
www.allitebooks.com

http://www.allitebooks.org

MEAP	Edition	
Manning	Early	Access	Program	

The	Transparent	Web	
Functional,	Reactive,	Isomorphic	

Version	1	

Copyright	2016	Manning	Publications	

For	more	information	on	this	and	other	Manning	titles	go	to	
www.manning.com	

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

www.allitebooks.com

http://www.manning.com
https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

 Welcome
Thank you for buying the MEAP for The Transparent Web: Functional, Reactive,
Isomorphic. If the title isn't enough of a hint, this book is a little bit unlike many other tech
books. It is a broad survey of what's on the horizon of web development.

This book requires a bit of programming experience. Whether you have created a handful
of sites or you have many more under your belt, this is for you. You'll also need a dash of
curiosity to get the most out of it. More concretely, I assume a little bit of object-oriented
programming experience as well.

This MEAP starts with chapters 1, 2, and 5. Chapter 1 is a broad overview of all the
concepts in the book. Chapter 2 dives into writing an application using an isomorphic web
framework, Opa. And chapter 5 looks into what modern static typing brings to the table.

Over the course of the rest of the book, I'll dig into three big themes: functional, reactive,
and isomorphic. Functional programming serves as the backdrop for the rest of the concepts
in the book. Functional programming is less widespread in web application development,
but it brings with it a rich toolbox of techniques for building complex apps. As it applies to
web development, isomorphic, means being able to reuse the same code on both the client
and the server. Looked at another way, I think of it as treating the client and server as one
unified platform. More holistically, this also includes things like compiling native code to
JavaScript, and creating applications which include their own operating system as a library.
Lastly, we'll look at the concept of reactive programming. This flips the normal control flow
of user-facing applications on its head. Instead of writing programs which expect to be in
control, reactive programming handles interaction with the user in terms of what the user is
doing. Surprisingly, the result isn't chaos, but clean, elegant apps. I look at reactivity in both
JavaScript and Elm, a whole language built around these ideas.

This book has been a big undertaking for me. Now, I hope you'll join me in the MEAP
process to make the book better. Let me know what you think, what could be changed, or
what you'd like to see in later chapters. I look forward to seeing your feedback in the Author
Online forum.

I can't thank you enough for taking time to pick up this book. I hope you'll find it useful,
and thought-provoking.

— Chris Wilson

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

brief contents
 1 Advancing the Web

PART 1: UNIFIED STACK

 2 Transparent Client-Server Programming with Opa

 3 Unify the Server with MirageOS

 4 Unify the Client with ASM.js and Native Code in the Browser

PART 2: FUNCTIONAL PROGRAMMING

 5 Understanding Static Typing

 6 Writing Functional Code

 7 A Type-Safe Web App in Haskell

PART 3: REACTIVE PROGRAMMING

 8 The JavaScript Reactive Landscape

 9 Writing Reactive GUIs with Elm

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

Web development can often feel like writing the same thing twice. We first write
database schemas and application logic for the server. Then on the client we have
to implement much of the same logic in order to validate inputs and provide
realtime feedback. We are able to share data but not the code that implements
application logic.

Even the way that we share that data seems awkward. We create routes structured
around manipulating resources via a few distinct
verbs: CREATE, READ, UPDATE, and DELETE. This leaves us with a one size fits
all API that has much more to do with how the web works than how our
application is structured.

When we write user interfaces on the web, we do so by first downloading a
document interspersed with formatting and structuring commands. We then write
JavaScript to imperatively modify this document, swapping in new chunks here, or
altering the display of existing parts there. Again, this whole process marches to
the drummer of the way that the web works. HTML, derived from SGML, is a
document markup language, not a user-interface system.

And when it comes to interactivity, JavaScript is what you get. Much in the way
that Henry Ford quipped about the Model T, Any customer can have a car painted
any color that he wants as long as it is black, JavaScript is the only language
supported by all modern browsers. The cause for JavaScript’s immense popularity
eventually circles back around to the fact that it is massively popular. Whatever the
merits of JavaScript, and it does have many, the fact that there’s no choice is a
drawback. These issues are present in current web development:

Advancing The Web

©Manning Publications Co. We welcome reader comments about anything in t

1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

 Having to write similar code for multiple platforms (browser and server)
 Awkward or tedious client-server communication
 An ill-fitting UI language,
 An imperative and limited scripting language

Figure 1.1. Applications can end up being written twice

This book, The Functional Web, is ultimately about making the web a better place
for developers to develop and, by extension, a better web for all of us to use.

The first I call unified stacks, an example of this is combining server-side and
client-side code into one code base. Then there’s functional programming, a
particular style of writing code. Functional programming is a big topic. My interest
with it in this book is how it informs writing clear, succinct code that expresses
programmer intent. Static typing is also a topic that I will lump in with functional
programming throughout this book. Though it is neither a necessary nor sufficient
condition for functional programming, static typing nonetheless fits well there. I
feel that static typing is complementary to both functional programming and web
development. It provides the structure while functional programming brings the
dynamism. Lastly, there is reactive programming. Like functional programming
this is a big topic! As it applies to this book, it describes methods for orienting

©Manning Publications Co. We welcome reader comments about anything in t

2

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

applications to be responsive to outside input. In a user interface, this means
reacting to clicks and key presses. It is conceptualizing applications not as a big
run loop, but as small functions to be run in response to outside events.

This book’s mode is comparative and exploratory rather than prescriptive — I want
to unearth options rather than try and find the "one true way". And because of that,
it may come across as an odd tech book. Rather than an exhaustive tutorial of some
technology, I’m going to introduce you to many things. We’ll learn enough about
each new language or technology to see how it could fit as a future direction for
programming.

Many of the ideas herein draw from or touch on functional programming. But I
don’t consider this to be a book about functional programming, rather it is a book
about coming to grips with the complexity of modern web application
development. It just so happens that functional programming has a lot to say about
cutting that knot of complexity.

1.1 Major Themes of The Functional Web

When I first noticed Opa and Elm, two languages that we’ll talk about in later
chapters, there seemed to be some thread connecting them. Though they were
developed by different people, they clearly shared some characteristics. They both
allow the developer to program in just one language. They both include syntax for
dealing with common web-related tasks (HTML, SQL, etc.). There
were themes underlying these separate languages.

Through this lens, I saw that there were many more technologies that seemed to fit.
I realized that what Opa and Elm were really up to was simplifying, collapsing,
orunifying parts of the web stack. JavaScript, HTML, CSS and even, in Opa’s case,
the server-side could be programmed together.

In the following sections, I’ll explain how each of these themes guide our
exploration through the Functional Web.

©Manning Publications Co. We welcome reader comments about anything in t

3

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

1.1.1 Unified Stacks

Figure 1.2. Server and Client-side applications can be written in the same codebase

Web application programming has progressed to a much richer model. The big
shift is that we now write an API server that consults a database and pair it with a
client-side application that makes requests of that API. This scheme might be
called a "rich client-side application" or just "client-side application". In this
model, the client-side application is often where most of the complexity resides.
And there is complexity in the interplay between the two sides as well! But this
way of doing things has the benefit of being more flexible. The same backing-API
may be used by many different front-ends be they web-based, iOS app, Android, or
etc.

The unifying platforms approach to this architecture assumes the above as a given.
We’re going to have an app "split in half" and communicating via an API. The
communication between the halves will be baked into the framework. In fact, in
Opa, this detail is somewhat hidden by the compiler. We can write code without
regard for where it runs. There are still some necessary divisions, say for hiding
sensitive business logic from the client-side, but these are divisions that are

©Manning Publications Co. We welcome reader comments about anything in t

4

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

meaningful in the context of the application and are not just technological
limitations.

Let’s look at this client/server division in Opa. In most cases code will be available
on both the client and the server. But there are times when it is important that code
should definitely be running only on the client or only on the server. Opa has a
declaration syntax to cover that situation.

Listing 1.1. Where code should run in Opa

function client_or_server(x, y) { ... } ❶

client function client_function(x, y) { ... } ❷

server function server_function(x, y) { ... } ❸

❶ Opa decides where to compile this function

❷ This function is compiled for the client-side

❸ This function is compiled for the server-side

The compiler is able to determine that certain things, such as database access must
be compiled into server-side code, whereas reading the value of a CSS selector
pertains to the client.

Unifying code and writing at this abstracted level is another main theme of this
book. There are other ways that we’ll explore this unifying theme: unifying the
server.

MirageOS is an example of a so-called library OS or a unikernel. The network,
storage, and other drivers that would usually be a part of the operating system are
instead compiled into a standalone program. This creates an executable that can run
directly within a hypervisor (in this case, the Xen). Put another way, there is no
Linux or Windows OS underlying the application!

1.1.2 Functional Programming

A whole book could be written about functional programming and many have
been. To give you a brief overview, a functional language is one where the primary
means of structuring code is around functions. Functions, in the mathematical
sense, define a relationship between inputs and outputs. In programming, the
traditional meaning of function has been expanded from what we’d recognize from
mathematics. Functions as used in programming are really procedures, lists of steps
to be carried out, possibly with inputs and outputs. In the mathematical world, a
function without inputs or outputs wouldn’t make sense. There would be no way to
convey information into or out of the function.

The goal of functional programming is to create more tractable code. When the
only things that can affect the outcome of a function call are its arguments, it’s

©Manning Publications Co. We welcome reader comments about anything in t

5

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

www.allitebooks.com

http://www.xenproject.org/developers/teams/hypervisor.html
https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

much easier to find problems.

Reducing statefulness

Functional programming demands a fundamental change in how you write
software. Functions become the primary means of structuring your code, and,
rather than mutating variables, state is carried in function parameters. From the
point of view of the function, values flow in through input parameters and a new
value is returned from the function — those variables never change.

This means that each time a function is called it behaves identically when given the
same arguments. We can’t tell the difference between the first time that we call a
function and the 100th. The function does not carry any state. There’s no hidden
record that the function is keeping, no history that it maintains anywhere. That
"history" or "hidden record" is also referred to as state and functional programming
is partly defined by not having it.

Languages that work in this way are much easier to deal with, even if it doesn’t
seem so at first. Most tests can be written as simple input/output pairs. We save on
a lot of set up and tear down.

Composition and modularity

Software, if it’s to have any hope of growing to a large size and still be practicable,
must be written in a modular way out of composable pieces. In a well-designed
system say you have two operations you’d like to perform, one after the other. It
should be possible to combine those operations together to yield a third operation
that is the combination of the two. Think of how arithmetic works for the basic
operations of addition, subtraction and multiplication.

