardware buttons	 282
Sticking to basic Android features and functionalities	 282
Longer background running	 283
Following Google guidelines for Play Store efficiency	 283

Game portability	 283
Support for various screen sizes	 283
Support for multiple resolutions	 284
Support for multiple hardware configurations	 284

Summary	 285
Chapter 13: Third-Party Integration, Monetization,
and Services	 287

Google Play Services	 288
Google Analytics	 288

Significance	 288
Integration tips	 289
Best utilization	 289

Google IAB	 289
The Google IAB model	 289
Integrating Google IAB	 290
Advantages and disadvantages of Google IAB	 290

Google Leaderboard	 291
Significance	 291
Integrating Google Leaderboard	 291
Variety of leaderboards	 292
Options for storing and displaying leaderboards	 292

Table of Contents

[xiv]

Push notifications	 293
Database	 293
Server	 293
Target device	 293
GCM service	 294
Integrating push notifications	 295
Significance of push notifications	 298

Multiplayer implementation	 299
Real-time multiplayer	 299
Turn-based multiplayer	 300
Single-screen real-time multiplayer	 301
Pass and play turn-based multiplayer	 301
Local network multiplayer	 302

Analytic tools	 302
Requirement of analytics tools	 302

User behavior	 303
Game crash reports	 303
Game event triggers	 303
Gameplay session timing	 303
Gameplay frequency	 303
Game balancing	 303
User retention	 304
Piracy prevention	 304

Monetization aspects of analytic tools	 304
Identify popular regions of the game	 304
Identify a user's likes and dislikes	 305
Validate and improve the metagame	 305
Track paying users	 305
Track and count advertisement display	 305

Some useful analytic tools	 305
Flurry	 306
GameAnalytics	 306
Crashlytics	 306
AppsFlyer	 306
Apsalar	 306
Mixpanel	 306
Localytics	 307
Appcelerator	 307

Android in-app purchase integration	 307
What are in-app purchases?	 307
In-app purchase options	 308

Store billing services	 308
Career billing services	 309

Types of in-app purchases	 310
Consumable items	 310
Non-consumable items	 310
Subscriptions	 310

Table of Contents

[xv]

Android in-game advertisements	 311
Requirement for advertisements	 311
Terminologies in advertisement monetization	 312

eCPM	 312
CPC/CPA	 312
CPI	 312
RPM	 312
Fillrate	 313

Types of advertisements	 313
Banner advertisements	 313
Interstitial advertisements	 314
Video advertisements	 315
In-game dynamic advertisements	 315

Monetization techniques	 315
Premium model	 316
Free model	 316
Freemium model	 316
Try-and-buy model	 316

Planning game revenue	 316
Revenue versus profit	 317
Revenue sources	 317

Advertisement revenue	 317
In-app purchase revenue	 317
Other revenue sources	 318

Regional variations of revenue plan	 318
User base variations	 319
User behavior variations	 319

User acquisition techniques	 319
Game promotion channels	 320

YouTube channels	 320
Android forums	 320
Sports forums	 320
Facebook promotion	 321
Twitter and other social platforms	 321

Game blogs and forum discussions	 321
Paid user acquisition	 321
Other techniques	 322

User retention techniques	 322
Daily bonus	 323
Leaderboards and achievements	 323
Offerwall Integration	 323
Push notifications	 323
Frequent updates	 324

Table of Contents

[xvi]

Featuring Android games	 324
Creativity and uniqueness	 324
User reviews and ratings	 324
Download count	 325
Revenue amount	 325

Publishing Android games	 325
Self publishing	 325
Publishing through publishers	 326

Summary	 326
Index	 327

[xvii]

Preface
Fun is the keyword that creates the necessity for entertainment in life. There are
many platforms made for entertainment, and games are one of those platforms.
There are many types of games available around the world. There were times when
gaming was limited to sports, board games, card games, and the like. Then, games
entered the digital domain with specific gaming devices. Gradually, they have come
to the mobile platform now. Android is one of the most promising platforms. The
Android market is growing each day and Android gaming is growing with it.

This book is mainly aimed at game programmers. Many people consider game
programming the same as any other programming job. However, my personal
opinion differs—game programming is not about sitting with an open code editor
and typing in a computer language, it's about creating a medium of spreading
entertainment.

This book is focused on the technical part of developing a game, especially for
Android. It will help a developer create games in a better way. Game programming
is far more logical than technical. I have tried to clear that logic in this book with my
experiences throughout my career so far.

What this book covers
Chapter 1, Android Game Development, will introduce you to the guidelines and rules
of game development on the Android platform.

Chapter 2, Introduction to Different Android Platforms, will disclose the current variants
of Android devices, such as smartphones, TVs, tablets, and smartwatches. It will
elaborate all the possible difficulties while creating a game on these platforms and
the possible solutions.

Preface

[xviii]

Chapter 3, Different Android Development Tools, will expose the different tools available
to develop an Android application and how to choose suitable tools for specific
purposes.

Chapter 4, Android Development Style and Standards in the Industry, will cover the
current development style and standards in the game development domain. This
will mainly talk about Java game coding standards and styles on the Android SDK.

Chapter 5, Understanding the Game Loop and Frame Rate, will demonstrate the creation
and maintenance of game loop using the Android SDK (Java). This chapter will also
cover the effects of game loop on the frame rate.

Chapter 6, Improving Performance of 2D/3D Games, will explain all the constraints of 2D
and 3D game development on Android, along with the common mistakes and ways
to avoid them in order to improve performance.

Chapter 7, Working with Shaders, will describe the use of shaders on the Android
platform. It exposes the use of shaders through OpenGL and its scope in game
development.

Chapter 8, Performance and Memory Optimization, will provide in-depth knowledge of
optimizing any Android game.

Chapter 9, Testing Code and Debugging, will teach you the different ways to debug an
Android game.

Chapter 10, Scope for Android in VR Games, will introduce you to virtual reality for
game development on Android. This chapter describes various scopes of VR and its
future in game development.

Chapter 11, Android Game Development Using C++ and OpenGL, will briefly explain
game development using C++ and OpenGL.

Chapter 12, Polishing Android Games, will focus on the completion of an Android game
and make it ready for release.

Chapter 13, Third-Party Integration, Monetization, and Services, will elaborate the
possible integration of any third-party tools or SDKs in order to monetize the game.

What you need for this book
It is assumed that the reader is already a game developer who has worked on the
Android platform. You need to have a clear idea about Android programming using
Java and C++.

Preface

[xix]

The reader needs to work on various Android development platforms; most of the
code works with the Android SDK. You also need to know the concept of several
third-party SDKs regarding advertisements, analytics, in-app purchases, and more.

Who this book is for
This book is ideal for any game developer with prior knowledge of developing
games for Android. A good understanding of game development and basic
knowledge of the Android platform application development and Java/C++
will be appreciated.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

<application
<!-- other declarations and tags -->
android:isGame="true"
<!-- other declarations and tags -->
>

Any command-line input or output is written as follows:

cd platform-tools

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the
Configure Project window, enter a name for the application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xx]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xxi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Android Game Development
Developing games has become a very popular profession through the last decade.
Previously, it was limited to PCs, consoles, and a few embedded gaming devices.
Today's world is fully equipped with modern gadgets with better technology, better
portability, better flexibility, and better quality. This has opened up the doors for
developers to create games with better quality and fewer limitations.

Android is a modern age operating system, and is being used widely for many
hardware platforms. Hence, the world of Android has become a target for game
developers. The most efficient and useful targets are Android smartphones and
tablets. According to surveys of the global market share for mobile OS, Android tops
it with a 78-80% share in 2015. Android is now not only a mobile OS, it is being used
in TVs and smart watches also. Hence, the popularity of Android is touching the sky
among game developers.

This book will be helpful for those who already have a background in Android game
development. Let's start with the following topics:

•	 Android game development
•	 A game is not just an application
•	 Choosing target device configuration for your game
•	 Best practices while making a game on Android

Android game development
Let us now focus on the main topic of this book. Although game development covers
many platforms and technologies, we will only focus on Android in this book.

www.allitebooks.com

http://www.allitebooks.org

Android Game Development

[2]

Android is a mobile operating system based on the Linux kernel. Currently, it is
being developed by Google. The OS has released many versions since 2008 to date.
But after the release of Android 2.2 (Froyo) and Android 2.3 (Gingerbread), this
OS caught the attention of many game developers. Android uses what is called the
Dalvik Virtual Machine (DVM), which is an open source implementation of a Java
Virtual Machine (JVM). There are several differences between Dalvik and a standard
JVM, some subtle, some not so subtle. The DVM is also not aligned to either Java SE
or Java ME, but to an Apache implementation called Apache Harmony Java. All of
this makes for a slight learning curve if you happen to be transitioning from Java
ME. Google introduced an alternative to DVM called Android RunTime (ART)
from Android 4.4 (KitKat), and ART replaced DVM from Android 5.0 (Lollipop).
ART mainly features Ahead-of-time (AOT) compilation, and an improved garbage
collection process, and it provides a smaller memory footprint in order to optimize
memory operations. However, most game developers use DVM to support older
versions of Android devices.

Android game development started extensively when this OS was adapted by many
hardware platforms. Android is mostly being used on the mobile and tablet platforms.
When the mobile game industry started migrating from Symbian or Java to Android or
other smart mobile OSes, Android game development started to boom.

There are a few reasons for the success of Android games:

•	 Smooth user interface
•	 Better interactivity
•	 Touch interface
•	 Better look and feel
•	 Better hardware platform
•	 More design flexibility

It is always easier to use a common operating system than an embedded real-time
operating system (RTOS). The user need not spend time on different hardware to
learn its usability. Android is one such easy-to-use operating system.

The visual user interface is very attractive in Android, as it always runs on better
hardware configuration than Symbian, Java, or an embedded OS. It enhances user
experience, which is one of the reasons why it got adapted by so many organizations.
As the user base of Android increased, many more game developers started
targeting this platform.

From the perspective of game design, the enhanced Android features list gave
flexibility to explore more in mobile games. Thus, the game design style was
enhanced.

Chapter 1

[3]

The current world has various types of hardware that run on Android. Apart from
mobile phones, Android is being used on tablets, televisions, wristwatches, consoles,
digital cameras, PCs, and other devices. Nowadays, game developers are targeting
almost every Android platform.

Features and support
Direct manipulation interface is the top feature of Android. It interacts with the user
through a continuous representation of objects of interest, dynamic real-time action,
and dynamic feedback. Android mainly uses a touch interface with real-time action
such as swiping, dragging, tapping, and multi-touch, which are widely used in game
development for Android.

Android application development is mainly based on Java (SDK) and C++ (NDK),
which are the most common programming languages in the world. Hence,
developing a game has become much easier.

Excellent support for multimedia took Android a step further in gaining popularity.
Game developers can now use multimedia objects freely inside the game in order to
increase the game quality.

Since version 2.2 (Froyo), Google has developed an integrated service called Google
Play Services. It is a closed system-level API service provider, which has proved to
be very useful in game development.

A large number of third-party tools available for Android development have also
eased the job of game developers. Some of the tools we can mention are Android
Studio, App Inventor, Corona, Delphi, Testdroid, Sample Directmedia Layer, Visual
Studio, Eclipse IDE, and RubyMotions.

Android device hardware configuration has to follow a minimum configuration list,
so it becomes very easy for the developers to identify the configuration. Moreover, it
has to maintain a minimum standard to run applications easily.

There are plenty of sensors associated with Android devices (mostly on mobiles or
tablets), which are a very good option for designing the controls of a game.

Android supports awesome connectivity through Bluetooth, Wi-Fi, GSM/CDMA/
EDGE, LTE, NFC, IDEN, and the like. These help game developers to create
multiplayer games easily.

Virtual reality is another field where Android is being used through Cardboard
SDK. We will discuss this topic more later on.

Android Game Development

[4]

These are the features that a game developer should keep in mind. The rest of the
features are less important for game development. However, there is always a
chance to explore more, and create a few specific-feature oriented games.

Challenges
The main challenge in developing a game on an Android platform is to make the
most use of the features in an efficient way.

The range of Android device configurations is wide. So, designing a game targeting
most of them is a big challenge.

Many of the Android game developers design and build games for specific
hardware configurations, like Tegra, or Snapdragon, or a particular device like
Xperia Play. Nvidia's Tegra is the most commonly used chip in these situations;
the THD branding often indicates that a game was built for Tegra only. Nvidia has
a lot of experience working with developers on the desktop side, and has brought
that expertise to mobiles. Android game developers are encouraged to make use of
Tegra-specific APIs to build their games. The problem with this scenario is that most
users don't have Tegra in their phones. In fact, many LTE handsets that might have
otherwise had that gaming-friendly chip are being moved over to Snapdragon S4.
Now, for a developer, it is very difficult to maintain performance across different
graphic processors.

User experience
Android games can provide awesome user experience through their features.

Game controls can use the accelerometer or gravity sensor for a physics-based
mechanism (if supported by the hardware), which is always an added advantage for
real-time interactivity.

On-touch screen devices, and dynamic controls like swiping, dragging, pinching,
and multi-touch, can be experienced through Android.

Android supports OpenGL for better graphic rendering, which enhances the visual
quality of the game.

Miracast in Android is another feature which enables games to use multiple displays
and screen sharing for a better experience.

Chapter 1

[5]

Design constraints
Development of any game requires a design Android is not an exception. The design
of Android games requires a lot of knowledge about the target hardware. There are
thousands of varieties available for Android. Designers have to choose their target
very carefully, and then design the game scope.

As previously stated, it is a challenge not only for the programmers but for the
designers as well. Different Android devices have different configurations, but it is
very important for a designer that the common features should be targeted.

A game is not just an application
It is a very common practice for an application developer to switch to game
development and vice versa. Many do not change their style, and approach game
development accordingly. Every developer of games should keep in mind that a
game is not just an application.

Games versus applications
A game can be termed an interactive entertainment system, in brief. The main
objective of games is to provide fun, be it a software or physical exercise. On
the other hand, the main objective of an application is to make life easier with
a mechanical job. So the development approaches for these two are completely
different. However, this still remains a point of discussion, as every game is an
application. Any application can adapt the features of games in order to provide a
better user experience.

It is difficult to differentiate between the complexities of development of a game
versus an application. However, game development has an edge. Most of the
application developers do not have to focus much on speed performance, whereas
all game developers have to focus on speed and the frame rate of the game.

Every game is an application for sure, but every application is not a game. This
statement itself conveys the message that on a single reference scale, game
development has more parameters than applications, yet it has to have all the
features of an application.

Application development is technology-oriented, whereas game development is
fun-oriented. This increases the difficulties in game development. Fun is an emotion,
there is no parameter to calculate that. So, while making games, a developer can
never know what exactly the game is going to achieve in terms of fun. On the other
hand, an application developer is very much certain that the application target can
be achieved if all the specifications meet the requirement.

Android Game Development

[6]

Game development very rigorously needs mathematics to work on the physics
or graphics side; even AI needs a lot of mathematics for the low-level stuff.
Applications are more technology driven, with limited use of graphics.

Any application that qualifies as a game must fulfill the following criteria:

•	 It must entertain a set of users in terms of fun
•	 There must be a set of milestones to achieve for the users of the application
•	 It should reward the users for achieving a milestone
•	 It should have a more dynamic user interface
•	 There must be better visual impact
•	 It should be performance driven rather than feature driven

Life cycle of Android application and games
The application life cycle applies to any game made on the same platform. But a
game has more to the cycle, as you can see in the following diagram:

Chapter 1

[7]

The application life cycle is simpler a game life cycle. The game cycle runs within the
running phase of the application life cycle. This is typically termed the game loop.
This will be discussed later in detail.

This game loop runs on game states. The application may have only one running
state, but there are multiple game update states. In a typical system of game
development, there are a minimum of two update states. One depends on the game
loop execution, and the other depends on the time interval. The second one actually
controls the frame rate.

Performance of games and applications
There are noticeable differences between the performance management systems for
games and applications. Performance is one of the biggest requirements in game
development, whereas it is only a recommended feature for an application, as the
frame rate does not affect the quality.

It is an accepted truth that games are heavier than applications on the same scale.
A game runs on repetitive frames—one set of tasks runs on one frame. This increases
the instruction traffic for the processor. In an application, there are generally no
loops; the state of the application depends on user action. In this case, the processor
gets plenty of time to execute the instruction as no instructions are being sent
repetitively.

Memory management of games and
applications
Applications which are not games have different memory management than games.
In case of games, multimedia assets are the main objects, which occupy a larger
portion of the heap than class objects. But in the case of applications, it is just the
opposite. Applications need to load only the object they require for the state, that is,
class objects.

For any game developer, memory optimization is a must. Because of the extensive
use of memory, a developer cannot afford to have unused objects loaded in memory,
or any memory leakage caused by mishandled memory pointers. This has a direct
effect on running games. For an application, memory optimization is obviously a
good practice, but most of the time it has no direct or indirect effect on running the
application. However, a good programmer should always have knowledge about
memory optimization.

Android Game Development

[8]

Choosing the target device configuration
As mentioned earlier, Android has a variety of device configurations. So, it is very
important for an Android game developer to choose the target very carefully. The
general approach should have these parameters:

•	 Game scale
•	 Target audience
•	 Feature requirement
•	 Scope for portability

Game scale
This is basically the scale on which the game is being made. The larger the scale, the
better the configuration that it'll need. This includes mainly the game size, which
means the amount of memory it will consume on a device. Many Android devices are
configured with very low RAM and internal memory storage. If the targeted device
does not have the required configuration, the game will not run. Even if the game is
fully optimized, it can fail depending on the hardware platform it is running on.

Every game requires a set of processes to be executed recursively, which requires
processor speed. If a game is process-heavy, and the targeted device has a slow
processor, the game will experience some horrible frame rate issue, or crash.

Every Android game developer must be aware of the requirements of memory,
processor, and other constraints when choosing the target device.

Let's take the example of an Android game which requires at least 120 MB of disk
space to install, 512 MB of RAM to run, and a 1.2 GHz processor speed to achieve a
decent frame rate. Now consider a mobile device which matches these specifications
exactly, but being a developer, one must not assume that the device will not have
any other application installed or running in parallel. So, in this case, there is a fair
assumption that the game will not have the required support even if the device
meets its requirement. Hence, for this example game, the target device must have a
higher configuration than the minimum requirement.

Now, let's take a look at the opposite scenario. Assuming the same game
requirements, consider a device having 8 GB of available storage, 2 GB of RAM,
and a 2 GHz multicore processor. There is no doubt that the game will run on that
device with maximum performance, but the device could have supported a larger-
scale game. So the resource utilization is not efficient in this scenario. This is where
porting comes in. A game developer should upscale the game quality, and create a
different build for those high-end configuration devices.

Chapter 1

[9]

It is a very common practice in the industry to exclude a few devices from the targeted
device list to make the game run properly. In a few cases, the game developer creates
separate game builds to support most of the devices and maintain the game quality.

Target audience
The target audience is the particular group for which the game is made. It is assumed
that a particular set of people will have most fun from the game, or that they will
play the game more than other people.

Every game design has its target audience. The set of target devices are the direct
consequence of the set of target audience. For example, if the target audience is
working professionals between the ages of 25 to 40, it makes no sense to create
the game for an Android TV no matter what the game scale is. This is because this
specific audience will mostly use mobile devices, as they have less time to sit in front
of a television set. So, the list of target devices should contain mobile devices for this
target audience.

We can see a lot of difference between devices in the same category. For now, let's
take the example of Android mobile phones, as this is the most-used Android
category. We can see a range of Android devices available in the market. Most of
the Android phones are comparatively cheaper, and have fewer features. A major
section of the target audience that uses such phones belongs in particular to Asia
or the third world countries. So while making a game for this target audience, the
developer should consider the minimum configuration target.

Feature requirement
Feature requirement depends completely on the game design. When we talk about
games on Android, the major focus is on mobile and tablet platforms. Mostly,
Android games are made for these devices.

If we consider other platforms like watches, TVs, or consoles, the feature set varies.
Televisions provide a bigger display with less user control, watches have limited
display area and minimum configuration, consoles have better graphic quality with
dedicated controls, and so on. It is very important to identify the feature list which is
required to recognize the hardware devices.

There might be a scenario where an accelerometer, Bluetooth, Wi-Fi, or some other
special feature is being used in a game, so the selected hardware platform must have
those features. However, common mobile and tablet devices have almost the same
set of features that a game developer might generally use. This feature dependency
becomes very specific when Android games are made for some particular hardware
platform like consoles or VR devices.

Android Game Development

[10]

Scope for portability
While choosing the target hardware device, every game developer must consider the
scope for portability of games. The more portable a game becomes, lesser the effort
required to select or choose the target hardware.

The portability of games always depends on the vision of the game developer.
Porting can take two different approaches: platform porting and hardware porting.
We will only focus on hardware porting here, as we have already fixed the platform
to be Android.

A game developer should focus on the following points to increase the portability
of a game:

•	 Creating different sets of assets
•	 Designing different sets of controls
•	 Finding and listing alternatives for a feature
•	 Controlling memory usage
•	 Controlling the frame rate

A good portable game is a balanced combination of all of these preceding points.
Most of the time, the target hardware is chosen first depending on the other
parameters, and only then does the developer work on the portability of the game.

Best practices for making an Android
game
Making an Android game is not a big deal. But making the game in the right way
through which the game looks great, and performs well across as many devices as
possible, is very important. The best practices should focus on the following points:

•	 Maintaining game quality
•	 Minimalistic user interface
•	 Supporting maximum resolutions
•	 Supporting maximum devices
•	 Background behavior
•	 Interruption handling
•	 Maintaining battery usage
•	 Extended support for multiple visual qualities
•	 Introducing social networking and multiplayer

Chapter 1

[11]

Let's discuss these in brief here. We will elaborate on this in detail later as the book
progresses.

Maintaining game quality
There are millions of games available in the market, and thousands being introduced
every week. So, just making a good game is not enough nowadays. Every developer
should maintain their game periodically to cope with the quality of other improved
games.

The developer should keep a constant eye on the reviews and complaints from the
users. The game quality can be improved a lot based on this feedback. No one can
predict the exact user reaction to the game before it is out in the market. So, in most
cases, it is noticed that the game goes through a drastic change in design, or other
means, to keep the consumer happy.

There are a few other ways to track the behavior of consumers/players. There are
several tools available to do this job efficiently, such as Google Analytics, Game
Analytics, Flurry, and so on. Besides these internal integrations, user comments on
stores or blogs are helpful to maintain the quality of a game.

Fixing bugs in a game is another major factor in increasing the quality of the game.
It is not possible to get rid of all the bugs inside the game during development.
The App Store bug report tool is useful for tracking major crashes and ANRs when
the game is out in the market. Besides this, the developer can use Android error
reporting to track errors and bugs from real users. Android provides this feature in
Android versions 2.2 and later.

Two more parameters that improve the quality of the game are stable gameplay, and
consistent frame rate.

Minimalistic user interface
This is a typical design practice for Android games. A common mistake that many
developers make is that they design a long and hectic user interface to take the user
to the gameplay. This section should be as short as possible. The player should
experience the game with minimum effort the very first time. Most users leave games
because of the heavy UI interface.

Technically, a developer should take care of the device UI options like Menu, Back,
and Home. These are the most common options for the Android mobile and tablet
platforms. The behavior of all these options should be controlled within the game,
as the user might press/touch them accidentally while playing the game. Also, there
should be a quick interface to quit the game.

Android Game Development

[12]

Basically, having a minimum user interface and fewer screen transactions saves a lot
of time, which has a direct impact on gameplay sessions.

Supporting maximum resolutions
This is a very obvious point for creating a good Android game. A game must
support as many resolutions as possible. Android, in particular has many different
screen sizes available in the market.

Android has a series of different resolution sets:

•	 LDPI (approximately 120 dpi)
•	 MDPI (approximately 160 dpi)
•	 HDPI (approximately 240 dpi)
•	 XHDPI (approximately 320 dpi)
•	 XXHDI (approximately 480 dpi)
•	 XXXHDPI (approximately 640 dpi)

If they do not follow multiple resolution specifications, the developer can also opt for
the screen compatibility option available as a last resort. However, it is recommended
not to use this feature of Android, because it can reduce the visual quality significantly.
This option is, by default, disabled from Android API version 11.

Supporting maximum devices
Other than the different screen sizes, Android has a variety of device configurations.
Most developers filter the device list only by screen resolution, which is a bad
practice. An Android game developer should always consider the target device
configuration along with the resolution.

When building their applications, developers should remember not to make
assumptions about specific keyboard layouts, the touch interface, or other interactive
systems unless, of course, the game is restricted so that it can only be used on those
devices.

Optimizing the application in terms of memory and performance is also helpful in
supporting more devices. The developer should not restrict them to only a few sets
of devices. Optimal use of disk space and the processor opens up the opportunity to
increase the support range.

Chapter 1

[13]

A single game application build can support more devices with some simple tricks.
On Android activity launch, the developer should detect hardware information, and
use that to create some sort of rules by which the entire game quality and processing
speed can be controlled.

Background behavior
A few tasks in a game may run in the background while the main thread is running.
These are called asynchronous tasks, mostly used for loading a large file or fetching
something from the Internet.

Another type of background task is called services, which works even when the main
application thread is not running. This is a very useful feature for communicating
with the device on which the game is installed.

It is a good practice for any game developer to use these features in the game
properly. A large chunk of data usually takes longer time, but it should not pause
the game loop. In another scenario, asynchronous tasks are used when the game
communicates with the Internet or other connectivity. This feature helps to keep the
main thread running, and provides dynamic feedback.

Background services are useful for increasing the communication between the
developer and user. They can provide user activity information to improve the game
as well as notifying users about the latest update or information.

Interruption handling
Interruption handling is one of the trickiest parts of game development. As we
discussed earlier about the game loop, the loop pauses or, sometimes, terminates
on any external interruption. In an ongoing game cycle, the interruption should not
harm the gaming experience. It is a very common problem for developers that the
game restarts after being interrupted. Android is most likely to kill the game activity
if it remains in an idle state for a long time, or if some other activity needs provision
to run. In these cases, most of the time, the player loses his/her progress.

It is good practice to save the user progress periodically to avoid any loss of data
or progression. But saving data may cause lags in the game loop, and can drop the
frame rate significantly. The game developer should identify the states where the
data can be saved without affecting the gaming experience.

Android Game Development

[14]

The way to handle this issue in a multi-activity application is to detect and pause/
resume all the running threads. Many times, the game developer keeps running the
thread, as the primary objective is just to pause/resume the game loop properly on
interruption. In most cases, all of the background processes do not pause, causing
unusual behavior by the game.

Maintaining battery usage
One of the reasons for the success of an Android game is power efficiency. Most
likely, the Android hardware platform will be a mobile device, which has a limited
source of power. So power-saving applications are always preferred.

A major chunk of the battery is consumed by rendering and network connectivity.
From the gaming perspective, rendering and connectivity are both necessary. So,
there is a fair chance that the game uses up a lot of power.

Most game developers focus a lot on visual appearance. It increases the graphic
quality as well as battery consumption. So it is a very good practice for the developer
to always focus more on the technical quality of the graphical assets. Assets should
not boost up processing or rendering, as, developers often use non-optimized assets.

Another process which consumes a lot of battery is background services. These are
used widely for better connectivity with consumers or for some web-based services.
Technically this process pings frequently to stay connected with the desired network.
Developers can control this frequency. Another way to avoid this is by killing a
service which is not connected for a long time or was disconnected from the network,
with the help of Android PackageManager.

In many cases, it is seen that a game becomes popular, or has a better user count than
another, better-quality game, just because of lower battery consumption.

If the developers can determine that connectivity is lost, then all of the receivers
except the connectivity-change receiver can be disabled using native APIs.
Conversely, once the developers are connected, then they can stop listening
for connectivity changes, and simply check to see if the application is online
immediately before performing an update; they can then reschedule a recurring
update alarm.

Developers can use the same technique to delay a download that requires higher
bandwidth to complete simply by enabling a broadcast receiver, which will listen
for connectivity changes, and initiate the download only after the application is
connected to Wi-Fi. This significantly reduces battery use.

Chapter 1

[15]

Extended support for multiple visual quality
This section actually starts with supporting multiple resolutions. We have already
discussed multiple-size screens with different dpi. The following list is another
standard that Android devices follow:

•	 QVGA (low PPI)
•	 WQVGA (medium-low PPI)
•	 HVGA (medium-high PPI)
•	 WVGA (medium-high PPI)
•	 SVGA (high PPI)
•	 VGA (very high PPI)

Creating graphics using this standard is always beneficial in order to achieve the
best possible visual quality across devices. This notation mainly depends on the
screen size, irrespective of the resolution. It is very common for Android devices to
have the same resolution running on different screen sizes. Creating assets specially
optimized for targeted devices will always help to increase the visual quality.

Introducing social networking and multiplayer
The gaming industry's style and standards are changing rapidly. Now gaming is
being used for social connectivity, which is, connecting more than one real user on a
single platform. Very careful use of this social element can increase the user base and
retention rate significantly.

In many games, there is the possibility of more than one user being able to
experience the same game state together, and to improve the game play by real-
time interaction. A few board games such as Chess, Ludo, and Snakes and Ladders,
are examples of such a possibility. Beside those, some real-time online multiplayer
games are also at their peak.

Google has its own multiplayer features through Google Play Services. Besides
popular turn-based and real-time multiplayer support, Google has also introduced
a feature to connect players in close proximity on a single platform through Wi-Fi,
called Google Nearby. There are many other third-party platforms that support
multiplayer.

Android Game Development

[16]

Summary
Making an Android game is not difficult, making a successful game is. From a
technical point of view, a successful game must provide smooth gameplay to
provide users with an excellent, swift gaming experience. Great visual quality with
better graphics always attracts users and other potential players nearby, while fewer
bugs removes the irritation of users during gameplay, and the game can perform
according to plan. A wide range of device support can increase the number of users
and gameplay sessions, optimal use of resources ensures the minimum possible
application package size, and finally, a good relationship between the developer
and users, through excellent communication skills, can eliminate the few doubts
and confusions of the users.

We have covered all of these points in brief to give you an idea about how to make
a successful Android game. Making an Android game is no different to making any
software. However, a game must follow some practices in order to achieve its fun
element. You will learn in detail about making an efficient Android game later in this
book. You will also eventually learn about several aspects of game development for
the Android platform. You will recognize and realize the current state of available
Android devices made by various manufacturers. There are many types of devices,
which we will have a look into.

We will try to explore a better and efficient approach for Android game development
,with many development procedures, styles, and standards for different hardware
platforms. We will further dig deep, with game-specific development standards for
2D, 3D, and virtual reality games. We will further discuss native development, with
shaders and various optimization techniques.

Then, finally, we will explore various ways to make a successful game, which is good
enough from the monetization point of view. Since developers must know about
each and every user behavior to make the game better, you can realize the power of
data collected from users through this book.

[17]

Introduction to Different
Android Platforms

The first commercially released Android device was the HTC Dream. In 2008, this
mobile phone introduced a new Linux-based operating system, Android. Since
then, thousands of manufacturers have been using Android for their devices. At
first, Android became popular among mobile operating systems such as Symbian,
Java ME, Blackberry, and iOS. New generation technology had a demand for a new,
lightweight, user-friendly, and affordable operating system. Android fulfilled these
requirements, and gained its momentum faster than Blackberry and other competing
operating systems.

According to the latest market study, in the first quarter of 2016, Android holds
76% of the market share, which itself explains its success. With the passage of time,
Android has expanded its territory from mobile to other useful hardware platforms
like tablets, televisions, watches, consoles, and so on.

In this chapter, we will explore these platforms from the perspective of game
development. Let's have a quick look at the topics we are going to cover:

•	 Exploring Android mobiles
•	 Exploring Android tablets
•	 Exploring Android televisions
•	 Exploring Android consoles
•	 Exploring Android watches
•	 Development insight on Android mobiles
•	 Development insight on Android tablets
•	 Development insight on Android television and STB

Introduction to Different Android Platforms

[18]

•	 Development insight on Android consoles
•	 Development insight on Android watches
•	 Each platform has its own specialty
•	 Going cross-platform for the same game
•	 Required limitation measurement before design

We will try to understand all platforms and their details in order to develop games.
The modern world has witnessed that games are now not just limited to PCs or
consoles. They have become a part of almost everything. So, it is very important for
Android game developers to have a decent knowledge of all possible hardware that
might be useful for gaming, and which opens up opportunities for few more.

Exploring Android mobiles
Android mobile devices are the most important devices for game developers. Mobile
technology has undergone a huge revolution during the last decade, from the black
and white pixel phone to modern age smartphones. Currently, Android mobile
devices are leading the market by a huge margin compared to its nearest competitor,
the iPhone.

Initial Android gaming got its momentum after the release of Android version 1.6,
followed by Android 2.3. Even today, there are many devices running on Android
2.3. That is why many of the popular cross-platform gaming engines support
Android 2.3.

There was a time when Android used to run with a minimum requirement of 32
MB of RAM, 32 MB of disk space, and a 200 MHz processor as well. If we take a
look at current device specifications, a drastic change can be noticed. Nowadays,
Android mobile devices have 1 GB RAM, 1 GHz processor, and 4 GB disk space
on an average. Most of the devices have multicore processing units. However, this
rise did not simplify the life of the game developer; on the contrary, it increased the
complexity even more.

Let's have a look at the specifications of a low-budget Android device with
a comparatively low configuration. The following example table shows the
configuration of a Micromax Bolt A24:

Processor Cortex A5
Speed 1 GHz
RAM 256 MB
Flash memory 512 MB

Chapter 2

[19]

Screen mode NA
Screen resolution 480x640
Screen size 2.8 inch
Android version 2.3 (Gingerbread)

Here is what it looks like (image source: http://www.androided.in/wp-content/
uploads/2014/02/Micromax-BoltA24.jpg):

Now take a look at a very high-budget Android device with a very high
configuration. The following table shows the configuration of a Samsung Galaxy S6:

Processor Cortex A57
Speed 2.1 GHz quadcore
RAM 3 GB
Flash memory 128 GB
Screen mode NA
Screen resolution 1440x2560
Screen size 5.1 inches
Android version 5.0.2 (Lollipop)

http://www.androided.in/wp-content/uploads/2014/02/Micromax-BoltA24.jpg
http://www.androided.in/wp-content/uploads/2014/02/Micromax-BoltA24.jpg

Introduction to Different Android Platforms

[20]

Here is what it looks like (image source: http://talishop.ru/data/big/eew.jpg):

Every Android game developer should be well aware of the fact that a single
game build cannot achieve best performance across all configurations. It is pretty
obvious that if the game runs well on a Micromax Bolt A24 device, then it will surely
underperform on the Samsung Galaxy S6. By the word "underperform", we mean the
quality of the game on Samsung Galaxy S6 would be far below expectations. So it is
a very good line of thinking to have some idea on game portability. We will discuss
this in detail later on.

http://talishop.ru/data/big/eew.jpg

Chapter 2

[21]

The following chart shows the market shares of mobile phones since 2012:

As you can see, the majority of the market is captured by Android, and iOS trails
behind with a huge gap in between.

The rest of the mobile operating systems such as Windows Phone, BlackBerry, Java,
Symbian, Bada, QT, and others are nowhere near them. So, it can be predicted that
the future mobile phone market will be dominated by Android and iOS.

The Android mobile market is getting bigger day by day. Both design and
development is getting tougher, trickier, and more market-intense. Every day,
around tens of thousands of new games are being launched for Android mobiles on
stores like Google Play Store, Amazon App Store, a few career-specific stores, and
many more individual online sites.

We have discussed earlier about the target audience of the game. While exploring
Android mobile devices, we need to understand the user group. In most cases, the
user category is recognized by the device configuration or the price group.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Different Android Platforms

[22]

Exploring Android tablets
Android tablets are very similar to Android mobile phones. The main specification
difference between an Android phone and an Android tablet is the physical size
and screen resolution. Generally, Android tablets work on lower PPI than a mobile.
However, there is no hard-and-fast rule or any specific system to measure that.

The minimum requirement to run Android was a 200 MHz processor, 32 MB RAM,
and 32 MB disk space. Android requires an ARMv5 or higher processor, although
Android 4 requires ARMv7. Previously, starting age tablets had almost the minimum
hardware system.

Tablets evolved from the concept of a tablet computer; they consist of a touchscreen
display, camera, microphone, speaker, and a few physical buttons. Tablets are
typically larger than phones or PDAs.

One of the minimum configured Android tablet is Coby Kyros MID7047, which
is shown here (image source: http://www.evisionstore.com/catalogo/coby_
mid7012-4g.jpg):

http://www.evisionstore.com/catalogo/coby_mid7012-4g.jpg
http://www.evisionstore.com/catalogo/coby_mid7012-4g.jpg

Chapter 2

[23]

The following table shows its specifications:

Processor Cortex A5
Speed 1 GHz
RAM 512 MB
Flash memory 4 GB
Screen mode WVGA
Screen resolution 800x480
Screen size 7.00 inch
Android version 4.0 (ICS)

In the year 2013, Android tablet sales were about 62% with a volume of more than
121 million devices. To add more to the number, the Amazon Kindle Fire sold about
7 million devices.

As the volume of Android tablets has increased, the configuration is getting better.
Let's have a look at a tablet configuration released in June 2015 by Sony. The model
is called the Sony Xperia Z4 (image source: https://tecneticoc1.wpengine.com/
wp-content/uploads/2015/03/z4tab.png):

https://tecneticoc1.wpengine.com/wp-content/uploads/2015/03/z4tab.png
https://tecneticoc1.wpengine.com/wp-content/uploads/2015/03/z4tab.png

Introduction to Different Android Platforms

[24]

The following table shows its specifications:

Processor Snapdragon 810
Speed 2 GHz octacore
RAM 3 GB

Flash memory 32 GB
Screen resolution 2560x1600
Screen size 10.1 inch
Android version Android 5.0 (Lollipop)

We can clearly observe the huge configuration difference between the two tablets.
The funny fact is that both the configurations coexist in the market even today, and
people are buying them.

Android tablets are generally bigger and heavier than smartphones. They also
have better battery capacity. So games for tablets should be energy efficient.
However, modern age tablets do not differ much from smartphones. The size of the
smartphone is getting bigger, and smartphone features are being added to tablets.
Now, one can even use a tablet as a phone.

Exploring Android televisions and STBs
After the success of Android mobiles and tablets, Android started expanding its
territory towards other hardware platforms. Television became the next target, as
the concept of smart TV was already in the market. Thus, a television set became
interactive through Android. Google has released a few additional accessories for
Android televisions to increase the user experience.

The first Android television device launched for consumers was the Nexus Player on
November 3, 2014. The specification of this is as follows:

•	 Intel Atom Z3560 1.8 GHz quadcore processor
•	 1 GB RAM
•	 8 GB Flash storage
•	 Android 5.1.1 Lollipop

Chapter 2

[25]

Here's what it looks like (image source: http://1.bp.blogspot.com/-
H1rp1fboU6g/VX2Huu6ClyI/AAAAAAAA3hA/5te4NZ65Tgg/s1600/nexus_player.
jpg):

This was the first kind of Android television device, very similar to Google TV and
comparable with Apple TV also.

Apart from Nexus Player, there are a few more Android-enabled STB devices:

•	 Freebox Mini 4K: This is a 4K capable TV STB, originally offered by a French
ISP with fiber modem.

•	 Forge TV: This is a television/microconsole with high hardware specs,
which was announced by Razer on January 6, 2015. It features a Qualcomm
Snapdragon 805 processor, 2 GB RAM and 16 GB of Flash storage.

•	 Shield Android TV: This device was announced by NVIDIA on March 3,
2015. This claims to give tough competition to the eighth-generation consoles.
This hardware set comes with an NVIDIA-branded game controller.

•	 OgleBox Android TV: This device mainly provides region-based content in
Australia. It was announced in March 2015.

•	 LG UPlus Android TV: The Korean telecoms company LG UPlus introduced
an Android TV on U+ tvG 4K UHD and U+ tvG Woofer IPTV STBs.

•	 Arcadyan BouygtelTV: In June 2015, a French telecom company, Bouygues
Telecom, announced an integrated STB codenamed "Miami" based on
Android TV.

http://1.bp.blogspot.com/-H1rp1fboU6g/VX2Huu6ClyI/AAAAAAAA3hA/5te4NZ65Tgg/s1600/nexus_player.jpg
http://1.bp.blogspot.com/-H1rp1fboU6g/VX2Huu6ClyI/AAAAAAAA3hA/5te4NZ65Tgg/s1600/nexus_player.jpg
http://1.bp.blogspot.com/-H1rp1fboU6g/VX2Huu6ClyI/AAAAAAAA3hA/5te4NZ65Tgg/s1600/nexus_player.jpg

Introduction to Different Android Platforms

[26]

Besides these STB/console-based Android devices, many television manufacturers
are targeting the launch of Android television sets. Sony, Sharp, Philips, LG,
Samsung, and other companies are migrating to Android. Philips has announced
that 80% of their upcoming television models will be running on Android (image
source: http://www.techdigest.tv/wp-content/uploads/2014/07/kogan-
smart-tv-may-2013.jpg):

Let's take a look at the specifications of an example smart TV:

•	 Model: VU 32K160M LED TV
•	 Operating system: Android v4.4 KitKat
•	 Processor: 2.0 GHz octacore GPU with Amlogic quadcore S802 ARM Cortex

processor CPU
•	 Display: 32" LED screen (1366x768 px) with achromatic technology and full

color optimizer, which provides a world class viewing experience for images,
videos, games, and so on

•	 Design: The model is covered in A+ grade pure prism panel which makes
pictures more sharp and detailed. And it is surprisingly thinner than the
common smart TV models. Its dimensions are 29 inch x 19 inch x 7 inch,
and it weighs 7.3 kg.

•	 RAM and storage: The Vu 32K160M TV has 2 GB DDR3 RAM and 8 GB
NAND Flash storage.

http://www.techdigest.tv/wp-content/uploads/2014/07/kogan-smart-tv-may-2013.jpg
http://www.techdigest.tv/wp-content/uploads/2014/07/kogan-smart-tv-may-2013.jpg

Chapter 2

[27]

•	 Video: It plays 1080p videos @60fps, and supports various file formats.
•	 Connectivity: Vu TV supports Bluetooth v4.0, Wi-Fi, and Ethernet. It lets the

user browse their favorite sites and check mails from the TV screen. It has
three USB ports and two HDMI ports.

This specification is good enough to attract a game developer to get active with
his/her next game.

Google has also released an Android TV development kit called ADT-1. This
hardware development kit was given to application developers during Google I/O
(image source: http://chezasite.com/media/2014-post-icon/adt-1-android-
tv-reference-design-1920x1080.jpg):

One of the things that early Google TV devices were criticized for was under-
performing specs. Thankfully, Google has tried to remedy that, as they came out the
gate strong with some pretty impressive specs:

•	 Tegra 4 chipset
•	 2 GB RAM
•	 16 GB of internal storage
•	 2×2 MIMO dual-channel Wi-Fi
•	 Bluetooth 4.0
•	 Ethernet port
•	 HDMI port
•	 Android L developer Preview

http://chezasite.com/media/2014-post-icon/adt-1-android-tv-reference-design-1920x1080.jpg
http://chezasite.com/media/2014-post-icon/adt-1-android-tv-reference-design-1920x1080.jpg

Introduction to Different Android Platforms

[28]

Android TV is fully unlocked out of the box, so Google is inviting developers to
come up with anything they can to help this platform. It's far too early to tell what
will be the result of such openness, but it should not take long for developers to
explore and develop for this device.

Exploring Android consoles
A small piece of adapter connected to a television and a controller device to control
the adapter, together are called a console set. Android is a cheap, low-budget
operating system, which can be used on any mobile hardware platform with ease.

One of the first Android-based consoles is OUYA (image source: http://cdn2.
pu.nl/media/misc/ouya_wall_ins.jpg):

These consoles are called microconsoles. A few years ago, the specification of such
consoles was the following:

•	 Model: OUYA
•	 Processor: ARM Cortex A9
•	 Speed: 1.7 GHz quadcore
•	 System chip: NVIDIA Tegra 3
•	 Flash memory: 8 GB
•	 RAM: 1 GB DDR3
•	 Display: HD (720p) or Full HD (1080p)
•	 Graphics processor: NVIDIA GeForce ULP GPU
•	 Android version: Android 4.1 Jelly Bean
•	 Connectivity: Wi-Fi, Bluetooth and LAN

http://cdn2.pu.nl/media/misc/ouya_wall_ins.jpg
http://cdn2.pu.nl/media/misc/ouya_wall_ins.jpg

Chapter 2

[29]

Now let's have a look at the modern age Android console specification:

•	 Model: NVIDIA Shield
•	 Processor: ARM Cortex A57 + A53 (64 bit)
•	 Speed: 1.9 GHz quadcore + 1000 MHz quadcore
•	 System chip: NVIDIA Tegra X1
•	 Flash memory: 500 GB HDD
•	 RAM: 3 GB
•	 Connectivity: Wi-Fi, Bluetooth, LAN, USB, and HDMI
•	 Display: 4K resolution support

Here is the NVIDIA Shield Android console (https://cdn0.vox-cdn.com/
thumbor/72vPz7fqWT7ButeiG17cW_jjP2Y=/0x0:1920x1080/1600x900/cdn0.
vox-cdn.com/uploads/chorus_image/image/45812214/shield-hero-
image.0.0.jpg)

https://cdn0.vox-cdn.com/thumbor/72vPz7fqWT7ButeiG17cW_jjP2Y=/0x0:1920x1080/1600x900/cdn0.vox-cdn.com/uploads/chorus_image/image/45812214/shield-hero-image.0.0.jpg
https://cdn0.vox-cdn.com/thumbor/72vPz7fqWT7ButeiG17cW_jjP2Y=/0x0:1920x1080/1600x900/cdn0.vox-cdn.com/uploads/chorus_image/image/45812214/shield-hero-image.0.0.jpg
https://cdn0.vox-cdn.com/thumbor/72vPz7fqWT7ButeiG17cW_jjP2Y=/0x0:1920x1080/1600x900/cdn0.vox-cdn.com/uploads/chorus_image/image/45812214/shield-hero-image.0.0.jpg
https://cdn0.vox-cdn.com/thumbor/72vPz7fqWT7ButeiG17cW_jjP2Y=/0x0:1920x1080/1600x900/cdn0.vox-cdn.com/uploads/chorus_image/image/45812214/shield-hero-image.0.0.jpg

Introduction to Different Android Platforms

[30]

Let's now take a look at another modern age Android gaming console called Razor
Forge TV (image source: http://android.hu/img/2015/04/gallery-04.jpg):

Its specifications are as follows:

•	 Model: Razor Forge TV
•	 Processor: Qualcomm Snapdragon 805
•	 Speed: 2.5 GHz quadcore
•	 GPU: Adreno 420
•	 Flash memory: 16 GB
•	 RAM: 2 GB
•	 Connectivity: Wi-Fi, Bluetooth, LAN, USB, and HDMI
•	 Android version: 5.0 Lollipop

http://android.hu/img/2015/04/gallery-04.jpg

Chapter 2

[31]

A console is a specific device for gaming. However, nowadays, consoles can be used
for various purposes, but the main objective remains the same.

From the previous example specifications, we can have an idea of how Android
console gaming is improving. Developers work on a specific target device for
consoles. Even if the game is portable, console quality has to be maintained.

In a recent market study, it was said that PlayStation 4, Xbox One, and the Nintendo
Wii U will be the dominant platforms for hardcore console gamers. However,
Android console offerings from Amazon, Google, and others are projected to grow at
a much faster rate, and offer the casual to mid-core gamer an affordable way to play
from the couch. It is pretty much clear that over time, the broader base of console
gamers will likely consider Android.

This opens up a new era of Android game development. Console games are different
to typical mobile games, which maximum Android game developers are into.
However, with the growing number of Android consoles since 2014, more and more
developers are taking interest in this.

Apart from the consoles discussed earlier, there are few more, such as the following:

•	 Game Stick: This is a small dongle-sized console powered by Android
Jelly Bean, having 1 GB DDR3 RAM and 8 GB Flash memory. However,
this specification is being boosted (image source: http://cdn2.
knowyourmobile.com/sites/knowyourmobilecom/files/styles/
gallery_wide/public/5/05/gamestick-4.jpg?itok=kYGDnKgr):

http://cdn2.knowyourmobile.com/sites/knowyourmobilecom/files/styles/gallery_wide/public/5/05/gamestick-4.jpg?itok=kYGDnKgr
http://cdn2.knowyourmobile.com/sites/knowyourmobilecom/files/styles/gallery_wide/public/5/05/gamestick-4.jpg?itok=kYGDnKgr
http://cdn2.knowyourmobile.com/sites/knowyourmobilecom/files/styles/gallery_wide/public/5/05/gamestick-4.jpg?itok=kYGDnKgr

Introduction to Different Android Platforms

[32]

•	 Mad Catz MOJO: This is a normal microconsole having 2 GB RAM, 16 GB
Flash memory, and a Tegra 4 processor. This device runs on Android 4.2.2
(image source: http://cc.cnetcontent.com/inlinecontent/mediaserve
r/3m/8f8/607/8f8607ed9d2b4cee981f651125046895/original.jpg):

•	 GamePop: BlueStacks has manufactured this next generation Android
gaming console with a target to set a subscription model like other top
consoles. Most of the Android gaming consoles use store-based content.
This is certainly a new venture with great expectations.

A new feature introduced in this console is that this device is capable of
running iOS games with the help of a visualization tool called Looking Glass.
It would be wise to wait until the unit is in the wild before getting too excited
about how this all works. But if it does, then the results could be astounding.

http://cc.cnetcontent.com/inlinecontent/mediaserver/3m/8f8/607/8f8607ed9d2b4cee981f651125046895/original.jpg
http://cc.cnetcontent.com/inlinecontent/mediaserver/3m/8f8/607/8f8607ed9d2b4cee981f651125046895/original.jpg

Chapter 2

[33]

The evolution of consoles running Android may be the future of gaming; however, it
is established that the existence of other top consoles will not become extinct. The user
base is increasing day by day, and so is the number of games on those platforms.

Being an Android game developer, one must not stick to the conventional gaming
platforms such as smartphones and tablets. The era is changing rapidly. Developers
should keep themselves up to date.

Exploring Android watches
In the smart era of technology, it was expected that every possible gadget would
work smarter. Wristwatches were no exception. The type of watches changed from
analog to digital, and now to purely computerized smartwatches. Being a very
flexible open source operating system, Android is one of the most favorite option
for smartwatches (image source: http://photos.appleinsidercdn.com/bigger-
wimm-130830.jpg):

http://photos.appleinsidercdn.com/bigger-wimm-130830.jpg
http://photos.appleinsidercdn.com/bigger-wimm-130830.jpg

Introduction to Different Android Platforms

[34]

From the very early versions, Android watches were well capable of playing games,
thus entering the game development domain. Advanced devices are as good as small
computers. They consist of the Internet, sensors, cameras, Bluetooth, Wi-Fi, speakers,
card slots, and have many more features.

Like other computers, a smartwatch may collect information from internal or
external sensors. It may control, or retrieve data from, other instruments or
computers. It may support wireless technologies like Bluetooth, Wi-Fi, and GPS.
However, it is possible that a "wristwatch computer" may just serve as a frontend for
a remote system, as in the case of watches utilizing cellular technology or Wi-Fi.

Android Wear was first announced on March 18, 2014 by Google. At the same time,
many manufacturers of electronic gadgets were announced as partners of Android
Wear. These companies include Samsung, Motorola, LG, HTC, ASUS, and others.

In December 2014, the operating system was upgraded to Android 5.0 (Lollipop).
We can see a series of Android Watch releases around this period of time. LG
started shipping LG G Watch, Motorola announced Moto 360, and ASUS released
ZenWatch.

The latest advanced watches offer a set of attractive features. Users can find
directions by voice from the phone, choose a transport mode, including a bike, and
start a journey. While travelling, the watch shows directions, and will actually use
tactile interaction to indicate turns by feel, helping the wearer travel without looking
at a phone, or even the watch screen. Users can use their Android Wear watch to
control their phone. Music can be requested (for instance, "OK Google, play the
Rolling Stones"). The screen then shows a card for play-control, volume, skip, and
media images, and music can be controlled from the wrist with the user free to move
around.

Let's look at a few specifications of Android wearable devices. First, the LG G Watch:

Processor Qualcomm Snapdragon 400
Flash memory 4 GB
RAM 512 MB
Battery 400 mAh
Connectivity Bluetooth 4.0
Sensors Gyro, accelerometer, compass
Android version 4.3
Display 1.6 inch
Resolution 280x280

Chapter 2

[35]

This configuration does not exist anymore in the market, but users do. So while
making a game for an Android wearable, the developer should take into account
these configurations as well.

Android wearable manufacturers are also upgrading their devices with massive
hardware changes. Now let's have look at the evolution of devices by comparing
two releases:

Sony Smartwatch 2 Sony Smartwatch 3

Processor ARM Cortex M4 ARM A7 quadcore

Speed 180 MHz 1.2 GHz

Flash memory 256 MB 4 GB

RAM 64 MB 512 MB

Battery 225 mAh 420 mAh

Connectivity Bluetooth 3.0 Bluetooth 4.0 and Wi-Fi ready

Sensors Gyro, accelerometer, compass,
proximity, ambient light, and IP57
dust and water resistant

Gyro, accelerometer, compass,
proximity, ambient light, and
IP68 dust and water resistant

Android version 4.0 4.3+

Display 1.6 inch 1.6 inch

Resolution 220x176 320x320

We can observe a huge boost in terms of technical and hardware upgradation here.
This is how the market is growing, and the applications as well.

