
www.allitebooks.com

http://www.allitebooks.org

TortoiseSVN 1.7
Beginner's Guide

Perform version control in the easiest way with the
best SVN client – TortoiseSVN

Lesley Harrison

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

TortoiseSVN 1.7
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2011

Production Reference: 1311210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-44-9

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Lesley Harrison

Reviewers

Robert Dudus

Stefan Küng

Eric Poole

Acquisition Editor

Tarun Singh

Development Editor

Tarun Singh

Technical Editors

Gauri Iyer

Prashant Macha

Indexer

Hemangini Bari

Editorial Team Leader

Mithun Sehgal

Project Team Leader

Ashwin Shetty

Project Coordinator

Michelle Quadros

Proofreader

Samantha Lyon

Graphics

Nilesh Mohite

Production Coordinator

Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

About the Author

Lesley Harrison has more than ten years experience working in the world of IT. She
has served as a web developer for the local government, a systems administrator for a
multinational IT outsourcing company, and a database administrator for a British utility
company. Today, Lesley runs her own video gaming site, Myth-Games.com, and works
as a freelance web developer.

In her spare time Lesley volunteers within several Open Source projects. Away from
the computer she recently found a love for Seiken Ryu Karate, and has reached the
rank of 4th Kyu.

I would like to thank my husband, Mark, for his endless patience, and the
wonderful gesture of building a spare machine to use as a server
for testing.

I would also like to thank Stefan Küng (TortoiseSVN) and Robert Dudus, for
their eagle-eyed technical reviewing, which shaped this book into what you
see today.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Robert Dudus has been a developer for over 5 years. During this time, he has designed
and developed applications in widely varying areas such as computer video games,
bioinformatics, web design, property searches, and loans.

He has first-hand developer experience with C++, Java, C#, and technologies around them.
He considers himself a pragmatic programmer. He doesn't stand on formality and he's willing
to look at alternate or unorthodox solutions to a problem if that's what it takes.

Robert is currently employed by Inform Link Limited in London, UK, as a software
developer/analyst in the centralized development group.

Stefan Küng has been the lead developer for TortoiseSVN since the beginning. In addition
to his open source work, Stefan has held senior positions in software and hardware design
and engineering for over ten years. He holds a Master's Degree in Electrical Engineering
from the Federal Institute of Technology in Zurich, Switzerland and is fluent in both German
and English.

Eric Poole is the president and chief technology officer of RKT Technologies, Inc.,
a consulting and technical services company based in New Hampshire, USA. He has
40 years' experience in the industry, 35 year's experience as a software developer, and
31 years' experience as an independent consultant. RKT Technologies, Inc. specializes in
software development and regulatory consulting for medical devices and other regulated
industries. RKT's website can be seen at www.rkt-tech.com. Eric can be reached at
eric@rkt-tech.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Setting up TortoiseSVN 9
Choosing your TortoiseSVN version 10
Checking your operating system edition 10
Time for action – checking Windows Vista / 7's architecture 10
Time for action – checking Windows XP's architecture 11
Time for action – checking Windows Server 2003 architecture 12

Installing TortoiseSVN 14
Time for action – installing TortoiseSVN 14

Language packs and spellchecking 20
Time for action – adding new spellchecking dictionaries 21
Creating a repository 21
Time for action – creating a repository 22
Time for action – testing your repository 24
Setting up the SVNServe server 25
Time for action – setting up SVNServe 26

Simple authentication for SVNserve 28
Time for action – setting up simple authentication for SVNserve 28
Setting up an Apache + Subversion server 29
Time for action – installing VisualSVN 30
Time for action – installing Apache 32
Time for action – installing Subversion 34
Summary 37

Chapter 2: Getting Started With TortoiseSVN 39
Our case study 39
Working copies explained 40
Time for action – checking out a working copy 40

Checkout depth 43

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – using checkout depth 43
Committing changes to a repository 46

Time for action – committing changes to a repository 46
The importance of commit log messages 50
Excluding items from a commit 52

Time for action – excluding files that are already versioned 52
Time for action – temporarily excluding files from committing 53
Time for action – using the global ignore list 55

Keeping your working copy up-to-date 56
Time for action – updating your working copy 56

Using the repository browser 58
Time for action – using the repository browser 58
Summary 60

Chapter 3: Creating and Applying Patches 63
Why use patching? 63
How to create a patch 66
Time for action – creating a patch 66

Applying a patch 69
Time for action – applying a patch 69

Tracking changes with Blame 73
Time for action – using Blame to track changes 74
Time for action – using the log 77

Working with statistics 79
Time for action – viewing statistics 80
Summary 82

Chapter 4: Status Information and Conflict Management 85
File statuses 86
File locking 87
Time for action – setting the needs-lock property 88
Time for action – locking a file 90

Stealing a lock 92
Time for action – stealing a lock 93
Time for action – releasing a lock 95
Resolving conflicts 97

Scenario 1 – local edit, incoming edit 97
Scenario 2 – local edit, incoming delete 98
Scenario 3 – local delete, incoming edit 101
Scenario 4 – local delete, incoming delete 102

Summary 103

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 5: Branching and merging 105
What is a branch? 106

What is a tag? 106
Why use branching? 106

Common branch types 107
Branching on new releases 107
Branching on promotion 108
Branching per task 108
Branching components 109
A branch for each platform 109

Common branching pitfalls 110
Creating a branch 111
Time for action – creating a branch 112

Tagging and selecting revisions 114
Switching your working copy 114

Time for action – switching your working copy 115
Reverting changes 116
Time for action – reverting changes in your working copy 116
Time for action – reverting more changes 117
Merging 119
Time for action – merging one branch 120
Time for action – merging two trees 126
Undoing changes with reverse differences 128
Resolving conflicts on merging 128

Scenario 1 – Local missing, incoming edit 129
Scenario 2 – Local edit, incoming missing 129
Scenario 3 – Local delete, incoming delete 129

Tracking merges 130
Summary 131

Chapter 6: Working with Revision Logs 133
Differences in detail 133

Viewing differences between versions of a specific file in your working copy 134
Time for action – viewing differences in a working copy 134

Viewing differences between files outside your working copy 136
Time for action – viewing differences in files outside your working copy 137

Comparing folders in the repository browser 140
Working with changelists 140
Time for action – working with changelists 142

Removing a file from a changelist 144
Ignoring files on commit 144

Working with revision graphs 145

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Time for action – viewing a revision graph 145
Changing your view 151

Pruning trees 154

Summary 155

Chapter 7: Exporting and Relocating Working Copies 157
Working with a working copy 157

Exporting a working copy 159
Time for action – exporting a working copy 159

Exporting from a repository using a URL 161
Time for action – exporting from a URL 161

Removing an existing working copy from version control 163
Time for action – removing an existing working copy from version control 163

Another way to remove a working copy from version control 163
Time for action – removing a working copy from version control 164

Relocating your working copy 166
Time for action – relocating your working copy 166

Recovering from a corrupt working copy 169
Deleting a working copy 169

Working copy cleanup 169
Time for action – executing a working copy cleanup 170
Troubleshooting working copy problems 171

Folders have a red exclamation mark, despite nothing having changed 171
Certain context menus are missing from inside my working copy 172
Access denied errors 172
Changing the case of a file name doesn't work 172

Time for action – changing the case of a file name 173
My computer becomes sluggish when I right-click on a file 174

Summary 176

Chapter 8: Keyword Substitution with SubWCRev 177
Why use SubWCRev? 177
Using SubWCRev via the command line 178
Time for action – exporting a working copy 178

Command-line switches 181
Keyword substitution switches 182

Mixed revisions, modifications, and status 183
Setting a custom date format 183

Using the COM interface 184
Using SubWCRev as a pre-build event in your IDE 186
Time for action – pre-build events in Visual Studio 186
C++ applications 186

Table of Contents

[v]

Time for action – pre-build events in Visual Studio C# applications 188
Time for action – pre-build events in Visual Studio VB applications 189
Time for action – build events in Eclipse 193

Using pre-build events with other IDEs 193
Summary 194

Chapter 9: Using TortoiseSVN with Bug Tracking Systems 195
Why use bug trackers? 196
Why integrate with bug trackers? 198
Integration with Google Code 199
Time for action – using TortoiseSVN with Google Code 200
Integration with Trac 203
Time for action – integration with Trac 203
Integration with Redmine 205
Integratation with Jira 206
Time for action – Jira and TortoiseSVN integration 206
Working with other issue trackers 207

Properties for hook scripts 208
Summary 211

Chapter 10: Using SSL with TortoiseSVN 213
What are SSH and SSL? 213
Installing VisualSVN Server for Windows 214
Time for action – setting up VisualSVN Server 214

Using VisualSVN Server 216
Working with OpenSSH certificates 220

Creating your public and private key pairs 220
Time for action – creating public and private key pairs 221
Using Pageant to store connection details 226
Using pre-commit hooks 227
Time for action – using a pre-commit hook in TortoiseSVN 227
Summary 229

Appendix A: Command-line Reference 231
Getting the command-line tools 231
Subversion's components 232
Protocols supported by Subversion 232
Subversion command-line reference 232

Getting help 232
Working with working copies 233
Arguments for commands 234
Properties and statuses 234

Table of Contents

[vi]

Appendix B: Pop Quiz Answers 235
Chapter 1: Setting up TortoiseSVN 235

Pop quiz - subversion concepts 235
Chapter 2: Getting Started with TortoiseSVN 235

Pop quiz - working with TortoiseSVN 235
Chapter 3: Creating and Applying Patches 236

Pop quiz - working with TortoiseSVN 236
Chapter 4: Status Information and Conflict Management 236

Pop quiz - working with TortoiseSVN 236
Chapter 5: Branching and Merging 236

Pop quiz - working with TortoiseSVN 236
Chapter 6: Working with Revision Logs 236

Pop quiz 1 - revision graphs 236
Pop quiz 2 – working with your view 237

Chapter 7: Exporting and relocating Working Copies 237
Pop quiz - working with your working copy 237

Chapter 8: Keyword Substitution with SubWCRev 237
Pop quiz 1 - getting to grips with SubWCRev 237
Pop quiz 2 - keyword substitution switches 237

Chapter 9: Using TortoiseSVN with Bug Tracking Systems 237
Pop quiz 1 - Gurtle and Google Code 237
Pop quiz 2 - regular expressions 238

Chapter 10: Using SSH with TortoiseSVN 238
Pop quiz 1 - all about SSH 238
Pop quiz 2 - public keys and private keys 238

Index 237

Preface
TortoiseSVN is a popular and easy-to-use Subversion client for Microsoft Windows. It is
a Windows Shell extension, and is not limited to any particular IDE. TortoiseSVN is a free
software which has been released under the GNU General Public License.

This book will help you to understand and use all of the features provided by TortoiseSVN.
It will explain how to set up a Subversion server, and use TortoiseSVN for all of your source
control needs. The book will begin with simple examples of source control, and then move
on to more advanced scenarios and troubleshooting.

This book is based on the case study of a small software house called Shiny Moose Software.
The company has a small team of developers, artists, and translators working on their
software products. Some of the team are based in an office, others work from home.

Source control is important as a way to ensure that there are no conflicts or problems
caused by different team members attempting to change the same file at the same time. It
is also useful as a way of keeping track of changes made to individual files. You can see who
changed a file, when they changed it, and what changes they made. You can even rewind
time, and look at a snapshot of how a file was on a given date. TortoiseSVN is a good choice
for Shiny Moose Software because it can be used by everyone from the developers and
artists to the documentation writers.

What is Subversion?
Subversion is a version control system that solves the problem of multiple developers
working on the same project. If you're accustomed to working alone, or in fairly small
teams – just one or two people - you probably haven't encountered too many issues yet.
This book will use the example of a small software house called Shiny Moose Software.
The team has several members, and they often need to work on the same files. The team
are currently working on MooseHiragana, a flash-card game to help people learn one of
the Japanese alphabets.

Preface

[2]

The problem with sharing files
Let's imagine that Quinn, the manager at Shiny Moose Software, downloads the current
version of the file called questions.py, and adds a few questions to it. At the same time,
Mowbray notices that some of the existing flashcards are mapped incorrectly, so he also
downloads the file and makes his corrections. Quinn uploads his changes, which took several
hours to make, and then a few minutes later Mowbray uploads his version – wiping out all
the work that Quinn has done.

If Shiny Moose Software had a decent version control system in place, this sort of thing
wouldn't happen. Instead of work being lost because of two people editing the same
file, edits can be prevented, or merged, depending on the type of version control in use.

Lock-modify-unlock
Some version control systems use lock-modify-unlock as a way of preventing problems.
Under this system, Quinn would have been able to check out and lock questions.py
when he started editing it. Mowbray would not be able to check out the file until Quinn
was finished making his changes.

This system can work, but it has problems. What if Quinn forgets to upload his file, goes
home, then gets sick and has to take time off work? Mowbray will have to get the systems
administrator to unlock the file so that he can make his changes.

Also, it seems silly for Mowbray to be unable to correct a couple of mistakes at the
beginning of the file when Quinn's edits aren't touching that content. That's where
Subversion's Copy-Modify-Merge system comes in.

Copy-Modify-Merge
Under this system, which is the one that Subversion uses, Quinn and Mowbray are both able
to work on the file at the same time. When they come to commit their changes, the second
person to commit will be told that their file is out of date. They can then tell Subversion to
look at what parts of the file have been changed, and merge the changes into the version
in the repository. In the preceding example, where Quinn's and Mowbray's changes don't
overlap, this works well, and neither team member will have to worry about what the other
team member has been doing.

If Quinn and Mowbray had both edited the same part of the file, then a conflict would occur.
In this case, the second person to commit would be told about the conflict, and they'd have
to make a decision as to what they want to do – do they want to keep their changes, delete
their changes, or manually copy over their team member's changes to resolve the conflict.
Fortunately, TortoiseSVN makes it easy to see what's been going on in a file, so people can
make informed decisions when a conflict arises.

Preface

[3]

You can see a diagram of the process as follows:

Locking is possible in Subversion, and can be useful in certain circumstances, but should not
be used every time a file needs editing. No version control system is a substitute for good
communication, but used in conjunction with a well organized team it can certainly make life
a lot easier.

What this book covers
Chapter 1, Setting Up TortoiseSVN: This chapter will cover everything you need to know to
get TortoiseSVN up and running. This chapter will explain how to install TortoiseSVN, and a
Subversion server to use it with.

Chapter 2, Getting Started with TortoiseSVN: This chapter will explain the basic concepts
that you will need to understand to work with a version control system, including creating
working copies, and committing changes. You will learn how to use the repository browser,
and how to perform basic tasks with TortoiseSVN.

Chapter 3, Creating and Applying Patches: This chapter explains how to create and apply
patches, work with revision graphs, and use the Blame feature to keep track of who has
made changes to your source code, and which lines they changed.

Chapter 4, Status Information and Conflicts: This chapter explains the different file statuses
you may see when working with TortoiseSVN, and gives you tips on how to resolve the
different kinds of file and tree conflicts.

Preface

[4]

Chapter 5: Working with Revision Logs: This chapter gives some examples of how to use
revision graphs to document the development process of your application, how to change
views, and how to perform simple maintenance tasks such as pruning trees.

Chapter 6, Branching and Merging: This chapter explains what branches can be used for,
how to create a branch, how to switch your working copy, and how to merge branches and
tress. This chapter will also explain how to track merges, and how to handle any conflicts
which may arise.

Chapter 7, Exporting and Relocating Working Copies: This chapter shows you how to remove
a working copy from version control – something you would need to do if you wanted to
publish your source code on the web. You will also learn how to relocate your working
copies. This knowledge is useful in case you ever need to change your SVN URL.

Chapter 8, Keyword Substitution with SubWCRev: This chapter will show you how to use
SubWCRev to make keyword substitutions to a template file via the command-line, and
how to automate the use of SubWCRev as a pre-build event in your IDE. This is useful for
automatically changing certain text – for example the version number shown in your help
files and about page.

Chapter 9, Using TortoiseSVN with Bug Tracking Systems: This chapter will give examples of
how to use TortoiseSVN with popular bug tracking systems, including Trac, Google Projects,
Redmine, and Jira.

Chapter 10, Using SSL with TortoiseSVN: This chapter will show you how create an OpenSSH
certificate, how to create your public and private key pair, and how to use SVN+SSH with
SVNServe and TortoiseSVN. SSH provides an extra layer of security for your SVN server.

Appendix A, Command-line Reference: This provides a quick reference guide to command-
line switches for TortoiseSVN.

What you need for this book
TortoiseSVN will run on Windows 2000 SP2, Windows XP Service Pack 3, Windows Vista,
and Windows 7. Both 32 and 64 bit OSes are supported.

Support for older versions of Windows (such as Windows 98 / ME / NT4) was dropped
from TortoiseSVN in version 1.2.0, however older versions of TortoiseSVN are still available
for download from the http://tortoisesvn.net/ website. Subversion itself is
backwards-compatible, so older clients can work with newer servers; however older clients
are not able to work with working copies created by (or upgraded) using newer clients. If, for
any reason, you run multiple clients on one machine, this is something that you will need to
be aware of. This book is based on TortoiseSVN version 1.7.

Preface

[5]

SVNServe is an easy-to-deploy SVN Server. If you require more flexibility from your server,
then you may prefer to use Apache and Subversion. Both solutions have minimal system
requirements, and will support a small team of users even on older hardware.

TortoiseSVN can be used with any development environment.

Who this book is for
If you are a part of a development team that uses Subversion, and you carry out your work
on a Windows-based computer, then this book is for you. No previous experience of version
control software is required.

This book will help newcomers to source control learn everything they need to start using
TortoiseSVN for team based software development. Those who have experience with other
source-control systems will find the book useful as a primer to help them get up to speed
with Subversion and TortoiseSVN.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Preface

[6]

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Mowbray, while working on the branch, renames
hiscore.py to scoring.py and commits it to the repository."

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " The Merge dialog
will appear. "

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book
—what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[7]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Setting up TortoiseSVN

TortoiseSVN is a free and open-source Subversion client for Microsoft Windows.
It is not tied to any particular Integrated Development Environment (IDE);
instead, it is a shell extension which integrates into the Windows Explorer,
giving you easy access to Subversion repositories from within applications
you're already familiar with. This means that it can be used with any software,
and by all members of your development team.

In this chapter, you will learn how to set up TortoiseSVN, and how to set up a Subversion
server to use it with. You will also learn a little bit about the TortoiseSVN user interface,
so that you have an idea of the basic options provided by the software. Later chapters will
explore each of those options in detail.

In this chapter, we shall:

 � Install TortoiseSVN

 � Create a repository

 � Install SVNserve – a simple, easy-to-set-up Subversion server

 � Install Apache + Subversion – a more flexible Subversion server

So let's get on with it...

Setting up TortoiseSVN

[10]

Choosing your TortoiseSVN version
The first thing you need to do is choose the right version of TortoiseSVN for your computer.
TortoiseSVN is available in two versions, one for 32-bit versions of Windows, and one for
64-bit versions of Windows. The 32-bit version can be used on both 32 and 64 bit versions
of Windows, allowing you to use Subversion with older 32-bit applications on more modern
operating systems, while the 64-bit version will work on 64-bit versions of Windows only.

You may already know which version you need, in which case, you can skip this section and
go straight on to Installing TortoiseSVN. However if you aren't sure what flavor of Windows
your computer is running, follow the below instructions to identify which version you need.

Checking your operating system edition
If you aren't sure whether you're running a 64-bit or 32-bit version of Windows, you can
check quite easily. If you didn't install the operating system yourself, it's a good idea to
double check. Remember that it's possible to run a 32-bit operating system on a 64-bit
processor and it's not uncommon for department stores to sell pre-built computers with a
32-bit operating system, even if the processor powering the computer is a 64-bit one.

Time for action – checking Windows Vista / 7's architecture
To check the architecture of a Windows Vista or Windows 7 computer, follow these steps:

1.	 Click the Start button.

2.	 Click inside the Start Search box.

3.	 Type msinfo32.exe and then press the Enter key.

4.	 A System Information window should appear. Look in the right-hand pane for
System Type. If you have a 32-bit version of Windows, the System Type will be
x86-based PC. If you have a 64-bit version of Windows, the System Type will be
x64-based PC.

Chapter 1

[11]

What just happened?
You have now identified the architecture of your Windows Vista or Windows 7 computer's
operating system. Armed with this knowledge, you will be able to make the correct decision
as to which version of TortoiseSVN to download.

Time for action – checking Windows XP's architecture
To check the architecture of a Windows XP computer, follow these steps:

1. Click the Start button.

2. Click Run...

3. In the box that appears, type winmsd.exe and then hit the Enter key.

Setting up TortoiseSVN

[12]

4. A System Information window should appear. Look in the right-hand pane for
System Type. If you have a 32-bit version of Windows, the System Type will be
x86-based PC. If you have a 64-bit version of Windows, the System Type will be
x64-based PC.

What just happened?
You have now identified the architecture of your computer's XP based operating system.
You can use this knowledge to choose the correct version (or versions) of TortoiseSVN for
your computer.

Time for action – checking Windows Server 2003 architecture
To check the architecture of a Windows Server 2003 based computer, follow these steps:

1. Click the Start button.

2. Click Run.

3. In the box that appears, type sysadm.cpl and then press the Enter key.

Chapter 1

[13]

4. On the General tab of the window that appears, you should see Microsoft(R)
Windows (R) Server 2003, Enterprise Edition if you are running the 32-bit edition.
If you are running the 64-bit edition, you will see Microsoft(R) Windows (R) Server
2003 Enterprise x64 Edition.

What just happened?
You have just identified the architecture of the version of Windows that is installed on your
computer. It is important to know whether you are running a 32-bit or 64-bit operating
system so that we can install the correct version of TortoiseSVN.

If you have a 32-bit version of Windows, you should install the 32-bit version of TortoiseSVN.
If you have a 64-bit version of Windows, you can install both the 32-bit and 64-bit versions
of TortoiseSVN side-by-side. Doing this will enable TortoiseSVN's features for both 32-bit and
64-bit applications.

Setting up TortoiseSVN

[14]

Why is 32-bit called x86?

You may be wondering why 64-bit is called x64, but 32-bit is called x86.
The reason is part of the history of computing. x86 is a CPU instruction
set which is used in most modern processors. There are three subsets of
the x86 instruction set – x86-16 (16 bit), x86-32 (32-bit), and x86-64
(64-bit). The 32-bit version of the x86 instruction set was first used in the
80386 processor, and quickly became an industry standard.

The term x86 really refers to backwards compatibility with the original
8086 instruction set, but the popularity of the x86-32 subset means that
most people use the term x86 to refer to a modern 32-bit processor.

Installing TortoiseSVN
Now that you know which version of TortoiseSVN you need, it's time to download and install
it. The good news is TortoiseSVN is a small download, and has an easy-to-use installer.

Administrator privileges needed

You will need Administrator privileges to install TortoiseSVN. Most home
computers run with the default user being the admin user, but if you are
following this book at work, you may need to request assistance from
your company's IT department.

Time for action – installing TortoiseSVN
1. Go to http://www.Tortoisesvn.net, and click the Download link in the sidebar

at the left-hand side of the screen.

Chapter 1

[15]

2. If you have a 32-bit version of Windows, download the 32 Bit version of the
installer. Users of 64-bit windows can download both the 32 Bit and the 64 Bit
versions, although in most cases only the 64-bit version will be required. The 32-bit
version is needed only if you want TortoiseSVN to work with legacy applications.

Setting up TortoiseSVN

[16]

3. Once the download completes, right-click on the .msi file, select Properties,
navigate to the Digital Signatures tab and confirm that the signature is present.
It should look something like the following screenshot:

4. Next, double-click on the install file to run it.

5. Depending on the version of Windows you have, you may see a security warning
similar to the one shown in the next screenshot. If the warning appears, click Run
to dismiss it and continue with the installation.

Chapter 1

[17]

6. When the installer welcome screen appears, click Next.

7. Read the license agreement. If you agree to the terms, select I accept the terms
of the License Agreement and click Next.

www.allitebooks.com

http://www.allitebooks.org

Setting up TortoiseSVN

[18]

In most cases, the default options presented on the Custom Setup screen will be
acceptable. If you do not want the additional icons, or one of the dictionaries, you
can remove them by clicking on the down arrow next to the relevant option, and
then clicking the red cross next to Entire feature will be unavailable. I recommend
you leave Register diff/patch files checked, as this will ensure that TortoiseUDiff is
set as the default for opening .diff and .patch files. Once you are happy with the
list of features, click Next.

8. Next, click Install.

Chapter 1

[19]

Depending on the speed of your computer, the installation may take a few minutes.
When it completes, you should see a window similar to the one shown in the
following screenshot:

9. After clicking Finish, you will be prompted to reboot. Click Yes if you are ready
to reboot, or click No if you need to save some work or close some applications
before rebooting. Make sure you do reboot before using TortoiseSVN.

Setting up TortoiseSVN

[20]

What just happened?
We have just installed TortoiseSVN. Remember that if you have a 64-bit version of Windows,
you can use both the 32-bit and 64-bit versions side-by-side if required. So, if you have just
installed the 32-bit version, don't forget to install the 64-bit version. The installation process
is the same for both versions. In most cases, users of 64-bit versions of Windows will be
fine with the 64-bit version of TortoiseSVN. However, if you find that some of your older
applications lack the context menu functionality of TortoiseSVN, then it's likely that they are
32-bit applications, and therefore need the 32-bit version of TortoiseSVN to be installed.

The effects of the installation may not be obvious. The most obvious change is that you now
have some new right-click options – try right-clicking on a text file on your hard drive to see
the options that TortoiseSVN has added. We will be exploring a few of these options later on
in this chapter. The new right-click options are shown in the following screenshot:

The right-click menu is context sensitive – right-clicking a folder, for example, will give
different options to right-clicking a file. Right-clicking on a shortcut, or multiple files at
once, will also give different options. We will explore these in greater depth later.

Language packs and spellchecking
TortoiseSVN has been translated into several different languages. You can see a list of the
available language packs at: http://tortoisesvn.net/downloads.

The language packs are offered as executable installers. Simply download the ones you need,
double-click the file to execute it, and follow the on-screen instructions.

Chapter 1

[21]

TortoiseSVN also comes with a spellchecking feature, which allows you to check the spelling
of commit log messages. The installer automatically sets up the British English and American
English language files, however some people may need to spell check using different
languages –for example, Australian English differs slightly from British English and American
English.

Time for action – adding new spellchecking dictionaries
1. Download the dictionary of your choice (for example, English (Australian)) from

http://wiki.services.openoffice.org/wiki/Dictionaries.

2. Extract the .zip file, and look at the file names – they should match the standard
formatting of language_COUNTRY – for example en_AU.aff and en_AU.dic – if
there are extra characters or words in the file name, remove them.

Copy the files to the /bin/ folder inside your TortoiseSVN installation. Restart
TortoiseSVN – your dictionary should be available for use.

What just happened?
You have installed an extra dictionary for spell-checking purposes. When you install a new
language, the spell-checking functionality for that language is installed alongside it. However,
it is possible to install spell-check dictionaries separately. This is useful for people who live in
a country, who speak a dialect not covered by the standard TortoiseSVN language files.

Now, when you go to submit a changelog, spell-checking will be enabled.

If you have more than one dictionary installed, you can select the one you want to use via
the Project Language option in the Project Settings menu – we will explore those options in
more detail later.