(X + 2) * 3 = 3X + 6

The expression on the left is equivalent to the expression on the right. This is
natural to the mathematical way of thinking. But if I wrote this as a "program" it
might give us pause for a minute. Here is the same idea, but expressed as two
functions, f and g.

f(x) = x + 2

g(x) = x * 3

We can still combine these functions in the same way. If I want to form "g
following f", I can write this new function that combines the two.

gf(x) = g(f(x)) = g(x + 2) = (x + 2) * 3

In each step, I just expanded out what the function was doing. So then
compositionality in a nutshell is about something being the sum of its
parts. Expanding on my little math example of the idea of composition or

©Manning Publications Co. We welcome reader comments about anything in t

6

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

compositionality, here’s a JavaScript function that uses a few other functions.

function foo1(input) {

 var x, y, z;

 x = bar(input);

 y = baz(x);

 z = quux(y);

 return z;

}

Now imagine that we didn’t really care about what foo, bar, baz, or quux are — we
want everything but those specifics. We just want the skeleton of that function.

function foo2(input, f, g, h) {

 var x, y, z;

 x = f(input); y = g(x); z = h(y);

 return z;

}

And furthermore all the skeleton is really doing is a sort of plumbing of those
functions together. We can more clearly express this:

function foo3(input, f, g, h) {

 return h(g(f(input)));

}

The true nature of foo is revealed! And given that simpler nature, we could
express foo just as a simple result of other operations:

Listing 1.2. Final version of foo, written as a composition of functions

function compose(f, g) {

 return function(x) { return f(g(x)); }

}

function chain(funcs) {

 if (funcs.length === 1) {

 return funcs[0];

 }

 return compose(chain(funcs.slice(1)), funcs[0]); ❶

}

var foo4 = chain([bar, baz, quux]);

❶ funcs.slice(1) returns all elements of the funcs array after the first one. This operation is

sometimes called "tail" or "rest".

©Manning Publications Co. We welcome reader comments about anything in t

7

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

I’ve showed we can take simpler parts, in this case the bar, baz, and quux functions
and combine them to create more complex behavior.

Now I know that the idea that this is simpler may seem really far-fetched but
there’s a way in which it absolutely is. Once we’ve written compose and chain,
which are handy in their own right, they allow us to see that foo is really just
gluing other things together. The function composition example expresses the
essence of compositionality; we can understand code by what its pieces do and
how they’re combined. This idea, flipped around, is a powerful way to write code.
If you combine small pieces that you understand individually, you can build large
programs that are easier to understand.

Functional programming seeks, as much as possible, to build programs by putting
together such simple pieces like this.

Suffice it to say that I think functional programming has lots of ideas worth
borrowing. If you’re new to the idea of functional programming but familiar with
the web, then I’m happy to say that this is a great place to be. I’ll be pointing out
ideas that are coming from functional programming as we go along. There will be
sections devoted to the ideas behind the technology that I’m discussing and not just
the technology itself.

If you’re familiar with some of the ideas that I listed above, DSLs, type systems,
functional reactive programming, well then, I’m hoping that you’ll still find lots to
learn as you see how these ideas can be applied to the web.

1.1.3 Reactive Programming

Reactive programming means structing our applications around how we’d like to
respond to events from the outside world. We’ll see a lot more about how this
works when we look at Elm in WritingReactiveGUIsWithElm. In particular, we’ll
zero in on the variety of reactive programming known as functional reactive
programming. Like functional programming itself, reactive programming is a
broad style, and encompasses many other ideas.

Functional reactive programming, or FRP, is a technique that aims to directly
incorporate time into programming. It has seen applications in GUIs, robots, music,
and elsewhere. In this book I’ll be focusing on how it relates to GUIs. FRP gives us
an another way of dealing with user interaction.

This book will use the Elm language to look at FRP. The core abstraction in the
Elm language, and some other FRP implementations, is that of the Signal. A Signal
is like a variable in a programming language but with the added dimension that it
varies over time. In this example, Mouse.position is a Signal; specifically it is a
Signal of an x-y position on the screen and it has type (Int, Int).

©Manning Publications Co. We welcome reader comments about anything in t

8

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

https://forums.manning.com/forums/the-transparent-web

Tuples

The parentheses notation is called a tuple and means that these values are paired together.

main : Signal Element

main = map showMouse Mouse.position

showMouse : (Int, Int) ‐> Element

showMouse (x, y) = join ", " [toString x, toString y] |> show

This produces outputs like, 22, 345, in the uppermost left corner of the
window. Mouse.position is a Signal that contains a tuple of integers, or as Elm
would write it:Signal (Int, Int). The showMouse function takes a pair of Ints and
converts them into a displayable form to be shown on the page, an Element in Elm.

Since Mouse.position is a signal, and showMouse is a normal function, we have to
adapt it before we can use it. We can think of this as applying
the showMouse function at all times. "The function that we use to do this is
called map and it is in Elm’s Signal module. map is a higher-order function, which
means it is a function which accepts other functions as arguments.
Specifically, map takes a function as its first argument and returns a new function as
a result. The expression map showMouse is a new function which converts a value
with type Signal (Int, Int) into a value of type Signal Element. It acts as that "at
all times" adapter that we need. It converts from functions on simple values
(like (Int, Int) → Element) to functions on Signals (like Signal (Int, Int) →
Signal Element). Here’s a diagram of what’s going on with map.

Figure 1.3. Map applies a function pointwise to a signal of values

You can see in the figure how map modifies a whole function, returning a new one.
It is this new function that’s applied to Mouse.position. Function calls associate to
the left and if we put in parentheses they would look like this.

main = (map showMouse) Mouse.postion

©Manning Publications Co. We welcome reader comments about anything in t

9

https://forums.manning.com/forums/the-transparent-web

By modifying normal functions to work on Signal values, map lets us work with
values that vary over time. Lots of interactive things can be naturally expressed as
this way. A Signal of a static image is an animation (i.e. a time-varying image)!

1.2 Summary

Web development is in a transitional period. Since starting modestly in the mid
'90s, rich web applications have become a key part of modern computing. We’re
seeing a Cambrian explosion in web application development. Web development
has a lot to borrow from the world of functional programming and I believe ideas
like those explored in this book, collectively or in part, represent the future of
programming.

In this chapter, we saw that:

 I believe the web is in a transitional stage. Parts of the web stack will coalesce
while others will absorb ideas from functional programming. This will make
programming for the web more coherent.

 "The Functional Web" consists of the themes of Unified stacks, functional
programming, and reactive programming.

 We delved into each of these themes to get a sense for how they fit.

This book proceeds through a series of examples and discussions that will
demonstrate what these concepts are and how they can be applied. Where possible,
I’ll also point out analogous features between the different frameworks and
techniques. This will make the new ideas clearer by showing many of them in a
few different ways.

If all that sounds good then let’s get started!

©Manning Publications Co. We welcome reader comments about anything in t

10

©M

https://forums.manning.com/forums/the-transparent-web

In this chapter we’ll turn our attention to Opa. Opa sits right in the intersection of
all of the themes of this book. In fact, Opa itself was what first spurred my thinking
on toward what later became this book. Opa is described on its website as being a
"framework for JavaScript", but this is a slightly misleading statement. Opa falls in
among the growing ranks of languages that compile to JavaScript and so Opa-the-
language is something other than plain-old-JavaScript. But far from being a
drawback, this frees Opa to add many great features that would be hard or
impossible to implement just as a JavaScript library. Opa features many of
the Transparent Web characteristics: a single language for both client and server, a
static type checker, a database domain-specific language, and a healthy dose of
functional programming.

We’ve encountered some of these ideas a bit earlier during our discussion of
Meteor. Meteor implements some of the same features, but does so in JavaScript.
The gains in Opa then come from shedding JavaScript for a new functional
language that’s statically typed. Meteor is a great place to see how these ideas work
in the context of a more familiar language.

2.1 Tutorial Overview

Before diving right into reading an Opa app, let’s cover the basics of the language.
The good news is that there are lots of syntactic similarities to JavaScript. So at
least on the surface, Opa code will resemble what you may already be used to
seeing. In many ways, you can almost pretend that Opa is a souped-up, super-
JavaScript. The differences between Opa and JavaScript stem from Opa going
some extra lengths to catch many errors at compile-time.

Transparent Client-Server
Programming With Opa

©Manning Publications Co. We welcome reader comments about anything in t

11

©Manning

https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://forums.manning.com/forums/the-transparent-web

2.1.1 Variables

Variables have the common set of allowed characters. They can contain letters,
numbers, and underscores. Variables are defined by using an equals sign like this:

x = 1

y = "cat"

Underscores have a special meaning when used for variable names. If an
underscore is used to start a variable name, then the compiler will not issue a
warning for an unused variable.

Finally, variables may be defined by enclosing them in backticks:

`is my middle name` = "danger"

This syntax allows us to use characters which would otherwise not be allowed in
variable names.

Precisely, variable names in Opa adhere to the following regular expression:

([a‐zA‐Z_][a‐zA‐Z0‐9_]*|`[^`\n\r]*`)

Summarizing the above, a variable name starts with a letter or an underscore
followed by any number of alphanumeric characters and underscores.
Alternatively, it is any number of characters excluding backticks, newlines, and
carriage returns, all enclosed in backticks.

2.1.2 Functions

As a functional language, Opa’s building blocks are (you guessed it) functions.
Functions in Opa have the familiar declaration syntax that is common in JavaScript
and among C-family languages. Functions are treated just like other values and so
the same variable naming rules as above apply.

function my_function(a, b, c) { ... }

Functions can be defined in a curried way:

function make_adder(a)(b) { a + b }

The meaning of this is that the arguments to curried_function can be supplied one
after another rather than all at once.

add_5 = make_adder(5)

add_5(3) // returns 8

We can also convert a function with multiple arity, (e.g. function make_adder(a,
b) { a + b } has arity two) into a function with lower arity by partially
applying it:

©Manning Publications Co. We welcome reader comments about anything in t

12

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

function make_adder_2(a, b) { a + b }

add_5 = make_adder_2(5, _) // note the underscore

add_5(3) // returns 8

Currying and partial application really come into their own when used in one-off
situations such as mapping over a collection. We can often "re-tool" a very general
function for the specific purpose at hand. This is one of the ways that functional
programming engenders code reuse.

Opa also includes special function syntax related to web programming. Normally,
the Opa compiler will decide where the generated code will be run. But the Opa
language includes client and sever statements to tell the compiler to generate code
for the client or for the server.

client function my_client_function(x, y) { ... }

server function my_server_function(u, v) { ... }

A particular use case is security-sensitive code which can be constrained explicitly
to the server.

2.1.3 Special syntax

Opa affords special syntax for working in the web environment. For working with
HTML, Opa lets us simply include the HTML that we want directly as a value.

my_html =

 <p>

 And now for something <i>completely</i> different

 </p>

Notice the complete lack of quotes. The above xhtml fragment is a value within the
language, the same as an int or a float, and it isn’t a string. Values can be
interpolated inside xhtml fragments:

str = "inside"

html = <p>Values <i>{str}</i> html</p>

This technique can be used to build up more complex xhtml values.