Development insights on Android
mobiles
As we discussed earlier, the main development target for any game developer on the
Android platform are Android mobiles. We have also noticed the various technical
specifications for Android mobiles. When a game developer targets this platform at
its maximum possible scope, they must take a note of the device category.

Mostly, all Android devices support a common touch interface, a physical Home
button, a physical Lock button, a Back button, and volume Up-Down keys for user
interaction. Besides these, an accelerometer can be also a good medium for the user
interface.

Introduction to Different Android Platforms

[36]

Gaming is mostly visual, so game developers should always look for the graphic
performance of the device. There is a separate graphics processor in the latest
Android mobiles, but the quality varies.

Visual excellence does not depend on GPU only—the display screen quality also
matters a lot. Low PPI screens cannot deliver a high quality display. The first-
generation Android G1 mobile had a screen resolution of 240x320, falling in the LDPI
resolution category. Hence, the visual quality of the game could not be excellent, no
matter how hard the developer tried. Fortunately, with time, device manufacturers
put in a lot of effort in to improving the visual quality along with performance. But
this feature came with a price of battery life. The more quality it gained, the more
battery it consumed.

Previously, few Android phones (for example, Android HTC Dream G1) had a
physical QWERTY keypad. This made it much easier to port the game control system
from Symbian or BlackBerry to Android (image source: http://s.androidinsider.
ru/2015/02/htc-dream.@750.jpg):

Nowadays, the control system for Android games has changed completely to cope
with the control style of other smartphone games in the market.

http://s.androidinsider.ru/2015/02/htc-dream.@750.jpg
http://s.androidinsider.ru/2015/02/htc-dream.@750.jpg

Chapter 2

[37]

In the current scenario, the average capacity of a mobile battery is around 2750
mAh. A few manufacturers provide higher battery capacity by reducing the display
quality. It is not possible to increase battery capacity beyond a certain limit due to the
physical size and weight constraints for a mobile device.

Targeting the maximum devices is always a good idea as long as the balance
between performance and gaming experience is maintained.

The device market is open for various devices. Although old configurations are
not being manufactured further, those devices are not yet obsolete. This is why
developers have a minimum requirement for their games.

Smartphones are the major target for any game development organization. The
increasing user base and upgrading of Android helps this platform grow faster.
There was a time when BlackBerry was considered to be the only smartphone.
But the current market says that times have changed, and so have the developers.

For Android mobile game development, a developer should keep in mind the
following constraints and features:

•	 Small display area
•	 Wide range of resolution and pixel density
•	 Full-screen multitouch interface
•	 Sensor support for gyro, accelerometer, compass, ambient light, and so on
•	 Wide range of RAM
•	 A variety of processors and performance
•	 Battery life
•	 More chances of interruption

Android mobiles are one of the more profitable platforms now. When it comes
to market share, there is no other mobile OS that can compete with Android. So,
developers always jump into Android. Few economical reasons for the success of
this platform are as follows:

•	 Availability of a massive user base, which attracts advertisers as an
advertising platform

•	 Easy monetary transactions through well-established stores
•	 Ease of cross promotion of games and apps

Introduction to Different Android Platforms

[38]

Development insights on Android tablets
Android game development was mainly limited to smartphones before Android
tablets came into the picture. It was much more fun to play a game on a tablet. Tablet
gaming became popular over a short period of time because of the following reasons:

•	 Bigger screen: Although a bigger screen with the same resolution
compromises the visual quality, it provides bigger visibility. Bigger visibility
enhances the art asset to reveal its details, which is not always possible for a
small screen smartphone.

•	 Bigger physical size: Bigger physical size forces the player to play with both
hands, which results in better grip on the device and better controls.

•	 Bigger space/playable area: Bigger playable area can provide more control
space. That means that the player need not to be accurate while using the
touch control system, so he/she can concentrate more on the game alone.
Thus, it enhances the gaming experience.

•	 Less constraints: Continuous playing of games causes a serious amount of
battery drainage. In case of phones, the primary objective is to stay connected
with a network. So, keeping the device alive is very necessary. But a tablet
does not have a particular goal. It is a multipurpose utility device. One of the
purposes can be playing games. Therefore, there is no hardcore necessity to
save power for jobs other than gaming.

•	 Less interruption: We all know how any interruption can be irritating during
an ongoing job. The same goes for the gaming experience as well. Any
interruption causes a major pause in gaming, and most of the time, players
quit at that point in time. On a tablet, there are fewer chances of automated
interruption than manual or physical interruption; this means less irritation
while playing on a tablet.

For Android tablet game development, a developer should keep the following
constraints and features in mind:

•	 Big display area
•	 Wide range of resolution, and comparatively low pixel density
•	 Full-screen multitouch interface
•	 Sensor support for gyro, accelerometer, compass, ambient light, and so on
•	 Wide range of RAM
•	 A wide range of processors and performance
•	 Fewer chances of interruption

Chapter 2

[39]

Tablets evolved from the idea of a small portable computing device, which could be
the bridge between smartphones and PCs/laptops.

A bigger screen always helps the user to interact with the game more easily. Game
designers have more space to utilize. However, this slightly increases the headache
for developers, as the visual quality has to be maintained within the same hardware
limitation.

Previously, most tablets used mobile processors, but tablet manufacturers are using
laptop processors for tablets now. Intel Atom is an example of this. The more capable
the processor used in a device, the better the quality it can deliver.

There was a time when Android games were targeted for mobiles first, and then
those were ported for tablets. But the table has turned now. Now there is a very thin
line between the development of smartphone games and games for tablets. Most of
the time, the same APK can support both phones and tablets with almost the same
quality and performance. There is no more exclusive porting for tablets.

Development insights on Android TV
and STBs
Firstly, Android TV game development requires a focus on two specific things:

•	 Large shared display
•	 Landscape resolution with lower dpi

A large display is always a plus from a player's perspective, but that increases the
overhead for graphic designers to optimize the assets accordingly. At the same time,
the display can be shared with multiple users, so the developer has to make sure that
all the user actions can always be synced with the display.

TVs are big in comparison to any other Android devices. The stretch from a 5" to 50"
to a 150" screen can expose poor graphical quality. So, the following points need to
be considered while developing games for Android TVs:

•	 Check the textures of the game—low resolution textures often look poor
when stretched on Android TV

•	 3D models might have jagged curves on TV because there are too few
polygons

•	 Particle effects may need reworking for the TV's big screen if there are too
few emitters, patterns, or colors

•	 Anti-aliasing is often not required on Android devices with small screens
that have a high pixel density, but it effects a considerable visual difference
for a TV.

Introduction to Different Android Platforms

[40]

Now the next challenge is the input control system. There can be multiple controllers
for the game. The TV can be directly controlled by some other Android device, or by
a remote control.

However, any Android console or STBs can be used as well. In this case, a game
controller or a D-pad control is much more useful for games.

To use a controller or a D-pad, a game developer should be very specific about
using the proper control button for each functionality. When multiple players
are playing a game, each with their own controller, it is important to map each
player-controller pair.

It is an optional advantage to specify the game inside the AndroidManifest.xml file
under the application tag, as follows:

<application
<!-- other declarations and tags -->
android:isGame="true"
<!-- other declarations and tags -->
>

This will help separate the game from other regular applications, and will show it
under the games category on the Android TV home page.

There are a few other declarations that can be made according to the requirements.

To declare support for game controllers, use the following code:

< uses-feature android:name="android.hardware.gamepad"
 android:required="true"/>

The developer must include the "touchscreen required false" declaration in the
AndroidManifest.xml file, as it is used by Play Store for filtering. If it is missing,
Play Store does not show the app to Android TV users in the search results:

< uses-feature android:name="android.hardware.touchscreen"
 android:required="false"/>

It is very good practice for all Android TV game developers to specify the non-
required features of Android to get rid of the extra library hassle. For example, a TV
does not have an accelerometer or gravity sensor, so marking them as non-required
is a good development practice. This can be done as follows:

<manifest ...>
 <application ...>
 ...
 <!-- Requiring the camera removes this listing from Android TV
 search results -->

Chapter 2

[41]

 <uses-feature android:name="android.hardware.camera"
 android:required="true" />

 <!-- Making accelerometer optional has no impact on Android TV
 filtering -->
 <uses-feature android:name=
 "android.hardware.sensor.accelerometer"
 android:required="false" />
 </application>
</manifest>

UI and game design
Each game UI has to follow the design that will support the control scheme, that is,
the UI should completely support the input controller and elements, and the screen
has to be designed accordingly. This is a major difference between mobile/tablet
game development and Android TV game development.

As we are discussing the development on Android TV, a developer must consider
how it would feel to play a game on Android TV from a distance of 4-10 feet while
sitting on a couch or on a bean bag. Here is the check list that a developer should
look for:

•	 All text should be clearly readable
•	 UI buttons and other elements should match the overall layout without

harming the readability and visibility of the whole screen
•	 A controller must control all the possible tasks while playing the game,

as nobody would like to get up frequently to control the TV

Overscan
Unlike phone and tablet screens, TVs can lose some space at the edges of the screen
to overscan. Although many TVs now use fixed-pixel technologies like LCD, many
brands still lose edge detail. Be sure to leave a region around the outside of the TV
screen free from important UI and gameplay elements. A good rule-of-thumb is
to have a 5-10% margin of totally free space, and a 10-20% margin before drawing
important elements.

If developers are using standard Android components for their UI, then they can use
the built-in overscan support that was made available in Android Jelly Bean. If the
UI is custom OpenGL or OpenGL ES code, or is using a game engine's UI system, the
developer will have to cater for overscan in the Android TV interface design.

Introduction to Different Android Platforms

[42]

Development insights on Android
consoles
Today's modern mobile devices are well capable of running a moderate quality
game with limited processing power, comparable with PC and consoles. It is being
anticipated that the revenue for mobile games will surpass that of consoles and
PC by the year 2015-2016. Now the question arises, "Will the console game market
survive?" The answer is Yes.

Consoles are specially designed and configured to provide the best gaming
experience, where smartphones are designed for better communication and
networking with limited computing power. Android, as an operating system for
consoles, has proved to be a success.

There is not much difference between the configurations of an Android mobile and
an Android console. Processor, memory capacity, and another few changes can be
seen, but the major and the most important difference is the input system. Mobiles,
tablets, wearables, all have a touch interface, whereas consoles use the typical
gaming controller.

Android gaming consoles are placed between mobiles and PCs from a development
perspective. So, apart from the design, the engineering or programming section of
console game development depends on mainly two parameters: controls and the use
of hardware.

We have already discussed the various types of consoles available in the market.
As a development platform, it does not have much uniqueness.

Development insights on Android
watches
Wearable games run directly on the wearable device, giving the developer access
to low-level hardware such as sensors, activities, services, and more, right on the
wearable. A companion handheld game that contains the wearable app is also
required when the developer wants to publish to the Google Play Store. Wearables
don't support the Google Play Store, so users download the companion handheld
game, which automatically pushes the wearable game to the wearable. The handheld
game is also useful for doing heavy processing, network actions, or other work and
sending the results to the wearable.

Chapter 2

[43]

To develop games on Android wearables, there are some technical steps to be
followed. This is not general Android game development:

•	 The Android SDK tool has to be updated to version 23.0 or higher
•	 The Android platform support within the SDK has to be updated with

Android 4.4.2 (API 20) or higher
•	 An Android wearable device or emulator is required for development

Creating and setting up a wearable
application
This can be done as follows:

Select New Project in Android Studio. In the Configure Project window, enter a
name for the application and a package name. In the Form Factors window, perform
the following steps:

1.	 Select Phone and Tablet and select API 9: Android 2.3 (Gingerbread) under
Minimum SDK.

2.	 Select Wear, and select API 20: Android 4.4 (KitKat Wear) under Minimum
SDK.

3.	 In the first Add an Activity window, add a blank activity for mobile.
4.	 In the second Add an Activity window, add a blank activity for wear.

When the wizard completes, Android Studio creates a new project with two
modules, mobile and wear. Developers now have a project for both their handheld
and wearable apps for which they can create activities, services, and custom layouts.
The handheld app does most of the heavy lifting, such as network communications,
intensive processing, or tasks that require long amounts of user interaction. When
the app completes these operations, the application should notify the wearable of the
results through notifications or by syncing and sending data to the wearable.

The wear module also contains a Hello World activity that uses a
WatchViewStub. This class inflates a layout based on whether the
device's screen is round or square. The WatchViewStub class is one
of the UI widgets that the wearable support library provides.

Introduction to Different Android Platforms

[44]

Including the correct libraries in the project
There is a lot of library support for Android apps/games. Every developer needs to
identify their correct requirements to include the correct libraries.

The following is a list of a few useful libraries for game development on wearable
devices:

•	 Notifications: The Android v4 support library (or v13, which includes v4)
contains the APIs to extend the existing notifications on handhelds to support
wearables. For notifications that appear only on the wearable (meaning,
they are issued by an app that runs on the wearable), the developer can
just use the standard framework APIs (API level 20) on the wearable, and
remove the support library dependency in the mobile module of the game or
application.

•	 Wearable Data Layer: To sync and send data between wearables and
handhelds with the Wearable Data Layer APIs, developers need the latest
version of Google Play services. If developers are not using these APIs,
remove the dependency from both modules.

•	 Wearable UI support library: This is an unofficial library that includes
UI widgets designed for wearables. The Android platform encourages
developers to use them in applications, because they exemplify best practices,
and yet they can change at any time. However, if the libraries are updated,
the applications won't break, since they are compiled into the project. To get
new features from an updated library, developers just need to statically link
the new version, and update the application accordingly. This library is only
applicable if a developer creates wearable apps.

Hardware compatibility issues with Android
versions
Now let's have another look at the absolute minimum hardware requirements, as we
already know that Android is not compatible with ARM v4 processors, and Android
4.0+ requires ARM v7 or higher. Android wearables run on Android 4.4 or higher. So
the developer must support ARM v7 onwards.

Platform-specific specialties
We have already discussed about all the Android hardware platforms till now.
Each platform has its own specialties in terms of configuration, size, shape, utilities,
and features.

Chapter 2

[45]

Let's summarize the platform-specific points that should be taken into consideration
while developing a game for the same.

Android mobiles
This type of Android hardware platform is the most famous and widely used device
across the world. Typical Android mobile-specific features are:

•	 Small screen
•	 High dpi display
•	 Wide range of hardware configurations
•	 Full touchscreen
•	 Maximum sensor support
•	 Multipurpose use
•	 Maximum user base

Android tablets
This type of Android hardware platform is the second most famous and widely used
devices across the world, with slightly different utilities. Typical Android tablet-
specific features are:

•	 Comparatively bigger screen
•	 Low dpi display
•	 Full touchscreen
•	 Specific use device

Android televisions and STBs
This type of Android hardware platform is spreading rapidly as smart TVs with
more features and abilities than a simple television gain popularity. Typical Android
television- and STB-specific features are:

•	 Biggest display unit
•	 No touch interface
•	 D-pad or controller-based input system
•	 Fixed landscape orientation
•	 Limited hardware support
•	 Suitable for multiplayer games

Introduction to Different Android Platforms

[46]

Android consoles
Beside famous gaming consoles such as the PS3, PS4, and Xbox, Android gaming
consoles are also gaining popularity nowadays. Typical Android console-specific
features are:

•	 Dedicated hardware system for gaming
•	 Full controller-based input system
•	 Multiresolution large display support
•	 Hardware-specific development
•	 Best Android platform for multiplayer gaming experience

Android watches
This is the most used wearable platform on Android. The main feature of this device
is to provide health information. However, gaming is also spreading on this device.
Typical Android watch-specific features are:

•	 Very small display
•	 Limited hardware support
•	 Less memory and processing power
•	 Touchscreen interface
•	 Very portable
•	 Separate wearable development environment needed

Summary
Before starting development, a developer must have clear knowledge about
hardware and software specifications. In this chapter, you have learned about the
possible different hardware platforms running on Android. Through this knowledge,
you, as a developer, can easily identify your target audience. It is much easier to
choose a specific set of hardware platforms to target.

In the near future, Android will be stepping into the world of virtual reality with
different technologies. We will discuss these later in this book. Till now, you have
come to know that mobiles, tablets, televisions, STBs, consoles, and watches are the
various hardware platforms. All of them are capable of running Android games.
However, Android consoles are the only dedicated hardware platform for games.

Chapter 2

[47]

Though consoles are a dedicated gaming platform, Android mobiles and Android
tablets are the most targeted platforms for developers. These provide all the
necessary support and facilities to run almost every kind of game. These platforms
have the added advantage of the number of users. Most developers target these
platforms to acquire as many users as possible.

[49]

Different Android
Development Tools

We have already discussed the different Android target devices for game
development. In this chapter, we will take a look at the different ways and tools
to develop games for Android. Other than development skill and knowledge, it is
very important to know about the helpful software that can make the development
process easier and effective.

Android game development is supported or backed by many powerful tools and
libraries. Let's have a look at the list of mandatory tools for the development process:

•	 Android SDK
•	 Android Development Tool
•	 Android Virtual Device
•	 Android Debug Bridge
•	 Dalvik Debug Monitor Server

These are the must-have tools that should be installed in an Android game
developer's system. Without these, it is impossible to develop anything for the
Android platform. Although ADB and AVD are not mandatory for development,
they are required to test and deploy the game on physical as well as virtual devices
in order to debug the game.

Different Android Development Tools

[50]

Android SDK
Android SDK is the main development kit required to build any application for
Android. Without going into details, it can be said that the SDK is the skeleton for
any Android development. This SDK itself comes with dozens of support tools. It
contains platform details, APIs, and libraries along with ADT and AVD. So having
Android SDK integrated in the system provides the developer with all the necessary
tools. It is a very good practice to always update the SDK with the latest platforms
and other tools.

Upgrading can be done through the Android SDK manager. However, platform
selection is manual, and it is recommended to have only the necessary platforms as
per requirements. Another best practice is to have the latest released platform along
with the minimum targeted version of Android (image source: http://photos4.
meetupstatic.com/photos/event/1/1/0/f/highres_441724367.jpeg):

Android Development Tool
Android Development Tool (ADT) is a plugin for the Eclipse IDE that is designed to
give a powerful, integrated environment in which to build Android applications.

ADT extends the capabilities of Eclipse to let the developer quickly set up new
Android projects, create an application UI, add packages based on the Android
framework API, debug the applications using the Android SDK tools, and even
export signed (or unsigned) .apk files in order to distribute the application.

Developing in Eclipse with ADT is highly recommended, and is the fastest way to
get started. With the guided project setup it provides, as well as tools integration,
custom XML editors, and the debug output pane, ADT gives an incredible boost to
developing Android applications.

http://photos4.meetupstatic.com/photos/event/1/1/0/f/highres_441724367.jpeg
http://photos4.meetupstatic.com/photos/event/1/1/0/f/highres_441724367.jpeg

Chapter 3

[51]

However, ADT support for Eclipse is being pulled by Google, so developers are
recommended to switch to Android Studio.

Android Virtual Device
An Android Virtual Device (AVD) is a software-produced model of a real device,
which can be configured with custom hardware specifications. It can be a virtual
copy of the real device as well. This is one of the most important tools for any
Android developer. This lets the developer test the application in a typical Android
environment without using an actual hardware device, to cut short the development
time (image source: http://www.geeknaut.com/images/2014/08/top-android-
emulators-for-windows3.png):

Configuring AVD
An AVD consists of the following:

•	 Hardware profile: This profile describes the hardware features of the virtual
device. This can be configured with hardware options like a QWERTY
keypad, camera, integrated memory, and so on.

•	 System image mapping: The running Android platform version can be
configured depending on the installed set of Android platforms. Android
platforms can be installed by the Android SDK manager.

http://www.geeknaut.com/images/2014/08/top-android-emulators-for-windows3.png
http://www.geeknaut.com/images/2014/08/top-android-emulators-for-windows3.png

Different Android Development Tools

[52]

•	 Dedicated disk space: Dedicated storage area on your development machine
can be set with this feature, which saves the emulator's user data and the
virtual SD card.

•	 Other features: The developer can even specify the look and feel of the
virtual device such as device skin, screen dimension, and appearance.

The following is the brief procedure to create an AVD through AVD manager, which
is located in the <SDK Path>/tools directory:

1.	 On the main screen, click on Create Virtual Device.
2.	 In the Select Hardware window, select a device configuration such as Nexus

5, then click on Next, then click on Finish.
3.	 To begin customizing the device by using an existing device profile as a

template, select a device profile and then click on Clone Device. Or, to create
a complete custom emulator, click on New Hardware Profile.

4.	 Set the following to create a new custom emulator:
°° Device name
°° Screen size
°° Screen resolution
°° RAM
°° Input options
°° Supported states
°° Camera options
°° Sensor options

5.	 After setting every property, click on Finish.

The developer can also create a new custom emulator using the command line,
as follows:

android create avd -n <name> -t <targetID> [-<option> <value>] ...

Here, the following options can be set:

•	 name: This will be the custom AVD name
•	 targetID: This will be the custom ID
•	 option: This can include options such as device screen density, resolution,

camera, and so on.

Chapter 3

[53]

The developer can execute this command to use a previously defined AVD:

android list targets

Then, the developer can run the following command:

emulator –avd <avd_name> [options]

Android Debug Bridge
Android Debug Bridge (adb) is a tool used to establish communication between the
development environment and a virtual device or the connected Android device. It is
a client-server command-line program, which works on three elements:

•	 Client on the development machine: Works as the client, which can be
invoked by adb commands. Other Android tools such as the ADT plugin
and DDMS also create adb clients.

•	 Daemon: A background process that runs in the background on each
emulator or device instance.

•	 Server on the development machine: This is a background process that runs
on the development machine and manages the communication between the
client and server.

On starting adb, the client first checks whether there is an adb server process already
running. If there isn't, it starts the server process. When the server starts, it binds to
the local TCP port 5037 and listens for commands sent from adb clients—all adb
clients use port 5037 to communicate with the adb server.

The server then sets up connections to all running emulator/device instances. It
locates emulator/device instances by scanning odd-numbered ports in the range
5555 to 5585, the range used by emulators/devices. Where the server finds an adb
daemon, it sets up a connection to that port. Note that each emulator/device instance
acquires a pair of sequential ports—an even-numbered port for console connections
and an odd-numbered port for adb connections.

Once the server has set up connections to all emulator instances, the developer
can use adb commands to access those instances. Because the server manages
connections to emulator/device instances, and handles commands from multiple
adb clients, the developer can control any emulator/device instance from any client
(or from a script).

Different Android Development Tools

[54]

Using adb on an Android device
One of the first things to remember is to put the development device in the USB
debugging mode. This can be done by navigating to Settings, tapping on Developer
options, and checking the box named USB debugging for Android 5.0 and above
(for other Android versions, refer to https://www.recovery-android.com/
enable-usb-debugging-on-android.html). Without doing this, the development
PC won't recognize the device.

The most important thing to know is simply how to get to the adb folder via the
command line. This is done with the cd (change directory) command. So, if (on
Windows) the SDK folder is called android-SDK, and it's in the root (c:) directory,
you can enter the following command:

cd c:/android-SDK

Then, to get into the adb folder, use this:

cd platform-tools

At this point, the prompt will say this:

C:\android-SDK\platform-tools>

Now the developer can connect the device, and test the adb connection, after locating
and installing the drivers for a particular device:

adb devices

If everything is set up properly, there should be a list of devices attached. The phone
or tablet will have a number assigned to it, so don't be surprised if it doesn't say
"Droid Razr" or "Galaxy Nexus".

For average users, adb is more of a tool for basic hacking tasks than it is a task in
itself. Unless the developers know what they are doing, they probably shouldn't
go poking around too much without clear instructions. When rooting the device,
knowing these basics can help save some time and let the developer be prepared
in advance.

Beside the specific instructions to root a particular device, the next thing the
developer needs will be the drivers for the phone or tablet.

The easiest way to do this is usually to simply Google search for the specific device plus
drivers. So if the developer has a Droid Razr, he/she should search for Droid Razr
Windows Drivers. This will almost always direct the developer to the best link.

https://www.recovery-android.com/enable-usb-debugging-on-android.html
https://www.recovery-android.com/enable-usb-debugging-on-android.html

Chapter 3

[55]

Another option, which will only work for stock Android devices, is to download
the USB drivers from the SDK. To do this, launch the SDK manager again. Go to the
Available packages tab on the left, expand the Third party add-ons entry, and then
expand the Google Inc. add-ons entry. Finally, check the entry for the Google USB
Driver package.

Note that the USB driver package isn't compatible with OS X.

Dalvik Debug Monitor Server
The Dalvik Debug Monitor Server (DDMS), whether it's accessed through the
standalone application or the Eclipse perspective with the same name, provides
handy features for inspecting, debugging, and interacting with emulator and device
instances. You can use DDMS to inspect running processes and threads, explore the
filesystem, gather heap and other memory information, attach debuggers, and even
take screenshots. For emulators, you can also simulate mock location data, send SMS
messages, and initiate incoming phone calls:

Different Android Development Tools

[56]

As the preceding screenshot shows, DDMS can primarily track, update, and display
the following information:

•	 All running processes
•	 All running threads per process
•	 Consumed heap per process
•	 All log messages

On Android, every application runs in its own process, each of which runs in its
own virtual machine. The debugger can be attached to the exposed port of VM.
DDMS connects to adb on start. On successful connection, a VM monitoring service
is created between adb and DDMS, which informs DDMS upon starting and ending
a VM on the device. DDMS retrieves the VM's process ID via adb, and opens a
connection to the VM's debugger when there is an active VM running through the
adb daemon on the device. DDMS can now communicate to the VM using a custom
wire protocol.

DDMS also listens on the default debugging port, called base port. The base port is a
port forwarder, which can accept VM traffic from any debugging port and forward it
to the debugger. The traffic that is forwarded is determined by the currently selected
process in the DDMS Devices view.

Other tools
The elements mentioned in the previous sections are the minimum requirement for
Android development, with which a full application can be created. However, the
development process can become much easier with the support of a few other tools.
Let's have a look at a few of such tools. These tools are not mandatory for Android
development, but they are recommended to be used for a better development process.

Eclipse
Although Eclipse is not the only Java development environment that can be used
to develop Android applications, it is by far the most popular. This is partially due
to its cost (free!), but mostly due to the strong integration of Android tools with
Eclipse. This integration is achieved with the ADT plugin for Eclipse, which can be
downloaded from the Android website.

Chapter 3

[57]

Use of Eclipse for Android development is a well-known practice for many
developers. Some of the reasons for this are as follows:

•	 Free Eclipse IDE
•	 Direct Android plugin support
•	 Direct DDMS support
•	 Simple interface
•	 Android NDK support

The launch of Android Studio reduced the popularity of Eclipse among Android
developers, because Android Studio has everything inbuilt to support any Android
development. Moreover, it is a much simplified tool to use in design view. Google
itself is promoting the new tool massively.

There are a few drawbacks in Eclipse Android development, because it uses Android
SDK as a third-party tool. The significant drawbacks are as follows:

•	 Debugging through Eclipse is sometimes difficult
•	 ADB configuration is tricky
•	 Android manifest has to be managed manually
•	 The design view is very complex through Eclipse IDE

Eclipse is an excellent standalone IDE, but when it comes to Android development,
Android Studio wins the race.

Hierarchy Viewer
Hierarchy Viewer, whether it's accessed through the standalone application or the
relatively new Eclipse perspective, is used to see how your layouts and screens
resolve at runtime.

Different Android Development Tools

[58]

It provides a graphical representation of the layout and view hierarchy of your
application, and can be used to diagnose layout problems (image source: https://
media-mediatemple.netdna-ssl.com/wp-content/uploads/2012/03/da_
hierarchy_viewer.png):

Draw 9-Patch
When it comes to graphics design, the Draw 9-patch tool comes in handy. This tool
allows you to convert traditional PNG graphic files into stretchable graphics that
are more flexible and efficient for mobile development use. The tool simplifies the
creation of NinePatch files in an environment that instantly displays the results:

https://media-mediatemple.netdna-ssl.com/wp-content/uploads/2012/03/da_hierarchy_viewer.png
https://media-mediatemple.netdna-ssl.com/wp-content/uploads/2012/03/da_hierarchy_viewer.png
https://media-mediatemple.netdna-ssl.com/wp-content/uploads/2012/03/da_hierarchy_viewer.png

Chapter 3

[59]

ProGuard
ProGuard is not directly associated with Android development, but it helps in
protecting the intellectual property of the developer. It is a very common practice
for Android game developers to use ProGuard.

ProGuard basically wraps the members and methods to a non-readable code
structure. This tool can be configured to obfuscate the resulting binary. ProGuard
also helps in optimizing the binary, so that the overall package size is reduced.

ProGuard can be difficult to use when developers try to integrate pre-compiled JARs
into the Android project. Sometimes conflicts are created in class structures if the
JAR is already optimized through ProGuard. In those situations, ProGuard must be
configured to exclude the precompiled JARs in order to achieve a successful build.

It is always recommended to use ProGuard to protect the game classes from reverse
engineering or decompilation.

Different Android Development Tools

[60]

Asset optimization tools
We all know the vast range of Android hardware configurations. It is always
necessary to optimize the assets to reduce runtime memory usage and unnecessary
data processing. In games, graphical assets take most of the storage and memory.

Full asset optimization
An unoptimized asset may hold some unnecessary data, like transparency
information in an opaque asset, EXIF data, unused color information, extra bit depth,
and so on.

Asset optimizer tools help to get rid of this burden. However, it is tricky to use such
tools as the asset quality may be lost. A developer should be very cautious while
using these tools.

For example, if an asset is supposed to be at 24 bit, but was optimized with an 8 bit
optimizer tool, it will surely lose its visual quality. So, over-optimization is never
recommended for any games, and it is the developer's responsibility to use proper
optimization techniques to maintain the game quality.

The following are a few such asset optimizer tools:

•	 PNGOUT
•	 TinyPNG
•	 RIOT
•	 JPEGmini
•	 PNGGauntlet

With the help of such tools, art assets can be optimized up to 80-90% of their size.
But many developers don't prefer to use them on a regular basis because of the
following reasons:

•	 The developers do not optimize each asset separately, which results in
quality loss for a few assets.

•	 It is really difficult to choose the right tools for optimization. Sometimes,
multiple tools are required for the same job, which slows down the overall
development process.

Chapter 3

[61]

Creating sprites
In many cases, it is noticed that a large number of small art assets are being used
in games individually. This may cause critical performance lag for the game. It is
recommended to use a sprite building tool to merge those assets into one to save space
and time. SpriteBuilder and TexturePacker are two good examples of such tools.

Tools for testing
For any development process, testing is of major importance. For Android game
development too, there are a few tools and processes to make testing easier.

Creating a test case
Activity tests are written in a structured way. Make sure to put your tests in a
separate package, distinct from the code under test. By convention, your test package
name should follow the same name as the application package, suffixed with .tests.
In the test package you created, add the Java class for your test case. By convention,
your test case name should also follow the same name as the Java or Android class
that you want to test, but suffixed with Test.

To create a new test case in Eclipse, perform the following steps:

1.	 In Package Explorer, right-click on the /src directory for your test project,
and select New | Package.

2.	 Set the Name field to <package_name>.tests (for example, com.example.
android.testingfun.tests), and click on Finish.

3.	 Right-click on the test package you created, and select New | Class.
4.	 Set the Name field to <activity_name>Test (for example,

MyFirstTestActivityTest), and click on Finish.

Setting up your test fixture
A test fixture consists of objects that must be initialized for running one or more tests.
To set up the test fixture, you can override the setUp() and tearDown() methods
in your test. The test runner automatically runs setUp() before running any other
test methods, and tearDown() at the end of each test method execution. You can use
these methods to keep the code for test initialization and clean up separate from the
tests methods.

Different Android Development Tools

[62]

To set up a test fixture in Eclipse, follow the steps listed next:

1.	 In Package Explorer, double-click on the test case that you created earlier to
bring up the Eclipse Java editor, then modify your test case class to extend
one of the subclasses of ActivityTestCase. For example:
public class MyFirstTestActivityTest extends ActivityInstrumentati
onTestCase2<MyFirstTestActivity> {

2.	 Next, add the constructor and setUp() methods to your test case, and add
variable declarations for the activity that you want to test. For example:

public class MyFirstTestActivityTest
 extends ActivityInstrumentationTestCase2<MyFirstTestActivi
ty> {

 private MyFirstTestActivity mFirstTestActivity;
 private TextView mFirstTestText;

 public MyFirstTestActivityTest() {
 super(MyFirstTestActivity.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();
 mFirstTestActivity = getActivity();
 mFirstTestText =
 (TextView) mFirstTestActivity
 .findViewById(R.id.my_first_test_text_view);
 }
}

The constructor is invoked by the test runner to instantiate the test class, while the
setUp() method is invoked by the test runner before it runs any tests in the test class.

Typically, in the setUp() method, you should invoke the superclass constructor for
setUp(), which is required by JUnit

You can initialize your test fixture state by:

1.	 Defining the instance variables that store the state of the fixture.
2.	 Creating and storing a reference to an instance of the activity under test.
3.	 Obtaining a reference to any UI components in the activity that you want

to test.

Developers can use the getActivity() method to get a reference to the activity
under test.

Chapter 3

[63]

Adding test preconditions
As a sanity check, it is good practice to verify that the test fixture has been set up
correctly, and the objects that you want to test have been correctly instantiated or
initialized. That way, you won't have to see tests failing because something was
wrong with the setup of your test fixture. By convention, the method for verifying
your test fixture is called testPreconditions().

For example, you might want to add a testPreconditions() method like this to
your test case:

public void testPreconditions() {
 assertNotNull("mFirstTestActivity is null",
 mFirstTestActivity);
 assertNotNull("mFirstTestText is null", mFirstTestText);
}

The assertion methods are from the Junit Assert class. Generally, you can use
assertions to verify if a specific condition that you want to test is true.

If the condition is false, the assertion method throws an AssertionFailedError
exception, which is then typically reported by the test runner. You can provide a
string in the first argument of your assertion method to give some contextual details
if the assertion fails.

If the condition is true, the test passes. In both cases, the test runner proceeds to run
the other test methods in the test case.

Adding test methods to verify an activity
Next, add one or more test methods to verify the layout and functional behavior of
your activity.

For example, if your activity includes a TextView, you can add a test method like this
to check that it has the correct label text:

public void testMyFirstTestTextView_labelText() {
 final String expected =
 mFirstTestActivity.getString(R.string.my_first_test);
 final String actual = mFirstTestText.getText().toString();
 assertEquals(expected, actual);
}

The testMyFirstTestTextView_labelText() method simply checks that the
default text of the TextView, which is set by the layout, is the same as the expected
text defined in the strings.xml resource.

Different Android Development Tools

[64]

When naming test methods, you can use an underscore to separate
what is being tested from the specific case being tested. This style
makes it easier to see exactly what cases are being tested.

When doing this type of string value comparison, it's a good practice to read the
expected string from your resources instead of hardcoding the string in your
comparison code. This prevents your test from easily breaking whenever the string
definitions are modified in the resource file.

To perform the comparison, pass both the expected and actual strings as arguments
to the assertEquals() method. If the values are not the same, the assertion will
throw an AssertionFailedError exception.

If you added a testPreconditions() method, put your test methods after the
testPreconditions() definition in your Java class.

You can build and run your test easily from the Package Explorer in Eclipse. To build
and run your test, follow these steps:

1.	 Connect an Android device to your machine. On the device or emulator,
open the Settings menu, select Developer options, and make sure that USB
debugging is enabled.

2.	 In the Project Explorer, right-click on the test class that you created earlier,
and select Run As | Android JUnit Test.

3.	 In the Android Device Chooser dialog, select the device that you just
connected, then click on OK.

4.	 In the JUnit view, verify that the test passes with no errors or failures.

Performance profiling tools
Putting pixels on the screen involves four primary pieces of hardware: the CPU
computes display lists, the GPU renders images to the display, the memory stores
images and data, and the battery provides electrical power. Each of these pieces of
hardware has constraints; pushing or exceeding those constraints causes your app to
be slow, worsens the display performance, or exhausts the battery.

Chapter 3

[65]

To discover what causes your specific performance problems, you need to take a
look under the hood, use tools to collect data about your app's execution behavior,
surface that data as lists and graphics, understand and analyze what you see, and
improve your code.

Android Studio and your device provide profiling tools to record and visualize the
rendering, computing, memory, and battery performance of your app.

Android Studio
Android Studio is the official IDE for Android application development, based on
IntelliJ IDEA. On top of the capabilities you expect from IntelliJ, Android Studio
offers the following among many others:

•	 Flexible Gradle-based build system
•	 Build variants and multiple .apk file generation
•	 Code templates to help you build common app features
•	 Rich layout editor with support for drag and drop theme editing
•	 lint tools to catch performance, usability, version compatibility,

and other problems
•	 ProGuard and app-signing capabilities
•	 Built-in support for the Google Cloud platform, making it easy to integrate

Google Cloud messaging and App Engine

If you're new to Android Studio or the IntelliJ IDEA interface, this section provides
an introduction to some key Android Studio features.

Android project view
By default, Android Studio displays your project files in the Android project view.
This view shows a flattened version of your project's structure, which provides
quick access to the key source files of Android projects, and helps you work with the
Gradle-based build system. The Android project view:

•	 Shows the most important source directories at the top level of the module
hierarchy

•	 Groups the build files for all modules in a common folder

Different Android Development Tools

[66]

•	 Groups all the manifest files for each module in a common folder
•	 Shows resource files from all Gradle source sets
•	 Groups resource files for different locales, orientations, and screen types in a

single group per resource type

The Android project view shows all the build files at the top level of the project
hierarchy under Gradle Scripts. Each project module appears as a folder at the top
level of the project hierarchy, and contains these four elements at the top level:

•	 java/: Source files for the module
•	 manifests/: Manifest files for the module
•	 res/: Resource files for the module
•	 Gradle Scripts/: Gradle build and property files

For example, the Android project view groups all the instances of the
ic_launcher.png resource for different screen densities under the
same element.
The project structure on disk differs from this flattened representation.
To switch back to the segregated project view, select your project from
the Project drop-down menu.

Memory and CPU monitor
Android Studio provides a memory and CPU monitor view so that you can easily
monitor your app's performance and memory usage to track CPU usage, find
deallocated objects, locate memory leaks, and track the amount of memory the
connected device is using. With your app running on a device or emulator, click
on the Android tab in the lower-left corner of the runtime window to launch the
Android runtime window. Click on the Memory | CPU tab.

When you're monitoring memory usage in Android Studio, you can initiate garbage
collection, and dump the Java heap to a heap snapshot in an Android-specific
HPROF binary format file at the same time. The HPROF viewer displays classes,
instances of each class, and a reference tree to help you track memory usage and find
memory leaks.

Chapter 3

[67]

Android Studio allows you to track memory allocation as it monitors memory use.
Tracking memory allocation allows you to monitor where objects are being allocated
when you perform certain actions. Knowing these allocations enables you to adjust
the method calls related to those actions to optimize your app's performance and
memory use.

Cross-platform tools
Although we are only talking about Android game development, game development
cannot be efficient without cross-platform support. We have already discussed
game design flexibility. From a typical technical perspective, it should be possible to
deploy the game for various platforms such as iOS, Windows, consoles, and the like.

Always keep in mind that cross-platform mobile development isn't quite as simple as
writing the code once, putting it through a tool for translation, and publishing both
an iOS and Android app to the respective app stores.

Different Android Development Tools

[68]

Using a cross-platform mobile development tool can reduce the time and cost
associated with developing apps on both platforms, but the UI needs to be updated
to match each system. For example, adjustments are needed between the two so that
the menu and control commands match the UX of how Android devices and iOS
devices inherently operate in different ways.

There are plenty of tools that support cross-platform development. Let's take a look
at a few of them:

Cocos2d-x
Cocos2d is primarily used in two-dimensional game development. It gives
developers the option of five different forks or platforms to develop on, based on
their preferred programming languages, such as C++, JavaScript, Objective C,
Python, and C# (image source: http://www.cocos2d-x.org/attachments/802/
cocos2dx_landscape.png):

Primarily, this tool is efficient for Android, iOS, and Windows Phone. The
development platform is mainly 2D; however, from Cocos2d-x 3.x it is possible to
develop games in 3D also.

Cocos2d-x works with native Android, and can support different processor
architectures separately. This tool works in a Unix-based environment.

There is a huge developer community that develops games on Cocos2d-x. Here are
the pros and cons of this cross-platform development engine from the Android game
development perspective:

The pros are as follows:

•	 Supports the most common programming languages such as C++
•	 Works in the native environment
•	 Lightweight and optimized library
•	 Common OpenGL rendering system
•	 All smartphone features supported for 2D development
•	 Completely free open source Engine

http://www.cocos2d-x.org/attachments/802/cocos2dx_landscape.png
http://www.cocos2d-x.org/attachments/802/cocos2dx_landscape.png

Chapter 3

[69]

The cons are as follows:

•	 Majorly supports 2D development
•	 Cross-platform deployment is tricky and complicated
•	 Performance and memory optimization is weak
•	 No visual programming support
•	 No debugging tool is provided within the engine
•	 Mostly works on mobile phone platforms

Unity3D
Unity3D is the most popular cross-platform engine among Android and iOS game
developers. Although it is mainly optimized for mobile platforms, it is powerful
enough to deploy games for other major gaming platforms as well, for example, PC,
Mac, consoles, web, Linux, Xbox, PlayStation, and so on. Currently, it supports 17
different platforms for game development (image source: http://img.danawa.com/
images/descFiles/3/545/2544550_1_1390443907.png):

Once you've got your game on all your chosen platforms, Unity3D will even help
you distribute it to the appropriate stores, get social shares, and track user analytics.

Unity3D has the largest game developer community, with huge support on almost
every aspect of game development. It has its separate store where you can find
an effective prebuilt custom library, prebuilt plugins, and so on, which helps a
developer in terms of reducing development time significantly. Here are the main
pros and cons of Unity3D.

The pros are as follows:

•	 Supports 17 different platforms for gaming
•	 Very simple deployment procedure
•	 Visual editor to support visual programming
•	 Inbuilt powerful debug tool
•	 Huge library support
•	 Hassle-free development
•	 Inbuilt powerful memory and performance optimizer

http://img.danawa.com/images/descFiles/3/545/2544550_1_1390443907.png
http://img.danawa.com/images/descFiles/3/545/2544550_1_1390443907.png

Different Android Development Tools

[70]

The cons are as follows:

•	 Comparatively bigger library size
•	 Slightly performance heavy (however, it is improving day by day)
•	 Supports only scripting languages (C#, JavaScript, and Boo)
•	 Not completely free for commercial purposes
•	 Mainly works well with 3D

Unreal Engine
The recently released Unreal Engine 4 is a very powerful cross-platform game
engine. Previously, this engine focused on the console and PC platforms only, but
it has extended its support to mobile gaming platforms such as Android and iOS
(image source: http://up.11t.ir/view/691714/1425334231-unreal-engine-
logo.png):

There have been a lot of debates about whether Unreal Engine 4 is better than
Unity3D. They both have their own pros and cons. Let's have a look at the pros
and cons of Unreal Engine 4:

The pros are as follows:

•	 The Blueprint feature allows flexible visual programming
•	 Generic C++ language is more developer friendly
•	 Graphic processing is excellent
•	 Inbuilt dynamic shadow system
•	 Simple to understand and start making games
•	 Vast support in terms of device scalability
•	 In-editor material designing

http://up.11t.ir/view/691714/1425334231-unreal-engine-logo.png
http://up.11t.ir/view/691714/1425334231-unreal-engine-logo.png

Chapter 3

[71]

The cons are as follows:

•	 Mobile optimization is still not up to the mark
•	 Lack of 2D development tools
•	 Lack of availability of third-party plugins
•	 Working with sprites is a pain for mobile development
•	 Still focused on high configuration hardware platforms

PhoneGap
Owned by Adobe, PhoneGap is a free resource that first-time app developers can use
to translate code from HTML5, CSS, and JavaScript.

They maintain SDKs at their end for each of the platforms you can develop an app
for, so it's one less thing you have to worry about. And once your app is completed,
you can share it with your team members for review to see if you need to make any
improvements.

Beyond iOS and Android, PhoneGap also creates apps for BlackBerry and Windows.
So it is truly a cross-platform mobile development tool (image source: http://
blogs.perceptionsystem.com/wp-content/uploads/2016/03/phonegap.png):

PhoneGap features the following pros:

•	 Supports almost all mobile platforms
•	 Lightweight application build
•	 Supports HTML, CSS, and JavaScript
•	 Cordova apps install just like a native application
•	 PhoneGap is open source and free

www.allitebooks.com

http://blogs.perceptionsystem.com/wp-content/uploads/2016/03/phonegap.png
http://blogs.perceptionsystem.com/wp-content/uploads/2016/03/phonegap.png
http://www.allitebooks.org

Different Android Development Tools

[72]

It has the following cons:

•	 Lack of platform support
•	 Lack of third-party plugins
•	 Native UI is still difficult to use

Corona
Corona's SDK comes with the promise that you can start coding your new app
in as little as five minutes after the download. It's another cross-platform mobile
development tool that's optimized for 2D gaming graphics, and helps you make
games 10 times faster than it would take to code everything from scratch (image
source: https://qph.ec.quoracdn.net/main-qimg-fad64a16e531773325448e6ca
699d117):

Corona's programming language is Lua, which is written in C, making it a
cross-platform language. Corona chose Lua because they found it to be really
robust, with a small footprint for mobile apps.

Corona has the following pros:

•	 Good application performance in terms of FPS
•	 Good inbuilt emulator
•	 Light application build

It has the following cons:

•	 Uses the less popular scripting language Lua
•	 Not free
•	 Less plugin support
•	 No on-device debugging support

https://qph.ec.quoracdn.net/main-qimg-fad64a16e531773325448e6ca699d117
https://qph.ec.quoracdn.net/main-qimg-fad64a16e531773325448e6ca699d117

Chapter 3

[73]

Titanium
Using JavaScript, Titanium's SDK creates native iOS and Android apps while reusing
anywhere from 60% to 90% of the same code for all the apps you make, thereby
saving you a significant amount of time (image source: http://mobile.e20lab.
info/wp-content/uploads/sites/2/2014/04/titanium.png):

Because Titanium is an open-source tool, hundreds of thousands of your fellow
developers are constantly contributing to it to make it better, and give it more
functionality. And if you happen to find a bug in its system, you can do so too.

The pros are as follows:

•	 Quick-start flexibility for the initial phase
•	 Lightweight application build
•	 Common JavaScript language
•	 Web and mobile support on Android and iOS
•	 Open source

The cons are as follows:

•	 Lack of plugin support
•	 Lack of platform support range
•	 Script-based development increases complexity and effort
•	 Performance varies with different platforms
•	 Poor optimization compared to other tools

http://mobile.e20lab.info/wp-content/uploads/sites/2/2014/04/titanium.png
http://mobile.e20lab.info/wp-content/uploads/sites/2/2014/04/titanium.png

Different Android Development Tools

[74]

Summary
Development tools are essential for any game development; however, they have
always been low priority in game design and the pre-development analysis stage.
The necessity for these tools is realized when they are required.

We have discussed all the mandatory tools for Android development only. But
modern age game development demands flexibility across hardware platforms as
well as operating systems. This is where cross-platform development engines come
into the picture. These tools help the development process to become faster and more
efficient; however, this comes at the cost of a little drop in performance and a larger
build size. In most cases, developers have limited control over the cross-platform
engine, but full control can be gained if the game is developed on native SDKs.

Development tools are not just useful for development and debugging—they are
very efficient in optimizing the game along with data protection, which might not
have a direct impact on games. A good developer must use optimization tools to
deliver a better performing game.

[75]

Android Development Style
and Standards in the Industry

There is no written rule or direction to write code in Android, other than the
syntactical grammar. However, most developers across the globe follow a few
fundamental styles and standards for writing Android code. Android is based on
Java, so most of the stylization follows Java standards.

When it comes to Android game development, there are a few design styles that
should be followed. They do not cover game design, rather more technical design.
These kinds of styles and standards indicate a proper project structure, class
structure, and folder/file management.

Typical game design also involves following some rules while working on the
Android platform. A few styles are being followed in the industry in terms of
game design.

In this chapter, we will have a look at these styles and standards through the
following topics:

•	 The Android programming structure
•	 Game programming specifications
•	 Technical design standards
•	 Game design standards
•	 Other style and standards
•	 Different styles for different development engines
•	 Industry best practices

Android Development Style and Standards in the Industry

[76]

The Android programming structure
Android style or recommendation is not a definite programming rule. However,
a good programming practice always includes a set of rules. To code in Android,
the code structure follows the Android base structure and hierarchy.

Android typically follows the standards and style of Java. So, the Android
programming structure is basically Java structure, which follows the OOP style.

Class formation
Java class formats should be consistent and follow the Javadoc rule; a standard
structure should follow this sequence:

1.	 Copyright information
2.	 License information
3.	 Package declaration
4.	 Library imports
5.	 Class description and purpose
6.	 Class definition
7.	 Global variables
8.	 Constructor
9.	 Methods

This is the copyright and license information format:

/*
* Copyright (C) <year> authority
*
* <License information and other details>
*/

This is the class and method description format:

/*
* <Description>
* <Purpose>
*/

Chapter 4

[77]

Call hierarchy
Like the coding style, there is no defined call hierarchy. However, in Android
gaming, most developers follow a basic approach. In this approach, there are mainly
three kinds of classes in the project structure:

•	 Managers and controllers
•	 Associates
•	 Utility classes

A game requires the managers and controllers to implicate game rules and regulations.
It is also used to control the behavior of game elements and states. Most games consist
of multiple sections or screens, for example, menu, level selection, game play, and
so on.

These sections can be termed as states, and the elements used inside these are called
associates. Associates may be separate classes by themselves. Utility classes basically
support development by providing predefined functionality, such as in-game sound
implementation, record store management, common utilities, network connectivity,
and so on:

Call hierarchy

Android Development Style and Standards in the Industry

[78]

Inside the game loop, the main Android game thread loops hand over control to
the main game manager. The main game manager is responsible for passing on the
thread and rendering control to the required state manager. The main game manager
is also responsible for the initialization and destruction of state managers, depending
on the current thread. Moreover, the main game manager is active throughout the
game cycle and manages the main game activity as well.

State managers are responsible for managing a state (main menu, level selection, in-
gameplay, and so on) and all the required associate classes. State managers pass the
call to the respective associates to carry out a specific task.

Utility classes are accessible from any layer in the hierarchy, depending on the
requirements.

This is a generic architecture that is not mandatory. Many developers design the call
hierarchy differently. Everything is good, and the game flow is also running properly
without sacrificing the class/data security.

Game programming specifications
Game programmers are not very different from any other software programmer.
However, game programming requires stronger logical skill than software
programming. The sense of game design is also different.

A game is an interactive entertainment system. A software or an application is meant
to reduce a human calculative real-time task. So, it is clear that a game serves a very
different purpose than a software or an application.

This is why game programming has to follow a few specifications and protocols.

Game programming can be divided into these following categories:

•	 Gameplay programming
•	 Graphics programming
•	 Technical programming

Gameplay programming
This is the most relevant programming for the gaming division. Gameplay
programming requires a strong logical, mathematical, and analytical skill. A sense
of game design is also required. Gameplay programming includes AI, user control,
physics, display control, and so on.

Chapter 4

[79]

Gameplay programmers are the ones who deal with the most responsible designers
for prototyping the game.

Graphics programming
All the visual effects and impacts are made by graphic programmers. They are
responsible for the visual quality of the game. There is a vast scope to manipulate
graphic assets while the game is running.

Graphics programming is all about getting the maximum from the GPU. Nowadays,
most games are graphics heavy. The latest devices have separate, powerful GPUs to
support heavy graphics.

Modern-age games represent an excellent quality of graphical display. All new 3D
real-time lighting, particle system effect, visual motion effect, and so on entirely
depend on the graphical programmer. The challenge is to increase the visual quality
without affecting the game performance.

Most of the time, game performance drops significantly due to heavy art asset
processing, which is never a desired situation. Shaders or graphics programmers
have to balance quality and performance.

This is mostly effective when games are ported across different platforms. As we
have discussed earlier, a range of hardware platforms with a wide range of hardware
specifications run on Android. Separate shaders and assets are required for this kind
of porting. A shader program instructs the graphic processor to render each pixel in
a particular way.

Technical programming
This part of programming has not much to do with games; however, it ensures
the game performance. Besides the performance, network management, plugin
development, optimization, and so on are also part of technical programming.
Here is a list of the possible areas for technical programming:

•	 Sound programming
•	 Network programming
•	 Game tool programming
•	 Research and development programming

Android Development Style and Standards in the Industry

[80]

Sound programming
Nowadays, sound is a mandatory part of games. Some games are even made around
music. Sound programming has therefore become a part of game programming.
A sound programmer mainly has knowledge of digital signal processing. Sound
programmers have to work with sound designers.

Modern-age games use 3D sound systems. Sound programming plays a critical role
in delivering quality sound without affecting the performance.

Network programming
Old-age games were mostly made to run on a single instance. Most of the time,
the game did not communicate with other instances, so there was not much need
for network programming at that point in time. The modern age is the age of
networking; just one instance is not enough. Multiplayer games are very common
today; even standalone games communicate with other game instances just for
socialization and monetization.

Network programming takes care of network latency, packet optimization,
connection handling, and maintaining communication. The network programmer
is also responsible for managing client-server communication and creating the
architecture.

