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Without [geometric figures], 
one is wandering about in a dark labyrinth  

—Galileo: Il Saggiatore (1623) 
 
 

——— ♦♦♦♦♦ ——— 
 
 

For he by geometric scale  
Could take the size of pots of ale  

—Samuel Butler: Hudibras (1663) 
 
 

——— ♦♦♦♦♦ ——— 
 
 

On a cloth untrue  
With a twisted cue  
And elliptical billiard balls  

—W. S. Gilbert: The Mikado (1885) 
 
 

——— ♦♦♦♦♦ ——— 
 
 
 
 
 

To the memory of my brother Robert  
and to the inheritors  
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P r e f a c e 
 
 

This book will tell you more than you might have wanted to know about the subject of type 
inheritance (inheritance for short).  Now, if you’re reading these remarks, you’re already rather 
special; most people don’t bother to read prefaces at all.  For that reason, the kind of thing that 
usually goes into a preface—background material, motivation underlying the work described, 
reasons for writing the book, “what you will learn,” and so forth—I’ve deliberately deferred, 
mostly, to the body of the book (to Chapters 1 and 3 in particular).  In any case, there’s really too 
much of that general nature that I want to say, and it’s too involved and interwoven, to fit 
comfortably into a conventional preface.  But this is still a convenient place to take care of a few 
boilerplate items.   

Right at the outset, I must make it clear that this is a book with an attitude.  My friend and 
colleague, Hugh Darwen, and I have been working for many years on the theory on which this 
book is based: namely, our inheritance model.  As a consequence, we have some very definite 
opinions about the subject matter, and—speaking purely for myself here—those opinions have 
had a major influence on the style and content of the writing.  In some respects, in fact, the book 
isn’t so much a textbook as it is a plea for the community at large to take a careful look at what 
we’ve done: a careful look, in fact,  at what we consider to be a logical, sensible, and 
pragmatically useful approach to the subject.  That said, however, the book does resemble a 
textbook in that most of the chapters include a set of exercises (as well as answers, in most 
cases); thus, you can test your own understanding of the material as you proceed, if you have a 
mind to.   

Here’s what I’ll be assuming by way of background on your part:   
 

! First, I assume you have some professional knowledge of data management: what it is, 
what data itself is, how data can be represented to make it suitable for formal 
manipulation, what such formal manipulations might look like, and so on.  In other 
words, I assume you’re interested in what some people like to call “data modeling”—
possibly but not necessarily including comparatively advanced aspects of that subject, 
such as the notions of generalization and specialization.   

 
! Second, I assume you have a good working knowledge of the relational model.  Of 

course, if you really are interested in data modeling as I’ve said I assume you are, then 
this second prerequisite goes (or should go) without saying—though as a matter of fact I 
think most if not all of the book should make sense even to someone without a detailed 
background in relational theory.   

 
! Third, I assume you also have some familiarity with at least one conventional 

programming language—including, preferably, at least one language that’s not “object 
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oriented.”  Note:  I don’t mean to be offensive here; I mean, I don’t intend the foregoing 
remarks to be taken as disparaging object languages as such.  Rather, the reason I think it 
might be desirable for you to be familiar with at least one language that’s not an object 
language is the following.  Suppose the only languages you know do in fact happen all to 
be object languages.  Then I’m afraid you might find you need to do some unlearning—
and as we all know, unlearning can often be quite difficult to do.  For example, in object 
languages, an object of, say, type NAME typically doesn’t contain a name as such; rather, 
it contains a pointer, or “reference,” to such a name.  By contrast, in the type theory 
described in and embraced by the present book, the counterpart of such an object would 
contain a name as such.  (The reasons for this difference in approach are discussed in 
detail in the body of the book, in Chapters 13 and 21 in particular.)   

 
Here now by contrast are some things I won’t be assuming:   

 
! I won’t assume you have a deep knowledge of the type system of whatever programming 

language(s) you do happen to know, nor of type theory in general.   
 
! I won’t you assume you know anything about SQL in particular (which is in fact basically 

just another programming language, though it’s not usually described as such).  Of 
course, I don’t mean I’m going to be explaining a lot of SQL material that you might 
already know; rather, I mean that—except for one rather long chapter, Chapter 22, which 
in any case you can skip if you want—this book isn’t really about SQL, as such, at all.   
 
Let me add a couple of further remarks regarding SQL, though.  First, please note that 

throughout the book all references to SQL should be understood as referring to the standard 
version of that language exclusively, not to some proprietary dialect.  The reference document is:   
 

International Organization for Standardization (ISO): Database Language SQL, Document 
ISO/IEC 9075:2008 (2011)  

 
Second, please note that I follow the standard in assuming the pronunciation “ess cue ell,” 

not “sequel” (though this latter pronunciation is common in the field), thereby saying things like 
an SQL table, not a SQL table.   

 
Structure of the Book  
 
The book is arranged into five principal parts, as follows:   
 

I. Preliminaries  
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II. Scalar Types, Single Inheritance  
 
III. Scalar Types, Multiple Inheritance  
 
IV. Tuple and Relation Inheritance  
 
V. Other Approaches  
 

There are also three appendixes and an index.  Broadly speaking, the book is meant to be 
read in sequence as written, except occasionally as noted here and there in the text itself; most of 
the chapters do rely to some extent on material covered in earlier ones, so you shouldn’t jump 
around too much.  (However, let me draw your attention to the glossary in Appendix C; you 
might find it convenient to refer to that glossary from time to time while reading other parts of 
the book.)   

Now, you might know that Darwen and I have written on this subject before, primarily in 
our series of books on The Third Manifesto (see Chapter 1).  However, what follows is much 
more than just a cobbling together of material from those earlier writings.  For one thing, it 
contains much that’s entirely new.  For another, it presents a more coherent, and I think much 
better, perspective on the subject as a whole (I learned a lot myself in putting the book together).  
Indeed, even when some portion of the text is based on earlier writings by ourselves, the material 
in question has been totally rewritten and, I trust, improved.   

All of that being said, I think I need to say too that the subject of inheritance does seem to 
involve a certain amount of intrinsic complexity (a fact that accounts in part for the length of the 
book, of course).  Naturally I’ve done my best to explain the topics as straightforwardly as I can; 
however, although the basic idea is simple enough, the devil is in the detail—and I do believe 
you need to be exposed to that detail, even if you don’t absorb it all, in order to get a proper 
sense of the scope of the subject.   

Talking of complexity, I’m a little embarrassed at the number of footnotes in this book.  
I’m only too well aware how annoying footnotes can be—indeed, they can seriously impede 
readability—but in the present case I think they merely reflect what I referred to in the previous 
paragraph as the intrinsic complexity of the subject matter.  In fact, it occurred to me in writing 
this preface that I might turn this plague of footnotes to some kind of advantage.  To be specific, 
noting that some chapters certainly seemed to involve rather more than their share, it occurred to 
me that it might be helpful to the reader if I were to use “average number of footnote lines per 
page” as a kind of rough and ready measure of relative complexity.  To that end, I compiled the 
following histogram, showing chapters and appendixes along the horizontal axis and “footnote 
lines per page,” measured in units of one tenth, along the vertical axis.  For example, the 
histogram shows that Chapter 1 has an average of 2.5 footnote lines per page.  Of course, I make 
no great claims of either accuracy or precision in this connection, but I do think the histogram 
gives some overall sense of which chapters might be a little harder, and which a little easier, to 
come to grips with.   
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630│                                                                █ 
620│                                                                █ 
610│                                                                █ 
600│                                                                █ 
590│                                                                █ 
580│                                                                █ 
570│                                                                █ 
560│                                                                █ 
550│                                                                █ 
540│                                                                █ 
530│                                                                █ 
520│                                                                █ 
510│                                                                █ 
500│                                                                █ 
490│                                                                █ 
480│                                                                █ 
470│                                                                █ 
460│                                                                █ 
450│                                                                █ 
440│                                                                █ 
430│                                                                █ 
420│                                                             █  █ 
410│                                                             █  █ 
400│                                                             █  █ 
390│                                                             █  █ 
380│                                                             █  █ 
370│                                                             █  █ 
360│                                                             █  █ 
350│                                                             █  █ 
340│                                                             █  █ 
330│                                                             █  █ 
320│                                                             █  █ 
310│                                                             █  █     █ 
300│                                                             █  █     █ 
290│                                                             █  █     █ 
280│                                                             █  █     █ 
270│                                                       █     █  █     █ 
260│                                                       █     █  █     █ 
250│ █                                   █                 █     █  █     █ 
240│ █                                   █                 █     █  █     █ 
230│ █                                   █                 █     █  █  █  █ 
220│ █                                   █                 █     █  █  █  █ 
210│ █     █                          █  █           █     █     █  █  █  █ 
200│ █     █                          █  █           █     █     █  █  █  █ 
190│ █     █           █           █  █  █           █     █     █  █  █  █ 
180│ █     █           █           █  █  █           █     █     █  █  █  █ 
170│ █     █           █           █  █  █     █     █     █     █  █  █  █ 
160│ █  █  █           █           █  █  █     █     █     █     █  █  █  █ 
150│ █  █  █           █           █  █  █  █  █     █     █     █  █  █  █ 
140│ █  █  █           █  █        █  █  █  █  █     █     █     █  █  █  █ 
130│ █  █  █           █  █        █  █  █  █  █     █  █  █     █  █  █  █ 
120│ █  █  █           █  █        █  █  █  █  █     █  █  █     █  █  █  █ 
110│ █  █  █           █  █        █  █  █  █  █     █  █  █     █  █  █  █ 
100│ █  █  █           █  █        █  █  █  █  █     █  █  █     █  █  █  █ 
 90│ █  █  █     █     █  █  █     █  █  █  █  █     █  █  █     █  █  █  █ 
 80│ █  █  █     █     █  █  █  █  █  █  █  █  █  █  █  █  █     █  █  █  █ 
 70│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
 60│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
 50│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
 40│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
 30│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
 20│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
 10│ █  █  █     █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █  █ 
   └────────────────────────────────────────────────────────────────────────── 
     1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22  A  B  C 

 
Some of the entries in this histogram deserve a little further explanation.  First, the column 

for Chapter 1 is surprisingly high.  Actually I don’t think you should find that chapter very 
difficult at all; it deals with history and other background material, and has more of a narrative 
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feel to it than most of the other chapters.  But it does contain several footnotes that give 
references to other publications, and that fact might account for its comparatively high “relative 
complexity” score.  Similar remarks apply to Appendix B.   

Second, the column for Chapter 4 is empty, and yet that chapter is probably the most 
difficult in the book!  But that’s because it consists essentially of just a formal statement of the 
prescriptions of our model of inheritance, with almost nothing by way of further explanation, and 
no footnotes either.  The chapter is provided primarily for purposes of subsequent reference; it’s 
certainly not meant to be read straight through.   

Third, the columns for Chapters 21 and (especially) 22 are clearly the highest of all—a 
state of affairs that doesn’t surprise me, because I spent more time on those two chapters than I 
did on the entire rest of the book put together.  And the reason I did so was because, in my 
opinion, the technical material I was trying to describe in those chapters is rather confusing, and 
(I’m tempted to say) rather confused as well.  Perhaps a kinder way to put it is that the material 
in question does seem to be ad hoc to a degree, instead of being founded, as we claim our own 
inheritance model is, on a clear and well thought out set of underlying principles.  Be that as it 
may, I certainly do think those two chapters are quite difficult.  Now, I’m sorry that such is the 
case, and I apologize for it—but I don’t think the fault is entirely mine.1   
 
Acknowledgments  
 
As I’ve said, I do believe our model of type inheritance has something truly useful to offer—all 
the more so, perhaps, because it’s so different from other approaches to the subject that have 
been described in the literature.  For that reason, I’d been thinking for some time about a book 
like this one, one that I hoped could provide a coherent and reasonably complete description of 
what it was that we were proposing.  (After all, those earlier writings by Darwen and myself 
didn’t really do our proposals justice, and in any case those writings were neither complete nor 
entirely self-contained.  At least, so it seemed to me.)  But pressure of other work prevented me 
from getting down to the task until comparatively recently.  What finally spurred me into action 
was a series of relevant technical questions—sometimes quite tricky ones!—from various 
interested parties, which made me realize that the best way of dealing with such questions was to 
get on and write the book, once and for all.   

So I’m grateful in the first place to everyone who asked such questions, including attendees 
at live classes, readers of earlier books of mine, and members of the Third Manifesto community 
in general.  Talking of classes, incidentally, I’d like to say that almost all of the ideas discussed 
in this book—in all of my books, as a matter of fact—have been taught and discussed in live 
classes before being brought to their current documented form.  In my opinion this is a very good 
                                                             
 
1 In my defense here, I’m tempted to invoke what elsewhere I’ve called The Principle of Incoherence.  To quote from my book 
The New Relational Database Dictionary (O’Reilly, 2016), The Principle of Incoherence (referred to by some, a little unkindly, 
as The Incoherent Principle) is “[a] principle, sometimes invoked in defense of an attempt (successful or otherwise) at criticizing 
some technical proposal or position, to the effect that it’s hard to criticize something coherently if what’s being criticized is itself 
not very coherent in the first place—a state of affairs that goes some way toward explaining why such criticisms can often be 
longer than what’s being criticized.”   
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way to try out ideas to see if they make sense: to make sure that they hang together, as it were, 
and in particular that they’re teachable.  I do believe teachability is a good test of the quality of a 
language.  One of the reasons the SQL standard is in the sorry state it’s in, I’m convinced, is 
because the SQL definers seem not to have tried the experiment of teaching what they’re 
defining in a live class.  If they had, they would surely have realized what’s wrong with it and 
made appropriate changes to the language.  But now I’m getting on a hobby horse ... Let me get 
back to the acknowledgments.   

Second, then, I’m grateful to my technical reviewers Hugh Darwen, Erwin Smout, and 
Dave Voorhis.  Between them, they provided me with the most meticulous reviews a technical 
writer could possibly wish for.  (Mind you, I can’t claim to have adopted all of their 
suggestions!—so, while those suggestions certainly resulted in a vastly improved book, I bear 
full responsibility for the final text.)  Be that as it may, I’m particularly pleased to be able to tell 
you that Erwin and Dave are responsible for SIRA-PRISE (SIRA_PRISE@edpnet.be) and Rel 
(http://dbappbuilder.sourceforge.net/Rel.html), respectively; each of these projects consists of a 
comprehensive implementation of Third Manifesto ideas, including in both cases partial support 
for the inheritance model described in this book.  As for Hugh, not only did he very kindly 
contribute an interesting historical foreword, but his detailed comments on the manuscript, 
together with much subsequent technical correspondence, led to a number of revisions to the 
inheritance model itself; thus, that model should most definitely be understood as a joint 
production by the two of us.   

Third, I’d like to thank my wife Lindy, as always, for her support throughout this and all of 
my other database projects over the years.   

Finally, I’m grateful to everyone at O’Reilly for their encouragement, contributions, and 
support throughout the production of this book.   
 
 

C. J. Date 
Healdsburg, California 

2016 
 

 
 



 
 
 
 
 
 
 

F o r e w o r d 
 
 

In this book, Chris Date describes some technical proposals due jointly to him and myself: viz., 
our proposed model of type inheritance.  Those who are familiar with other aspects of our joint 
work, therefore, might be a little surprised to see that on this occasion I’m not a coauthor.  
However, I’m more than happy for Chris to have taken on this project tout seul, because the fact 
is—and I’m pleased to have the opportunity to state as much publicly here—it was Chris who 
came up with the basic ideas on which our inheritance model is based; Chris who proposed the 
terminology we used for those ideas; and Chris who originally drafted the various prescriptions, 
as we call them, that formally define that model.   

In this foreword, I don’t need or even want to say much about our model as such (that’s 
what the book does); however, I do want to give my own recollections of the historical 
circumstances in which this work arose and certain events that helped both to motivate it and to 
shape it.   

In the mid 1980s my career at IBM suffered for two or three years from an enforced 
absence from the database scene.  (Previously I’d spent some fifteen years as a DBMS software 
developer, in particular playing a lead role in the development of a relational DBMS for 
commercial use called Business System 12.)  When I returned to that scene in 1987, I found that 
two important developments had taken place during my absence:   

 
a. SQL, a language that ten years earlier I had confidently predicted would “never catch on” 

(my very words at the time), was now dominant, and  
 
b. Object oriented (OO) programming—a style that was new to me—had become somewhat 

à la mode, and had given rise to visions of OO databases and OO DBMSs that its 
advocates thought should eventually supersede relational databases and SQL.   

 
These two developments—the last two words excepted—filled me with dread.  Now able 

to attend database conferences again, I communicated my concerns to Ted Codd and Chris 
Date.  My collaboration with Chris began shortly thereafter, after some articles by me had been 
accepted for publication in The Relational Journal, a publication of Ted and Chris’s company 
(since defunct) Codd & Date Inc.   

Well, it soon became clear that the demise of SQL that I’d predicted was never going to 
happen (alas!).  Moreover, people started to talk about a rapprochement—as Chris himself called 
it—between relational and object technologies, soon to be known by the generic label “object / 
relational” (O/R).  Key OO features to be included in that rapprochement were (a) user defined 
types (classes in OO parlance) and (b) type inheritance.  Having learned something about those 
features on a Smalltalk course, I was enthusiastic about both of them.  However, my enthusiasm 
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turned to horror when I learned how various pundits at database conferences were proposing to 
go about incorporating them into a “relational” (or at least SQL) system.   

Back in the 1970s many of us had been puzzling over what Codd really meant by the term 
domain, which he’d used to refer to the set of values from which the value of an attribute in a 
tuple appearing in a relation (or the value of a column in a row appearing in a table, if you 
prefer) was to be drawn.  Eventually it was agreed pretty much all round that it was just another 
term for a data type (type for short).  That said, however, we’d also interpreted—possibly 
misinterpreted—another aspect of Codd’s proposal, viz., first normal form (1NF), as meaning 
that the only types to be supported by a relational DBMS would be simple system defined ones 
such as those for numbers, character strings, dates and times, and truth values.  But that 
interpretation became widely discredited in the decade that followed, and support for user 
defined types of arbitrary complexity began to be accepted as both kosher and desirable.   

To my astonishment, however, the O/R proposals being advanced at the conferences I 
mentioned didn’t use those arbitrarily complex types as types for attributes of relations; rather, 
they used them as types for relations themselves (in the way that the type of a relation determines 
the type of the tuples appearing in it).  Thus, a “relation” would be a set of “objects”—meaning, 
more specifically, so called “encapsulated” objects—of the same type, rather than a set of tuples 
with the same heading.  What made matters worse was that examples of such objects typically 
quoted were ones representing things like employee records, of a type that had subtypes for 
special kinds of employees.  But we already had perfectly good ways—in fact, demonstrably 
better ways—of dealing with such situations in relational databases.  Also, I wondered how 
queries might be formulated on such “relations” and combinations thereof:  How could they be 
expressed in a language based on relational algebra?  For that matter, how could they be 
expressed using something like SQL’s SELECT – FROM – WHERE and UNION constructs?  A 
telling remark from one of those conference speakers made me chuckle (wince might be a better 
word): “[I have to admit that] we haven’t yet figured out how to do joins.”   

1989 saw the publication of “The Object-Oriented Database System Manifesto,” eliciting 
the appearance the following year of the “Third Generation Database System Manifesto” by way 
of response.  The first of these documents promoted OO as a foundation for future generations of 
database systems.  The second disputed that position and instead proposed staying with SQL but 
building OO features into that language.  Disagreeing rather strongly with both of these 
positions, Chris and I started to think about producing our own response, in the form of what 
eventually became The Third Manifesto (see below).   

By that time I had also established myself as a member of the U.K. delegation to the ISO 
Working Group responsible for developing and maintaining the SQL international standard.  
From 1988 to 1992 that U.K. delegation had been focusing its attention entirely on what was to 
be the next edition of the standard, viz., SQL:1992.  At the same time some members of the 
vendor dominated U.S. delegation had been submitting proposals for certain “advanced” 
features, having to do (mostly) with O/R support—features that, it had been agreed, wouldn’t be 
part of SQL:1992 but were meant for a follow-on edition, referred to at that time as SQL3.  
When SQL:1992 was finally put to bed later that year, my U.K. colleagues and I started to 
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scrutinize the SQL3 draft—and I discovered to my dismay that the proposed O/R features were 
based on the very concept that had so horrified me at those earlier conferences, viz., equating 
classes to tables instead of types.   

I won’t say anything here about the controversy that subsequently dominated proceedings 
in the ISO Working Group, nor about the eventual awful compromise that appeared in SQL:1999 
(see Chapter 22).  More to the point was that during a weekend in the middle of our January 
1994 meeting in Munich, Germany, I was moved to scribble a draft with the title The Third 
Manifesto and fax it to Chris in California.  Its nine pages, handwritten in pencil, included the 
following points, cited verbatim here (please bear in mind that this was only a private memo!):   

 
! D shall make no prescriptions, and no proscriptions, concerning the domains over which 

attributes of relations may be defined.  However, D shall include some collection of 
primitive constructs to support the definition of domains and associated operators of 
arbitrary complexity [i.e., user defined types].  Note:  We used, and still do use, the name 
D to refer to a hypothetical language conforming to the Manifesto.   

 
! [As a “very strong suggestion”:]  Inheritance should be supported.   
 
! Special typing and behavior shall be confined to domains, and not applicable to relations. 

 
The second bullet, on type inheritance, was amplified by other points that remain consistent 

with the model that Chris eventually produced.  For example, inheritance was to be multiple (it’s 
not in SQL), and operator binding was to be based on the types of all arguments, not just on one 
special one as is typically the case in OO languages.   

The paper we subsequently worked on, which appeared early the following year in ACM 
SIGMOD Record, continued to use the term domain rather than type (though it lacked a formal 
definition of that term).  It also used the terms subdomain and superdomain for what we now call 
subtypes and supertypes.  As for inheritance, apart from stating some of the requirements that 
Chris elaborates on in this book, such as substitutability, it merely required that “Such a 
capability shall be in accordance with some clearly defined and generally agreed model.”  
Moreover, although it strongly advocated support for multiple as opposed to single inheritance, it 
didn’t actually insist on such support.  Chris was deeply dissatisfied with the lack of specificity 
in these positions and proposed that we should work on a model of inheritance that would be 
appropriate for relational databases.  That required us first to revise The Third Manifesto itself, 
since we obviously had to be very clear on what we meant by a type as such before we could be 
equally clear about what we meant by a subtype.   

My own ideas about subtypes were pretty vague and somewhat confused at that time.  But I 
had always thought of a type as a named set of values, and I had always accepted the use of 
constraints to define types.  For example, although Business System 12’s “domains” weren’t 
really types, user defined domains for proper subsets of system defined ones (think of positive 
integers, for example) were in common use during the short life of that DBMS in the 1980s.  



 
 
xxii      Foreword 

(The same construct appeared, under that same name domain, in SQL:1992.  To my knowledge, 
however, that feature of the standard hasn’t been implemented in any of the leading commercial 
SQL products.)  But OO had introduced me to the notion of a subclass being an extension, rather 
than a subset, of its superclass.  For example, given class CIRCLE for the geometric shapes of 
that name, we can define the subclass COLORED_CIRCLE, each value of which has a color 
component in addition to its circle components.  That made sense to me too—every operator 
defined for circles would work for colored circles also, and additional operators might be defined 
for colored circles only.  Now, I probably imagined that constrained subtypes and extended 
subtypes could comfortably coexist within the same system, but the two approaches are so 
different that producing a formal model to embrace both would be daunting to say the least.  
Furthermore, a model that supported COLORED_CIRCLE as a subtype of CIRCLE would also 
support PART_TIMER as a subtype of EMPLOYEE, raising questions concerning its 
appropriateness for use in a relational database.  Chris very much wanted to pursue the “subtype 
= subset” approach only, and he easily persuaded me to go along with that.   

Then came a hiccup!  While we were still discussing inheritance in the ISO Working 
Group, we were shown a paper that claimed it’s impossible for a system to support type 
constraints, so long as it does support three other features that our Manifesto and SQL both 
called for—viz., substitutability, compile time type checking, and what the paper called 
“mutability” (essentially, the ability to update variables and the database).  I didn’t fully 
understand at the time how the authors of the paper, Stan Zdonik and David Maier, had arrived at 
the conclusion they did, nor did Chris when I drew it to his attention.  And we remained 
somewhat baffled even after we’d spent a day discussing it with my IBM colleague Nelson 
Mattos (who was the person who originally showed that Zdonik and Maier paper to the ISO 
Working Group).   

As we could neither prove nor disprove Zdonik and Maier’s claim to our own satisfaction, 
we felt unable to propose a model that would require the use of constraints for defining subtypes.  
But we stuck with the “subtype = subset” approach nevertheless, and the result was the model 
whose definition appeared in the first of the three editions of our book on The Third Manifesto, 
titled Foundation for Object / Relational Databases.  However, we weren’t completely happy 
with that model, and Chris took it on himself to revise it to include the use of constraints (so that, 
e.g., circles could be defined as a proper subset of ellipses, the subset in question being precisely 
those ellipses whose semiaxes are constrained to be of equal length).  And he got far enough with 
that revision without running into any perceived problems for us to include, just in time for the 
Manifesto book’s publication, an appendix suggesting that such a revised form of our model 
might work after all.   

Shortly thereafter, it occurred to me that (a) Zdonik and Maier were writing about OO 
systems specifically, and (b) those OO systems all supported object identifiers, or in other words 
pointers.  The anomalies that Zdonik and Maier (and Mattos) described arise only when pointers 
are supported, as Chris explains in Chapter 13.  Therefore, so long as we spurn the use of 
pointers (in the model, that is), type constraints can be used after all without sacrificing any of 
those other three desiderata.  And The Third Manifesto does indeed explicitly spurn the use of 



 
 

Foreword      xxiii 

pointers—by sticking to Codd’s original relational model, of course!—and so the revised 
inheritance model that appeared in the second edition of our book (retitled Foundation for Future 
Database Systems) did fully embrace the use of type constraints.  What’s more, that model has 
stood up, so far, to very close scrutiny by others.   

In closing, let me add that although I’ve acknowledged Chris’s major role in the 
development of our model, I’ve played my own part too as a former software engineer in 
checking that implementation of our model is computationally feasible (as is my firm belief).  
Moreover, I’ve been conscious all along of the care I needed to take in order to justify the 
model’s joint attribution.  That awareness applies to all of the revisions that have taken place 
since that second version, including the very latest ones as documented in the present book (see 
Chapter 4).  Thus, all remaining mistakes are as much mine as Chris’s.   
 
 

Hugh Darwen 
Shrewley, England 

2016 
 

 



 
 
 
 
 
 
 
 



P a r t   I 
 
 
 

P R E L I M I N A R I E S 
 
 
 

Part I sets the scene for the rest of the book.  The first chapter provides some background on The 
Third Manifesto and explains the origins of our inheritance model (“the Manifesto model”).  
Chapter 2 gives an overview of the Manifesto theory of types without inheritance.  Chapter 3 
then takes a preliminary look at the impact of inheritance on that type theory.  Finally, Chapter 4 
provides, for purposes of subsequent reference, a formal statement of our inheritance model in its 
entirety.   
 
 



 



  

 

Chapter  1 
 
 

B a c k g r o u n d 
 
 

Begin at the beginning ...  
and go on till you come to the end: then stop.   

—Lewis Carroll: 
Alice’s Adventures in Wonderland (1865) 

 
 

The foundation of all true general purpose database systems is the relational model of data, first 
described by E. F. Codd in two landmark papers in 1969 and 1970, respectively:   

 
! “Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks” 

(IBM Research Report RJ599, August 19th, 1969)  
 
! “A Relational Model of Data for Large Shared Data Banks” (CACM 13, No. 6, June 

1970)  
 

These days, of course, it’s widely recognized that it was Codd’s introduction of the 
relational model that put the field of database management on a sound theoretical footing.  But 
what still isn’t quite so widely recognized, perhaps, is that the relational model implicitly 
requires a further theoretical footing of its own: namely, a supporting, or underlying, theory of 
types (or domains, as Codd called them in his early papers).  The requirement for such a theory 
arises most obviously—though not exclusively—from the fact that, in the relational model, every 
attribute of every relation is required to be of some type.   

The foregoing state of affairs provides a large part of the motivation for the work my 
colleague Hugh Darwen and I have been engaged upon ever since the early 1990s.  The work in 
question goes by the generic name of The Third Manifesto, or just the Manifesto for short (an 
explanation of that name can be found in the section “A Little History” later in this chapter).  
The primary objectives of the Manifesto are twofold:   
 

1. To provide a careful description of the relational model as such (thereby providing a kind 
of abstract blueprint for the design of a database language)  

 
2. To provide an appropriate theory of types to support the relational model  
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Regarding the first of these objectives, it’s true that we’ve taken the opportunity in our 
Manifesto to dot a few i’s and cross a few t’s that Codd left undotted or uncrossed in his own 
writings (in other words, we’ve performed a few minor tidying activities here and there);1 
however, the model as we describe it departs in no essential respects from Codd’s original vision 
as documented in his first two papers.  Regarding the second objective, the relational model 
certainly does assume that types exist, as I’ve already said; however, nowhere does it say just 
what those types must be or what properties those types must have.  In other words, the relational 
model and the supporting type theory are to a considerable degree independent of one another 
(they’re orthogonal, to use the jargon).  Thus, what we’ve tried to do in the Manifesto is define a 
theory of types that seems to us to be “in the spirit of” the relational model (inasmuch as such a 
claim makes any sense); more specifically, we’ve tried to define a theory of types that seems to 
us to work well with that model.   
 
 
INHERITANCE ARISES NATURALLY  
 
Basically, a type is just a named set of values, where the values in question are all possible 
values of some specific kind—for example, all possible integers, or all possible character strings, 
or all possible rectangles, or all possible XML documents, or all possible X rays, or all possible 
fingerprints (etc., etc.).  So, given that “types are sets” (loosely speaking), it seems intuitively 
obvious and reasonable to say that “subtypes are subsets.”  More generally, let T and T′ be types, 
such that the set of values constituting T′ is a subset of the set of values constituting T; then the 
notion that T′ might be a subtype of T seems reasonable, and in fact intuitively obvious.  For 
example, let T and T′ be RECTANGLE (the set of all rectangles) and SQUARE (the set of all 
squares), respectively.  Then, since every square is in fact a rectangle, it surely makes sense to 
say that type SQUARE is a subtype of type RECTANGLE.   
 

Aside:		Please	note	that,	in	accordance	with	standard	mathematical	practice,	throughout	
this	book	I	take	expressions	of	the	form	“B	is	a	subset	of	A”	to	include	the	possibility	that	
sets	B	and	A	might	be	equal.		In	other	words,	every	set	is	a	subset	of	itself.		When	I	want	
to	exclude	that	possibility,	I’ll	talk	in	terms	of	proper	subsets.		For	example,	the	set	{x,y,z}	
is	certainly	a	subset	of	itself,	but	it	isn’t	a	proper	subset	of	itself.		(In	fact,	of	course,	no	set	
is	a	proper	subset	of	itself.)		Note	too	that	the	foregoing	remarks	apply	equally	to	
supersets,	mutatis	mutandis;	for	example,	the	set	{x,y,z}	is	a	superset	of	itself,	but	not	a	
proper	superset	of	itself.		End	of	aside.			
 
Now, you might be thinking:  So what?  Even if it does make sense to say SQUARE is a 

subtype of RECTANGLE, what’s the point?  Well—simplifying considerably!—the point is this:   
                                                             
 
1 Use of the first person plural here, and indeed throughout this book, is intended to refer jointly to Darwen and myself unless the 
context demands otherwise.   

www.allitebooks.com

http://www.allitebooks.org


 
 

Background / Chapter 1      5 

 
Any operation that can be applied to values of type RECTANGLE can be applied to values 
of type SQUARE as well (because squares are rectangles).   
 
For example, suppose we have an operator—actually a function—called AREA_OF that 

returns the area of a given rectangle.  Then we can certainly invoke the AREA_OF operator with 
an argument of type SQUARE, because (to say it again) squares are rectangles.  More generally, 
if type T′ is a subtype of type T, then wherever the system expects to see a value of type T, we 
can always substitute a value of type T′ instead.  Thus, we can say that operators that apply to 
values of type T are inherited by values of type T′.   

I claim, therefore, that the concept of inheritance (which, as I hope you realize, I haven’t 
even begun to define yet in any formal sense) is a logical and natural consequence of the simple 
notion that types are sets.  Thus, if you accept this latter notion—which in itself is hardly novel, 
and is certainly not controversial, and is the fundamental concept underlying the Manifesto 
theory of types—then I claim that you also have to accept what we’re pleased to call our model 
of type inheritance.  And, of course, it’s that model—referred to hereinafter as “the Manifesto 
model”—that’s the principal subject of the present book.   
 
 
A FUNDAMENTAL CONCEPT  
 
Let T be a type.  Then I’ve claimed, in effect, that every subtype of T is necessarily a subset of 
T.2  But—turning this statement around—the obvious question arises:  Is every subset of T 
necessarily a subtype of T?   

The Manifesto model answers this question in the negative.  Rather, it regards type T′ as a 
subtype of type T if, but only if, both of the following conditions are satisfied:   

 
1. Every value of type T′ is a value of type T (i.e., “T′ is a subset of T”).   
 
2. A value of type T is a value of type T′ if and only if it satisfies a certain constraint, where 

the constraint in question is such that it can be tested for any given value of type T by 
examining just those properties that are intrinsic to values of type T in general.   

 
For example, consider squares and rectangles again (types SQUARE and RECTANGLE, 

respectively).  Condition 1 is certainly satisfied:  Every value of type SQUARE is a value of type 
RECTANGLE.  And Condition 2 is satisfied too:  A value of type RECTANGLE (i.e., a 
rectangle) is a value of type SQUARE (i.e., a square) if and only if the sides of the rectangle in 
question are of equal length—and this latter is a constraint that can be tested for a given 
                                                             
 
2 I’m being sloppy here:  I shouldn’t really be talking in terms of types, as such, having subsets (only sets have subsets).  In other 
words, the phrase “subset of T” should really be “subset of the set of values constituting T.”  In the interest of brevity, however, 
I’ll continue to use this sloppy mode of speaking until further notice.   
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rectangle by examining just certain intrinsic properties of the rectangle in question, viz., its 
height and width.  So SQUARE is a subtype of RECTANGLE.   

By way of a counterexample, consider programmers and employees (types PGMR and 
EMP, respectively).  Again Condition 1 is satisfied:  Every value of type PGMR is a value of 
type EMP (i.e., every programmer is an employee—at least, let’s agree as much for the sake of 
the example).  But Condition 2 isn’t satisfied:  There’s no property, intrinsic to employees in 
general, that can be tested to see whether the employee in question is in fact a programmer.  
What I mean by this observation is that you can’t just look at a given employee and tell whether 
that employee is a programmer;3 instead, you’d have to look at certain other information, perhaps 
information recorded somewhere else in the database, such as a list of employees and their jobs.  
In the Manifesto model, therefore, we wouldn’t regard PGMR as a subtype of EMP.4   

So now I’ve given a very informal description of what it means in the Manifesto model for 
some type T′ to be a subtype of some type T.  Please take a moment to make sure you understand 
it before continuing—not that it’s very difficult, of course—because just about everything to be 
described in later parts of this book is a logical consequence of this simple idea.   
 
 
THE SUPPLIERS-AND-PARTS DATABASE  
 
If you’ve read other books of mine, you’ll be aware that I almost always use the same basic 
example to illustrate the various points I want to make: namely, the familiar—not to say 
hackneyed—suppliers-and-parts database.  What’s more, I generally go on to say this (quoting 
now from another recent book of mine, viz., SQL and Relational Theory: How to Write Accurate 
SQL Code, 3rd edition, O’Reilly, 2015):   
 

I apologize for dragging out this old warhorse yet one more time, but I believe that using the same 
example in a variety of books and other publications can help, not hinder, learning.   

 
Well, you might be glad to hear that in the present book, by contrast, I won’t be using this 

same old example very much at all.  But I will be using it a little!  So I want to discuss it, briefly, 
in the present section.  First of all, the database consists of three relvars, called S (suppliers), 
P (parts), and SP (shipments), respectively.  (Note:  If the term relvar is unfamilar to you, I’ll be 
explaining it in a few moments.)  Fig. 1.1 shows a set of sample values for these relvars; later 
examples will assume these actual values, where it makes any difference.  The semantics are as 
follows:   
 

                                                             
 
3 Some might dispute this claim.   
 
4 I’ll have a lot more to say about the programmers and employees example, and others like it, in Chapter 21.   



 
 

Background / Chapter 1      7 

S                                           SP 
┌─────┬───────┬────────┬────────┐           ┌─────┬─────┬─────┐ 
│ SNO │ SNAME │ STATUS │ CITY   │           │ SNO │ PNO │ QTY │ 
├═════┼───────┼────────┼────────┤           ├═════╪═════┼─────┤ 
│ S1  │ Smith │     20 │ London │           │ S1  │ P1  │ 300 │ 
│ S2  │ Jones │     10 │ Paris  │           │ S1  │ P2  │ 200 │ 
│ S3  │ Blake │     30 │ Paris  │           │ S1  │ P3  │ 400 │ 
│ S4  │ Clark │     20 │ London │           │ S1  │ P4  │ 200 │ 
│ S5  │ Adams │     30 │ Athens │           │ S1  │ P5  │ 100 │ 
└─────┴───────┴────────┴────────┘           │ S1  │ P6  │ 100 │ 
 P                                          │ S2  │ P1  │ 300 │ 
┌─────┬───────┬───────┬────────┬────────┐   │ S2  │ P2  │ 400 │ 
│ PNO │ PNAME │ COLOR │ WEIGHT │ CITY   │   │ S3  │ P2  │ 200 │ 
├═════┼───────┼───────┼────────┼────────┤   │ S4  │ P2  │ 200 │ 
│ P1  │ Nut   │ Red   │   12.0 │ London │   │ S4  │ P4  │ 300 │ 
│ P2  │ Bolt  │ Green │   17.0 │ Paris  │   │ S4  │ P5  │ 400 │ 
│ P3  │ Screw │ Blue  │   17.0 │ Oslo   │   └─────┴─────┴─────┘ 
│ P4  │ Screw │ Red   │   14.0 │ London │ 
│ P5  │ Cam   │ Blue  │   12.0 │ Paris  │ 
│ P6  │ Cog   │ Red   │   19.0 │ London │ 
└─────┴───────┴───────┴────────┴────────┘ 
 
Fig. 1.1: The suppliers-and-parts database—sample values  
 

! Suppliers  
 

Relvar S represents suppliers under contract.  Each supplier has one supplier number 
(SNO), unique to that supplier; one name (SNAME), not necessarily unique (though the 
SNAME values in Fig. 1.1 do happen to be unique); one status value (STATUS), 
representing some kind of ranking or preference level among available suppliers; and one 
location (CITY).   

 
! Parts  

 
Relvar P denotes parts used in the enterprise (more accurately, kinds of parts used in the 
enterprise).  Each kind of part has one part number (PNO), which is unique; one name 
(PNAME); one color (COLOR); one weight (WEIGHT), given in pounds avoirdupois; and 
one location where parts of that kind are stored (CITY).   
 

! Shipments  
 

Relvar SP represents shipments (it shows which parts are shipped, or supplied, by which 
suppliers).  Each shipment has one supplier number (SNO), one part number (PNO), and 
one quantity (QTY).  There’s at most one shipment at any given time for a given supplier 
and given part, and so the combination of supplier number and part number is unique to the 
shipment in question.  Notice that Fig. 1.1 shows one supplier, supplier S5, with no 
shipments at all.   
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Now, Fig. 1.1 actually depicts three relations, or more precisely three relation values: 

namely, the relation values that happen to appear in the database at some particular time.  But if 
we were to look at that same database at some different time, we would probably see three 
different relation values appearing in their place.  Thus, S, P, and SP in that database are really 
variables (relation variables, to be precise).  For example, suppose variable S currently has the 
value—the relation value, that is—shown in Fig. 1.1, and suppose we delete the set of tuples 
(actually there’s only one) for suppliers in Athens:   

 
DELETE S WHERE CITY = 'Athens' ;  
 
After this DELETE, relvar S looks like this:   

 
┌─────┬───────┬────────┬────────┐ 
│ SNO │ SNAME │ STATUS │ CITY   │ 
├═════┼───────┼────────┼────────┤ 
│ S1  │ Smith │     20 │ London │ 
│ S2  │ Jones │     10 │ Paris  │ 
│ S3  │ Blake │     30 │ Paris  │ 
│ S4  │ Clark │     20 │ London │ 
└─────┴───────┴────────┴────────┘ 

 
Conceptually, what’s happened here is that the old value of variable S has been replaced in 

its entirety by a new value.  Of course, the old value (with five tuples) and the new one (with 
four) are very similar, in a sense, but they certainly are different values.  In fact, the DELETE 
just shown is logically equivalent to, and indeed shorthand for, the following relational 
assignment:   

 
S := S MINUS ( S WHERE CITY = 'Athens' ) ;  
 
As usual with assignment, the sequence of events here is that (a) the source expression on 

the right side is evaluated and then (b) the value that results from that evaluation—a relation 
value in the case at hand, since the expression in question is a relational expression 
specifically—is then assigned to the target variable on the left side—a relation variable, in the 
case at hand—with the overall effect already explained.   

 
Aside:		The	foregoing	DELETE	statement	and	the	relational	assignment	it’s	equivalent	to	
are	both	formulated	in	a	language	called	Tutorial	D	(note	the	boldface)—see	the	section	
“A	Little	History”	for	background	explanation—and	I’ll	be	using	that	language	as	a	basis	
for	coding	examples	throughout	this	book.		Now,	Tutorial	D	is	intended	as	far	as	possible	
to	be	pretty	much	self-explanatory;	however,	I’ll	explain	specific	features	of	the	language	
as	and	when	we	encounter	them—basically	whenever	I	feel	such	further	explanation	
might	be	needed.		End	of	aside.			
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So DELETE is shorthand for a certain relational assignment.  And, of course, an analogous 
remark applies to INSERT and UPDATE also—they too are basically just shorthand for certain 
relational assignments.  In fact, relational assignment is the only update operator in the relational 
model as such; indeed, it’s the only update operator we need, logically speaking.   

So there’s a logical difference between relation values and relation variables.  The trouble 
is, the database literature has historically used the same term, relation, for both concepts, and 
that practice has certainly led to confusion.  In this book, therefore, I’ll distinguish very carefully 
between the two from this point forward—I’ll talk in terms of relation values when I mean 
relation values, and relation variables when I mean relation variables.  However, I’ll also 
abbreviate relation value, most of the time, to just relation (exactly as we abbreviate integer 
value most of the time to just integer).  And I’ll abbreviate relation variable most of the time to 
relvar; for example, I’ll say the suppliers-and-parts database contains three relvars (three base 
relvars, to be precise, where a base relvar is a relvar that—unlike a view, for instance—isn’t 
defined in terms of other relvars).   

 
Aside:		The	foregoing	paragraph	makes	reference	to	the	concept	of	logical	difference,	a	
concept	that	derives	from	a	dictum	of	Wittgenstein’s:		All	logical	differences	are	big	
differences.		This	notion	is	an	extraordinarily	useful	one;	as	a	“mind	tool,”	it’s	a	great	aid	
to	clear	and	precise	thinking,	and	it	can	be	very	helpful	in	pinpointing	and	analyzing	some	
of	the	confusions	that	are,	unfortunately,	all	too	common	in	the	computing	world.		I’ll	be	
appealing	to	it	many	times	in	the	pages	ahead.		End	of	aside.			

 
Here then are Tutorial D definitions for relvars S, P, and SP:   

 
VAR S BASE RELATION  
    { SNO    SNO ,  
      SNAME  NAME ,  
      STATUS INTEGER ,  
      CITY   CHAR }  
    KEY { SNO } ;  
 
VAR P BASE RELATION  
    { PNO    PNO ,  
      PNAME  NAME ,  
      COLOR  COLOR ,  
      WEIGHT WEIGHT ,  
      CITY   CHAR }  
    KEY { PNO } ;  
 
VAR SP BASE RELATION  
     { SNO   SNO ,  
       PNO   PNO ,  
       QTY   QTY }  
     KEY { SNO , PNO }  
     FOREIGN KEY { SNO } REFERENCES S  
     FOREIGN KEY { PNO } REFERENCES P ;
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As far as this book is concerned I’ll take these definitions (like the language Tutorial D 
itself) to be more or less self-explanatory; in particular, I’ll assume you’re familiar with the 
relational key and foreign key concepts.  However, please note the following:   

 
! The keyword BASE indicates that the relvar being defined is a base relvar specifically 

and not some other kind.  (As a matter of fact, almost all of the relvars mentioned in this 
book will be base relvars specifically.)   

 
! Purely for definiteness, I assume that types INTEGER and CHAR are system defined and 

types SNO, PNO, NAME, COLOR, WEIGHT, and QTY are user defined (see Chapter 2 
for further discussion).   

 
! Relvars S, P, and SP have keys {SNO}, {PNO}, and {SNO,PNO}, respectively.  Note:  

Fig. 1.1 shows the attributes participating in these keys as being doubly underlined.  Such 
double underlining is usually taken to mean the keys in question are actually the primary 
keys for the pertinent relvars.  However, Tutorial D deliberately provides no way of—in 
particular, no syntax for—distinguishing between primary and other keys, referring to 
them all just as keys.   

 
 
A LITTLE HISTORY  
 
The first version of The Third Manifesto as such was published in March 1995,5 though we had 
been thinking about the idea of producing such a document for several years prior to that time.  It 
was quite short, consisting of just eleven pages (and several of those contained only 
acknowledgments, references, and other boilerplate matter).  In essence, it consisted of a series 
of prescriptions, proscriptions, and what we called “very strong suggestions.”  The general idea 
was that, in order to be “Manifesto compliant” as it were, a system would certainly have to abide 
by all of the prescriptions and proscriptions, though it might choose to ignore any or all of the 
suggestions.   

Being so short, the Manifesto was of course very terse—so terse, in fact, that we wrote an 
entire book of nearly 500 pages (!) to explain it:   

 
! C. J. Date and Hugh Darwen: Foundation for Object / Relational Databases: The Third 

Manifesto (Addison-Wesley, 1998)  
 

The title of this book requires some explanation.  Note first that, technically speaking, 
“The Third Manifesto” is only the subtitle; the main title, which is to say the title as such, is 
                                                             
 
5 Specifically, in ACM SIGMOD Record 24, No. 1 (March 1995).  However, an informal description of what it contained 
(“Introducing ... The Third Manifesto”) was published earlier that same year, in Database Programming & Design 8, No. 1 
(January 1995).   
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Foundation for Object / Relational Databases.  Of course, we would have liked it to have been 
the other way around—as far as we were concerned, the Manifesto as such was what the book 
was all about—but it was carefully explained to us that bookstores shelve their wares by title, 
not subtitle, and so our title simply had to contain the crucial word database somewhere.  
That’s why The Third Manifesto was only the subtitle: essentially just for marketing reasons.6   

Second, why did we say, or suggest, in our chosen title that the Manifesto was a 
foundation for “object / relational” databases specifically?  Well, I’ll answer this question in 
part by quoting from the preface to the book itself:   

 
The Third Manifesto is a detailed proposal for the future direction of data and database 
management systems (DBMSs).  Like Codd’s original papers on the relational model, it can be 
seen as an abstract blueprint for the design of a DBMS and the language interface to such a 
DBMS.  In particular, it lays the foundation for what we believe is the logically correct approach 
to integrating relational and object technologies—a topic of considerable interest at the present 
time, given the recent appearance in the marketplace of several “object / relational” DBMS 
products (sometimes called universal servers).  Perhaps we should add immediately that we do 
not regard the idea of integrating relational and object technologies as just another fad, soon to be 
replaced by some other briefly fashionable idea.  On the contrary, we think that object / relational 
systems are in everyone’s future—a fact that makes it even more important to get the logical 
foundation right, of course, while we still have time to do so.   

 
As this extract says, there was indeed a lot of interest at the time in integrating object and 

relational technologies.  The early 1990s had seen numerous proposals for DBMSs based not on 
the relational model but rather on some kind of object model.  With hindsight, we can see that 
most of those proposals were never going to go very far; but that fact wasn’t so clear at the time, 
and there were even those who were claiming that “the object model” (whatever that might be) 
would eventually—possibly even quite soon—replace the relational model.  As a consequence, 
the possibility of a system that got the best of both worlds, as it were, by combining object and 
relational ideas, did seem an attractive one.  The trouble was, it seemed to us that most of the 
database community were going after this objective in a fatally flawed way.  To be specific, they 
were designing systems on the basis of an incorrect assumption: namely, the assumption that the 
relational concept that most closely equated to the object concept class was the concept of a 
relation as such—or a relvar, really, but this latter term wasn’t in wide use at the time.7  We 
characterized this mistake at the time, rather rudely, as The First Great Blunder.8  To us, by 

                                                             
 
6 Actually the book had what might be called a “subsubtitle” too: viz., a detailed study of the impact of objects and type theory on 
the relational model of data, including a comprehensive proposal for type inheritance.  What’s more, this “subsubtitle” went 
through a couple of interesting changes in later editions of the book—the reference to objects was dropped, and comprehensive 
proposal for type inheritance became comprehensive model of type inheritance (emphasis added).   
 
7 Not that it is now, either, but it should be.   
 
8 There was a second “great blunder” as well: viz., allowing database relations to contain pointers.  Both are examined in depth in 
my book An Introduction to Database Systems (8th edition, Addison-Wesley, 2004) and elsewhere, and the second in particular 
I’ll be touching on in passing at several points later in the present book as well (especially in Part V).   
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contrast, it seemed clear that the true relational analog of an object class was neither a relation 
nor a relvar, but rather a type.  Thus, part of our goal in writing our book was simply to 
promulgate what we regarded as the right way to go about building object / relational systems, 
and in particular to help the community avoid that “great blunder,” if we could.   

All of that being said, I’m sorry to have to say that our chosen title was partly a matter of 
marketing once again.  The term object / relational sounds rather quaint now, but as I’ve 
indicated object / relational databases were a pretty hot topic at the time (all of the mainstream 
DBMS vendors were describing their products as, or claiming their products to be, object / 
relational, to a greater or lesser degree).  This state of affairs notwithstanding, it was our 
opinion at the time (and still is) that a true “object / relational” system would be nothing more 
nor less than a true relational system9—which is to say, it would be a system that supports the 
relational model, with all that such support entails—and true relational systems were (and still 
are) what the Manifesto is supposed to be a foundation for.  So we went along with the idea of 
using the term object / relational in our title, even though it was essentially just a marketing 
term, dreamt up by the “relational” DBMS vendors at the time to disguise the fact that their 
original “relational” products weren’t really very relational at all.10   

Be that as it may, what’s much more to the point for present purposes is that it was that 
1998 book that contained the first published description of our inheritance model.  Now, the 
version of the model described in that book was far from perfect—it suffered from a number of 
defects, and in particular involved a number of what later turned out to be blind alleys.  (I’ll 
have more to say about some of those blind alleys at various points later in the present book.)  
As a matter of historical record, though, it’s true that many of the ideas to be discussed in depth 
in later chapters of the present book did first see the light of day in that 1998 description.  
Here’s another pertinent quote from the preface to that book:   

 
[We] should mention one further feature that we believe to be highly significant, and that’s our 
proposal for a model of subtyping and inheritance.  Many authorities have rightly observed that 
there’s currently no consensus on any such model, and we offer our proposal for consideration in 
the light of this observation.  Indeed, we believe we have some original—and, we also believe, 
logically sound and correct—thoughts to offer on this important subject.   

 
Of course, there were plenty of languages, and indeed implementations, even back in 

1998, that did provide some kind of support for some kind of inheritance.  Today, even SQL 
does so.  Yet all of that support was and remains ad hoc to a degree; it’s still the case that 
there’s no consensus on any kind of inheritance model as such, and the foregoing remarks are 
as pertinent today as they were when we first made them.   
                                                             
 
9 After all, the whole point about an object / relational system from the user’s point of view is simply that it allows attributes of 
relations to be of arbitrarily complex types.  In other words, a proper object / relational system is really just a relational system 
with proper type support (including proper user defined type support in particular)—which just means it’s a proper relational 
system, no more and no less.  Thus, what some are pleased to call “the object / relational model” is, likewise, really just the 
relational model, no more and no less.   
 
10 They still aren’t, but that’s another story.   
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There’s another aspect as well of that 1998 book that’s relevant to our discussions in this 
one.  To be specific, it was that book that was the original source for the language Tutorial D.  
To elaborate briefly:  The main purpose of that book was, of course, to describe and explain 
The Third Manifesto as such.  Now, the Manifesto as such used the name D as a generic name 
for any language that conformed to Manifesto ideas—for example, the very first of the 
Manifesto’s prescriptions reads, in part, “[The language] D shall provide facilities for users to 
define their own scalar types”—and therefore the book did the same.  Here’s another quote 
(this one is from Chapter 1 but is very lightly edited here):   

 
No special significance attaches to our choice of the name D—we use it merely to refer generically 
to any language that conforms to the principles laid down in the Manifesto.  There could be any 
number of distinct languages all qualifying as a valid D.  We define one such language in this book; 
we call it Tutorial D, and we use it as the basis for most of our examples.   
 
In fact, of course, Tutorial D was expressly designed to be suitable as a vehicle for 

illustrating and teaching the ideas of the Manifesto.  Subsequently, however, we as well as 
several other people have used it for a variety of related purposes too, including as a basis for 
various textbooks and live classes in particular—and, as already noted, I’ll be using it in the 
present book as well.   

Back to our history.  Two years later, we published a second edition of the Manifesto 
book:   

 
! C. J. Date and Hugh Darwen: Foundation for Future Database Systems: The Third 

Manifesto (2nd edition, Addison-Wesley, 2000)  
 

Here’s a quote from the preface:   
 

The fact that the second edition of this book appears so hot on the heels of its predecessor clearly 
requires some explanation.  In fact, there were several reasons why we felt it desirable to revise the 
book so soon, but the overriding one had to do with our model of type inheritance.  To be specific, 
the version of the model described in the first edition has been so considerably—though, for the 
most part, compatibly—extended and improved that we now regard it as a part (albeit an optional 
part) of the Manifesto itself.  In the first edition, it was presented merely as a set of somewhat 
tentative “proposals,” with no very definite connection to the Manifesto proper; now, by contrast, 
we present it as a set of firm prescriptions, and we require a DBMS that supports the ideas of the 
Manifesto, if it supports type inheritance at all, to support our own inheritance model specifically.   

Also, we’ve taken the opportunity to make a small but significant change to the book’s 
overall title.  The title of the first edition characterized the Manifesto as a “foundation for object / 
relational databases.”  While that characterization was accurate as far as it went, it did not really go 
far enough.  Rather, we now regard (and in fact always did regard) the Manifesto as a foundation 
for future databases in general—including, for example, databases that contain temporal data and 
databases that are used in connection with the World Wide Web.  Moreover, we also regard it as a 
good foundation on which to build rule engines (also known as business logic servers), which, as 
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one of us has tried to show in another recent book,11 are exactly what [we believe] the next 
generation of DBMSs really ought to be.   

 
And a few years later we published yet another edition, again with a revised title:   

 
! C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third 

Manifesto (3rd edition, Addison-Wesley, 2007)  
 

This time the rewrite was motivated not so much by a change in what was described but 
rather by a change in our intended audience.  (In fact, the same goes for the change in title as 
well.)  The first two editions were aimed primarily at database researchers and DBMS designers 
and developers.  The new edition, by contrast, was aimed more at students and was meant to 
serve as more of a textbook.  From the preface:   
 

This is a textbook on database management.  It’s based on our earlier book Foundation for Future 
Database Systems: The Third Manifesto (Addison-Wesley, 2000), but it has been thoroughly 
revised—indeed, completely rewritten—from start to finish.  Part of our reason for wanting to 
revise it was to make it more suitable as a textbook (the earlier book, by contrast, was quite terse 
and formal and not very easy to read); in particular, most chapters now include a set of exercises, 
answers to which can be found on the website www.thethirdmanifesto.com.  However, we have 
naturally taken the opportunity to incorporate many other changes as well, including numerous 
clarifications, a certain amount of restructuring, many more examples, and—we regret to have to 
say—quite a few corrections also.   

 
Throughout the remainder of the present book, references to “the Manifesto book” should 

be understood as referring to this third edition specifically, unless the context demands 
otherwise.   
 
Why “The Third” Manifesto?  
 
As I’ve said, we wrote the original version of the Manifesto because we were concerned about 
certain trends we observed in the database industry at that time; in particular, we were concerned 
about certain well publicized but ill considered attempts to integrate object and relational 
technologies.  However, we certainly weren’t the first to address such matters.  In fact, it was 
precisely one of our aims in writing our original Manifesto to respond to two earlier manifestos 
(hence our choice of title):   
 

                                                             
 
11 C. J. Date: WHAT Not HOW: The Business Rules Approach to Application Development (Addison-Wesley, 2000).   
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1. Malcolm Atkinson, François Bancilhon, David DeWitt, Klaus Dittrich, David Maier, and 
Stanley Zdonik: “The Object-Oriented Database System Manifesto” (Proc. 1st 
International Conference on Deductive and Object-Oriented Databases, Kyoto, Japan, 
1989)  

 
2. Michael Stonebraker, Lawrence A. Rowe, Bruce G. Lindsay, James Gray, Michael Carey, 

Michael Brodie, Philip Bernstein, and David Beech: “Third Generation Database System 
Manifesto” (ACM SIGMOD Record 19, No. 3, September 1990)  

 
Like our own Manifesto, both of these documents proposed a basis on which to build 

future DBMSs; however, it seemed to us that they both suffered from some very serious defects.  
Indeed, as we wrote at the time (this is a quote from the first edition of the Manifesto book):   

 
! The first [of the two earlier manifestos] essentially ignored the relational model.  In our opinion, 

this flaw was more than enough to rule it out as a serious contender.  In any case, it seemed to us 
that it failed to give firm direction.   

 
! The second did correctly embrace the relational model, but failed to emphasize (or indeed even 

mention) the hopelessness of continuing to follow a commonly accepted perversion of that 
model—namely, SQL—in pursuit of relational ideals.  In other words, it simply assumed that 
SQL, with all its faults, was (and is) an adequate realization of the relational model and hence an 
adequate foundation on which to build.12   

 
Note:  More details on the first two manifestos can be found in Appendix B of the present book.   

Let me close this section by saying a little more about the Manifesto website 
www.thethirdmanifesto.com.  Both the Manifesto itself and Tutorial D are to some extent 
“works in progress.”  In particular, they don’t exist (yet) in product form.  As a consequence, we 
have the freedom to make changes from time to time (and we do), without being constrained by 
what Hugh Darwen has referred to elsewhere as The Shackle of Compatibility.13  But all such 
changes are documented at the Manifesto website; thus, the most recent version of the Manifesto 
as such (including a definition of the inheritance model) and the most recent definition of 
Tutorial D are in principle always to be found at that website.   

Note:  Much additional relevant material can also be found at that website, including 
among other things information regarding prototype implementations of Tutorial D.  In 
                                                             
 
12 By contrast, we feel (as we also stated in that first edition of the Manifesto book) that any attempt to move forward, if it’s to 
stand the test of time, must reject SQL unequivocally.  To quote:  “Our reasons for taking this position are too many and varied 
for us to spell them out in detail here; in any case, we have described them in depth in many other places” (and we referred the 
reader to those other places for more specifics).  This state of affairs accounts in part for the lack of emphasis on SQL in the 
present book as well.   
 
13 See Hugh’s presentation “The Askew Wall” at www.thethirdmanifesto.com, also his paper by the same name in our book 
Relational Database Writings 1989-1991 (Addison-Wesley, 1992).  Perhaps I should add that even though (to repeat) we don’t 
feel ourselves constrained by The Shackle of Compatibility, we do generally try to ensure that any changes we might make are 
evolutionary, not revolutionary, in nature.   
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particular, the website contains the entire text of another book by Darwen and myself, viz. 
Database Explorations: Essays on The Third Manifesto and Related Topics (originally published 
by Trafford Publishing Inc. in 2010).  Chapter 21 of that book is titled “Extending Tutorial D to 
Support the Inheritance Model.”  For obvious reasons, I assume for the purposes of the present 
book that Tutorial D has indeed been extended in accordance with the proposals in that earlier 
book (as well as certain other proposals documented in other writings by ourselves).   
 
 
EXERCISES  
 
1.1 (Try this exercise without looking back at the body of the chapter.)  What relvars does the 
suppliers-and-parts database contain?  What attributes do they involve?  What keys and foreign 
keys do they have?  (The point of this exercise is simply that it’s worth making yourself as 
familiar as possible with the structure, at least in general terms, of the suppliers-and-parts 
example.  It’s not so important to remember the actual data values, though it certainly wouldn’t 
hurt if you did.)   
 
1.2 I showed in the body of the chapter how DELETE can be defined in terms of relational 
assignment (“:=”) and relational difference (MINUS).  But what about INSERT?  And (harder) 
what about UPDATE?   
 
1.3 Why does the notion of inheritance “arise naturally”?   
 
1.4 What exactly does it mean to say type T′ is a subtype of type T?   
 
1.5 Why does the Manifesto inheritance model regard SQUARE as a subtype of RECTANGLE 
but not PGMR (programmers) as a subtype of EMP (employees)?   
 
1.6 What’s the difference between D and Tutorial D?   
 
1.7 Is Tutorial D part of The Third Manifesto?   
 
1.8 What do you understand by the term object / relational?   
 
1.9 The relations depicted in Fig. 1.1 represent sample values for certain relvars, or in other 
words what some writers refer to as the “state” (or “current state”) of the relvars in question.  
Moreover, that figure shows certain attributes as doubly underlined, and that double underlining 
is intended to indicate that the attributes in question constitute a key for the pertinent relvar.  But 
consider the following picture, which shows the result of restricting the current value of relvar S 
to just suppliers in Paris:   
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┌─────┬───────┬────────┬────────┐ 
│ SNO │ SNAME │ STATUS │ CITY   │ 
├═════┼───────┼────────┼────────┤ 
│ S2  │ Jones │     10 │ Paris  │ 
│ S3  │ Blake │     30 │ Paris  │ 
└─────┴───────┴────────┴────────┘ 

 
What this picture shows is just a relation as such, not the relation that happens to be the 

current value (or “current state”) of some relvar.  And relations as such don’t have keys, relvars 
do.14  So what do you think is an appropriate interpretation of that double underlining in pictures 
like this one?   
 
1.10 Why do you think the incorrect equation “relvar = class” might have seemed—or might 
still seem!—attractive to some people?   
 
 
ANSWERS		
	
For	answers	to	Exercises	1.1,	1.3-1.6,	and	1.8,	please	see	the	body	of	the	chapter.			
	
1.2	 I’ll	answer	this	exercise	in	terms	of	a	couple	of	simple	examples.		First,	the	Tutorial	D	
INSERT	statement		

	
INSERT SP  
      RELATION { TUPLE { SNO SNO('S5') , PNO PNO('P6') , QTY QTY(250) } ;  
	

(which	effectively	inserts	just	a	single	tuple	into	relvar	SP)	is	shorthand	for	the	following:			
	
SP := SP  
      UNION  
      RELATION { TUPLE { SNO SNO('S5') , PNO PNO('P6') , QTY QTY(250) } ;  
	

(So	what	happens	if	the	specified	tuple	already	exists	in	the	target	relvar?)		Note:		The	
expression	RELATION	{TUPLE	{SNO	SNO('S5'),	PNO	PNO('P6'),	QTY	QTY(250)},	which	appears	in	
both	of	the	code	fragments	above,	is	a	relation	selector	invocation	(see	Chapter	2),	and	it	
denotes	the	relation	that	contains	just	the	tuple	to	be	inserted.			

Second,	the	Tutorial	D	UPDATE	statement		
	
UPDATE P WHERE CITY = 'Paris' :  
             { CITY := 'Nice' , WEIGHT := 2 * WEIGHT } ;  

                                                             
 
14 Why?  Because to say something is a key is to say a certain integrity constraint is in effect—a certain uniqueness constraint, to 
be specific—and integrity constraints apply to variables, not values.  (By definition, integrity constraints constrain updates, and 
updates apply to variables, not values.  See the section “Values vs. Variables” in Chapter 2.)   
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(which	effectively	updates	all	parts	in	Paris,	changing	their	city	to	Nice	and	doubling	their	
weight)	is	shorthand	for	the	following:			

	
WITH ( t1 := P WHERE CITY = 'Paris' ,  
       t2 := EXTEND t1 : { CITY := 'Nice' , WEIGHT := 2 * WEIGHT } ) :  
P := ( P MINUS t1 ) UNION t2 ;  

	
For	further	explanation—in	particular	regarding	the	EXTEND	operator	in	line	2—see,	e.g.,	my	
book	SQL	and	Relational	Theory:	How	to	Write	Accurate	SQL	Code	(3rd	edition,	O’Reilly,	2015).			

	
1.7	 No,	it	isn’t—it’s	defined	in	the	Manifesto	book,	but	it’s	not	part	of	the	Manifesto	as	such.			
	
1.9	 Such	pictures	can	always	be	regarded	as	showing	a	sample	value	for	some	relational	
expression	RX,	where	RX	is	something	other	than	a	simple	relvar	reference.		(A	relvar	reference	
is	just	a	relvar	name,	syntactically	speaking.)		Moreover,	RX	in	turn	can	be	regarded	as	defining	
a	possible	value	for	some	relvar	R.		So	the	double	underlining	indicates	that	a	key	K	could	in	
principle	be	declared	for	that	relvar	R	and	the	pertinent	attribute	is	part	of	K.			

An	alternative	but	equivalent	way	of	saying	the	same	thing	is	this:		The	relation	depicted	
certainly	doesn’t	“have”	the	indicated	key—in	fact,	it	would	be	logically	incorrect	to	say	the	
relation	“has”	that	key—but	it	does	satisfy	the	corresponding	uniqueness	constraint.			
	
1.10	 At	least	part	of	the	reason,	it	seems	to	me,	is	that	the	terms	class	and	object	have	no	
single,	universally	agreed	meaning.		Consider	the	following.		Over	the	years,	there	have	been	
several	books	on	object	database	design.15		Typically,	those	books	use	the	terms	object	and	
object	modeling	to	mean	what	the	database	community	would	more	usually	call	an	entity	and	
entity	/	relationship	modeling,	respectively,	and	the	term	class	to	mean	a	collection	of	such	
objects	(or	entities).		As	a	consequence,	those	books	go	on,	in	effect,	to	map	those	objects	to	
tuples	in	relvars	instead	of	values	in	domains	(more	precisely,	they	map	classes	to	relvars	
instead	of	to	domains).		Which	isn’t	necessarily	a	problem,	as	far	as	it	goes;	the	problem	arises	
when	a	change	in	context	occurs	and	we	move	into	the	programming	realm,	where	the	terms	
class	and	object	take	on	a	different	meaning—class	now	being	another	term	for	type,	and	
object	now	being	another	term	for	something	that’s	of	such	a	type.		In	other	words,	what	
happens	is	that	an	equation	that	made	sense	with	one	interpretation	of	the	pertinent	terms	
gets	carried	over	unchanged	to	a	context	where	it	doesn’t	make	sense,	because	the	meanings	
of	the	terms	have	changed.		That’s	my	guess,	anyway.			
	
                                                             
 
15 Here are two early examples: (a) Object-Oriented Modeling and Design for Database Applications, by Michael Blaha and 
William Premerlani (Prentice-Hall, 1998); (b) Object-Oriented Software Engineering, by Ivar Jacobson (with Magnus 
Christerson, Patrik Jonsson, and Gunnar Övergaard), revised printing (Addison-Wesley, 1994).   



  

 

Chapter  2 
 
 

T y p e s   w i t h o u t   I n h e r i t a n c e 
 
 

[Types make] program development and debugging easier  
by making program behavior more understandable.   

—Andrew Wright: 
“On Sapphire and Type-Safe Languages” (CACM 46, No. 4, April 2003) 

 
 

The overall purpose of this book is, of course, to explain the Manifesto model of type inheritance.  
The present chapter—the longest in the book, unfortunately—lays some necessary groundwork 
by describing the Manifesto theory of types as such (by which I mean types without inheritance).  
It’s based in part on material from (a) Chapter 2 of my book SQL and Relational Theory: How 
to Write Accurate SQL Code (3rd edition, O’Reilly, 2015) and (b) Chapter 5 of my book An 
Introduction to Database Systems (8th edition, Addison-Wesley, 2004); if you’re already familiar 
with either of those references, therefore, you might be able to skip it.  But you should probably 
at least skim it, if only to get some broad sense of what it covers.   
 
Data types, or just types for short, are fundamental to computer science.  As noted in Chapter 1, 
relational theory in particular requires a supporting type theory, because relations are defined 
over types—that is, every attribute of every relation is of some type (and so is every attribute of 
every relvar, of course).  For example, with reference to the suppliers-and-parts database from 
Chapter 1 (see Fig. 1.1 for some sample values), the Tutorial D definition for the suppliers 
relvar S in that chapter shows attribute STATUS of that relvar as being of type INTEGER.  What 
this means is that every relation that’s a possible value for that relvar must also have a STATUS 
attribute that’s of type INTEGER—which means in turn that every tuple in such a relation must 
also have a STATUS attribute that’s of type INTEGER, which means further that the tuple in 
question must have a STATUS value that’s an integer.   

I’ll be discussing relations, tuples, and attributes in much more detail later in the chapter.  
Before we can get to that discussion, however, I need to cover a lot of material of a rather more 
fundamental nature.  For now, therefore, let me just say that—with certain important exceptions, 
which I’ll also be discussing later—attributes of relations and relvars (or of tuples and 
“tuplevars,” come to that) can be of any type whatsoever, implying among other things that such 
types can be arbitrarily complex.  Importantly, they can even be relation or tuple types in turn.  
See the answer to Exercise 2.19 at the end of the chapter for examples.   
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VALUES vs. VARIABLES  
 
The brief discussion in the introduction to this chapter, regarding the fact that attribute STATUS 
of relvar S is of type INTEGER, touches on the logical difference (discussed in detail in the 
previous chapter) between relation values and relation variables.  In fact, however, that 
difference is really just a special case of the logical difference between values and variables in 
general.  Before getting into a discussion of types as such, therefore, I’d like to say something 
about this more general case, because it turns out—perhaps surprisingly—that it’s an issue over 
which there’s a great deal of confusion in the literature.  Here first are some definitions, based on 
ones given in An Introduction to Data Types, by J. Craig Cleaveland (Addison-Wesley, 1986):   
 

Definition:  A value is an “individual constant” (to borrow a term from logic), such as the 
integer 3.  A value has no location in time or space.  However, values can be represented in 
memory by means of some encoding, and those representations, or encodings, do have 
location in time and space; indeed, distinct representations of the same value can appear at 
any number of distinct locations in time and space, meaning, loosely, that any number of 
different variables—see the next definition below—can have the same value, at the same 
time or different times.  Observe in particular that, by definition, a value can’t be updated, 
for if it could, then after such an update it wouldn’t be that value any longer.   
 
Definition:  A variable is a holder for a representation of a value.  A variable does have 
location in time and space.  Also, variables, unlike values, can be updated; that is, the 
current value of the variable can be replaced by another value.  (After all, that’s what 
“variable” means—to be a variable is to be updatable, to be updatable is to be a variable.  
Equivalently, to be a variable is to be assignable to, to be assignable to is to be a variable.)   
 
Now, you might find it hard to believe that people can get confused over a distinction as 

basic and obvious as the one just described between values and variables.  In fact, however, it’s 
all too easy to fall into traps in this area.  By way of illustration, consider the following extract 
from a tutorial on object databases (the italicized portions in brackets are comments by myself):   

 
We distinguish the declared type of a variable from ... the type of the object that is the current value 
of the variable [so an object is a value] ... We distinguish objects from values [so an object isn’t a 
value after all] ... [A] mutator [is an operator such that it’s] possible to observe its effect on some 
object [so in fact an object is a variable].   
 

So what exactly is an object?  Is it a value, or is it a variable?  Or is it something else entirely?1   

                                                             
 
1 This lack of clarity as to exactly what an object is accounts for the total lack of mention of objects anywhere in The Third 
Manifesto.  Indeed, we found we could formulate everything we wanted to say in the Manifesto in terms of values and variables 
alone, without ever having to appeal to any kind of object notion, as such, at all.   
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Important:  Please note very carefully that it isn’t just simple things like the example 
quoted above—namely, the integer 3—that are legitimate values.  On the contrary, values can be 
arbitrarily complex.  For example (as suggested in the previous chapter, in fact), a value might be 
a supplier number; or a geometric point; or a rectangle; or an X ray; or an XML document; or a 
fingerprint; or an array; or a relation (etc., etc.).  Analogous remarks apply to variables too, of 
course—or rather, and more generally, they apply to types, as we’ll see later.   

It’s also important to distinguish between a value per se, on the one hand, and an 
appearance of such a value in some particular context (e.g., as the current value of some 
variable), on the other.  As already explained, the very same value can appear in many different 
contexts (e.g., as the current value of many different variables) simultaneously.  Each of those 
appearances consists internally of some encoding, or physical representation, of the value in 
question.  Moreover, those encodings aren’t necessarily all the same.  For example, the integer 
value 3 occurs exactly once in the set of all integers—there’s exactly one integer 3 “in the 
universe,” as it were—but any number of variables might simultaneously contain an appearance 
of that integer as their current value.  What’s more, some of those appearances might be 
physically represented by means of, say, a decimal encoding, and others by means of a binary 
encoding, of that particular integer.  Thus, there’s also a logical difference between an 
appearance of a value, on the one hand, and the internal encoding or physical representation of 
that appearance on the other.  And there might even be a logical difference between the 
encodings used for different appearances of the same value.   

All of that being said, for obvious reasons it’s usual to abbreviate encoding of an 
appearance of a value to just appearance of a value, or (more often) just value, so long as there’s 
no risk of ambiguity.  Note, however, that appearance of a value is a model concept, while 
encoding of an appearance is an implementation concept.  For example, users certainly might 
need to know whether two distinct variables contain appearances of the same value (i.e., whether 
they “compare equal”), but they don’t need to know whether those two appearances make use of 
the same physical encoding.   

To illustrate the point, let variables N1 and N2 both be declared to be of type INTEGER 
(see the section “What’s a Type?” below).  After the following assignments, then, N1 and N2 
will both contain an appearance of the integer value 3 and will thus “compare equal,” and of 
course the user needs to understand that these things are so.  As for the corresponding physical 
representations, they might or might not be the same (for example, N1 might use a decimal 
representation and N2 a binary representation); either way, however, it’s of no concern to the 
user.   
 

N1 := 3 ;  
 
N2 := 3 ;  
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WHAT’S A TYPE?  
 
With that discussion of values and variables out of the way, I can now move on to discuss types 
as such.  First let me remind you of the loose definition I gave in Chapter 1, to the effect that a 
type is basically just a named set of values (i.e., all possible values of some particular kind).  
Now, however, I need to be rather more precise.  To be specific:   
 
! First of all, a given type can be either system defined (i.e., built in) or user defined.2  The 

relational model prescribes just one system defined type, type BOOLEAN (the most 
fundamental type of all).  That type contains exactly two values: two truth values, to be 
precise, denoted by the literals TRUE and FALSE, respectively.  However, real systems 
will support a variety of other system defined types as well, of course, and I’ll assume for 
the purposes of this book that types INTEGER (integers), RATIONAL (rational numbers—
see the aside below), and CHAR (character strings of arbitrary length) are all available as 
system defined types in addition to type BOOLEAN.   

Of course, the whole point about a user defined type (from the point of view of a user 
who is merely using it, that is, as opposed to the user who actually has the job of defining 
it) is that it’s supposed to behave just like a system defined type anyway.  In other words, 
in most contexts the question of whether a given type is system or user defined is largely 
irrelevant anyway.   
 

! Second, types are always named (and types with different names are different types, so 
that, e.g., types INTEGER and RATIONAL are different types).  Thus, every type has 
exactly one name.3   

 
! Third, I note in the interest of accuracy that, instead of saying (e.g.) that type INTEGER is 

the set of all possible integers, I ought really to say it’s the set of all integers that are 
capable of representation in the computer system under consideration; obviously there’ll 
always be some integers that are beyond the representational capability of any given 
system.  In other words, the types we have to deal with in practice are always finite, 
precisely because we’re dealing with computers, which are finite by definition.   

 
Aside:		I’d	like	to	say	a	little	more	here	regarding	type	RATIONAL	in	particular.		By	
definition,	a	rational	number	is	a	number	that	can	be	expressed	as	the	ratio	of	two	

                                                             
 
2 I’m making a tacit assumption here that the type in question isn’t a generated type (the question of whether a given type is 
system or user defined doesn’t really have any meaning for generated types).  See the section “Type Generators” later in the 
chapter for further explanation.   
 
3 Elsewhere, however, I’ve proposed a mechanism by which a type might additionally be allowed to have one or more synonyms, 
so that, e.g., type CHAR might alternatively be referred to by the synonym CHARACTER, or type INTEGER by the synonym 
INT, or type SNO by the synonym S#.  For further details see my paper “The Naming of Types,” in Database Explorations: 
Essays on The Third Manifesto and Related Topics, by Hugh Darwen and myself (Trafford, 2010), available free online at the 
Manifesto website www.thethirdmanifesto.com.  