Creating a repository
Now that you have our client installed, you can make a repository. This is where the master
copy of the code that we are working on (and any previous versions of the code) will be
stored. You can then import code into the repository. Before we make any changes to the
code, we will have to create a "working copy" of the code – this is useful because it helps
if something goes wrong and a developer breaks the "working copy", there will still be a
functional copy in the repository, which the developer can re-download.

Setting up TortoiseSVN

[22]

Time for action – creating a repository
1. Create a new folder on your C:\ drive. If you're using Windows XP, create the folder

in C:\svn_repository. Users of Windows Vista or 7 should create the folder
under their user folder.

2. Navigate to that folder, right-click inside it, and then from the TortoiseSVN menu,
select Create repository here.

3. After a couple of seconds, you should see a message saying that the repository
was successfully created, and several files and folders should appear inside the
repository folder.

Chapter 1

[23]

4. Congratulations, you've made your first repository!

What just happened?
You've just set up a repository. This is a central location where the code for your software
projects is stored. In Chapter 2, Getting Started With TortoiseSVN, you will learn how to
check out code from this repository, so that you can work on it – uploading your changes
once you are done. The copy that you have checked out is called the "Working Copy"
because it is the copy you are directly working on – not because of the status of the code!

The repository will keep track of each version, so if you make a change today and then
decide later on that the change was a bad idea, you can roll back to a version of the code
that existed before you made the undesired change.

Before we explore those features, it's a good idea to organize the repository so that it's easy
to work with in the future.

There are a couple of different ways of organizing a repository. If you're planning on having
only one project in the repository, you can get away with creating three top-level directories
to handle branches, tags, and the trunk.

Setting up TortoiseSVN

[24]

If you will be hosting more than one project within your repository, then you should create
a folder for each project, and then put the branches, tags, and trunk folders in there,
shown as follows:

MooseHirigana
 /branches
 /tags
 /trunk

Project2
 /branches

 /tags

 /trunk

Project3
 /branches

 /tags

 /trunk

The above layout is just an example. Subversion itself does not care what layout you use.
If you have a different idea for the folder layout, then you can use that. The most important
thing is that the layout is consistently enforced, and understood by all the members of
your team.

Create your chosen folder structure in a temporary folder on your hard drive, then
right-click on the folder and select TortoiseSVN | Import to import the structure to your
new repository.

Now let's set up a Subversion server so that other members of the team at Shiny Moose
Software can take advantage of the features that Subversion offers.

Time for action – testing your repository
Now that you've made your repository, it's time to check that you can access it.

1.	 Create a new folder that you will use to as your working area while you are
developing your application. You can place the folder anywhere you wish.
For ease of access, I placed it on my desktop.

2.	 Right-click inside that folder, and select SVN checkout.

3.	 Click on the ... button next to the URL of repository option, and browse to
the path of your repository.

Chapter 1

[25]

4.	 Notice that the local path is formatted like this: file:///C:/svn_repository/
MooseHiragana - the UNIX-style slashes, and the file:/// notation is important
– Windows-style slashes won't work.

5.	 Click OK.

6.	 View the working folder again; you should see a Hiragana folder inside it.
The folder icon should have a small green tick. The tick means that the copy's
status is "Normal".

Setting up the SVNServe server
To make full use of your Subversion client, you need a Subversion server. It is possible to run
the client and the server on the same machine, although for larger development teams, a
stand-alone server will offer better performance.

The simplest way to set up a Subversion server is to use SVNServe. This method generally
provides good performance too. I recommend that you use an SVNServe-based server
unless you require some of the more advanced features offered by an Apache and
Subversion-based server.

Setting up TortoiseSVN

[26]

Time for action – setting up SVNServe
1.	 Download the CollabNet Subversion Server and client for Windows from

http://www.collab.net/downloads/subversion - you will need to create
an account to do this, but don't worry, registration on CollabNet is free, and they
won't share your e-mail address with anyone.

2.	 Run the installer, and follow the on-screen instructions. As we want SVNServe only,
deselect the Apache(MOD_DAV_SVN) option and click Next.

3.	 Ensure that the Install svnserve to run as a Windows service option is checked. For
most people, the default Port is OK. Choose a Repository Path which matches the
path you created for your repositories in the previous "Time For Action". In the case
of Shiny Moose Software, the default path is correct.

Chapter 1

[27]

4.	 In most cases, the options on the Automatic Updates screen can be left at the
defaults. If you use a proxy to connect to the internet (which is unlikely, unless you
are installing the server in an office environment), then tick the relevant box, and fill
out the proxy details when prompted.

Setting up TortoiseSVN

[28]

5.	 Finally, click Finish.

What just happened?
We have just set up a simple SVNServe-based Subversion server. At the moment, we can't do
much with the server. It allows anonymous read access, but no write access. That means it's
great for letting people download our code, but not so useful for letting people submit any
changes they decide to make.

We could allow anonymous write access – but that wouldn't really be a good idea – after all,
what's to stop a competitor, or simply a mean-spirited person, from changing our code? Also,
how will you know which member of your team submitted which changes? Giving each user
of your repository a username makes it a lot easier to track who is doing what, and also to
restrict what each person can do. Instead of allowing anonymous write access, let's set up
some simple authentication, so that we can control who can and cannot edit our code.

Simple authentication for SVNserve
SVNserve has a simple authentication feature which allows you to specify who can and
cannot modify code in the repository. Let's set up that feature now.

Time for action – setting up simple authentication for SVNserve
1.	 Navigate to the /conf/ folder in your repository, and open svnserve.conf.

2.	 Paste the following lines underneath the line that says [general].

anon-access = none

auth-access = write

password-db = users

3.	 Save the file, and create a new file called users (with no extension) in the
same folder.

4.	 Drag the users file over a Notepad window to edit it, and enter the following text
(where AUSERNAME is any username and APASSWORD is the password you want
that user to have:

[users]

AUSERNAME = APASSWORD

Chapter 1

[29]

What just happened?
You have set up your Subversion server so that unauthenticated users cannot access the
server, and authenticated users can read from and write to the server.

The code we added to the config file in step 2 tells SVNserve that anonymous access is not
permitted, and that authorized users (those listed in the users file) should have write access
to the repository.

Have a go hero – adding more users and repositories
Now that you know how to make a repository, and how to set up some security, why not try
making a new repository, and using different login details for it. Imagine that Shiny Moose
Software decides to produce a second game called GermanMoose – they want to give the
same people who are working on the Hiragana game access to the GermanMoose repository,
but they also want to give a new employee, called Dieter, access to that repository so that he
can work on translations.

Create a new repository, and make a copy of the users file, with a username and password
for Dieter added to it. Check that you can access the folder with the right permissions.

Setting up an Apache + Subversion server
An Apache and Subversion-based server is a more flexible (and more complicated)
Subversion solution. It is up to you whether you choose to use this setup. If you are happy
with the functionality and performance of a SVNserve-based setup, then it would be wise
to use that instead.

An Apache and Subversion-based setup is useful if you want to allow users to browse your
repository via a web browser, or if you want to use SSL encryption for extra security. Another
benefit of Apache and Subversion is that your server can use any authentication method that
Apache supports.

If you do not need any of those features, then you may prefer SVNserve as it is easier to
deploy and manage, and also performs slightly faster in most cases. By far the easiest way to
set up an Apache server on Windows is to use VisualSVN, a combined installer for Apache,
VisualSVN, and an administrative panel.

Setting up TortoiseSVN

[30]

Time for action – installing VisualSVN
1.	 Download VisualSVN from http://www.visualsvn.com/server/download.

2.	 Run the installer, and click Next when prompted.

3.	 Set the path for your repository. Windows XP users can accept the defaults.
Windows Vista and Windows 7 users may need to change the repository folder
path to one inside their user directory.

Chapter 1

[31]

4.	 Once the installation is done, you should see a window which looks like the
following screenshot:

5.	 You can create a new repository by going to Action | Create New Repository, and
entering the name of the repository there.

Setting up TortoiseSVN

[32]

What just happened?
You have just installed VisualSVN. This offers an easy-to-use management console, and
gives you a working Subversion server right out of the box. The default setup is ready-to-
go, but there are some extra features you will want to look at if you're using the server in a
production environment.

You will find a full guide to the more advanced features of VisualSVN, such as SSL, at
http://www.visualsvn.com/server/getting-started/.

VisualSVN is the quickest and easiest way to get a working Subversion server. This method
is the best choice for most people.

For the sake of completeness, the following instructions explain how to set up Apache and
Subversion separately. If you are using VisualSVN, you can skip the rest of the sections in
this chapter.

Time for action – installing Apache
1.	 Download Apache from: http://httpd.apache.org/download.cgi. I

recommend you choose the newest stable binary installer that includes OpenSSL.
You will find the Windows installers under Other Files | Binaries | Win32.

2.	 Run the installer, and follow the on-screen instructions.

3.	 For the Server Information, enter a descriptive Network Domain and Server Name.
If you will be using Subversion on your local network, I recommend you use a
domain name ending in .local. If you want your server to be accessible over the
internet, you will need to use a valid domain.

4.	 Leave the radio button that says for All Users, on Port 80, as a Service --
Recommended selected, as shown in the following screenshot:

Chapter 1

[33]

5.	 On the next screen, choose Typical install, then click Next.

6.	 Select a path to install Apache to (for most people, the default will be fine),
then click Next.

7.	 Depending on the speed of your computer, the installation process may take
several minutes.

Setting up TortoiseSVN

[34]

8.	 To confirm that Apache is installed correctly, open your web browser and go to
http://localhost, you should see a screen containing a message saying It
works!, as follows:

What just happened?
You have successfully installed the Apache web server for Windows. The It works! page you
viewed in your web browser may not look impressive, but is a simple HTML web page!

The Apache server will be used by Subversion to allow users to access your repositories
over the network (or the internet, if you choose to set your firewall up to allow that) using
a web browser.

Time for action – installing Subversion
1.	 Download Subversion from http://subversion.tigris.org/servlets/Proj

ectDocumentList?folderID=8100 – make sure you select the correct version of
Subversion for your Apache installation.

2.	 Install Subversion, and follow the on-screen instructions.

3.	 If Subversion detected Apache, skip to step nine. If it did not, follow steps 4-8.

Chapter 1

[35]

4.	 Go to c:\Program Files\Subversion, and open the \httpd folder. Copy
mod_dav_svn.so and mod_authz_svn.so to c:\Program Files\Apache
Group\apache2\modules

5.	 Go to c:\Program Files\Subversion\bin and copy libdb44.dll and
int13_svn.dll from that folder to Apache's \bin directory.

6.	 Open Apache's httpd.conf file in Notepad, or your favorite programmer's text
editor. You can find the file at c:\Program Files\Apache Group\Apache2\
conf\

7.	 Uncomment the following two lines by removing the # sign at the beginning of
them:

#LoadModule dav_fs_module modules/mod_dav_fs.so

#LoadModule dav_module modules/mod_dav.so

By uncommenting the preceding lines, we are telling Apache to load the
mod_dav modules.

8.	 Add the following two lines to the end of the LoadModule section in http.conf:

LoadModule dav_svn_module modules/mod_dav_svn.so
LoadModule authz_svn_module modules/mod_authz_svn.so

9.	 Open httpd.conf, and at the end of the file, add the following:

<Location /svn>

DAV svn

SVNListParentPath on

SVNParentPath c:\svn_repository

AuthType Basic

AuthName "Subversion repositories"

AuthUserFile passwd

Require valid-user

</Location>

The preceding code tells apache to use Basic Auth security on the /svn folder, and
tells it where to find the file containing the usernames and passwords. Basic Auth is
a simple form of security where a user is prompted by their browser for a username
and password when they navigate to a protected folder. Basic Auth is not encrypted,
so is not suitable for protecting areas which contain sensitive data.

10.	Finally, open a command prompt (Start | Run | CMD), navigate to the c:\Program
Files\Apache Group\Apache2.2 folder, and enter:

	 bin\htpasswd	–c	passwd	USERNAME	

Setting up TortoiseSVN

[36]

Where USERNAME is the user ID you plan to use to access the Subversion server.

11.	When prompted, enter a password for that user.

12.	Now you should be able to access your Subversion server by navigating to
http://localhost/svn in your web browser – enter the username and
password when prompted:

What just happened?
You have just created a basic example of an Apache + Subversion server. From here you can
add extra security with SASL Authentication and Encryption.

An Apache + Subversion server setup is useful for developers who want more robust
authentication, and the ability to allow access to their repository via the web.

The basic authentication should be sufficient for an internal server. You can have as many
users as you want. Each employee at Shiny Moose Software has their own login details,
which makes it easy for the lead developer to see who is working on which part of the
program, and what changes they have made.

Chapter 1

[37]

Adding more users

You can add more users to the server by using the command: bin\htpasswd
passwd USERNAME. This will allow you to give each member of your team
their own user ID and password, so that you can keep track of who has changed
which file, and what changes they made.

Pop quiz – subversion concepts
1. The 32-bit version of TortoiseSNV

a. Comes on 32 floppy discs.

b. Is used on 32-bit Windows and on 64-bit Windows by 32-bit applications.

c. Is able to handle only 32 repositories at once.

2. A "working copy"

a. Is a copy of the source code that still works.

b. Is an illegal copy of your source code that is being downloaded by
software pirates.

c. Is the copy that you have checked out of the repository.

3. Apache and Subversion

a. Is used by people who prefer Apaches to Tortoises.

b. Is more flexible and offers more security options, but is harder to set up
than SVNserve.

c. Is easy to set up, but offers fewer options than SVNserve.

Summary
This chapter focused on setting up TortoiseSVN and a Subversion server for it to be
used with.

Specifically, we covered:

 � Identifying which TortoiseSVN version you need – the 32-bit version is designed for
32-bit Windows installs, and also works with 32-bit applications on 64-bit Windows
installs. The 64-bit version can only be used on 64-bit Windows installs, and with
64-bit applications.

 � Installing TortoiseSVN.

www.allitebooks.com

http://www.allitebooks.org

Setting up TortoiseSVN

[38]

 � Installing SVNserve – an easy-to-install and effective Subversion server, this runs
as a Windows Service.

 � Installing Apache and Subversion – a more sophisticated way to run a
Subversion server.

We also touched on securing your server – we will explore that in more detail in
Chapter 9, Using SSH With TortoiseSVN.

So far, you have installed TortoiseSVN and used it to create a repository. You have also
set up a server, so that each member of your team can access the repository. You may be
wondering when you will get to see TortoiseSVN in action – well, the good news is that you
don't have to wait any longer – Chapter 2, Getting Started With TortoiseSVN will give you
your first taste of using TortoiseSVN – you will learn how to use the repository browser,
check out a Working Copy, and commit any changes you made to the copy.

2
Getting Started With TortoiseSVN

In this chapter you will get your first taste of using TortoiseSVN. This chapter
will explain the concept of working copies and will cover how to check out a
working copy, how to manage copy depth, and how to commit a copy after
you have made some changes to it. This process is the nuts-and-bolts of version
management and something that you will be doing a lot during your work with
TortoiseSVN.

 In this chapter we shall:

 � Learn the benefits of using a working copy

 � Learn how to check out a working copy and how to check in after making changes

 � See some of the more common commit log messages and learn what they mean

 � Explore the repository browser

So let's get on with it...

Our case study
Shiny Moose Software is a software house with a small team of developers. They have just
started working on their first project—a Hiragana Learning Game written in Python. The lead
developer, Quinn, has created a skeleton for the project. He has written the code for the
games "splash screen".

Getting Started With TortoiseSVN

[40]

One of the other developers, Mowbray, downloaded a compressed archive containing
Quinn's code and found that on his older computer, the CPU usage spiked massively when
the code was run. He looked at the code and noticed that Quinn had made a poor choice
when deciding how to detect mouse events. The problem is simple to fix, but Mowbray
knows that communicating the changes to Quinn could be problematic.

Mowbray could make the required changes and then e-mail the updated code to Quinn,
but what if Quinn returns to his computer and resumes his work on the application before
he checks his e-mail? What if one of the other developers at Shiny Moose Software has
also decided to make some changes to the code? Keeping track of changes submitted by
several different developers would be confusing enough even with this relatively small
application. Imagine how difficult it would become when the code is measured in hundreds,
or thousands of lines, rather than just a few dozen!

This is where Subversion saves the day. Instead of copying the code from a normal shared
folder, or downloading it from the company's intranet site, Mowbray can use TortoiseSVN to
check out a working copy of the code, inform the Subversion server that is currently working
on that file, make the changes, and check it back in.

A word about our examples

The code snippets used in this book are incredibly simplistic. Please don't use
them as examples for how to write a Python application! Also, don't worry too
much about the language or IDE used in these examples. TortoiseSVN can be
used with any language and any development environment. Even team members
working on other areas, such as documentation or translation work, can take
advantage of TortoiseSVN. The most important thing is to understand the version
control principles which are being applied.

Working copies explained
The first thing Mowbray needs to do is check out a working copy. He can make changes to
this copy and then submit the changes once he is done.

Time for action – checking out a working copy
Checking out a working copy takes just a few simple steps.

1.	 Create a folder which you will use to store your working copies. For example,
C:\Projects\MooseHiragana.

2.	 Right-click inside that folder and select SVN Checkout... from the menu
that appears.

Chapter 2

[41]

3.	 Browse to your project's repository (or enter the correct network path) and click OK.

Getting Started With TortoiseSVN

[42]

4.	 A window containing a list of the files which have been checked out will appear.

5.	 If the checkout was successful, you should see a list of files in your chosen directory,
with a green tick on the icon of each file.

What just happened?
You have just checked out a working copy of the files which are stored on the repository. This
is useful because it allows you to safely test, change, and experiment with the code without
the risk of breaking the original code.

Chapter 2

[43]

Once you are happy with the changes you have made, you can check them in to the
repository, so that your fellow developers can synchronize their copies to see your changes.

Local repositories vs. remote repositories

Throughout this book, we will use remote repositories in most of our examples.
It is likely that you will, at some point, need to work with a remote repository—
either one which is accessed via the internet, or one which is part of your
company's network. In that case, all you need to do is enter the full network/
internet address of the repository in the place of the file:/// reference in
the URL of Repository box.

Checkout depth
The MooseHiragana project is quite small, so there is no issue with checking out the entire
repository. If you were working on a much larger project, which had thousands of files, then
you may prefer to save time, bandwidth and storage space by checking out only the folders
that relate to the part of the project you are working on.

Time for action – using checkout depth
1.	 Using a different folder for this working copy, right-click inside the folder, and select

SVN Checkout....

2.	 This time, in the Checkout window that appears, as well as selecting the correct
repository, choose Only file children from the Checkout Depth dropdown.

Getting Started With TortoiseSVN

[44]

3.	 You should see that when the checkout process completes, all the files that are part
of the root folder appear in your working copy, but none of the folders have been
checked out.

What just happened?
You have just checked out only the files that are in the root folder of the project on the
Subversion server. That may not seem like a particularly useful feature when the project
consists of just a few files, but imagine if there were thousands of files.

The checkout depth feature becomes useful when projects increase greatly in size. It is
also useful if your team has members that work only on specific parts of the application.
For example, an artist could check out only the images folder, or a translator could check
out only the folder containing the localization files for the language he is working in. If the
artist then needs to expand his checkout to include deeper folders, he can use the repository
browser to select the extra folders that he needs.

Chapter 2

[45]

There are a number of different checkout depth options. The following table explains what
each option means.

Checkout Depth Option Purpose

Fully recursive Checks out the entire tree, including all child folders and sub-
folders.

Immediate children, including
folders

Checks out the specified directory, including all files and child
folders, but does not populate the child folders.

Only file children Checks out the specified directory, including all files, but does
not check out any child folders.

Only this item Checks out the selected directory only. Does not populate it with
files or child folders.

Working copy This option is not shown on the checkout dialog, but it is the
default for all other dialogs which have a depth setting. This
option tells TortoiseSVN to adhere to the depth specified in the
working copy.

Exclude This option is not shown on the checkout dialog. It is used to
reduce the depth of the working copy after a folder has already
been populated.

Have a go hero – working with checkout depth
Imagine that you are an artist. You have been hired by Shiny Moose Software and asked to
redesign the logo used on the splash screen and also to create a smaller one for use in the
theme of the game.

The directory structure chosen by the developers looks like this:

The images that you will be working on are stored in the /images folder. You will not need
to work on anything inside the /images/artwork or /images/japanese folders.

Getting Started With TortoiseSVN

[46]

You need to set up your working copy. Rather than cluttering your filesystem with files that
you will never need to use, you have decided to checkout only the folder you need for your
work—the /images folder.

Using another user account (or another PC on your network), try checking out just the
contents of that folder from the repository. If you prefer, you could simply create a new
working directory using the same user. However, if you do this, you should note that any
changes made in that folder will be marked with your own user name. That may be fine
for testing TortoiseSVN's features, but is not good practice in a production environment.

Committing changes to a repository
Now that Mowbray has checked out a working copy of the MooseHiragana source code, he
can change the source code to fix the speed issue he noticed and then commit the changes
to the repository.

Time for action – committing changes to a repository
1.	 After you have finished editing the files that you want to change in the project, save

the files and open the project folder. You should see a red exclamation mark on the
icon of any files that have been changed.

Chapter 2

[47]

2.	 Right-click inside the folder and choose SVN Commit... (you can also right-click on a
specific file, if that is the only file you wish to commit).

3.	 When the Commit dialog box appears, enter a note in the Message: text box
explaining the changes you have made to the file.

Getting Started With TortoiseSVN

[48]

4.	 Notice that the Commit box offers a spell-checking feature. Words that the
spellchecker does not recognize are highlighted with a dashed red line under them.
The words shown in this example are spelled correctly (pygame is the name of a
Python library which is used in the application). The spell-check feature works just
like the spell-checking feature in Microsoft Word—to see suggestions for alternative
spellings, right-click on a highlighted word.

5.	 Since pygame is spelled correctly, instead of choosing an alternative spelling,
click Add 'pygame' to dictionary. Pygame will no longer be flagged as being
spelled incorrectly.

6.	 To see the differences between the original file and the modified one,
double-click on the filename in the Changes made section of the dialog.

Chapter 2

[49]

7.	 Click OK to commit the changes.

8.	 A dialog will appear showing which files have been modified and the status
of the commit process.

Getting Started With TortoiseSVN

[50]

What just happened?
You have successfully changed some files and committed the changes to the repository.
Now other developers will be able to download your changes and add to the work that
you have done.

You can view differences between text files or images. Images can be viewed in TortoiseIDiff,
which shows a side-by-side comparison between different versions of a file, and also allows
you to layer the different versions for a more detailed comparison:

You may be wondering what would happen if two people both decided to modify the same
file at the same time. The good news is that Subversion is equipped to handle such events
for most file types.

If the file being edited is a text file or some source code, then Subversion can cope with two
or more people editing the same file at the same time. When the users submit their changes,
Subversion will allow them to merge their changes into the new version of the file. If the
changes cannot be merged for any reason, then Subversion will flag a conflict, alerting you to
the problem so that you can resolve it and decide which changes to keep or discard.

To prevent conflicts while you are working on files—be they images, documentation, or
source code, it is possible to lock the file that you want to work on, preventing anyone else
from committing changes until you release the lock.

Locking files and managing conflicts will be discussed in Chapter 4, Status information and
Conflict management.

The importance of commit log messages
Commit log messages give you a chance to describe the changes that you are committing.
It is good practice to provide a descriptive commit log message with each change that you
commit—not just to explain to other developers what your changes do, but also to provide
a record of the work that you have done.

Chapter 2

[51]

Commit log messages could be used as the basis for patch notes which will be released to
your end users, or could be used by your manager to see how much work you have put into
a project. It's likely that your manager will be more impressed with:

Fixed "Bug #123 – client crashes when player submits high score" by
correcting the variable name to hiScore (matching naming convention).

than they would be with a blank commit, or a message such as following:

Change hiscore to hiScore.

Of course, you should comment your source code too, but a good commit log message
should explain what you changed and why you changed it.

It is possible to add some basic formatting to a commit log message using the following
formatting conventions:

Formatting convention Style

your text Bold

your text Underline

^your text^ Italic

In addition to the spell-checking feature already discussed, the commit log message box
also supports filename and function auto-completion. The auto-completion box will appear
automatically after you have typed the first three characters of the name of a file or a
function included in your commit.

You can also bring up the auto-complete box by typing one or two characters from a file or
function's name, and then pressing Control + Space:

Getting Started With TortoiseSVN

[52]

Have a go hero – committing some changes
In the previous Have a go hero section you checked out some image files. Change the
images, and then commit the changes to the repository. Leave a clear commit log message
to explain what you have done.

Excluding items from a commit
There are a couple of reasons why you may want to exclude an item from a commit. The two
main reasons are as follows:

 � Your IDE creates files which contain personal settings and data—the content of
these files may differ from developer to developer. These files do not need to be
synched, so can be excluded from the commit process permanently.

 � Your IDE has changed the timestamp on a project file—but the rest of the file has
not changed. There is no need to commit the file every time the timestamp is
changed. It makes sense to exclude the file temporarily.

In the first instance, you can set up template files which are subject to version control and
contain the basic IDE settings most people like to use for their project. The template file can
be renamed to indicate that it is a template, and individual developers can copy the template
file and give it the correct file extension.

To ensure that the actual project settings files are excluded from versioning, let's create a
rule which tells TortoiseSVN to ignore those files when performing a commit. This can be
done by creating a special setting—the svn:ignore property for the file in question.

To add a file which is not currently versioned to the ignore list, simply right-click on it and
select TortoiseSVN | Add, to ignore list | File Name. Or, if you want to ignore all files
of that type—for example, all Komodo .kpf files, select TortoiseSVN | Add to ignore
list | *.kpf.

Time for action – excluding files that are already versioned
You may be wondering how to exclude a file from versioning if you have already accidentally
committed it. Fortunately, this mistake is easy to rectify.

1.	 Hold down the Shift key and right-click on the file you want to remove from
versioning. This will bring up the extended context menu.

2.	 Select TortoiseSVN | Delete (Keep Local).

3.	 A red X icon should appear on the icon of the file you do not want to be versioned.

4.	 Now right-click on the file and select SVN Commit….

Chapter 2

[53]

5.	 Once the commit has completed, right-click on the file and select TortoiseSVN | Add
to Ignore List | filename

6.	 You should see the ignored file get a new overlay icon (similar to the following
one shown below), indicating that it has been ignored.

What just happened?
You have just removed a file from versioning without removing the local copy. After you
removed the file, you committed the changes to the Subversion server, and then told
TortoiseSVN to ignore any changes to that file in the future.

This works well for files which change frequently and are not an integral part of the project,
but what if you need to submit one or two changes to the server, but are not ready to submit
all your changes? In this case, you can choose to temporarily exclude certain files from the
check in.

Time for action – temporarily excluding files from committing
1.	 Imagine that you have been making some changes to hiragana.py, and you have

also decided to create a small Help feature, which is contained in a file called
help.py. You are ready to commit your work on the Help feature, so you right-click
on the file and select Add... to add it to the server, but you are not ready to commit
hiragana.py.

2.	 Right-click inside the Working Copy folder and select SVN Commit…

Getting Started With TortoiseSVN

[54]

3.	 In the window that appears, ensure that help.py is ticked and hiragana.py is
un-ticked in the Changes made list.

4.	 Now, when you click OK, only the changes to help.py will be submitted.

What just happened?
You have successfully submitted the changes you have made to one file without updating
other files that you have changed. This is a temporary measure and next time you go to make
a commit, the files that you ignored this time will again appear in the commit list. If you want
to ignore a certain file on every commit (for example, a file relating to your own IDE settings),
then you could move that file to the ignore-on-commit change list, so that you don't have to
worry about it in the future.