Some games run on the server. The client acts as a display device for the game
instance running on the server. The transaction follows real-time syncing. Few
games even follow asynchronous communication. Network programming assures
the smooth and proper transition in this architecture.

Game tool programming
Game development cannot be completed without the support of certain tools. Tool
programmers can make other developers' lives a living hell or heaven. Proper game
tool programming can ease the development process a lot. A lot of time and effort
can be saved with the help of development tools.

We have already discussed a few development tools. However, it is not necessary
for all of the tools to be game independent. There may be few tools that can be game
specific. For example, a tool can be made to generate a required database to be used
in a game.

Chapter 4

[81]

Research and development programming
This kind of programming is not primarily for making a game. Instead, this
programming helps make gaming better and finds new techniques to be used for
upcoming games.

This type of programming requires strong skills in technical understanding,
hardware platforms, and native development. Programmers should have knowledge
of native language and assembly or hardware-level language as well.

In the case of Android game development, research programmers are assigned to
explore new Android devices along with a new feature and specification. These
programmers then try to discover how to use the feature in the best possible way
in games.

This programming is solely responsible for games having features like the use
of various sensors such as gravity, light, accelerometer, and so on. The recent
development of virtual reality with Android devices is a practical example of
such experiments.

Technical design standards
Mostly, game development revolves around game design; however, the
development process is controlled by technical design. Technical design considers
each and every possible aspect of the real-time feasibility of the actual game design
and requirements.

A technical design contains the following sections:

•	 Game analysis
•	 Design pattern and flow diagram
•	 Technical specification
•	 Tools and other requirements
•	 Resource analysis
•	 Testing requirements
•	 Scope analysis
•	 Risk analysis
•	 Change log

Android Development Style and Standards in the Industry

[82]

Game analysis
This section of technical design analyzes the game design thoroughly and figures out
the sections where technology plays a major role. Game play logic development is
not a part of this section. However, when game logic requires hardware dependency,
then this section is also considered in technical design.

Many developers and organizations have a habit of making a technical design
document after creating the game design and before starting the actual development
process. This helps define the timeline and predict upcoming challenges, with
possible solutions.

Design pattern and flow diagram
This section designs the class diagram and hierarchy for the game. The game
flowchart and server-client architecture (if required) are also defined here.

This section of game technical design gives a clear picture of upcoming development
for a developer. Each and every part of game modules, program structure, call
hierarchy, third-party tool integration, database connectivity, and server-call
management should be clearly declared in this part of the technical design document.

The visual display of such a diagram, showing the flowcharts, is always a headstart
for any development process.

Technical specification
The technical specification specifies the development platform, target device set, and
target operating system. It may also mention what hardware system and software is
required to develop the project.

This identification is essential before starting the actual development. For any
software to run, it requires a hardware platform that is well capable of supporting
the software. Developers must know the target devices and must be provided with
these devices to carry out unit testing. Any additional requirement is also identified
in this section of technical design.

So, basically, there are two different sections in this specification. First is to specify
the target system on which the game is designated to run. Second is to identify the
system required to create the game according to the design.

Chapter 4

[83]

Tools and other requirements
This section in technical design refers to the additional tools and system
requirements. In many cases, this section is included in the technical specification.
However, this part serves a different purpose.

This may create the requirement to develop a new tool for the actual game
development. Therefore, tool programmers are referred to this section. Android game
development is not out of scope for this section. Although most of the tools are readily
available for Android development, a few scenarios may demand a game-specific tool
as well. In this case, the tool design and separate technical design, and the use of the
tool is mentioned in this section.

Resource analysis
Resource analysis is a report on staff dependency, staff skill level, technical
dependency, and other resource dependencies. This helps estimate project cost
and decide the development timeline.

Testing requirements
This is another important part of technical design. Testing is an integral part of a
game development process. Technical design should define the testing procedure
along with the defined test cases.

The development head of the game identifies the stages of testing and its requirements.
Testing tools may be declared in this section. We have already mentioned testing tools
in the previous chapter. In some cases, a customized tool may be required.

Testing requirements have four main sections:

•	 Testing resource requirements
•	 Testing tool requirements
•	 Test cases
•	 Testing timeline

Android Development Style and Standards in the Industry

[84]

Scope analysis
Every game has a predefined limited scope. Especially in Android devices, where the
variety is maximum, a scope definition is required. Running a game with the same
design on all Android platforms is next to impossible.

This section of technical design indicates the probable scope of the game. This may
identify the minimum required configuration, recommended configuration, and
target configuration to run the game at its maximum performance.

The game scope defines the minimum and maximum range of the hardware platform.
Most developers like to minimize the game design scope to target maximum hardware
devices. A technical design document is a good reference for developers to get an idea
of the performance of the game within the scope.

Risk analysis
A technical design document is made before the production is started, so there are
many fields that have to be assumed beforehand. This obviously increases the risk of
the project. However, having a clear idea of the risk always helps developers get the
solution when the actual problem occurs.

This is the reason risk analysis is mandatory for any technical design standard.
The risk may be analyzed in different fields.

While developing a game, the technical requirements or game design may change.
So, risk should be calculated to accommodate these changes without affecting the
main project pipeline.

Technology is evolving quickly. So, in the risk analysis section, change of technology
should also be addressed. In a common scenario in game development, technology
may change during development to increase the game quality.

Change log
A change log is the list containing all the changes in technical document from the
first draft and according to the date and version number. This helps in keeping track
of the evolution of the game.

Chapter 4

[85]

Game design standards
Game design is documented in almost every organization in the gaming industry.
This is one of the standards used most often by almost all developers. Technical
design is sometimes skipped to save some time, and some designers include the
most required segments from a technical document in game design. However, this
approach is not recommended.

A basic approach to maintain a standard game design contains the following
sections:

•	 Game overview
•	 Gameplay details
•	 Game progression
•	 Storyboard and game elements
•	 Level design
•	 Artificial intelligence
•	 Art style
•	 Technical reference
•	 Change log

Game overview
This section defines the nature of the game along with its target audience. This
section contains a brief about the game concept, gameplay, and the look and feel.
The working title is mentioned beforehand.

Game overview is basically the brief on almost all aspects of the game to be made.
This section may project a market study to support the game concept and genre
chosen for the game.

Gameplay details
Gameplay controls and the preferred user interface to control the gameplay
is defined in this section. This is one of the most important parts of the game.
Gameplay should be optimized for each hardware platform it is targeting. The game
might be deployed for a mobile, tablet, and a console as well. So, different control
schemes are defined for obvious reasons.

Android Development Style and Standards in the Industry

[86]

Game progression
Game progression defines the game life cycle and its evolution through time. A game
is a dynamic entertainment system. So, users cannot be bored at any point in time,
and this section is responsible for user retention.

Storyboard and game elements
This part of game design defines the background of the game concept. This does not
mean having an actual story-based game background. However, every game must
have some elements or objects around which the gameplay works.

For example, a side scrolling runner game will have a character, a few obstacles,
environmental objects, and so on. They are termed as game elements. The reason for
running is the background story.

In another example, let's assume a game of Tic-Tac-Toe. A background story is not
necessary; however, crosses, circles, and the grid are the elements of the game, which
need to be designed and stylized.

Level design
Levels are the consequence of game progression. Each level has a synopsis,
introduction, materials or elements, and an objective. More information can
be given depending on the game.

Artificial intelligence
Artificial intelligence helps the gameplay to be experienced in a real-time scenario. It
may be the opponent, enemy, obstacle, friendly support, situation detection, collision
detection, pathfinding, or anything that determines a state of the game automatically.

Artificial intelligence is mandatory for each and every game. It should imply a
mathematical or physical algorithm to carry out a certain task within a domain.

Art style
A game design document also includes the style and direction of the look and feel.
The designer may include few references as well. This gives the artist a headstart in
thinking about the art direction. Art is the most powerful part of the game to attract
users initially.

This section does not include the technical specification for the art. Developers may
include a few technical directions here to optimize the asset to be used inside the game.

Chapter 4

[87]

Technical reference
In this section of a design document, all the technical references are included.
For Android game development, this section may include a range of devices with
minimum specification, targeting platforms, base graphics engine, development
engine, and so on. This is a miniature version of the actual technical design
document. When a developer or an organization chooses not to make any separate
technical document, they mention all the tech specs in this scope.

Change log
The change log holds a history of changes in the document with versions and dates.
This serves the same purpose as any change log documentation.

Other styles and standards
The standard mentioned in the previous sections defines the general process of
making a game. We will discuss a few of these processes that are used widely in the
game development industry.

Most large-scale organizations follow a certain project management and tracking
system. This may make the development process slower, but effective enough to
minimize risk and improve game quality. A few small organizations or individual
developers do not follow such processes in order to finalize the product as early
as possible.

These styles are opposite to each other, and have different consequences. However,
it is recommended that you follow a procedure that helps in the long run. A quick fix
cannot be a permanent solution.

One more commonly used practice is patching code to resolve bugs. This is also
extremely vulnerable to threats such as project crash, deadline failure, and creation
of a major bug. In game development, the most common problem is a device
crashing, which is least expected on any hardware platform. In most of the cases,
it happens because of handling exceptions badly.

It is very necessary to play and understand games to make games. Most game
development organizations encourage developers to play and study games. For
Android developers also, it is very good practice to play a lot of games from different
platforms. It is already established that Android is the best mobile or small-scale
hardware operating system. It has its foot in large-scale platforms as well. Being an
Android developer, it is always a good practice to keep an eye on other platforms'
features and development and try to implement them in Android. It is the job of the
Android game research and development team.

Android Development Style and Standards in the Industry

[88]

Different styles for different development
engines
We have already discussed a few development tools and engines. The current
gaming industry does not encourage the development of a game only for a specific
hardware or operating platform. We can find a lot of games that are platform
exclusive, but this implies a business decision.

It is quite obvious that the same development is not applicable on every development
engine. For example, the development style in native Android will differ from the
development style in the Unity3D game engine. The basic reasons are:

•	 Different programming languages
•	 Different work principles
•	 Different target platforms

Different programming languages
Each and every programming language has its own style and structure of
programming. Developing games with Android NDK through C++ is not the same
as making games in Android SDK using Java. Developing games using third-party
cross-platform engines is also different.

We are not talking about the syntactical difference here. It is about the coding style.
Using C++ for Android NDK is different from using C++ for Unreal Engine 4 or
Cocos2d-x. Although the C++ core library remains the same, each tool guides the
developer to a different direction of styles to get the best result.

Not only C++ and Java, but also C#, Python, JavaScript, Lua, Boo, and so on
are being used in the gaming industry. Many of the engines support multiple
programming languages to attract maximum developers.

Different work principles
Different game engines or game making tools follow different working principles.
A developer should be flexible enough to become accustomed to these different
systems. There are always different code structures, folder structures, and program
hierarchies for different engines.

For native development, it is the developer who sets the standard. Engines come
with an integral set of standards, and it is expected that all the developers working
on that particular engine will follow the same principle.

Chapter 4

[89]

For example, the work principle of Unity3D is far different to Unreal Engine or
Cocos2d-x. Cocos2d-x does not support visual programming, whereas Unreal Engine
Blueprint has full visual programming support. So, the development approach must
be different despite having the same deployment target.

Different target platforms
Modern age cross-platform game development tools have already minimized
the difference in style and standard. However, for a very few tools, the style and
standard is still different.

Now, if we talk only about Android here, then consider the different hardware
platforms on it. Development style does not always mean programming. It is about
maintaining the complete project, starting from design to deployment. Android
console development is different from Android mobiles.

From the gameplay point of view, the general style of design varies with play
session time, control, and look. An average session on a console may last up to 2
hours, whereas mobile session length is almost 5 percent of that. A touch interface is
far different from a key interface, which also differs from a game controller interface.
So, even if the developer plans to deploy the same game made with the same engine,
the style of designing the interface changes for very obvious reasons.

Industry best practices
Although there are plenty of styles and standards out there, most developers like
to maintain some common standards to create stability in the game development
procedure. Let's discuss some of these area of standards commonly practiced by
the industry:

•	 Design standards
•	 Programming standards
•	 Testing standards

Design standards
Design and concepts vary for every game. The best design standard practice is to
make it properly documented along with scope for improvement. The document
must be clear enough for the users to understand. No matter what the concept is,
developers cannot implement it without a proper understanding of the standard.

Android Development Style and Standards in the Industry

[90]

The design scope must not be so widely open that it can change the entire game; this
causes serious delay in production time. However, it should always have a limited
scope to improve the production time over time with ideas.

Design must specify the target genre and audience along with a valid reason.
This should also include probable target hardware platforms.

For Android development, mobile gaming is the largest industry in the present day.
So, most Android developers mainly have their focus on mobile games. However,
designers should always leave scope for the game to be deployed on other platforms,
such as wearables, consoles, and so on.

Programming standards
Programming is the execution of the design. It is the most significant part of the
production of any game. A standard piece of code should be readable, modular,
and properly documented. Previously, there were two programming approaches:
procedural and object-oriented. In the case of the modern day gaming industry,
developers follow an object-oriented approach. For this reason, programming
standards have changed a lot. Previously, it was common practice to use m_ and l_
as prefixes to variables to indicate their status in the object-oriented structure. There
were a few other notations such as i, f, and b and so on to indicate variable types.

Modern day standards follow mainly the Camel and Pascal casing system for
their naming convention. Common practice is to use Pascal casing for all classes,
interfaces, enums, events, structures, namespaces, and method names, and other
elements should use the Camel casing system.

Camel casing in programming language means that the first letter of a name should
be in lowercase, which is specifically Lower CamelCase. The Pascal casing system
states that the first letter should be capitalized, which is termed Upper CamelCase.

There is no limitation technically to the number of arguments in a method or the
number of words per line while programming in any language. However, common
industry practice says that the number of arguments should be within eight, and the
number of letters per line of coding should not exceed 20.

The reason for this manual limitation is to have less complexity and better readability
of the code. For the same reason, a method body should be limited to 200 lines, and a
split class structure is always preferred.

Chapter 4

[91]

Testing standards
Testing is the validation process for the implementation of the design. Testing also
checks the development standard, and it also ensures the quality of the game.

In most cases, there are mainly two parts of testing procedure involved, automated
testing and manual testing. The programmer must write the automated testing code
for checking the core development. This part is called the test code, which must not
be included in the main development project. It requires dedicated testers to carry
out manual testing. Their job is to ensure the quality of the game from the user point
of view.

Most game development companies follow a checklist for the testing procedure.
This checklist often contains defined test cases. Test cases are mainly defined by the
developer and designer, and testers need to execute these cases. We will discuss
testing in detail in a later chapter.

Summary
Any software development must follow a certain protocol and standard. Game
development is not an exception. Following a standard helps the product sustain
for a longer period of time. The modern age Android game life cycle includes
many updates after launch, and in many cases the game sustains for years. For an
organization, the same developer might not be working on the same game for a long
period time, which is a very common scenario in the game industry.

The development project must be readable enough to be adopted by new developers
and be flexible enough to accommodate new changes for updates to the game.

Finally, let's summarize the mandatory tasks, which are common in the Android
game development industry. Game developers should follow the game development
principles. First, they must create a proper game design document to make it easy
for programmers and artists to understand clearly. Then, they should create a
proper technical design document to supply all the possible technical information
to programmers and game engineers. A specific development process in an
organization defines and maintains development standards. Programmers must
write code in modules to avoid future changes and to increase the reusability of
codes. A proper naming convention always helps in understanding the code better,
and prepares it for easy editing and reuse.

Another practice that a game developer should follow to make games is to play and
enjoy a lot of games.

[93]

Understanding the Game
Loop and Frame Rate

The game loop is the operational body of a game, and the frame rate is the
consequence. A game cannot be made without a defined game loop, and the
performance cannot be judged without measuring the frame rate.

These two aspects of game development are common throughout any game
development project. However, the scalability and nature of the game loop vary
across different devices, and there might be different scales to measure frame rates
across different platforms.

For native development, the game loop is created and maintained by developers
only. However, in most game engines, the loop is already defined with all the
necessary controls and scope.

We will have a detailed look at these two most important parts of game development
through the following topics:

•	 Introduction to the game loop
•	 Creating a sample game loop using the Android SDK
•	 Game life cycle
•	 Game update and user interface
•	 Interrupt handling
•	 General idea of a game state machine
•	 The FPS system
•	 Hardware dependency
•	 Balance between performance and memory
•	 Controlling FPS

Understanding the Game Loop and Frame Rate

[94]

Introduction to the game loop
The game loop is the core cycle in which user input, game update, and rendering are
executed sequentially. This loop ideally runs once per frame. So, the game loop is the
most important part of running a game with frame rate control.

A typical game loop has three steps:

1.	 User input
2.	 Game update
3.	 Rendering

A simple game loop

User input
This section checks the UI system of the game for any external input that has been
given to the game. It sets the required changes to be made in the game for the next
update. On a different hardware platform, this portion of the game loop varies the
most. It is always a best practice to create common functionality for different input
types to make a standard.

The input system is not considered as part of the game loop; however, user-given
input detection is part of the game loop. This system continuously monitors the
input system, whether an event has occurred or not.

Chapter 5

[95]

A user can trigger any event at any point of time during gameplay when an active
game loop is running. Normally, there are queues maintained by the input system.
Each queue represents different types of possible input events, such as touch, key
press, sensor reading, and so on.

The user input monitor checks those queues at a particular interval following the
loop sequence. If it finds any event in the queue, it makes the required changes that
will have an impact on the next update call in the game loop:

User input working principle

Game update
The complete game state is managed and maintained by the game update section of
the game loop. This section is also responsible for running the game logic, changes in
game states, loading/unloading assets, and setting the rendering pipeline.

The game control is usually managed by the game update section. Usually, the main
game manager works at the top level of this game update section. We discussed
game program structure in the previous section.

Any game runs a particular state at a time. The state can be updated by either user
input or any automated AI algorithm. All AI algorithms work on the game update
cycle frame by frame.

Understanding the Game Loop and Frame Rate

[96]

State update
As stated earlier, the state can be updated from game update. The state is also
initiated and destroyed by the game update. Initialization and destruction happens
once per state, and state update can be called once per game cycle.

State update call flow

Rendering frames
The rendering section inside a game loop is responsible for setting the rendering
pipeline. No update or AI algorithm runs on this section of the game loop.

There was time when a developer had full control over the rendering pipeline. The
developer could manipulate and set each and every vertex. The modern age game
development system has not much to do with this rendering system. The graphics
library takes care of all the control of the rendering system. However, at a very high
level, a developer can only set the order and quantity of rendering vertices.

Rendering is one of the most important roles when it comes to frame rate control,
keeping other continuous processes constant. Display and memory operations take
the most time to execute from the processing point of view.

Chapter 5

[97]

Typical Android graphics rendering follows the OpenGL pipeline:

Creating a sample game loop using the
Android SDK
Android SDK development starts with an activity, and the game runs on
single or multiple views. Most of the time, it is considered to have a single
view to run gameplay.

Unfortunately, the Android SDK does not provide a predefined game loop.
However, the loop can be created in many ways, but the basic mechanism remains
the same.

In the Android SDK library, the View class contains an abstract method OnDraw()
in which every possible rendering call is queued. This method is called upon any
change in the drawing, which invalidates the previous rendering pipeline.

Understanding the Game Loop and Frame Rate

[98]

The logic is as follows:

Let's have a look at a basic game loop created with Android View. Here, a custom
view is extended from the Android View:

/*Sample Loop created within OnDraw()on Canvas
* This loop works with 2D android game development
*/
@Override
public void onDraw(Canvas canvas)
{
 //If the game loop is active then only update and render
 if(gameRunning)
 {
 //update game state
 MainGameUpdate();

 //set rendering pipeline for updated game state
 RenderFrame(canvas);
 //Invalidate previous frame, so that updated pipeline can be
 // rendered
 //Calling invalidate() causes recall of onDraw()
 invalidate();
 }
 else
 {
 //If there is no active game loop
 //Exit the game
 System.exit(0);
 }
}

Chapter 5

[99]

In the current age of Android game development, developers use SurfaceView
instead of View. SurfaceView is inherited from View and more optimized for games
made with Canvas. In this case, a customized view is extended from SurfaceView
and implements the SurfaceHolder.Callback interface. In this scenario, three
methods are overridden:

/* Called When a surface is changed */
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int
 width, int height)
{
}
/* Called on create of a SurfaceView */
@Override
public void surfaceCreated(SurfaceHolder holder)
{
}
/* Called on destroy of a SurfaceView is destroyed */
@Override
public void surfaceDestroyed(SurfaceHolder holder)
{
}

While developing a game, the developer need not change the surface each time.
That's the reason the surfaceChanged method should have an empty body to
function as a basic game loop.

We need to create a customized game thread and override the run() method:

public class BaseGameThread extends Thread
{
 private boolean isGameRunning;
 private SurfaceHolder currentHolder;
 private MyGameState currentState;
 public void activateGameThread(SurfaceHolder holder, MyGameState
 state)
 {
 currentState = state;
 isGameRunning = true;
 currentHolder = holder;
 this.start();
 }

Understanding the Game Loop and Frame Rate

[100]

 @Override
 public void run()
 {
 Canvas gameCanvas = null;
 while(isGameRunning)
 {
 //clear canvas
 gameCanvas = null;
 try
 {
 //locking the canvas for screen pixel editing
 gameCanvas = currentHolder.lockCanvas();
 //Update game state
 currentState.update();
 //render game state
 currentState.render(gameCanvas);
 }
 catch(Exception e)
 {
 //Update game state without rendering (Optional)
 currentState.update();
 }
 }
 }
}

Now, we are set to start the newly created game loop from the customized
SurfaceView class:

public myGameCanvas extends SurfaceView implements SurfaceHolder
{
 //Declare thread
 private BaseGameThread gameThread;
 private MyGameState gameState;
 @Override
 public void surfaceCreated(SurfaceHolder holder)
 {
 //Initialize game state
 gameState = new MyGameState();
 //Instantiate game thread

Chapter 5

[101]

 gameThread = new BaseGameThread();
 //Start game thread
 gameThread. activateGameThread(this.getHolder(),gameState);
 }

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int
 width, int height)
 {
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder)
{
}
}

There can be many approaches to implementing a game loop. However, the basic
approach follows either of the two ways mentioned here. Some developers prefer
to implement the game thread inside the game view. Handling input is another
important part of the game loop. We will discuss this topic later in this chapter.

Another part of this game loop is frames per second (FPS) management. One of
the most common mechanisms is to use Thread.sleep() for such a calculated time
that the loop executes at a fixed rate. Some developers create two types of update
mechanism: one based on FPS and another based on per frame without delay.

Mostly, physics-based games need an update mechanism that follows a
real-time interval to function uniformly across all devices.

For small-scale development, few developers in the industry follow the first
approach but do not follow typical looping. This system invalidates the current
draw based on the required action. In this scenario, the game loop is not dependent
on fixed FPS.

Game life cycle
The Android game life cycle is almost similar to any other application's life cycle,
other than the game loop mechanism. Mostly, the application state changes with
external interference. States can be manipulated otherwise, where games have
algorithms or artificial intelligence that is capable of interfering with the main
game cycle.

Understanding the Game Loop and Frame Rate

[102]

An Android game is initialized with an activity. The onCreate() method is used for
initialization. Then, the game thread starts and enters the game loop. The game loop
can then be interrupted by an external interrupt.

In the case of game development, it is always a good practice to save the current
game state and pause the loop and threads properly. On resuming the game, it
should be easy to return to the last state.

Game update and user interface
We have already covered a few update and interface mechanisms previously.
A running game state can be changed by user input or internal AI algorithms:

Mostly, game update is called once per frame or once after a fixed time interval. Either
way, an algorithm does its job to change the game state. You have learned about user
input queues. On each game loop cycle, the input queues are being checked.

Chapter 5

[103]

For example, a mobile game loop with a touch interface works as follows:

/* import proper view and implement touch listener */
public class MyGameView extends View implements
 View.OnTouchListener
/* declare game state */
private MyGameState gameState;
/* set listener */
public MyGameView (Context context)
{
 super(context);
 setOnTouchListener(this);
 setFocusableInTouchMode(true);
 gameState = new MyGameState();
}

/* override onTouch() and call state update on individual touch
 events */
@Override
public boolean onTouch(View v, MotionEvent event)
{
 if(event.getAction() == MotionEvent.ACTION_UP)
 {
 //call changes in current state on touch release
 gameState.handleInputTouchRelease((int)event.getX(),
 (int)event.getY());
 return false;
 }
 else if(event.getAction() == MotionEvent.ACTION_DOWN)
 {
 //call changes in current state on touch begin
 gameState.handleInputTouchEngage((int)event.getX(),
 (int)event.getY());
 }
 else if(event.getAction() == MotionEvent.ACTION_MOVE)
 {
 //call changes in current state on touch drag
 gameState.handleInputTouchDrag((int)event.getX(),
 (int)event.getY());
 }
 return true;
}

Understanding the Game Loop and Frame Rate

[104]

Now, let's have a look at the input queue system with the same approach:

Point touchBegin = null;
Point touchDragged = null;
Point touchEnd = null;

@Override
public boolean onTouch(View v, MotionEvent event)
{
 if(event.getAction() == MotionEvent.ACTION_UP)
 {
 touchEnd = new Point(int)event.getX(), (int)event.getY());
 return false;
 }
 else if(event.getAction() == MotionEvent.ACTION_DOWN)
 {
 touchBegin = new Point(int)event.getX(), (int)event.getY());

 }
 else if(event.getAction() == MotionEvent.ACTION_MOVE)
 {
 touchDragged = new Point(int)event.getX(), (int)event.getY());

 }
 return true;
}

/* declare checking input mechanism */
private void checkUserInput()
{
 if(touchBegin != null)
 {
 //call changes in current state on touch begin
 gameState. handleInputTouchEngage (touchBegin);
 touchBegin = null;
 }

 if(touchDragged != null)
 {
 //call changes in current state on touch drag

Chapter 5

[105]

 gameState. handleInputTouchDrag (touchDragged);
 touchDragged = null;
 }

 if(touchEnd != null)
{
 //call changes in current state on touch release
 gameState.handleInputTouchRelease (touchEnd);
 touchEnd = null;
 }
}

/* finally we need to invoke checking inside game loop */
@Override
public void onDraw(Canvas canvas)
{
 //If the game loop is active then only update and render
 if(gameRunning)
 {
 //check user input
 checkUserInput();
 //update game state
 MainGameUpdate();

 //set rendering pipeline for updated game state
 RenderFrame(canvas);
 //Invalidate previous frame, so that updated pipeline can be
 // rendered
 //Calling invalidate() causes recall of onDraw()
 invalidate();
 }
 else
 {
 //If there is no active game loop
 //Exit the game
 System.exit(0);
 }
}

The same process can be repeated for the SurfaceView game loop approach as well.

Understanding the Game Loop and Frame Rate

[106]

Interrupt handling
The game loop is a continuous process. Whenever an interrupt occurs, it is necessary
to pause every running thread and save the current state of the game to ensure that it
resumes properly.

In Android, any interrupt triggers from onPause():

@Override
protected void onPause()
{
 super.onPause();
 // pause and save game loop here
}
// When control is given back to application, then onResume() is //
called.
@Override
protected void onResume()
{
 super.onResume();
 //resume the game loop here
}

Now, we need to change the class where the actual game loop is running.

First, declare a Boolean to indicate whether the game is paused or not. Then, put a
check in the game loop. After that, create a static method to deal with this variable:

private static boolean gamePaused = false;
@Override
public void onDraw(Canvas canvas)
{
 if(gameRunning && ! gamePaused)
 {
 MainGameUpdate();
 RenderFrame(canvas);

 invalidate();
 }
 else if(! gamePaused)
 {
 //If there is no active game loop
 //Exit the game

Chapter 5

[107]

 System.exit(0);
 }
}

public static void enableGameLoop(boolean enable)
{
 gamePaused = enable;
 if(!gamePaused)
 {
 //invalidation of previous draw has to be called from static
 // instance of current View class
 this.invalidate();
 }
 else
 {
 //save state
 }
}

General idea of a game state machine
A game state machine runs within the update cycle of the game loop. A game state
machine is the mechanism of binding all the game states together. In old techniques,
this was a typical linear control flow. However, in modern development processes,
it can be parallel control running in multiple threads. In the old architecture of game
development, it was encouraged to have only one game thread. Developers used to
avoid parallel processing as it was vulnerable to game loop and timer management.
However, even in modern development, many developers still prefer to use a single
thread for game development whenever possible. With the help of various tools
and advanced scripting language, most game developers now use a virtual parallel
processing system.

One of the processes of a simple game state machine is to create a common state
interface and override it for each game state. In this way, it becomes easy to manage
the state inside the game loop.

Let's see a loop of a simple game state machine manager. This manager should
conduct four main functionalities:

•	 Creating the state
•	 Updating the state
•	 Rendering the state
•	 Changing the state

Understanding the Game Loop and Frame Rate

[108]

An example implementation might look like this:

public class MainStateManager
{
 private int currentStateId;
 //setting up state IDs
 public Interface GameStates
 {
 public static final int STATE_1 = 0;
 public static final int STATE_2 = 1;
 public static final int STATE_3 = 2;
 public static final int STATE_4 = 3;
 }

 private void initializeState(int stateId)
 {
 currentStateId = stateId;
 switch(currentStateId)
 {
 case STATE_1:
 // initialize/load state 1
 break;
 case STATE_2:
 // initialize/load state 2
 break;
 case STATE_3:
 // initialize/load state 3
 break;
 case STATE_4:
 // initialize/load state 4
 break;
 }
 }
}
/*
* update is called in every cycle of game loop.
* make sure that the state is already initialized before updating
 the state
*/
private void updateState()
{
 switch(currentStateId)
 {

Chapter 5

[109]

 case STATE_1:
 // Update state 1
 break;
 case STATE_2:
 // Update state 2
 break;
 case STATE_3:
 // Update state 3
 break;
 case STATE_4:
 // Update state 4
 break;
 }
}
/*
* render is called in every cycle of game loop.
* make sure that the state is already initialized before updating
 the state
*/
private void renderState()
{
 switch(currentStateId)
 {
 case STATE_1:
 // Render state 1
 break;
 case STATE_2:
 // Render state 2
 break;
 case STATE_3:
 // Render state 3
 break;
 case STATE_4:
 // Render state 4
 break;
 }
}
/*
* Change state can be triggered from outside of manager or from
 any other state
* This should be responsible for destroying previous state and
 free memory and initialize new state
*/

Understanding the Game Loop and Frame Rate

[110]

public void changeState(int nextState)
{
 switch(currentStateId)
 {
 case STATE_1:
 // Destroy state 1
 break;
 case STATE_2:
 // Destroy state 2
 break;
 case STATE_3:
 // Destroy state 3
 break;
 case STATE_4:
 // Destroy state 4
 break;
 }
 initializeState(nextState);
}
}

In some cases, developers pass the input signal to a particular state through the state
manager as well.

The FPS system
In the case of game development and gaming industry, FPS matters a lot. The game
quality measurement depends heavily on the FPS count. In simple words, the higher
the FPS of the game, the better. The FPS of a game is dependent on the processing
time for instructions and rendering.

It takes some time to execute the game loop once. Let's have a look at a sample
implementation of FPS management inside a game loop:

long startTime;
long endTime;
public final int TARGET_FPS = 60;

@Override
public void onDraw(Canvas canvas)
{
 if(isRunning)
 {

Chapter 5

[111]

 startTime = System.currentTimeMillis();
 //update and paint in game cycle
 MainGameUpdate();

 //set rendering pipeline for updated game state
 RenderFrame(canvas);

 endTime = System.currentTimeMillis();
 long delta = endTime - startTime;
 long interval = (1000 - delta)/TARGET_FPS;

 try
 {
 Thread.sleep(interval);
 }
 catch(Exception ex)
 {}
 invalidate();
 }
}

In the preceding example, we first noted the time before execution (startTime)
of the loop and then noted down the time after the execution (endTime). We then
calculated the time taken for execution (delta). We already know the amount of time
(interval) it should take to maintain a maximum frame rate. So, for the remaining
time, we put the game thread to sleep before it executes again. This can be applied to
a different game loop system as well.

While using SurfaceView, we can declare the FPS system inside the game loop in
the run() method:

long startTime;
long endTime;
public final int TARGET_FPS = 60;
@Override
public void run()
{
 Canvas gameCanvas = null;
 while(isGameRunning)
 {
 startTime = System.currentTimeMillis();
 //clear canvas

Understanding the Game Loop and Frame Rate

[112]

 gameCanvas = null;
 try
 {
 //locking the canvas for screen pixel editing
 gameCanvas = currentHolder.lockCanvas();
 //Update game state
 currentState.update();
 //render game state
 currentState.render(gameCanvas);
 endTime = System.currentTimeMillis();
 long delta = endTime - startTime;
 long interval = (1000 - delta)/TARGET_FPS;

 try
 {
 Thread.sleep(interval);
 }
 catch(Exception ex)
 {}
 }
 Catch(Exception e)
 {
 //Update game state without rendering (Optional)
 currentState.update();
 }
 }
}

In this process, we capped the FPS count and tried to execute the game loop on
the predefined FPS. A major drawback in this system is this mechanism massively
depends on hardware configuration. For a slow hardware system, which is incapable
of running the loop on the predefined FPS, this system has no effect. This is because
the interval time is mostly zero or less than zero, so there is no per frame cycle.

Hardware dependency
We have discussed earlier that hardware configuration plays a major role in the FPS
system. If the hardware is not capable of running a certain set of instructions with
a certain frequency, then it is not possible for any developer to run a game on the
target FPS.

Chapter 5

[113]

Let's list the tasks that take most of the processing time for a game:

•	 Display or rendering
•	 Memory load/unload operations
•	 Logical operations

Display or rendering
Display processing depends mostly on the graphics processor and what all needs to
be displayed. When it comes to interaction with the hardware, the process becomes
slow. Rendering each and every pixel with shader manipulation and mapping takes
time.

There were times when running a game with a frame rate of 12 was difficult.
However, in the modern world, a superb display quality game needs to be run
on a frame rate of 60. It is only a matter of hardware quality.

A large display requires a good amount of cache memory. So, for example,
hardware with a large and dense display and with low cache memory is incapable
of maintaining a good display quality.

Memory load/unload operations
Memory is a hardware component of a system. Again, it takes more time to interact
with the memory component. From a developer's perspective, it takes time when we
allocate memory, deallocate memory, and read or write an operation.

From the game development perspective, four types of memory are the most
important:

•	 Heap memory
•	 Stack memory
•	 Register memory
•	 ROM

Heap memory
Heap memory is user-defined manually managed memory. This memory has to be
allocated manually and freed manually as well. In the case of Android, the garbage
collector is responsible for freeing memory, which is flagged as non-referenced. This
memory location is the slowest in the random access memory category.

Understanding the Game Loop and Frame Rate

[114]

Stack memory
This segment of memory is used for elements that are declared inside a method.
Allocation and deallocation of this memory segment is automatically done by the
program interpreter. This memory segment works only for local members.

Register memory
Register memory is the fastest of all. Register memory is used to store data for the
current process and frequently used data. Game developers can achieve a higher
frame rate in the case of devices where the register memory is better and faster.

ROM
Read-only memory (ROM) is permanent memory. Especially in game development,
a huge chunk of assets is stored in the ROM. It takes maximum time during the
load/unload operation of those assets. A program needs to load the necessary data
onto the RAM from the ROM. So, having faster ROM helps achieve better FPS during
the load/unload operation.

Logical operations
Developers should define the instructions in such a way that they can use hardware
in the most efficient way. In technical terms, each and every instruction goes in
stacks in a binary instruction form. The processor executes one instruction in one
clock cycle.

For example, let's have a look at a badly constructed logical instruction:

char[] name = "my name is android";
for(int i = 0; i < name.length; i ++)
{
 //some operation
}

Calling length and using a post increment operator every time increases the
instructions to the processor, which eventually increases the execution time.
Now, look at this code:

char[] name = "my name is android";
int length = name.length;
for(int i = 0; i < length; ++ i)
{
 //some operation
}

Chapter 5

[115]

This code executed the same task; however, the processing overhead is reduced a lot
in this approach. The only compromise this code made is blocking memory for one
integer variable and saving a lot of nested tasks related to length.

Processors with a better clock speed can execute the task faster, which directly
implies better FPS. However, managing the task amount depends on the developer,
as is shown in the previous example.

Every processor has a mathematical processing unit. The power of the processor
varies from one processor to another. So, developers always need to check the
mathematical expression to know whether it can be simplified or not.

Balance between performance and
memory
As you learned earlier, memory operation takes a lot time. However, developers
always have a limited memory. So, it is extremely necessary to have a balance
between performance and memory.

Loading or unloading any asset from ROM to RAM takes time, so it is recommended
that you do not do such operations for games that depend on FPS. This operation
affects FPS significantly.

Suppose a game requires a lot of assets while running one game state and the
target device has a limited heap available. In such a case, the developer should
group assets. Small assets can be loaded in the game running the state only in
required cases.

Sometimes, many developers preload all the assets and use it from cache. This
approach makes the gameplay smoother and faster. However, loading assets in a
cache that is not required for that particular game state may crash the game if an
interrupt occurs. The Android OS is fully authorized to clear memory occupied by
inactive or minimized applications. When an interrupt occurs, the game goes to
the minimized state. If a new application requires memory and free memory is not
available, then the Android OS kills inactive apps and frees the memory for a new
application.

So, it is always a good practice to break the set of assets into parts according to
game states.

Understanding the Game Loop and Frame Rate

[116]

Controlling FPS
We have already seen some ways of defining the FPS system. We have already
discussed the major drawback of the system as well. So, we can manipulate the
game loop according to the real-time FPS generated in the current game loop cycle:

long startTime;
long endTime;
public static in ACTUAL_FPS = 0;

@Override
public void onDraw(Canvas canvas)
{
 if(isRunning)
 {
 startTime = System.currentTimeMillis();
 //update and paint in game cycle
 MainGameUpdate();

 //set rendering pipeline for updated game state
 RenderFrame(canvas);

 endTime = System.currentTimeMillis();
 long delta = endTime - startTime;
 ACTUAL_FPS = 1000 / delta;
 invalidate();
 }
}

Now, let's have a look at the hybrid FPS system where we cap the maximum FPS to
60. Otherwise, the game can be manipulated through actual FPS:

long startTime;
long endTime;
public final int TARGET_FPS = 60;
public static int ACTUAL_FPS = 0;

@Override
public void onDraw(Canvas canvas)
{
 if(isRunning)
 {
 startTime = System.currentTimeMillis();
 //update and paint in game cycle

Chapter 5

[117]

 MainGameUpdate();

 //set rendering pipeline for updated game state
 RenderFrame(canvas);

 endTime = System.currentTimeMillis();
 long delta = endTime - startTime;

 //hybrid system begins
 if(delta < 1000)
 {
 long interval = (1000 - delta)/TARGET_FPS;
 ACTUAL_FPS = TARGET_FPS;
 try
 {
 Thread.sleep(interval);
 }
 catch(Exception ex)
 {}
 }
 else
 {
 ACTUAL_FPS = 1000 / delta;
 }
 invalidate();
 }
}

Summary
The game loop is mainly a logical approach for game development. In many cases,
developers do not opt for such a mechanism. Some games may be typically interactive
and have no algorithm that runs continuously. In such cases, the game loop may not be
needed. Game states can be updated as per input given to the gaming system.

However, an exception cannot be an example. That is why it is an industrial
approach to follow a game loop to maintain a development standard irrespective
of game design.

Understanding the Game Loop and Frame Rate

[118]

You learned about the game loop and game state management here. Developers
are free to invent and execute game loops in different ways. There are many game
engines that have different ways to control game loop and manage game states.
The idea and concept of game loop and state management may change as per the
game requirement.

However, developers should always keep in mind that the technique they are using
should not affect the game performance and FPS. Besides that, developers need to
maintain the readability and flexibility of code. Some approaches may consume
more memory and run faster and vice versa. Android has various sets of hardware
configuration, so there might not be the same processing and memory support on
all hardware. Finally, balancing between memory and performance is the key to
creating better games.

We will have a deep look at performance and memory management in later
chapters. We will try to look at these segments of game development from different
perspectives, such as 2D/3D games, VR games, optimization techniques, and more.

[119]

Improving Performance of
2D/3D Games

Once upon a time, gaming on the mobile platform was limited to black-and-white
pixel games, and other mediums of gaming were also heavily dependent on pixel
graphics. Times have changed now. 3D games are running on handhelds with ease.
However, the requirement of 2D assets has not changed yet. Even in a hardcore 3D
game, 2D assets are mandatory. Few games are fully 2D.

We will discuss the performance of 2D and 3D games here with the help of the
following topics:

•	 2D game development constraints
•	 3D game development constraints
•	 The rendering pipeline in Android
•	 Rendering through OpenGL
•	 Optimizing 2D assets
•	 Optimizing 3D assets
•	 Common game development mistakes
•	 2D/3D performance comparison

2D game development constraints
From the perspective of 2D game development, the main constraints are as follows:

•	 2D art assets
•	 2D rendering system
•	 2D mapping
•	 2D physics

Improving Performance of 2D/3D Games

[120]

2D art assets
Art asset constraints are mainly limited to graphical or visual assets, which include
images, sprites, and fonts. It is not difficult to understand that a larger asset will take
more time to process and render than a smaller asset, resulting in less performance
quality.

Sets of 2D art assets
It is not possible to deliver maximum display quality with a single set of assets in
Android game development. This is the reason most Android game developers
choose high-resolution assets as their base build. This normally performs well for
high-configuration hardware platforms, but does not provide quality performance
on low-configuration devices. Many developers opt for the option of porting for
multiple resolution hardware platforms. This again takes time to complete the
project.

Same asset set for multiple resolutions
Many times, developers choose to ignore a set of hardware platforms. Mostly, in
the mobile gaming industry, it is a common practice to choose higher resolution art
assets and fit them into lower resolution devices by scaling down. Nowadays, most
hardware platforms have better RAM. Hence, this process has become convenient for
developers.

Number of assets drawn on screen
Game performance does not always depend on the asset size; it also depends on the
number of assets that are being drawn on screen. The concept of a sprite sheet has
evolved to reduce the number of drawing elements on screen.

Generally, the system issues a call for a draw instruction for a single art asset. As
the number of assets increases, it takes more such draw instructions to complete
the rendering in each game loop cycle. Obviously, this process slows down the
processor, and the game performance becomes poor.

A sprite sheet can consist of multiple assets within a single image. So, it takes only
one draw instruction to render all the assets of the sprites. However, the physical size
of the sprite sheet is restricted. The maximum size varies for different devices with
different hardware platforms. Most conveniently, 1024x1024 sprites are the safest
option to use, as they are supported by almost all the available devices in the current
scenario.

Chapter 6

[121]

Use of font files
Almost every game uses custom or special fonts other than the default system font
of Android. In those cases, the font source file has to be included in the game build.
There are multiple ways to use different fonts. We will discuss three of them here:

•	 Sprite font
•	 Bitmap font
•	 TrueType font

Sprite font
This is a typical old school technique but is still effective in some cases. The
developer creates a sprite sheet that contains all the necessary characters. All the
characters are mapped within a data file. This mapping is used to clip each character
and form words accordingly.

Here are some advantages of this font:

•	 Developers have total control of mapping
•	 Character stylization can be customized as per requirement
•	 Fast processing speed can be achieved; however, it will depend on

development efficiency

Here are some disadvantages of this font:

•	 They increase development overhead
•	 The system efficiency entirely depends on the developer's skill set
•	 It is very difficult to map characters in the case of multi-language support
•	 Any change takes a lot of iteration to achieve perfection

This style is not usually used nowadays as we have many designer and stylish fonts
available.

Bitmap font
The bitmap font system is inherited from the sprite font. It is updated with a
predefined mapping style and a library to support development process. It also uses
one or more sprite sheets with one data file. The working principle of bitmap font is
the same as sprite font. There are a lot of tools available to create such fonts with a bit
of stylization directly from the TrueType font.

Improving Performance of 2D/3D Games

[122]

Here are some advantages of this font:

•	 It is compatible with any existing codebase, irrespective of the rendering
framework, whether it is OpenGL, DirectX, Direct Draw, or GDI+

•	 It is easy to integrate
•	 It can manipulate the style of the existing TrueType font

Here are some disadvantages of this font:

•	 The same disadvantages of the sprite font are applicable here, only with less
development overhead

•	 Scaling up the bitmap font results in blurry output

TrueType font
This is the universal format of font that is supported by most platforms, including
Android. It is the fastest way to integrate various fonts in games.

Here are some advantages of this font:

•	 Universal font style
•	 Maximum platform support
•	 Easy multi-language implementation
•	 This is a vector font, so it has no scaling issue
•	 Easy special character availability

Here are some disadvantages of this font:

•	 Using this font style may cost a few kilobytes extra to the game
•	 Not all scripting languages are supported by TTF

2D rendering system
Android provides a scope to render 2D assets onto the canvas through an API
framework. Canvas can be used with Drawable objects in View or SurfaceView.

Canvas acts as an interface of the actual drawing surface upon which all the
graphical objects can be drawn. Draw on the canvas happens within the onDraw()
callback method. The developer just needs to specify graphical objects along with
their position on the canvas.

Chapter 6

[123]

Canvas itself has a set of default drawing methods to render almost each type of
graphical objects. Here are some examples:

•	 The drawBitmap() method is used to draw image objects in the bitmap
format. However, images need not be in bitmap format.

•	 The drawRect() and drawLine() methods are used to draw primitive
shapes on the canvas.

•	 The drawText() method can be used to render text on canvas using a
specific font style.

Canvas can be used within a view in the Android architecture.

2D mapping
2D mapping is based on a simple 2D coordinate system. The only difference is the
opposite y axis in comparison with the conventional coordinate system:

In Android 2D, the origin is located in the top-left corner of the canvas. All the
geometrical calculations are based on this mapping. However, it has no direct effect
on the performance like the 2D canvas-based application has. Many developers are
used to mapping their graphic assets based on the conventional system, and they
reverse the vertical axis to render it on the canvas. This requires some additional
calculation.

Improving Performance of 2D/3D Games

[124]

There is one more performance constraint regarding the 2D rendering systems.
A common development approach across the world is to have a minimum set of
graphic assets and use them as much as possible. Often, this leads to rendering the
same pixel multiple times. This affects the processing speed and hence the FPS.

For example, bitmap A, bitmap B, bitmap C, and bitmap D are being rendered on a
canvas in such a way that A, B, and C overlap each other, and D remains separate.
The following happens:

•	 Pixels in the region R0 where only one bitmap is drawn will be rendered
once

•	 Pixels in region R1 where two bitmaps are overlapping will be rendered
twice

•	 Pixels in region R2 where three bitmaps are overlapping will be rendered
three times

This is shown here:

Now, in regions R1 and R2, all the pixels are rendered multiple times. In this system,
the pixel data information will append to the previous data, resulting in the final
pixel value. In this system, the processing overhead increases. Hence, performance
decreases.

Even today, it is a common practice for 2D game programming. The reasons are
as follows:

•	 Transparency blending
•	 Modular graphical assets

Chapter 6

[125]

•	 Low build size
•	 Easy construction of screens by overlapping multiple assets

Sometimes, there may be a scenario where a device has a very low-performing
graphics processor, and rendering the same pixel multiple times has a major impact
on performance. In this scenario, the double buffer mechanism helps a lot.

The double buffering system refers to creating a buffered displayable asset in which
the display screen is created using graphic assets. Then, this buffered object is drawn
on the screen only once. It prevents the following issues:

•	 Flickering of screen
•	 Multiple draws of one pixel
•	 Tearing of assets

2D physics
2D physics takes only the x-y plane into consideration for all the calculations. There
are plenty of 2D physics engines available in market. Box2D is the most popular one.
A physics engine consists of every mechanism and calculation of real-time physics.

Real-time physics calculation is much complicated than is required in games.
Let's discuss a few available physics engines.

Box2D
Box2D is an open source physics engine based on C++. It consists of almost every
aspect of solid physics that can be used in various games. A few of its mentionable
features are as follows:

•	 Dynamic collision detection of rigid bodies
•	 Collision state callbacks, such as collision enter, exit, stay, and so on
•	 Polygonal collision
•	 Vertical, horizontal, and projectile motion
•	 Friction physics
•	 Torque and momentum physics
•	 Gravity effects based on pivot point and joints

Improving Performance of 2D/3D Games

[126]

LiquidFun
LiquidFun is a physics engine with all aspects of liquid physics. This engine is
actually based on Box2D. Google released this open source physics engine to cover
the liquid physics formula and mechanism. LiquidFun can be used for Android, iOS,
Windows, and a few other popular platforms. LiquidFun supports every feature of
Box2D, along with liquid particle physics. This includes the following:

•	 Wave simulation
•	 Liquid fall and particle simulation
•	 Liquid stir simulation
•	 Solid and liquid dynamic collision
•	 Liquid mixing

Performance impact on games
Collision detection is a costly process. Multi-edge and polygonal collisions increase
the process overhead. The number of rigid bodies and collision surfaces have the
maximum impact on performance. This is why liquid physics is slower than solid
physics.

Let's have a look at the major impacts:

•	 Each transformation of any rigid body requires a refresh on the collision
check of the entire system

•	 The physics engine is responsible for repetitive transform change, which is
responsible for heavy processes

Each and every possible force on the rigid body is calculated in the physics engine.
Not all the games require every calculation. Game development does not always
required real-time implementation of physics. However, real-time visualization is
required for games.

2D collision detection
Most games use the box-colliding system to detect most collisions. Rectangular
collision detection is the cheapest possible method, which can be used inside games
to detect collisions.

Sometimes, triangular and circular collision detection is also used for 2D games for
collision detection accuracy. There needs to be a balance of using such methods.

Chapter 6

[127]

For example, if we need to detect the collision between two circles, we can opt for
any of these systems:

•	 Considering each circle a rectangle and detecting the collision between them
•	 Considering one circle a rectangle and detecting the collision between the

circle and rectangle
•	 Applying the actual circular collision detection method

Let's consider two circles having origins O1 and O2 and diameters R1 and R2:

O1 is located at (Ox1, Oy1)

O2 is located at (Ox2, Oy2)

Rectangle collision
If we imagine the circles as rectangles on a 2D canvas, then it will look like this:

Rectangular collision detection refers to this formula.

Input feed will be as follows:

xMin1 = x1 (minimum co-ordinate on x axis of first rectangle)

Improving Performance of 2D/3D Games

[128]

yMin1 = y1 (minimum co-ordinate on y axis of the first rectangle)

xMax1 = x1m (maximum co-ordinate on x axis of the first rectangle)

yMax1 = y1m (maximum co-ordinate on y axis of the first rectangle)

xMin2 = x2 (minimum co-ordinate on x axis of the second rectangle)

yMin2 = y2 (minimum co-ordinate on y axis of the second rectangle)

xMax2 = x2m (maximum co-ordinate on x axis of the second rectangle)

yMax2 = y2m (maximum co-ordinate on y axis of the second rectangle)

In the given circumstances, we will have the following:

x1 = Ox1 – (R1 / 2)

y1 = Oy1 – (R1 / 2)

x1m = Ox1 + (R1 / 2) = x1 + R1

y1m = Oy1 + (R1 / 2) = y1 + R1

x2 = Ox2 – (R2 / 2)

y2 = Oy2 – (R2 / 2)

x2m = Ox2 + (R2 / 2) = x2 + R2

y2m = Oy2 + (R2 / 2) = y2 + R2

The condition for colliding or not colliding these two rectangles will be as follows:

if(x1m < x2)
{
 // Not Collide
}
else if(y1m < y2)
{
 // Not collide
}
else if(x1 > x2m)
{
 //Not collide

Chapter 6

[129]

}
else if(y1 > y2m)
{
 //Not collide
}
else
{
 //Successfully collide
}

Rectangle and circle collision
Now, considering only the second circle as a rectangle, we will have this:

As we have already discussed the general idea of the coordinate system for the same
system, we can directly derive the values:

Px1 = Ox2 – (R2 / 2)

Py1 = Oy2 – (R2 / 2)

Px2 = Ox2 – (R2 / 2)

Py2 = Oy2 + (R2 / 2)

Improving Performance of 2D/3D Games

[130]

Px3 = Ox2 + (R2 / 2)

Py3 = Oy2 + (R2 / 2)

Px4 = Ox2 + (R2 / 2)

Py4 = Oy2 – (R2 / 2)

x2m = Ox2 + (R2 / 2) = x2 + R2

y2m = Oy2 + (R2 / 2) = y2 + R2

radius1 = (R1 / 2)

distanceP1 = squareRoot(((Px1 – Ox1)* (Px1 – Ox1)) + ((Py1 – Oy1)* (Py1 – Oy1)))

distanceP2 = squareRoot(((Px2 – Ox1)* (Px2 – Ox1)) + ((Py2 – Oy1)* (Py2 – Oy1)))

distanceP3 = squareRoot(((Px3 – Ox1)* (Px3 – Ox1)) + ((Py3 – Oy1)* (Py3 – Oy1)))

distanceP4 = squareRoot(((Px4 – Ox1)* (Px4 – Ox1)) + ((Py4 – Oy1)* (Py4 – Oy1)))

The colliding and non-colliding condition would be as follows:

if ((Ox1 + radius1) < x2)
{
 //Not collide
}
else if (Ox1 > x2m)
{
 //Not collide
}
else if ((Oy1 + radius1) < y2)
{
 //Not collide
}
else if (Oy1 > y2m)
{
 //Not collide
}
else
{
if (distanceP1 <= radius1)
{
 //Successfully collide
}
else if (distanceP2 <= radius1)
{
 //Successfully collide
}

Chapter 6

[131]

else if (distanceP3 <= radius1)
{
 //Successfully collide
}
else if (distanceP4 <= radius1)
{
 //Successfully collide
}
else if (Ox1 >= Px1 && Ox1 <= x2m &&
(Oy1 + radius1) >= Py1 && (Oy1 <= y2m))
{
 //Successfully collide
}
else if (Oy1 >= Py1 && Oy1 <= y2m &&
(Ox1 + radius1) >= Px1 && (Ox1 <= x2m))
{
 //Successfully collide
}
else
{
 //Not collide
}

Circle and circle collision
Finally, the actual collision detection system is between the circle and circle collision:

Improving Performance of 2D/3D Games

[132]

Logically, this is the simplest procedure to find out the circular collision.