 
 

Types without Inheritance / Chapter 2      23 

integers	(e.g.,	3/8,	593/370,	-4/3),	while	an	irrational	number	is	a	number	that	can’t	be	so	
expressed	(e.g.,	π,	√2).		Every	rational	number	is	such	that	its	fractional	part	can	be	
represented	in	decimal	notation	in	one	of	the	following	two	ways:			
	
a.	 As	a	possibly	empty	finite	sequence	of	digits	followed	by	an	infinite	sequence	of	

trailing	zeros,	which	can	be	ignored	without	loss	(e.g.,	3/8	=	0.375000...)		
	
b.	 As	a	possibly	empty	finite	sequence	of	digits	followed	by	a	finite	sequence	of	digits,	

the	first	of	which	is	nonzero,	that	infinitely	repeats	(e.g.,	593/370	=	1.60270270...)		
	
By	contrast,	the	fractional	part	of	an	irrational	number	in	decimal	notation	consists	of	an	
infinite,	nonrepeating	sequence	of	digits	(e.g.,	π	=	3.14159...,	√2	=	1.41421...).			

Now,	many	programming	languages	support	a	numeric	type	they	call	REAL.		A	real	
number	is	a	number	that’s	either	rational	or	irrational.		Computers	being	finite,	however,	
the	only	real	numbers	they	can	represent	precisely	are	rational	ones,	necessarily;4	hence	
Tutorial	D’s	choice	of	the	keyword	RATIONAL.		End	of	aside.			

 
So much for what types are; I turn now to the question of what they’re for.  The following 

quote provides one good answer to that question:5   
 

A major purpose of type systems is to avoid embarrassing questions about representations, and to 
forbid situations in which these questions might come up.   

 
However, a full appreciation of the significance of this answer requires a lot more by way of 
background knowledge, so let me continue with my explanations.  The next point is that, in a 
properly typed system, just about everything has, or is of, some type.  Let me elaborate:   

 
! First and foremost, every value is certainly of some type.  In other words, if v is a value, 

then v can be thought of as carrying around with it a kind of flag that announces “I’m an 
integer” or “I’m a supplier number” or “I’m a rectangle” (etc., etc.).6  Observe that, by 
definition, any given value always has exactly one type (except possibly if type inheritance 
is supported, which as far as this chapter is concerned it isn’t), and that type never changes.  
Note:  If every value is of exactly one type, then no value is of two or more types, and 

                                                             
 
4 In fact, if we assume decimal representation, then they can represent precisely (a) only rational numbers of the first kind, such 
as 3/8, and (b) only a vanishingly small percentage of those (!).   
 
5 The quote is from “On Understanding Types, Data Abstraction, and Polymorphism,” by Luca Cardelli and Peter Wegner (ACM 
Comp. Surv. 17, No. 4, December 1985).   
 
6 Since tuples and relations are values, these remarks apply to tuples and relations in particular, for which the function of what 
I’m referring to here as “a kind of flag” is performed by the pertinent heading (see the section “Type Generators,” later, where 
I’ll have a lot more to say about tuples and relations in general).   
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distinct types are thus disjoint, absent inheritance.  I’ll have more to say regarding this 
particular issue in the answer to Exercise 3.14 in the next chapter.   

 
! Next, every variable, every attribute of every relvar,7 every operator that returns a result, 

every parameter to every operator, and more generally every expression, has what’s called 
a declared type.8  To be specific:   
 
1. Every variable is explicitly declared to be of some type, meaning that every possible 

value of the variable in question is a value of the type in question.   
 
2. Every attribute of every relvar is explicitly declared to be of some type, meaning that 

every possible value of the attribute in question is a value of the type in question.   
 
3. Every operator that returns a result is explicitly declared to be of some type, meaning 

that every possible result that can be returned by an invocation of the operator in 
question is a value of the type in question.  Note:  Operators in general fall into two 
disjoint classes, as follows:   

 
a. Read-only operators,9 which return a result and thus have a declared type as just 

explained, and  
 
b. Update operators, which return no result and thus have no declared type.   

 
Instead of returning a result, an update operator updates one or more of its arguments.  
Note that if A is such an argument, then A is required to be a variable specifically (not 
just a value), because only variables can be updated.   

 
4. Every parameter to every operator is explicitly declared to be of some type, meaning 

that every possible argument that can be substituted for the parameter in question is a 
value of the type in question (or a variable of the type in question, if the operator in 
question is an update operator and will update the argument in question—see point 3 
above).   

 
5. More generally, every expression denotes some value and is thus implicitly declared 

to be of some type: namely, the type of the value in question, which is to say the type 
                                                             
 
7 Or tuplevar—but for simplicity let’s agree to ignore tuplevars from this point forward, until further notice.   
 
8 The difference between declared types and types in general will become extremely important when we get to type inheritance in 
the next chapter (and in the rest of the book).  Without inheritance, however, the declared type of some item reduces to just the 
type of the item in question, in the sense in which the term type is usually understood.   
 
9 The qualifier read-only derives from the fact that such operators simply “read” their arguments and don’t update them (in fact 
they aren’t allowed to update anything at all, except possibly for variables that are local to their own implementation code).   
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of the result returned by the outermost operator in the expression (where by 
“outermost” I mean the operator that’s executed last).  For example, the type of the 
expression  

 
( a / b ) + ( x - y )  

 
is the type declared for the operator “+”, whatever that happens to be.  Note in 
particular that variable references and literals are both considered to be expressions—
the operator to be invoked in each case being effectively just “Return the value of”—
and thus certainly have a declared type.   

 
Aside:		To	repeat,	variables,	relvar	attributes,	etc.,	all	have	a	declared	type.		By	contrast,	
values	as	such	aren’t	declared	at	all;	thus,	values	can’t	really	be	said	to	have	a	declared	
type	as	such.		That	being	said,	however,	the	only	way	a	value	can	be	referenced	within	a	
program	is,	of	course,	by	means	of	some	expression—possibly	just	a	literal—and	such	
expressions	do	have	a	declared	type,	as	we’ve	just	seen.		So	sometimes	we	have	to	be	
rather	careful	over	the	logical	difference	between	a	value	as	such,	on	the	one	hand,	and	
the	expression	that’s	being	used	to	denote	that	value	in	some	particular	context,	on	the	
other.		End	of	aside.			
 
Now, the fact that parameters in particular are declared to be of some type raises an issue 

that I’ve touched on but haven’t yet properly discussed—namely:   
 
Associated with every type there’s a set of operators for operating on values and variables 
of the type in question—where to say that operator Op is “associated with” type T 
basically just means that operator Op has a parameter of type T.10   
 
For example, integers have the usual arithmetic operators; dates and times have special 

calendar arithmetic operators; XML documents have what are called “XPath” and “XQuery” 
operators; relations have the operators of the relational algebra; and every type has the operators 
of assignment (“:=”) and equality comparison (“=”), where:   

 
! Regarding “:=”:  All assignments are required to abide by The Assignment Principle, 

which states that after assignment of value v to variable V, the equality comparison v = V 
(see the next bullet item below) must evaluate to TRUE.  Of course, this principle—which 
applies to assignments of all kinds, please note, including relational assignments in 
particular—is effectively just a somewhat formal definition of the semantics of the 
assignment operation.   

                                                             
 
10 It follows that any system that provides proper type support—and “proper type support” here certainly includes the ability for 
users to define their own types—must provide a way for users to define their own operators, too, because types without operators 
are useless (see the section “Operators,” later).   
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Note:  As the Manifesto book explains, the database itself is really a variable—a 
database variable or “dbvar”—and database updates are really just assignments to that 
variable.  It follows from The Assignment Principle, therefore, that such updates aren’t 
allowed to have any hidden side effects.   
 

! Regarding “=”:  Here’s what the Manifesto requires of this operator:   
 

D shall support the equality comparison operator “=” for every type T.  Let v1 and v2 be values, 
and consider the equality comparison v1 = v2.  The values v1 and v2 shall be of the same type T.  
The comparison shall return TRUE if and only if v1 and v2 are the very same value.   

 
By way of illustration, consider the system defined type INTEGER.  Since the agency 

responsible for defining this type is the system itself, it’s the system that:   
 

! Will provide an assignment operator “:=” for assigning integer values to integer variables;  
 
! Will provide comparison operators “=”, “≠”, “<”, etc., for comparing integer values;  
 
! Will provide arithmetic operators “+”, “*”, etc., for performing arithmetic on integer 

values;  
 
! Will not provide operators “| |” (concatenate), CHAR_LENGTH (length in characters), etc., 

for performing string operations on integer values (in other words, string operations on 
integer values won’t be supported).   

 
By contrast, in the case of the user defined type SNO, it’s the user responsible for defining 

the type that:11   
 

! Will provide an assignment operator “:=” for assigning SNO values to SNO variables;  
 
! Will provide operators “=” and “≠” (and possibly “<” etc.) for comparing SNO values;  
 
! Will probably not provide arithmetic operators “+”, “*”, etc., for performing arithmetic on 

SNO values, and so on, which would mean that arithmetic on supplier numbers wouldn’t 
be supported (why would we ever want to add or multiply two supplier numbers?).   

 
Note:  The remarks earlier concerning operators and their parameters need some refinement 

if the operator in question is polymorphic.  Speaking a trifle loosely, an operator is said to be 
                                                             
 
11 I’m talking conceptually here.  Even with user defined types, certain operators (for example, assignment) can surely be 
provided “automatically,” in the sense that the system should be able to provide the necessary implementation code without any 
special effort on the part of the type definer.   
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polymorphic if it’s defined in terms of some parameter P and the arguments corresponding to P 
can be of different types on different invocations.  The equality operator “=” is an obvious case 
in point:  We can perform equality comparisons between values of any type whatsoever (just so 
long as the values in question are of the same type, of course), and so “=” is polymorphic—it 
applies to integers, and character strings, and supplier numbers, and in fact to values of every 
possible type.  Analogous remarks apply to the assignment operator “:=”, which is also defined 
for every type:  We can assign any value to any variable, just so long as the value and variable in 
question are of the same type.  (Of course, the assignment will fail if it violates some integrity 
constraint, but it can’t fail on a type error as such.)   

 
Aside:		What’s	really	going	on	here,	at	least	in	the	examples	quoted	(viz.,	“:=”	and	“=”),	
isn’t	so	much	that	there’s	a	single	operator	that’s	associated	with	many	different	types;	
rather,	it’s	that	there	are	many	different	operators	(one	for	each	of	many	different	types),	
but	those	different	operators	all	have	the	same	name.		In	a	sense,	then,	it’s	the	operator	
names	that	are	polymorphic,	rather	than	the	operators	as	such.		But	that’s	because	the	
examples	quoted	are	all	examples	of	what’s	sometimes	called,	more	specifically,	
overloading	polymorphism	(also	known	as	ad	hoc	polymorphism)—and	in	overloading	
polymorphism,	it	really	is	the	operator	names	that	are	overloaded,	not	the	operators	as	
such.		(Note,	however,	that	the	literature	almost	never	admits	to	this	latter	fact	but	does	
indeed	talk	as	if	the	overloading	applied	to	the	operators	themselves.)		Later	in	this	
chapter,	by	contrast,	we’ll	meet	another	kind	of	polymorphism	called	generic	
polymorphism—and	in	later	chapters	we’ll	meet	yet	another,	called	inclusion	
polymorphism—and	in	these	cases	it	really	is	the	operators	as	such	that	are	polymorphic.		
End	of	aside.			

 
 
SCALAR vs. NONSCALAR TYPES  
 
It’s sometimes convenient to draw a distinction between scalar and nonscalar types.  Loosely, a 
type is said to be scalar if it has no user visible components and nonscalar otherwise; and then 
values, variables, attributes, operators, parameters, and expressions of some type T are said to be 
scalar or nonscalar according as type T itself is scalar or nonscalar.  For example:   
 
! Type INTEGER is a scalar type; hence, values, variables, and so on of type INTEGER are 

also all said to be scalar.   
 
! Tuple and relation types are nonscalar—the pertinent user visible components being the 

corresponding attributes—and hence tuple and relation values, variables, and so on are also 
all said to be nonscalar.   

 



 
 
28      Chapter 2 / Types without Inheritance 

That said, I must stress that these notions are quite informal.  Indeed, I’ve explained 
elsewhere—see, e.g., my book SQL and Relational Theory: How to Write Accurate SQL Code 
(3rd edition, O’Reilly, 2015)—that the concept, frequently appealed to when relational databases 
are discussed, of data value atomicity has no absolute meaning, and “scalarness” is really just 
that same concept by another name.  So the relational model in particular certainly doesn’t rely 
on the scalar vs. nonscalar distinction in any formal sense.  In this book, however, I do rely on it 
informally; I mean, I do find it intuitively useful, on occasion.  To be specific:   

 
! I occasionally use the term nonscalar to refer to tuple and relation types considered jointly.  

Of course, there are other nonscalar types in addition to these two—array types are an 
obvious example—but tuple and relation types are the ones most relevant to the present 
book.   

 
! I occasionally use the term scalar to refer to types that aren’t nonscalar in the foregoing 

sense—in particular, to types that are neither tuple nor relation types.   
 

I also sometimes use the unqualified term scalar as a noun to mean a scalar value specifically.   
 

Aside:		Another	term	you’ll	sometimes	hear	used	to	mean	“scalarness”	is	encapsulation.		
Be	aware,	however,	that	this	term	is	also	used—especially	in	object	contexts—to	refer	to	
the	physical	bundling,	or	packaging,	of	code	and	data	(or,	rather,	operator	definitions	and	
data	representation	definitions,	to	be	more	precise	about	the	matter).		But	to	use	the	
term	this	way	is	to	mix	model	and	implementation	concerns;	clearly,	users	shouldn’t	care,	
and	shouldn’t	need	to	care,	whether	code	and	data	are	physically	bundled	together	or	are	
kept	separate.		See	Appendix	A	for	further	discussion.		End	of	aside.			

 
 
TYPES vs. REPRESENTATIONS  
 
It should be clear from the section “Values vs. Variables” that there’s a logical difference 
between a type per se, on the one hand, and the physical representation of values of that type 
inside the system, on the other.  In fact, types are a model issue, while physical representations 
are an implementation issue.  For example, supplier numbers might be physically represented as 
character strings, but it doesn’t follow that we can perform character string operations such as 
“| |” (concatenate) on supplier numbers; we can do such things only if appropriate operators have 
been defined for the type (see the section “What’s a Type?”).  And the operators we define for a 
given type will naturally depend on the intended meaning and use of the type in question, not on 
the way values of that type happen to be physically represented—indeed, those physical 
representations are, or should be, hidden from the user.  In other words, the distinction we draw 
between type and physical representation is one important aspect of the notion, very familiar 
from the database world, of data independence.   
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Let T be a scalar type.  Then the physical representation of values of type T can be 
arbitrarily complex; as explained above, however, that physical representation is hidden from the 
user.  But the Manifesto does require that values of type T additionally have at least one 
“possible” representation.12  Such possible representations are explicitly declared as part of the 
definition of type T, and they’re not hidden from the user.  Moreover, if PR is a possible 
representation for type T, then PR, unlike T as such, does have components, and those 
components too are visible to the user.  Please understand, however, that the components in 
question aren’t components of type T as such—rather, they’re components of possible 
representation PR (type T as such is still scalar in the sense defined in the previous section and 
has no user visible components).  For example, consider the user defined type QTY 
(“quantities”), whose definition in Tutorial D might look like this:13   
 

TYPE QTY POSSREP QPR ( Q INTEGER ) ;  
 
This definition says, in effect, that quantities—i.e., values of type QTY—can possibly be 

represented by integers.  Type QTY has just one declared possible representation (“possrep” for 
short), called QPR; moreover, that possrep QPR certainly does have user visible components—in 
fact, it has exactly one such, called Q, of declared type INTEGER—but quantities per se don’t.   

Important:  The fact that quantities can possibly be represented by integers does not mean 
they physically are.  They might be; on the other hand, they might be physically represented by 
rational numbers, or character strings, or indeed anything else you might care to think of.  
Indeed, distinct QTY values might be physically represented in distinct ways.  Even distinct 
appearances of the same QTY value might be physically represented in distinct ways!  In other 
words, there’s a logical difference between possible representations and physical representations.  
(I’d like to say there’s a big logical difference, but all logical differences are big by definition.)   

Now, I introduced the possrep name QPR in the foregoing example in order to stress the 
fact that types and possreps are logically distinct constructs.  In Tutorial D in particular, 
however, explicit possrep names can be (and often are) omitted, thanks to the following syntax 
rule:  If a possrep is declared for type T but has no explicitly declared name, then that possrep is 
named T by default.  Here by way of illustration is a simpler definition for type QTY:   

 
TYPE QTY POSSREP ( Q INTEGER ) ;  
 

In effect, this definition is shorthand for the following:   
 
TYPE QTY POSSREP QTY ( Q INTEGER ) ;  
 

                                                             
 
12 Unless T is a dummy type.  Dummy types (which are something of a special case) are discussed in Chapter 12; for present 
purposes, we can ignore them.   
 
13 The syntax used for TYPE statements in this book differs in certain detailed respects from that documented in the Manifesto 
book and in other books of mine.  The reason for this state of affairs isn’t important for present purposes, but it’s only fair to 
warn you that the differences in question do exist.   
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Here now is a more complicated example:   
 
TYPE POINT     /* geometric points in two-dimensional space */  
     POSSREP CARTESIAN ( X RATIONAL , Y RATIONAL )  
     POSSREP POLAR ( RHO RATIONAL , THETA RATIONAL ) ;  
 
POINT here is a user defined type with two distinct possible representations, CARTESIAN 

and POLAR, reflecting the fact that points in two-dimensional space can indeed “possibly be 
represented” by either cartesian or polar coordinates.  Each of those possible representations in 
turn has two components, both of which happen to be of type RATIONAL.  Note carefully, 
however, that (to say it again) the type per se is still scalar—it has no user visible components.   
 
Selectors and THE_ Operators  
 
Let PR be a possrep for scalar type T.  Then the declaration of PR (part of the declaration of T) 
causes “automatic” definition of the following more or less self-explanatory operators:   

 
! A selector operator, which allows the user to specify or “select” an arbitrary value of type T 

by supplying a value for each component of possrep PR  
 
! A set of THE_ operators (one for each component of possrep PR), which allow the user to 

access the corresponding PR components of an arbitrary value of type T  
 

The selector has declared type T; each THE_ operator has declared type that of the 
corresponding component of PR.  Note:  When I say the declaration of PR causes “automatic 
definition” of these operators, what I mean is that whatever agency—possibly the system, 
possibly some human user—is responsible for defining type T is also responsible for providing 
implementation code for the operators in question.  I’ll come back to this issue in the next section 
(“The TYPE Statement”).  Meanwhile, here are some sample selector and THE_ operator 
invocations for type POINT, expressed as usual in Tutorial D:   

 
CARTESIAN ( 5.0 , 2.5 )  
/* returns the point with x = 5.0, y = 2.5 */  
 
CARTESIAN ( X1 , Y1 )  
/* returns the point with x = X1, y = Y1, where */  
/* X1 and Y1 are variables of type RATIONAL     */  
 
POLAR ( 2.7 , 1.0 )  
/* returns the point with ρ (rho) = 2.7, θ (theta) = 1.0 */  
 
THE_X ( P )  
/* returns the x coordinate of the point in */  
/* P, where P is a variable of type POINT   */  
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THE_RHO ( P )  
/* returns the rho coordinate of the point in P */  
 
THE_Y ( exp )  
/* returns the y coordinate of the point denoted  */  
/* by the expression exp (which is of type POINT) */  
 
THE_THETA ( exp )  
/* returns the theta coordinate of the point denoted */  
/* by the expression exp (which is of type POINT)    */  
 
Note that, in Tutorial D at any rate, (a) selectors have the same name as the corresponding 

possrep, and (b) THE_ operators have names of the form THE_C, where C is the name of the 
corresponding component of the corresponding possrep.  Note too that selectors—more 
precisely, selector invocations—are a generalization of the more familiar concept of a literal.14  
What I mean by this remark is that all literals are selector invocations, but “most” selector 
invocations aren’t literals; in fact, a selector invocation is a literal if and only if all of its 
arguments are themselves specified as literals in turn.  For example, CARTESIAN (X1,Y1) and 
CARTESIAN (5.0,2.5) are both invocations of the CARTESIAN selector, but only the second is 
a literal.   

It follows that every type has—must have—an associated format for writing literals (and 
for completeness I should add that every value of every type must be denotable by means of 
some literal of the type in question).   

Of course, all of the concepts discussed so far in the present subsection apply to simpler 
types as well15—for example, type QTY.  Here are some sample QTY selector invocations:   

 
QTY ( 100 )  
 
QTY ( N )  
 
QTY ( N1 - N2 )  
 

And here are some sample THE_ operator invocations:   
 

THE_Q ( Q1 )
  

THE_Q ( Q1 - Q2 )  
 
THE_Q ( QTY ( 100 ) )  
 

                                                             
 
14 The concept might be familiar, but it seems to be quite difficult to find a good definition for it in the literature!  See 
Exercise 2.3 at the end of the chapter.   
 
15 Including system defined types in particular, though for historical reasons the corresponding selectors and THE_ operators 
might deviate somewhat from the syntax and other rules described in this section.  See the Manifesto book for further discussion.   
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Note:  I’m assuming for the sake of these examples that (a) N, N1, and N2 are variables of type 
INTEGER, (b) Q, Q1, and Q2 are variables of type QTY, and (c) “-” is a polymorphic 
operator—it applies to both integers and quantities.16   

Discussion of the QTY selector raises another point, however.  Consider attribute QTY of 
relvar SP (“shipments”) in the suppliers-and-parts database, which is of declared type QTY (in 
this example, the attribute and the type happen to have the same name).  As a consequence, it’s 
strictly incorrect to say, for example, that the quantity for a certain shipment is 100.  A quantity 
is a value of type QTY, not a value of type INTEGER!  For the shipment in question, therefore, 
we should more properly say the quantity is QTY(100), not just 100 as such.  In informal 
contexts, however, we usually don’t bother to be quite so precise, thus using (e.g.) 100 as a 
convenient shorthand for QTY(100).  Note that I used such shorthands ubiquitously in my 
picture of the suppliers-and-parts database in the previous chapter (viz., Fig. 1.1).   

Here’s one more example of a type definition:   
 
TYPE LINESEG POSSREP ( BEGIN POINT , END POINT ) ;  
 
Type LINESEG denotes line segments.  The example shows that a possrep can be defined 

in terms of user defined types, of course, not just system defined types as in all of the previous 
examples.  In other words, a user defined type is indeed a type.   
 
 
THE TYPE STATEMENT  
 
New types can be introduced in Tutorial D either by means of the TYPE statement, already 
illustrated in several examples in the previous section, or by means of some type generator.  I’ll 
defer discussion of the latter possibility to the section “Type Generators,” later; in the present 
section, I’ll discuss the TYPE statement specifically.  Here by way of example is a possible 
definition for type WEIGHT (which was used, recall, in the definition of the parts relvar P in the 
suppliers-and-parts database):   
 

TYPE WEIGHT POSSREP ( L RATIONAL )  
            CONSTRAINT L > 0.0 AND L < 5000.0 ;  
 

Explanation:  Weights can possibly be represented by rational numbers, where the rational 
number in question (here denoted L) is such that 0.0 < L < 5000.0.17   

Now, the preceding sentence in its entirety constitutes an informal statement of the type 
constraint for type WEIGHT.  More precisely, the type constraint for any given type T is simply 
a definition of the set of values that constitute that type T.  In the example, the type constraint 
                                                             
 
16 Again the kind of polymorphism involved here is overloading polymorphism specifically.   
 
17 For simplicity I assume that rational numbers in examples throughout this book are accurate to one decimal place (unless the 
context demands otherwise, of course).   



 
 

Types without Inheritance / Chapter 2      33 

says, in effect, that WEIGHT values are all and only those values that can possibly be 
represented by a rational number L such that 0.0 < L < 5000.0.  (If a given POSSREP declaration 
contains no explicit CONSTRAINT specification, then CONSTRAINT TRUE is assumed by 
default.  In the WEIGHT example, therefore, omitting the CONSTRAINT specification would 
simply mean that anything that can be represented by a rational number—negative values 
included!—would be a valid weight, and nothing else would be.)   

Type constraints are checked whenever some selector is invoked.  Assume again that 
values of type WEIGHT are such that they must be capable of representation as rational numbers 
L such that 0.0 < L < 5000.0.  Then the expression WEIGHT (250.0) is an invocation of the 
WEIGHT selector, and it succeeds.  By contrast, the expression WEIGHT (6000.0) is also such 
an invocation, but it fails.  In fact, it should be obvious that we can never tolerate an expression 
that’s supposed to denote a value of some type T but in fact doesn’t; after all, “a value of type T 
that’s not a value of type T” is a contradiction in terms.  Since, ultimately, the only way any 
expression can ever yield a value of type T is via some invocation of some selector for type T, it 
follows in particular that no variable can ever be assigned a value that’s not of the right type.   

The WEIGHT example raises another point, however.  In Chapter 1, I said part weights 
were given in pounds.  In practice, however, it’s probably not a good idea to bundle the type 
notion per se in such a manner with the somewhat separate notion of units of measure.  Indeed, 
we could allow users to think of weights as being measured in either pounds or (say) grams by 
providing two separate possreps, one for pounds and one for grams, like this:   

 
TYPE WEIGHT  
     POSSREP LBS ( L RATIONAL )  
     POSSREP GMS ( G RATIONAL )  
     CONSTRAINT L > 0.0 AND L < 5000.0 AND G = 454 * L ;  
 
Note the revised CONSTRAINT specification, which effectively specifies both the set of L 

values and the set of G values that correspond to legitimate WEIGHT values.  (Legal L values 
are 0.1, 0.2, ..., 4999.9, legal G values are 45.4, 90.8, ..., 2269954.6, and I’m assuming for 
simplicity that there are 454 grams to the pound.)  Now:   

 
! If W is an expression of type WEIGHT, then THE_L (W) will return a rational number lbs 

denoting the corresponding weight in pounds, while THE_G (W) will return a rational 
number gms denoting that same weight in grams (and gms will be equal to 454 * lbs).   

 
! If Z is an expression of type RATIONAL, then the expressions LBS (Z) and 

GMS (454 * Z) will both return the same WEIGHT value.   
 

By way of another example, let’s go back to type POINT, with its cartesian and polar 
possible representations.  Here again is the corresponding TYPE statement, now shown with an 
appropriate type constraint (I assume for the sake of the example that operators SIN and COS are 
available and have the obvious semantics):   
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TYPE POINT     /* geometric points in two-dimensional space */  
     POSSREP CARTESIAN ( X RATIONAL , Y RATIONAL )  
     POSSREP POLAR ( RHO RATIONAL , THETA RATIONAL )  
     CONSTRAINT X = RHO * COS ( THETA ) AND Y = RHO * SIN ( THETA ) ;  
 
Suppose now for the sake of the discussion that the physical representation of points is in 

fact cartesian coordinates (though as noted earlier there’s no need in general for a physical 
representation to be identical to any of the declared possible ones).  Then the system will provide 
certain highly privileged and protected operators, denoted in what follows by italic pseudocode, 
that effectively expose that physical representation, and those operators can then be used to 
implement the necessary selectors.  (Obviously, whoever is responsible for providing those 
implementations must be an exception to the rule that users in general aren’t aware of physical 
representations.)  For example (using a kind of pidgin form of Tutorial D):   

 
OPERATOR CARTESIAN ( X RATIONAL , Y RATIONAL ) RETURNS POINT ;  
   VAR P POINT ;  /* P is a variable of type POINT */  
   X component of physical representation of P := X ;  
   Y component of physical representation of P := Y ;  
   RETURN ( P ) ;  
END OPERATOR ;  
 
OPERATOR POLAR ( RHO RATIONAL , THETA RATIONAL ) RETURNS POINT ;  
   RETURN ( CARTESIAN ( RHO * COS ( THETA ) , RHO * SIN ( THETA ) ) ) ;  
END OPERATOR ;  
 
Observe that the POLAR implementation makes use of the CARTESIAN selector.  

Alternatively, it could be formulated directly in terms of the privileged operators, thus:   
 
OPERATOR POLAR ( RHO RATIONAL , THETA RATIONAL ) RETURNS POINT ;  
   VAR P POINT ;  
   X component of physical representation of P := RHO * COS ( THETA ) ;  
   Y component of physical representation of P := RHO * SIN ( THETA ) ;  
   RETURN ( P ) ;  
END OPERATOR ;  
 
Those privileged operators can also be used to implement the necessary THE_ operators, 

thus (the caret symbol “^”—see the definition of THE_RHO—denotes exponentiation):   
 
OPERATOR THE_X ( P POINT ) RETURNS RATIONAL ;  
   RETURN ( X component of physical representation of P ) ;  
END OPERATOR ;  
 
OPERATOR THE_Y ( P POINT ) RETURNS RATIONAL ;  
   RETURN ( Y component of physical representation of P ) ;  
END OPERATOR ;  
 
OPERATOR THE_RHO ( P POINT ) RETURNS RATIONAL ;  
   RETURN ( SQRT ( THE_X ( P ) ^ 2 + THE_Y ( P ) ^ 2 ) ) ;  
END OPERATOR ;  
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OPERATOR THE_THETA ( P POINT ) RETURNS RATIONAL ;  
   RETURN ( ARCTAN ( THE_Y ( P ) / THE_X ( P ) ) ) ;  
END OPERATOR ;  
 
Observe that the definitions of THE_RHO and THE_THETA make use of THE_X and 

THE_Y (I assume for the sake of the example that operators SQRT and ARCTAN are available 
and have the obvious semantics).  Alternatively, of course, THE_RHO and THE_THETA could 
be defined directly in terms of the privileged operators.   
 
A BNF Grammar  
 
Here for purposes of reference is an abbreviated BNF grammar for scalar type definitions in 
Tutorial D without inheritance.  Note:  When I say the grammar is abbreviated, what I mean is 
that there are still some issues to be discussed later in this chapter that will have the effect of 
extending it, though only in comparatively minor ways.  Also, when I say the grammar is for 
scalar type definitions, of course I’m referring to user defined types specifically (note that user 
defined types are always scalar, by definition, in Tutorial D).   

 
<scalar type def>  
    ::=   TYPE <scalar type name> <possrep def list>  
                                [ <possrep constraint def> ]  
 
<possrep def>  
    ::=   POSSREP [ <possrep name> ]  
                  ( <possrep component def commalist> )  
 
<possrep component def>  
    ::=   <possrep component name> <type name>  
 
<possrep constraint def>  
    ::=   CONSTRAINT <bool exp>  
 
Explanation:   
 

1. Brackets “[” and “]” indicate that the material they enclose is optional, as is usual with 
BNF notation.  By contrast, braces “{” and “}” stand for themselves; i.e., they’re symbols 
in the language being defined, not (as they usually are) symbols of the metalanguage.  
Note:  There are no braces in the abbreviated grammar above.  In general, however, 
Tutorial D uses braces to enclose a commalist of items (see point 2 below) whenever the 
commalist in question denotes the elements of a set—or sometimes a bag—of some kind.   

 
2. The grammar makes use of both “lists” and “commalists.”  The term commalist can be 

defined as follows.  Let xyz be some syntactic construct (for example, <possrep component 
def> or <attribute name>).  Then the term xyz commalist denotes a sequence of zero or 
more xyz’s in which each pair of adjacent xyz’s is separated by a comma (blank spaces 
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appearing immediately before or after any comma are ignored).  For example, if A, B, and 
C are attribute names, then the following are all <attribute name commalist>s:   
 
A , B , C  
 
C , A , B , C  
 
B  
 
A , C  
 
So too is the empty sequence of attribute names.   

In addition, when some commalist is intended to denote the elements of some set and 
is therefore enclosed in braces, then (a) blank spaces appearing immediately after the 
opening brace or immediately before the closing brace are ignored; (b) the order in which 
the elements appear within the commalist is immaterial (because sets have no ordering to 
their elements); and (c) if an element appears more than once, it’s treated as if it appeared 
just once (because sets don’t contain duplicate elements).   

The term list is defined analogously, the only difference being that each of the 
separating commas is replaced by at least one blank space.   

 
3. The <possrep def list> mustn’t be empty.  Omitting the <possrep constraint def> is 

equivalent to specifying CONSTRAINT TRUE.   
 
4. Omitting the <possrep name> from a <possrep def> is equivalent to specifying a <possrep 

name> equal to the <scalar type name> of the containing <scalar type def>.  No two 
distinct <possrep def>s in the same <possrep def list> can have the same <possrep name>.  
The <possrep component def commalist> will usually not be empty (but see Exercise 2.26 
at the end of the chapter).   

 
5. No two distinct <possrep component def>s in the same <possrep def list> can have the 

same <possrep component name>.   
 

6. In general, a <bool exp> (“boolean expression”) is any expression that denotes a truth 
value.  In the context at hand, the <bool exp> mustn’t mention any variables, but <possrep 
component name>s from the associated <possrep def list> can be used to refer to the 
indicated components of the corresponding possible representations of an arbitrary value of 
the scalar type being defined.   

 
Observe, incidentally, that <scalar type def>s quite rightly have nothing to say about 

physical representations.  Observe too that possrep components are defined to have an associated 
type, but the type in question is specified by means of a <type name>, not a <scalar type name>.  



 
 

Types without Inheritance / Chapter 2      37 

In other words, the components of a possrep PR for some scalar type T don’t necessarily have to 
be scalar themselves (see Exercise 2.10 at the end of the chapter).   

Here now for future reference are definitions for the user defined scalar types used in the 
suppliers-and-parts database (apart from types QTY and WEIGHT, which have already been 
discussed).  CONSTRAINT specifications are omitted for simplicity, as are explicit possrep 
names.   

 
TYPE SNO   POSSREP ( SC CHAR ) ... ;  
TYPE NAME  POSSREP ( NC CHAR ) ... ;  
TYPE PNO   POSSREP ( PC CHAR ) ... ;  
TYPE COLOR POSSREP ( CC CHAR ) ... ;  
 

(Recall from Chapter 3 that the supplier STATUS attribute and the supplier and part CITY 
attributes are defined in terms of system defined types—INTEGER and CHAR, respectively—so 
no type definitions are shown corresponding to these attributes.)   

Of course, it must be possible to get rid of a scalar type if we have no further use for it:   
 
DROP TYPE <scalar type name> ;  
 
The <scalar type name> must identify a user defined type, not a system defined one.  After 

this operation has been executed, the specified type will no longer be known to the system and 
will hence no longer be available for use.   

 
 

OPERATORS  
 
So far in this chapter, the only operators for which I’ve shown definitions have been either 
selectors or THE_ operators.  It’s time to look at some more general examples.  Here first is a 
user defined operator, ABS, that applies to values of the system defined type RATIONAL:18   
 

OPERATOR ABS ( X RATIONAL ) RETURNS RATIONAL ;  
   RETURN ( IF X ≥ 0.0 THEN +X ELSE -X END IF ) ;  
END OPERATOR ;  
 
Operator ABS (“absolute value”) is defined in terms of just one parameter, X, of declared 

type RATIONAL, and it returns a result of that same type (note the RETURNS specification).  
By definition, therefore, (a) that operator has declared type RATIONAL, and (b) an invocation 
of that operator—e.g., the invocation ABS (AMT1 + AMT2)—is an expression of declared type 
RATIONAL as well.   

The next example, DIST (“distance between”), takes two parameters both of the same user 
defined type (POINT) and returns a result of another user defined type (LENGTH):   
                                                             
 
18 Observe that user defined operators can indeed be defined in association with system defined types as well as user defined ones 
(or a mixture, of course), as you would surely expect.   
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OPERATOR DIST ( P1 POINT , P2 POINT ) RETURNS LENGTH ;  
   RETURN ( WITH ( X1 := THE_X ( P1 ) , Y1 := THE_Y ( P1 ) ,  
                   X2 := THE_X ( P2 ) , Y2 := THE_Y ( P2 ) ) :  
            LENGTH ( SQRT ( ( X1 - X2 ) ^ 2 + ( Y1 - Y2 ) ^ 2 ) ) ) ;  
END OPERATOR ;  
 
I’m assuming that the LENGTH selector takes an argument of type RATIONAL.  Note the 

use of a WITH specification in this example to introduce names for the results of certain 
subexpressions.   

Here by way of another example is the required equality comparison operator—for the 
moment let’s call it EQP—for type POINT:   

 
OPERATOR EQP ( P1 POINT , P2 POINT ) RETURNS BOOLEAN ;  
   RETURN ( THE_X ( P1 ) = THE_X ( P2 ) AND  
            THE_Y ( P1 ) = THE_Y ( P2 ) ) ;  
END OPERATOR ;  
 
Observe that the expression in the RETURN statement here makes use of the system 

defined “=” operator for type RATIONAL.  For simplicity, in fact, I’m going to assume from 
this point forward that the usual infix notation “=” can be used for the equality operator for all 
types, including type POINT in particular.  I omit consideration here of how such infix names 
might be specified in practice, since it’s basically just a matter of syntax.19   

Here now is the (presumably required) “<” operator for type QTY:   
 
OPERATOR LTQ ( Q1 QTY , Q2 QTY ) RETURNS BOOLEAN ;  
   RETURN ( THE_Q ( Q1 ) < THE_Q ( Q2 ) ) ;  
END OPERATOR ;  
 
The expression in the RETURN statement here makes use of the system defined “<” 

operator for type INTEGER.  In the definition I’ve shown the operator name as LTQ, but again 
I’m going to assume from this point forward that the usual infix notation “<” can be used (for all 
ordered types, that is, including type QTY in particular).  Note:  See the section “Miscellaneous 
Issues,” later, for a discussion of ordered types in general.   

Here finally is an example of an update operator definition (all of the previous examples 
have been of read-only operators, which simply “read” their arguments and don’t update them).  
The operator is called REFLECT.  In effect, what it does is move the point with cartesian 
coordinates (x,y) to the inverse position (-x,-y), and it does this not by returning a result but 
rather by updating its point argument appropriately (observe that the definition involves an 
UPDATES specification instead of a RETURNS specification):   

 

                                                             
 
19 In any case, the equality comparison operator (as well as certain other operators, possibly)—implementation code included—
can surely be provided automatically.  I show explicit code here purely for illustrative purposes.   
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OPERATOR REFLECT ( P POINT ) UPDATES { P } ; 
   THE_X ( P ) := - THE_X ( P ) ;  
   THE_Y ( P ) := - THE_Y ( P ) ;  
END OPERATOR ;  
 
Points arising:   
 

1. The operator has just one parameter P, of declared type POINT, and—as indicated by the 
UPDATES specification—that parameter is subject to update, meaning that when the 
operator is invoked it will update the argument corresponding to that parameter.   

 
2. Since it’s going to be updated, the argument in question must be a variable specifically.   
 
3. Since the operator doesn’t return anything, (a) it has no declared type, and (b) an invocation 

doesn’t constitute an expression.  In particular, therefore, such an invocation can’t be used 
as a subexpression nested inside some expression.20  Instead, such an invocation has to be 
done via an explicit CALL statement, as in this example:   
 
CALL REFLECT ( ZPT ) ;  
 
Such an invocation will fail on a syntax error at compile time if the argument expression 
consists of anything other than a simple variable reference.   

 
4. Note that there’s no explicit RETURN statement; rather, an implicit RETURN (without any 

argument) is effectively executed when the END OPERATOR is reached.   
 

Finally, it must be possible to get rid of an operator if we have no further use for it.  
Tutorial D provides an operator called DROP OPERATOR for this purpose.  The operator to be 
dropped must be user defined, not built in.   
 
THE_ Pseudovariables  
 
The REFLECT operator definition also serves to illustrate, not altogether incidentally, the use of 
THE_ pseudovariables.  In essence, a THE_ pseudovariable reference is a THE_ operator 
invocation that appears on the left side of an assignment.  Such an invocation actually 
designates—instead of just returning the value of—the specified possrep component of the 
specified argument.  Within the REFLECT definition, for instance, the assignment  

 
THE_X ( P ) := ... ;  
 

                                                             
 
20 Read-only operator invocations, by contrast, can be used as subexpressions nested inside other expressions; in fact, the terms 
expression and read-only operator invocation are effectively synonymous.   
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assigns a value to the X component of the cartesian possrep of the argument corresponding to the 
parameter P.  (To say it again, any argument to be updated, whether by assignment to a THE_ 
pseudovariable as in this example or in any other way, must be a variable specifically.)   

Pseudovariable references can be nested.  Recall this type definition from the very end of 
the section “Types vs. Representations”:   

 
TYPE LINESEG POSSREP ( BEGIN POINT , END POINT ) ;  
 

Suppose variable LS has been declared to be of type LINESEG.  Here then is a possible 
assignment involving that variable:   

 
THE_X ( THE_BEGIN ( LS ) ) := 6.5 ;  
 
Now, THE_ pseudovariables are extremely convenient from a usability point of view, but 

in fact they’re logically unnecessary.  Consider again the following assignment from the 
REFLECT operator definition:   

 
THE_X ( P ) := - THE_X ( P ) ;  
 

This assignment, which uses a THE_ pseudovariable, is logically equivalent to the following one 
which doesn’t:   
 

P := CARTESIAN ( - THE_X ( P ) , THE_Y ( P ) ) ;  
 
Similarly, the assignment involving nested THE_ pseudovariable references shown 

above— 
 
THE_X ( THE_BEGIN ( LS ) ) := 6.5 ;  
 

—is logically equivalent to the following, which involves no such references:   
 

LS := LINESEG ( CARTESIAN ( 6.5 , THE_Y ( THE_BEGIN ( LS ) ) ) ,  
                THE_END ( LS ) ) ;  
 
In other words, THE_ pseudovariables per se aren’t strictly necessary in order to support 

the kind of component level updating I’ve been discussing.  However, using such 
pseudovariables does seem intuitively more attractive than the alternative (for which it can be 
regarded as a shorthand); moreover, it also provides a higher degree of imperviousness to 
changes in the syntax of the corresponding selector.   

One last point:  It’s convenient from a definitional point of view, at least, to treat THE_ 
pseudovariable references as if they were regular variable references, and this book does so.  In 
other words (but now speaking very loosely), pseudovariables are variables.   
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Multiple Assignment  
 
While I’m on the subject of assignment, I need to say too that The Third Manifesto requires 
support for a multiple form of that operation, according to which any number of individual 
assignments can be performed in parallel (“simultaneously”).  For example, the following double 
DELETE is, logically, a multiple assignment operation:   
 

DELETE S  WHERE SNO = SNO('S1') ,  
DELETE SP WHERE SNO = SNO('S1') ;  

 
Note the comma separator after the first DELETE, which indicates syntactically that the 

end of the overall statement hasn’t yet been reached.  That overall statement is logically 
equivalent to the following “explicit assignment” form:   
 

S  := S  MINUS ( S  WHERE SNO = SNO('S1') ) ,  
SP := SP MINUS ( SP WHERE SNO = SNO('S1') ) ;  

 
In general, the semantics of multiple assignment are as follows:  First, all of the source 

expressions in the individual assignments are evaluated; then all of the individual assignments to 
the specified target variables are executed in parallel.  Note:  This explanation requires some 
slight refinement in the case where two or more of the individual assignments specify the same 
target (see below).  Ignoring that refinement for the moment, however, we can say that since the 
source expressions are all evaluated before any of the individual assignments are done, none of 
those individual assignments can depend on the result of any other (and so “executing them in 
parallel” is really only a manner of speaking).  In the example, the effect on the database would 
be exactly the same if the two individual DELETEs were specified in reverse order.  Also, since 
multiple assignment is considered to be an atomic operation, no integrity checking is performed 
“in the middle of” such an assignment; indeed, this fact is one of the major reasons for 
supporting multiple assignment in the first place.   

As for repeated targets:  If two or more of the individual assignments involved in a given 
multiple assignment do specify the same target variable, then those particular individual 
assignments are effectively executed in sequence as written (thereby effectively reducing to a 
single assignment to the variable in question).  For example, the double assignment  
 

S := S MINUS ( S WHERE SNO = SNO('S1') ) ,  
S := S MINUS ( S WHERE SNO = SNO('S2') ) ;  

 
is logically equivalent to the following single assignment:   

 
S := WITH ( S := S MINUS ( S WHERE SNO = SNO('S1') ) :  
                 S MINUS ( S WHERE SNO = SNO('S2') ) ;  
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In this example, the references to “S” in the second line denote the result of executing the 
parenthesized assignment in the first line; in other words, they can be thought of, loosely, as 
denoting relvar S after the tuple for supplier S1 has been deleted.   

An important special case of repeated targets occurs in connection with assignment via two 
or more THE_ pseudovariables to the same variable.  For example, refer to the REFLECT 
operator definition once again.  That definition contains the following pair of assignments:   
 

THE_X ( P ) := - THE_X ( P ) ;  
THE_Y ( P ) := - THE_Y ( P ) ;  

 
However, we could if we liked replace these two assignments by the following double (and 

thus multiple) assignment:   
 
THE_X ( P ) := - THE_X ( P ) , THE_Y ( P ) := - THE_Y ( P ) ;  
 
And now we have an example of exactly the situation we’re interested in (viz., assignment 

via two or more THE_ pseudovariables to the same target variable).  The statement overall is 
logically equivalent to the following:   
 

P := WITH ( P := CARTESIAN ( - THE_X ( P ) ,   THE_Y ( P ) ) ) :  
                 CARTESIAN (   THE_X ( P ) , - THE_Y ( P ) ) ;  

 
Summary So Far  
 
From everything I’ve said so far (in this section and its immediate predecessor, “The TYPE 
Statement,” in particular), it should be clear that introducing a new scalar type involves at least 
all of the following:   
 

1. Specifying a name for the type.   
 
2. Specifying the values that make up that type (i.e., defining the corresponding type 

constraint).   
 
3. Specifying the hidden physical representation for values of that type.  As noted earlier, this 

is an implementation issue, not a model issue, and is thus beyond the scope of this book.   
 
4. Specifying at least one possible representation for values of that type.   
 
5. For each such possible representation, providing a corresponding selector operator for 

selecting, or specifying, values of that type.21  Note:  Here’s as good a place as any to spell 
                                                             
 
21 In the case of a system defined type like INTEGER, however, this point boils down to simply providing appropriate literals 
(see footnote 23, later); more general selectors aren’t needed, nor are THE_ operators.   
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out the point that a selector for type T isn’t “associated with” type T in the sense that it has 
a parameter of type T; rather, it returns a result of type T.   

 
6. For each component of each such possible representation, providing a corresponding THE_ 

operator.   
 
7. Providing other read-only and update operators, including in particular assignment (“:=”) 

and equality comparison (“=”) operators, that apply to values and variables of that type.   
 
8. For those operators that return a result, defining the type of that result.   
 

Observe that points 5-8 taken together imply that (a) the system knows precisely which 
expressions are legal, and (b) for those expressions that are legal it knows the type of the result—
which means in turn that the total collection of available types is a closed set, in the sense that 
the type of the result of every legal expression is a type that’s known to the system.  Observe in 
particular that this closed set must include type BOOLEAN, if comparisons are to be legal 
expressions!  Finally, observe that the fact that the system knows the type of the result of every 
legal expression means that it knows in particular exactly which assignments are valid, and also 
which equality comparisons.   
 

Aside:		I’ve	used	type	POINT	to	illustrate	the	possibility	that	a	type	can	have	two	or	more	
possreps	(CARTESIAN	and	POLAR,	in	that	particular	case).		For	simplicity,	however,	I’m	
going	to	assume	from	this	point	forward—for	the	rest	of	this	book,	in	fact—that	the	
CARTESIAN	possrep	has	been	renamed	POINT,	implying	that,	e.g.,	POINT	(5.0,2.5)	is	a	valid	
point	selector	invocation.		End	of	aside.			

 
 
TYPE GENERATORS  
 
I turn now to types that aren’t defined by means of the TYPE statement but are obtained by 
invoking some type generator.  Basically, a type generator is just a special kind of operator; it’s 
special because (a) it’s invoked at compile time instead of run time, and (b) it returns a type 
instead of, e.g., a simple scalar value.  In a conventional programming language, for example, we 
might write  
 

VAR SALES ARRAY INTEGER [1:12] ;  
 
to define a variable called SALES whose legal values are one-dimensional arrays of 12 integers.  
In this example, the specification ARRAY INTEGER [1:12] can be regarded as an invocation of 
the ARRAY type generator, and it returns a specific array type.  That specific array type is a 
generated type.  Points arising:   
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1. Type generators are referred to by many different names in the literature, including type 

constructors, parameterized types, polymorphic types, type templates, and generic types.  
I’ll stay with the term type generator.   

 
2. Generated types are indeed types, and can be used wherever ordinary “nongenerated” types 

can be used; for example, we might define some relvar to have some attribute of type 
ARRAY INTEGER [1:12].  By contrast, type generators as such are not types.   

 
3. Most generated types, though not all, will be nonscalar types specifically (array types are a 

case in point).  Nongenerated types, by contrast, will always be scalar.   
 

Aside:		An	example	of	a	scalar	generated	type	is	the	SQL	type	CHAR(25).		To	be	specific—
and	despite	what	the	SQL	standard	and	SQL	textbooks	and	products	might	have	to	say	
about	the	matter—CHAR	in	SQL	isn’t	a	type	at	all	but	a	type	generator;22	CHAR(25)	
constitutes	an	invocation	of	that	type	generator,	and	the	literal	25	denotes	the	sole	
argument	(actually	a	length	specification)	to	that	invocation.		Values	of	SQL	type	CHAR(25)	
are,	of	course,	character	strings	of	length	exactly	25	characters.			

One	consequence	of	the	foregoing	is	that,	in	SQL,	the	types	CHAR(25)	and	CHAR(26),	
say,	are	in	fact	quite	different	types.		After	all,	the	set	of	values	constituting	the	type	
CHAR(25)	and	the	set	of	values	constituting	the	type	CHAR(26)	are	certainly	different	
sets!—in	fact,	no	value	of	either	is	a	value	of	the	other.		The	reason	is	simple:		No	string	of	
25	characters	is	a	string	of	26	characters,	and	no	string	of	26	characters	is	a	string	of	25	
characters.		In	other	words,	types	CHAR(25)	and	CHAR(26)	are	indeed	disjoint,	just	as	
distinct	types	are	supposed	to	be	(absent	inheritance).		See	the	last	part	of	the	answer	to	
Exercise	2.6	at	the	end	of	the	chapter	for	further	discussion.			

Note:		If	the	SQL	types	under	discussion	had	been	VARCHAR(25)	and	VARCHAR(26)	
instead	of	CHAR(25)	and	CHAR(26),	respectively,	matters	would	have	been	rather	
different.		To	be	specific,	types	VARCHAR(25)	and	VARCHAR(26),	unlike	types	CHAR(25)	
and	CHAR(26),	are	not	disjoint;	in	fact,	every	value	of	type	VARCHAR(25)	is	also	a	value	of	
type	VARCHAR(26),	and	it	would	be	legitimate	to	regard	the	former	as	a	subtype	of	the	
latter.		See	Chapter	22	for	further	discussion.		End	of	aside.			

 
Now, generated types do have possible representations (“possreps”), but the possreps in 

question are derived in the obvious way from (a) a generic possrep associated with the type 
generator in question and (b) the specific possrep(s) of the user visible component(s) of the 
specific generated type in question.  In the case of ARRAY INTEGER [1:12], for example:   

 
                                                             
 
22 By contrast, CHAR in Tutorial D really is a type as such, not a type generator.   



 
 

Types without Inheritance / Chapter 2      45 

! There’ll be some generic possrep defined for one-dimensional arrays in general, probably 
as a contiguous sequence of array elements that can be identified by subscripts in the range 
from lower to upper, where lower and upper are the applicable bounds (1 and 12, in the 
example).   

 
! Since arrays of the type in question are indeed one-dimensional, that type as such has just 

one user visible component; that component is of type INTEGER, and therefore has 
whatever possrep(s) are defined for type INTEGER.  (Of course, the only possrep available 
for a simple system defined type like INTEGER will very likely be an “identity” possrep, 
according to which values of the type simply represent themselves.23)   

 
In like manner, there’ll be operators that provide the required selector and THE_ operator 

functionality.  For example, the expression (actually an array literal)  
 
ARRAY INTEGER [  2 ,  5 ,  9 ,  9 , 15 , 27 ,  
                33 , 32 , 25 , 19 ,  5 ,  1 ]  
 

might be used to specify a particular value of type ARRAY INTEGER [12] (“selector 
functionality”).  As for “THE_ operator functionality,” the SALES example is really too simple 
to illustrate it properly.  But suppose we’re given a variable PTA whose permitted values are 
one-dimensional arrays of values of type POINT.  Then the expression  
 

THE_X ( PTA [ 3 ] )  
 
might be used to return the x coordinate of the point in the third element—see the paragraph 
immediately following—of the array that happens to be the current value of PTA.   

To get back to the SALES example:  Of course, the expression  
 

SALES [ 3 ]  
 
can be used to access the third element of the array that happens to be the current value of the 
variable SALES (it might also be used as a pseudovariable reference).  Assignment and equality 
comparison operators also apply.  For example, here’s a valid array assignment:   

 
SALES := ARRAY INTEGER [  2 ,  5 ,  9 ,  9 , 15 , 27 ,  
                         33 , 32 , 25 , 19 ,  5 ,  1 ] ;  

 
                                                             
 
23 Here’s what the Manifesto has to say about such matters:  “[For a system defined type T], zero or more possible representations 
for values of type T shall be declared and thus made visible in D.  A possible representation PR for values of type T that is visible 
in D shall behave in all respects as if T were user defined and PR were a declared possible representation for values of type T.  If 
no possible representation for values of type T is visible in D, then at least one selector operator S, of declared type T, shall be 
provided.  Each such selector operator shall have all of the following properties:  1. Every argument expression in every 
invocation of S shall be a literal.  2. Every value of type T shall be produced by some invocation of S.  3. Every successful 
invocation of S shall produce some value of type T.”   
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And here’s a valid array equality comparison:  
 

SALES = ARRAY INTEGER [  2 ,  5 ,  9 ,  9 , 15 , 27 ,  
                        33 , 32 , 25 , 19 ,  5 ,  1 ]  
 
Next, any given type generator will also have a set of generic type constraints and operators 

associated with it—generic, in the sense that the constraints and operators in question apply to 
every specific type obtained via invocation of the type generator in question.  For example, in the 
case of the ARRAY type generator:   

 
! There might be a generic constraint to the effect that the lower bound mustn’t be greater 

than the upper bound.   
 
! There might be a generic “reverse” operator that takes an arbitrary one-dimensional array 

as input and returns as output another such array containing the elements of the given one 
in reverse order.   

Note:  We have here, as promised earlier in the chapter, an example of generic 
polymorphism—“the same” reverse operator is available for use with any one-dimensional 
array.  More generally, generic polymorphism is the kind of polymorphism exhibited by a 
generic operator, where (loosely speaking) a generic operator in turn is an operator that’s 
available in connection with every type that can be produced by invocation of some given 
type generator.  In fact, the array assignment and equality comparison operators discussed 
above are also generic operators.   

 
Tuples and Relations  
 
Two type generators that are of particular importance in the database world are (not surprisingly) 
the TUPLE and RELATION type generators.  Before I can discuss them in detail, however, I 
want to be sure that we all understand exactly what tuples and relations are.  Here then are some 
precise definitions—specifically, for the concepts heading, tuple, body, and relation:   

 
Definition:  A heading H is a set of n attributes (n ≥ 0), each of the form <Aj,Tj>, where Aj 
is the attribute name and Tj is the corresponding type name (0 ≤ j ≤ n), and the attribute 
names Aj are all distinct.  The value n is the degree of H; a heading of degree one is unary, 
a heading of degree two is binary, a heading of degree three is ternary, ..., and more 
generally a heading of degree n is n-ary.   
 
Definition:  Let heading H be of degree n, and let attribute <Aj,Tj> of H be associated with 
an attribute value vj of type Tj (0 ≤ j ≤ n), to form the component <Aj,Tj,vj>.  The set—call 
it t—of all n components so defined is a tuple value (or just a tuple for short) over the 
attributes of H.  H is the tuple heading (or just the heading for short) for t, and the degree 
and attributes of H are, respectively, the degree and attributes of t.   
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Definition:  Given a heading H, a body B conforming to H is a set of m tuples (m ≥ 0), each 
with heading H.  The value m is the cardinality of B.   
 
Definition:  Let H be a heading, and let B be a body conforming to H.  The pair <H,B>—
call it r—is a relation value (or just a relation for short) over the attributes of H.  H is the 
relation heading (or just the heading for short) for r, and the degree and attributes of H and 
the cardinality of B are, respectively, the degree, attributes, and cardinality of r.   
 
I’ll leave it as an exercise for you to convince yourself that the foregoing definitions do 

indeed pin down the various notions precisely and do correspond to the constructs in question as 
you already (possibly only informally) understand them.  Let me just make one point, though:  
Even though tuples and relations do have user visible components—namely, their attributes, and 
perhaps their tuples as well in the case of a relation—there’s no suggestion that those 
components have to be physically stored as such, in the form in which they’re seen by the user.  
In fact, the physical representation of tuples and relations should generally be hidden from the 
user, just as it is for scalars.   
 
Tuple Types  
 
Now let’s get back to the question of type generators.  Here’s a Tutorial D definition for a tuple 
variable (or tuplevar) called STV:   
 

VAR STV TUPLE { SNO SNO , SNAME NAME , STATUS INTEGER , CITY CHAR } ;  
 

Explanation:   
 
! The keyword VAR, which we’ve already seen in several examples earlier in this chapter as 

well as in Chapter 1, just means the definition is a variable definition specifically.   
 
! STV (“supplier tuple variable”) is the name of the variable being defined.   
 
! The remainder of the definition, from the keyword TUPLE to the closing brace inclusive, 

specifies the type of that variable.  The keyword TUPLE shows it’s a tuple type, and the 
commalist in braces specifies the set of attributes that make up the corresponding heading.  
No significance attaches to the order in which the attributes are specified.  Note:  Recall 
that an attribute is an <Aj,Tj> pair, and no two distinct attributes in the same heading have 
the same attribute name.  Tutorial D doesn’t use those angle brackets, however; moreover, 
it uses spaces instead of a comma to separate the attribute name Aj from the type name Tj.  
An analogous remark applies to all uses of the keyword TUPLE in Tutorial D, also to all 
uses of the keyword RELATION (see later); I won’t keep on saying as much, therefore, but 
will instead let this one paragraph do duty for all.   
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Now let’s focus on the tuple type as such.  Here again is the pertinent specification:   
 
TUPLE { SNO SNO , SNAME NAME , STATUS INTEGER , CITY CHAR }  
 
This type is, of course, a tuple type, and it’s nonscalar.  It’s also a generated type, obtained 

by invoking the TUPLE type generator.  More generally, the example illustrates the style used 
for tuple type names in Tutorial D; to be specific, such names take the form TUPLE H, where H 
is the pertinent heading24 (and the degree and attributes of H are, respectively, the degree and 
attributes of the tuple type so named).   

Going back to variable STV, the value of that variable at any given time is a tuple with (as 
you can see) the same heading as that of the suppliers relvar S.  Thus, we might imagine a code 
fragment that (a) extracts a one-tuple relation—say the relation containing just the tuple for 
supplier S1—from the current value of that relvar, then (b) extracts the single tuple from that 
one-tuple relation, and finally (c) assigns that tuple to the variable STV.  In Tutorial D:   

 
STV := TUPLE FROM ( S WHERE SNO = SNO('S1') ) ;  

 
Next, tuples are, of course, values.  Like all values, therefore, they must be returned by 

some selector invocation (a tuple selector invocation, naturally, if the value is a tuple).  Here’s an 
example:   

 
TUPLE { SNO SNO('S1') , SNAME NAME('Smith') , STATUS 20 , CITY 'London' }  
 
This expression returns the tuple shown first in the picture of the suppliers relation in 

Fig. 1.1 in Chapter 1.  The order in which the tuple components are specified is arbitrary, of 
course.  Note, however, that in Tutorial D each component is specified by means of the 
pertinent attribute name by itself—i.e., without the corresponding type name—separated by 
blank spaces from an expression denoting the pertinent attribute value.  (There’s no need to 
specify the attribute type as such, because it’s necessarily equal to the type of the specified 
expression.)   

Here’s another example of a tuple selector invocation (unlike the previous one, this one 
isn’t a literal, because not all of its arguments are specified as literals in turn):   

 
TUPLE { SNO SV , SNAME NAME('Johns') , STATUS TV + 2 , CITY CV }  
 

I’m assuming here that SV, TV, and CV are variables of types SNO, INTEGER, and CHAR, 
respectively.   

                                                             
 
24 The reason the Manifesto insists on tuple type names being of this specific form, or something logically equivalent to this 
specific form, has to do with the question of tuple type inference (see the Manifesto book for further details, also Exercise 21.3 in 
Chapter 21).  An analogous remark applies to relation type names also.   
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As these examples indicate, a tuple selector invocation in Tutorial D consists in general of 
the keyword TUPLE, followed by—to spell it out again—a commalist of pairs of the form Aj xj 
(where xj is an expression denoting the corresponding attribute value vj), that whole commalist 
being enclosed in braces.  Note, therefore, that the keyword TUPLE does double duty in 
Tutorial D—it’s used in connection with tuple selector invocations as we’ve just seen, and also 
with tuple type names as we saw earlier.   

So tuple types certainly have selectors.  But they don’t have, or need, any THE_ 
operators—at least, not as such; instead, they have operators that provide access to the 
corresponding attributes of values and variables of the tuple type in question, and those operators 
provide functionality somewhat analogous to that provided by THE_ operators in connection 
with scalar types.  For example, if TX is a tuple expression denoting a tuple of the same type as 
tuple variable STV, the Tutorial D expression  

 
CITY FROM TX  
 

extracts the CITY value from the tuple that’s the current value of TX.   
Finally, tuple assignment and equality comparison operators are also available, with the 

obvious syntax in each case.  (In fact, of course, tuple assignment in particular was illustrated 
earlier in this subsection.)   
 
A Note on Syntax  
 
I’ve now explained the Tutorial D syntax for tuple type names and tuple selector invocations, 
and of course I’ll be using that syntax throughout this book in coding examples.  In the formal 
prescriptions that make up our inheritance model, however (in Chapter 4 in particular), I’ll 
follow the style used in The Third Manifesto as such.  Here’s what the Manifesto has to say in 
this connection (the following text is lightly edited for present purposes):   

 
A heading H is a set of ordered pairs or attributes of the form <A,T> ... Given some heading H, 
D shall support use of the generated type TUPLE H ... The generated type TUPLE H shall be 
referred to as a tuple type, and the name of that type shall be, precisely, TUPLE H ... Now let t be a 
set of ordered triples <A,T,v>, obtained from H by extending each ordered pair <A,T> to include an 
arbitrary value v of type T, called the attribute value for attribute A of t.  Then t is a tuple value 
(tuple for short) that conforms to heading H; equivalently, t is of the corresponding tuple type.   
 
Note in particular, therefore, that the Manifesto as such uses the following style for tuple 

type names— 
 
TUPLE { <A1,T1> , <A2,T2> , ... , <An,Tn> }  

 
—and the following style (or something very close to it) for tuple selector invocations:   

 
TUPLE { <A1,T1,v1> , <A2,T2,v2> , ... , <An,Tn,vn> }  
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However, it does also say this:   

 
Note:  When we say “the name of [a certain tuple type] shall be, precisely, TUPLE H,” we do not 
mean to prescribe specific syntax.  The Manifesto does not prescribe syntax.  Rather, what we mean 
is that the type in question shall have a name that does both of the following, no more and no less:  
First, it shall specify that the type is indeed a tuple type; second, it shall specify the pertinent 
heading.  Syntax of the form “TUPLE H” satisfies these requirements, and we therefore use it as a 
convenient shorthand; however, all appearances of that syntax throughout this Manifesto are to be 
interpreted in the light of these remarks.   

 
So Tutorial D is within its rights in departing from the Manifesto style slightly.   

Of course, all of the foregoing remarks regarding tuple type and tuple selector syntax apply 
equally to relation type and selector syntax also, mutatis mutandis, and I won’t bother to spell out 
the details, therefore.   
 
Relation Types  
 
I turn now to relation types (the following discussion parallels that of the previous subsection, for 
the most part).  Here’s a Tutorial D definition for relvar S from the suppliers-and-parts database 
(repeated from Chapter 1 but deliberately reformatted here):   
 

VAR S BASE  
    RELATION { SNO SNO , SNAME NAME , STATUS INTEGER , CITY CHAR }  
    KEY { SNO } ;  

 
Explanation:   

 
! Again the keyword VAR means this definition is a variable definition specifically; S is the 

name of the variable being defined, and the keyword BASE means the variable is a base 
relvar specifically.   

 
! The second line of the definition specifies the type of that variable.  The keyword 

RELATION shows it’s a relation type, and the commalist in braces specifies the set of 
attributes that make up the corresponding heading.  Again, of course, no significance 
attaches to the order in which the attributes are specified.   

 
! The last line defines {SNO} to be a key for this relvar.   
 

Now let’s focus on the relation type as such.  Here again is the pertinent specification:   
 
RELATION { SNO SNO , SNAME NAME , STATUS INTEGER , CITY CHAR }  
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This type is, of course, a relation type, and it’s nonscalar.  It’s also a generated type, 
obtained by invoking the RELATION type generator.  More generally, the example illustrates 
the style used for relation type names in Tutorial D; to be specific, such names take the form 
RELATION H, where H is the pertinent heading (and the degree and attributes of H are, 
respectively, the degree and attributes of the relation type so named).   

Next, relations are values and must therefore be returned by some selector invocation (a 
relation selector invocation, naturally, if the value is a relation).  Here’s an example:   

 
RELATION { TUPLE { SNO SNO('S1') , SNAME NAME('Smith') ,  
                                   STATUS 20 , CITY 'London' } ,  
           TUPLE { SNO SNO('S2') , SNAME NAME('Jones') ,  
                                   STATUS 10 , CITY 'Paris'  } ,  
           TUPLE { SNO SNO('S3') , SNAME NAME('Blake') ,  
                                   STATUS 30 , CITY 'Paris'  } ,  
           TUPLE { SNO SNO('S4') , SNAME NAME('Clark') ,  
                                   STATUS 20 , CITY 'London' } ,  
           TUPLE { SNO SNO('S5') , SNAME NAME('Adams') ,  
                                   STATUS 30 , CITY 'Athens' } }  
 
The order in which the tuples are specified is arbitrary.  Here’s another example (unlike the 

previous one, this one isn’t a literal):   
 
RELATION { TX1 , TX2 , TX3 }  

 
I’m assuming that TX1, TX2, and TX3 here are tuple expressions, all of the same tuple type.  As 
these examples suggest, a relation selector invocation in Tutorial D consists in general25 of the 
keyword RELATION, followed by a commalist enclosed in braces of tuple expressions (and 
those tuple expressions must all be of the same tuple type).  Note, therefore, that the keyword 
RELATION does double duty in Tutorial D—it’s used in connection with relation selector 
invocations as we’ve just seen, and also with relation type names as we saw earlier.   

Like tuple types, relation types don’t have, or need, any THE_ operators as such.  In their 
place:   

 
! The projection and restriction operators of the relational algebra allow any given relation r 

to be reduced to an arbitrary “subrelation” containing (loosely speaking) just a subset of the 
attributes and/or a subset of the tuples of r.   

 
! The operator TUPLE FROM RX allows the single tuple to be extracted from the relation r 

denoted by the relational expression RX (relation r must have cardinality one).   
 
! The operator A FROM TX allows the value of attribute A to be extracted from the tuple t 

denoted by the tuple expression TX (tuple t must have an attribute called A).   

                                                             
 
25 But see Exercise 2.22 at the end of the chapter.   
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Taken together, these operators provide functionality somewhat analogous to that provided by 
THE_ operators in connection with scalar types.   

Finally, relational assignment and equality comparison operators are also available, with 
the obvious syntax in each case.  (In fact, of course, relational assignment in particular was 
illustrated in an earlier section of this chapter, also at several points in Chapter 1.)   
 
 
MISCELLANEOUS ISSUES  
 
Initial Values  
 
The Manifesto requires all variables, scalar or otherwise, to be assigned an initial value before 
they’re used.  If the variable in question, V say, is of some user defined (and therefore necessarily 
scalar) type T, this requirement is met in Tutorial D by initializing V to a value specified via an 
explicit—and required—INIT clause on the TYPE statement that defines T.  For example:   

 
TYPE QTY POSSREP ( Q INTEGER ) INIT ( QTY ( 0 ) ) ;  
 

Now defining a variable to be of type QTY will cause that variable to be set to zero (or QTY(0), 
rather) before it’s used.26   

The INIT clause on the TYPE statement serves another purpose as well (in fact a more 
fundamental one).  Here’s another lightly edited quote from the Manifesto (actually it’s part of 
the very first of the Manifesto’s various prescriptions):   
 

With the sole exception of the system defined empty type omega (which is defined only if type 
inheritance is supported), the definition of any given scalar type T shall be accompanied by a 
specification of an example value of that type.   

 
The reason for providing such an example value is to guarantee that the type in question is 
indeed nonempty (i.e., does contain at least one value—see Exercise 2.23 at the end of the 
chapter).  In Tutorial D, the INIT clause serves to provide that needed example value.   

Note:  Although the INIT clause on the TYPE statement is indeed required, I’ll omit it from 
most of my examples from this point forward in order to avoid unnecessary distractions.   
 
Ordered and Ordinal Types  
 
Any given scalar type T can be ordered, ordinal, or neither.  To elaborate:   

 
                                                             
 
26 Except that a variable definition can always contain an INIT specification of its own.  If it does (and if the variable in question 
is scalar, of course), it effectively overrides the INIT specification from the TYPE statement as far as that variable is concerned.   
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! T is an ordered type if and only if it has a total ordering, meaning that (a) the comparisons 
v1 < v2, v1 = v2, and v1 > v2 are all defined for arbitrary pairs of values v1 and v2 of type 
T, and (b) for any such pair of values v1 and v2, one of those comparisons returns TRUE 
and the other two return FALSE.   

 
! T is an ordinal type if and only if (a) it’s an ordered type and (b) the following operators are 

also defined for it: (a) niladic “first” and “last” operators, which return the first and last 
value, respectively, of type T with respect to the applicable total ordering, and (b) monadic 
“next” and “prior” operators, which, given a value v of type T, return the value of type T 
immediately succeeding v and the value of type T immediately preceding v, respectively, 
again with respect to the applicable total ordering.   

 
INTEGER is an obvious example of an ordinal type (in fact, any ordinal type must be 

“isomorphic to the integers,” meaning it displays ordering behavior that directly parallels that of 
the integers).  RATIONAL is an example of a type that’s ordered but not ordinal, because if p/q 
is a rational number, then—in mathematics at least, if not in computer arithmetic—no rational 
number can be said to be the “next” one, immediately following p/q.  And type POINT, at least 
as defined earlier in this chapter, is an example of a type that’s not ordered at all (and hence 
certainly not ordinal either, a fortiori).   

In support of the foregoing ideas, Tutorial D allows at most one of ORDINAL and 
ORDERED to be specified as part of the TYPE statement that defines a given type T.  For 
example:   

 
TYPE QTY ORDINAL POSSREP ( Q INTEGER ) INIT ( QTY ( 0 ) ) ;  
 

If ORDERED is specified, associated “<” (etc.) operators must be defined for the type in 
question.  If ORDINAL is specified, the same is true, but corresponding “first,” “last,” “next,” 
and “prior” operators must be defined as well.   
 
Type Specifications  
 
The BNF grammar for scalar type definitions given in the section “The TYPE Statement” earlier 
in this chapter includes the following production rule:   
 

<possrep component def>  
    ::=   <possrep component name> <type name>  

 
However, sometimes it can be convenient to specify a particular type not explicitly by its 

<type name> as indicated in this rule but in some more indirect fashion.  (This state of affairs 
perhaps applies not so much in the particular context under discussion here—i.e., within a 
<possrep component def>—as it does in other contexts, but the general point is valid.)  For that 
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reason, Tutorial D frequently allows a <type spec> to appear where a <type name> might have 
been expected, including in the context under discussion.  Here’s the syntax:   
 

<type spec>  
    ::=   <scalar type spec>  
        | <tuple type spec>  
        | <relation type spec>  
 
<scalar type spec>  
    ::=   <scalar type name>  
        | SAME_TYPE_AS ( <scalar exp> )  
 
<tuple type spec>  
    ::=   <tuple type name>  
        | SAME_TYPE_AS ( <tuple exp> )  
 
<relation type spec>  
    ::=   <relation type name>  
        | SAME_TYPE_AS ( <relation exp> )  

 
For present purposes I take the semantics of all of the constructs referenced in the foregoing 
grammar to be intuitively obvious.   
 
 
CONCLUDING REMARKS  
 
I mentioned in the introduction to this chapter that there were certain important exceptions to the 
rule that tuple and relation attributes can be of any type whatsoever.  In fact, there are two:   
 
! The first is that if v is a tuple or relation with heading H, then no attribute of v can be 

defined, at any level of nesting, in terms of any tuple or relation type having that same 
heading H.  Note:  Regarding the idea that tuples and relations might have tuple or relation 
valued attributes in general, see the answer to Exercise 2.19.   

 
! The second is that (as is well known) the relational model prohibits any relation in the 

database from having an attribute of any pointer type.27   
 

Let me close this section, and indeed the body of this chapter, by pointing out explicitly 
something that I rather hope has been obvious throughout, viz.:  The operation of defining a type 
doesn’t actually create the corresponding set of values.  Rather, those values simply exist, at least 
conceptually, and always will exist; they’re part of the fabric of our universe, as it were, and they 
can be neither created nor destroyed.  Thus, all the “define type” operation—i.e., the TYPE 
                                                             
 
27 SQL violates this requirement—see Chapter 22—and thus commits what in the first (1998) edition of the Manifesto book we 
referred to, again rather rudely, as The Second Great Blunder.  It’s interesting to note, incidentally, that committing the first 
“great blunder” seems inevitably to lead to committing the second as well; however, it’s possible to commit the second without 
committing the first.   
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statement, in Tutorial D—really does is introduce a name by which the corresponding set of 
values can be referenced.  Likewise, the DROP TYPE statement doesn’t drop the set of values as 
such, it merely drops the name that was introduced by the corresponding TYPE statement.   
 
 
EXERCISES  
 
2.1 What’s a type?   
 
2.2 Physical representations are always hidden from the user:  True or false?   
 
2.3 What do you understand by the term selector?  And what exactly is a literal?   
 
2.4 What’s a THE_ operator?   
 
2.5 This chapter has touched on several logical differences (refer back to Chapter 1 if you need 
to refresh your memory regarding this important notion), including:   
 

argument  vs.     parameter  
generated type  vs.     nongenerated type  
ordered type  vs.     ordinal type  
physical representation  vs.     possible representation  
read-only operator  vs.     update operator  
relation   vs.     relvar  
relation   vs.     type  
scalar   vs.     nonscalar  
statement   vs.     expression  
type   vs.     representation  
user defined type  vs.     system defined type  
user defined operator  vs.     system defined operator  
value  vs.     variable  
 

What exactly is the logical difference in each case?   
 
2.6 State the type rules for the assignment (“:=”) and equality comparison (“=”) operators.   
 
2.7 What’s a polymorphic operator?   

 
2.8 What’s a type generator?   
 
2.9 Give some examples of types for which it might be useful to define two or more distinct 
possible representations.  Can you think of an example where distinct possible representations 
for the same type have different numbers of components?   
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2.10 Give an example of a scalar type with a nonscalar possrep component.   
 
2.11 Let X be an expression.  What’s the type of X?  What’s the significance of the fact that X is 
of some type?   
 
2.12 Using the definition of the ABS operator as a template (see the section “Operators” in the 
body of the chapter), define an operator that, given a rational number, returns the cube of that 
number.   
 
2.13 Let LENGTH be a user defined type, with the obvious semantics.  Define an operator that, 
given the lengths of two adjacent sides of a rectangle, returns the corresponding area.   
 
2.14 Define a read-only operator that, given a point with cartesian coordinates x and y, returns 
the point with cartesian coordinates f(x) and g(y), where f and g are predefined operators.   
 
2.15 Repeat Exercise 2.14 but make the operator an update operator.   
 
2.16 Define a read-only version of the operator REFLECT (defined as an update operator in the 
body of the chapter).   
 
2.17 What’s a pseudovariable?  Why are pseudovariables logically unnecessary?   
 
2.18 Give a type definition for a scalar type called CIRCLE.  What selectors and THE_ 
operators apply to this type?  Also, (a) define a set of read-only operators to compute the 
diameter, circumference, and area of a given circle; (b) define an update operator to double the 
radius of a given circle (more precisely, to update a given CIRCLE variable in such a way that it 
now contains a circle value with the same center as before but double the radius).  Note:  Here 
and throughout this book I follow conventional mathematical usage in using the term radius 
(a) sometimes to mean a line segment connecting the center of a given circle to a point on that 
circle’s perimeter and (b) sometimes, and in fact more frequently, to mean the length of such a 
line segment (as the context demands).   