Chapter 2

[55]

Committing one file at a time

Instead of right-clicking inside the working directory folder and selecting the
files you do not wish to commit, you could simply right-click on the file that
you wish to commit, and open a commit dialogue for only that file (or the files
that you have selected—if you have selected several files by using the Shift or
Control keys and clicking on the files you want to commit). This can save you
a lot of time if you wish to commit only one or two files. This approach should
be used sparingly, however, because you run the risk of missing warnings about
unversioned files that you would otherwise see if you committed from the root
of your working copy folder.

If you want to ensure that a file type is ignored on a long term basis, then you can either
use the ignore list detailed in the previous Time for Action, or, to ignore a file type across all
Subversion projects accessed via this particular client, then you should add the file to the
client's Global Ignore list:

Time for action – using the global ignore list
1.	 Bring up the TortoiseSVN context menu and select Settings.

2.	 In the General section of the Settings - TortoiseSVN window which appears, add
the file type or filename that you wish to ignore to the end of the list in the Global
ignore patterns box (patterns are separated with a space):

Getting Started With TortoiseSVN

[56]

3.	 Click OK.

What just happened?
You have just added a file to the global ignore list—this list is used by the copy of TortoiseSVN
on your machine. Any files included in the list will be ignored when you make a commit to
any Subversion project. The global ignore list is specific to your client (TortoiseSVN is not the
only client that has a global ignore list, other clients use it too, but it is not something that is
sent to the server or shared with other members of your team), so other developers using
other computers may have different settings and may ignore different files to you.

The ignore list uses Unix-style wildcards to match filenames:

 � * : This wildcard matches any string of characters—including empty strings
and spaces

 � ? : It matches any single character

 � [...] : This matches any one of the characters contained within the brackets—for
example [A-Dprz] would match the upper case characters A, B, C, or D, and the
lower case characters p, r, and z

Keeping your working copy up-to-date
You should periodically update your working copy to make sure that you have the latest
version of any files that you are working on. This ensures that you are working with the
latest version of the source code, and are not wasting your time working on code that
has been altered or fixing bugs that have already been fixed.

If you have been following all of the Have a go hero sections, your main working copy is
most likely out-of-date right now, because your artist has changed some artwork and
committed the new art files to the server.

Time for action – updating your working copy
1.	 To update your entire working copy, right-click inside the folder, and select SVN

Update (You can update only specific files or folders by selecting them, then
right-clicking on them. Developers probably wouldn't want to do this, but it is
still a useful feature. An artist working remotely may choose to update only
specific assets to save bandwidth.):

Chapter 2

[57]

2.	 An update window will appear, listing files which were added, removed, merged,
or updated:

Getting Started With TortoiseSVN

[58]

What just happened?
You have just updated your local working copy with any changes that have been made
recently and submitted to the Subversion server. This is useful because it allows you to
stay up-to-date with the work being done by your colleagues.

Using the repository browser
There may be some cases where you do not want to check out a working copy, but would
prefer to perform actions directly on the repository. This is not advisable for routine
development work, but can be useful in some instances. The Repository Browser allows you
to explore a large project's file structure without checking out the entire project's directory
structure. It also allows you to view revision logs and blame, and download unversioned
copies of files quickly and easily.

The repository browser is intuitive and easy to use.

Time for action – using the repository browser
1.	 To access the repository browser, simply right-click anywhere in an Explorer window

and select TortoiseSVN | Repo Browser.

2.	 The Repository Browser window will appear, as shown:

Chapter 2

[59]

3.	 The Repository Browser works in the same way as Windows Explorer—you can
double-click on a folder to expand it. To get more information about a file, right-click
on the file you are interested in—you will see several options:

4.	 The Open and Open with... options allow you to open the file to view or edit its
contents. The Show log, Revision graph, and Blame... options allow you to view
information about the changes that have been made to the file.

What just happened?
You have just interacted directly with the repository. Remember that the Repository Browser
allows you to work with the files stored on the repository—not your working copy. So, if you
delete or rename a file using the Repository Browser, it will be removed from the current
version on the repository and therefore be removed from other people's working copies next
time they update them.

The Repository Browser is a useful tool for viewing the directory structure of a project
and looking at revision histories. However, you should not make a habit of altering files
by accessing the Subversion server directly. In most cases, it would be better to make the
changes on your local copy, and then check them in.

Getting Started With TortoiseSVN

[60]

Pop quiz – working with TortoiseSVN
1. The repository browser is:

a. A part of Internet Explorer that lets you browse repositories inside your
web browser.

b. Used every time you access a remote repository.

c. A tool that allows you to interact directly with the repository without
checking out a working copy.

2. The global ignore list:

a. Is a list of files/file types that the Subversion server should ignore. The list is
sent to all Subversion clients that access that Subversion project.

b. Is a list of files/file types that TortoiseSVN should ignore. The list applies to
all Subversion projects accessed by that particular client.

c. Is a feature on the Subversion website that lets you ignore other Subversion
users, in case the site is plagued by spammers and trolls.

3. For pattern matching, the global ignore list uses:

a. Regular expressions.

b. Unix-style wildcards.

c. Exact matches only.

Summary
In this chapter, you used TortoiseSVN to perform some of the more common day-to-day
version control tasks—checking out a working copy, making changes, and checking those
changes in.

Specifically, we covered:

 � Checking out a working copy

 � Using the checkout depth feature to check out only the parts of the repository
that you need to work on

 � Checking in your changes

 � Excluding items from a commit

Chapter 2

[61]

We also touched base on some of TortoiseSVN's other features, including file locking,
commit log messages, and the repository browser.

This chapter covered the ideal scenarios. In the real world of software development, things
will not always be this simple. In Chapter 3, Creating and Applying Patches, you will learn
about patching—how to create and apply patches, how to track revisions using the Blame
feature, and how to work with revision graphs.

3
Creating and Applying Patches

This chapter deals with patching—one of the most important parts of software
development. Patches are incredibly useful for open source projects because
they allow people to submit small changes to a software project without
needing write access to the repository. TortoiseSVN makes it easy to create and
apply patches, as well as keep track of who has made which changes.

In this chapter we shall:

 � Learn what patching is for

 � Learn how to create and apply a patch

 � Learn how to track changes with Blame

 � Learn about tracking contribution statistics

So let's get started...

Why use patching?
Shiny Moose Software is a fairly small software house. All of the developers have write
access to the repository. This is fine because the developers know and trust each other.
They know that their colleagues will not deliberately damage the repository, and if they
were to make a mistake and commit some bad code, Subversion will save the day by making
it possible to revert to an older, working version.

This particular access model doesn't scale very well, however. So, when Shiny Moose
Software decided to make the basic version of Moose Hiragana open source, it became
obvious that they needed some other way of handling permissions.

Creating and Applying Patches

[64]

The two most obvious options—allowing everyone to write to the repository, or requiring
that people fill out some kind of application form before getting access, wouldn't work very
well. Giving everyone, including complete strangers, write access to your repository is simply
asking for trouble. But making people pass some form of application test will deter new
contributors—very few people would bother take the time to fill out a form and apply for
access to a repository if the application process took longer than fixing the bug itself.

The solution to this problem is to use patches. Most open source projects use patches to
filter contributions from new developers. Instead of giving everyone the ability to commit
their changes straight to the repository, unknown developers are given the chance to submit
a patch file. This patch is reviewed by one of the core developers, who can reject the patch,
ask the patch author for some changes, or accept the patch and submit it to the repository.

Anyone can submit a patch. All they have to do is download the code, make the change that
they want to submit, and then use TortoiseSVN to create a patch.

What is a patch?
A patch is a simple text file which shows the differences
between the original files and the modified working copy. The
patch file tells Subversion what to do to integrate the changes
with the copy on the repository.

Once the patch has been created and submitted, a developer with rights to commit code
to the repository can check the patch and ensure that it meets the project's standards.
Typically, an acceptable patch must fix something that is generally agreed to be a bug. The
patch must follow the project's coding standards (for example, variables must be named
according to an agreed standard), and the patch must not introduce any new problems into
the code.

A flow chart showing a patch review process from an average open source project is shown
as follows:

Chapter 3

[65]

Does the patch fix a real bug?

The previous question may seem like a strange one—aren't all bugs real? Well,
sometimes users can view a design decision as a bug if it produces behavior
that they see as undesirable. For example, when the Maximize, Minimize, and
Close buttons were re-ordered in the Lucid Lynx release of Ubuntu (a popular
GNU/Linux based operating system), there was a lot of debate about the
change, and lots of bugs were filed (http://bugs.launchpad.net/
ubuntu/+source/light-themes/+bug/532633). Canonical had made
a deliberate decision to make the change, but there was a vocal group of users
and volunteer developers who were unhappy with it. If every patch that was
submitted got accepted then the developers would end up playing a game of
User Interface ping pong, racing to submit changes to get the buttons where
they felt they should be. Reviewing patches ensures that volunteers patch only
things which are accepted as bugs.

Creating and Applying Patches

[66]

How to create a patch
Let's imagine that a user, called Tineladia, has found a simple bug in MooseHiragana. Tineladia
has noticed that one of the roll-over menus on the options screen does not change when the
mouse cursor is moved over it. Tineladia happens to be a developer and knows that the bug is
simple to fix, so they decided to create a patch and submit it to Tiny Moose Software.

Time for action – creating a patch
1.	 Check out a working copy of the source code for the project that you want to patch.

2.	 Make the required change to the code.

3.	 Test the change to make sure that the modified code runs correctly.

4.	 Right-click in the working copy folder, and select TortoiseSVN... | Create patch…

Chapter 3

[67]

5.	 The Create Patch window will appear. Ensure that there is a tick in the box next to
the file (or files) which you have changed, and click OK.

6.	 When prompted for a file name, give the patch a descriptive name. If you are
submitting a patch that solves a bug report listed on a bug tracker, you may
want to include the bug number in the patch. Shiny Moose Software does not
currently have a bug tracker, so Tineladia chose a simple but descriptive file
name, menu_bug.patch.

Creating and Applying Patches

[68]

7.	 After saving the patch, TortoiseUDiff will appear. This window shows the differences
between the base source and the working copy the patch was built from. Select File
| Exit to close the window.

What just happened?
You have just created your first patch using TortoiseSVN. A patch is a simple text file that
contains some information about the directory it was created from, and a list of the
differences between the base copy and the working copy it was created from.

As well as creating a patch from a folder, you can create a patch based on a specific file.
This is useful if you have changed more than one file in the folder, but are submitting just
one specific patch at this time.

Chapter 3

[69]

Now that you have created the file, you can submit it to the developer of the software.
Most open source projects have a bug tracker which you can use to submit patches. We
will talk about bug trackers in more depth in Chapter 9, Using TortoiseSVN with Bug
Tracking Systems.

Tiny Moose Software does not have a bug tracking system set up at the moment, so
Tineladia chose to e-mail the patch to the developers. When Quinn opens the e-mail,
he can examine the patch, test it, and then—if it is good enough—apply it.

Copying the patch to clipboard

You can copy the patch into your clipboard from within TortoiseUDiff.
For a short, simple patch, this can be useful for sending details of
your code changes to a mailing list for review. It is common for
attachments to be forbidden on busy mailing lists.

Applying a patch
Quinn has tested Tineladia's patch, and decided that it meets all of the criteria required for
a patch to be applied—it fixed a genuine problem in a non-controversial way, it does not
introduce any other problems, and it works well.

Quinn decides that the patch should be incorporated into the code for the next version. So
now it is time to apply the patch.

Time for action – applying a patch
1.	 Open the patch, and look at the first line to determine where the patch was

created from.

2.	 Copy the patch file to the correct folder in your working copy.

Creating and Applying Patches

[70]

3.	 Right-click the patch file and select Apply patch…

4.	 Double-click the name of the file in the left-hand window which appears.

5.	 A TortoiseMerge window will appear showing you the difference between the
original and the patched file.

Chapter 3

[71]

6.	 If you are happy with the changes, save them.

7.	 From here, you can check on your working copy, make more changes yourself,
or apply other patches, then check on all the changes in one go.

What just happened?
You have just applied a patch. The method described in the previous Time for Action is
just one way of applying a patch. You can also apply patches without copying them to
the working copy directory. If you right-click inside the working copy directory and select
TortoiseSVN | Apply patch… when there is no patch file present, TortoiseMerge will
prompt you to select a Diff file.

Creating and Applying Patches

[72]

If you attempt to apply a patch by right-clicking on the patch file when that file is not located
inside the correct working copy directory, TortoiseMerge will prompt you to select the
correct working copy folder, as shown in the following screenshot:

Determining the folder level a patch was made from
The first line of the patch indicates the path to the file that was modified.
Imagine that the full path to the file being modified was /docs/languages/
en_uk.po

If the first line of the patch file said: Index: docs/languages/en_uk.po

It is clear that the patch was created from the root of the project. If the path in
the first line was instead languages/en_uk.po, then the patch was created
from within the languages folder.

Have a go hero – more on patching
As mentioned earlier, patches need to be applied to the same directory as the one they were
created from. If you attempt to apply a patch to a different directory, TortoiseSVN will tell
you that you are using the wrong directory, and attempt to suggest the correct one.

Chapter 3

[73]

Experiment with creating patches at different levels within the project, then applying them
to other levels to see how the first line is altered to reflect the path of the file modified, and
to see how TortoiseSVN responds.

You'll quickly find your own preferred method of applying patches, but perhaps the easiest
way is to right-click and drag the patch file (the source file) over the destination file to apply
the patch. When you release the mouse button you will be given an option to Apply Patch.

Tracking changes with Blame
If your project has a lot of contributing developers, it may become difficult to keep track of
the changes being made to the code. An easy way to see who has changed each line of code
is to use TortoiseSVN's Blame feature.

The term Blame sounds rather negative, but really the feature can be used for positive
reasons. For example, you could use the Blame feature to see which developers have been
the most productive in terms of the number of lines changed. In fact, in some localized
versions of TortoiseSVN, the terms "annotate" or "praise" are used instead of "blame".

The Blame feature allows you to see who has changed a specific line of code, and why. This
means that if you find a line of code that looks strange, you can look at the last person who
changed it, and read any commit messages they left to see if there's a reason for the line to
look the way it does. You can then make a much more educated decision as to whether to
change that line of code (if you think it is the cause of a problem or bug), or leave it as it is
and consider other routes to solving your problem.

The Blame feature is also useful for due diligence. It can be used to keep track of which
contributors changed the code. In some open source projects, some files are released under
different licenses to others. If a license is ever violated, the project will be able to identify
who changed the offending code, and inform them of the problem.

Creating and Applying Patches

[74]

Time for action – using Blame to track changes
1.	 To view Blame... for a file, right-click it and select TortoiseSVN | Blame...

2.	 The default settings will show the Blame history for all revisions to the file, ignoring
line endings and whitespace. To view only recent changes, change the From revision
number to reflect the revision you want to start tracking Blame from.

Chapter 3

[75]

3.	 The TortoiseBlame window will appear, showing who is responsible for the current
state of each line of code in the file:

Creating and Applying Patches

[76]

What just happened?
You have just viewed the blame information for a file within your project.

In the previous example shown, there are two contributors whose code is currently included
in the project file. The user with the name Etali has had the most impact on the current
status of the file, however another user, with the user name Moose, has added some
comments and altered some lines.

The screenshot shows the Blame screen as it would appear with TortoiseSVN's default
settings. That means that pink lines are lines which have recently been modified, while pale
blue lines are lines which have not been altered recently. The colors can be changed by going
to TortoiseSVN | Settings... then opening the TortoiseBlame section:

For more granular Blame information, you can also view blame for specific revisions via
the log:

Chapter 3

[77]

Time for action – using the log
1.	 Inside your working copy folder, select Tortoise SVN | Show Log...

2.	 The log messages window will appear. Right-click on the revision you are interested
in, and select Compare and blame with previous revision.

Creating and Applying Patches

[78]

3.	 The Changed Files window will show a list of files which were modified in that
revision. Right-click on the file you are interested in and click Blame revisions.

4.	 The next window will show the lines which were changed, indicate who created the
line in the previous revision, name the person responsible for modifying it in this
revision, and give the date and time of the change.

Chapter 3

[79]

5.	 If you have a small monitor, you may find that the revision window looks rather
messy—you can use the horizontal scrollbars to scroll past the revision number,
date, and time information to see the actual lines of code which were changed, or, if
you prefer, you can hold down the CTRL key while using the scroll wheel to scroll the
screen horizontally.

What just happened?
You have just tried another way of viewing Blame information. This method is useful if you
are viewing Blame and revisions for a large project. So far, the examples we have explored
with Shiny Moose Software involve only a couple of developers working on a small number
of files.

Tracking blame for individual files is fairly easy no matter how you do it, but when the
project gets bigger, being able to see the revision history at-a-glance using the TortoiseSVN
Log feature will make life a lot easier.

As well as allowing you to view Blame information, the log gives you an easy way to view
commit log messages. Commit log messages often contain information about the reason
for a change (for example, Added verification on user input - Fixes Bug #1234). If you are
ever unsure as to why the latest commit changes something in the code you are working
on, the first place you should look (after the comments in the code itself!) is the commit
log messages.

Working with statistics
Blame offers an easy way to see who is responsible for the current code in particular files
within a project, but what if you want an overview of the whole project?

TortoiseSVN makes it easy to see statistics for the number of developers working on your
project, and the number of commits they have made. You can see this data in raw numeric
form, or in chart form.

This information can be useful as a way of seeing which developers are the most active, and
of tracking their efficiency. While it's not always true that the volume of code someone is
producing is an indicator of how good a developer they are, you can use number of commits
as one form of measuring how much work is getting done. This information could help you
determine whether developer sprints or crunches are helping or hindering your team's
development efforts.

Creating and Applying Patches

[80]

Time for action – viewing statistics
1.	 Open the TortoiseSVN Log window, as you did in the previous Time for Action.

2.	 Click the Statistics button. The Statistics window will appear.

3.	 The first page shows some raw data relating to the number of authors, the number
of commits, and the number of files which have been changed.

4.	 To view the information in graph form, select the graph you want to see (Commits
by date or Commits by author) from the Graph type menu.

Chapter 3

[81]

5.	 You can change the graph used by clicking one of the buttons across the bottom of
the graph. The options are: Pie graph, Stacked line graph, Line graph, Stacked bar
graph, and Bar graph respectively.

6.	 If your project has a lot of people working on it, you may find it helpful to use
the # authors shown individually slider to specify how many authors to display
on the graph.

What just happened?
You have just viewed the statistics for your current project. The statistics give you a long term
view, or a week-by-week view, of the number of commits made on a per-author basis. You
can see raw data or a range of different charts depending on your preferences.

Creating and Applying Patches

[82]

This information is useful to help you track the most active contributors, and can help you to
see what percentage of commits are coming from which developers. You can see who your
most active contributors are, and see if there are more or fewer commits being made on
a week-to-week basis. The list shows the most recent 100 entries. If you need to see more
than that, then you can fetch the rest of the entries by clicking the Get All button.

Pop quiz – working with TortoiseSVN
1. Patch files are useful because:

a. They allow people without write access to the repository to submit source
code changes to your projects.

b. They hide the source code from people who are not developers.

c. They are the only way to fix bugs.

2. A patch file is:

a. A unified diff file that shows the change between the base copy and the
working copy.

b. A binary file that contains instructions that only Subversion can understand.

c. A modified copy of the original file, containing all the lines—both those that
have been changed, and those that are unchanged.

3. Blame is used to:

a. Track who changed each line of the source code.

b. Assign or remove points from people, depending on how many bugs
they introduce.

c. Highlight which developers are good, and which are (b)lame.

Summary
In this chapter you used TortoiseSVN to create a patch file and to apply a patch. You also
learned how to track changes with Blame, and how to work with revision graphs. Specifically,
we covered:

 � Patches—why use them, and how to create and apply them.

 � Tracking changes with Blame

 � Using the statistics page to get information about contributor activity

 � How patches are used in a real world open source project

Chapter 3

[83]

We also discussed differences. A patch file is simply a file which shows the differences
between the base copy, and your modified working copy.

Now that you are familiar with patching, it's time to learn about file statuses and conflicts.
It is inevitable that you will encounter some conflicts during your software development
career, and Chapter 4, Status Information and Conflicts, will equip you to deal with them.

4
Status Information and Conflict

Management

So far you have learned how to create a working copy, submit changes (or a
patch), and synchronize those changes with the server. The examples you have
seen were all quite simplistic—one person makes a change and checks it in, and
then another person checks out an updated copy and makes their own changes.
In the real world, things are rarely that simple. What if two people try to make
changes at the same time? This chapter will explain the different statuses that
files can have, and talk about file conflicts and how to resolve them.

 In this chapter we will:

 � Learn about the different file statuses and what they mean

 � Learn about file locking, and what it can be used for

 � The different kinds of conflicts you are likely to encounter

 � Learn about tree conflicts and file conflicts and how to resolve them

So let's get started...

Status Information and Conflict Management

[86]

File statuses
TortoiseSVN makes it easy for developers to see, at-a-glance, the current status of the files
in their working directory. If you've been following the examples in the book so far, you've
probably already seen some of the file status icons in Windows Explorer—for example, the
icons for Normal and Modified. These icons are added as an overlay icon on top of each file
in your working directory.

There are nine statuses in total, and the statuses can apply to files or directories.

The following table shows the file statuses, and the icons used to represent them:

Icon Status Name Meaning

Normal This is the status you want to see. A freshly checked out
working copy (which matches the contents of the copy on
the Subversion server) will have this status.

Modified The modified status applies if you have made a change to
that file or directory.

Added When a file is scheduled to be added to version control
(but has not yet been added), this status applies.

Locked This file status indicates that you hold a lock on a file. Locks
will be discussed in depth later in this chapter.

Ignored This file status indicates that, for the purposes of version
control, this file or folder is being ignored.

Read Only This file status indicates that the svn:needs-lock property
has been set on this file. The file will be read only until you
can get a lock on it.

Deleted This status indicates that the file is scheduled to be deleted
from version control, or that a file under version control is
missing from the folder.

Conflicted This status indicates that a conflict has occurred. Conflicts
will be discussed in depth later in this chapter.

Non-versioned This status indicates that the file or folder has been
excluded from version control

Chapter 4

[87]

Your icons may look slightly different.

The icons shown in the previous table are just examples. If you are using
the default settings for TortoiseSVN, the status overlays (the ? symbol,
crosses and exclamation marks, for example) will look the same as the ones
shown previously. The underlying icon may differ depending on the IDE or
application associated with the file that you are working with. The files shown
in the preceding table were associated with a range of applications—including
WordPad, Notepad, and Komodo Edit.

File locking
File locking is a feature of Subversion which can be used to optionally "lock" a file that you
are working on so that others cannot commit changes to it. This feature is not usually used
for source code because changes to source code files can usually be merged fairly easily. File
locking becomes useful when you are working with files that are not trivially mergeable.

Shiny Moose Software started as a fairly small team, and originally used the dreaded
"programmer art" (placeholder graphics created by a developer rather than an artist) while
working on their MooseHiragana application. Now that the application is almost finished,
Quinn has decided that the graphics created by Mowbray aren't good enough, so they've
hired an artist, Mariah, to create some better graphics.

Mariah checks out the images directory to take a look at the images created by Mowbray.
While she's working on re-creating the images, Mowbray notices that he has made a
mistake. The image file for the character "Wo" contains the graphic for the Hiragana
character "Ya", and vice-versa. He corrects those two images and commits his changes to
the repository.

Mariah, not being well versed in the ways of source control, spends the day making
attractive versions of every single character in the Hiragana alphabet, and then decides
to commit them all at once. Mariah does not realize that Mowbray has changed two of
the files, and when she tries to commit those files, a conflict arises.

Fortunately, in this case, the files are small and simple, so it won't take long for Mariah to
check out the updated files and make the required changes, but in the real world that will
not always be the case.

File locking is a way to prevent such problems from occurring. In general, it is not advisable
to lock text files or source code, but it is a good idea to lock images, video files, audio files,
and other files that are not trivially mergeable.

www.allitebooks.com

http://www.allitebooks.org

Status Information and Conflict Management

[88]

Mariah now needs to update the game's logo. She decides to lock the file before working on
it, to avoid a re-run of her previous problems. She also decides to help her fellow artists out
by setting the svn:needs-lock property of the image files so that others are warned that
the file should be locked before they work on it.

Time for action – setting the needs-lock property
1.	 Using Explorer, choose the file that you would like to set the needs-lock property

for. If you want to set needs-lock for multiple files, hold down the CTRL key while
clicking each file to select them.

2.	 Right-click on the files and go to TortoiseSVN | Properties.

3.	 The Properties dialog will appear. Click New…

Chapter 4

[89]

.

4.	 Select svn:needs-lock from the Property name: dropdown, and enter a suitable
message in the Property value: box, then click OK.

5.	 The files that you set the lock for will now have the Modified status. Commit
your changes.

Status Information and Conflict Management

[90]

6.	 If you attempt to modify one of the files which requires a lock, you will be warned
either upon opening the file, or when you attempt to save it, depending on the
application you are using. The following screenshot demonstrates the warning
message that you will receive. The following screenshot demonstrates the warning
message that you will receive:

What just happened?
You have just set the svn:needs-lock property for some image files.

If a file is set to require a lock, then it will be checked out as read-only if the person checking
out the file does not obtain a lock on the file. Many applications warn users when they try to
open a read only file for editing. Some applications, however, will not display any messages
about the status of the file until the user attempts to save it.

Whether you choose to require file locking for certain file types within your project is a
decision that you will need to make yourself, based on the policies of your team. Some
teams work well with file locking, but smaller teams may prefer to rely on other methods to
co-ordinate their work on files that are not easy to merge.

Once the needs-lock property has been set for a file, anyone who wishes to edit that file
will need to obtain a lock on it before they are permitted to edit the file. This does not mean
that only files that have the needs-lock property set can be locked. It is possible to lock
any file. However, files that have the needs-lock property set MUST be locked before they
can be edited.

Time for action – locking a file
1.	 Update your working copy (right-click on the file or folder and select SVN Update)

to ensure that you have an up-to-date copy of the file you want to work on.

2.	 Next, right-click on the file and select TortoiseSVN | Get Lock…:

Chapter 4

[91]

3.	 The Lock Files dialog will appear. Enter a message describing why you are locking the
file(s) so that your team members will know what you are working on.

Status Information and Conflict Management

[92]

What just happened?
You have just locked a file. When you have a lock on a file, other people who attempt to work
on the file will be warned that you have a lock on it.

In Subversion, locks are optional, and intended as a communication tool, rather than a core
part of Subversion's version control features. You should not rely on locking for security or
control of a file. Locking is a simple mechanism which is there as an extra layer of protection.
It is not intended to replace good team communication, and should not be used as such!

Getting a lock on a file that has needs-lock set

If a file has needs-lock set, then TortoiseSVN makes it even easier to obtain a
lock. Instead of having to look for the option on a submenu, TortoiseSVN will
show the Get Lock… option at the top level of the right-click menu, saving you
precious time!