First, calculate the distance between the two origins of the circles:

originDistance = squareRoot (((Ox2 – Ox1)* (Ox2 – Ox1)) + ((Ox2 – Ox1)* (Ox2 – Ox1)))

Now, we need to check whether the distance is less than or equal to the sum of the
radius of the two circles:

if (originDistance <= ((R1 + R2) / 2))
{
 //Successfully Collide
}
else
{
 //Not Collide
}

Performance comparison
For the first approach, it will take a minimum clock cycle to execute the checking.
However, it is not that accurate. Particularly when developers work with a bigger
circle, the lack in accuracy becomes visible.

The third approach is perfectly accurate, but takes more time to process. In the case
of many circles colliding in runtime, this process and mathematical calculation may
cause performance delay.

The second approach is, overall, the worst possible way to solve this problem.
However, this approach may be used in a very specific situation. When a developer
wants to detect circle and rectangle collisions accurately, then only this approach can
be tried.

Detecting these sorts of collision may have multiple solutions. The approaches and
solutions you have learned here are few of the most efficient solutions from the point
of view of performance.

When detecting rectangle and circle collisions accurately, there is one more popular
approach by creating a bigger round rectangle by increasing the width and height by
the diameter of the circle. This procedure is heavier but more accurate.

Chapter 6

[133]

3D game development constraints
3D game development in Android native is very complicated. The Android
framework does not support direct 3D game development platforms. 2D game
development is directly supported by Android Canvas. The developer requires
OpenGL support to develop 3D games for Android.

Development is supported by Android NDK, which is based on C++. We will
discuss a few constraints of 3D development for Android with OpenGL support.

Android provides the OpenGL library for development. The developer needs to set
up scenes, light, and camera first to start any development process.

Vertices and triangles
Vertex refers to a point in 3D space. In Android, Vector3 can be used to define the
vertices. A triangle is formed by three such vertices. Any triangle can be projected
onto a 2D plane. Any 3D object can be simplified to a collection of triangles
surrounding its surface.

For example, a cube surface is a collection of two triangles. Hence, a cube can be
formed of 12 triangles as it has six surfaces. The number of triangles has a heavy
impact on the rendering time.

3D transformation matrix
Each 3D object has its own transformation. Vector can be used to indicate its
position, scaling, and rotation. Generally, this is referred through a matrix called a
transform matrix. A transformation matrix is 4 x 4 in dimension.

Let's assume the matrix to be T:

Improving Performance of 2D/3D Games

[134]

Here:

•	 {a, b, c, e, f, g, i, j, k} represents linear transformation
•	 {d, h, l} represents perspective transformation
•	 {m, n, o} represents translations along the x, y, and z axes
•	 {a, f, k} represents local scaling along the x, y, and z axes
•	 {p} represents overall scaling
•	 {f, g, i, k} represents rotation along the x axis where a = 1
•	 {a, c, i, k} represents rotation along the y axis where f = 1
•	 {a, b, e, f} represents rotation along the z axis where k = 1

Any 3D object can be translated using this matrix and a respective transform 3D
vector. Naturally, matrix calculation is heavier than 2D simple linear calculation.
As the number of vertices increases, the number of calculations increases as well.
This results in performance drop.

3D object and polygon count
Any 3D model or object has surfaces referred to as polygons. Fewer of polygons
implies fewer of triangles, which directly decreases the vertices count:

Chapter 6

[135]

This is a simple example of a polygonal distribution of a 3D object surface. A six-sided
polygon has four triangles and six vertices. Each vertex is a 3D vector. Every processor
takes time to process each vertex. It is recommended that you keep a check on the
total polygon count, which will be drawn in each draw cycle. Many games suffer a
significant amount of FPS drop because of a high and unmanaged polygon count.

Android is specifically a mobile OS. Most of the time, it has limited device
configuration. Often, managing the poly count of 3D games for Android becomes
a problem for developers.

3D rendering system
Android uses OpenGL to provide a 3D rendering platform with both framework
and NDK. The Android framework provides GLSurfaceView and GLSurfaceView.
Renderer to render 3D objects in Android. They are responsible for generating the
model on screen. We have already discussed the 3D rendering pipeline through
OpenGL.

3D rendering maps all the objects on a 3D world coordinate system following the
right-hand thumb system:

3D mesh
A 3D mesh is created with vertices, triangles, and surfaces. A mesh is created to
determine the shape of the object. A texture is applied to the mesh to create the
complete model.

Improving Performance of 2D/3D Games

[136]

Creating a mesh is the trickiest part of 3D model creation, as basic optimization can
be applied here.

Here is the procedure of creating the mesh:

A 3D model can contain more than one mesh, and they may even be interchangeable.
A mesh is responsible for the model detailing quality and for the rendering
performance of the model. For Android development, it is recommended that you
keep a certain limit of vertices and triangles for meshes to render performance.

Materials, shaders, and textures
After the formation of the model structure through the mesh, the texture is applied
on it to create the final model. However, the texture is applied through a material
and manipulated by shaders:

Textures
Textures are 2D images applied to the model to increase detailing and view the
quality of a model. This image is mapped through the surfaces of the mesh so that
each surface renders a particular clip of the texture.

Chapter 6

[137]

Shaders
Shaders are used to manipulate the quality, color, and other attributes of the texture
to make it more realistic. Most of the time, it is not possible to create a texture with
all the attributes properly set. A 3D model visibility is dependent on light source,
intensity, color, and material type.

Materials
The material determines the texture attribute and shader property. The material can
be termed as a container for the shader and texture before applying it to the mesh to
create the model.

Collision detection
Collision detection for 3D Android games can be categorized into two types:

•	 Primitive colliders
•	 Mesh colliders

Primitive colliders
These colliders consist of basic 3D elements such as cubes, spheres, cylinders,
prisms, and so on. This collision detection system follows certain geometric patterns
and rules. That's why it is comparatively less complicated than the arbitrary mesh
collider.

Most of the time, the developer assigns primitive colliders to many models to
increase the performance of the game. This approach is obviously less accurate than
actual collider.

Mesh colliders
Mesh colliders can detect actual arbitrary collision detection. This collision
detection technique is process heavy. There are few algorithms to minimize the
process overhead. quadtree, kd-tree, and AABB tree are a few examples of such
collision detection techniques. However, they do not minimize the CPU overhead
significantly.

The oldest but most accurate method is triangle to triangle collision detection
for each surface. To simplify this method, each mesh block is converted to boxes.
A special AABB tree or quadtree is generated to reduce the vertex check.

Improving Performance of 2D/3D Games

[138]

This can be further reduced to octree vertex mapping by merging two box colliders.
In this way, the developer can reduce the collision check to reduce CPU overhead.

Ray casting
Ray casting is a geometric system to detect the surfaces of 3D graphical objects. This
system is used to solve the geometric problems of 3D computer graphics. In the case
of 3D games, all 3D objects are projected in a 2D view. It is not possible to determine
depth without ray casting in the case of a 2D electronic display:

Each ray from the origin projected on different objects can detect the shape of the
object, distance from the plane, collision detection, rotation, and scaling of the
objects, and so on.

In the case of Android games, ray casting is vastly used to handle touch input on the
screen. Most of the games use this method to manipulate the behavior of 3D objects
used in the game.

From the point of view of development performance, ray casting is a quite costly
system to use in a major scale. This requires a series of geometrical calculation,
resulting in a processing overhead. As the number of rays increases, the process
gets heavier.

It is always a best practice to keep a control on using multiple rays casting at one
point.

Chapter 6

[139]

Concept of "world"
The word "world" in 3D games is a real-time simulation of the actual world with
a regional limitation. The world is created with 3D models, which refer to actual
objects in the real world. The scope of the game world is finite. This world follows a
particular scale, position, and rotation with respective cameras.

The concept of camera is a must for simulating such a world. Multiple cameras can
be used to render different perspectives of the same world.

In the gaming industry, a game world is created according to requirements.
This means that the worlds of different games are different. But a few of the
parameters remain the same. These parameters are as follows:

•	 Finite elements
•	 Light source
•	 Camera

Elements of the game world
A world consists of the elements that are required in game design. Each game may
require different elements. However, there are two things that are common across
the games: sky and terrain. Most of the elements are usually placed on the terrain,
and the light source is in the sky. However, many games offer different light sources
at different scopes of the game.

Elements can be divided into two categories: movable objects and static objects. A
game's rigid bodies are associated with such elements. Normally, static objects do
not support motion physics.

Optimizing objects in the world is necessary for performance. Each object has a
certain number of vertices and triangles. We have already discussed the processing
overhead of the vertices of 3D objects. Generally, world optimization is basically the
optimization of each element in the world.

Light sources in the game world
A game world must have one or more light sources. Lights are used to expose the
elements in the world. Multiple light sources have a great visual impact on the user
experience.

The game development process always requires at least one good light artist.
Modern games use light maps to amplify the visual quality. The light and shadow
play in the game world is entirely dependent on light mapping.

Improving Performance of 2D/3D Games

[140]

There is no doubt that light is a mandatory element in the game world. However,
the consequence of processing light and shadow is a large amount of processing. All
the vertices need to be processed according to a light source with a particular shader.
Use of extensive light sources results in low performance.

Light sources can be of the following types:

•	 Area light
•	 Spot light
•	 Point light
•	 Directional light
•	 Ambient light
•	 Volume light

Area light

This kind of light source is used to light a rectangular or circular region. By nature,
it is a directional light and lights the area with equal intensity:

Chapter 6

[141]

Spot light

A spot light is used to focus on a particular object in a conical directional shape:

Point light

A point light illuminates in all directions of the source. A typical example is a bulb
illumination:

Improving Performance of 2D/3D Games

[142]

Directional light

A directional light is a set of parallel light beams projected on a place in a 3D world.
A typical example is sunlight:

Ambient light

An ambient light is a set of arbitrary light beams in any direction. Usually, the
intensity of this kind of light source is low. As a light beam does not follow a
particular direction, and it does not generate any shadows:

Chapter 6

[143]

L1, L2, L3, and L4 are ambient light sources here.

Volume light

A volume light is a modified type of point light. This kind of light source can be
converted into a set of light beams within a defined geometrical shape. Any light
beam is a perfect example of such a light source:

Cameras in the game world
The camera is the last but the most important element of the game world. A camera
is responsible for the rendering of the game screen. It also determines the elements to
be added in the rendering pipeline.

There are two types of camera used in a game.

Improving Performance of 2D/3D Games

[144]

Perspective camera

This type of camera is typically used to render 3D objects. The visible scale and depth
is fully dependent on this type of camera. The developer manipulates the field of
view and near/far range to control the rendering pipeline:

Orthographic camera

This type of camera is used to render objects from a 2D perspective, irrespective of
the objects. An orthographic camera renders objects on the same plane, irrespective
of the depth. The developer manipulates effective width and height of the camera to
control the 2D rendering pipeline. This camera is typically used for 2D games and to
render 2D objects in a 3D game:

Chapter 6

[145]

Besides this, the game camera can also be categorized by their nature and purpose.
Here are the most common variations.

Fixed camera

A fixed camera does not rotate, translate, or scale during the execution. Typically, 2D
games use such cameras. A fixed camera is the most convenient camera in terms of
processing speed. A fixed camera does not have any runtime manipulation.

Rotating camera

This camera has a rotating feature during runtime. This type of camera is effective in
the case of sports simulation or surveillance simulation games.

Moving camera

A camera can be said to be moving when the translation can be changed during
runtime. This type of camera is typically used for an aerial view of the game. A
typical use of this sort of camera is for games such as Age Of Empires, Company Of
Heroes, Clash Of Clans, and so on.

Third-person camera

This camera is mainly the part of gameplay design. This is a moving camera, but this
camera follows a particular object or character. The character is supposed to be the
user character, so all the actions and movements are tracked by this camera including
the character and object. Mostly, this camera can be rotated or pushed according to
the actions of the player.

First-person camera

When the player plays as the main character, this camera is used to implement a
typical view of the eyes of the player. The camera moves or translates according to
the actions of the player.

The rendering pipeline in Android
Let's now have a look at the types of rendering pipeline in Android.

The 2D rendering pipeline
In the case of the 2D Android drawing system through Canvas, all the assets are first
drawn on the canvas, and the canvas is rendered on screen. The graphic engine maps
all the assets within the finite Canvas according to the given position.

Improving Performance of 2D/3D Games

[146]

Often, developers use small assets separately that cause a mapping instruction to
execute for each asset. It is always recommended that you use sprite sheets to merge
as many small assets as possible. A single draw call can then be applied to draw
every object on the Canvas.

Now, the question is how to create the sprite and what the other consequences are.
Previously, Android could not support images or sprites of a size more than 1024 x
1024 pixels. Since Android 2.3, the developer can use a 4096 x 4096 sprite. However,
using such sprites can cause permanent memory occupancy during the scopes of all
the small assets. Many low-configuration Android devices do not support such large
images to be loaded during an application. It is a best practice that developers limit
themselves to 2048 x 2048 pixels. This will reduce memory usage peak, as well as
significant amounts of draw calls to the canvas.

The 3D rendering pipeline
Android uses OpenGL to render assets on the screen. So, the rendering pipeline for
Android 3D is basically the OpenGL pipeline.

Let's have look at the OpenGL rendering system:

Now, let's have a detailed look at each step of the preceding rendering flow diagram:

1.	 The vertex shader processes individual vertices with vertex data.
2.	 The control shader is responsible for controlling vertex data and patches for

the tessellation.

Chapter 6

[147]

3.	 The polygon arrangement system arranges the polygon with each pair of
intersecting lines created by vertices. Thus, it creates the edges without
repeating vertices.

4.	 Tessellation is the process of tiling the polygons in a shape without overlap
or any gaps.

5.	 The geometry shader is responsible for optimizing the primitive shape. Thus
triangles are generated.

6.	 After constructing the polygons and shapes, the model is clipped for
optimization.

7.	 Vertex post processing is used to filter out unnecessary data.
8.	 The mesh is then rasterized.
9.	 The fragment shader is used to process fragments generated from

rasterization.
10.	 All the pixels are mapped after fragmentation and processed with the

processed data.
11.	 The mesh is added to the frame buffer for final rendering.

Optimizing 2D assets
Any digital game cannot be made without 2D art assets. There must be 2D assets in
some form inside the game. So, as far as game component optimization is concerned,
every 2D asset should also be optimized. Optimization of 2D assets means these
three main things.

Size optimization
Each asset frame should only contain the effective pixels to be used in games.
Unnecessary pixels increase the asset size and memory use during runtime.

Data optimization
Not all images require full data information for pixels. A significant amount of data
might be stored in each pixel, depending on the image format. For example, full
screen opaque images should never contain transparency data. Similarly, depending
on the color set, images must be formatted in 8-bit, 16-bit, or 24-bit format.

Image optimization tools can be used to perform such optimizations.

Improving Performance of 2D/3D Games

[148]

Process optimization
The larger the amount of data compressed during optimization, the more time it
takes to decompress it and load it to memory. So, image optimization has a direct
effect on the processing speed.

From another point of view, creating an image atlas or sprite sheet is another way to
reduce the processing time of images.

Optimizing 3D assets
A 3D art asset has two parts to be optimized. A 2D texture part is to be optimized
in the same 2D optimization style. The only thing the developer needs to consider is
after optimization, the shader should have the same effect on the structure.

The rest of the 3D asset optimization entirely depends on the number of vertices and
the model polygon.

Limiting the polygon count
It is very obvious that a large number of polygons used to create a mesh can create
more details. However, we all know that Android is a mobile OS, and it always has
hardware limitations.

The developer should count the number of polygons used in the mesh and the total
number of polygons rendered on the screen in a single draw cycle. There is always a
limitation depending on the hardware configuration.

So, limiting the polygon and vertex count per mesh is always an advantage in order
to achieve a certain frame rate or performance.

Model optimization
Models are created with more than one mesh. Using a separate mesh in the final
model always results in heavy processing. This is a major effort for the game artist.
Multiple overlaps can occur if multiple meshes are used. This increases vertex
processing.

Rigging is another essential part of finalizing the model. A good rigger defines the
skeleton with the minimum possible joints for minimum processing.

Chapter 6

[149]

Common game development mistakes
It is not always possible to look into each and every performance aspect at every
development stage. It is a very common practice to use assets and write code in a
temporary mode and use it in the final game.

This affects the overall performance and future maintenance procedure. Here are few
of the most common mistakes made during game development.

Use of non-optimized images
An artist creates art assets, and the developer directly integrates those into the game
for the debug build. However, most of the time, those assets are never optimized,
even for the release candidate.

This is the reason there may be plenty of high-bit images where the asset contains
limited information. Alpha information may be found in opaque images.

Use of full utility third-party libraries
The modern day development style does not require each and every development
module to be written from scratch. Most of the developers use a predefined third-
party library for common utility mechanisms.

Most of the time, these packages come with most of the possible methods, and
among them, very few are actually used in games. Developers, most of the time, use
these packages without any filtration. A lot of unused data occupies memory during
runtime in such cases.

Often, a third-party library comes without an editing facility. In this case, the
developer should choose such packages very carefully, depending on their specific
requirements.

Use of unmanaged networking connections
In modern Android games, the use of Internet connectivity is very common. Many
games use server-based gameplay. In such cases, the entire game runs on the server
with frequent data transfers between the server and the client device. Each data
transfer process takes time, and the connectivity drains the battery charge significantly.

Badly managed networking states often freeze the application. A significant amount
of data is handled, especially for real-time multiplayer games. In this case, a request
and response queue should be created and managed properly. However, the
developer often skips this part to save development time.

Improving Performance of 2D/3D Games

[150]

Another aspect of unmanaged connections is unnecessary packet data transferred
between the server and client. So, there is an extra parsing process involved each
time data is transferred.

Using substandard programming
We have already discussed programming styles and standards. The modular
programming approach may increase a few extra processes, but the longer
management of programming demands modular programming. Otherwise,
developers end up repeating code, and this increases process overhead.

Memory management also demands a good programming style. In few cases, the
developer allocates memory but often forgets to free the memory. This causes a lot
of memory leakage. At times, the application crashes due to insufficient memory.

Substandard programming includes the following mistakes:

•	 Declaring the same variables multiple times
•	 Creating many static instances
•	 Writing non-modular coding
•	 Improper singleton class creation
•	 Loading objects at runtime

Taking a shortcut
This is the funniest fact among ill-practiced development styles. Taking a shortcut
during development is very common among game developers.

Making games is mostly about logical development. There may be multiple ways
of solving a logical problem. Very often, the developer chooses the most convenient
way to solve such problems. For example, the developer mostly uses the bubble
sorting method for most of the sorting requirements, despite knowing that it is the
most inefficient sorting process.

Using such shortcuts multiple times in a game may cause a visible process delay,
which directly affects the frame rate.

Chapter 6

[151]

2D/3D performance comparison
Android game development in 2D and 3D is different. It is a fact that 3D game
processing is heavier than 2D games. However, the game scale is always the
deciding factor.

Different look and feel
3D look and feel is way different than 2D. The use of a particle system in 3D games is
very common to provide visual effects. In the case of 2D games, sprite animation and
other transformations are used to show such effects.

Another difference between 2D and 3D look and feel is dynamic light and shadow.
Dynamic light is always a factor for greater visual quality. Nowadays, most 3D
games use dynamic lighting, which has a significant effect on game performance. In
the case of 2D games, light management is done through assets. So, there is no extra
processing in 2D games for light and shadow.

In 2D games, the game screen is rendered on a Canvas. There is only one fixed point
of view. So, the concept of camera is limited to a fixed camera. However, in 3D
games, it is a different case. Multiple types of camera can be implemented. Multiple
cameras can be used together for a better feel of the game. Rendering objects through
multiple cameras causes more process overhead. Hence, it decreases the frame rate
of the game.

There is a significant performance difference between using 2D physics and 3D
physics. A 3D physics engine is far more process heavy than a 2D physics engine.

3D processing is way heavier than 2D
processing
It is a common practice in the gaming industry to accept less FPS in 3D games in
comparison to 2D games. In Android, the standard accepted FPS for 2D games is
around 60 FPS, whereas a 3D game is acceptable even if it runs at as low as 40 FPS.

Improving Performance of 2D/3D Games

[152]

The logical reason behind this is that 3D games are way heavier than 2D games in
terms of process. The main reasons are as follows:

•	 Vertex processing: In 3D games, each vertex is processed on the OpenGL
layer during rendering. So, increasing the number of vertices leads to heavier
processing.

•	 Mesh rendering: A mesh consists of multiple vertices and many polygons.
Processing a mesh increases the rendering overhead as well.

•	 3D collision system: A 3D dynamic collision detection system demands each
vertex of the collider to be calculated for collision. This calculation is usually
done by the GPU.

•	 3D physics implementation: 3D transformation calculation completely
depends on matrix manipulation, which is always heavy.

•	 Multiple camera use: Use of multiple cameras and dynamically setting up
the rendering pipeline takes more memory and clock cycles.

Device configuration
Android has a wide range of device configuration options supported by the
platform. In the previous chapters, we have already seen such variations. Running
the same game on different configurations does not produce the same result.

Performance depends on the following factors.

Processor
There are many processors used for Android devices in terms of the number of cores
and the speed of each core. Speed decides the number of instructions that can be
executed in a single cycle. There was a time when Android used to have a single core
CPU with speed less than 500 MHz. Now we have multicore CPUs with more than 2
GHz speed on each core.

RAM
Availability of RAM is another factor that decides performance. Heavy games
require a greater amount of RAM during runtime. If RAM is limited, then frequent
loading/unloading processes affect performance.

Chapter 6

[153]

GPU
GPU decides the rendering speed. It acts as the processing unit for graphical objects.
A more powerful processor can process more rendering instructions, resulting in
better performance.

Display quality
Display quality is actually inversely proportional to the performance. Better display
quality has to be backed by better GPU, CPU, and RAM, because better displays
always consist of bigger resolution, with better dpi and more color support.

We can see various devices with different display quality. Android itself has divided
the assets by this feature:

•	 LDPI: Lowest dpi display for Android (~120 dpi)
•	 MDPI: Medium dpi display for Android (~160 dpi)
•	 HDPI: High dpi display for Android (~240 dpi)
•	 XHDPI: Extra high dpi display for Android (~320 dpi)
•	 XXHDPI: Extra extra high dpi display for Android (~480 dpi)
•	 XXXHDPI: Extra extra extra high dpi display for Android (~640 dpi)

It can be easily predicted that the list will include more options in the near future,
with the advancement of hardware technology.

Battery capacity
Battery capacity is an odd factor in the performance of the application. More
powerful CPUs, GPUs, and RAM demand more power. If the battery is incapable of
delivering power, then processing units cannot run at their peak efficiency.

To summarize these factors, we can easily make a few relational equations with
performance:

•	 CPU is directly proportional to performance
•	 GPU is directly proportional to performance
•	 RAM is directly proportional to performance
•	 Display quality is inversely proportional to performance
•	 Battery capacity is directly proportional to performance

Improving Performance of 2D/3D Games

[154]

Summary
The scope of 3D games is increasing day by day with more quality and performance.
However, this requires hardware support for the running Android platform. Old
devices are not obsolete yet.

It becomes a serious problem when the same application runs on various devices.
This becomes a challenge for developers to run the same application across devices.

There are many technical differences between 2D and 3D games in terms of
rendering, processing, and assets. The developer should always use an optimized
approach to create assets and write code. One more way of gaining performance is to
port the games for different hardware systems for both 2D and 3D games.

We can see a revolutionary upgrade in hardware platforms since the last decade.
Accordingly, the nature of games has also changed. However, the scope of 2D games
is still there with a large set of possibilities.

There are many frameworks and engines available for developing 2D and 3D games.
Support for multiple operating systems has also increased its value for both 2D and
3D games.

Improving performance is more of a logical task than a technical one. There are a
few tools available to do the job, but it is the developer's decision to choose them.
So, selecting the right tool for the right purpose is necessary, and there should be a
different approach to making 2D and 3D games.

We have already discussed the rendering processes in both 2D and 3D development.
We will further enhance rendering with the help of shaders in Android and try to
explore various techniques of optimizing Android games later in this book.

[155]

Working with Shaders
Every game's success depends largely on its look and feel. This directly means that
the game must have an eye-catching graphical display. It is not always possible
to provide maximum quality graphical assets due to space and heap restrictions.
So, there has to be a way to create or improvise the graphical assets at runtime for
display. This necessity gave birth to the concept of shaders.

Shaders can operate on any visual element and can tweak every pixel of drawable
elements before rendering. Mostly, shaders are optimized for a specific graphics
processor. However, nowadays, shaders can be written to support multiple
processors on multiple platforms.

Android accommodates the option to work with shaders in the Android framework
itself. Additionally, OpenGL shaders can also be used and customized with the help
of the Android NDK. There are many occasions where exquisite graphical quality is
delivered with the help of shaders without excellent raw art assets.

We will have a discussion about shaders in this chapter from the point of view of
Android game development through the following topics:

•	 Introduction to shaders
•	 How shaders work
•	 Types of shaders
•	 Android library shaders
•	 Writing a custom shader
•	 Shaders through OpenGL
•	 Use of shaders in games
•	 Shaders and game performance

Working with Shaders

[156]

Introduction to shaders
Many developers develop games on Android, but do not possess much knowledge
about shaders. In most cases, developers do not need to work with shaders, or there
are some pre-defined shaders inside the game development framework or engines.

In 1988, the animation studio Pixar introduced the modern concept of shaders.
However, GPUs were not capable of handling shaders at that point of time. OpenGL
and Direct3D are the first two graphic libraries to support shaders. GPU started
supporting shaders through pixel shading at the 2D level. Soon, it was enhanced
to support vertex shaders. Nowadays, geometry shaders are also supported by
OpenGL 3.2 and Direct3D 10 libraries.

Let's now dive a bit deeper into shaders to understand their definition, necessity,
and scope for Android games.

What is a shader?
In simple words, a shader is an instruction set to manipulate the visual display of the
input graphic assets.

Let's elaborate the definition a bit. All the instructions are basically done through
programming. That's the reason the concept of a shader exists only in computer
graphics. Shaders are able to perform a computation based on the instruction and
input asset to produce more efficient output-displayable assets.

Typical shaders can process either a vertex or a pixel. Pixel shaders can compute
on the color, depth, and alpha properties of an asset. Vertex shaders can compute
the position, color, co-ordinates, depth, illuminations, and so on of a vertex. Thus,
shaders can be primarily divided into two categories depending on the operational
base type:

•	 2D shaders
•	 3D shaders

Necessity of shaders
In the normal practice of game development, Android developers do not bother
about shaders. But the necessity of shaders is inevitable. Initially, for small-scale
games, art assets are used without improvement. Any modification to the assets is
managed by the old process of updating the art asset itself.

Chapter 7

[157]

Shaders can minimize this extra time-consuming effort. The same asset can be
manipulated to create different objects on screen. For example, you can blur out
the object as it goes out of focus, change the color of the sprites during gameplay to
indicate different teams or players, create masks of art assets, and so on.

Shaders have the following benefits:

•	 When different shaders are applied to the same art asset, it produces
different assets, depending on your requirements at runtime. Thus, the
shader can save extra art-creation time.

•	 One-time integration of drawable objects in the game can lead to a different
visual experience through different shaders.

•	 As the art assets are minimized, using shaders can reduce the game build
size.

•	 There will be more visual difference with the same set of assets.
•	 Animation can be created by shaders with simple art by manipulating the

visual content repeatedly.
•	 Shaders are useful for creating visual effects during runtime.

However, using shaders may lead to some negative consequences:

•	 Using shaders will increase the processing time due to the manipulation of
the visual assets during runtime

•	 Unoptimized use of shaders may lead to more heap memory consumption as
various intermediate instances will be stored in it

•	 Sometimes, shaders are responsible for the distortion of objects while
processing

•	 Art assets become vulnerable to quality loss using shaders

Only the first two are actual direct consequences of using shaders. The rest of
the problems can occur only if the developer uses a badly written shader or faulty
shader. Therefore, it is extremely necessary to choose the perfect shader for a specific
task.

Sometimes, the shader process takes a long time, resulting in poor FPS output. A few
old GPUs do not support all kinds of shaders. Therefore, the developer should check
and confirm the hardware platform on which the shader is to perform.

Working with Shaders

[158]

Scope of shaders
Shaders can be used in a variety of sectors related to computer graphics, such as
image processing, photography, digital animation, video/computer/digital games,
and so on.

The gaming sector is one of the largest communities that uses shaders. The Android
platform is no exception. Android game developers use shaders on a large scale in
both 3D and 2D games.

Frankly speaking, 2D games do not have much scope for shaders. Only a pixel
shader can manipulate the color, opacity, saturation, and hue of a pixel. This is
useful when the same raw assets are used for different visibility.

For example, a 2D cricket game has many teams with different outfits to distinguish
between them. The developer creates all the sprite animation assets in one design
and applies shaders to manipulate color differently for different teams. Thus, the
output sprites have different visibility and are recognized easily by the player.

How shaders work
We have already discussed that shaders process either vertices or pixels. So, the basic
working principle is to change or manipulate data at runtime:

A shader process is a specific set of instructions to process vertices or fragments.
Different shader programs can be written for various types of processing.

A vertex shader is used to change the shape of the model; it can also change the
surface-formation system.

Pixel/fragment shaders can change the pixel color value along with opacity. Pixel
data can be merged, modified, or replaced by a shader program to form a new digital
image.

Chapter 7

[159]

Types of shaders
There are many shaders used in the gaming industry. They are categorized on the
basis of their behavior and features. Some of the shaders are as follows:

•	 Pixel shaders
•	 Vertex shaders
•	 Geometry shaders
•	 Tessellation shaders

Let's have a detailed look at these types.

Pixel shaders
Pixel shaders are 2D shaders that work on textures or digital images. Pixel shaders
process colors and other attributes of a single pixel. Each single pixel is called a
fragment. This is the reason pixel shaders are often called fragment shaders.

Vertex shaders
A vertex shader mainly operates on the vertices of a mesh or model. Every mesh of
a model is made up of multiple vertices. A vertex shader can only be applied to 3D
models. So, a vertex shader is a type of 3D shader.

Geometry shaders
Geometry shaders are used to create new primitive graphic elements. After applying
a vertex shader in order to execute a rendering pipeline, geometry shaders are used
to create points, lines, and triangles to form a surface.

Tessellation shaders
This is a typical 3D shader used to simplify and improve 3D mesh during
tessellation. It is subdivided into two shaders:

•	 Hull shaders or tessellation control shaders
•	 Domain shaders or tessellation evolution shaders

These two shaders are used together to reduce mesh bandwidth.

Tessellation shaders have the power to improve 3D models in such a way that the
drawable vertex count is reduced significantly. Thus, rendering becomes faster.

Working with Shaders

[160]

Android library shaders
Android provides the shader option in its framework in the android.graphics
package. A few well-known and widely used shaders are also in the Android library.
Some of them are as follows:

•	 BitmapShader: This can be used to draw a bitmap in the texture format. It
also supports tiling or mirroring of the bitmap. It is very useful for creating
terrain with tiling.

•	 ComposeShader: This is used to merge two shaders. So, it is very useful for
masking or merging colors for two different shaders.

•	 LinearGradient: This is used to create a gradient along with the given line
segment with a defined color set.

•	 RadialGradient: This is used to create a gradient along with the given circle
segment with a defined color set. A radial origin and radius are provided to
create the gradient.

•	 SweepGradient: This is used to create a sweep gradient color around a point
with the given radius.

Here is an example:

@Override
protected void onDraw (Canvas c)
{
 float px = 100.0f;
 float py = 100.0f;
 float radius = 50.0f;

 int startColor = Color.GREEN;
 int targetColor = Color.RED;

 Paint shaderPaint = new Paint();
 shaderPaint.setStyle(Paint.Style.FILL);

 //LinearGradient Example to a circular region
 LinearGradient lgs = new LinearGradient(px, py, px + radius, py +
radius,
 startColor, targetColor, Shader.TileMode.MIRROR);
 shaderPaint.setShader(lgs);
 c.drawCircle(px, py, radius, shaderPaint);

 //RadialGradient Example to a circular region
 px = 200.0f;

Chapter 7

[161]

 py = 200.0f;
 RadialGradient rgs = new LinearGradient(px, py, radius,
 startColor, targetColor, Shader.TileMode.MIRROR);
 shaderPaint.setShader(rgs);
 c.drawCircle(px, py, radius, shaderPaint);

 //SweepGradient Example to a circular region
 px = 300.0f;
 py = 300.0f;
 shaderPaint.setShader(new SweepGradient(px, py, startColor,
targetColor));
 c.drawCircle(px, py, radius, shaderPaint);
}

Here is what it looks like:

These options are really good for creating different objects with different styles of the
same primitive object.

Writing custom shaders
A developer has the option to write a customized shader as per their requirements.
Android provides the android.graphics.Shader class. It is easy to create your own
shader class using the primitive shaders provided.

The custom shader may not include only one shader. It can be a combination of
various shaders. For example, consider masking an image with a circular view port
with a motion-touch event:

private float touchX;
private float touchY;

Working with Shaders

[162]

private boolean shouldMask = false;

private final float viewRadius;
private Paint customPaint;

@Override
public boolean onTouchEvent(MotionEvent motionEvent)
{
 int pointerAction = motionEvent.getAction();
 if (pointerAction == MotionEvent.ACTION_DOWN ||
 pointerAction == MotionEvent.ACTION_MOVE)
 shouldMask = true;
 else
 shouldMask = false;

 touchX = motionEvent.getX();
 touchY = motionEvent.getY();
 invalidate();
 return true;
}

@Override
protected void onDraw(Canvas canvas)
{
 if (customPaint == null)
 {
 Bitmap source = Bitmap.createBitmap(getWidth(), getHeight(),
 Bitmap.Config.ARGB_8888);
 Canvas baseCanvas = new Canvas(source);
 super.onDraw(baseCanvas);

 Shader customShader = new BitmapShader(source,
 Shader.TileMode.CLAMP, Shader.TileMode.CLAMP);

 customPaint = new Paint();
 customPaint.setShader(customShader);
 }

 canvas.drawColor(Color.RED);
 if (shouldMask)
 {
 canvas.drawCircle(touchX, touchY - viewRadius, viewRadius,
 customPaint);
 }
}

Chapter 7

[163]

This example is one of the most commonly used shader styles in picture-based
games. You can also implement such shaders to create hidden object games.

Another use case is highlighting a specific object on the screen. The same viewable
circle can be used to show only the highlighted object. In this case, color can be
semitransparent to show a dull background.

Shaders through OpenGL
In Android, OpenGL supports implementing shaders for Android 3D games.
OpenGL ES 2.0 is the supporting platform in Android for shaders. It has two
functional segments while manually creating the shader:

•	 Shader
•	 Program

The shader is converted into intermediate code to support the program to run on
GPU. In the compiling stage, the shaders are converted. This is the reason why
shaders need to be recompiled before the program execution.

We will work with GLSurfaceView of the android.opengl package in our example.

For 3D games, an Android developer can use this package to play with shaders
on the Android SDK. This package provides the API to create and use an OpenGL
shader with Java.

We will use GLSurfaceView instead of the normal Android View or SurfaceView.
The implementation will look like this:

import android.opengl.GLSurfaceView;
import android.content.Context;

public class MyGLExampleView extends GLSurfaceView
{
 private final GLRenderer mRenderer;

 public MyGLExampleView (Context context)
 {
 super(context);

// Set OpenGL version 2.0 as we will be working with that particular
library
 this.setEGLContextClientVersion(2);

// Set the Renderer for drawing on the GLSurfaceView

Working with Shaders

[164]

 MyOpenGLRendererExample = new MyOpenGLRendererExample
 (context);
 setRenderer(mRenderer);

// Render the view only when there is a change in the //drawing data
 setRenderMode(GLSurfaceView.RENDERMODE_CONTINUOUSLY);
 }

 @Override
 public void onPause()
 {
 super.onPause();
 }

 @Override
 public void onResume()
 {
 super.onResume();
 }
}

We need to create a renderer for the view to draw objects through OpenGL:

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.ShortBuffer;

import android.content.Context;
import android.opengl.GLES20;
import android.opengl.GLSurfaceView.Renderer;
import android.opengl.Matrix;
import android.util.Log;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

public class MyOpenGLRendererExample implements Renderer
{

 // Declare matrices
 private float[] matatrixProjection = new float[32];
 private float[] matrixView = new float[32];
 private float[] matatrixProjectionOnView = new float[32];

Chapter 7

[165]

 // Declare Co-ordinate attributes
 private float vertexList[];
 private short indicxList[];
 private FloatBuffer vertexBuffer;
 private ShortBuffer drawBuffer;

 private final String vertexShader =
 "uniform mat4 uMVPMatrix;" +
 "attribute vec4 vPosition;" +
 "void main() {" +
 " gl_Position = uMVPMatrix * vPosition;" +
 "}";

 private final String pixelShader =
 "precision mediump float;" +
 "void main() {" +
 " gl_FragColor = vec4(0.5,0,0,1);" +
 "}";

 // Declare Screen Width and Height HD display
 float ScreenWidth = 1280.0f;
 float ScreenHeight = 800.0f;

 private int programIndex = 1;

 public MyOpenGLRendererExample (Context context)
 {

 }

 @Override
 public void onDrawFrame(GL10 param)
 {
 renderView(matatrixProjectionOnView);
 }

 @Override
 public void onSurfaceChanged(GL10 objGL, int width,
int height)
 {
 ScreenWidth = (float)width;
 ScreenHeight = (float)height;

 GLES20.glViewport(0, 0, (int)ScreenWidth,

Working with Shaders

[166]

(int)ScreenHeight);

 //reset matrices
 for(int i = 0; i < 32 ; ++ i)
 {
 matatrixProjection[i] = 0.0f;
 matrixView[i] = 0.0f;
 matatrixProjectionOnView[i] = 0.0f;
 }

 Matrix.orthoM(matatrixProjection, 0, 0f, ScreenWidth,
0.0f, ScreenHeight, 0, 50);

 Matrix.setLookAtM(matrixView, 0, 0f, 0f, 1f, 0f, 0f,
0f, 0f, 1.0f, 0.0f);

 Matrix.multiplyMM(matatrixProjectionOnView, 0,
matatrixProjection, 0, matrixView, 0);
 }

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config)
 {
 //create any object
 //Eg. Triangle:: simplest possible closed region

 createTriangle();

 // Set the color to black
 GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1);

 // Create the shaders
 int vertexShaderTmp =
loadShader(GLES20.GL_VERTEX_SHADER, vertexShader);

 int pixelShaderTmp =
loadShader(GLES20.GL_FRAGMENT_SHADER, pixelShader);

 int programIndexTmp = GLES20.glCreateProgram();

 GLES20.glAttachShader(programIndexTmp,
vertexShaderTmp);

 GLES20.glAttachShader(programIndexTmp,

Chapter 7

[167]

pixelShaderTmp);

 GLES20.glLinkProgram(programIndexTmp);

 // Set shader program
 GLES20.glUseProgram(programIndexTmp);
 }

 void renderView(float[] matrixParam)
 {
 int positionHandler =
GLES20.glGetAttribLocation(programIndex, "vPosition");

 GLES20.glEnableVertexAttribArray(positionHandler);
 GLES20.glVertexAttribPointer(positionHandler, 3,
GLES20.GL_FLOAT, false, 0, vertexBuffer);

 int mtrxhandle =
GLES20.glGetUniformLocation(programIndex, "uMVPMatrix");

 GLES20.glUniformMatrix4fv(mtrxhandle, 1,
 false, matrixParam, 0);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES,
indicxList.length, GLES20.GL_UNSIGNED_SHORT, drawBuffer);

 GLES20.glDisableVertexAttribArray(positionHandler);
 }

 void createTriangle()
 {
 // We have to create the vertexList of our triangle.
 vertexList = new float[]
 {
 20.0f, 200f, 0.0f,
 20.0f, 300f, 0.0f,
 200f, 150f, 0.0f,
 };

 //setting up the vertex list in order
 indicxList = new short[] {0, 1, 2};

 ByteBuffer bytebufVertex =

Working with Shaders

[168]

ByteBuffer.allocateDirect(vertexList.length * 4);

 bytebufVertex.order(ByteOrder.nativeOrder());
 vertexBuffer = bytebufVertex.asFloatBuffer();
 vertexBuffer.put(vertexList);
 vertexBuffer.position(0);

 ByteBuffer bytebufindex =
ByteBuffer.allocateDirect(indicxList.length * 2);

 bytebufindex.order(ByteOrder.nativeOrder());
 drawBuffer = bytebufindex.asShortBuffer();
 drawBuffer.put(indicxList);
 drawBuffer.position(0);

 int vertexShaderTmp =
loadShader(GLES20.GL_VERTEX_SHADER, vertexShader);

 int pixelShaderTmp =
loadShader(GLES20.GL_FRAGMENT_SHADER, pixelShader);

 int program = GLES20.glCreateProgram();
 if (program != 0)
 {
 GLES20.glAttachShader(program, vertexShaderTmp);
 GLES20.glAttachShader(program, pixelShaderTmp);
 GLES20.glLinkProgram(program);

 int[] linkStatus = new int[1];

 GLES20.glGetProgramiv(program,
GLES20.GL_LINK_STATUS, linkStatus, 0);

 if (linkStatus[0] != GLES20.GL_TRUE)
 {
 Log.e("TAG_EXAMPLE_OPENGL", "Linking Failed !!
Error:: " + GLES20.glGetProgramInfoLog(program));

 GLES20.glDeleteProgram(program);
 program = 0;
 }
 }
 }

Chapter 7

[169]

// method to create shader
 int loadShader(int type, String shaderCode)
 {
 int shader = GLES20.glCreateShader(type);

 GLES20.glShaderSource(shader, shaderCode);
 GLES20.glCompileShader(shader);

 return shader;
 }
}

The vertex shader code (String vs_SolidColor) has two parameters that it needs.
The uMVPMatrix parameter is of the type mat4, which holds in the transformation
matrix that can be used to translate the position. The uMVPMatrix parameter is a
uniform matrix. The vPosition parameter is of type vec4, which holds the positions
of vertex.

This system can be applied for a triangular surface.

Use of shaders in games
Shaders are vastly used in games and animation, especially when creating dynamic
lighting, changing tints, and making dynamic visual improvements. Sometimes,
the world environment is created with shaders.

Shaders in a 2D game space
Only pixel shaders can be used in 2D games. Each pixel of a digital image is
considered a fragment. This is the reason why pixel shaders are also called fragment
shaders. Pixel shaders can only perform color changes, tiling, and masking.

BitmapShader, ComposeShader, LinearGradient, RadialGradient, and
SweepGradient are the variants of Android 2D shaders.

A 2D game world is created with images. Developers often choose to create different
assets to give the same object a different look and feel. In this process, developers
end up making a bigger APK with almost the same use set.

Sprites can also be a field where shaders can hold a significant role. When using the
same sprite to create different objects, the colors of certain fragments need to change
dynamically. Pixel shaders can be very useful here.

Shaders in a 2D space are used to change color, blur segments, change brightness,
change opacity, tint images, and so on.

Working with Shaders

[170]

Shaders in a 3D game space
The most common use of shaders in 3D games is for dynamic shadow. In modern
game development, a shadow is an inevitable element to improve the game
experience. 3D models look real after applying a texture.

In Android, a 3D shader is applied through OpenGL. We have already discussed an
example:

A raw model with only vertex information

This is a simple model without any lightening or shaders. Let's apply some shaders
to give it a solid 3D look:

Chapter 7

[171]

A simple flat shader applied

Now, the developer can apply any texture or color to give it a different feel. In
this part, the developer can choose to restrict this with color or texture. Generally,
textures are used in this kind of scenarios in order to make the model visually real.
However, this costs more than just color manipulation.

We will see a color and lighting change here to get a completely different feel of the
same object. There are different procedures to handle different scenario requirements
for the game.

Working with Shaders

[172]

This example, however, is just a visual representation of how shaders can manipulate
3D models for a different look and feel:

Shaders and game performance

Shaders are usually process-heavy. A fragment shader processes each fragment of
a texture and manipulates its data. A large texture may lead to a visible delay in the
game loop.

We can see shaders from different perspectives to create an idea of performance.
Large textures decrease performance, and many small textures also affect
performance. There has to be a balance between them to have a feasible real-time use
of shaders.

Creating shadows is one of the extensive uses of shaders. However, the quality of
shadow processing is inversely proportionate to performance. In high-quality games,
we can experience real-time shadow. Shaders map the object vertices and process
it according to the light direction. It is then projected on the X-Z plane to create
shadow. Shadows are merged with objects on the plane and with other shadows.

Shaders can be used to improve world visibility with different lights, materials,
and colors.

Chapter 7

[173]

Here are some pros of using shaders in games:

•	 Complete flexibility when rendering assets
•	 Fewer asset packages and increased reusability
•	 Dynamic visual effects
•	 Dynamic lighting and shadow
•	 Sprite manipulation on the fly

There are few disadvantages of using shaders:

•	 Comparatively low frame rate
•	 Performance drop
•	 Required supported hardware platforms and graphic drivers

In spite of the few disadvantages, shaders have proved enough to be an intrinsic part
of game development. Any performance drop is handled by upgrading the hardware
and graphic drivers.

Nowadays, shaders are being optimized for embedded devices with limited
resources. This even opens up the chance to increase the use of shaders on almost
every platform, without affecting the performance significantly.

Summary
Since Android API level 15, the framework supports OpenGL ES 2.0. This gave
immense flexibility to graphic programmers to implement shaders in Android games.

Almost every hardware configuration supports shaders to run on GPU. However,
the scale of using shaders determines the performance. In modern day, this is not
actually an issue.

Shaders are being used widely in games. In every aspect of graphical programming,
shaders have already proven their place. All the famous and successful game
developers have acknowledged the importance of shaders. Graphic artists need not
worry about everything visual in the game, which reduces the development time
significantly.

Working with Shaders

[174]

Shaders are, therefore, widely used in games. Newer shaders are coming up with
additional features now. The upgrading cycle of shaders has become less. However,
hardware is also being upgraded with newer technology to support the graphical
updates.

It feels like magic to see a simple cube turn into anything that has the same
orientation. This magic will keep happening on a larger scale in the future.

Just developing a game is not enough. Shaders help a lot in reducing memory usage,
but they increase processing overhead. We will try to explore various optimization
techniques of storage and processing in the next chapter.

[175]

Performance and Memory
Optimization

Optimization is one of the most important tasks of any development cycle. It
is inevitable, especially for games. Game optimization enhances performance
significantly. Through optimization, more hardware platforms can be targeted.

You have already learned that Android supports a range of hardware platforms.
Each platform has a separate configuration. By optimizing the use of hardware
resources, a game can be run on more hardware platforms. This technique can be
applied to visual quality as well. Not all devices have the same quality display, so
optimizing the assets for low resolution saves a lot of storage space as well as heap
memory during runtime.

In programming, the developer often writes intermediate code and forgets to
optimize it later. This may cause a significant amount of performance loss or even
cause the game to crash.

We will discuss the scope of various optimizations in Android game development
through the following topics:

•	 Fields of optimization in Android games
•	 Relationship between performance and memory management
•	 Memory management in Android
•	 Processing segments in Android
•	 Different memory segments
•	 Importance of memory optimization
•	 Optimizing performance
•	 Increasing the frame rate

Performance and Memory Optimization

[176]

•	 Importance of performance optimization
•	 Common optimization mistakes
•	 Best optimization practices

Fields of optimization in Android games
We all know the requirement of optimization in any development project. In the case
of game development, this fact remains the same. In a game development project,
the process starts with limited resources and design. After development, the game is
expected to be run on maximum possible devices with maximum quality. To achieve
that, memory and performance optimization becomes mandatory. So, let's discuss
the following four segments of optimization:

•	 Resource optimization
•	 Design optimization
•	 Memory optimization
•	 Performance optimization

Resource optimization
Resource optimization is basically optimizing the art, sound, and data files.

Art optimization
We have already discussed many optimization techniques and tools. Here, we will
discuss the necessity of art optimization.

Art is visually the most important part in games. Improving the art with bigger and
better display quality increases processing and storage costs.

Large textures occupy a large amount of memory. However, scaling up art to fit
a bigger resolution screen affects visual quality. So, a balance must be met. Also,
various Android devices support various limitations on texture size. Moreover, it
takes more time for a shader to work on a larger texture.

One common mistake that developers make is using alpha information for a
completely opaque texture. This data increases the texture size significantly.

Art assets can be optimized on the art style. Many developers use flat-colored texture
over gradient. Flat color information can be accommodated within 8-bit pixel data.
This again saves disk space and processing time.

Chapter 8

[177]

In spite of these optimization scopes, the developer might not use all of them to
increase flexibility in order to create quality visual art without spending much time
on optimization.

Sound optimization
Sound is another vital resource for games. Audio may be compressed to save space
and effort. A common practice in the Android game industry is to use a compressed
format for long audio files.

It takes time to compress and decompress files during runtime. So, using SFX
dynamically can be a problem if it is compressed. It can trigger a significant and visible
stutter. Developers like to use an uncompressed format for SFX and a compressed
format for long and continuous playing sounds such as background music.

Data file optimization
Sometimes, game developers use separate data files to create a flexible project
structure to interact with external tools or for better data interface. Such files are
commonly in text, XML, JSON, or binary formats. Developers may create their own
data format in a binary model.

Binary data can be processed quickly if the correct algorithm is used. There is not
much technicality in data optimization. However, developers always need to keep a
check on the amount of data and the total file size.

Design optimization
Design optimization is used to increase the scalability, quality experience, flexibility,
and durability of the game. The main method is to restructure or modify the game
parameters around the core game concept.

Let's divide this section into two parts from the point of view of functionality:

•	 Game design optimization
•	 Technical design optimization

Game design optimization
A game can be completely different from the initial idea during the game design
optimization phase. Design optimization is done based on certain tasks. The
developer needs to find different ways to communicate the basic game idea.
Then, they can choose the best one, following some analysis.

Performance and Memory Optimization

[178]

Game design should be flexible enough to accommodate runtime changes to improve
the overall experience and increase user count. A highly optimized game design can
be efficient enough to predict user behavior, game performance on various devices,
and even monetization.

The game control system design has to be optimized enough to carry out all the tasks
easily. Game controls should be easy to spot and understand. For Android touch
devices, the placement of controls is also very important.

Technical design optimization
Technical design optimization is limited to the development cycle. It sets the project
structure, program structure, development platform dependency, and so on.

The technical design document also specifies the scope and scale of the game.
Such specifications help run the game smoothly on a device, because the hardware
platform is already covered within the technical design document.

This is a pre-development process. A few assumptions need to be taken care of in
this document. These assumptions should be optimized enough to evolve when a
real-time situation occurs.

Technical design can also take care of the following tasks during development.
By optimizing these tasks, it is much easier to implement and execute:

•	 Program architecture
•	 System architecture
•	 System characteristics
•	 Defined dependencies
•	 Impacts
•	 Risk analysis
•	 Assumptions

All these tasks can be optimized for a better development cycle with less effort,
and the game will be more polished and will have a higher performance rate.

Memory optimization
Memory optimization is mandatory for any software development procedure.
Memory has its physical limitation based on the hardware configuration, but games
and applications cannot be made separately for each device.

Chapter 8

[179]

In a technical design, the range of memory use for the game across all targeted
hardware platforms should be mentioned. Now, it is a very common scenario that
games take more memory than predicted, which eventually results in the game
crashing. The developer is awarded with a memory overflow exception.

To avoid this scenario, there are two main things to be taken care of:

•	 Keep memory peak within the defined range
•	 Don't keep data loaded in memory unnecessarily

Android uses paging and mapping to manage memory usage. Unfortunately, it does
not offer memory swapping. Android knows where to find the paged data and loads
accordingly.

Here are some tricks to optimize memory in Android gaming.

Don't create unnecessary objects during runtime
Often, the developer creates an intermediate data object inside a loop. It leaves
memory footprints for the garbage collector to collect. Here is an example:

//Let's have an integer array list and fill some data
List<int> intListFull = new ArrayList<int>();
//Fill data
for(int i = 0; i < 10; ++ i)
{
 intListFull.add(i);
}

// No we can have two different approach to print all
// values as debug log.
// Approach 1: not optimized code
for (int i = 0; i < intListFull.size() ; ++ i)
{
 int temp = intListFull.get(i);
 Log.d("EXAMPLE CODE", "value at " + i + " is " + temp);
}
// List size will be calculated in each cycle, temp works
//as auto variable and create one memory footprint in each
//loop. Garbage collector will have to clear the memory.

// Approach 2: optimized code
int dataCount = intListFull.size();
int temp;
for (int i = 0; i < dataCount ; ++ i)

Performance and Memory Optimization

[180]

{
 temp = intListFull.get(i);
 Log.d("EXAMPLE CODE", "value at " + i + " is " + temp);
}
// only two temporary variable introduced to reduce a foot
//print in each loop cycle.