Opa also provides syntax for CSS selectors. These are used to get a hold of parts of
the DOM. In its most basic form, we can replace, prepend, or append content to a
DOM element with id sunglasses.

#sunglasses = "with" // replace

#sunglasses += "deal" // prepend

#sunglasses =+ "it" // append

Opa also has syntax for natively working with databases. We declare them using
the following syntax:

database memes {

©Manning Publications Co. We welcome reader comments about anything in t

13

https://forums.manning.com/forums/the-transparent-web

 map(string, string) /name

}

This declares a database named "memes". It stores string values indexed by string
keys, it is a map from string types to string types (i.e. map(string, string)). And
lastly, the subpath within the memes database is /name. Putting that all together, that
means we can read and write to the database using the following syntax:

/memes/name["yo dawg"] // read: "I heard you like..."

/memes/name["doge"] <‐ "Wow." // write

If the value stored in the database is an int, we can also increment and decrement
it:

database memes {

 int /num

}

/memes/num += 1 // increment

/memes/num ‐= 1 // decrement

2.1.4 Records

Records are a major category of data in Opa. These are akin to objects in
JavaScript or database rows. Records are key-value pairings where the type and
number of pairs can vary. As opposed to lists, the types in a record can differ and
so they are the primary way to organize heterogeneous data.

Here’s a record for storing information about a person:

import stdlib.web.mail

type person = { string name, int age, Email.address address }

bob = { name: "Bob", age: 40,

 address: { local: "bob", domain: "example.com" } }

We declare the type of the record on line 3 by writing down the names and types
for each field in the record. On line 4, we create a value, bob of type person. Notice
that in creating the bob value, we’ve also embedded a second record inside, for the
email address. The definition for that record comes from the standard library,
imported on line 1.

Records have many associated operations and special syntax for working with
them. This makes sense given their central role in the language. An example is that
we can update and extend records easily. Given the above definition of bob, we can
extend the record:

bob = { ... } // as before

robert = {bob with name: "Robert", more_formality: true}

©Manning Publications Co. We welcome reader comments about anything in t

14

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

At this point, the robert record contains all the fields that the record bob did, but
with two fields added: name and more_formality.

This with syntax allows us to both update and replace fields within the existing
record. There’s also syntax for the the common case where we’d like to create a
record using the names and values of in-scope variables. The following
records, bob1, bob2, and bob3, are all equivalent:

name = "bob"

age = 40

bob1 = { name: name, age: age }

bob2 = { ~name, ~age }

bob3 = ~{ name, age }

In the first example, bob1, we’re explicitly setting the field called name with the
value of the variable name; same with age. Since it is a bit redundant to assign a
field with the same name as a variable ({ email_address: email_address }, etc.),
Opa lets us use the syntax in the second example, bob2. That example means that I
have a variable called name and I want to set the field in the record, name, to that
value. In the last example, bob3, the record only contains the
fields name and age and I want to set them both. I also have variables with matching
names. I can then move the tilde (~) to the front of the record meaning that I’m
setting both fields at once and to their corresponding values. Each example
achieves the same effect but with increasing shorthand as we go.

Lastly, we can access the fields of a record using dot notation. This should look
very similar to object access in JavaScript.

bob.name // equals: "bob"

bob.age // equals: 40

// etc.

At this point, if you’re familiar with JavaScript, you may be asking yourself:
"what’s the big deal? These are just like JavaScript objects." And it’s true, records
look and act much like JS objects. The difference though is that these are type
checked. If we make a mistake about the name or type of a field, the compiler will
give us an error and point to exactly where it happened.

This has nice implications for writing functions which use records! The following
function accepts a record called r, which must posses int fields named a and b:

function add_a_b(r) {

 r.a + r.b

}

This declares add_a_b as taking a type, {int a, int b, …}. Note that there are
ellipses after the two known fields a and b. This notation means that there could be
any other fields in the record and the add_a_b function won’t care. Let’s try calling

©Manning Publications Co. We welcome reader comments about anything in t

15

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

our function with an extra field.

add_a_b({a:1, b:2, c:"cat"}) // equals: 3

As expected, the extra field, c, didn’t interfere with the function. Let’s try to call
our function with a missing field.

add_a_b({a:1, c:2}) // no 'b' field

Error: File "foo.opa", line 18, characters 11‐20,

(18:11‐18:20 | 290‐299)

Type Conflict

 (12:5‐12:16) { a: int; c: int } / 'c.a

 (15:3‐15:5) { a: int; b: int; r.a }

 The argument of function add_a_b should be of type

 { a: int; b: int; r.a }

 instead of

 { a: int; c: int } / c.a

Opa notices and flags the line where the offending variable is defined and used.
The compiler error also shows that we were trying to use a record with
fields a and c, rather than the correct one with fields a and b. The extra term at the
end of the error message, 'r.a, is Opa telling us that "you must at least provide
fields a and b (of type int), but you may also provide any additional fields as well."

In JavaScript, you get much the same behavior except that the logic is flipped
around. It is as if the function were saying "I’m going to use these properties of
that object sowatch out!" But imagine if your JavaScript code could tell you,
upfront, that the argument passed to a given function wasn’t going to be adequate.

This feature of dynamic languages that I’m describing, like using r.a or r.b above,
is sometimes called "duck typing". It means that if I can use properties of some
thing: thing.quack(), thing.swim(), and thing.bill, than that thing can be treated
as a duck. It doesn’t matter what the actual type of thing is as long as it behaves
sufficiently duck-like. Bringing it back to programming, that means that an object
which responds to all the same methods, "acts like" any other such object.

Opa, by being able to check that a record supports all the fields that we need, is
giving us something that works like "static duck typing."

2.2 Re-visiting the Biking App: Opa Example

Let’s revisit the small biking application that we talked about earlier
in WritingABikingApplication.

We’ll re-implement this application using features that Opa provides. Though this
application is simple, it will still manage to show off a lot of the core ideas of this
book. In particular, we’ll see how we are able to hook up an onclick handler so

©Manning Publications Co. We welcome reader comments about anything in t

16

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

that it calls directly into code that saves input into the database.

As a brief overview and reminder of the Biking application, let’s talk about what
it’s supposed to do. The main page of the application should be a list of recent bike
rides. Each ride should describe the rider, the date, and the distance ridden. There’s
also a form where users can enter their own rides. To make the application be more
manageable, I’ve omitted many features that that would be all but required in a real
application. We’ll totally ignore issues like, user management, pagination, and
import/export. What follows is just to show how Opa’s features fit in with the
Transparent Web but, if you’re interested, the Opa website is a great place to learn
more about developing with Opa.

All lengthy code examples from this book can be found online. I’ve created a git
repo of all of the source in the book, it can be found
here:https://github.com/twopoint718/tw.

We’re now ready to start our application. We can generate the skeleton of a new
site automatically.

opa create biking

You should see output similar to the following.

OpaCreate: Generating biking/Makefile...

OpaCreate: Generating biking/Makefile.common...

OpaCreate: Generating biking/opa.conf...

OpaCreate: Generating biking/resources/css/style.css...

OpaCreate: Generating biking/src/controller.opa...

OpaCreate: Generating biking/src/model.opa...

OpaCreate: Generating biking/src/view.opa...

Now you can type:

$ cd biking

$ make run

This has created a new directory named biking that contains everything we need to
get started. Now we’re all set! Opa created the skeleton of a site for us. All we have
to do is write the entire app! When we’re done we should end up with this.

©Manning Publications Co. We welcome reader comments about anything in t

17

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://github.com/twopoint718/tw
https://forums.manning.com/forums/the-transparent-web

Figure 2.1. The finished Biking application

2.2.1 Model code

I find it most useful to start any application by thinking about what kinds
of domain objects there are. By this, I don’t literally mean objects as in object
oriented programming, but simply what sort of "logical entities" are we going to
talk about while building this application. In the biking application we’re chiefly
concerned with the concept of a bike ride — I’m just going to call this a ride.

Let’s start by importing some standard library code. We’ll import the date library
for converting between different date formats and parsing dates from strings.

import stdlib.core.date

Next, we get right down to the meat of the application. We define the type of
a ride. A ride will consist of an ID, a user’s name, the distance that they rode, and
the date on which they rode. Putting this into a type definition looks like this.

Listing 2.1. Types

type ride_id = int ❶

type ride = { ❷

 ride_id id,

 string user_name,

 float distance,

 Date.date date

}

❶ We wrap an int into more descriptive type

©Manning Publications Co. We welcome reader comments about anything in t

18

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

❷ We define a record to hold the details of a bike ride

To store our application’s data, we use the built-in database capabilities of Opa to
store rides directly. Notice that we’re using the ride type that we just defined to
store a set of rides indexed by their id. Our application will also need an index
counter to point to the last-inserted ride. This is akin to an auto-incrementing key
in a relational database management system. Here, this guarantees that even if two
rides share the same details (user_name & etc.) their `id`s will differ.

Listing 2.2. Database

database biking {

 ride /rides[{id}] ❶

 int /index = 0 ❷

}

❶ This declares that we’ll be storing rides in the database under the path "/biking/rides". We’ll use the

"ride_id" to index into this collection of rides, so accessing a specific ride would look like:

"/biking/rides[4]".

❷ We store an int in the database to keep track of the next "ride_id" to insert into the database.

Lastly, we’ll create a helper function to create rides in the database. This takes the
name of the rider, the distance ridden, and the date and returns a ride. Because
we’re fetching these values out of the DOM, they’ll be arriving in our function as
strings. We’ll do some checking inside the function to make sure the inputs are
valid. We then create a new record and store it in the database. There’s new syntax
here that we haven’t seen before. Assigning values to records usually looks like
this:

int var1 = 1

record = { variable_one: var1 }

But if the variable and the field in the record have the same name, then we can use
a shorthand syntax.

int variable_one = 1

record = {~variable_one}

And furthermore, if all the variables being assigned share their names with their
respective fields, we can shorten the code up even more. We move the ~ outside the
record.

int variable_one = 1

int variable_two = 2

record = ~{variable_one, variable_two}

©Manning Publications Co. We welcome reader comments about anything in t

19

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

Listing 2.3. Module code

module Model {

 function create_ride(string user_name,

 string dist,

 string raw_date) {

 distance = Float.of_string(dist) ❶

 scanner = Date.generate_scanner("%Y‐%m‐%d")

 result = Date.of_formatted_string(scanner, raw_date) ❷

 date = match(result) { ❸

 case {some: d} : d ❹

 case {none} : Date.now() ❺

 }

 int id = /biking/index

 /biking/rides[~{id}] <‐ ~{id, user_name, distance, date} ❻

 /biking/index <‐ id + 1

 }

}

❶ We parse the (string representation) of the distance into an actual floating point number.

❷ Using the string format from the previous line, dates like "2015-01-15", we attempt to parse the date

provided by the user.

❸ Next we use pattern matching to check the result of our attempt at parsing.