Stealing a lock
Mariah requests a lock on the splash screen for MooseHiragana. She starts working on the
file, but it takes longer than she expected to complete the work. She goes home for the day,
planning to finish the work the following day. Unfortunately, Mariah falls ill, and has to take
some extended time off work. She hasn't released the lock, so what happens if someone
needs to work on the file while Mariah is recovering from her illness?

The good news is that it's possible to steal a lock from another user, so if someone
accidentally locks a file and forgets to release the lock, you aren't stuck in a position
where the file isn't easy to edit.

Locking is a communication aid, not security

Locking is designed to be used as a communication aid. A way to tell your
team mates "Please don't touch this, I'm working on it!". It is not designed as a
security tool. Don't lock a file and then assume that nobody will touch it while it
is locked, and then leave it locked for a long period of time. If you aren't working
on a file, release the lock. If you don't want the file to be locked, then protect it
some other way. Don't rely on locking!

Chapter 4

[93]

Time for action – stealing a lock
1.	 Select the file that is currently locked, right-click it and select Get lock….

2.	 Enter a message for your colleagues, explaining the reason for the lock, and tick the
box that says Steal the locks.

Status Information and Conflict Management

[94]

3.	 The dialog that appears will indicate that you now have a lock on the desired file.

What just happened?
You have just stolen a lock. This command is a powerful one, and should be used responsibly.
In general, you should avoid stealing locks unless all other possible routes for resolving the
lock problem have failed.

If a staff member locks a file, then leaves the office and is un-contactable, then that may be
a good reason to steal a lock so that you can correct an urgent problem.

In contrast, you probably shouldn't steal a lock on a large and complex 3D image that a
designer is working on so that you can correct a small problem—especially if the designer
has been working on boning the model all day, and you know that they're just away from
the keyboard to grab some lunch! Your minor change can wait until the artist gets back to
their desk.

Stealing a lock is not a substitute for good communication!

Remember that after you steal the lock and commit your changes, you should
release the lock. It's possible that the user you stole the lock from may then
commit their changes, overwriting the work that you have done. Your colleague
will be warned of a conflict if they try to do this, and they should use the conflict
resolution tool to find out what has happened, but it is possible that they could
decide to overwrite your changes.

Chapter 4

[95]

It is important to remember that locks are assigned to a specific working copy, rather than to
a specific user. This means that if you, as a developer, get a lock on a file while you are using
your main workstation, you will not be able to edit that file on your laptop computer. It is the
working copy that owns the lock, not the user.

Don't forget to release your lock once you have finished making changes to the file in
question.

Releasing a lock is a simple process:

Time for action – releasing a lock
1.	 To release a lock, right-click on the locked file and go to TortoiseSVN | Release lock:

Status Information and Conflict Management

[96]

2.	 The Unlock dialog will appear. If you had selected more than one file to release locks
on, then all the files will be listed here. Un-tick any files you don't want to release
the lock on (in this case, only one file is being unlocked, so no changes are required)
and then click OK.

What just happened?
You have just released a lock that you held on a file. Now that the file is no longer locked,
other users are free to work on it and make changes as they wish.

Releasing locks via folders

It's also possible to release a lock on a file (or multiple files) by right-clicking
on the folder that the files are part of, and selecting Release Lock. You will be
greeted with a list of the files within that folder that you currently have a lock
on.

If you commit a file, then by default the lock you have on that file will be released during the
commit process. This means that the only time you should need to release a lock manually
is if you decide that, for some reason, you do not wish to commit any changes that you have
made.

Chapter 4

[97]

Resolving conflicts
Locking a file is designed to prevent conflicts—if only one person is working on a file, then
nothing unexpected can happen.

However, file locking isn't used every time someone wants to work on a file. It doesn't make
sense to restrict editing of source code or plain text files in cases where most edits are on
unrelated areas of a file, and are unlikely to conflict with each other.

That said, sometimes conflicts do happen, and when they do, you need to be able to
resolve them.

This chapter will describe the three main types of file conflict. Conflicts can also arise with
branches, and this subject will be discussed in Chapter 5, Branching and Merging.

The most common file conflict is:

 � Local edit/incoming edit

While the most common tree conflicts are:

 � Local edit, incoming delete on update

 � Local delete, incoming edit on update

 � Local delete, incoming delete on update

Scenario 1 – local edit, incoming edit
This kind of file conflict occurs quite frequently if two users try to edit the same part of the
same file at once.

Let's imagine that Quinn and Mowbray both perform a check out, and then start working
on the same file, the Questions.py file. Quinn sees that Question 3 doesn't follow the
conventions used for the other questions, so he changes the question completely and then
commits the new question file with the re-worded question. Mowbray spots the same
problem, but instead of completely changing the question, he re-words the question to make
it read the same way as the other questions in the game. While he is working on that, he also
standardizes some capitalization in the files—ensuring that all characters are written in the
same case throughout. He then attempts to commit his changes.

When Mowbray attempts to make his commit, he will be warned that there is a conflict. SVN
will create a file conflict, inserting conflict markers into the question file, and creating a .rej
file for the files that are in conflict.

Status Information and Conflict Management

[98]

At this point, Mowbray has three choices. He could:

1. Scrap his own changes, and accept the changes that Quinn made: This is the
easiest option. All he has to do is revert his own changes and update his working
copy.

2. Keep his own changes, ignoring the changes Quinn made: This will update the
Questions.py file so that it matches what Mowbray has done, destroying any
changes that Quinn made to the file.

3. Manually merge the changes: This requires some manual editing of the file which is
in conflict. In the previous example, Mowbray may decide that Quinn's modification
of Question 3 is a good idea, and decide to use it, but that the work that he did on
standardizing the case of the Romaji versions of the characters is too important to
lose. So he would merge those changes into one file, and then commit that file.

Exactly how you handle this kind of conflict in your own software project is up to you. Option
A is the easiest and fastest way to handle a conflict, but that does not mean it is the best
way. Your colleagues probably won't be impressed if you always trash their own changes
without giving a second thought to the work that they have put in!

If you decide to go with Option C, then you should update your working copy to make sure
you have the most up-to-date version of all the files you are working on. Fix any other minor
conflicts you may encounter, merge the changes that you think need merging, and then
commit the new file.

File locking can prevent this kind of conflict from occurring, however, it's important not
to over-use file locking. If you think that it's likely that someone else will attempt to edit
the same part of the file that you are working on, or that the file you are working on is not
trivially mergeable, then it is a good idea to use file locking—but be aware that if you lock a
file, then you are preventing other people from modifying it, so don't hold on to locks for too
long. You will achieve nothing but irritating your colleagues if you do!

Scenario 2 – local edit, incoming delete
Quinn has decided that MooseHiragana is going to cover more than just Hiragana. He
wants to add a second level to the game which will teach Katakana—the alphabet that the
Japanese use to write words which are not from their own language.

To facilitate this change, Quinn decides to tidy up the project's file structure. He decides that
instead of storing the flash-card files for both alphabets in /images/japanese, the project
should use a different folder for each alphabet.

Chapter 4

[99]

He moves all of the Hiragana flash-cards to /images/japanese/hiragana, and creates
a second folder, /images/japanese/katakana for the Katakana flash cards. He then
commits his changes to the repository.

While Quinn was making this change, Mariah noticed that the graphic to represent the
Hiragana character 'Sa' was incorrect. She edits the character and saves her changes. When
she commits the changes to the repository, she is informed that there is a conflict—Sa.bmp
no longer exists in the /images/Japanese folder, so Mariah needs to decide what she
should do.

In this case, Mariah could revert Quinn's changes (Which would be a bad idea in this case),
or she could find out where Sa.bmp has been moved to, and move her version of the file to
the correct place, then commit her changes.

Status Information and Conflict Management

[100]

Before Mariah can make a decision about what to do with her files, she clicks Show log... to
find out why the conflict has occurred. Quinn may not have bothered to send a memo round
the office, or actually speak to his artists to tell them about the structure change, but he has
left a fairly helpful note in the commit logs. Mariah sees the note, and now understands that
all she has to do is move her updated graphic into the new /images/Japanese/hiragana
folder and then commit her changes.

Mariah can then mark the conflict as resolved by right-clicking on the conflicted folder and
selecting TortoiseSVN | Resolved.... This will bring up the Resolve dialog box. Mariah just
has to make sure that the files which are no longer in conflict are selected, and click OK.
From then on, Updates and Commits can continue as normal.

Chapter 4

[101]

Scenario 3 – local delete, incoming edit
While Mariah has been working on MooseHiragana's graphics, Mowbray has been focusing
on the client-server code, so that people can submit their high scores to a leaderboard and
play competitive games. Mowbray created two servers using different network libraries and
ran some performance tests before deciding which library to use.

When Quinn saw the results of the performance tests, he quickly decided that the server
library used in the file server2.py was better than server1.py. He deletes server1.py,
and renames server2.py to server.py. He then commits his changes.

While Quinn was doing this, Mowbray spotted a bug in his server code. He quickly fixes the
bug, and committed his changes. A conflict arises because Quinn is trying to tell Subversion
to delete a file that has an incoming edit.

As described in the previous example, Quinn has the choice of discarding his update
(effectively deciding not to delete the file), or discarding Mowbray's edits by marking the
conflict as resolved without doing anything.

If Quinn is lucky, the Conflict Edit dialog will offer to merge the incoming edit into the
re-named version of the file, however depending on where the Commit was run from,
TortoiseSVN may not be able to identify the new name of the file.

Status Information and Conflict Management

[102]

Scenario 4 – local delete, incoming delete
Quinn and Mowbray are both working on the multiplayer code for MooseHiragana. They
both decide that chatc.py is not an acceptable file name for the chat client. Quinn renames
the client to chatClient.py, following the naming conventions which were decided upon
at the most recent developer meeting.

Mowbray didn't attend the meeting, so he does not know about the new standards.
He renames the file to client.py.

Quinn commits his changes and leaves a commit log message explaining the new naming
convention. Now, when Mowbray commits his changes, three things will happen:

1. Chatc.py is marked as deleted and has a tree conflict.

2. chatClient.py is added to his working copy, with a status of 'normal'.

3. Client.py is marked as added with history.

If Mowbray wants to resolve this conflict, he will have to find out what the new name for
chatc.py was in the repository. He can find this out by reading the comments posted by
Quinn in the commit log.

After manually resolving the conflict, Mowbray should mark the conflict as resolved—either
using the conflict editor or the right-click menu option in Explorer.

Pop quiz – working with TortoiseSVN
1. File statuses tell you:

a. The size of the file.

b. The type of IDE that the file was written in.

c. The current status of your Working Copy version of the file compared
to the file on the server.

2. Which of the following would create a conflict:

a. Incoming deletion of main.py, outgoing edit of server.py

b. Incoming deletion of main.py (renamed to client.py), outgoing deletion of
server.py (renamed to network.py)

c. Incoming edit of main.py, outgoing deletion of main.py

3. Locking should be used:

a. Files should be locked every night before you go home.

b. On any file that you happen to be editing, to stop others from editing it.

c. On files which are not trivially merge-able, such as audio, video, or complex
document formats.

Chapter 4

[103]

Summary
In this chapter you learned the meaning of the different file statuses used by TortoiseSVN.
You also learned about the conflicts that can occur when several people work on the same
file on a Subversion server, and you learned how to deal with those conflicts.

Specifically, we covered:

 � The meaning of the different file statuses

 � When and how to use file locking

 � The different kinds of tree conflict

 � How to resolve conflicts

The examples in this chapter were incredibly simplistic, and are not suggestions for how a
real software house should be run. In fact, working at Shiny Moose Software sounds like an
incredibly stressful job! In the real world, one would hope that a software project would
be planned out from the start, and that refactoring on such a huge scale would not happen
on a regular basis. In fact, the project should be planned out well enough that the project's
overall file structure should not change often (or at all) during development. Feature creep
in the form of adding entire new game modes should not happen either.

The conflict examples given in this chapter are simply used as a way to describe a problem
that could arise, and how the problem could be fixed. As always, being organized from the
start and communicating well with your team is a much better way of coping with occasional
changes and conflicts.

That's not to say that the information in this chapter is unimportant. Even in a large software
house where there are agreed standards and layouts for almost every purpose, there will be
occasions when you will encounter conflicts.

Good communication within your team can help to reduce the number of issues that
you encounter. How you manage that communication is up to you. With larger teams,
communicating through mailing lists or team meetings is impractical. In that case, clear
comments in your code and concise, clear commit log notes can work wonders for keeping
people informed and ensuring that all members of your team get the information they need,
at the time that they need it.

In the next chapter, you will learn about branching and merging, and managing conflicts
within branches.

5
Branching and merging

So far you have learned how to create a working copy, submit changes (or a
patch), synchronize those changes with the server, and handle some of the
simpler conflicts that may arise. The examples you have seen all involved
one development project. In the real world, there are a number of reasons
why a team may want to run more than one development branch at a time.
This chapter will explain branching and merging, and also cover some of the
common conflicts that can occur when you are working with development
branches.

In this chapter we shall:

 � Learn why branches are useful

 � Learn how to create a branch, and how to switch your working copy

 � Learn how to merge a branch back into the trunk

 � Learn how to merge one or more branches

 � Learn about TortoiseSVN's new merge tracking features

 � Learn about the conflicts that can occur when merging a branch, and how to deal
with them.

So let's get started...

Branching and merging

[106]

What is a branch?
Branching is an important, but often overlooked, part of source control. Branching allows
you to maintain more than one version of your software at once. The main version—which
will be worked on by the majority of your developers—is called the trunk. The other versions
are called Branches.

Branches allow your team to test "what if" scenarios, work on large code changes, or make
separate versions of your software, without affecting the trunk. This is useful because it
allows the main development process to continue in the background—while those large
changes are being made on a separate development branch of the software, small bug fixes
and updates can be done on the Trunk, and released to your customers after testing so that
they don't have to wait a long time for essential updates.

What is a tag?
Another useful feature in a similar vein to branching is tagging. This feature allows you to
mark a specific revision so that you can easily recreate it on demand. Tagging is often used to
mark release versions.

In the eyes of Subversion, tags and branches are the same thing—a directory that contains
a snapshot of the project. What separates a tag from a branch is the way that we, the
users of Subversion, interact with the tag. As long as nobody ever makes a commit to a
tag, it remains a tag. If your team starts committing to a tag directory, it becomes a branch.
It's possible to configure a Subversion server to prevent people from committing to a tag
directory, but not all systems administrators choose to do this. If you don't have a paranoid
systems administrator, then you can still use tags. If someone mistakenly commits to your tag
directory then you can undo their changes easily enough!

Why use branching?
There are many reasons why you may want to use branches. Usually, branches are employed
to separate code changes from the main project—either to prevent problems, or to allow the
project to "branch off" in two or more separate directions.

Chapter 5

[107]

One reason to use branches would be to allow easy development of a multi-platform
project—one branch for Windows, and one for Linux, with the common files being kept
in the trunk. Another reason could be to allow bug fixes and minor updates of an already
released software version to continue, while other developers work on a major overhaul of
the software for a new version.

Not all software projects use branching. Some projects, especially comparatively small ones,
may find branching to be overkill, and instead of relying on branches, have check-in rules
that ensure the stability of the code. For example, you may be told that you should not check
in any code unless it does not adversely affect the functionality of the current version. So,
you could check in a partially implemented feature—as long as that code does not break
anything that worked in the previous version.

If you're working on a project with rules similar to those previously mentioned, then you
aren't completely losing out on version control features. Tagging, for example, can be
used—you can check out a specific revision number to see how the code looked back then.

Common branch types
A few of the more common scenarios are listed in the following section. This list is not
exhaustive. In the following diagrams, a solid arrow represents a branch, while a dotted
arrow represents a merge.

Branching on new releases
With this branching system, each new release becomes a branch. Common changes—for
example, essential bug fixes or security updates, are merged between releases. When an
older release is no longer supported, the branch for that release is killed off.

Branching and merging

[108]

Release branches are created rarely—perhaps one or two a year. They are maintained for
long periods of time, only being killed off when a specific version of the software in question
is no longer supported. Security patches and other important changes may be merged into
several different branches, but other updates—cosmetic changes or new features, are likely
to be added only to the most recent branch.

Branching on promotion
This method of branching creates a new branch for every tier. When changes have been
tested fully they are promoted and merged into the next tier, and the branch relating to
that change is killed off:

Branching per task
This branching strategy treats every development task as a new branch. Once the task has
been completed and tested, the code for that task is merged back into the trunk and that
branch is killed off.

This branching strategy is favored by some teams because it fosters a low-risk environment—
changes are made in their own branches, so the risk of a thoughtless commit causing
problems for other developers is low. However, excessive branching can make collaboration
difficult, and can create a lot of extra overheads.

Chapter 5

[109]

Branching components
This development strategy involves running a branch for each architectural component of
the software being developed. When a component is completed, it is merged back into the
trunk. The branch life cycle looks a lot like the cycle shown in the preceding diagram for
Branching per task.

A branch for each platform
This is a common branching strategy for multi-platform projects. With this branching
strategy, the core (or Common) code is kept in the trunk, while platform specific code
(for example, Linux, Windows, or Mac specific code) is handled in branches.

Branching and merging

[110]

In this development strategy, the branches will live for as long as that platform is
being supported.

The good news for Shiny Moose Software is that Python and PyGame, which the
MooseHiragana game is built upon, are designed from the ground up to be portable. There's
little need to run separate branches for Windows and Linux. Some other languages and
frameworks are not as portable, so it's still good to be aware of the option of branching for
the platform specific parts of your application.

Common branching pitfalls
Branching is a useful way to separate different code streams, which can be useful to ensure
the stability of your project. Requiring people to carefully merge their changes will act as a
buffer to prevent people from accidentally breaking the entire project with a dodgy commit.

That said, branching has its own problems. Some of the things you need to watch out for are:

 � Merge fear: Some developers may want to avoid merging because they are
worried that it will go wrong. You should take measures to stop this attitude
promptly—monolithic merges are more likely to be dangerous than more
frequent, bite-size ones.

 � Excessive merging: If people are spending more time merging than they are
writing code, then there's something wrong.

 � Excessive branching: If you need a map almost as complex as an A-Z of the world to
track your branches, it's probably time to reconsider your development practices.

 � A permanent temporary branch: This oxymoron is all too common. If your
temporary branch has been around for the lifespan of the project, maybe it's
time that its purpose gets defined?

Chapter 5

[111]

Branches are for the minority

When correctly used, branches are for the minority. Most of your development
work should be taking place in the trunk. If you find that your team is spending
more time on a branch than they are in the trunk, there's a good chance
that your development strategy needs examining. There are exceptions, but
in general, spending most of your time on branches is a sign of problems
somewhere in your development strategy.

Creating a branch
If you have a well organized directory structure, then creating a branch or a tag should be
a simple matter.

The following is an example of the directory structure that could be used for the
MooseHiragana project:

 � /repositories/MooseHiragana/trunk: This contains the main code.

 � /repositories/MooseHiragana/branches: This folder could then itself
contain:

 � /windows

 � linux

 � /repositories/MooseHiragana/tags: This contains

 � /Release-1.0

 � /Release-1.1

This directory structure is optional. The important thing is that the directory structure you
choose is one that works for you and your team, and is clear, consistent, and easy for new
team members to follow.

If you hadn't been planning on using branches, you may have chosen to keep your working
copy in the root folder of your project. This works OK if you are always working on the
trunk and making trivial commits, however things can quickly get confusing when you add
branches. For this reason, it's a good idea to observe a directory structure similar to the
previous one in your repository.

Branching and merging

[112]

Branches and tags don't use a lot of drive space

Subversion doesn't use the traditional method to create a branch or a tag.
Instead, Subversion achieves the same result using a cheap copy, which is
somewhat similar to a hard link in Unix. This has a pleasant side effect in that
the drive space usage of a Subversion branch is lower than what you might
expect. If you aren't familiar with the idea of hard links, think of them as a
sophisticated version of a shortcut in Windows.

At Shiny Moose Software, Quinn decides that it would be a good idea to have a branch for
the development of the Katakana version of Moose Hiragana. This will allow the language
specialists to work on the logos, flash cards, and scoring system for the Katakana version of
the game without interfering with the development of the Hiragana version.

Time for action – creating a branch
1.	 Right-click inside your working copy and select TortoiseSVN | Branch/Tag.

2.	 Enter the Subversion URL that you want the branch to have. In this case,
we remove/trunk from the URL and change it to /branches/moosekatakana:

Chapter 5

[113]

3.	 Select HEAD revision in the repository, assuming you would like to create the
branch based upon the most recent revision. If you would like to create a branch
based upon a different revision, or your current working copy, then you can do so
by selecting the relevant option in this window. You can enter a revision number
manually, or select a revision from the window that appears when you click the ...
button.

4.	 Tick the checkbox that says Switch working copy to new branch/tag.

5.	 Your working copy will be switched to the branch that you have just created, and
you will see a dialog box confirming what changes have been made:

What just happened?
You have just created a branch and switched to it. Now, when you work on this working copy,
any changes you commit will be sent to the branch, not the trunk. The target URL is shown at
the top of the commit dialog, so you can easily tell where you are committing to (the trunk,
or a branch).

In the future, other branches could be created for other versions of the game, for example,
a Kanji version, or a version for learning German, that teaches words, rather than letters of
the alphabet.

This isn't the most ideal example of a use of branching—it would be much better if Shiny
Moose Software's flashcard game had been designed to be modular from the ground up that
would make changing the purpose of the software as simple as swapping out the images
and the list of questions. Unfortunately, Quinn did not plan for flexibility, so there are many
things which are hard coded into the application that should really be handled in a more
modular way.

Branching and merging

[114]

Deadlines are looming and Quinn cannot afford to start rewriting MooseHiragana at the
moment, so for now, branching saves the day. A more wise use of branching would be to
create a branch which can be used to extensively refactor MooseHiragana to allow new
flashcard packs to be easily imported. While this development work is going on, other team
members can spend their time working on new language packs for the Kanji version of the
original game. This keeps existing customers happy, while still allowing the team to work
on a neater and more efficient code base for future versions of the game.

Tagging and selecting revisions
You can create a tag in the same way that you created a branch. Instead of changing the
path to /branches/nameofbranch, set the new path to /tags/Version-Number.

When creating a branch, you chose to use the HEAD revision in the repository. When
creating a tag, you may want to use a different version of the code. You can do this by
selecting a specific revision in the repository, then entering the revision number. This is
useful if you released your project a few days ago, but didn't make a tag at the time. If
there have been several commits since then, and you can't remember exactly what revision
number you need, click the ... button to bring up the revision log and select the correct
revision from there. Tags created in this way require no data transfer from your local working
copy, and are therefore created quickly.

A shortcut for creating a branch or tag from a revision

Another way to create a branch or tag from a revision is to use the log dialog.
While inside the log dialog, right-click on the desired revision and select Create
branch/tag from this revision.

You can also create a tag based upon your own working copy. Unlike the other two options,
this form of tag creation is quite complex—your working copy will need to be synchronized
with the repository, and this may take some time depending on the number of changes that
have been made.

Tagging is useful because it allows you to quickly roll back to a specific revision—usually a
major release. This means that if something goes wrong and a lot of files are damaged or
deleted—either by accident, or thanks to a malicious staff member or volunteer, a known
good copy can be retrieved easily.

Switching your working copy
You have already seen one way to switch your working copy—while creating a new branch;
however there will be times when you want to swap between branches or back to the trunk.
TortoiseSVN makes it easy to switch between branches.

Chapter 5

[115]

Time for action – switching your working copy
1.	 Right-click on the working copy folder, and select TortoiseSVN | Switch....

2.	 The Switch To Branch / Tag window will appear. Select the branch or tag that you
would like to switch to from the To URL: dropdown list, or enter the correct path
manually:

Branching and merging

[116]

What just happened?
You have just switched your working copy. In the previous example, we switched from
the trunk to a branch. You can switch from branch to branch, from a branch to the trunk,
or vice-versa.

Switching your working copy is not the same as performing a checkout. A checkout
downloads everything from the desired branch (or the trunk) to your working directory. A
switch will only transfer the data that has changed. This means that switching creates less
stress on the server, and is much quicker too.

Performing a switch will not discard any local changes, they will be merged when you switch.
If you do not want them to be merged, you should either revert your working copy to an
already committed revision before you perform the switch or commit your changes first.

Reverting changes
In the world of software development, things don't always go right. Sometimes you may find
yourself in a situation where you wish you could wind back time. Unfortunately, you can't
reverse time in real life, but you can ask Subversion to revert changes for you—giving you a
snapshot of how your files looked at last commit (or even several commits before that).

Time for action – reverting changes in your working copy
1.	 To revert a change in your working copy, right-click in the folder that contains

files you want to revert to an older version, and select TortoiseSVN | Revert
(right-clicking on just one file will select that file as the only one to be reverted).

2.	 In the dialog that appears, select the files that you want to revert, and then click OK.

Chapter 5

[117]

3.	 Click OK, and a quick revert will be performed, taking you back to the previous
version of the file(s) in question.

What just happened?
You have just reverted a file (or some files) in your working copy to their previous version.

But what happens if you want to revert more changes—going back one or more revisions,
and making an older revision the new HEAD revision? Well, you can do that using the
revision log.

Time for action – reverting more changes
1.	 Select the folder (or file) for which you want to revert the changes.

2.	 Select TortoiseSVN | Show Log to bring up the list of revisions. If you want to
go back a long way, you may need to click ShowAll to see a full list of revisions.

3.	 Select the revision that you want to revert. If you want to revert lots of revisions,
select the first one, then, while holding down Shift, select the last one.

Branching and merging

[118]

4.	 To revert back to a much older version, right-click on the selected revisions and
select Revert changes from these revisions:

Your working copy will now have been reverted to the revision that you specified.

5.	 Alternatively, to make a much older revision in the new HEAD revision, select that
revision, right-click on it, and select Revert to this revision:

Chapter 5

[119]

What just happened?
You have just reverted back to a much older revision—effectively rewinding time to get a
snapshot of how your project looked at some point in the past.

Merging
Branches contain separate lines of development, but that does not mean that they are
destined to go their own way forever. Branches are still linked to the trunk (hence why they
are called branches, not, for example, islands). You can merge changes made on a branch to
the trunk, or merge changes to the trunk into the branch.

Branching and merging

[120]

Merging can be a complex process, but there are things that you can do to ensure that the
process goes as smoothly as possible:

 � Always perform merges into a clean working copy—that is, one that does not have
any outstanding changes needing to be committed

 � If you have made changes to your working copy, commit them before merging

 � After completing the merge, review the results to make sure that the merge went as
expected

 � If the merge didn't go as expected, revert the changes

Usually, when you merge a branch, you will have made several changes to the branch in the
course of completing the task that the branch was designed for. This means that you will
need to merge all of your revisions back into the trunk.

Merging a range of revisions is the most common action for most projects. Merging a whole
branch is something you're likely to do after you have finished working on some changes in
a private branch, and you're ready for them to be put into the trunk. In this example, we're
merging from a branch, into the trunk.

Time for action – merging one branch
1.	 Right-click inside your working copy and select TortoiseSVN | Merge.