 
2.19 Give some examples of (a) tuple types, (b) relation types.   
 
2.20 Suppose we’re given a departments-and-employees database in which (a) relvar DEPT 
(“departments”) has attributes DNO, DNAME, BUDGET, and LOCATION and (b) relvar EMP 
(“employees”) has attributes ENO, ENAME, DNO, and SALARY.  Suppose further that the 
attributes are of the following user defined types:   

 



 
 

Types without Inheritance / Chapter 2      57 

DNO       : DNO  
DNAME     : NAME  
BUDGET    : MONEY  
LOCATION  : CITY  
ENO       : ENO  
ENAME     : NAME  
SALARY    : MONEY  

 
Which of the following scalar expressions (or would-be scalar expressions) are valid?  For those 
that are, state the type of the result; for the rest, give an expression that will achieve what appears 
to be the desired effect.   
 

a. LOCATION = 'London'  
 
b. ENAME = DNAME  
 
c. SALARY * 5  
 
d. BUDGET + 50000  
 
e. ENO > 'E2'  
 
f. ENAME || DNAME  
 
g. LOCATION || 'burg'  
 

2.21 It’s sometimes suggested that types are really variables, in a sense.  For example, employee 
numbers might grow from three digits to four as a business expands, so we might need to update 
“the set of all possible employee numbers.”  Discuss.   
 
2.22 I said in the body of the chapter that a relation selector invocation in Tutorial D consists of 
the keyword RELATION, followed by a commalist enclosed in braces of tuple expressions (and 
those tuple expressions must all be of the same tuple type)—and I implied, though I didn’t 
actually say as much, that the type of the relation denoted by the overall expression was 
RELATION H, where TUPLE H was the common type of all of the specified tuple expressions.  
But what if that set of specified tuple expressions is empty?—in other words, what if the relation 
being specified has an empty body?28  How can its type be determined?   
 
2.23 A type is a (named) set of values and the empty set is a legitimate set; thus, we might 
define an empty type to be a type where the set in question is empty.  Can you think of any uses 
for such a type?   
 
2.24 A heading is a set of attributes and the empty set is a legitimate set; thus, we might define 
an empty heading to be a heading where the set in question is empty.  Can you think of any uses 
for such a heading?   
                                                             
 
28 Such a relation is usually known, a trifle loosely, as an empty relation.   
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2.25 Does the following represent a legitimate heading?   
 

{ A T , A T }  
 
2.26 Let T be a user defined scalar type, and let PR be a declared possrep for T.  Could the 
definition of PR, within the TYPE statement defining T, contain an empty <possrep component 
def commalist>?  If so, what would it mean?   
 
2.27 Do you think that types “belong to” databases, in the same sense that database relvars do?   
 
 
ANSWERS		
	
2.1	 A	type	(also	known,	especially	in	early	writings	on	the	relational	model,	as	a	domain)	is	a	
named,	and	in	practice	finite,	set	of	values—all	possible	values	of	some	specific	kind:	for	
example,	all	possible	integers,	or	all	possible	character	strings,	or	all	possible	supplier	numbers,	
or	all	possible	XML	documents,	or	all	possible	relations	with	a	certain	heading	(etc.,	etc.).		Note:		
In	object	contexts,	a	type	is	often	called	a	class.29		However,	that	term	class	is	also	used	by	
some	writers	to	mean	(a)	the	implementation	or	physical	representation	of	some	type,	or	(b)	a	
type	and	one	of	its	implementations	in	combination,	or	(c)	the	set	of	all	values	of	some	type	
currently	in	use	(and	(d)	possibly	other	things	besides),	and	for	such	reasons	is	probably	best	
avoided.		I	won’t	use	it	much	in	this	book,	other	than	in	object	contexts.			
	
2.2	 True	in	principle;	might	not	be	completely	true	in	practice	(but	to	the	extent	it	isn’t,	we’re	
talking	about	a	confusion	over	the	logical	difference	between	model	and	implementation).		
Incidentally,	the	quote	from	Cardelli	and	Wegner	in	the	body	of	the	chapter	is	highly	pertinent	
to	the	present	exercise.		Here	it	is	again:			
	

A	major	purpose	of	type	systems	is	to	avoid	embarrassing	questions	about	representations,	and	to	
forbid	situations	in	which	these	questions	might	come	up.			

	
In	other	words,	types	are	a	good	idea	because	they	raise	the	level	of	abstraction;	without	a	
proper	type	system,	everything	would	be	nothing	but	tedious—and	highly	error	prone—bit	
twiddling.			

                                                             
 
29 Or is it?  I can’t resist throwing the following quote in here (it’s from Object-Oriented Database Systems: Concepts and 
Architectures, by Elisa Bertino and Lorenzo Martino, Addison-Wesley, 1993):  “Object-oriented systems can be classified into 
two main categories—systems supporting the notion of class and those supporting the notion of type ... [Although] there are no 
clear lines of demarcation between them, the two concepts are fundamentally different” (!).  Note:  I’ll have a little more to say 
about this particular quote in Chapter 21.   
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2.3	 Every	type	has	at	least	one	associated	selector;	a	selector	is	an	operator	that	allows	us	to	
select,	or	specify,	an	arbitrary	value	of	the	type	in	question.		Let	T	be	a	type	and	let	S	be	a	
selector	for	T;	then	every	value	of	type	T	must	be	returned	by	some	successful	invocation	of	S,	
and	every	successful	invocation	of	S	must	return	some	value	of	type	T.		Note:		Selectors	are	
provided	“automatically”	in	Tutorial	D—since	they’re	required	by	the	relational	model,	at	least	
implicitly—but	not	in	SQL	(at	least,	not	in	all	cases).		In	fact,	although	the	selector	concept	
necessarily	exists	in	SQL,	SQL	doesn’t	really	have	a	term	for	it;	certainly	selector	as	such	isn’t	an	
SQL	term.		See	Chapter	22	for	further	discussion.			

A	literal	is	a	special	case	of	a	selector	invocation	(it’s	a	selector	invocation	all	of	whose	
arguments	are	themselves	specified	as	literals	in	turn,	implying	in	particular	that	a	selector	
invocation	with	no	arguments	at	all,	like	the	INTEGER	selector	invocation	4,	is	a	literal	by	
definition).		Another	way	to	look	at	it	is	this:		A	literal	is	a	“self-defining	symbol”	that	denotes	a	
value	that	can	be	determined	at	compile	time	(where	the	value	in	question	is	fixed	by	the	
symbol	in	question,	and	the	type	of	that	value	is	therefore	also	fixed	and	determined	by	the	
symbol	in	question).30		The	Manifesto	requires	every	value	of	every	type,	tuple	and	relation	
types	included,	to	be	denotable	by	means	of	some	literal.		Here	are	some	Tutorial	D	examples:			

	
4                              /* a literal of type INTEGER  */  
'XYZ'                          /* a literal of type CHAR     */  
FALSE                          /* a literal of type BOOLEAN  */  
2.5                            /* a literal of type RATIONAL */  
POINT ( 5.0 , 2.5 )            /* a literal of type POINT    */  

	
(The	last	of	these	involves	the	user	defined	type	POINT	from	the	body	of	the	chapter.		Note	that	
it	relies	on	the	fact	that—in	accordance	with	remarks	to	this	effect	in	the	body	of	the	chapter—
the	CARTESIAN	possrep	for	points	has	been	renamed	POINT.)			

Note	that	there’s	a	logical	difference	between	a	literal	as	such	and	a	constant—a	constant	
is	a	value	(no	more	and	no	less),	while	a	literal	is	a	symbol	that	denotes	such	a	value.		(By	the	
same	token,	there’s	a	logical	difference	between	a	literal	and	a	value—as	just	stated,	a	value	is	
a	constant,	while	a	literal	is	a	symbol	that	denotes	such	a	value,	or	constant.)		That	said,	
however,	some	languages	also	support	so	called	“named	constants.”		A	named	constant	
denotes	a	value—the	constant	in	question—that	can	be	referenced	by	means	of	a	name	that’s	
not	just	a	simple	literal	representation	of	that	value.		In	other	words,	a	named	constant	
resembles	a	variable,	in	that	it	can	be	thought	of	as	an	abstraction	of	a	storage	location	that	
contains	a	value;	however,	it	differs	from	a	variable	in	two	obvious	ways.		First,	it	can	never	

                                                             
 
30 Note, however, that—to jump ahead of ourselves for the moment—the most specific type of the value in question might not be 
known until run time.  For example, the system might know at compile time that the literal 4 is of type INTEGER, but then 
discover at run time that it’s actually of type EVEN_INTEGER, where EVEN_INTEGER is a user defined subtype of type 
INTEGER.  See the answer to Exercise 10.5 in Chapter 10 for further discussion of such matters.   
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serve	as	the	target	for	an	assignment	operation.		Second,	every	reference	to	the	pertinent	
name	always	denotes	the	same	value.			

	
2.4	 A	THE_	operator	is	an	operator	that	provides	access	(effectively	for	both	retrieval	and	
update	purposes)	to	some	component	of	some	“possible	representation,”	or	possrep,	of	some	
specified	value	of	some	specified	type.		Note:		THE_	operators	are	effectively	provided	
“automatically”	in	both	Tutorial	D	and	SQL,	to	a	first	approximation.		However,	although	the	
THE_	operator	concept	necessarily	exists	in	SQL,	SQL	doesn’t	exactly	have	a	term	for	it;	
certainly	THE_	operator	as	such	isn’t	an	SQL	term.		See	Chapter	22	for	further	discussion.			
	
2.5	 For	physical	vs.	possible	representations,	see	the	section	“Types	vs.	Representations,”	
especially	the	subsection	“Selectors	and	THE_	Operators.”		For	read-only	vs.	update	operators,	
see	the	sections	“What’s	a	Type?”	and	“Operators.”		For	relations	vs.	relvars,	see	Chapter	1.		For	
scalar	vs.	nonscalar,	see	the	section	“Scalar	vs.	Nonscalar	Types.”		For	types	vs.	representations,	
see	the	section	“Types	vs.	Representations.”		For	values	vs.	variables,	see	the	section	“Values	
vs.	Variables.”		The	remaining	logical	differences	in	the	list	are	discussed	below.			
	
!	 A	parameter	is	a	formal	operand	in	terms	of	which	some	operator	is	defined.		An	

argument	is	an	actual	operand	that’s	substituted	for	some	parameter	in	some	invocation	
of	the	operator	in	question.		Be	aware,	however,	that	people	often	use	these	terms	as	if	
they	were	interchangeable;	much	confusion	is	caused	that	way,	and	you	need	to	be	on	
the	lookout	for	it.		(It	might	help	you	remember	which	is	which	by	noting	that	argument	
and	actual	operand	both	begin	with	A.)			

By	the	way,	there’s	also	a	logical	difference	between	an	argument	as	such	and	the	
expression	that’s	used	to	specify	it.		For	example,	consider	the	expression	(2	+	3)	-	1,	
which	represents	an	invocation	of	the	arithmetic	operator	“-”.		The	first	argument	to	that	
invocation	is	the	value	5,	but	that	argument	is	specified	by	the	expression	2	+	3,	which	
represents	an	invocation	of	the	arithmetic	operator	“+”.		(In	fact,	of	course,	every	
expression	represents	some	read-only	operator	invocation.		Even	a	simple	variable	
reference—V,	say—can	be	regarded	as	representing	an	invocation	of	a	certain	read-only	
operator:	namely,	the	operator	that	returns	the	current	value	of	the	specified	variable	V.		
A	similar	remark	applies	to	literals	also,	such	as	the	literal	1	in	the	example.)			

	
!	 A	generated	type	is	a	type	obtained	by	invoking	some	type	generator	such	as	ARRAY,	

RELATION,	or	(in	SQL)	CHAR;	specific	array,	relation,	and	(in	SQL)	character	string	types	
are	thus	generated	types.		A	nongenerated	type	is	a	type	that’s	not	a	generated	type.		
Generated	types	are	usually	nonscalar,	but	don’t	have	to	be;	nongenerated	types	are	
always	scalar.		(It	follows,	incidentally,	that	system	defined	types	are	always	scalar.)			
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!	 An	ordered	type	is	a	type	with	a	total	ordering.		An	ordinal	type	is	a	type	that’s	
“isomorphic	to	the	integers”—it’s	ordered,	but	additionally	has	appropriate	“first,”	“last,”	
“next,	and	“prior”	operators	associated	with	it.			

	
!	 A	relation	is	a	value;	it	has	a	type—a	relation	type,	of	course—but	it	isn’t	itself	a	type.		By	

contrast	(and	as	noted	in	the	answer	to	Exercise	2.1),	a	type	is	a	named,	and	in	practice	
finite,	set	of	values:	viz.,	all	possible	values	of	some	particular	kind.		See	the	discussion	of	
The	First	Great	Blunder	in	Chapter	1.			

	
!	 The	logical	difference	between	a	statement	and	an	expression	wasn’t	explicitly	discussed	

in	the	body	of	the	chapter,	but	it’s	important.		It	can	be	explained	as	follows.		First,	an	
expression	represents	a	read-only	operator	invocation,	and	it	denotes	a	value;	it	can	be	
thought	of	as	a	rule	for	computing	the	value	in	question.		(Incidentally,	the	arguments,	if	
any,	to	that	operator	invocation	are	themselves	specified	as	expressions	in	turn—though	
the	expressions	in	question	might	be	just	simple	literals	or	simple	variable	references.)		By	
contrast,	a	statement	doesn’t	denote	a	value;	instead,	it	causes	some	action	to	occur,	
such	as	assigning	a	value	to	a	variable	or	changing	the	flow	of	control.		In	Tutorial	D,	for	
example,		
	
X + Y  
	
is	an	expression,	but		
	
Z := X + Y ;  
	
is	a	statement.			

Note:		As	you	can	see,	statements	in	Tutorial	D	terminate	in	a	semicolon,	and	this	
observation	applies	to	TYPE	statements	in	particular.		In	other	words,	a	TYPE	statement	
consists	of	a	<scalar	type	def>—see	the	BNF	grammar	in	the	body	of	the	chapter—
followed	by	a	semicolon.		(That’s	why	that	grammar	showed	no	semicolon	terminator	as	
part	of	the	production	for	<scalar	type	def>.)			

	
!	 A	system	defined	(or	built	in)	type	is	a	type	that’s	available	for	use	as	soon	as	the	system	is	

installed	(it	“comes	in	the	box	the	system	comes	in”).		A	user	defined	type	is	a	type	whose	
definition	and	implementation	are	provided	by	some	suitably	skilled	user	after	the	system	
is	installed.		(To	the	user	of	such	a	type,	however—as	opposed	to	the	user	who	actually	
defines	that	type—that	type	should	look	and	feel	just	like	a	system	defined	type.)			

By	the	way,	I	note	in	passing	that	there’s	at	least	one	system	defined	type	(viz.,	type	
RATIONAL)	that	might	well	have	more	than	one	possible	representation.		For	example,	the	
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expressions	530.00	and	5.3E2	might	well	denote	the	same	RATIONAL	value—i.e.,	they	
might	constitute	distinct,	but	equivalent,	invocations	of	two	distinct	RATIONAL	selectors.		
Likewise,	type	INTEGER	might	have	(say)	both	a	decimal	and	a	hexadecimal	possible	
representation—perhaps	a	binary	one	too.			

	
!	 A	system	defined	(or	built	in)	operator	is	an	operator	that’s	available	for	use	as	soon	as	

the	system	is	installed	(it	comes	in	the	box	the	system	comes	in).		A	user	defined	operator	
is	an	operator	whose	definition	and	implementation	are	provided	by	some	suitably	skilled	
user	after	the	system	is	installed.		(To	the	user	of	such	an	operator,	however—as	opposed	
to	the	user	who	designs	and	implements	that	operator—that	operator	should	look	and	
feel	just	like	a	system	defined	operator.)		User	defined	operators	can	take	arguments	of	
either	user	or	system	defined	types	(or	a	mixture),	but	system	defined	operators,	
obviously	enough,	can	take	arguments	of	system	defined	types	only.			
	

2.6	 For	assignment,	the	declared	types	of	the	target	variable	and	the	source	expression	must	
be	the	same;	for	equality	comparison,	the	declared	types	of	the	comparands	must	be	the	same.		
(Both	of	these	rules	will	need	to	be	refined	somewhat	when	inheritance	is	supported.)			

Note:		Given	the	foregoing,	some	obvious	questions	arise.		(The	discussion	that	follows	is	
formulated	in	terms	of	assignment	for	definiteness,	but	similar	considerations	apply	to	equality	
comparisons	also,	mutatis	mutandis.)		Suppose	by	way	of	example	that	variables	XINT	and	XRAT	
are	declared	to	be	of	types	INTEGER	and	RATIONAL,	respectively,	and	suppose	XINT	currently	
contains	the	value	4.		Surely	there	must	be	a	way	of	assigning	that	current	value	of	XINT	to	
XRAT	(even	though	they’re	of	different	types),	such	that	XRAT	winds	up	with	current	value	4.0?		
And	of	course	there	is,	in	a	sense.		Here’s	how	to	do	it:			
	

XRAT := CAST_AS_RATIONAL ( XINT ) ;  
	

What	happens	here	is	that	the	CAST_AS_RATIONAL	invocation	“converts”	or	“casts”	its	
argument—viz.,	the	current	value	of	the	variable	XINT—to	type	RATIONAL	(in	other	words,	it	
“converts”	that	4	to	4.0).		And	that	“converted”	value	can	then	be	assigned	to	XRAT	without	
violating	the	type	rules	for	assignment.			

Now,	some	languages	allow	the	necessary	type	conversion	in	such	a	case	to	be	done	
automatically,	thereby	allowing	the	foregoing	example	to	be	formulated	“more	simply”	(?)	
thus:			
	

XRAT := XINT ;  
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The	type	conversion	is	still	being	done,	but	now	it’s	being	done	implicitly.		The	technical	term	
for	such	implicit	conversion	is	coercion;	thus,	what’s	happening	in	the	“simpler”	version	of	the	
example	is	that	the	current	value	of	XINT	is	being	coerced	to	type	RATIONAL.			

All	of	that	being	said,	it’s	a	widely	accepted	principle	in	computing	that	coercions	are	best	
avoided	because	they’re	error	prone,	and	Tutorial	D	doesn’t	support	them.		(Actually	type	
conversions	in	general	are	best	avoided,	because	they	can	be	expensive	in	performance.		But	if	
they	must	be	done,	at	least	they	should	be	done	explicitly,	via	explicit	CASTs.		Tutorial	D	does	
support	explicit	CASTs.)			

Note:		As	you	might	have	realized,	the	foregoing	discussion	is	touching	on	what’s	known	in	
language	circles	as	strong	typing.		Different	writers	have	slightly	different	definitions	for	this	
term,	but	basically	what	it	means	is	that	(a)	everything—in	particular,	every	value	and	every	
variable—has	a	type,	and	(b)	whenever	we	try	to	perform	some	operation,	the	system	checks	
that	the	operands	are	of	the	right	types	for	the	operation	in	question	(or,	possibly,	that	they’re	
coercible	to	those	right	types).		The	Manifesto	theory	of	types	supports—in	fact,	requires—
strong	typing.			

More	on	CAST:		If	T	is	a	scalar	type,	then	invoking	the	operator	CAST_AS_T	is	usually	
described,	as	above,	as	“converting”	the	argument	to	the	target	type	T.		But	it	doesn’t	really	do	
anything	to	that	argument	as	such,	of	course	(after	all,	it’s	a	read-only	operator);	all	it	really	
does	is	return	the	value	that	corresponds	to	that	argument	according	to	a	certain	predefined	
mapping	between	the	pertinent	types.		In	other	words,	the	phrase	“type	conversion”	is	rather	
loose,	though	convenient	as	a	shorthand.			

Observe	now	that	the	argument	to	CAST_AS_T	can	be	of	different	types	on	different	
invocations;	in	other	words,	we	have	here	another	example	of	overloading	polymorphism	(see	
the	section	“What’s	a	Type?”	in	the	body	of	the	chapter).		Observe	also	that	the	number	of	
CAST	operators	actually	needed	in	any	given	situation	can	sometimes	be	reduced	by	good	type	
design.		For	example,	consider	temperatures.		A	good	design	will	involve	a	single	TEMPERATURE	
type,	together	with	possreps	(and	hence	selectors	and	THE_	operators)	corresponding	to	a	
Celsius	representation,	a	Fahrenheit	representation,	and	so	on.		A	bad	design	would	involve	
different	types—CELSIUS,	FAHRENHEIT,	and	so	on—together	with	a	set	of	CAST	operators	to	
convert	between	them.		See	the	discussion	of	units	of	measure	in	the	body	of	the	chapter.			

One	last	point:		Consider	type	QTY	from	the	body	of	the	chapter.		That	type	has	a	possrep	
with	a	single	component,	Q,	of	type	INTEGER.		As	a	consequence	(but	now	speaking	extremely	
loosely!),	the	QTY	selector	might	be	thought	of	as	an	operator	that	converts	an	integer	to	a	
quantity;	similarly,	the	operator	THE_Q	might	be	thought	of	as	an	operator	that	converts	a	
quantity	to	an	integer.		See	the	answer	to	Exercise	2.20	below	for	several	illustrations	of	this	
point.			

A	note	on	SQL:		Let	SQL	variables	C25	and	C26	be	of	types	CHAR(25)	and	CHAR(26),	
respectively.		As	explained	in	the	body	of	the	chapter,	CHAR(25)	and	CHAR(26)	are	different	
types.		So	what	happens	with	assignments	and	comparisons?		More	specifically,	what	happens	
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if	we	try	to	assign	C25	to	C26,	or	C26	to	C25,	or	test	C25	and	C26	for	equality?		It	turns	out	that	
a	complete	answer	to	this	question	is	exceedingly	complex,	and	I	won’t	attempt	to	give	
anything	close	to	such	an	answer	here.		Briefly,	however:			
	
!	 Assigning	C25	to	C26:		Before	the	assignment	is	done,	the	value	of	C25	will	be	coerced	to	

type	CHAR(26)	by	padding	it	with	a	single	trailing	space.			
	
!	 Assigning	C26	to	C25:		Before	the	assignment	is	done,	an	attempt	will	be	made	to	coerce	

the	value	of	C26	to	type	CHAR(25)	by	dropping	the	final	character.		An	error	will	occur	if	
that	final	character	isn’t	a	space.			

	
!	 Testing	C25	and	C26	for	equality:		Depends	on	the	pertinent	“collation.”		If	PAD	SPACE	

applies	to	that	collation,	the	value	of	C25	will	be	coerced	to	type	CHAR(26)	by	padding	it	
with	a	single	trailing	space	before	the	comparison	is	done;	otherwise,	NO	PAD	applies,	
and	the	comparison	will	give	FALSE—even	if	the	first	25	characters	of	C26	“compare	
equal”	to	C25	and	the	26th	character	is	a	space.			

	
2.7	 Loosely,	an	operator	is	said	to	be	polymorphic	if	it’s	defined	in	terms	of	some	parameter	P	
and	the	arguments	corresponding	to	P	can	be	of	different	types	on	different	invocations.		There	
are,	however,	at	least	three	different	kinds	of	polymorphism	(or,	rather,	three	quite	different	
phenomena,	all	of	which	happen	to	be	considered	by	some	writers	as	polymorphism):	viz.,	
overloading	(or	ad	hoc),	generic,	and	inclusion	polymorphism.		The	first	two	of	these	were	
explained	briefly	in	the	body	of	the	chapter;	the	third	will	be	discussed,	exhaustively,	when	we	
get	to	type	inheritance	later	in	this	book.			
	

2.8	 A	type	generator	is	an	operator	that	returns	a	type	instead	of	a	value	(and	is	invoked	at	
compile	time	instead	of	run	time).			
	
2.9	 A	triangle	can	possibly	be	represented	by	(a)	its	three	vertices	or	(b)	the	midpoints	of	its	
three	sides	or	(c)	the	three	line	segments	constituting	its	sides	or	(d)	the	line	segments	
constituting	two	of	its	sides	together	with	the	corresponding	included	angle	(etc.,	etc.).		A	line	
segment	can	possibly	be	represented	by	(a)	its	begin	and	end	points	or	(b)	its	midpoint,	length,	
and	angle	of	inclination.			
	
2.10	 A	polygon	can	possibly	be	represented	by	a	relation	containing	one	tuple	for	each	of	its	
vertices,	each	such	tuple	containing	the	number	of	the	pertinent	vertex	and	the	corresponding	
point	in	two-dimensional	space:			
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TYPE POLYGON  
     POSSREP ( VERTICES RELATION { VNO INTEGER , VERTEX POINT } )  
     CONSTRAINT ... ;  

	
The	CONSTRAINT	specification	might	look	like	this:			
	

     CONSTRAINT  
        WITH ( N := COUNT ( VERTICES ) ) :  
               COUNT ( VERTICES { VNO } ) = N  
               AND  
               COUNT ( VERTICES { VERTEX } ) = N  
               AND  
               IS_EMPTY ( VERTICES WHERE VNO < 1 OR VNO > N )  
 
Explanation:		This	CONSTRAINT	specification	involves	three	separate	conditions	all	ANDed	

together.		Let	p	be	an	arbitrary	value	of	type	POLYGON.		Then	the	first	condition	ensures	that	
no	two	tuples	in	the	VERTICES	relation	for	p	have	the	same	vertex	number;	the	second	ensures	
that	no	two	tuples	in	the	VERTICES	relation	for	p	have	the	same	vertex;	and	the	first	and	third	
together	ensure	that	if	p	has	n	vertices,	then	the	n	tuples	in	the	VERTICES	relation	for	p	contain	
exactly	the	VNO	values	1,	2,	...,	n.			

Note:		Actually	the	foregoing	possrep	is	incomplete	in	several	respects.		One	is	as	follows.		
Suppose	for	simplicity	that	the	polygon	is	in	fact	a	triangle.		Clearly,	then,	the	very	same	triangle	
can	be	specified	by	giving	its	three	vertices	in	any	of	six	different	orders.		Now,	you	might	be	
thinking	such	a	state	of	affairs	surely	doesn’t	matter,	but	in	fact	it	does	(in	a	right	triangle,	for	
example,	we	might	want	to	be	sure	it’s	the	“first”	vertex	that	corresponds	to	the	right	angle).		In	
general,	then,	we’d	need	a	way	of	pinning	down	the	precise	order	in	which	the	vertices	are	to	
be	specified.		E.g.,	in	terms	of	polar	coordinates,	we	might	say	they’re	specified	in	terms	of	
increasing	values	of	θ	(but	even	then	we’d	need	a	way	of	breaking	ties).			
	
2.11	 The	type	of	expression	X	is	the	type,	T	say,	specified	as	the	type	of	the	result	of	the	
operator	to	be	executed	last—“the	outermost	operator”—when	X	is	evaluated.		That	type	is	
significant	because	it	means	the	expression	can	be	used	in	exactly	(that	is,	in	all	and	only)	those	
positions	where	a	literal	of	type	T	can	appear.			
	
2.12 OPERATOR CUBE ( X RATIONAL ) RETURNS RATIONAL ;  
    RETURN ( X ^ 3 ) ;  
 END OPERATOR ;  
	
2.13 OPERATOR AREA_OF_R ( H LENGTH , W LENGTH ) RETURNS AREA ;  
    RETURN ( H * W ) ;  
 END OPERATOR ;  
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I’m	assuming	here,	not	unreasonably,	that	(a)	it’s	legal	to	multiply	a	value	of	type	LENGTH	
by	another	such	value,	and	(b)	the	result	of	such	a	multiplication	is	a	value	of	type	AREA	
(another	user	defined	type).			

	
2.14 OPERATOR FG ( P POINT ) RETURNS POINT ;  

   RETURN ( POINT ( F ( THE_X ( P ) ) , G ( THE_Y ( P ) ) ) ) ;  
END OPERATOR ;  
	

2.15 OPERATOR FG ( P POINT ) UPDATES { P } ;  
   THE_X ( P ) := F ( THE_X ( P ) ) ,  
   THE_Y ( P ) := G ( THE_Y ( P ) ) ;  
END OPERATOR ;  
	

2.16 OPERATOR REFLECT ( P POINT ) RETURNS POINT ;  
   RETURN ( POINT ( - THE_X ( P ) , - THE_Y ( P ) ) ) ;  
END OPERATOR ;  

	
2.17	 A	pseudovariable	reference	is	the	use	of	an	operational	expression	instead	of	a	regular	
variable	reference	to	denote	the	target	for	some	assignment	or	other	update	operation	(of	
course,	all	update	operations	are	logically	equivalent	to	some	assignment	anyway).		In	the	body	
of	the	chapter	I	discussed	THE_	pseudovariables	in	particular,	but	THE_	pseudovariables	aren’t	
the	only	kind.		For	example,	let	CS	be	a	variable	of	declared	type	CHAR,	with	current	value	the	
string	'Middle',	and	consider	the	following	assignment	statement:			
	

SUBSTR ( CS , 2 , 1 ) := 'u' ;  
	
SUBSTR	here	is	the	substring	operator,	and	the	effect	of	the	assignment	is	to	“zap”	the	second	
character	position	within	CS,	replacing	the	'i'	by	a	'u'	(after	the	update,	therefore,	the	current	
value	of	CS	is	the	string	'Muddle').		The	expression	on	the	left	side	of	the	assignment	symbol	is	a	
pseudovariable	reference.			

Pseudovariables	are	logically	unnecessary	because	they’re	just	shorthand—any	
assignment	involving	a	pseudovariable	is	logically	equivalent	to	one	that	doesn’t.		Subsidiary	
exercise:		Give	an	assignment	statement	that’s	logically	equivalent	to	the	one	shown	above	but	
doesn’t	use	any	pseudovariables.			
	
2.18 TYPE CIRCLE POSSREP ( R LENGTH , CTR POINT ) ;  

     /* R represents the radius of the circle */  
     /* and CTR represents the center         */  
	

The	sole	selector	that	applies	to	type	CIRCLE	is	as	follows:			
	
CIRCLE ( r , ctr )  
/* returns the circle with radius r and center ctr */  
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THE_	operators:			
	

THE_R ( c ) 
/* returns the radius of circle c (a length) */  
THE_CTR ( c ) 
/* returns the center of circle c (a point)  */  
	

a. OPERATOR DIAMETER_OF ( C CIRCLE ) RETURNS LENGTH ;  
   RETURN ( 2 * THE_R ( C ) ) ;  
END OPERATOR ;  
 
OPERATOR CIRCUMFERENCE_OF ( C CIRCLE ) RETURNS LENGTH ;  
   RETURN ( 3.14159 * DIAMETER ( C ) ) ;  
END OPERATOR ;  
 
OPERATOR AREA_OF ( C CIRCLE ) RETURNS AREA ;  
   RETURN ( 3.14159 * ( THE_R ( C ) ^ 2 ) ) ;  
END OPERATOR ;  
	
I’m	assuming	here	that	(a)	multiplying	a	length	by	an	integer	or	a	rational	number	returns	
a	length	and	(b)	multiplying	a	length	by	a	length	returns	an	area.			
	

b. OPERATOR DOUBLE_R ( C CIRCLE ) UPDATES { C } ;  
   THE_R ( C )  :=  2 * THE_R ( C ) ;  
END OPERATOR ;  
	

2.19	 The	following	examples	are	deliberately	a	little	complicated.		First,	here’s	a	tuple	type	
with	a	relation	valued	attribute	(RVA):			
	

TUPLE { SNO SNO ,  
        PNO_REL RELATION { PNO PNO } }  

	
And	here’s	a	corresponding	selector	invocation	(actually	it’s	a	literal):			

	
TUPLE { SNO SNO('S2') ,  
        PNO_REL RELATION { TUPLE { PNO PNO('P1') } ,  
                           TUPLE { PNO PNO('P2') } } }  

	
Second,	here’s	a	relation	type	with	a	tuple	valued	attribute	(TVA):			
	

RELATION { NAME NAME ,  
           ADDR TUPLE { STREET CHAR ,  
                        CITY   CHAR ,  
                        STATE  CHAR ,  
                        ZIP    CHAR } }  
 

(A	corresponding	selector	invocation	is	left	as	a	subsidiary	exercise.)		Finally,	here’s	a	relation	
type	involving	two	RVAs:			
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RELATION { CNO     CNO ,  
           TEACHER RELATION { TNO TNO } ,  
           TEXT    RELATION { XNO XNO } }  

	
And	here’s	a	possible	sample	value	(as	another	subsidiary	exercise,	you	might	try	writing	out	in	
longhand,	as	it	were,	a	relation	selector	invocation—in	fact,	a	relation	literal—representing	this	
specific	sample	value):			
	

┌─────┬─────────┬─────────┐ 
│ CNO │ TEACHER │ TEXT    │ 
├═════┼─────────┼─────────┤ 
│     │ ┌─────┐ │ ┌─────┐ │ 
│ C1  │ │ TNO │ │ │ XNO │ │ 
│     │ ├═════┤ │ ├═════┤ │ 
│     │ │ T2  │ │ │ X1  │ │ 
│     │ │ T4  │ │ │ X2  │ │ 
│     │ │ T5  │ │ └─────┘ │ 
│     │ └─────┘ │         │ 
│     │ ┌─────┐ │ ┌─────┐ │ 
│ C2  │ │ TNO │ │ │ XNO │ │ 
│     │ ├═════┤ │ ├═════┤ │ 
│     │ │ T4  │ │ │ X2  │ │ 
│     │ └─────┘ │ │ X4  │ │ 
│     │         │ │ X5  │ │ 
│     │         │ └─────┘ │ 
└─────┴─────────┴─────────┘ 

	
A	relvar	of	the	foregoing	type	might	have	the	following	predicate:31			
	
Course	CNO	can	be	taught	by	every	teacher	TNO	in	TEACHER	(and	no	other	teachers)	and	
uses	every	textbook	XNO	in	TEXT	(and	no	other	textbooks).			
	
Subsidiary	exercise:		Type	generators	are	supposed	to	have	generic	possreps,	operators,	

and	constraints	associated	with	them—so	what	possreps,	operators,	and	constraints	are	
associated	with	the	RELATION	and	TUPLE	type	generators?		(Answer:		The	possreps	are	implicit	
in	the	formats	for	the	corresponding	selectors.		The	operators	are	basically	(a)	the	operators	of	
the	relational	algebra	for	relations	and	(b)	tuple	analogs	of	those	operators	for	tuples.		As	for	
constraints,	see	Chapter	17.)			
	
2.20	 I	assume	throughout	the	following	answers	that	each	of	the	types	involved	has	a	selector	
with	the	same	name.		a.	Not	valid;	LOCATION	=	CITY('London').		b.	Valid;	BOOLEAN.		

                                                             
 
31 A relvar predicate is, loosely, just a reasonably precise, but informal, statement of how the relvar in question is meant to be 
understood by the user.  See, e.g., my book SQL and Relational Theory: How to Write Accurate SQL Code (3rd edition, O’Reilly, 
2015) for a detailed discussion of this important notion.   
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c.	Presumably	valid;	MONEY	(I’m	assuming	that	multiplying	a	money	value	by	an	integer	returns	
another	money	value).		d.	Not	valid;	BUDGET	+	MONEY(50000).		e.	Not	valid;	ENO	>	ENO('E2').		
f.	Not	valid;	NAME(THE_NC(ENAME)	||	THE_NC(DNAME))	(recall	from	the	body	of	the	chapter	
that	type	NAME	has	a	possrep	with	a	single	component,	called	NC,	of	type	CHAR).		g.	Not	valid;	
CITY(THE_CC(LOCATION)	||	'burg')	(I’m	assuming	here	that	type	CITY	has	a	possrep	with	a	
single	component,	called	CC,	of	type	CHAR).			
	
2.21	 Such	an	operation	logically	means	replacing	one	type	by	another,	not	“updating	a	type”	
(types	aren’t	variables	and	hence	can’t	be	updated,	by	definition).		The	following	observations	
are	pertinent.		First,	as	pointed	out	in	the	body	of	the	chapter,	the	operation	of	defining	a	type	
doesn’t	actually	create	the	corresponding	set	of	values;	all	the	“define	type”	operation—the	
TYPE	statement,	in	Tutorial	D—really	does	is	introduce	a	name	by	which	that	set	of	values	can	
be	referenced.		Likewise,	the	DROP	TYPE	statement	doesn’t	actually	drop	the	corresponding	
values,	it	merely	drops	the	name	that	was	introduced	by	the	corresponding	TYPE	statement.		It	
follows	that	“updating	an	existing	type”	really	means	dropping	the	existing	type	name	as	such	
and	then	redefining	that	same	name	to	refer	to	a	different	set	of	values.		Of	course,	there’s	
nothing	to	preclude	the	use	of	some	kind	of	“alter	type”	shorthand	to	simplify	such	an	
operation	(as	SQL	does,	in	fact,	at	least	in	connection	with	what	it	calls	“structured	types”—see	
Chapter	22).			
	
2.22	 The	complete	syntax	for	a	relation	selector	invocation	in	Tutorial	D	is	as	follows—	

	
RELATION [ <heading> ] <body>  

	
—where	(a)	the	syntax	for	<heading>	is	as	explained	in	the	body	of	the	chapter,	and	(b)	a	
<body>	in	turn	consists	of	a	<tuple	exp	commalist>	enclosed	in	braces,	such	that	the	tuple	
expressions	in	question	all	denote	tuples	with	that	specified	<heading>.		Moreover,	there’s	a	
syntax	rule	to	the	effect	that	the	<heading>	must	be	specified	if	the	<tuple	exp	commalist>	is	
empty	(it	can	be	omitted	otherwise,	as	indeed	it	was	in	all	of	the	examples	I’ve	shown	so	far).		
By	way	of	example,	therefore,	the	empty	suppliers	relation	can	be	specified	as	follows:			

	
RELATION { SNO SNO , SNAME NAME , STATUS INTEGER , CITY CHAR } { }  

	
As	an	aside,	I	note	that	TABLE_DUM	and	TABLE_DEE—see	the	answer	to	Exercise	2.24—can	be	
thought	of	as	shorthand	for	the	relation	selector	invocations	RELATION	{	}	{	}	and	RELATION	{	}	
{	TUPLE	{	}	},	respectively.		They	can	also	be	thought	of	as	named	relation	constants.			
	
2.23	 The	empty	scalar	type	is	certainly	a	valid	type;	however,	it	wouldn’t	make	much	sense	to	
define	a	variable	to	be	of	such	a	type,	because	no	value	could	ever	be	assigned	to	it!		Despite	
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this	fact,	the	empty	scalar	type—there’s	exactly	one	such,	and	we	call	it	omega—turns	out	to	
be	critically	important	in	connection	with	our	inheritance	model.		See	Part	II	of	this	book	
(Chapter	12	in	particular)	for	further	discussion.			
	
2.24	 Yes!		There’s	exactly	one	tuple	with	an	empty	heading,	and	we	call	it	the	empty	tuple	or	
0-tuple.		In	Tutorial	D,	we	write	it	thus:	TUPLE	{	}.		Its	type	is	also	written	TUPLE	{	}.			

As	for	relations,	there	are	exactly	two	relations	with	an	empty	heading;	one	has	an	empty	
body	as	well,	and	we	call	it	TABLE_DUM	(DUM	for	short);	the	other	has	a	body	containing	
exactly	one	tuple	(viz.,	the	empty	tuple),	and	we	call	it	TABLE_DEE	(DEE	for	short).		For	further	
discussion,	I	refer	you	to	my	book	SQL	and	Relational	Theory:	How	to	Write	Accurate	SQL	Code	
(3rd	edition,	O’Reilly,	2015).			

Note:		If	a	relvar	(as	opposed	to	a	relation)	has	an	empty	heading,	then	it	must	have	just	
one	key,	and	that	key	must	be	empty	too.		However,	a	relvar	doesn’t	have	to	have	an	empty	
heading	to	have	an	empty	key;	in	fact,	a	relvar	will	have	an	empty	key	if	and	only	if	it’s	
constrained	never	to	contain	more	than	just	one	tuple	(though	it’s	true	that	the	empty	key	will	
certainly	be	the	only	key	for	such	a	relvar).		For	further	discussion	of	such	matters,	again	I	refer	
you	to	my	book	SQL	and	Relational	Theory:	How	to	Write	Accurate	SQL	Code	(3rd	edition,	
O’Reilly,	2015).			
	
2.25	 Technically	speaking,	yes,	it	does	(at	least	in	Tutorial	D),	because	if	an	element	appears	
more	than	once	in	a	commalist	denoting	a	set,	as	in	the	case	at	hand,	then	it’s	treated	as	if	it	
appeared	just	once.		Please	note,	however,	that	I’ll	never	exploit	this	fact	in	this	book.		Thus,	if	I	
show	(e.g.)	a	heading	looking	like	this—	
	

{	A1	T1	,	A2	T2	,	...,	An	Tn	}		
	
—you	can	assume	that	the	Ai’s	(i	=	1,	2,	...,	n)	are	all	distinct.			
	
2.26	 It	would	mean	that	T	has	at	most	one	value—in	fact,	exactly	one	value,	since	there	are	no	
user	defined	empty	scalar	types.		That	value	would	be	denoted	by	the	only	legal	invocation	of	
the	corresponding	selector,	viz.,	PR	(	)—which	is	in	fact	a	literal,	and	indeed	the	only	legal	
literal,	corresponding	to	possrep	PR.			
	
2.27	 No!		(Which	database	does	type	INTEGER	belong	to?)		In	an	important	sense,	the	whole	
subject	of	types	and	type	management	is	orthogonal	to	the	subject	of	databases	and	database	
management.		We	might	even	imagine	the	need	for	a	“type	administrator,”	whose	job	it	would	
be	to	look	after	types	in	a	manner	analogous	to	that	in	which	the	database	administrator	looks	
after	databases.			



  

Chapter  3 
 
 

T y p e s   w i t h   I n h e r i t a n c e 
 
 

Ruinous inheritance  
—Gaius: 

The Institutes (c. 175 CE) 
 
 

This chapter provides a preliminary overview of some of the basic ideas of our inheritance 
model, in order to pave the way for a much more complete treatment of the material in 
subsequent chapters.  It’s based in part on Chapter 12 of the Manifesto book (i.e., Databases, 
Types, and the Relational Model: The Third Manifesto, by Hugh Darwen and myself, 3rd 
edition, Addison-Wesley, 2007).   
 
As noted in Chapter 1, there’s no consensus in the community at large on a formal, rigorous, and 
abstract type inheritance model.  In our work on The Third Manifesto, therefore, Darwen and I 
were more or less forced to develop an inheritance model of our own—and of course it’s that 
model that’s the principal subject of the present book.  Moreover, we were, and still are, very 
serious about our work in connection with that model.  As we wrote in the Manifesto book:   
 

We would like this effort on our part not to be seen as just an academic exercise.  Rather, we would 
like our proposal to be considered by the community at large as a serious contender for filling the 
gap alluded to above (i.e., as a candidate for the role that is “formal, rigorous, and abstract” and can 
be generally agreed upon by that “community at large”).  We offer it here in that spirit.   

 
As I said in Chapter 1, these remarks remain just as applicable today as they were when we first 
wrote them.   
 
 
WHY INHERITANCE?  
 
Why is this topic worth investigating in the first place?  There seem to be at least two answers to 
this question:   

 
! First, the ideas of subtyping and inheritance do seem to arise naturally in the real world.  

That is, it’s not at all unusual to encounter situations in which all values of a given type 
have certain properties in common, more or less by definition, while some of those values 
have certain additional properties of their own.  For example, all ellipses have an area, 
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while some ellipses—namely, those that happen to be circles—have a radius as well.  Thus, 
we might say that type ELLIPSE has a subtype CIRCLE; further, we might say that type 
CIRCLE inherits the property of having an area from its supertype ELLIPSE, but that 
circles also have certain properties of their own that ellipses in general don’t have, such as 
a radius.  Thus, subtyping and inheritance do look as if they might be useful tools for 
“modeling reality.”   

 
! Second, if we can recognize such general patterns—patterns of subtyping and inheritance, 

that is—and build intelligence regarding them into our application and system software, we 
might be able to achieve certain practical economies.  For example, a program that works 
for ellipses might work for circles too, even if it was originally written with no thought for 
circles at all (perhaps type CIRCLE hadn’t even been defined at the time the program in 
question was written).   

 
That said, I should say too that most of the existing literature seems more concerned—I’m 

tempted to say, much more concerned—with the second of these goals than it is with the first; in 
other words, it seems to be principally interested in inheritance as a mechanism for designing, 
building, and (re)using programs.  Our own focus, by contrast, is more on the first than the 
second; that is, we’re interested in inheritance as a conceptual tool for designing, building, and 
(re)using data structures.1  In other words, what we’re looking for is an inheritance model that 
can be used to “model reality”—certain aspects of reality, at any rate—much as the relational 
model itself can also be used to model certain aspects of reality.  To put it yet another way, we’re 
concerned (as always) with the possibility of constructing an abstract model, not so much with 
matters of implementation.  That said, however, please note that the discussions and explanations 
that follow, both here and in later chapters, do sometimes touch on implementation matters, if 
only for purposes of clarification.   

Before going any further, I should warn you that this whole topic is considerably more 
complex than you might expect.  The trouble is, although “the basic idea of inheritance is 
simple,”2 the devil is in the detail—you have to study the topic in its entirety (and, I might add, 
extremely closely and carefully) in order to come properly to grips with it: in particular, to 
appreciate the fact that it’s not at all as straightforward as it might seem at first sight.  All of 
which perhaps helps to justify the possibly rather surprising length of this book, and in particular 
to explain why this overview chapter is needed.   

There’s another point I need to warn you of, too.  The fact is, there isn’t even consensus in 
the literature on the meanings of such basic terms as subtype and inheritance, let alone on an 
entire inheritance model.  In fact, it has been suggested that there are many different kinds of 

                                                             
 
1 Reasonably enough, I think, since we’re “database people” and therefore took the relational model as the starting point for our 
investigations.  By contrast, it’s probably fair to say that most of the existing inheritance literature approaches the problem much 
more from a software engineering or application development perspective.   
 
2 The quote is from “On the Notion of Inheritance,” by Antero Taivalsaari (ACM Comp. Surv. 28, No. 3, September 1996).   
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inheritance, and hence many sets of concepts and many definitions of terms, that are all distinct 
from one another and yet overlap in a variety of ways.  For example:   
 
! From “The Object-Oriented Database System Manifesto,” by Malcolm Atkinson, 

François Bancilhon, David DeWitt, Klaus Dittrich, David Maier, and Stanley Zdonik, 
Proc. 1st International Conference on Deductive and Object-Oriented Databases (Kyoto, 
Japan, 1989, published by Elsevier Science, 1990):   

 
[There] are at least four types of inheritance: substitution inheritance, inclusion inheritance, 
constraint inheritance, and specialization inheritance ... Various degrees of these four types of 
inheritance are provided by existing systems and prototypes, and we do not prescribe a specific 
style of inheritance.3   

 
! From An Introduction to Data Types, by J. Craig Cleaveland (Addison-Wesley, 1986):   
 

[Inheritance can be] based on [a variety of] different criteria and there is no commonly accepted 
standard definition.   

 
The book then goes on to give eight possible interpretations.  (Bertrand Meyer, in “The 
Many Faces of Inheritance: A Taxonomy of Taxonomy,” IEEE Computer 29, No. 5, May 
1996, gives twelve.)   

 
! From technical correspondence by Kenneth Baclawski and Bipin Indurkhya in CACM 37, 

No. 9, September 1994:   
 

[A language merely] provides a set of [inheritance] mechanisms.  While these mechanisms 
certainly restrict what one can do in that language and what views of inheritance can be 
implemented [in that language], they do not by themselves validate some view of inheritance or 
other.  [Types,] specializations, generalizations, and inheritance are only concepts, and ... they do 
not have a universal objective meaning ... This [state of affairs] implies that how inheritance is to be 
incorporated into a specific system is up to the designers of [that] system, and it constitutes a policy 
decision that must be implemented with the available mechanisms.   

 
And so on.  Taken together, I think such quotes go a long way toward justifying my claim that 
there really is no consensus on any kind of inheritance model as such.4  Caveat lector.   

As I’ve said, therefore, Darwen and I were more or less forced to introduce our own 
definitions—and while we naturally did our best to do so in a manner that made sense to us, you 
                                                             
 
3 Incidentally, I think it can be argued (and I think it’s worth noting, too) that our own model supports all four of the various 
kinds of inheritance mentioned in this quote.   
 
4 In this connection, one of my reviewers drew my attention to two further papers, the first titled “Inheritance Is Not Subtyping” 
and the second “Inheritance Is Subtyping” (https://www.researchgate.net/publication/220997250/Inheritance_Is_Not_Subtyping 
and https://www.cs.rice.edu/~javaplt/papers/Inheritance.pdf, respectively).  The titles say it all.   
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need to be aware that different definitions can be found in the literature.  We defend our 
definitions—and our entire model, come to that—on the grounds that (among other things, and 
indeed as noted in Chapter 1) they’re mostly just a logical consequence of our type theory as 
described in Chapter 2.  In other words, we think it would be inconsistent to agree with the 
Manifesto’s approach to types in general but not to agree with our inheritance model in 
particular.  But you must be the judge of this claim, of course.   

One last introductory point:  The subject of type inheritance has a lot to do with data in 
general, of course, but I don’t think there’s anything about it that has to do with persistent or 
database data only.  For simplicity, therefore, most though not all of the examples in this chapter 
(and indeed in the rest of this book) are formulated, not in terms of database data in particular, 
but rather just in terms of data in general.   
 
 
TOWARD A MODEL OF INHERITANCE  
 
As noted in the previous section, the term type inheritance (inheritance for short) refers to that 
phenomenon according to which we can sensibly say, for example, that every circle is an 
ellipse,5 and hence that all properties that apply to ellipses in general apply to—i.e., are inherited 
by—circles in particular.  For example, every ellipse has an area, and therefore every circle has 
an area also.  More precisely, we can say that:   
 

a. Types ELLIPSE and CIRCLE are such that ELLIPSE is a supertype of CIRCLE and 
CIRCLE is a subtype of ELLIPSE.   

 
b. There’s an operator—AREA_OF, say—that returns the area of a given ellipse, and that 

operator can be invoked with an argument of type CIRCLE, because circles are ellipses.   
 

Of course, the converse is false—the subtype will have properties of its own that don’t 
apply to the supertype.  For example, circles have a radius, but ellipses in general don’t; in other 
words, there’s an operator that returns the radius of a given circle, but that operator can’t be 
invoked with an argument that’s “just an ellipse,” because such ellipses aren’t circles.   

So operators are inherited.  (Note:  By operators here, I really mean read-only operators 
specifically, as I’ll explain in the section “Scalars, Tuples, and Relations,” later.)  But constraints 
are properties too, of a kind, and are therefore inherited too—where by the term constraints, 
unqualified, I mean type constraints specifically (see Chapter 2), a convention I’ll adhere to 
throughout this book unless the context demands otherwise.  Thus, e.g., any constraint that 
applies to ellipses in general also applies, necessarily, to circles in particular (for if it didn’t, then 
some circles wouldn’t be ellipses).  For example, if ellipses are subject to the constraint that the 
                                                             
 
5 I need to add immediately that some people would dispute even this apparent truism, as we’ll see in Chapter 13.  Nothing can be 
taken for granted!  Thus, many remarks presented here or in subsequent chapters as statements of fact must be understood as 
carrying with them some kind of silent qualification along the lines of “at least in our model.”   
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length a of their major semiaxis is greater than or equal to the length b of their minor semiaxis, 
then this same constraint must be satisfied by circles also.  (For circles, of course, the semiaxes 
coincide in the radius, and this particular constraint is satisfied trivially.)  Once again, however, 
the converse is false—there’ll be constraints that apply to circles but not to ellipses in general.  In 
fact, the specific constraint just mentioned, to the effect that a = b, is an example of one that 
applies to circles in particular but not to ellipses in general.   
 

Aside:		A	point	arises	here	that	beginners	sometimes	find	a	little	confusing:	namely,	that	a	
subtype	has	a	subset	of	the	values	but	a	superset	of	the	properties	(“properties”	here	
meaning,	to	repeat,	operators	and	constraints).		For	example,	the	subtype	CIRCLE	contains	
a	subset	of	the	values	of	the	supertype	ELLIPSE,	but	an	individual	circle	has	all	of	the	
properties	of	an	ellipse	and	more	besides.		For	exactly	such	reasons,	in	fact,	some	writers	
prefer	to	avoid	the	“sub	and	super”	terminology	and	talk	of	descendants	and	ancestors	
instead.6		We	think	this	latter	nomenclature	has	problems	of	its	own,	however,	and	prefer	
to	stay	with	the	“sub	and	super”	terminology.		End	of	aside.			
 

A Note on Possible Representations  
 
In the section “The Running Example” later in this chapter, I’m going to declare a possible 
representation (or possrep) for type ELLIPSE as consisting of the combination of the major 
semiaxis length a, the minor semiaxis length b, and the center point ctr.  Now, I hope it’s 
obvious that this same possrep would at least be adequate for type CIRCLE as well because, as I 
keep saying, circles are ellipses.  By definition, in fact, every possrep for ellipses is necessarily, 
albeit implicitly, a possrep for circles as well.  (Of course, the converse is false—a possrep for 
circles isn’t necessarily a possrep for ellipses.)  Thus, possreps might be thought of as further 
“properties” that are inherited by subtypes from supertypes.  As far as our model is concerned, 
however, we don’t regard such inherited possreps as explicitly declared ones.7  Thus, to say that 
type CIRCLE inherits a possrep from type ELLIPSE is only a manner of speaking—it doesn’t 
carry any formal weight.  Accordingly, from this point forward I’ll take the unqualified term 
possible representation, or the abbreviated form possrep, to mean an explicitly declared possrep 
specifically, not an implicitly inherited one, unless the context demands otherwise.   
 
 

                                                             
 
6 See, for example, Ivar Jacobson (with Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard): Object-Oriented Software 
Engineering (revised printing, Addison-Wesley, 1994).   
 
7 Here’s why, in outline:  If we were to regard such an inherited possrep as an explicitly declared one, we would run into a 
contradiction concerning inheritance of update operators (inheritance of THE_ pseudovariables, to be specific).  This point is 
explained in detail in Chapter 11.  See also Exercise 3.9 at the end of the chapter.   
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Values vs. Variables Again  
 
It’s important in the inheritance context—as in all others!—to distinguish very carefully between 
values and variables.  When I say that, e.g., every circle is an ellipse, what I mean, more 
precisely, is that every circle value is an ellipse value.  I certainly don’t mean that every circle 
variable is an ellipse variable—i.e., that a variable of declared type CIRCLE is a variable of 
declared type ELLIPSE, and hence can contain a value that’s an ellipse and not a circle.8  In 
other words, and speaking somewhat loosely once again, inheritance applies to values, not 
variables (though naturally there are implications for variables too, as we’ll see).  Indeed, we 
conjecture that much of the confusion we observe in this field—and there’s a lot of it—is due 
precisely to a failure to distinguish properly between values and variables.   
 
 
SINGLE vs. MULTIPLE INHERITANCE  
 
As I’m sure you know, there are two broad “flavors” of type inheritance, single and multiple.  
Loosely speaking, single inheritance means each subtype has just one supertype and inherits 
properties from just that one supertype, while multiple inheritance means a subtype can have any 
number of supertypes and inherits properties from all of them.  Obviously the former (single) is a 
special case of the latter (multiple).   

Now, we do believe that support for multiple inheritance is desirable; in fact, we believe 
that if inheritance is supported at all, it has to be multiple.  Despite this fact, our strategy when 
we first began to investigate this topic was (a) to construct a sound model of single inheritance 
first, and then (b) to extend that model to incorporate multiple inheritance subsequently.  Our 
reason for adopting this perhaps rather cautious approach was that even single inheritance raises 
numerous tricky questions; thus, it seemed reasonable to us to try to find good answers to those 
questions first, before having to concern ourselves too much with the additional complexities that 
multiple inheritance might bring in its wake.  Of course, we did try not to build anything into our 
single inheritance model that might preclude later extension to deal with the multiple inheritance 
case, and it’s a measure of our cautious optimism regarding our model overall that the single 
inheritance version does seem to extend gracefully to cover this latter case.   

Be that as it may, the structure of Parts II and III of the book reflects this history:   
 

! Part II discusses and illustrates a series of detailed prescriptions (“IM prescriptions”) that 
together constitute a basis for the kind of robust inheritance model we seek, at least for the 
case of single inheritance only.9   

                                                             
 
8 The converse is true, though (i.e., a variable of declared type ELLIPSE can certainly contain a value that’s a circle).   
 
9 The Manifesto model of inheritance and the Manifesto as such both involve a set of prescriptions.  In an attempt to avoid 
confusion, therefore, throughout this book I’ll refer to prescriptions of our inheritance model as such as “IM prescriptions” and 
prescriptions of The Third Manifesto as such as “TTM prescriptions.”   
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! Part III then goes on to extend the model discussed in Part II to incorporate support for 

multiple inheritance as well.   
 
 
SCALARS, TUPLES, AND RELATIONS  
 
I said earlier that inheritance applies to values, not variables.  At that point, however, I was 
making a tacit assumption that “values” meant scalar values specifically.  (Of course, scalar 
values can have an arbitrarily complex physical, or internal, structure—see Chapter 2—but that 
physical structure is part of the implementation, not the model, and it’s hidden from the user.)  
But inheritance clearly has implications for nonscalar values as well—for tuple and relation 
values in particular—since, ultimately, such nonscalar values are built out of scalar values.  
However, we obviously can’t even begin to talk sensibly about those implications until we’ve 
pinned down what subtyping and inheritance mean for scalar values specifically.   

Please note carefully, therefore, that throughout Parts II and III of this book (i.e., Chapters 
5-13) I take the unqualified term value to mean a scalar value specifically.  By the same token, 
throughout the discussions in those chapters I take the unqualified terms type, subtype, and 
supertype to mean scalar types, subtypes, and supertypes specifically, and I take the unqualified 
terms variable, operator, expression, and result to mean scalar variables, operators, expressions, 
and results specifically.10  Note, however, that formal statements in those chapters—in particular, 
the IM prescriptions themselves—are worded, most of the time, in such a way as to allow, e.g., 
the term value to be taken to mean a scalar value or a tuple value or a relation value, as the 
context demands.  They’re also worded in such a way as to apply to multiple inheritance as well 
as single, barring explicit statements to the contrary.   

Now, scalar values by definition have no user visible structure.  So when I talk, in the 
context of our model, of such values inheriting “properties,” I don’t mean inheritance of 
structure, because as far as the model is concerned there is no structure to inherit.  Rather, as 
noted earlier, I mean inheritance of constraints and operators.11  For the moment, however, I 
want to ignore the constraints and focus on the operators, partly because the literature does so too 
(in fact, it typically ignores constraints altogether).  More terminology:  Inheritance of operators 
is often referred to in the literature as behavioral inheritance, mainly because:   

 
a. The literature in question is, typically, the object literature—most reported investigations 

into inheritance do seem to assume an object context—and  
 

                                                             
 
10 By operators here, I mean read-only operators, of course, since update operators don’t have any type at all.   
 
11 Following on from footnote 10, you can take inheritance of operators here to refer to read-only operators specifically, thanks 
to the fact that inheritance applies to values, not variables—but there are implications for update operators too, to be discussed in 
detail in Chapter 11.   
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b. Objects in the object literature are often said, rather anthropomorphically, to display 
“behavior.”  For example, to quote Object-Oriented Methods: A Foundation, by James 
Martin and James J. Odell (Prentice-Hall, 1998):12  “[Behavior is a] metaphor referring to 
the way objects are accessed or are changed over time.”   

 
And the literature then typically goes on to contrast behavioral inheritance with structural 
inheritance.  This latter term refers to inheritance of physical representations;13 as such, it’s 
properly an implementation matter, not part of the model.  Of course, we certainly don’t preclude 
such inheritance; to repeat, however, if it’s supported at all, then it’s a matter of concern to the 
implementation only, and it has, or should have, no effect on the model.  Unfortunately, much of 
the literature, especially the object literature, does tend to assume that inheritance means—or at 
least includes—inheritance of physical representations; it further tends to assume that some 
operators, at least, depend on those physical representations.  I regard this state of affairs simply 
as evidence of confusion over the logical difference between model and implementation, and 
choose not to discuss it further in the present chapter.   

Turning now to tuple and relation types:  As noted earlier, the notions of scalar subtyping 
and inheritance do have implications for tuples and relations, because tuples and relations are 
ultimately constructed out of scalar components.  For example, a relation with an attribute of 
type ELLIPSE might include some tuples in which the value corresponding to that attribute is 
specifically a circle and not “just an ellipse.”  Part IV of the book considers the question of 
extending our inheritance model for scalar types—for both single and multiple inheritance, as 
discussed in Parts II and III—to take tuple and relation types into account as well.   
 
 
THE RUNNING EXAMPLE  
 
I now introduce a running example that I’ll be using as a basis for examples and discussions in 
much of the rest of the book (especially Part II).  The example is based on a collection of 
geometric types—PLANE_FIGURE, ELLIPSE, POLYGON, and so on (see Fig. 3.1).  Note:  I 
assume for simplicity, here and throughout this book, that the only plane figures we’re interested 
in are either ellipses or polygons; thus, every value of type PLANE_FIGURE is either a value of 
type ELLIPSE or a value of type POLYGON (and never both, of course).   
 

                                                             
 
12 The term method is basically just an object term for operator.  By the way, note the reference in the extract quoted to objects 
“changing over time.”  In other words, (a) the term objects in that quote is clearly meant to include variables and (b) the 
corresponding operators are clearly meant to include update operators (if the quote really means what it says, that is; to me, 
however, it just looks like a typical confusion).   
 
13 Some might dispute this claim (see the brief explanation of “the EXTENDS relationship” in the section “Concluding Remarks” 
at the end of this chapter).  I stand by it, however, so long as the types under discussion are scalar types specifically.  The true 
state of affairs is too complicated to deal with adequately here, but part of the problem is precisely that the literature doesn’t 
always distinguish properly between scalar and nonscalar types.  Chapter 21 discusses the situation in depth.  
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             ┌──────────────┐ 
             │ PLANE FIGURE │ 
             └──────┬───────┘ 
       ┌────────────┴─────────────┐ 
┌──────▼──────┐            ┌──────▼──────┐ 
│   ELLIPSE   │            │   POLYGON   │ 
└──────┬──────┘            └──────┬──────┘ 
┌──────▼──────┐            ┌──────▼──────┐ 
│   CIRCLE    │            │  RECTANGLE  │ 
└─────────────┘            └──────┬──────┘ 
                           ┌──────▼──────┐ 
                           │   SQUARE    │ 
                           └─────────────┘ 
 
Fig. 3.1: Example of a type hierarchy  

 
Each of the types in the figure is a named set of values; for example, there’s a set of values 

named ELLIPSE, and every value in that set is some specific ellipse.14  The various types are 
arranged into what’s called a type hierarchy, with type PLANE_FIGURE serving as the root of 
that hierarchy and types CIRCLE and SQUARE as the leaves.  Note:  Type hierarchies as such 
will certainly be inadequate when we get to multiple inheritance, when they’ll have to be 
replaced by more general type graphs.  However, they’re sufficient for present purposes.   
 

Aside:		Please	note	that	my	choice	of	a	slightly	academic	example	is	deliberate.		While	it	
might	be	objected	that	geometric	figures	aren’t	the	kind	of	thing	we	usually	expect	to	
have	to	deal	with	in	a	typical	database	or	typical	application,	in	fact	there	are	several	
advantages	to	such	an	example,	the	main	one	being	that	the	semantics	of	the	various	
types	involved	are	(or	should	be)	crystal	clear	to	everyone.		We	can	therefore	avoid	the	
kind	of	unproductive	debate	that	tends	to	arise	when	“fuzzier”	examples	are	chosen.		For	
instance,	suppose	I	had	chosen	an	example	involving	a	type	BOOK.		OK:		So	what’s	a	book?		
Is	it	a	single	bound	volume,	or	is	it	all	copies	of	“the	same”	book	produced	in	a	single	print	
run?		Or	in	consecutive	print	runs?		What	about	ebooks?		What	about	different	editions	of	
“the	same”	book?		What	about	translations?		Is	a	journal	a	book?		Is	a	magazine?		Etc.,	
etc.,	etc.		End	of	aside.			
 
Back to Fig. 3.1.  Now, the type hierarchy in that figure is meant to be self-explanatory, 

more or less; it shows, for example, that type RECTANGLE is a subtype of supertype 
POLYGON, which means that all rectangles are polygons but some polygons aren’t rectangles.  
As a consequence, all properties that apply to polygons in general apply to—i.e., are inherited 
by—rectangles in particular, but rectangles have properties of their own that don’t apply to 
polygons in general.   

                                                             
 
14 More precisely, it’s an ellipse at some specific location in two-dimensional space.  In other words, ellipses that occupy 
different locations in space but are otherwise identical are assumed for the sake of the example to be distinct (and similarly for 
circles, rectangles, etc.).   
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Of course, the running example deliberately involves scalar types only and single 
inheritance only.  As I’ve said, our model does include support for both nonscalar types and 
multiple inheritance, but scalar types and single inheritance are what Part II of the book is all 
about.  Scalar types and single inheritance also suffice to illustrate most of the points I need to 
make in the remainder of the present chapter.  However, if I do need to say something that 
(a) applies to scalar and not nonscalar types (or the other way around), or (b) applies to single 
and not multiple inheritance (or the other way around), then I’ll do my best to make it clear that 
such is indeed the case.   

I turn now to Tutorial D.  Tutorial D as originally defined didn’t include any support for 
inheritance at all; however, you’ll recall from Chapter 1 that Darwen and I have proposed a set of 
extensions to the language to take care of that omission, and of course I assume for the purposes 
of the present book that those extensions have been accepted and incorporated into the language.  
For example, we obviously need a way of telling the system which types are subtypes of which 
other types (in other words, we need a way of defining type hierarchies).  With that aim in mind:   

 
! The syntactic category <scalar type def>—see the grammar in Chapter 2—is extended to 

cover both root and nonroot types.  For a root type, the <scalar type def> contains a 
<possrep def list> and (usually) a <possrep constraint def>, more or less as explained in 
Chapter 2 (note that all scalar types are root types, absent inheritance support).15  See the 
section “A BNF Grammar” for further explanation.   

 
! For a nonroot type, by contrast, the <scalar type def> contains an <is def> (“IS 

definition”), the detailed content of which depends on whether the nonroot type in question 
has a regular type or a dummy type as immediate supertype (again, see the section “A BNF 
Grammar” for further explanation).  Here by way of example are <scalar type def>s for the 
nonroot types ELLIPSE and CIRCLE:   
 
TYPE ELLIPSE  
     IS { PLANE_FIGURE  
          POSSREP ( A LENGTH , B LENGTH , CTR POINT )  
          CONSTRAINT A ≥ B } ;  
 
TYPE CIRCLE  
     IS { ELLIPSE  
          CONSTRAINT THE_A ( ELLIPSE ) = THE_B ( ELLIPSE )  
          POSSREP ( R   = THE_A   ( ELLIPSE ) ,  
                    CTR = THE_CTR ( ELLIPSE ) ) ;  
 

Now the system knows that (a) ELLIPSE is a subtype of PLANE_FIGURE (loosely, 
every ellipse “is a” plane figure), and hence that (b) operators and constraints that apply to 
plane figures in general apply to ellipses in particular.  It also knows that (a) CIRCLE is a 

                                                             
 
15 Of course, they’re all leaf types, too.   
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subtype of ELLIPSE (loosely, every circle “is a” ellipse), and hence that (b) operators and 
constraints that apply to ellipses in general apply to circles in particular.   
 
Let’s take a closer look at these definitions.  First of all, I assume throughout this book that 

ellipses are always oriented such that their major axis is horizontal and their minor axis vertical 
(in other words, they’re always “short and fat,” not “tall and thin”).  Thus, they might indeed 
have a possrep consisting of their semiaxis lengths a and b and their center.  By contrast, circles 
might have a possrep consisting just of their radius r and their center.  Observe now that:   

 
! For type ELLIPSE, I’ve specified the (a,b,ctr) possrep in the usual way, together with a 

constraint to the effect that a ≥ b.  Note:  I’m assuming for the sake of the example that 
types LENGTH and POINT have already been defined.  Also, to keep the example simple, 
I’ve omitted the constraint b > 0 that ought by rights to be specified as well (and I’ll 
continue to omit this latter constraint throughout the rest of this book).   

 
! For type CIRCLE, by contrast, I’ve specified that every circle “is a” ellipse—in fact, an 

ellipse satisfying the constraint a = b.  Along with that constraint, I’ve specified how the 
(r,ctr) possrep for circles is derived from the (a,b,ctr) possrep for ellipses.  Note the use of 
the supertype name ELLIPSE, in both the constraint and the definition of the derived 
possrep, to denote an arbitrary value of the supertype in question (i.e., an arbitrary ellipse).   

 
Let me also draw your attention to the difference in syntax between the two constraint 

specifications in this example (once again, see the section “A BNF Grammar” for further 
explanation):16   

 
! For type ELLIPSE, the constraint a ≥ b is specified via what in Chapter 2 I called a 

<possrep constraint def>.  That <possrep constraint def> immediately follows the 
<possrep def list> for the type, and it’s formulated directly in terms of the possreps—
actually the sole possrep, in the case at hand—for that type ELLIPSE itself.   

 
! For type CIRCLE, by contrast, the constraint a = b is specified via what’s called an 

<additional constraint def> (part of the <is def>).  That <additional constraint def> 
immediately precedes what’s called a <derived possrep list>, and it’s formulated in terms 
of a possrep, not for type CIRCLE as such, but rather for an immediate supertype (viz., 
type ELLIPSE) of that type.   
 
There are a couple more things I need to say regarding possreps.  Let type T′ be a subtype 

of type T.  Then:   
 

                                                             
 
16 The difference derives from the fact that PLANE_FIGURE is a dummy type (see Chapter 12).   
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! It’ll often be the case in practice, just as it is in the example of circles and ellipses, that T′ 
has a possrep—an explicitly declared and derived possrep, that is, not just an “inherited” 
one—that’s similar (possibly identical) to some possrep for T.  This fact suggests that it 
might be convenient in practice to have some syntactic shorthand for declaring a possrep 
for T′, perhaps along the lines of “same as possrep PR for T but subtracting component(s) 
A, B, ..., C and adding component(s) X, Y, ..., Z.”  However, the issue is a purely syntactic 
one, secondary to my main purpose of describing our abstract model, and I don’t propose to 
discuss it any further here.   
 

! At the same time, it’s certainly possible for T and T′ to have possreps that differ quite 
markedly from each other.  For example, let T and T′ be PENTAGON and 
REGULAR_PENTAGON, respectively.  Then T might have a possrep consisting of five 
points (the five vertices), while T′ has one consisting of just two points (the center and one 
vertex).  However, it’s always the case—in fact, it must always be the case—that every 
possrep (declared or otherwise) for the subtype T′ is expressible in terms of, and is thus 
derivable from, each of the possreps (declared or otherwise) for the supertype T.   

 
Finally, observe that—precisely because I haven’t specified any explicit possrep names in 

the example—the sole selector for type ELLIPSE is called ELLIPSE and the sole selector for 
type CIRCLE is called CIRCLE.17   
 
A Note on Physical Representations  
 
Although we’re primarily concerned in this book with an inheritance model and not with 
implementation issues, there are as noted earlier certain aspects of implementation that do need 
to be appreciated if the overall concept of inheritance is to be properly understood, and now we 
come to one such (and this one will turn out to be important at several points in later chapters):   
 

The fact that T′ is a proper subtype of T does not imply that the physical representation of 
T′ values is the same as that of T values (it might be or it might not).   

 
For example, ellipses and circles might be physically represented by their center and 

semiaxis lengths and their center and radius, respectively (although as we know from Chapter 2 
there’s no logical reason, in general, why a physical representation needs to be the same as any 
declared possrep).  In fact we already know, also from Chapter 2, that there’s also no logical 
reason why distinct appearances of values of the same type—or even distinct appearances of the 
same value—need have the same physical representation.  For example, some points might be 
physically represented in cartesian coordinates and some in polar; some temperatures might be 

                                                             
 
17 By the phrase “selector for type T,” of course, I mean a selector whose declared or target type is T.   
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physically represented in degrees Celsius and some in Fahrenheit; some integers might be 
physically represented in decimal and some in binary; and so on.   
 
 
MORE TERMINOLOGY  
 
I now introduce a number of further terms and concepts, most of them fairly self-explanatory (in 
any case, they’ll all be amplified in later chapters):   
 
! A subtype of a subtype of T is a subtype of T (e.g., SQUARE is a subtype of POLYGON).   
 
! Every type is a subtype of itself (e.g., ELLIPSE is a subtype of ELLIPSE).   
 
! If T′ is a subtype of T and T′ and T are distinct, then T′ is a proper subtype of T (e.g., 

SQUARE is a proper subtype of POLYGON).   
 

Analogous remarks apply to supertypes, of course.  Thus:   
 
! A supertype of a supertype of T is a supertype of T (e.g., POLYGON is a supertype of 

SQUARE).   
 
! Every type is a supertype of itself (e.g., ELLIPSE is a supertype of ELLIPSE).   
 
! If T is a supertype of T′ and T and T′ are distinct, then T is a proper supertype of T′ (e.g., 

POLYGON is a proper supertype of SQUARE).   
 

Moreover:   
 
! If T′ is a proper subtype of T and there’s no type that’s both a proper supertype of T′ and a 

proper subtype of T, then T′ is an immediate subtype of T and T is an immediate supertype 
of T′ (e.g., SQUARE is an immediate subtype of RECTANGLE, and RECTANGLE is an 
immediate supertype of SQUARE).   

 
! As I’ve more or less already said, a root type is a type with no proper supertype (e.g., 

PLANE_FIGURE is a root type), and a leaf type is a type with no proper subtype (e.g., 
SQUARE is a leaf type).18  Of course, a given type can be said to be a root or leaf type only 
in the context of some specific type hierarchy (or specific type graph).  For example, if we 
were to remove type SQUARE from the hierarchy of Fig. 3.1, then type RECTANGLE 

                                                             
 
18 More correctly, a scalar root type has no proper supertype except alpha and a scalar leaf type has no proper subtype except 
omega (see the discussion of IM Prescription 6 in Chapter 5).   
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would be a leaf type in the hierarchy that results.  Informally, however, we usually take the 
context as understood.   

 
By the way, I can now give a precise characterization of single inheritance:  Single 

inheritance means, precisely, that every proper subtype has exactly one immediate supertype.   
 
The Disjointness Assumption  
 
It’s convenient, at least for tutorial purposes, to adopt the following simplifying assumption:   
 

Definition (the disjointness assumption):  If and only if types T1 and T2 are such that 
neither is a subtype of the other, then they’re disjoint—i.e., no value is of both type T1 and 
type T2.   
 
Now, this assumption certainly holds so long as we limit our attention to single inheritance 

only; for example, no value is both an ellipse and a rectangle.  It won’t hold any longer when we 
get to multiple inheritance.  As already noted, however, the emphasis in this book until further 
notice is on single inheritance only, and so we can take it as holding for the time being.  Here are 
some immediate consequences of adopting the assumption:   

 
! Distinct root types are disjoint, and hence distinct type hierarchies are disjoint also (i.e., no 

value is of two distinct types T1 and T2 such that T1 and T2 belong to two distinct type 
hierarchies).   

 
! Distinct subtypes of the same supertype are disjoint unless one’s a subtype of the other.  In 

particular, distinct leaf types are disjoint.   
 
! (Important!)  Every value has exactly one most specific type.  For example, a given value 

might be “just an ellipse” and not a circle, meaning its most specific type is ELLIPSE (in 
the real world, some ellipses aren’t circles).   

 
! In fact, following on from the previous point, if value v is of most specific type T, then the 

set of types possessed by v is, precisely, the set consisting of all supertypes of T (a set 
which has T itself as a member, of course).  In other words, v is of every type that’s a 
supertype of T and is of no other type.   

 
Finally, I said the disjointness assumption applies to single inheritance only.  As we’ll see 

in Part III of this book, however, there are situations, even with multiple inheritance, in which 
certain types are required to be (or are at least assumed to be) disjoint.  Unfortunately, it’s always 
possible that the type designer could make a mistake and define types that are supposed to be 
disjoint but aren’t.  For example, the designer might define types RECTANGLE and 
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RHOMBUS both as proper subtypes of type PARALLELOGRAM, and forget that some 
parallelograms are both a rectangle and a rhombus.19  Neither of RECTANGLE and RHOMBUS 
is a subtype of the other, of course, and so the disjointness assumption will say they’re disjoint.  
The consequences of such a violation of the prescriptions of the model will be unpredictable, in 
general.  Although this fact need not concern us from the point of view of the model—a violation 
is simply a violation, and there’s no need within the model to spell out what the consequences 
might be—in practice I would hope that some kind of mechanical aid would be available to help 
the designer avoid such errors.   
 
Type Hierarchy Defined  
 
Although I’ve mentioned them several times, it’s important to understand that type hierarchies 
aren’t part of our inheritance model as such20—they’re merely an intuitively convenient way of 
depicting certain subtype / supertype relationships, which are.  (In fact, type hierarchies play a 
role in our inheritance model analogous to that played by tables in the relational model:  Tables 
aren’t part of the relational model as such, they’re merely an intuitively convenient way of 
depicting relations, which are.)  For the record, however, here’s a more precise definition:   
 

Definition:  A type hierarchy is a directed acyclic graph (TH, say), consisting of a finite set 
N of nodes and a finite set D of directed arcs that together satisfy the following properties:   
 
1. TH is empty if and only if N is empty (in which case D is necessarily empty too, 

thanks to point 4 below).   
 
2. Each node is given the name of a type.   
 
3. No two nodes have the same name.  Also, no node is named either alpha or omega; 

by convention, the types with these names (which are primarily conceptual in nature 
anyway—see Chapter 12) aren’t represented in the graph at all.   

 
4. Each arc connects exactly two distinct nodes and represents a directed path from one 

of those two nodes (the parent) to the other (the child).  There’s an arc from parent T 
to child T′ if and only if type T is an immediate supertype of type T′.   