❹ The first pattern matches if the parse succeeded. We’ll get a value like {some: [a date value]},

from which we extract the date part.

❺ In the case that the parse failed, we’ll match {none}. We default to choosing today’s date.

❻ We use the record shorthand to assign all fields in the ride record and then store this in the database

under the current index. On the next line we increment the index.

Note that we’ve started out the application by structuring it around the types
involved. In this small application, there’s just the ride type, but this extends
naturally to more types.

We also place core tasks inside the model module, here that’s persisting the rides;
the create_ride function. A functional design that I’ve found valuable is to draw a
clear border between the inside and the outside of an application. As soon as it is
possible, safely convert untyped external values into well-understood domain
values. And that’s just what we’re doing inside create_ride, we’re parsing the date
and distance into time and numeric values, respectively. Once we’ve converted
them, we’re free to use them within the app. Here we immediately store them in the
database.

Now that we have a solid core of data, we can move on to the views that will
display it.

©Manning Publications Co. We welcome reader comments about anything in t

20

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

2.2.2 View code

The view code is a little bit longer than the model was. More of the view code is
concerned with creating a particular look, and this bulks it up somewhat. I’m going
to try and focus only on those parts that show off interesting functionality. The
entire program can be obtained from the code repository.

Listing 2.4. Default page layout

 function page_template(title, content) {

 html =

 <div> ❶

 ‐‐>

 <div class="navbar navbar‐fixed‐top">

 <div class=navbar‐inner>

 <div class=container>

 </div>

 </div>

 </div> ❷

 ‐‐>

 <div id=#main class=container‐fluid>

 {content}

 </div>

 </div>

 Resource.page(title, html) ❸

 }

 function default_page() {

 content =

 <div>

 <div class=hero‐unit>

 <div class=jumbotron>

 <h1><i class="fa fa‐bicycle"></i> Biking</h1>

 </div>

 </div>

 <div class=row>

 <div class=col‐md‐8>{main_table()}</div> ❹

 ‐‐>

 <div class=col‐md‐3>{input_form()}</div>

 </div>

 </div>

 page_template("Biking", content) ❺

 }

❶ Here we create a snippet of HTML, assigned to the "html" variable, that defines the outermost part of

the page we’re creating.

❷ We interpolate the eventual content of the page into the template here.

❸ Lastly, we create a Resource from this HTML and a title. A Resource is what Opa eventually renders

as a page.

©Manning Publications Co. We welcome reader comments about anything in t

21

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://github.com/twopoint718/tw
https://forums.manning.com/forums/the-transparent-web

❹ Inside the "default_page" function, we lay out some more formatting. We create, left-hand and right-

hand columns. The "main_table" function will be rendered on the left-hand side of the page — we’ll

show this next. On the right-hand side we render the "input_form" function.

❺ Lastly, we use the page_template function with a title of "Biking" and the content that we just

created.

We’ve now written the overall layout of the page. Let me call your attention to the
fact that since we’re using functions to define HTML and we can easily interpolate
other HTML, structuring pages modularly is simple. We don’t have to lay a page
out in the order that it is rendered, as is normal with regular HTML. As a small
syntactic point, notice that HTML attributes unquoted when they don’t contain
whitespace. See that class=jumbotron is not quoted (it’s a single word)
but class="fa fa‐bicycle".

Next we turn our attention to creating the main_table function. This will display a
table of the details of a group of rides. The main_table function creates the
structure of the table and it will then call out to a function that renders all the rows
of data in the table, table_rows.

The table_rows function queries the database for a set of rides. This value is
a dbset, an abstract collection of ride. We’ll use some library functions to get
an iterator over this collection. We will then use the iterator to perform a fold over
the data returned.

A short interlude on folding

A fold is a common operation in functional programming. In Ruby this function is
called inject. In other languages it may be called reduce. The idea is that we want
to take a collection of some sort and compute a final value from it. Fold steps
through the collection one element at a time, combining the current element with
the further result of folding the rest of the collection. To provide a base case, fold
requires that we pass in a value to be used when the collection is empty. Here’s an
example of what that would look like.

Listing 2.5. Folding a list of numbers using addition

function add(n, total) {

 return n + total;

}

function fold(f, end, list) {

 if(list.length == 0) {

 return end; ❶

 }

 return f(list[0], fold(f, end, list.slice(1))); ❷

}

©Manning Publications Co. We welcome reader comments about anything in t

22

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple

https://forums.manning.com/forums/the-transparent-web

console.log(fold(add, 0, [1, 2, 3, 4, 5])) // prints 15

❶ The base case (when the list is empty) we immediately return the caller-provided end value.

❷ Otherwise we call the provided function on the curent value, list[0], and the eventual result of

folding the rest of the list. We can think of that second value like a snowball that we’re rolling up, each

step adds a bit more snow to the ball.

When looking at folding step by step, you can see that it applies the function
repeatedly. Each step of the fold nests an inner call to itself. Here’s how the
evaluation proceeds step by step.

 fold(add, 0, [1, 2, 3])

= add(1, fold(add, 0, [2, 3]))

= add(1, add(2, fold(add, 0, [3])))

= add(1, add(2, add(3, fold(add, 0, []))))

= add(1, add(2, add(3, 0)))

= add(1, add(2, 3))

= add(1, 5)

= 6

But expanding it out that way actually hides a simple intuition. Just imagine the list
of the numbers to be added and then replace the commas with the function that
we’re running. I put in the parentheses because that reflects the way that the
computation proceeds. In the case of addition, we know that the parentheses don’t
matter because addition is associative. Recall that this just means that (1 + 2) + 3
= 1 + (2 + 3) = 1 + 2 + 3.

Figure 2.2. Folding a list is like replacing the commas

More abstractly, any structure where we can think of a way to combine a single
element with "the rest," we can create a fold for that structure. This includes things
like trees and lists. It’s a powerful way to abstract iteration into a succinct
operation.

Using a fold to build a table

A fold plays an interesting role in how we build up the HTML for our table rows.
Inside the table_row function, we can see how this fold business comes into play.
We return an HTML value that looks like this <>{acc}<tr>…</tr></>. That is,

©Manning Publications Co. We welcome reader comments about anything in t

23

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

we’re interpolating the HTML that we already have, acc, with the HTML for the
current row, r. When repeated, this has the effect of appending row after row to our
table. When we’ve stepped through all the rows, we’re left with the body of the
table.

Listing 2.6. Creating the table of rides

 function main_table() {

 <table class="table table‐hover">

 <thead>

 <tr>

 <th>ID</th>

 <th>Name</th>

 <th>Distance ridden</th>

 <th>Date ridden</th>

 </tr>

 </thead> ❶

 ‐‐>

 <tbody>

 {table_rows()}

 </tbody>

 </table>

 }

 function table_rows() {

 all_rides = /biking/rides ❷

 it = DbSet.iterator(all_rides) ❸

 Iter.fold(table_row, it, <></>) ❹

 }

 function table_row(row, acc) { ❺

 pr = Date.generate_printer("%a., %b. %E, %Y");

 ❻	
 <>

 {acc}

 <tr>

 <td>{row.id}</td>

 <td>{row.user_name}</td>

 <td>{row.distance}</td>

 <td>{Date.to_formatted_string(pr, row.date)}</td>

 </tr>

 </>

 }

❶ We interpolate the table rows into the body of our rides table.

❷ Inside the table_rows function we fetch all the rides from the database. The result is returned as a

dbset of rides.

❸ We derive an iterator from the result set returned. This will allow us to step through the rides that have

been returned.

❹ We then fold the collection of rides using the table_row function and the iterator. This will yield a

finished chunk of HTML.

©Manning Publications Co. We welcome reader comments about anything in t

24

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

❺ The table_row function combines the current ride, r, with the accumulated HTML fragment, acc.

❻ Each new ride is converted into a row of an HTML table here. We select the id, user_name, distance,

and date fields of the ride record and put each in its own column. The only special thing to note is that

we apply some special date formatting to the r.date field.

The last part of the view is a function to generate the form for entering new rides
into the database. For this we have some more HTML markup, which by now
should be starting to look pretty familiar. We take advantage of some HTML5
input types to make the form a little easier to write. I like to use standard HTML
controls whenever possible, but in some older browsers these may not be
recognized. We need to collect the user’s name, the distance that they rode, and the
date on which they rode. We’re using a counter for the id numbers and so we don’t
ask that of the user.

Listing 2.7. New ride input form

 function input_form() {

 <form>

 <div class=form‐group>

 <label for=name>Name</label>

 <input class=form‐control id=name

 placeholder="Enter name">

 </div>

 <div class=form‐group>

 <label for=distance>Distance (mi)</label>

 <input type=number class=form‐control

 min=0 step=0.1 id=distance

 placeholder="Enter distance">

 </div>

 <div class=form‐group>

 <label for=date>Date</label>

 <input type=date class=form‐control id=date

 placeholder="2015‐01‐13">

 </div>

 <button type=submit class="btn btn‐default"

 onclick={function(_) { ❶

 name = Dom.get_value(#name)

 distance = Dom.get_value(#distance)

 date = Dom.get_value(#date)

 Model.create_ride(name, distance, date)

 }}>

 Submit

 </button>

 </form>

 }

❶ The Submit button has an onclick handler that collects the name, distance, and date fields from the

form. We’ll use these to create a new ride and store it in the database.

©Manning Publications Co. We welcome reader comments about anything in t

25

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

2.2.3 Controller code

The controller serves three main functions. The first is that it examines the route
and selects which view to serve. The second function is that it starts the server,
setting up resources such as CSS and the default document type. Lastly, as it’s
done in the MVC pattern, we tie together model logic and view logic.

Listing 2.8. The dispatcher function

module Controller {

 dispatcher = {

 parser {

 case (.*) : View.default_page() ❶

 }

 }

}

❶ For this simple application, we match all URLs and render the default_page from the View

module.

The last thing left to do to get our code up and running is to determine some
application-wide settings and then make a call to the Server.start function. The
actual type of Server.start is rather complex because it can take a variable
number (and type!) of arguments. We’ll with something very close to the default
generated by the opa create command.

Listing 2.9. Starting the server

resources = @static_resource_directory("resources") ❶

Server.start(Server.http, [

 { register:

[{ doctype: { html5 } },

 { js: [] },

 { css: ["/resources/css/style.css"] } ❷

]

 },

 { ~resources }, ❸

 { custom: Controller.dispatcher } ❹

])

❶ We set a directive that defines the "resources" directory to be for static assets. These will get served

as-is by the server.

❷ We specify a stylesheet here.

❸ Here we tell the server to use the resources directory that we defined above.

❹ We tell the server about our dispatch function.

©Manning Publications Co. We welcome reader comments about anything in t

26

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simpl

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

2.3 Summary

In this chapter we saw what working with Opa is like. But more importantly we
saw how the themes of the Transparent Web play out in a web framework that’s
designed to enable fast development. In particular we saw these things.