2.	 The merge dialog will appear. Select Reintegrate a branch.

Chapter 5

[121]

3.	 Click Next.

Branching and merging

[122]

4.	 The Merge dialog will appear. Select the correct From URL if it has not defaulted to
the right URL. If for some reason you don't want to merge all revisions, go back to
the window shown in Step 2, select Merge a range of revisions, and then click OK.
As shown in the following screenshot, click Show log to view a list of revisions:

Chapter 5

[123]

5.	 You can then select the revisions you want to merge, or make a note of their
numbers, and enter the range in the Revision range to merge box on the Merge
screen manually. In most cases, however, you will likely want to merge up to the
latest revision, so you should leave the box empty:

Branching and merging

[124]

6.	 Click Next. The default options on the following screen are acceptable for this
scenario. You can alter the Merge depth if required (this follows the same rules
as Copy Depth, which was discussed earlier):

7.	 In most cases, the default options are acceptable. However, if you are using a
programming language that does not care about whitespace, then selecting the
options to ignore whitespace and line endings may help to avoid file conflicts.
You should not select this option if you use a whitespace aware language such
as Python.

8.	 Clicking Test merge will allow you to see if there are any conflicts without actually
performing the merge. In this case, Test merge shows no problems:

Chapter 5

[125]

9.	 Since the test merge went smoothly, we know it's OK to do the merge for real,
so go ahead and click Merge.

10.	Congratulations, you've performed your first merge!

What just happened?
You have just merged some revisions from a branch into the trunk. The revisions being
merged in this case were trivial, so there were no conflicts. In the real world, it's likely that
there would have been many more complex changes to both the branch and the trunk. You
will learn how to cope with the conflicts that can arise in those situations in the following
section, Resolving conflicts on merging.

Before that, let's look at another common scenario—merging two trees. This method can
also be used to merge a branch back to the trunk. This type of merge is designed for special
cases (such as a feature branch), where a branch has been regularly synchronized with the
trunk, making the branch and the trunk identical except for your specific branch changes,
and you need to compare the branch and the trunk to perform the merge.

Whitespace as a language!

This doesn't relate specifically to TortoiseSVN, but if you're interested in
the wonder of whitespace characters, then take a look at Whitespace—the
programming language. Yes, it's an entire language based on spaces, tabs,
and new line characters! The language was created by some students of
Durham University who feel that those poor whitespace characters are
an overlooked part of computing: http://compsoc.dur.ac.uk/
whitespace/index.php

Branching and merging

[126]

Time for action – merging two trees
1.	 Open the merge wizard from within a working copy of the branch which you want

to start the merge.

2.	 Select Merge two different trees.

3.	 In the From (start URL and revision of the range to merge): field, enter the URL of
the starting branch (or trunk if you are merging back to trunk).

4.	 In the To (end URL and revision of the range to merge): field, enter the URL of the
feature branch.

5.	 If you are sure nobody else will be making commits at this time, you can use HEAD
in both revision fields. If others are working on the branches in question, specify the
revision number you want to use. Don't forget that you can use Show Log to find out
what happened at each revision:

Chapter 5

[127]

6.	 Once again, the default options on the final Merge options screen are acceptable in
this case.

7.	 Click Test merge to make sure there are no conflicts, and if all goes well, click merge.

What just happened?
You have just merged two different branches, or merged a branch back to trunk, depending
on the two paths that you entered.

Merging works by comparing the differences between the two branches, and applying
the required changes to your working copy. Your working copy should be clean before you
attempt to perform a merge.

The two merges we have done so far in this chapter have gone smoothly, but that won't
always be the case. This brings us to our next topic—resolving tree conflicts.

Branching and merging

[128]

Check the results after each merge

Make sure you check the merge results to make sure that your merge went
as expected. It's better to check early than to discover something went
wrong later, after several other changes have been committed.

Undoing changes with reverse differences
One use of merging which is often overlooked is to roll back a change that has already been
committed. This is useful if you are working on some code and you realize that a major
change you made earlier has had some unexpected and undesirable effects. Instead of
having to rewrite the code manually, you can do a reverse difference to restore your old,
working code.

You may think that this sounds similar to performing a revert, and in a way it is—however,
reverts are done on uncommitted changes, and cannot be undone. A reverse merge is done
on changes that have been committed to the repository, and can be undone if required.

Resolving conflicts on merging
Merging is a complex process, and the further the branch gets away from the trunk, the
more likely it is that there will be problems when you attempt a merge.

The most common conflicts that you will encounter when merging are:

 � Local missing, incoming edit on merge

 � Local edit, incoming missing on merge

 � Local delete, incoming delete on merge

If this list sounds familiar, that's because it's very similar to the conflicts described in
the previous chapter, except instead of being caused by updating a file, they come from
merging a branch back into the trunk.

Many of the following problems can be reduced in severity (if not completely avoided) by
performing frequent merges to make sure that your trunk and branch do not get too far out
of synch. If your team members make several changes before merging, then they may end
up in a situation where they find it hard to remember the purpose of each change, making it
much harder to resolve conflicts. Of course, different teams have different policies, but there
is a lot to be said for taking an Iterative and Incremental approach to development!

Chapter 5

[129]

Scenario 1 – Local missing, incoming edit
Quinn has been working on the scoring system, and modifies hiscore.py in the trunk,
then commits his changes to the repository.

Mowbray, while working on the branch, renames hiscore.py to scoring.py and
commits it to the repository.

Merging Quinn's trunk changes to the branch causes a tree conflict. scoring.py is in the
working copy with a status of 'normal', while hiscore.py will be marked as missing with
a tree conflict.

Mowbray can fix this conflict either by marking hiscore.py as resolved in the conflict
editor, and leaving it at that, or by merging Quinn's changes from hiscore.py into the
scoring.py and then marking the conflict as resolved.

Scenario 2 – Local edit, incoming missing
In this scenario, Quinn is working on the trunk and renames login.py to client.py, and
commits his change to the repository.

Mowbray has been adding some extra features to the login feature in a branch, and saves
login.py. It then commits it to the repository.

When it's time to merge, these changes cause a tree conflict. client.py is marked as
added, and login.py is marked as modified, with a tree conflict.

Mowbray now needs to decide what they want to do. Should they respect Quinn's new
naming choices and merge their changes into client.py, or just revert Quinn's changes
and keep the local file?

With a fairly small project it's easy enough to tell at-a-glance what the new file name should
be, but in a project with hundreds of files Quinn may find it useful to refer to the log to find
out what's going on. Once Quinn has made the right changes, they can use the conflict editor
to mark the conflict as resolved.

Scenario 3 – Local delete, incoming delete
In this scenario, Quinn is working on the trunk and has renamed login.py to client.py
and commits this change to the repository.

Mowbray is working on a branch and renames login.py to authenticate.py, and then
commits this change to the repository.

Branching and merging

[130]

A merge of Quinn's trunk changes to Mowbray's branch working copy causes a tree conflict.
In this case, authenticate.py is marked as normal, client.py is marked as added with
history, and login.py is marked as missing, with a tree conflict.

Mowbray must find out what Quinn renamed login.py to before they can resolve the
conflict. This can be done using the log dialog for the merge source. Once they know what
login.py is now called on the trunk, they can make a decision as to whether they should
respect Quinn's naming choices. After the conflict has been resolved manually, Mowbray
must mark the conflict as resolved using the conflict editor dialog.

Tracking merges
In Subversion 1.5, facilities for merge tracking were introduced. With these new features,
when you merge from one tree into another, the related revision numbers are stored.

You may be wondering what you can do with this information. Well, you can use it to
avoid several problems as follows:

 � Avoiding repeated merges: When a revision is marked as having been merged,
future merges which are supposed to include that revision will skip over it, saving
time and resources.

 � Improved traceability: The log dialog now shows branch commits as part of
the trunk log when a branch is merged back into the trunk, making it easier
to follow changes.

 � Better blame: Blame information now shows the person who made the changes,
rather than the person who merged them, assuming that the check box for
"include merge info" has been checked in the blame dialog.

Pop quiz – working with TortoiseSVN
1. Branches...

a. Are what new releases are called in Subversion.

b. Create more problems than they solve, and should be avoided at all costs.

c. Can be used to allow different code streams to be worked on at the same time.

2. Merging...

a. Frequently goes wrong, so should only be done when absolutely necessary.

b. Is just like committing, and you can just click and forget.

c. Should be done with care, and on a clean working copy.

Chapter 5

[131]

3. Locking should be used:

a. Files should be locked every night before you go home.

b. On any file that you happen to be editing, to stop others from editing it.

c. On files which are not trivially mergeable, such as audio, video, or complex
document formats.

4. A tag:

a. Acts like a snapshot—allowing you to go back to a specific revision in
your project.

b. Is a name you give your project so you can find it in the repo browser.

c. Can only be created based on the HEAD revision.

5. To reduce the chances of problems with merges you should:

a. Always use a clean working copy.

b. Check that the results were as you expected as soon as the merge completes.

c. Merge frequently.

d. All of the above.

Summary
In this chapter you learned about branching, tagging, and merging. You learned why you
would want to use these features (as well as some less-than-ideal examples of how they
may be used), as well as how to avoid some of the conflicts that can occur during complex
merges.

In this chapter you learned

 � What branching is, and why you would want to use it

 � What tagging is, and why you would want to use it

 � How to create a branch

 � How to switch your working copy

 � How to merge one or more branches

 � How to handle common conflicts

The examples in this chapter were quite simple, but they give you an idea of how to work
with branches and tags, and how to handle the kinds of conflicts you are likely to encounter
in the real world. Quinn and Mowbray can get away with eyeballing a folder to tell what a
missing file has been renamed to, but you will most likely need to rely on the logs a lot more
when you are working with a real world software project.

Branching and merging

[132]

In the next chapter, you will learn how to keep your server tidy and organized—how to prune
trees, and work with change lists and revision graphs. The next chapter will also discuss
some other useful tools in Subversion, and explain how you can export a working copy, or
relocate your working copy. These aren't things you are likely to need to do often, but the
good news is that TortoiseSVN makes the task easy, should the need ever arise.

6
Working with Revision Logs

So far, you have learned how to create a working copy, submit changes (or a
patch), synchronize those changes with the server, handle conflicts, and work
with branches. We have touched on using the logs to find out what changes
other developers have made to your code, but we have not explored the
revision logs in depth. This chapter will explain changelists, revision graphs,
and other ways of tracking changes.

In this chapter, we shall:

 � Learn more about differences

 � Learn about changelists

 � Explore working with revision graphs

 � Learn how to change views in revision graphs

 � Learn how to prune trees to make the revision graph easier to understand

So let's get started...

Differences in detail
Differences are useful to allow you to see what has changed between recent revisions of a
file. There are several different ways that you can view differences between files, or between
a file and a previous version of the file.

Working with Revision Logs

[134]

Viewing differences between versions of a specific file in your
working copy
In the previous chapters, you viewed differences using the change log. There is another way
to view differences from within your working copy folder, using the right-click menu.

Time for action – viewing differences in a working copy
To view the differences between a file in your working copy and a previous version, follow
these steps:

1.	 Navigate to your working copy folder.

2.	 Select the file that you want to compare version history for.

3.	 Right-click the file, and select TortoiseSVN | Diff with previous version.

4.	 A TortoiseMerge window will appear, showing the differences between the current
version of the file and the previous version.

Chapter 6

[135]

What just happened?
You have viewed the differences between a current version of a file and the previously
checked in one. If you have made changes to a file, but not yet checked in those changes,
you can view the difference between the BASE revision (the version that was in the
repository when you last updated), and the working copy by selecting TortoiseSVN | Diff,
instead of TortoiseSVN | Diff with previous version.

Working with Revision Logs

[136]

In addition to using this method, you can view specific differences by going to TortoiseSVN
| Show Log and selecting the revision you are interested in from the list at the top of the
window. Double-click on the relevant file in the list at the bottom of the window—this will
bring up a TortoiseMerge window showing the difference list for the revisions in question.

Viewing differences between files outside your working copy
You don't have to be inside your working copy to view differences. In fact, you can view
differences between files that aren't under version control.

Chapter 6

[137]

Time for action – viewing differences in files outside
your working copy

To view the differences between files that aren't within your working copy:

1.	 Navigate to the folder where the files are stored.

2.	 Click on the older version of the file.

3.	 Hold down the Ctrl key and then click on the newer version of the file.

4.	 Right-click on the file, and select TortoiseSVN | Diff.

Working with Revision Logs

[138]

5.	 The next window will show the differences between the two files (depending on
what applications you have installed, and the file type of the file you view the
differences for, your screen may differ from the following screenshot):

Chapter 6

[139]

What just happened?
You have just viewed the differences between two files which are not under version
control. You could use this to compare submitted patches, documents or source code.
When you use this method to compare differences, the differences may be displayed
in the editor or IDE that supports the file (as shown in the previous screenshot), or using
the TortoiseMerge window:

Working with Revision Logs

[140]

Comparing folders in the repository browser
If you want to make a bigger comparison, for example between two folders, you can use the
repository browser to achieve this. Simply open the repository browser, right-click on one
of the folders that you want to include in the comparison, and select Mark for comparison,
then right-click on the second, and select Show differences as a unified diff:

Comparing two folders is useful if you want to view the differences between several files that
are in different folders. You get an at-a-glance comparison of each file.

Working with changelists
The best-case scenario for software development would be to work on one thing at a time,
committing each change as you go. In the real world, however, things don't always work
like that.

Chapter 6

[141]

Quinn discovered that while attempting to make some network code changes, the current UI
setup didn't have anywhere to display the network status. Being easily distracted, he decided
to quickly create a status bar, and ended up tweaking some other parts of the UI too, before
getting back to his network coding task. Before he even realized he'd gotten distracted, he
had edited half the files in the project! Or so it felt when he saw the huge list in the commit
window. Which file affects which task?

If Quinn was working on tasks which affected separate files, then he could group the files
into changelists, separating those changelists according to task. This makes it easy for him to
see what he is doing. He can commit the files related to UI changes by selecting the files in
that changelist, and then later commit the network changes by selecting that changelist.

Sadly, this works well only if each task affects a different set of files. If one file is touched
by more than one task, then you can't add that file to more than one changelist. Of course,
that's a strong case for keeping your code as organized as possible!

Another important thing to remember is that changelists are stored on your local computer,
rather than on the Subversion server. They're really a convenience tool for you, rather than
a part of the version tracking. This means that you should still make sure to provide clear
commit log messages so that other developers understand what is happening with each
commit. Even small changes should be documented—your fellow developers will thank you
for it, and you'll probably be glad of your log messages yourself a few months down the line!

Changelists are not available for Windows 2000.

If you're a user of Windows 2000, then you won't be able to take advantage
of the Changelists feature in TortoiseSVN. Unfortunately, this feature is only
available for Windows XP and above. If you're still using Windows 2000 after all
these years, then it's likely that you will have encountered other applications
that also have problems with the operating system. Perhaps now is a good time
to ask your boss for an upgrade!

The first thing you need to learn is how to create a new changelist and add some files to it.

Working with Revision Logs

[142]

Time for action – working with changelists
To work with changelists, you will need to have worked on several different files before a
commit. So before you proceed with this Time for action, modify several files within your
working copy.

1.	 Navigate to your working copy.

2.	 Right-click inside the working copy folder and select TortoiseSVN | Check for
Modifications.

3.	 You will see that all of the modified files appear in the status list. This might be OK
for relatively small commits, but could be confusing for bigger commits. To group
the files into changelists, select the files in question, right-click on them, and then
select Move to changelist | <new changelist>.

Chapter 6

[143]

4.	 The Create Changelist window will appear. Enter a suitable name for your
changelist.

Working with Revision Logs

[144]

5.	 The files you have moved to the changelist will appear listed under that category.
You can create as many changelists as you wish. The following screenshot shows
two changelists for this particular commit:

6.	 If you want to add a file to an already created changelist, simply right-click the file
and select Move to Changelist, then click the name of the changelist in question.

What just happened?
You have learned how to create changelists. You can create more than one changelist,
and you can add multiple files to each changelist. Once you have created a changelist,
it will show in the right-click menu so that you can easily add files to it in the future.

Removing a file from a changelist
Just as you can add a file to a change list, it's possible to remove them too. Simply right-click
on the file in question, and select Remove from changelist.

Ignoring files on commit
As mentioned previously, it's possible to tell TortoiseSVN to ignore files unless it is told
otherwise. TortoiseSVN uses a special changelist for this called ignore-on-commit. If you add
files to this changelist, then TortoiseSVN will ignore them in the future, even if the files have
been modified locally.

Chapter 6

[145]

This feature is useful for IDE project files – all developers probably have their own settings
which they like to use, and there's no point synching their settings to the repository, as that
would annoy the other developers on the team.

Working with revision graphs
Revision graphs provide an easy way for you to tell at-a-glance what is going on with your
project. They provide a map, in easy-to-understand tree form, of the revision history of
your project, including copies, branches, and tags.

One useful feature of revision graphs is that you can export them into a vector graphics
format (WMF is a good option because they scale well and produce fairly small file size
images. If you need a more widely supported format, then PNG is a good option) for
inclusion with your source code, or on your project's website, giving everyone an easy
overview of the status of your project.

You can view revision graphs for files, directories, or the whole project.

Time for action – viewing a revision graph
1.	 To view a revision graph, go to your working copy, and right-click inside the project,

and then select TortoiseSVN | Revision Graph.

Working with Revision Logs

[146]

2.	 The graph that appears in the following screenshot shows the history of any
branches and tags created, in an easy-to-understand, tree-like structure:

Chapter 6

[147]

3.	 If you prefer to read from top to bottom, rather than having the newest node at the
top of the screen, then click the Show oldest node at top button (this can be found
two buttons to the right of the drop-down which allows you to change the zoom
level). This will invert the view, as shown in the following screenshot:

Working with Revision Logs

[148]

4.	 You can view information about a particular branch by right-clicking on it and
selecting Show Log:

Chapter 6

[149]

5.	 You can also use the same context menu to merge revisions, switch your working
copy to a particular branch or tag, browse the repository, and collapse trees.

What just happened?
You have just used the revision graph to get an overview of the revisions, branches, and tags
in your project. The last revision graph that we saw is a simple one, taken from our example
project. In a real-world scenario, it is likely that the revision graph would be much more
complex, and it is in these complex projects that having a revision graph becomes so useful.

When there are dozens of branches which are being created and merged, it can become
difficult to keep track of what happened when, and why. A revision graph gives you a clear
high-level view of everything that is happening in your software project.

To fully understand the revision graph, it helps to understand what each node means. The
following table will help with this:

Item Shape Default Color

Items which have been
added or copied

Rounded rectangle Green

Items which have been
deleted

Red

Items which have been
renamed

Blue

Branch HEAD revisions (if
you have elected to show
these)

Plain

Working copy revisions Oval Plain with bold outline
(a red outline indicates
modifications)

Modified working copies Oval Plain with bold red outline

Working with Revision Logs

[150]

Item Shape Default Color

Moved items Edged Rectangle Blue

All other items Rectangle Plain

You can use the graph to get more detailed information about the differences between
revisions. Just Ctrl-click on the two revisions you are interested in, right-click to bring up
the context-sensitive menu, and then select Compare Revisions. You will be able to see a
list of the revisions made to each file. Compare them using TortoiseDiff, as shown in the
following screenshot:

Chapter 6

[151]

You can also compare HEAD revisions, and view the unified differences using this method.

Changing your view
If your software project is quite large and complex, then you may find it useful to change the
view used in the revision graph. There are several options that you can use to change the
view you are using, and they can all be found under the view menu.

Rather than replicating the TortoiseSVN documentation by describing every single option,
only the more interesting options will be described here. The other options are mostly
clearly labelled, and otherwise are explained in the online help for TortoiseSVN:

 � Group by Branch: This option is off by default, so all rows are sorted by revision. This
can be a problem if you have branches with a long life and a few commits, because
those branches will occupy a whole column, making the graph expand unnecessarily.
This is demonstrated in the following screenshot:

Working with Revision Logs

[152]

Turning on Group by Branch will change this so that revisions on a branch will be
shown on consecutive lines, and branches will be grouped into columns, keeping the
graph slim. The previous screenshot shows the default appearance of the revision
graph (a shorter revision graph has been used here, for ease of viewing), the next
screenshot shows the same revision graph with Group by Branch:

With this fairly simple tree layout, the difference isn't immediately clear, but if you
have a lot of branches, you'll find that the group by branch feature keeps the layout
much neater, and avoids needless scrolling.

 � Oldest on top: This option switches the graph so that the oldest revisions are shown
at the top of the screen. By default, the oldest revisions are at the bottom, and the
'tree' grows upwards.

 � Align trees on top: This option forces trees to grow down, rather than appearing in
their natural revision order, or aligned at the bottom of the window.

Chapter 6

[153]

 � Reduce cross lines: This option cleans up the revision graph if there are lots of
crossing lines. In some cases, this option can make the layout appear less logical,
and can also make the graph take up a larger area of the screen.

 � Differential path names: This option makes the path names in the node boxes
as short as possible—so if you create a branch called /branches/katakana/
images/characters out of /trunk/images/characters, the branch would
be shown as merely /branches/katakana/.. the remainder of the path has
not changed.

 � Exact copy sources: The default behavior of the revision graph is to show branches
as being taken from the last node where the change was made. In practice, many
people make branches from the HEAD rather than from a specific revision. If you
have a reason for needing to know which revision was used to create a copy, then
you can use this option to show those details.

 � Fold tags: If your project has a lot of tags, then you may find that they take up
unnecessary screen space, hiding the information that you are interested in. You
can use this option to hide the nodes for tags. If you still need to find a tag, you will
find them displayed as tooltips on the node that they were copied from. Each source
node that had a tag made from it will have an icon on the right-hand side indicating
that a tag was made.

 � Tree stripes: No, this option isn't related to landscape gardening. The tree stripes
option tells TortoiseSVN to use alternating background colors so that it is easy to
distinguish between different trees in the graph.

Keeping your view up-to-date

If you are viewing a revision graph of an active project, you may want to check
for updates. Just as you would in your web browser, you can refresh the revision
graph by pressing F5. This will connect you to the server (if you have been
working offline) and check to see if there have been any new commits. Pressing
F5 to refresh works for most screens in TortoiseSVN. You can update your log
dialog, for example, by pressing F5 too.

Pop quiz – revision graphs
1. A revision graph is useful if:

a. You are revising for a test.

b. You want detailed statistics about every line of code changed in your project.

c. You want a high-level overview of the branches, tags, and trees in your project.

Working with Revision Logs

[154]

2. By default, nodes are grouped by:

a. Branch

b. Revision

c. Project

Pruning trees
Large software projects can end up with lots of trees. This can make the revision graph look
excessively complex, and can make it harder for you to find the information that you need.
The good news is that you can tame the trees in your graph, shrinking and expanding them
as you need them.

To shrink a tree or a branch, simply hover your mouse over the point where the branch
begins (where the node link enters the node), and you will be given the option to collapse
the related tree (-), or expand it (+). If applicable, you will also be presented with the option
to split a sub-tree into a separate graph (x), or re-attach a tree that had been split (o):

Chapter 6

[155]

Pop quiz – working with your view
1. The Views menu allows you to:

a. Decide whether the trees grow up or down

b. Set whether to show HEAD revisions or not

c. View the specific revision that a copy was made from

d. All of the above

2. You can select multiple nodes in the revision graph using:

a. The Control key

b. The Shift key

c. The middle mouse button

3. Change lists do not work on:

a. All versions of Windows

b. Windows Vista

c. Windows 2000

Summary
In this chapter you learned how to view revision graphs, and how to manipulate your view
of the graph to give a clearer view of the things that you are interested in.

In this chapter you learned:

 � More ways to view differences

 � How to view a revision graph

 � How to manipulate the view to your tastes

 � How to prune trees in the graph to make your view clearer

 � How to add files to change lists

Revision graphs are useful for even small development teams. The good thing about the
way TortoiseSVN displays them is that they are highly customizable, and scale well for larger
projects. So, if you need to keep up with the lifecycle of branches and tags in a big project,
then you can do so easily—thanks to the highly customizable views offered by TortoiseSVN!

In the next chapter, you will learn about exporting your working copy (to remove it from
version control), and relocating your working copy, which you may need to do if the
Subversion URL changes. The latter is something that you should not need to do often, but it
is useful to know how to do it correctly, in case the need arises.

7
Exporting and Relocating Working

Copies

So far you have learned how to create a working copy, submit changes (or a
patch), synchronize those changes with the server, handle conflicts, work with
branches, and understand changelists and revision logs. Sometimes you'll need
to export the source code you're working on, and that's what this chapter will
explain – how to export a working copy, or relocate your working copy if the
need should arise.

In this chapter we shall:

 � Learn how to export your working copy

 � Learn how to relocate a working copy

 � Learn how to clean up working copies

 � Learn how to troubleshoot working copy errors

So let's get started...

Working with a working copy
Subversion is useful for development work, but there are times that you will want to have
your project in its raw format. Subversion adds extra files and folders to your project, and
if you are taking a backup of the project, or you want to put the raw source code on your
website for people to download, then you will want to export the working copy so that
you can get a clean version of the project, without the extra Subversion files.

Exporting and Relocating Working Copies

[158]

Subversion adds some extra folders, with the name .svn, to each folder within your working
copy. If you have not changed the default settings of Windows Explorer, then you may not
be able to see those folders, but they are there, and if you were to simply copy or compress
your working copy folder to share it with others.

If you have told Windows Explorer to show hidden files and folders, then inside each folder
of your working copy you should see a grayed out folder with the name .svn.

Inside that folder are several other folders containing information which is only useful for
Subversion itself. Copying those files and folders would be a waste of storage space! The
following screenshot displays the contents of the .svn folder:

Chapter 7

[159]

Exporting a working copy
Exporting a working copy gives you a "clean" version of the files in your project. To export
your working copy, follow these steps:

Time for action – exporting a working copy
1.	 Navigate to your working copy folder.

2.	 Bring up the right-click context menu, and select TortoiseSVN | Export....

Exporting and Relocating Working Copies

[160]

3.	 A dialog box will appear asking you to select a folder. Choose where you would like
to put your exported copy.

4.	 Click on OK. A window with a progress bar showing the progress of the export
will appear.

5.	 Once the export is complete, navigate to the location of your exported files.
You should see a clean, .svn folder free, version of your project, which can be
archived, uploaded, or used as required.

What just happened?
You have just exported a working copy. This creates a copy of the files that are a part of your
project, without the files that contain the version information. This is much easier, and faster,
than making a copy manually and then deleting each .svn folder one by one.

In the previous example, it was assumed that you were exporting from your local hard drive.
You can also export from a URL.

Chapter 7

[161]

Exporting from a repository using a URL
TortoiseSVN behaves differently depending on where you execute the export
command from.

Time for action – exporting from a URL
1.	 Navigate to the folder where you want your exported files to be stored.

2.	 Right-click inside the folder and select TortoiseSVN | Export....

3.	 The Export dialog will appear.

4.	 Enter the URL to the repository, including the full path to the branch or trunk that
you wish to export.

5.	 Click on OK, and the export will begin.

Exporting and Relocating Working Copies

[162]

6.	 If the server has been set up to require authentication, you may be asked to
enter a username and password.

7.	 Once the export has completed, you will see a confirmation dialog.

What just happened?
You have just exported a working copy from a remote Subversion server. You are likely
to need to do this if you work for a large company, or are collaborating with people over
the internet.

Chapter 7

[163]

Sometimes you might want to remove the Subversion files and folders from your working
copy. You could think of that as removing your working copy from version control.
Fortunately, Tortoise SVN makes that easy.

Removing an existing working copy from version control
You can remove an existing working copy from version control by using the export
command.

Time for action – removing an existing working copy
from version control
1.	 Navigate to the working copy that you want to remove from version control.