 
5. Each parent is connected to one or more children.  Each child is connected to exactly 

one parent.   
 

                                                             
 
19 In case your memory needs jogging, a rhombus is a parallelogram whose sides are all the same length, and a parallelogram 
that’s both a rectangle and a rhombus is in fact a square.  I’ll be discussing this example in detail in Part III of this book.   
 
20 A good thing, you might think, since as you’ll see their formal definition is a little complicated.   
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6. Node T is an ancestor of node T′ if and only if it’s the parent of node T′ or the parent 
of an ancestor of node T′ (i.e., if and only if type T is a proper supertype of type T′).  
Node T′ is a descendant of node T if and only if node T is an ancestor of node T′.   

 
7. Node T is a root node if and only if it’s connected to no parent (i.e., if and only if type 

T is a root type).  Note:  If TH is nonempty, it has exactly one root node, otherwise it 
has no root node at all.   

 
8. Node T is a leaf node if and only if it’s connected to no children (i.e., if and only if 

type T is a leaf type).   
 

Note:  Type hierarchies are known in the literature by a variety of different names, the 
following among them:   
 
! Class hierarchies (on the grounds that types are sometimes called classes, especially in the 

object world)  
 
! Generalization hierarchies (on the grounds that, e.g., an ellipse is a generalization of a 

circle)  
 
! Specialization hierarchies (on the grounds that, e.g., a circle is a specialization of an 

ellipse)  
 
! Inheritance hierarchies (on the grounds that, e.g., circles inherit properties from ellipses)  
 
! “IS A” hierarchies (on the grounds that, e.g., every circle “is a” ellipse)  

 
And so on (this isn’t an exhaustive list).   
 
 
SUBSTITUTABILITY  
 
By definition, if T′ is a subtype of T, then all of the operators that apply to values of type T apply 
to values of type T′ too.  For example, if AREA_OF (e) is valid, where e is an ellipse, then 
AREA_OF (c), where c is a circle, must be valid too.  In other words, wherever the system 
expects a value of type ELLIPSE, we can always substitute a value of type CIRCLE (because, to 
say it one more time, circles are ellipses).   

Now, this matter of substitutability is in many ways the whole point of inheritance.  I 
suggested earlier that one reason for wanting to support inheritance in the first place is that (for 
example) a program that works for ellipses might work for circles too, even if the program in 
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question was originally written with no thought for circles.  Well, it should be clear now that, to 
the extent that such an objective might be achievable, it’s substitutability that makes it so.   

Incidentally, the foregoing paragraph touches once again on one of the logical differences 
discussed briefly in Chapter 2: viz., that between arguments and parameters.  This particular 
difference becomes especially significant in the inheritance context.  To spell the point out, we 
need to be very careful over the difference between the parameters in terms of which an operator 
is defined, with their declared types, and the corresponding arguments to some invocation of that 
operator, with their actual—i.e., most specific—types.  In the AREA_OF example, for instance, 
the operator is presumably defined in terms of a parameter of declared type ELLIPSE, but the 
most specific type of the argument c in the invocation AREA_OF (c) is CIRCLE.  (Indeed, the 
declared type of the expression exp denoting that argument c might be CIRCLE too.)21   
 
 
A BNF GRAMMAR  
 
User defined types—which are necessarily scalar, remember—are defined in Tutorial D by 
means of a TYPE statement, which consists of a <scalar type def> followed by a semicolon.  In 
this section I give a BNF grammar for <scalar type def>s, for purposes of future reference.  Note 
in particular that the grammar takes inheritance into account (multiple as well as single) and 
thereby subsumes the grammar already given in Chapter 2.  Detailed explanations are given in 
Parts II and III of this book; here I just note that in practice it might be necessary to allow several 
distinct <scalar type def>s to be bundled up into a single statement, in order to allow all of the 
types involved in a given type schema to be defined “simultaneously,” as it were.22  Note:  Type 
schema is a term sometimes used to refer to a collection of related type definitions.  For example, 
the definitions for the six types shown in Fig. 3.1 could together be regarded as constituting a 
type schema.   
 

<scalar type def>  
    ::=   TYPE <scalar type name> [ ORDERED | ORDINAL ] [ UNION ]  
                      <possrep def list> [ <possrep constraint def> ]  
                                         [ <is def> ] INIT ( <literal> )  
 
Let T be the scalar type being defined.  If and only if ORDERED is specified, then T is an 

ordered type; if and only if ORDINAL is specified, then T is an ordinal type (see Chapter 2).  If 
and only if UNION is specified, then T is a union type (see Chapter 12).  The <possrep def list> 
must be empty if T (a) is a dummy type (again, see Chapter 12) or (b) has a regular—i.e., 
nondummy—immediate supertype; otherwise it must be nonempty.  The <possrep constraint 
def> can be specified if and only if a nonempty <possrep def list> is specified.  The <is def> 
                                                             
 
21 More generally, if operator Op is defined in terms of a parameter P of declared type T, and Op is invoked with an argument 
A corresponding to P that’s of most specific type T′ (where T′ is a subtype of T), then the declared type of the expression Ax 
denoting A in that invocation can be any type that’s both a supertype of T′ and a subtype of T.   
 
22 Certain aspects of such bundling are explored further in the answer to Exercise 12.10 in Chapter 12.   
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must be specified if T (a) is a regular type and (b) the <possrep def list> is empty (in which case 
T is a nonroot type by definition); otherwise it must be omitted.  The declared type of <literal> 
must be some nonunion subtype of T.  Note:  The syntactic categories <possrep def> and 
<possrep constraint def> were defined in Chapter 2.   

 
<is def>  
    ::=   IS { <scalar type name commalist>  
                              [ <possrep and constraint specs> ] }  
 
Let T be the nonroot type being defined; then the <scalar type name commalist> contains 

the names of all of the immediate supertypes of T.  The <possrep and constraint specs> must be 
specified if T is a regular type; otherwise it must be omitted.  Note:  An extension to the syntactic 
category <is def>—viz., a NOT specification—is discussed in Chapters 5 and 14.   

 
<possrep and constraint specs>  
    ::=   <possrep def list> [ <possrep constraint def> ]  
        | [ <additional constraint def> ] <derived possrep def list>  
 
Let T be the regular nonroot type being defined.  If T has just one immediate supertype IST, 

then (a) if IST is a dummy type, a nonempty <possrep def list> must be specified, and a <possrep 
constraint def> can optionally be specified, just as if T were a root type; (b) if IST is a regular 
type, then an <additional constraint def> and a nonempty <derived possrep def list> must both 
be specified.  If T has two or more immediate supertypes, then the <additional constraint def> 
must be omitted and a nonempty <derived possrep def list> must be specified.23   

 
<additional constraint def>  
    ::=   CONSTRAINT <bool exp>  
 
Let T be the regular nonroot type being defined, and let IST be the (unique and regular) 

immediate supertype of T.  The boolean expression <bool exp> mustn’t mention any variables, 
but the name IST can, and in fact must, be used in that expression to denote an arbitrary value of 
that type.  Note:  In practice, we would expect all such appearances of that name IST to occur in 
the context of a THE_ operator invocation in which the argument expression is, precisely, IST.   
 

<derived possrep def>  
    ::=   POSSREP [ <possrep name> ]  
                  ( <derived possrep component def commalist> )  
 
Let T be the regular nonroot type being defined.  Omitting the <possrep name> from a 

given <derived possrep def> is equivalent to specifying the <possrep name> T.  No two distinct 

                                                             
 
23 The grammar presented in this section has been designed on the basis of a certain reasonable assumption: namely, that if T has 
a dummy type IST as an immediate supertype, then IST is T’s only immediate supertype.  Under single inheritance, of course, that 
assumption is valid by definition; under multiple inheritance, it might not be.  Further research might be required.   
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<derived possrep def>s in the same <derived possrep def list> can have the same <possrep 
name>.  The <derived possrep component def commalist> will usually not be empty.   

 
<derived possrep component def>  
    ::=   <possrep component name> = <exp>  
 
Let T be the regular nonroot type being defined, and let IST be the immediate supertype of 

T in terms of which a given <derived possrep component def> is being formulated.24  The 
expression <exp> mustn’t mention any variables, but the name IST can, and in fact must, be 
used in that expression to denote an arbitrary value of that supertype.  (Note:  In practice, we 
would expect <exp> to take the form of a THE_ operator invocation in which the argument 
expression is, precisely, IST.)  No two distinct <derived possrep component def>s in the same 
<derived possrep def list> can have the same <possrep component name>.   
 
 
MORE TERMINOLOGY bis  
 
As you know by now, (a) if v is a value of most specific type T, then v has every supertype of T 
as one of its types as well; also, (b) if V is a variable—or a relvar (or tuplevar) attribute, or a 
parameter, or an expression (i.e., a read-only operator invocation)—of declared type T, then the 
value denoted by V at any given time can have as its most specific type any subtype of T.  In 
order to avoid a certain amount of circumlocution, therefore, throughout this book from this 
point forward I’ll adopt the following terminological simplifications:   

 
a. I’ll take the phrase “the type,” unqualified, when applied to a value v, to mean the most 

specific type of v specifically, unless the context demands otherwise.   
 
b. I’ll take the phrase “the type,” unqualified, when applied to a variable, relvar (or tuplevar) 

attribute, read-only operator, parameter, or expression V, to mean the declared type of V 
specifically, unless the context demands otherwise.   

 
I turn now to the term type constraint.  Let scalar type T be a root type, with possrep PR; 

then any given value of type T (a) is constrained to be such that it can be possibly represented 
as specified by PR, and (b) is usually constrained further by an explicit CONSTRAINT 
specification.  Alternatively, let scalar type T be a nonroot type; then any given value of type T 
(a) is constrained to be a value of each of type T’s immediate supertypes and—at least in the 
case of single inheritance—(b) is constrained further by an explicit CONSTRAINT 
specification.  In both cases, it’s the combination of (a) and (b) that, formally speaking, 

                                                             
 
24 There’s a tacit assumption here that even if type T has two or more immediate supertypes, any given possrep for T will be 
defined in terms of exactly one of them (in fact, in terms of exactly one possrep for exactly one of them).  See Chapter 14 for 
further discussion.   
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constitutes the type constraint for T.  In both cases, however, the term type constraint is often 
used informally to refer to just the (b) portion—i.e., the CONSTRAINT specification—by 
itself.  This informal usage is strictly incorrect but very, very common, and I’ll follow it myself 
in this book occasionally—but, please note, only in informal contexts.   
 
 
CONCLUDING REMARKS  
 
Preceding sections have presented an introduction to some of the basic ideas of our own 
inheritance model (“the Manifesto model”).  As noted earlier in the chapter, however, many 
alternative approaches to inheritance have been described in the literature, and I’d like to 
mention a couple of them briefly here:   
 
! First, some writers discuss what they call the EXTENDS relationship, typically defined25 as 

“a single inheritance relationship between two classes whereby the subordinate class 
inherits all of the properties and all of the behavior of the class that it extends” (class and 
properties here referring to type and structure, respectively).  For example, class 
EmployeePerson might extend class Person by adding “attributes” hireDate and payRate to 
the ones it inherits from class Person (viz., name and birthDate).  Clearly, the EXTENDS 
relationship has something to do with structural inheritance (see the section “Scalars, 
Tuples, and Relations” earlier in this chapter)—but it’s a form of structural inheritance in 
which the structure concerned consists of “attributes” that are most definitely visible to the 
user.  Note:  C++, Java, and SQL all support the EXTENDS relationship in some shape or 
form.  Our model, by contrast, doesn’t (at least, not directly, but Chapter 21 shows how it 
can provide equivalent functionality).   

 
! Second, some writers discuss subtables and supertables (not always by that name, 

however).26  This concept might be thought of as an application of the EXTENDS 
relationship concept to tables specifically; the basic idea is that some table T′ can be 
defined to have all of the columns of some other table T, together with certain additional 
columns of its own.  (I deliberately use the SQL terminology of tables and columns here 
instead of relational terminology, because SQL supports the “subtables and supertables” 
concept and the relational model doesn’t.)  For example, the STUDENT table might inherit 
all of the columns of the PERSON table but might also add a GPA column (“grade point 
average”) of its own.  Chapter 21 discusses this idea in more detail as well.   

 

                                                             
 
25 See, e.g., The Object Data Standard: ODMG 3.0, by R. G. G. Cattell and Douglas K. Barry (eds.), Morgan Kaufmann (2000), 
from which this definition and the subsequent EmployeePerson example are taken.   
 
26 See, e.g., Object-Relational DBMSs: Tracking the Next Great Wave (2nd edition), by Michael Stonebraker and Paul Brown 
(with Dorothy Moore), Morgan Kaufmann (1999), from which the subsequent GPA example is taken.   
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One last point:  Regardless of whether we’re talking about our own inheritance model or 
one of the other approaches mentioned above, it would be remiss of me not to point out that 
inheritance can give rise to some thorny practical problems.  For example, given the type 
hierarchy of Fig. 3.1, what do you think should happen if we try to drop type ELLIPSE?  Should 
there be a way to “alter” or rename type ELLIPSE without dropping it?  Should we be able to 
introduce a new type as an immediate supertype of an existing type?  What if that existing type is 
system defined?  And so on.  Such questions must clearly be answered in any real 
implementation, but they don’t affect our model per se, and for that reason I won’t discuss them 
further in this book.   
 
 
EXERCISES  
 
3.1 Explain the type inheritance and subtype concepts in your own words.   
 
3.2 Distinguish between immediate and proper subtypes.   
 
3.3 What do you understand by the term most specific type?   
 
3.4 What do you understand by the term substitutability?   
 
3.5 With reference to the type hierarchy of Fig. 3.1, consider a value e of type ELLIPSE.  The 
most specific type of e is either ELLIPSE or CIRCLE.  What’s the least specific type of e?   
 
3.6 Define the terms root type and leaf type.   
 
3.7 State the disjointness assumption.  What are some of the implications of that assumption?  
What do you think should replace that assumption if multiple inheritance is supported?  Note:  
This latter question wasn’t answered in the body of the chapter; the point of the question is 
simply to get you thinking about the issue, should you feel so inclined, before we get to the 
detailed discussions in later chapters.   
 
3.8 Give as precise a definition as you can of the term type hierarchy.  (You might like to try 
giving a recursive definition, different from the one given in the body of the chapter.)  Why are 
type hierarchies strictly not part of our inheritance model?   
 
3.9 Are possreps inherited?  If not, why not?   
 
3.10 Use the syntax defined in this chapter to give definitions for types RECTANGLE and 
SQUARE from Fig. 3.1.  Assume for simplicity that all rectangles are centered on the origin, but 
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don’t assume that all sides are either vertical or horizontal.  What about types POLYGON and 
PLANE_FIGURE?   
 
3.11 Given your answer to Exercise 3.10, define a read-only operator that, given a particular 
rectangle centered on the origin, returns a rectangle identical to the given one except that it’s 
rotated through 90° about its center.   
 
3.12 (This exercise will probably take longer to read than to answer!)  A derived type hierarchy 
is a type hierarchy that’s derived from another.  Here’s a precise definition.  Let TH be a type 
hierarchy.  Then:   
 
! TH itself is considered to be a type hierarchy derived from TH.   
 
! Let DH be a graph obtained from TH by choosing the node corresponding to some type T 

and removing (a) all nodes not corresponding to some subtype T′ of T and (b) all arcs 
emanating from those nodes.  Then DH is a derived type hierarchy, with T as its root—
specifically, a type hierarchy derived from TH.   

 
! Let DH be a type hierarchy derived from TH.  Then any graph obtained from DH by 

removing the node corresponding to some type T is a derived type hierarchy, with the root 
of DH as its root (unless the node corresponding to the root of DH was the one removed)—
specifically, a type hierarchy derived from TH—provided that removal of a node is always 
accompanied by removal of (a) the arc, if any, entering into that node and (b) all 
corresponding immediate subtype nodes.  Note:  It follows that the empty graph can be 
regarded as a type hierarchy derived from TH.   

 
By contrast, if (a) TH is a type hierarchy with root T, and if (b) type T is an immediate 

supertype of type T′ and type T′ is an immediate supertype of type T′′ (and if—let’s assume for 
simplicity—type T′ is an immediate supertype of no type other than type T′′), and if (c) XH is the 
graph derived from TH by removing node T′ and coalescing the arc connecting nodes T and T′ 
and the arc connecting nodes T′ and T′′ into a single arc connecting nodes T and T′′, then (d) XH 
isn’t a derived type hierarchy (at least, it’s not one that can be derived from TH), because it 
causes T′′ to lose some of its inheritance, as it were.   

Given the foregoing definition, how many distinct type hierarchies can be derived from that 
of Fig. 3.1?   

 
3.13 In the body of the chapter I said that if inheritance is supported at all, it must be multiple.  
Why do you think this is?  Note:  As with the second part of Exercise 3.7, this question wasn’t 
answered in the body of the chapter; again, the point is simply to get you thinking about the 
issue, if you feel so inclined.   
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3.14 In Chapter 2, I said the system defined types INTEGER and RATIONAL were different 
types.  But wouldn’t it be more accurate to say that type INTEGER is a proper subtype of type 
RATIONAL?   
 
 
ANSWERS		
	
3.1	 The	term	type	inheritance	refers	to	that	phenomenon	according	to	which	we	can	sensibly	
say,	for	example,	that	every	circle	is	an	ellipse,	and	hence	that	all	properties	that	apply	to	
ellipses	in	general	apply	to	circles	in	particular	(where	“properties”	means,	basically,	read-only	
operators	and	type	constraints).		Note	carefully,	however,	that	the	foregoing	loose	definition	
refers	only	to	values	(ellipse	and	circle	values,	in	the	example	quoted);	inheritance	does	have	
implications	for	variables	too,	but	this	book	hasn’t	yet	explained	them.			

A	subtype	Tʹ	of	a	given	type	T	is	a	type	whose	values	are	defined	to	be	a	certain	specific	
subset	of	the	values	constituting	T.		Values	of	type	Tʹ	inherit	operators	that	apply	to	values	of	
type	T	(because	values	of	type	Tʹ	are	values	of	type	T),	but	additionally	have	operators	of	their	
own	that	don’t	apply	values	of	type	T	in	general.		Likewise,	values	of	type	Tʹ	satisfy	the	type	
constraint	for	values	of	type	T	(because,	again,	values	of	type	Tʹ	are	values	of	type	T),	but	
additionally	satisfy	a	type	constraint	of	their	own	that	doesn’t	apply	to	values	of	type	T	in	
general.			

Note:		Of	course,	the	foregoing	answers	do	assume	our	own	inheritance	model	as	context;	
given	a	different	context,	the	answers	might	be	different.		Please	note	too	that	a	similar	remark	
applies	to	this	book	as	a	whole—not	just	to	answers	to	exercises—from	this	point	forward!			
	
3.2	 Tʹ	is	a	proper	subtype	of	T	if	and	only	if	it’s	a	subtype	of	T	and	Tʹ	≠	T.		Tʹ	is	an	immediate	
subtype	of	T	if	and	only	if	it’s	a	proper	subtype	of	T	and	there’s	no	type	Tʹʹ	such	that	Tʹ	is	a	
proper	subtype	of	Tʹʹ	and	Tʹʹ	is	a	proper	subtype	of	T.			
	
3.3	 Type	T	is	the	most	specific	type	of	value	v	if	and	only	if	v	is	of	type	T	and	not	of	any	proper	
subtype	of	T.			
 
3.4	 Substitutability	refers	to	the	ability	for	a	value	of	type	Tʹ	to	appear	wherever	a	value	of	
type	T	is	permitted	(i.e.,	a	value	of	type	Tʹ	can	be	“substituted	for”	a	value	of	type	T).		Such	
substitutions	are	certainly	permitted	if	type	Tʹ	is	a	subtype	of	type	T.		Note	carefully,	however,	
that	the	foregoing	definition	refers	specifically	to	values;	a	certain	degree	of	substitutability	can	
sometimes	apply	to	variables	too,	but	this	book	hasn’t	yet	discussed	this	latter	possibility.			

Note:		An	expression	of	type	Tʹ	might	sometimes	be	allowed	to	appear	wherever	an	
expression	of	type	T	is	permitted	even	if	Tʹ	isn’t	a	subtype	of	T,	if	the	system	supports	coercions	
(see	Chapter	2).		However,	we	saw	in	the	answer	to	Exercise	2.6	in	Chapter	2	that	coercions	are	



 
 
94      Chapter 3 / Types with Inheritance 

generally	deprecated;	for	that	reason	(and	also	to	avoid	confusion),	in	this	book	I	choose	not	to	
regard	the	foregoing	possibility	as	an	example	of	substitutability	as	such.			
	
3.5	 PLANE_FIGURE,	the	pertinent	root	type—or,	if	type	alpha	is	taken	into	consideration,	then	
type	alpha	(see	footnote	18).			
	
3.6	 A	root	type	is	a	type	that	has	no	immediate	supertype	(other	than	as	noted	in	
footnote	18);	a	leaf	type	is	a	type	that	has	no	immediate	subtype	(again,	other	than	as	noted	in	
footnote	18).			
	
3.7	 The	disjointness	assumption	says	that	if	types	T1	and	T2	are	such	that	neither	is	a	subtype	
of	the	other,	then	they’re	disjoint—i.e.,	no	value	is	of	both	type	T1	and	type	T2.		Some	of	the	
implications	of	this	assumption	are	that	(a)	distinct	root	types	are	disjoint,	and	hence	distinct	
type	hierarchies	are	disjoint	also;	(b)	distinct	leaf	types	are	disjoint;	and	(c)	importantly,	every	
value	has	a	unique	most	specific	type.			

Now,	I	think	it’s	reasonable	to	require	that	properties	(a),	(b),	and	(c)	hold	with	single	
inheritance;	in	fact,	however,	as	we’ll	see	in	Chapters	14	and	15,	they	hold	with	multiple	
inheritance	as	well,	even	though	the	disjointness	assumption	as	such	doesn’t.		In	particular,	
therefore,	they	hold	for	tuple	and	relation	types	as	well	as	for	scalar	types	(see	Part	IV	of	this	
book),	even	though,	again,	the	disjointness	assumption	doesn’t.			

A	multiple	inheritance	version	of	the	disjointness	assumption	might	look	like	this:		If	types	
T1	and	T2	are	such	that	(a)	neither	is	a	subtype	of	the	other	and	(b)	they	have	no	nonempty	
common	subtype,	then	they’re	disjoint.		A	simpler	version	might	be	just:		If	types	T1	and	T2	are	
distinct	root	types,	then	they’re	disjoint.		See	Chapters	14	and	(especially)	15	for	further	
discussion.			
	
3.8	 Here’s	a	recursive	definition:		A	type	hierarchy	is	a	graph	that	either	is	empty	or	consists	
of	a	node	(the	root	node,	representing	a	type)	with	zero	or	more	outgoing	arcs,	such	that:			
	
a.	 Each	outgoing	arc	connects	that	root	node	to	a	nonempty	type	hierarchy.			

	
b.	 Starting	from	a	given	node,	every	path	that	can	be	traced	by	following	an	outgoing	arc	

from	that	node,	then	following	an	outgoing	arc	from	the	node	the	previous	arc	connects	
to,	and	so	on,	eventually	reaches	a	node	with	no	outgoing	arcs	(a	leaf	node).			

	
Type	hierarchies	aren’t	part	of	the	inheritance	model	because	they’re	just	pictures—i.e.,	

they’re	merely	an	intuitively	convenient	way	of	depicting	certain	subtype	/	supertype	
relationships	(and	in	any	case	they’re	inadequate	in	the	case	of	multiple	inheritance,	when	
more	general	type	graphs	become	necessary).			
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3.9	 Yes	and	no!		If	scalar	type	Tʹ	is	an	immediate	subtype	of	scalar	type	T,	then	every	possrep	
for	T	is	necessarily	a	possrep	for	Tʹ	as	well,	but	only	implicitly.		As	far	as	our	model	is	concerned,	
the	only	declared	possreps	for	type	Tʹ	are	the	ones	explicitly	defined	in	the	TYPE	statement	for	
Tʹ	(and	the	unqualified	term	possrep	is	always	taken	to	refer	to	an	explicitly	declared	possrep	
specifically,	unless	the	context	demands	otherwise).		Consider	ellipses	and	circles,	for	example.		
If	the	(a,b,ctr)	possrep	for	ellipses	were	considered	a	declared	possrep	for	circles,	then	the	
system	would	be	required	to	allow	assignments	of	the	form		
	

THE_A ( C ) := ... ;  
	
for	a	variable	C	of	declared	type	CIRCLE.		But	after	such	an	assignment,	THE_A(C)	and	THE_B(C)	
would,	in	general,	denote	different	values—meaning	that	C	would	violate	its	own	type	
constraint	(viz.,	the	type	constraint	for	circles)—and	the	assignment	would	therefore	fail	at	run	
time.		See	Exercise	11.9	in	Chapter	11	for	further	discussion.			
	
3.10	 The	following	solutions	aren’t	the	only	ones	possible,	but	they’re	perhaps	the	most	
straightforward.		First	of	all,	assume	for	simplicity	that	POLYGON	is	a	dummy	type	(because	if	it	
were	a	regular	type	instead,	we’d	have	to	define	a	possrep	for	it,	and	then	define	the	
RECTANGLE	possrep(s)	in	terms	of	that	possrep).		Now	let	ABCD	be	a	rectangle,	with	vertices	A,	
B,	C,	and	D.		If	ABCD	is	centered	on	the	origin	O,	the	line	segments	OA,	OB,	OC,	and	OD	will	all	
be	the	same	length.		Also,	there’ll	be	two	adjacent	vertices	with	a	positive	x	coordinate	and	two	
with	a	negative	x	coordinate.		(For	definiteness,	I	assume	we	can	talk	about	the	vertices	of	
ABCD	in	terms	of	a	possrep	consisting	of	cartesian	coordinates.)		Let	A	and	B	be	the	vertices	
with	a	positive	x	coordinate	and	let	C	and	D	be	the	other	two.		Either	of	these	pairs	will	serve	to	
pin	down	the	entire	rectangle	precisely.		Suppose	we	choose	the	(A,B)	pair.		But	the	(B,A)	pair	
would	do	just	as	well!		In	order	to	distinguish	between	these	two	possibilities,	therefore,	let’s	
insist,	arbitrarily,	that	A	is	the	one	with	the	larger	y	coordinate	(note	that	the	y	coordinates	of	A	
and	B	are	necessarily	different).		So	we	have:			
	

TYPE RECTANGLE  
     IS { POLYGON  
          POSSREP ( A POINT , B POINT )  
          CONSTRAINT WITH ( AX := THE_X ( A ) ,  
                            AY := THE_Y ( A ) ,  
                            BX := THE_X ( B ) ,  
                            BY := THE_Y ( B ) ) :  
                     AX > 0.0 AND BX > 0.0 AND AY > BY  
                     AND AX ^ 2 + AY ^ 2 = BX ^ 2 + BY ^ 2 } } ;  

	
Note	that	the	sole	possrep	here,	and	hence	the	sole	selector,	are	both	named	RECTANGLE	by	
default.			
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Note:		In	case	you’re	wondering	why	it’s	necessary	to	distinguish	between	the	two	
possibilities—(A,B)	vs.	(B,A)—consider	what	happens	if	we	don’t.		If	we	don’t,	then	invoking	the	
RECTANGLE	selector	with	A	=	a	and	B	=	b,	say,	will	return	the	same	rectangle,	r	say,	as	invoking	
it	with	A	=	b	and	B	=	a.		So	given	that	rectangle	r,	what	does	THE_A(r)	return—a	or	b?			

Now	suppose	ABCD	is	actually	a	square.		Then	it’s	easy	to	see	that	if	A	is	the	point	(x,y),	
then	B	must	be	the	point	(y,-x).		So	we	have:			
	

TYPE SQUARE  
     IS { RECTANGLE  
          CONSTRAINT WITH ( RA := THE_A ( RECTANGLE ) ,  
                            RB := THE_B ( RECTANGLE ) ) :  
                     THE_X ( RB ) =   THE_Y ( RA ) AND  
                     THE_Y ( RB ) = - THE_X ( RA )  
          POSSREP ( A = THE_A ( RECTANGLE ) ) } ;  

	
The	sole	possrep	here,	and	hence	the	sole	selector,	are	both	named	SQUARE	by	default.			

Turning	to	type	POLYGON	(and	now	dropping	our	previous	assumption	that	it’s	a	dummy	
type),	one	possible	representation	was	sketched	in	outline	in	the	answer	to	Exercise	2.10	in	
Chapter	2.		Specifying	such	a	possrep	would	have	certain	knock-on	effects	on	the	definition	of	
type	RECTANGLE,	however.		To	be	specific	(and	as	noted	above,	in	fact),	the	RECTANGLE	
possrep	would	now	have	to	be	defined	in	terms	of	the	POLYGON	possrep,	just	as	the	SQUARE	
possrep	is	defined	in	terms	of	the	RECTANGLE	possrep.		I	omit	further	consideration	of	such	
matters	here.			

As	for	type	PLANE_FIGURE,	it’s	virtually	certain	that	that	type	would	be	a	dummy	type	and	
thus	would	have	no	possrep.		Indeed,	it’s	hard	to	think	of	a	sensible	possrep	that	could	work	for	
an	arbitrary	plane	figure.			
	
3.11	 Observe	first	that	vertices	C	and	D	are	the	“reflections”	of	A	and	B,	respectively	(in	the	
sense	that	if	A	is	the	point	(x,y),	C	is	the	point	(-x,-y),	and	similarly	for	B	and	D).		Assume	for	
definiteness	that	the	rotation	is	anticlockwise	(does	it	make	any	difference	if	it’s	clockwise?).		
After	that	rotation,	then,	the	vertices	with	a	positive	x	coordinate	will	be	C	and	D;	C	will	be	the	
reflection	of	the	old	B	in	the	x	axis(i.e.,	if	the	old	B	is	the	point	(x,y),	the	new	C	will	be	the	point	
(x,-y)),	and	similarly	for	D	and	A.		So:			
	

OPERATOR QUARTER_TURN ( R RECTANGLE ) RETURNS RECTANGLE ;  
   RETURN ( RECTANGLE ( POINT (   THE_X ( THE_B ( R ) ) ,  
                                - THE_Y ( THE_B ( R ) ) ) ,  
                        POINT (   THE_X ( THE_A ( R ) ) ,  
                                - THE_Y ( THE_A ( R ) ) ) ) ) ;  
END OPERATOR ;  

	
Or	if	you	prefer	an	update	operator	(which	I	rather	hope	you	don’t!):			
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OPERATOR QUARTER_TURN ( R RECTANGLE ) UPDATES { R } ;  
   R := RECTANGLE ( POINT (   THE_X ( THE_B ( R ) ) ,  
                            - THE_Y ( THE_B ( R ) ) ) ,  
                    POINT (   THE_X ( THE_A ( R ) ) ,  
                            - THE_Y ( THE_A ( R ) ) ) ) ) ;  
END OPERATOR ;  

	
3.12	 There	are	22	derived	type	hierarchies	in	all.		To	spell	them	out:			
	
		1.	The	empty	graph		
		2.	PLANE_FIGURE		
		3.	PLANE_FIGURE	and	ELLIPSE		
		4.	PLANE_FIGURE,	ELLIPSE,	and	CIRCLE		
		5.	ELLIPSE		
		6.	ELLIPSE	and	CIRCLE		
		7.	CIRCLE		
		8.	PLANE_FIGURE	and	POLYGON		
		9.	PLANE_FIGURE,	POLYGON,	and	RECTANGLE		
10.	PLANE_FIGURE,	POLYGON,	RECTANGLE,	and	SQUARE		
11.	POLYGON		
12.	POLYGON	and	RECTANGLE		
13.	POLYGON,	RECTANGLE,	and	SQUARE		
14.	RECTANGLE		
15.	RECTANGLE	and	SQUARE		
16.	SQUARE		
17.	PLANE_FIGURE,	ELLIPSE,	and	POLYGON		
18.	PLANE_FIGURE,	ELLIPSE,	POLYGON,	and	RECTANGLE		
19.	PLANE_FIGURE,	ELLIPSE,	POLYGON,	RECTANGLE,	and	SQUARE		
20.	PLANE_FIGURE,	ELLIPSE,	CIRCLE,	and	POLYGON		
21.	PLANE_FIGURE,	ELLIPSE,	CIRCLE,	POLYGON,	and	RECTANGLE		
22.	PLANE_FIGURE,	ELLIPSE,	CIRCLE,	POLYGON,	RECTANGLE,	and	SQUARE		

	
3.13	 I’m	not	going	to	answer	this	question	in	depth	here—I’ll	just	give	an	example	for	you	to	
think	about.		Given	scalar	types	CIRCLE,	ELLIPSE,	SQUARE,	and	RECTANGLE	as	in	Fig.	3.1,	
consider	these	three	tuple	types:			
	

TUPLE { E CIRCLE  , R SQUARE }  
TUPLE { E ELLIPSE , R SQUARE }  
TUPLE { E CIRCLE  , R RECTANGLE }  

	
It	should	be	clear	that	(a)	every	tuple	of	the	first	type	is	also	a	tuple	of	both	the	second	type	and	
the	third,	while	(b)	each	of	the	second	and	third	types	is	such	that	some	tuples	are	of	that	type	
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and	not	the	other.		Thus,	the	first	type	is	a	proper	subtype	of	the	second	and	also	of	the	third,	
while	neither	of	these	latter	two	is	a	subtype	of	the	other.		It	follows	that,	for	tuple	types	at	
least,	multiple	inheritance	is	a	logical	necessity.		For	further	discussion,	see	Part	IV	of	this	book.			
	
3.14	 Well,	it	might	be	or	it	might	not.		The	important	point	to	note	is	that	rational	numbers	are	
normally	defined	in	terms	of	integers—by	definition,	a	rational	number	is	a	number	that	can	be	
expressed	as	the	ratio	of	two	integers—and	if	they	are,	then	to	say	an	integer	“is	a”	rational	
number	would	be	to	go	round	in	circles;	in	effect,	it	would	be	defining	integers	in	terms	of	
themselves.		(A	detailed	analysis	of	this	example	and	others	like	it	can	be	found	in	my	paper	
“Toward	a	Better	Understanding	of	Numeric	Data	Types,”	in	Database	Explorations:	Essays	on	
The	Third	Manifesto	and	Related	Topics,	by	Hugh	Darwen	and	myself,	available	free	online	at	
the	website	www.thethirdmanifesto.com.)		In	order	to	be	able	to	claim	legitimately	that	INTEGER	
is	a	subtype	of	RATIONAL,	therefore,	it	would	first	be	necessary	to	come	up	with	a	definition	of	
rational	numbers	that	makes	no	mention	of	the	concept	of	an	integer.		Note:		It’s	relevant	to	
mention	here	that	examples	of	this	same	general	nature	(“INTEGER	is	a	subtype	of	RATIONAL”)	
are	frequently	used	to	illustrate	the	basic	idea	of	inheritance	in	the	literature.		Caveat	lector.			

The	foregoing	discussion	of	types	INTEGER	and	RATIONAL	raises	another	question,	
however	(nothing	to	do	with	inheritance	as	such).		In	Chapter	2	I	said	this	(approximately):			

	
Any	given	value	always	has	exactly	one	type	(except	possibly	if	type	inheritance	is	supported)	...	If	
every	value	is	of	exactly	one	type,	then	no	value	is	of	two	or	more	types,	and	distinct	types	are	
thus	disjoint,	absent	inheritance.			
	
Now,	you	might	have	raised	an	eyebrow	at	these	remarks.		Surely	the	value	3,	for	

example—to	use	decimal	notation—is	both	an	integer	and	a	rational,	and	is	thus	a	value	of	
both	types.		Isn’t	it?		Or,	to	take	another	example,	what	about	the	value	zero?			

To	answer	such	questions	properly	requires	a	very	clear	understanding	of	the	way	the	
types	concerned	are	defined.		I	said	above	that	a	rational	number	is	a	number	that	can	be	
expressed	as	the	ratio	of	two	integers.		In	fact,	we	might	more	properly	say	that	values	of	type	
RATIONAL	are	ordered	pairs	of	integers	(n,d),	where	n	is	the	numerator	and	d	is	the	
denominator	and	d	≠	0.		For	example,	the	rational	number	“five	eighths”	is	the	pair	(5,8).		By	
contrast,	values	of	type	INTEGER	are	just	integers.		And	there’s	certainly	a	logical	difference	
between	a	pair	of	integers	and	an	integer!		In	particular,	the	integer	pair	(3,1)	isn’t	the	same	as	
the	integer	3.		It’s	true	that	an	isomorphism	can	be	established	between	integer	pairs	of	the	
form	(n,1)	and	integers	n—but	to	say	two	things	are	isomorphic	is	not	the	same	as	saying	
they’re	the	same.		Note:		For	an	explanation	of	what	an	isomorphism	is,	I	refer	you	to	my	book	
The	New	Relational	Database	Dictionary	(O’Reilly,	2016).			
	
	



  

 

Chapter  4 
 
 

T h e   I n h e r i t a n c e   M o d e l 
 
 

O England! model to thy inward greatness,  
Like little body with a mighty heart,  
What mightst thou do, that honour would thee do,  
Were all thy children kind and natural!   

—William Shakespeare: 
King Henry the Fifth (1598-1599) 

 
 

This chapter provides, for purposes of subsequent reference, a precise statement of the 28 IM 
prescriptions that make up our inheritance model.  It’s based on Chapter 19 of the book 
Database Explorations: Essays on The Third Manifesto and Related Topics, by Hugh Darwen 
and myself (available free online at the website www.thethirdmanifesto.com).  However, I’ve 
found it necessary, or at least convenient, to perform a certain amount of revision on some of the 
prescriptions, as will be made clear in subsequent chapters.  I’ve also added two new ones 
(numbers 23 and 26, according to the numbering below).  Note:  Whenever there’s a technical 
discrepancy between the present chapter—or anything else in this book, come to that—and 
previous publications by Darwen and myself on this topic, the present text should be taken as 
superseding.  At the same time, please note that it’s my intention that any such discrepancies be 
called out explicitly and justified.   
 
Throughout this chapter, as well as elsewhere in this book, I use the symbols T and T′ as generic 
names for a pair of types such that T′ is a subtype of T (equivalently, such that T is a supertype of 
T′).  You might find it helpful to think of T and T′ as ELLIPSE and CIRCLE, respectively; 
however, keep in mind that they’re not limited to being scalar types specifically, barring explicit 
statements to the contrary (moreover, the various prescriptions are all worded in such a way as 
not to be limited to single inheritance only, either).  Note too that distinct types have distinct 
names; in particular, if T′ is a proper subtype of T, then their names will be distinct, even if the 
set of values constituting T′ isn’t a proper subset of the set of values constituting T.  (Conversely, 
if their names aren’t distinct, then T′ and T are the very same type and the corresponding sets of 
values will be identical.)  Also, I assume that all of the types under discussion, including the 
maximal and minimal types discussed in IM Prescriptions 20 and 25, are members of some given 
set of available types GSAT (though the only explicit mention of that set is in IM Prescription 20, 
q.v.); in particular, the definitions of the terms root type and leaf type in IM Prescription 6 are to 
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be understood in the context of that set.  For example, given the type hierarchy of Fig. 3.1 in 
Chapter 3, the set of available types consists of:   
 

a. PLANE_FIGURE, ELLIPSE, CIRCLE, POLYGON, RECTANGLE, and SQUARE  
 
b. The types in terms of which the possreps for the types listed under point a. are defined  
 
c. The types in terms of which the possreps for the types included under point b., such as 

LENGTH and POINT, are defined (and so on, recursively, all the way down to and 
including the pertinent primitive types—see below)  

 
d. The maximal scalar type alpha and the minimal scalar type omega (see IM Prescription 20)  
 
e. Tuple and relation types that can be generated using any of the types mentioned in any of 

these five points a.-e.  
 

Note:  The term primitive type, mentioned under point c. above, refers to a system defined 
type (scalar by definition) with no declared possrep.  The qualifier primitive derives from the fact 
that all of the types available in any given context are ultimately defined in terms of such types.  
Typical examples of such primitive types include the types INTEGER, RATIONAL, CHAR, and 
BOOLEAN.   

By the way, it’s worth stating explicitly that type PLANE_FIGURE is not the only root 
type with respect to the foregoing set of types.  It’s not even the only scalar root type.  By way of 
example, consider type POINT.  Since it’s the type of (among other things) a possrep component 
for type CIRCLE, type POINT is certainly a member of the given set of types; however, it’s not 
a subtype of PLANE_FIGURE, and so it must be part of some distinct type hierarchy—possibly 
one consisting of type POINT only—and, by definition, that distinct type hierarchy has a distinct 
root type of its own.   
 
 
THE IM PRESCRIPTIONS  
 

1. T and T′ shall each be types; i.e., each shall be a named set of values.   
 
2. Every value in T′ shall be a value in T; i.e., the set of values constituting T′ shall be a subset 

of the set of values constituting T (in other words, if a value is of type T′, it shall also be of 
type T).   

 
3. T and T′ shall not necessarily be distinct; i.e., every type shall be both a subtype and a 

supertype of itself.   
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4. Every subtype of T′ shall be a subtype of T.  Every supertype of T shall be a supertype 
of T′.   

 
5. Let T and T′ be scalar types.  Then:   
 

a. If and only if T and T′ are distinct, then T shall be a proper supertype of T′ and T′ 
shall be a proper subtype of T.   

 
b. Let T be a proper supertype of T′, and let S be a sequence of types T1, T2, ..., Tm such 

that T is a proper supertype of T1, T1 is a proper supertype of T2, ..., and Tm is a 
proper supertype of T′ (m ≥ 0).  Then either (a) no such sequence S shall exist (i.e., 
every such sequence shall be such that m = 0), in which case (and in which case only) 
T shall be an immediate supertype of T′, or (b) every such sequence S shall be such 
that m > 0, in which case (and in which case only) T shall be a nonimmediate 
supertype of T′.  Also, T′ shall be an immediate subtype of T if and only if T is an 
immediate supertype of T′, and T′ shall be a nonimmediate subtype of T if and only 
if T is a nonimmediate supertype of T.   

 
c. If and only if T is an immediate supertype of T′ and T′ is neither a root type nor type 

omega—see IM Prescription 20—then the definition of T′ shall be accompanied by a 
specification of an example value that is of type T and not of type T′.   

 
6. A scalar type that has type alpha—see IM Prescription 20—as its sole immediate supertype 

shall be a (scalar) root type.  A scalar type that has type omega—again, see IM 
Prescription 20—as its sole immediate subtype shall be a (scalar) leaf type.   

 
7. Types T1 and T2 shall be disjoint if and only if no value is of both type T1 and type T2.  

Types T1 and T2 shall overlap if and only if there exists at least one value that is common 
to both.  Distinct root types shall be disjoint.  If types T1 and T2 are distinct immediate 
subtypes of the same scalar type T, there shall exist at least one value that is of type T1 and 
not of type T2.   

 
8. Let T1, T2, ..., Tm (m ≥ 0), T, and T′ be scalar types.  Then:   

 
a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, 

whenever a given value is of at least one of types T1, T2, ..., Tm, it is also of type T.  
Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if 
and only if no proper subtype of T is also a common supertype for those types.   

 
b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, 

whenever a given value is of type T′, it is also of each of types T1, T2, ..., Tm.  
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Further, that type T′ shall be the least specific common subtype—also known as the 
intersection type or intersection subtype—for T1, T2, ..., Tm if and only if no 
proper supertype of T′ is also a common subtype for those types.   

 
Note:  Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in 

particular to IM Prescription 20) that a unique most specific common supertype T and a 
unique least specific common subtype T′ always exist.  In the case of that particular 
common subtype T′, moreover, it can also be shown that whenever a given value is of each 
of types T1, T2, ..., Tm, it is also of type T′ (hence the alternative term intersection type).  
And it can further be shown that every scalar value v has both a unique least specific type 
and a unique most specific type (regarding this latter—which elsewhere in these 
prescriptions is denoted MST(v)—see also IM Prescription 9).   

 
9. Let scalar variable V be of declared type T.  Because of value substitutability (see IM 

Prescription 16), the value v assigned to V at any given time can have any nonempty 
subtype T′ of type T as its most specific type.  We can therefore model V as a named 
ordered triple of the form <DT,MST,v>, where:   

 
a. The name of the triple is the name of the variable, V.   
 
b. DT is the name of the declared type for variable V.   
 
c. MST is the name of the most specific type—also known as the current most specific 

type—for, or of, variable V.   
 
d. v is a value of most specific type MST—the current value for, or of, variable V.   
 
We use the notation DT(V), MST(V), v(V) to refer to the DT, MST, v components, 
respectively, of this model of scalar variable V.  Note:  Since v(V) uniquely determines 
MST(V)—see IM Prescription 8—the MST component of V is strictly redundant.  We 
include it for convenience.   

Now let X be a scalar expression.  By definition, X represents an invocation of some 
scalar operator Op.  Thus, the notation DT(V), MST(V), v(V) just introduced can be 
extended in an obvious way to refer to the declared type DT(X), the current most specific 
type MST(X), and the current value v(X), respectively, of X—where DT(X) is the declared 
type of the invocation of Op in question (see IM Prescription 17) and is known at compile 
time, and MST(X) and v(X) refer to the result of evaluating X and are therefore not known 
until run time (in general).   

 
10. Let T be a regular type (see IM Prescription 20) and hence, necessarily, a scalar type, and 

let T′ be a nonempty immediate subtype of T.  For each such immediate supertype T of T′, 
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the definition of T′ shall specify a specialization constraint SC, formulated in terms of T, 
such that a value shall be of type T′ if and only if it satisfies all such constraints SC.   

 
11. Consider the assignment  

 
V := X  
 
(where V is a variable reference and X is an expression).  DT(X) shall be a subtype of 
DT(V).  The assignment shall set v(V) equal to v(X), and hence MST(V) equal to MST(X) 
also.   

 
12. Consider the equality comparison  

 
Y = X  
 
(where Y and X are expressions).  DT(Y) and DT(X) shall overlap.  The comparison shall 
return TRUE if v(Y) is equal to v(X) (and hence if MST(Y) is equal to MST(X) also), and 
FALSE otherwise.   

 
13. Let RX and RY be relational expressions.  In accordance with IM Prescription 28, each of 

RX and RY has a declared type.  Let those declared types have headings  
 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }  
 
{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> }  
 
respectively, where (a) n ≥ 0 and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have most 
specific common supertype Tj and least specific common subtype Tj′.  Further, let the 
values denoted by RX and RY be relations rx and ry, respectively.  Then:   

 
a. An expression of the form (RX) UNION (RY), or logical equivalent thereof, shall be 

supported and shall denote the union of rx and ry.  The declared type of that 
expression shall have heading  

 
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  

 
b. An expression of the form (RX) INTERSECT (RY), or logical equivalent thereof, 

shall be supported and shall denote the intersection of rx and ry.  The declared type 
of that expression shall have heading  

 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
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Note:  Intersection is a special case of join; given the prescriptions of paragraph d. 
below, therefore, the present paragraph b. is strictly redundant.  We include it for 
convenience.   

 
c. An expression of the form (RX) MINUS (RY), or logical equivalent thereof, shall be 

supported and shall denote the difference between rx and ry, in that order.  The 
declared type of that expression shall have heading  

 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }  

 
Now let the declared types of relational expressions RX and RY have headings  

 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> , <B1,TB1> , ... , <Bp,TBp> }  
 
{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> , <C1,TC1> , ... , <Cq,TCq> }  
 
where (a) n ≥ 0, p ≥ 0, and q ≥ 0, and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have 
least specific common subtype Tj′.  Further, let the values denoted by RX and RY be 
relations rx and ry, respectively.  Then:   

 
d. An expression of the form (RX) JOIN (RY), or logical equivalent thereof, shall be 

supported and shall denote the join of rx and ry.  The declared type of that expression 
shall have heading  

 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> ,  
             <B1,TB1> , ... , <Bp,TBp> , <C1,TC1> , ... , <Cq,TCq> }  

 
Note:  Intersection is a special case of join; thus, the prescriptions of the present 
paragraph d. degenerate to those for intersection (see paragraph b. above) in the case 
where p = q = 0.   

 
14. Let X be an expression, let T be a type, and let DT(X) and T overlap.  Then an operator of 

the form  
 
TREAT_AS_T ( X )  
 
(or logical equivalent thereof) shall be supported, with semantics as follows:  If v(X) is not 
of type T, then a type error shall occur; otherwise, the declared type of the invocation 
TREAT_AS_T(X) shall be T, and the result of that invocation, r say, shall be equal to v(X) 
(hence, MST(r) shall be equal to MST(X) also).   
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15. Let X be an expression, let T be a type, and let DT(X) and T overlap.  Then an operator of 
the form  
 
IS_T ( X )  
 
(or logical equivalent thereof) shall be supported.  The operator shall return TRUE if v(X) 
is of type T, FALSE otherwise.   

 
16. Let Op be a read-only operator, let P be a parameter to Op, and let T be the declared type of 

P.  Then the declared type of the argument expression (and therefore, necessarily, the most 
specific type of the argument as such) corresponding to P in an invocation of Op shall be 
allowed to be any subtype T′ of T.  In other words, the read-only operator Op applies to 
values of type T and therefore, necessarily, to values of type T′—The Principle of 
Read-Only Operator Inheritance.  It follows that such operators are polymorphic, since 
they apply to values of several different types—The Principle of Read-Only Operator 
Polymorphism.  It further follows that wherever a value of type T is permitted, a value of 
any subtype of T shall also be permitted—The Principle of Value Substitutability.   

 
17. Let Op be an operator.  Then Op shall have a specification signature and a set of invocation 

signatures.  Let the parameters of Op and the argument expressions involved in any given 
invocation of Op each constitute an ordered list of n elements (n ≥ 0), such that the jth 
argument expression corresponds to the jth parameter (j = 1, 2, ..., n).  Further, let PDT = 
<DT1, DT2, ..., DTn> be the declared types, in sequence, of those n parameters, and let 
PDT′ = <DT1′, DT2′, ..., DTn′> be a sequence of types such that DTj′ is a nonempty 
subtype of DTj (j = 1, 2, ..., n).  Then:   

 
a. If Op is a read-only operator, the specification signature shall consist of the operator 

name, the sequence PDT, and a type (the declared type DT(Op) for, or of, operator 
Op).  Also, for each possible sequence PDT′, let OpI be an invocation of Op with 
argument expressions of declared types as specified by PDT′; then there shall exist an 
invocation signature for OpI, consisting of that sequence PDT′ and a type (the 
declared type DT(OpI) for, or of, invocation OpI).  DT(OpI) shall be a subtype of 
DT(Op), and the type of the result of OpI shall be a subtype of DT(OpI).   

 
b. If Op is an update operator, the specification signature shall consist of the operator 

name, the sequence PDT, and an indication as to which parameters are subject to 
update.  Also, let the sequence PDT′ be such that an invocation OpI of Op with 
argument expressions of declared types as specified by PDT′ is legitimate (see IM 
Prescription 19).  For each such sequence PDT′, there shall exist an invocation 
signature consisting of that sequence PDT′.   
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If two distinct operators (either both read-only or both update operators) have the 
same name and the same number n of parameters, then for some j (1 ≤ j ≤ n) the declared 
types of their jth parameters, as given by their respective specification signatures, shall be 
disjoint.   

Note:  Ordered lists or sequences are used in the text of this prescription purely as a 
convenient basis for defining the various correspondences (e.g., between parameters and 
their declared types) that the prescription requires.  They are not an intrinsic part of the 
prescription as such.  Rather, the implementation is free to establish those correspondences 
by whatever means it deems suitable, just so long as the overall effect is functionally 
equivalent to that defined by the foregoing text.   

 
18. Let Op be an update operator and let P be a parameter to Op that is not subject to update.  

Then Op shall behave as a read-only operator as far as P is concerned, and all relevant 
aspects of IM Prescription 16 shall apply, mutatis mutandis.   

 
19. Let Op be an update operator, let P be a parameter to Op that is subject to update, and let T 

be the declared type of P.  Then it might or might not be the case that the declared type of 
the argument expression (and therefore, necessarily, the most specific type of the argument 
as such) corresponding to P in an invocation of Op shall be allowed to be some proper 
subtype T′ of type T.  It follows that for each such update operator Op and for each 
parameter P to Op that is subject to update, it shall be necessary to state explicitly for 
which proper subtypes T′ of the declared type T of parameter P operator Op shall be 
inherited—The Principle of Update Operator Inheritance.  (And if update operator Op is 
not inherited in this way by type T′, it shall not be inherited by any proper subtype of type 
T′ either.)  Update operators shall thus be only conditionally polymorphic—The Principle 
of Update Operator Polymorphism.  If Op is an update operator and P is a parameter to Op 
that is subject to update and T′ is a proper subtype of the declared type T of P for which Op 
is inherited, then by definition it shall be possible to invoke Op with an argument 
expression corresponding to parameter P that is of declared type T′—The Principle of 
Variable Substitutability.   

 
20. Type T shall be a union type if and only if it is a scalar type and there exists no value that 

is of type T and not of some immediate subtype of T (i.e., there exists no value v such that 
MST(v) is T).  Moreover:   

 
a. A type shall be a dummy type if and only if either of the following is true:   

 
1. It is one of the types alpha and omega (see below).   
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2. It is a union type, has no declared possible representation (and hence no 
selector), and no regular supertype.  Note:  Type alpha in fact satisfies all three 
of these conditions; type omega satisfies the first two only.   

 
A type shall be a regular type if and only if it is a scalar type and not a dummy type.   

 
b. Conceptually, there shall be a system defined scalar type called alpha, the maximal 

type with respect to every scalar type.  That type shall have all of the following 
properties:   

 
1. It shall contain all scalar values.   
 
2. It shall have no immediate supertypes.   
 
3. It shall be an immediate supertype for every scalar root type in the given set of 

available types GSAT.   
 

No other scalar type shall have any of these properties.   
 

c. Conceptually, there shall be a system defined scalar type called omega, the minimal 
type with respect to every scalar type.  That type shall have all of the following 
properties:   

 
1. It shall contain no values at all.  (It follows that, as RM Prescription 1 in fact 

states, it shall have no example value in particular.)   
 
2. It shall have no immediate subtypes.   
 
3. It shall be an immediate subtype for every scalar leaf type in the given set of 

available types GSAT.   
 

No other scalar type shall have any of these properties.   
 

d. The given set of available types GSAT shall contain at least one regular scalar type T 
such that T is neither a subtype nor a supertype of the required (and system defined) 
scalar type boolean.   

 
21. Type T shall be an empty type if and only if it is either an empty scalar type or an empty 

tuple type.  Scalar type T shall be empty if and only if T is type omega.  Tuple type T shall 
be empty if and only if T has at least one attribute that is of some empty type.  An empty 
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type shall be permitted as the type of (a) an attribute of a tuple type or relation type; 
(b) nothing else.   

 
22. Let T and T′ be both tuple types or both relation types.  Then type T′ shall be a subtype of 

type T, and type T shall be a supertype of type T′, if and only if (a) T and T′ have the same 
attribute names A1, A2, ..., An and (b) for all j (j = 1, 2, ..., n), the type of attribute Aj of T′ 
is a subtype of the type of attribute Aj of T.  Tuple t shall be of tuple type T if and only if t 
has a heading that is that of some subtype of T.  Relation r shall be of relation type T if and 
only if r has a heading that is that of some subtype of T (in which case every tuple in the 
body of r shall also have a heading that is that of some subtype of T).   

 
23. Let T and T′ be both tuple types or both relation types, with headings  

 
{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
 
respectively.  Then T′ shall be a proper subtype of T, and T shall be a proper supertype of 
T′, if and only if (a) for all j (j = 1, 2, ..., n), type Tj′ is a subtype of Tj and (b) there exists at 
least one j (j = 1, 2, ..., n) such that Tj′ is a proper subtype of Tj.  Also, T′ shall be an 
immediate subtype of T, and T shall be an immediate supertype of T′, if and only if 
(a) there exists some j (j = 1, 2, ..., n) such that Tj′ is an immediate subtype of Tj and (b) for 
all k (k = 1, 2, ..., n, k ≠ j), Tk′ = Tk.  If and only if T′ is a proper but not an immediate 
subtype of T, then T′ shall be a nonimmediate subtype of T and T shall be a 
nonimmediate supertype of T′.   

 
24. Let T1, T2, ..., Tm (m ≥ 0), T, and T′ be all tuple types or all relation types, with headings  

 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  
 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  
 
  ......................................  
 
{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  
 
{ <A1,T01>  , <A2,T02>  , ... , <An,T0n>  }  
 
{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 
respectively.  Then:   
 
a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, 

for all j (j = 1, 2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., Tmj.  
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Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if 
and only if no proper subtype of T is also a common supertype for those types.   

 
b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, for 

all j (j = 1, 2, ..., n), type T0j′ is a common subtype for types T1j, T2j, ..., Tmj.  
Further, that type T′ shall be the least specific common subtype—also known as the 
intersection type or intersection subtype—for T1, T2, ..., Tm if and only if no 
proper supertype of T′ is also a common subtype for those types.   

 
Note:  Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in 

particular to IM Prescription 25) that a unique most specific common supertype T and a 
unique least specific common subtype T′ always exist.  In the case of that particular 
common subtype T′, moreover, it can also be shown that whenever a given value is of each 
of types T1, T2, ..., Tm, it is also of type T′ (hence the alternative term intersection type)—
in which case, for all j (j = 1, 2, ..., n), type T0j′ is the intersection type for types T1j, T2j, 
..., Tmj.  And it can further be shown that every tuple value and every relation value has 
both a unique least specific type and a unique most specific type (regarding the latter, see 
also IM Prescription 27).   

 
25. Let T, T_alpha, and T_omega be all tuple types or all relation types, with headings  

 
{ <A1,T1>       , <A2,T2>       , ... , <An,Tn>       }  
 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  
 
respectively.  Then (a) type T_alpha shall be the maximal type with respect to type T if 
and only if, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type 
Tj; (b) type T_omega shall be the minimal type with respect to type T if and only if, for 
all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type Tj.   

 
26. A root type shall be a scalar root type (see IM Prescription 6), a tuple root type, or a 

relation root type.  A type shall be a tuple root type if and only if it is a tuple type TT such 
that every attribute of TT is of a root type.  A type shall be a relation root type if and only 
if it is a relation type RT such that every attribute of RT is of a root type.   

A leaf type shall be a scalar leaf type (see IM Prescription 6), a tuple leaf type, or a 
relation leaf type.  A type shall be a tuple leaf type if and only if it is a tuple type TT such 
that every attribute of TT is of a leaf type.  A type shall be a relation leaf type if and only if 
it is a relation type RT such that every attribute of RT is of a leaf type.   

A superroot type shall be a scalar superroot type, a tuple superroot type, or a relation 
superroot type.  A type shall be a scalar superroot type if and only if it is type alpha.  A 
type TT shall be a tuple superroot type if and only if it is a proper supertype of some tuple 
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root type (in which case at least one attribute of TT must be of some superroot type).  A 
type RT shall be a relation superroot type if and only if it is a proper supertype of some 
relation root type (in which case at least one attribute of RT must be of some superroot 
type).   

A subleaf type shall be a scalar subleaf type, a tuple subleaf type, or a relation 
subleaf type.  A type shall be a scalar subleaf type if and only if it is type omega.  A type 
TT shall be a tuple subleaf type if and only if it is a proper subtype of some tuple leaf type 
(in which case at least one attribute of TT must be of some subleaf type).  A type RT shall 
be a relation subleaf type if and only if it is a proper subtype of some relation leaf type (in 
which case at least one attribute of RT must be of some subleaf type).   

 
27. Let H be a heading defined as follows:   

 
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  
 
Then:   

 
a. If t is a tuple of type TUPLE H, meaning t shall take the form  
 

TUPLE { <A1,MST1,v1> , <A2,MST2,v2> , ... , <An,MSTn,vn> }  
 

where, for all j (j = 1, 2, ..., n), type MSTj is a subtype of type Tj and is the most 
specific type of value vj, then the most specific type of t shall be  

 
TUPLE { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  

 
b. If r is a relation of type RELATION H, let the body of r consist of tuples t1, t2, ..., tm 

(m ≥ 0).  Tuple ti (i = 1, 2, ..., m) shall take the form  
 

TUPLE { <A1,MSTi1,vi1> , <A2,MSTi2,vi2> , ... , <An,MSTin,vin> }  
 

where, for all j (j = 1, 2, ..., n), type MSTij is a subtype of type Tj and is the most 
specific type of value vij (note that MSTij is different for different tuples ti, in 
general).  Then the most specific type of r shall be  

 
RELATION { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  

 
where, for all j (j = 1, 2, ..., n), type MSTj is the most specific common supertype of 
those most specific types MSTij, taken over all tuples ti.   
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28. Let V be a tuple variable or relation variable of declared type T, and let T have attributes 
A1, A2, ..., An.  Then we can model V as a named set of named ordered triples of the form 
<DTj,MSTj,vj> (j = 1, 2, ..., n), where:   

 
a. The name of the set is the name of the variable, V.   
 
b. The name of each triple is the name of the corresponding attribute.   
 
c. DTj is the name of the declared type of attribute Aj.   
 
d. MSTj is the name of the most specific type—also known as the current most specific 

type—for, or of, attribute Aj.  (If V is a relation variable, then the most specific type 
of Aj is the most specific common supertype of the most specific types of the m 
values in vj—see the explanation of vj below.)   

 
e. If V is a tuple variable, vj is a value of most specific type MSTj—the current value 

for, or of, attribute Aj.  If V is a relation variable, then let the body of the current value 
of V consist of m tuples (m ≥ 0); label those tuples (in some arbitrary sequence) “tuple 
1,” “tuple 2,” ..., “tuple m”; then vj is a sequence of m values (not necessarily all 
distinct), being the Aj values from tuple 1, tuple 2, ..., tuple m (in that order).  Note 
that those Aj values are all of type MSTj.   

 
We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components, 
respectively, of attribute Aj of this model of tuple variable or relation variable V.  We also 
use the notation DT(V), MST(V), v(V) to refer to the overall declared type, overall current 
most specific type, and overall current value, respectively, of this model of tuple variable or 
relation variable V.   

Now let X be a tuple expression or relation expression.  By definition, X specifies an 
invocation of some tuple operator or relation operator Op.  Thus, the notation DTj(V), 
MSTj(V), vj(V) just introduced can be extended in an obvious way to refer to the declared 
type DTj(X), the current most specific type MSTj(X), and the current value vj(X), 
respectively, of the DTj, MSTj, vj components, respectively, of attribute Aj of tuple 
expression or relation expression X—where DTj(X) is the declared type of Aj for the 
invocation of Op in question (see IM Prescription 17) and is known at compile time, and 
MSTj(X) and vj(X) refer to the result of evaluating X and are therefore not known until run 
time (in general).   

 
 
 



  

 

 



P a r t   I I 
 
 
 

S C A L A R   T Y P E S , 
 

S I N G L E   I N H E R I T A N C E 
 
 
 

As explained in Chapter 4, our inheritance model consists of a total of 28 IM prescriptions.  
Part II of the book (nine chapters) discusses the first 20 of those prescriptions and explains their 
significance for what might be called “the base case,” involving scalar types only and single 
inheritance only.   
 
 
 



 



  

 

Chapter  5 
 
 

B a s i c   D e f i n i t i o n s 
 
 

A definition is the enclosing [of] a wilderness of idea  
within a wall of words.   

—Samuel Butler: 
Notebooks (1912) 

I hate definitions.   
—Benjamin Disraeli: 

Vivian Grey (1826) 
 
 

For convenience I repeat below in Fig. 5.1 the sample type hierarchy from the section “The 
Running Example” in Chapter 3.   
 

             ┌──────────────┐ 
             │ PLANE FIGURE │ 
             └──────┬───────┘ 
       ┌────────────┴─────────────┐ 
┌──────▼──────┐            ┌──────▼──────┐ 
│   ELLIPSE   │            │   POLYGON   │ 
└──────┬──────┘            └──────┬──────┘ 
┌──────▼──────┐            ┌──────▼──────┐ 
│   CIRCLE    │            │  RECTANGLE  │ 
└─────────────┘            └──────┬──────┘ 
                           ┌──────▼──────┐ 
                           │   SQUARE    │ 
                           └─────────────┘ 
 
Fig. 5.1 (same as Fig. 3.1): Example of a type hierarchy  

 
The rest of this chapter considers the first seven IM prescriptions, using Fig. 5.1 as a basis 

for examples.  Let me remind you from Chapter 3 that, in an attempt to avoid confusion, 
throughout this book I refer to prescriptions of the Manifesto as such as “TTM prescriptions” and 
prescriptions of our inheritance model as “IM prescriptions.”  Let me also repeat the following 
from the preamble to Chapter 4:   

 
Throughout this chapter, as well as elsewhere in this book, I use the symbols T and T′ as generic 
names for a pair of types such that T′ is a subtype of T (equivalently, such that T is a supertype of 
T′).  You might find it helpful to think of T and T′ as ELLIPSE and CIRCLE, respectively; 
however, keep in mind that they’re not limited to being scalar types specifically, barring explicit 
statements to the contrary (moreover, the various prescriptions are all worded in such a way as not 
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to be limited to single inheritance only, either).  Note too that distinct types have distinct names; in 
particular, if T′ is a proper subtype of T, then their names will be distinct, even if the set of values 
constituting T′ isn’t a proper subset of the set of values constituting T.  (Conversely, if their names 
aren’t distinct, then T′ and T are the very same type and the corresponding sets of values will be 
identical.)  Also, I assume that all of the types under discussion, including the maximal and minimal 
types discussed in IM Prescriptions 20 and 25, are members of some given set of available types 
GSAT (though the only explicit mention of that set is in IM Prescription 20, q.v.); in particular, the 
definitions of the terms root type and leaf type in IM Prescription 6 are to be understood in the 
context of that set.  For example, given the type hierarchy of Fig. 3.1 in Chapter 3, the set of 
available types consists of:   

 
a. PLANE_FIGURE, ELLIPSE, CIRCLE, POLYGON, RECTANGLE, and SQUARE  
 
b. The types in terms of which the possreps for the types listed under point a. are defined  
 
c. The types in terms of which the possreps for the types included under point b., such as 

LENGTH and POINT, are defined (and so on, recursively, all the way down to and including 
the pertinent primitive types—see Chapter 4)  

 
d. The maximal scalar type alpha and the minimal scalar type omega (see IM Prescription 20)  
 
e. Tuple and relation types that can be generated using any of the types mentioned in any of 

these five points a.-e.  
 

Note:  The term primitive type, mentioned under point c. above, refers to a system defined 
type (scalar by definition) with no declared possrep.  The qualifier primitive derives from the fact 
that all of the types available in any given context are ultimately defined in terms of such types.  
Typical examples of such primitive types include the types INTEGER, RATIONAL, CHAR, and 
BOOLEAN.   

By the way, it’s worth stating explicitly that type PLANE_FIGURE is not the only root type 
with respect to the foregoing set of types.  It’s not even the only scalar root type.  By way of 
example, consider type POINT.  Since it’s the type of (among other things) a possrep component 
for type CIRCLE, type POINT is certainly a type in the given set; however, it’s not a subtype of 
PLANE_FIGURE, and so it must be part of some distinct type hierarchy—possibly one consisting 
of type POINT only—and, by definition, that distinct type hierarchy has a distinct root type of its 
own.   

 
In fact the foregoing preliminary remarks are applicable not just to this chapter but also to 

the next few chapters, but I won’t bother to repeat them again, instead allowing this single 
(re)statement to do duty for all.   
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IM PRESCRIPTION 1: TYPES ARE SETS  
 
T and T′ shall each be types; i.e., each shall be a named set of values.   
 

——— ♦♦♦♦♦ ——— 
 
IM Prescription 1 simply asserts that subtypes and supertypes are indeed types, in the full sense 
of that term as prescribed by The Third Manifesto.  One consequence of this requirement is that, 
in general, subtypes can have lower level subtypes of their own and supertypes can have higher 
level supertypes of their own, as of course we already know.   

Note:  Prior to this writing, the most recent version of our inheritance model was the one 
documented in our book Database Explorations: Essays on The Third Manifesto and Related 
Topics (available free online at www.thethirdmanifesto.com).  For the purposes of this book, I’ll 
refer to that version from this point forward as “the Explorations version.”  In the case of IM 
Prescription 1 in particular, the Explorations version actually said that each of T and T′ shall be a 
named, finite set of values (emphasis added).  The reason for the slight discrepancy is that when 
IM Prescription 1 was first written, one of the TTM prescriptions explicitly required scalar types 
(and hence, implicitly, nonscalar types as well) to be finite.  Although there can be no doubt that, 
in practice, types indeed always are finite, some researchers questioned the need to say so in the 
Manifesto as such; the requirement was therefore dropped, and so I’ve dropped it from IM 
Prescription 1 accordingly.   

Another consequence of IM Prescription 1 is this:  Since types are named, and since the 
only way a scalar type in particular can acquire a name is by being explicitly declared, it follows 
that all scalar types referenced in any of the IM prescriptions must be explicitly declared ones.   

By the way, note that I’ve characterized this prescription as saying “types are sets” (see the 
section title).  Well, so they are—they’re sets of values.  But sometimes we need to be a little 
careful about the logical difference between type T as such, on the one hand, and the set of 
values that constitute type T on the other.  To that end, I’ll introduce some notation:  From this 
point forward, I’ll occasionally use the symbol |T| to denote the set of values that constitute 
type T.  That said, however, I won’t always bother to distinguish between T and |T|, unless I’m 
trying to be formal or especially explicit.   
 
 
IM PRESCRIPTION 2: SUBTYPES ARE SUBSETS  
 
Every value in T′ shall be a value in T; i.e., the set of values constituting T′ shall be a subset of 
the set of values constituting T (in other words, if a value is of type T′, it shall also be of type T).   
 

——— ♦♦♦♦♦ ——— 
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If types are sets, it obviously makes good intuitive sense to say that subtypes are subsets; thus, to 
say that value v is of type T′ means among other things that v is certainly also of type T.  It 
follows that if v is of type T′, the read-only operators that apply to v include, by definition, all of 
the operators—necessarily read-only operators specifically—that apply to values of type T.  For 
example, if the read-only operator AREA_OF (“return the area of”) applies to values of type 
ELLIPSE, then it certainly applies to values of type CIRCLE.  In other words:  Read-only 
operators associated with type T are inherited by type T′.   

Here in outline are some of the read-only operators I’ll assume apply to values of type 
ELLIPSE, and hence to values of type CIRCLE also.  (I’ll show later, however, that some of 
these operators might be reimplemented for type CIRCLE, implying that two distinct 
implementation versions of the operator in question, an ELLIPSE version and a CIRCLE 
version, might exist under the covers.  See Chapters 7 and 11 for further discussion.)   

 
OPERATOR THE_A ( E ELLIPSE ) RETURNS LENGTH ;  
   /* “the length of the a semiaxis of” */ ... ;  
END OPERATOR ;  
 
OPERATOR THE_B ( E ELLIPSE ) RETURNS LENGTH ;  
   /* “the length of the b semiaxis of” */ ... ;  
END OPERATOR ;  
 
OPERATOR THE_CTR ( E ELLIPSE ) RETURNS POINT ;  
   /* “the center of” */ ... ;  
END OPERATOR ;  
 
OPERATOR AREA_OF ( E ELLIPSE ) RETURNS AREA ;  
   /* “the area of” */ ... ;  
END OPERATOR ;  
 
And here’s a read-only operator that applies to values of type CIRCLE but not to values of 

type ELLIPSE:   
 
OPERATOR THE_R ( C CIRCLE ) RETURNS LENGTH ;  
   /* “the radius of” */ ... ;  
END OPERATOR ;  
 
Of course, as we saw in Chapter 2, the operators THE_A, THE_B, and THE_CTR (for type 

ELLIPSE) and THE_R and THE_CTR (for type CIRCLE) are all required by The Third 
Manifesto as such, and they’re provided “automatically.”  In the case of THE_CTR for type 
CIRCLE in particular, it’s precisely inheritance from type ELLIPSE that serves as the required 
“automatic” provision of that operator, though again it’s possible—albeit unlikely, perhaps—that 
some reimplementation might be involved.  As for THE_A and THE_B for type CIRCLE, these 
operators are required, not by The Third Manifesto as such, but rather by the very notion of 
inheritance (though once again it’s possible that there might be some reimplementation 
involved).   
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Moreover, it follows from all of the above that if v is of type T′, then v must satisfy all of 
the constraints that apply to values of type T, as well as all of the constraints that apply to values 
of type T′ specifically.  To repeat an example from Chapter 3, if c is a circle (and hence an 
ellipse), and if ellipses are subject to the constraint that the length a of their major semiaxis must 
be greater than or equal to the length b of their minor semiaxis, then that same constraint must be 
satisfied by c—as indeed it is, trivially, because in the case of a circle the semiaxes coincide in 
the radius.  In other words:  Constraints associated with type T are inherited by type T′.   

Now, in Chapter 2 I said that if v is a scalar value, it can be thought of as carrying around 
with it a kind of flag that announces “I’m an integer” or “I’m a supplier number” or “I’m a 
rectangle” (etc., etc.).  Now we see that, conceptually speaking, it might have to carry around 
several distinct flags—e.g., “I’m an ellipse” and “I’m a circle.”  (Of course, a flag that specifies 
just the most specific type is all that’s logically required.  See IM Prescription 8 in Chapter 6 for 
further discussion.)   

I also said in Chapter 2 that distinct types are disjoint “except possibly if type inheritance is 
supported”—but now it’s clear that two types are definitely not disjoint if one’s a subtype of the 
other.  And there are other cases of nondisjointness, too, which we’ll encounter in Parts III and 
IV of this book.  As far as the present part (i.e., Part II) is concerned, however, two types T1 and 
T2 are disjoint if and only if neither is a subtype of the other; in other words, we can stay with 
the disjointness assumption (see Chapter 3), and I will, until further notice.   

 
Aside:		To	repeat,	to	say	that	value	v	is	of	type	Tʹ	means	among	other	things	that	v	is	
certainly	also	of	type	T.		On	the	other	hand,	to	say	that	value	v	is	of	type	T	doesn’t	in	
general	preclude	the	possibility	that	v	is	also	of	type	Tʹ.		For	example,	to	say	that	e	is	an	
ellipse	doesn’t	preclude	the	possibility	that	e	is	also	a	circle.		In	fact,	to	say	that	v	is	of	type	
T	means,	precisely,	that	the	most	specific	type	of	v	(see	IM	Prescription	8	in	Chapter	6)	is	
some	subtype	of	T	(see	IM	Prescriptions	3-5	below).		End	of	aside.			
 
(Important!)  Note that it’s an obvious corollary of IM Prescription 2 that there can’t be 

more values of type T′ than there are of type T.  This apparently trivial observation can be very 
helpful in pinpointing errors and clearing up confusions.  For example, it would be an error 
according to our model to suggest that colored circles (type COLORED_CIRCLE) might be 
regarded as a subtype of circles in general (type CIRCLE)—a state of affairs that might come as 
something of a surprise to you, if you happen to be familiar with object systems.  The reason is 
this:  If circles as such are “plain” or uncolored, then there are clearly more colored circles than 
there are just plain circles.  (I’m assuming here that, e.g., a red circle and a blue circle of the 
same size and at the same location are different colored circles.)  What’s more, there’s clearly no 
CIRCLE selector invocation that could possibly yield a value of type COLORED_CIRCLE (the 
CIRCLE selector has parameters corresponding to the radius and center but no “color” 
parameter).  And so the proposed subtype / supertype relationship, as such, does not in fact exist.  
Note:  I’ll have quite a lot more to say regarding this particular example in Chapter 21.   
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Finally, the Explorations version of IM Prescription 2 had a note attached to it, having to 
do with proper subtypes and supertypes.  I’ve deleted that note as such, replacing it by an 
extension to IM Prescription 5 that takes care of the issue raised by the note in question.   
 
 
IM PRESCRIPTION 3: “SUBTYPE OF” IS REFLEXIVE  
 
T and T′ shall not necessarily be distinct; i.e., every type shall be both a subtype and a supertype 
of itself.   
 

——— ♦♦♦♦♦ ——— 
 
IM Prescriptions 3-7 mostly have to do with matters of terminology (basically they just elaborate 
on certain of the terms and concepts introduced in Chapter 3).  IM Prescription 3 in particular 
recognizes that, just as in mathematics it’s convenient to regard any set S as both a subset and a 
superset of itself, so in our inheritance model it’s convenient to regard any type T as both a 
subtype and a supertype of itself.  Thus, for example, “ELLIPSE is a subtype of ELLIPSE” is a 
true statement, and so is “ELLIPSE is a supertype of ELLIPSE.”  This convention has the effect 
of simplifying both (a) many of the discussions we’ll be having later and (b) the formulation of 
many of the IM prescriptions in particular.   

Note:  To say that a given dyadic boolean or truth valued operator Op is reflexive—see the 
title of the present section—is merely to say that, for all x, x Op x evaluates to TRUE.  Thus, e.g., 
“=” is reflexive, and so is “is a subtype of.”  By contrast, “<” and “is a proper subtype of” aren’t 
reflexive.   
 
 
IM PRESCRIPTION 4: “SUBTYPE OF” IS TRANSITIVE  
 
Every subtype of T′ shall be a subtype of T.  Every supertype of T shall be a supertype of T′.   
 

——— ♦♦♦♦♦ ——— 
 
This prescription (which was IM Prescription 5 in the Explorations version) simply says, loosely, 
that a subtype of a subtype is a subtype and a supertype of a supertype is a supertype.  Thus, for 
example, RECTANGLE is a subtype of PLANE_FIGURE, and PLANE_FIGURE is a supertype 
of RECTANGLE.   