 We created a simple Opa application
 We saw how to work with the Opa tools
 We looked at the functional programming concept known as a fold
 We talked about records and how they are like "static duck typing"

One thing that was hard to convey in this chapter was the process of writing the
application. I found that by trying to compile frequently, I was able to get quick
feedback about errors in my code. These errors went way beyond what I’d get
while developing in something like JavaScript. On more than one occasion Opa
determined that my HTML was nested incorrectly, or that I was trying to call a
function with the wrong arguments. The combination of type checking and web
development is quite pleasant.

©Manning Publications Co. We welcome reader comments about anything in t

27

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

Readers familiar with dynamically-typed application programming languages like
Ruby may be unfamiliar with the central role that types play in many functional
programming languages. Types fill a role similar to the tests used in Test-Driven
Development. That is, types provide guidance in writing code, quick feedback
about errors, and documentation of APIs. Types have interesting properties in their
own right though, and that’s what this chapter is about. Here you’ll learn about
what types are, how they can be used (along with other language features) to solve
problems, and finally a little about how they work.

As an overview, types are a light-weight mechanism for checking for the absence
of certain types of program behavior. This can be used to look for bugs, enforce
constraints, or tighten up security amongst other things. Types model a simplified
version of our programs and examine them for flaws, we can than take lessons
learned from that simplified environment back to our full-fledged program and
conclude things about it, too.

This chapter serves as a stepping stone to the rest of the book. In the chapters that
follow, concepts involving types will play an increasingly important role — they
won’t be the focus, but they’ll be present and it is important that these concepts
make sense. I won’t and can’t tell you everything there is to know about types. But
I want to tell you enough so that types add to rather than distract from other topics.
This book is about the future of programming for the web and I think types are a
part of that future. It’ll help to understand a little bit about them.

A secondary goal of mine is to let you in on a big secret — that static typing is a
useful and pragmatic feature in a programming language. It isn’t obscure or weird,
just really useful. This isn’t a secret because some shadowy group of functional

Understanding Static Typing

©Manning Publications Co. We welcome reader comments about anything in t

28

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

programmers is hiding it, far from it. Whatever the cause, it seems that this info
isn’t widely distributed. If you’re coming from a background consisting of dynamic
languages (Ruby, Python, Perl, etc.) and maybe a tiny smattering of static typing in
the style of Java, then this chapter is for you.

5.1 Collections of Values

Imagine that all the values used in a program are drawn from big bins. We might
pull the number 5 out of one bin or the string "Hello, World!" from another. The
bins each have a label on their side that tells us what sorts of values are contained
within. Oh, also, we’re assuming that no malefactor has put values into the wrong
bins! To introduce types then, we can say that they are like the labels on the bins.
Then we’d say that "5 came out of the integer bin", or as we’d really say it: "5 has
type integer."

A simple example from the Opa language shows how we can view a type as a
label. Here it "labels" a variable, x, by saying that x will hold values that are
integers and then we assign it a particular value, 1.

int x = 1

Where this view really starts to come into its own is when functions enter the
picture. Functions can be seen as a way to associate bins with one another. A
function with a type of int → string will expect a value from the int bin and yield
a value from the string bin. This already starts to tell us about the function works.
We know that we won’t be able to get a 5 from this function because that’s not in
the string bin. We also know that we’re only able to use the result of this function
in places where we could use strings.

5.2 What types can be used for

Types are a tool — among many — for improving the correctness of our code.
Testing is another common means of doing the same thing. Regardless of whether
we’re using a type system or software testing, the goal is to catch bugs as early as
possible. It is easiest and quickest to fix bugs right after you introduce them.
Hunting down bugs from a production stack trace that a baffled customer is reading
to you over the phone is no fun.

Through the 90’s, with its profusion of dynamic languages like Ruby, PHP,
Python, and Perl, static types seemed to take a lesser role. At the same time, testing
came to the forefront. But lately, it seems that static types are poised for a
comeback. There’s been a resurgence with languages like: Scala, Swift, F#, and
Rust, which all have a static type system. Some of these languages are being
heavily supported by large companies (among them: Apple, Microsoft, and
Mozilla). This points to big practical benefits combined with enough ease-of-use
that these companies are willing to bet on them.

©Manning Publications Co. We welcome reader comments about anything in t

29

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

We should keep in mind that types are not the only way to achieve confidence.
Rigorous software testing must also play a role. Types characterize what we can
know about the code "as written", while tests exercise the code "as run". Unlike
types, tests can take advantage of runtime information. This enables us to
catch different kinds of bugs — which can’t be found using types alone.

The culture of Ruby espouses a strong discipline for writing comprehensive tests.
A good test suite can catch bugs early on in the development cycle. Ideally, when
something isn’t working as expected, there’ll be a unit test that points to why.

But unit testing depends on you having written enough fine-grained tests. When
tests are too broad, it is hard to point to a line and say "that’s the problem". But
when tests are too narrow they can become a maintenance nightmare.

Types act as a sort of pervasive and always-on suite of tests that you don’t have to
write. Accordingly, types are good at finding and preventing similarly pervasive
problems. The sorts of errors that types excel at are exactly those that are
widespread throughout the codebase and involve the programmer having to
meticulously and continuously keep things straight.

Two big problems that fit this particular bill are null-pointer
errors and injection errors.

5.2.1 Avoiding null-pointer errors

Tony Hoare famously called the null reference his "billion-dollar mistake." 1 The
null reference error is common and so it goes by several different names, in Java
it’s known as NullPointerException (or even NPE), and it goes something like this.

Listing 5.1. Anatomy of a NPE in Java

public class NullPointer {

 static class Greeter {

 String greet(int n) { ❶

 if (n > 0) {

 return "Hello"; ❷

 } else {

 return null; ❸

 }

 }

 }

 static class Responder {

 String answerGreeting(Greeter klass) {

©Manning Publications Co. We welcome reader comments about anything in t

30

1 In a talk given in 2009 Tony Hoare told the story of when he was implementing the programming language ALGOL W. While designing
the language he had the option of adding null references to the language. He settled on adding null references but now feels that it was a
bad idea. The billion-dollar part comes in because he speculates that it has cost that much in lost time and effort, "more than a tenth of a
billion, probably less than 10 billion". He also won the ACM A.M. Turing Award, sort of the Nobel Prize of computing, so I’ll let this one
slide.

https://forums.manning.com/forums/the-transparent-web

 String greeting = klass.greet(0); ❹

 if (greeting.equals("Hello")) {

 return "Nice to meet you!";

 } else {

 return "Um, Hello?";

 }

 }

 }

 public static void main(String args[]) {

 Greeter greeter = new Greeter();

 Responder other = new Responder();

 String s = other.answerGreeting(greeter); ❺

 //int x = null; // not okay, this is a compile error

 System.out.println(s);

 }

}

❶ We begin okay enough. Greeter has a greet method that chooses a greeting depending on the

value of an int that’s passed in.

❷ If n is greater than zero, then greet returns a String. This matches what’s declared in the method

signature.

❸ Here’s where problems begin. Perhaps when we were writing this method we thought "if n is not

positive then no greeting is appropriate." We select null as an indicator that effectively means "no

greeting".

❹ We call the greet method with the argument 0. Based on the definition of greet, greeting will get

the value null. This is, admittedly, easy to spot. But this exact situation, with more indirection could

prove very hard to track down.

❺ This call sets off the whole chain of events. The compiler does not complain about this code, but we

do get a runtime NPE.

When we run the code in listing 5.1 , we’ll get the following message:

Exception in thread "main" java.lang.NullPointerException

 at NullPointer$Responder.answerGreeting(NullPointer.java:16)

 at NullPointer.main(NullPointer.java:28)

This is a simple example, but some things to note were:

1. The compiler didn’t complain.
2. The error message implicated the wrong lines (depending on how you think

about it). The error points out greeting.equals ("hello") as being the cause.
That’s true, but it doesn’t get at the root of the flaw. I’d say that happens in
the definition of greet, not its call site.

This is not unique to Java! The same sort of behavior can show up in Ruby (and
many other languages). The Ruby version would look like Listing 5.2, .

©Manning Publications Co. We welcome reader comments about anything in t

31

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

Listing 5.2. Ruby’s version of a NPE

class Greeter

 def greet(n)

 return 'Hello' if n > 0 ❶

 end

end

class Responder

 def answer_greeting(klass)

 greeting = klass.greet(0)

 if greeting.match(/[Hh]ello/) ❷

 'Nice to meet you!'

 else

 'Um, Hello?'

 end

 end

end

class NullPointer

 def self.run

 greeter = Greeter.new

 s = Responder.new.answer_greeting(greeter)

 puts s

 end

end

NullPointer.run

❶ Here we only return a string in the case that our test, n > 0, is true. Otherwise we return (by

default) nil.

❷ The only big thing that differs from the Java code is that the == method is defined for nil in Ruby. I

decided to give use_greeting a souped-up version that checks to see if either "Hello" or "hello" is

contained in the greeting.

And a similar sort of runtime blowup will happen:

null_pointer.rb:10:in `use_greeting': undefined method `match' for

nil:NilClass (NoMethodError)

 from null_pointer.rb:21:in `run'

 from null_pointer.rb:26:in `<main>'

Types provide the answer for this sort of problem. When we
defined greet in Listing 5.1 , we declared it as having a return type of String, but
that’s only sort of true. The return value is either going to be a String or it will
be null. The problem is that Java (and many other languages) consider null to be
an acceptable value for any reference type (e.g. String). That is, wherever you
have a variable that’s meant to hold an object, it could also hold null:

MyClass a = new MyClass(); // Okay

©Manning Publications Co. We welcome reader comments about anything in t

32

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

MyClass b = null; // Okay

But in some languages, null is not considered to be a valid value for any type. In
Java at least you can see this sort of behavior if you attempt to assign null to a
non-reference type:

int x = null; // not okay, this is a compile error

...

error: incompatible types

 int x = null;

 ^

 required: int

 found: <null>

1 error

So the glimmer of the solution is there. The complier can simply not allow
variables to ever hold values of the wrong type. When this sort of rule is in place,
assignments where the types don’t match are forbidden.

MyClass a = null; // compile error

There are languages that have this philosophy built into the language. Haskell is an
example of a language where variables are non-nullable. In such a language
mechanisms like option types (ML-family) or Maybe (Haskell) are used to capture
the idea of something that either has or does not have a sensible value. But to
understand how an option type works we’ll first have to understand something
called a sum type.