2.	 Right-click on that working copy, and select TortoiseSVN | Export...

3.	 When prompted to select a path to export to, choose the working copy itself.

4.	 When the export completes, the .svn folders will have been removed from the
working copy.

What just happened?
You have just removed a working copy from version control by exporting it onto itself.
This might sound a little strange, but it works! TortoiseSVN detects that the source and
destination for the export are the same, and skips the export process, simply removing
the .svn folders instead.

Another way to remove a working copy from version control
You can achieve the same result in an easier way by right-clicking on a file, and dragging it
onto itself. This is a rarely used shortcut – give it a try.

Exporting and Relocating Working Copies

[164]

Time for action – removing a working copy from version control
1.	 Navigate to the working copy that you want to remove from version control.

2.	 Right-click on the folder in the right-hand pane in explorer.

3.	 While holding down the mouse button, drag the folder over to the left-hand pane,
and drop it onto itself:

4.	 If you don't have the tree view in your explorer, you can achieve the same result
by using two explorer windows and right-click dragging the folder from one to
the other:

Chapter 7

[165]

What just happened?
You have just used a shortcut to remove a working copy from version control. The end result
is the same as with the first method, but this way is quicker and easier, and a nice shortcut
to remember. Right-dragging files can be used for many different purposes in TortoiseSVN,
and it is a good idea to familiarize yourself with them. For example, you can right-click and
drag a non-versioned file into your Working Copy to be presented with the option to add it to
version control. You can also drag files within your working copy to be offered the option to
SVN Move or SVN Copy them, as the following screenshot demonstrates:

Changing to tree view in Windows XP

If you want to use tree view in Windows XP, simply click the Folders button
at the top of the screen. This view is useful for developers who need to get
a quick and easy overview of the layout of their projects, so you may decide
that it is useful to make it the default.

Exporting and Relocating Working Copies

[166]

Relocating your working copy
Sometimes you will need to relocate your working copy. This isn't something that you will
need to do often, but it's still a good thing to know how to do. You may need to relocate
your working copy if your Subversion server moves to a new URL, or changes IP address.

You could just check out again using the new address, but sometimes that isn't really the
most convenient thing to do. For example, if you've made lots of changes, integrating your
changes with the new working copy could be a long and drawn out process. That's why
relocating your working copy is useful. It can save you a lot of time.

Imagine that Mowbray has been travelling, and while he was away he made a lot of changes
to the source code for MooseHirigana. He gets back home to find out that Quinn has moved
the Subversion server on to another part of the network with a different IP address.

Mowbray could check out the files from the repository manually, and then merge the
changes by hand, but that would take a long time. It would be quicker, and easier, for him
to change the repository path to the new one, and then commit the changes as normal.

Time for action – relocating your working copy
Relocating your working copy is made easy by TortoiseSVN:

1.	 Navigate to your working copy in explorer.

2.	 Right-click on the folder, and select TortoiseSVN | Relocate:

Chapter 7

[167]

3.	 In the Relocate window that appears, enter the new path to the repository:

Exporting and Relocating Working Copies

[168]

4.	 Click on OK.

5.	 If a password is required, you will be prompted for one. Enter it, and click OK.

6.	 The relocation process may take several minutes if your project is large.

What just happened?
You have just pointed your working copy to a different repository location. When you do this,
Subversion changes all references to the old repository so that they point to the new one.
The files in the working copy are unchanged. This means that Mowbray can now check in the
changes that he made, as if nothing had changed while he was away.

Be careful when using the relocation option. You should use it only in cases where the
repository address has changed. Using relocate at the wrong time could corrupt your
working copy. A corrupt working copy is not a good thing! Sometimes you can fix corrupted
working copies simply by performing a cleanup (as described later in this chapter), or by
deleting the log file in the.svn folder and then attempting a cleanup, but in other cases
you may find that your only reasonable recourse is to perform another checkout and
painstakingly reproduce any changes you wanted to save.

To avoid such issues, a good rule to remember is this: If the first part of the URL (meaning
the part that dictates the location of the repository) has changed, then you should use
relocate.

If the organization inside the repository has changed, use switch instead.

As a real life example, imagine that Shiny Moose Software has an internal (intranet accessible
only) repository located at http://shinymoose.local/repos/moosehirigana/trunk

If the company network administrator decided to change the repositories to be located on
another intranet server, at http://repos.shinymoose.local/, then Quinn would need
to use the relocate option to point to the new repository.

Chapter 7

[169]

If the part of the path that changed was actually inside the repository (for example if
/trunk were renamed to something else), then Quinn should use relocate rather than
switch.

Recovering from a corrupt working copy
If you have made a lot of changes to your working copy and it becomes irrecoverably
corrupt, then the BEYOND COMPARE utility may be of use. It integrates with Subversion
(and other version control systems), and can be used to salvage the changes that you've
made and merge them into a new working copy.

You can download BEYOND COMPARE from http://www.scootersoftware.com/
index.php

Deleting a working copy
Once you've finished with a working copy, you will probably want to get rid of it – after all,
there's no point cluttering up your hard drive with files for projects that you are no longer
working on.

Deleting a working copy is a simple process. All you have to do is delete the folder on your
hard drive. There's no need to tell Subversion that you're deleting the files. Simply get rid
of them the way you would any other file on your hard drive.

Working copy cleanup
Sometimes you can run into problems where Subversion commands won't complete –
perhaps the server has had issues, or perhaps some conflicts or other issues have caused
problems. For example, if your IDE touched lots of files in your project – causing them to get
a new timestamp, even though the files themselves haven't changed – then checkins could
become an unnecessarily slow process.

To fix this, you can use the cleanup feature.

Exporting and Relocating Working Copies

[170]

Time for action – executing a working copy cleanup
The cleanup feature can be found, as with other features, on the right-click context menu.

1.	 Navigate to your working copy.

2.	 Right-click inside the working copy folder and select TortoiseSVN | Clean up.

3.	 The cleanup process will begin. TortoiseSVN will fix any inconsistencies with your
working copy. A progress bar will show how far along the process is.

4.	 Once it has completed, you will see a confirmation box, like the one shown in the
following screenshot:

Chapter 7

[171]

What just happened?
You have just used the TortoiseSVN cleanup feature to fix any inconsistencies in your working
copy. In the case of the timestamp example given at the start of this section, the SVN
server will now have the new timestamps. The cleanup feature should fix most problems
and inconsistencies that you are likely to encounter. The cleanup feature works because
Subversion tries to make updates as safe as possible. Before it changes anything in your
working copy, it writes a record of the changes to a log file. If the update fails for any reason
(for example if the computer crashes, or the process is terminated) then Subversion can go
through the log files and attempt to complete the update, getting the working copy back into
a consistent state.

Cleanup can be used to fix aborted commits, failed commits, and, in some cases, corrupt files
in the .svn folder.

Troubleshooting working copy problems
Most of the time, Subversion handles things smoothly, and if you do run into a problem,
then either executing a cleanup or using the conflict resolution option will solve the issue.

However, sometimes you can encounter issues that require a different solution.

A few of those are:

Folders have a red exclamation mark, despite nothing having
changed
This sometimes happens simply because Windows Explorer has gotten out of sync. Clicking
Ctrl+F5 to refresh the view in explorer can fix this. This issue is particularly common if you
have just performed a commit on a working copy, because explorer does not update its
views very often.

If Ctrl+F5 does not fix the problem, then try using the context menu, selecting TortoiseSVN
| Check for modifications. You may find that there is a hidden file there that you need to
commit. To avoid missing hidden files in the future, consider setting Windows Explorer to
show hidden files.

Exporting and Relocating Working Copies

[172]

Certain context menus are missing from inside my working copy
TortoiseSVN is an extension of Windows Explorer. If Windows Explorer crashes or encounters
a problem, then this can sometimes cause it, and therefore TortoiseSVN, to behave strangely.
If your view is messed up, or certain context menus are missing, then restarting Explorer can
often fix the problem.

To restart Windows Explorer, open Task Manager and look for explorer.exe in the process
list. Select it, and then click End Process.

Next, go to File | New Task, type in explorer.exe and then click OK.

Logging out of Windows and then back in, or rebooting, is another common way of solving
Windows Explorer problems.

Access denied errors
This error appears if you try to commit files a project that you do not have correct
permissions for. If you get this error, and you believe that you should be able to commit files
to a project, first check that you have entered the correct credentials. If the problem persists,
contact the manager of the Subversion server.

Changing the case of a file name doesn't work
Subversion has its roots in Linux, which is a case-sensitive family of operating systems.
Windows-based operating systems are case-insensitive; this causes lots of trouble when
you try to change the case of a filename.

If you simply attempt to change Readme to README in the file name, then this will not work
– Subversion expects both files to exist, but Windows thinks they're the same file, which
causes problems.

There are several workarounds for this issue, but the easiest is to do the following:

Chapter 7

[173]

Time for action – changing the case of a file name
1.	 Commit any recent changes to the repository.

2.	 Open the TortoiseSVN repo browser.

3.	 Right-click on the file you want to change the case of, and select Rename.
Give it the correctly capitalized file name.

Exporting and Relocating Working Copies

[174]

4.	 Enter a log message when you are prompted.

5.	 Click on OK.

6.	 Finally, check for updates on your working copy, to download the renamed version
of the file.

What just happened?
You have worked around the problem of case-insensitivity on Windows-based operating
systems by renaming the file on the server and downloading the change. This allows you to
change the case of a file name without running into any OS related problems.

My computer becomes sluggish when I right-click on a file
Right-clicking on a file can sometimes cause performance problems on Windows XP. This is
because of a bug which can cause Windows XP to have 100% CPU usage while the right-click
menu is being displayed.

This issue does not affect everyone, but if it affects you, then the good news is that there is a
relatively simple fix.

Chapter 7

[175]

To prevent Windows XP from going to 100% CPU usage when you right-click on a file, disable
the GUI transition effects.

You can do this by going to the Control Panel and selecting the Appearance tab, then going
to Effects and unchecking the Use the following transition effect for menus and tooltips
box. Once you have done this, click OK.

If you prefer to have the transition effects enabled, then another workaround is to left click
on the file or folder you are interested in to select it before right-clicking on it to bring up the
context-sensitive menu.

Pop quiz – working with your working copy
1. You would relocate your working copy if:

a. You wanted to store it in another folder on your hard drive

b. You needed to take a backup of it

c. Your Subversion server moved to another URL or IP address

d. All of the above

2. You would export your working copy if:

a. You wanted to publish the clean source code on the web

b. You wanted to take a backup of the files without the extra .svn folders

c. You wanted to remove the working copy from version control

d. All of the above

3. Deleting a working copy can be done via:

a. Windows Explorer

b. TortoiseSVN

c. The repo browser

Exporting and Relocating Working Copies

[176]

Summary
This chapter looked at how to export and relocate working copies, and how to troubleshoot
some of the issues that you might encounter while using TortoiseSVN.

In this chapter you learned:

 � How to relocate a working copy

 � How to export a working copy

 � How to remove a working copy from version control

 � How to troubleshoot common issues and errors

Exporting a working copy is useful for backup purposes, and also to allow you to post a clean
version of your source code on the web. Hopefully you won't need to use the knowledge
of relocating working copies too often, but for those rare occasions where your network is
restructured, the knowledge will be useful.

In the next chapter, you will learn how to use SubWCRev, a keyword substitution tool that
makes it easy for you to perform batch updates on keywords – for example to replace the
version number of your program in all documentation, help, and about screens.

8
Keyword Substitution with

SubWCRev

Up until now you have learned how to create a working copy, submit changes
(or a patch), handle conflicts, work with branches, changelists, and revision
logs, and how to export or move your working copy. This chapter will cover
SubWCRev, a tool which allows you to automate the replacement of text
throughout files in your project, making it easy to update files with the correct
version number, or other details, in one go.

In this chapter we shall:

 � Learn how to use SubWCRev via the command line

 � Learn the keyword substitution switches

 � Learn how to use the COM interface

 � Learn how to set up Pre-build events in your IDE

So let's get started...

Why use SubWCRev?
MooseHiragana is a frequently updated piece of software. To make it easier for people
providing technical support, users are asked to include what version of the software they
are using in their support requests. The version number is listed on the About page of the
software, and is also given on the startup screen, and in the documentation.

Keyword Substitution with SubWCRev

[178]

That's three different places that need to be updated every time a new revision is released.
It would be easy for a developer to forget to update one of those, or to make a mistake and
end up having different numbers showing on the about page, in the help files, and on the
startup screen. That wouldn't look very professional!

SubWCRev can be used to save time and ensure that all pages are updated with accurate
information. SubWCRev finds the highest revision that the working copy is on and treats that
as the revision number to be used. This isn't always correct, but in most cases, it's exactly
what is wanted!

Using SubWCRev via the command line
SubWCRev is a useful Subversion tool. It reads the Subversion status of all files in a working
copy, and then records the highest commit revision number, along with that revision's
timestamp, and whether there are any local modifications in that revision.

You can call SubWCRev via the command-line, or from a script.

Time for action – exporting a working copy
To use SubWCRev from the command line:

1.	 Create a file that you would like to use as a template for your revision information
document. In this case, we've decided to call the file hiragana.tmpl.

2.	 Put the following text into that file:

Moose Hiragana: The Japanese Learning Game
Brought to you by Shiny Moose Software

Revision: $WCREV$
Modified: $WCMODS?Yes:No$
Date: $WCDATE$
Range: $WCRANGE$
URL: $WCURL$
Lock Status: $WCISLOCKED?Locked:Not Locked$
Locked By: $WCLOCKOWNER$

3.	 Open a command-line window, navigate to where the template file has been saved,
and enter the following command (substituting PATH\TO\WORKING-COPY with the
full path to your working copy):

	 Subwcrev.exe	PATH\TO\WORKING-COPY	hiragana.tmpl	hiragana.txt

Chapter 8

[179]

4.	 You should see some text similar to the following (with the applicable revision
numbers and paths):

SubWCRev:	'c:\projects\moosehiragana'
Last	committed	at	revision	43
Updated	to	revision	43

5.	 A file called hiragana.txt will have appeared in the folder. Open it, and you
should see something similar to the following:

Moose	Hirigana:		The	Japanese	Learning	Game
Brought	to	you	by	Shiny	Moose	Software

Revision:	43
Modified:	No
Date:	2010/07/11	18:31:57
Range:	43
URL:	http://192.168.1.66/svn/MooseHiragana
Lock	Status:	Not	Locked
Locked	By:

What just happened?
You have just used the command-line to run SubWCRev.exe, to update a file called
hiragana.txt with the latest information about the project, based on a template.

The template shown was quite simple, but it shows how useful SubWCRev can be.
Imagine if you had to re-enter all that information by hand with each new build!

If you ran into problems following the above steps, make sure that you entered the paths
for each file correctly. If you run SubWCRev from the location where the .tmpl file is
stored, you do not need to enter the correct path.

You could use these commands to update the text for version information the About page,
and in the documentation too.

Don't forget to exclude the text file from versioning. The template file can be versioned, but
if the text file is versioned then you will be expected to commit the changes every time you
generate a new version of the file.

Keyword Substitution with SubWCRev

[180]

SubWCRev can only be used on a working copy

It is important to note that SubWCRev can only be used on a working copy. You
cannot use it directly on the repository.

Pop quiz – getting to grips with SubWCRev
1. SubWCRev uses templates to:

a. Avoid problems with version control – the template is versioned, the output
is excluded

b. Avoid problems with version control, the output is versioned, the template
is excluded

c. Make it easy to copy and edit files as required

2. You can use SubWCRev:

a. On the working copy

b. On the repository

c. On either

Have a go hero – updating documentation
The documentation for MooseHiragana mentions the current version number in several
places. Each time there is a major update, a staff member goes through the documentation
and updates it to reflect things that have been added, altered, or removed. However,
despite the application being fairly simple, it's easy to miss references to a version number
in all the text.

SubWCRev is an ideal solution to this problem. There are two help files, a simple 'getting
started' in the form of a text file called README, and a more in-depth HiraganaHelp.html.
How could SubWCRev be used to solve this problem?

Chapter 8

[181]

Command-line switches
SubWCRev has a number of optional switches which can be used individually, or in groups.

Switch Usage

-d This switch will cause SubWCRev to exit with ERRORLEVEL 9 if the destination file
exists. The destination file will not be modified at all. You should use this option if
your IDE detects the date a file has changed, and you want to prevent your IDE from
erroneously doing a full rebuild.

-e This switch tells SubWCRev to examine directories which have been included via
svn:externals, if they are from the same repository. This differs from the default
behavior, which is to ignore externals.

-f This switch tells SubWCRev to include the most recent revisions of folders. This differs
from the default behavior, which is to use only the revision numbers of files.

-m This switch will cause SubWCRev to exit with ERRORLEVEL 8 if the working copy
has mixed revisions. This switch can be used to prevent a build from taking place if the
working copy is only partially updated.

-n This switch will cause SubWCRev to exit with ERRORLEVEL 7 if the working copy
contains local modifications. This switch can be used to prevent a build from taking
place if there are uncommitted changes in the working copy.

-x This switch tells SubWCRev to write revision numbers in hexadecimal.

-X This switch tells SubWCRev to write revision numbers in hexadecimal, prepending 0X.

The use of some of the above command-line switches may not be immediately clear, but you
will soon see how they can be useful, when we look at using SubWCRev with build events.

Using command-line switches

To use a group of command-line switches, you must specify them all
together. For example, -fX will work, but -f –X will not.

Keyword Substitution with SubWCRev

[182]

Keyword substitution switches
SubWCRev can be used to add several different pieces of information, including the current
date and time, details of file locks, commit revision numbers and the URL of the repository.

Keyword Usage

$WCREV$ This is replaced with the highest commit revision in the working copy.

$WCDATE$ This is replaced with the commit date and time of the highest commit
revision. The default date format is yyyy-mm-dd hh:mm:ss. You can
specify a custom format if you wish.

$WCNOW$ This is replaced with the current system date and time. You can use this
switch to record the build time. You can specify a custom date format if
you wish.

$WCRANGE$ This is replaced with the update revision range in the working copy. In
most cases, this will be replaced with a single revision. However, if the
current working copy has mixed revisions, then a range will appear here
in the format of 123:456

$WCMIXED$ This will be replaced by one set of text if there are mixed update
revisions, and another if there are not.

$WCMODS$ This will be replaced by one string if there are local modification and
another if there are not.

$WCURLS$ This is replaced by the URL of the repository associated with the working
copy.

$WCINSVN$ This is replaced by one string if the entry is versioned, and another if it is
not.

$WCNEEDSLOCK$ This is replaced by one string if the svn:needs-lock property is set, and
another if it is not.

$WCISLOCKED$ This is replaced by one string if the entry is locked, and another if it is
not.

$WCLOCKDATE$ This is replaced with the date that the lock was done. You can format this
however you wish.

$WCLOCKOWNER$ This is replaced with the name of the person who owns the lock.

$WCLOCKCOMMENT$ This is replaced with any lock comments.

Some substitutions are for files only

Some of the above substitutions are for single files, rather than an entire working
copy. These switches are $WCLOCKDATES$, $WCLOCKOWNERS$, $WCISVN$,
$WCNEEDSLOCKS$, $WCISLOCKED$, and $WCLOCKCOMMENTS$.

Chapter 8

[183]

Mixed revisions, modifications, and status
In the previous table, there are several keyword substitution switches which are substituted
with one string if something is true, and another if the specified condition is false.

To use these in your templates, use the following syntax:

Lock Status: $WCISLOCKED?TextIfLocked:TextIfNotLocked$

Setting a custom date format
As mentioned earlier, the default date format used by SubWCRev is: yyyy-mm-dd
hh:mm:ss.

To specify a custom format, use the following syntax: $WCDATE=%a %d %B %I:%M:%S %p$.

The full list of codes is shown in the following table:

Code Usage
%a Short weekday name – example, Mon
%A Full weekday name – example, Monday
%b Short month name – example, Jan
%B Full month name – example, January
%c Standard date and time
%d Day of the month – number from 1-31
%H Hour, in 24 hour format (00-23)
%I Hour, in 12 hour format (1-12)
%j Day of the year, in number format (1-366)
%m Month, as a number (1-12)
%M Minute, as a number (0-59)
%p AM or PM (or the localized version of this)
%S Second, as a number (0-59)
%U Week of the year, as a number (0-53). Week 1 has the first Sunday
%w Weekday as a number (0-6). Sunday is 0
%W Week of the year (0-53). Week 1 has the first Monday
%x Standard date string
%X Standard time string
%y The year as a number, without the century (0-99)
%Y The year as a number, with the century

Keyword Substitution with SubWCRev

[184]

Code Usage
%Z The name of the time zone
%% A percentage sign

Pop quiz – keyword substitution switches
1. Keyword substitution switches

a. Are used in the template to dictate where text goes

b. Are used to switch SubWCRev on and off

c. Are used in the output, to indicate where SubWCRev has made changes

2. Which of the following is not a keyword substitution switch:

a. $WCISLOCKED$

b. $WCLOCKSTATUS$

c. $WCRANGE$

d. $WCMIXED$

3. When changing the format of the output used by SubWCRev for dates, which
of the following is not a valid option:

a. %U

b. %s

c. %e

d. %Z

Using the COM interface
There may be occasions where you need to access Subversion revision information from
within other programs. To do this, you can use SubWCRev's COM interface.

Create an object called SubWCRev.object, and use the following methods:

Method Usage

.Author Returns the author that last committed changes to the working copy.

.Date Returns the date and time of the highest commit revision.

.GetWCInfo Use this method to gather revision information from the working
copy. You must call this method before calling the other methods in
this list.

.HasModifications This method returns true if there are local modifications.

Chapter 8

[185]

Method Usage

.IsLocked This method returns true if the item is locked.

.IsSvnItem This method returns true if the item is versioned.

.LockCreationDate This method returns the date when the lock was created. If there is
no lock, it returns an empty string.

.LockComment This method returns the message that was entered when the lock
was created.

.LockOwner This method returns the name of the lock owner. If there is no lock
owner, it returns an empty string.

.MaxRev This method returns the maximum update revision from
$WCRANGE$.

.MinRev This method returns the minimum update revision, as shown in
$WCRANGE$

.NeedsLocking This method returns true if svn:needs-lock is set.

.URL This method returns the repository URL of the working copy.

You can use the COM interface to pull SVN information using other applications – for
example MS Word or Excel. This makes it a great time-saver when you're writing reports,
documentation, or team updates.

An example of reading Subversion keywords from within MS Word can be found at http://
insights.oetiker.ch/windows/SvnProperties4MSOffice.html. At the time of
writing, the source code links were dead, so I have mirrored the code samples on my blog at:
http://lesleyharrison.wordpress.com/2010/11/14/subversion-keywords-
and-tortoisesvn/. The above listed information can be accessed and parsed into a Word
document, or an Excel file, making it ideal for reporting purposes – if you want to see which
files are being changed or locked and who was responsible for touching them, then this is
the ideal way.

You will need to have macros enabled in MS Office in order to be able to use the above
example code. The Macro settings can be found by clicking the Office Button and going to
Word Options | Trust Center and clicking Trust Center Settings.... then selecting Macro
Settings. I would not recommend enabling all Macros, as this leaves you open to malicious
macros. The best option is to allow macros to run with notification only.

A detailed explanation of the use of the COM interface is beyond the scope of this book;
however, if you would like to know more about using COM interface, then I recommend you
experiment with the sample script which can be found at:

http://code.google.com/p/tortoisesvn/source/browse/trunk/src/
SubWCRev/testCOM.js

Keyword Substitution with SubWCRev

[186]

Using SubWCRev as a pre-build event in your IDE
As you have already seen, SubWCRev is a great time-saver. When you run SubWCRev, it will
automatically substitute certain pieces of information into the files that it is told to look at.

However, running it manually is a pain, and Quinn often forgets to run it when he does a
major build. To make sure that the information in hiragana.txt is always up-to-date,
Quinn decides to automate the process.

The way that you set up a pre-build event will depend on the IDE that you are using. Some
of the more popular IDE's options are described below.

Time for action – pre-build events in Visual Studio
C++ applications

To add a pre-build event in Visual Studio:

1.	 Open your project in Visual Studio.

2.	 Go to Project | PROJECTNAME properties (Where PROJECTNAME is the name of
your project.

3.	 In the window that appears, select Configuration Properties | Build Events |
 Pre-Build Event.

Chapter 8

[187]

4.	 Enter the command-line information that you want to use to run SubWCRev – this
should be similar to the information you entered in the first section about running
the files from the command line.

5.	 Click Apply, and then build your project.

6.	 If everything is set up correctly, then SubWCRev will run, and then the project
will build.

7.	 If for any reason SubWCRev returns an error, then the build will fail.

What just happened?
You have just set up Visual Studio C++ Application pre-build event. Now each time you
build your application, SubWCRev will run. If SubWCRev succeeds, the build will continue.
If SubWCRev returns an error, the build will be aborted.

You can use the command-line switches mentioned earlier in the chapter (the switches –d,
–m, and –n) to ensure that the build is aborted if there are issues with the working copy.
Remember that if you want to use more than one of those switches, you should group them
together rather than adding them one by one to the command.

Keyword Substitution with SubWCRev

[188]

Now that SubWCRev runs automatically on each build, Quinn can be sure that all the files
that need to be updated are being updated each time he does a build. So there's no need to
worry about out of date documentation or loading screens – at least not for the things that
SubWCRev can manage. If only SubWCRev could write the rest of the manual too!

Time for action – pre-build events in Visual Studio
C# applications
1. In Solution Explorer, select your project.

2.	 Go to Project | PROJECTNAME properties (Where PROJECTNAME is the name
of your project).

3.	 Select Build Events.

4.	 Enter the command to be run in the Pre-build event command line: text box.

5.	 You can enter the pre-build information in this box, or, click Edit-Pre Build... to get a
better edit box.

Chapter 8

[189]

6.	 Clicking Macros will give you more information about project paths, which you may
find helpful when writing your pre-build commands.

7.	 Once you have completed these steps you can build your project. If everything
is set up correctly, SubWCRev will run and then the project will build. Otherwise,
SubWCRev will return an error, and the build will fail.

What just happened?
You have just successfully set up a pre-build event for a C# project. Now that you have this
set up, when you successfully build the project, SubWCRev will run. If the project does not
build correctly, the event will not run.

Time for action – pre-build events in Visual Studio
VB applications

Creating a pre-build event for Visual Basic is similar to creating one for C++:

1.	 Open your project in Visual Studio.

2.	 Go to Projects | PROJECTNAME Properties (Where PROJECTNAME is the name of
your project):

Keyword Substitution with SubWCRev

[190]

3.	 Select Compile.

4.	 Click the Build Events... button (you may need to scroll down to find this).

Chapter 8

[191]

5.	 You can enter the pre-build information in this box, or, click Edit-Pre Build... to get a
better edit box:

Keyword Substitution with SubWCRev

[192]

6.	 Clicking Macros will give you more information about project paths, which you may
find helpful when writing your pre-build commands:

7.	 Once you have done this, build your project. If everything is set up correctly,
SubWCRev will run and then the project will build. Otherwise, SubWCRev will
return an error, and the build will fail.

What just happened?
You have successfully set up a pre-build event for a Visual Basic project. Now that you have
this set up, when you build the project, SubWCRev will run.