Note:  To say that a given dyadic boolean operator Op is transitive—see the title of this 
section—is merely to say that, for all x, y, and z, if x Op y and y Op z both evaluate to TRUE, 
then so does x Op z.  Thus, e.g., “=” is transitive, and so is “is a subtype of.”  By contrast, “≠” 
and “is disjoint from” aren’t transitive.   
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IM PRESCRIPTION 5: PROPER AND IMMEDIATE SUBTYPES AND SUPERTYPES  
 
Let T and T′ be scalar types.  Then:   
 

a. If and only if T and T′ are distinct, then T shall be a proper supertype of T′ and T′ shall be a 
proper subtype of T.   

 
b. Let T be a proper supertype of T′, and let S be a sequence of types T1, T2, ..., Tm such that 

T is a proper supertype of T1, T1 is a proper supertype of T2, ..., and Tm is a proper 
supertype of T′ (m ≥ 0).  Then either (a) no such sequence S shall exist (i.e., every such 
sequence shall be such that m = 0), in which case (and in which case only) T shall be an 
immediate supertype of T′, or (b) every such sequence S shall be such that m > 0, in which 
case (and in which case only) T shall be a nonimmediate supertype of T′.  Also, T′ shall be 
an immediate subtype of T if and only if T is an immediate supertype of T′, and T′ shall be 
a nonimmediate subtype of T if and only if T is a nonimmediate supertype of T.   

 
c. If and only if T is an immediate supertype of T′ and T′ is neither a root type nor type 

omega—see IM Prescription 20—then the definition of T′ shall be accompanied by a 
specification of an example value that is of type T and not of type T′.   

 
——— ♦♦♦♦♦ ——— 

 
This prescription has been tightened up considerably, in part because the Explorations version 
failed to deal adequately with the multiple inheritance case.  Basically, however, it consists of a 
combination of the Explorations versions of IM Prescriptions 4 and 6, tailored to scalar types 
specifically.  The nonscalar aspects of those prescriptions now form the new IM Prescription 23.   
 
IM Prescription 5 does a couple of related things:   
 
! Proper subtypes and supertypes:  First, it introduces some terminology for talking about 

subtypes and supertypes—at least, scalar subtypes and supertypes—when the types in 
question are distinct.  To be specific, it recognizes that, much as in mathematics (where 
“set S′ is a proper subset of set S” means that (a) S′ is a subset of S and (b) S′ and S are 
distinct), it’s useful to define T′ as being a proper subtype of T if and only if (a) T′ is a 
subtype of T and (b) T′ and T are distinct.  (Recall that types are distinct if and only if they 
have distinct names.)  Thus, for example, CIRCLE is a proper subtype of both ELLIPSE 
and PLANE_FIGURE (note that, like “subtype of,” “proper subtype of” is transitive).  
CIRCLE is also a subtype of CIRCLE, but not a proper one.  Likewise, PLANE_FIGURE 
is a proper supertype of both ELLIPSE and CIRCLE; it’s also a supertype of 
PLANE_FIGURE, but not a proper one.   
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! Immediate subtypes and supertypes:  Second, the prescription also introduces some 

terminology for talking about scalar subtypes and supertypes when the types in question 
are adjacent to each other, as it were, or in other words have no types coming between 
them.  The wording of the prescription in this connection might look a little complicated, 
but what it boils down to—at least in the single inheritance case—is that, for example, 
CIRCLE is an immediate subtype of ELLIPSE, and ELLIPSE is an immediate supertype 
of CIRCLE.  CIRCLE is also a subtype of PLANE_FIGURE, but not an immediate one; 
equivalently, PLANE_FIGURE is a supertype of CIRCLE, but not an immediate one.   

 
Note:  In view of the first of the two bullet items above, you might feel the informal 

characterization given earlier for IM Prescription 2 (“subtypes are subsets”) could better be 
stated—in fact, strengthened—thus:  Proper subtypes are proper subsets.  Consider the 
following argument:   

 
If T and T′ are distinct, there must exist at least one value of type T that’s not a value of 
type T′.  Because suppose not.  Then every value of type T would be a value of type T′ (so 
|T′| and |T| would be equal); hence, (a) every operator that applied to values of type T′ 
would apply to values of type T, and (b) every constraint that applied to values of type T′ 
would apply to values of type T.  Thus, T′ and T would effectively be identical except for 
their names, and there wouldn’t be any logical reason to distinguish between them.   

 
In fact this argument is valid for scalar types.1  However, it’s not valid—not quite—for 

tuple or relation types, as we’ll see in Chapter 17.  But scalar types are what we’re supposed to 
be concentrating on in this part of the book, so I’m going to ignore tuple and relation types until 
further notice.  In the case of scalar types, then, that stronger characterization (viz., that proper 
subtypes are proper subsets) does in fact apply, thanks to part c. of IM Prescription 5:  If and 
only if T is an immediate supertype of T′ and T′ is neither a root type nor type omega—see IM 
Prescription 20—then the definition of T′ shall be accompanied by a specification of an 
example value that is of type T and not of type T′.  For example:   

 
TYPE CIRCLE  
     IS { ELLIPSE  
          CONSTRAINT THE_A ( ELLIPSE ) = THE_B ( ELLIPSE )  
          POSSREP ( R   = THE_A   ( ELLIPSE ) ,  
                    CTR = THE_CTR ( ELLIPSE ) )  
          NOT { ELLIPSE ( LENGTH ( 2.0 ) ,  
                          LENGTH ( 1.0 ) ,  
                          POINT  ( 0.0 , 0.0 ) ) } } ;  

 

                                                             
 
1 Note, however, that it does rely—somewhat indirectly—on part d. of IM Prescription 20 (discussed in Chapter 12).   
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The intent of the NOT specification here is to say that the specified value is a value of 
type ELLIPSE that’s not a value of type CIRCLE.  (It might be nice to find a better keyword 
than NOT for this purpose.)2  Note that, by definition, the example value specified in 
connection with type T′ must satisfy the type constraint for type T and not the type constraint 
for type T′.  See the discussion of IM Prescription 10 in Chapter 8 for further discussion.   

Incidentally, it follows immediately from the fact that, at least with scalar types, proper 
subtypes are proper subsets that the most specific type of a given value isn’t necessarily a leaf 
type.  For example, some ellipses are “just ellipses” and not circles.  Of course, it would be 
possible to set up the type schema3 in such a way as to ensure that most specific types are all 
leaf types, if desired.  With reference to Fig. 5.1, for example, introducing types NONCIRCLE, 
NONRECTANGLE, and NONSQUARE (all with the intuitively obvious semantics) as 
immediate subtypes of types ELLIPSE, POLYGON, and RECTANGLE, respectively, would 
have such an effect.  The Manifesto model doesn’t assume such an arrangement, but neither 
does it prohibit it.   

It also follows from the fact that proper subtypes are proper subsets that type hierarchies 
can’t contain any cycles (i.e., such hierarchies are indeed hierarchic).  For suppose, 
contrariwise, that there existed some sequence of types T1, T2, T3, ..., Tn such that T1 was an 
immediate supertype of T2, T2 was an immediate supertype of T3, ..., and Tn was an immediate 
supertype of T1.  Then every one of these types T1, T2, T3, ..., Tn would be a proper supertype, 
and hence a proper superset, of itself!   

To close this section, I remind you from Chapter 3 that if T′ is a proper subtype of T, 
there’s no requirement that their physical representations be the same.  Of course, there’s no 
requirement that they be different, either.   
 
 
IM PRESCRIPTION 6: SCALAR ROOT AND LEAF TYPES  
 
A scalar type that has type alpha—see IM Prescription 20—as its sole immediate supertype shall 
be a (scalar) root type.  A scalar type that has type omega—again, see IM Prescription 20—as its 
sole immediate subtype shall be a (scalar) leaf type.   
 

——— ♦♦♦♦♦ ——— 
 
IM Prescription 6 has to do with root and leaf types (in essence, it consists of what remains of the 
Explorations version after the material having to do with immediate subtypes and supertypes is 
removed; however, it has also been reworded—in fact, reduced in scope slightly—to make it 
clear that the new version applies to scalar types specifically).  Loosely, a root type is a type such 

                                                             
 
2 But what would be a suitable NOT specification for type ELLIPSE?  I’ll discuss this question in Chapter 12 also.   
 
3 Recall from Chapter 3 that the term type schema refers to a collection of related type definitions.  For example, the collection of 
type definitions for the six types shown in Fig. 5.1 could be regarded as constituting a type schema.   
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as PLANE_FIGURE that has no immediate supertype, and a leaf type is a type such as CIRCLE 
or SQUARE that has no immediate subtype.  Recall, however, that these terms are context 
dependent and must always be understood in the context of the given set of available types, 
GSAT.  For example, if type T is a leaf type but then we add some proper subtype T′ of T to the 
type hierarchy, clearly T won’t be a leaf type any longer.  When we were defining our original 
model, however, there was some debate over how the terms root and leaf should be interpreted 
when the special types alpha and omega—or, rather, what we now call superroot and subleaf 
types in general (see the discussion of IM Prescription 26 in Chapter 19)—were taken into 
account.  After much consideration, we decided that it made better sense to define the terms in 
such a way as to exclude those special types, and IM Prescription 6 does so.   

Note:  It follows from the foregoing that the type hierarchy concept itself is also context 
dependent (and the same goes for the more general type graph concept, to be discussed in 
Chapter 14).  Of course, those concepts aren’t part of our formal inheritance model anyway.  
However, it’s worth noting that the set of types GSAT available in any given situation can always 
be partitioned into a set of disjoint lattices (see the next subsection), as follows:4   
 
! The set of all scalar types is a lattice; for any given pair of such types, the least upper 

bound and the greatest lower bound are, respectively, the most specific common supertype 
and the least specific common subtype for the pair in question (see IM Prescription 8).  The 
least upper and greatest lower bounds for the lattice as a whole are the maximal scalar type 
alpha and the minimal scalar type omega, respectively.   

 
!  Let T be a tuple type, with corresponding maximal and minimal types T_alpha and 

T_omega, respectively (see IM Prescription 25).  Then the set of all subtypes of T_alpha 
down to and including T_omega is a lattice;5 for any given pair of such types, the least 
upper bound and the greatest lower bound are, respectively, the most specific common 
supertype and the least specific common subtype for the pair in question (see IM 
Prescription 24).  The least upper and greatest lower bounds for the lattice as a whole are 
T_alpha and T_omega, respectively.  Note that, by definition, all types belonging to a given 
tuple type lattice have the same attribute names.   

 
!  Let T be a relation type, with corresponding maximal and minimal types T_alpha and 

T_omega, respectively (again, see IM Prescription 25).  Then the set of all subtypes of 
T_alpha down to and including T_omega is a lattice;6 for any given pair of such types, the 
least upper bound and the greatest lower bound are, respectively, the most specific common 

                                                             
 
4 The material in the rest of this section is included primarily for purposes of future reference—it relies on numerous concepts I 
haven’t had a chance to discuss yet and thus might not make much sense on a first reading.  You can skip it for now if you like.   
 
5 The phrase “the set of all subtypes of T_alpha down to and including T_omega” could be replaced here by the phrase “the set of 
all supertypes of T_omega up to and including T_alpha” without changing the meaning, since the two sets are identical.   
 
6 The previous footnote applies here also.   
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supertype and the least specific common subtype for the pair in question (see IM 
Prescription 24).  The least upper and greatest lower bounds for the lattice as a whole are 
T_alpha and T_omega, respectively.  Note that, by definition, all types belonging to a given 
relation type lattice have the same attribute names.   

 
The foregoing lattices are pairwise disjoint, in the sense that every type in the given set of 

available types GSAT belongs to exactly one of them.  Moreover, no type in any of those lattices 
overlaps any type in any other (see IM Prescription 7).   
 
Lattices  
 
In case you’re not familiar with the concept of a lattice, let me elaborate briefly.  First we need 
some definitions.  Let S be a set, and let a partial ordering “≤” be defined on S, where:   
 

Definition:  A partial ordering “≤” on set S is a dyadic truth valued operator such that for 
all x, y, and z ∊ S, (a) x ≤ y or y ≤ x or both, or possibly neither; (b) x ≤ x (reflexivity); (c) if 
x ≤ y and y ≤ z, then x ≤ z (transitivity); and (d) if x ≤ y and y ≤ x, then x = y 
(antisymmetry).  Note:  The symbol “∊” denotes the set membership operator; it can be 
read as “in” or “is an element of” or “belongs to.”  As for the symbol “≤”, it can be read as 
“less than or equal to,” of course, but it doesn’t necessarily represent the usual arithmetical 
“less than or equal to” operator as such.   

 
Given this definition, I hope you can see that “is a subtype of” is a partial ordering on the 

set of types shown in Fig. 5.1.   
Now let S′ be a subset of S (the possibility that S′ might be equal to S isn’t excluded, of 

course).  Then:   
 

Definition:  The element x is a lower bound for S′ if and only if x ∊ S and x is less than or 
equal to every element of S′ with respect to the specified ordering (note that x might or 
might not be an element of S′ as such, as opposed to S).  Likewise, the element x is an 
upper bound for S′ if and only if x ∊ S and x is greater than or equal to every element of S′ 
with respect to the specified ordering (again x might or might not be an element of S′ as 
such, as opposed to S).7   
 
For example, given “is a subtype of” as a partial ordering on the set of types shown in 

Fig. 5.1, SQUARE and RECTANGLE are both lower bounds for the subset consisting of 
POLYGON and RECTANGLE, and PLANE_FIGURE and POLYGON are both upper bounds 
for that same subset.   
                                                             
 
7 I’m taking a slight liberty with terminology here, since “greater than” hasn’t technically been defined.  For the record, then:  We 
define “x is greater than or equal to y” (in symbols, “x ≥ y”) to be logically equivalent to “y is less than or equal to x” (“y ≤ x”).   
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Definition:  If the subset S′ has any lower bounds x at all, then it’s easy to see there must 
be a largest one, and that largest x is the greatest lower bound (GLB) for S′ with respect to 
the specified ordering.  Likewise, if the subset S′ has any upper bounds x at all, then it’s 
easy to see there must be a smallest one, and that smallest x is the least upper bound (LUB) 
for S′ with respect to the specified ordering.8   
 
For example, given “is a subtype of” as a partial ordering on the set of types shown in 

Fig. 5.1, RECTANGLE is the GLB for the subset consisting of POLYGON and RECTANGLE, 
and POLYGON is the LUB for that same subset.   

Now I can define the term lattice:   
 

Definition:  Let S be a set and let a partial ordering be defined on S. Then the combination 
of S and that ordering is a lattice if and only if every pair of elements of S has both a least 
upper bound and a greatest lower bound with respect to that ordering.   
 
Note, therefore, that strictly speaking it’s not a set as such that constitutes a lattice; rather, 

it’s a set together with some partial ordering.  But it’s usual to say things like “set S is (or forms) 
a lattice,” without explicitly mentioning the ordering, when the ordering in question is 
understood.  As far as we’re concerned in this book, of course, the pertinent ordering will always 
be “is a subtype of,” so I won’t usually bother to mention it explicitly.   

Note too, incidentally, that it follows from the foregoing definition that a set of cardinality 
either one or zero can always be regarded as a lattice.   

Now, I’ve already said that the set of available types GSAT in any given situation can be 
partitioned into a set of disjoint lattices, and I’ve explained in outline what I mean by that 
observation.  Now I’d like to add the following:9   

 
! Let T be any type.  Then the set of all subtypes of T, including both type T itself and type 

T_omega, can be regarded as a lattice in its own right, with least upper bound and greatest 
lower bound T and T_omega, respectively.   
 

! Likewise, the set of all supertypes of T, including both type T itself and type T_alpha, can 
also be regarded as a lattice in its own right, with least upper bound and greatest lower 
bound T_alpha and T, respectively.   
 

                                                             
 
8 Again I’m taking some slight liberties with terminology, since “largest” and “smallest” haven’t been defined.  This time, 
however, I’ll leave the formal definitions to you.   
 
9 Note that the types T_alpha and T_omega, mentioned earlier in this chapter and mentioned again several times in what follows, 
reduce to just alpha and omega, respectively, if type T is scalar.  See Part IV of this book for further explanation.   
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! The set of all subtypes and supertypes of T can also be regarded as a lattice in its own right, 
with least upper bound and greatest lower bound T_alpha and T_omega, respectively.   
 

! Finally (important!):  Let T be a type, with corresponding maximal and minimal types 
T_alpha and T_omega, respectively.  Then the set of all subtypes of T_alpha down to and 
including T_omega is a lattice, with least upper bound and greatest lower bound T_alpha 
and T_omega, respectively.  Please note that from this point forward in this book, the 
unqualified term type lattice should always be taken to refer to a lattice of this particular 
kind, unless the context demands otherwise.   

 
 
IM PRESCRIPTION 7: DISJOINT AND OVERLAPPING TYPES  
 
Types T1 and T2 shall be disjoint if and only if no value is of both type T1 and type T2.  Types 
T1 and T2 shall overlap if and only if there exists at least one value that is common to both.  
Distinct root types shall be disjoint.  If types T1 and T2 are distinct immediate subtypes of the 
same scalar type T, there shall exist at least one value that is of type T1 and not of type T2.   

 
——— ♦♦♦♦♦ ——— 

 
The last sentence of this prescription is new.  See Chapter 14 for further discussion.   
 
This prescription provides explicit definitions for (a) the concept of disjoint types in general—for 
root types in particular—and (b) the converse concept of overlapping types.  Certain of the 
prescriptions to be discussed in later chapters appeal explicitly to these concepts.  But let me say 
a little more, in connection with scalar types specifically, concerning the requirement that 
distinct root types must be disjoint.  (Actually, the argument that follows applies in all essential 
respects to nonscalar types as well.)   

Let RT1 and RT2 be distinct root types (i.e., roots for distinct type hierarchies).  Clearly, 
neither of RT1 and RT2 is a subtype of the other, because otherwise they’d be part of the same 
type hierarchy, and so at least one wouldn’t be a root type after all.  By the disjointness 
assumption, therefore, RT1 and RT2 are disjoint.  So, at least in the case of scalar types and 
single inheritance, distinct root types are necessarily disjoint.  And it follows immediately that 
distinct type hierarchies are disjoint as well—no value v is of two distinct types T1 and T2 such 
that T1 is part of type hierarchy TH1 and T2 is part of type hierarchy TH2 (because that value v 
would then necessarily be a value of the roots of both hierarchies, in which case those roots 
wouldn’t be disjoint after all).  For example, suppose we were to drop type PLANE_FIGURE 
(only) from Fig. 5.1; then we would have two distinct type hierarchies, one rooted at type 
ELLIPSE and the other at type POLYGON, that are necessarily disjoint (no value is both an 
ellipse and a polygon).   
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Note further that, at least in the context of scalar types and single inheritance, distinct 
immediate subtypes of the same supertype are disjoint as well (this is another consequence of the 
disjointness assumption).  Given that the subtypes in question are also necessarily nonempty (see 
the section “Miscellaneous Issues,” subsection “Initial Values,” in Chapter 2), the requirements 
of the final sentence of IM Prescription 7 are thus satisfied a fortiori.   

Here for the record are some further consequences of IM Prescription 7:   
 
! Let T1 and T2 be scalar types.  Then they’re certainly disjoint if they’re distinct leaf types 

or if either one is type omega.  (Note in particular that type omega is disjoint from itself!  
Certainly there’s no value that’s of both type omega and type omega.)   

 
! Let TT1 and TT2 be tuple types from the same type lattice.  Then they’re certainly disjoint 

if they’re distinct leaf types (see the discussion of IM Prescription 24 in Chapter 18).  They 
might or might not be disjoint—though in practice they usually will be—if one is the 
pertinent minimal type (see the discussion of IM Prescription 25 in Chapter 19).   

 
! Let RT1 and RT2 be relation types from the same type lattice.  Then they’re certainly not 

disjoint, even if they’re distinct leaf types (again see the discussion of IM Prescription 24 in 
Chapter 18), and even if one is the pertinent minimal type (again see the discussion of IM 
Prescription 25 in Chapter 19).  For example, let RT1 and RT2 be the relation types 
RELATION {PF CIRCLE} and RELATION {PF SQUARE}, respectively.  Then RT1 and 
RT2 overlap, because the empty relation RELATION {PF omega} is a value of both types.  
In fact, every type in the pertinent type lattice, even the pertinent minimal type RELATION 
{PF omega}, contains that same empty relation as a value.  Note, therefore, that minimal 
relation types are never empty.   

 
Note:  The Explorations version of IM Prescription 7 additionally stated that two types 

overlap if they’re the same type, implying in particular that type omega was considered to 
overlap with itself (as well as being disjoint from itself).  However, this part of the prescription 
seems never to have had a good logical basis; it seems to have been included purely because of a 
vague feeling on the part of Darwen and myself at the time that allowing a type not to overlap 
with itself was somehow counterintuitive.   
 
 
EXERCISES  
 
5.1 Distinguish between T and |T|.   
 
5.2 Why doesn’t it make sense to think of “colored circles” as constituting a subtype of the 
type “circles in general”?   
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5.3 Explain how it can be definitionally guaranteed that some rectangles aren’t squares (i.e., 
that some values of type RECTANGLE aren’t also values of type SQUARE).   
 
5.4 What’s a type schema?   
 
5.5 What’s a lattice?  Show that the set of types in Fig. 5.1, together with types alpha and 
omega, can indeed be regarded as a lattice.   
 
5.6 If type T′ is an immediate subtype of type T, do you think it could make sense for T′ to be 
user defined and T to be system defined?   
 
 
ANSWERS		
	
5.1	 The	symbol	|T|	denotes	the	set	of	values	that	constitute	type	T.			
	
5.2	 Informally,	because	there	are	more	colored	circles	than	there	are	just	plain	circles.		See	
the	discussion	of	IM	Prescription	2	in	the	body	of	the	chapter,	also	(and	more	especially)	the	
more	extensive	discussion	of	this	same	example	in	Chapter	21.			
	
5.3	 By	explicitly	specifying	as	part	of	the	definition	of	type	SQUARE—thereby	demonstrating	
the	existence	of—a	value	that’s	of	type	RECTANGLE	and	not	of	type	SQUARE.			
	
5.4	 A	type	schema	is	a	collection	of	related	type	definitions.			
	
5.5	 For	an	explanation	of	what	a	lattice	is,	see	the	body	of	the	chapter.		To	show	that	the	set	
of	types	in	Fig.	5.1	(plus	types	alpha	and	omega)	can	be	regarded	as	a	lattice,	we	need	to	show	
that	every	pair	of	types	from	that	set	has	both	a	least	upper	bound	(LUB)	and	a	greatest	lower	
bound	(GLB)	with	respect	to	“is	a	subtype	of.”		Well,	there	are	eight	types	in	total,	so	there	are	
8+7+6+5+4+3+2+1	=36	pairs	of	types	altogether	(including	pairs	for	which	the	two	types	are	
identical,	but	treating	pairs	of	the	form	(T1,T2)	and	(T2,T1)	as	one	and	the	same).		Let	(T1,T2)	be	
one	such	pair.		Then:			
	
!	 Any	pair	such	that	T1	is	alpha	or	T2	is	omega	has	LUB	T1	and	GLB	T2.			
	

For	the	remainder	of	this	discussion,	therefore,	let’s	ignore	pairs	with	either	T1	or	T2	equal	to	
either	alpha	or	omega.		Next:			
	
!	 Any	pair	such	that	T1	is	PLANE_FIGURE	has	LUB	T1	and	GLB	T2.			
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For	the	remainder	of	this	discussion,	therefore,	let’s	ignore	pairs	with	either	T1	or	T2	equal	to	
PLANE_FIGURE.		Next:			
	
!	 Any	pair	such	that	T2	is	a	subtype	of	T1	has	LUB	T1	and	GLB	T2.			
	

The	only	remaining	pairs	are	of	the	form	(T1,T2)	where	one	of	T1	and	T2	is	either	ELLIPSE	or	
CIRCLE	and	the	other	is	either	POLYGON,	RECTANGLE,	or	SQUARE.		All	such	pairs	have	LUB	
PLANE_FIGURE	and	GLB	omega.			
	
5.6	 If	T	is	system	defined	but	has	an	explicitly	declared	possrep,	there’s	no	problem—Tʹ	can	
be	defined	in	this	case	exactly	as	if	T	were	user	defined.		But	what	if	T	is	system	defined	and	has	
no	explicitly	declared	possrep?		In	such	a	case,	Tʹ	obviously	can’t	have	a	possrep	that’s	derived	
from	some	explicitly	declared	possrep	for	T.		However,	one	of	the	TTM	prescriptions	requires	Tʹ	
to	have	a	declared	possrep;	moreover,	the	BNF	grammar	in	Chapter	3	requires	that	possrep	to	
be	explicitly	derived	from	some	possrep	for	T.		This	state	of	affairs	suggests	that	the	Manifesto	
itself	might	need	some	minor	extension	in	this	area—perhaps	an	extension	according	to	which	
type	T	does	have	a	possrep	after	all,	albeit	one	that’s	provided	automatically.		By	way	of	
example,	suppose,	not	unreasonably,	that	the	system	defined	type	INTEGER	has	no	explicitly	
declared	possrep.		Given	the	suggested	Manifesto	extension,	then,	we	might	define	type	
EVEN_INTEGER	as	a	subtype	of	INTEGER	like	this	(to	invent	some	syntax	on	the	fly):			
	

TYPE EVEN_INTEGER IS { INTEGER  
                       CONSTRAINT IS_FACTOR_OF ( INTEGER , 2 )  
                       POSSREP ( SAME_AS ( INTEGER ) )  
                       NOT { 1 } } ;  

	
Note	the	type	constraint:		A	given	value	is	defined	to	be	of	type	EVEN_INTEGER	if	and	only	

if	it’s	of	type	INTEGER	and	it	has	2	as	a	factor.		(I’m	assuming	the	availability	of	an	operator	
called	IS_FACTOR_OF	that	returns	TRUE	if	and	only	its	second	argument	divides	its	first	exactly	
n	times,	where	n	is	an	integer.)		That	type	constraint	overall	is	an	example	of	what	IM	
Prescription	10	calls	a	specialization	constraint.		See	Chapter	8	for	further	explanation.			

	
	



  

	

Chapter  6 
 
 

S c a l a r   V a l u e s   w i t h   I n h e r i t a n c e 
 
 

The tragedy of the commons  
—William Forster Lloyd (attrib.): 

Two Lectures on the Checks to Population (1833) 
 
 

The scalar value concept needs some extension if type inheritance is supported, basically because 
such values are no longer limited to being of just one type.  As we’ll see, IM Prescription 8 
addresses this issue, though it does so in a rather roundabout way.  In particular, that prescription 
has the important consequence that every scalar value has exactly one most specific type.  Of 
course, we already know this—I mean, we already know that scalar values always have a unique 
most specific type, at least in the single inheritance context—because it’s a logical consequence 
of the disjointness assumption (see Chapter 3).  However, the fact that this same state of affairs 
holds as a logical consequence of IM Prescription 8 as well is more significant, in a way, because 
the disjointness assumption applies only to single inheritance, while IM Prescription 8 applies to 
multiple inheritance as well as single.   

That said, I won’t attempt to prove my claim in this chapter (my claim, that is, that the 
uniqueness of most specific types is a logical consequence of IM Prescription 8); instead, I’ll 
defer that proof to Chapter 15, where I’ll show that the claim does hold for multiple inheritance 
and hence for single as well, a fortiori.  (As a matter of fact, it holds for tuple and relation 
inheritance too, as we’ll see in Part IV of this book.  But first things first.)   

Of course, IM Prescription 8 is deliberately worded in such a way as to apply to inheritance 
in general, not just to single inheritance in particular (though only to scalar types in both cases; 
as already noted, tuple and relation inheritance is dealt with elsewhere).  Partly as a consequence 
of this generality, the prescription might look a little complicated at first sight.  However, in the 
degenerate case we’re concerned with in the present chapter (single inheritance only), it does 
become somewhat simpler than it might initially appear.   
 
 
IM PRESCRIPTION 8: COMMON SUBTYPES AND SUPERTYPES  
 
Let T1, T2, ..., Tm (m ≥ 0), T, and T′ be scalar types.  Then:   
 

a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, 
whenever a given value is of at least one of types T1, T2, ..., Tm, it is also of type T.  
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Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if and 
only if no proper subtype of T is also a common supertype for those types.   
 

b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, 
whenever a given value is of type T′, it is also of each of types T1, T2, ..., Tm.  Further, that 
type T′ shall be the least specific common subtype—also known as the intersection type 
or intersection subtype—for T1, T2, ..., Tm if and only if no proper supertype of T′ is also 
a common subtype for those types.   

 
Note:  Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to 

IM Prescription 20) that a unique most specific common supertype T and a unique least specific 
common subtype T′ always exist.  In the case of that particular common subtype T′, moreover, it 
can also be shown that whenever a given value is of each of types T1, T2, ..., Tm, it is also of 
type T′ (hence the alternative term intersection type).  And it can further be shown that every 
scalar value v has both a unique least specific type and a unique most specific type (regarding 
this latter—which elsewhere in these prescriptions is denoted MST(v)—see also IM Prescription 
9).   
 

——— ♦♦♦♦♦ ——— 
 
Before discussing IM Prescription 8 as such, I need to say a little more about the special scalar 
types alpha and omega (I’ve mentioned these types several times in passing in earlier chapters, 
but it’s time to get a little more specific).  So:   

 
! First, type omega.  Type omega is the empty scalar type—it contains no values at all.  

And, since the empty set is a subset of every set, it follows that type omega is a subtype of 
every scalar type (itself included, of course).  Note:  There’s a lot more that can and needs 
to be said about type omega in general, but I’ll defer detailed discussion to IM 
Prescription 20 in Chapter 12.  For present purposes, it’s sufficient to understand just that 
(a) such a type does exist (at least conceptually; I mean, I wouldn’t expect it to have to be 
explicitly declared), and (b) it’s unique, meaning it’s the only empty scalar type (see 
Exercise 6.6 at the end of the chapter).   

 
! As for type alpha, it’s type omega’s polar opposite; in other words, where type omega 

contains no values at all, type alpha contains all values (all scalar values, that is), and it’s 
a supertype of every scalar type, itself included.  Note:  As with type omega, there’s a lot 
more that can and needs to be said about type alpha in general, but I’ll defer detailed 
discussion to IM Prescription 20 in Chapter 12.  For present purposes, it’s sufficient to 
understand just that (again as with type omega) (a) such a type does exist, at least 
conceptually, and (b) it’s unique.   
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COMMON SUBTYPES  
 
Now I turn to IM Prescription 8 as such.  It’s convenient to deal with part b. of this prescription 
first, which asserts among other things that any given set of m scalar types T1, T2, ..., Tm (m ≥ 0) 
has a common subtype T′.  In order to show that this proposition is reasonable, I’ll begin by 
considering the case m = 2.  In this case we’re dealing with precisely two types T1 and T2 (and 
we can assume that these two types are distinct, for otherwise we’re dealing with the case m = 1).  
Thus:   

 
! If one of T1 and T2, say T2, is a subtype—necessarily a proper subtype—of the other 

(i.e., T1), then (a) every subtype of T2 is necessarily a common subtype for T1 and T2, 
and (b) of those common subtypes, T2 itself is clearly the one that’s the least specific.  In 
other words, T2 itself is the unique least specific common subtype in this case.  For 
example, the least specific common subtype for types PLANE_FIGURE and 
RECTANGLE is RECTANGLE.   

 
! If neither of T1 and T2 is a subtype of the other, then, by virtue of the disjointness 

assumption,1 they’re disjoint and have no values in common.  So in this case the only type 
that’s a common subtype for T1 and T2 is necessarily type omega—and since it’s the only 
one, it’s clearly also the least specific common subtype of T1 and T2 a fortiori.  For 
example, the least specific common subtype for types ELLIPSE and POLYGON is 
omega.   

 
Aside:		To	repeat,	omega	is	a	subtype	of	every	scalar	type;	e.g.,	given	the	type	hierarchy	of	
Fig.	5.1,	omega	is	a	subtype	of	both	of	the	leaf	types	CIRCLE	and	SQUARE.		It	follows	that	
we’re	already	moving	into	the	realm	of	multiple	inheritance,	albeit	in	a	very	limited	kind	
of	way.		Nevertheless,	I’ll	continue	to	assume	throughout	most	of	this	chapter,	and	most	
of	the	rest	of	this	part	of	the	book,	that	it	still	makes	sense	to	talk	in	terms	of	single	
inheritance	only.		Note	in	particular,	therefore,	that	the	disjointness	assumption	still	
holds,	even	given	type	omega.		For	example,	types	CIRCLE	and	SQUARE	are	still	disjoint,	
even	though	they	have	a	common	subtype.		The	point	is,	of	course,	that	the	subtype	in	
question	is	empty.		(If	they	had	a	nonempty	common	subtype,	then	every	value	of	that	
subtype	would	be	both	a	circle	and	a	square,	and	the	types	would	thus	not	be	disjoint.)		
End	of	aside.			

 

                                                             
 
1 This is where the proof of part b. of the prescription relies on the fact that we’re dealing with single inheritance specifically.   
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In both cases, therefore, scalar types T1 and T2 do have a unique least specific common 
subtype.  Let that type be T′.  Then it should be clear in both cases that the set of values |T′| is 
precisely the set theory intersection |T1| ∩ |T2| of the sets of values |T1| and |T2|.2  The alternative 
name intersection type, or (more specifically) intersection subtype, is thus reasonable, and in 
some ways intuitively preferable to the more formal name least specific common subtype.   

Now consider the case m = 3 (so we have three distinct types T1, T2, and T3).  Choose any 
pair of types in this set, say T1 and T2, and replace them by their intersection subtype, T12 say.  
By our previous argument, T12 and T3 in turn have a unique intersection subtype of their own, 
say T123.  By definition, then, the set of values |T123| = |T12| ∩ |T3|.  But |T12| = |T1| ∩ |T2|, and 
so we have |T123| = |T1| ∩ |T2| ∩ |T3|.  (Note that “∩” is associative, so this latter expression 
doesn’t need any parentheses.)  It follows that:   

 
! First, T123 is uniquely defined—it doesn’t matter which pair of types we choose initially.   
 
! Second, it’s clearly a common subtype for T1, T2, and T3—every value in T123 is a value 

of each of T1, T2, and T3.   
 
! Third, no proper supertype of T123 can possibly be a common subtype for T1, T2, and T3, 

because any such proper supertype will necessarily contain at least one value that’s not a 
value of all three of T1, T2, and T3, thanks to IM Prescription 5.   

 
Thus, T123 is clearly the unique least specific common subtype, or intersection subtype, for T1, 
T2, and T3.   

It should be clear without going into detail that the foregoing argument can readily be 
extended to the case of arbitrary m > 2.  So what about the remaining possibilities, m = 1 and 
m = 0?  Well, for m = 1 there’s just one type, T1, and the corresponding unique least specific 
common subtype is thus clearly T1 itself.  As for m = 0 ...Well, here I’m afraid you’re just going 
to have to trust me, at least for the time being; all I’m going to do right now is state what the 
situation is, without attempting to justify it (I’ll give that justification in the answer to 
Exercise 6.2 at the end of the chapter).  You can skip the rest of this subsection if you like, at 
least on a first reading.   

I’ll begin by reminding you that, as we saw in the discussion of IM Prescription 6 in 
Chapter 5, the set S of all scalar types (types alpha and omega included) forms a lattice, with 
alpha and omega as least upper and greatest lower bound, respectively.  Consider some subset S′ 
of S, consisting of types T1, T2, ..., Tm, say.  Then:   

 
!  If m = 0 (i.e., if S′ is empty), then every type in S, including both alpha and omega in 

particular, is a common subtype for the types in that subset S′.   
 

                                                             
 
2 The set theory intersection symbol “∩” can conveniently be pronounced “cap.”   
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! It follows that the unique, least specific, common subtype (or intersection subtype) for an 
empty set of scalar types is—believe it or not—type alpha.  (By contrast, the unique most 
specific common subtype is type omega.  Of course, type omega is the unique most 
specific common subtype of any set of scalar types T1, T2, ..., Tm (m ≥ 0).  See the 
section “Intersection Types vs. Union Types,” later.)   

 
 
COMMON SUPERTYPES  
 
Now I turn to part a. of IM Prescription 8, which says among other things that any given set of m 
scalar types T1, T2, ..., Tm (m ≥ 0) has a common supertype T.  In order to show that this 
proposition too is reasonable, again I’ll begin by considering the case m = 2 (and so again we 
have precisely two types T1 and T2, which we can assume are distinct).  Thus:   

 
! If one of T1 and T2, say T1, is a supertype—necessarily a proper supertype—of the other 

(i.e., T2), then (a) every supertype of T1 is necessarily a common supertype for T1 and 
T2, and (b) of those common supertypes, T1 itself is clearly the one that’s the most 
specific.  In other words, T1 itself is the unique most specific common supertype in this 
case.  For example, the most specific common supertype for types RECTANGLE and 
SQUARE is RECTANGLE.   

 
! If neither of T1 and T2 is a supertype of the other, then there are two possibilities:3   
 

1. T1 and T2 belong to the same type hierarchy, TH say.  In this case, by virtue of the 
fact that it’s indeed a hierarchy that we’re dealing with, there’ll be some nonempty 
sequence of types Ta, Tb, ..., Tz in TH such that (a) Ta is the root type for TH, Tb is 
an immediate subtype of Ta, Tc is an immediate subtype of Tb, and so on; (b) the 
last type Tz in the sequence is a supertype (not necessarily immediate) for both T1 
and T2; and (c) no type not in that sequence is a supertype for both T1 and T2.  
Thus, every type in that sequence Ta, Tb, ..., Tz is necessarily a common supertype 
for T1 and T2, and (b) of those common supertypes, Tz is clearly the one that’s the 
most specific.  In other words, Tz is the unique most specific common supertype in 
this case.  For example, the most specific common supertype for types ELLIPSE 
and RECTANGLE is PLANE_FIGURE.   

 
2. T1 and T2 belong to distinct type hierarchies (in particular, they might happen to be 

the root types for their respective hierarchies).  In this case the only type that’s a 
common supertype for T1 and T2 is clearly type alpha—and since it’s the only one, 
it’s clearly also the most specific common supertype, a fortiori.  For example, if we 

                                                             
 
3 And this is where the proof of part a. of the prescription relies on the fact that we’re dealing with single inheritance specifically.   
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had another type hierarchy (rooted in type SOLID_OBJECT, say, and 
corresponding to geometric objects in three-dimensional space) in addition to the 
one shown in Fig. 5.1, the most specific common supertype for types 
PLANE_FIGURE and SOLID_OBJECT would be alpha.   

 
Now consider the case m = 3 (so we have three distinct types T1, T2, and T3):   

 
! If T1, T2, and T3 aren’t all part of the same type hierarchy, then their sole (and therefore 

their unique, most specific) common supertype is type alpha.   
 

! So assume T1, T2, and T3 are all part of the same type hierarchy TH.  Observe that, by 
definition, the root type RT of TH is certainly a common supertype for T1, T2, and T3.  
Now consider the set of values |T1| ∪ |T2| ∪ |T3| (note that “∪” is associative, so this 
expression doesn’t need any parentheses).4  Then there are two possibilities:   

 
1. A type T with exactly this set of values exists within TH.  In this case, that type T is 

clearly the unique most specific common supertype for T1, T2, and T3, because 
(a) it’s uniquely defined; (b) it’s clearly a common supertype for T1, T2, and T3 
(every value of type T1, T2, or T3 is a value of type T); and (c) no proper subtype of 
T can possibly be a common supertype for T1, T2, and T3, because any such proper 
subtype will fail to contain at least one value that’s a value of at least one of T1, T2, 
and T3.   

 
2. Alternatively, no such type T exists within TH.  In this case, let me conduct a little 

thought experiment.  Suppose we explicitly define that type T (just for the sake of 
the argument) and introduce it into TH at the appropriate point.  Note that (a) that 
“appropriate point” will necessarily be somewhere below the root type RT, and 
hence that (b) the new type T will necessarily have an immediate supertype within 
TH, T* say.  Then that type T* will be the unique most common supertype for T1, 
T2, and T3.   

 
Again I think it should be clear without going into detail that the arguments given above 

can readily be extended to the case of arbitrary m > 2.  So what about the remaining possibilities, 
m = 1 and m = 0?  Well, for m = 1 there’s just one type, T1, and the corresponding unique most 
specific common supertype is clearly T1 itself.  As for m = 0, however, I’m going to have to ask 
you to trust me again, because again I’m just going to state what the situation is, without trying 
to justify it (again I’ll give the justification in the answer to Exercise 6.2 at the end of the 
chapter).  Again you can skip these details for now, if you want.   

                                                             
 
4 The set theory union symbol “∪” can conveniently be pronounced “cup.”   
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First recall again that the set S of all scalar types (types alpha and omega included) forms a 
lattice, with alpha and omega as least upper and greatest lower bound, respectively.  Consider 
some subset S′ of S, consisting of types T1, T2, ..., Tm, say.  Then:   

 
!  If m = 0 (i.e., if S′ is empty), then every type in S, including both alpha and omega in 

particular, is a common supertype for the types in that subset S′.   
 
! It follows that the unique, most specific, common supertype for an empty set of scalar 

types is type omega.  (By contrast, the unique least specific common supertype is type 
alpha.  Of course, type alpha is the unique least specific common supertype of any set of 
scalar types T1, T2, ..., Tm (m ≥ 0).  See the section “Intersection Types vs. Union Types” 
immediately following.)   

 
 
INTERSECTION TYPES vs. UNION TYPES  
 
To summarize thus far, then, every set T1, T2, ..., Tm (m ≥ 0) of scalar types has both a unique 
most specific common supertype and a unique least specific common subtype.  Note, however, 
that there’s some asymmetry here, at least with respect to nomenclature.  For simplicity, let’s 
focus on the case m = 2.  Let T1 and T2 have most specific common supertype T and least 
specific common subtype T′.  Then, while type T′ is referred to as the corresponding intersection 
type, type T is not referred to as the corresponding union type.  The reason is that T isn’t 
necessarily a union type as this latter term is defined within our inheritance model (see the 
discussion of IM Prescription 20 in Chapter 12).  That is, while the set of values |T′| is precisely 
the intersection |T1| ∩ |T2| of the sets of values |T1| and |T2|, the set of values |T| by contrast is a 
superset—in general, a proper superset—of the union |T1| ∪ |T2| of those sets.  In general, in 
other words, there’ll be values of type T that aren’t values of either type T1 or type T2.  For 
example, T, T1, and T2 might be PARALLELOGRAM, RECTANGLE, and RHOMBUS, 
respectively.  Type PARALLELOGRAM here is—let’s agree for the sake of the example—the 
most specific common supertype of types RECTANGLE and RHOMBUS, but some 
parallelograms are neither rectangles nor rhombi.5   

Next, it should be clear that any given set of scalar types also has both a unique least 
specific common supertype and a unique most specific common subtype.  (I mention this point 
mainly for completeness; it’s probably not very important in practice, as will quickly become 
obvious.)  To be specific:   

 
!  The least specific common supertype of any set of scalar types (the empty set included) is 

type alpha.  Note:  Informally, however, scalar least specific common supertypes are often 
defined to exclude type alpha, in which case (a) the term has meaning only if the types in 

                                                             
 
5 As noted in Chapter 3, I’ll be discussing this example in much more detail in Part III of this book.   
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question all belong to the same type hierarchy, and then (b) it’s taken to refer to the 
pertinent root type.  With reference to Fig. 5.1, for example, the least specific common 
supertype for types ELLIPSE and SQUARE is either type alpha or (if alpha is excluded) 
type PLANE_FIGURE.   

 
!  The most specific common subtype of any set of scalar types (the empty set included) is 

type omega.  Note:  Informally, however, scalar most specific common subtypes are often 
defined to exclude type omega, in which case the term has meaning only if the types in 
question all overlap.  With reference to Fig. 5.1, for example, (a) the most specific common 
subtype for types POLYGON and SQUARE is either type omega or (if omega is excluded) 
type SQUARE; (b) the most specific common subtype for types ELLIPSE and SQUARE 
either is type omega or (if omega is excluded) doesn’t exist.   

 
 
CONCLUDING REMARKS  
 
To say it one more time, I’ve shown in this chapter that every set T1, T2, ..., Tm (m ≥ 0) of scalar 
types has both a unique most specific common supertype and a unique least specific common 
subtype.  And I’ve claimed, though I haven’t yet shown, that—at least with single inheritance—
every scalar value has a unique most specific type (indeed, the note attached to IM Prescription 8 
makes that same claim).6  I’ve also claimed (and again the note to IM Prescription 8 does the 
same) that even with multiple inheritance the “unique most specific type” property—which I’ll 
abbreviate from this point forward to just “MST uniqueness”—still holds; that is, it’s still the 
case that every scalar value does have a unique most specific type.  With multiple inheritance, 
however, it’s not because of the disjointness assumption that MST uniqueness holds, because (as 
we’ll see in Chapter 14) the disjointness assumption itself doesn’t hold in that context.  Rather, 
MST uniqueness holds in that context because of IM Prescription 8.7  Now, I haven’t covered 
enough groundwork to demonstrate the truth of this claim yet, so you’ll just have to take it on 
trust for now.  I’ll come back and explain it in detail in Chapter 15.   

As mentioned in Chapter 3, to say value v is of most specific type T is to say the set of 
types possessed by v is, precisely, the set consisting of all supertypes of T (a set with T itself as a 
member, of course); in other words, v is of every type that’s a supertype of T and is of no other 
type.  For example, a value of most specific type RECTANGLE is of types RECTANGLE, 
POLYGON, PLANE_FIGURE, alpha, and no others (in particular, it’s not of type SQUARE).   

Finally, it’s obvious that (as that same note to IM Prescription 8 also claims) every scalar 
value also has a unique least specific type: namely, type alpha, or, if alpha is excluded, the 

                                                             
 
6 I’ve revised the final sentence of that note slightly (the fact that the most specific type of value v is referred to elsewhere in the 
IM prescriptions as MST(v) was inadvertently omitted from the Explorations version).   
 
7 Of course it holds as a consequence of IM Prescription 8 in the single inheritance context as well, as previously noted.   
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pertinent root type.  For example, a value of any of the types shown in Fig. 5.1 has as its least 
specific type either alpha or (if alpha is excluded) PLANE_FIGURE.   
 
 
EXERCISES  
 
6.1 Let scalar types T1, T2, ..., Tm be such that at least two of those types are disjoint.  What 
common supertypes and common subtypes does that set possess?   
 
6.2 Try and justify in your own words the rules regarding common subtypes and supertypes for 
an empty set of types.   
 
6.3 Does it make sense for a variable to have declared type omega?   
 
6.4 Does it make sense for an attribute of some tuple or relation type to have declared type 
omega?   
 
6.5 With reference to Fig. 5.1, complete the following table (MS = most specific, LS = least 
specific):   
 

┌────────────┬────────┬─────────┬─────────┬────────┬───────────┬───────────┐ 
│ set        │ common │ MS      │ LS      │ common │ MS        │ LS        │ 
│ of         │ sub    │ common  │ common  │ super  │ common    │ common    │ 
│ types      │ types  │ subtype │ subtype │ types  │ supertype │ supertype │ 
├════════════┼────────┼─────────┼─────────┼────────┼───────────┼───────────┤ 
│ ELLIPSE    │        │         │         │        │           │           │ 
│ CIRCLE     │        │         │         │        │           │           │ 
├────────────┼────────┼─────────┼─────────┼────────┼───────────┼───────────┤ 
│ ELLIPSE    │        │         │         │        │           │           │ 
│ RECTANGLE  │        │         │         │        │           │           │ 
├────────────┼────────┼─────────┼─────────┼────────┼───────────┼───────────┤ 
│ CIRCLE     │        │         │         │        │           │           │ 
│ SQUARE     │        │         │         │        │           │           │ 
│ POLYGON    │        │         │         │        │           │           │ 
├────────────┼────────┼─────────┼─────────┼────────┼───────────┼───────────┤ 
│ (empty)    │        │         │         │        │           │           │ 
└────────────┴────────┴─────────┴─────────┴────────┴───────────┴───────────┘ 

 
6.6 Consider the following type definition.  Can you see anything wrong with it?   
 

TYPE BETA  ... POSSREP ( X alpha ... ) ... ;  
 
What about this one?   
 

TYPE GAMMA ... POSSREP ( X omega ... ) ... ;  
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Or this one?   
 

TYPE DELTA ... POSSREP ( ... ) CONSTRAINT FALSE ... ;  
 
 
ANSWERS		
	
6.1	 The	sole,	and	hence	both	least	and	most	specific,	common	subtype	is	type	omega.		As	for	
common	supertypes,	type	alpha	is	certainly	one,	and	if	it’s	the	only	one—which	it	will	be	if	and	
only	if	the	types	in	question	don’t	all	belong	to	the	same	type	hierarchy—then	it’s	clearly	both	
least	and	most	specific;	otherwise	the	pertinent	root	type	will	also	be	a	common	supertype,	
and	there	could	be	others	too,	depending	on	the	specifics	of	the	types	in	question.		Note:		In	
fact,	it’s	largely	to	guarantee	the	validity	of	IM	Prescription	8	in	general,	even	when	the	types	in	
question	are	all	disjoint,	that	we	insist	on	the	uniqueness	of	types	alpha	and	omega.		See	the	
discussion	of	IM	Prescription	20	in	Chapter	12.			
	
6.2	 In	general,	type	Tʹ	is	a	common	subtype	for	types	T1,	T2,	...,	Tm	if	and	only	if	the	predicate		
	

FORALL v ( IF v ∊ |T′| THEN v ∊ INTERSECT { |T1| , |T2| , ..., |Tm| } )  
	
is	satisfied	by	Tʹ.		Now,	if	m	=	0,	the	set	of	types	T1,	T2,	...,	Tm	is	empty,	and	the	specified	
intersection	becomes	the	intersection	of	no	sets	at	all,	which	by	definition	is	the	universal	set.		
In	this	case,	therefore,	the	overall	predicate	evaluates	to	TRUE	for	all	types	Tʹ	in	the	pertinent	
type	lattice,	and	so	every	type	in	the	pertinent	type	lattice	is	a	common	subtype;	hence	the	
least	specific	of	those	common	subtypes,	if	we’re	talking	about	scalar	types	specifically,	is	
alpha.		(The	most	specific	is,	of	course,	omega.)			

Similarly,	in	general	type	T	is	a	common	supertype	for	types	T1,	T2,	...,	Tm	if	and	only	if	the	
predicate		
	

FORALL v ( IF v ∊ UNION { |T1| , |T2| , ..., |Tm| } THEN v ∊ |T| )  
	
is	satisfied	by	T.		If	m	=	0,	the	set	of	types	T1,	T2,	...,	Tm	is	empty,	and	the	specified	union	
becomes	the	union	of	no	sets	at	all,	which	by	definition	is	the	empty	set.		In	this	case,	therefore,	
the	overall	predicate	evaluates	to	TRUE	for	all	types	T	in	the	pertinent	type	lattice,	and	so	every	
type	in	the	pertinent	type	lattice	is	a	common	supertype;	hence	the	most	specific	of	those	
common	supertypes,	if	we’re	talking	about	scalar	types	specifically,	is	omega.		(The	least	
specific	is,	of	course,	alpha.)			

Note:		The	foregoing	arguments	don’t	rely	on	the	pertinent	lattice	being	the	scalar	type	
lattice	specifically	but	are	actually	more	general.		Thus,	if	the	lattice	in	question	is	the	type	
lattice	corresponding	to	some	tuple	or	relation	type	T,	the	least	specific	common	subtype	and	
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the	most	specific	common	supertype	for	the	empty	subset	of	the	types	in	that	lattice	are	
T_alpha	and	T_omega,	respectively.		See	Chapter	19	for	further	discussion.			
	
6.3	 No,	because	no	value—no	initial	value	in	particular	(see	Chapter	2)—could	ever	be	
assigned	to	the	variable	in	question.			
	
6.4	 (a)	A	tuple	type	can	have	an	attribute	of	declared	type	omega,	but	the	tuple	type	in	
question	will	necessarily	be	empty.		(b)	A	relation	type	can	have	an	attribute	of	declared	type	
omega	too;	in	this	case,	however,	the	relation	type	won’t	be	empty	but	will	contain	exactly	one	
value:	namely,	the	empty	relation	of	that	type.		Note:		In	each	of	the	foregoing	cases	(a)	and	(b),	
“omega”	could	be	replaced	by	“an	arbitrary	empty	type”	without	invalidating	the	claim	being	
made.		For	further	discussion,	see	the	discussion	of	IM	Prescription	21	in	Chapter	17.			
	
6.5	 ┌────────────┬────────┬─────────┬─────────┬─────────┬───────────┬───────────┐ 

│ set        │ common │ MS      │ LS      │ common  │ MS        │ LS        │ 
│ of         │ sub    │ common  │ common  │ super   │ common    │ common    │ 
│ types      │ types  │ subtype │ subtype │ types   │ supertype │ supertype │ 
├════════════┼────────┼─────────┼─────────┼─────────┼───────────┼───────────┤ 
│ ELLIPSE    │ CIRCLE │ omega   │ CIRCLE  │ ELLIPSE │ ELLIPSE   │ alpha     │ 
│ CIRCLE     │ omega  │         │         │ PLANE_  │           │           │ 
│            │        │         │         │  FIGURE │           │           │ 
│            │        │         │         │ alpha   │           │           │ 
├────────────┼────────┼─────────┼─────────┼─────────┼───────────┼───────────┤ 
│ ELLIPSE    │ omega  │ omega   │ omega   │ PLANE_  │ PLANE_    │ alpha     │ 
│ RECTANGLE  │        │         │         │  FIGURE │  FIGURE   │           │ 
│            │        │         │         │ alpha   │           │           │ 
├────────────┼────────┼─────────┼─────────┼─────────┼───────────┼───────────┤ 
│ CIRCLE     │ omega  │ omega   │ omega   │ PLANE_  │ PLANE_    │ alpha     │ 
│ SQUARE     │        │         │         │  FIGURE │  FIGURE   │           │ 
│ POLYGON    │        │         │         │ alpha   │           │           │ 
├────────────┼────────┼─────────┼─────────┼─────────┼───────────┼───────────┤ 
│ (empty)    │ (all)  │ omega   │ alpha   │ (all)   │ omega     │ alpha     │ 
└────────────┴────────┴─────────┴─────────┴─────────┴───────────┴───────────┘ 

	
6.6	 Type	BETA	is	surely	illegal,	because	by	definition	alpha	is	a	supertype	of	every	scalar	type,	
and	BETA	is	a	scalar	type;	so	in	effect	BETA	is	being	defined	in	terms	of	itself.		As	for	type	
GAMMA,	it’s	illegal	too,	because	if	it	were	permitted	it	would	be	empty,	and	we	require	type	
omega	to	be	the	sole	empty	scalar	type.		(Recall	the	following	text	from	The	Third	Manifesto,	
quoted	in	Chapter	2:			
	

With	the	sole	exception	of	the	system	defined	empty	type	omega	(which	is	defined	only	if	type	
inheritance	is	supported),	the	definition	of	any	given	scalar	type	T	shall	be	accompanied	by	a	
specification	of	an	example	value	of	that	type.			

	
But	no	such	value	can	be	defined	for	type	GAMMA.)			

For	essentially	similar	reasons	type	DELTA	is	illegal	as	well.			
	



  

	

	



  

	

Chapter  7 
 
 

S c a l a r   V a r i a b l e s   w i t h   I n h e r i t a n c e 
 
 

That mysterious independent variable  
—T. H. Huxley: 

Universities, Actual and Ideal (1874) 
 
 

Like the concept of a scalar value (see Chapter 6), the scalar variable concept needs some 
extension if type inheritance is supported, basically because such variables are permitted to have 
a value whose most specific type is any nonempty subtype of the declared type of the variable in 
question.  IM Prescription 9 addresses this issue.   

Note:  Of course, IM Prescription 9, like IM Prescription 8 in Chapter 6, is deliberately 
worded in such a way as to apply to multiple inheritance as well as single inheritance (though 
only to scalar types in both cases; tuple and relation types are dealt with separately in IM 
Prescription 28—see Chapter 20).   
 
 
IM PRESCRIPTION 9: MODEL OF A SCALAR VARIABLE  
 
Let scalar variable V be of declared type T.  Because of value substitutability (see IM 
Prescription 16), the value v assigned to V at any given time can have any nonempty subtype T′ 
of type T as its most specific type.  We can therefore model V as a named ordered triple of the 
form <DT,MST,v>, where:   
 

a. The name of the triple is the name of the variable, V.   
 

b. DT is the name of the declared type for variable V.   
 

c. MST is the name of the most specific type—also known as the current most specific 
type—for, or of, variable V.   
 

d. v is a value of most specific type MST—the current value for, or of, variable V.   
 

We use the notation DT(V), MST(V), v(V) to refer to the DT, MST, v components, respectively, of 
this model of scalar variable V.  Note:  Since v(V) uniquely determines MST(V)—see IM 
Prescription 8—the MST component of V is strictly redundant.  We include it for convenience.   



 
 
144      Chapter 7 / Scalar Variables with Inheritance 

Now let X be a scalar expression.  By definition, X represents an invocation of some scalar 
operator Op.  Thus, the notation DT(V), MST(V), v(V) just introduced can be extended in an 
obvious way to refer to the declared type DT(X), the current most specific type MST(X), and the 
current value v(X), respectively, of X—where DT(X) is the declared type of the invocation of Op 
in question (see IM Prescription 17) and is known at compile time, and MST(X) and v(X) refer to 
the result of evaluating X and are therefore not known until run time (in general).   
 

——— ♦♦♦♦♦ ——— 
 
Consider the following code fragment:   
 

VAR E ELLIPSE ;  
VAR C CIRCLE ;  
 
E := C ;  
 
Clearly, the declared type DT(E) of scalar variable E here is ELLIPSE.  Equally clearly, 

however, the value of E at run time can have as its most specific type any nonempty subtype of 
ELLIPSE (possibly just ELLIPSE itself, of course).  For example, after the assignment shown 
(of C to E), that value will be a circle instead of “just an ellipse.”  Thus, we can say that the 
current most specific type—or, more usually, just the most specific type—MST(E) of E at the 
time in question is CIRCLE,1 and the current value v(E) of E at that same time is the specific 
circle in question.  In other words, the situation after the assignment is as follows:   

 
! DT(E) is ELLIPSE.  Actually, of course, it’s always ELLIPSE; indeed, the fact that it’s 

ELLIPSE is known at compile time as well as at run time.   
 

! MST(E) is CIRCLE.  This fact isn’t known until until run time.   
 

! v(E) is whatever circle happens to be the current value of E at run time.   
 

Observe, therefore, that we must be very careful in the inheritance context over the logical 
difference between the two important types that apply to any given variable: viz., the declared 
type, which doesn’t change over time, vs. the current most specific type, which does (in general).  
Observe further that if type T′ is the current most specific type of variable V, then every proper 
supertype of type T′ is also a “current type” of variable V, in a sense.  However, the term “current 
type” is usually used, informally, to mean the most specific current type specifically, barring 
explicit statements to the contrary.   

Note:  By virtue of IM Prescription 8, every value has a unique most specific type; thus, 
MST(V) is in fact implied by v(V), and is therefore logically unnecessary as a component of the 

                                                             
 
1 Recall that type CIRCLE in our running example (Fig. 5.1) has no proper subtype apart from type omega.   
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model of V.  We include it for reasons of convenience and explicitness.  Also, recall from 
Chapter 2 that the Manifesto requires all variables to be assigned an initial value before they’re 
used; as a consequence of this fact, DT(V) can never be omega.  Nor can MST(V), of course, 
because there simply is no value of type omega.   
 
Model of a Scalar Expression  
 
It should be clear that—as IM Prescription 9 in fact says—the foregoing definitions can readily 
be extended to apply to arbitrary scalar expressions instead of just to scalar variables as such.  
Let X be such an expression, and let v(X) be the result of evaluating that expression at run time.  
Then:   

 
! X has a declared type DT(X), viz., the declared type of the operator invocation at the 

outermost level of X (i.e., the operator invocation that occurs last in the evaluation of X).  
DT(X) is known at compile time; in fact, it’s determined by the pertinent invocation 
signature, as we’ll see in the discussion of IM Prescription 17 in Chapter 11.   

 
! X also has a current most specific type MST(X), viz., the type that’s the most specific type 

of v(X).  MST(X) is not known until run time, in general.  (Of course, MST(X) is implied by 
v(X) and is therefore logically unnecessary as a component of this model of X; again we 
include it for reasons of convenience and explicitness.)   

 
 
INCLUSION POLYMORPHISM  
 
I’ve now laid enough groundwork to be able to discuss an important concept that pervades the 
entire topic of type inheritance: polymorphism.  (Of course, we’ve met this concept before, in 
Chapter 2 in particular, but there’s a lot more to be said about it in the present context.)  As 
we’ve seen, if T′ is a subtype of T, then all operators—all read-only operators, that is—that apply 
to values of type T apply to values of type T′ as well.  Thus, to repeat a by now familiar example, 
if AREA_OF (e) is valid, where e is an ellipse, then AREA_OF (c), where c is a circle, must be 
valid as well.  It follows that the AREA_OF operator is polymorphic:  It can take arguments of 
different types on different invocations.  And the kind of polymorphism involved is called 
inclusion polymorphism specifically, on the grounds that the relationship between T and T′ is 
basically that of set inclusion—the set of values |T| constituting type T is a superset of, or 
includes, the set of values |T′| constituting type T′.   

Note:  As the foregoing paragraph suggests (and despite the title of this chapter), inclusion 
polymorphism as discussed here does have to do with values specifically.  But there are 
implications for variables too, some of which we’ll get to toward the end of the chapter.   
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IMPLEMENTATION VERSIONS  
 
Recall now that ellipses and circles, at least as we defined them in Chapter 3, have different 
possreps.  Just to remind you, here are those definitions again (in outline):   

 
TYPE ELLIPSE ...  
     POSSREP ( A ... , B ... , CTR ... ) ... ;  
 
TYPE CIRCLE  ...  
     POSSREP ( R ... , CTR ... ) ... ;  
 
It’s conceivable, therefore, that two different implementation versions of the AREA_OF 

operator will exist under the covers, one for type ELLIPSE that makes use of the ELLIPSE 
possrep and one for type CIRCLE that makes use of the CIRCLE possrep.  To repeat, it’s 
conceivable—but it’s not absolutely necessary; so long as the code that implements AREA_OF 
for type ELLIPSE is written in terms of the ELLIPSE possrep, that code will work for circles 
too, because the ELLIPSE possrep is necessarily a possrep for CIRCLE too (even though, as 
explained in Chapter 3, it might not be an explicitly declared one).  To be specific, the area of a 
general ellipse is πab, while that of a circle is πr²; thus, the code that implements the ellipse 
version of AREA_OF will presumably invoke THE_A and THE_B, and that code will certainly 
work for a circle.   

Observe now, however, that the ellipse AREA_OF code will definitely not work for circles 
if it’s written in terms of a physical representation instead of a possible one, and the physical 
representations for types ELLIPSE and CIRCLE differ.  The practice of implementing operators 
in terms of physical representations is thus clearly contraindicated.  Code defensively!  In fact, 
I’d like to recommend that access to physical representations be limited to code that implements 
the following operators only:   

 
! Selectors  
 
! THE_ operators  
 
! IS_T operators (see the discussion of IM Prescription 15 in Chapter 10, and the section 

“Code Reuse” below for some examples)  
 

Of course, many of these operators—possibly all of them—will have system provided 
implementations anyway.   

On the other hand, the type implementer might want to provide distinct versions of some 
operator at the supertype and subtype levels anyway, even when there’s no logical need to do so.  
Consider polygons and rectangles, for example.  Let the AREA_OF operator apply to polygons 
and rectangles as well as to ellipses and circles.  Then whatever complicated algorithm is used to 
compute the area of a general polygon will certainly work for a rectangle; for rectangles, 
however, a much more efficient algorithm—just multiply the height by the width—is available.  
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At least for performance reasons, therefore, it might be desirable to have two distinct 
implementation versions of the AREA_OF operator, thus (in outline only, but note the 
VERSION specifications in particular):   
 

OPERATOR AREA_OF VERSION AREA_OF_P ( P POLYGON ) RETURNS AREA ;  
   RETURN ( ... ) ;  
END OPERATOR ;  
 
OPERATOR AREA_OF VERSION AREA_OF_R ( R RECTANGLE ) RETURNS AREA ;  
   RETURN ( ... ) ;  
END OPERATOR ;  

 
The net of the foregoing discussion is that what appears to be a single operator above the 

covers can have any number n (n > 0) of implementation versions—versions for short—under 
the covers.  Of course, it makes no difference to the user how many such versions exist; in the 
case of AREA_OF, for example, the user knows the operator works for, say, ellipses, and 
therefore it works for circles too, by definition, because circles are ellipses.  That’s what 
inclusion polymorphism is all about.   
 
A Remark on THE_ Operators  
 
Consider the operators THE_A, which applies to values of type ELLIPSE and hence to values of 
type CIRCLE as well, and THE_R, which applies only to values of type CIRCLE (for simplicity, 
let’s agree to ignore the operator THE_B throughout this subsection).  Now suppose ellipses and 
circles have the same physical representation and—in accordance with the remarks above 
concerning such matters—THE_A for type ELLIPSE is implemented in terms of that physical 
representation.  Then that same implementation code can clearly serve as the implementation of 
THE_A for type CIRCLE too, and THE_R for type CIRCLE can then be implemented as 
follows, without accessing the physical representation at all:   
 

OPERATOR THE_R ( C CIRCLE ) RETURNS LENGTH ;  
   RETURN ( THE_A ( C ) ) ;  
END OPERATOR ;  
 

Of course, it could also be implemented directly in terms of the physical representation if 
desired.   

Now suppose instead that ellipses and circles have different physical representations, but 
THE_A for type ELLIPSE is still implemented in terms of the ELLIPSE physical representation.  
Then THE_R for type CIRCLE might be implemented in terms of the CIRCLE physical 
representation, and THE_A for type CIRCLE could then be implemented as follows:   

 
OPERATOR THE_A ( C CIRCLE ) RETURNS LENGTH ;  
   RETURN ( THE_R ( C ) ) ;  
END OPERATOR ;  
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Of course, it could also be implemented directly in terms of the CIRCLE physical representation 
if desired.   

The net of the foregoing discussion is just this:  For type CIRCLE, at most one2 of THE_A 
and THE_R needs to be implemented in terms of the physical representation, and then the other 
can be implemented in terms of that one.  Either way, of course, it makes no logical difference so 
far as the user is concerned.   
 
 
CODE REUSE  
 
One important consequence of the notion of inclusion polymorphism is the possibility of code 
reuse.  Suppose with reference to our running example that we need to write a program to display 
some diagram, made up of squares, circles, ellipses, etc.  Without inclusion polymorphism, the 
code for this task will involve an expression looking something like this:3   

 
FOR EACH x ∊ DIAGRAM  
    CASE  
       WHEN IS_SQUARE ( x ) THEN DISPLAY_SQUARE ( ... )  
       WHEN IS_CIRCLE ( x ) THEN DISPLAY_CIRCLE ( ... )  
       WHEN   .......................................  
    END CASE  

 
With such support, by contrast, the code will be much simpler and more succinct:   

 
FOR EACH x ∊ DIAGRAM DISPLAY ( x )  

 
Explanation:  The operator DISPLAY in this second version of the code is (let’s assume 

for the sake of the example) defined for values of type PLANE_FIGURE—i.e., the sole 
parameter to that operator is of declared type PLANE_FIGURE—and is therefore inherited by 
types SQUARE, CIRCLE, etc.  For generality, let’s assume a different implementation version 
of DISPLAY is defined for each of those types.  (If indeed it does turn out to be desirable to 
define an implementation version that’s specific to some given subtype, then that version can be 
defined when that subtype is defined or at some later time.)  Then, at run time,4 when the system 
encounters the operator invocation DISPLAY (x), it will determine the version of DISPLAY 
that’s appropriate to the most specific type of x at that time, and will invoke that version 
accordingly (see the discussion of run time binding in Chapter 11).  Thus, inclusion 

                                                             
 
2 It’ll be none at all if the THE_A implementation code for ellipses works for circles too.   
 
3 The expressions denoting the arguments to the various DISPLAY invocations are omitted to avoid distracting irrelevancies.  For 
the record, however, they would most likely take the form TREAT_AS_T (x), where T is the pertinent most specific type; e.g., 
the argument expression in the case of DISPLAY_SQUARE would probably take the form TREAT_AS_SQUARE (x).  See 
Chapter 10 for further explanation.   
 
4 Or possibly compile time (see Chapter 11).   
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polymorphism effectively leads to certain CASE expressions, and/or CASE statements, that 
would otherwise have had to appear in the user’s source code being moved under the covers: in 
effect, being performed by the system on the user’s behalf.   

Observe the implications of the foregoing for program maintenance in particular.  For 
example, suppose a new type TRIANGLE is defined as another subtype of PLANE_FIGURE—
in fact, as an immediate subtype of POLYGON.  Suppose also for generality that a 
corresponding new implementation version of DISPLAY is defined as well.  Without inclusion 
polymorphism, it would be necessary to examine every source program to see whether any 
CASE expression or statement needed to be modified to include something like the following:   

 
WHEN IS_TRIANGLE ( x ) THEN DISPLAY_TRIANGLE ( ... )  

 
With inclusion polymorphism, however, no such modifications will be needed.   

Because of examples like the foregoing, inclusion polymorphism is sometimes 
characterized, a little colorfully, as allowing “old code to invoke new code”; that is, a program P 
is effectively able to invoke some version of an operator Op that didn’t exist—the version, that 
is—when P was written.  Thus, we have, at least potentially, what’s called code reuse:  The very 
same program P might be usable on data of a type that wasn’t defined when P was written.  
(Certainly the code of program P is being reused here.  The code that implements operator Op 
under the covers might or might not be reused; for example, the code that implements the 
AREA_OF operator for polygons might or might not be reused for rectangles, as previously 
discussed.)   
 
 
OVERLOADING POLYMORPHISM  
 
Polymorphism as discussed in this chapter so far, meaning inclusion polymorphism specifically, 
is a logical consequence of the very notion of type inheritance.  Now, we’ve already seen several 
examples of polymorphic operators in this book (in Chapter 2 in particular): “=”, “:=”, “<”, “-”, 
and so on.  But there’s no inheritance, as such, involved in these examples—they’re all examples 
of overloading polymorphism (also known as ad hoc polymorphism, or just overloading for 
short).5   

Unfortunately, these two kinds of polymorphism are frequently confused in the literature 
(especially, it seems, in the object literature).  But they’re not the same thing.  A helpful way to 
characterize the logical difference between them is as follows:   

 
! Inclusion polymorphism means there’s just one operator, with several distinct 

implementation versions under the covers (but the user doesn’t need to know the versions 
                                                             
 
5 Actually, “=” and “:=” in particular might be inherited from type alpha (see the discussion of IM Prescription 20 in Chapter 12), 
in which case they’ll be examples of inclusion polymorphism after all.  However, the general point here regarding overloading 
polymorphism is valid nonetheless.   
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in question are in fact distinct—to the user, to say it again, there’s just the one operator).  
AREA_OF is an example.   

 
! Overloading polymorphism, by contrast, means there are several distinct operators with the 

same name (and the user does need to know the operators in question are in fact distinct, 
with distinct—though preferably similar—semantics).  For example, in many languages the 
“+” operator is overloaded:  There’s one “+” operator for integers, another for rational 
numbers, and so on.6   

 
These matters are explained more fully under IM Prescriptions 16-19 in Chapter 11, but I’ll 

elaborate on them very briefly here for purposes of future reference (despite the fact that such 
elaboration might not make very much sense at this juncture).  Briefly, then:   

 
! For overloading polymorphism, each of the distinct operators will have its own distinct 

specification signature (because otherwise invocations of the operators in question would 
be ambiguous), and those specification signatures will be visible to the user.   

 
! For inclusion polymorphism, by contrast, the single operator will have just one 

specification signature (visible to the user),7 but each distinct implementation version of 
that operator will have its own distinct version signature (hidden under the covers and not 
visible to the user).   

 
Note:  For obvious reasons, I’ll take the unqualified term polymorphism throughout the 

remainder of this book to mean inclusion polymorphism specifically, barring explicit statements 
to the contrary.   
 
Changing Semantics  
 
Unfortunately, there’s a fly in the ointment.  To be specific, let Op be a polymorphic operator 
(meaning, to repeat, an operator such as AREA_OF that displays inclusion polymorphism 
specifically).  Then there can be no guarantee that the various implementation versions of Op all 
implement the same semantics!  If they don’t, then we don’t have true inclusion polymorphism 
any more, we have overloading polymorphism instead; such a state of affairs constitutes a 
violation of the model (the Manifesto model, that is), and the consequences are unpredictable.  
Regrettably, however, the requirement that all versions of a given operator implement the same 

                                                             
 
6 Some languages overload the “+” operator still further and use it to mean both numeric addition and string concatenation.  
However, this particular overloading violates the goal of “preferably similar semantics” because, in such a language, if A and B 
are numbers, then A+B = B+A, but if they’re strings then (in general) A+B ≠ B+A.   
 
7 As noted at the end of the discussion of IM Prescription 9 earlier, each specification signature in turn—regardless of whether 
we’re talking about overloading or inclusion polymorphism—will be accompanied by a set of invocation signatures, and those 
invocation signatures will also be visible to the user.  See Chapter 11 for further explanation.   
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semantics is unenforceable.  What’s more, some writers even claim, in effect, that the ability to 
change semantics is desirable!  To quote The Object Data Standard: ODMG 3.0 (R. G. G. Cattell 
and Douglas K. Barry, eds.; Morgan Kaufmann, 2000):   

 
For example, the Employee type might have an operation for calculate_paycheck.  The 
Salaried_Employee and Hourly_Employee class implementations might each refine that behavior to 
reflect their specialized needs.8   
 
Refine that behavior here means, precisely, changing the semantics.  Note, however, that 

there does seem to be a tacit assumption in the example cited that the “subtypes” 
Salaried_Employee and Hourly_Employee aren’t really subtypes at all (at least, not in the sense 
of that term as defined in our model) but are, rather, what are sometimes called derived types.  
See the discussion of “the EXTENDS relationship” in Chapter 21 for further explanation.   
 
A Note on Overriding  
 
There’s another concept that’s frequently confused in the literature with either overloading or 
inclusion polymorphism or both: viz., operator overriding.  Operator overriding can be defined 
as the replacement of an operator by another operator having the same specification signature but 
different semantics.  For example, suppose there exists an operator called LOG (perhaps built in) 
that returns natural logarithms; then it might be possible to override that operator by one that 
returns logarithms to base ten instead.   

Here’s an example of confusion over the use of this term (it’s from The Object Database 
Handbook: How to Select, Implement, and Use Object-Oriented Databases, by Douglas K. 
Barry, Wiley Publishing, 1996—italics as in the original):   
 

The object model allows ... multiple use of the same method, which is called overloading.  The 
overloaded definition of Display in the [subclass] overrides the definition of Display in the 
[superclass] because it is lower in the class hierarchy.   

 
And elsewhere in the same book:   
 

Overriding:  Where a method for a subclass adds to or replaces a method of its superclass.   
 

Incidentally, note that these quotes seem also to embrace the idea that the ability to change 
semantics is a good thing (see the previous subsection).  They also seem to be confused over the 
difference between a model and its implementation, though in fact this latter criticism can 
justifiably be leveled at object writings in general.   
 
 
                                                             
 
8 I can’t help pointing out, for what it’s worth, that the first sentence of this quote uses the term type and the second class.   
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SUBSTITUTABILITY  
 
Recall now the concept of substitutability, which I said in Chapter 3 was “in many ways the 
whole point of inheritance.”  Just to remind you, substitutability means among other things that, 
e.g., wherever the system expects a value of type ELLIPSE, we can always substitute a value of 
type CIRCLE instead, because circles are ellipses.  Here are a couple of important specific 
manifestations of this phenomenon:   

 
! If relvar R has an attribute A of declared type ELLIPSE, some of the A values in the value 

of R at some given time might in fact be circles rather than “just ellipses.”   
 

! If scalar expression X has declared type T and T has a possrep component A of declared 
type ELLIPSE, then the operator invocation THE_A(X) might sometimes return a circle 
instead of “just an ellipse.”   

 
More generally, wherever the system expects a value of type T, we can always substitute a 

value of some subtype T′ of T—The Principle of Value Substitutability (see the discussion of IM 
Prescription 16 in Chapter 11).  But it should be clear by now that substitutability as explained 
above is really just the by now familiar notion of inclusion polymorphism in a different guise.  I 
mention it here principally because it’s widely recognized as the sine qua non of type 
inheritance, and no discussion of that topic would be complete without such a mention.   

Now, I said earlier in this chapter that the concept of inclusion polymorphism had 
implications for variables as well as values.  It’s time to get more specific.  By way of example, 
consider the following read-only operator definition:9   

 
OPERATOR MOVE ( E ELLIPSE , R RECTANGLE ) RETURNS ELLIPSE ;  
   RETURN ( ELLIPSE ( THE_A ( E ) , THE_B ( E ) , CTR ( R ) ) ) ;  
END OPERATOR ;  

 
Loosely speaking, operator MOVE moves a specified ellipse such that it becomes centered on 
the center of a specified rectangle (CTR is, let’s assume, a read-only operator that returns the 
center of its rectangle argument).   