Sum types

A sum type is a natural idea cloaked in what may be unfamiliar terms. Think of this
as a type representing a bunch of non-overlapping options. A similar idea is Java
enums. To understand sum types, let’s bring back our fruit example
from SmoothieRecipeFunction. There we were talking about how to express the
idea of a fruitgenerally. One way to think about this is by thinking of sets again. A
way to express the idea of "fruit" could be to just list them all: {apple, banana,
cherry, grape, …}. That would look like this in Opa.

type fruit = {apple} or {banana} or {cherry}

It means that we’re defining a new type, fruit, that has three distinct
values, {apple}, {banana}, and {cherry}. To use the language of
sets, {apple}, {banana}, and {cherry}are the three elements of our set of fruit (s).
Any function which uses the fruit type, will handle values of
either {apple}, {banana}, or {cherry}. If we want to pick out which value is being
used we do something called pattern matching. This is something like a case
statement in other languages.

©Manning Publications Co. We welcome reader comments about anything in t

33

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

function prepare(fruit f) {

 match(f) {

 case {apple}: "chop"

 case {banana}: "peel"

 case {cherry}: "remove pit from"

 }

}

Here, the fruit f will take on exactly one of those options. Depending upon which
value fruit f has, we return a short preparation instruction (of type string).

This is better than just doing an if check to see which of the three
possibilities f has assumed. For starters, the compiler will check that we’re
examining all the possibilities. If we comment out one of the cases in
our prepare function, the compiler will notice.

function prepare(fruit f) {

 match(f) {

 case {apple}: "chop"

 case {banana}: "peel"

 // case {cherry}: "remove pit from"

 }

}

And when we try to compile this, we’ll get an immediate, compile-time, error.

Warning pattern

File "option.opa", line 3, characters 27‐137, (3:27‐9:1 | 73‐183)

Incomplete pattern matching: case {cherry} is missing

Error: Fatal warning: 'pattern'

In this example Opa is performing exhaustiveness checking. The compiler checks
that all the cases that make up fruit are being dealt with in the match expression.
Being able to check that no case is left un-handled is important to the solution of
the billion-dollar mistake. In the next section we will want to see that a value is
either of one type or another and that we handle both cases.

To summarize, sum types, are a way that we can describe things that take on just
one of many possible values at runtime.

Option types

Now that we have a feel for sum types, we can introduce the idea of an option type.
You can think of an option type as a kind of wrapper or label that surrounds
another type. The option type lets us distinguish between valid examples of the
value and something like "no value" or "no answer". This is useful whenever the
result of performing some operation may be unknown, impossible, or could fail. In
programming, this is really common.

A simple example of this is if we want to model integer division. As we learned in

©Manning Publications Co. We welcome reader comments about anything in t

34

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

school, dividing by zero is not defined when the denominator is zero. The usual
approach to handling this is to signal an exception or error at runtime when we
divide by zero.

function div(int n, int d) {

 n / d

}

div(1, 0) // Error: Exception : Division by zero

If we examine the type of our div function, we’ll see that it is inferred as int, int
→ int, that is it maps two int values to an int value. But I would argue that we’re
omitting information from our function. As we just noted, division by zero is
undefined. We can model this using an option type. Most of the time when we
divide two int values we get another int value, but when the denominator is zero,
then there’s no answer.

function div(int n, int d) {

 if(d == 0) {

 {none}

 } else {

 some(n / d)

 }

}

If we now look at the type inferred for this function, we see that it is pretty
interesting.

div : int, int ‐> {none} / {some : int}

The {none} / {some : int} notation means that this function is returning a sum
type. One of the possible types is {none}, representing no value, the other option
is {some : int} — which means exactly that, the answer is going to be some
integer. This describes exactly what is happening in the division function.

When we look at many uses of null across different programming languages, we
notice that they are often just shorthand for a more nuanced concept. We can often
represent this in a type-safe way with options.

 When we look up something in a dictionary, hash, or list we sometimes
use null to mean "element not found". We should instead use an option type.

 When reading values out of strings, like JavaScript’s parseInt. We can use an
option type to represent a failed parse. Or better yet, we can use a sum type that
gives the reason for the failed parse and a position of the error.

To summarize, null references, have a pernicious influence on software. Because
nulls can be lurking inside any reference, they call into question lots of code.
Developers must carefully check to make sure that references are valid before
using them.

©Manning Publications Co. We welcome reader comments about anything in t

35

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

So in order to solve this problem, we first have to make a few changes to our
language. We remove null references from the language. To cover previous uses of
null, we introduce option types. Think of all of the standard library functions that
used to raise an exception or return a null when an element is not found. These
will be replaced with Option. Option types help because they explicitly mark return
values as "might be empty" and then the type system ensures that we handle all the
places where this could cause trouble. Option types are a specific case of a sum
type. Which is in turn a type used to model a series of mutually-exclusive values.
For example, if we’re using an `option int:

 There is no int value present
 There is an int value present and it is 1 (for example)

This feature is tremendously useful and used in languages like Rust, Scala, Swift,
Haskell, and more.

5.2.2 Solving injections

It often comes up in web programming that you must include program fragments
within other programs. Examples are JavaScript in an HTML file, or HTML in a
JavaScript string. In the latter case, you’re left with a JavaScript string containing
literal HTML syntax. While this isn’t so bad with HTML, strings containing SQL
statements or JavaScript code fraught with security risks.

Let’s illustrate the situation with a form included in a web page. Using the form
users can fill in text that they’d like to be displayed on the page.

Figure 5.1. Filling out the form to display text

The code to accomplish this can be found in Listing 5.3 . When the user clicks the
button it grabs the contents of the text field and inserts it literally in the page.

Listing 5.3. A simple input form

<html>

©Manning Publications Co. We welcome reader comments about anything in t

36

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

 <head><title>Display</title></head>

 <body>

 <script>

 function display() {

 var target = document.getElementById('target');

 var text = document.getElementById('text');

 target.innerHTML = text.value;

 }

 </script>

 <form action="#">

 <input id="text">

 <button onclick="display()">Display</button>

 </form>

 <h1 id="target"></h1>

 </body>

</html>

But there’s already a problem with this. Whatever the user types in the input field
is inserted directly into the page. As we just saw, when this is normal text,
everything’s fine. But this form also allows us to include markup like in Figure
5.2 .

Figure 5.2. Inserting HTML into the form leads to an injection

Admittedly, this is a pretty benign example of injection. But the root of the error
can be quite dangerous in the wild. The problem was we failed to make a type-
based distinction between HTML and plain text. We allowed plain text to be
treated as if it were HTML. In the context of an HTML page, what was just text
like <i>world</i>has become active when interpreted according to the rules of
HTML. When plain text is interpreted as code, like JavaScript, all sorts of bad
things can happen.

To sketch out a solution to this problem, I’ll be using a dialect of JavaScript
called TypeScript, which supports type annotations. TypeScript extends JavaScript
with type annotations. These annotations look like this.

©Manning Publications Co. We welcome reader comments about anything in t

37

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

http://www.typescriptlang.org/
https://forums.manning.com/forums/the-transparent-web

function escape(str : string) : HTML { ... }

The escape function will replace all characters in the string, str, which have
special meaning in HTML with their equivalent HTML character entity. For
example, < (open angle bracket) will be converted to < and & will be converted to &,
etc. These character entities are ignored as far as HTML is considered, but are
displayed as their human-readable equivalent. This function makes any
string safe to use as HTML.

In the code above the parts after the colons, string and HTML, are type signatures
and they label the type of the variables. The `HTML' type is the return type of
the function.

So, using this slightly different code, we can protect ourselves from this sort of
injection. You can see the properly escaped output in figure 5.3 . We are seeing
the "markup" only because it isn’t being treated as markup!

Figure 5.3. HTML inserted into the form is escaped before display

First, I’ve split out the TypeScript source into its own file so that we can run the
typescript compiler, tsc, on it. Having removed the script to its own file leaves the
HTML as it is in listing Listing 5.4 .

Listing 5.4. The HTML form alone

<html>

 <head>

 <title>Display</title>

 <script src="types.js"></script>

 </head>

 <body>

 <form action="#">

 <input id="text">

 <button onclick="display()">Display</button>

 </form>

©Manning Publications Co. We welcome reader comments about anything in t

38

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

 <h1 id="target"></h1>

 </body>

</html>

The TypeScript is very close to JavaScript but it has added type annotations. We’ve
broken the form handling into three separate functions: escape, insert,
and display. The division of labor is that escape converts values of
type string into values of type HTML. The insert function accepts only HTML values
and then places them in the page. Lastly, display combines these two functions, it
first gets user input from the form and then escapes it before inserting it in the
page.

Listing 5.5. Re-written code including type signatures

class HTML { ❶

 html: string;

 constructor(html : string) {

 this.html = html;

 }

}

function escape(str : string) : HTML { ❷

 var escaped = str

 .replace(/&/g, "&")

 .replace(/</g, "<")

 .replace(/>/g, ">")

 .replace(/"/g, """)

 .replace(/'/g, "'")

 return new HTML(escaped); ❸

}

function insert(html : HTML) { ❹

 var target = document.getElementById('target');

 target.innerHTML = html.html; ❺

}

function display() {

 var text = document.getElementsByTagName('input')[0];

 insert(escape(text.value)); ❻

}

❶ We first define a new class (type) for HTML values. This will act as a wrapper around a string value

that indicates that it has been properly escaped. Put another way, that it is valid HTML.

❷ The escape function is the only way that we provide to create HTML values. Since everything is

going through the same gateway, we’ll know that any HTML values that we encounter will have been

escaped.

❸ Here we return the value after it has been escaped.

❹ The insert function puts valid HTML values into the page. The type of its argument is HTML.

❺ Here we "unwrap" the HTML value and get the underlying string that it contains.

©Manning Publications Co. We welcome reader comments about anything in t

39

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

❻ Here we escape and then insert the value from the input form. If we forget to call escape on the input

value, we’ll get a type error.

If we alter the last line to read:

insert(text.value); ❶

❶ escape is omitted

We will receive the following error when we try to compile the code:

types.ts(25,3): error TS2082: Supplied parameters do not match any

signature of call target:

 Type String is missing property html from type HTML.

types.ts(25,3): error TS2087: Could not select overload for call

expression.

Which, amid some other things, is pretty clearly pointing out that we’ve got the
call wrong. The insert function will only accept HTML values, but we’re trying to
supply it a string.

Another error is double-escaping. This wouldn’t crop up in actual code as blatantly
as I’ll show it here. The error may be hidden in different parts of the codebase that
are well separated. But through some chain of calls what we effectively end up
doing is this:

escape(escape("Hello, <i>world!</i>"));

And again the compiler catches us:

types.ts(28,1): error TS2081: Supplied parameters do not match any

signature of call target.

types.ts(28,1): error TS2087: Could not select overload for call

expression.

Now this escaping is something that we could do in any language, typed or not.
What types have bought us here is that they provide a way to "label" values
according to what they mean in our application. Once we can tell the difference
between values — even if they are both the same underlying type — we can
enforce rules about how to work with them. The type-based solution to injections is
doing just this. We track when values have been properly escaped and limit display
functions to only work with "safe" values.