Use primitive data types as far as possible
User-defined data types take more memory space than primitive data types.
Declaring an integer takes less space than embedding an integer in a class. In
Android, if the developer uses the Integer class instead of int, the data size
increases four times.

For Android compilers (32 bit), int consumes 4 bytes (32 bit), and Integer
consumes 16 bytes (128 bit).

With full respect to modern age Android devices, limited use of this data type may
cause no significant harm to memory. However, extensive use of non-primitive
data types may cause a significant amount of memory block until the developer or
garbage collector frees the memory.

So, the developer should avoid enum and use static final int or byte instead. enum,
being a user-defined data type, takes more memory than a primitive data type.

Don't use unmanaged static objects
In older Android versions, it is a common issue that a static object does not get
destroyed automatically. Developers used to manage static objects manually. This
issue is no longer there in newer versions of Android. However, creating many static
objects in games is not a good idea as the life span of static objects is equal to the
game life. They directly block memory for a longer period.

Using too many static objects may lead to memory exceptions, eventually crashing
the game.

Don't create unnecessary classes or interfaces
Each class or interface has some extra binding space in its instance. The modular
programming approach demands maximum possible breakage in the coding
structure. This is directly proportional to the number of classes or interfaces.
This is considered to be a good programming practice.

Chapter 8

[181]

However, this has a consequence on memory usage. More classes consume more
memory space for the same amount of data.

Use the minimum possible abstraction
Many developers use abstraction in multiple layers for a better programming
structure. It is very useful to restrict a certain part of a custom library and provide
only selective APIs. When it comes to game development, if the developer works on
games only, then use of abstraction is not very necessary.

Abstraction results in more instructions, which directly leads to more processing time
and more memory use. So, even if abstraction may be convenient sometimes, the
developer should always think twice before using abstraction while developing games.

For example, a game may have a set of various enemies. In such a case, creating a
single enemy interface and implementing it for different enemy objects helps create
a simple and convenient program hierarchy. However, there may be completely
different attributes for different enemies. So, the use of abstraction will depend on
the game design. Whatever the case is, if developers use abstraction, then it will
always increase the set of instructions to be processed at runtime.

Keep a check on services
Services are useful for the completion of one task in the background, but they are
very costly in terms of both process and memory. A developer should never keep a
service running unless required. The best way to automatically manage the service
life cycle is to use IntentService, which will finish once its work is done. For
other services, it is the developer's responsibility to make sure that stopService or
stopSelf are being called after the task is done.

This process proves to be very efficient for game development, as it actively supports
dynamic communication between the user and developer.

Optimize bitmaps
Bitmaps are the heaviest assets for a game. In game development, most of the heap
memory is used by bitmaps. So, optimizing bitmaps can significantly optimize the
use of heap memory during runtime.

Usually, the memory required for a bitmap to be loaded in memory is given by this
formula:

BitmapSize = BitmapWidth * BitmapHeight * bytePerPixel

Performance and Memory Optimization

[182]

For example, if a 480 x 800 size bitmap is being loaded in the ARGB_8888 format
(4 bytes), the memory will be as follows:

BitmapSize = 480 x 800 x 4 = 1536000 bytes ~ 1.5mb

The format can be of the following types in Android:

•	 ARGB_8888 (4 bytes)
•	 RGB_565 (2 bytes)
•	 ARGB_4444 (2 bytes) (deprecated in API level 13)
•	 ALPHA_8 (1 byte)

Each bitmap will occupy memory according to the preceding formula. So, it is
recommended that you load a bitmap in memory as per requirement to avoid
unnecessary heap usage.

Release unnecessary memory blocks
As we have discussed earlier for freeing memory, the same can be applied on any
object. After the task is finished, the instance should be set to null so that the garbage
collector can identify and free the allocated memory.

In a game state machine, the class structure should provide an interface to free the
memory of instantiated objects. There may be a scenario where a few of the member
objects are done with their tasks and a few are still in use, so it would be a bad idea
to wait for the entire class instance to be freed. The developer should selectively free
the memory of unused objects without deleting the class instance.

Use external tools such as zipalign and ProGuard
The ProGuard tool is efficient at shrinking, optimizing, and obfuscating the code by
removing unused code and renaming classes, fields, and methods with a secured
and encoded naming structure. ProGuard can make the code more compact, which
directly impacts RAM usage.

In game development, developers often use many multiple third-party libraries,
which may be pre-compiled with ProGuard. In those cases, the developer must
configure ProGuard to exclude those libraries. It is also a good idea to protect the
codebase from getting stolen.

zipalign can be used to realign the released APK. This optimizes the APK further to
use less space and have a more compact size. Normally, most of the APK building
frameworks provide zipalign automatically. However, the developer might need to
use it manually for few cases.

Chapter 8

[183]

Performance optimization
Performance means how smoothly the game will run on the target platform and
maintain a decent FPS throughout the gameplay session. In the case of Android
gaming, we already know about the wide range of hardware configurations.
Maintaining the same performance across all devices is practically impossible. This is
the reason developers choose target hardware and minimum hardware configuration
to ensure that the game is performing well enough to be published. However, the
expectation also varies from device to device.

In real development constraints, performance optimization is limited to the targeting
set of hardware. Thus, memory has its own optimizing space in the development
process.

Technically, from the programming point of view, performance optimization can be
done by paying more attention to writing and structuring code:

•	 Using minimum objects possible per task
•	 Using minimum floating points
•	 Using fewer abstraction layers
•	 Using enhanced loops wherever possible
•	 Avoiding getters/setters of variables for internal use
•	 Using static final for constants
•	 Using minimum possible inner classes

Using minimum objects possible per task
Creating unnecessary objects increases processing overhead as they have to be
initialized in a new memory segment. Using the same object for the same task
multiple times is much faster. Here is an example:

public class Example
{
 public int a;
 public int b;

 public int getSum()
 {
 return (a + b);
 }
}
//Lets have a look on un-optimized code
// Here one object of Example class is instantiating per loop //cycle

Performance and Memory Optimization

[184]

// Same is freed and re-instantiated
public class ExecuterExample
{
 public ExecuterExample()
 {
 for (int i = 0; i < 10; ++ i)
 {
 Example test = new Example();
 test.a = i;
 test.b = i + 1;
 Log.d("EXAMPLE", "Loop Sum: " + test.getSum());
 }
 }
}
// Optimized Code would look like this
// Here only one instance will be created for entire loop
public class ExecuterExample
{
 public ExecuterExample()
 {
 Example test = new Example();
 for (int i = 0; i < 10; ++ i)
 {
 test.a = i;
 test.b = i + 1;
 Log.d("EXAMPLE", "Loop Sum: " + test.getSum());
 }
 }
}

Using minimum floating points
In machine-level language, there is nothing like an integer or float. It is always a bit
indicating true or false (0 and 1 in technical language). So, an integer can be directly
represented by a set of bits, but floating points requires extra processing overhead.

Until a point of time, there was no use of floating points in programming languages.
Later, the conversion came, and floating point was introduced with extra processing
requirements.

Chapter 8

[185]

Using fewer abstraction layers
It is very obvious that abstraction demands extra processing per layer. So, as we
increase the abstraction layers, the process becomes slower.

Using enhanced loops wherever possible
In the case of array and list parsing, an enhanced for loop works way faster than the
usual conventional for loop as it has no iterating variable system, and each array or
list element can be accessed directly.

Here is an example of a non-enhanced loop:

int[] testArray = new int[] {0, 1, 2, 3, 5};
for (int i = 0; i < testArray.length; ++ i)
{
 Log.d("EXAMPLE", "value is " + testArray[i]);
}

Here is an example of an enhanced loop:

int[] testArray = new int[] {0, 1, 2, 3, 5};
for (int value : testArray)
{
 Log.d("EXAMPLE", "value is " + value);
}

Avoid getter/setters of variables for internal use
Getters and setters are used to access or change the state of any internal element
of an object from outside the object. In high-level reasoning, it does not follow the
basic concept of data encapsulation. However, getters and setters are used widely in
Android game development.

In many cases, developers use getters and setters from inside the class object.
This unnecessarily increases processing time, resulting in degraded performance.
So, developers should use getters and setters as little as possible and make sure they
are not being used internally.

Use static final for constants
Constants are not meant to be changed during runtime. In the case of global
constants, the data is directly associated with the class object. Hence, we're required
to parse the class object in order to access it.

Performance and Memory Optimization

[186]

Using static is an excellent idea to get rid of this extra process. Element accessibility
increases significantly when using static for constants. However, the developer needs
to keep a check on memory usage as well.

Using minimum possible inner classes
Each inner class adds an extra layer to processing. Sometimes, it is good to have
inner classes in order to structure the codebase in an efficient and readable way.
However, it comes with the cost of processing overhead. So, the developer should
use the fewest possible inner classes in order to optimize performance.

Relationship between performance and
memory management
In Android game development, performance and memory optimization often
conflict with each other. To maintain the visual quality of the game, better art assets
are mandatory, which eventually increases memory overhead and performance lag.

Optimizing memory needs to do frequent memory operations, resulting in
performance drop. To increase performance, objects have to be readily available for
smooth processing. Clearly, both cannot be applied at their extreme levels.

Balancing between them is the only way out to optimize the full game to run
smoothly without exhausting memory.

Memory management in Android
Let's discuss the memory management system in Android. It has a direct effect on
the game development process. Games are treated like applications in Android.
Very often, developers face memory issues in both the runtime and minimized
states of the game. There are three main topics to discuss to understand the working
principles:

•	 Shared application memory
•	 Memory allocation and deallocation
•	 Application memory distribution

Chapter 8

[187]

Shared application memory
Android uses the Linux kernel, and Linux uses "shared" pages to share the same
memory segment within running processes or services. For example, Android often
shares the "code" memory within processes. Very often, external libraries and JVM's
executable code memory can be safely shared across processes without creating a
deadlock. Data pages could be shared temporarily between processes, until a process
modifies the shared memory.

Android allocates dedicated memory for each application or process. This is
called private memory. The same process may also use shared memory. Android
automatically sets a cap, depending on the total of both, to determine when the
process or application will be killed, especially if it is in the background. This cap is
called Proportionate Set Size (PSS):

If an application's PSS is high, then there is a very high chance that the process
might be killed by Android. This scenario can be handled programmatically to keep
memory usage in check, especially if the application is relying on some background
activities or services to carry out some task. The developer has to make sure that
the game uses minimum possible memory at any point in time, especially when the
application goes into the background. It may be a good idea to free memory and
objects that you no longer need in the background, and disconnect from any shared
memory that you no longer need when you go into the background. This will reduce
the chances of your application getting unexpectedly killed by the Android system.

Memory allocation and deallocation
The Android memory management system defines a virtual cap for each application,
which is the logical heap size. It can be increased if necessary, but only if there is free
memory available. However, this logical heap size is not the actual allocated memory
for the application. Calculated PSS is the actual physical cap that may vary during
runtime and shared memory dependency.

Performance and Memory Optimization

[188]

Application memory cannot use more physical memory than PSS. So, after reaching
this limit, if the application tries to allocate more memory, then it will receive
OutOfMemoryError thrown by the system. Android might kill other empty or
background processes to accommodate memory for the running application in a
critical situation. Application memory will be deallocated in these scenarios:

•	 If the application quits
•	 If the process becomes inactive and some other process requires the memory
•	 If the application crashes for any reason

Application memory distribution
Android sets a hard limit on the heap size for each app to maintain a multitasking
environment. The exact heap size limit varies between hardware configurations
based on the capacity of RAM of the device. If the application reaches the heap
capacity and tries to allocate more memory, it will receive OutOfMemoryError,
and the application will be killed by Android.

The developer needs to check the amount of memory available on the device
and then determine an average target memory use. The developer can query the
operating system for this amount of memory by calling getMemoryClass(). This
returns an integer indicating the number of MBs available for the application's heap.

Processing segments in Android
A game is basically an application in terms of functionality. Multiple applications or
games can run on an Android platform. However, for games, only one game is active
at one point of time, but rest of the applications run in the background.

Let's have a look at how Android processes its applications.

Application priority
Android sets the priority of the running applications, and it can kill a running
application of low priority depending on the requirement.

Each application uses some memory and processing bandwidth. There may be a
situation where multiple applications are running together. If a new application
wants to run, then Android allocates memory and process bandwidth for the new
application. If there is not enough bandwidth or process available, then Android kills
one or more than one running application with low priority.

Chapter 8

[189]

Android sets priority by the following status:

•	 Active process
•	 Visible process
•	 Active services
•	 Background process
•	 Void process

Active process
An active process is basically a process that communicates with the platform very
frequently and runs in the foreground. This process is the last one to be killed by
Android, when necessary.

An active process fulfils the following criteria:

•	 It runs in the foreground
•	 It is visible
•	 At least one Android activity is running
•	 It interacts actively with the user interface
•	 All event handlers are in the active state

Performance and Memory Optimization

[190]

Visible process
This process is basically an active process that is not in the foreground and does
not interact with the user interface. It is the second highest priority for the Android
platform.

The criteria for this process are as follows:

•	 It runs in the background
•	 It has visible activity
•	 It does not interact with the user interface
•	 UI event handlers are not active
•	 Process event handlers are active

Active services
Active services are services that support an ongoing process without a visible
interface. Android will kill such services first and then the actual active process.

This service follows the following criteria:

•	 It has no visible interface
•	 It supports or works for respective active processes
•	 It runs in the background

Background process
Background processes are basically minimized or inactive processes. These processes
are not visible on the screen. The process thread does not run for these processes, but
the application state is saved in the memory. These are vulnerable to being killed by
the processor. These processes can be resumed after interruption.

These are inactive/minimized processes. They remain in memory. The application
stays in the paused state.

Void process
Void processes are also called empty processes. A void process is literally empty.
It holds no application data or state in memory. This process has the highest priority
in order to get killed by the operating system.

Chapter 8

[191]

Application services
Android application services are parts of the actual application process.
These services may run within and outside the parent process.

Let's clear two very common misconceptions about services:

•	 A service is not a separate process
•	 A service is not a thread

The fact is, services are part of an application process and not separate processes.
Services are not threads. They are part of the process that runs in the background,
and they keep running even if the main application is in a suspended state.

Services are meant to carry out a single task and do not call back the parent
application. This is why they can run even after the application is closed.

Service life cycle
Services are started by the parent application process, as follows:

Context.startService();

After being started, the service starts carrying out a single task in the background.
The service can stop itself after the task is done. For example, a simple file download
service will stop after a successful downloading task. Many game developers use
such features in their games to improve the user experience.

These services can be bound with one or more processes for interactivity. The
application can send request and get response from a bound service, which creates a
server-client architecture. But these bound services have a limited lifetime until the
last application component is bound with the service.

Resource processing
Android has its own resource process structure. It has some predefined
resource types:

•	 Drawable resources
•	 Layout resources
•	 Color resources
•	 Menu resources
•	 Tween animation resources
•	 Other resources

Performance and Memory Optimization

[192]

Drawable resources
All drawable resources fall in this category, including frame animation. Android
provides the res/drawable/ project path dedicated to all drawable resources. All
bitmaps, various XML, and predetermined frame animations can be placed here.

These can be accessed through the R.drawable class.

Layout resources
All defined layouts fall in this category. Android provides the res/layout/ project
path dedicated to all layout files. Layout is useful to define the application UI.

These can be accessed through the R.layout class.

Color resources
Color resources are basically a list of colors that are due to change upon changing
the view of the applicable object. Android stores this in the res/color/ folder in the
hierarchy.

These can be accessed through the R.color class.

Menu resources
All menu contents can be defined here. Android provides the res/menu/ project
path dedicated to all drawable resources.

These can be accessed through the R.menu class.

Tween animation resources
All tween animation resources fall in this category. Android provides the res/anim/
project path dedicated to all tween animation resources.

These can be accessed through the R.anim class.

Other resources
All other resources are places in the res/values/ folder. Many developers define the
string under this category with styles.

These can be accessed through the R.values class.

Chapter 8

[193]

Different memory segments
During the runtime of an application, three main kinds of memory segments are
used depending on the behavior:

•	 Stack memory
•	 Heap memory
•	 Register memory

Stack memory
All auto variables and runtime allocation during processing will be stored in the
stack memory segment. The garbage collector deallocates the memory after use. So,
there is no manual memory management process associated with the stack memory.

However, extensive use of auto variables also may cause memory errors. This is
the reason we have already discussed why minimizing unnecessary auto variable
declarations is necessary.

Stack memory is also used to execute program instructions. Each instruction is
broken down into a single operation and put into a stack by the interpreter. Then, a
recursive procedure is used to execute all the instruction stacks and return the result.

Let's have a look at how stack memory works for objects and primitives:

public class ExampleClass
{
 public ExampleClass()
 {
 int bitMapCount = 0; // primitive type
 Bitmap testBmp = BitmapFactory.decodeFile("bitmap path");
 // Object loading
 bitMapCount = 1;
 }
}

In this example, bitMapCount is an int local variable and gets stored in the stack
directly. The memory used for this variable will be freed just after the scope.

However, testBmp is a bitmap object, which will be allocated in the heap, but the
reference will be stored in the stack. When the program pointer comes out of the
scope, the reference will be automatically deleted, and the garbage collector can
identify the heap memory allocated for testBmp as having zero reference and will
free this memory segment.

Performance and Memory Optimization

[194]

Heap memory
Heap memory is the segment where all the instances of classes and arrays are stored.
JVM allocates this memory while instantiating any object.

The garbage collector does not operate automatically on this memory segment
during application runtime. It is the developer's responsibility to free the memory
after use. In the case of Android, the garbage collector will only free the memory
when there is no reference for the memory segment in the running application.

Game assets are the major elements that are stored in this memory segment. Art is
the most significant asset among them. So, optimizing bitmaps has a direct impact on
heap memory uses. Very often, the developer allocates memory for assets and does
not break the reference. This causes the memory block to be occupied during the
entire runtime.

Here is an example:

// create a bitmap in a class constructor having global
// scope with public access
public class ExampleClass
{
 public Bitmap testBmp;
 public ExampleClass()
 {
 testBmp = BitmapFactory.decodeFile("bitmap path");
 }
}

In this example, the memory for the bitmap will be occupied even after the use, until
the ExampleClass instance is there in memory. The interpreter has no standing
instruction to free the memory segment, because testBmp still has the reference to
the memory allocated to the bitmap.

We can optimize this in the following way with a bit of modification:

public class ExampleClass
{
 public Bitmap testBmp;
 public ExampleClass()
 {
 testBmp = BitmapFactory.decodeFile("bitmap path");
 }
 // create a method to free memory allocated for the
 // bitmap after use
 public void unloadBitmap()
 {

Chapter 8

[195]

 testBmp = null;
 }
}

In this case, by calling unloadBitmap() after the use of the bitmap will remove
the reference of the loaded bitmap from testBmp. So, the garbage collector will
find this memory location as zero-referenced memory and free it to be used for
other allocations.

Register memory
In the case of Android development, the developer must not worry about register
memory. Registers are directly associated with the processor, and the processor
stores the most significant and frequently used data in this memory segment.

Register memory is the fastest memory segment used for any application runtime.

Importance of memory optimization
No matter how the game is, how good it looks, or how well it is designed, if the
game does not run on the target platform, then it cannot be successful. We already
know that Android has various sets of hardware configurations.

The main variations of hardware are specific to the processor and memory. In the
case of processors, it depends on their speed and quality. In case of memory or RAM,
it is only the volume.

Even today, RAM can vary from 512 MB to 4 GB in Android devices. Memory
optimization should always have a minimum target of RAM as per design. So,
memory optimization is immensely important in order to run a game on the
minimum available RAM.

Sometimes, the developer fits the peak usage within the target limit of memory.
However, they perform on a testing device, which does not project a real-time
scenario most of the time. There is always an error margin. So, it is not always true
that if the game runs on a certain limit of RAM, it will always be provided with the
same memory. This is the place when memory optimization plays a major role. It
helps a lot in creating the buffer range for the game to run in a real-time scenario.

There could be a scenario where the application runs out of memory, even when
it does not require the amount of RAM it demands. This clearly indicates that the
application is suffering from memory leakage. Memory leakage is one of the most
common problems in game development. Optimizing memory properly helps get rid
of this problem.

Performance and Memory Optimization

[196]

Another aspect of memory optimization is to increase the probability of the game
to stay in the background. When an application goes into the background, Android
might kill the application if it needs to free memory space for other foreground
applications. Memory optimization makes sure that the application occupies the
minimum possible memory while running. So, it is possible to save the data of the
state in the cache for a longer period of time for applications that use less memory.

Many games use game services at the backend. If the application is not active, then
there is a good chance that the service may also get killed by the operating system.

Optimizing overall performance
Earlier, we discussed performance optimization from only the programming point of
view. Let's discuss other scopes of optimizing the performance of Android games.

The developer can optimize performance from the time of design to development
through the following points:

•	 Choosing the base resolution
•	 Defining the portability range
•	 Program structure
•	 Managing the database
•	 Managing the network connection

Choosing the base resolution
From the point of view of game development on Android, choosing the base
resolution is probably the most significant design decision. Base resolution defines
the scale of the graphical or visual element. The larger the resolution that the
developer chooses to work upon, the more storage and process time it takes. Base
resolution is also responsible for the quality and color information to be stored with
bitmaps. Comparatively lower resolution does not demand many details in the
visible asset, which can optimize bitmap data. However, as the resolution increases,
it requires more data to preserve detailing. Eventually, this has a significant influence
on processing.

With the advancement of technology, Android device resolutions are getting
bigger and better. So developers now choose a bigger resolution to support higher
range devices.

Chapter 8

[197]

Defining the portability range
This is also a design phase optimization. In this stage, the developer needs to decide
the range of hardware platform to support. This includes various configurations.
We already know that the Android device range includes a large set of variations in
terms of memory, processing speed, graphics quality, and so on.

If the range supports the range of portability of a similar device, then optimization
becomes easier. However, this is not the case for most cases of game development.
Usually, the developer should divide the optimization into three segments:

•	 Low-performing devices
•	 Average-performing devices
•	 High-performing devices

So, ideally, there should be three layers of optimization to properly define the
portability range.

Program structure
The program structure is another very important technical design decision for
both performance and memory optimization. This includes all the parameters for
programming optimization, which we have already discussed.

Additionally, program hierarchy also matters for performance. Often, the developer
creates unnecessary intermediate calls to parse through several layers. A few
singleton classes help here to optimize performance significantly. Proper game state
machine design also helps optimize performance.

Managing the database
There are many games that are mainly data driven. In such cases, a database needs to
be managed properly.

For example, a quiz game must have a question bank maintained in the database at
some server to avoid frequent update of the game build. Database queries take time
to execute as there is also a network layer in between. So, the game layer sends a
query to the database. Then, the database fetches the data, binds it accordingly, and
sends it back to the game. Then, the game has to unbind the received data in order to
use it. Using the minimum query calls is the only way to minimize the performance
overhead. Using a faster database also helps the game to perform well.

Performance and Memory Optimization

[198]

Managing the network connection
Modern day gaming has enhanced to multiplayer and server-controlled mechanisms,
which reduces the job of frequent updates of the game build. In both cases, network
connection needs to be implemented in a proper way. There are mainly two types of
multiplayer architecture currently being followed:

•	 Turn-based multiplayer
•	 Real-time multiplayer

It's comparatively easy to manage a turn-based multiplayer system than real-time
multiplayer. There is another model of multiplayer called asynchronous multiplayer.

Each network call results in a lag in performance, as the game is dependent on the
data from the server. So, the client-server architecture needs to be optimized in order
to achieve the following goals:

•	 Less lag time
•	 Less layer processing
•	 Less number of pings to the server

Increasing the frame rate
The ultimate target for performance optimization is to increase the frame rate. A high
frame rate automatically delivers smooth gameplay. However, the developer has to
make sure that the frame rate effect is visible in the game in terms of smoothness and
effect.

For the current mobile gaming industry, an average FPS of 60 for a 2D game
or mid-scaled 3D game is considered high performance. On the other hand,
massive 3D games might consider an average FPS of 30-35 as good performance.

High-performing games with higher FPS open a door for further visual effects to
improve the user experience. This has a direct impact on monetization.

Importance of performance optimization
As we have just discussed, performance optimization directly influences the frame
rate, which again directly impacts the gameplay experience. However, performance
optimization has other importance too:

Chapter 8

[199]

•	 Games might crash or go in a not-responding state due to a non-optimized
program

•	 Performance optimization has a direct impact on memory as well
•	 Performance optimization can enlarge the range of supported hardware

platforms

Common optimization mistakes
The gaming industry is now one of the fastest growing industries. To keep up with
the speed and to stand in the market, many companies plan a shorter development
period with limited optimization. In this scenario, the developer often commits the
following mistakes knowingly or unknowingly:

•	 Programming mistakes
•	 Design mistakes
•	 Wrong data structure
•	 Using game services incorrectly

Programming mistakes
Programming is a manual process, and to err is human. So, it is obvious that there is
no bug-free and completely optimized programming for games. However, there are
few ways in which a programmer can minimize mistakes to have an optimized game
code base. Let's discuss the major mistakes a programmer commits while developing
a game in Android.

Programmers often create many temporary variables and forget to keep track of them.
Often, these variables occupy unnecessary memory and increase processing calls.

Sorting is widely used in game development for many purposes. There are several
sorting algorithms. Most of the time, the developer chooses convenient techniques
rather than efficient ones. For large arrays or lists, this may cause a serious lag in
process flow.

Using too many static instances for accessibility ease is another bad practice. Using
static may help in faster processing, but is not a good idea to make many static
instances, as it blocks a lot of memory space during its lifetime. Many programmers
even forget to manually free this memory.

Performance and Memory Optimization

[200]

Creating abstract layers and using them extensively makes the process slower.
However, it is a good programming practice generally, but for game programming,
it only helps in limited cases.

Convenient loop use is another bad programming practice for games. There are
several ways to work with loops. A programmer should first determine what goes
best with the algorithm.

Game programming is mostly about logical development than technical. It may take
time to build up the perfect logic for certain tasks. Many game programmers do not
consider multiple ways of doing one task. Most of the time, it leaves a great scope of
optimization unexplored.

Design mistakes
Designers often make mistakes when defining the hardware range and the game
scope. Both are very important factors to create an optimized game design.

Another mistake is to target the wrong target resolution. The target resolution has a
direct effect on the art asset size. Targeting the wrong resolution leads to unnecessary
scaling, causing extra processing overhead.

Wrong game data structure
Data structure is an inevitable part of game programming. Android supports
dynamic array initialization. Yet, many developers prefer lists to store data. Lists are
much slower than arrays. Lists should only be used when it is absolutely necessary.

It is the developer's responsibility to figure out the perfect data structure for
data-driven games. Proper technical design should include a data structure
model and its use.

Using game services incorrectly
Services are very useful at times. In the modern day gaming industry, services are
used for download/upload of data, for push notifications, for deep linking in games,
or for server connectivity. However, services come at a huge cost of processing
and memory consumption. Running services causes significant amount of power
consumption as well.

So, using services should be mandatory only when there is no other way around.

Chapter 8

[201]

Best optimization practices
Some defined and logical optimization techniques are available. We will discuss the
major scopes and fields that are related to Android game development:

•	 Game design constraints
•	 Game development optimization
•	 Game data structure model
•	 Using game assets
•	 Handling cache data

Design constraints
It is always a best practice to define the target hardware platforms and acknowledge
the limitation. Technical design can structure the development constraints according
to it.

The scalability and portability should also be decided at the time of designing
the game. This should give the developer a tentative platform limitation along
with other constraints. We have already discussed design optimization. All those
segments should be evaluated before going into development.

Targeting screen size and resolution has to be fixed when designing the game along
with creating layouts, which will fit in multiple resolutions. This is because Android
has many screen sizes as discussed earlier.

Selecting the minimum Android version and the target Android version gives the
developer an advantage when structuring the development project, as supported
API levels and platform features are already defined.

Development optimization
This is one of the most important segments of optimization. Here are some tips to
carry out the development process successfully with optimization:

•	 Using as many as possible folder structures provided by Android for project
scalability.

•	 Using resource formats according to the dpi list provided by Android.
•	 The developer should avoid scaling images. This effectively reduces memory

and processing overhead.
•	 Using sprites for multiple purposes is also a good practice to create

animations.

Performance and Memory Optimization

[202]

•	 The tiling technique is very useful in terms of reducing memory
consumption.

•	 Overriding the onDraw() method is always a good practice to flush the
old rendering pipeline and to use a systematic draw order with absolute
requirement.

•	 Use XML-based layout wherever possible; however, games have very limited
scope for this Android feature.

Data structure model
Data structures are one of the inevitable parts of game program design since the
beginning, irrespective of the scale of the game. Each game always processes data for
various purposes such as sorting, searching, storing, and so on.

There are many data structure models available for various operations. Each
operation has its own advantages and disadvantages. The developer must choose the
most efficient one depending on the requirement.

Let's take an example of data storing comparison between an array and a linked
list. Effectively, linked lists are more flexible and dynamic in nature than arrays.
However, this feature comes at a cost of slow processing and higher memory
consumption.

The developer might not always require to store dynamic data. For example, if
cricket team data needs to be stored, then an array is sufficient, because there will
always be 11 players on each side, and that cannot be modified during gameplay.
It will make the process much faster and more efficient than using a linked list in this
particular case.

In another case, for a shooting game, the developer cannot predict the number of
bullets the user may fire during gameplay. So, a queue data structure will be most
efficient in order to process all the fired bullets.

Similarly, stacks and tree structures can be chosen whenever they fit the purpose.
The same approach may be taken for sort and search algorithms.

Asset-using techniques
We have already categorized assets for games. Let's discuss them from the
perspective of optimization techniques and best practices.

Chapter 8

[203]

Art assets
A separate optimization technique can be applied to a set of art assets. Art assets are
the face of games. So, it is necessary that the visuals are attractive enough to start
gameplay.

As we have discussed already, better art assets cost memory and performance.
However, this can be minimized to a certain level. There are several tools for art
asset optimization. However, using inappropriate tools can cause data loss, which
eventually results in poor visual quality.

Art should never compromise from the perspective of visual quality. Often, artists
develop assets that do not reflect perfectly in games because of inappropriate
optimization.

We have already discussed how art assets should be made. Now, let's assume that
some art is using only 8-bit data space as raw format, but the same is exported in a
24-bit format. Then, the developer can use tools to optimize the asset to a typical 8-bit
format without affecting the visual quality.

This rule also applies for complete opaque assets. The developer can get rid of the
transparency information in order to have optimized art assets.

Audio assets
Audio assets are standalone assets too. Audio has become a very important asset
for extended user experience. Audio configuration can vary with a wide range of
frequency, bit depth, and compression techniques. Each variation in configuration
has a different level of processing and memory consumption.

So, audio optimization is also a very important part of the optimization process.
Regular practice in the Android game development industry is to choose two
different formats of audio for SFX and music files.

One thing that developers generally ignore is audio information data. Few Android
devices have a certain frequency cap, but sounds are usually good when more
frequencies are used. So, it is a technical design level step to determine the cap for
Android game sounds. So, every sound should be made within the proximity.

Sound designers need to keep up the quality within the limit. In this way, audio
assets can be optimized at the time of development.

Performance and Memory Optimization

[204]

Other assets
Besides art and audio, there may be other data assets used in games. The data format
can be anything, such as binary, text, XML, JSON, or custom. Custom formats are
basically the same as binary format, with some encryption.

It is a common practice in game development to use data sets separately. A separate
data set helps structure the project and give flexibility to use the same code for a
different output. Often, the developer updates data source to update the complete
game experience without creating a new APK. This reduces development time in the
longer run in order to maintain the game and do easy updates.

From the optimization point of view, these data sources should be optimized enough
to get processed quickly and not consume too much memory. However, reading
and writing an external file takes time. Normally, binary files are the fastest to be
processed and smallest in size. However, after reading the binary data, it has to be
parsed to be used in games, which eventually increases processing.

The most commonly used data formats are XML and JSON. The Android library has
support for both of them, which includes a generic parser. The developer can have
readily available data without making extra processing effort. However, the data can
be manipulated during gameplay, depending on the game's requirements.

Handling cache data
A cache is a memory segment that is similar to RAM from a functionality point
of view, but acts faster than conventional RAM. The processor can access this
segment much faster. So, logically, a cache should only store data that is being used
frequently.

The best possible way to handle cache data is to keep a check on the application
memory usage. Generally, there should be at least 10 % of free memory available for
the operating system. It is tested that an application can use an average of 2% of the
total free memory.

However, the developer cannot control the cache technically. They can only make
sure that the most commonly used elements are optimized in a perfect way so that
the executer automatically uses cache memory for them.

Chapter 8

[205]

Summary
Optimization is one of the most important tasks in any software development,
especially in games, where logical programming dominates technical programming.
There are plenty of optimization tools and techniques available for technical
programming as it has the most common algorithms to implement. However, in the
case of game programming, each gameplay indicates a different set of algorithms.
In many cases, an artificial intelligence algorithm is also made separately. So, there
is a very high probability that the programmer has to find out an efficient way to
optimize freshly written algorithms.

We have discussed all the possible scopes of optimization in Android game
development. Technical optimization is mandatory as it has fixed guidelines to
follow. However, logical development will depend on the game algorithm and its
requirements. So, it is an extra effort for the game developer to optimize Android
games.

Sometimes, developers over-optimize games. This is not recommended.
Over-optimization usually downgrades the quality of the game. So, at the
time of technical design, optimization cases should be declared.

Most large-scale development processes have a separately defined task set for
optimization. Some developers choose to develop a dynamic optimization process.
This means that the developer optimizes the game in different stages on different
scales. Both the processes are effective, but the first one is logically more sensible,
because defining a separate task will always give an idea about the tentative time
duration for overall optimization. This helps manage the entire game development
process in a better way.

All optimization processes are validated through a testing phase. All design,
engineering, and art work is tested in this segment of game development.
We will have a deeper look at testing in the next chapter of this book.

[207]

Testing Code and Debugging
"A bug free product is a myth" is a common phrase in the development industry.
A problem-free and issue-free application or any other product is rationally not
possible. However, the developer can always minimize the number of bugs and
issues so that the game can run with the fewest possible problems and support the
most platforms with the maximum possible efficiency.

We will discuss the scope of various debugging aspects in Android game
development through the following topics:

•	 Android AVDs
•	 Android DDMS
•	 Android device debugging
•	 Monitoring the memory footprint
•	 Strategic placement of different debug statements
•	 Exception handling in Android games
•	 Debugging for Android while working with cross-platform engines
•	 Best testing practices

Android AVDs
AVDs are the most significant and important part of debugging Android games.
In the initial stages, the concept started with an emulator. There are a few predefined
emulators that can be used to run the build on a development PC. An Android
emulator provides an interface of a real-time-like device.

Testing Code and Debugging

[208]

AVDs have a few features that virtually provide the device RAM, Android version,
screen size, display dpi, keyboard, and different visual skins. Older AVDs mostly
looked the same.

In the current version of Android Studio, most of the Android device categories are
provided. Developers can create AVDs as per the target development platform.

The categories are as follows:

•	 Android mobile phones
•	 Android tablets
•	 Android TVs
•	 Android wearables

Chapter 9

[209]

AVDs can be created or manipulated by the AVD manager tool provided within
the Android SDK. Each and every attribute of AVD can be managed by the AVD
manager. This tool can also help the developer to create a custom AVD.

Let's have a look at the attribute factors for each different AVD:

•	 Name
•	 Resolution
•	 Display size
•	 Android version API level
•	 Android target version
•	 CPU architecture
•	 RAM amount
•	 Hardware input options
•	 Other options
•	 Extended AVD settings and creation

Name of the AVD
The name is only to identify the AVD. Anything can assigned to it, and it can be
changed later. Predefined AVD names can also be changed at the time of creation.

AVD resolution
AVD resolution is one of the most important factors for visibility. There are some
predefined resolution standards, but they can also be changed. Nowadays, mostly,
developers pick resolutions that are widely used on an actual hardware platform.

One more use of resolution is to check and verify the display portability of games.
Mostly, games are made in a target base resolution. Then, the game can be tested on
various resolutions to check the compatibility.

Normally, multiple resolutions would create any issues if the aspect ratio is the same.
However, in the case of Android, we can find multiple aspect ratios for different
devices. The resolution factor of AVD helps fit the game and check its compatibility
for multiple aspect ratios as well.

Testing Code and Debugging

[210]

AVD display size
This is the visible space or visible display area on an AVD. One high-resolution AVD
can have a small display area. It directly implies that the AVD has a high dpi value,
which means a higher display quality.

This section of AVD helps ensure the visual quality of the game. However, it is not
always possible to set the actual display region in the development system as the
development system has its own display limit.

Android version API level
While developing an Android game, the developer needs to limit the API usage
to a certain version. The API version can be deprecated in future versions of
Android or even discontinued. To check this factor, the developer can set an API
version for AVD.

Android target version
This is the Android version that will be used to run the AVD. This can verify the
manifest target Android version and minimum version range.

CPU architecture
Android devices mainly use three types of CPU architecture: armeabi, armeabi-v7,
and x86. This does not have a direct impact on games. However, the processing
speed and quality varies with CPU architecture.

The developer should keep in mind that actual game performance on a real
device with a different CPU architecture will always perform differently than an
AVD. So, it may give the developer an idea of performance, but it needs to be tested
on a real device.

RAM amount
RAM amount specifies the total amount of memory that the AVD has, which can be
used to check the memory consumption of the game at various levels.

It is best to predict the memory overflow issue for various devices. By running
multiple apps at a time, a real-time clone can be created with the AVD. The default
value is set to 66 MB. The developer can set any value according to the requirement.

External storage can be also defined as an SD card for a virtual device.

Chapter 9

[211]

Hardware input options
In Android devices, there can be many types of hardware input distributed within a
wide range of hardwires. The most common variations are as follows:

•	 Touch screen
•	 Touch pad
•	 Key pad
•	 Custom controller
•	 Hardware buttons

Many hardware platforms have opted for a combination of these variants. An AVD
creates a virtual system for all of these input systems.

Other options
There are a few other options that are readily available for manipulation. If the
development system has a camera attached to it, then the AVD can also use a
camera, both front and back.

Additionally, virtual accelerometers, sensors, and so on can be associated with
an AVD.

Extended AVD settings
A custom AVD can be made through a modern AVD manager tool. A developer
can design a virtual device with a custom look and feel, and with complete custom
hardware configuration.

Android DDMS
DDMS can be used to analyze a running application for all run-time details such as
memory consumption, process calls, and so on.

The main functions of Android DDMS are port providing, screen capture on a
device, thread details, heap details, and Logcat processing. This service can be used
for spoofing calls and messaging.

Testing Code and Debugging

[212]

Android DDMS is widely used for device debugging. Particularly in the game
development procedure, it is often used as a line-by-line debugging system. This
is very useful to identify unwanted loaded objects and assets, and to track runtime
exceptions:

Android DDMS can be used to carry out the following activities.

Connecting an Android device filesystem
DDMS can connect to a device filesystem and provide a file browser-based operation
to copy, modify, or delete any file on the device through a PC. This method or
feature, however, is not very important for Android game development.

Chapter 9

[213]

Profiling methods
Another interesting DDMS feature is profiling or tracing matrices of certain methods.
It gives information on the following topics:

•	 Execution time
•	 Number of operations
•	 Number of cells
•	 Memory use during execution

Extending this feature, the developer can even gain control over profiling the data of
a method by calling startMethodTracing() and stopMethodTracing().

The developer needs to keep an eye on two things:

•	 Up to Android 2.1, it is mandatory to have an SD card installed on the device
with the application's permission to read/write on it

•	 From Android 2.2 onward, the device can stream profiling data directly to
the development PC

Thread information monitoring
DDMS provides details on each thread running for each process on a selected device.
However, games mostly run on a single thread. As devices are getting better each
day, games are also using the multithreading feature to support various operations
such as rendering, processing, file I/O, and networking.

Heap information monitoring
DDMS provides heap usage at runtime for a running process. It is very useful for
game developers to track the game process heap during execution.

Tracking memory allocation
This is very useful for tracking each and every memory allocation of runtime objects.
This gives every detail on each specific object of each class. This means the developer
can find out which class is taking exactly how much memory. This helps achieve
memory optimization in a much more efficient way.

Testing Code and Debugging

[214]

Monitoring and managing network traffic
From Android 4.0 onwards, DDMS features a Detailed Network Usage tab to
track when a game makes network requests. Using this feature, the developer can
monitor network data transfer. This option can be very useful to optimize network
development. It can distinguish between different traffic types by applying a "tag" to
network sockets before use.

Tracking log information using Logcat
Logs are the most useful debugging technique for tracking almost anything. It is a
good practice to use logs properly to check the data or value of certain objects during
runtime. It is very useful for logic development for games.

In game development, logical requirements will be different for different games. So,
there must be a good amount of code that is written for the first time. Predefined test
cases are not available. This deficiency can be overcome using Logcat from DDMS.

Logcat provides log information in the following types:

•	 Verbose
•	 Debug
•	 Error
•	 Warning
•	 Information

Emulating device operations
As we discussed Android virtual devices earlier, DDMS can work upon AVDs as
well. So, it becomes much easier to emulate a real-time scenario to debug the game
being developed.

The most commonly used emulations are as follows:

•	 Emulating an incoming phone call
•	 Emulating an incoming message
•	 Emulating network state change during runtime

These three are the most common scenarios at runtime. So, these situations can
be checked without a physical device. Interruption handling has been difficult for
Android devices since the beginning. As a matter of fact, this can be a nightmare for
a programmer if interrupts are not handled properly.

Chapter 9

[215]

There are some common problems of crashing/freezing/restarting the game after
an interrupt. Many times, some unnecessary services or processes can be interrupts,
and they may change the game state during the interruption period. Emulating
every possible interrupt on an AVD is always an added advantage to speed up the
debugging or interrupt handling procedure.

Android device testing and debugging
Android device debugging is the most important part for any Android game
development process. Let's divide this topic into two sections:

•	 Device testing
•	 Device debugging

Device testing
The main challenge for a game developer is to run the game on a large number
of different devices. These different devices include different displays, different
resolutions, different Android operating system versions, different processors,
and different memory capacities. Due to these reasons, Android device testing is
important and has to be carried out with great effort and planning.

Normally, in a game development cycle, first-point testing is carried out by the
developer. This process makes sure that the game is running on devices.

Then, the tester or a group of testers test the game on different devices from various
aspects. This is the main part of device testing.

Generally, the main testing phases are divided into four parts according to game
development stages:

•	 Prototype test
•	 Full or complete test
•	 Regression test
•	 Release test or run test

In other words, a similar kind of distribution in each category is termed as follows:

•	 Pre-alpha test
•	 Alpha test
•	 Beta test
•	 Release candidate test

Testing Code and Debugging

[216]

There are many other testing procedures that may follow typical software testing.
However, in game development, usually, these approaches are followed. Let's
describe these stages in brief.

Prototype testing
The developer and designer together develop a playable stage of the basic game idea
with an initial set of game rules. These rules and gameplay are tested during the
phase of prototype testing.

Ideally, core gameplay is tested in this phase to analyze the feasibility, potential, and
scope for the game concept.

Prototype testing is probably the most important part of the game development
process. This phase determines the future of the game concept and also helps in
developing a meta game and monetization model for the concept.

Full or complete testing
Usually, whenever the first few builds are submitted to testing in each phase, full
testing is conducted. This reveals each and every possible issue with the game,
including crashing, freezing, visual issues, playability, game rules, and design faults.

Most of the issues are usually reported during this phase, which eventually implies
the possible completion time and effort for that game build.

Regression testing
Regression testing comes after full testing. Developers, designers, and producers
take a call on each and every issue reported during full test. They select issues for
resolving, and after the issues are resolved, they are submitted back to the testing
team for regression test.

In regression testing, a tester usually picks the issue and specifically checks whether
it is actually solved or not. If the issue occurs in a fixed build, then the testers reopen
the issue for the next regression cycle. This cycle continues until all the reported
issues are addressed.

Release testing or run testing
This is probably the most mechanical testing phase of game testing. In this phase, the
tester runs the regression test passed builds on various target devices, just to check
whether the game is running on that hardware or not. This is the reason this phase is
often called a "run test".

Chapter 9

[217]

As many physical devices as possible are used for this segment of testing for a
compatibility check. The final device support list is created after this testing phase. It is
almost impossible to arrange all the available devices and perform a run test on them.
So, the developer groups the devices according to their configuration and performance.
Devices that behave in a similar manner are put in the same category, and only one or
two devices are actually arranged for run testing for the whole group.

Device debugging
We have already seen that device testing is mainly the job of a tester. Now, we will
see that device debugging is basically the job of a developer. However, commonly,
it is done by both developers and testers.

In the game industry, device debugging is mainly used to find out runtime crashes,
freezes, memory issues, networking issues, and performance issues. Through device
debugging, the developer gathers the following information:

•	 Runtime maximum heap consumption
•	 Average FPS on various devices or multiple set of devices
•	 Unnecessary loaded objects
•	 Hardware button behavior
•	 Network request and response

Use of breakpoints
Breakpoints are very useful and handy in the case of device debugging. The game
thread is paused at breakpoint, and the state info can be achieved through DDMS.
Game programming is mostly about customized algorithms, which might produce
some unusual behavior during runtime. Breakpoints come handy in this situation.
The developer can debug the logic line by line after a breakpoint so that the root
cause of the behavior is found and fixed.

Monitoring the memory footprint
Memory footprints are the signs and ways of using memory during runtime. From
the point of game memory usage optimization, monitoring the memory footprint is
very important:

•	 Checking log messages
•	 Checking heap updates

Testing Code and Debugging

[218]

•	 Tracking memory allocation
•	 Checking overall memory usage
•	 Tracking memory leaks

Checking log messages
Using log messages has been the most effective and immediate debugging
technique. Message logs are very useful for tracking the program control flow and
runtime object tracking.

Dalvik message log
The Dalvik message log is useful for tracking memory. Whenever garbage collection
happens, the garbage collector can print the following information through Dalvik
log messaging:

•	 Garbage collection reason: This info reveals the reason for triggering
garbage collection. The reasons can be GC_CONCURRENT, GC_FOR_MALLOC,
GC_HPROF_DUMP_HEAP, GC_EXPLICIT, or GC_EXTERNAL_ALLOC.

•	 Amount of memory freed: This section states the amount of memory freed
by the garbage collector in KB.

•	 Current heap memory status: This shows the percentage of heap memory
used and live objects memory/total heap.

•	 External memory status: There may be some operations that allocate
memory externally. This section shows the allocated memory/garbage
collection limit.

•	 Garbage collector pause time: Pause time is triggered twice, at the beginning
of garbage collection and at its end. Normally, the pause time is higher in the
case of a large heap.

ART message log
The ART message log is also capable of showing or tracking memory footprints.
However, it is not triggered unless explicitly requested.

Chapter 9

[219]

If the garbage collector pause time exceeds 5 ms or the garbage collector takes more
than 100 ms to execute, then garbage collector logs are printed. In the case of ART,
the following information can be shown as logs:

•	 Garbage collection reason: In ART log messages, the developer can have
Concurrent, Alloc, Explicit, NativeAlloc, CollectorTransition,
HomogeneousSpaceCompact, DisableMovingGc, or HeapTrim as the reason
for collection.

•	 Name of garbage collector: ART has few different garbage collectors that can
be involved in a collection process. The name can be known by the field of
the collection log. ART has these collectors: Concurrent Mark Sweep (CMS),
Concurrent Partial Mark Sweep (CPMS), Concurrent Sticky Mark Sweep
(CSMS), and Marksweep plus Semispace.

•	 Count of objects freed: This shows the total number of objects freed from
memory by the garbage collector.

•	 Amount of memory freed: This shows the total amount of memory freed by
the garbage collector.

•	 Count of large objects freed: This shows the number of objects freed from
the large object scope. These objects are freed by the collector.

•	 Memory amount freed from large objects: This shows the amount of
memory freed from the large object scope. This memory is freed by the
collector.

•	 Current heap memory status: This is the same as the one for Dalvik
logs—live objects count/total heap memory.

•	 GC pause time: In the ART pause time section, this is directly proportional
to the number of object references modified by the running garbage collector.
Unlike Dalvik, the ART CMS garbage collector has only one pause time
during the end of the collection process.

Checking heap updates
The developer can check the heap usage per update. It gives a clear picture of the
memory footprint. Heaps can be monitored with the help of several tools. There are
plenty of device memory monitors available in the market. DDMS device monitor
is one of them. It is a powerful tool that observes heap usage during the game's
runtime.

The Android SDK comes with an inbuilt device monitor at <sdk>/tools/monitor.

Testing Code and Debugging

[220]

The memory monitor in Android Studio is useful for Android Studio users. Monitors
can interact with the Android application to watch heap update with each garbage
collection. Through this, the Android developer can know about exact memory
usage for each segment of an application.

Sometimes, developers switch on/off methods to check exact heap usage.
Thus, it becomes easier to optimize it further.

Tracking memory allocation
This is helpful for memory optimization. Memory allocation can be monitored
through an allocation tracker.

Memory allocation tracking is required after a certain stage of memory optimization.
This helps identify each and every object's memory allocation. Often, many useless
objects stay back in memory. The developer can identify these objects and remove
them for greater memory optimization.

Memory allocation tracker is available with both Device Monitor in Android SDK
and Allocation Tracker in Android Studio.

However, it's not necessary to remove all allocations from performance-critical code
paths; yet, the allocation tracker can help developers identify important issues in code.
For instance, some apps might create a new Paint object on every draw. Moving this
object into a global member is a simple fix that helps improve performance:

Chapter 9

[221]

Let's have a quick look at the allocation information obtained:

•	 s1: This is the object package currently being tracked
•	 s2: This shows the Allocation tab is selected
•	 s3: This is used to start/stop tracking of the object
•	 s4: This updates the package allocation
•	 s5: This shows the allocation details

In game development, the number of objects in memory is immense, so it is very
difficult to keep track of allocation and deallocation of objects manually. This
monitoring tool helps find out the hidden spots that could have been easily ignored
during the optimization process.

Checking overall memory usage
Overall memory usage of an Android game is distributed in different
segments in RAM. This creates a general idea about application performance
and memory security.

Basically, there are two types of allocation.

Private RAM
This is the dedicated memory portion used by the game during runtime.
The Android operating system allocates this memory to the application.
Private RAM is distributed in two segments:

•	 Clean RAM
•	 Dirty RAM

Private dirty RAM is the most expensive one as it can only be used by specific
applications (in our case, it is an Android game).

Proportional set size (PSS)
This segment of RAM is used by multiple processes. It is basically shared memory.
Any RAM pages that are unique to the application process directly contribute to its
PSS, while pages that are shared with other processes contribute to the PSS value
only in proportion to the amount of sharing.

Testing Code and Debugging

[222]

Tracking memory leaks
Memory leakage is a serious threat to software development. So, it is absolute
necessary to track memory leakage and resolve it. When a process allocates memory
and loses the reference pointer, then it is impossible to free the memory within the
process.

There are few debug tools that can do this job to track down memory leakage.
However, there is another free and more effective solution. The developer can
always monitor memory consumption at any given point of time. A game runs
within an update loop. So, it is possible to track the memory peaks of different
game cycles. If the peak keeps increasing, it means there are leaks in the allocation/
deallocation of memory. Now, the developer can check the size of each object and
hunt down the leakage. Another benefit of this process is finding unnecessary objects
in memory alongside memory leakage.

Strategic placement of different debug
statements
A debug statement is the most important part of any development process.
Anything and everything can be tracked and traced through debug statements.
However, being a system printing call, each debug statement comes with a cost on
performance, which has a direct effect on runtime FPS. This is why a strategy on the
placement of debug statements is absolutely necessary.

Let's have a look at the strategies related to following categories:

•	 Memory allocation
•	 Tracking the object state
•	 Checking the program flow
•	 Tracking object values

Memory allocation
In a game development object cycle, an object should be allocated once per
initialization and deallocated on destruction. However, due to manual programming
mistakes, developers forget to free the memory. In this case, the garbage collector
cleans the memory when it is invoked by the system automatically. This way, a lag in
performance is observed.

Chapter 9

[223]

Now, as a strategic placement to trace such mistakes, two debug messages should be
placed at the constructor and destructor.

Also, a debug statement after initializing each object ensures a successful
initialization of the object. This can reveal the amount of memory it consumes.

Tracking the object state at runtime
An object can be initialized at any time during gameplay. Now, any external
dependency in the initialization process can cause failure of allocation. So, the object
goes into null state and might cause an exception if not handled properly.

A successful debug statement and a failed debug statement (with reason) helps the
developer rectify the issue.

Many times, a wrong deallocation also changes the state of the object. So, the debug
statement identifies the spot. The developer can solve the issue with the help of
debug statements both for objects and program flow.

Checking the program flow
A debug statement in every method clearly shows the call hierarchy and program
flow. A modular program can be tested with this system. Then, the module set can
be tested with one debug statement in each module start.

Any wrong or unnecessary calls can be removed or rectified through this process.
Proper program flow ensures a certain frame rate during runtime. So, this approach
can be used to optimize performance.

Tracking object values
Even after a successful initialization of the object, the content may not be correct.
So, putting a debug statement to check the loaded/initialized content is necessary
to avoid future conflicts.

This is very useful when loading data from an external source. Debug statements
are used to verify the loaded data after initialization. Any program module can
be designed using an object-tracking method, resulting in a better programming
structure.

Testing Code and Debugging

[224]

Exception handling in Android games
Exception handling may not be a part of debugging, but it helps reduce the number
of exceptions and unnecessary application crashes.