To repeat, MOVE as just defined is a read-only operator (neither of its parameters is 
subject to update).  Thanks to value substitutability, therefore, (a) the argument that’s substituted 
for the first parameter in a MOVE invocation can be a value of any nonempty subtype of type 
ELLIPSE; similarly, (b) the argument that’s substituted for the second parameter in such an 
invocation can be a value of any nonempty subtype of type RECTANGLE.  Thus, for example, 
the following is a legal MOVE invocation— 
                                                             
 
9 Now we know that operators can have several different implementation versions, it would be more accurate to regard operator 
definitions like the one shown here as defining just one particular implementation version of the operator in question, out of 
possibly several such.  For simplicity, however, I’ll continue to talk in terms of operator definitions per se and not “operator 
implementation version definitions” (unless the context is such that it’s really important to stress the difference).   
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MOVE ( C , S )  
 

—where C is a variable of declared type CIRCLE and S is a variable of declared type SQUARE.   
Now suppose by contrast that we define MOVE as an update operator instead:   
 
OPERATOR MOVE ( E ELLIPSE , R RECTANGLE ) UPDATES { E } ;  
   THE_CTR ( E ) := CTR ( R ) ;  
END OPERATOR ;  

 
With this revised definition, the argument that’s substituted for the second parameter in a 

MOVE invocation can still be a value of any nonempty subtype of type RECTANGLE.  
However, the first parameter is now subject to update, so the argument that’s substituted for that 
parameter must be a variable specifically, and that variable will be updated as a result of the 
invocation in question.  Hence, the declared type of that variable must be such that assignment to 
THE_CTR of that variable makes sense, and so that declared type can be ELLIPSE (of course), 
and it can also be CIRCLE.10  But suppose type CIRCLE has a proper subtype O_CIRCLE 
(where an “O-circle” is a circle with center the origin):   

 
TYPE O_CIRCLE  
     IS { CIRCLE  
          CONSTRAINT THE_CTR ( CIRCLE ) = POINT ( 0.0 , 0.0 )  
          POSSREP ( R = THE_R ( CIRCLE ) )  
          NOT { CIRCLE ( LENGTH ( 2.0 ) , POINT ( 1.0 , 0.0 ) ) } } ;  

 
Then it doesn’t make sense for the argument that’s substituted for the first MOVE 

parameter to have declared type O_CIRCLE, because the center of an O-circle is always the 
origin and can’t be changed (see the CONSTRAINT specification in the foregoing type 
definition).  As far as the first parameter is concerned, therefore—i.e., the one that’s subject to 
update—the update form of MOVE is defined for type ELLIPSE, is inherited by type CIRCLE, 
but probably isn’t inherited by type O_CIRCLE.  (And if it isn’t, it won’t be inherited by any 
proper subtype of type O_CIRCLE either, a fortiori.)   

We see, therefore, that update operators are only conditionally polymorphic; that is, an 
update operator that applies to variables of type T might or might not apply to variables of some 
nonempty proper subtype T′ of T—The Principle of Variable Substitutability.  If it does apply, 
then it too is said to exhibit inclusion polymorphism, of a kind.  Note, however, that this whole 
issue is examined in much more detail in the discussion of IM Prescription 19 in Chapter 11.   

Let me close this chapter by pointing out that the notions of polymorphism and 
substitutability, important though they are in practice, are both logically implied by the notion of 
type inheritance—they’re not, logically speaking, completely separate concepts.  In other words, 
                                                             
 
10 It can be CIRCLE because of a phenomenon known as specialization by constraint, S by C (discussed in detail in the next 
chapter).  To spell out the details:  By definition, THE_CTR(E) := CTR(R) is shorthand for E := ELLIPSE (THE_A(E), 
THE_B(E), CTR(R)).  But if THE_A(E) is equal to THE_B(E)—which it will be, if E currently contains a circle—then the 
ELLIPSE selector invocation just shown in fact returns a circle, thanks to S by C.   
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if the system supports type inheritance, it must support polymorphism and substitutability as well 
(because if it didn’t it wouldn’t be supporting type inheritance, by definition).   
 
 
EXERCISES  
 
7.1 In the model of scalar variable V as a named ordered triple of the form <DT,MST,v>, the 
MST component is logically redundant.  Why?   
 
7.2 Which components in the model of scalar variable V as a named ordered triple of the form 
<DT,MST,v> are known at compile time and which at run time?   
 
7.3 In the model of scalar variable V as a named ordered triple of the form <DT,MST,v>, the 
DT and MST components can never be omega.  Why not?  And is the same true of the analogous 
model of scalar expression X?   
 
7.4 Let variable E have declared type ELLIPSE, and let expression X be THE_A(E).  What’s 
the declared type of X?  What’s its most specific type?   
 
7.5 Consider the following expression:   
 

ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) )  
 

What’s the declared type of this expression?  What’s its most specific type?   
 
7.6 Distinguish between inclusion polymorphism, overloading, and overriding.  What do any 
of these concepts have to do with substitutability?   
 
7.7 “Implementation version” is purely an implementation notion and not part of the model:  
True or false?   
 
7.8 The body of the chapter recommended that access to physical representations be limited to 
the code that implements certain operators.  Which ones?  And why?   
 
7.9 What do you understand by the term code reuse?   
 
7.10 What do you understand by the term run time binding?   
 
7.11 State The Principle of Value Substitutability and The Principle of Variable Substitutability 
as you understand them.   
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7.12 Does your solution to Exercise 3.11 in Chapter 3 work if the rectangle in question is 
actually a square?   
 
 
ANSWERS		
	
7.1	 Because	it’s	necessarily	equal	to	the	most	specific	type	of	the	v	component,	and—as	we	
know	from	Chapter	6—the	most	specific	type	of	any	given	value	v	is	unique.			
	
7.2	 All	three	are	known	at	run	time;	only	DT(V)	is	known	at	compile	time	(in	general).			
	
7.3	 First,	no	variable	can	ever	have	declared	type	omega,	because	no	value	could	ever	be	
assigned	to	it.		(In	fact,	such	a	declaration	would	be	in	conflict	with	one	of	the	prescriptions	of	
The	Third	Manifesto,	which—as	we	saw	in	Chapter	2—requires	all	variables	to	be	assigned	an	
initial	value	before	they’re	used.)		Second,	no	variable	can	ever	have	most	specific	type	omega,	
because	to	say	MST(V)	is	omega	for	some	V	at	some	time	would	be	to	say	that	V	has	no	value	at	
all	at	the	time	in	question.		Third,	since	any	given	scalar	expression	is	supposed	to	denote	some	
scalar	value,	yes,	it’s	true	more	generally	that	neither	DT(X)	nor	MST(X)	can	ever	be	omega	for	
any	such	expression	X.			
	
7.4	 The	declared	type	is	the	declared	type	of	component	A	of	the	ELLIPSE	possrep,	which	is	
LENGTH.		The	most	specific	type	could	in	principle	be	any	nonempty	subtype	of	LENGTH;	since	
we	haven’t	in	fact	defined	any	such	subtype,	however,	the	most	specific	type	is	LENGTH	also.			
	
7.5	 The	given	expression	is,	of	course,	an	ELLIPSE	selector	invocation	(in	fact,	it’s	a	literal),	and	
the	declared	type	of	the	expression	is	thus	ELLIPSE	by	definition.		However,	the	ellipse	it	
denotes	is	in	fact	a	circle,	and	indeed	an	O-circle	also	(if	such	a	type	has	in	fact	been	defined,	as	
in	the	final	section	in	the	body	of	the	chapter).		So	the	most	specific	type	is	CIRCLE,	or	possibly	
O_CIRCLE.		See	Chapter	8	for	further	explanation.			
	
7.6	 Inclusion	polymorphism	is	a	logical	consequence	of	inheritance	(in	effect,	it’s	just	
substitutability	by	another	name).		To	be	specific,	if	Op	is	a	read-only	operator	that	applies	to	
values	of	type	T,	then	Op	also	applies	to	values	of	every	subtype	Tʹ	of	T.		(Several	distinct	
implementation	versions	of	Op	might	exist	under	the	covers,	but	whether	or	not	they	do	is	of	
no	concern	to	the	model,	or	to	the	user.)		Note:		Inclusion	polymorphism	can	have	implications	
for	update	operators	as	well.		For	the	specifics,	see	the	body	of	the	chapter,	also	Chapter	11.			

Overloading	polymorphism	has	nothing	to	do	with	inheritance	or	substitutability.		Loosely,	
what	it	means	is	that	there	are	several	distinct	operators	with	the	same	name	(and	the	user	
does	need	to	know	that	the	operators	in	question	are	in	fact	distinct).		For	example,	the	“+”	
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operator	will	very	likely	be	overloaded,	in	that	there’ll	be	one	“+”	for	integers,	another	for	
rational	numbers,	and	so	on.			

Operator	overriding	is	a	totally	different	phenomenon.		It	can	be	defined	as	the	
replacement	of	a	given	operator	by	another	operator	having	the	same	specification	signature	
but	different	semantics.		It	has	nothing	to	do	with	inheritance	or	substitutability,	nor	indeed	
with	polymorphism	of	any	kind.			
	
7.7	 Well,	it	should	be	true,	but	it	might	not	be	completely	so	in	some	systems	(especially	
object	systems).		To	the	extent	it’s	not,	however,	we’re	talking	about	a	failure	on	the	part	of	the	
system	in	question	to	distinguish	adequately	between	model	and	implementation.			
	
7.8	 Selectors,	THE_	operators,	and	IS_T	operators.		The	reason	is	to	increase	the	potential	for	
code	reuse	and	decrease	the	need	for	code	maintenance.			
	
7.9	 (Of	implementation	versions)	Using	the	type	T	implementation	version	of	some	operator	
Op	to	operate	without	change	on	values	or	variables	of	declared	type	some	proper	subtype	of	
T.		(Of	application	programs)	Using	an	application	program	that	operates	on	values	or	variables	
of	declared	type	T	to	operate	without	change	on	values	or	variables	of	declared	type	some	
proper	subtype	of	T.			

Note:		Of	course,	code	reuse	doesn’t	imply	type	inheritance,	but	the	kinds	of	reuse	that	
aren’t	related	to	inheritance	aren’t	new.		The	following	quote	is	worth	pondering	in	this	
connection.		It’s	taken	from	Object-Oriented	Modeling	and	Design	for	Database	Applications,	by	
Michael	Blaha	and	William	Premerlani	(Prentice-Hall,	1998;	the	italics	are	mine):			

	
DBMSs	are	intended	to	provide	generic	functionality	for	a	wide	variety	of	applications	...	You	are	
achieving	reuse	when	you	can	use	generic	DBMS	code,	rather	than	custom	written	application	
code.			
	

I	agree	with	this	observation,	and	would	add	that	such	reuse	is	supported	very	well	by	
relational	DBMSs,	rather	less	well	by	object	DBMSs.			
	
7.10	 Run	time	binding	is	the	process	of	determining	at	run	time	the	particular	implementation	
version	of	some	given	operator	to	be	invoked.		For	further	discussion,	see	Chapter	11.			
	
7.11	 See	the	body	of	the	chapter;	see	also	Chapter	11	for	further	discussion.			
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7.12	 The	following	solution	from	Chapter	3—	
	

OPERATOR QUARTER_TURN ( R RECTANGLE ) RETURNS RECTANGLE ;  
   RETURN ( RECTANGLE ( POINT (   THE_X ( THE_B ( R ) ) ,  
                                - THE_Y ( THE_B ( R ) ) ) ,  
                        POINT (   THE_X ( THE_A ( R ) ) ,  
                                - THE_Y ( THE_A ( R ) ) ) ) ) ;  
END OPERATOR ;  

	
—clearly	does	work	if	the	rectangle	in	question	is	actually	a	square.		But	the	following	code	
clearly	works	too,	and	is	obviously	more	efficient	(in	fact	all	it	does	is	return	its	input):			
	

OPERATOR QUARTER_TURN ( S SQUARE ) RETURNS SQUARE ;  
   RETURN ( S ) ;  
END OPERATOR ;  

	
However,	there’s	a	logical	difference	between	these	two	solutions	(i.e.,	they’re	not	

logically	equivalent),	because	if	s	is	a	square—and	considering	just	the	specific	vertex	A,	for	
definiteness—then	the	result	returned	by	THE_A	(QUARTER_TURN	(s))	will	depend	on	which	
version	of	the	QUARTER_TURN	operator	is	invoked.11 		

An	analogous	remark	applies	to	the	update	operator	solutions	also,	which	I	now	turn	to.		
Here	first	is	the	update	operator	solution	from	Chapter	3:			
	

OPERATOR QUARTER_TURN ( R RECTANGLE ) UPDATES { R } ;  
   R := RECTANGLE ( POINT (   THE_X ( THE_B ( R ) ) ,  
                            - THE_Y ( THE_B ( R ) ) ) ,  
                    POINT (   THE_X ( THE_A ( R ) ) ,  
                            - THE_Y ( THE_A ( R ) ) ) ) ) ;  
END OPERATOR ;  

	
This	one	also	works	if	the	rectangle	is	actually	a	square.		But	the	following	code	clearly	

works	too,	and	is	obviously	more	efficient	(in	fact	it’s	a	“no	op,”	and	the	sole	effect	of	the	
UPDATES	specification	is	to	ensure	that	the	argument	to	an	invocation	is	a	variable	specifically):			
	

OPERATOR QUARTER_TURN ( S SQUARE ) UPDATES { S } ;  
END OPERATOR ;  

	
Again,	however,	there’s	a	logical	difference	between	the	two	solutions.			
	
	

                                                             
 
11 Of course, if operator QUARTER_TURN does have two implementation versions as suggested, then those versions will need 
some appropriate distinguishing version names (see the section “Implementation Versions” in the body of the chapter).  An 
analogous remark applies to the update operator solutions also.   



  

	

	



  

 

Chapter  8 
 
 

S p e c i a l i z a t i o n   b y   C o n s t r a i n t   e t c . 
 
 

Expression X has value v  
And value v has MST  
Determined, thanks to S by C  

—Anon.: 
Where Bugs Go 

 
 

In this chapter I propose to examine an aspect of our inheritance model that we regard as both 
crucial and fundamental, despite the fact that it (or something very like it) has been the subject of 
much controversy in the literature: viz., the concept we call specialization by constraint.  In 
terms of our running example, the basic point is this:  In our model (and indeed in accordance 
with mathematical reality), an ellipse is a circle if and only if its semiaxis lengths a and b are 
equal.  In other words, if and only if (a) value e is of type ELLIPSE, but also (b) THE_A(e) is 
equal to THE_B(e), then (c) e is additionally of type CIRCLE—and the system is aware of this 
fact.  And that, in effect, is exactly what IM Prescription 10 says.   
 
 
IM PRESCRIPTION 10: SPECIALIZATION BY CONSTRAINT  
 
Let T be a regular type (see IM Prescription 20) and hence, necessarily, a scalar type, and let T′ 
be a nonempty immediate subtype of T.  For each such immediate supertype T of T′, the 
definition of T′ shall specify a specialization constraint SC, formulated in terms of T, such that 
a value shall be of type T′ if and only if it satisfies all such constraints SC.   
 

——— ♦♦♦♦♦ ——— 
 
I need to get a few preliminary matters out of the way before I can get to the substance of this 
prescription, as follows:   

 
! First of all, the prescription, like IM Prescription 8 in Chapter 6 and IM Prescription 9 in 

Chapter 7, is deliberately worded in such a way as to apply to multiple as well as single 
inheritance (though only to scalar types in both cases).1  Note:  The notion of specialization 

                                                             
 
1 By contrast, the Explorations version of the prescription was worded in such a way as to apply single inheritance only.   
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by constraint does apply to tuple and relation types as well as scalar types; as we’ll see in 
Chapter 17, however, it does so only implicitly.  What I mean by “only implicitly” here is 
this:  If specialization by constraint occurs as described in this chapter for scalar types, it’ll 
happen automatically for tuple and relation types as well, and nothing more needs to be 
said about the matter.  What’s more, the same goes for generalization by constraint also, 
mutatis mutandis (see later in the chapter).   

 
! Of course, in this chapter we’re limiting ourselves to single inheritance anyway.  For 

present purposes, therefore, we can simplify the prescription slightly as follows:   
 

Let T be a regular type (see IM Prescription 20) and hence, necessarily, a scalar type, and 
let T′ be a nonempty immediate subtype of T.  Then the definition of T′ shall specify a 
specialization constraint SC, formulated in terms of T, such that a value shall be of type T′ 
if and only if it satisfies constraint SC.   
 
Please note that all references to IM Prescription 10 in this chapter from this point forward 
should be understood as applying to this simpler version specifically.   
 

! Pleas note too that the prescription has to do, not just with scalar types specifically, but 
(even more specifically) with scalar types that are regular types.  A regular type is a scalar 
type that’s not a dummy type.  Dummy types are discussed under IM Prescription 20 in 
Chapter 12; for the purposes of the present chapter, we can ignore them, and I will.   
 

! The Explorations version of the prescription actually said “a value shall be of type T′ if and 
only if it is of type T and it satisfies constraint SC.”  This phrasing is misleading, however, 
inasmuch as it suggests, incorrectly, that the fact that the value is required to be of type T 
isn’t part of constraint SC as such. For that reason I’ve dropped that italicized text.   
 

! The Explorations version of the prescription also had a note attached to it, to the effect that 
there should be at least one value of type T that fails to satisfy constraint SC.  However, this 
requirement is subsumed by part c. of IM Prescription 5—which requires the definition of 
T′ to be accompanied by a specification of an example value that’s of type T and not of 
type T′ (see Chapter 5)—and so I’ve dropped that note as well.   

 
 
SPECIALIZATION CONSTRAINTS  
 
IM Prescription 10 is tightly bound up with the notion of a “specialization constraint.”  Let’s 
look at an example.  Here once again are the type definitions for types ELLIPSE and CIRCLE 
(irrelevant details omitted):   
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TYPE ELLIPSE  
     IS { PLANE_FIGURE  
          POSSREP ( A LENGTH , B LENGTH , CTR POINT )  
          CONSTRAINT A ≥ B  
          NOT { ... } } ;   /* see Chapter 12 for further explanation * /  
 
TYPE CIRCLE  
     IS { ELLIPSE  
          CONSTRAINT THE_A ( ELLIPSE ) = THE_B ( ELLIPSE )  
          POSSREP ( R   = THE_A   ( ELLIPSE ) ,  
                    CTR = THE_CTR ( ELLIPSE ) )  
          NOT { ELLIPSE ( LENGTH ( 2.0 ) ,  
                          LENGTH ( 1.0 ) ,  
                          POINT  ( 0.0 , 0.0 ) ) } } ;  
 
Now let’s focus on the IS specification—i.e., the <is def>, as the BNF grammar in 

Chapter 3 called it—for type CIRCLE.2  That specification does the following (among other 
things):   

 
! It defines a specialization constraint for type CIRCLE.  The specialization constraint in 

question says that a value e is of type CIRCLE if and only if IS_ELLIPSE(e) and 
THE_A(e) = THE_B(e) both evaluate to TRUE (in other words, if and only if e is of type 
ELLIPSE and has equal semiaxis lengths).   
 

! It defines a derived possrep for type CIRCLE in terms of (one of the possreps for) its sole 
immediate supertype ELLIPSE.  The derived possrep in question says that circles can 
possibly be represented in terms of their radius and their center, where the radius is equal to 
the length a of the major semiaxis3 of the pertinent ellipse and the center is equal to the 
center of that same ellipse.  However, possreps, derived or otherwise, are irrelevant as far 
as the present discussion is concerned, and I’ll ignore them for the rest of this chapter.   

 
So let’s take a closer look at the “specialization constraint” concept.  Here’s a precise 

definition:   
 
Definition:  Let T be a regular type (and hence, necessarily, a scalar type), and let T′ be a 
nonempty immediate subtype of T.  Then the type constraint for type T′ will specify that, in 
order for some given value to be of type T′, that value must be of type T and must 
additionally satisfy some further constraint.  That type constraint—i.e., the constraint that 
the value must be of type T and must additionally satisfy that further constraint—is the 
specialization constraint for type T′.   

 
                                                             
 
2 It might help if I remind you from Chapter 3 that all nonroot types have an associated <is def> and no root type does.  (Of 
course, all scalar types are root types, and indeed regular types, in the absence of inheritance support.)   
 
3 I could have used the minor semiaxis here in place of the major semiaxis, of course—it would have made no difference.   
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And now I can also give a precise definition of the notion of “specialization by constraint” 
(S by C for short):   
 

Definition:  Let S be a selector of declared type T,4 and let X be an expression denoting an 
invocation of S (thus DT(X) = T).  Let the value returned by X be x.  By definition, then, 
v(X) = x and MST(X) = MST(x).  Further, let x satisfy the specialization constraint for 
proper subtype T′ of T and not for any proper subtype of T′.  Again by definition, then, 
MST(X) = MST(x) = T′.  This effect on MST(X)—i.e., the fact that MST(X) is now not T but 
T′—is referred to as specialization by constraint (S by C).   

 
By way of example, with reference to Fig. 5.1 from Chapter 5, let expression X be as 

follows:   
 

ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) )  
 
This expression is, of course, an ELLIPSE selector invocation—in fact it’s an ELLIPSE 

literal—and its declared type DT(X) is thus ELLIPSE by definition.  However, the ellipse 
denoted by that expression satisfies the specialization constraint for type CIRCLE, so the most 
specific type MST(X) of X at run time is CIRCLE.   

Moreover, suppose type CIRCLE had additionally been defined to have a proper subtype 
O_CIRCLE (where an “O-circle” is a circle with center the origin):   

 
TYPE O_CIRCLE  
     IS { CIRCLE  
          CONSTRAINT THE_CTR ( CIRCLE ) = POINT ( 0.0 , 0.0 )  
          POSSREP ( R = THE_R ( CIRCLE ) )  
          NOT { CIRCLE ( LENGTH ( 2.0 ) , POINT ( 1.0 , 0.0 ) ) } } ;  
 

(irrelevant details omitted as usual).  Then the circle denoted by X would additionally satisfy the 
specialization constraint for type O_CIRCLE, and the most specific type MST(X) of X at run time 
would therefore be O_CIRCLE, not CIRCLE.   
 
 
SPECIALIZATION BY CONSTRAINT  
 
So much for the basic idea; now let’s take a closer look.  Assume for simplicity that the only 
types we have to deal with are ELLIPSE and CIRCLE.  Here once again are the type definitions 
(irrelevant details omitted as usual):   

 

                                                             
 
4 As noted in Chapter 2, the declared type of a selector is, of course, the specified target type.  For example, the declared type of 
the ELLIPSE selector is ELLIPSE.   
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TYPE ELLIPSE  
     IS { PLANE_FIGURE  
          POSSREP ( A LENGTH , B LENGTH , CTR POINT )  
          CONSTRAINT A ≥ B  
          NOT { ... } } ;   /* see Chapter 12 for further explanation */  
 
TYPE CIRCLE  
     IS { ELLIPSE  
          CONSTRAINT THE_A ( ELLIPSE ) = THE_B ( ELLIPSE )  
          POSSREP ( R   = THE_A   ( ELLIPSE ) ,  
                    CTR = THE_CTR ( ELLIPSE ) )  
          NOT { ELLIPSE ( LENGTH ( 2.0 ) ,  
                          LENGTH ( 1.0 ) ,  
                          POINT  ( 0.0 , 0.0 ) ) } } ;  
 
Now, the CONSTRAINT specification for type CIRCLE here says the semiaxis lengths are 

supposed to be equal for a circle.  Or does it?  What exactly does it say?  Well, let e be a value of 
type ELLIPSE, and let a and b be the corresponding semiaxis lengths.  Then there are four 
possibilities—four possible ways, that is, in which the CONSTRAINT specification might be 
interpreted by the system:5   
 

1. If a = b, then e is of type CIRCLE.   
2. If e is of type CIRCLE, then a = b.   
3. Neither 1 nor 2.   
4. Both 1 and 2.   

 
I’ll consider each possibility in turn.   
 

1. Clearly, possibility 1 permits—or at least fails to prohibit—“noncircular circles” (i.e., 
values of type CIRCLE that don’t have a = b).  Note:  By the term noncircular circle, I 
mean something the system thinks is a circle but actually isn’t.  In other words, it’s a value 
whose most specific type as far as the system is concerned is CIRCLE and yet has different 
semiaxis lengths, and thus logically ought to have most specific type ELLIPSE.  Clearly, 
noncircular circles are a contradiction in terms—but they’re typical of the logical 
absurdities that can and do occur if S by C isn’t supported.   

 
2. Likewise, possibility 2 permits “circular noncircles” (i.e., values of type ELLIPSE and not 

type CIRCLE that do have a = b).  Note:  By the term circular noncircle, I mean something 
the system thinks isn’t a circle but actually is.  In other words, it’s a value whose most 
specific type as far as the system is concerned is ELLIPSE and yet has equal semiaxis 

                                                             
 
5 Or so it might be thought.  However, along with the fact that the type being defined—viz., type CIRCLE—is an immediate 
subtype of type ELLIPSE, that CONSTRAINT specification basically just serves to define the type constraint for type CIRCLE.  
And as we know from Chapter 2, a type constraint is nothing more or less than a definition of the set of values that constitute the 
type in question—from which it follows that the only valid “possible interpretation” has to be number 4.  But I think detailed 
consideration of the other three apparent possibilities is a worthwhile exercise nonetheless.   
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lengths, and thus logically ought to have most specific type CIRCLE.  Like noncircular 
circles, circular noncircles are clearly a contradiction in terms, but they too are typical of 
the logical absurdities that can and do occur if S by C isn’t supported.   

 
3. Possibility 3 permits both “noncircular circles” and “circular noncircles,” in which case 

there doesn’t seem to be any point in specifying the constraint at all.   
 
4. Thus, possibility 4 appears to be the only sensible option.  Certainly it’s the only one that 

corresponds to mathematical reality, which is why it’s the one adopted in the Manifesto 
model.  And it follows immediately that the system must support S by C.  Here again by 
way of example is the ELLIPSE selector invocation from the previous section:   

 
ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) )  
 
The value denoted by this expression is an ellipse with a = b and is thus a circle, and is 
therefore—at least in the Manifesto model—of type CIRCLE.  Thus, S by C implies, as the 
definition near the end of the previous section in fact states, that certain selector 
invocations will produce results whose most specific type is some proper subtype of the 
specified target type.   

Note:  In fact, of course, S by C applies to expressions in general, not just to selector 
invocations.  As pointed out in Chapter 2, however, the only way any expression can yield 
any value at all is, ultimately, via some selector invocation; hence, the effect of S by C on 
the most specific type of any expression depends, ultimately, on the effect defined earlier 
of S by C on the most specific type of some selector invocation.  It follows that S by C can 
be thought of as being implemented as part of the implementation of the pertinent selector 
operators (conceptually, at any rate, though various optimizations are possible in practice, 
as we’ll see in the section “Implementation Considerations” in Chapter 13).   

 
To repeat, then, S by C means in particular that certain selector invocations will produce 

results whose most specific type is some proper subtype of the specified target type.  Note, 
however, that this effect occurs at run time, not at compile time.  For example, the selector 
invocation shown above— 

 
ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) )  
 

—has declared type ELLIPSE (known at compile time) but most specific type CIRCLE (not 
known until run time).   

Note:  I’ve said that S by C can be thought of as being implemented inside selector 
implementation code.  The following recursive procedure (“FIND_MST”), expressed in 
pseudocode, gives some idea as to what such an implementation might look like:   
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OPERATOR FIND_MST ( v value , T type ) RETURNS type ;  
   let T1 , T2 , ..., Tn be all of the immediate subtypes of T  
       in some arbitrary order ;  
   let the corresponding specialization constraints be  
       SC1 , SC2 , ..., Scn , respectively ;  
   DO j := 1 TO n ;  
      IF v satisfies SCj  
         THEN RETURN ( FIND_MST ( v , Tj ) ) ;  
      END IF ;  
   END DO ;  
   RETURN ( T ) ;  
END OPERATOR ;  
 
Procedure FIND_MST is initially invoked with arguments the selected value and the 

declared type of the pertinent selector; for example, in the case of the ELLIPSE selector 
invocation discussed earlier— 

 
ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) )  
 

—the initial arguments are the indicated ellipse value and type ELLIPSE.  However, I must 
stress that the procedure as shown is purely conceptual in nature; as I’ve already said, various 
optimizations are possible in practice, as we’ll see in Chapter 13.   

So much for S by C, at least until further notice; now I want to turn to the companion 
notion of generalization by constraint (G by C).  In order to discuss this latter notion, I first need 
to say something about IM Prescription 11, which has to do with the rules for assignment in the 
inheritance context.   
 
 
IM PRESCRIPTION 11: ASSIGNMENT WITH INHERITANCE  
 
Consider the assignment  

 
V := X  
 

(where V is a variable reference and X is an expression).  DT(X) shall be a subtype of DT(V).  
The assignment shall set v(V) equal to v(X), and hence MST(V) equal to MST(X) also.   
 

——— ♦♦♦♦♦ ——— 
 
The model of a scalar variable introduced in IM Prescription 9 (see Chapter 7) is useful in 
pinning down the precise semantics of various operations, and this remark is true of assignment 
operations in particular.  Now, without inheritance, the type rule for the assignment  

 
V := X  
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is very simple:  It just says the types of V and X must be the same (in effect, it can be thought of 
as saying their declared types must be the same, since their declared types are the only types 
they’ll have if there’s no inheritance).  IM Prescription 11 extends that rule—actually it weakens 
it, in a way—by requiring only that the declared type of X be some subtype (not necessarily a 
proper subtype, of course) of the declared type of V.  By way of example, let E and C be scalar6 
variables of declared types ELLIPSE and CIRCLE, respectively.  Then the assignment  
 

E := C ;  
 
is clearly valid; it has the effect of setting the current value v(E) of E equal to the current value 
v(C) of C (and therefore setting the most specific type MST(E) equal to MST(C) also).   

Note:  When I say the foregoing assignment is clearly valid, I’m actually appealing to the 
notion of substitutability, which says in the case at hand that (a) a value of type ELLIPSE would 
be acceptable as the source of the assignment, and therefore (b) a value of type CIRCLE can 
legitimately appear in its place.   

By the way, it’s important to understand that what does not happen in an assignment like 
the one just shown is that the value of the source expression on the right side gets “converted up” 
to the declared type of the target variable on the left side.  For if such a conversion did occur, the 
value in question would lose its most specific properties, as it were.7  In the case at hand, for 
example, we wouldn’t be able to ask for the radius of E—more precisely, the radius of the circle 
that’s now the current value of E—because the circle would have been converted to “just an 
ellipse,” and ellipses that are “just ellipses” don’t have a radius.   

Note:  You might possibly see a problem here, and indeed there is one.  To be specific, the 
operator THE_R (“the radius of”) can’t validly be applied to a variable such as E whose declared 
type is ELLIPSE and not CIRCLE, because, to say it again, ellipses that are “just ellipses” don’t 
have a radius.  Thus, the expression  

 
THE_R ( E )   /* warning: compile time type error! */  
 

will fail at on a type error at compile time.   
The solution to this problem is to use the operator TREAT.  That is, while the expression 

THE_R(E) fails at compile time as just explained, the following extended version of that 
expression— 

 
THE_R ( TREAT_AS_CIRCLE ( E ) )  
 

                                                             
 
6 IM Prescription 11 applies to tuple and relation assignments as well as scalar ones, but all assignments, and therefore all 
variables and all expressions, discussed in the present section are scalar ones specifically.   
 
7 In fact, of course, IM Prescriptions 8 and 10 both imply that any such “conversion up” is logically impossible.  For if it were 
possible, it would mean that the very same value could have most specific type CIRCLE and most specific type ELLIPSE, 
thereby violating IM Prescription 8; it would also mean that, after the assignment, the target variable would contain an ellipse that 
could be “S by C’d” to a circle but hasn’t been, thereby violating IM Prescription 10.   
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—will satisfy the compile time type checking; moreover, it’ll succeed at run time as well—i.e., 
it’ll return the corresponding radius—if (but only if) the current value of E is indeed of type 
CIRCLE.  See Chapter 10 for further explanation.   

So much for the (valid) assignment of C to E.  But what about assigning E to C?—  
 

C := E ;   /* warning: compile time type error! */  
 
In accordance with IM Prescription 11, this one will fail on a type error at compile time, 

(even if the current value of E would have been a circle at run time), because DT(E) = ELLIPSE 
and DT(C) = CIRCLE, and ELLIPSE isn’t a subtype of CIRCLE.   

Of course, if variable E does have a circle as its current value at run time, there must surely 
be some way of assigning that circle to variable C, and so there is; the solution, again, is to use 
TREAT (again see Chapter 10).  To be specific, the following revised form of the foregoing 
assignment—  

 
C := TREAT_AS_CIRCLE ( E ) ;  
 

—will satisfy the compile time type checking, and will succeed at run time as well if (but only if) 
the current value of E is indeed of type CIRCLE.   

Following on from this point, the assignment  
 
C := ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( ... ) ) ;  
                           /* warning: compile time type error! */  
 

will also fail on a type error at compile time, even though the ELLIPSE selector invocation on 
the right side would clearly return a circle at run time.  (Recall again that S by C happens at run 
time, not compile time.)  Instead, the assignment needs to be written like this:   

 
C := TREAT_AS_CIRCLE  
   ( ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( ... ) ) ) ;  

 
Of course, it could also be written like this:   

 
C := CIRCLE ( LENGTH ( 5.0 ) , POINT ( ... ) ) ;  

 
To summarize:  Assignment without inheritance simply requires the source expression and 

target variable to be of the same type.  By contrast (and thanks to substitutability), the rules for 
assignment with inheritance are as follows:   
 
! The declared type DT(X) of the source expression X on the right side can be any subtype of 

the declared type DT(V) of the target variable V on the left side (this is a compile time 
check).   
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! The most specific type MST(X) of the source expression X on the right side can be any 
subtype of the declared type DT(V) of the target variable V on the left side.  (In fact, of 
course, MST(X) will necessarily be some subtype of DT(X); thus, it’ll be some subtype of 
DT(V) a fortiori.)   

 
! The target variable V on the left side acquires its new value, and hence its new most 

specific type, from the value denoted by the source expression X on the right side.   
 

Now suppose again that variable E, of declared type ELLIPSE, has a circle as its current 
value, and consider the following code:   

 
VAR A AREA ;  
 
A := AREA_OF ( E ) ;  
 
What happens here is the following:   
 

! The system performs a compile time type check on the expression AREA_OF (E); that 
check succeeds, because E is of declared type ELLIPSE and the single parameter to 
AREA_OF is of declared type ELLIPSE also (or let’s assume so for the sake of the 
example, at any rate).   

 
! The system discovers at run time that the current value of E is of type CIRCLE.   
 
! The system also discovers at run time that an implementation version of AREA_OF exists 

that applies to circles—or, again, let’s assume so for the sake of the example—and it 
therefore invokes that version.  (In other words, it performs the run time binding process 
discussed briefly in the section “Code Reuse” in Chapter 7.  See Chapter 11 for further 
explanation.)   

 
! The result of that invocation is then assigned to the variable A.   
 

Note finally that IM Prescription 11 concludes by saying this:  The assignment shall set 
v(V) equal to v(X), and hence MST(V) equal to MST(X) also.  In other words, the prescription 
explicitly requires the assignment to satisfy The Assignment Principle.  (Just to remind you from 
Chapter 2, The Assignment Principle states that after assignment of value v to variable V, the 
comparison v = V must evaluate to TRUE.)   
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GENERALIZATION BY CONSTRAINT  
 
Again let E be a variable of declared type ELLIPSE, and let its current value be an ellipse with 
a = 4 and b = 3.  Consider the following assignment:   

 
THE_A ( E ) := LENGTH ( 3.0 ) ;  

 
The expanded form of this assignment is:   

 
E := ELLIPSE ( LENGTH ( 3.0 ) , THE_B ( E ) , THE_CTR ( E ) ) ;  

 
And since THE_B(E) = LENGTH(3.0), S by C occurs; the selector invocation on the right side 
returns a circle, not “just an ellipse,” and that circle is then assigned to the variable E.  Loosely, 
we can say that the type—meaning, more precisely, the most specific type MST(E)—of variable 
E has been “changed down,” or specialized, from ELLIPSE to CIRCLE.   

Now suppose the foregoing assignment is followed by this one:   
 
THE_B ( E ) := LENGTH ( 2.0 ) ;  

 
Here’s the expanded form:   

 
E := ELLIPSE ( THE_A ( E ) , LENGTH ( 2.0 ) , THE_CTR ( E ) ) ;  

 
Since THE_A(E) = LENGTH(3.0), the selector invocation on the right side here returns “just an 
ellipse” (i.e., an ellipse that’s not a circle), and that ellipse is then assigned to the variable E.  
Thus, it should be clear that the most specific type MST(E) of variable E is now ELLIPSE again 
(because THE_A(E) is now greater than THE_B(E)).  We refer to this effect as generalization by 
constraint (G by C for short); loosely, we can say that the type—meaning, more precisely, the 
most specific type MST(E)—of variable E has been “changed up,” or generalized, from CIRCLE 
to ELLIPSE.  In fact, it should be obvious that a system that supports S by C needs to support 
G by C as well.  What’s more, the algorithm FIND_MST given earlier in this chapter for 
implementing S by C can in fact be used for G by C as well, as should also be obvious—though 
perhaps I should add that, unlike S by C, which occurs on the invocation of some selector, 
G by C occurs on the execution of some assignment, as the foregoing example illustrates.   

Here then is a precise definition:   
 

Definition:  Let types T′′, T′, and T be such that T′′ is a proper subtype of T′ and T′ is a 
subtype of T, and let v′ be a value that satisfies the type constraint for type T′ and not for 
any proper subtype of T′ (thus MST(v′) = T′).  Also, let V be a variable of declared type T, 
and let the current most specific type MST(V) of V be T′′.  Finally, let the value v′ be 
assigned to V.  By definition, then, MST(V) = MST(v′) = T′.  This effect on MST(V)—i.e., 
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the fact that MST(V) is now not T′′ but T′—is referred to as generalization by constraint 
(G by C).   

 
So S by C and G by C together support changing types both “up” and “down”—and it 

follows that they support changing types “sideways,” too.  For example, suppose type ELLIPSE 
has another immediate subtype NONCIRCLE, with the obvious semantics (i.e., ELLIPSE is now 
a union type—see Chapter 12—and every ellipse is either a circle or a noncircle, and no ellipse is 
both).  Let the current value of variable E be an ellipse with a = 4 and b = 3, and hence in fact a 
value of type NONCIRCLE.  Then the assignment  

 
THE_A ( E ) := LENGTH ( 3.0 ) ;  

 
will assign a circle of radius three to E, and will thus effectively also change the type—meaning, 
more precisely, the most specific type MST(E)—of variable E “sideways,” from NONCIRCLE to 
CIRCLE.  Moreover, the assignment  

 
THE_B ( E ) := LENGTH ( 2.0 ) ;  

 
will then assign to E an ellipse with a = 3 and b = 2, and will thus effectively change the most 
specific type of variable E “sideways” from CIRCLE back to NONCIRCLE again.   
 
 
CONCLUDING REMARKS  
 
This brings me to the end of my explanation of the basics of S by C and G by C.  As I hope 
you’ll agree, these concepts not only make good logical sense but are in fact quite 
straightforward and easy to understand.  As noted at the beginning of the chapter, however, 
S by C at least is widely regarded as controversial.8  In fact, this entire subject seems to be 
surrounded by a very great deal of muddle and confusion.  In view of this state of affairs:   

 
! Regarding the controversy, I do want to try and explain what it’s all about and why it 

exists.  However, to do that properly means I need to appeal to a number of concepts that I 
haven’t had a chance to explain in detail (or at all, in some cases) in this book so far.  For 
that reason, I’ll defer detailed discussion of the controversy as such to Chapter 13; as far as 
this chapter is concerned, I’ll content myself simply with claiming that, so far as I’m aware, 
no other approaches to inheritance described in the literature support either S by C or 
G by C at all.   
 

                                                             
 
8 The reason I say “S by C at least” here is that critics of these concepts tend to focus on S by C specifically and ignore, or 
at any rate overlook, the companion notion of G by C—despite the fact that, as I said earlier, it’s obvious that a system that 
supports S by C must support G by C as well.   
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! Regarding the “muddle and confusion,” however, I would at least like to try to clarify 
matters somewhat, and that’s what the remainder of this final section is about.   

 
I’ll begin by distinguishing—or trying to distinguish!—between specialization as such, on 

the one hand, and specialization by constraint (i.e., S by C), on the other.  By way of example, 
consider our usual variables E and C, with their declared types ELLIPSE and CIRCLE, 
respectively.  Let their current most specific types be ELLIPSE and CIRCLE, respectively, as 
well.  Now consider this assignment:   

 
E := C ;  
 
This assignment has the effect of changing (“specializing”) the most specific type of E—or, 

loosely, just specializing E as such—“down” from ELLIPSE to CIRCLE.  In other words, 
MST(E) is now CIRCLE.  More precisely, after the assignment, MST(E) is the same as MST(C), 
which in principle might be some nonempty proper subtype of CIRCLE—though not in the case 
at hand, because type CIRCLE doesn’t have any proper subtypes apart from type omega.  
(However, if as in Chapter 7, and indeed elsewhere in the present chapter, type CIRCLE had a 
proper subtype O_CIRCLE, where an “O-circle” is a circle with center the origin, and if C 
currently contained an O-circle, then after the foregoing assignment MST(E) would be 
O_CIRCLE.)   

Now, the foregoing example shouldn’t come as a surprise to you in any way—it’s in full 
accord with how our inheritance model works, and (as far as I know) with how other systems 
work as well.9  But note very carefully that the foregoing process of specialization, unlike the 
process of S by C, happens not as part of some selector invocation, but rather as part of some 
assignment.  In other words, it happens in the same way as G by C does in our model.  So the 
point is this:  Languages that support inheritance, even ones that don’t support S by C (which I 
believe is all of them), might still provide some mechanism for changing types “down”—but if 
they do, then that mechanism will come into play not as part of some selector invocation (as is 
the case with S by C in our model), but rather as part of some assignment (as is the case with G 
by C in our model).  Hence we have the following definition:   

 
Definition:  Let types T′′, T′, and T be such that T′′ is a proper subtype of T′ and T′ is a 
subtype of T, and let v′′ be a value of most specific type T′′ (thus MST(v′′) = T′′).  Also, let 
V be a variable of declared type T, and let the current most specific type MST(V) of V be T′.  
Finally, let the value v′′ be assigned to V.  By definition, then, MST(V) = MST(v′′) = T′′.  
This effect on MST(V)—i.e., the fact that MST(V) is now not T′ but T′′—is referred to as 
specialization (sometimes further specialization, for emphasis).   

 

                                                             
 
9 Of course, if they don’t, the result will be that E now contains a “circular noncircle” (see earlier in this chapter).   
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So much for specialization; what about generalization?  Well, the obvious definition looks 
like this (please note the subtle differences between this definition and that given for G by C in 
the previous section):   
 

Definition:  Let types T′′, T′, and T be such that T′′ is a proper subtype of T′ and T′ is a 
subtype of T, and let v′ be a value of most specific type T′ (thus MST(v′) = T′).  Also, let V 
be a variable of declared type T, and let the current most specific type MST(V) of V be T′′.  
Finally, let the value v′ be assigned to V.  By definition, then, MST(V) = MST(v′) = T′.  This 
effect on MST(V)—i.e., the fact that MST(V) is now not T′′ but T′—is referred to as 
generalization.   

 
Now, I’m sure you realize that this definition of generalization is 100 percent compatible 

with the way our own inheritance model works.  In some systems, however, it seems that 
generalization as such might not happen at all.  By way of example, let variable E be of declared 
type ELLIPSE, and consider the following sequence of events.  First, a value of most specific 
type CIRCLE is assigned to E; the most specific type of E thus becomes CIRCLE (at least, let’s 
assume so for the sake of the discussion).  Next, E is updated in such a way that, after the update, 
THE_A(E) is greater than THE_B(E).  In our model, the most specific type of E now becomes 
ELLIPSE again; but if it doesn’t—if it remains unchanged and is still CIRCLE—then the result 
will be that E now contains a “noncircular circle.”   
 
Specialization via Constraints  
 
The final confusion factor I want to mention in this chapter is a notion called “specialization via 
constraints.”  This notion, which is found in the object literature, might or might not be related 
to—but, as far as I can see (?), is certainly not the same thing as—S by C.  Here’s a definition 
(it’s taken from “Fundamentals of Object-Oriented Databases,” by Stanley B. Zdonik and David 
Maier, in Readings in Object-Oriented Database Systems, Zdonik and Maier, eds., Morgan 
Kaufmann, 1990):   

 
Specialization via constraints happens whenever the following is permitted:   
 
B subtype_of A and T subtype_of S and  
f(...b:T...) returns r:R in Ops(B) and  
f(...b:S...) returns r:R in Ops(A) and [sic]  

 
That is, specialization via constraints occurs whenever the operation redefinition on a subtype 
constrains one of the arguments to be from a smaller value set than the corresponding operation on 
the supertype.   

 
Well, I don’t know about you, but I don’t find this definition very clear.  As near as I can 

tell, however, “operator redefinition on a subtype” seems to mean (to use terminology defined 
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elsewhere in the present book) nothing more than definition of a new implementation version of 
the operator in question for the subtype in question.  “Specialization via constraints” thus seems 
to mean—to take a concrete example—that if AREA_OF is an operator that’s defined to work on 
ellipses, and a version of AREA_OF is defined to work on ellipses that happen to be circles, then 
the argument to an invocation of that version of AREA_OF must be a circle specifically and not 
just an ellipse.  It’s not really clear, therefore, that “specialization via constraints” has anything to 
do with an inheritance model (as opposed to the implementation of such a model) at all.10   
 
 
EXERCISES  
 
The following exercises all appeal to a family of types called CHAR_n (n ≥ 0), where (a) a value 
is of type CHAR_n if and only if it’s a character string of at most n significant characters and 
(b) a character is significant if and only if it’s not a trailing space.  Note:  It’s worth pointing out 
that this family of types is very similar, though not identical, to the SQL family of types 
VARCHAR(n).  In other words, CHAR_ can be regarded as a type generator, just as VARCHAR 
is in SQL.   
 
8.1 Is it true that type CHAR_n′ is a subtype of type CHAR_n if and only if n′ ≤ n?   
 
8.2 Does value substitutability apply?   
 
8.3 Are there any operators that apply to values of type CHAR_n′ and not to values of type 
CHAR_n?   
 
8.4 Do S by C and G by C apply?   
 
8.5 Is there a nonempty type that’s a subtype of all possible types in the family?   
 
8.6 Consider the literal 'ABC ' (note the trailing space).  What’s the declared type of that 
literal?   
 
8.7 What’s the most specific type of that same literal?   
 
8.8 What’s the root type corresponding to type CHAR_n?   
 

                                                             
 
10 See the discussion of “the three out of four rule” in Chapter 13 for further speculation as to what the term specialization via 
constraints might possibly mean.   
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ANSWERS		
	
8.1	 Yes,	it	is.		For	example,	every	value	of	type	CHAR_3	is	also	a	value	of	type	CHAR_5	(and	
the	converse	is	false,	of	course).			
	
8.2	 Yes,	it	does	(by	definition,	in	fact,	given	the	answer	to	Exercise	8.1).			
	
8.3	 In	principle,	yes—any	operator	with	a	parameter	of	declared	type	CHAR_nʹ	(in	other	
words,	any	operator	for	which	some	character	string	operand	is	constrained	to	consist	of	at	
most	nʹ	significant	characters)	is	such	an	operator.			
	
8.4	 Yes,	by	definition.			
	
8.5	 Yes,	CHAR_0.		CHAR_0	is	nonempty,	because	every	string	consisting	of	nothing	but	
spaces—including	the	empty	string	in	particular—is	of	type	CHAR_0	(and	no	other	string	is	of	
that	type).		Note	that	CHAR_0	might	have	proper	subtypes	of	its	own	(e.g.,	constrained	
according	to	length),	but	no	such	subtype	is	a	member	of	the	CHAR_n	family	as	such.			
	
8.6	 We	don’t	really	have	enough	information	to	answer	this	question—it’s	a	matter	of	how	
the	pertinent	language	is	defined.		But	it’s	probably	reasonable	to	assume	that	the	declared	
type	of	a	character	string	literal	of	length	n	characters	is	CHAR_n	(i.e.,	CHAR_4	in	the	case	of	
'ABC	')—although	it	might	be	more	useful	in	practice	if	that	particular	literal	were	defined	to	
have	declared	type	CHAR_3,	for	then	it	could	be	assigned	to	a	variable	of	type	CHAR_3,	which	a	
value	of	declared	type	CHAR_4	can’t	be.		On	the	other	hand,	we	don’t	usually	expect	compilers	
to	have	to	evaluate	expressions	at	compile	time	with	a	view	to	determining	their	declared	
types,	so	we	might	be	required	to	assign	CAST_AS_CHAR_3	('ABC	')	instead.		Note:		The	
declared	type	can’t	be	CHAR_n	where	n	<	3,	because	the	value	denoted	by	the	literal	is	certainly	
of	type	CHAR_3	(as	well	as	some	user	defined	proper	subtype	thereof,	possibly,	if	any	such	
exists),	and	the	declared	type	of	an	expression	can’t	possibly	be	a	proper	subtype	of	the	value	it	
denotes.			
	
8.7	 CHAR_3,	or	possibly	some	proper	subtype	thereof,	if	any	such	exists	(see	the	answer	to	
Exercise	8.6).			
	
8.8	 Presumably	the	root	type	is	CHAR_N,	where	N	is	the	maximum	value	for	n	supported	by	
the	implementation	in	question.		Note:		I	said	in	Chapter	2	that	I’d	assume	support	for	type	
CHAR	as	a	system	defined	type.		Type	CHAR	is	clearly	a	supertype	for	type	CHAR_n	for	all	
possible	n	(including	n	=	N	in	particular).		However,	type	CHAR	isn’t	itself	a	member	of	the	
CHAR_n	family	as	such.			



  

	

Chapter  9 
 
 

E q u a l i t y   C o m p a r i s o n s   e t c . 
 
 

The defect of equality is that we only desire it with our superiors.   
—Henry Becque: 

Querelles Littéraires (1890) 
 

All animals are equal, but some animals are more equal than others.   
—George Orwell: 

Animal Farm (1945) 
 
 

This chapter considers the question of how the fundamental operation of equality comparison 
needs to be revised to take account of inheritance.  It also looks at the implications of inheritance 
for the dyadic relational operators union, intersection, difference, and join, all of which are 
crucially dependent on that notion of equality (tuple equality, to be precise)—though there’s 
quite a bit more to discuss in connection with those operators than just the issue of equality as 
such.   
 
 
IM PRESCRIPTION 12: EQUALITY WITH INHERITANCE  
 
Consider the equality comparison  

 
Y = X  
 

(where Y and X are expressions).  DT(Y) and DT(X) shall overlap.  The comparison shall return 
TRUE if v(Y) is equal to v(X) (and hence if MST(Y) is equal to MST(X) also), and FALSE 
otherwise.   
 

——— ♦♦♦♦♦ ——— 
 
Without inheritance, the type rule for the equality comparison  

 
Y = X  
 

is very simple:  It just says the types of Y and X must be the same (in effect, it can be thought of 
as saying their declared types must be the same, since their declared types are the only types 
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they’ll have if there’s no inheritance).  IM Prescription 12 extends that rule—actually it weakens 
it, in a way—by requiring only that the declared types of Y and X overlap, or in other words have 
a nonempty common subtype (not necessarily a proper subtype, of course).  By way of example, 
let E and C be scalar1 variables of declared types ELLIPSE and CIRCLE, respectively.  Then the 
comparison  
 

E = C  
 
is clearly valid, and will evaluate to TRUE if and only if the current value of E is a circle—i.e., is 
of type CIRCLE—and is in fact the same circle as the current value of C.   

Note:  When I say the foregoing comparison is clearly valid, I’m actually appealing to the 
notion of substitutability once again, which says in the case at hand that (a) a value of type 
ELLIPSE would be acceptable as the right comparand, and therefore (b) a value of type CIRCLE 
can legitimately appear in its place.   

So the rules for equality comparison with inheritance are as follows:   
 
! The declared types DT(X) and DT(Y) of the expressions on the right and left side of the 

comparison, respectively, must have a nonempty common subtype (this is a compile time 
check).  Note:  We’ll see in Chapter 15 that if two types do have a nonempty common 
subtype, then they must also have a common supertype, and that’s something else that can 
be checked at compile time.  But having a common supertype, though necessary, is 
obviously not sufficient to guarantee the existence of a nonempty common subtype (think 
of types ELLIPSE and RECTANGLE, for example).   
 

! The most specific type MST(X) of the expression X on the right side can be any subtype of 
the declared type DT(X) of that expression X; likewise, the most specific type MST(Y) of 
the expression Y on the left side can be any subtype of the declared type DT(Y) of that 
expression Y.  (It follows that those most specific types must have a common supertype, a 
fortiori.)   

 
! If we’re dealing with single inheritance only and we can rely on the disjointness 

assumption, then the compile time checking mentioned in the first bullet item above can be 
simplified.  To be specific, if the disjointness assumption holds, then DT(X) and DT(Y) can 
have a nonempty common subtype if and only if one is a nonempty subtype of the other; 
thus, if this condition isn’t satisfied, the comparison will fail on a compile time type error.  
For example, if DT(X) and DT(Y) are ELLIPSE and RECTANGLE, respectively, the 
comparison will fail at compile time.   

                                                             
 
1 IM Prescription 12 applies to tuple and relation equality comparisons as well as scalar ones, but the comparisons (and therefore 
the variables and expressions as well) discussed in this section are all scalar ones.  (Of course, the prescription is also worded in 
such a way as to apply to multiple as well as single inheritance, but the focus in the present chapter is on single inheritance only, 
where it makes any difference.)   
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! Assuming the compile time type checking succeeds, the comparison will give FALSE if the 

most specific types of the comparands are different—a difference in type is certainly a 
logical difference—but will give TRUE if those most specific types are the same and the 
values are the same as well.  Note:  I remind you once again that the most specific type of 
any value is implied by the value in question.  It follows that if v(Y) and v(X) are the same, 
then MST(Y) and MST(X) must be the same as well, and there’s no need to say as much in 
so many words; I do so here only for explicitness.   
 
A note on “<” etc.:  The rules for ordered types (see Chapter 2) for comparisons of the 

form “Y < X” and “Y > X” are similar to, but not quite the same as, the rules for equality 
comparisons.  Certainly the declared types of the comparands, and hence the corresponding most 
specific types as well, need to have a common supertype; this is a compile time check.  However, 
those most specific types don’t necessarily have to be the same in order for the comparison to 
give TRUE.  By way of example, let 5 and 8 be values of most specific type ODD_INTEGER 
and EVEN_INTEGER, respectively, where ODD_INTEGER and EVEN_INTEGER have the 
intuitively obvious semantics.  Note in particular that those types have INTEGER as a common 
supertype; note too that they don’t overlap.  Nevertheless, the comparison 5 < 8 can and surely 
should be defined in such a way as to give TRUE.   

 
Aside:		The	foregoing	paragraph	is	perhaps	a	little	oversimplified,	in	the	sense	that	the	
literals	5	and	8	will	probably	not	be	of	declared	types	ODD_INTEGER	and	EVEN_INTEGER,	
respectively;	instead,	they’ll	almost	certainly	both	be	of	declared	type	INTEGER,	and	5	<	8	
will	thus	be	a	straightforward	integer	comparison.		Thanks	to	value	substitutability,	
however,	we	can	replace	those	literals	5	and	8	by	the	literals	ODD_INTEGER(5)	and	
EVEN_INTEGER(8),	respectively,2	and	then—assuming	a	sensible	definition	for	“<”—the	
comparison	will	still	give	TRUE.		Note	that,	by	contrast,	analogous	remarks	do	not	apply	to	
the	equality	comparisons	5	=	8	and	ODD_INTEGER(5)	=	EVEN_INTEGER(8).		To	be	specific,	
while	the	first	of	these	latter	comparisons	is	legal	(though	it	gives	FALSE),	the	second	is	in	
violation	of	IM	Prescription	12	and	should	fail	at	compile	time.		End	of	aside.			

 
 
IM PRESCRIPTION 13: JOIN ETC. WITH INHERITANCE  
 
Let RX and RY be relational expressions.  In accordance with IM Prescription 28, each of RX and 
RY has a declared type.  Let those declared types have headings  

 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }  
 

                                                             
 
2 Regarding the syntax of those literals, see the answer to Exercise 10.5 in Chapter 10.   
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{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> }  
 

respectively, where (a) n ≥ 0 and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have most 
specific common supertype Tj and least specific common subtype Tj′.  Further, let the values 
denoted by RX and RY be relations rx and ry, respectively.  Then:   
 

a. An expression of the form (RX) UNION (RY), or logical equivalent thereof, shall be 
supported and shall denote the union of rx and ry.  The declared type of that expression 
shall have heading  

 
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  

 
b. An expression of the form (RX) INTERSECT (RY), or logical equivalent thereof, shall be 

supported and shall denote the intersection of rx and ry.  The declared type of that 
expression shall have heading  

 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  

 
Note:  Intersection is a special case of join; given the prescriptions of paragraph d. below, 
therefore, the present paragraph b. is strictly redundant.  We include it for convenience.   

 
c. An expression of the form (RX) MINUS (RY), or logical equivalent thereof, shall be 

supported and shall denote the difference between rx and ry, in that order.  The declared 
type of that expression shall have heading  

 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }  

 
Now let the declared types of relational expressions RX and RY have headings  
 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> , <B1,TB1> , ... , <Bp,TBp> }  
 
{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> , <C1,TC1> , ... , <Cq,TCq> }  
 

where (a) n ≥ 0, p ≥ 0, and q ≥ 0, and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have least 
specific common subtype Tj′.  Further, let the values denoted by RX and RY be relations rx and 
ry, respectively.  Then:   
 

d. An expression of the form (RX) JOIN (RY), or logical equivalent thereof, shall be supported 
and shall denote the join of rx and ry.  The declared type of that expression shall have 
heading  

 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> ,  
             <B1,TB1> , ... , <Bp,TBp> , <C1,TC1> , ... , <Cq,TCq> }  
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Note:  Intersection is a special case of join; thus, the prescriptions of the present paragraph 
d. degenerate to those for intersection (see paragraph b. above) in the case where p = q = 0.   

 
——— ♦♦♦♦♦ ——— 

 
This prescription has been fairly drastically reworded vis-à-vis the Explorations version, though 
the general intent hasn’t changed much.  The fact is, however, the Explorations version was 
unfortunately confused on several points.  In particular, it was formulated in terms of the 
“declared types” of attributes of relations—but since a relation is a value, it doesn’t have a 
declared type, and neither do its attributes!  Rather, as we saw in Chapter 2, a relation has a 
heading, and that heading in turn is made up of attributes of the form <A,T>, where A is the name 
of the attribute in question and T is the name of the type of that attribute—the type, please note, 
not the declared type; to repeat, there is no declared type as such.   
 
Pictures of Relations  
 
The foregoing fact—the fact, that is, that attributes of relations as such don’t have declared 
types—raises another issue, though, having to do with the way we depict relations as tables (on 
paper, for example).  In the answer to Exercise 1.9 in Chapter 1, I said, in effect, that such 
pictures can always be regarded as showing a sample value for some relvar.  Now, attributes of 
relvars (as opposed to relations) do have declared types—viz., the types declared when the relvar 
in question is itself declared.  For example, let relvar ERV be defined as follows:   

 
VAR ERV BASE RELATION { E ELLIPSE , R RECTANGLE } KEY { E , R } ;  
 

Then attributes E and R of this relvar have declared types ELLIPSE and RECTANGLE, 
respectively.   

Now let e1 and e2 be values of most specific type ELLIPSE and let r3 and r4 be values of 
most specific type RECTANGLE (where e1 ≠ e2 or r3 ≠ r4 or both).  Then the following 
picture shows a possible value for relvar ERV:   
 

 ERV 
┌────┬────┐ 
│ E  │ R  │ 
├════╪════┤ 
│ e1 │ r3 │ 
│ e2 │ r4 │ 
└────┴────┘ 

 
Note in particular that it’s usual to omit the type names and show just the attribute names in 

pictures like this one.  But it wouldn’t be wrong to include such type names as shown here:   
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 ERV 
┌─────────────┬───────────────┐ 
│ E : ELLIPSE │ R : RECTANGLE │ 
├═════════════╪═══════════════┤ 
│ e1          │ r3            │ 
│ e2          │ r4            │ 
└─────────────┴───────────────┘ 

 
To spell out the situation precisely, ELLIPSE and RECTANGLE in this picture denote the 
declared types of attributes E and R, respectively, of relvar ERV.   

Now, thanks to value substitutability, the E and R values in any given tuple of ERV can be 
of any subtype of types ELLIPSE and RECTANGLE, respectively.  For example, let c5 and c6 
be values of most specific type CIRCLE and let s7 and s8 be values of most specific type 
SQUARE (c5 ≠ c6 or s7 ≠ s8 or both).  Then the following picture—I deliberately don’t show 
any type names for the moment—shows another possible value for relvar ERV:   
 

 ERV 
┌────┬────┐ 
│ E  │ R  │ 
├════╪════┤ 
│ c5 │ s7 │ 
│ c6 │ s8 │ 
└────┴────┘ 

 
For the sake of the discussion, let’s agree to refer to this relation as “relation cs.”   

So what about those type names?  Well, since every E value in relation cs is of most 
specific type CIRCLE and every R value in that same relation is of most specific type SQUARE, 
I think it’s intuitively obvious that the most specific type of the value that’s relation cs as such—
i.e., just considering it as an independent value, not necessarily as a possible value for relvar 
ERV—is this:   

 
RELATION { E CIRCLE , R SQUARE }  

 
Here’s the picture:3   
 

 cs 
┌─────────────┬───────────────┐ 
│ E : CIRCLE  │ R : SQUARE    │ 
├═════════════╪═══════════════┤ 
│ c5          │ s7            │ 
│ c6          │ s8            │ 
└─────────────┴───────────────┘ 

 

                                                             
 
3 A note on the double underlining in this picture:  To repeat another point from the answer to Exercise 1.9 in Chapter 1, relation 
cs certainly doesn’t have the key indicated by that double underlining—relations as such don’t have keys—but it does satisfy the 
corresponding key uniqueness constraint.  (In the case at hand, of course, the constraint in question isn’t much of a constraint, 
since it boils down merely to saying that the tuples in relation cs are all distinct!  But the general point is valid.)   
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On the other hand, suppose we want to draw a picture showing relation cs as a sample 
value for relvar ERV.  In this case, the picture is really a picture of ERV as such (a possible 
picture, anyway), and it thus seems appropriate to show the attribute type names as ELLIPSE 
and RECTANGLE instead of CIRCLE and SQUARE, as here:   
 

 ERV 
┌─────────────┬───────────────┐ 
│ E : ELLIPSE │ R : RECTANGLE │ 
├═════════════╪═══════════════┤ 
│ c5          │ s7            │ 
│ c6          │ s8            │ 
└─────────────┴───────────────┘ 

 
And I’ll follow these conventions throughout the remainder of this book.  That is, when I 

show a picture of a relation and I explicitly want to show appropriate attribute type names along 
with the pertinent attribute names, then:   

 
! When the picture is meant to show some relation as a possible value for some relvar—or, 

more generally, as a possible value for some expression—I’ll show the declared type 
names for the attributes of that relvar or expression.   

 
! When the picture is meant to show some relation as such—that is, just as a relation value, 

independent of any specific relvar or expression—I’ll show the attribute type names that 
are appropriate to the most specific type of that relation.   

Of course, the obvious question arises immediately:  What is the most specific type of 
a relation, in general?  Well, I’m afraid I’m going to have to defer detailed discussion of 
that question to Part IV of this book; suffice it to say for now that in the case of our 
example relation cs, the most specific type is indeed as stated above, viz., RELATION 
{E CIRCLE, S SQUARE}.  For further explanation, see the discussion of IM Prescription 
27 in Chapter 20 (and the answer to Exercise 20.2 in that chapter in particular).   

 
Dyadic Relational Operators  
 
Now I can get back to IM Prescription 13 as such.  By way of a simple introductory example, let 
relational expressions RX and RY have declared types RELATION {E ELLIPSE} and 
RELATION {E CIRCLE}, respectively.  (For the sake of the discussion, let’s assume that 
ELLIPSE and CIRCLE are the only scalar types we have to deal with; in fact, let’s stay with that 
assumption throughout the rest of this chapter, barring explicit statements to the contrary.)  Now 
let the relations rx and ry currently denoted by expressions RX and RY, respectively, be as 
follows:   
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 rx                 ry 
┌──────────────┐   ┌─────────────┐ 
│ E  : ELLIPSE │   │ E  : CIRCLE │ 
├══════════════┤   ├═════════════┤ 
│ e1 : ellipse │   │ c2 : circle │ 
│ c2 : circle  │   │ c3 : circle │ 
└──────────────┘   └─────────────┘ 

 
I’m assuming here that e1 is an ellipse that’s not a circle and c2 and c3 are circles (and 

c2 ≠ c3).  For reasons of explicitness I’ve tagged each attribute value in the picture with its most 
specific type (shown in lowercase italics).   

Given these sample values, then, rx UNION ry, rx INTERSECT ry, rx MINUS ry, and ry 
MINUS rx are as shown here (rx JOIN ry is identical to rx INTERSECT ry in this simple 
example):4   
 

 rx UNION ry       rx INTERSECT ry    rx MINUS ry        ry MINUS rx 
┌──────────────┐   ┌─────────────┐   ┌──────────────┐   ┌─────────────┐ 
│ E  : ELLIPSE │   │ E  : CIRCLE │   │ E  : ELLIPSE │   │ E  : CIRCLE │ 
├══════════════┤   ├═════════════┤   ├══════════════┤   ├═════════════┤ 
│ e1 : ellipse │   │ c2 : circle │   │ e1 : ellipse │   │ c3 : circle │ 
│ c2 : circle  │   └─────────────┘   └──────────────┘   └─────────────┘ 
│ c3 : circle  │ 
└──────────────┘ 

 
Note the attribute types in particular in these results.  Indeed, given that:   
 

a. The value of attribute E in some tuples of rx is “just an ellipse” and not a circle, while  
 
b. The value of attribute E in every tuple in ry is a circle specifically,  
 

it’s intuitively obvious that the type of attribute E with respect to rx UNION ry (or whichever 
case it is we’re dealing with) must be as follows:   

 
! rx UNION ry      :  ELLIPSE  
 
! rx INTERSECT ry  :  CIRCLE  
 
! rx MINUS ry      :  ELLIPSE  
 
! ry MINUS rx      :  CIRCLE  
 
! rx JOIN ry       :  CIRCLE  
 

Observe now that IM Prescription 13 does indeed concern itself with types, and therefore 
headings, only; the corresponding bodies are assumed to be well understood.  For the record, 

                                                             
 
4 I’m adopting an obvious shorthand notation here, writing  rx UNION ry for the result of (RX) UNION (RY) and so on.   
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however, let me spell out the rules regarding the bodies as well (I deliberately state these rules in 
such a way as to emphasize their reliance on the notion of tuple equality):   

 
! rx UNION ry  
 

The body consists of all tuples t such that t is equal to some tuple that appears in at least 
one of rx and ry.   

 
! rx INTERSECT ry  
 

The body consists of all tuples t such that t is equal to some tuple that appears in each of rx 
and ry.   

 
! rx MINUS ry  
 

The body consists of all tuples t such that t is equal to some tuple that appears in rx and not 
in ry (and conversely for ry MINUS rx, of course).   

 
! rx JOIN ry  
 

The body consists of all tuples t such that t is equal to the set theory union of some tuple 
from rx and some tuple from ry.   

 
Further Points  
 
Now, the state of affairs as so far described is surely quite straightforward and easy to 
understand.  However, there are a few points that are worth discussing further.  First of all, the 
rules regarding the declared types of the expressions (RX) UNION (RY), (RX) INTERSECT 
(RY), and (RX) MINUS (RY)—though not (RX) JOIN (RY)—can be formulated more concisely 
by appealing to the notion of the declared type of a relational expression as such (as opposed to 
the notion of the declared types of individual attributes of such an expression).  I’ll give the rules 
here for the record; for further explanation, however, again I’ll have to refer you to Part IV of 
this book.   

For union, intersection, and difference, then, the declared types DT(RX) and DT(RY) of RX 
and RY, respectively, must have a common supertype.5  Then the declared types of the various 
expressions are as follows:   
 
! ( RX ) UNION ( RY )  
 

The most specific common supertype of DT(RX) and DT(RY).   

                                                             
 
5 Equivalently, those declared types must belong to the same type lattice (see Chapter 5).   
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! ( RX ) INTERSECT ( RY )  
 

The least specific common subtype—i.e., the intersection type—of DT(RX) and DT(RY).   
 
! ( RX ) MINUS ( RY )  
 

DT(RX).   
 

Turning now to join:  In general, the join of relations rx and ry is defined if and only if rx 
and ry are joinable.  Now, in the absence of inheritance, rx and ry are joinable if and only if 
attributes with the same name are of the same type—equivalently, if and only if the set theory 
union of their headings is a legal heading.  But this definition needs to be extended somewhat if 
type inheritance is supported:   

 
Definition:  Relations rx and ry are joinable if and only if attributes with the same name 
are such that their types have a common supertype.   

 
So let relational expressions RX and RY denote relations rx and ry, respectively, and let rx 

and ry be joinable in the foregoing sense.  Then, for each pair of attributes <A,TX> of RX and 
<A,TY> of RY having the same attribute name A, the declared type of attribute A in (RX) JOIN 
(RY) is the least specific common subtype T′—the intersection type, in fact—of TX and TY.  
(And if RX has an attribute called Z but RY doesn’t, or vice versa, then attribute Z simply 
becomes an attribute of the result in the usual way, of course.)   

Now let relational expressions RX and RY have declared types RELATION {PF ELLIPSE} 
and RELATION {PF RECTANGLE}, respectively.  Then according to both the foregoing 
definition of joinability and IM Prescription 13, the expression (RX) JOIN (RY) is legal; 
however, the result of that join is necessarily empty (and the declared type of that expression is 
RELATION {PF omega}).  Thus, while the join is indeed legal, it might be advisable for the 
implementation to warn the user of this latter state of affairs, just in case he or she might have 
made a mistake.  More generally, in fact, the implementation might want to flag any attempt to 
evaluate an expression of the form (RX) JOIN (RY) if the declared type of any attribute of that 
expression is some empty type (see the discussion of IM Prescription 21 in Chapter 17)—or 
possibly if it’s merely some subleaf type (see the discussion of IM Prescription 26 in Chapter 19 
for an explanation of this latter concept).  Similar remarks apply to intersection also, of course.   

As for union, suppose relational expressions RX and RY have declared types RELATION 
{A ELLIPSE} and RELATION {A CUBE}, where ELLIPSE and CUBE belong to distinct (and 
hence disjoint) type hierarchies.  According to IM Prescription 13, then, the expression (RX) 
UNION (RY) is legal; however, that union is necessarily a disjoint union (and the declared type 
of that expression is RELATION {A alpha}).  Thus, while the union is indeed legal, it might be 
advisable for the implementation to warn the user of this latter state of affairs, just in case he or 
she might have made a mistake.  More generally, in fact, the implementation might want to flag 



 
 

Equality Comparisons etc. / Chapter 9      185 

any attempt to evaluate an expression of the form (RX) UNION (RY) if the declared type of any 
attribute of that expression is some superroot type (see the discussion of IM Prescription 26 in 
Chapter 19 for an explanation of this latter concept).   

My last point is the following.  As you can see, IM Prescription 13 has a lot to say about 
declared types, but it doesn’t have anything to say about corresponding most specific types.  But 
that’s because the whole question of types, most specific or otherwise, of relations hasn’t been 
properly discussed in this book yet (that discussion appears under IM Prescription 27 in 
Chapter 20).  Here, therefore, I’ll just content myself with the following brief remarks.   

Let relational expression RX, of declared type RELATION {E ELLIPSE}, have current 
value rx as shown here:   

 
 rx  
┌──────────────┐ 
│ E  : ELLIPSE │ 
├══════════════┤ 
│ e1 : ellipse │ 
│ c2 : circle  │ 
└──────────────┘ 

 
Then I think it’s “obvious”—well, fairly obvious!—that the most specific type of this relation is 
the same as the declared type of RX: viz., RELATION {E ELLIPSE}.   

Now consider the expression (RX) MINUS (RX).  In accordance with IM Prescription 13, 
the declared type of that expression is RELATION {E ELLIPSE}.  Of course, evaluating that 
expression produces an empty relation as a result:   

 
 rx MINUS rx  
┌──────────────┐ 
│ E  : omega   │ 
├══════════════┤ 
└──────────────┘ 

 
As we’ll see in Chapter 20, therefore (and indeed as the picture indicates), the most specific type 
of that result is RELATION {E omega}.   

What’s more, a similar remark applies whenever some expression evaluates to an empty 
relation.  For example, the expressions  
 
! ( RX ) JOIN TABLE_DUM  
 
! ( RX ) WHERE E ≠ E   
 
! ( RX ) WHERE FALSE  
 

all have declared type RELATION {E ELLIPSE} and all produce as a result an empty relation, 
of most specific type RELATION {E omega}.   
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EQUIVALENCE OF EXPRESSIONS  
 
Once again let relational expressions RX and RY have declared types RELATION {E ELLIPSE} 
and RELATION {E CIRCLE}, respectively.  Then:   
 
! First of all, it’s well known that intersection can be defined in terms of difference.  That is, 

the equivalence—  
 

X INTERSECT Y  ≡  X MINUS ( X MINUS Y )  
 

—holds for all sets X and Y, as can easily be confirmed using Venn diagrams.   
 
! It follows that the relational expression (RX) INTERSECT (RY) ought by rights—but see 

below—to be logically equivalent to the relational expression (RX) MINUS ((RX) MINUS 
(RY)).   

 
! Consider the subexpression—let’s call it RD—(RX) MINUS (RY).  As we’ve seen, this 

expression has declared type RELATION {E ELLIPSE}.   
 
! Now consider the expression (RX) MINUS (RD).  This expression also has declared type 

RELATION {E ELLIPSE}.   
 
! It follows that (RX) INTERSECT (RY), because it’s logically equivalent to (RX) MINUS 

(RD), ought by rights to have declared type RELATION {E ELLIPSE} as well.  But it 
doesn’t!  According to IM Prescription 13, it has declared type RELATION {E CIRCLE}.  
What’s more, I said earlier that this latter fact was “intuitively obvious,” “quite 
straightforward,” and “easy to understand.”  So what exactly is going on here?   

 
Well, what the foregoing argument really shows is that the expression (RX) INTERSECT 

(RY) is not logically equivalent to the expression (RX) MINUS ((RX) MINUS (RY)) after all—at 
least, not in the formal system we’re developing here (viz., our inheritance model).  Rather, it’s 
logically equivalent to a version of this latter expression that’s been “treated” to the appropriate 
type (viz., type RELATION {E CIRCLE}, in the example), perhaps like this:6   

 
TREAT_AS_SAME_TYPE_AS ( ( RX ) INTERSECT ( RY ) ,  
                        ( RX ) MINUS ( ( RX ) MINUS ( RY ) ) )  

 
This expression and the expression (RX) INTERSECT (RY) are logically equivalent, and they’re 
logically interchangeable (either one can be replaced by the other).   
                                                             
 
6 See Chapter 20 for an explanation of the TREAT_AS_SAME_TYPE_AS construct used in this example.   
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The message of the foregoing discussion is that certain expressions that are logically 
equivalent in the absence of inheritance aren’t necessarily guaranteed to remain so when support 
for inheritance is introduced.  However, such guarantees can be reinstated, as it were, by 
judicious use of the TREAT operator (see Chapters 10, 16, and 20).   
 
 
EXERCISES  
 
9.1 Given the code fragment— 
 

VAR E ELLIPSE ;  
VAR C CIRCLE ;  
 
E := ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) ) ;  
C := CIRCLE  ( LENGTH ( 5.0 ) , POINT ( 0.0 , 0.0 ) ) ;  

 
—what happens with the equality comparison E = C?   
 
9.2 Let relational expressions RX and RY denote relations rx and ry, respectively, where rx and 
ry are as follows (you can assume attribute values c2 and c3 are distinct):   

 
 rx                                  ry  
┌──────────────┬────────────────┐   ┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ P  : POLYGON   │   │ E  : ELLIPSE │ P  : RECTANGLE │ 
├══════════════╪════════════════┤   ├══════════════╪════════════════┤ 
│ e1 : ellipse │ r4 : rectangle │   │ e1 : ellipse │ r4 : rectangle │ 
│ c2 : circle  │ s5 : square    │   │ c3 : circle  │ r4 : rectangle │ 
│ c3 : circle  │ p6 : polygon   │   │ c2 : circle  │ s5 : square    │ 
└──────────────┴────────────────┘   └──────────────┴────────────────┘ 

 
Show the results produced by evaluating the expressions (RX) UNION (RY), (RX) INTERSECT 
(RY), (RX) MINUS (RY), and (RY) MINUS (RX).   
 