5.3 How types work

In “Collections of Values”, it was perfectly clear what I was getting at with my
simple classifications. The bins of values grouped all things that shared some
property. What’s ultimately important for us as programmers is what we
can do with these values. So that property for the Int means "I can perform all the

©Manning Publications Co. We welcome reader comments about anything in t

40

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

arithmetic operations on this". For strings, we might consider that to be "things that
I can substring, concat, upper-case, lower-case, etc."

We’ve thus hit upon the idea of membership, what it means to be a member of
some group. The mathematical concept here is a set, and the programming
language idea is a type. We can identify things that are members of a set or that
are inhabitants of a type. Mostly though, we’ll just talk about something like the
number 3 as having a type of Int.

The rough idea of what a type system is then, is a way to classify variables and
expressions in a program. These types then all have to mesh together so that no
type rules are violated (e.g. addition only works with two integers). If we more
carefully formulate this idea, we arrive at a nicer definition for what a type system
is.

5.3.1 A definition of "type system"

The definition that I found is heavy, but I think it makes a lot of sense once you
unpack it.

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they
compute. — Pierce (TAPL)

This captures an important idea about what a type system does and is for. A type
system is syntactic which means it is just reading your source code. Everything that
the type system learns, it learns without running your program. This is important in
two ways.

The first is that some things we’d like to know before we ever run a program. Like,
"are there any obvious flaws that I can quickly fix?" There’s a real software
engineering benefit to a type system. It acts as a pervasive suite of tests where
failing them means that the program won’t compile. This prevents problems really
early in the software development cycle with only a little extra effort.

The second is the nature of the things that type systems look for. If we run a
program and nothing bad happens we may not have learned very much. Had we run
it a minute longer, maybe we would have found a new bug. Maybe the code path
that we took skipped over has some bad behavior. Type checking always examines
all the code as written. This means that it can catch bugs even in sections of the
code that rarely run.

Here’s an example where "checking all the code" comes into play. In Ruby I can
write an expression that decides on a greeting.

def prepare_greeting(name)

 greeting = if true

 "Hello, "

 else

©Manning Publications Co. We welcome reader comments about anything in t

41

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

 5

 end

 greeting + name

end

It’s silly because it is that it is clear to us programmers that we’re never going to
run the else branch. In real code, perhaps the true condition wouldn’t be so clear,
or perhaps it looked more like this:

def prepare_greeting(name)

 greeting = if false_on_leap_days_that_are_also_tuesdays

 # ...

end

Now that’s more trouble! But if we put on our pointy philosopher hats and ask
"what sort of value does greeting represent?" That’s more interesting. If the
true/false status of the if expression could go either way, that means the type
of greeting is sometimes a string and sometimes a number. But that’s big trouble
because + (plus) only works with two strings 2. The point is that we’ll only hit this
problem when the test in the if statement happens to be false. In some code, that
could be a rare occurrence.

Let’s do the same set up, but with static types.

prepareGreeting name =

 let greeting = if True

 then "Hello, "

 else 5

 in greeting ++ name

We still have True for the test in the boolean expression; the else clause is dead
code, it’ll never run. But when we try and compile this we get an error that
essentially says: "The expected type was String but the actual type was Int." This is
suggestive of lots of possible fixes, but the point here is that we have to make the
types agree for this to be a valid program.

In practice, I find this to be (in general) a good thing. The reason is for
maintenance. Code that’s inert today may not be in the future. It is easy to make
innocuous changes that will then introduce bugs.

5.3.2 How a type system is implemented

If all the talk about types seems hard to ground the way that type checking is
implemented is not that complex but we first have to understand a little about how

©Manning Publications Co. We welcome reader comments about anything in t

42

2 In Ruby, + is a method that’s defined on both strings and numbers. The catch is that Ruby won’t coerce a string into a number. This
means that the expression 5 + "Chris" will fail only because Ruby can’t figure out a way to make "Chris" into a number. We could
more clearly see the error if I had written the code: greeting.concat(name). That expression would fail with NoMethodError:
undefined method `concat 'for 5:Fixnum

https://forums.manning.com/forums/the-transparent-web

languages are compiled.

Parsers and compilers are a big juicy fascinating topic, but they are also one that
goes a little beyond the scope of this book. For readers that are really interested in
knowing more about parsing and languages, there are several books listed in the
references that would be good to check out.

My discussion here should just give you a feel for what’s going on when a program
is type checked. We start with a short snippet of a made up language that supports
static types and type inference.

var x = 5

func add(a, b) {

 return a + b

}

add(1, x)

The first stop in type checking, is shared by pretty much any programming
language. The text of the program is first lexed, or converted into a stream
of tokens — which are placeholders for significant syntactical structures. This
phase of compilation removes unnecessary detail like the exact amount of
whitespace or, in some cases comments. When this phase is complete the program
will "look" like this. I’m scare-quoting that because this phase does not result in
actual program text, this would be implemented as a list of tokens internally. I’ll
represent this as somewhat similar to the source text, but in reality this should be
thought of as a stream of tokens.

VAR NAME("x") ASSIGN INT("5")

FUNCTION_DEF NAME("add") LPAREN NAME("a") COMMA NAME("b") LBRACKET

RETURN NAME("a") PLUS NAME("b")

RBRACKET

NAME("add") LPAREN INT("1") COMMA NAME("x") RPAREN

Next, the truly interesting work begins. This is where the parser converts this
unstructured input into an abstract syntax tree (AST). Depending on the exact
working of the compiler, there may be other phases before or after this point. For
the most part though, the above stream of tokens is converted into a tree that
captures the semantic structure of the program. This looks something like this can
be seen in Figure 5.4 .

©Manning Publications Co. We welcome reader comments about anything in t

43

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
oth

https://forums.manning.com/forums/the-transparent-web

Figure 5.4. The parser constructs an Abstract Syntax Tree from the tokens

This AST is illustrative of a whole slew of subtle variations, depending on what we
want to accomplish with the language. The next phase is when the type checker
analyzes this AST and ornaments it with type information. In Figure 5.5 we can see
how types have been added to the AST.

©Manning Publications Co. We welcome reader comments about anything in t

44

©Manning Publications Co.

https://forums.manning.com/forums/the-transparent-web

Figure 5.5. After the type checker analyzes the AST

The rough idea is that we walk through the tree and look for things that impose
constraints on the type of values, we then "bubble up" these constraints and look
for situations where there’s a mismatch. There’s one last wrinkle in the process of
type checking that we’ll need. I’ve introduced the idea of a "type environment" to
the diagram. This is a mapping from names to types. Entries are added to the
environment when we do things like define a var or function. Let’s now start with
the leftmost, deepest part of the tree.

We first encounter var x (i.e. NAME("x")) at the start of the program. Initially we
don’t know what type this variable has because this is the first we’ve seen of x and
the type environment is empty. At this point we are not able to assign a type
to x and so we continue checking, treating x as having an unconstrained type. Next
we examine the other branch of the assignment and find the literal int 5. We know
that this has a type of int (we know this from just looking at it). Assignment has the
side effect of adding new types to the type environment, since assignment means
that x is receiving the value of the right hand side, we know that their types must be
the same. Thus we enter x : int into the top level type environment. The overall

©Manning Publications Co. We welcome reader comments about anything in t

45

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and

https://forums.manning.com/forums/the-transparent-web

type of this expression is void since assignment doesn’t return a value.

Next we move into the function definition for add. Like variable assignment,
function definitions enter a new entry into the typing environment. Here we’ll
initially enter an unknown type for the add function. As a slight twist on variable
assignment, function definitions also create their own type environment, which you
can see at the bottom of the diagram. Next we inspect the parameters to the
function. Much like variable assignments, parameters create new entries in the type
environment, here a and b initially have unknown types. We then proceed into the
body of the function. The deepest part is the + (plus) operation. Plus requires its
two operands to be int (again this can be taken as a thing we just know, like "5"
having type int). We thus infer that a and b both have type int within the add type
environment. This also allows us to see that the return type of add is int. So we can
then fill in the entry for add in the top level type environment.

Lastly, we move on to the function call. Here we can make use of our type
environment to set a constraint for the add function call to be int, int → int. We
immediately see that the first argument is literally an int, next we encounter x, we
look this up in the type environment and find that it too is int. The arguments for
the call to add are thus int, int. The overall value of the expression is then
also int. And that concludes the program.

Our analysis proceeded really nicely and every type lined up exactly. But we can
hit snags along the way. We could find that types are constrained too much. In one
place a type could be treated as an int but in another place it is treated as a bool.
This is a type error. Or we could find that types are not constrained enough, this
may or may not be an error. There could be multiple valid ways the types are being
used in which case the compiler might just pick one or it could also require the
programmer to specify which use they mean. Another possibility for
underconstrained types is polymorphism. I didn’t talk about this in this example,
but you can think of things like a list of any type. We may only care about
operations on the structure of the list and so we leave the type of the list elements
to be purposefully vague.

I’ve skipped over some details here, but this gives you a feel for how type checking
with inference works. We look for constraints in the program and try to find type
assignments which satisfy them.

5.3.3 An example of a hard-to-spot bug

I found this example in a talk titled Strong Typing given back in 1999 for a Perl
meetup. It is an excellent example of the kinds of problems that can be found with
a type system. The example is written in Standard ML, a functional programming
language related to Opa. Opa will be covered later in this book. I’m going to
describe this sorting program as if it worked correctly. But as a fair warning to you
there’s a subtle bug in the sort function. I will fully explain it by the end. The

©Manning Publications Co. We welcome reader comments about anything in t

46

©Manni
www.allitebooks.com

http://perl.plover.com/yak/typing/notes.html
https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

whole point of this section is that the bug is hard to find.

The example is a short program to do a merge sort. Merge sort is a way of sorting a
list where you first recursively divide the list in half. When you have appropriately
small lists, say a single element, you then recombine those lists be recursively
drawing from the smaller of the two sublists. Here’s a picture of how the algorithm
works.

Figure 5.6. A schematic of how the merge sort algorithm works

The place to start is with the subdividing. Here’s a function called split that
recursively splits up a list into two smaller lists. If you’ve never seen ML syntax
before, here are some things to spot. Functions are defined as a series of
definitions. This should look somewhat familiar from math class back in the day.
Here is a definition of the Fibonacci numbers, the pattern you get when you always
add the previous to terms in the series together (1, 1, 2, 3, 5, 8,…).

f(1) = 1

f(2) = 1

f(n) = f(n‐1) + f(n‐2)

Likewise in the split function defined in ML, we write the function by giving
examples of each of the cases that we’re interested in.

©Manning Publications Co. We welcome reader comments about anything in t

47

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

Listing 5.6. The split function of the merge sort algorithm

fun split [] = ([], []) ❶

 | split [h] = ([h], []) ❷

 | split (x::y::t) = let val (s1, s2) = split t ❸

 in (x::s1, y::s2) ❹

 end

❶ When the list that we’re given is empty, there’s nothing much to do. We just return a pair of empty

lists.