Exception handling in Android is the same as Java exception handling.

Syntax
Standard Java syntax for exception handling is as follows:

try
{
 // Handled code here
}
catch (Exception e)
{
 // Put debug statement with exception reason
}
finally
{
 // Default instruction if any
}

The suspicious code should be put inside a try block, and the exception should be
handled in a catch block. If the module requires some default task to execute, then
put it in the finally block. The catch and finally blocks might not be defined
always in exception handling. However, it is recommended that you process the
exception in each try block failure, which is a good programming practice. This
process requires you to analyze the module to find out any vulnerable chunk of code.

Here is a simple example of handling exception along with other vulnerable
default tasks.

This is the initial program design:

try
{
 // Task 1 which might throw exception
}
catch (Exception e)
{
 // Handles exception

Chapter 9

[225]

}
finally
{
 // Task 2 which might throw exception
}

The program should be written in this way:

void func1()
{
 try
 {
 funcTask();
 }
 catch (Exception e)
 {
 // Handles exception
 }
}

void funcTask()
{
 try
 {
 // Task 1
 }
 finally
 {
 // Task 2
 }
}

The developer should remember the following points:

•	 A try block can be used only with a catch block
•	 A try block can be used only with a finally block
•	 A try block can be used with both catch and finally blocks in sequence
•	 A try block cannot be used alone anywhere
•	 Nested try…catch is possible but not recommended as a good

programming practice

Testing Code and Debugging

[226]

Scope
There are plenty of predefined exception scopes depending on the exception type
and cause. However, the major exceptions handled in a game development process
are as follows:

•	 Null pointer exceptions
•	 Index out of bound exceptions
•	 Arithmetic exceptions
•	 Input/output exceptions
•	 Network exceptions
•	 Custom exceptions

Null pointer exceptions
This is one of the most encountered exceptions in the case of game development.
NullPointerException is thrown when any null object is referred to in the code.
The developer should track the initialization and use of the object to rectify this issue.

Here is an example:

class A
{
 public int num;
 public A()
 {
 num = 10;
 }
}
// some method in other class which is called during runtime.
void testFunc()
{
 A objA = null;
 Log.d("TAG", "num = " + objA.num);
}

Chapter 9

[227]

This will throw an exception as objA has been initialized with null. Hence,
this object is nowhere located in the memory, and a reference pointer does not
exist. A modern smart compiler can detect this obvious exception during compile
time, but the code might be like this, where we defined another class containing the
testFunc() method:

class RootClass
{
 public A objA;
 public RootClass()
 {
 objA = null;
 testFunc();
 }

 void testFunc()
 {
 Log.d("TAG", "num = " + objA.num);
 }
}

In this case, most of the smart compilers cannot detect the upcoming exception.
To handle this, the developer should add few more lines of code to the testFunc()
method:

void testFunc()
{
 try
 {
 Log.d("TAG", "num = " + objA.num);
 }
 catch (NullPointerException e)
 {
 Log.d("TAG", "Exception:: " + e);
 }
}

Index out of bound exceptions
This exception is thrown when accessing an indexed address, which is supposed
be a part of contiguous memory allocation, but is not. The most common one is
ArrayIndexOutOfBoundsException in the case of game development.

Testing Code and Debugging

[228]

For example, if an array contains five fields and the program tries to access more
than five fields, this exception will be thrown. Let's consider this piece of code:

int[] arrayNum = new int[5];
for (int i = 0; i < 5; ++ i)
 arrayNum[i] = i;

Log.d("TAG", "arrayNum[5] is " + arrayNum[5]);

Here, the exception will occur in the log statement, as arrayNum[5] means the sixth
element in the array, which does not exist.

Arithmetic exceptions
A mathematical expression can signify an undefined value, but in the programming
aspect, "undefined" cannot be defined. Hence, ArithmeticException is thrown.

For example, if an interpreter tries to divide any value by zero, then the result
becomes undefined, which is thrown as an exception. The same result can be seen
when calculating the value of tan 90°.

A simple case might look like this:

void divideFunct(int num, int deno)
{
 try
 {
 Log.d("TAG", "Division Result = " + (num / deno));
 }
 catch (ArithmeticException ae)
 {
 Log.d("TAG", "number cannot divided by zero");
 }
}

Input/output exceptions
The input/output functionality of a computing system depends on its hardware.
However, in the case of gaming, an input/output exception occurs during a read/
write operation. Most games are data driven. The basic principal is to feed data to
the game software to control the elements in the game. This data is usually stored in
a separate binary, text, XML, or JSON file.

Chapter 9

[229]

Being separate files located at a particular path, these files can go missing, especially
when those data files are downloaded from some other location, because there may
be a connection interruption and the file may not get saved. In this case, when the
game software tries to load such files, then IOException is thrown.

Let's look at a quick example:

try
{
 File dir = Environment.getExternalStorageDirectory();
 File objFile = new File(dir, "tmpPath/myfile.txt");
}
catch (IOException e)
{
 Log.d("TAG", "Error reading file :: " + e);
}

Network exceptions
This is the age of multiplayer gaming, which requires a mandatory network
connection. An application thus depends on the quality and connectivity of the
existing network connection. However, the mobile network connection state may
change at any point in time. Often, game developers ignore network errors, which
causes crashing, freezing, or some malfunctioning in the running of the game.

Commonly handled exceptions are HttpRetryException,
UnresolvedAddressException, and NetworkErrorException. If any HTTP
request cannot be retired automatically, then HttpRetryException is thrown. If
an application wants to connect to a certain address and the address is not found,
then UnresolvedAddressException is thrown. NetworkErrorException is used to
handle any sort of network mishap such as network lost/dropped, a network using
the wrong protocol, and so on.

Custom exceptions
This is typically used for two purposes:

•	 Gameplay exception handling
•	 Game support tool exception handling

Gameplay might create a logical exception during runtime. However, there is
small scope for this exception in game development. This is not practiced by most
Android developers.

Testing Code and Debugging

[230]

Tool programming is also an important part of the game development process.
So, the possible exception should be handled by a custom exception if required.

Debugging for Android while working
with cross-platform engines
Modern day game programming does not generally target a single platform. Most
games are cross-platform. A cross-platform game engine is very useful for this kind
of development.

Most engines come with a built-in profiler and provide some features to debug the
game. However, the profiler feature is completely dependent on the manufacturer of
the specific game engine.

All native platforms provide complete debug information. Game engines create a
wrapper to automatically switch from one platform configuration to another and
display profiler details within a common user interface.

However, these cross-platform debug tools cost some extra processing and
memory. In a way, they limit game resource consumption to a certain level
with an error margin.

Best testing practices
There are many standards used in the Android game development industry for
testing. Testing ensures correctness, stability, functional behavior, and durability
after an application is published. The most common approach for Android game
testing is manual testing.

However, this process is definitely not the best. As an Android developer, a unit test
is always a best practice to save time and get accurate test results.

Tools and APIs
There are several tools and Android APIs that can be used to carry out the testing
procedure. Some of them are inbuilt, such as Android Test Support Library,
Dumpsys, Monkeyrunner, and so on.

Most of these testing tools can be triggered through the command line and run
through Android Debug Bridge.

Chapter 9

[231]

The Monkey tools create a virtual environment to populate user actions such as click,
touch, swipe and so on to determine real-time result. Monkey can be run with the
following command:

adb shell monkey –p <Game Package Name> <Event Count>

Dumpsys provides status of the system during the runtime of an Android
application. This can be triggered through the following command:

adb shell dumpsys <option>

Dumpsys is able to provide information on running services, input system, network
status, RAM uses, and more.

Testing techniques
Mostly, two types of testing techniques are used in the game industry: automated
testing and manual testing. We have already discussed the manual testing procedure
in brief. Let's have a look at automated testing.

Automated testing requires tools and extra programming effort. Game UI, memory
consumption, network connectivity, and input system testing can be automated. A
separate test runs on a simulator or on an actual device to determine the test result,
and it is saved at a given location of the development system.

Unit test code can be written to verify the logic of an individual module of a game.
A unit test can be used for testing the smallest possible component of the application
program, such as elements, classes, and methods. Unit tests are further categorized
into two stages:

•	 Local test
•	 Instrumented test

Local test
This type of unit test works on a local machine and runs on the JVM. This saves a lot
of testing time. A local test has either no dependency on the Android framework or
limited dependency that can be satisfied with dummy objects.

Testing Code and Debugging

[232]

Instrumented test
Instrumented tests have full dependency on the Android framework and must run
on an Android emulator or on an Android device. This testing technique is used to
test the runtime behavior of an Android game. It can provide all system and debug
information of the running application. However, this technique cannot be used
easily with dummy objects. The developer needs to define the testing object data
before it can run the test in an Android environment.

Summary
Any development process is incomplete without quality and performance assurance.
Testing is the phase of development where the game needs to be verified technically
and logically to see whether it can perform in the real market.

The phases of testing, debugging, and profiling the game ensures the best possible
quality of the game for the targeted Android platform range. Often, an Android
game works on few Android devices but not on all targeted devices. The developer
can identify and resolve the issues for some specific devices through a detailed
testing procedure.

[233]

Scope for Android
in VR Games

From a simple point of view, "virtual" and "reality" are two opposite words. So, a
natural question is how they can mean something together. The phrase portrays an
experience about an imaginary or real environment with a digital computing system.

Game environments are also imaginary or real time. However, the environments do
not portray real time experience with touch, smell, sound, and sight. So, gaming has
a new scope for exploration with the help of virtual reality (VR).

Let's explore the concept and scope for VR in Android games through the following
topics:

•	 Understanding VR
•	 VR in games
•	 Future of Android in VR
•	 Game development for VR devices
•	 Introduction to the Cardboard SDK
•	 Basic guide to developing games with the Cardboard SDK
•	 VR game development through Google VR
•	 Android VR development best practices
•	 Challenges with the Android VR game market
•	 Expanded VR gaming concepts and development

Scope for Android in VR Games

[234]

Understanding VR
In the digital computing world, VR means a real-time environment created by
digital computing. It means that the environment does not exist on Earth, but can
be experienced with digital computing. However, it is not always necessary that
VR always replicates a real environment. It has the ability to replicate an imaginary
world or environment, which can be displayed on a computer screen or a VR headset
(head-mounted display) device (image source: https://lh3.ggpht.com/uv8mx61-
jsrbcu-EPNw1wIi4BCXg7338alepVlr7xKbKJf7eZ9EXT2U3roA8SWx1RC8=h900-rw):

Actual screen display of the Shadowgun VR game

Evolution of VR
The VR concept seems to represent modern technology, but the fact is that the VR
concept was introduced around the second quarter of the twentieth century. In
1935, Stanley G. Weinbaum wrote a short science fiction story Pygmalion's Spectacles
in which a description of a goggle is found. The goggle described a holographic
recording of fictional experience with touch and smell. Technically, it defined virtual
reality.

In the mid-twentieth century, the concept was improvised with sight, smell, touch,
and sound virtualization. Eventually, in 1968, Ivan Sutherland and his student Bob
Sproull created the world's first VR head-mounted display device.

https://lh3.ggpht.com/uv8mx61-jsrbcu-EPNw1wIi4BCXg7338alepVlr7xKbKJf7eZ9EXT2U3roA8SWx1RC8=h900-rw
https://lh3.ggpht.com/uv8mx61-jsrbcu-EPNw1wIi4BCXg7338alepVlr7xKbKJf7eZ9EXT2U3roA8SWx1RC8=h900-rw

Chapter 10

[235]

Modern VR systems
Modern day VR devices evolved after 1990. They were lighter, with better display
and computing equipment. Sega developed Sega VR in 1991 for arcade games and
consoles. This device was equipped with an LCD display, stereo headphones, and
inertial sensors.

Later, after the year 2000, VR devices were improved in many ways. Many technical
companies took a lot of interest in developing better VR systems. Nowadays, VR
devices are commercially available in the market. VR is now integrated in the latest
mobile devices with input controller systems.

There are many companies developing applications that run on VR devices for
several purposes. Many more uses of VR technology are being introduced and
improvised with each passing day.

Use of VR
VR is spreading each day in many sectors of the modern world. Let's have a quick
look at the fields of VR usability:

•	 Video games
•	 Education and learning
•	 Architectural design
•	 Fine arts
•	 Urban design
•	 Motion picture
•	 Medical therapy

Video games
Video games are technically composed of display, sound, and various types of
interaction systems. VR devices have proved to have all the necessary components
for running a game application. Gamification of VR started in the late twentieth
century. Since then, VR has been used in the gaming industry.

A game is basically an interactive entertainment system. VR is just an environment to
support the video gaming system. The VR system can take the user inside the game
world to interact with the elements.

We will look into the details of the role of VR in gaming later in this chapter.

Scope for Android in VR Games

[236]

Education and learning
Field trips and visualization of educational subjects have a great impact on the
learning process. Many times, it is not possible to provide a practical lesson on each
subject. VR helps create a virtual, practical, and visual impact on many educational
topics. Many institutes and trainers use this method for better teaching.

Training is another major aspect of VR education. For example, VR is used to train
pilots to fly fighter jets in developed countries. It reduces the chances of accidents,
and trainee candidates can experience the real-time feel of flying a jet.

It is widely used in training medical students for various field treatments.

Architectural design
VR has been used widely in architectural design. It can navigate through a proposed
design without implementing it in reality. Many architectural firms use VR to
demonstrate a design.

There are many VR software that can build a VR application from a digital copy of
the architectural design.

Fine arts
This is a lesser known and lesser explored use of VR. However, many fine artists
have used VR to create a navigable virtual world of art. A few art museums can be
visited virtually through VR technology.

Urban design
In the modern world, urban design and planning use VR to simulate and validate
a design. Urban design is also used to find loopholes and faults in a design. Urban
design becomes easier with VR technology in the case of city/town rebuilding,
transport planning, landscape design, and so on.

Motion pictures
We can find some motion pictures that use the concept of VR technology. The
motion picture Avatar is a great example of this. The whole concept lies within
VR technology. The concept portrays a virtual life and activity with the help of
technology so that the character can experience a virtual world without being
present there in reality.

Motion pictures have gone multi-dimensional with the help of VR simulation.
Today, spectator experience has been increased through VR.

Chapter 10

[237]

Medical therapy
Virtual reality therapy (VRT) is quite popular in medical science, especially in
psychological treatment. It is recorded that the success rate of VRT is greater than
90% worldwide.

VRT is used mainly to treat people who fear height, flying, insects, motion, public
talking, and so on, to create a controlled virtual environment.

VR in Android games
Before the latest release of Android N, there was no direct support for VR in
Android. Google has realized that VR is the future of applications. Previously,
Google released the Cardboard SDK to develop VR applications on Android.
This SDK is still out there in the market and is being used widely.

There are already many games in the market targeting Android VR headsets. The
number of VR headsets is increasing day by day. VR was not part of mainstream
Android game development, but it is believed that it will become mainstream very
soon as Android has now included a special setting for VR.

History of Android VR games
In the late 70s, the VR system started evolving at a rapid speed with better
equipment. The result is the inclusion of VR in the mainstream Android SDK in 2016.
The latest Android devices are VR capable. It is believed that most of the upcoming
devices will support VR headsets.

Previously, a high-end PC or console was required to operate VR headsets. But
now, VR headsets are being designed to support mobile devices. VR headsets are
considered a part of Android wearable devices having a high configuration.

Technical specifications
Technically, the VR system was lagging with a serious issue of latency. However,
with improving technology, the latency is decreasing and the experience is getting
better. Some famous VR headsets are Oculus Rift, HTC Vive, Samsung Gear VR, and
so on.

Scope for Android in VR Games

[238]

Let's have a look at the VR devices that are directly compatible with Android
devices. Previously, there was an integrated display in VR devices. However,
now, Android devices can be directly associated with VR headsets with multiple
input handlers. Here is a limitation that VR headsets are facing. Such VR headsets
are only compatible with defined mobile handsets due to their own physical size
and hardware specifications. VR headsets are designed to fit certain screen sizes.
However, there are a few VR kits available in the market that support multiple
screen sizes.

Current Android VR game industry
The Android VR game industry is growing big rapidly. Almost all the new handsets
support VR applications. Many device manufacturers are providing external VR kits
specially designed for a particular handset.

Previously, there used to be separate devices to experience VR, such as Oculus VR
sets. However, with the help of Android VR development, most mobile devices are
capable of running a VR application and they can be experienced with an external
VR kit.

Future of Android in VR
It is a known fact that VR games are taking over the gaming market. Android is
growing day by day. The latest release of Android N has a new dimension of VR
support. This clearly shows that Android has an immense potential for VR games.
Google is potentially working on a future VR-specific platform.

There are more devices coming to market that are VR compatible. So, there is a bright
future for VR games on the Android platform.

Google Daydream
Google Daydream is the next generation VR development platform. It is said to be
the successor to Google Cardboard. The latest Android N will include support for
Google Daydream, and it has been decided that the handsets will be announced as
"Daydream-ready phones".

Google Daydream and Android N will take VR gaming on Android to new heights
in the digital gaming world. The experience and the quality of the game is going to
be better, smoother, and more realistic.

Chapter 10

[239]

Game development for VR devices
There is a large space for VR in the mobile game industry. Based on Android and
Google VR platforms, developers are now targeting games for VR. VR gaming is
different in nature than other games. It takes users into the game world. Certainly,
game design and planning are also different from other mobile games.

VR game design
VR does not fulfil the criteria for every genre. Hence, VR game design needs to done
accordingly. VR games are suitable when there is a character in the game, most
preferably a first person shooter or in some RPG or racing games.

The designer needs to keep in mind that the whole game world must be experienced
by users through the game. Hence, the game experience is the most important factor
for any VR games.

Generally, a game designer starts designing a game from an idea. Then, corresponding
controls, environment, and experience are thought of. However, in the case of VR
games, the developer or designer already has a defined set of features on which they
execute an idea through design.

VR target audience
There are several billions of handsets out in the world. However, very few of them
are actually VR compatible and can run a VR game smoothly. As time passes by,
more and more devices are being launched with VR capability.

It is not just a handset that is required to play a VR game on Android, it requires a
supported VR headset too. Not every user will go and buy extra equipment to play
VR games. That is why casual players are not the main target audience for VR games.
Rather, typical gamers and game enthusiasts are the actual target audience for now.

The use of VR is vast. A major section of the use is simulation, which includes
education. Gamification of the education process opens up a huge target audience
of students. Another major target audience is youths who are energetic and curious
about new things.

Scope for Android in VR Games

[240]

VR game development constraints
VR game development does not require extraordinary skills. The developer should
be aware and well-versed in Android, and efficient enough to understand VR
specifications and platform limitations. Here are a few constraints when developing
games for VR on the Android platform:

•	 Limited handsets to support
•	 Limited and specific target audience
•	 Limited controls
•	 Limited graphical quality with maximum experience

Introduction to the Cardboard SDK
Google Cardboard is a VR platform developed and released by Google in 2014 for
use with a head-mounted device for a smartphone. This platform targets a low-cost
project to encourage VR application development on a massive scale, which has
proven to be fruitful till date. Google declared Daydream to be the next step for this
platform on May 18, 2016.

The name "Cardboard" came from the concept of a VR device made with cardboard,
which makes the device significantly cheaper. However, many third-party
companies are following the same build architecture with various materials to
increase its style and build quality.

Currently, Google Cardboard can be used to create VR applications only for Android
and iOS. This has changed the VR development concept, which was limited to
typical device and hardware specifications:

Chapter 10

[241]

Cardboard headset components
A typical Google Cardboard headset contains the following parts:

•	 A piece of cardboard cut into a precise shape
•	 45 mm focal length lenses
•	 Magnets or capacitive tape
•	 A hook and loop fastener
•	 A rubber band
•	 An optional near-field communication tag

Each part of the cardboard device is either pre-fitted or has a mechanical slot to fit
in. It is easy and fast to assemble the full gear. The rubber band is fitted last to wear
the headset. However, holding the assembled VR headset by any means serves the
purpose of a VR experience.

After assembling the kit, a compatible smartphone is inserted into the device slot of
the VR headset and held in place by the corresponding components.

Cardboard application working principle
A Google Cardboard-compatible app splits the smartphone display image into two,
one for each eye. The image can be seen through each 45mm lens. It applies barrel
distortion to each display segment to counter pincushion distortion from the lenses.
Thus, a complete wide 3D world is created.

Initial Cardboard headsets could fit phones with screens up to 5.7 inches (140 mm)
and used magnets as input buttons, which also required a compass sensor in the
smartphone device. Later, the button was replaced by a conductive lever.

Upgrades and variations
Google updated the design and released the next Cardboard VR headset in 2016,
which works with phones up to 6 inches (150 mm) display. It also updated the input
button with a conductive lever that triggers a touch event on the smartphone's screen
for better compatibility across devices.

Google allows several vendors and manufacturers to build Cardboard-compatible
headsets with different materials and styles. Today, we can observe a lot of variants
of this product.

Scope for Android in VR Games

[242]

Basic guide to develop games with the
Cardboard SDK
Developing games for the Cardboard SDK or any other VR component is not
similar to other Android games. Let's have a quick look at the basics of Cardboard
development styles and standards through these points:

•	 Launching and exiting the VR game
•	 VR device adaptation
•	 Display properties
•	 In-game components
•	 Game controls
•	 Game audio setup
•	 User focus assistance
•	 Ultimate VR experience

Launching and exiting the VR game
Normally, after launching an Android game, it performs a few automated tasks and
takes the user to the menu to choose an action. In the case of VR games, it takes time
to mount the Android device to a VR headset properly, so the developer does not
perform any automated task just after launching the game. The game should wait for
the user to start it after it is in the perfect situation for running.

For better and common experience, the game should prompt the user with a VR sign
or button to start the VR game.

There are two possible exits for a standard VR game:

•	 Hitting the Back button
•	 Hitting the Home button

Hitting the Back button
If the VR has a 2D interface to show popups for exiting, then using the Back button
is the best idea. While playing an Android VR game, there is no chance of hitting
the back button accidentally as the device is mounted in the VR headset. It is very
common to use a single hit on the back button to exit the game, because of the
mentioned criteria. Otherwise, an exit popup can serve the purpose, similarly to a
non-VR game.

Chapter 10

[243]

Hitting the Home button
Generally, hitting the Home button pushes the Android application to the
background without killing the application, in the case of a VR game.

VR device adaptation
A VR game for Android using the Cardboard SDK should adapt the physical
characteristics of the VR headset. The Google Cardboard SDK has a feature to carry out
this job automatically. The developer can rely on the SDK to adjust application settings
and configuration according to the VR headset. The Cardboard SDK itself contains
adjustment settings for few specific Cardboard devices. The SDK can configure stereo
settings and correct distortion for few specific lenses of a VR headset.

It is recommended that the developers use the Cardboard SDK feature to support the
maximum possible VR headsets with a single game to provide users with the best
possible VR experience without any hassle.

Display properties
In many Android devices, there is a feature called Lights Out. In those devices, the
Home, Menu, and Back controls are hidden under the Lights Out feature. VR games
use a slip-screen technology to generate a 3D experience through VR headset lenses.
That is why it is extremely necessary to run the VR games in full-screen mode.
System controls or a status bar may actually appear in the user's peripheral vision,
blocking or distracting them from the actual VR experience.

In-game components
Normally, the VR game experience lies within the environment through the device
screen. It is very unlikely to trigger any popups and other unwanted components on
the screen during gameplay.

Developers must not call any API that will trigger any popup or any unwanted
interruption during gameplay. Android currently does not support any 2D
component rendering. Forcefully rendered 2D elements may cause disorientation of
the VR display. Even if it does not, the user needs to take the device out from the VR
headset and then perform the desired action to get rid of the popup, which is not at
all convenient.

Scope for Android in VR Games

[244]

Game controls
An Android VR headset contains only one button. That's why control design in VR
games does not follow the conventional way. Let's take a look at the control scheme
of VR games.

Control concepts
UI controls generally appear at the launch of the game. Developers should place
the UI controls in the initial field of view so that users can locate them to start the
gameplay. If the controls are not in the visible range, then users might get confused.
In that case, they might look around for the controls or simply leave the game. In
both cases, users may lose interest in the game.

While playing the game, if there is any user interface, those controls need to move
along with the field of view. Otherwise, users might have to go back to the place
where the UI element was.

Types of controls
Although the headset device has only one control unit, there might be several ways
to use the button and a few other options as well. The most popular types of controls
are as follows:

•	 Fuse button
•	 Visual countdown

Fuse button
A Cardboard VR headset has only one button on the side of the device. It can be used
to click on targets. One of the uses of this button is to trigger a virtual button in the
VR world which will fuse. This means a corresponding task will trigger after some
time of focusing on the virtual fusing button. However, it may be frustrating, as the
user needs to wait for that amount of time. To overcome this problem, the developer
should give an option to click on that virtual button immediately wherever possible:

Chapter 10

[245]

Visual countdown
While using a fuse button with a timer, there is a fair chance that the user might
focus on the button unknowingly, and after a certain amount of time, it changes the
game state. In this case, the user might get confused and not be able to continue the
same game experience. The developer should indicate the countdown visually to
show the user that something is going to happen within a certain amount of time:

Fuse button indication
We already know that 2D UI buttons are not supported by VR games. So, developers
use fuse buttons. A fuse button can be any element inside the gameplay. There must
be an indication to direct the user to focus on a particular fuse button. Then, the
action can be performed on countdown or by click.

For example, developers often use some glow, shine, shake, or other dynamic
mechanism to make the object visible for clicking. The respective task or action is
defined by the surroundings to indicate the task.

Scope for Android in VR Games

[246]

Control placement
It is always a good practice to activate the fuse button when the element is large
enough to focus on. It can save the user a lot of confusion. Moreover, there should
not be adjacent fuse buttons in the scene that are difficult to locate and might create
confusion.

VR game development through Google
VR
Google has released a VR development kit for Android through Google VR,
featuring both Android SDK and Android NDK. These SDKs supports both the
Cardboard and Daydream VR platforms.

The developer can jump into VR game development through the following tasks:

•	 Head-tracking system
•	 Spatial audio
•	 Dynamic rendering
•	 UI handling
•	 3D calibration
•	 Lens distortion correction
•	 Stereo geometry configuration

Let's have a look at the Android SDKs for VR game development:

•	 Google VR using the Android SDK
•	 Google VR using the Android NDK

Google VR using the Android SDK
We will have a look at VR development with the help of the Android SDK. A
VR application build can be made with the help of Gradle. Gradle can be used
independently or with Android Studio.

The developer can use other tools instead of Android Studio, but it is strongly
recommended to use Android Studio for Android builds. It is the most convenient
method for VR application development on the Android platform.

Chapter 10

[247]

The developer is required to check the following factors in order to create a VR
application build for Android:

•	 Android Studio version 1.0 or higher
•	 Android SDK version 23 or higher
•	 Gradle version 23.0.1 or higher

Using Android Studio can save users from configuring Gradle settings to build
application packages. It also helps the developer identify and update Gradle if
required.

The developer can choose Gradle to build an Android application project. In that
case, the developer needs to manually edit each build.gradle file of every module
to include .AAR declarations for the Gradle build.

The modification has to be done this way:

dependencies
{
 compile(name:'audio', ext:'aar')
 compile(name:'common', ext:'aar')
 compile(name:'core', ext:'aar')
}

repositories
{
 flatDir
 {
 dirs 'libs'
 }
}

Android Studio automatically makes these changes and declares dependencies
for each module. This will tell Gradle to look in the libs subdirectory of the
corresponding module for the three .AAR declarations. If there is no subdirectory
called libs, then the developer needs to create a libs subdirectory inside the
module's directory and copy the required .AAR files manually.

Scope for Android in VR Games

[248]

Google VR using Android NDK
VR application development using Android NDK is not very different to SDK
development. It requires the following components:

•	 Android Studio version 1.0 or higher
•	 Android NDK
•	 Google VR SDK for Android

It is recommended that you use the Android NDK with the Daydream development
platform. So, the developer needs to set up the development environment for the
Daydream SDK.

The Google VR development kit started supporting NDK development from version
v0.8.0 with beta release. From version v0.8.1, it included a native head-tracking
system to power up the development.

Android SDK is sufficient to develop VR games with Cardboard, but a few
developers like to use native languages such as C++ to develop games. Having a
better understanding of technology, a few choose to develop VR games with C++ and
OpenGL. In this way, the VR game can be portable to other VR platforms as well.

Android VR development best practices
Developers need to have experience of coding regular games for Android before they
start building a VR experience with Cardboard. Here are a few areas that developers
need to keep an eye on while developing VR games for Google Cardboard:

•	 Draw call limitations
•	 Triangle count limitations
•	 Keeping a steady FPS
•	 Overcoming overheating problems
•	 Aiming for a better audio experience
•	 Setting up proper project settings
•	 Using a proper test environment

Draw call limitations
VR games are obviously 3D games with an extensive rendering process. It is always
a good practice to minimize the draw calls to limit the rendering time and reduce
GPU overhead.

Chapter 10

[249]

In general terms, based on the list of currently available devices, the developer
should keep a rendering call limitation of 100 per frame. In the current industry,
most of the developers are trying to keep the draw calls between 50 and 100.

Triangle count limitations
We have already discussed the functionality of a vertex and triangle in 3D games.
The same logic applies to VR games. However, it is more difficult to maintain
performance in VR games than normal 3D games. That is why VR games usually use
triangle counts within 100k.

Currently, the average triangle count of a decently performing VR game is around
50k to 80k. Developers need to simplify all of its 3D objects and optimize them in the
minimum possible triangles and vertices to achieve a decent FPS at runtime.

Keeping a steady FPS
For any Android game, keeping a steady and decent FPS is necessary. VR games
for Android are not an exception. Through the above mentioned limitations, the
developer can reduce rendering time to gain performance.

VR games work with a split-screen technology, which is a heavy process. So, the
developer should decide and use the minimum possible game objects or elements to
keep the FPS steady.

It is a big challenge for VR game developers to provide better visuals with limited
resources. Designing and creating art assets is a major part. Using low-poly models
with minimum triangles produces poor visual quality. However, this quality can be
improved with the help of excellent texturing support for the model and strategic
light mapping in the virtual reality world.

Overcoming overheating problems
Overheating is a common problem for Android VR games. The device heats up while
running a VR application due to the extensive use of CPU and GPU. There is not
much a developer can do to overcome the problem completely. However, developers
can optimize the VR game to reduce processor use. The game should have limited
network use and other device components to minimize battery consumption.

Scope for Android in VR Games

[250]

Better audio experience
Android VR games are played with the support of extra VR devices, such as Google
Cardboard or similar. We have already discussed the devices in this chapter. Such
devices do not have audio support; VR games use device speakers by default.

A virtual reality experience cannot be complete without proper audio experience.
It is always good practice to use 3D environment audio in the game and suggest
that users wear headsets while playing the VR game.

Setting up proper project settings
Setting VR project settings right early on can save the developer from headaches in
the future. To get better project performance in particular, it is very important to set
the quality settings properly at the beginning of the project. The entire project and
performance planning cannot be fruitful without a prior project configuration.

Using a proper test environment
Setting up your test environment is extremely important for the success of any game,
especially for large-scale games such as VR. The developer must know the status
of each development stage so that they can take future decisions to make the game
better. In this way, the development process can run smoothly.

It is always recommended that you run the VR game for testing from outside the VR
device. It is also recommended that you use the adb to check each debug condition
and statement. It is very difficult to use a normal debug bridge for VR games as the
game must be tested with a VR device. The developer needs to set up a wireless
debug bridge to overcome this problem. The debug bridge can also be used to run
and stop the game from outside the VR device. This way, the developer can save a
lot of time, which can be used to improve the game.

Challenges with the Android VR game
market
We have already understood the technical challenges for developing VR games on
the Android platform. Now, let's have a look at the other challenges that a developer
might face while developing or monetizing VR games for Android:

•	 Low target audience
•	 Limited game genres

Chapter 10

[251]

•	 Long game sessions
•	 Limited device support
•	 Real-time constraints

Low target audience
There are very few Android users who are familiar with the VR concept and
technology. Mostly, users are the common handset holders who do not have VR
headsets. So, there is already a major section of the audience who are out of scope of
VR gaming. This is why the VR gaming market is limited to the audience with VR
headsets.

Limited game genres
We have already looked at the possible game genres in VR gaming. VR games cannot
support all the game genres released to date and possibly will not be able to do so
in the near future. This limitation is a serious challenge for the Android VR gaming
market in securing a profitable position and design monetization aspects.

Long game sessions
Android VR games must be played with a VR headset fitted with an Android
handset. Usually, the game sessions are longer, and it takes time and effort to set up
a playable environment.

Android game users are usually addicted to quick and flexible game sessions. Most
of the games can be immediately paused and resumed for convenient gameplay.
However, VR games cannot be paused or resumed immediately. Users prefer to play
VR games when they have a long period of free time.

Limited device support
Android VR games require high-level hardware configuration to run the game. The
hardware platform must have enough power to process the game, and the rendering
unit must render the game with the maximum possible quality in the minimum
possible time.

There are many cheap and low-configuration handsets available in the market.
Millions of Android users use those handsets. However, most of them are incapable
of running a VR game with a steady and acceptable FPS. Developers of Android VR
games are bound to exclude those devices. This limitation reduces the number of
supported devices significantly.

Scope for Android in VR Games

[252]

Real-time constraints
Most of the VR game players are gamers or game enthusiasts. However, they also
have some real-time constraints while playing VR games. Users or players must
choose a gameplay situation where there is least chance of possible interruptions.

Gamers usually prefer to sit at a location or be in a spacious place to avoid any
accidents while playing the game. Their eyes are covered with the VR headset, so
users need to take these safety measures. These issues cannot be resolved and this
affects the VR gaming market and leads to low session count and time.

Expanded VR gaming concepts and
development
We have talked about only a few of the VR gaming aspects of Android. These ideas
have been implemented or are currently being implemented. However, there is a
broader concept of virtual gaming.

Game developers are now trying to produce real-time experiences with VR
technology. There are a few real-time games that are similar to digital gaming, such
as Paint Ball, Laser Tag, and so on. With the help of VR technology, these experiences
can reach the next level. Using a VR headset in a predefined arena that is physically
synced with the VR application environment can take the user into the game.
This concept of gaming has already started taking shape. A few test arenas for VR
games have already been created with the support of various other physical gears
and sensors. These gears and sensors track the user's movement in real time and
duplicate it within the virtual world through the VR headset display.

Simple actions such as walking, crouching, touching something in the virtual world,
and shooting a virtual enemy have already been implemented. Developers and
researchers are making it better day by day. However, the Android platform is yet to
take a step into this kind of VR development for the following reasons:

•	 Android is a mobile OS that works best on portable devices.
•	 Most Android devices are mobile handsets or tablets.
•	 It is difficult to manage a dedicated hardware platform with a large physical

setup through Android. Real-time operating systems (RTOS) can perform
much better than Android for such systems.

•	 There are low market prospects for such Android setups, and the costing
may be huge.

In spite of having these issues in setting up Android VR gaming on a large scale,
it is believed that Android will become part of such systems soon.

Chapter 10

[253]

Summary
This is the era of technology. VR technology has taken the gaming experience to the
next level. Android is now the most progressive platform for gaming. Joining two
leading platforms can surely take the mobile gaming experience to the next level.

In VR games, the user gets the chance to be inside the game environment. However,
there are a lot of limitations in developing games for Android with the VR feature.
Google has already announced its upcoming VR development platform, Daydream,
which includes extended controls with a separate controller.

The VR gaming industry is growing rapidly. It has its own set of advantages and
disadvantages. However, there is no doubt that the gameplay experience is far better
than the conventional gameplay system. So, it will not be a wrong assumption that
the future of the Android VR gaming industry is bright.

[255]

Android Game Development
Using C++ and OpenGL

We have already seen the differences between an Android application and an
Android game. The Android SDK is very capable of taking care of both. Certainly,
the question that arises is "What is the requirement of a separate development toolset
in native languages such as C and C++?" Compared to Java, C and C++ are much
more difficult to manage and write code in. The answer lies in the question itself.
The Java architecture runs on JVM, which is associated with the Android operating
system. This creates an extra latency, which has a performance lag. The scale of the
lag depends on the scale of the application.

A highly CPU-intensive application may cause a significant amount of visible lag in
Java architecture. Native language code can be processed faster. Moreover, native
code can be varied depending on the CPU/platform architecture, which is not
possible in the case of the Java architecture used by the Android SDK.

Android uses the OpenGL rendering system. So, an application made in OpenGL
can also choose Android as the target platform. Native code helps directly structure
the application using OpenGL.

We will have a detailed look at these aspects in this chapter through the following
topics:

•	 Introduction to the 3Android NDK
•	 C++ for games—pros and cons
•	 Native code performance
•	 Introduction to OpenGL
•	 Rendering using OpenGL
•	 Different CPU architecture support

Android Game Development Using C++ and OpenGL

[256]

Introduction to the Android NDK
Android is actually based on the Java architecture. However, part of an Android
application can be developed using native languages such as C and C++. This is
where the Android NDK comes into the picture.

The Android NDK is a toolset used to develop a module of an application that will
interact with hardware much faster. It is a well-known fact that C and C++ have
the ability to interact with a native component directly, which reduces the latency
between the application and hardware.

How the NDK works
An Android native code segment interacts with main application through the Java
Native Interface (JNI). The Android NDK comes with a build script that converts
native code into binary and includes it in the main Android application.

This binary is basically a native code library that can be used in any Android
application as per requirement. An NDK build script creates .so files and adds them
to the application path.

The Android build process creates Dalvik Executable files (.dex) to run on the
Dalvik Virtual Machine (or ART) of the Android OS. The Java executable recognizes
the native library and loads the implemented methods. The native methods are
declared with the native keyword:

public native void testFunc (int param);

The method always has public access, because the native library is always treated as
an external source. Here, the developer should always keep in mind that there should
never be multiple definitions of a method for the same declaration collectively for all
the included native libraries. This will always create a compilation error.

The native building process can build the native project into two types of libraries:

•	 Native shared library
•	 Native static library

Native shared library
The native build script creates .so files from C++ files, which is termed as the native
shared library. However, it is not always shared between applications in the true
sense. An Android application is a Java application, but a native application can be
triggered through a native shared library.

Chapter 11

[257]

For game development, if the game is written in a native language, then the game
code is included in the shared library.

Native static library
Native static libraries are basically collections of compiled objects and represented
by .a files. These libraries are included in other libraries. A compiler can remove
unused code during compilation.

Build dependency
Android SDK is capable of building and packaging an Android application project
into an APK file with the support of Java. However, the NDK is not sufficient to
build and package APK files. Here are the dependencies for creating an Android
application APK other than the NDK:

•	 Android SDK
•	 C++ compiler
•	 Python
•	 Gradle
•	 Cygwin
•	 Java

Android SDK
Android applications are basically Java applications. Hence, it is absolute necessary
to have Android SDK in order to create an Android application package.

C++ compiler
A native Android application is written in C++, so a C++ compiler is required to
compile the code base on the development platform. C++ compilers are platform
dependent, so it may not be the same C++ compiler on each platform.

For example, on a Windows machine, the C++11 compiler is used currently in the
development industry, whereas the GC++ compiler is used on Linux machines.

These may create different code bases for the actual development project in terms of
syntax and API calls.

Android Game Development Using C++ and OpenGL

[258]

Python
Python is a separate development language. It can be used to create applications
for Android and can support multiple platforms by converting the source into
native language. In the case of Android NDK development, Python is used for the
conversion of C++ code to native binary.

Gradle
Gradle is used by the build script and the Android native build tool to convert
native code to a shared library. It also provides a virtual Unix environment to make
application packages.

Cygwin
Android requires a Unix environment to build an NDK application project.
The Windows system does not have a Unix environment. Cygwin is required to
provide a virtual Unix environment to support the building platform.

Java
Last but not least is the requirement of Java to create an Android application
package. However, Java is always required for any type of Android development.

Native project build configuration
An Android project needs the following configurations in order to create an
application package from native source code. A native project build depends on the
configuration defined in these two files:

•	 Android.mk

•	 Application.mk

Android.mk configuration
Location

The Android.mk file can be located at <Application Project Path>/jni/.

Configuration options:

The Android.mk file contains the following options to create an application package:

•	 CLEAR_VARS: This clears the local and user-defined variables. This option is
invoked by the include $(CLEAR_VARS) syntax.

Chapter 11

[259]

•	 BUILD_SHARED_LIBRARY: This includes all local files, defined in LOCAL_
MODULE and LOCAL_SRC_FILES, in a shared library. It is invoked by the
include $(BUILD_SHARED_LIBRARY) syntax.

•	 BUILD_STATIC_LIBRARY: This specifies static libraries to create .a files used
by the shared libraries. It is invoked by the include $(BUILD_STATIC_
LIBRARY) syntax.

•	 PREBUILT_SHARED_LIBRARY: This indicates a prebuilt shared library at a
specific path to build a dependent shared library from local includes. It is
invoked by the include $(PREBUILT_SHARED_LIBRARY) syntax.

•	 PREBUILT_STATIC_LIBRARY: This indicates a prebuild static library at a
specific path to build a dependent shared library from local includes. It is
invoked by the include $(PREBUILT_STATIC_LIBRARY) syntax.

•	 TARGET_ARCH: This indicates the basic type of processor architecture family
such as ARM, x86, and so on.

•	 TARGET_PLATFORM: This defines the target Android platform. The mentioned
platform must be installed in the development system through the Android
SDK manager. It indicates the Android API level in order to create the
application package.

•	 TARGET_ARCH_ABI: This indicates the specific ABI for target processor
architecture, such as armeabi, armeabi-v7, x86, and so on.

•	 LOCAL_PATH: This points to the current file directory. This variable does not
get cleared by the CLEAR_VARS command. It is invoked by the LOCAL_PATH
:= $ (call my-dir) syntax.

•	 LOCAL_MODULE: This indicates all the unique local module names. It is
invoked by the LOCAL_MODULE := "<module name>" syntax.

•	 LOCAL_MODULE_FILENAME: This indicates the library name that contains the
defined LOCAL_MODULE. It is invoked by the LOCAL_MODULE_FILENAME :=
"<module library file name>" syntax.

•	 LOCAL_SRC_FILES: This indicates all the native source code file paths to be
compiled into a shared library. It is invoked by the LOCAL_SRC_FILES :=
<Local source file path> syntax.

There are other optional configurations that can be set in this file, such as LOCAL_C_
INCLUDES, LOCAL_CFLAGS, LOCAL_CPP_EXTENSION, LOCAL_CPP_FEATURES, LOCAL_
SHARED_LIBRARIES, LOCAL_STATIC_LIBRARIES, and LOCAL_EXPORT_CFLAGS.

Android Game Development Using C++ and OpenGL

[260]

Application.mk configuration
Location

The Application.mk file can be located at <Application Project Path>/jni/.

Configuration options

The Application.mk file contains the following options to create an application
package:

•	 APP_PROJECT_PATH: This is the absolute path to the project root directory.
•	 APP_OPTIM: This indicates the optional setting to create the build package as

release or debug.
•	 APP_CFLAGS: This defines a set of C-compiler flags for the build instead of

changing in the Android.mk file.
•	 APP_CPPFLAGS: This defines a set of C++-compiler flags for the build instead

of changing in the Android.mk file.
•	 APP_BUILD_SCRIPT: This is an optional setting to specify a build script other

than the default jni/Android.mk script.
•	 APP_ABI: This option specifies the set of ABIs to be optimized for the

Android application package. Here is the complete list and keywords for
each ABI support:

°° ARMv5: armeabi
°° ARMv7: armeabi-v7a
°° ARMv8: arm64-v8a
°° Intel 32-bit: x86
°° Intel 64-bit: x86_64
°° MIPS 32-bit: mips
°° MIPS 64-bit: mips64
°° ALL-SET: all

•	 APP_PLATFORM: This option specifies the target Android platform.
•	 NDK_TOOLCHAIN_VERSION: This option specifies the version of the GCC

compiler. By default, versions 4.9 and 4.8 are used for compilation in 64 bit
and 32 bit, respectively.

•	 APP_STL: This is an optional configuration to link alternative C++
implementations.

•	 APP_LDFLAGS: In the case of building a shared library and executables, this
option is used to link flags to the build system to link the application.

Chapter 11

[261]

C++ for games – pros and cons
There is a never-ending debate between C++ and Java. However, we will not go
into the controversy and will try to look at them from the perspective of game
development. C++ has a slight performance edge over Java, and Java is known for
its simplicity.

There may be many programmers who are more comfortable in C++ than Java, or
vice versa. In game development, personal choice of programming language does
not matter. Hence, using NDK or SDK has to be determined depending on the
requirements. It is always recommended that you use the Android SDK to develop
an application rather than using the NDK.

Let's discuss the advantages and disadvantages of using native language for game
programming.

Advantages of using C++
Let's first have a look at the positive side of using C++ for game programming
through the following points:

•	 Universal game programming language
•	 Cross platform portability
•	 Faster execution
•	 CPU architecture support

Universal game programming language
In the case of game development, C++ is widely used for many platforms, especially
for consoles and PC game development. This is the reason many game engines opted
for C++ as the primary programming language.

Sometimes, it is difficult to learn many programming languages to work on different
platforms with different architecture. C++ provides a most common solution to this
problem, as most of the programmers are familiar with C++ library and API use.

Cross-platform portability
The same C++ code is compiled into a library targeting a specific operating platform.
Thus, the same project can be compiled for different platforms. Hence, it is super
easy to port a game to various platforms if it is written in C++.

Android Game Development Using C++ and OpenGL

[262]

For example, the famous and effective cross-platform game engine Cocos2d-x uses
C++ as the development language. Hence, the same game is easily ported for many
platforms such as Android, iOS, Mac OS, and Windows.

Faster execution
C++ is well capable of interacting with platform hardware, and writing games
in C++ helps boost their performance. However, in the case of Android, the
performance boost is hardly noticeable if the game is not CPU intensive.

CPU architecture support
C++ code can be compiled for specific target CPU architectures such as x86, ARM,
Neon, or MIPS. This specification indicates better performance on that particular
processor.

Compiler configuration for CPU architecture in Android NDK ensures the best
possible result in each platform. However, it is not always necessary to define each
and every platform to avoid extra compilation.

Disadvantages of using C++
Now, let's discuss the other side of the coin through these points:

•	 High program complexity
•	 Platform-dependent compiler
•	 Manual memory management

High program complexity
C++ comes with extra program complexity. In the case of Java programming,
JVM takes care of memory completely and follows the OOP concept. C++ lags in
providing this feature. Thus, it becomes extra overhead for the developer to take
care of every programming aspect.

C++ itself has a complex architecture compared to Java. The chances of facing
exceptions and errors increases if C++ is used.

Chapter 11

[263]

Platform-dependent compiler
Going cross platform is easy when using C++. However, configuring the build
script can be a pain in most of the cases. It is a very common scenario that the same
game fails to run on a ported platform due to the wrong configuration. Moreover, it
becomes difficult to find out the issue as the game is successfully running on some
other platform.

Most of the time, different platforms use different C++ compilers. So, it requires an
extra effort to identify platform-specific code and find out an alternative for each
platform, if required.

Manual memory management
Java does not require memory management to be implemented by the developer,
and the memory is efficiently managed by JVM (DVM in the case of Android). So,
there is no chance of facing memory leakage or fragmentation. JVM runs the garbage
collector to free the unused memory automatically. However, garbage collector
invocation costs a bit of performance, and frequent garbage collector calls can cause a
severe drop in performance.

The developer should use optimum memory, because the garbage collector cannot
identify unused memory block if there is any active reference in the code.

Conclusion
C++ has its own advantages. However, when it comes to game programming for
Android, it does not help much in the technical sense. So, if we compare the amount
of effort and risk taken by opting for C++ than coding in Java for Android, Java
should always be preferred for Android. DVM runs Java code efficiently enough to
achieve reasonable performance on Android devices. Moreover, the Android NDK
library is not actually designed to develop a standalone Android application. Even
though it has native activity support, which acts as a middle layer between DVM and
native application written in C++, it does not help much.

If the developer chooses not to go for cross platform and keeps the game scope
within Android only, then it is recommended that you use Android SDK rather
Android NDK. It will decrease the development hustle and complexity with a
negligible amount of performance loss.

Android Game Development Using C++ and OpenGL

[264]

Native code performance
As we already know, native code can run faster with better processing speed. This
can be further optimized for a specific CPU architecture. The main reason behind this
performance boost is the use of pointers in memory operations. However, it depends
on the developer and the coding style.

Let's look at a simple example where we can have a better understanding of
performance gain in native language.

Consider this Java code:

int[] testArray = new int[1000];
for (int i = 0; i < 1000; ++ i)
{
 testArray[i] = i;
}

In this case, the address of 1000 fields in the array is handled by JVM (DVM in the
case of an Android Dalvik system). So, the interpreter parses to the ith position and
performs an assignment operation each time, which takes a lot of time.

Now, let's implement the same functionality using native C/C++ language and
use pointers:

int testArray[1000];
int *ptrArray = testArray;
for (int i = 0; i < 1000; ++ i)
{
 *ptrArray = i;
 ptrArray += i * sizeof(int);
}

In this example, the interpreter does not need to parse to the target memory location.
The address of the location is pointed out by ptrArray. Hence, the value can be
directly assigned to the memory location.

Especially for multi-dimensional arrays, a significant performance gain can be
observed in the case of properly written native code for the same functionality.
Other important use of native code is binary data processing and image processing,
where a huge amount of data is processed at a time.

Chapter 11

[265]

Rendering using OpenGL
Android uses OpenGL for rendering. Android SDK libraries include the OpenGL
libraries, specially optimized for Android. Android started supporting OpenGL
from API level 4 and then increased its support as the level increased. Currently,
the maximum supported version of OpenGL is OpenGL ES 3.1 from API level 21.

OpenGL versions
Different OpenGL versions have a different set of features. Versions 1.0 and 2.0 have
a lot of differences in terms of coding style, API convenience, functionality, and
feature support. Let's discuss the following OpenGL ES versions that are significant
to Android development:

•	 OpenGL ES 1.x
•	 OpenGL ES 2.0
•	 OpenGL ES 3.0
•	 OpenGL ES 3.1

OpenGL 1.x
OpenGL version 1.x has been supported from Android API level 4 with a shared
OpenGL ES 1.x library, libGLESv1.so. The headers gl.h and glext.h contain all
the necessary APIs for OpenGL functionality.

OpenGL 2.0
In the current industry, a developer prefers to use OpenGL ES 2.0 for games, because
almost every device supports this OpenGL version, and it provides vertex and
fragment shaders useful for games. OpenGL ES 2.0 can be used in Android native
development projects by including the libGLESv2.so shared library in the project,
as follows:

LOCAL_LDLIBS := -lGLESv2

The headers are gl2.h and gl2ext.h. OpenGL ES 2.0 is supported from Android
API level 5.

Android Game Development Using C++ and OpenGL

[266]

OpenGL 3.0
From Android API level 21, OpenGL ES 3.0 is supported. The developer can include
libGLESv3.so to use OpenGL 3.1, as follows:

LOCAL_LDLIBS := -lGLESv3

The headers are gl3.h and gl3ext.h.

OpenGL 3.1
From Android API level 21, OpenGL ES 3.1 is supported. The developer can include
libGLESv3.so to use OpenGL 3.1, as follows:

LOCAL_LDLIBS := -lGLESv3

The headers are gl31.h and gl3ext.h.

OpenGL ES 3.0 and OpenGL ES 3.1 are not supported by many Android devices. If a
developer intends to use them, then there should be an OpenGL version check before
using the version. Also, proper version of OpenGL ES must be used to run the game
on that particular device. The latest Android N has support for OpenGL ES 3.2.

Detecting and setting the OpenGL version
This piece of Android Java code can be used to implement proper OpenGL ES
support for an Android game:

private GLSurfaceView glSurfaceView;
void setOpenGLVersion()
{
 final boolean supportOpenGLEs3 =
 configurationInfo.reqGlEsVersion >= 0x30000;

 if (supportOpenGLEs3)
 {
 glSurfaceView = new GLSurfaceView(this);
 glSurfaceView.setEGLContextClientVersion(3);
 glSurfaceView.setRenderer(new RendererWrapper());
 setContentView(glSurfaceView);
 }
 else
 {
 final boolean supportOpenGLEs2 =
 configurationInfo.reqGlEsVersion >= 0x20000;

 if (supportsOpenGLEs2)

Chapter 11

[267]

 {
 glSurfaceView = new GLSurfaceView(this);
 glSurfaceView.setEGLContextClientVersion(2);
 glSurfaceView.setRenderer(new RendererWrapper());
 setContentView(glSurfaceView);
 }
 else
 {
 glSurfaceView = new GLSurfaceView(this);
 glSurfaceView.setEGLContextClientVersion(1);
 glSurfaceView.setRenderer(new RendererWrapper());
 setContentView(glSurfaceView);
 }
 }
}

Texture compression and OpenGL
Texture compression has a significant effect on the rendering process handled by
OpenGL. It can increase or decrease performance for different types of texture
compression. Let's have a quick look at some of the important texture compression
formats:

•	 ATC
•	 PVRTC
•	 DXTC

ATC
ATI texture compression is often called ATITC. This compression supports RGB
with and without an alpha channel. This is the most common and widely used
compression technique for Android.

PVRTC
Power VR texture compression uses 2-bit and 4-bit pixel compression with or
without an alpha channel. This is used by many game developers across the globe.

DXTC
DXTC is also called S3 texture compression, which is also used for OpenGL.
This uses a 4-bit or 8-bit ARGB channel.

Android Game Development Using C++ and OpenGL

[268]

OpenGL manifest configuration
Android requires the version definition of OpenGL used in the application, along
with other required options.