9.3 Let relational expressions RX and RY (each of which is of declared type RELATION 
{PF PLANE_FIGURE}) denote relations rx and ry, respectively, where rx and ry are as follows:   
 

 rx                 ry 
┌──────────────┐   ┌────────────────┐ 
│ PF : ELLIPSE │   │ PF : RECTANGLE │ 
├══════════════┤   ├════════════════┤ 
│ e1 : ellipse │   │ r2 : rectangle │ 
└──────────────┘   └────────────────┘ 

 
Then the expression  
 

( RX ) JOIN ( RY )  
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is legal, while the expression (a would-be scalar equality comparison)  
 

PF FROM TUPLE FROM RX = PF FROM TUPLE FROM RY  
 
isn’t.7  How do you account for the discrepancy?   
 
9.4 IM Prescription 13 specifies the rules regarding declared types (in the context of 
inheritance) for the dyadic relational operators UNION, INTERSECT, MINUS, and JOIN.  But 
there are other dyadic relational operators too—TIMES, D_UNION, I_MINUS, XUNION, 
MATCHING, and NOT MATCHING (see my book SQL and Relational Theory: How to Write 
Accurate SQL Code, 3rd edition, O’Reilly, 2015).  Are there any analogous rules for these 
operators?   
 
9.5 IM Prescription 13 specifies the rules regarding declared types (in the context of 
inheritance) for the dyadic relational operators UNION, INTERSECT, MINUS, and JOIN.  But 
what about the monadic relational operators—rename, restrict, project, and extend?  Are there 
any analogous rules for these operators?   
 
 
ANSWERS		
	
9.1	 It	returns	TRUE.		The	reason	is,	of	course,	that	the	value	of	E	at	run	time	is	a	circle	(the	
same	circle	as	the	one	that’s	the	value	of	C	at	run	time,	in	fact),	thanks	to	specialization	by	
constraint	on	the	result	of	the	expression—a	selector	invocation	(actually	a	literal)—on	the	
right	side	of	the	assignment	to	E.			
	
9.2	 Note	the	attribute	types	in	particular	in	the	following	results:			
	
  rx UNION ry  

┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ P  : POLYGON   │ 
├══════════════╪════════════════┤ 
│ e1 : ellipse │ r4 : rectangle │ 
│ c2 : circle  │ s5 : square    │ 
│ c3 : circle  │ p6 : polygon   │ 
│ c3 : circle  │ r4 : rectangle │ 
└──────────────┴────────────────┘ 
 

                                                             
 
7 In fact the would-be tuple equality comparison TUPLE FROM RX = TUPLE FROM RY isn’t legal either, come to that.   
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  rx INTERSECT ry  
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ P  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ e1 : ellipse │ r4 : rectangle │ 
│ c2 : circle  │ s5 : square    │ 
└──────────────┴────────────────┘ 
 

  rx MINUS ry  
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ P  : POLYGON   │ 
├══════════════╪════════════════┤ 
│ c3 : circle  │ p6 : polygon   │ 
└──────────────┴────────────────┘ 
 

  ry MINUS rx  
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ P  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ c3 : circle  │ r4 : rectangle │ 
└──────────────┴────────────────┘ 
 

9.3	 (Note:		You	might	want	to	come	back	and	revisit	this	answer	after	reading	Chapter	18.)		
Observe	first	that	the	(relational)	equality	comparison	RX	=	RY	is	legal,	because	DT(RX)	and	
DT(RY)	do	overlap—they	have	a	nonempty	common	subtype,	viz.,	RELATION	{PF	omega}.		(Even	
though	the	sole	attribute	of	that	common	subtype	is	of	an	empty	type,	that	subtype	itself	isn’t	
empty—it	contains	just	one	value,	viz.,	the	empty	relation	of	type	RELATION	{PF	omega}.)		Thus,	
since	RX	=	RY	is	legal,	it	makes	sense	to	say	RX	JOIN	RY	is	legal	too.		(Note,	however,	that	
RX	=	RY	gives	FALSE,	and	RX	JOIN	RY	gives	an	empty	result.		Note	too	that	the	declared	type	of	
that	expression	RX	JOIN	RY	and	the	most	specific	type	of	the	result	of	evaluating	that	
expression	are	both	RELATION	{PF	omega}.)			

Now	consider	the	expressions	PF	FROM	TUPLE	FROM	RX	and	PF	FROM	TUPLE	FROM	RY,	
which	evaluate	to	e1	(an	ellipse)	and	r2	(a	rectangle),	respectively.		Since	types	ELLIPSE	and	
RECTANGLE	don’t	overlap—i.e.,	they	don’t	have	a	nonempty	common	subtype—the	scalar	
equality	comparison	e1	=	r2	is	illegal	(it	fails	on	a	compile	time	type	error).			
	
9.4	 TIMES:		The	rules	are	as	they	are	for	TIMES	without	inheritance.		D_UNION	and	XUNION:		
The	rules	are	as	for	UNION.		I_MINUS:		The	rules	are	as	for	MINUS.		MATCHING	and	NOT	
MATCHING:		The	rules	for	the	operands	are	as	for	JOIN;	the	expression	denoting	the	MATCHING	
or	NOT	MATCHING	invocation	has	declared	type	the	same	as	that	of	the	first	operand.			
	
9.5	 The	rules	are	the	same	as	they	are	without	inheritance	in	all	cases.			
	
	



  

	

	



  

Chapter  10 
 
 

T r e a t i n g   a n d   T y p e   T e s t i n g 
 
 

Talk about a treat  
—Charles Collins: 

Any Old Iron (1911) 
One, two, three, testing  

—20th century catchphrase 
 
 

The topics of this chapter—treating and type testing, and the associated operators TREAT and 
IS_T—have been touched on, and indeed illustrated, several times in earlier chapters.  However, 
it’s time to get more specific.  In fact, there’s quite a lot more to be said about these matters, as 
will quickly become clear.   

Note:  Once again the pertinent prescriptions—here, IM Prescriptions 14 and 15—are 
deliberately worded in such a way as to apply to multiple as well as single inheritance, and to 
tuple and relation types as well as scalar types.  As usual, however, the present chapter discusses 
single inheritance and scalar types only; multiple inheritance is discussed in Part III of this book 
and tuple and relation types are discussed in Part IV.   
 
 
IM PRESCRIPTION 14: TREAT  
 
Let X be an expression, let T be a type, and let DT(X) and T overlap.  Then an operator of the 
form  

 
TREAT_AS_T ( X )  
 

(or logical equivalent thereof) shall be supported, with semantics as follows:  If v(X) is not of 
type T, then a type error shall occur; otherwise, the declared type of the invocation 
TREAT_AS_T(X) shall be T, and the result of that invocation, r say, shall be equal to v(X) 
(hence, MST(r) shall be equal to MST(X) also).   
 

——— ♦♦♦♦♦ ——— 
 
Compared to the Explorations version, IM Prescription 14 as stated here involves several 
cosmetic revisions and one substantial one. The substantial revision is this:  The Explorations 
version allowed a TREAT invocation to be used as a pseudovariable; the present version 
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doesn’t.  There are several reasons for this change, but the most significant one is simply that 
TREAT pseudovariables didn’t seem to add much by way of useful functionality.   
 
Consider the following code fragment:   
 

VAR E ELLIPSE ;  
VAR C CIRCLE ;  
 
C := CIRCLE ( ... ) ;  
E := C ;  

 
After the first assignment here, variable C contains a circle, c say.  Then, in the second 

assignment, what does not (and in fact could not) happen, as explained in Chapter 8 under IM 
Prescription 11, is that circle c gets converted to “just an ellipse”—because if such a conversion 
were to occur, then among other things we wouldn’t be able to ask for the radius of the circle 
that’s the current value of variable E.   

Suppose we do now want to ask for that radius.  We might try:   
 
VAR L LENGTH ;  
 
L := THE_R ( E ) ;   /* warning: compile time type error! */  
 
As the comment indicates, the expression on the right side of the assignment here raises a 

compile time type error, because variable E is of declared type ELLIPSE and THE_R is defined 
in terms of a parameter of declared type CIRCLE.  (In other words, THE_R doesn’t apply to 
ellipses, loosely speaking.)  Of course, if that compile time type check weren’t done, we’d get a 
run time type error instead—which is worse—if the current value of E at run time turned out to 
be just an ellipse and not a circle.  In the case at hand, of course, we do know the value at run 
time will be a circle; the trouble is, we know this, but the compiler doesn’t.   

TREAT is intended to address such situations.  The correct way to obtain the radius in the 
example is as follows:   

 
L := THE_R ( TREAT_AS_CIRCLE ( E ) ) ;  
 
Intuitively speaking, the expression TREAT_AS_CIRCLE (E) tells the compiler we 

believe E will contain a circle when that expression is evaluated at run time.  In particular, the 
expression is defined to have declared type CIRCLE, so the compile time type checking 
succeeds.  Then at run time:   

 
! If the current value of E is indeed of type CIRCLE, then the overall expression does return 

the radius of that circle as desired.  More precisely, if MST(E) is some subtype of CIRCLE 
(not necessarily a proper subtype, of course), then the TREAT invocation yields a result, 
res say, that (a) is equal to v(E) and hence (b) has most specific type equal to MST(E) also.  
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In the case at hand, therefore, MST(res) is CIRCLE; so THE_R can be applied to res to 
obtain the desired radius, and that radius can then be assigned to the variable L.   

 
! But if MST(E) is some proper supertype of CIRCLE—in particular, if it’s type ELLIPSE—

then the TREAT invocation fails on a run time type error.   
 

In other words, the expression TREAT_AS_CIRCLE (E) is logically equivalent to an IF –
THEN – ELSE expression along the following lines (note the appeal in the first line of this 
expansion to the type testing operator IS_CIRCLE—see later in this chapter):   

 
IF IS_CIRCLE ( E )  
   THEN CIRCLE ( THE_A ( E ) , THE_CTR ( E ) )  
   ELSE type error  
END IF  
 
So the broad intent of IM Prescription 14 is twofold:  First, defining a given type should 

cause “automatic” provision of a corresponding TREAT operator; second, TREAT operators in 
general allow a tight boundary to be drawn around those situations in which a run time type error 
might occur.  To be specific, the only possible way a run time type error can ever occur in our 
inheritance model is on an attempt to TREAT a value to a type it doesn’t possess.   

Suppose now as we did in Chapters 7 and 8 that CIRCLE has a proper subtype O_CIRCLE, 
where an “O-circle” is a circle that’s centered on the origin.  Then the current value of variable E 
at some given time might be of most specific type O_CIRCLE instead of just CIRCLE.  If it is, 
then the TREAT invocation  

 
TREAT_AS_CIRCLE ( E )  
 

will succeed, and will yield a result, res say, with most specific type MST(res) equal to 
O_CIRCLE, because O_CIRCLE is the most specific type of E, and value equal to v(E).  (The 
declared type of that TREAT invocation is CIRCLE, of course, because of that 
“..._AS_CIRCLE” specification.)  In other words, TREAT always leaves the most specific type 
alone—it never “pushes it up” to make it less specific than it was before.1   
 
Another Example  
 
Here’s another example (actually a simpler example), repeated from Chapter 8, that involves the 
use of TREAT.  Suppose again that the current value of variable E is of type CIRCLE.  Then the 
assignment  
                                                             
 
1 Of course, it must leave the specific type alone, precisely because it leaves the value alone.  In any case, IM Prescriptions 8 and 
10 both imply that any such “pushing up” is logically impossible.  For if it were possible, it would mean that the very same value 
could have most specific type CIRCLE and most specific type O_CIRCLE, thereby violating IM Prescription 8; it would also 
mean that, after the “pushing up,” the result would be a circle that could be “S by C’d” to an O-circle but hasn’t been, thereby 
violating IM Prescription 10.   
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C := E ;   /* warning: compile time type error! */  

 
will fail on a compile time type error, because DT(E) = ELLIPSE and DT(C) = CIRCLE and 
ELLIPSE isn’t a subtype of CIRCLE (see IM Prescription 11).  However, the following revised 
form of the assignment—  

 
C := TREAT_AS_CIRCLE ( E ) ;  
 

—will satisfy the compile time type checking, and will succeed at run time as well if the value of 
E at run time is indeed of type CIRCLE.   
 
A Remark on Single Inheritance  
 
Given the expression TREAT_AS_T (X), IM Prescription 14 requires only that T and DT(X) 
overlap, or in other words that they have a nonempty common subtype (this is a compile time 
check).  In the examples we’ve seen so far, however, T has actually been a proper subtype of 
DT(X)—in fact, T has been CIRCLE and DT(X) has been ELLIPSE—and the nonempty common 
subtype in question has thus just been T itself (i.e., CIRCLE, in those examples).  And in practice 
T frequently will be a proper subtype of DT(X); the examples have been completely realistic in 
this respect.  But there’s no reason to insist on this state of affairs, and with multiple inheritance, 
in fact, it would be counterproductive to do so (see Chapter 16).  With single inheritance, 
however, to say that T and DT(X) have a nonempty common subtype is merely to say that one 
must be a nonempty subtype of the other (not necessarily a proper subtype, of course).  In terms 
of our usual variables E and C, therefore, the expression  
 

TREAT_AS_CIRCLE ( E )  
 
is certainly valid syntactically, as we already know (though it might fail at run time).  More to 
the point, the expression  
 

TREAT_AS_ELLIPSE ( C )  
 
is also valid syntactically; what’s more, it can’t possibly fail at run time.  (The expression has 
declared type ELLIPSE, but the most specific type of the value it denotes is some subtype of 
CIRCLE.)   

Now, I don’t mean to suggest that TREAT expressions in which T is a supertype of DT(X) 
are particularly useful; however, IM Prescription 14 does permit them, mainly because there 
seems little reason not to—also because general purpose applications have a tendency to come 
up with requirements that might look a little surprising on their face, such as a requirement to 
support TREAT expressions like the ones under discussion here.  A similar remark applies to 
code produced by code generator products.   
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Generalizing TREAT  
 
In practice, it turns out to be desirable to support an additional, slightly more general form of 
TREAT that allows one scalar expression to be “treated” to the declared type of another instead 
of to some explicitly named type, thus:   

 
TREAT_AS_SAME_TYPE_AS ( Y , X )  

 
Here X and Y are scalar expressions such that DT(Y) and DT(X) have a nonempty common 
subtype, and the overall expression is defined to be equivalent to  

 
TREAT_AS_T ( X )  
 

where T is DT(Y).   
Note:  Since T is known at compile time, this more general form of TREAT is logically 

unnecessary, because it can always be replaced by the equivalent simpler form.  Support for it is 
still desirable, however, for reasons of generality, convenience, and—perhaps most important—
consistency with the tuple and relation versions of TREAT to be discussed in Chapter 20.   

 
A New Relational Operator  
 
It also turns out to be desirable to support a new relational operator2 of the following form:   

 
RX : TREAT_AS_T ( A )  
 

Here RX is a relational expression; T is a scalar type; A is an attribute, of some scalar type, of the 
relation r denoted by RX (and hence can be regarded—see the discussion of IM Prescription 28 
in Chapter 20—as an attribute of the expression RX as such); and the overall expression is 
defined to be equivalent to the following:3   

 
EXTEND RX : { A := TREAT_AS_T ( A ) }  
 
In other words, if there’s at least one tuple in r in which the A value isn’t of some subtype 

of type T, the expression overall raises a run time type error; otherwise it returns a result identical 
to r, except that attribute A of the expression denoting that result—unlike attribute A of the 
original expression RX, probably—has declared type T.  For example, suppose the current value 
of relvar RV, of declared type RELATION {E ELLIPSE}, looks like this:   

                                                             
 
2 And a tuple analog as well.   
 
3 The definition makes use of the relational EXTEND operator.  If you’re unfamiliar with that operator, please see, e.g., my book 
Relational Theory for Computer Professionals (O’Reilly, 2013).   
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 RV  
┌──────────────┐ 
│ E  : ELLIPSE │ 
├══════════════┤ 
│ c1 : circle  │ 
│ c2 : circle  │ 
│ c3 : circle  │ 
└──────────────┘ 

 
(c1, c2, and c3 all distinct).  Then the expression  

 
RV : TREAT_AS_CIRCLE ( E )  
 

produces a result relation r looking like this (note the heading in particular):   
 

 r 
┌──────────────┐ 
│ E  : CIRCLE  │ 
├══════════════┤ 
│ c1 : circle  │ 
│ c2 : circle  │ 
│ c3 : circle  │ 
└──────────────┘ 

 
Note, incidentally, that the declared type of attribute E of the specified expression 

RV : TREAT_AS_CIRCLE(E) would still be CIRCLE, even if every tuple currently appearing 
in RV had an E value of some proper subtype of CIRCLE.  On the other hand, if (say) c1 had 
been of most specific type ELLIPSE and not CIRCLE, then that same expression would have 
failed on a run time type error.   

The obvious generalized form should be supported too:   
 
RX : TREAT_AS_SAME_TYPE_AS ( Y , A )  

 
Here Y is a scalar expression such that DT(A) and DT(Y) have a nonempty common 

subtype, and the overall expression is equivalent to  
 
RX : TREAT_AS_T ( A )  
 

where T is DT(Y).   
Note:  Once again, since T is known at compile time, this more general form of the operator 

is logically unnecessary; it’s supported for reasons of generality, convenience, and consistency 
with the tuple and relation versions to be discussed in Chapter 20.   
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IM PRESCRIPTION 15: TYPE TESTING  
 
Let X be an expression, let T be a type, and let DT(X) and T overlap.  Then an operator of the 
form  

 
IS_T ( X )  
 

(or logical equivalent thereof) shall be supported.  The operator shall return TRUE if v(X) is of 
type T, FALSE otherwise.   
 

——— ♦♦♦♦♦ ——— 
 
The general intent of IM Prescription 15 is simply that defining a given type T should cause 
“automatic” provision of a boolean operator IS_T for testing values to see whether they’re of the 
type in question.  Note that the declared type DT(X) of the argument expression X and the type T 
being tested for are required to overlap (this is a compile time check).  Thus, for example, if E is 
of declared type ELLIPSE, the expression  
 

IS_SQUARE ( E )   /* warning: compile time type error! */  
 
is invalid (it’ll fail on a compile time type error).  By contrast, the expression  
 

IS_CIRCLE ( E )  
 
will satisfy the compile time type checking, and will return TRUE if the current value of variable 
E at run time is in fact of type CIRCLE, or FALSE if it’s only of type ELLIPSE.   
 

Aside:		Another	approach—which	we	did	consider	but	quickly	rejected—to	this	same	
general	problem	could	be	to	provide	an	operator	of	the	form	TYPE	(X),	which	returns	the	
type	of	the	value	denoted	by	the	argument	expression	X.		That	returned	type	could	then	
be	tested	to	see	whether	it	is,	for	example,	equal	to	type	SQUARE.		However,	this	
approach	raises	certain	obvious	questions.		For	example,	what	type	would	the	result	of	
the	TYPE	operator	be?		If	it’s	TYPE,	can	we	declare	variables	of	type	TYPE?		What	are	the	
implications?		Also,	what	would	happen	if	the	argument	denoted	by	X	in	TYPE	(X)	is	of	
several	types—both	CIRCLE	and	ELLIPSE,	say—“at	the	same	time,”	as	it	were?		Not	to	
mention	the	question	of	what	should	happen	if	X	isn’t	scalar,	and	numerous	other	
problems.		End	of	aside.			
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A Remark on Single Inheritance  
 
Given the expression IS_T (X), IM Prescription 15 requires only that T and DT(X) overlap, or in 
other words have a nonempty common subtype (this is a compile time check).  In practice, 
however, T will often be a proper subtype of DT(X), in which case the nonempty common 
subtype in question will just be T itself.  But there’s no reason to insist on this state of affairs, 
and with multiple inheritance, in fact, it would be counterproductive to do so (see Chapter 16).  
With single inheritance, however, to say that T and DT(X) have a nonempty common subtype is 
merely to say that one must be a nonempty subtype of the other (not necessarily a proper 
subtype, of course).  In terms of our usual variables E and C, for example, the expression  
 

IS_CIRCLE ( E )  
 
is certainly valid syntactically, as we already know (though it might give FALSE).  More to the 
point, the expression  
 

IS_ELLIPSE ( C )  
 
is also valid syntactically; what’s more, it can’t possibly give FALSE.   

Note:  I don’t mean to suggest that IS_T expressions in which T is a supertype of DT(X) are 
particularly useful; however, IM Prescription 15 does permit them, just as IM Prescription 14 
permits expressions like TREAT_AS_ELLIPSE (C), and for essentially similar reasons.   
 
Generalizing IS_T  
 
In practice, it turns out to be desirable to support an additional, slightly more general form of 
IS_T that looks like this:   

 
IS_SAME_TYPE_AS ( Y , X )  
 

Here X and Y are scalar expressions such that DT(Y) and DT(X) have a nonempty common 
subtype, and the overall expression is defined to be equivalent to  

 
IS_T ( X )   
 

where T is DT(Y).   
Note:  Since T is known at compile time, the foregoing more general form of IS_T is 

logically unnecessary, because it can always be replaced by the equivalent simpler form.  
Support for it is still desirable, however, for reasons of generality, convenience, and—probably 
most important—consistency with the tuple and relation versions of IS_T to be discussed in 
Chapter 20.   
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Another New Relational Operator  
 
Consider the following example.  Let relvar RV have an attribute E of declared type ELLIPSE, 
and suppose we want to query the current value of RV to find those tuples where the E value is 
in fact a circle and the radius of that circle is greater than two.  Now, we might try an expression 
of the following form:   

 
RV WHERE THE_R ( E ) > LENGTH ( 2.0 )  
      /* warning: compile time type error! */  

 
But this expression will fail on a compile time type error, because THE_R requires an 

argument of type CIRCLE and the declared type of attribute E of RV is ELLIPSE, not CIRCLE.  
(If that compile time type check weren’t done, we’d get a run time type error instead—which is 
worse—as soon as we encountered a tuple in RV in which the E value was just an ellipse and not 
a circle.)  So what we clearly need to do is filter out and eliminate those tuples in which the E 
value is just an ellipse before we even attempt to obtain the radius.  And that’s exactly what 
happens with the following formulation:   

 
RV : IS_CIRCLE ( E ) WHERE THE_R ( E ) > LENGTH ( 2.0 )  

 
Loosely speaking, this expression returns those tuples of RV in which the E value is a 

circle with radius greater than two.4  More precisely, the expression is defined to have  
 

a. Heading the same as that of RV, except that the declared type corresponding to attribute E 
is CIRCLE instead of ELLIPSE,  

 
and it yields a relation with  

 
b. Body consisting of just those tuples from the current value of RV in which the E value is of 

type CIRCLE and the radius for the circle in question is greater than two.   
 

In other words, what we’re talking about here is a new relational operator, of the form  
 
RX : IS_T ( A )  

 
where RX is a relational expression; T is a scalar type; A is an attribute, of some scalar type, of 
the relation r denoted by RX (and hence can be regarded—see the discussion of IM Prescription 
28 in Chapter 20—as an attribute of the expression RX as such); and the overall expression is 
defined to have  
 
                                                             
 
4 I’m assuming for simplicity that the operator precedence rules are such that the subexpression RV:IS_CIRCLE(E) is evaluated 
before the WHERE clause is applied.   
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a. Heading the same as that of r, except that the type of attribute A in that heading is T,  
 

and it yields a relation with  
 
b. Body consisting of just those tuples of r in which attribute A contains a value of type T.   

 
By the way, you might be thinking the following expression could have served as a valid 

formulation of the original query:   
 
RV WHERE IS_CIRCLE ( E ) AND THE_R ( E ) > LENGTH ( 2.0 )  
                          /* warning: compile time type error! */  

 
But of course this expression still fails on a compile time type error.  The point is, we need to get 
rid of the noncircles before we even attempt to apply THE_R, and that’s what the correct 
formulation, using the new relational operator, does.   

And by the way again, note that the correct formulation  
 
RV : IS_CIRCLE ( E ) WHERE THE_R ( E ) > LENGTH ( 2.0 )  

 
is almost but not quite equivalent to the following:   

 
RV WHERE  
      CASE 
         WHEN IS_CIRCLE ( E )  
            THEN THE_R ( TREAT_AS_CIRCLE ( E ) ) > LENGTH ( 2.0 )  
         WHEN NOT ( IS_CIRCLE ( E ) )  
            THEN FALSE  
      END CASE  
 
The difference is that this latter expression has heading the same as that of RV.  More 

generally, however, the expression  
 
RX : IS_T ( A )   
 

is equivalent to, and is therefore shorthand for, the following expression:   
 

( RX WHERE IS_T ( A ) ) : TREAT_AS_T ( A )  
 

Moreover, this latter expression is itself shorthand (see the discussion of IM Prescription 14 
earlier in the chapter).   

The obvious generalized form of the “RX:IS_T(A)” operator should be supported too:   
 
RX : IS_SAME_TYPE_AS ( Y , A )  
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Here Y is a scalar expression such that DT(A) and DT(Y) have a nonempty common 
subtype, and the overall expression is equivalent to  

 
RX : IS_T ( A )  
 

where T is DT(Y).   
Note:  Once again, since T is known at compile time, this more general form of the operator 

is logically unnecessary; it’s supported for reasons of generality, convenience, and consistency 
with the tuple and relation versions to be discussed in Chapter 20.   
 
 
EXERCISES  
 
10.1 Let E be a variable of declared type and current most specific type both ELLIPSE.  State 
the result of each of the following expressions:   
 

a. IS_PLANE_FIGURE ( E )  
 
b. IS_ELLIPSE ( E )  
 
c. IS_CIRCLE ( E )  
 
d. IS_RECTANGLE ( E )  
 
e. IS_alpha ( E )  
 
f. IS_omega ( E )  

 
10.2 Let E be a variable of declared type and current most specific type both ELLIPSE.  State 
the result of each of the following expressions:   
 

a. TREAT_AS_PLANE_FIGURE ( E )  
 
b. TREAT_AS_ELLIPSE ( E )  
 
c. TREAT_AS_CIRCLE ( E )  
 
d. TREAT_AS_RECTANGLE ( E )  
 
e. TREAT_AS_alpha ( E )  
 
f. TREAT_AS_omega ( E )  

 
10.3 Can the implementation of TREAT_AS_T and IS_T be automated?   
 
10.4 Do TREAT_AS_T and IS_T apply to system defined types?   
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10.5 Let T′ be an immediate subtype of type T.  It has been conjectured that if the only operators 
that apply to values and variables that are of type T′ and not of type T are those provided 
“automatically”—THE_ operators, selectors, “=”, “:=”, TREAT_AS_T′, and IS_T′ operators—
then type T′ was probably not worth defining in the first place.  Discuss.   
 
10.6 Let C be a variable of declared type CIRCLE.  What does the following expression return?   
 

THE_R ( TREAT_AS_ELLIPSE ( C ) )  
 
10.7 Show that out of all of the various treat and type testing operators defined in the body of 
this chapter, there’s really only one that’s primitive—all of the others can be defined in terms of 
that single one.   
 
10.8 Do you think it could be useful to provide an operator of the form IS_NOT_T (X)?   
 
10.9 It has been suggested that “most specific type” counterparts to all of the various type 
testing operators could also be provided if desired.  For example, the operator  
 

IS_MS_T ( X )  
 
could be defined to give TRUE if the most specific type of X is T and FALSE otherwise.  (It 
might help to observe that, e.g., whereas the operator IS_ELLIPSE is perhaps best rendered into 
natural language as “is an ellipse,” the operator IS_MS_ELLIPSE might better be rendered as “is 
most specifically an ellipse”).  Other possible “most specific type” testing operators include the 
following (the semantics are meant to be obvious in every case):   

 
! IS_SAME_MS_TYPE_AS ( Y , X )  
 
! r : IS_MS_T ( A )  
 
! r : IS_SAME_MS_TYPE_AS ( Y , A )  
 

However, it’s easy to see that these operators are logically unnecessary.  Show that this is so.   
 
 
ANSWERS		
	
10.1	 a.	TRUE.		b.	TRUE.		c.	FALSE.		d.	Compile	time	type	error.		e.	TRUE	(in	fact,	of	course,	
IS_alpha(X)	returns	TRUE	for	all	possible	scalar	expressions	X).		f.	FALSE	(in	fact,	of	course,	
IS_omega(X)	returns	FALSE	for	all	possible	scalar	expressions	X).			
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10.2	 Throughout	these	answers,	let	X	be	the	expression	(i.e.,	the	specified	TREAT	invocation)	in	
question.		a.	A	result	r	=	v(E)	with	MST(r)	=	ELLIPSE;	DT(X)	=	PLANE_FIGURE.		b.	A	result	r	=	v(E)	
with	MST(r)	=	ELLIPSE;	DT(X)	=	ELLIPSE.		c.	Run	time	type	error.		d.	Compile	time	type	error.		e.	A	
result	r	=	v(E)	with	MST(r)	=	ELLIPSE;	DT(X)	=	alpha.		f.	Compile	time	type	error	(I’m	assuming	
here	that	the	compiler	recognizes	that	there	aren’t	any	values	of	type	omega;	otherwise	the	
result	will	be	a	run	time	type	error).			
	
10.3	 Yes—given	the	type	constraint	for	type	T,	the	system	can	always	determine	whether	a	
given	value	is	of	that	type.			
	
10.4	 Yes.		Note	that	there’s	nothing	in	our	inheritance	model	that	prohibits	a	system	defined	
type	from	having	proper	supertypes	or	proper	subtypes;	what’s	more,	such	proper	subtypes,	
though	possibly	not	such	proper	supertypes,	might	even	be	user	defined.		Note:		In	fact,	of	
course,	our	model	requires	(a)	every	scalar	root	type	to	be	a	proper	subtype	of	type	alpha	and	
(b)	every	scalar	leaf	type	to	be	a	proper	supertype	of	type	omega,	and	alpha	and	omega	are	
certainly	system	defined.		But	these	are	special	cases.		A	more	typical	system	defined	type,	such	
as	INTEGER,	might	well	have	user	defined	proper	subtypes	(see	the	answer	to	Exercise	10.5	
below,	also	the	answer	to	Exercise	5.6	in	Chapter	5,	for	further	discussion	of	such	a	possibility),	
but	whether	it	could	have	any	user	defined	proper	supertypes	is	another	question.			
	
10.5	 The	following	might	be	an	example	of	such	a	type	Tʹ	(compare	the	answer	to	Exercise	5.6	
in	Chapter	5):			
	

TYPE POSINT  
     IS { INTEGER  
          CONSTRAINT INTEGER > 0  
          POSSREP ( SAME_AS ( INTEGER ) )  
          NOT { -1 } } ;  

	
Of	course,	if	some	user	defines	some	operator	with	a	parameter	of	type	POSINT,	then	the	

condition	stated	in	the	exercise	(i.e.,	that	the	only	operators	defined	for	type	Tʹ	and	not	type	T	
are	the	ones	provided	“automatically”)	will	no	longer	be	satisfied.		But	assume	no	such	
operator	is	defined.		Might	not	POSINT	still	prove	useful	as,	for	example,	the	declared	type	of	
certain	attributes	of	certain	relvars?		Or	as	the	declared	type	of	certain	components	of	certain	
possreps?		If	the	answer	to	either	of	these	questions	is	yes,	then	it	does	seem	that	declaring	the	
type	might	be	a	useful	way	of	“factoring	out”	a	certain	commonly	required	constraint.			

By	the	way,	notice	that	even	given	type	POSINT	as	defined	above,	the	declared	type	of	an	
integer	literal	such	as	4	is	likely	to	be	just	INTEGER,	not	POSINT,	even	if	the	integer	in	question	
happens	to	be	positive	(recall	from	Chapter	8	that	specialization	by	constraint	happens	at	run	
time,	not	compile	time).		Thus,	it	might	sometimes	be	necessary	to	use	an	explicit	TREAT	on	
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such	a	literal,	thereby	writing	(e.g.)	TREAT_AS_POSINT	(4),	in	order	to	avoid	certain	compile	
time	type	errors	that	might	otherwise	occur.		Now,	having	to	write	an	expression	like	
TREAT_AS_POSINT	(4)	might	be	regarded	as	a	trifle	user	hostile.		For	that	reason,	Darwen	and	I	
have	proposed	elsewhere5	that	defining	type	POSINT	as	above	should	cause	an	operator	with	
the	same	name	to	be	provided	automatically,	with	the	following	conceptual	definition:			

	
OPERATOR POSINT ( I INTEGER ) RETURNS POSINT ;  
   RETURN ( TREAT_AS_POSINT ( I ) ) ;  
END OPERATOR ;  

	
Now	the	expression	TREAT_AS_POSINT	(4)	can	be	replaced	by	the	simpler	expression	

POSINT	(4).		More	generally,	the	expression	POSINT(x),	where	x	is	an	expression	of	type	
INTEGER,	can	be	regarded	as—in	fact,	is—a	selector	invocation	for	type	POSINT,	and	it	returns	a	
positive	integer	(unless	the	integer	denoted	by	x	is	less	than	or	equal	to	zero,	of	course,	in	
which	case	it	fails	on	a	type	constraint	error).		As	a	consequence,	the	expressions	4,	POSINT(4),	
POSINT(POSINT(4)),	and	so	on,	all	denote	the	very	same	value.		Such	an	approach	could	be	used	
with	any	proper	subtype	of	a	system	defined	type	that	has	no	explicitly	defined	possrep	of	its	
own.		Also,	it	could	(and	for	consistency	probably	should)	be	used	with	such	system	defined	
types	themselves,	as	in	this	example:				

	
OPERATOR INTEGER ( I INTEGER ) RETURNS INTEGER ;  
   RETURN ( I ) ;  
END OPERATOR ;  

	
Now	the	expressions	4,	INTEGER(4),	INTEGER(INTEGER(4)),	and	so	on,	all	denote	the	very	

same	value;	in	fact,	they’re	all	valid	selector	invocations,	and	indeed	literals,	of	type	INTEGER.			
	
10.6	 It	doesn’t	return	anything	at	all—rather,	it	fails	on	a	compile	time	type	error,	because	the	
TREAT	subexpression	is	of	declared	type	ELLIPSE,	and	THE_R	isn’t	defined	for	arguments	of	
declared	type	ELLIPSE.			
	
10.7	 TREAT_AS_T	is	defined	in	terms	of	IS_T.		TREAT_AS_SAME_TYPE_AS	is	defined	in	terms	of	
TREAT_AS_T.		The	relational	expression	RX	:	TREAT_AS_T	is	defined	in	terms	of	TREAT_AS_T.		
The	relational	expression	RX	:	TREAT_AS_SAME_TYPE_AS	is	defined	in	terms	of	
TREAT_AS_SAME_TYPE_AS.		IS_SAME_TYPE_AS	is	defined	in	terms	of	IS_T.		The	relational	
expression	RX	:	IS_T	is	defined	in	terms	of	IS_T	and	TREAT_AS_T.		The	relational	expression	
RX	:	IS_SAME_TYPE_AS	is	defined	in	terms	of	RX	:	IS_T.		It	follows	from	all	of	this	that	the	only	
new	primitive	operator	is	IS_T.			

                                                             
 
5 In our book Database Explorations: Essays on The Third Manifesto and Related Topics (Trafford, 2010), available free online 
at the Manifesto website www.thethirdmanifesto.com.   
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10.8	 Well,	I	think	it	could,	so	long	as	there	aren’t	any	surprises	in	the	way	it’s	defined.		To	be	
specific,	I	would	define	IS_NOT_T	(X)	to	be	logically	equivalent	to	NOT	(IS_T	(X)).		In	other	
words,	I	would	require	DT(X)	and	T	to	overlap,	and	then	I	would	define	IS_NOT_T	(X)	to	give	
TRUE	if	and	only	if	MST(X)	is	some	proper	supertype	of	T.		(IS_T	(X),	of	course,	gives	TRUE	if	and	
only	if	DT(X)	and	T	overlap	and	MST(X)	is	some	subtype	of	T.)			

Of	course,	if	IS_NOT_T	(X)	is	supported,	then	I	think	IS_NOT_SAME_TYPE_AS	(Y,X),	
RX	:	IS_NOT_T	(A),	and	RX	:	IS_NOT_SAME_TYPE_AS	(Y,A)	should	all	be	supported	as	well	(and	
I’ll	assume	for	definiteness	from	this	point	forward	that	these	operators	are	indeed	all	
supported).		Subsidiary	exercise:		What	do	you	think	the	declared	type	of	the	expression	
RX	:	IS_NOT_T	(A)	should	be?		(In	particular,	what	do	you	think	the	type	of	attribute	A	within	
that	declared	type	should	be?)			
	
10.9	 Let	types	T1,	T2,	and	T3	be	such	that	T3	is	both	a	leaf	type	and	an	immediate	subtype	of	
T2	and	T2	is	an	immediate	subtype	of	T1.		Let	X	be	an	expression	of	declared	type	T1.		Then	the	
following	equivalences	hold:			
	
!	 IS_MS_T1	(X)	is	TRUE	if	and	only	if	IS_T2	(X)	is	FALSE.			
	
!	 IS_MS_T2	(X)	is	TRUE	if	and	only	if	IS_T2	(X)	is	TRUE	and	IS_T3	(X)	is	FALSE.			
	
!	 IS_MS_T3	(X)	is	TRUE	if	and	only	if	IS_T3	(X)	is	TRUE.			

	
The	foregoing	argument	can	clearly	be	generalized	to	show	that	IS_MS_T	is	logically	
unnecessary.		It	follows	that	the	other	suggested	operators	are	logically	unnecessary	as	well.			
	
	
	



  

	



  

Chapter  11 
 
 

S u b s t i t u t a b i l i t y 
 
 

There is no substitute for hard work.   
—Thomas Alva Edison: 

Life (1932) 
One’s style is one’s signature always.   

—Oscar Wilde: 
Letter to the Daily Telegraph (1891) 

 
 

This rather lengthy chapter is concerned with a series of interconnected prescriptions, all of them 
having to do with the notion of substitutability and its numerous ramifications.   
 
 
IM PRESCRIPTION 16: VALUE SUBSTITUTABILITY  
 
Let Op be a read-only operator, let P be a parameter to Op, and let T be the declared type of P.  
Then the declared type of the argument expression (and therefore, necessarily, the most specific 
type of the argument as such) corresponding to P in an invocation of Op shall be allowed to be 
any subtype T′ of T.  In other words, the read-only operator Op applies to values of type T and 
therefore, necessarily, to values of type T′—The Principle of Read-Only Operator Inheritance.  
It follows that such operators are polymorphic, since they apply to values of several different 
types—The Principle of Read-Only Operator Polymorphism.  It further follows that wherever a 
value of type T is permitted, a value of any subtype of T shall also be permitted—The Principle 
of Value Substitutability.   
 

——— ♦♦♦♦♦ ——— 
 
The main purpose of IM Prescription 16 is (a) to pin down precisely the notion of value 
substitutability—which by now should be very familiar to you—and (b) more specifically, to 
define three interrelated principles: The Principle of Read-Only Operator Inheritance, The 
Principle of Read-Only Operator Polymorphism, and The Principle of Value Substitutability.  
Now, we know from discussions in earlier chapters that value substitutability implies that a 
reference to a variable of declared type T can denote a value of any subtype T′ of T.  However, it 
also implies something I haven’t emphasized prior to this point: namely, that an invocation of a 
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read-only operator of declared type T can likewise denote a value of any subtype T′ of T.1  Here’s 
a trivial example:   

 
OPERATOR COPY ( E ELLIPSE ) RETURNS ELLIPSE ;  
   RETURN ( E ) ;  
END OPERATOR ;  
 
Clearly, an invocation of COPY (which is certainly a read-only operator) returns either a 

circle or “just an ellipse,” depending on whether the argument corresponding to its sole 
parameter E is a circle or “just an ellipse” in turn.   
 
Result Covariance  
 
Now, the foregoing property—i.e., that if Op is a read-only operator, then the most specific type 
of the value returned by an invocation of Op can be any subtype T′ of the declared type T of 
Op—has been referred to in the literature as result covariance.  It’s not a good term, though.  For 
one thing, it’s presumably intended to reflect the idea that the most specific type of the result 
“covaries” with the most specific type of the argument (which indeed it does, in the COPY 
example).  But there seems to be a tacit assumption that there’s just one argument!  By way of a 
counterexample, recall the read-only operator MOVE from the discussion of substitutability in 
Chapter 7:   

 
OPERATOR MOVE ( E ELLIPSE , R RECTANGLE ) RETURNS ELLIPSE ;  
   RETURN ( ELLIPSE ( THE_A ( E ) , THE_B ( E ) , CTR ( R ) ) ) ;  
END OPERATOR ;  

 
Loosely speaking, operator MOVE moves a given ellipse such that it becomes centered on 

the center of a given rectangle (CTR here is a read-only operator that returns the center of its 
rectangle argument).  And it should be clear in this example that the most specific type of the 
result “covaries” with that of the first argument but not with that of the second.  To be specific, if 
the first argument is a circle, then the result is a circle; if it’s just an ellipse, then the result is just 
an ellipse.   
 

Aside:		To	jump	ahead	of	ourselves	for	a	few	moments,	what’s	going	on	in	the	MOVE	
example—at	least	conceptually—is	this.		First,	the	operator	has	a	specification	signature	
(see	the	discussion	of	IM	Prescription	17	later	in	this	chapter)	that	looks	like	this:			
	
MOVE ( ELLIPSE , RECTANGLE ) RETURNS ELLIPSE  
	

                                                             
 
1 Though we do know from Chapter 8 that this observation is true of selectors in particular, thanks to S by C.   
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This	signature	represents	the	user’s	overall	perception	of	the	operator	(viz.,	that	the	
operator	is	called	MOVE;	that	it	takes	two	parameters,	of	declared	types	ELLIPSE	and	
RECTANGLE,	respectively;	and	that	its	declared	type	is	ELLIPSE,	meaning	it	returns	an	
ellipse	when	it’s	invoked).		Note:		The	keyword	RETURNS	shown	in	this	and	other	
signatures	in	this	book	is	just	a	noiseword,	included	to	improve	readability.			

Second,	the	MOVE	operator	also	has	four	corresponding	invocation	signatures	
(again	see	the	discussion	of	IM	Prescription	17	later	in	this	chapter)	that	look	like	this:			
	
( CIRCLE  , SQUARE    ) RETURNS CIRCLE  
( CIRCLE  , RECTANGLE ) RETURNS CIRCLE  
( ELLIPSE , SQUARE    ) RETURNS ELLIPSE  
( ELLIPSE , RECTANGLE ) RETURNS ELLIPSE  

	
As	you	can	see,	there’s	one	invocation	signature	for	each	possible	combination	of	
argument	declared	types;2	thus,	any	given	invocation	of	MOVE	must	have	arguments	
whose	declared	types	match	the	argument	types	as	specified	in	exactly	one	of	these	
invocation	signatures.		And	the	result	of	that	invocation	is	defined	to	be	of	the	type	
indicated	in	the	pertinent	invocation	signature,	so	the	declared	type	of	that	invocation	is	
that	particular	type.		End	of	aside.			

 
Anyway, here for the record is a definition (note, however, that it does rely on that concept 

of an invocation signature, which is something that won’t be fully explained until we get to that 
promised discussion of IM Prescription 17 later in the chapter):   
 

Definition:  Let Op be a read-only operator and let T be the declared type of some 
invocation of Op, as specified in the pertinent invocation signature.  Then the result 
covariance property states that an invocation of Op whose arguments are of declared types 
as specified in that invocation signature can return a result whose most specific type is any 
nonempty subtype of T.   

 
Now, this definition does capture the essence of the “result covariance” concept, but there’s 

quite a lot more to be said about that concept in general.  First, here for interest is another 
definition (this one is from the object literature—specifically, from Elisa Bertino and Lorenzo 
Martino: Object-Oriented Database Systems: Concepts and Architectures, Addison-Wesley, 
1993, though I’ve paraphrased it somewhat here):   

 

                                                             
 
2 I’m being sloppy here:  Arguments as such (meaning argument values) don’t have declared types—rather, the expressions 
denoting those arguments do.  For reasons of brevity, however, throughout this chapter (at least in informal contexts) I’ll use 
argument declared type, or some simple variation on that phrase, as a convenient shorthand for what should more correctly be 
referred to as the declared type of the expression denoting the argument in question.   
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A type T′ is a subtype of a type T if ... for each method M of T there is a corresponding method M′ 
of T′ such that ... if there is a result, then the type of the result of M′ is a subtype of the type of the 
result of M (rule of covariance in results).   
 

(As noted in Chapter 7 and elsewhere, method is basically just an object term for an operator.)   
Now, this definition can certainly be criticized on a number of grounds.  For instance:   

 
! First of all, it seems to be circular—it defines what it means for some type to be a subtype 

of another in terms of some type being a subtype of another.   
 
! Second, it seems to be saying that an operator Op that applies to values of type T must 

have a distinct implementation version that applies to values of type T′ (certainly that 
word “corresponding” does suggest rather strongly that M and M′ are distinct).3   

 
! Third, if such a distinct implementation version does exist, then the definition seems to be 

saying that the type of the result of that T′ version must be a (proper?) subtype of the type 
of the result of the T version.4  And if it is (but only if it is?), then once again there’s some 
kind of “result covariance” going on.5   

 
! Fourth, it seems to be saying that T′ is a subtype of T if substitutability applies, whereas 

we say that substitutability applies if T′ is a subtype of T.   
 
Anyway, let’s get back to our examples.  We’ve seen that the most specific type of the 

result of operator COPY “covaries” with that of its sole argument, and the most specific type of 
the result of operator MOVE “covaries” with that of its first argument but not its second.  So far, 
so good, then (?).  But now consider the following example (which is admittedly somewhat 
contrived but suffices to illustrate the point I want to make):   

 

                                                             
 
3 In other words, it seems to me that the term method in the extract quoted refers not so much to an operator per se but rather to 
an implementation version of the operator in question.  Or is it talking about invocation signatures?  Frankly, it’s hard to be sure.  
Note:  The notion of implementation versions was discussed briefly in Chapter 7 and is discussed in more detail under IM 
Prescription 17 later in the present chapter.  As already noted, invocation signatures are also discussed in detail under that same 
prescription.   
 
4 Though I do have to ask:  By “the” type here, does the extract quoted mean the declared type or the most specific type?  And 
note too that the definition does seem to allow the type of the result of M′ not to be a subtype of the type of the result of M (?)—
though in that case perhaps T′ isn’t considered to be a subtype of T after all (?).   
 
5 Implementation versions are purely an implementation notion, of course, not part of the model (to say it one more time, there’s 
just one operator as far as the user is concerned, no matter how many implementation versions of that operator might exist under 
the covers).  So if different implementation versions of the same operator do produce results of different types, this fact must be 
explained to the user without any recourse to the implementation version notion.  But that’s easily done.  For example, the 
semantics of COPY are simply that it returns a copy of its argument (if it’s passed a circle, it returns a circle, and if it’s passed 
just an ellipse, it returns just an ellipse)—and this explanation is valid regardless of whether the effect in question is produced by 
distinct implementation versions or otherwise.  Note:  More generally, the notion of invocation signatures is intended, in part, to 
help deal with this issue of explaining operator semantics.  Once again, see IM Prescription 17.   
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OPERATOR EORC ( B BOOLEAN ) RETURNS ELLIPSE ;  
    RETURN ( IF B THEN ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 4.0 ) ,  
                                                  POINT ( ... ) )  
                  ELSE CIRCLE  ( LENGTH ( 5.0 ) , POINT ( ... ) )  
             END IF ) ;  
END OPERATOR ;  
 
Note that I’m certainly within my rights here, thanks to value substitutability, when I 

specify (in the ELSE portion of the IF – THEN – ELSE expression) that a circle is to be returned 
instead of “just an ellipse.”  Clearly, then, an invocation of EORC will return either just an 
ellipse (with semiaxis lengths a = 5 and b = 4) if the argument corresponding to the sole 
parameter B is TRUE, or a circle (with radius r = 5) if it’s FALSE.  So in this example the most 
specific type of the result depends on the value, not the type, of the argument.  And it would 
surely be a little odd to think of result types “covarying” with argument values, since of course 
the mapping between the two could be arbitrarily complex—much more complex, surely, than 
the simple term covarying might reasonably be expected to signify, or bear.   

To summarize, let Op be a read-only operator.  Then:   
 

! First, if Op has several distinct implementation versions, then Op might produce results of 
different most specific types on different invocations.   

 
! Second, however, note that our examples COPY, MOVE, and EORC all manage to 

illustrate the “result covariance” phenomenon without involving distinct implementation 
versions at all.6  In other words, the result of Op can “covary” even if Op has just a single 
implementation version under the covers.   
 

! Third, the result of Op can “covary” even if no argument has a most specific type that’s a 
proper subtype of the declared type of the corresponding parameter—i.e., even if every 
argument type is the same as the declared type of the corresponding parameter on every 
invocation (e.g., see EORC).   
 

! Fourth, the result can “covary” even if there are no explicit arguments at all (imagine an 
operator that returns a circle on weekdays but just an ellipse on weekends).   
 
The net of all this is that, while the concept of “result covariance” (of some kind or other) is 

both necessary and desirable—in fact, it’s nothing but The Principle of Read-Only Operator 
Polymorphism by another name—the term “result covariance” is really inappropriate, and 
logically unnecessary, and in some ways quite misleading.   
 

                                                             
 
6 So do selectors, incidentally.   
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Argument Contravariance  
 
There’s another concept, argument contravariance, that’s also discussed in the literature and 
seems to be vaguely related to the concept of result covariance.  It’s not part of our own 
inheritance model, but I do think it’s worth trying to explain exactly what the concept is, if only 
to show why we reject it.  Though I think I also need to say up front that the concept is in fact 
quite difficult to explain—more so than “result covariance,” even—because it seems to be based 
on (a) a confusion between model and implementation, and (b) a confusion between arguments 
and parameters, and quite possibly (c) a flawed definition of the subtype concept as well.  
(Regarding points (b) and (c) here, see the further remarks near the end of the present 
subsection.)   

Now, The Principle of Value Substitutability requires that if (a) Op is a read-only operator, 
(b) P is a parameter to Op, and (c) T is the declared type of P, then (d) the declared type T′ of the 
argument expression—and therefore the most specific type of the argument as such—
corresponding to P in any given invocation of Op must be some nonempty subtype of T (not 
necessarily a proper subtype, of course).  Unfortunately, some systems not only fail to abide by 
this requirement but, in effect, claim that failure as a feature!  Here’s an example.  Consider a 
variant form of the read-only operator MOVE from the previous subsection, with specification 
signature as follows:   

 
MOVE ( ELLIPSE , SQUARE ) RETURNS ELLIPSE  

 
The difference between this and the previous form of the example is that the declared type 

of the second parameter is now SQUARE instead of RECTANGLE.  Thus, what the operator 
does is this:  It returns a result just like its first argument (an ellipse) except that it’s centered on 
the center of its second (a square).   

Now suppose distinct implementation versions of this operator—call them CMOVE and 
EMOVE—are provided for the case where the first argument is a circle and the case where it’s 
just an ellipse, respectively, and consider what happens if MOVE is invoked with first argument 
a circle.  At run time, then, the system will invoke CMOVE, not EMOVE.7  Since, by definition, 
the second argument to that invocation is of type SQUARE, it follows that the declared type of 
the second parameter to CMOVE could have been any proper supertype of SQUARE, say 
RECTANGLE,8 and the type checking, at both compile time and run time, would still work.  
And this property (warning! complicated text coming up!)—the property, that is, that if (a) Op is 
an operator with a parameter P that (according to the pertinent specification signature) is of 
declared type T, and (b) Op is invoked with an argument corresponding to P that’s of some 
proper subtype of T, then (c) the declared type of some other parameter Q to the pertinent 

                                                             
 
7 This effect occurs thanks to the binding process, to be discussed in the section on IM Prescription 17 later in this chapter.  
What’s more, as that same section also explains, it can occur either at compile time or at run time, depending on circumstances.   
 
8 But if so, this state of affairs would have to be made known to the user somehow.   
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implementation version, and hence the declared type of the argument corresponding to Q in that 
invocation, might be allowed to be some proper supertype of the declared type of Q as specified 
in the pertinent specification signature—is the “argument contravariance” property.   

However, the notion of allowing an operator to be invoked with an argument of type some 
proper supertype of the pertinent parameter declared type, as given by the pertinent specification 
signature, is surely more than a little suspect.  In the case at hand, surely it would be better just to 
define MOVE as having a specification signature that looks like this (note the revised declared 
type of the second parameter):   

 
MOVE ( ELLIPSE , RECTANGLE ) RETURNS ELLIPSE  

 
Now the user knows, because of value substitutability, that the arguments to any given 

MOVE invocation can be of any nonempty subtypes of ELLIPSE and RECTANGLE, 
respectively.  In particular, of course, they can be of most specific types ELLIPSE and 
RECTANGLE as such, because every type is a subtype of itself.  By contrast, the “argument 
contravariance” property seems to be saying—in the case at hand, and now going back to the 
earlier specification signature  

 
MOVE ( ELLIPSE , SQUARE ) RETURNS ELLIPSE  
 

—that MOVE can be invoked (a) with arguments of most specific types ELLIPSE and 
SQUARE, respectively, and (b) with arguments of most specific types CIRCLE and 
RECTANGLE, respectively (and therefore (c) with arguments of most specific types CIRCLE 
and SQUARE, respectively), but not (d) with arguments of most specific types ELLIPSE and 
RECTANGLE, respectively!  As already noted, this state of affairs violates value 
substitutability—it could be argued that it violates orthogonality too—and it’s therefore very 
strongly deprecated.  In other words, it seems to me there’d be no need to mention the concept of 
argument contravariance at all, if only value substitutability were taken seriously.  And by 
“taking value substitutability seriously” here, all I mean is requiring that if argument A is denoted 
by expression Ax, then the declared type of Ax should be some subtype of the declared type of 
the corresponding parameter, as given by the pertinent specification signature.9  After all, not 
requiring such a thing is surely nonsense—isn’t it?   

A few further observations to wind up this subsection:   
 
! The term argument contravariance is presumably meant to reflect the fact that the 

(declared? most specific?) type of one argument “contravaries” with that of another.  But in 
a sense it’s really parameters that “contravary,” not arguments, so at the very least the term 
ought really to be parameter contravariance (?).   

 
                                                             
 
9 In the example, this would entail reverting to the specification signature MOVE (ELLIPSE,RECTANGLE) RETURNS 
ELLIPSE, thereby legitimizing an invocation with arguments of most specific types ELLIPSE and RECTANGLE, respectively.    
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! There seems to be a tacit assumption underlying the terminology to the effect that there are 
exactly two parameters.  In the case of MOVE, there are indeed two parameters, which do 
“contravary” (or so it might be argued, at least)—but what if there had been three?   

 
! Earlier in this subsection I mentioned what I said was “a flawed definition of the subtype 

concept.”  The definition in question is in fact another part of that definition, quoted in the 
previous subsection, from Elisa Bertino and Lorenzo Martino: Object-Oriented Database 
Systems: Concepts and Architectures (Addison-Wesley, 1993), and it goes like this:   

 
A type T′ is a subtype of a type T if ... for each method M of T there is a corresponding method M′ 
of T′ such that ... the ith argument type of M is a subtype of the ith argument type of M′ (rule of 
contravariance in arguments).   

 
To those earlier criticisms of this definition, I think we can now add that it’s confused over 
the logical difference between arguments and parameters.   

 
! Here for interest is another definition from the object literature (this one is from Stanley B. 

Zdonik and David Maier: “Introduction to Object-Oriented Fundamentals,” in Readings in 
Object-Oriented Database Systems (Zdonik and Maier, eds.; Morgan Kaufmann, 1990):   

 
[The] important contravariance rule ... If function signatures are viewed as types for functions, then 
a function type G can be viewed as a subtype of a function type F if and only if the inputs to F are 
subtypes of the inputs to G and the result type of G is a subtype of the result type of F.10   

 
Whether this definition is consistent with the explanations given previously is left as an 
exercise for the reader.  Note:  Function as used here is just another word for operator, of 
course—though whether it means a read-only operator specifically isn’t entirely clear.11   

 
Note finally that IM Prescription 16 does indeed require that read-only operators be defined 

in such a way as to allow the most specific type of any given argument to any given invocation 
of any given operator to be the same as the declared type of the corresponding parameter.  (What 
it actually says, in essence, is this:  “The declared type of the argument expression—and 
therefore, necessarily, the most specific type of the argument as such—corresponding to 
parameter P in an invocation of [the read-only operator] Op shall be allowed to be any subtype 
of the declared type of P.”)  Indeed, it seems perverse in the extreme, as well as logically 
incorrect, to do otherwise.  And if this simple discipline is followed, then we can forget about the 
“argument contravariance” concept entirely.   

                                                             
 
10 Incidentally, note the sloppy phrasing here—inputs aren’t types, they have types.   
 
11 Functions in mathematics are read-only by definition, but functions in programming languages, even if basically read-only, are 
unfortunately sometimes allowed to have side effects.  Such is the case in SQL, for example.   
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Note:  The foregoing paragraph needs a tiny refinement to take care of the possibility that 
the declared type of a parameter might be a union type.  A union type can’t be the most specific 
type of anything, by definition (see the discussion of IM Prescription 20 in Chapter 12).  Hence, 
if parameter P has declared type T and T is a union type, the most specific type of any argument 
corresponding to P must be some subtype of T′, where T′ is a proper subtype of T that (a) isn’t a 
union type and (b) has no nonunion type as a proper supertype.  See Chapter 12 for further 
explanation.   
 
 
IM PRESCRIPTION 17: OPERATOR SIGNATURES  
 
Let Op be an operator.  Then Op shall have a specification signature and a set of invocation 
signatures.  Let the parameters of Op and the argument expressions involved in any given 
invocation of Op each constitute an ordered list of n elements (n ≥ 0), such that the jth argument 
expression corresponds to the jth parameter (j = 1, 2, ..., n).  Further, let PDT = <DT1, DT2, ..., 
DTn> be the declared types, in sequence, of those n parameters, and let PDT′ = <DT1′, DT2′, ..., 
DTn′> be a sequence of types such that DTj′ is a nonempty subtype of DTj (j = 1, 2, ..., n).  Then:   
 

a. If Op is a read-only operator, the specification signature shall consist of the operator 
name, the sequence PDT, and a type (the declared type DT(Op) for, or of, operator Op).  
Also, for each possible sequence PDT′, let OpI be an invocation of Op with argument 
expressions of declared types as specified by PDT′; then there shall exist an invocation 
signature for OpI, consisting of that sequence PDT′ and a type (the declared type 
DT(OpI) for, or of, invocation OpI).  DT(OpI) shall be a subtype of DT(Op), and the type 
of the result of OpI shall be a subtype of DT(OpI).   

 
b. If Op is an update operator, the specification signature shall consist of the operator name, 

the sequence PDT, and an indication as to which parameters are subject to update.  Also, let 
the sequence PDT′ be such that an invocation OpI of Op with argument expressions of 
declared types as specified by PDT′ is legitimate (see IM Prescription 19).  For each such 
sequence PDT′, there shall exist an invocation signature consisting of that sequence PDT′.   

 
If two distinct operators (either both read-only or both update operators) have the same 

name and the same number n of parameters, then for some j (1 ≤ j ≤ n) the declared types of their 
jth parameters, as given by their respective specification signatures, shall be disjoint.   

Note:  Ordered lists and sequences are used in the text of this prescription purely as a 
convenient basis for defining the various correspondences (e.g., between parameters and their 
declared types) that the prescription requires.  They are not an intrinsic part of the prescription as 
such.  In other words, the implementation is free to establish those correspondences by whatever 
means it deems suitable, just so long as the net effect is functionally equivalent to that defined by 
the foregoing text.   



 
 
216      Chapter 11 / Substitutability 

 
——— ♦♦♦♦♦ ——— 

 
There are quite a few differences between IM Prescription 17 as stated here and the 
corresponding Explorations version.  It’s not worth discussing all of those differences in detail; 
I’ll limit myself to saying just that the Explorations version (a) was a little confused over exactly 
what a specification signature was; (b) had nothing to say about update operators at all; 
(c) omitted the note at the end; and (d) omitted the sentence immediately preceding that note 
entirely.12   
 
Let Op be an operator.  Then there are three related but logically separate concepts arising in 
connection with Op that need to be clearly distinguished.  First of all, there’s operator Op itself; 
second, there are implementation versions of Op; third, there are invocations of Op.  The concept 
of signatures is intended to help make and clarify these important distinctions.  In essence:   

 
! Operator Op as such has a specification signature.   
 
! Each implementation version of Op has its own version signature.   
 
! For each possible combination of argument declared types for invocations of Op, there’s a 

corresponding invocation signature.   
 

Let’s take a closer look.  First of all, let’s assume until further notice that the operators 
we’re talking about are all read-only operators specifically.  Thus, let Op be a read-only operator, 
with parameters P1, P2, ..., Pn (only).  Also, let parameter Pj have declared type DTj (j = 1, 2, ..., 
n)—but note immediately that a large part of the point of the discussion that follows is to make 
this notion of parameter declared types, and corresponding argument types, much more precise.  
Thanks to value substitutability, then, the argument Aj corresponding to parameter Pj in an 
invocation of Op can have as its most specific type MSTj any nonempty subtype of DTj.  (Note:  
It follows a fortiori that the expression Axj denoting argument Aj can have as its declared type 
any type that’s both a subtype of DTj and a supertype of MSTj.)  Conceptually, then, Op has a 
specification signature, denoting the user’s overall perception of the operator in question, and a 
set of invocation signatures, where:   

 
! The specification signature consists of the operator name, the parameter declared types 

PDT1, PDT2, ..., PDTn, and the operator declared type DT(Op).   
 

                                                             
 
12 Which is a little odd, incidentally, given that the issue addressed by that sentence was addressed (albeit in different words, and 
not entirely correctly) by an earlier version of the prescription.  The issue in question is explained in Chapter 14, in the section 
“Two Remarks on Operator Inheritance.”   
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! There’s one invocation signature for each possible combination of argument declared types 
ADT1, ADT2, ..., ADTn.  Each such signature consists of the pertinent combination ADT1, 
ADT2, ..., ADTn, together with the declared type DT(OpI)—necessarily a subtype of 
DT(Op)—of an invocation OpI of Op with arguments of most specific types equal to the 
declared types ADT1, ADT2, ..., ADTn, respectively, as specified in the invocation 
signature in question.  Note:  Under the covers, each distinct invocation signature will be 
associated with exactly one implementation version of Op (but the same implementation 
version might be associated with any number of distinct invocation signatures).  See later in 
this section for further explanation.   

 
Aside:		The	foregoing	definitions	and	explanations	notwithstanding,	you	need	to	be	aware	
that	different	writers	and	different	languages	define	the	term	signature	in	a	variety	of	
different	ways.		For	example,	the	term	is	sometimes	taken	to	include	parameter	names.		
Note	further	that	this	remark	applies	regardless	of	whether	the	signature	in	question	is	a	
specification	signature	or	some	other	kind;	in	fact,	writers	generally	seem	not	to	
distinguish	between	specification	signatures	and	other	kinds.		Here’s	a	typical	quote:		“The	
signature	[note	the	definite	article]	specifies	the	name	of	the	method,	the	names	and	
classes	of	the	arguments	[sic],	and	the	class	of	the	result,	if	the	method	returns	one”	
(from	Elisa	Bertino	and	Lorenzo	Martino:	Object-Oriented	Database	Systems:	Concepts	
and	Architectures,	Addison-Wesley,	1993).		End	of	aside.			

 
So, to repeat, operator Op has exactly one specification signature, plus exactly one 

invocation signature for each possible combination of argument declared types (at least, that’s 
what the model says, though certain obvious shorthands are likely to be available in concrete 
syntax—see further discussion below).  By way of example, consider the read-only operator 
MOVE once again, which moves a specified ellipse such that it becomes centered on the center 
of a specified rectangle.  The specification signature looks like this:   

 
MOVE ( ELLIPSE , RECTANGLE ) RETURNS ELLIPSE  

 
Generally speaking, in other words, MOVE takes an ellipse and a rectangle as arguments 

and returns an ellipse as result—and the following implementation code supports that 
understanding (once again I’m assuming the availability of a read-only operator called CTR that 
returns the center of its rectangle argument):   

 
OPERATOR MOVE ( E ELLIPSE , R RECTANGLE ) RETURNS ELLIPSE ;  
   RETURN ( ELLIPSE ( THE_A ( E ) , THE_B ( E ) , CTR ( R ) ) ) ;  
END OPERATOR ;  

 
Thanks to value substitutability, however, a given invocation of MOVE can have a value of 

any nonempty subtype of ELLIPSE as its first argument and a value of any nonempty subtype of 
RECTANGLE as its second argument.  In other words, the first argument can have most specific 
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type either CIRCLE or ELLIPSE, and the second argument can have most specific type either 
SQUARE or RECTANGLE.  Moreover, if the first argument is in fact a circle and not just an 
ellipse, the result will clearly be a circle too.  At least abstractly, therefore—indeed, as 
previously noted in the discussion of result covariance earlier in this chapter—MOVE will have 
four distinct invocation signatures, as follows:   

 
( CIRCLE  , SQUARE    ) RETURNS CIRCLE  
( CIRCLE  , RECTANGLE ) RETURNS CIRCLE  
( ELLIPSE , SQUARE    ) RETURNS ELLIPSE  
( ELLIPSE , RECTANGLE ) RETURNS ELLIPSE  

 
Thus, e.g., if C and R are variables of declared types CIRCLE and RECTANGLE, respectively, 
then the declared type of the expression MOVE (C,R) is CIRCLE.   

In Tutorial D, invocation signatures are defined by means of the RETURNS clause on the 
operator definition.  For example, here again is the definition of MOVE as a read-only operator, 
now shown complete:   

 
OPERATOR MOVE ( E ELLIPSE , R RECTANGLE )  
   RETURNS  
      CASE  
         WHEN IS_CIRCLE  ( E ) AND IS_SQUARE    ( R ) THEN CIRCLE  
         WHEN IS_CIRCLE  ( E ) AND IS_RECTANGLE ( R ) THEN CIRCLE  
         WHEN IS_ELLIPSE ( E ) AND IS_SQUARE    ( R ) THEN ELLIPSE  
         WHEN IS_ELLIPSE ( E ) AND IS_RECTANGLE ( R ) THEN ELLIPSE  
      END CASE ;  
   RETURN ( ELLIPSE ( THE_A ( E ) , THE_B ( E ) , CTR ( R ) ) ) ;  
END OPERATOR ;  

 
Aside:		In	our	previous	definitions	of	MOVE,	the	RETURNS	clause	has	taken	a	much	simpler	
form:	viz.,	just	RETURNS	ELLIPSE.		As	you	can	now	see,	however,	that	simpler	form	isn’t	
sufficient.		(Well,	it’s	sufficient	to	define	the	specification	signature—see	below—but	not	
the	invocation	signatures,	at	least	not	in	general.)		In	fact,	that	simpler	formulation	must	
now	be	regarded	as	shorthand	for	a	RETURNS	clause	that	looks	like	this—	
	
RETURNS  
   CASE  
      WHEN IS_CIRCLE  ( E ) AND IS_SQUARE    ( R ) THEN ELLIPSE  
      WHEN IS_CIRCLE  ( E ) AND IS_RECTANGLE ( R ) THEN ELLIPSE  
      WHEN IS_ELLIPSE ( E ) AND IS_SQUARE    ( R ) THEN ELLIPSE  
      WHEN IS_ELLIPSE ( E ) AND IS_RECTANGLE ( R ) THEN ELLIPSE  
   END CASE  

	
—in	other	words,	a	RETURNS	clause	that	says	that	every	possible	MOVE	invocation	has	
declared	type	ELLIPSE	(which	is,	of	course,	not	quite	what	we	want).		End	of	aside.			
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As for the specification signature, that signature is now effectively defined by means of the 
combination of the operator name, the parameter declared types, and that particular one of the 
invocation signatures that has argument declared types the same as the corresponding parameter 
declared types—in other words, the last of the invocation signatures shown, in the example.   

There’s a slightly tricky point here, however.  To be specific, observe that:   
 

! The CASE expression in the RETURNS specification is evaluated (in effect) at compile 
time, not at run time.  (More precisely, it’s evaluated, in effect, whenever the compiler 
processes a MOVE invocation.)   

 
! Hence, the various “IS_” operator invocations in that CASE expression are also effectively 

evaluated at compile time, not at run time.   
 
! Those “IS_” operator invocations therefore return TRUE if and only if the corresponding 

declared types are as indicated.   
 

In other words, those “IS_” operators aren’t the usual operators of those names, which return 
TRUE if and only if their operands have the indicated types at run time.13   

Now, I’ve said that if C and R are variables of declared types CIRCLE and RECTANGLE, 
respectively, then the declared type of the expression MOVE (C,R) is CIRCLE.  Moreover, the 
specifications in the RETURNS clause mean the compiler is aware of this fact, as just explained.  
As a consequence, various TREAT invocations (see Chapter 10) that might otherwise have been 
needed won’t be needed after all.  For example, given C and R as above, we can write  

 
C := MOVE ( C , R ) ;  

 
instead of what we would otherwise have had to have written:   

 
C := TREAT_AS_CIRCLE ( MOVE ( C , R ) ) ;  

 
Aside:		As	mentioned	in	passing	earlier	in	this	chapter,	few	writers	(or	languages	or	
systems,	come	to	that)	seem	to	distinguish	properly—or	at	all—between	specification	and	
invocation	signatures.		As	the	foregoing	example	suggests,	languages	and	systems	that	do	
fail	to	make	this	distinction	will	probably	require	more	explicit	TREAT	invocations	(or	
equivalents)	than	ones	that	do	make	it.		End	of	aside.			
 

                                                             
 
13 Certain of my reviewers were quite critical of the proposals of this section—in particular, of the “tricky point” discussed in 
these bullet items.  One even said those proposals would eventually lead to a need for “an entire full blown expression-evaluating 
language for directing the compiler.”  But I disagree; I think those proposals are reasonable, and I’ll stand by them until someone 
comes up with a clearly superior alternative (which my reviewers didn’t do).   
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To return to the question of concrete syntax:  As noted earlier, certain obvious shorthands 
are likely to be possible in practice.  For example, the RETURNS clause in the MOVE example 
might reasonably be abbreviated to just:   

 
RETURNS IF IS_CIRCLE ( E ) THEN CIRCLE ELSE ELLIPSE END IF  

 
Another possible shorthand is illustrated by the following self-explanatory example:   

 
RETURNS SAME_TYPE_AS ( E )  

 
However, this latter shorthand obviously won’t work in general.  To see why not, consider 

an operator that returns a square if its sole argument has most specific type CIRCLE, but “just a 
rectangle” and not a square if its argument has most specific type ELLIPSE instead.   

Now suppose once again (as we’ve done several times previously in this book) that type 
CIRCLE has a proper subtype O_CIRCLE, where an “O-circle” is a circle with center the origin:   

 
TYPE O_CIRCLE  
     IS { CIRCLE  
          CONSTRAINT THE_CTR ( CIRCLE ) = POINT ( 0.0 , 0.0 )  
          POSSREP ( R = THE_R ( CIRCLE ) )  
          NOT { CIRCLE ( LENGTH ( 2.0 ) , POINT ( 1.0 , 0.0 ) ) } } ;  

 
Conceptually, then, the read-only version of MOVE will now require six invocation 

signatures instead of four, thus:   
 

( O_CIRCLE , SQUARE    ) RETURNS CIRCLE  
( O_CIRCLE , RECTANGLE ) RETURNS CIRCLE  
( CIRCLE   , SQUARE    ) RETURNS CIRCLE  
( CIRCLE   , RECTANGLE ) RETURNS CIRCLE  
( ELLIPSE  , SQUARE    ) RETURNS ELLIPSE  
( ELLIPSE  , RECTANGLE ) RETURNS ELLIPSE  

 
Here’s a possible RETURNS clause shorthand:   
 
RETURNS  
   CASE  
      WHEN IS_CIRCLE  ( E ) THEN CIRCLE  
      WHEN IS_ELLIPSE ( E ) THEN ELLIPSE  
   END CASE  

 
Here I’m assuming, reasonably enough, that the compile time version of IS_CIRCLE (like 

its run time counterpart) will return TRUE if the declared type of E is any subtype of CIRCLE, 
including type O_CIRCLE in particular.  Note:  The second of these WHEN clauses might be 
simplified to just ELSE ELLIPSE—see the paragraph immediately following.  Alternatively, the 
entire RETURNS clause might once again be replaced by the following:   
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RETURNS IF IS_CIRCLE ( E ) THEN CIRCLE ELSE ELLIPSE END IF  
 
I’d like to consider one final example, in order to illustrate yet another possibility.  Suppose 

that (a) read-only operator Op has a specification signature involving two parameters E1 and E2, 
both of declared type ELLIPSE; (b) invocation declared types are explicitly defined (via 
appropriate invocation signatures) corresponding to the argument declared type combinations 
CIRCLE / CIRCLE, CIRCLE / ELLIPSE, and ELLIPSE / CIRCLE (only); and (c) Op is invoked 
with the argument declared type combination ELLIPSE / ELLIPSE.  That invocation doesn’t 
correspond to any of the specified invocation signatures exactly—so what’s its declared type?  
The simplest solution to this problem (perhaps not the only one) is to allow the CASE expression 
that specifies the various invocation signatures to include an appropriate ELSE clause, as here:   

 
CASE  
   WHEN IS_CIRCLE  ( E1 ) AND IS_CIRCLE  ( E2 ) THEN ...  
   WHEN IS_CIRCLE  ( E1 ) AND IS_ELLIPSE ( E2 ) THEN ...  
   WHEN IS_ELLIPSE ( E1 ) AND IS_CIRCLE  ( E2 ) THEN ...  
   ELSE ...  
END CASE  

 
Caveat:  It would be remiss of me not to point out that there’s a trap for the unwary in the 

scheme as sketched above.  To be specific, it’s important that the WHEN clauses be specified in 
the right sequence.  By way of example, consider the following example (a possible shorthand 
form of the RETURNS clause for the MOVE operator) once again:   

 
RETURNS  
   CASE  
      WHEN IS_CIRCLE  ( E ) THEN CIRCLE  
      WHEN IS_ELLIPSE ( E ) THEN ELLIPSE  
   END CASE  

 
Suppose we were to switch the WHEN clauses, thus:   

 
RETURNS  
   CASE  
      WHEN IS_ELLIPSE ( E ) THEN ELLIPSE  
      WHEN IS_CIRCLE  ( E ) THEN CIRCLE  
   END CASE  

 
Then if C and R are variables of declared types CIRCLE and RECTANGLE, respectively, the 
declared type of the expression MOVE (C,R) will be ELLIPSE, not CIRCLE!—because the 
expression IS_ELLIPSE(C) will be evaluated first, and it’ll return TRUE.  (In fact, of course, the 
expression IS_CIRCLE(C) won’t be evaluated at all in this example.)   

Analogously, the shorthand form  
 
RETURNS IF IS_CIRCLE ( E ) THEN CIRCLE ELSE ELLIPSE END IF  
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must be written as shown and not as  
 
RETURNS IF IS_ELLIPSE ( E ) THEN ELLIPSE ELSE CIRCLE END IF  
 

Update Operators  
 
So much for read-only operators; I turn now to the question of signatures for update operators.  
Here repeated from the section “Substitutability” in Chapter 7 is MOVE as an update operator:   
 

OPERATOR MOVE ( E ELLIPSE , R RECTANGLE ) UPDATES { E } ;  
   THE_CTR ( E ) := CTR ( R ) ;  
END OPERATOR ;  

 
Now there’s no question of specifying either invocation declared types or an overall 

(specification signature) declared type, because update operator invocations don’t return a result.  
But invocation signatures and a specification signature are still required for purposes of type 
checking and binding (see the subsection following this one), as well as for defining the user’s 
overall perception of the operator.  In the example, the specification signature might look like 
this:   

 
MOVE ( *ELLIPSE , RECTANGLE )  

 
(The asterisk is an ad hoc syntactic trick for showing that the corresponding parameter is subject 
to update.)  And the invocation signatures might look like this:   
 

( CIRCLE  , SQUARE    )  
( CIRCLE  , RECTANGLE )  
( ELLIPSE , SQUARE    )  
( ELLIPSE , RECTANGLE )  

 
Note that the specification signature does need to specify somehow that MOVE invocations 

update the argument corresponding to the first parameter; however, the invocation signatures 
don’t need anything analogous.  More to the point, note that even if circles have “O-circles” as a 
proper subtype, the argument corresponding to that first parameter can’t be of type O_CIRCLE 
(at least, let’s assume as much for the sake of the example), because the center of an O-circle is 
always the origin and can’t be changed.  Thus, there are no invocation signatures (not even 
purely conceptual ones) showing the type of the first parameter as O_CIRCLE.  As far as the 
first parameter is concerned, in other words—i.e., the one that’s subject to update—the update 
form of MOVE is defined for type ELLIPSE, is inherited by type CIRCLE, but isn’t inherited by 
type O_CIRCLE.14  Some syntactic construct for specifying such a state of affairs is thus 
necessary—perhaps as illustrated here:   
                                                             
 
14 And if O_CIRCLE had any nonempty proper subtypes, it wouldn’t be inherited by those either, a fortiori.  See the discussion 
of IM Prescription 19 later in this chapter.   
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OPERATOR MOVE ( E ELLIPSE , R RECTANGLE )  
                            UPDATES { E IS_NOT_O_CIRCLE ( E ) } ;  
   THE_CTR ( E ) := CTR ( R ) ;  
END OPERATOR ;  

 
So let Op be an update operator, with parameters P1, P2, ..., Pn (and no others), and let 

parameter Pj have declared type PDTj (j = 1, 2, ..., n).  If Pj isn’t subject to update, then Op 
behaves as if it were a read-only operator as far as Pj is concerned, and the earlier discussion of 
the read-only case applies directly, mutatis mutandis.  But if Pj is subject to update, then the 
argument Aj corresponding to Pj in an invocation of Op must be a variable specifically, and it 
might or might not be allowed to have some given proper subtype of PDTj as its most specific 
type (and a fortiori as its declared type, too).  As in the read-only case, therefore, Op has a 
specification signature and a set of invocation signatures—but in this case:   

 
a. The specification signature consists of the operator name, the parameter declared types 

PDT1, PDT2, ..., PDTn, and an indication as to which parameters are subject to update.   
 
b. There’s one invocation signature for each legitimate combination of argument declared 

types ADT1, ADT2, ..., ADTn.  Each such signature consists simply of the pertinent 
combination ADT1, ADT2, ..., ADTn.   