❷ When there’s a single element in the list, put that element in the first of the two sublists that we are

returning. Since we don’t have any other elements to use, the second sublist is empty.

❸ This is the most general case. We have a list with at least two elements in it. The

syntax x::y::t denotes a pattern match which is taking apart a list. This is called the cons operator.

We name these elements x and y, we also name t which is the "rest" of the list (or the tail). Next, we

recursively call split on the rest of the list and name the two sublists that we get from that as s1 and

s2.

❹ We now have to assemble all these pieces together. We take the first element, x and put it on the

front of the first sublist, s1. Next, we take the second element, y and put it on the front of the second

sublist s2. This becomes the return value of our function.

When dealing with recursive function definitions like this, it sometimes helps to
think of the base cases. In listing 5.6, , if we had exactly two elements in the list,
(3) would mean that split t would return two empty lists, because of (1). Then in
(4) that means that we’d be prepending x and y onto two empty lists, which would
yield two one-element lists: ([x], [y]) and we’d be done.

Because this is a chapter all about types, it is important to point out what type this
function has. In ML, the type system is able to infer types from how we use them
in the bodies of our functions. This is a neat trick because it saves us from having
to write type signatures in many places. Anyway, the type signature that split has
is:

'a list ‐> a list * a list'

This says that it takes a list of any type and returns a pair of lists of any type.
The 'a' syntax means that this is a type variable. This is roughly equivalent to the
idea of generics in Java, where it would be written like List<A>. The * part above,
that looks like we’re multiplying two generic lists together is what’s called a
product type. This is a pair, or tuple. The intuition is that you have two types put
together and you can think of the overall type as being all the possible values of the
first member of the pair times all the possible values of the second member. If that
seems a little opaque, don’t worry about it. Just know that the overall type means
we’re going from a list to a pair of lists and the contents of those lists can be any
type (e.g. int).

©Manning Publications Co. We welcome reader comments about anything in t

48

htps://forums.manning.com/forums/the-transparent-web
Licensed to Megan Lloyd <m_lealloyd@openmailbox.org>

https://forums.manning.com/forums/the-transparent-web

After we split our lists, we need to merge them back together, sorting as we go.
This function is actually going to be pretty similar to split except, well, in reverse.
The idea is that we’ll be given a pair of lists as input and the job of merge is to
combine them together. We sort the lists by finding the lesser of the two elements
on the front of the lists and then put that element at the front of the list. We then
take the rest of the remaining lists and merge that together.

Listing 5.7. The merge function of the merge sort algorithm

fun merge ([], x) = x:int list ❶

 | merge (x, []) = x ❷

 | merge (h1::t1, h2::t2) = ❸

 if h1 < h2 then h1::merge(t1, h2::t2) ❹

 else h2::merge(h1::t1, t2) ❺

❶ Again we match on patterns to define the function. If the first list is empty then the result is the second

list. Though it is uncommon, here we do have have to give the type checker a hint here about what

type we expect. We ask the type checker to assume that x is a list of int.

❷ Symmetrically with the first case, if the second list is empty, then the result is the first list.

❸ In this case we have two lists. We pull the respective first elements from each list. We name the

first h1 and the second one h2 ("head one" and "head two").

❹ Now we do our first ever comparison! We check to see which of h1 or h2 is smaller. If h1 is smaller, it

is going to go on the front of the merged list that we’re building. We recursively call merge with the

rest of the first list t1 and the entire second list h2::t2 (notice how "pulling a list apart" looks just like

putting it back together? That’s pattern matching).

❺ In the case that h2 is smaller (or equal) we do the reverse. We put h2 on the front of the recursively-

merged list.

Again, to understand recursive functions like these, think of base cases and, what I
think of as, the destination. Here the destination is that we want to build a list
of int. In the first two cases we just are given a list and we don’t really have
anything we can do but leave it untouched. In the last case we have four pieces that
we’ve pattern matched: h1, t1, h2 and t2. We have to use them all because if we
omitted one our merge function would drop elements (really bad!). Knowing that
we want to put the overall list in order helps here. We reduce this problem to
picking which of h1 and h2 is the smaller and then putting it first. By the nature of
recursive functions, we rely on the fact that calling merge with the "rest of the
pieces" will do the right thing.

To convince ourselves that merge works, think of a base case of merge where we
just have two elements. One of them will be chosen as the smaller and then merge
will be called with an empty list and a one-element list. This in turn will equal that
one-element list. That means it has ordered our two-element list.

The type that’s inferred for this function is more specific than split was.

©Manning Publications Co. We welcome reader comments about anything in t

49

https://forums.manning.com/forums/the-transparent-web

int list * int list ‐> int list

In merge we actually need to inspect the contents of the list we are given. Namely,
we compare two list elements with < (less than). The less than function works
on int and so the type checker has inferred that the contents of the two lists must
be int. Since we are building a list with these elements using the list concatenation
function, ::(sometimes pronounced "cons"), which has a type ’a → 'a list → a
list, the return type of the function is int list.

The last function that we’ll look at is the one that puts split and merge together to
actually sort a list. We’ll write a second version of this function in just a bit, so
we’ll call this one sort_1. sort_1 works as a kind of control structure which calls
the helper functions.

Listing 5.8. The sort_1 function of the merge sort algorithm

fun sort_1 [] = [] ❶

 | sort_1 x = let val (p, q) = split x ❷

 in merge (sort_1 p, sort_1 q) ❸

 end

❶ An empty list is considered to be sorted.

❷ For any other list, x, we first split the list into two sublists, p and q.

❸ We recursively sort the two sublists and then merge them together.

The basic form of this is correct, but as I mentioned earlier, there’s a bug in this
function. The smoking gun is the type signature. We would expect the type
signature of this function to be a list of int to a list of int.

Listing 5.9. We would expect this type signature

int list ‐> int list

But the type signature that we actually get is this.

Listing 5.10. The inferred type signature for sort_1

'a list ‐> int list

This is a bit confusing and it hints at the bug. This type signature is saying that we
can give the sort_1 function a list of anything and it can somehow give us back a
list ofint. But the input shouldn’t be totally unconstrained like that. In
the merge function, we’re using the less than operator on the input list. The less
than operator is only defined for numbers, it wouldn’t work if the input list were a
list of strings. The only way for the type checker to not see that we’re going to
use < on the elements of the list is if it never gets there. And if we never get to that

©Manning Publications Co. We welcome reader comments about anything in t

50

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

part of the program (in merge) that means we must go into an infinite loop.

Sure enough, when we load this program into an ML interpreter (I’m using SMLNJ
v110.77), we can see that we go into an infinite loop whenever we try to use sort
with anything other than an empty list.

‐ sort_1 [1, 2, 3];

Interrupt

The interrupt is when I hit Ctrl-C to halt the program. The problem with this sort
function is that it doesn’t cover all the cases that can come up, namely we have to
say what happens when sort_1 is given single element list. When that happens, we
just return the list because it is already sorted. The actual infinite looping stems
from when we recursively call sort_1 on one of the two split sublists. One list will
be the empty list, but the other will be a single element list that’s then passed to
sort_1 — which is what was passed to sort_1 in the first place, hence an infinite
loop.

Listing 5.11. Tracing through a call to sort_1

sort_1 [x] ❶

...

split_1 [x] = ([x], []) ❷

...

sort_1 [x] ❸

❶ We call sort with a single element list.

❷ This matches the x case in the definition of sort, so split gets called.

❸ This leads to sort being called again on a single element list, and thus no progress was made in this

sublist. It’ll loop forever like this.

The fix is straightforward. We just say that a single element list is already sorted.

Listing 5.12. The final and corrected sort function, sort_2, is this:

fun sort_2 [] = []

 | sort_2 [x] = [x] ❶

 | sort_2 x = let val (p, q) = split x

 in merge (sort_2 p, sort_2 q)

 end

❶ We added this line which says that a single element list is already sorted.

So we’ve just seen that a type system can catch hard to spot bugs before we’ve
even run the code! In this case we noticed that the type of the function didn’t make
sense and that in turn pointed to incorrect run-time behavior.

©Manning Publications Co. We welcome reader comments about anything in t

51

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/the-transparent-web

https://forums.manning.com/forums/the-transparent-web

5.4 Summary

This introduction has just scratched the surface of types. The rest of this book will
deal with languages and features which make heavy use of types for a variety of
reasons. Besides looking for bugs, types are used to demarcate server-side and
client-side code, to protect SQL and JavaScript from code injections, and to model
time-varying values. We’ll see more of these specific uses in later chapters. What
we’ve seen here will help to make those uses much clearer.

In this chapter we covered a few big ideas.

 Types can be thought of as categorizing expressions within a program. We can
then check that these categorizations are consistent.

 We saw that types can help in solving real-world problems like code injections
and null-pointer errors.

 We saw how type checking and type inference work to analyze a program.
 We saw an example of catching an infinite loop before we even ran a program.

There is a catch to this, however. Because we are simplifying our program in order
to analyze it, we’ll always miss out on some details. The simplified model will not
capture the full range of things that the real program will encounter. We’ll always
face two main problems with types:

 Types are conservative. There will always be programs which are fine but the type
system can’t see that fact, mistakenly reporting that the program has a type error.

 Programs that successfully type check can still have bugs. Certain properties are
difficult or impossible to translate into types.

That said, types are a good bargain in software development. They catch a lot of
subtle and not-so-subtle bugs with only a minimum of overhead. In most languages
it is possible to dial up or down the amount of information carried by types until a
good compromise is found. In my own experience, it is better to have a robust type
system and strategically side-step it on occasion than to not have one at all.

©Manning Publications Co. We welcome reader comments about anything in t

52

www.allitebooks.com

https://forums.manning.com/forums/the-transparent-web
http://www.allitebooks.org

	The Transparent Web: Functional, Reactive, Isomorphic MEAP V01
	Copyright
	Welcome
	Brief contents
	Chapter 1: Advancing The Web
	1.1 Major Themes of The Functional Web
	1.1.1 Unified Stacks
	1.1.2 Functional Programming
	1.1.3 Reactive Programming

	1.2 Summary

	Chapter 2:Transparent Client-Server Programming With Opa
	2.1 Tutorial Overview
	2.1.1 Variables
	2.1.2 Functions
	2.1.3 Special syntax
	2.1.4 Records

	2.2 Re-visiting the Biking App: Opa Example
	2.2.1 Model code
	2.2.2 View code
	2.2.3 Controller code

	2.3 Summary

	Chapter 5:Understanding Static Typing
	5.1 Collections of Values
	5.2 What types can be used for
	5.2.1 Avoiding null-pointer errors
	5.2.2 Solving injections

	5.3 How types work
	5.3.2 How a type system is implemented
	5.3.3 An example of a hard-to-spot bug

	5.4 Summary