Here is the version declaration syntax for OpenGL ES:

<uses-feature android:glEsVersion=<Target version goes here>
 android:required="true" />

Here are the target version options:

•	 0x00010000 for version 1.0
•	 0x00010001 for version 1.1
•	 0x00020000 for version 2.0
•	 0x00030000 for version 3.0
•	 0x00030001 for version 3.1
•	 0x00030002 for version 3.2

Here is the optional setting for texture compression declaration:

<supports-gl-texture android:name=<Compression support type goes
 here> />

These are the compression type options:

•	 GL_OES_compressed_ETC1_RGB8_texture

•	 GL_OES_compressed_paletted_texture

•	 GL_EXT_texture_compression_s3tc

•	 GL_IMG_texture_compression_pvrtc

•	 GL_EXT_texture_compression_dxt1

•	 GL_EXT_texture_compression_dxt2

•	 GL_EXT_texture_compression_dxt3

•	 GL_EXT_texture_compression_dxt4

•	 GL_EXT_texture_compression_dxt5

•	 GL_AMD_compressed_3DC_texture

•	 GL_EXT_texture_compression_latc

•	 GL_AMD_compressed_ATC_texture

•	 GL_ATI_texture_compression_atitc

Chapter 11

[269]

However, not all texture compressions are supported by every device. The developer
should always choose the target texture compression depending on the hardware
and Android version requirement.

Google does the filtration process of devices automatically if the target
device does not support the declared texture format or formats.

Choosing the target OpenGL ES version
As you have already learned, not all devices support all OpenGL versions. So, it is
very important to choose the correct OpenGL version before developing the game.
Here are a few factors that should be evaluated while choosing the OpenGL version:

•	 Performance
•	 Texture support
•	 Device support
•	 Rendering feature
•	 Programming comfort

Performance
It is noticed that OpenGL version 3.x is faster than OpenGL version 2.x, which is
way faster than OpenGL 1.x. So, it is always better to use the latest possible version
in the game.

Texture support
Texture compression support varies with OpenGL versions. Older versions support
older texture compression factors. Also, Android version support is not universal
for all OpenGL versions. Again, it is better to use the latest possible version for
texture support.

Device support
This constraint keeps a developer's feet on the ground. The latest versions of
OpenGL are not supported by all devices. So, in order to target a bigger range of
devices, the user should change the OpenGL version to 2.0 as most devices support
this version.

Android Game Development Using C++ and OpenGL

[270]

Rendering feature
As the version of OpenGL increases, the feature list becomes an important factor
while choosing the OpenGL version. The developer must know the support required
for developing the application and accordingly, they must choose the version.

Programming comfort
There is a huge coding style and API change among the versions of OpenGL. The
developer should choose the version if it can actually be developed in the company
with ease.

Different CPU architecture support
The developer has the opportunity to optimize an Android application for a separate
processor architecture. At a high-level point of view, it is a great feature. However,
this feature comes at a significant cost. Let's have a look at the details of this feature.

Available CPU architectures
Here are the architectures currently supported by the NDK build:

•	 ARM
•	 x86
•	 Neon
•	 MIPS

ARM
ARM stands for Acorn RISC Machine. This is a RISC (Reduced Instruction Set
Computing) based processor, mainly targeting embedded or mobile computing.
As the base says, it is highly efficient for an operating system such as Android.

Currently, most used processors of the Android platform are from the ARM family.
It can be further sub-categorized as follows:

•	 ARMv5TE
•	 ARMv7
•	 ARMv8

Chapter 11

[271]

x86
Intel introduced the x86 architecture for processors. At first, these processors were
mainly used for desktop/laptop PCs. However, they were optimized to be used in
mobile devices in the form of Celeron or Atom processors.

Two types of x86 architecture can be set for the Android NDK build:

•	 i686
•	 x86-64

Neon
The Neon architecture is based on ARM technology to optimize it further for mobile
computation. The Android build also can be optimized for this specific architecture.
All Cortex processors are basically Neon-based processors.

MIPS
MIPS stands for Microprocessor without Interlocked Pipeline Stages. There is
a variation of 32- and 64-bit processors in this category. As the name says, this
architecture is used in microprocessors in embedded devices for small-scale
computation. Later, it was introduced to Android with a 64-bit architecture.
However, this type of processor is rarely used in Android systems today.

Advantages and disadvantages of integrating
multiple architecture support
Android mobile devices have different configurations in terms of memory and
processing capacity. Including separate architecture support may increase the
performance that comes with greater build size.

The native build tool builds a separate shared library for each target processor and
includes it in the build package.

Here are some advantages and disadvantages of providing separate processor
architecture support.

Let's see the advantages first:

•	 Faster operation: Separate architecture for a separate processor results in a
faster processing speed of game instructions. If the processor architecture is
supported by the Android application, then the processor does not need to
perform any conversions and can run the instructions at a faster speed.

Android Game Development Using C++ and OpenGL

[272]

•	 Optimum use of processor: The operating system always looks for the
specific architecture for an integrated processor. The same architecture
makes optimum use of the processor.

•	 Minimum power consumption: Optimum processing directly implies
optimum and minimum power usage for processing.

•	 Optimum memory usage: The processor does not need to use extra runtime
memory to execute instructions if the same processor architecture
is supported by the Android application.

Let's see the disadvantages now:

•	 Larger build size: Using a separate shared library for a separate architecture
increases the build package size significantly. The entire native instruction
code is rewritten in a separate shared library with different processor
optimization.

•	 Reduced target device count: If the size of the APK is large, it creates more
problems to accommodate it for a low storage device. Hence, device support
becomes less.

Summary
We looked at Android NDK briefly in this chapter and cleared a few doubts on
native development. There are many developers who think that developing games
in a native language gives enormous processing power. This is, however, not always
true. Processing and performance depend on the development style and standard.
In most common scenarios, the difference between native development and SDK
development is negligible.

OpenGL works with Android in any scenario. The backend rendering is based on
OpenGL for both NDK and SDK. We have already discussed all the technical aspects
of OpenGL. Here, you learned which version of OpenGL works with Android and
what we should use. Clearly, OpenGL ES 2.0 is a good choice as most Android
devices support it. On the other hand, OpenGL ES 1.0 is obsolete, and OpenGL ES
3.0 is not supported by most Android devices yet.

Until now, we have covered almost every aspect of Android game development.
However, finishing the implementation for the game does not define the completion
of the development cycle. Developers need to polish the game after it comes to a
release-ready state to improve its overall quality. We will discuss game polishing in
the next chapter to indicate the completion of the game development process.

[273]

Polishing Android Games
The quality of a developed game mostly depends on the final polishing. Polishing
is basically a stage in development where the game is improved in every possible
aspect to provide maximum user experience. There is no limit to such improvisation.
Most game developers allocate a major time period to polishing.

In the polishing stage, the game should be ready for release. Most of the time, the
developer faces a time crunch at the end of the development process. Polishing takes
a significant amount of time. There are many examples where the developer chooses
to polish the game after release. However, it is not recommended from the user
experience and retention point of view.

The polishing job is carried out by the full development team, including designers,
artists, and developers. It is the responsibility of the product manager and producer
to ensure the target polishing level of the game.

Many developers choose to carry out play testing with a significant but limited
number of users. Then, the issues and improvements are charted down for polishing.
There are several approaches to polishing an Android game used by developers. We
will discuss the general and widely used methods and practices of polishing in this
chapter.

We will have a detailed look at the following topics:

•	 Requirements for polishing
•	 Play testing
•	 Taking care of UX
•	 Android-specific polishing
•	 Game portability

Polishing Android Games

[274]

Requirements for polishing
Polishing any game defines the quality of development. So, it is absolutely necessary
to polish any game before releasing it in the market. A polished game performs far
better than unpolished games in terms of visibility, smoothness, and user experience.

Polishing Android games covers all the three development components of a game:

•	 Development polishing
•	 Art polishing
•	 Design polishing

Development polishing
Polishing the engineering or the technical aspect of the game development process to
improve smooth playability of the game is the main target of development polishing.
This section includes programming optimization, memory optimization, and
stripping unnecessary code blocks to avoid any extra processing.

Development polishing can be further split into three phases:

•	 Memory optimization
•	 Performance optimization
•	 Portability

Memory optimization
We have already discussed memory optimization in detail in the previous chapter.
Memory optimization ensures that the game runs with minimum memory usage. In
a way, it helps a lot to increase device support and game stability. A good game must
have excellent memory management so that it can run smoothly even with limited
memory capacity.

Performance optimization
Performance optimization ensures that the game runs smoothly on each and every
target Android device. However, it is not always possible to test such smoothness
in all devices. Mostly, developers select a few devices that are almost equivalent to
other targeting devices to test the game.

Chapter 12

[275]

Portability
Multi-resolution support and multi-platform support are also a part of development
polishing. Thus the game can reach the maximum possible audience with minimal
effort. Portability might be the key to success for many Android games.

Art polishing
Game art is polished during this phase. The main target in polishing the game art is
to provide better visual quality within the same art space.

Game art is the initial driving force of the game. So, the polishing of game art may
create or destroy the future of the game in the market. Especially for Android, where
a wide range of device variations are available in the market with different visual
quality, game art polishing becomes extremely useful.

There are mainly three phases of art polishing:

•	 UI polishing
•	 Animation polishing
•	 Marketing graphics

UI polishing
UI drives the game flow. So, the UI art should convey the desired path easily for
users to roam around within the game. Thus, it becomes absolutely necessary to
polish the UI art accordingly.

Animation polishing
Almost every game uses animations for various purposes. Polishing animations
means increasing the visual effectiveness and make a user see the game from a
developer's point of view. Mainly for sports games, FPSs, and RPGs, animations are
inevitable. Animations decide the character of gameplay.

Marketing graphics
Marketing assets are the first thing to be visualized when it comes to a game. They
create the hype and interest to start playing the game for the user. If marketing art is
not polished enough to attract users to the game, then there may be significant loss,
irrespective of the actual game quality.

Polishing Android Games

[276]

Design polishing
It may be a general concept that design is a phase of preproduction and can be
improvised during production. However, it is very important to polish up the design
after development so that the final application can have improved quality. It has five
phases:

•	 Designing UX
•	 Polishing the game flow
•	 Polishing the metagame
•	 Game economy balance
•	 Game difficulty balance

Designing UX
UX is the overall playing and browsing experience of a game from the user's point of
view. There are several cases where a game failed to retain users because of poor UX
designing. So, UX has to be polished with the help of actual user behavior.

Polishing the game flow
Often in the game development process, the game flow might contain some
unnecessary loops or actions. Users should have the maximum experience of the
game with minimal action. Each action should be simplified enough for the users
to understand without any tutorial. However, it is not always possible to simplify
the game flow to that level. But it should be simplified enough to make it easy to
understand.

Polishing the metagame
A metagame is basically the container or packaging of the core gameplay.
Polishing the metagame means polishing the packaging so that the game becomes
more interesting and engaging for users. The metagame is also responsible for
monetization. So, an extremely well polished metagame increases the chance of
success in terms of revenue.

Game economy balance
Many developers used to polish economy balancing along with metagame polishing.
However, there are many aspects that need to be taken care of separately, depending
on the core game model. Almost every game has an economical aspect associated to
it. This aspect should be balanced throughout the game to keep users moving and
give them a sense of progression.

Chapter 12

[277]

Game difficulty balance
As they say, all the fingers on a hand are never the same. Similarly, user efficiency
is also not the same. It is the most likely thing to vary, and is reflected on the game
leaderboard. So, the difficulty of the game should be balanced in a way such that
almost each and every player has a chance to keep playing the game.

Play testing
Play testing is a part of planning game polishing. Play testing is carried out after the
game has been made according to the initial design. It basically reveals the entire
user behavior throughout the game.

Here are the fields of exploration during play testing:

•	 User gameplay difficulty level
•	 User actions during gameplay
•	 User actions while browsing the game
•	 Whether the user is paying or not
•	 Whether the game is running smoothly
•	 Whether the user can adopt the gameplay
•	 User retention

Play testing is planned on a limited group of targeted users. Often, developers
release beta versions of the game in a certain region to carry out play testing. The
preceding points are basically the advantages of play testing. The only disadvantage
of performing such an act is that the developer might lose some audience in the play
test region because of a poor initial game plan, which can be improved after play
testing. So, it is always recommended that you complete the game with the full game
experience planned in the initial phase and make the game release-ready before
performing play testing.

User gameplay difficulty levels
Difficulty aspects of a game vary with game design and core gameplay. All users of
the same game are not equally efficient in playing the game. Play testing reveals the
difficulty faced by users while playing the game.

Game balancing is improvised after collecting this data from the play testing result.
This has a direct impact on game polishing.

Polishing Android Games

[278]

User actions during gameplay
This section typically reveals the use of gameplay controls by users. For example,
it reveals whether a gameplay mechanism supports few gameplay controls such as
swiping, tapping on different buttons, choosing options, and so on. The developer
collects data on all of these during play testing. Even the reaction time of each action
may be considered.

Depending on this data, the developer can have an idea of the ease of game control.
Whether the user can use the control properly or not determines the success of the
game. Sometimes, developers change the game control if they encounter a serious
issue with regard to user actions.

User actions while browsing the game
All the user actions during UI browsing are recorded during the play testing
phase. The UI flow and navigation style of the game are validated throughout this
process. Sometimes, a UI section may be overlooked by the user. It is very difficult
for developers to identify such UI sections from a user's point of view, although
developers can easily browse those segments as they themselves have implemented
those UI sections. Such cases indicate that the section of UI that is overlooked by a
decent number of users is not highlighted enough by any means.

There may be several sections in the UI that are not a direct part of the main game
flow, such as the leaderboard, offer wall, achievements, help, settings, IAP screens,
secondary game mode, and so on. If a user does not visit such UI sections for a long
period of time, which cannot be predicted by the developer, then the developer
may choose to change the UI style or find out an alternate solution. The success of
metagames mostly depends on this kind of polishing. Game monetization can also be
improved a lot.

Whether the user is paying or not
There are several game monetization models available. The basic three types are
premium, free, and freemium. Developers adopt any model for the game to generate
revenue.

As the name suggests, premium games are basically paid games. This means the full
game is bought by the user in the first instance. So, in this case the user does not need
to pay while playing. A free game is completely free to play and has no provision
for paying to gain any advantage while playing. The developer can plan revenue
through game advertising. User actions and behavior during gameplay can help place
advertisements strategically. Users have an option to pay after starting to play the
game in the case of the freemium model. The developer designs the metagame to make
users pay for the game to gain advantage or increase game progression speed.

Chapter 12

[279]

In the play testing stage, the developer monitors users when they are paying for the
game. In the freemium model, the developer defines stages where the user should
pay to progress faster or more smoothly. This plan is validated through play testing
to project future revenue.

Whether the game is running smoothly
As we have already discussed previously, from the optimization point of view,
smooth gameplay is one of the major segments of game polishing. Initial testing
is carried out on a few restricted devices. However, in the case of play testing, it is
much more reliable to focus on real-time scenarios with a real device to validate
smooth gameplay. However, a variety of hardware configurations are available on
Android. The developer must decide the test configuration and set the benchmark
before play testing.

The developer can take note of real-time FPS, crashes, and other performance
data through play testing. The game is then further optimized to achieve target
playability.

Whether the user can adopt the gameplay
Not each and every game is easily understandable. It is a proven and common
behavior of users that they do not pay attention to a separate game instruction
section to understand the game. Instead, they directly jump into the gameplay.
Hence, most of the time, it takes a considerable amount of time for a normal user to
understand the gameplay.

Some developers use an interactive tutorial to help users understand game controls,
gameplay, and game objective. Sometimes, it is mandatory to finish the interactive
tutorial to continue playing the game. This is the best possible solution to the
problem.

However, there are several ways to design the interactive tutorial. The game might
not be understood through a poorly designed tutorial. It is not always possible to
predict the time taken by the user to adopt to the gameplay. Thus, it becomes very
important to know whether the user understands the game within the planned time
or not through play testing. This has a great impact on user retention.

Polishing Android Games

[280]

User retention
User retention prediction is directly associated with predicting the game revenue,
which signifies the commercial success of the game. If a user plays the game for the
first time and never comes back, it means the user is not retained. User retention has
a few segments: daily retention, weekly retention, monthly retention, and so on.

During the play test phase, developers count the number of users who are playing
the game repeatedly and the number of users who left the game. Developers even
collect data about the time and the specific point in the game where the user left it.
This may reveal an issue with the game model. This issue can be rectified to retain
more users.

Taking care of the UX
When it comes to the quality of the game, UX or user experience is the most important
factor to be considered. Thus, it becomes extremely necessary to polish the UX of the
game.

We can categorize UX polishing into the following categories:

•	 Visual effects
•	 Sound effects
•	 Transaction effects
•	 Action feedback

Visual effects
The user experience of a game is mostly visual. So, each visual effect adds an extra
layer of polishing for the game to increase experience quality. There are several types
of users. Visual effect ensures the engagement of the user. Basically, polishing visual
effects means each action feedback should be visual.

For example, there are a few users who might be color blind. For them, only color
visuals is not enough. This scenario may be improved by introducing visual effects
with different shapes of objects or by some other action.

Chapter 12

[281]

Sound effects
Sound defines the mood of the game. Sound designers design sounds according to
the game type. There are two separate types of sound effects:

•	 Theme music
•	 SFXs

Theme music
The theme music is the music that plays in loop continuously. It creates an ambience
for playing the game. Most of the time, it enhances the fun while playing the game
or browsing through its UI. A good game must have a theme that complements the
game.

SFXs
SFXs are the event-based sounds that can be specified for a particular action or event
in the game. A few common uses of SFXs are button clicks, user actions, game win,
game lose, game start, and so on.

Transaction effects
Most games have multiple stages of action. The main transaction is the one between
the stages. Smoother transaction effects result in a better user experience as the user
has a clear idea about the flow.

There can be other transactions as well. For example, if the game supports an in-
game currency system, then there have to be currency transactions. Most of the time,
the user does not pay attention to the numbers and text changes. However, a visible
transaction makes the user notice the numbers.

Action feedback
There are many games nowadays that strictly follow the action feedback system.
There should be a feedback of each action made by the user. Feedback can be either
visual, sound, or both. More prominent feedback results in a better user experience.

Polishing Android Games

[282]

Android-specific polishing
Android has a specific set of features and limitations. This opens up the possibility
for Android-specific polishing. This can be done on the following features or
limitations of the Android platform and devices:

•	 Optimum use of hardware buttons
•	 Sticking to basic Android features and functionalities
•	 Longer background running
•	 Following Google guidelines for Play Store efficiency

Optimum use of hardware buttons
A typical Android mobile or tablet device has the following buttons:

•	 Home button
•	 Back button
•	 Menu button
•	 Volume up button
•	 Volume down button
•	 Lock/Unlock/Power button

Each button has its own functionality based on the Android standard. It is always a
good practice to use these buttons for the exact same functionality in the game.

For example, pressing the Back button should take the user to the previous screen
or previous state of the game. The most common use of the Back button for in-game
play is to pause the game cycle. Similarly, the Volume up/down button should have
a direct effect on the game sound in line with the native functionality.

Sticking to basic Android features and
functionalities
It is always a good practice to implement basic Android functionalities and use
Android-specific features for an Android game. We just spoke about using the device
buttons for Android devices.

From the features point of view, the Android standard features support killing the
game application from the game itself. Unlike iOS, an Android game can be quit.

Chapter 12

[283]

Longer background running
It is a common practice for users to not always quit the gameplay in a conventional
way. Rather, Home buttons are used to quickly get out of the game. In that case, the
game goes to the background and keeps on running unless the user resumes it or the
OS kills the process. The longer it can stay in the background, the quicker the game
can be resumed.

Mainly, using low memory and low process overhead can increase the time the game
persists in the background. A few times there might be several interrupts. In this
case, it is a best practice to resume to the same state for a better user experience.

Following Google guidelines for Play Store
efficiency
Although Android is an open source platform, Google has some guidelines for
Android applications; these are also applicable to games. It is obvious that the Google
Play Store is the biggest platform to reach a global audience in the current market
scenario. So, it is always a wise decision to follow their guidelines to get featured.

There are several millions of applications available on the Google Play Store. Without
getting featured, it is very difficult to attract users to a particular game or application.

Game portability
Polishing is the best phase where game portability should be increased to its
maximum level without affecting the game itself. In this phase, portability can be
increased in three ways:

•	 Support for various screen sizes
•	 Support for multiple resolutions
•	 Support for multiple hardware configurations

Support for various screen sizes
Android has a lot of variety in terms of screen size. The game control system is
the main segment affected by varying sizes. When a game is designed, the control
system is also planned according to user convenience.

Polishing Android Games

[284]

For Android mobile game development, Android tablet controls are usually a bit
different from Android mobile controls. The screen size of tabs is usually bigger
than mobiles. So, there is more space to be used by the user. The game should be
optimized for both small and big screen scenarios for ease of control.

Support for multiple resolutions
In contrast, there are Android devices that have the same screen size, but different
resolutions. In this scenario, the main difference occurs in terms of visibility. So,
supporting multiple resolution devices is more art-intensive.

Many developers use different art assets to support different resolution devices.
We have already discussed the variety of resolutions in dpi for Android. So, it is
possible to detect the device resolution and use art assets accordingly.

Specifically for Google Play Store games, Google supports four different application
packages under the same application. So, the developer has the flexibility to
create and use four different APKs for the same game. However, there are more
resolutions. Hence, there are several other ways to achieve them.

Integrating a game-specific server is one of the most popular ways to do the job.
Developers do not include the major chunk of art assets in the APK. Instead, they
put different art packages for different resolutions on a game-specific server. Thus,
the game can download specific resolution assets when required. In this way, the
developer manages to keep the APK size to a minimum.

Support for multiple hardware configurations
A single game cannot have equal visual and performance impact on every hardware
platform. Game developers try to maintain a certain standard to run the game on
several configurations smoothly.

Sometimes, the game is optimized specially for some hardware platforms. One of the
common examples of such optimization is processor architecture. We have already
discussed the variety of processor architectures used in Android games. So, games
can be ported for a separate processor architecture.

It is very important to support as many possible hardware configurations as possible
to target or acquire users. Developers might need to write separate code to perform
such a game polishing function.

Chapter 12

[285]

Summary
Game polishing is an inevitable part of game development. However, game
improvisation has no limit. Developers should plan polishing stages and changes to
support and meet the development timeline. Game polishing helps a game acquire
more users, more retention, and eventually more revenue. A highly polished game
covers each and every section discussed in this chapter.

A game must look good, feel good, and be interesting enough to continue. Last but
not least, it should be top-quality so that users pay for it or refer other users. Game
polishing increases the life of a game. It helps developers plan updates and features,
and keeps users in the game for a longer period.

So far, we have covered almost every aspect of game development for Android.
However, a developer cannot be at rest even after developing the game. There are
certain parameters to be fulfilled to make a successful game. For these reasons, the
developer must include a few non-gaming features and functionalities in the game.
We will explore these extra integrations through third parties in depth, and we
will try to explore monetization techniques to make the game profitable in the last
chapter of this book.

[287]

Third-Party Integration,
Monetization, and Services

Android game development or any other smartphone game development is not
complete without implementing background services. Background services help the
game spread and perform to reach the next level.

The style of game development has changed a lot with time. New styles and
monetization techniques have been introduced. New game services have been
created to support these techniques. Many tech companies start their own services to
create a new industry. Any work we do professionally is mainly to earn our living,
and the gaming industry is not an exception. However, this industry is targeting
entertainment, fun, and interactivity between a device and the user. Developers
make money based on this. All the third-party integration and services help
developers monetize the game, which directly or indirectly helps increase revenue.

Services can be any background support that is not game specific and can improve
the experience of a game. Mostly, services use the Internet and device hardware and
software programs. Mostly, a server-based service works with the application to
provide the service.

We will have a detailed look at these aspects in this chapter through the
following topics:

•	 Google Play Services
•	 Multiplayer implementation
•	 Analytic tools
•	 Android in-app purchase integration
•	 Android in-game advertising
•	 Monetization techniques

Third-Party Integration, Monetization, and Services

[288]

•	 Planning the game revenue
•	 User-acquisition techniques
•	 Featuring Android games
•	 Publishing Android games

Google Play Services
Google is currently the largest platform for Android applications. Moreover, Google
is the owner of the Android OS. So, there can be no one better than Google to be the
service provider for the Android platform.

Google Play Services is a background service for all Android devices to access
all Google service product APIs. It was launched in 2012 to support Android
development and take it to the next level.

The most used services in the Google Play Services package are:

•	 Google Analytics
•	 Google IAB
•	 Google Leaderboard
•	 Push notifications

Google Analytics
Google Analytics is a service to track each and every event in the game. This can
reveal user behavior, user actions, the number of users playing per day, each user's
playing time, and so on. So, no data can go unnoticed by the developer. This analytic
data helps developers identify the critical sections in the game. With this help, the
developer can improve the game for better experience.

Significance
It is not always possible to track down each and every issue in the game in the
testing or play testing phase. When the game gets bigger, with a huge user base,
then it is more likely that unknown issues will be exposed. Google Analytics helps
in these fields, not only with the current behavior of the user, but with the game
performance as well.

Chapter 13

[289]

Integration tips
Google Analytics is mostly used to track game events. So, the tracking events must
be decided very carefully. The triggering points must also be placed in a strategic
way. The developer might not require all the events and behavior data. More
tracking may be even harmful to the application, as there would be more data use
and more processing in the game.

The developer should always prioritize events. Events should be tracked based on
the game flow design. They should then be validated by user action.

From the monetization point of view, it should always be a priority to track when
the user is hitting the pay wall or which section is being visited more. A simple
advertisement in the most visited section may increase the application's revenue.

Best utilization
The best utilization of the Google Analytics tool is no different than any other
Android application analytics tool. This tool is the best possible way to track user
movement, and through the data the developer can easily predict the user's motive
or intention with the game.

Google IAB
In the modern world of gaming, there are many methods to monetize the
application. In-app billing is one of the most popular methods. Google Play Services
comes with the Google In-App Billing tool. This tool is directly associated with
Google Play Store.

Through this tool, the developer can design some purchasable contents inside the
game. For users, it is very easy to purchase from the built-in store of the Android
application.

The Google IAB model
Let's have a quick look at the three purchasable options in Google IAB. We will have
a detailed look at them later in this chapter:

•	 Consumable items
•	 Non-consumable items
•	 Subscriptions

Third-Party Integration, Monetization, and Services

[290]

Consumable items
Users can purchase this item multiple times from the store. Google does not keep
track of these kinds of items. The most common example of this type of item is in-
game virtual currency. Many games are designed around virtual currency, and most
of the time, this factor is the backbone of game monetization.

Non-consumable items
They are basically one-time purchases for the user. Google always keeps track of
these purchases made by a user for any application through Google IAB. Even when
a user uninstalls the application and reinstalls it, it is possible to restore the non-
consumable purchases to the user's account.

The most common item under this category is game modes. In many games, there
are some open modes and some can be purchased. This system also works with the
try-and-buy monetization aspect.

Subscriptions
Subscriptions are basically a time-based model of monetization. This is mainly used
in typical service-based applications such as music channels, TV channels, library
channels, and so on. Very few games, however, use subscriptions to monetize.

Integrating Google IAB
Google Play Services comes with IAB APIs. The developer needs to register the
application on Google Play Store to get live access. This system works with item IDs,
which are called SKUs. Each SKU represents an item in the Play Store. The developer
may not use all the SKUs created in the Google Play account for a particular game.

Advantages and disadvantages of Google IAB
We have already noted that Google IAB provides a platform to implement a direct
digital purchasing system within the application. This saves great effort and time for
both developers and consumers. Let's have a quick look at the advantages of Google
IAB:

•	 Google IAB provides a direct platform to purchase application components
or services within the application

•	 Google IAB simplifies the monetization aspect of an application
•	 Google IAB provides multiple options for payment for consumer

convenience
•	 Google IAB stores and manages purchases for non-consumable items

Chapter 13

[291]

•	 There is hassle-free implementation and excellent customer support for
Google IAB

•	 The easy refund process is completely managed by Google IAB

So far, Google IAB has proved to be an excellent system for both developers and
consumers or users. However, there are several sectors where Google IAB is still
lagging behind. Now, let's have look at the sectors where Google IAB needs to
improve:

•	 Google IAB only provides billing services through Google Play Services
•	 Google IAB still does not support carrier billing
•	 Not every user is willing to provide credit card information to Google

Despite these issues, Google IAB is still the most popular platform for billing for
Android developers. Google has started including carrier billing services within
Google IAB, which may prove to be the most significant feature.

Google Leaderboard
Leaderboard is a platform for games and similar competitive applications where
each and every user can track their progress among other users. Leaderboard has
proved to be the driving force of many games. Google Play Services comes with an
in-built Leaderboard system for Android applications.

Significance
Having a leaderboard integrated in games is always a plus, as it helps users compete
with each other even when the game is not multiplayer. It is human psychology
to try to become superior to others. Using this feature, there can be more user
engagement than usual. However, the competing criteria on the leaderboard
must be chosen carefully.

A good example of a leaderboard-driven game is Candy Crush. Users are very
active, playing the simple game to stay ahead of their friends on the leaderboard.

Integrating Google Leaderboard
There is no separate Google Leaderboard package. This can be included by
integrating Google Play Services itself. However, Leaderboard has to be set up
in the Google games account to use it.

Third-Party Integration, Monetization, and Services

[292]

The developer can choose any parameter or calculation to store leaderboard data.
Google Leaderboard supports data from multiple leaderboards for a single game.
Most of the developers use this feature efficiently to show different leader lists,
depending on the time period, region, or some other customized parameter.

Variety of leaderboards
Primary variations of Google Leaderboard are of two types:

•	 Social Leaderboard
•	 Public Leaderboard

Social Leaderboard
Social Leaderboard lists only players who are connected with the player's circle. For
this feature, the player must log in to their respective Google accounts. This has a
limitation to players who have played and choose to share their activity
in the same application.

Public Leaderboard
Public Leaderboard stores data for players who choose to post scores publicly.
Otherwise, this data won't be shown by Google Leaderboard, even if they have better
score than the existing players on the public Leaderboard.

Options for storing and displaying leaderboards
Leaderboard storage can be classified into two types, based on ascending and
descending order. In terms of Google Leaderboard, they are called:

•	 Larger is better
•	 Smaller is better

A score is always a numeric value, which is again classified into three formats:

•	 Numeric value format
•	 Time format
•	 Currency format

Chapter 13

[293]

In the case of a numeric value, the developer can specify the decimal placement. In
the case of the time format, the developer needs to pass the score in milliseconds, and
it will be automatically interpreted in the hh:mm:ss format. In the case of the currency
format, the developer needs to specify the currency and its unit value beforehand.
The Leaderboard will only take values in a unit and convert it to the specified unit
format.

Leaderboard can have unique icons to display or indicate a unique leaderboard.

Push notifications
The push notification service can be achieved through the Google Cloud Messaging
(GCM) service. Let's have a quick look at the cloud messaging architecture.

There are primarily four components used to implement push notifications for
Android using GCM:

•	 Database
•	 Server
•	 Target device
•	 GCM service

Database
The database stores the registration details of a client or target device with the GCM
service. So, each device is required to register only once. The same details are used to
send push notifications to the registered target devices.

Server
Developers need to put up a server to achieve and control push notifications.

Target device
A target or client device is the platform where the message is pushed from the
GCM. Each target device has a unique registration ID through the GCM. Without
registration, a target device cannot receive any notifications.

Third-Party Integration, Monetization, and Services

[294]

GCM service
The GCM service is responsible for registering devices and pushing messages
to them. The server requests the GCM service with a list of registration IDs and
customized messages. GCM is only responsible for pushing the given content to
specified devices:

Workflow of the push notification system using GCM
Now, let's discuss the push notification workflow. In the preceding diagram, the
push notification system works according to the indicated indexes (for example,
a, b, c, and so on):

1.	 a: The client or target device requests GCM to register with the application
ID and sender ID.

2.	 b: GCM sends the registration ID back to the sender after a successful
registration.

3.	 c: The device sends the registration ID to the developer's server.
4.	 d: The server stores the registration ID to the database.
5.	 e: The developer initiates the process to the push notification with

customized content.
6.	 f: The server fetches the registration ID list from the database.
7.	 g: The database provides all the registration IDs.
8.	 h: The server requests GCM with developer-specified content and

registration IDs.
9.	 i: GCM pushes the same content to the respective target devices according to

their registration IDs.

Chapter 13

[295]

Integrating push notifications
Integrating push notifications is done in three steps:

1.	 Application integration
2.	 GCM setup
3.	 Server setup

Application integration
The developer needs to set up a GCM client for the application, which is the medium
of GCM communication. Here is a brief about client-side development for GCM
communication services.

It requires a set of manifest permissions:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="com.google.android.c2dm.permission.
RECEIVE" />
<permission android:name="com.example.gcm.permission.C2D_MESSAGE"
 android:protectionLevel="signature" />
<uses-permission android:name="com.example.gcm.permission.C2D_MESSAGE"
/>

The manifest will also require declaration of the GCM receiver and GCM service:

<receiver android:name="com.google.android.gms.gcm.GcmReceiver"
 android:exported="true" android:permission="com.google.
android.c2dm.permission.SEND" >
<intent-filter>
<action android:name="com.google.android.c2dm.intent.REGISTRAION" />
<action android:name="com.google.android.c2dm.intent.RECEIVE" />
<category android:name="com.example.gcm" />
 </intent-filter>
</receiver>
<service android:name=".GcmService" android:exported="false">
 <intent-filter>
<action android:name="com.google.android.c2dm.intent.RECEIVE" />
 </intent-filter>
</service>

Third-Party Integration, Monetization, and Services

[296]

Let's have a look at the registration process for an application with GCM.
Registration can be done in many ways, depending on the development style. We
will follow the simplest processes within the main Android activity and store the
registration ID for one-time registration of the application.

Here are the required declarations:

private final Context testContext = this;
private final String SENDER_ID = "<Application ID from Google
developer console>";
private final String SHARED_PREF = "com.test.gcmclient_preferences";
private final String GCM_TOKEN = "testgcmtoken";

The registration code should be put inside onCreate():

SharedPreferences appPrefs = testContext.getSharedPreferences(SHARED_
PREF, Context.MODE_PRIVATE);
String token = appPrefs.getString(GCM_TOKEN, "");
if (token.isEmpty())
{
 try
 {
 InstanceID instanceID = InstanceID.getInstance(testContext);
 token = instanceID.getToken(SENDER_ID,
 GoogleCloudMessaging.INSTANCE_ID_SCOPE, null);
 if (token != null && !token.isEmpty())
 {
 SharedPreferences.Editor prefsEditor = appPrefs.edit();
 prefsEditor.putString(GCM_TOKEN, token);
 prefsEditor.apply();
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Now, let's define GCMService.java to handle the GCM message:

public class GcmService extends GcmListenerService
{
 @Override
 public void onMessageReceived(String from, Bundle data)
 {
 JSONObject jsonObject = new JSONObject();

Chapter 13

[297]

 Set<String> keys = data.keySet();
 for (String key : keys)
 {
 try
 {
 jsonObject.put(key, data.get(key));
 }
 catch (JSONException e)
 {
 e.printStackTrace();
 }
 }
 try
 {
 sendNotification("Received: " + jsonObject.toString(5));
 }
 catch (JSONException e)
 {
 e.printStackTrace();
 }
 }

 @Override
 public void onDeletedMessages()
 {
 Log.d("Message is deleted …");
 }

 @Override
 public void onMessageSent(String msgId)
 {
 Log.d("Message is sent …" + msgId);
 }

 @Override
 public void onSendError(String msgId, String error)
 {
 Log.d("Sending Error … Msg" + msgId);
 Log.d("Error …" + error);
 }
 private void sendNotification(final String msg)
 {
 Log.d("Sending Msg …" + msg);
 }
}

Third-Party Integration, Monetization, and Services

[298]

GCM setup
Google Play Services comes with a GCM system. GCM has to be enabled from the
Google API console. Each registered application has its own unique application ID,
which is required to configure the push notification system.

Here are the steps to enable GCM for the Android project:

1.	 Create a project on the Google Cloud platform.
2.	 Use the Google API to generate an API key.
3.	 Create a server key for Android.
4.	 Enable GCM for the application.

Server setup
Notification server development can be implemented by any cloud connection server
technology. The developer needs to set up the application server by satisfying the
following criteria:

•	 The application server should be able to communicate with the application
•	 The application server should be able to send properly formatted requests to

the GCM connection server
•	 The application server should be able to handle application requests and

resend them using exponential backoff
•	 The application server should be able to store the API key and client

registration tokens in a secured database

Significance of push notifications
Push notifications are an inevitable part of modern day game development. Push
notifications are used for the following reasons:

•	 User retention
•	 User control
•	 Knowing user behavior
•	 Alternative communication channel

User retention
Push notifications provide users with current updates and information on the game.
There are many cases where the user downloads a game and then forgets about it.
Sometimes, users leave games in between. Push notifications help these users regain
interest in the game. This procedure improves user retention.

Chapter 13

[299]

User control
Through device settings and the notifications center, the developer can control the
content that the user will see, and the user can be navigated accordingly.

Knowing user behavior
Using user controls, the developer can track user behavior upon notifications.
Depending on the user actions, the developer gets to know what the user likes and
dislikes.

Alternative communication channel
There are several ways to communicate with end users. Mostly, users do not often
communicate with the developer. So, a one-way communication channel proves to
be fruitful. A push notification system fits the role perfectly. It is the best possible
medium to deliver messages about the latest news, updates of the game, offers, and
features. In some design models, it can be used to deliver game status information
to users.

Multiplayer implementation
There was a time when multiplayer was limited to conventional PC and console
gaming. The modern day gaming industry consists of extensive use of social
networking. This automatically opens up the opportunity for multiplayer gaming.

Improved hardware systems and continuous network support with modern
connectivity have enhanced the world of multiplayer gaming. Multiplayer gaming
can be classified mainly into two categories:

•	 Real-time multiplayer
•	 Turn-based multiplayer

Real-time multiplayer
Real-time multiplayer is just like playing sports together, where every player reacts
to any action by the game or other players at the same time. For example, a football
game is played by 22 players, and each and every player acts as per the situation at
the same time. If we imagine the same scenario from a digital gaming perspective, it
will be called a real-time multiplayer.

In the general structure of multiplayer games, there should be a server where the
gameplay runs with all the logics and calculations. The server interacts with the
database when required, and the user does not have any control.

Third-Party Integration, Monetization, and Services

[300]

The client or terminal devices are the only medium that interacts with users. However,
in many cases there are some extra layers used on the client side to perform a few
actions without server validation to keep the spontaneity of the real-time multiplayer
game.

Let's look at the general architecture of the real-time multiplayer system:

The best practice to implement real-time multiplayer is to introduce the sync layer
on each terminal application layer. This layer acts as a medium between the terminal
device application and server.

Turn-based multiplayer
Turn-based multiplayer is a system where only one player gets the chance to play at
a time. For example, in the game of chess, when a player plays their turn, the other
player remains idle.

Generally, a turn-based multiplayer system is also controlled by a server. A server
can be one of the clients itself. However, the execution layers work as shown in
the following diagram. Many times, a database is also an optional part of the
architecture. The server is responsible for activating UI control on particular terminal
devices and should only listen to that device. Let's have a look at the architecture
diagram:

Chapter 13

[301]

There are more types of multiplayer models possible in Android gaming. Until now,
we have discussed only the models implemented over the Internet. Local multiplayer
gaming is also possible in Android. We can classify these games into the following
categories:

•	 Single-screen real-time multiplayer
•	 Pass and play turn-based multiplayer
•	 Local network multiplayer

Single-screen real-time multiplayer
This kind of multiplayer game is dependent on the hardware features, other
configurations, and feasibility. The device must support multiple inputs at a single
point of time to support real-time multiplayer. For Android touch devices, it is
recommended that the developers target large-screen devices to provide more space
for control for multiple players at a time.

Pass and play turn-based multiplayer
This is a type of single-screen turn-based multiplayer model. In this model, all
the participants should manage the play order manually among themselves to
synchronize with the game turn.

Here, one player passes the same device to the next player after playing their turn.
Then, the next player reacts to the current state of the game. In this model, the game
state does not change until the completion of each turn.

Third-Party Integration, Monetization, and Services

[302]

In both single-screen multiplayer models, no network connectivity is required, and
the database is an optional component that can be stored within the device memory.

Local network multiplayer
Both real-time and turn-based multiplayer models can be implemented using local
network connectivity. In this case, one of the participating devices must act as a
server and control the gameplay over local network connectivity using Bluetooth,
Wi-Fi, or an infrared connection.

Analytic tools
We have already discussed Google Analytics. There are several other analytics
services other than Google. We will discuss analytics from a general point of view.

Analytics tools are inevitable for games. They help developers understand users
better, which has a direct effect on game quality, user retention, and monetization.

Requirement of analytics tools
Developers have been collecting and analyzing data from users in many forms
for years. Often, we have encountered forms and analysis enquiries about many
products. This data helps the developer or manufacturer modify or improve the
product.

Let's have look at the variety of data from analytics and its importance through the
following points:

•	 User behavior
•	 Game crash reports
•	 Game event triggers
•	 Gameplay session timing
•	 Gameplay frequency
•	 Game balancing
•	 User retention
•	 Piracy prevention

Chapter 13

[303]

User behavior
Analytic tools can track each and every movement of every user. This data can be
further analyzed, and user behavior inside games can be guessed. This behavior
validates the meta design of the application or game.

Game crash reports
Almost all the analytic tools can report every crash event with the crash cause and
location. However, an encoded package of game code cannot reveal the location
completely, where the class and its members are encoded in meaningless symbols.

This helps developers identify the playing device and exact issue with the crash.

Game event triggers
The developer can set triggers from the game itself to track any or every aspect of
the game. These can be any event inside the game. It is a common practice for game
developers to use this trigger system for the game start, game end, and a few strategic
events such as IAP, advertisement display, mode selection (if any), and so on.

Gameplay session timing
Analytic tools track gameplay timing by triggering two events between the
application coming to the foreground or the application launch, and the application
going to the background or the application exit. By calculating the time in between,
analytic tools inform developers of the total amount of time when the user was
inside the application in a single session.

Gameplay frequency
This is basically the average count for launching the gameplay per user. So,
developers can have the data increase or improve the sessions. Developers can
classify the frequency at a given time, such as daily frequency, weekly frequency,
or monthly frequency.

Game balancing
Developers can collect data on user scores and playtime to detect the difficulty for
each player. Then, developers can balance the game accordingly. However, every
single player has a different ability and skill to play. Thus, developers must set some
standards to balance the game properly globally.

Third-Party Integration, Monetization, and Services

[304]

User retention
User retention is one of the most important aspects for developers to generate revenue
from the game. This means the number of users playing the games repeatedly. User
retention can be also time based, such as daily, weekly, and monthly.

Piracy prevention
In the case of Android gaming, there might be a model of premium or freemium
games. In this model, the user buys the game or some components inside the game
with real currency. Piracy is an old practice for many hackers or trackers. They can
hack into the payment system or decode the security layers to provide the paid game
or paid components for free. Piracy is a major problem for developers in terms of
generating revenue.

Analytics tools can check the game and provide the user details to validate the
purchase, which adds an extra security layer to prevent game piracy.

Monetization aspects of analytic tools
Analytic tools are useful in all the points mentioned earlier. All the features are
connected to the game revenue directly or indirectly. Some features help developers
improve the game quality, and the rest of the features can increase game revenue
directly or can help developers plan for more revenue with the help of analytic data.

Depending on the analytic data, the developer can perform the following actions:

•	 Identify popular regions of the game
•	 Identify a user's likes and dislikes
•	 Validate and improve the metagame
•	 Track paying users
•	 Track and count advertisement display

Identify popular regions of the game
Identifying the most popular regions of a game helps the developer plan more
revenue in a region by advertising or through some paid content. Especially for free
or freemium games, it is extremely necessary to find the part of the games that users
are visiting frequently.

Chapter 13

[305]

Identify a user's likes and dislikes
There might be several segments of a game. Users might like some of them and
dislike others. Unless the developer publishes the game or performs a play test
on a decent amount of users, it is very hard to predict a user's likes and dislikes.

Through analytics data, the developer can easily point out the segments that users
like or dislike. Developers can change the strategy or plan for a better update for the
game.

Validate and improve the metagame
A game generally has two segments of development: the gameplay and metagame.
The metagame design is done by predicting user acceptance of the model. Only
analytic tools can validate this prediction after launching the game.

Track paying users
The developer can track which user is hitting a paywall and who is actually paying
for the game through analytic tools. This data has a direct impact on game revenue.

Track and count advertisement display
The developer can actually track the count of advertisement calls and advertisement
display. Thus, it becomes easier to predict revenue from advertisements and the
developer can even plan for better filling of advertisements.

Some useful analytic tools
We have discussed Google Analytic tools under Google Play Services. There are
many analytic tools available in the market that are as good as Google Analytics and
can be a good option for replacement. There is no restriction for developers in terms
of using analytics tools. Most of the tools are free and easy to use, and the developer
can even integrate multiple tools for different purposes.

Let's have a quick look at such tools:

•	 Flurry (https://dev.flurry.com)
•	 GameAnalytics (http://www.gameanalytics.com/)
•	 Crashlytics (https://fabric.io/kits/android/crashlytics)
•	 AppsFlyer (https://www.appsflyer.com/)
•	 Apsalar (http://support.apsalar.com/)

https://dev.flurry.com
http://www.gameanalytics.com/
https://fabric.io/kits/android/crashlytics
https://www.appsflyer.com/
http://support.apsalar.com/

Third-Party Integration, Monetization, and Services

[306]

•	 Mixpanel (https://mixpanel.com/android-analytics/)
•	 Localytics (https://docs.localytics.com/index.html)
•	 Appcelerator (http://www.appcelerator.com/mobile-app-development-

products/)

Flurry
One of the most popular game analytics tool is Flurry. Flurry has almost each and
every feature for analytics purposes. This lightweight SDK is easy to install, and the
developer can start getting data right away.

GameAnalytics
GameAnalytics is a free and powerful analytics tool for game developers. It helps
you understand player behavior and build better games through analytics data on a
dynamic dashboard typically designed for games.

Crashlytics
Crashlytics is the most powerful and efficient bug-reporting tool. It can intercept any
error and exception with the maximum possible details. Crashlytics is lightweight
and easy to use for developers.

AppsFlyer
AppsFlyer is a single real-time dashboard for an all-in-one marketing tool with
analytics features. It basically uses AppsFlyer's NativeTrackTM to provide analytic
support for games.

Apsalar
Apsalar is mostly used for advertising attribution. It gives a good look at the game
marketing ROI. It also helps find out which marketing campaigns are working
and which ones need to be avoided. They also offer great marketing tools such as
SmartTags, which gives the developer a more detailed analysis of marketing efforts.

Mixpanel
Mixpanel's benefit is mainly for non-technical people who can easily create custom
queries, without knowing SQL. The powerful interface allows developers to segment
users and see which segments are working best for the game.

https://mixpanel.com/android-analytics/
https://docs.localytics.com/index.html
http://www.appcelerator.com/mobile-app-development-products/
http://www.appcelerator.com/mobile-app-development-products/

Chapter 13

[307]

Localytics
Localytics provides most of the functions for data analysis. The platform provides
real-time analytics, remarketing data, attribution, and more. Localytics's messaging
features differ from other general analytic tools.

Appcelerator
Appcelerator is an enterprise suite for mobile app testing, deployment, and analytics.
The basic feature of this tool is an interactive tablet-based mobile app, which can be
used on multiple platforms and provide immediate insight into the five key mobile
metrics: retention, engagement, adoption, quality, and conversion.

Android in-app purchase integration
In-app purchase is a feature through which the application's component can be
bought from inside the application with the help of several payment gateways.
This is one major aspect of monetization for Android games.

What are in-app purchases?
In the modern day gaming industry, freemium games are booming. This means users
can play the game for free, but they have to pay for certain components or for game
progression advantages. This model has been proved to be a success, as it supports
both free and premium concept in terms of digital gaming.

In-app purchases serve this purpose perfectly. We have already discussed Google
In-App Billing services, which is just a means of in-app purchasing through Google.
But there are other services that support the same thing.

In general, a game should offer in-app purchase items to give users a choice to buy
the following types of content:

•	 Unlock certain features in the game
•	 Buy certain items to get an advantage over other players
•	 Unlock some modes inside the game
•	 Increase ease of play
•	 Remove annoying advertisements

Third-Party Integration, Monetization, and Services

[308]

There are many types of users who have different requirements from the same game
with different skillsets. In-app purchase opens up the opportunity for all of them
to play the game as per their convenience, and meanwhile, developers make some
money.

In-app purchase options
You learned that Google IAB is not the only option for Android in-app purchases.
There are a few more that have almost the same features. There are different service
types based on the payment methods. Users may not opt for one option to pay, but if
several options are given, then it would certainly increase the chance of purchasing.

It is always a good practice to provide the maximum possible options to the user for
payments. Several purchase options are required for the following reasons:

•	 All users might not have a credit card
•	 All users might not have a debit card
•	 All users might not have activated net banking
•	 All users might not have sufficient talk-time balance
•	 All users might not like to directly use real currency

The developer should provide the maximum possible options to overcome these
issues and make users use real cash for the game. Currently, available billing services
support multiple ways of payment, but we can categorize the services into two major
divisions:

•	 Store billing services
•	 Career billing services

Store billing services
Store billing services are based on the stores from which the user downloads the
game. The game should be connected to a store with provided APIs in order to
access this feature. We already discussed that Google IAB is a type of store billing
service that includes several methods of paying, including credit card, debit card,
selective career billing, and so on.

However, Google IAB is not the only store billing service available. The most
mentionable store billing, other than Google, is Amazon billing service, which
provides almost the same features as Google.

Chapter 13

[309]

Amazon billing services
Amazon billing service works exactly like Google IAB. However, API and
integration is slightly different to Google IAB.

The developer needs to include the com.amazon.device.iap package to integrate
Amazon IAP. This process has mainly three components:

•	 ResponseReceiver

•	 PurchasingService

•	 PurchasingListener

ResponseReceiver
Amazon IAP is an asynchronous process. It works as a background service that
requires a response receiver to be implemented. The developer needs to declare the
receiver in the manifest file.

PurchasingService
The PurchasingService class is used to retrieve various types of information about
the user, execute purchases, and notify the Amazon purchasing service about the
fulfillment of a purchase.

PurchasingListener
The PurchasingListener interface is used to process asynchronous callbacks from
the Amazon server. The application UI thread handles all the callbacks, which is why
the developer should keep a check on the running process on the UI thread.

Amazon IAP is similar to Google from a feature and integration point of view. There
are other stores that may support their own billing services. There is another option
of implementing the developer's own payment portal. However, most developers of
Android games prefer to stick to mainstream billing services.

Career billing services
Some game developers use career billing services for monetization. Career billing
means the user pays developers for in-app products from their mobile balance,
which is managed by the connection provider.

Currently, Google IAB has started supporting career billing within store billing.

Third-Party Integration, Monetization, and Services

[310]

Types of in-app purchases
Developers can design their IAP products in three types mainly. These types of
products depend on game design and game genre. The types are:

•	 Consumable items
•	 Non-consumable items
•	 Subscription

Consumable items
These items are meant to be consumed within the application. In the case of Google
IAB, these products are termed non-managed products.

The billing service provider does not keep track of this consumption by the user.
Mostly, in-game currency, power ups, extra life, and so on are the main genres of this
type of products. Users can buy the same item multiple times.

Consumable items must be defined on the billing server to make them
understandable to the billing service.

Non-consumable items
Non-consumable items are those that do not expire on use. Billing servers keep track
of these purchases.

When a user purchases this type of item and uninstalls the application, then upon
reinstallation, these purchases can be retrieved. This means the user needs to buy
this product only one time throughout the application's life.

Subscriptions
This is a purchase of time or usability of some features inside the application. There
are very limited uses for subscription in games. However, this is a good option to
provide some feature or services for a limited time or limited use.

Within the span of the duration, the user may not buy the same item, however there
is a renewable feature that allows the user to subscribe again for the same thing upon
expiration of the service period.

Chapter 13

[311]

Android in-game advertisements
In-game advertisements are the most significant factor in monetization for both free
and freemium games. Developers use their game platform to show advertisements in
order to generate revenue.

Here is how it works:

1.	 Advertisers submit the advertisements to various advertisement agencies.
2.	 Each advertisement has a certain value and time duration limitation, which is

called campaign cost and campaign time, respectively.
3.	 The developer subscribes with those agencies.
4.	 The developer integrates the agency advertisement platform to include and

show advertisements.
5.	 The developer sets the parameters for advertisement types, genre, and level.
6.	 When the application triggers an advertisement call to the agency server,

it looks for the available or running advertisement campaigns that match the
criteria predefined by the developer.

7.	 Upon successful match, the server sends the advertisement elements to the
client device application.

8.	 The application loads the advertisements.
9.	 The application shows the advertisements on request.
10.	 The server keeps a count of successful display of advertisements and

calculates revenue as per the campaign cost.
11.	 The developer receives the revenue after meeting certain criteria

from agencies.

Requirement for advertisements
Completely free games have no source of revenue other than advertisements or
sponsorships. We will only look at advertisements here. Let's understand the
requirement for advertisements inside a game.

We all work to earn our living. Android is an open source platform, and most of its
user base consists of free users. This means developers have only one option left.
Compared to other monetization aspects, advertisements are a good platform to
depend on.