If you want SubWCRev to prevent a build from taking place under certain conditions, you
can tell it to return an error when those conditions are met, by using the command-line
switches mentioned earlier in this chapter. To add one of the command-line switches to
your command, just put them at the end of the line, like this:

SubWCRev.exe PATHTOWORKINGCOPY TEMPLATEFILE OUTPUTFILE –SWITCHES

Chapter 8

[193]

Time for action – build events in Eclipse
1.	 Open your project in Eclipse.

2.	 Go to Project | Properties.

3.	 In the Properties window that appears, select C/C++ Build | Settings.

4.	 Select the Build Steps tab, and enter your pre-build commands (as discussed in the
command line section of this chapter) in the Command: box under Pre-Build steps.

5.	 Click Apply to save your configuration.

What just happened?
You have now defined a pre-build step in Eclipse. The pre-build step will be run when you
build your project. The pre-build step is not executed if the main build is found to be up to
date; it will be executed only if a build takes place.

Using pre-build events with other IDEs
You can use pre-build events with most IDEs. If you're a notepad-style developer then you
could even create your own makeshift pre-build events using batch files or Perl. The beauty
of SubWCRev is that it is so easy to use on the fly.

Covering every IDE in existence is far beyond the scope of this book; however the
documentation for your IDE should cover the topic of pre-build commands in depth.

Pop quiz – keyword substitution
1. Keyword substitution is used to:

a. Port your program to another programming language.

b. Translate your program into another language.

c. Update certain Subversion related information such as version number and
lock status.

d. All of the above.

2. You can run SubWCRev:

a. From the command line.

b. As a pre-build event in your IDE.

c. All of the above.

Keyword Substitution with SubWCRev

[194]

3. The date and time format used by SubWCRev:

a. Is fixed as dd-mm-yy hh-mm-ss.

b. Is fixed to dd-mmm-yyy hh-mm-ss.

c. Can be customized.

Summary
This chapter looked at how to use SubWCRev to automate the replacement of important
build information in files.

In this chapter you learned:

 � What SubWCRev can do

 � How to run SubWCRev from the command-line

 � What the switches for SubWCRev are

 � How to run SubWCRev as a pre-build event in your IDE

SubWCRev is a great time saver, and can be used to automate replacing build information
across one or more files in your project.

In the next chapter you will learn how to use TortoiseSVN with Bug Tracking Systems,
including Trac, Google Projects, Redmine, and Jira.

9
Using TortoiseSVN with Bug Tracking

Systems

Unless your program is a trivial one—more like a script than a full application—
it's guaranteed that it will evolve over time as you find issues with it, and, once
it is released, your users will find bugs too.

Most teams use an issue tracker to monitor these problems, prioritizing bugs
based on how serious they are, and how many users are affected by them. It is
possible to integrate TortoiseSVN with many different issue trackers, making it
easy to link the commits you and your team make to the issues that they relate
to.

In this chapter, we shall see how to integrate TortoiseSVN with:

 � Trac

 � Google Projects

 � Redmine

 � Jira

 � Other issue trackers

So let's get started...

Using TortoiseSVN with Bug Tracking Systems

[196]

Why use bug trackers?
If your usual development work involves banging out a script or a small plugin over the
course of a weekend, then you're probably not used to using a formal bug tracking system.
With small projects, you can get away with writing a few lines, testing them, fixing any
problems, then repeating the process until you reach the stage you want. You can keep a
running list of bugs in your head.

With bigger projects—or projects with more than a couple of developers—the list of bugs is
going to get bigger, and the person who discovers the problem may not always be the person
who can fix it. Once you reach the stage of releasing software—and taking bug reports from
users, you definitely need an easy way to keep track of bugs.

Let's imagine that Quinn decides to release an Alpha build of MooseHiragana. The build
has worked well during internal testing, but it turns out that it's not quite ready for the real
world. The server has not been tested with anything more than five users connected. For
that matter, the game hasn't been tested over the internet at all, so the network code, which
works great over the LAN, simply is not ready for the laggy conditions of the internet. When
a few hundred eager users try to connect at the same time, strange things start happening.
Sometimes the game crashes, sometimes scores are posted incorrectly, sometimes it just
becomes incredibly slow. It doesn't take long for the server to run out of memory and keel
over completely, at which point any user attempting to play the multiplayer time-attack
version of MooseHiragana will find that their game crashes.

A company that doesn't use bug tracking software would be in for a nasty surprise at this
point. Their users wouldn't know where to turn, so they'd flood the game's forums, and the
support e-mail address, with complaints and questions. As they don't have the benefit of a
recommended format for a bug report, they won't know what information is needed, so the
e-mails are likely to be next to useless in terms of troubleshooting information.

Fortunately, Shiny Moose Software uses a bug tracking system; in this case, Google Code,
and has prominent links to the project page on their website, in the documentation, and
within the game. Users who are having problems are directed to the project so they can look
for help on the wiki, and report issues in the issue tracker.

Mowbray has created an issue template which asks users several questions that are likely to
be relevant in a typical bug report. Most users at least attempt to answer the questions, and
this greatly improves the quality of the bug reports compared to randomly fired-off e-mails.
The template looks like this:

Describe the steps to replicate the problem.

What do you expect to happen? What happens instead?

What edition of the product are you using? (For example, netbook, PC,
mobile)

What operating system are you using?

Chapter 9

[197]

What is the version number of the software?

Is there anything else we should know?

Shortly after the Alpha is released, issue reports start trickling in. The subject lines aren't
exactly helpful, so Mowbray makes a note that he should include some advice on choosing
good subject lines in the 'How to report a bug' sticky on the company forums. But, the
bugs are a good indicator of where the main problems lie. The majority of the issues lie
in two areas—the netbook conversion hasn't went very well, and there are lots of issues
with online play:

Quinn and Mowbray can now read through the bug reports, prioritizing them, and assigning
them to the correct person. There are several duplicate reports. These can be closed (by
setting their status to Duplicate) or filtered as appropriate.

Quinn decides to assign himself issue number 8—Can't join games. The bug report indicates
that the user cannot see games even if they know for sure that there is a game available for
them to join. He runs a few tests, and spots an issue with game listings which might cause
games that have a name that begins with a non alphanumeric character to not appear in the
listing. "That must be it!" he thinks to himself. "The user's friend must have made a game
called '~~~Join me!!', hoping it would appear at the top of the list."

Quinn submits the patch and suggests that the bug has been fixed. The user comes back
with a comment saying that the issue has NOT been fixed. They still can't see games.

Using TortoiseSVN with Bug Tracking Systems

[198]

At this point, Quinn is stumped. He's tested it in the office several times and it works fine. He
asks one of the testers to try from home, and they report the same problem. So, what's the
difference? Why does it work over the local network, but not online?

He examines the network code more closely, and notices that the timeout has been set to
a ridiculously small value. Over the LAN, it's fine, but when you add internet connection lag
into the mix, the connection is failing silently, and the user has no idea what's happening.

He fixes the problem, and the user reports that they're happy—they can now see games! Of
course, the games are crashing, but that's another bug. One down, lots more to go!

While Quinn has been working on the network code, Mowbray has not been twiddling
his thumbs. Using Google Code's filters, he was easily able to look at the issues with the
Netbook build, and has created a new branch for re-designed art for the Netbook version.
Now Netbook owning users are a lot happier because the interface works better for them,
and they have specially designed the art that looks much nicer on their small screens.

So, what could have been a PR disaster—with the forums being flooded, and the team's
inbox being filled up with angry mails—has been turned into a much more positive
experience. Inevitably, there will be many angry users, but those who understand that this
is an alpha test, and who want to do their bit, have been given the tools to do so. The team
gets clear, concise bug reports which are easily filtered so that each member of the team can
find the bugs that fall within their remit. Because of this the users will be happy too—they'll
see more bugs fixed, more quickly, and better releases coming out, even sooner!

Why integrate with bug trackers?
Using a bug tracker has a lot of advantages. It makes it easy to keep track of outstanding
issues, and see what issues have been fixed. It also makes it easy for your team members
to see which issues are relevant to them. However, it's no good having a bug tracker if your
team members forget to update it.

In most cases, when you commit a change it will be in response to an issue or bug filed
against your project. You could commit your change, mention the bug in the commit
messages, and then log on to the issue tracker's web interface and manually alter the status
of the bug in there. That, however, is a lot of unnecessary repetition, especially when you
think about the number of issues that you and your team will work with over the lifespan
of your project.

It would be much more efficient to be able to associate bugs with commits automatically.
The good news is that it's possible to do that for most of the popular bug trackers.

Chapter 9

[199]

Integration with Google Code
Google Code is Google's free project hosting service for open source projects. It offers
membership controls, Subversion and Mercurial repositories, an issue tracker, a wiki
service, and a downloads section.

If your project is being released under an open source license, then Google Code is a
great choice for your issue tracking hosting service.

Each project hosted on Google Code has its own page, which looks similar to the one
shown in the following screenshot.

You can find the Subversion URL for your project by clicking the Source tab.

Using TortoiseSVN with Bug Tracking Systems

[200]

Time for action – using TortoiseSVN with Google Code
To achieve integration between TortoiseSVN and Google Code, you need to use a tool
called Gurtle, which can be obtained from http://code.google.com/p/gurtle.

You will also need the Microsoft .NET Framework 2.0, which can be downloaded
for free from: http://www.microsoft.com/downloads/details.
aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5.

1.	 Download and install Gurtle. The installer is quite simple, just read and accept
the terms and conditions, and then hit Next when prompted.

2.	 Next, bring up the TortoiseSVN Settings menu and go to Hook Scripts | Issue
Tracker Integration.

3.	 Click Add....

4.	 On the screen that appears, enter the path to your working copy, and then
click Options.

Chapter 9

[201]

5.	 Enter the name of your project on Google Code in the box titled Google Code
Project Name on the next screen, and click Test.

6.	 If you have entered the correct name, then you will see a message saying that the
Google Code Project appears valid and reachable. Click OK.

7.	 Once you have the correct path, click OK to close the Options screen.

Using TortoiseSVN with Bug Tracking Systems

[202]

8.	 Next, you need to set the bugtraq properties. Right-click on the working copy folder
and select TortoiseSVN | Properties.

9.	 Click New.

10.	Select bugtraq:provideruuid from the dropdown list, and enter the uuid of the
Gurtle provider in the Property value box.

For a 32bit OS, the uuid is: {91974081-2DC7-4FB1-B3BE-0DE1C8D6CE4E}

For a 64bit OS, the uuid is: {A0557FA7-7C95-485b-8F40-31303F762C57}

Chapter 9

[203]

11.	Set bugtraq:providerparams to "project=moosehiragana".

What just happened?
You have just used a plugin called Gurtle to make Google Code work better with
TortoiseSVN. You can get more information about customizing and using Gurtle at
http://code.google.com/p/gurtle/w/list.

You can also learn more about using the Subversion features of Google Code at:
http://code.google.com/p/support/wiki/SubversionFAQ

Pop quiz – Gurtle and Google Code
1. Gurtle is:

a. Google's Turtle – a Google version of TortoiseSVN.

b. A plugin for TortoiseSVN that adds extra features for working with
Google Code.

c. The name of the Subversion server used by Google Code.

Integration with Trac
Trac is a popular open source wiki and issue tracking system for software projects. Trac is
released under a modified version of the BSD license. Its aim is to help developers write
great software, while staying out of the way.

Trac is easy to set up, and there are many companies offering free Trac hosting too. You can
find out more about Trac at: http://trac.edgewall.org/

Time for action – integration with Trac
TracExplorer is a suite of tools which includes integration plugins for Visual Studio and
TortoiseSVN.

1.	 Download TracExplorer from http://sourceforge.net/projects/vstrac/—
be sure to get the correct version (x86 or x64) for your operating system.

2.	 Open TortoiseSVN | Settings, go to Hook Scripts | Configure Issue Tracker
Integration.

Using TortoiseSVN with Bug Tracking Systems

[204]

3.	 Set your Working Copy Path, and select TracExplorer.TSVNTrac.TracProvider from
the Provider drop-down list.

4.	 Click Options.

5.	 Click the Add New Trac Server icon, and add your Trac Server to Trac Explorer.

Chapter 9

[205]

6.	 Next, select an issue from the list in TracExplorer.

7.	 Choose the statuses you want to use.

8.	 Now you should see a Choose Tickets button in TortoiseSVN, which presents you
with a list of issues from your Trac Server.

What just happened?
You have set up TracExplorer so that you can see a list of Trac issues from within TortoiseSVN,
and easily mark commits as being related to specific issues.

Integration with Redmine
Redmine is a flexible software project management system created using Ruby On Rails.
You can learn more about Redmine at http://www.redmine.org/.

You can integrate Redmine with TortoiseSVN by using the TortoiseRedmine Plugin.

This plugin can be downloaded from http://code.google.com/p/redmine-
projects/downloads/list

Using TortoiseSVN with Bug Tracking Systems

[206]

There are some detailed instructions for setting up the TortoiseRedmine plugin available
on the project page at: http://code.google.com/p/redmine-projects/wiki/
InstallAndSetup. Rather than duplicate the instructions (which may change for future
versions) here, I recommend you refer to that page if you need assistance working with
the plugin.

Integratation with Jira
Jira is a flexible issue tracking system that has some basic compatibility with Subversion
out-of-the box. You can augment this with the help of the JiraSVN plugin, which
can be downloaded from http://csharptest-net.googlecode.com/files/
SvnPluginInstall.msi.

Users of the 64bit version of TortoiseSVN should download the version of the
plugin found at: http://code.google.com/p/csharptest-net/downloads/
detail?name=SvnPluginInstall-x64.msi.

The author of the plugin maintains an interesting blog about C# development and
related issues, at http://csharptest.net/.

Installing the plugin is quite simple, simply a matter of running the .msi file and
clicking Next when prompted.

Time for action – Jira and TortoiseSVN integration
1.	 Register the Jira plugin by going to TortoiseSVN | Settings, and selecting Hook

Scripts | Configure Issue Tracker Integration, then clicking Add.

Chapter 9

[207]

2.	 Select CSharpTest.Net.SvnPlugin.MyPlugin from the Provider dropdown, and enter
the base path you want to use for check-ins in the Working Copy Path. In most
cases, c:\ is acceptable, or you could use your working copy directory if you wish.

3.	 Next, you need to set the bugtraq properties. Right-click on the working copy folder
and select TortoiseSVN | Properties.

4.	 Click New.

5.	 Select bugtraq:append from the dropdown, and set the property value to false.

6.	 Repeat the process to set the following properties (changing the Jira URL if
appropriate):

bugtraq:label = Defect {PREFIX}-
bugtraq:logregex = {Regular express match of defect ids}
bugtraq:message = {PREFIX}-%BUGID%
bugtraq:number = true
bugtraq:url = http://jira:8080/browse/{PREFIX}-%BUGID%

7.	 Create a new property called jira:url and set the value to your Jira URL.

8.	 You should now be able to perform a check-in and view issues using the Jira
Issues button.

What just happened?
You have just set up the JiraSVN plugin to enable you to see, work with, and leave comments
on Jira Issues in TortoiseSVN. This plugin enables you to see a list of issues without having to
rely on using the web interface.

Working with other issue trackers
TortoiseSVN supports many other issue trackers, including Mantis, Microsoft Team
Foundation Server, Artifacts, and Bugnet. There are too many bug trackers available for
a complete list to be written here. If you use a bug tracker that has not been mentioned
in this chapter, then it is worth checking to see if there is an existing plugin.

If there is not a plugin, then it may be possible to write one, or to take advantage of your
bug tracker's pre-commit hook script to get some basic integration.

To take advantage of the pre-commit hook, you must define some properties on your
project's folders. Some of those properties were listed earlier in this chapter. These
properties should be set on folders for them to work. If you have different settings on a
folder and a sub-folder, then the setting on the subfolder over-rides the parent folder's
setting.

Using TortoiseSVN with Bug Tracking Systems

[208]

The bugtraq:logregex and bugtraq:url properties are useful even if you don't want to
use any integration features. You can use those properties to, for example, turn all mentions
of issues in log messages into links.

Properties for hook scripts
You can set TortoiseSVN to request the issue number that a bug relates to in a separate field,
or you can use regular expressions to find the bug number from within the log message. If
you set both options, any issue numbers found in the log message will over-ride those found
in the issue number field.

The properties are:

 � bugtraq:append: This property is true by default, meaning that the BugID is
appended to the end of the log message. If set to false, then the BugID is inserted
at the beginning of the log message.

 � bugtraq:label: This defines the label shown next to the input box where the issue
number is requested.

 � bugtraq:message: This is used to define the message added to the end of the log
message. It must contain %BUGID%—an example property value for this would be
Fixes: %BUGID%

 � bugtraq:number: This property is set to true by default, so that only numbers
are permitted in the issue field. If your bug tracking system uses letters as well as
numbers, then set this to false.

 � bugtraq:url: This property should be set to the URL of your bug tracking system.
The URL can be relative, or absolute. TortoiseSVN will use this URL to provide a
link to the issue associated with the commit.

 � bugtraq:warnifnoissue: This property is set to false by default. If it is set to true,
then TortoiseSVN will warn the user if they attempt to make a commit without
entering an issue number.

 � bugtraq:logregex: If this property is set, TortoiseSVN will parse the log message to
look for an issue number, allowing users to enter a messages in a human-readable
format, such as "Fixes Bug: #45, #47 and #48". You can set your regular expression
to look for any instances of a bug reference number. If you use this method, you will
need to agree on consistent formatting for bug numbers within your team—if some
people write Bug #123 while others write Bug No: 123, and others something different
again, you'd need some fancy expressions to reliably catch everything! A simple
regular expression to parse the "Fixes Bug:..." text shown previously is displayed in the
following screenshot. The regular expression is quite simplistic. It could be improved
to make it more likely to match even poorly written strings, for example, by using
[Bb]ugs to catch "Fixes bugs:" as well as the intended "Fixes Bugs":

Chapter 9

[209]

The previously shown regular expression has the following result in the log window.
Notice that the bug numbers have been converted to links:

Using TortoiseSVN with Bug Tracking Systems

[210]

Even if you don't need to parse the log messages to get TortoiseSVN to work with your
issue tracker, you can use the regular expressions parser to turn your log messages into
links, making it easier to check out the issues at a later date.

Have a go hero – regular expressions
Even if your issue tracking system doesn't require the use of pre-commit hooks, it's worth
playing with them to see what you can get them to do.

Using regular expressions to parse the commit log has several benefits, try writing a regular
expression to parse your log message, and notice how much easier it is to pick out the issue
numbers now!

If you aren't familiar with regular expressions, you can find a good regular expression tutorial
at http://www.regular-expressions.info/.

Pop quiz – regular expressions
1. A regular expression is:

a. A well formed piece of program code—for example, an IF statement.

b. A connection string used to tell TortoiseSVN what Subversion server to
connect to.

c. An expression used to parse text and look for a piece that matches a
specific pattern.

2. If both the regular expressions and the number property are used, then:

a. bugtraq:logregex overrides bugtraq:number.

b. bugtraq:number overrides bugtraq:logregex.

c. It is not possible to set both, so this cannot happen.

Chapter 9

[211]

Summary
This chapter looked at how to use TortoiseSVN with popular bug tracking systems. There
are lots of different bug trackers, but TortoiseSVN is incredibly flexible and can be used
with almost any system. Integrating TortoiseSVN with a bug tracking system makes it easy
to associate patches with specific bugs, saving you time and effort, and ensuring that you
always know what is going on in your project.

In this chapter you learned:

 � Why it is important to work with issue trackers.

 � How to integrate TortoiseSVN with the most popular issue trackers,
including Google Code, Jira, Trac, and Redmine.

 � How you might integrate TortoiseSVN with other issue trackers.

The next chapter will explain the issue of security, and how you can use SSH with
TortoiseSVN to encrypt transmissions to and from your Subversion server.

10
Using SSL with TortoiseSVN

So far, we have focused on using TortoiseSVN itself. Our example Subversion
server has been a rather simple, and in some ways insecure, one. If security
is a priority – and it should be, if you are using Subversion in a business
environment – then this chapter is for you.

In this chapter we shall:

 � Learn about SSH and SSL

 � Learn how to set up an Apache and Subversion setup on Linux

 � Learn about public and private key pairs

 � Learn how to use SSH with TortoiseSVN

So let's get started...

What are SSH and SSL?
You probably already have some awareness of SSH and SSL as forms of security. The terms
SSH and SSL are thrown around quite frequently online by service providers and online
shops trying to reassure their customers that their sites are safe to use.

SSL and SSH are often confused. SSL stands for Secure Sockets Layer. It typically uses port
443 for connections, and is most commonly used for transmitting financial information – for
example for online banking, and online shopping.

Using SSL with TortoiseSVN

[214]

SSH stands for Secure Shell. It usually uses port 22 for connections, and it is typically used for
remote login and data transmission. Both SSH and SSL are incredibly secure. It is not practical
for a normal hacker or 'script kiddie' to break the encryption which is used. This means that
even if an attacker were able to eavesdrop on an SSH or SSL session, they would not be able
to understand what is being transmitted.

SSH and SSL can be used to make your Subversion server more secure. Security may not be a
concern for a small office with an internal-only server, but if your server is accessible via the
Internet then it is a must.

Installing VisualSVN Server for Windows
VisualSVN Server is an easy-to-use SVN server for Windows. It works well out-of-the-box, is
secure, and has a powerful but intuitive management console.

There are two versions of VisualSVN Server. The Standard Edition is a free download, and
may be used for commercial purposes. The Enterprise Edition is not free ($950, at the time
of writing), but adds extra features including remote administration and integrated Windows
Authentication.

VisualSVN Server is by far the easiest way to set up a secure SVN server on Windows.

You can download VisualSVN Server from: http://www.visualsvn.com/server/.

Time for action – setting up VisualSVN Server
1.	 Download VisualSVN Server. The Standard Edition should suit the needs of most

development teams.

2.	 Click Next to pass the first screen of the installer. Read the License Agreement, and,
assuming you accept it, tick the checkbox to indicate such, and click Next again.

3.	 When prompted, select VisualSVN Sever and Management Console:

Chapter 10

[215]

4.	 On the next screen, choose the directory you would like VisualSVN Server to be
installed to, set the repository path, and the server port. The default server port
should be acceptable for most people. Leave use secure connection (https://)
ticked. If you want the server to be accessible over the internet, you may need to
open the port on your router and/or firewall.

5.	 Click Install, and then when the installer completes, click Finish.

Using SSL with TortoiseSVN

[216]

VisualSVN Server will launch. You should see a screen similar to the following screenshot:

What just happened?
You have just installed the VisualSVN Server. This package includes Apache and Subversion,
so you now have a working, secure Subversion setup.

The VisualSVN Server uses SSL security. It's easy to set up from an administrator's point
of view, and even easier to use from a user's point of view. Your users can connect to the
server without needing to do any complicated pre-setup.

Using VisualSVN Server
Now let's take a quick tour of the VisualSVN Server administration interface. The first thing
you should notice is the tree structure down the left-hand side of the VisualSVN Server
window. Under Repositories, you should see your existing repository. You can create a new
repository by right-clicking on Repositories, and selecting Create New Repository….

Chapter 10

[217]

You can add users by right-clicking on Users and selecting Create New User:

Using SSL with TortoiseSVN

[218]

Groups can be created in a similar fashion.

To add users to a repository and set their permissions. Right-click on the repository in
question and select Properties. This will bring up the Properties dialog:

Click Add, and select the user (or group) you wish to add from the Choose User or Group
dialog that appears:

Chapter 10

[219]

Finally, click on each user, assign the correct permissions to them, and click Apply. In
this case, we're limiting Everyone to Read Only access, except for Quinn, who is given
Read/Write access:

Using SSL with TortoiseSVN

[220]

Pop quiz – all about SSH
1. SSH stands for:

a. Secure Shell

b. Special Secret Holder

c. Secret Secure Holder

2. SSL Stands for:

a. Secure Sockets Layer

b. Secure Secrets Layer

c. Secure Secret Locker

3. You can connect to Subversion via SSH using:

a. SSH+svn://

b. File://

c. Svn+ssh://

d. http://

Working with OpenSSH certificates
As a TortoiseSVN user, you may need to connect to a server that uses SSH. To do this, you
will need to use a keyfile. The following instructions describe how to create public key and
private key pairs on Linux. SSH key pairs can also be created on Windows by using Puttygen
(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html).

Creating your public and private key pairs
To use ssh-keygen, you will need to be logged into the server as either the root user, or
your SVN user.

Chapter 10

[221]

Time for action – creating public and private key pairs
1.	 While logged in as the correct user, execute the following command:

	 ssh-keygen	–b	1024	–t	dsa	–N	YOURPASSPRHASEHERE	–f	mykeyfile

2.	 You should see something similar to the following (the key/fingerprint in this
example are just made up examples):

ssh-keygen -b 1024 -t dsa -N whatevermykeyis -f mykeyfile
Generating public/private dsa key pair.
Your identification has been saved in keyfile.
Your public key has been saved in keyfile.pub.
The key fingerprint is:
1a:a9:11:1d:2b:c2:e5:5a:65:29:df:8a:1d:4c:69:3c root@debian
The key's randomart image is:
+--[DSA 1024]----+
| |
| |
| . . |
| . * o |
| + E o |
| + @ B |
| . o * . |
| o o o |
| . . o |
+-----------------+

3.	 If you want to make keys for more than one user, run the command again, specifying
a different name instead of mykeyfile.

4.	 For each keyfile, you should see two files: one called mykeyfile, which is the
private key, and another called mykeyfile.pub, which is the public key. Copy
the private key to your Windows desktop.

Using SSL with TortoiseSVN

[222]

5.	 Download PuTTYgen from http://www.chiark.greenend.org.uk/
~sgtatham/putty/download.htmlRun PuTTYgen and go to Conversions |
Import, then select your key.

6.	 Enter your passphrase when prompted.

7.	 Click Save public key.

Chapter 10

[223]

8.	 Save the key using an appropriate file name, with a .ppk extension.

Using SSL with TortoiseSVN

[224]

9.	 To test the key, use PuTTY (available for free from http://www.chiark.
greenend.org.uk/~sgtatham/putty/) to connect to your SVN server – fill
in the hostname box, and add your .ppk file under SSH | Auth:

10.	Save the session, and attempt a connection. You should see something similar
to the following:

login as: svn
Authenticating with public key "imported-openssh-key"
(success (1 2 (ANONYMOUS EXTERNAL) (edit-pipeline
svndiff1 absent-entries)))

Chapter 10

[225]

What just happened?
You have just created your public and private keys, and converted the public key into a
format which can be used on Windows. Make a note of the name that you used in PuTTY,
as this will be used by TortoiseSVN later to connect to the server.

Public Key and Private Key cryptography is popular in computing. It is used by a number
of standards – not just SSH, but Transport Layer Security (TLS, the successor of SSL), and
PGP too.

Public key cryptography is different to other methods because it is asymmetric. This means
that the key that encrypts the message is not the one that decrypts it. Users of public key
cryptographic methods have a pair of keys – one is a public key, the other is a private key.

As the name suggests, the public key can be shared freely. Messages are encrypted using a
user's public key, and can only be decrypted with the private key. So, users can share their
public key with anyone they expect to communicate with, while keeping their private key
secret and secure.

Hybrid systems

The SSL and TLS family of encryption schemes are actually hybrid algorithms.
They use a key exchange algorithm and transmit data using that key and a
symmetric key algorithm.

There is, of course, some concern – how do you know if the public key really does belong to
the person you think it does? This can be ensured via the use of certificate authorities which
issue digital certificates that contain information about the owner of each certificate.