Advertising as an industry is old and has proven its sustainability in the market. In-
game promotion is just another way to display advertisements. This way, it is always
a win-win situation for both developers and advertisers.

Third-Party Integration, Monetization, and Services

[312]

Terminologies in advertisement monetization
Now, we will discuss typical game advertisement platforms. The developer needs to
be familiar with a few terms to get used to in-game advertisement:

•	 eCPM
•	 CPC/CPA
•	 CPI
•	 RPM
•	 Fillrate

eCPM
eCPM stands for effective cost per mile, which is the result of a calculation of
advertisement revenue generated by a banner or campaign, divided by the number
of ad impressions of that banner or campaign expressed in units of 1,000, which is
represented by the letter M at the end.

CPC/CPA
CPC stands for cost per click, which means the developer will earn a certain amount
if the user clicks on displayed advertisements. CPA stands for cost per action which
is similar to CPC.

CPI
CPI stands for cost per impression, which means the developer will earn a certain
amount if any advertisement is successfully displayed inside an application.
Generally, these earnings are lower than CPC.

RPM
RPM stands for Revenue Per Mile. It indicates the total revenue generated from
a thousand interstitial advertisements. RPM includes all types of revenue models.
RPM is calculated by the following formula:

RPM = (Total revenue) / (Ads served / 1000)

Chapter 13

[313]

Fillrate
Fillrate is the percentage of successfully served advertisements by the server.
We already know that the application requests the advertisement server for
advertisements. This is termed a "request." If a server successfully serves
advertisements upon request, then the advertisement is termed an "impression".
So we have our fillrate, as follows:

Fillrate = (Impressions/Requests)*100%

Types of advertisements
There are a few types of advertisement styles that can be used for Android games:

•	 Banner advertisements
•	 Interstitial advertisements
•	 Video advertisements
•	 In-game dynamic advertisements

Banner advertisements
Banner ads are generally ads with a continual display feature, which users cannot
close or hide. However, there is a very low campaign value for CPI, but CPC is
acceptable. Many developers nowadays avoid using banner ads, as it occupies a
significant space of the game screen. Banner ads are displayed at a given rectangular
shape at the edge of visible display.

Possible banner display positions are as follows:

•	 Top left
•	 Top center
•	 Top right
•	 Bottom left
•	 Bottom center
•	 Bottom right

Third-Party Integration, Monetization, and Services

[314]

The size variations as per the current scenario are shown in the following table:

Banner type Target Size in pixels
Standard banner Phones and tablets 320 x 50
Large banner Phones and tablets 320 x 100
IAB full-size
banner

Tablets 468 x 60

IAB leaderboards Tablets 728 x 90
Smart banner Phones and tablets Screen width x 32

Screen width x 50
Screen width x 90

Interstitial advertisements
An interstitial advertisement is a full-screen clickable image advertisement based on
various campaigns. Normally, an interstitial has a defined close button for users to
close the advertisement and go back to the game.

When an interstitial ad is shown, the ad view comes to the foreground, pushing
the main game view to the background. So, each time the game thread triggers an
interrupt for the game thread.

This type of advertisement is widely being used in games because of decent revenue.
Game monetization design has a significant role in interstitial advertisements. Each
advertisement placement has to be strategically based on the analytic data.

Integration best practice
Integrating interstitial advertisements should follow a few logical ad displaying
cycles:

Chapter 13

[315]

It is always a good practice to follow the cycle. An ad should be loaded and be in
ready state before being displayed. Upon closing an advertisement, the next ad
should be loaded immediately to avoid load delay.

Video advertisements
Video advertisements are one of the latest procedures to generate revenue. This
type of advertisement has the maximum rate. However, the availability of video
advertisements is comparatively less than image interstitial ads. There are two types
of ads:

•	 Full length ads
•	 Short length ads

Full length ads
Full length ads are generally longer. These types of ads are generally skippable,
which provides an option to skip after a certain amount of time.

Short length ads
Short length ads are comparatively smaller and have no option to skip.

In-game dynamic advertisements
This concept provides an option to show any available ad banner within the
predefined position and size. No matter what the actual ad size is, this mechanism
resizes the ad in the given size within the application.

Monetization techniques
Monetization is basically a system or strategy to generate revenue from any
application. The developer needs to decide their game monetization model based on
the game requirements. We can classify these models into four categories:

•	 Premium model
•	 Free model
•	 Freemium model
•	 Try-and-buy model

Third-Party Integration, Monetization, and Services

[316]

Premium model
This is a typical pay-before-play model. The user needs to pay for the game before
downloading it. Normally, these games do not have in-app purchases or in-game
advertisements. This is just a one-time buy for the user for the gameplay, and
normally all users have the same opportunity for game progression.

Free model
This kind of model offers the game for free but may include in-game advertisements
to generate revenue. The user can play the complete game for free but does not have
any extra privileges for any actions.

Freemium model
This model offers the game for free, and the game can be played completely without
any real currency spent on it. However, this model offers in-app purchases to
provide extra content or facility for game progression.

Try-and-buy model
This model is years old. However, very few developers prefer using this model.
Developers create a separate build of the same game with different features.

The free version usually has limited content or limited use. This version may or may
not contain advertisements. The full version of the game usually follows a typical
premium game model. Sometimes, developers use in-app purchases within the free
version of the game to unlock the full version, which is a smart way to do the job, as
it eliminates the hassle of creating and managing two different applications.

Planning game revenue
As far as we have discussed, we have a fair idea of game revenue generation.
A game developer cannot keep on developing games without generating revenue
or having strong financial support. Let's discuss game planning now, to keep a
developer developing games.

Chapter 13

[317]

Revenue versus profit
Most new game developers do not know that revenue and profit are two different
things.

Revenue is the gross amount of money that a game generates directly from users.
Making a game may cost money to developers, and each third-party medium may
charge a certain percentage of revenue or some amount for the services. After all the
required payments and cuts, the remaining amount is called profit. So, high revenue
does not mean high profit.

However, without generating revenue, there cannot be any profit. So, the developer
must plan revenue in order to generate profit.

Revenue sources
Now, we know that generating revenue is necessary. To generate revenue,
the developer must know about the possible revenue sources. We will discuss
the main sources here:

•	 Advertisement revenue
•	 In-app purchase revenue
•	 Other sources

Advertisement revenue
Especially for free and freemium games, advertisements are one of the main sources
of revenue. There are a lot of advertisement agencies that serve advertisements
through ad servers. There may be separate values for separate advertisement
campaigns.

There is another platform called ad mediation. This platform provides advertisements
from different agencies. Sometimes, this platform helps find the highest rate among
available advertisements. This special feature is called real-time bidding.

In-app purchase revenue
This is a way of generating revenue for mainly freemium game models. The
developer provides the game for free, but certain content and features are kept
locked inside the game. Once the user is used to the game and feels like spending
extra bucks to get a strong hold of the game, they use in-app purchases.

Third-Party Integration, Monetization, and Services

[318]

Planning revenue through in-app purchases entirely depends on the game design
and market behavior. Some game models demand content, some demand features,
and a few demand both.

In-app purchases can be made with several billing and purchasing services, which
we have discussed. However, choosing a particular service may have an effect on
revenue generation. So, the developer should always study market trends before
tying the knot with a billing service provider.

Other revenue sources
Other than advertisements and in-app purchases, there are other sources of revenue
too. Offerwall and coupon systems are two other options. The developer might opt
for branding and sponsorship for a game. This will certainly help make more money.
However, these are not exactly means of revenue sources from a general point of
view.

As the industry modernizes, new sources of revenue may come up to help
developers grow and make better games.

Regional variations of revenue plan
There are several types of users. Mostly, the game industry market varies with
region, age group, and gender. If the developer plans to increase revenue, then they
must consider these factors in a revenue plan.

However, it is not always possible to use all of these factors at one time or in a single
plan. Mostly, developers in the current industry vary revenue plans on the basis of
region. It has been established in the market that user behavior varies a lot based on
region.

For example, Asian user action and behavior may vary from African or American
users, so does the spending capacity. So, the developer should plan game revenue
according to the spending capability and spending behavior of users. In some
regions, users do not pay real cash. In those cases, the developer must have a
different approach to generate revenue.

Chapter 13

[319]

User base variations
As we have already said, the user base varies with region. For example, racing is one
of the most played genres on average throughout the world. However, generating
revenue is not the same. In many regions, people value time more than money, and
in other regions, it may be the opposite. So, if the purchasing element inside a racing
game helps users save some time for game progression, it might not work in all
regions. Some people like to spend more time to achieve that progression instead of
paying. The developer has to have a plan to convert that play time into revenue by
some means.

User behavior variations
Typical user behavior data around the world indicates a lot of variation. One of the
major variations is game genre. For example, cricket is an extremely famous and hot
genre in a few countries or regions that are used to the game and connected to the
game professionally, mentally, or sentimentally. In the American region, this game
is not much appreciated. For the same behavior, baseball is not so popular among
Asian people. The developer should always analyze the user behavior data of the
maximum possible users to plan for the maximum revenue generated from a game.

User acquisition techniques
If a game has no users, it is as good as scrap. This does not mean that the game
quality or design is bad. In the Android gaming market, more than 5 million
games are published. Hundreds of games are being published every day, which is
increasing the competition.

In this immense crowd, a single game may disappear, irrespective of its quality, but
due to having a poor or no marketing strategy. A game can only be successful if it
has a significant number of users and good retention.

Let's have a look at few of the user acquisition techniques through the following
topics:

•	 Game promotion channels
•	 Game blogs and forum discussions
•	 Paid user acquisitions
•	 Other techniques

Third-Party Integration, Monetization, and Services

[320]

Game promotion channels
There are several ways to promote the game in the market. There are some game
promotion channels that advertise in various mediums. A specific game genre
channel promotes the same kind of games. Let's look at few of these mediums:

•	 YouTube channels
•	 Android forums
•	 Sports forums
•	 Facebook promotions
•	 Twitter and other social platforms

YouTube channels
There are several YouTube channels that review and promote Android games.
Many users follow certain channels for better games. Developers can approach these
channels to review and promote their games in a way that users can get to know
about the game.

A good game review from such channels can get developers a significant amount of
users. However, such channels might charge developers for reviewing their games.
Thousands of users may be found from such channels.

Android forums
There are hundreds of Android forums available, and there are thousands of active
participants that can be found talking about games, apps, development style and
standards, and so on. Such forums are also good platforms to promote Android
games. However, developers should be specific to the topic, and the game should
have the potential to be talked about. A few hundreds of users can be achieved
through such channels.

If a developer uses any Android-specific special feature and has implemented
something new through technology, such forums are an excellent medium to reach
out to users who are technology enthusiasts and hungry for new implementations.

Sports forums
There are many forums for specific sports. This method works mostly for games
in the sports genre. The developer should talk to other members of a forum about
games of the same sport. For example, if a developer has made a cricket game, then
the game should be posted and promoted through cricket forums.

Chapter 13

[321]

This method has an added advantage. As the forum is specific to the same sport,
then the developer might find a few people who are experts in the sport and can
share their valuable opinion about the game, which may make the game better.

Facebook promotion
Facebook is currently the largest social platform, with billions of users. It is a
common practice for developers to use this platform for promotion of games.
Social networking can find a significant number of users for a game.

Each game should have a page that should be maintained properly by the developer.
This page is one of the communication mediums between the user and the developer.
Such pages can be used to talk about the features and elements of the game so that
new users have a good idea about the game even before they start playing it.

Twitter and other social platforms
Twitter and other social platforms are also useful for game promotion and increasing
the user base. Timely tweets about game updates and features can help increase the
user count.

A social platform need not necessarily be a digital or web platform. It can be
anything, like a social event in real life. Many developers organize events to
showcase their games or participate in various events and competitions to get
recognition. Good recognition for a good game can help gain more users.

Game blogs and forum discussions
Game blogs and creating forums for developed games can help in user acquisition.
However, this technique works after the game develops a decent user base so that
there can be a significant number of people who will participate in the discussion.

The developer can create a game blog for the game, where users can share their
opinions, criticism, or suggestions for the game. This can make a game famous,
which always helps gain users.

Paid user acquisition
There are many marketing agencies that find users for games. Usually, such agencies
charge developers for user acquisition. If the developer has the strength to spend real
cash to gain users, then this is probably the best possible solution.

Third-Party Integration, Monetization, and Services

[322]

User acquisition charges may vary with region. The developer needs to research
more on this, depending on the game genre and type; the users gained can repay
the developer with more revenue. Sometimes, the wrong choice of promotion and a
wrongly acquired user base may lead the game to disaster.

Other techniques
Besides the preceding techniques, there are several methods to gain users.
Developers may come up with their own ideas for promoting the game. Some of
them are as follows:

•	 Many times, the developer approaches users individually to promote games
•	 Many times, the game is promoted verbally through friends and family
•	 Many times, developers run campaigns for the game
•	 The developer may approach a good publisher to get help acquiring more

users
•	 Sometimes, celebrities are used to promote the game

There is no fixed path for promoting a game and acquiring users. It is always a good
habit to keep all the options open and aim for the maximum possible outcome.

User retention techniques
Creating a good user base might not be enough to generate decent revenue to gain
profit out of the game. Hence comes the term user retention. This means the number
of users who are playing the game repeatedly.

Users may download a game, and after a few game sessions, they may never come
back. In another scenario, the user may come back again and again to the game.
User retention is calculated on time parameters such as weekly or monthly use. This
means how many users are coming back to the game within the given time period.

Free and freemium game revenue mostly depends on user retention, because the
developer converts the time spent inside the game into revenue through several
revenue generations plans. That is why user retention becomes important for doing
business with games.

Chapter 13

[323]

There are many techniques to improve user retention other than the core metagame.
Let's discuss the major techniques through these points:

•	 Daily bonus
•	 Leaderboards and achievements
•	 Offerwall integration
•	 Push notifications
•	 Frequent updates

Daily bonus
Daily bonus is the most popular technique among game developers for user
retention. In this system, the user gains something extra for coming back to the
game each day. Consecutive days of playing rewards the user with more items
and elements.

This system motivates users to keep coming back to the game. Thus, a developer gets
more game session time to convert it to revenue.

Leaderboards and achievements
Leaderboards and achievements are used extensively to retain users. Both give users
competition and motivation to make progress in the game. To make progress in the
game, users must come back to the game and spend time within the game.

Offerwall Integration
The developer uses some real-world offers to keep users inside the game. Real offers
such as coupons and discounts always interest users. It provokes them to come to
the offerwall frequently. Offerwalls not only help retain users, but also help generate
more revenue from various offer campaigns.

Push notifications
Push notifications can inform users about the latest information and updates about
the game. Even if the user is not playing the game, push notifications help them gain
interest in the game, which may make the user start playing again.

Sometimes, a user downloads a game and forgets about it. In such a case, a push
notification reminds the user to play the game. It also informs them about their
progress inside the game.

Third-Party Integration, Monetization, and Services

[324]

Frequent updates
The developer should keep updating the game frequently to keep up with the chart
and to be in the sight of the user. This indirectly attracts more users and helps retain
existing users.

Every game store informs existing users about the latest update information for a
game or application so that users can update their game and keep playing.

Featuring Android games
A successful game means both profits and fame. A game can be profitable with a
good monetization design and marketing. However, getting famous is not that easy.
A game becomes famous if it gets featured in various places.

A game can be featured with the help of the following qualities and criteria:

•	 Creativity and uniqueness
•	 User reviews and ratings
•	 Download count
•	 Revenue amount

Creativity and uniqueness
There are many game critics and reviewers present in the game industry. There
are many articles, blogs, magazines, and sites that follow, review, and talk about
games. Game creativity and uniqueness are the biggest factors for such mediums.
The quality of the game depends on these in terms of game art, game design, and
playability. A good art style, good design, and playability can make a game get
featured by game stores, magazines, or blogs. In such ways, the developer can make
a game famous, which may lead to more users and revenue.

User reviews and ratings
After publishing the game, the game's fate depends on users. New users cannot be
attracted to the game if the game receives bad reviews and a poor rating. Hence,
the game will not be featured and gain momentum. The developer should always
keep an eye on the game ratings and user reviews. The developer should actively
respond to the issues that users are having and be thankful for the good ratings and
reviews. Often, it has been noticed that the game does not do well in the early stages
of publishing. However, with a positive attitude towards user reviews, they perform
well in the later stages.

Chapter 13

[325]

Download count
Download count is another game featuring criteria. As soon as the download count
increases, there is more probability that the game will get featured by the store
itself. However, the rating is also a factor in such featuring. The developer should
concentrate on increasing the number of downloads as soon as possible to get
featured or to be in the top list.

Revenue amount
An Android game can be featured with the amount of revenue generation in the top
grossing list. Being in the top grossing list means users are paying for the game or
the game is generating a significant amount of revenue. Getting featured in the top
grossing list always increases the visibility of the game, which indirectly generates
more download count and revenue. However, to remain in the top list, the developer
should always update the game as per user requirements and heavily focus on user
retention.

Publishing Android games
So far, you've learned how to reach users and how to make revenue out of the game.
However, these are the steps after the game gets published in the market. There are
two ways through which the developer can publish the game:

•	 Self publishing
•	 Publishing through publishers

Let's have a quick look at this segment of game development.

Self publishing
When users publish under their own banner and name, it is called self publishing.
In this case, developers keep 100% of the equity in the games and own the game IPs
themselves. Self publishing games are totally controlled by developers. Developers
take full responsibility for the game, game ratings and reviews, game revenue, and
user satisfaction.

Third-Party Integration, Monetization, and Services

[326]

Publishing through publishers
Often, a developer does not have bandwidth to take full game responsibility after
publishing it. In this case, the developer may approach established publishers to
publish the game. A few times, publishers have their own terms and conditions, and
requirements for the game in order to publish it. The developer needs to keep up
with the conditions to enjoy less responsibility and better marketing.

Summary
You learned about the whole game development cycle in this chapter. Developers
should be capable of taking the right decision for the game to taste success. It is a
well-known fact that success does not come easily. This chapter shows all the factors
of a game that need to be taken care of to achieve success.

Making a good game is not enough; making a unique game is not enough; making
good graphics is not enough; and having a good design is not enough. A game's
developers must take help from other third-party services if they are not capable of
doing it on their own. Using social platforms is also a must.

Finally, choosing the right publishing place and targeting the correct audience for
the game can bring success. In the case of Android-specific gaming, there are already
established publishing houses, stores, and other third-party service providers
available. The developer needs to assemble all of them carefully after the game has
been made. Otherwise, there is a strong possibility that a good game might be lost in
the crowd of millions of Android games.

[327]

Index
Symbols
2D/3D performance comparison

3D processing, heavier than 2D
processing 151

about 151
different look and feel 151

2D assets optimization
about 147
data optimization 147
process optimization 148
size optimization 147

2D rendering pipeline 145
3D assets optimization

about 148
model optimization 148
polygon count, limiting 148

3D rendering pipeline 146

A
Acorn RISC Machine (ARM) 270
action feedback, UX polishing 281
ADT-1 27
advantages, C++ for games

CPU architecture support 262
cross-platform portability 261
faster execution 262
universal game programming language 261

advertisement monetization, terminologies
CPC/CPA 312
CPI 312
eCPM 312
fillrate 313

advertisements styles, for Android games
about 313
banner advertisements 313, 314
in-game dynamic advertisements 315
interstitial advertisements 314
video advertisements 315

Ahead-of-time (AOT) compilation 2
allocation tracker 220
Amazon billing services

about 309
PurchasingListener 309
PurchasingService 309
ResponseReceiver 309

analytic tools
about 302, 305
Appcelerator 307
AppsFlyer 306
Apsalar 306
Crashlytics 306
Flurry 306
GameAnalytics 306
Localytics 307
Mixpanel 306
monetization aspects 304
requisites 302

Android
about 2
future, in VR 238

Android application
life cycle 6, 7
memory management 7
performance 7

Android build process
native shared library 256
native static library 257

[328]

Android consoles
development insights on 42
exploring 28-33
GamePop 32
Game Stick 31
Mad Catz MOJO 32

Android DDMS
about 211
connecting, to Android device

filesystem 212
device operations, emulating 214, 215
heap information monitoring 213
log information, tracking with Logcat 214
memory allocation, tracking 213
network traffic, managing 214
network traffic, monitoring 214
profiling methods 213
thread information monitoring 213

Android Debug Bridge (adb)
about 53, 250
client, on development machine 53
daemon 53
server, on development machine 53
using, on Android device 54

Android Development Tool (ADT) 50
Android device

Android Debug Bridge (adb), using on 54
Android device debugging

about 217
usage, of breakpoints 217

Android device filesystem
Android DDMS, connecting to 212

Android device testing
about 215, 216
full/complete testing 216
prototype testing 216
regression testing 216
release testing/run testing 216

Android-enabled STB devices
Arcadyan BouygtelTV 25
Forge TV 25
Freebox Mini 4K 25
LG UPlus Android TV 25
OgleBox Android TV 25
Shield Android TV 25

Android game development
about 1, 2
challenges 4
design constrains 5
features and support 3
user experience 4

Android games
life cycle 6, 7, 101, 102
memory management 7
performance 7
publishing 325
publishing, through publishers 326
self publishing 325
success, reasons 2

Android games, featuring qualities
about 324
creativity and uniqueness 324
download count 325
revenue amount 325
user reviews and ratings 324

Android in-app purchase integration 307
Android in-game advertisements

about 311
requisites 311
working 311

Android library shaders
about 160
BitmapShader 160
ComposeShader 160
LinearGradient 160
RadialGradient 160
SweepGradient 160

Android.mk file, options
BUILD_SHARED_LIBRARY 259
BUILD_STATIC_LIBRARY 259
CLEAR_VARS 258
LOCAL_MODULE 259
LOCAL_MODULE_FILENAME 259
LOCAL_PATH 259
LOCAL_SRC_FILES 259
PREBUILT_SHARED_LIBRARY 259
PREBUILT_STATIC_LIBRARY 259
TARGET_ARCH 259
TARGET_ARCH_ABI 259
TARGET_PLATFORM 259

[329]

Android mobiles
development insights on 36, 37
exploring 18-20

Android NDK
about 256
working 256

Android PackageManager 14
Android programming structure

about 76
call hierarchy 77, 78
class formation 76

Android RunTime (ART) 2
Android SDK

about 50, 257
used, for creating sample game loop 97-101

Android-specific polishing
about 282
Android functionalities and features,

implementing 282
Google guidelines, following for Play

Store 283
longer background running possibility 283
optimum use, of hardware buttons 282

Android STBs
development insights on 39, 40
exploring 24-28

Android Studio
about 65
Android project view 65, 66
memory and CPU monitor view 66

Android tablets
development insights on 38, 39
exploring 22-24

Android televisions
exploring 24-28

Android TV game development
development insights on 39, 40

Android Virtual Device (AVD)
about 51, 207-209
attribute factors 209
configuring 51-53
dedicated disk space 52
hardware profile 51
other features 52
system image mapping 51

Android VR development best practices
about 248
better audio experience 250
draw call limitations 248
overheating problems, overcoming 249
proper project settings, setting up 250
proper test environment, using 250
steady FPS, keeping 249
triangle count limitations 249

Android VR game market, challenges
about 250
limited device support 251
limited game genres 251
long game sessions 251
low target audience 251
real-time constraints 252

Android VR games
about 237
current industry situation 238
history 237
technical specifications 237, 238

Android watches
development insights on 42
exploring 33-35

animation polishing 275
Appcelerator

about 307
reference 306

application memory distribution 188
Application.mk file, options

APP_ABI 260
APP_BUILD_SCRIPT 260
APP_CFLAGS 260
APP_CPPFLAGS 260
APP_LDFLAGS 260
APP_OPTIM 260
APP_PLATFORM 260
APP_PROJECT_PATH 260
APP_STL 260
NDK_TOOLCHAIN_VERSION 260

application priority
about 188
active process 189
active services 190
background process 190
visible process 190

[330]

applications
versus games 5

applications, as game
qualifying criteria 6

application services
about 191
life cycle 191
misconceptions 191

AppsFlyer
about 306
reference 305

Apsalar
about 306
reference 305

Arcadyan BouygtelTV 25
art assets 203
ART message log 218
art optimization 176
art polishing

about 275
animation polishing 275
marketing graphics 275
UI polishing 275

asset optimization tools
about 60
full asset optimization 60
sprites, creating 61

ATC 267
attribute factors, Android Virtual Device

(AVD)
Android target version 210
Android version API level 210
AVD display size 210
AVD resolution 209
CPU architecture 210
extended AVD settings 211
hardware input options 211
name of AVD 209
other options 211
RAM amount 210

audio assets 203
Avatar 236

B
banner advertisements 313, 314
base port 56

best optimization practices
about 201
asset-using techniques 202
cache data, handling 204
data structure model 202
design constraints 201
development optimization 201

best practices, for making Android game
about 10
background behavior 13
battery usage, maintaining 14
extended support, for multiple visual

quality 15
game quality, maintaining 11
interruption handling 13
maximum devices, supporting 12
maximum resolutions, supporting 12
minimalistic user interface 11
multiplayer, introducing 15
social networking, introducing 15

best testing practices
about 230
APIs 230
testing techniques 231
tools 230

BitmapShader 160
build dependency

about 257
Android SDK 257
C++ compiler 257
Cygwin 258
Gradle 258
Java 258
Python 258

C
cameras

first-person camera 145
fixed camera 145
moving camera 145
rotating camera 145
third-person camera 145

Cardboard
headset components 241

Cardboard application
upgrades 241

[331]

variations 241
working principle 241

Cardboard development styles
display properties 243
game controls 244
in-game components 243
VR device adaptation 243
VR game, exiting 242
VR game, launching 242

Cardboard SDK
about 240
basic guide, for developing games 242

career billing services 309
C++ compiler 257
C++, for games

about 261
advantages 261
conclusion 263
disadvantages 262

Coby Kyros MID7047
configuration specifications 23

Cocos2d-x
about 68
cons 69
pros 68

color resources 192
common game development mistakes

about 149
shortcut, during development 150
substandard programming, using 150
use of full utility third-party libraries 149
use of non-optimized images 149
use of unmanaged networking

connections 149
common optimization mistakes

about 199
design mistakes 200
incorrect usage of game services 200
programming mistakes 199, 200
wrong game data structure 200

ComposeShader 160
Concurrent Mark Sweep (CMS) 219
Concurrent Partial Mark Sweep

(CPMS) 219
Concurrent Sticky Mark Sweep (CSMS) 219

Corona
about 72
cons 72
pros 72

cost per action (CPA) 312
cost per click (CPC) 312
cost per impression (CPI) 312
CPU architectures, supported by NDK

ARM 270
MIPS 271
Neon 271
x86 271

Crashlytics
about 306
reference 305

cross-platform tools
about 67
Cocos2d-x 68
Corona 72
PhoneGap 71, 72
Titanium 73
Unity3D 69, 70
Unreal Engine 70, 71

custom shaders
writing 161

Cygwin 258

D
Dalvik Debug Monitor Server

(DDMS) 55, 56
Dalvik message log 218
Dalvik Virtual Machine (DVM) 2
data file optimization 177
debugging for Android

while working with cross-platform
engines 230

design optimization
about 177
game design optimization 177
technical design optimization 178

design polishing
about 276
game difficulty balance 277
game economy balance 276
game flow, polishing 276

[332]

metagame, polishing 276
UX, designing 276

development insights, on Android
consoles 42

development insights, on Android
mobiles 35-37

development insights, on Android
tablets 38, 39

development insights, on Android TV
and STBs

overscan 41
UI and game design 41

development insights, on Android watches
about 42
correct libraries, including in project 44
hardware compatibility issues,

with Android versions 44
wearable application, creating 43
wearable application, setting up 43

development polishing
about 274
memory optimization 274
performance optimization 274
portability 275

device configuration options, Android
about 152
battery capacity 153
display quality 153
GPU 153
processor 152
RAM 152

disadvantages, C++ for games
about 262
high program complexity 262
manual memory management 263
platform dependent compiler 263

Draw 9-Patch 58
drawable resources 192
DXTC 267

E
Eclipse, for Android development

about 56
benefits 57
drawbacks 57

effective cost per mile (eCPM) 312
example smart TV

specifications 26
exception handling, in Android games

about 224
scope 226
syntax 224, 225

exceptions, in game development process
arithmetic exceptions 228
custom exceptions 229
index out of bound exceptions 227, 228
input/output exceptions 228
network exceptions 229
null pointer exceptions 226, 227

F
features and support, Android game

development
Android device hardware configuration 3
direct manipulation interface 3
excellent support, of multimedia 3
virtual reality 3

fields, virtual reality (VR)
architectural design 236
education and learning 236
fine arts 236
medical therapy 237
motion pictures 236
urban design 236
video games 235

fillrate 313
first-person camera 145
fixed camera 145
Flurry

about 306
reference 305

Forge TV 25
FPS system

about 110-112
controlling 116

frame rate 7
frames per second (FPS) 101
Freebox Mini 4K 25
full length ads 315

[333]

G
GameAnalytics

about 306
reference 305

game controls
about 244
control placement 246
Fuse Button 244
fuse button indication 245
types 244
visual countdown 245

game design optimization 177
game design standards

about 85
artificial intelligence 86
art style 86
change log 87
game elements 86
game overview 85
gameplay details 85
game progression 86
level design 86
storyboard 86
technical reference 87

game development, for VR devices
about 239
VR game design 239
VR game development constraints 240
VR target audience 239

game loop
about 7, 94
frames, rendering 96
game update 95
state update 96
user input 94, 95

gameplay programming 78
GamePop 32
game portability

about 283
multiple hardware configurations,

supporting 284
screen sizes, supporting 283

game programming specifications
about 78
gameplay programming 78

graphics programming 79
technical programming 79

game promotion channels
about 320
Android forums 320
Facebook promotion 321
sports forums 320
Twitter, and other social platforms 321
YouTube channels 320

game revenue, planning
about 316
regional variations, of revenue plan 318
revenue sources 317
revenue, versus profit 317

game revenue, sources
about 317
advertisement revenue 317
in-app purchase revenue 317
other sources 318

games
versus applications 5

game state machine
general idea 107, 110

Game Stick 31
game tool programming 80
game update 102, 103
geometry shaders 159
Google Analytics

about 288
best utilization 289
integration tips 289
significance 288

Google Cloud Messaging (GCM) 293
Google Daydream 238
Google IAB

about 289
advantages 290
disadvantages 291
integrating 290

Google IAB model
about 289
consumable items 290
non-consumable items 290
subscriptions 290

Google Leaderboard
about 291
integrating 291

[334]

significance 291
variations 292

Google Nearby 15
Google Play Services 288
Gradle 258
graphics programming 79

H
hardware dependency

about 112
display 113
logical operations 114
memory load/unload operations 113
rendering 113

HDPI 153
heap memory 113, 194, 195
Hierarchy Viewer 57
HTC Dream 17

I
in-app purchase options

about 308
career billing services 309
store billing services 308

in-app purchases
about 307
consumable items 310
non-consumable items 310
subscriptions 310
types 310

industry best practices
about 89
design standards 89
programming standards 90

in-game dynamic advertisements 315
instrumented tests 232
interrupt handling 106
interstitial advertisements

about 314
integration best practice 314, 315

J
Java 258
Java Native Interface (JNI) 256

L
layout resources 192
LDPI 153
leaderboards

displaying, options 292
storing, options 292

LG G Watch
specifications 34

LG UPlus Android TV 25
libraries for game development,

on wearable devices
notifications 44
Wearable Data Layer 44
Wearable UI support library 44

LinearGradient 160
local network multiplayer 302
local test 231
Localytics

about 307
reference 306

log messages
about 218
ART message log 218
Dalvik message log 218

Lower CamelCase 90

M
Mad Catz MOJO 32
MDPI 153
memory footprint, monitoring

about 217
heap update, checking 219, 220
log messages, checking 218
memory allocation, tracking 220, 221
memory leaks, tracking 222
overall memory usage, checking 221

memory load/unload operations
heap memory 113
Read-only memory (ROM) 114
register memory 114
stack memory 114

memory management, in Android
about 186
application memory distribution 188
memory allocation and deallocation 187
shared application memory 187

[335]

memory optimization
about 178
significance 195, 196
tricks 179-182

memory segments
about 193
heap memory 194, 195
register memory 195
stack memory 193

menu resources 192
meta design 303
microconsoles 28
Micromax Bolt A24

configuration specification 18, 19
Microprocessor without Interlocked

Pipeline Stages (MIPS) 271
Mixpanel

about 306
reference 306

mobile game loop, with touch interface
working 103

mobile phones
market shares, since 2012 21

modern age Android console
specifications 29

modern VR systems 235
monetization aspects, analytic tools

about 304
advertisement display, counting 305
advertisement display, tracking 305
likes and dislikes, identifying of users 305
metagame, improving 305
metagame, validating 305
paying users, tracking 305
popular regions, identifying of game 304

monetization techniques
about 315
freemium model 316
free model 316
premium model 316
try-and-buy model 316

moving camera 145
multiplayer implementation

about 299
local network multiplayer 302
pass and play turn-based multiplayer 301

real-time multiplayer 299, 300
single-screen real-time multiplayer 301
turn-based multiplayer 300, 301

multiple architecture support
integration, advantages 271
integration, disadvantages 272

N
native code performance 264
native project build configuration

about 258
Android.mk configuration 258, 259
Application.mk configuration 260

native shared library 256
native static library 257
NativeTrackTM 306
Neon architecture 271
network programming 80

O
OgleBox Android TV 25
OpenGL

texture compression 267
used, for rendering 265

OpenGL 1.x 265
OpenGL 2.0 265
OpenGL 3.0 266
OpenGL 3.1 266
OpenGL manifest configuration 268, 269
OpenGL rendering system 146
OpenGL version

detecting 266
setting 266

OpenGL versions
about 265
OpenGL 1.x 265
OpenGL 2.0 265
OpenGL 3.0 266
OpenGL 3.1 266

optimization fields, in Android games
design optimization 177
memory optimization 178
performance optimization 183
resource optimization 176

[336]

OUYA
about 28
specifications 28

overall performance optimization
about 196
base resolution, selecting 196
database management 197
frame rate, increasing 198
network connection management 198
portability range, defining 197
program structure 197

P
pass and play turn-based multiplayer 301
performance, and memory

balance between 115
relation between 186

performance optimization
about 183
significance 198, 199
tricks 183-185

performance profiling tools 64, 65
PhoneGap

about 71
cons 72
pros 71

pixel shaders 159
platform-specific specialties

about 44
Android consoles 46
Android mobiles 45
Android STBs 45
Android tablets 45
Android televisions 45
Android watches 46

play testing
about 277
gameplay, adopting 279
monetization 278, 279
smoothing running, of game 279
user actions, during gameplay 278
user actions, while browsing game 278
user gameplay difficulty levels 277
user retention 280

polishing
art polishing 275

design polishing 276
development polishing 274
requisites 274

private RAM 221
processing segments, in Android

about 188
application priority 188
application services 191
resource processing 191

ProGuard 59, 182
Proportionate Set Size (PSS) 187
Public Leaderboard 292
push notifications

application integration 295, 296
database 293
GCM service 294
GCM setup 298
integrating 295
server 293
server setup 298
target device 293

push notifications, significance
about 298
alternative communication channel 299
user behavior, knowing 299
user control 299
user retention 298

PVRTC 267
Python 258

R
RadialGradient 160
Razor Forge TV

specifications 30
read-only memory (ROM) 114
real-time multiplayer 299, 300
real-time operating systems (RTOS) 252
regional variations, of revenue plan

about 318
user base variations 319
user behavior variations 319

register memory 114, 195
rendering pipeline, in Android

2D rendering pipeline 145
3D rendering pipeline 146

[337]

requisites, analytic tools
game balancing 303
game crash reports 303
game event triggers 303
gameplay frequency 303
gameplay session timing 303
piracy prevention 304
user behavior 303
user retention 304

research and development programming 81
resource optimization

about 176
art optimization 176
data file optimization 177
sound optimization 177

resource processing
about 191
color resources 192
drawable resources 192
layout resources 192
menu resources 192
other resources 192
tween animation resources 192

RISC (Reduced Instruction Set
Computing) 270

rotating camera 145

S
sample game loop

creating, Android SDK used 97-101
Samsung Galaxy S6

configuration specification 19
services, Google Play Services package

Google Analytics 288
Google IAB 289
Google Leaderboard 291
push notifications 293

SFXs 281
shaders

about 156
benefits 157
consequences 157
geometry shaders 159
in 2D game space 169

in 3D game space 170, 171
necessity 156
pixel shaders 159
scope 158
tessellation shaders 159
through OpenGL 163-169
types 159
using, in games 169
vertex shaders 159
working 158

shaders, in games
cons 173
pros 173

shared application memory 187
Shield Android TV 25
short length ads 315
single-screen real-time multiplayer 301
SmartTags 306
Social Leaderboard 292
Sony Xperia Z4

configuration specifications 24
sound effects, UX polishing

about 281
SFXs 281
theme music 281

sound optimization 177
sound programming 80
stack memory 114

about 193
working 193

store billing services
about 308
Amazon billing services 309

strategic placement, of debug statements
about 222
memory allocation 222
object state, tracking at runtime 223
object values, tracking 223
program flow, checking 223

styles, for different development engines
about 88
programming languages 88
target platforms 89
work principles 88

SweepGradient 160

[338]

T
target device configuration, Android

feature requirement 9
game scale 8
scope for portability 10
selecting 8
target audience 9

target OpenGL ES version, selection factors
about 269
device support 269
performance 269
programming comfort 270
rendering feature 270
texture support 269

technical design optimization 178
technical design standards

about 81
change log 84
design pattern 82
flow diagram 82
game analysis 82
other requirements 83
resource analysis 83
risk analysis 84
scope analysis 84
technical specification 82
testing requirements 83
tools 83

technical programming
about 79
game tool programming 80
network programming 80
research and development

programming 81
sound programming 80

tessellation shaders 159
testing techniques

about 231
instrumented test 232
local test 231

texture compression, OpenGL
about 267
ATC 267
DXTC 267
PVRTC 267

theme music 281
third-person camera 145
Titanium

about 73
cons 73
pros 73

tools, for testing
about 61
test case, creating 61
test fixture, setting up 61, 62
test methods, adding to verify

activity 63, 64
test preconditions, adding 63

transaction effects, UX polishing 281
turn-based multiplayer 300, 301
tween animation resources 192

U
UI polishing 275
Unity3D

about 69
cons 70
pros 69

Unreal Engine
about 70
cons 71
pros 70

Upper CamelCase 90
user acquisition techniques

about 319
forum discussions 321
game blogs 321
game promotion channels 320
other techniques 322
paid user acquisition 321

user retention techniques
about 322, 323
daily bonus 323
frequent updates 324
leaderboards and achievements 323
offerwall Integration 323
push notifications 323

UX polishing
about 280
action feedback 281
sound effect 281

[339]

transaction effects 281
visual effects 280

V
variations, Google Leaderboard

Public Leaderboard 292
Social Leaderboard 292

vertex shaders 159
video advertisements 315

full length ads 315
short length ads 315

virtual reality therapy (VRT) 237
virtual reality (VR)

about 234
evolution 234
fields 235-237

visual effects, UX polishing 280
VR development 252
VR game design 239
VR game development constraints 240

VR game development, through Google VR
about 246
Android NDK used 248
Android SDK used 246

VR game, exiting
Back button, hitting 242
Home button, hitting 243

VR gaming concepts 252
VR target audience 239

X
x86 architecture 271
XHDPI 153
XXHDPI 153
XXXHDPI 153

Z
zipalign 182

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Android Game Development
	Android game development
	Features and support
	Challenges
	User experience
	Design constraints

	A game is not just an application
	Games versus applications
	Life cycle of Android application and games
	Performance of games and applications
	Memory management of games and applications

	Choosing the target device configuration
	Game scale
	Target audience
	Feature requirement
	Scope for portability

	Best practices for making an Android game
	Maintaining game quality
	Minimalistic user interface
	Supporting maximum resolutions
	Supporting maximum devices
	Background behavior
	Interruption handling
	Maintaining battery usage
	Extended support for multiple visual quality
	Introducing social networking and multiplayer

	Summary

	Chapter 2: Introduction to Different Android Platforms
	Exploring Android mobiles
	Exploring Android tablets
	Exploring Android televisions and STBs
	Exploring Android consoles
	Exploring Android watches
	Development insights on Android mobiles
	Development insights on Android tablets
	Development insights on Android TV
and STBs
	UI and game design
	Overscan

	Development insights on Android consoles
	Development insights on Android watches
	Creating and setting up a wearable application
	Including the correct libraries in the project
	Hardware compatibility issues with Android versions

	Platform-specific specialties
	Android mobiles
	Android tablets
	Android televisions and STBs
	Android consoles
	Android watches

	Summary

	Chapter 3: Different Android Development Tools
	Android SDK
	Android Development Tool
	Android Virtual Device
	Configuring AVD

	Android Debug Bridge
	Using adb on an Android device

	Dalvik Debug Monitor Server
	Other tools
	Eclipse
	Hierarchy Viewer
	Draw 9-Patch
	ProGuard
	Asset optimization tools
	Full asset optimization
	Creating sprites

	Tools for testing
	Creating a test case
	Setting up your test fixture
	Adding test preconditions
	Adding test methods to verify an activity

	Performance profiling tools
	Android Studio
	Android project view
	Memory and CPU monitor

	Cross-platform tools
	Cocos2d-x
	Unity3D
	Unreal Engine
	PhoneGap
	Corona
	Titanium

	Summary

	Chapter 4: Android Development Style and Standards in the Industry
	The Android programming structure
	Class formation
	Call hierarchy

	Game programming specifications
	Gameplay programming
	Graphics programming
	Technical programming
	Sound programming
	Network programming
	Game tool programming
	Research and development programming

	Technical design standards
	Game analysis
	Design pattern and flow diagram
	Technical specification
	Tools and other requirements
	Resource analysis
	Testing requirements
	Scope analysis
	Risk analysis
	Change log

	Game design standards
	Game overview
	Gameplay details
	Game progression
	Storyboard and game elements
	Level design
	Artificial intelligence
	Art style
	Technical reference
	Change log

	Other styles and standards
	Different styles for different development engines
	Different programming languages
	Different work principles
	Different target platforms

	Industry best practices
	Design standards
	Programming standards
	Testing standards

	Summary

	Chapter 5: Understanding the Game Loop and Frame Rate
	Introduction to the game loop
	User input
	Game update
	State update
	Rendering frames

	Creating a sample game loop using the Android SDK
	Game life cycle
	Game update and user interface
	Interrupt handling
	General idea of a game state machine
	The FPS system
	Hardware dependency
	Display or rendering
	Memory load/unload operations
	Heap memory
	Stack memory
	Register memory
	ROM

	Logical operations

	Balance between performance and memory
	Controlling FPS
	Summary

	Chapter 6: Improving Performance for 2D/3D Games
	2D game development constraints
	2D art assets
	Sets of 2D art assets
	Same asset set for multiple resolutions
	Number of assets drawn on screen
	Use of font files

	2D rendering system
	2D mapping
	2D physics
	Box2D
	LiquidFun
	Performance impact on games

	2D collision detection
	Rectangle collision
	Rectangle and circle collision
	Circle and circle collision
	Performance comparison

	3D game development constraints
	Vertices and triangles
	3D transformation matrix
	3D object and polygon count
	3D rendering system
	3D mesh
	Materials, shaders, and textures
	Textures
	Shaders
	Materials

	Collision detection
	Primitive colliders
	Mesh colliders

	Ray casting
	Concept of "world"
	Elements of the game world
	Light sources in the game world
	Cameras in the game world

	The rendering pipeline in Android
	The 2D rendering pipeline
	The 3D rendering pipeline

	Optimizing 2D assets
	Size optimization
	Data optimization
	Process optimization

	Optimizing 3D assets
	Limiting the polygon count
	Model optimization

	Common game development mistakes
	Use of non-optimized images
	Use of full utility third-party libraries
	Use of unmanaged networking connections
	Using substandard programming
	Taking a shortcut

	2D/3D performance comparison
	Different look and feel
	3D processing is way heavier than 2D processing
	Device configuration
	Processor
	RAM
	GPU
	Display quality
	Battery capacity

	Summary

	Chapter 7: Working with Shaders
	Introduction to shaders
	What is a shader?
	Necessity of shaders
	Scope of shaders

	How shaders work
	Types of shaders
	Pixel shaders
	Vertex shaders
	Geometry shaders
	Tessellation shaders

	Android library shaders
	Writing custom shaders
	Shaders through OpenGL
	Use of shaders in games
	Shaders in a 2D game space
	Shaders in a 3D game space

	Summary

	Chapter 8: Performance and Memory Optimization
	Fields of optimization in Android games
	Resource optimization
	Art optimization
	Sound optimization
	Data file optimization

	Design optimization
	Game design optimization
	Technical design optimization

	Memory optimization
	Don't create unnecessary objects during runtime
	Use primitive data types as far as possible
	Don't use unmanaged static objects
	Don't create unnecessary classes or interfaces
	Use the minimum possible abstraction
	Keep a check on services
	Optimize bitmaps
	Release unnecessary memory blocks
	Use external tools such as zipalign and ProGuard

	Performance optimization
	Using minimum objects possible per task
	Using minimum floating points
	Using fewer abstraction layers
	Using enhanced loops wherever possible
	Avoid getter/setters of variables for internal use
	Use static final for constants
	Using minimum possible inner classes

	Relationship between performance and memory management
	Memory management in Android
	Shared application memory
	Memory allocation and deallocation
	Application memory distribution

	Processing segments in Android
	Application priority
	Active process
	Visible process
	Active services
	Background process
	Void process

	Application services
	Service life cycle

	Resource processing
	Drawable resources
	Layout resources
	Color resources
	Menu resources
	Tween animation resources
	Other resources

	Different memory segments
	Stack memory
	Heap memory
	Register memory

	Importance of memory optimization
	Optimizing overall performance
	Choosing the base resolution
	Defining the portability range
	Program structure
	Managing the database
	Managing the network connection

	Increasing the frame rate
	Importance of performance optimization
	Common optimization mistakes
	Programming mistakes
	Design mistakes
	Wrong game data structure
	Using game services incorrectly

	Best optimization practices
	Design constraints
	Development optimization
	Data structure model
	Asset-using techniques
	Art assets
	Audio assets
	Other assets

	Handling cache data

	Summary

	Chapter 9: Testing Code and Debugging
	Android AVDs
	Name of the AVD
	AVD resolution
	AVD display size
	Android version API level
	Android target version
	CPU architecture
	RAM amount
	Hardware input options
	Other options
	Extended AVD settings

	Android DDMS
	Connecting an Android device filesystem
	Profiling methods
	Thread information monitoring
	Heap information monitoring
	Tracking memory allocation
	Monitoring and managing network traffic
	Tracking log information using Logcat
	Emulating device operations

	Android device testing and debugging
	Device testing
	Prototype testing
	Full or complete testing
	Regression testing
	Release testing or run testing

	Device debugging
	Use of breakpoints

	Monitoring the memory footprint
	Checking log messages
	Dalvik message log
	ART message log

	Checking heap updates
	Tracking memory allocation
	Checking overall memory usage
	Private RAM
	Proportional set size (PSS)

	Tracking memory leaks

	Strategic placement of different debug statements
	Memory allocation
	Tracking the object state at runtime
	Checking the program flow
	Tracking object values

	Exception handling in Android games
	Syntax
	Scope
	Null pointer exceptions
	Index out of bound exceptions
	Arithmetic exceptions
	Input/output exceptions
	Network exceptions
	Custom exceptions

	Debugging for Android while working with cross-platform engines
	Best testing practices
	Tools and APIs
	Testing techniques
	Local test
	Instrumented test

	Summary

	Chapter 10: Scope for Android
in VR Games
	Understanding VR
	Evolution of VR
	Modern VR systems
	Use of VR
	Video games
	Education and learning
	Architectural design
	Fine arts
	Urban design
	Motion pictures
	Medical therapy

	VR in Android games
	History of Android VR games
	Technical specifications
	Current Android VR game industry

	Future of Android in VR
	Google Daydream

	Game development for VR devices
	VR game design
	VR target audience
	VR game development constraints

	Introduction to the Cardboard SDK
	Cardboard headset components
	Cardboard application working principle
	Upgrades and variations

	Basic guide to develop games with the Cardboard SDK
	Launching and exiting the VR game
	Hitting the Back button
	Hitting the Home button

	VR device adaptation
	Display properties
	In-game components
	Game controls
	Control concepts

	VR game development through Google VR
	Google VR using the Android SDK
	Google VR using Android NDK

	Android VR development best practices
	Draw call limitations
	Triangle count limitations
	Keeping a steady FPS
	Overcoming overheating problems
	Better audio experience
	Setting up proper project settings
	Using a proper test environment

	Challenges with the Android VR game market
	Low target audience
	Limited game genres
	Long game sessions
	Limited device support
	Real-time constraints

	Expanded VR gaming concepts and development
	Summary

	Chapter 11: Android Game Development Using C++ and OpenGL
	Introduction to the Android NDK
	How the NDK works
	Native shared library
	Native static library

	Build dependency
	Android SDK
	C++ compiler
	Python
	Gradle
	Cygwin
	Java

	Native project build configuration
	Android.mk configuration
	Application.mk configuration

	C++ for games – pros and cons
	Advantages of using C++
	Universal game programming language
	Cross-platform portability
	Faster execution
	CPU architecture support

	Disadvantages of using C++
	High program complexity
	Platform-dependent compiler
	Manual memory management

	Conclusion

	Native code performance
	Rendering using OpenGL
	OpenGL versions
	OpenGL 1.x
	OpenGL 2.0
	OpenGL 3.0
	OpenGL 3.1
	Detecting and setting the OpenGL version

	Texture compression and OpenGL
	ATC
	PVRTC
	DXTC

	OpenGL manifest configuration
	Choosing the target OpenGL ES version
	Performance
	Texture support
	Device support
	Rendering feature
	Programming comfort

	Different CPU architecture support
	Available CPU architectures
	ARM
	x86
	Neon
	MIPS

	Advantages and disadvantages of integrating multiple architecture support

	Summary

	Chapter 12: Polishing Android Games
	Requirements for polishing
	Development polishing
	Memory optimization
	Performance optimization
	Portability

	Art polishing
	UI polishing
	Animation polishing
	Marketing graphics

	Design polishing
	Designing UX
	Polishing the game flow
	Polishing the metagame
	Game economy balance
	Game difficulty balance

	Play testing
	User gameplay difficulty levels
	User actions during gameplay
	User actions while browsing the game
	Whether the user is paying or not
	Whether the game is running smoothly
	Whether the user can adopt the gameplay
	User retention

	Taking care of the UX
	Visual effects
	Sound effects
	Theme music
	SFXs

	Transaction effects
	Action feedback

	Android-specific polishing
	Optimum use of hardware buttons
	Sticking to basic Android features and functionalities
	Longer background running
	Following Google guidelines for Play Store efficiency

	Game portability
	Support for various screen sizes
	Support for multiple resolutions
	Support for multiple hardware configurations

	Summary

	Chapter 13: Third-Party Integration, Monetization, and Services
	Google Play Services
	Google Analytics
	Significance
	Integration tips
	Best utilization

	Google IAB
	The Google IAB model
	Integrating Google IAB
	Advantages and disadvantages of Google IAB

	Google Leaderboard
	Significance
	Integrating Google Leaderboard
	Variety of leaderboards
	Options for storing and displaying leaderboards

	Push notifications
	Database
	Server
	Target device
	GCM service
	Integrating push notifications
	Significance of push notifications

	Multiplayer implementation
	Real-time multiplayer
	Turn-based multiplayer
	Single-screen real-time multiplayer
	Pass and play turn-based multiplayer
	Local network multiplayer

	Analytic tools
	Requirement of analytics tools
	User behavior
	Game crash reports
	Game event triggers
	Gameplay session timing
	Gameplay frequency
	Game balancing
	User retention
	Piracy prevention

	Monetization aspects of analytic tools
	Identify popular regions of the game
	Identify a user's likes and dislikes
	Validate and improve the metagame
	Track paying users
	Track and count advertisement display

	Some useful analytic tools
	Flurry
	GameAnalytics
	Crashlytics
	AppsFlyer
	Apsalar
	Mixpanel
	Localytics
	Appcelerator

	Android in-app purchase integration
	What are in-app purchases?
	In-app purchase options
	Store billing services
	Career billing services

	Types of in-app purchases
	Consumable items
	Non-consumable items
	Subscriptions

	Android in-game advertisements
	Requirement for advertisements
	Terminologies in advertisement monetization
	eCPM
	CPC/CPA
	CPI
	RPM
	Fillrate

	Types of advertisements
	Banner advertisements
	Interstitial advertisements
	Video advertisements
	In-game dynamic advertisements

	Monetization techniques
	Premium model
	Free model
	Freemium model
	Try-and-buy model

	Planning game revenue
	Revenue versus profit
	Revenue sources
	Advertisement revenue
	In-app purchase revenue
	Other revenue sources

	Regional variations of revenue plan
	User base variations
	User behavior variations

	User acquisition techniques
	Game promotion channels
	YouTube channels
	Android forums
	Sports forums
	Facebook promotion
	Twitter and other social platforms

	Game blogs and forum discussions
	Paid user acquisition
	Other techniques

	User retention techniques
	Daily bonus
	Leaderboards and achievements
	Offerwall Integration
	Push notifications
	Frequent updates

	Featuring Android games
	Creativity and uniqueness
	User reviews and ratings
	Download count
	Revenue amount

	Publishing Android games
	Self publishing
	Publishing through publishers

	Summary

	Index