Pop quiz – public keys and private keys
1. With Public and Private Key Systems you:

a. Encrypt data with your private key and decrypt it with your public key.

b. Encrypt data with your public key, and decrypt it with your private key.

c. Use the public key to sign your message to make sure it hasn't been
tampered with.

2. Asymmetric encryption systems are:

a. More secure than symmetric systems.

b. Less secure than symmetric systems.

c. Just as secure as symmetric systems, but less processor intensive.

Using SSL with TortoiseSVN

[226]

Using Pageant to store connection details
If you find using PuTTY to store your connection details to be a cumbersome process, then
you might prefer to use Pageant, which can be downloaded from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Pageant allows you to store keys for multiple servers, and is useful if you need to manage a
lot of keys. Pageant runs in the taskbar, and has a simple interface, simply click Add Key, and
browse to the location of your Private Key:

Pop quiz – connecting to Subversion with SSH
1. Pageant can be used to:

a. Store your public keys

b. Store your private keys

c. Store connection details for SSH servers

d. All of the above

2. The key phrases we are using are:

a. 1024 bit

b. 256 bit

c. 64 bit

d. 512 bit

Chapter 10

[227]

Using pre-commit hooks
Server-side hooks were discussed in an earlier chapter, but there are a few things that they
cannot be used effectively for.

One such example is checking to see whether a file has been modified recently.

Quinn goes to a meeting with his lawyer, and discovers that the way he had been updating
the copyright notice in files inside the MooseHiragana project was wrong. The copyright year
should not be changed for every file at the start of a new year – it should only be updated if
the content of the file has actually been changed that year. Modifying each file's copyright
date manually would be an error-prone process. Fortunately, there's an easy way to make
sure you never forget to update the copyright year, using a pre-commit hook:

Time for action – using a pre-commit hook in TortoiseSVN
Quinn decides to make use of a pre-commit script provided by the makers of TortoiseSVN.
The script is available from TortoiseSVN's Google Code Project, which checks .cpp and .h
files and shows an error for every file the user forgot to update the copyright year. It's a
simple matter to change the .cpp to .py so that the Python files in the project are checked.

1.	 Download the script from: http://code.google.com/p/tortoisesvn/
source/browse/trunk/contrib/hook-scripts/client-side/checkyear.
js. If necessary, modify it to suit the file type, and copyright message format, of
your project.

2.	 Make a note of where you save the file; you'll need the path later.

3.	 Bring up the TortoiseSVN right-click menu and select Settings.

Using SSL with TortoiseSVN

[228]

4.	 In the Settings dialog box that appears, select Hook Scripts, then click Add.

5.	 Set the Hook Type to Pre-Commit Hook. Tick Wait for the script to finish, point the
working copy path to your working copy, and in the Command Line To Execute field
enter wscript c:\checkyear.js– assuming you saved the file to your user folder. If you
have saved the script somewhere other than your user folder, then enter wscript /
path/to/checkyear.js.

6.	 In the preceding screenshot, Hide the script while running is ticked. That is probably
how you will want to have the hook script set up in the long term (Command boxes
are pretty ugly, and can confuse non-technical users), but for testing purposes it can
be useful to leave this unchecked, so that you can see what is happening.

Chapter 10

[229]

Now, when you make a commit, your files will be checked, and you will be alerted if you are
trying to commit a file that does not have an up-to-date copyright year:

What just happened?
You have just set up a client-side pre-commit hook that will check the contents of the files
you are committing for an up-to-date copyright notice. If the copyright notice contains the
wrong year, you will be informed.

You can use client-side pre-commit-hooks for many other purposes, for example, you could
check to make sure that the build was successful, or that the code has been run through a
test-suite successfully, before a commit is allowed.

Summary
This chapter looked at how to use TortoiseSVN with SSH and SSL, and how to set up
client-side hook scripts. This is important if you want to ensure that your Subversion
server is as secure as possible, and that connections cannot be eavesdropped upon.

In this chapter you learned:

 � What SSH and SSL are and why are they important

 � How to set up VisualSVN Server

 � How to create public and private key pairs

 � How to use the keys with TortoiseSVN

 � How to use client-side pre-commit hooks

Using SSL with TortoiseSVN

[230]

SSL security is easy to use once it's set up. It doesn't get in the way, and it adds an extra layer
of security.

This chapter concludes the main part of the book. I hope you have found it useful in learning
how to use TortoiseSVN. The appendix which follows this chapter explains some of the more
important commands which you can use via the command line – you don't have to use the
command line to interact with Subversion if you do not want to, but there are times when it
is convenient to do so, and you may find its speed and flexibility useful.

Command-line Reference
TortoiseSVN allows you to access Subversion's commands from within windows, easily
performing check-ins, setting properties, viewing the repository, and performing other tasks.
However, there may be occasions when you will find it quicker and easier to do some actions
via the command-line. You don't have to use the command-line if you don't want to, but it
can be a powerful tool when used well.

This appendix contains:

 � A list of the components of Subversion

 � A list of the Subversion command-line commands

 � A list of properties used by Subversion

Getting the command-line tools
The SVN command line client tools are shipped with VisualSVN, so if you have already
installed VisualSVN Server (which was discussed in Chapter 10, Using SSH With TortoiseSVN),
then you will have the command-line tools.

If you have not already installed VisualSVN Sever, then you can download the files from one
of the sites listed at:

http://subversion.apache.org/packages.html#windows

The CollabNet client is a free download, although registration is required. If you do not want
to provide registration information, then I recommend the SlikSVN client, although any of
the clients listed on the http://subversion.apache.org/ site will work.

Command-line Reference

[232]

Subversion's components
Subversion is made up of several components. Each one serves a different purpose:

 � svn: The main command-line program

 � svnversion: Reports the revision of the working copy

 � svnlook: Used to inspect the repository

 � svndumpfilter: Filters the repository stream

 � od_dav_svn: The SVN Apache Module

 � svnserve: The SVN Server

 � svnsync: Used to mirror a repository

Protocols supported by Subversion
Subversion supports several protocols. They are:

 � file://: Used to reference a path on the local machine

 � http://: Used to reference a path on an Apache web server

 � https://: Used to reference a path on an Apache web server using SSL

 � svn://: Used to reference a path to an SVNServe server

 � svn+ssh://: Used to reference an SVNServe server using SSH

Subversion command-line reference
The following table provides a list of SVN commands:

Getting help
Subversion has an extensive help system. To view the list of available commands, use SVN
Help. Using svn help <command> will give detailed information on the usage of the
specified command, along with any switches that can be used with that command.

Syntax Usage

svn help Shows a list of commands.

svn help <command> Shows detailed help for that command.

Appendix A

[233]

Working with working copies
Syntax Usage

svn checkout "/PATH/branch-
name/"

Performs a checkout, creating a working copy of
the branch (or trunk) specified.

svn checkout "/PATH/branch-
name/" <foldername>

As above, but checks out into a folder with the
name specified.

svn update –r<revision-number>
"/PATH/TO/UPDATE_FROM"

Updates your working copy to the specified
revision (or the latest revision, if no revision
number is specified).

svn add Used to add files to version control. Switches are
filename, foldername (in which case subfolders
and files will be added), * (all items will be
added, recursively, ignoring already versioned
folders), and * --force (which will recourse into
versioned directories).

svn copy "source" "destination" Copies from the source path to the destination
path.

svn move "source "destination" Moves files from the source path to the
destination path.

svn delete "/PATH" Deletes the target path.

svn revert "/path/to/file" Reverts changes to the specified file or folder.

svn log "/PATH" Shows log messages.

svn blame "/PATH" Shows commits and messages for the given
path.

svn diff "/PATH/filename" See changes to filename.

svn diff "/PATH/file@1" "/PATH/
file@3"

See changes to filename between revisions one
and three.

svn merge "URL1" "URL2" "/PATH/
filename"

Apply the diff of URL1 and URL2 to filename.

svn commit "/PATH" Commit changes to a file or folder

svn resolve "/PATH" Resolve a conflict.

svn cleanup "/PATH" Remove locks and complete operations – acts
recursively.

svn lock "/PATH" Get a lock on the given path.

svn unlock "/PATH" Releases a lock on a given path.

svn cat "/PATH/filename" Prints the contents of the file to the screen.

svn status "/PATH" Shows the status of the path.

svn propdel <PROPERTY> "/PATH" Deletes <PROPERTY>.

Command-line Reference

[234]

Syntax Usage

svn propget <PROPERTY> "/PATH" Gets the value of <PROPERTY>

svn proplist "/PATH" Lists the properties of /PATH

svn propset <PROPERTY> <VALUE>
"/PATH"

Sets <PROPERTY> to <VALUE> for /PATH

Arguments for commands
These arguments can be added to SVN commands to modify the default behavior. For
example, svn update will update to the latest revision by default, but svn update –r101
will update to revision 101.

Argument Usage

-m "Message content" Adds a message

-q Quiet

-v Verbose

-r<number> Revision number

-c Change

-t Transaction

-R Recursive

-N Non recursive

Properties and statuses
The following are the possible statuses that an item can have. If there is no status listed
beside an item, that means there have been no modifications.

Property Meaning

A Added

D Deleted

M Modified

R Replaced

C Conflict

X External

I Ignored

? Not found in repository

! Missing

~ Type changed

B
Pop Quiz Answers

The answers to the pop quizzes from each chapter are provided here for your reference.
How did you score?

Chapter 1: Setting up TortoiseSVN

Pop quiz - subversion concepts

1 2 3

b c (In the context of Subversion) b

Chapter 2: Getting Started with TortoiseSVN

Pop quiz - working with TortoiseSVN

1 2 3

c b b

Pop Quiz Answers

[236]

Chapter 3: Creating and Applying Patches

Pop quiz - working with TortoiseSVN

1 2 3

a a a

Chapter 4: Status Information and Conflict Management

Pop quiz - working with TortoiseSVN

1 2 3

c c c

Chapter 5: Branching and Merging

Pop quiz - working with TortoiseSVN

1 2 3 4 5

c c c a d

Chapter 6: Working with Revision Logs

Pop quiz 1 - revision graphs

1 2

c b

Appendix B

[237]

Pop quiz 2 – working with your view

1 2 3

d a c

Chapter 7: Exporting and relocating Working Copies

Pop quiz - working with your working copy

1 2 3

c d a

Chapter 8: Keyword Substitution with SubWCRev

Pop quiz 1 - getting to grips with SubWCRev

1 2

b a

Pop quiz 2 - keyword substitution switches

1 2 3

a b c

Chapter 9: Using TortoiseSVN with Bug Tracking Systems

Pop quiz 1 - Gurtle and Google Code

1

b

Pop Quiz Answers

[238]

Pop quiz 2 - regular expressions

1 2

c a

Chapter 10: Using SSH with TortoiseSVN

Pop quiz 1 - all about SSH

1 2 3

a a c

Pop quiz 2 - public keys and private keys

1 2

a a

Index
A
Apache

about 34
downloading 32
installing 32-34
URL 32

Apache + Subversion server
Apache, installing 32
setting up 29, 30
Subversion, installing 34
VisualSVN, installing 30

asymmetric 225

B
BEYOND COMPARE utility

about 169
download link 169

Blame
about 73
using, for track changes 74-76
viewing, log used 77-79

branch
about 106
creating 111-113
merging 119-125

branching
about 105
benefits 106
limitations 110

branch types
about 107
branch for each platform 109, 110
branching components 109
branching on new releases 107
branching on promotion 108
branching per task 108

bug trackers
features 196
integrating, with TortoiseSVN 198
using 196-198

bugtraq:append property 208
bugtraq:label property 208
bugtraq:logregex property 208
bugtraq:message property 208
bugtraq:url property 208
bugtraq:warnifnoissue property 208

C
changelists

file, removing from changelist 144
files, ignoring on commit 144, 145
working with 140-144

changes
committing, to repository 46-49

checkout depth
about 43
using 43, 44
working with 45, 46

checkout depth options
exclude 45
fully recursive 45
immediate children, including folders 45
only file children 45
only this item 45
working copy 45

CollabNet client 231
COM interface

using 184, 185
command-line switches, SubWCRev

about 181
-d 181
-e 181
-f 181

[238]

-m 181
-n 181
-x 181
-X 181

command-line tools
CollabNet client 231
getting 231
SlikSVN client 231

commit log messages
about 50, 79
features 51
formatting conventions, used 51

components, Subversion
od_dav_svn 232
svn 232
svndumpfilter 232
svnlook 232
svnserve 232
svnsync 232
svnversion 232

conflicts, merging
local delete, incoming delete 129
local edit, incoming missing 129
local missing, incoming edit 129

D
differences

about 133
folders,comparing in repository browser 140
viewing, between file in working copy 134, 135
viewing, between files outside working copy

136-139

F
file conflict

about 97
resolving 97-102
types 97

file conflict, types
local delete, incoming delete on update 102
local delete, incoming edit on update 101
local edit, incoming delete on update 98-100
local edit / incoming edit 97, 98

file locking
about 87
lock, releasing 95, 96

lock, stealing 92-95
needs-lock property, setting 88-90

files
excluding from committing 53, 54
excluding from versioning 52
locking 90, 92

file statuses
about 86
added 86
conflicted 86
deleted 86
ignored 86
locked 86
modified 86
non-versioned 86
normal 86
read only 86

G
GermanMoose 29
global ignore list

using 55
Google Code

about 199
integrating with TortoiseSVN 200-203

Gurtle
about 200
downloading 200
installing 200

H
hook scripts

properties 208
Hybrid systems 225

I
IDE 9
installation

TortoiseSVN 14-19
Integrated Development Environment. See IDE
issue trackers, TortoiseSVN

Artifacts 207
Bugnet 207
Mantis 207
Microsoft Team Foundation Server 207

[239]

items, excluding from commit
causes 52
files, excluding from committing 53, 54
files, excluding from versioning 52
global ignore list, using 55, 56

J
Jira

about 206
integrating, with TortoiseSVN 206, 207

JiraSVN plugin
about 206
downloading 206

K
keyfile 220
keyword substitution switches 182
keyword substitution switches, SubWCRev

$WCDATE$ 182
$WCINSVN$ 182
$WCISLOCKED$ 182
$WCLOCKCOMMENT$ 182
$WCLOCKDATE$ 182
$WCLOCKOWNER$ 182
$WCMIXED$ 182
$WCMODS$ 182
$WCNEEDSLOCK$ 182
$WCNOW$ 182
$WCRANGE$ 182
$WCREV$ 182
$WCURLS$ 182
about 182

L
language packs, TortoiseSVN 20
limitations, branching

excessive branching 110
excessive merging 110
permanent temporary branch 110

local delete, incoming delete, file conflict 102
local delete, incoming edit, file conflict 101
local edit, incoming delete, file conflict 98-100
local edit / incoming edit, file conflict 97, 98
log messages

using 77-79

M
merges

tracking 130
merging

about 105, 119, 120
branch 120
conflicts, resolving 128
gincremental approach 128
iterative approach 128
trees 126

methods, SubWCRev.object
.Author 184
.Date 184
.GetWCInfo 184
.HasModifications 184
.IsLocked 185
.IsSvnItem 185
.LockComment 185
.LockCreationDate 185
.LockOwner 185
.MaxRev 185
.MinRev 185
.NeedsLocking 185
.URL 185

Microsoft .NET Framework 2.0
download link 200

O
OpenSSH certificates

public and private key pairs, creating 221-224
working with 220

operating system edition
checking 10

P
patch

about 64
applying 69-71
creating 66-68

patches 63
patch file 64
patching

about 63
advantages 63, 64
using 63

[240]

patch review process
flow chart 65

pre-build events
adding, in Visual Studio C# 188, 189
adding, in Visual Studio C++ 186
adding, in Visual Studio VB 189-192
using, with IDEs 193

pre-commit hooks
about 207
using 227-229

Private Key cryptography 225
properties, hook scripts

bugtraq:append 208
bugtraq:label 208
bugtraq:message 208
bugtraq:number 208
bugtraq:url 208
bugtraq:warnifnoissue 208

protocols, Subversion
file:// 232
http:// 232
https:// 232
svn:// 232
svn+ssh:// 232

Public key cryptography 225
Puttygen

about 220
downloading 222

R
Redmine

about 205
integrating, with TortoiseSVN 205
URL 205

repository
changes, committing to 46-49
creating 21-23
testing 24

repository browser
about 58
using 58, 59

revision graphs
trees, pruning 154
view, changing 151-153
viewing 145-150
working with 145

revision logs
about 133
differences 133

S
Shiny Moose Software

about 39, 63
example 168

SlikSVN client 231
spellchecking dictionaries

adding 21
spellchecking feature, TortoiseSVN 21
SSH 213
ssh-keygen 220
SSL 213
statistics

about 79
viewing 80, 81

Subversion
about 157
command-line reference 232
components 232
downloading 34
help system 232
installing 35, 36
protocols 232
URL 34

SubWCRev
about 177
command-line switches 181
custom date format, setting 183
documentation, updating 180
features 177, 178
using, as pre-build event 186, 187
using, via command line 178, 179

SubWCRev.object
methods 184

SVN commands
about 232
arguments 234
help system 232
properties and statuses 234
working copies, working with 233

svn:ignore property 52
SVNServe 25

simple authentication feature 28
simple authentication, setting up 28

[241]

SVNServe server
setting up 25-28

T
tag

about 106
creating 114

tagging 106
Tiny Moose Software 66
TortoiseRedmine Plugin

about 206
downloading 206

TortoiseSVN
about 9
Blame 73
bug trackers, integrating with 198
bug trackers, using 196-198
checkout depth feature 43
downloading 14
file conflict 97
file locking 87
file statuses 86
installing 14-19
integrating, with Google Code 199-203
integrating, with Jira 206, 207
integrating, with Redmine 205
integrating, with Trac 203-205
issue trackers, working with 207
language packs 20
pre-commit hooks, using 227-229
spellchecking dictionaries, adding 21
spellchecking feature 21
URL 14
version, selecting 10
working copy, checking out 40-42

TortoiseSVN repo browser 173
TortoiseUDiff 18
Trac

about 203
integrating, with TortoiseSVN 203-205
URL 203

TracExplorer
about 203
downloading 203

Transport Layer Security 225
trees

merging 126, 127
trees, revision graph

pruning 154
troubleshooting

working copy problems 171-175
trunk 106

U
Unix-style wildcards 56

V
VisualSVN Server

about 32, 214, 231
administration interface 216-219
downloading 30, 214
installing 30, 31, 214
setting up 214, 215

W
Windows Server 2003 architecture

checking 12, 13
Windows Vista / 7 architecture

checking 10, 11
Windows XP architecture

checking 11, 12
working copy

changes, reverting 116-119
checking out 40-42
deleting 169-171
exporting 159, 160
exporting from URL 161, 162
relocating 166-168
removing, from version control 163-165
switching 114-116
updating 56-58
working with 157, 158

working copy cleanup
executing 169-171

working copy issues
troubleshooting 171-175

X
x64 14
x86 14

Thank you for buying
TortoiseSVN 1.7 Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Managing Software Development with Trac and
Subversion
ISBN: 978-1-847191-66-3 Paperback: 120 pages

Simple project management for software
development.

1. Managing software development projects simply

2. Configuring a project management server

3. Installing, configuring, and using Trac

Project Management with dotProject: Implement,
Configure, Customize, and Maintain your DotProject
Installation
ISBN: 978-1-847191-64-9 Paperback: 232 pages

A complete beginner's guide to every aspect of
setting up and administering your dotProject
installation

1. Install and use the dotProject project management
system

2. Customize and extend dotProject

3. Work with reports and Gantt charts

Please check www.PacktPub.com for information on our titles

Maximize Your Investment: 10 Key Strategies for
Effective Packaged Software Implementations
ISBN: 978-1-849680-02-8 Paperback: 232 pages

Accelerate packaged (COTS) software
implementations, increase returns on investment,
and reduce implementation costs and customizations

1. Develop implementation approaches that maximize
packaged software advantages and minimize
packaged software challenges

2. Reduce implementation costs, increase knowledge
generation, and reduce non-value-added
implementation activities

3. Enable customers to lead during the
implementation to maximize long term success

YUI 2.8: Learning the Library
ISBN: 978-1-849510-70-7 Paperback: 404 pages

Develop your next-generation web applications with
the YUI JavaScript development library

1. Improve your coding and productivity with the YUI
Library

2. Gain a thorough understanding of the YUI tools

3. Learn from detailed examples for common tasks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Setting up TortoiseSVN
	Choosing your TortoiseSVN version
	Checking your operating system edition
	Time for action – checking Windows Vista / 7's architecture
	Time for action – checking Windows XP's architecture
	Time for action – checking Windows Server 2003 architecture
	Installing TortoiseSVN

	Time for action – installing TortoiseSVN
	Language packs and spellchecking

	Time for action – adding new spellchecking dictionaries
	Creating a repository
	Time for action – creating a repository
	Time for action – testing your repository
	Setting up the SVNServe server
	Time for action – setting up SVNServe
	Simple authentication for SVNserve

	Time for action – setting up simple authentication for SVNserve
	Setting up an Apache + Subversion server
	Time for action – installing VisualSVN
	Time for action – installing Apache
	Time for action – installing Subversion
	Summary

	Chapter 2: Getting Started With TortoiseSVN
	Our case study
	Working copies explained
	Time for action – checking out a working copy
	Checkout depth

	Time for action – using checkout depth
	Committing changes to a repository

	Time for action – committing changes to a repository
	The importance of commit log messages
	Excluding items from a commit

	Time for action – excluding files that are already versioned
	Time for action – temporarily excluding files from committing
	Time for action – using the global ignore list
	Keeping your working copy up-to-date

	Time for action – updating your working copy
	Using the repository browser

	Time for action – using the repository browser
	Summary

	Chapter 3: Creating and Applying Patches
	Why use patching?
	How to create a patch
	Time for action – creating a patch
	Applying a patch

	Time for action – applying a patch
	Tracking changes with Blame

	Time for action – using Blame to track changes
	Time for action – using the log
	Working with statistics

	Time for action – viewing statistics
	Summary

	Chapter 4: Status Information and Conflict Management
	File statuses
	File locking
	Time for action – setting the needs-lock property
	Time for action – locking a file
	Stealing a lock

	Time for action – stealing a lock
	Time for action – releasing a lock
	Resolving conflicts
	Scenario 1 – local edit, incoming edit
	Scenario 2 – local edit, incoming delete
	Scenario 3 – local delete, incoming edit
	Scenario 4 – local delete, incoming delete

	Summary

	Chapter 5: Branching and merging
	What is a branch?
	What is a tag?

	Why use branching?
	Common branch types
	Branching on new releases
	Branching on promotion
	Branching per task
	Branching components
	A branch for each platform

	Common branching pitfalls

	Creating a branch
	Time for action – creating a branch
	Tagging and selecting revisions
	Switching your working copy

	Time for action – switching your working copy
	Reverting changes
	Time for action – reverting changes in your working copy
	Time for action – reverting more changes
	Merging
	Time for action – merging one branch
	Time for action – merging two trees
	Undoing changes with reverse differences
	Resolving conflicts on merging
	Scenario 1 – Local missing, incoming edit
	Scenario 2 – Local edit, incoming missing
	Scenario 3 – Local delete, incoming delete

	Tracking merges
	Summary

	Chapter 6: Working with Revision Logs
	Differences in detail
	Viewing differences between versions of a specific file in your working copy

	Time for action – viewing differences in a working copy
	Viewing differences between files outside your working copy

	Time for action – viewing differences in files outside
	your working copy
	Comparing folders in the repository browser

	Working with changelists
	Time for action – working with changelists
	Removing a file from a changelist
	Ignoring files on commit

	Working with revision graphs
	Time for action – viewing a revision graph
	Changing your view
	Pruning trees

	Summary

	Chapter 7: Exporting and Relocating Working Copies
	Working with a working copy
	Exporting a working copy

	Time for action – exporting a working copy
	Exporting from a repository using a URL

	Time for action – exporting from a URL
	Removing an existing working copy from version control

	Time for action – removing an existing working copy
	from version control
	Another way to remove a working copy from version control

	Time for action – removing a working copy from version control
	Relocating your working copy

	Time for action – relocating your working copy
	Recovering from a corrupt working copy
	Deleting a working copy

	Working copy cleanup
	Time for action – executing a working copy cleanup
	Troubleshooting working copy problems
	Folders have a red exclamation mark, despite nothing having changed
	Certain context menus are missing from inside my working copy
	Access denied errors
	Changing the case of a file name doesn't work

	Time for action – changing the case of a file name
	My computer becomes sluggish when I right-click on a file

	Summary

	Chapter 8: Keyword Substitution with SubWCRev
	Why use SubWCRev?
	Using SubWCRev via the command line
	Time for action – exporting a working copy
	Command-line switches

	Keyword substitution switches
	Mixed revisions, modifications, and status
	Setting a custom date format

	Using the COM interface
	Using SubWCRev as a pre-build event in your IDE
	Time for action – pre-build events in Visual Studio
	C++ applications
	Time for action – pre-build events in Visual Studio
	C# applications
	Time for action – pre-build events in Visual Studio
	VB applications
	Time for action – build events in Eclipse
	Using pre-build events with other IDEs

	Summary

	Chapter 9: Using TortoiseSVN with Bug Tracking Systems
	Why use bug trackers?
	Why integrate with bug trackers?
	Integration with Google Code
	Time for action – using TortoiseSVN with Google Code
	Integration with Trac
	Time for action – integration with Trac
	Integration with Redmine
	Integratation with Jira
	Time for action – Jira and TortoiseSVN integration
	Working with other issue trackers
	Properties for hook scripts

	Summary

	Chapter 10: Using SSL with TortoiseSVN
	What are SSH and SSL?
	Installing VisualSVN Server for Windows
	Time for action – setting up VisualSVN Server
	Using VisualSVN Server

	Working with OpenSSH certificates
	Creating your public and private key pairs

	Time for action – creating public and private key pairs
	Using Pageant to store connection details
	Using pre-commit hooks
	Time for action – using a pre-commit hook in TortoiseSVN
	Summary

	Appendix A: Command-line Reference
	Getting the command-line tools
	Subversion's components
	Protocols supported by Subversion
	Subversion command-line reference
	Getting help
	Working with working copies
	Arguments for commands
	Properties and statuses

	Appendix B: Pop Quiz Answers
	Chapter 1: Setting up TortoiseSVN
	Pop quiz - subversion concepts

	Chapter 2: Getting Started with TortoiseSVN
	Pop quiz - working with TortoiseSVN

	Chapter 3: Creating and Applying Patches
	Pop quiz - working with TortoiseSVN

	Chapter 4: Status Information and Conflict Management
	Pop quiz - working with TortoiseSVN

	Chapter 5: Branching and Merging
	Pop quiz - working with TortoiseSVN

	Chapter 6: Working with Revision Logs
	Pop quiz 1 - revision graphs
	Pop quiz 2 – working with your view

	Chapter 7: Exporting and relocating Working Copies
	Pop quiz - working with your working copy

	Chapter 8: Keyword Substitution with SubWCRev
	Pop quiz 1 - getting to grips with SubWCRev
	Pop quiz 2 - keyword substitution switches

	Chapter 9: Using TortoiseSVN with Bug Tracking Systems
	Pop quiz 1 - Gurtle and Google Code
	Pop quiz 2 - regular expressions

	Chapter 10: Using SSH with TortoiseSVN
	Pop quiz 1 - all about SSH
	Pop quiz 2 - public keys and private keys

	Index