 
The Binding Process  
 
As noted in Chapter 3, there are certain implementation issues that need to be understood if the 
overall concept of inheritance is to be properly understood in turn, and the binding process is one 
of them.  In essence, the binding process is simply the process of determining which 
implementation version of a given operator is to be executed in response to some given 
invocation of the operator in question.  For example, consider the following code fragment (I’ve 
numbered the lines for purposes of subsequent reference):   
 

1. VAR C CIRCLE ;  
2. VAR R RECTANGLE ;  
 
3. C := CIRCLE ( ... ) ;  
4. R := RECTANGLE ( ... ) ;  
5. C := MOVE ( C , R ) ;  
 

Explanation:   
 
! Lines 1 and 2 simply define two variables, C and R, with declared types CIRCLE and 

RECTANGLE, respectively.   
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! Lines 3 and 4 assign values to those variables, of (let’s assume) most specific types 
CIRCLE and RECTANGLE, respectively.   

 
! Line 5 then invokes the read-only operator MOVE, with arguments the current values of C 

and R, respectively, and assigns the result of that invocation to C.   
 

But what exactly happens in line 5?  Well, at this point I need to make a couple of 
assumptions:   

 
! First, for the sake of the example, I’ll assume there’s a distinct implementation version of 

the MOVE operator for each possible combination of argument most specific types: viz., 
CSMOVE, CRMOVE, ESMOVE, and ERMOVE, for the combinations CIRCLE / 
SQUARE, CIRCLE / RECTANGLE, ELLIPSE / SQUARE, and ELLIPSE / 
RECTANGLE, respectively.  (I choose to ignore the fact that, given the implementation 
code shown for the MOVE operator in the next bullet item below, these four separate 
implementation versions are clearly unnecessary.  The reason is that the code in question—
which in fact consists of just a single RETURN statement—is clearly sufficient, in and of 
itself, to handle all four cases correctly anyway.)   

 
! Second, I’ll assume (in accordance with the suggestions of the previous subsection) that the 

complete definition of the MOVE operator looks like this:   
 

OPERATOR MOVE ( E ELLIPSE , R RECTANGLE )  
   RETURNS  
      CASE  
         WHEN IS_CIRCLE  ( E ) AND IS_SQUARE    ( R ) THEN CIRCLE  
         WHEN IS_CIRCLE  ( E ) AND IS_RECTANGLE ( R ) THEN CIRCLE  
         WHEN IS_ELLIPSE ( E ) AND IS_SQUARE    ( R ) THEN ELLIPSE  
         WHEN IS_ELLIPSE ( E ) AND IS_RECTANGLE ( R ) THEN ELLIPSE  
      END CASE ;  
   RETURN ( ELLIPSE ( THE_A ( E ) , THE_B ( E ) , CTR ( R ) ) ) ;  
END OPERATOR ;  

 
Among other things, then, the compiler knows that the specification signature for MOVE is 

this:   
 

MOVE ( ELLIPSE , RECTANGLE ) RETURNS ELLIPSE  
 
It also knows that the first argument to the invocation MOVE (C,R) is of declared type CIRCLE 
and the second is of declared type RECTANGLE.  As a consequence:   

 
! The line 5 compile time type checking on the invocation MOVE (C,R) succeeds, because 

the declared types of C and R are some subtype of ELLIPSE and some subtype of 
RECTANGLE, respectively.   
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! Also, the compiler knows, from the second WHEN clause in the operator definition, that 

the declared type of that invocation is CIRCLE.  Hence, the line 5 compile time checking 
on the assignment operation as such (as opposed to the MOVE invocation on the right side 
of that assignment) also succeeds.   

 
Aside:		It	wouldn’t	have	been	wrong	to	write	that	assignment	as	follows:			

	
C := TREAT_AS_CIRCLE ( MOVE ( C , R ) ) ;  

	
However,	that	TREAT	would	effectively	be	a	“no	op”;	if	it’s	specified,	therefore,	it	can	and	
should	be	optimized	away	by	the	compiler.		End	of	aside.			

 
! Moreover, if the compiler is aware of the existence of the four MOVE implementation 

versions—and there’s no logical reason why it shouldn’t be—then it can determine that the 
implementation version to be invoked at run time is version CRMOVE specifically.  And if 
it does make that determination, then what we have is an example of compile time binding.  
Here’s the definition:   

 
Definition:  Given an expression OpI denoting an invocation of some operator Op, compile 
time binding is the process of finding, at compile time, the unique invocation signature for 
Op for which the declared types of the parameters exactly match the declared types of the 
corresponding argument expressions in OpI, thereby causing the unique corresponding 
implementation version of Op to be invoked at run time (unless the compiler’s decision is 
overridden at run time by run time binding—see further discussion below).   

 
In the example, then, if the compiler does make the appropriate determination as suggested, 

it will bind the MOVE invocation MOVE (C,R) to the implementation version CRMOVE.   
 
Aside:		The	process	of	binding	a	given	invocation	to	a	given	implementation	version	is	
often	described	as	a	process	of	comparing	the	pertinent	invocation	signature	with	the	
version	signatures	of	the	available	implementation	versions,	looking	for	the	best	match.		
(Generally	speaking,	the	version	signature	for	a	given	version	will	in	fact	look	very	like	an	
invocation	signature.)		However,	all	that’s	really	necessary	is	for	each	invocation	signature	
to	have	associated	with	it	an	identification—perhaps	just	the	name—of	the	
implementation	version	to	be	executed	when	an	invocation	with	that	invocation	signature	
is	encountered.		End	of	aside.			
 
Now suppose once again that type CIRCLE has a proper subtype O_CIRCLE, and suppose 

there’s yet another implementation version of MOVE, OMOVE, that’s intended for the case 
where the most specific type of the first argument is O_CIRCLE.  Suppose further that the most 
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specific type of variable C at run time (i.e., in the invocation MOVE (C,R) in line 5) is in fact 
O_CIRCLE.  At run time, then, the system can effectively override the compiler’s decision to 
invoke CRMOVE and invoke OMOVE instead: an example of run time binding.15  Here’s the 
definition:   

 
Definition:  Given some invocation OpI of some operator Op, run time binding is the 
process of finding, at run time, the unique invocation signature for Op for which the 
declared types of the parameters exactly match the most specific types of the corresponding 
arguments to OpI, thereby causing the unique corresponding implementation version of Op 
to be invoked.   

 
More on Binding  
 
The foregoing discussion shows that the binding process can be done at compile time or run time 
or both.  In principle, however, it can “almost always” be done at compile time!—and if it can, 
then run time binding is logically unnecessary (though it might lead to better performance).  Let 
me explain:   

 
! Let scalar type T be a proper supertype of scalar type T′, and let PR and PR′ be possreps for 

T and T′, respectively (PR ≠ PR′).   
 
! Let Op be a read-only operator that applies to values of type T and hence, by definition, to 

values of type T′ also.   
 
! Let OpV and OpV′ be implementation versions of Op that apply to values of type T and 

values of type T′, respectively.  Further, let OpV be implemented in terms of PR and let 
OpV′ be implemented in terms of PR′.   

 
By definition, then, PR is an inherited possrep for type T′.16  As a consequence, OpV will 

certainly work—perhaps not as efficiently as OpV′ does—for values of type T′; hence, compile 
time binding will always work too.  In fact, the compiler could simply bind every invocation of 
Op to the implementation version OpV, without paying any attention to argument declared types 
at all.  (On the other hand, such an approach would mean that the compiler would no longer be 
aware that, e.g., the expression MOVE (C,R), where C is of declared type CIRCLE, denotes a 
circle instead of “just an ellipse,” and additional explicit TREATs would therefore be required.)   

 

                                                             
 
15 Of course, the invocation signature for OMOVE will necessarily talk in terms of the declared type of the first parameter (viz., 
O_CIRCLE).  Thus, since the declared type of variable C is just CIRCLE, not O_CIRCLE, the binding of the invocation 
MOVE (C,R) to OMOVE can’t possibly be done at compile time but has to wait until run time.   
 
16 See Chapter 3 if you need to refresh your memory regarding inherited possreps.   
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Aside:		Of	course,	the	foregoing	explanation	does	assume	(a)	to	repeat,	that	
implementation	versions	are	written	in	terms	of	possreps,	not	physical	representations,	
and	(b)	that	distinct	implementation	versions	of	the	same	operator	implement	the	same	
semantics	(see	the	discussion	of	changing	semantics	in	Chapter	7).		It	also	assumes,	
obviously	enough,	that	OpV	exists!—in	other	words,	it	does	rely	on	there	being	an	
implementation	version	of	Op	for	type	T.		But	if	T	is	a	union	type	(see	the	discussion	of	IM	
Prescription	20	in	Chapter	12),	OpV	might	not	exist	after	all,	even	if	that	operator	Op	is	
defined	for	type	T.		For	example,	suppose	type	ELLIPSE	has	another	immediate	subtype	
NONCIRCLE,	with	the	intuitively	obvious	semantics	(so	ELLIPSE	is	now	a	union	type,	
meaning	every	ellipse	is	either	a	circle	or	a	noncircle	and	no	ellipse	is	both).		Suppose	
further,	not	all	that	unrealistically,	that	the	operator	AREA_OF	is	defined	at	the	level	of	
type	ELLIPSE,	and	that	implementation	versions	of	AREA_OF	are	defined	for	CIRCLE	and	
NONCIRCLE	but	not	for	type	ELLIPSE	as	such.		Finally,	let	E	be	a	variable	of	declared	type	
ELLIPSE,	and	consider	the	expression	AREA_OF	(E).		Obviously,	which	implementation	
version	of	AREA_OF	is	to	be	executed	in	response	to	this	invocation	can’t	be	determined	
at	compile	time,	because	whether	the	value	of	E	at	run	time	will	be	a	circle	or	just	an	
ellipse	can’t	be	known	at	compile	time.		Thus,	the	concept	of	union	types	implies	that	
some	binding,	at	least,	will	probably	have	to	be	done	at	run	time	after	all.		End	of	aside.			
 
Here are some further relevant considerations:   
 

! Compile time binding means the run time overhead of searching for implementation 
versions is avoided.  However, it also means that programs might need to be recompiled if 
new implementation versions are defined (or existing ones dropped).   

 
! In some cases it’s not only possible to do the binding at compile time, it’s actually better—

run time binding adds nothing except overhead.  For example, consider MOVE once again 
(and assume for simplicity that there’s no type O_CIRCLE).  If the user invokes MOVE 
with arguments of declared types CIRCLE and SQUARE, respectively, then the compiler 
should clearly be able to determine that the implementation version CSMOVE is the one to 
invoke, because CIRCLE and SQUARE are both leaf types and no “lower” implementation 
version of MOVE can possibly exist.   

 
! Even if some run time binding is required, it still might not involve as much overhead as 

you might think.  Suppose types T1, T2, T3, T4, and T5 are such that T1, T2, T3, and T4 are 
immediate supertypes of T2, T3, T4, and T5, respectively; suppose operator Op has 
implementation versions corresponding to types T1 and T3 (only); finally, suppose the most 
specific type of the argument x in some invocation of Op is T5.  Then there’s no need for 
the system to determine this latter fact; all it needs to do is ascertain that x is certainly of 
type T3 and therefore invoke the T3 version of Op.   
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A note on terminology:  Be aware that numerous other terms are used in the literature in 

connection with what I’ve been calling binding.  Binding as such is sometimes called 
dispatching (sometimes spelled despatching) or function resolution or subject routine 
determination (this last is the SQL term).  Compile time binding is sometimes referred to as 
static or early binding (or dispatching, etc.).  Run time binding is sometimes referred to as 
dynamic or late binding (or dispatching, etc.).  And so on.   
 
No “Distinguished Parameters”  
 
By definition, implementation versions are an implementation concern, and so binding is too.17  
Despite this state of affairs, we (i.e., Darwen and I) do have some opinions about it!  To be 
specific, we believe—and, in effect, in our model we insist—that all arguments to a given 
operator invocation should participate equally in the binding process.  In other words, we don’t 
much care for the notion, typically supported by object systems, that operators might have a 
specially distinguished parameter such that the corresponding argument plays a controlling role 
in the binding process.  To elaborate:   

 
! Treating one parameter as the controlling one has the obvious advantage that it makes the 

binding process simpler—simpler for the system, that is—because that process involves 
determining the type of just one argument (viz., the argument corresponding to that special 
parameter).   

 
However, it has certain obvious disadvantages too, not the least of which is that it can make 

it harder for the implementer to write the implementation code.  For example:   
 

! Consider the MOVE example once again.  Suppose the first parameter to that operator (i.e., 
the one of declared type ELLIPSE) is the controlling one. Then there can be at most two 
distinct implementation versions of MOVE, one for moving a circle and one for moving 
just an ellipse; in effect, what I referred to earlier—in the subsection “The Binding 
Process”—as versions CSMOVE and CRMOVE would have to be combined into a single 
version (CMOVE, say), and what I referred to earlier as versions ESMOVE and ERMOVE 
would also have to be combined into a single version (EMOVE, say).   
 

! So if we wanted different implementation code depending on whether the second argument 
is a square or just a rectangle, then we’d have to include explicit type testing and branching 
operations within both CMOVE and EMOVE.  What’s more, we might have to include 
both the square code and the rectangle code within both of those versions.   
 

                                                             
 
17 Assuming once again, that is, that distinct implementation versions of the same operator do implement the same semantics.   
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! Alternatively, and perhaps more likely in practice, CMOVE and EMOVE could both 
invoke a “square or rectangle?” subroutine.  But even with this minor simplification, the 
fact remains that we’ll still have had to do a certain amount of work that would and could 
be much better done by the system.   
 
So we reject the object concept of a distinguished or controlling parameter.  It follows that 

we also reject the concepts of “selfish methods” and the related concept of “messages”; these 
concepts too we find to be neither necessary nor desirable.   
 

Aside:		In	case	you’re	not	familiar	with	the	foregoing	terminology,	let	me	elaborate	briefly.		
First,	a	“selfish	method”	is	a	method,	in	the	object	sense	of	that	term,	for	which	one	
parameter—variously	known	as	the	subject,	distinguished,	controlling,	receiver,	or	target	
parameter—is	singled	out	for	special	semantic	treatment	(and	special	syntactic	treatment	
also,	necessarily),	instead	of	all	parameters	being	treated	equally.		The	special	semantic	
treatment	consists	in	using	the	argument	corresponding	to	the	distinguished	parameter,	
and	no	other	arguments,	to	control	the	binding	process.		The	term	selfish	method	derives	
from	the	fact	that	the	distinguished	parameter	is	typically	unnamed	and	thus	has	to	be	
referenced	within	the	method’s	implementation	code	in	some	ad	hoc	way,	typically	by	
means	of	the	keyword	SELF	(sometimes	this).		Note	that	object	methods	are	almost	
always	assumed	in	practice	to	be	selfish	in	the	foregoing	sense.		For	example,	here’s	a	
quote	from	Douglas	K.	Barry,	The	Object	Database	Handbook:	How	to	Select,	Implement,	
and	Use	Object-Oriented	Databases,	Wiley	Publishing,	1996	(emphasis	added):			
	
[Polymorphism	is	a]	mechanism	that	selects	a	method	based	on	the	type	of	the	target	operand.			
	

As	for	the	term	message,	a	“message”	in	object	contexts	is	basically	just	an	operator	
invocation.		However,	messages	are	usually	considered	as	being	“sent”	to	a	specific	
object:	viz.,	the	object—the	subject	object?—that’s	the	argument	that	corresponds,	in	the	
invocation	in	question,	to	the	subject	or	distinguished	parameter	(see	above).		End	of	
aside.			

 
Changing Semantics Revisited  
 
As noted in Chapter 7, the fact that there can be several implementation versions for the same 
operator opens up the possibility of changing the semantics of the operator in question.  The 
following sequence of events illustrates the point:   
 

1. Suppose type ELLIPSE and operator AREA_OF have both been defined but type CIRCLE 
hasn’t, yet.  Variable E, of declared type ELLIPSE, is assigned an ellipse value for which 
a = b.  The operator AREA_OF is then invoked on E, giving a result area1, say.   
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2. Suppose type CIRCLE is now defined as an immediate subtype of type ELLIPSE and a 

new version of AREA_OF is implemented for this new type.  Variable E is assigned the 
same ellipse value as before, but S by C now comes into play and MST(E) becomes 
CIRCLE.  The operator AREA_OF is now invoked on E, giving a result area2, say.   

 
At this point we’d surely like to be able to say that the comparison area1 = area2 must give 

TRUE—but we can’t.  That is, there’s little to stop AREA_OF from being reimplemented for 
circles in such a way as to return, e.g., the diameter instead of the area.18   

As also noted in Chapter 7, some writers actually claim that it’s desirable to be able to 
change semantics in such a manner.  Here’s an example of a situation in which such a claim 
might be made:   

 
1. A type called HIGHWAY is defined, together with an operator called TRAVEL_TIME that 

computes the time it takes to travel between two points a and b on highway h, using the 
formula d/s (where d = distance between a and b and s = speed).  The highway value h is 
assigned to a variable H of declared type HIGHWAY, and TRAVEL_TIME is invoked on 
H (and points a and b on h) and returns a result, tt1 say.   

 
2. Type TOLL_HIGHWAY is now defined as an immediate subtype of type HIGHWAY and 

a new implementation version of TRAVEL_TIME is defined for this new type using the 
formula (d/s)+(n*t), where n = number of tollbooths, t = time spent at each tollbooth, and d 
and s are as before.   

 
3. Variable H is assigned the same highway value h as before.  Assume for the moment that h 

isn’t a toll highway.  Then invoking TRAVEL_TIME on H with the same points a and b as 
before gives the same result tt1 as before.   

 
4. By contrast, suppose h is a toll highway after all.  Then S by C comes into play,19 MST(H) 

becomes TOLL_HIGHWAY, and invoking TRAVEL_TIME on H with the same points a 
and b as before gives a different result tt2.   

 
Now, of course it’s true that the presence or absence of tollbooths does affect travel time, 

and an advocate of the idea that changing semantics can be desirable might therefore claim that 
the foregoing state of affairs (in particular, the fact that tt1 ≠ tt2) is reasonable.  But consider the 
following counterargument:   
                                                             
 
18 Careful type design can alleviate this problem somewhat.  For example, if AREA_OF is defined to return a result of type 
AREA, obviously the implementation can’t return a result of type LENGTH.  However, it can still return the wrong area.   
 
19 Or does it?  What’s the constraint a value of type HIGHWAY has to satisfy in order to be a value of type TOLL_HIGHWAY?  
Careful consideration of this question should suffice to show what’s wrong with this example.  See also the counterargument that 
follows almost immediately.   
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! If TOLL_HIGHWAY truly is a subtype of HIGHWAY, it means by definition that every 

individual toll highway is a highway.   
 

! Thus, some values of type HIGHWAY are toll highways and do have tollbooths.  So type 
HIGHWAY isn’t “highways without tollbooths,” it’s “highways with n tollbooths,” where 
n might be zero (and type TOLL_HIGHWAY is “highways with n tollbooths” where n is 
greater than zero).   
 

! So the operator TRAVEL_TIME for type HIGHWAY isn’t “compute the travel time for a 
highway without tollbooths,” it’s “compute the travel time for a highway ignoring 
tollbooths.”  Note the logical difference here!   
 

! By contrast, the operator TRAVEL_TIME for type TOLL_HIGHWAY is “compute the 
travel time for a highway not ignoring tollbooths.”  So the two TRAVEL_TIMEs are truly 
different operators20 (another logical difference here).  The confusion arises because those 
two different operators have been given the same name; in fact, the example is an example 
of overloading, not of inclusion polymorphism at all.   

 
In other words, we reject the suggestion that changing operator semantics can ever be a 

good idea, and we define our model to say that if a change in semantics occurs, then the 
implementation is in violation—i.e., it’s not an implementation of the model, and the 
implications are unpredictable.  Indeed, it could be argued that the ability to change operator 
semantics (or, rather, the fact that some writers seem to regard that ability as a virtue) is—like 
that business of argument contravariance discussed earlier in this chapter—a case of the 
implementation tail wagging the model dog.   
 
 
IM PRESCRIPTION 18: READ-ONLY PARAMETERS TO UPDATE OPERATORS  
 
Let Op be an update operator and let P be a parameter to Op that is not subject to update.  Then 
Op shall behave as a read-only operator as far as P is concerned, and all relevant aspects of IM 
Prescription 16 shall apply, mutatis mutandis.   
 

——— ♦♦♦♦♦ ——— 
 
Given all of the discussions in earlier sections of this chapter, this prescription doesn’t seem to 
need any further explanation—except perhaps to note that (a) the concept of a read-only 

                                                             
 
20 Though (a) they do return the same result if their highway argument has no tollbooths (i.e., if n = 0), and (b) the invocation 
TRAVEL_TIME (H) does always return the actual travel time, regardless of whether or not H denotes a toll highway.   
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parameter (see the title of this section) is, I hope, self-explanatory, and (b) since update operators 
don’t return a result, the property of “result covariance” is obviously irrelevant.   
 
 
IM PRESCRIPTION 19: VARIABLE SUBSTITUTABILITY  
 
Let Op be an update operator, let P be a parameter to Op that is subject to update, and let T be 
the declared type of P.  Then it might or might not be the case that the declared type of the 
argument expression (and therefore, necessarily, the most specific type of the argument as such) 
corresponding to P in an invocation of Op shall be allowed to be some proper subtype T′ of type 
T.  It follows that for each such update operator Op and for each parameter P to Op that is 
subject to update, it shall be necessary to state explicitly for which proper subtypes T′ of the 
declared type T of parameter P operator Op shall be inherited—The Principle of Update 
Operator Inheritance.  (And if update operator Op is not inherited in this way by type T′, it shall 
not be inherited by any proper subtype of type T′ either.)  Update operators shall thus be only 
conditionally polymorphic—The Principle of Update Operator Polymorphism.  If Op is an 
update operator and P is a parameter to Op that is subject to update and T′ is a proper subtype of 
the declared type T of P for which Op is inherited, then by definition it shall be possible to 
invoke Op with an argument expression corresponding to parameter P that is of declared type 
T′—The Principle of Variable Substitutability.   
 

——— ♦♦♦♦♦ ——— 
 
The main purpose of IM Prescription 19 is to pin down the notion of variable substitutability 
(distinguishing it carefully from the more familiar notion of value substitutability), and more 
specifically to define three interrelated principles: The Principle of Update Operator Inheritance, 
The Principle of Update Operator Polymorphism, and The Principle of Variable Substitutability.   

First let me give an example to show why it doesn’t make much sense for update operators 
to be inherited unconditionally.  Let variables R and S have declared types RECTANGLE and 
SQUARE, respectively.  Then—speaking very loosely—it’s obviously possible to change the 
height of R without changing its width; more precisely, it’s possible to update R in such a way as 
to replace its current rectangle value r1 by a new rectangle value r2 that has the same width as r1 
but a different height.  However, it’s certainly not possible to do the same kind of thing to S, 
because squares must always have equal height and width.  Thus, a certain update operator, 
“change the height but not the width,” might effectively be defined for type RECTANGLE but 
not for type SQUARE (i.e., the RECTANGLE operator won’t be inherited by type SQUARE).   

In contrast to the foregoing, here’s an example of an update operator that does make sense 
for variables of type SQUARE as well as of type RECTANGLE (i.e., it’s defined for type 
RECTANGLE and inherited by type SQUARE): “double both the height and the width.”   

For a slightly more probing example, let’s consider our MOVE operator once again.  This 
time, however, let’s make it an update operator:   
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OPERATOR MOVE ( E ELLIPSE , R RECTANGLE ) UPDATES { E } ;  
   THE_CTR ( E ) := CTR ( R ) ;  
END OPERATOR ;  

 
This revised MOVE operator updates its first argument, and so that argument must be a 

variable specifically; moreover, the code, like the read-only code shown in earlier discussions of 
the MOVE example, works for circles as well as ellipses, and the variable in question can thus 
have declared type either ELLIPSE or CIRCLE.21  However, that same code doesn’t work for 
O-circles, because updating a variable of declared type O_CIRCLE to change its center is clearly 
invalid (the center for such a variable must be the origin and can’t be changed); thus, the variable 
in question can’t have declared type O_CIRCLE.  What’s more, it’s not just this particular code 
that doesn’t work for O-circles; no code that attempts to update the center of a variable of 
declared type O_CIRCLE can possibly work.22   

From all of the above it follows that it does make sense for certain update operators not to 
be inherited by certain subtypes.  Essentially, what this means is that which update operators are 
inherited by which subtypes must be specified explicitly.  For example, we might reasonably 
specify the following:   

 
! The update operators that apply to variables of declared type ELLIPSE are:   
 

1.  Assignment to THE_A, THE_B, and THE_CTR  
 
2.  MOVE (update form)  
 

! The update operators that apply to variables of declared type CIRCLE are:   
 

1.  Assignment to THE_CTR and THE_R  
 
2.  MOVE (update form)  
 

                                                             
 
21 I remind you from the subsection “The Binding Process” in the section on IM Prescription 17 that distinct implementation 
versions (CSMOVE, CRMOVE, ESMOVE, ERMOVE) were introduced in the read-only case only for the sake of the example—
they weren’t strictly necessary, because the MOVE implementation code shown in that subsection was sufficient, in and of itself, 
to handle all possible cases correctly.   
 
22Unless the update is a “no op,” perhaps.  In other words, we could allow the update form of MOVE to be inherited by type 
O_CIRCLE after all if we really wanted to, but any attempt to update an O-circle to make its center something other than the 
origin would then have to fail at run time on a type constraint error.  Thus, the advantage of not having the operator be inherited 
is that it effectively causes a certain type constraint error (caught at run time) to be replaced by a certain type error (caught at 
compile time).  Analogous remarks apply to update operators in general, which is precisely why IM Prescription 19 allows them 
not to be inherited in the first place.   
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Observe in particular that, given these specifications, THE_A and THE_B can’t be used as 
pseudovariables in connection with variables of declared type CIRCLE.  Let me elaborate.  
Consider the following code fragment:   
 
VAR C CIRCLE ;  
VAR L LENGTH ;  
 
L := THE_A ( C ) ;  
 
This assignment is valid, because the read-only operator THE_A is inherited by type 
CIRCLE from type ELLIPSE.  By contrast, the following attempted assignment— 
 
THE_A ( C ) := L ;    /* warning: compile time type error! */  
 
—is shorthand for the following:   
 
C := ELLIPSE ( L , THE_B ( C ) , THE_CTR ( C ) ) ;  
 
It thus fails on a compile time type error (the declared type of the expression on the right 
side is ELLIPSE, which isn’t a subtype of the declared type, CIRCLE, of the variable 
reference on the left side).   
 

! The update operators that apply to variables of declared type O_CIRCLE are:   
 

1.  Assignment to THE_R  
 
Given this specification, the update form of MOVE and the THE_CTR pseudovariable 
can’t be used in connection with variables of declared type O_CIRCLE.   
 
Note:  I remind you from the earlier section on IM Prescription 17 that one way of 

specifying in concrete syntax that the update form of MOVE applies to ellipses and circles but 
not to O-circles might be as illustrated here:23   
 

OPERATOR MOVE ( E ELLIPSE , R RECTANGLE )  
                            UPDATES { E IS_NOT_O_CIRCLE ( E ) } ;  
   THE_CTR ( E ) := CTR ( R ) ;  
END OPERATOR ;  

 
I remind you too that—as in fact should be obvious—if update operator Op applies to type 

T but isn’t inherited by type T′ (where T′ is an immediate subtype of T), then it can’t be inherited 
by any proper subtype T′′ of type T′ either.   

Let’s consider a few examples.  Suppose variables E, C, and O are declared as follows:   
                                                             
 
23 For a THE_ pseudovariable not to be usable, of course, it’s sufficient that there be no corresponding possrep component.   
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VAR E ELLIPSE ;  
VAR C CIRCLE ;  
VAR O O_CIRCLE ;  
 
Also, let the variables be assigned values as follows:   
 
E := ELLIPSE  ( LENGTH ( 6.0 ) , LENGTH ( 5.0 ) , POINT ( 4.0 , 3.0 ) ) ;  
C := CIRCLE   ( LENGTH ( 5.0 ) , POINT ( 4.0 , 3.0 ) ) ;  
O := O_CIRCLE ( LENGTH ( 5.0 ) ) ;  
 
Now consider the following updates, which I assume to be executed in sequence as shown 

(where it makes any difference).  I’ve numbered them for convenience.   
 

1.  THE_A ( E ) := LENGTH ( 5.0 ) ;  
 

MST(E) is now CIRCLE, thanks to S by C.  However, if we now try the following— 
 

2.  THE_R ( E ) := LENGTH ( 4.0 ) ;   /* warning: compile time type error! */  
 

—we’ll get a compile time error, because no declared possrep for type ELLIPSE has an R 
component, and hence no THE_R operator or pseudovariable is defined for that type.  By 
contrast, the following will work:   
 

3.  E := CIRCLE ( LENGTH ( 4.0 ) , THE_CTR ( E ) ) ;  
 

The following will also work:   
 

4.  THE_A ( E ) := LENGTH ( 6.0 ) ;  
 

MST(E) is now ELLIPSE again, thanks to G by C.   
 

5.  THE_CTR ( C ) := POINT ( 0.0, 0.0 ) ;  
 

MST(C) is now O_CIRCLE.  However, we can now invoke the MOVE operator (update 
form) on variable C; the effect—unless the update is a “no op”—will be to set MST(C) 
back to CIRCLE again, thanks to G by C.  By contrast, if we try to invoke the MOVE 
operator (update form) on the variable O, we’ll get a compile time type error (obviously we 
can’t “G by C” a variable to some proper supertype of its declared type).   
 
So much for the examples.  For completeness, let me remind you that (as noted under IM 

Prescription 18) the property of “result covariance” doesn’t apply to update operators, since 
update operators don’t return a result.  However, all of the remarks in the section on IM 
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Prescription 17—regarding implementation versions, signatures, binding, and so forth—do apply 
to update operators as well as to read-only ones, mutatis mutandis.   
 
Values vs. Variables Once Again  
 
Like S by C and G by C, update operator inheritance is an area where our thinking might be 
regarded as a little controversial (some might say heretical).  To be specific, some writers—in 
fact, probably most writers, in this particular field—would say that update operators, like 
read-only operators, should be inherited unconditionally.  By contrast, we think they should be 
inherited only where they make sense.24  Indeed, it seems to us that those who want such 
unconditional inheritance run into a variety of logical problems and other undesirable 
consequences that our model avoids.  For example:   

 
! In some cases, they allow update operators to return a value—“they allow read-only 

operators to have side effects” might be a better way of putting it—thereby allowing 
(among other things) what would otherwise be read-only operations to have the side effect 
of updating the database.   

 
! Or they allow (e.g.) a value of most specific type SQUARE to have sides of different 

lengths and/or a value of most specific type RECTANGLE to have sides of the same 
length, thereby undermining the database “as a model of reality” and causing programs to 
produce nonsensical results such as “nonsquare squares” and “square nonsquares.”   

 
! Or they don’t support S by C or G by C.   
 
! Or they simply don’t support type constraints at all (see Chapter 13, also Chapter 22, for a 

detailed discussion of this particular—and important—issue).   
 

Of course, these points aren’t all unrelated.  Indeed, the common thread running through all 
of them, it seems to us, is a failure to make a clear distinction between values and variables.  To 
us, by contrast, that distinction is both crucial and fundamental; indeed, as explained in 
Chapter 2, we regard it as one of the great logical differences—one that underlies and buttresses 
our thinking throughout both The Third Manifesto itself and the inheritance model that’s based 
on it (this latter, of course, being the subject of the present book).   
 
 

                                                             
 
24 Actually our position here isn’t as controversial as it might seem.  Nobody wants “:=” to be inherited unconditionally; e.g., 
assignment of a value of most specific type ELLIPSE to a variable of declared type CIRCLE is never valid (at least, not in any 
inheritance scheme that we’re aware of).  And assignment is the only update operator that’s logically necessary!  Thus, those who 
want update operators to be inherited unconditionally might be accused of a certain lack of consistency.   
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EXERCISES  
 
11.1 Explain the “result covariance” and “argument contravariance” concepts in your own 
words.   
 
11.2 Give specification signatures for our usual ELLIPSE and CIRCLE selectors.   
 
11.3 Distinguish between specification, invocation, and version signatures.   
 
11.4 In the discussion of the read-only MOVE operator in the section on IM Prescription 17, in 
the subsection “The Binding Process,” I noted that we didn’t really need all those different 
implementation versions (CSMOVE, CRMOVE, and so on), because the code given was 
sufficient, in and of itself, to handle all possible cases correctly.  But does it correctly handle the 
case where the first argument is of most specific type O_CIRCLE?   
 
11.5 Suppose the type hierarchy of Fig. 5.1 in Chapter 5 is extended as follows:  Type 
POLYGON has two new immediate subtypes, PENTAGON and TRIANGLE; PENTAGON has 
REGULAR_PENTAGON as an immediate subtype; TRIANGLE has ISOSCELES_TRIANGLE 
as an immediate subtype; and ISOSCELES_TRIANGLE has EQUILATERAL_TRIANGLE as a 
further immediate subtype of its own.  Suppose further that PTX is a read-only operator that 
takes two parameters P and T of declared types PENTAGON and TRIANGLE, respectively, and 
returns a polygon, and PTX invocations have declared types as follows:   
 

a. If the argument corresponding to P is a regular pentagon and the argument corresponding 
to T is an isosceles triangle, then SQUARE  

 
b. If the argument corresponding to P is a regular pentagon and the argument corresponding 

to T is “just a triangle,” then RECTANGLE  
 
c. If the argument corresponding to P is “just a pentagon,” then POLYGON  
 

Give an appropriate specification signature and a corresponding set of invocation signatures.   
 
11.6 Distinguish between compile time and run time binding.  Is it true that, at least in principle, 
binding can always be done at compile time?   
 
11.7 The section on IM Prescription 19 in the body of the chapter included the following text:   
 

I remind you too that—as in fact should be obvious—if update operator Op applies to type T but 
isn’t inherited by type T′ (where T′ is an immediate subtype of T), then it can’t be inherited by any 
proper subtype of type T′ either.   
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But why exactly is this fact “obvious”?   
 
11.8 Here are some of the inheritance concepts we’ve been discussing at considerable length in 
this and previous chapters: inclusion polymorphism; value substitutability; result covariance; 
argument contravariance; code reuse; implementation versions; specification signatures; version 
signatures; invocation signatures; variable substitutability; and binding.  Which of these are 
truly features of the model as such?   
 
11.9 If C is a variable of declared type CIRCLE, assignment to THE_A(C) and THE_B(C) is 
probably not supported.  What’s the formal reason for this state of affairs?   
 
 
ANSWERS		
	
11.1	 The	term	result	covariance	is	used,	not	very	appropriately,	to	refer	to	that	phenomenon	
according	to	which,	if	Op	is	a	read-only	operator,	then	the	most	specific	type	of	the	value	
returned	from	an	invocation	of	Op	can	be	any	subtype	of	the	declared	type	of	Op	as	defined	in	
the	pertinent	specification	signature.		Note:		A	more	precise	definition	was	given	in	the	body	of	
the	chapter.			

The	term	argument	contravariance,	by	contrast,	seems	to	reflect	nothing	but	muddle.		
(Certainly	it	seems	to	be	hard	to	define	precisely!)		It’s	replaced	in	our	model	by	a	rule—a	
rather	obvious	rule,	it	might	be	thought—to	the	effect	that	argument	expressions	are	required	
to	have	declared	type	some	subtype	of	that	of	the	corresponding	parameter,	as	defined	by	the	
pertinent	specification	signature.			
	
11.2	 ELLIPSE ( LENGTH , LENGTH , POINT ) RETURNS ELLIPSE  
 

CIRCLE ( LENGTH , POINT ) RETURNS CIRCLE  
	
11.3	 See	the	body	of	the	chapter.			
	
11.4	 Yes,	it	does.			
	
11.5	 Specification	signature:			
	

PTX ( PENTAGON , TRIANGLE ) RETURNS POLYGON  
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Invocation	signatures:			
	

( REGULAR_PENTAGON , EQUILATERAL_TRIANGLE ) RETURNS SQUARE  
( REGULAR_PENTAGON , ISOSCELES_TRIANGLE )   RETURNS SQUARE  
( REGULAR_PENTAGON , TRIANGLE )             RETURNS RECTANGLE  
( PENTAGON         , EQUILATERAL_TRIANGLE ) RETURNS POLYGON  
( PENTAGON         , ISOSCELES_TRIANGLE )   RETURNS POLYGON  
( PENTAGON         , TRIANGLE )             RETURNS POLYGON  

	
Subsidiary	exercise:		How	might	the	foregoing	specification	and	invocation	signatures	be	

specified	in	concrete	syntax?		Answer	(for	definiteness	I’ll	show	the	entire	operator	definition,	
at	least	in	outline,	but	note	that	this	answer	isn’t	the	only	one	possible):			
	

OPERATOR PTX ( P PENTAGON , T TRIANGLE )  
   RETURNS  
      CASE  
         WHEN IS_REGULAR_PENTAGON ( P ) AND  
              IS_ISOSCELES_TRIANGLE ( T ) THEN SQUARE  
         WHEN IS_REGULAR_PENTAGON ( P ) THEN RECTANGLE  
         ELSE POLYGON  
      END CASE ;  
   RETURN ( ... ) ;  
END OPERATOR ;  

	
11.6	 For	compile	time	vs.	run	time	binding,	see	the	body	of	the	chapter.		As	for	the	second	part	
of	the	exercise,	the	answer	is	no,	but	“almost”	yes—see	the	aside	(regarding	union	types	etc.)	in	
the	subsection	“More	on	Binding,”	in	the	section	discussing	IM	Prescription	17.			
	
11.7	 Let	Tʹʹ	be	a	proper	subtype	of	Tʹ.		Let	Vʹʹ	and	Vʹ	be	variables	of	declared	types	Tʹʹ	and	Tʹ,	
respectively.		Obviously,	every	possible	value	of	Vʹʹ	is	also	a	possible	value	for	Vʹ;	thus,	if	there’s	
a	“state”	(i.e.,	a	value)	of	Vʹʹ	that	permits	a	certain	update	to	be	applied	to	that	variable,	there’s	
also	a	state	of	Vʹ	that	permits	that	same	update	to	be	applied	to	that	variable.		Thus,	to	say	a	
certain	update	operator	(inherited	from	type	T)	can	be	used	to	update	variables	of	declared	
type	Tʹʹ	but	not	variables	of	declared	type	Tʹ	is	a	contradiction	in	terms.			
	
11.8	 Inclusion	polymorphism	is	implied	by	the	very	notion	of	type	inheritance.		Value	
substitutability	is	basically	just	inclusion	polymorphism	in	a	different	guise.		“Result	covariance”	
(such	as	it	is)	is	implied	by	value	substitutability.		“Argument	contravariance”	is	a	muddled	
concept,	but	the	unmuddled	analog—viz.,	that	argument	expressions	must	have	declared	type	
some	subtype	of	that	of	the	corresponding	parameter—is	also	implied	by	value	substitutability.		
Implementation	versions	are	an	implementation	concept	(obviously);	they’re	likely	to	exist	in	
any	real	system,	but	one	such	version	per	operator	is	all	that’s	logically	required	by	the	model.		
Specification	signatures	and	invocation	signatures	certainly	exist,	at	least	implicitly,	by	virtue	of	
value	and	variable	substitutability;	version	signatures	are	an	implementation	concept	(but	will	
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exist	in	any	real	system	that	allows	several	implementation	versions	per	operator).		Variable	
substitutability	(to	the	extent	such	a	notion	makes	sense)	is	implied	by	the	notion	of	update	
operators.		Binding	is	an	implementation	concept	(but	will	be	found	in	any	real	system	that	
allows	several	implementation	versions	per	operator).			

The	net	of	all	this	seems	to	be:		Everything	to	do	with	implementation	versions	is	an	
implementation	concept,	the	rest	are	model	concepts.		But	those	model	concepts	are	all,	in	the	
final	analysis,	just	a	logical	consequence	of	the	fact	that	if	Tʹ	is	a	subtype	of	T,	then	operators	
that	apply	to	values	of	type	T	apply	to	values	of	type	Tʹ	also.		Everything	else	follows	from	this	
simple	fact.			
	
11.9	 The	formal	reason	is	that	type	CIRCLE	has	no	declared	possrep	with	components	called	A	
and	B;	hence,	no	selector	for	type	CIRCLE	has	A	and	B	parameters,	and	no	THE_A	and	THE_B	
pseudovariables	are	defined	for	that	type.		(By	contrast,	THE_A	and	THE_B	read-only	operators	
are	defined—they’re	inherited	from	type	ELLIPSE.)			

Note:		If	we	were	to	make	(a,b,ctr)	an	explicitly	declared	possrep	for	type	CIRCLE—which	
we	could,	if	we	wanted	to—then	THE_A	and	THE_B	pseudovariables	would	be	available	for	
variables	of	declared	type	CIRCLE	after	all.		However,	any	attempt	to	use	them	would	fail	at	run	
time	if	it	violated	the	constraint	a	=	b.			
	
	



  

	

Chapter  12 
 
 

U n i o n   a n d   D u m m y   T y p e s 
 
 

Here the impossible union ... is actual  
—T. S. Eliot: 

The Dry Salvages (1941) 
 

dummy adj. artificial, bogus, dry, fake, false, imitation, mock, phoney,  
practice, sham, simulated, trial  

—Chambers 20th Century Thesaurus (1986) 
 
 

This chapter is primarily concerned with the classification of scalar types into (a) union vs. 
nonunion types and (b) dummy vs. regular types.  Note carefully, therefore, that all of the types 
mentioned in this chapter will be scalar types specifically, barring explicit statements to the 
contrary.  Now, I’ve mentioned the special types alpha and omega several times in earlier 
chapters; what I haven’t mentioned prior to this point, however, is that these types are actually 
union types, and indeed dummy types as well.  (To be more specific, they’re important special 
cases of these latter constructs.)  Fig. 12.1 summarizes the situation.   

 
              ┌──────────────┐ 
              │ scalar types │ 
              └──────┬───────┘ 
         ┌───────────┴─────────────┐ 
┌────────▼───────┐          ┌──────▼──────┐ 
│ nonunion types │          │ union types │ 
│   (regular)    │          └──────┬──────┘ 
└────────────────┘       ┌─────────┴─────────┐ 
                  ┌──────▼──────┐     ┌──────▼──────┐ 
                  │ union types │     │    dummy    │ 
                  │  (regular)  │     │    types    │ 
                  └─────────────┘     └───────┬─────┘ 
                                  ┌───────────┼───────────┐ 
                             ┌────▼────┐ ┌────▼────┐ ┌────▼────┐ 
                             │         │ │  other  │ │         │ 
                             │  alpha  │ │  dummy  │ │  omega  │ 
                             │         │ │  types  │ │         │ 
                             └─────────┘ └─────────┘ └─────────┘ 
 
Fig. 12.1: Classification of scalar types  

 
To elaborate briefly:   
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! A scalar type is either a nonunion type or a union type, and can’t be both.  All nonunion 
types are regular types.   
 

! A union type is either a regular union type or a dummy type, and can’t be both.  All regular 
union types are union types, and so are all dummy types.   
 

! Alpha and omega are dummy types, and therefore union types too (but in practice there’ll 
probably be other dummy types in addition to alpha and omega per se).   

 
! A regular type is either a nonunion type or a regular union type, and can’t be both; in other 

words, a regular type is a scalar type that’s not a dummy type.  (These points aren’t directly 
illustrated in the figure.)   

 
! A regular type always has at least one explicitly declared possrep, at least if it’s user 

defined.  A dummy type has no possrep.  (These points aren’t directly illustrated in the 
figure either.)   

 
This chapter explains these matters in depth.   
 
 
IM PRESCRIPTION 20: UNION AND DUMMY TYPES ETC.  
 
Type T shall be a union type if and only if it is a scalar type and there exists no value that is of 
type T and not of some immediate subtype of T (i.e., there exists no value v such that MST(v) is 
T).  Moreover:   
 

a. A type shall be a dummy type if and only if either of the following is true:   
 

1. It is one of the types alpha and omega (see below).   
 
2. It is a union type, has no declared possible representation (and hence no selector), and 

no regular supertype.  Note:  Type alpha in fact satisfies all three of these conditions; 
type omega satisfies the first two only.   

 
A type shall be a regular type if and only if it is a scalar type and not a dummy type.   

 
b. Conceptually, there shall be a system defined scalar type called alpha, the maximal type 

with respect to every scalar type.  That type shall have all of the following properties:   
 

1. It shall contain all scalar values.   
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2. It shall have no immediate supertypes.   
 
3. It shall be an immediate supertype for every scalar root type in the given set of 

available types GSAT.   
 

No other scalar type shall have any of these properties.   
 

c. Conceptually, there shall be a system defined scalar type called omega, the minimal type 
with respect to every scalar type.  That type shall have all of the following properties:   

 
1. It shall contain no values at all.  (It follows that, as RM Prescription 1 in fact states, it 

shall have no example value in particular.)1   
 
2. It shall have no immediate subtypes.   
 
3. It shall be an immediate subtype for every scalar leaf type in the given set of available 

types GSAT.   
 

No other scalar type shall have any of these properties.   
 

d. The given set of available types GSAT shall contain at least one regular scalar type T such 
that T is neither a subtype nor a supertype of the required (and system defined) scalar type 
boolean.   

 
——— ♦♦♦♦♦ ——— 

 
In the Explorations version of this prescription, (a) the word “possible” was inadvertently 
omitted from part a., point 2; (b) the given set of available types—see Chapters 4 and 5 for 
further explanation—was denoted GST, not GSAT; and (c) the sentence beginning “No other 
scalar type” at the end of part b. read as follows:  “No other scalar type shall have any of these 
properties (unless the given set of types GST contains just one regular type—necessarily type 
boolean—in which unlikely case that type will of course satisfy the first property).”  The 
situation described in parentheses in that sentence can’t now occur, however, thanks to part d. of 
the prescription, which is new (see Exercise 12.2 at the end of the chapter).   
 
When I was discussing generalization by constraint in Chapter 8 (in the section on IM 
Prescription 11), I briefly considered the possibility of introducing an additional immediate 

                                                             
 
1 RM Prescription 1 is the very first TTM prescription.  The pertinent text from that prescription (which I’ve quoted a couple of 
times in this book already, in Chapters 2 and 6, respectively) reads as follows:  “With the sole exception of the system defined 
empty type omega ... the definition of any given scalar type T shall be accompanied by a specification of an example value of 
that type.”   
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subtype of type ELLIPSE called NONCIRCLE, with the intuitively obvious semantics.  By way 
of an introduction to some of the issues raised by IM Prescription 20, let’s examine that 
possibility a little more closely.  Refer to Fig. 12.2.   
 

            ┌─────────────┐ 
            │   ELLIPSE   │ 
            └──────┬──────┘ 
       ┌───────────┴────────────┐ 
┌──────▼─────┐           ┌──────▼──────┐ 
│   CIRCLE   │           │  NONCIRCLE  │ 
└────────────┘           └─────────────┘ 
 
Fig. 12.2: ELLIPSE as a union type (possibly a dummy type)  

 
Type ELLIPSE is now a union type:  Every ellipse is either a circle or a noncircle—i.e., 

there’s no value of type ELLIPSE that’s not a value of some immediate subtype of that type—
and so the set of values |ELLIPSE| constituting type ELLIPSE is the union of the sets of values 
|CIRCLE| and |NONCIRCLE| constituting types CIRCLE and NONCIRCLE, respectively.2  
Note:  Actually the union in question is a disjoint union, because no ellipse is both a circle and a 
noncircle.  Indeed, it must be a disjoint union as far as the present chapter is concerned, for 
otherwise we’d be in violation of the disjointness assumption (I remind you once again that 
we’re still in the context of single inheritance only).   
 

Aside:		Union	type	is	the	traditional	term	for	this	concept	(see,	e.g.,	An	Introduction	to	
Data	Types,	by	J.	Craig	Cleaveland,	Addison-Wesley,	1986).		Be	aware,	however,	that	other	
terms	are	found	in	the	literature,	including	abstract	type,	noninstantiable	type	(on	the	
grounds,	presumably,	that	such	a	type	has	no	“instances”),3	or	occasionally	just	interface.		
A	type	that’s	not	a	union	type	is	then	referred	to	as	a	concrete	type,	an	instantiable	type,	
or	just	a	type	(unqualified),	respectively.		End	of	aside.			

 
 
UNION TYPES  
 
A union type is a type that’s not the most specific type of any value at all.  Unless it’s type 
omega, therefore—a pathological case, which I’ll ignore until further notice—such a type must 
have immediate subtypes, and every value of the type in question must be a value of one of those 
immediate subtypes.  Moreover, the specialization constraints for those immediate subtypes (see 
the discussion of IM Prescription 10 in Chapter 8) must be such as to guarantee that this 

                                                             
 
2 Recall from Chapter 5 that the symbol |T| denotes the set of values constituting type T.   
 
3 The term instance is used a lot in the object literature, but its meaning isn’t always entirely clear.  Depending on context, in fact, 
it seems it can denote any or all of the following: a value; a variable; an occurrence, or appearance, of a value (or even of a 
variable?); and possibly other things besides.  See Chapters 21 and 22 for further discussion.   
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requirement is met.4  Note that union types don’t make sense outside of the inheritance context, 
because they rely on the concept, and indeed existence, of certain proper (in fact, immediate) 
subtypes.   

Why might it be desirable to define a union type?  The principal reason is that such a 
definition provides a way of defining operators—or defining the pertinent specification and 
invocation signatures, at any rate—that apply to values and variables of several different types, 
all of them immediate subtypes of the union type in question.  Appropriate implementation 
versions of the operator in question can then be defined, if necessary, at each of the applicable 
subtype levels.  By way of illustration, here are type definitions and one operator definition for 
the types shown in Fig. 12.2 in the previous section:   

 
TYPE ELLIPSE UNION  
     IS { PLANE_FIGURE  
          POSSREP ( A LENGTH , B LENGTH , CTR POINT )  
          CONSTRAINT A ≥ B  
          NOT { RECTANGLE ( ... ) } } ;  
 
TYPE CIRCLE  
     IS { ELLIPSE  
          CONSTRAINT THE_A ( ELLIPSE ) = THE_B ( ELLIPSE )  
          POSSREP ( R   = THE_A   ( ELLIPSE ) ,  
                    CTR = THE_CTR ( ELLIPSE ) )  
          NOT { NONCIRCLE ( LENGTH ( 2.0 ) ,  
                            LENGTH ( 1.0 ) , POINT ( 0.0 , 0.0 ) ) } } ;  
 
TYPE NONCIRCLE  
     IS { ELLIPSE  
          CONSTRAINT THE_A ( ELLIPSE ) > THE_B ( ELLIPSE )  
          POSSREP ( A   = THE_A   ( ELLIPSE ) ,  
                    B   = THE_B   ( ELLIPSE ) ,  
                    CTR = THE_CTR ( ELLIPSE ) )  
          NOT { CIRCLE ( LENGTH ( 1.0 ) , POINT ( 0.0 , 0.0 ) ) } } ;  
 
OPERATOR AREA_OF ( E ELLIPSE ) RETURNS AREA ;  
   /* declared type of parameter E is a union type, */  
   /* but the following implementation code works   */  
   /* for both circles and noncircles               */  
   RETURN ( 3.14159 * THE_A ( E ) * THE_B ( E ) ) ;  
END OPERATOR ;  
 
Points arising:   
 

! Union types are explicitly declared as such—note the UNION specification in the 
definition of type ELLIPSE.  The <is def> for that union type ELLIPSE (a) defines that 
type to be an immediate subtype of type PLANE_FIGURE; (b) specifies the (a,b,ctr) 
possrep in the usual way; (c) specifies the constraint a ≥ b, also in the usual way; and 

                                                             
 
4 Assuming such specialization constraints exist, that is, which will be the case so long as the union type in question isn’t a 
dummy type (see the next section).   
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(d) gives an example via the NOT specification—see the next bullet item below—to show 
that there’s at least one value of type PLANE_FIGURE that’s not a value of type 
ELLIPSE.  Note:  Actually, that type PLANE_FIGURE, which I deliberately don’t want to 
discuss in detail until the next section, is also a union type; in fact, it’s a dummy type.   

 
! To repeat, the purpose of the NOT specification for type ELLIPSE is to show that there’s at 

least one value of type PLANE_FIGURE that’s not a value of type ELLIPSE; in other 
words, it guarantees that the set of values |ELLIPSE| is a proper subset of the set of values 
|PLANE_FIGURE|.  The PLANE_FIGURE value in question happens to be a rectangle 
(and thus a plane figure a fortiori), and it’s specified by means of a RECTANGLE selector 
invocation.  (The argument expressions are omitted from that invocation simply because I 
haven’t discussed an appropriate possrep for type RECTANGLE in this book prior to this 
point.)  Note that what we can’t do here is specify a plane figure “directly”—i.e., by means 
of a PLANE_FIGURE selector invocation—because, as noted above, PLANE_FIGURE is 
a dummy type and thus has no possrep and no selectors (see the next section).   

 
! Similarly, the purpose of the NOT specifications for types CIRCLE and NONCIRCLE is to 

guarantee that the sets of values |CIRCLE| and |NONCIRCLE| are proper subsets of the set 
of values |ELLIPSE|.  Of course, any noncircle will do as the example value for type 
CIRCLE and any circle will do as the example value for type NONCIRCLE; I show the 
particular values I do just for definiteness.   
 
Other aspects of the <is def>s (for all three types shown) are more or less as explained in 

earlier chapters.  Note in particular, however, that ellipses are constrained to have a ≥ b while 
circles and noncircles are constrained to have a = b and a > b, respectively.  It follows that, first, 
types CIRCLE and NONCIRCLE are disjoint (which, as noted earlier, is consistent with the 
disjointness assumption, of course); second, those types together “span” type ELLIPSE, in the 
sense that every ellipse is either a circle or a noncircle.  Taken together, therefore, these 
constraints guarantee that (as required) there’s no value of type ELLIPSE that’s not a value of 
one of its immediate subtypes.   

 
Aside:		The	Manifesto	book	says	the	constraint	a	≥	b	for	type	ELLIPSE	“seems	to	be	
redundant,”	but	it	isn’t.		For	suppose	it	weren’t	specified,	and	consider	an	attempt	to	
select	an	ellipse	with	a	<	b.		That	attempt	has	to	fail—but	how?		What	constraint	does	it	
violate?		It	can’t	be	the	constraint	for	type	ELLIPSE,	because	(by	default)	that	one	would	
just	be	TRUE.		What	this	thought	experiment	shows	is	that	if	the	constraint	a	≥	b	weren’t	
specified	for	type	ELLIPSE,	then	either	that	type	would	need	another	immediate	subtype,	
with	constraint	a	<	b,	or	(perhaps	more	likely	in	practice)	the	constraint	a	>	b	for	type	
NONCIRCLE	would	have	to	be	replaced	by	a	≠	b	(which	is,	of	course,	shorthand	for	a	>	b	
OR	a	<	b).		End	of	aside.			
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Here are some further points:   
 

! Since type ELLIPSE does have a declared possrep, it also has a selector (of declared type 
ELLIPSE), but invoking that selector will never return a value of most specific type 
ELLIPSE, because there aren’t any values of most specific type ELLIPSE.   
 

! A variable of declared type ELLIPSE will always have most specific type some proper 
subtype of ELLIPSE because, again, there aren’t any values of most specific type 
ELLIPSE.   
 

! Operator AREA_OF is defined at the ELLIPSE level.  That is, its sole parameter E is of 
declared type ELLIPSE, and its specification signature looks like this:   
 
AREA_OF ( ELLIPSE ) RETURNS AREA  

 
The corresponding (albeit implicit) invocation signatures look like this:   

 
( CIRCLE    ) RETURNS AREA  
( NONCIRCLE ) RETURNS AREA  
( ELLIPSE   ) RETURNS AREA  

 
However, the argument to an invocation of AREA_OF will never have most specific type 
ELLIPSE.  To say it one more time, there aren’t any such values.   
 

! The fact that ELLIPSE is now a union type doesn’t mean that operators can’t have 
ELLIPSE as their declared type.  For example, the specification signature for our read-only 
MOVE operator (see Chapters 7 and 11) will still specify ELLIPSE as the declared type of 
that operator—but, of course, no MOVE invocation will now ever return a result of most 
specific type ELLIPSE.   
 
Finally, a union type obviously can’t be a leaf type.  As noted in the discussion of IM 

Prescription 5 in Chapter 5, however (albeit not in these words), it would be possible to set up 
the type hierarchy in such a way that all types other than leaf types are union types; in terms of 
our running example, introducing type NONCIRCLE as above, together with types 
NONRECTANGLE and NONSQUARE (with the obvious semantics) as immediate subtypes of 
POLYGON and RECTANGLE, respectively, would have such an effect.  All most specific types 
must be leaf types might thus be regarded as the extreme form of the union types idea, and some 
writers have indeed advocated such a notion.  Our model doesn’t prohibit such an arrangement, 
but it doesn’t insist on it, either; in other words, we do allow values to exist whose most specific 
type is, say, RECTANGLE and not SQUARE (as of course we already know).   
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DUMMY TYPES  
 
A dummy type is a union type that has no possrep, and therefore no possrep constraint in 
particular5 (and any scalar type that’s not a dummy type is a regular type).  By way of example, 
let me revise types ELLIPSE, CIRCLE, and NONCIRCLE from the previous section to make 
ELLIPSE a dummy type, thus:   
 

TYPE ELLIPSE UNION  
     IS { PLANE_FIGURE  
          NOT { RECTANGLE ( ... ) } } ;  
 
TYPE CIRCLE  
     IS { ELLIPSE  
          POSSREP ( R LENGTH , CTR POINT )  
          NOT { NONCIRCLE ( LENGTH ( 2.0 ) ,  
                            LENGTH ( 1.0 ) , POINT ( 0.0 , 0.0 ) ) } } ;  
 
TYPE NONCIRCLE  
     IS { ELLIPSE  
          POSSREP ( A LENGTH , B LENGTH , CTR POINT )  
          CONSTRAINT A > B  
          NOT { CIRCLE ( LENGTH ( 1.0 ) , POINT ( 0.0 , 0.0 ) ) } } ;  
 
Points arising:   
 

! Type ELLIPSE is still a union type as it was in the previous section, but now it’s a dummy 
type as well:  It has no possrep, and hence no possrep constraint either.  Note that the fact 
that it has no possrep means that, unlike type ELLIPSE in the previous section, it also has 
no selector and no THE_ operators (at least, no automatically defined ones, but see further 
discussion below).   

 
! No <additional constraint def>s—see the section “A BNF Grammar” in Chapter 3—have 

been specified for types CIRCLE and NONCIRCLE, since type ELLIPSE has no possrep 
in terms of which such additional constraints might be formulated.  Thus, specialization by 
constraint, as such, no longer applies to those types; that is, circles and noncircles can no 
longer be obtained from ellipses via S by C.  (By contrast, note that S by C did apply to 
those types when ELLIPSE was a union type but not a dummy type.)   

 
! Type CIRCLE does have a possrep—though, for simplicity, no associated possrep 

constraint6—and a selector.  It also has some THE_ operators (THE_R and THE_CTR).  
                                                             
 
5 Recall from Chapters 2 and 3 that a possrep constraint is a constraint that’s explicitly formulated in terms of the possrep(s) 
declared for the type whose definition the constraint in question is defined as part of.  The constraint specified for type ELLIPSE 
in the previous section (to the effect that a ≥ b) is an example.   
 
6 In any case, the only such constraint that would seem to make any sense is the rather obvious one R > LENGTH (0.0)—and 
even that would be unnecessary if type LENGTH is subject to a type constraint saying that lengths must be positive.   
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Note that THE_A and THE_B now no longer apply to type CIRCLE (nor do they apply to 
type ELLIPSE, of course—see the next bullet item but one).   

 
! Type NONCIRCLE also has a possrep and a selector; unlike type CIRCLE, it also has an 

associated possrep constraint.  It also has some THE_ operators (THE_A, THE_B, and 
THE_CTR).   

 
! Operators THE_A and THE_B no longer apply to expressions of declared type ELLIPSE, 

since that type has no corresponding possrep (indeed, to repeat, it has no possrep at all).  
Note:  By contrast, the operator THE_CTR might still apply (see further discussion 
below).7   

 
! The implementation version of the AREA_OF operator shown in the previous section 

won’t work any longer (basically because that version was defined at the ELLIPSE level, 
and type ELLIPSE now has no possrep in terms of which such a version might be 
defined).8  Instead, we’ll effectively have to give just a specification signature (and 
invocation signatures as well, at least implicitly) at the ELLIPSE level and then provide 
appropriate implementation versions at the CIRCLE and NONCIRCLE levels, perhaps as 
follows:   
 
OPERATOR AREA_OF ( E ELLIPSE ) RETURNS AREA ;  
   /* declared type of parameter E is a dummy type; */  
   /* no implementation code provided at this level */  
END OPERATOR ;  
 
OPERATOR AREA_OF VERSION AREA_OF_C ( C CIRCLE ) RETURNS AREA ;  
   /* implementation version for type CIRCLE */  
   RETURN ( 3.14159 * ( THE_R ( C ) ^ 2 ) ) ;  
END OPERATOR ;  
 
OPERATOR AREA_OF VERSION AREA_OF_NC ( NC NONCIRCLE ) RETURNS AREA ;  
   /* implementation version for type NONCIRCLE */  
   RETURN ( 3.14159 * THE_A ( NC ) * THE_B ( NC ) ) ;  
END OPERATOR ;  
 

! Note finally that I’m assuming for the sake of the example that PLANE_FIGURE too is a 
dummy type and thus has no possrep and no selectors.  (As mentioned in the answer to 
Exercise 3.10 in Chapter 3, it’s hard to think of a sensible possrep that could work for an 

                                                             
 
7 Actually THE_A and THE_B could be made to apply to type ELLIPSE if desired, using the same scheme as for THE_CTR (see 
that same “further discussion below”)—in which case they’d apply to type CIRCLE after all, because they’d be inherited.   
 
8 Two points here:  First, these remarks shouldn’t be construed as meaning that we can never specify implementation code at a 
dummy type level (see the discussion of DOUBLE_AREA_OF, later in this section, for a counterexample).  Second, if we were 
to force THE_A and THE_B to apply to type ELLIPSE—see the previous footnote—then the implementation code shown for 
AREA_OF in the previous section would work after all.   
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arbitrary plane figure.  And in any case, Exercise 12.6 at the end of the chapter shows that 
if ELLIPSE is a dummy type, then PLANE_FIGURE must be too.)   

 
Now, the foregoing example isn’t very realistic, because we’ve already seen in the previous 

section that if we were to make ELLIPSE a regular union type—i.e., one with a possrep—instead 
of a dummy type, then we could define an implementation version of AREA_OF at the ELLIPSE 
level that would work for both circles and noncircles.  But consider type PLANE_FIGURE, 
which as I’ve just said would almost certainly be a dummy type.  Given that fact, it surely does 
make sense to give just the pertinent signatures for AREA_OF at the PLANE_FIGURE level and 
corresponding implementation versions at, say, the ELLIPSE and POLYGON levels.   

Despite the foregoing, let’s stay with the example of ELLIPSE as a dummy type, for 
simplicity.  In particular, let’s focus on the operator THE_CTR (“the center of”).  Observe now 
that THE_CTR is “automatically” defined for types CIRCLE and NONCIRCLE but not for type 
ELLIPSE.  In other words, the expression THE_CTR(E) is valid if E has declared type either 
CIRCLE or NONCIRCLE, but not if it has declared type ELLIPSE.  But such a state of affairs is 
clearly absurd!  To say every ellipse is either a circle or a noncircle, and circles and noncircles 
both have a center but ellipses as such don’t, is an affront to common sense.  After all, compare 
the situation with areas:  Every ellipse has an area, because every ellipse is either a circle or a 
noncircle and circles and noncircles both have an area, and so we do allow AREA_OF to be 
applied to expressions of declared type ELLIPSE.  By analogy, therefore, we should surely be 
allowed to do the same with THE_CTR, if we wanted to.  (Indeed, if we didn’t, then THE_CTR 
would be overloaded—I mean, there’d be two distinct operators with that name, one for type 
CIRCLE and one for type NONCIRCLE—and we wouldn’t be talking about inclusion 
polymorphism any more.)   

The anomaly is easily fixed, however—we simply assert, by fiat as it were, that THE_CTR 
does apply at the ELLIPSE level after all, thus:9   

 
OPERATOR THE_CTR ( E ELLIPSE ) RETURNS POINT ;  
   /* declared type of parameter E is a dummy type; */  
   /* no implementation code provided at this level */  
END OPERATOR ;  
 
Thus, for example, the assignment  
 
P := THE_CTR ( E ) ;  
 

                                                             
 
9 Note that implementation versions of this operator will certainly be provided for both circles and noncircles.  Note too, 
however, that THE_CTR here is indeed a THE_ operator in the usual sense of that term (meaning among other things that it has 
prescribed semantics, and those semantics mustn’t be changed).  In particular, as we’ll see in a moment, it can be used as a 
pseudovariable—a fact that suggests that simply providing a specification signature at the ELLIPSE level might not quite be 
adequate as a mechanism for “asserting that THE_CTR does apply,” since other operators defined in such a fashion are generally 
not usable as pseudovariables.  Perhaps more research is required.   
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(where P is of declared type POINT and E is of declared type ELLIPSE) is effectively shorthand 
for something like the following:   
 

P := CASE  
        WHEN IS_CIRCLE ( E ) THEN  
                THE_CTR ( TREAT_AS_CIRCLE ( E ) )   
        WHEN IS_NONCIRCLE ( E ) THEN  
                THE_CTR ( TREAT_AS_NONCIRCLE ( E ) )   
     END CASE ;  
 
Likewise, the assignment  
 
THE_CTR ( E ) := P ;  
 

(where P and E are as before and THE_CTR is being used as a pseudovariable) is effectively 
shorthand for something like the following:   

 
E := CASE  
        WHEN IS_CIRCLE ( E ) THEN  
             CIRCLE ( THE_R ( TREAT_AS_CIRCLE ( E ) ) , P )  
        WHEN IS_NONCIRCLE ( E ) THEN  
             NONCIRCLE ( THE_A ( TREAT_AS_NONCIRCLE ( E ) ) , 
                         THE_B ( TREAT_AS_NONCIRCLE ( E ) ) , P )  
     END CASE ;  
 
Now, I don’t mean to suggest by anything I’ve said so far that implementation code for 

operators defined at the level of some dummy type must be provided at the level of the pertinent 
subtypes.  By way of a trivial counterexample, we might define an operator called 
DOUBLE_AREA_OF, with the intuitively obvious semantics, at the ELLIPSE level or even 
(more strikingly) at the PLANE_FIGURE level, thus:   

 
OPERATOR DOUBLE_AREA_OF ( PF PLANE_FIGURE ) RETURNS AREA ;  
   RETURN ( 2 * AREA_OF ( PF ) ) ;  
END OPERATOR ;  

 
I’ll close this section with a couple of miscellaneous observations.  First, certain system 

defined types resemble dummy types in that they’re allowed by The Third Manifesto to have no 
explicitly declared possrep (type INTEGER is a case in point).  Such types aren’t dummy types, 
however, because (a) values do exist, in general, whose most specific type is the type in question, 
and (b) in any case there’s a TTM prescription—see footnote 23 in Chapter 2—that requires the 
type in question to have at least one associated selector that permits the specification of literals 
whose most specific type is the type in question.10   

                                                             
 
10 See also the answer to Exercise 5.6 in Chapter 5, which contains some further considerations that might possibly be relevant to 
this issue.   
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Second, I note that some systems and languages use dummy types as a way of providing 
what might be regarded as a kind of type generator functionality.  For example, RELATION 
might be a dummy type in such a system (with generic operators JOIN, UNION, and so forth), 
and every specific relation type would then be a proper subtype of that dummy type.  We don’t 
adopt such an approach in our model, however, because we certainly don’t want support for type 
generators in general, and support for the RELATION type generator in particular, to rely on 
support for inheritance.  (Note among other things that such an approach would make support for 
inheritance a mandatory part of The Third Manifesto, which it currently isn’t.)  What’s more, 
such an approach would seem to imply that specific implementation code must be provided for 
each specific join, each specific union, and so forth—surely not a very desirable state of affairs.  
(Contrast the situation with a relational DBMS, where all such operations are done by means of 
generic, optimized, system provided code.)  Finally, the kind of relation type inheritance—if 
any (?)—that such an approach to relation types seems to entail isn’t the kind of relation type 
inheritance we think we need; in particular, it doesn’t provide the kind of substitutability we 
think we need.  See Part IV of this book for a detailed discussion of our own approach to relation 
type inheritance.   
 
 
TYPES alpha AND omega  
 
As noted in the introduction to this chapter, I’ve mentioned types alpha and omega several times 
in this book already—in Chapter 6 in particular, where I said this:   
 
! Type omega is the empty scalar type—it contains no values at all.  And, since the empty set is a 

subset of every set, it follows that type omega is a subtype of every scalar type (itself included, of 
course) [...].   

 
! Type alpha [is] type omega’s polar opposite; in other words, where type omega contains no 

values at all, type alpha contains all values (all scalar values, that is), and it’s a supertype of every 
scalar type, itself included [...].   

 
Now it’s time to get more specific.   

Recall first that distinct root types, and hence distinct scalar root types in particular, are 
necessarily disjoint.  However, we can always invent some kind of “system” type that’s an 
immediate supertype for those scalar root types, thereby effectively tying all of the 
corresponding type hierarchies together into one.  In fact, some object systems come ready 
equipped with such a type, often called OBJECT (on the grounds that “everything’s an object”).  
In our model, we address this issue by introducing a special scalar type that we call alpha (or α, 
if you prefer Greek letters).  Alpha is the maximal scalar type:  It contains all scalar values and is 
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a supertype of every scalar type (more precisely, it’s an immediate supertype of every scalar root 
type, and it’s a proper supertype of every scalar type except itself).11   

 
Aside:		Actually,	IM	Prescription	20	doesn’t	say	alpha	is	an	immediate	supertype	of	every	
scalar	root	type,	it	says	it’s	an	immediate	supertype	of	every	scalar	root	type	in	the	given	
set	of	available	types	GSAT.		(Of	course,	an	analogous	remark	applies	to	omega	also,	
mutatis	mutandis.)		In	practice,	we	don’t	usually	bother	to	mention	GSAT	at	all	but	simply	
take	it	as	understood—and	indeed	IM	Prescription	20	is	the	only	one	of	the	IM	
prescriptions	to	make	any	explicit	reference	to	it.		In	any	given	situation,	however,	GSAT	
must	necessarily	exist,	at	least	conceptually.		See	the	introductory	remarks	in	either	
Chapter	4	or	Chapter	5	if	you	need	to	refresh	your	memory	regarding	this	notion.		End	of	
aside.			
 
Analogously, we introduce another special scalar type that we call omega (or ω).  Omega is 

the minimal scalar type:  It contains no values at all and is a subtype of every scalar type (more 
precisely, it’s an immediate subtype of every scalar leaf type, and it’s a proper subtype of every 
scalar type except itself).   

Here are some more specifics regarding type alpha:   
 
! Alpha is indeed a dummy type—it has no possrep and hence no selector.   
 
! The corresponding type constraint is just TRUE.   
 
! IS_alpha (...) always gives TRUE.   
 
! TREAT_AS_alpha (...) always succeeds.   
 

As for type omega (which, perhaps surprisingly, turns out to be more important than type 
alpha in certain respects, as we’ll see in Part IV):   

 
! Omega is also a dummy type—it has no possrep and hence no selector.  Observe, 

incidentally, that omega genuinely is a union type (as all dummy types must be) because, 
by definition, there’s no value of type omega that’s not a value of some immediate 
subtype of omega.  (You might want to read that sentence again.)   

 
! The corresponding type constraint is just FALSE.   
 

                                                             
 
11 Recall that (in accordance with IM Prescription 6) alpha itself isn’t regarded as a root type, nor is omega regarded as a leaf 
type.  Recall too from Chapter 6 that alpha and omega are primarily conceptual in nature anyway, meaning among other things 
that we wouldn’t expect the user to have to declare them.  Note:  Also, in accordance with part c. of IM Prescription 5, scalar root 
types need no NOT specification.   
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! IS_omega (...) always gives FALSE.   
 
! TREAT_AS_omega (...) always fails (or would always fail, perhaps, since the expression 

is clearly a contradiction in terms and might well be rejected at compile time).   
 
! No variable, no operator, and in fact no expression can have either declared or most 

specific type omega.   
 
! Type omega inherits all possible read-only operators, but vacuously so, since they can 

never be invoked on any value of the type.   
 

Finally, let me remind you from Chapter 6 that, since it’s a subtype of every scalar type, 
the introduction of type omega takes us, by definition, into the realm of multiple inheritance.  
(This is one reason why it really makes little logical sense to consider single inheritance only—
despite the fact that I’ve been doing exactly that for most of this book, prior to this point!  But I 
was doing so for pedagogical reasons, not logical ones.)  Indeed, the introduction of omega into 
any given type hierarchy has the effect of converting that hierarchy into a lattice.  See 
Chapter 14 for further discussion.   
 
 
EXERCISES  
 
12.1 Fig. 12.1 shows the relationships between union, dummy, and regular types (or some of 
those relationships, at any rate).  (a) Try reproducing that figure from memory.  (b) Do you think 
that figure might be regarded as representing a type hierarchy?  Explain your answer.   
 
12.2 Our inheritance model requires that alpha and omega be unique, in the sense that alpha is 
the only universal scalar type and omega is the only empty scalar type.  But how are these 
requirements enforced?  Note:  The term universal scalar type wasn’t used in the body of the 
chapter, but the intended meaning is surely clear.   
 
12.3 What’s the point of defining a (regular, or in other words nondummy) union type?  What’s 
the point of defining a dummy type?   
 
12.4 Is it true that any given union type must have at least two immediate subtypes?  If so, why?  
Also, can such subtypes be union types in turn?  Can they be dummy types?  Do they have to be 
disjoint?   
 
12.5 Can a type that’s not a union type have an immediate subtype that is?   
 
12.6 Can a dummy type have a regular supertype?   
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12.7 Can a type that has a union type as an immediate supertype have any other immediate 
supertypes (union or otherwise)?   
 
12.8 Suppose we drop all types from Fig. 5.1 except for type CIRCLE.  Suppose further, not 
very realistically, that we make type CIRCLE a (regular) union type, with immediate subtypes 
O_CIRCLE and NON_O_CIRCLE, with the intuitively obvious semantics.  Show some 
appropriate type definitions.  Also show how we might define the AREA_OF operator in this 
situation.   
 
12.9 Repeat Exercise 12.8 but make CIRCLE a dummy type.  This time, show also how we 
might define the THE_R operator.   
 
12.10 It has been suggested that the syntax of a union type definition might profitably be 
extended to include the names—and further details, perhaps—of the immediate subtypes of the 
union type in question.  Discuss.   
 
 
ANSWERS		
	
12.1	 (a)	No	answer	provided.		(b)	Well,	it’s	certainly	true	that	the	figure	represents	what	might	
be	regarded	as	a	set	of	subtype	/	supertype	relationships.		However,	if	that	figure	is	to	be	
understood	as	representing	a	type	hierarchy,	then	the	nodes	in	the	figure	must	be	understood	
as	representing	types,	where	the	values	constituting	those	types	are	themselves	types.12		For	
example,	if	S	and	U	are	types	whose	constituent	sets	of	values	are	the	set	of	all	scalar	types	and	
the	set	of	all	union	types,	respectively,	then	U	is	clearly	a	subtype	of	S.		So:		If	we	agree	to	
interpret	the	node	labeled	alpha	as	representing	not	type	alpha	as	such,	but	rather	a	type	
whose	sole	value	is	type	alpha	(and	similarly	for	the	node	labeled	omega),	then	yes,	the	figure	
might	be	regarded	as	representing	some	kind	of	type	hierarchy—or	a	“meta”	type	hierarchy,	
perhaps	(?).			

That	said,	observe	that	the	figure	doesn’t	show	all	of	the	subtype	/	supertype	
relationships	we	might	wish	it	to.		In	particular,	it	doesn’t	show	that	“nonunion	types”	and	
“regular	union	types”	are	both	subtypes	of	“regular	types”	(note	that	there’s	no	“regular	types”	
node).		Moreover,	if	we	tried	to	add	such	a	node,	then	(a)	“nonunion	types”	and	“regular	union	
types”	would	both	have	two	distinct	immediate	supertypes,	meaning	the	graph	would	no	
longer	be	a	hierarchy	as	such,	and	(b)	“regular	types”	and	“union	types”	together	would	violate	

                                                             
 
12 Note that it might certainly be argued that types as such are indeed values, albeit values of rather a special kind (values of type 
TYPE, perhaps?).  More specifically, a type is a pair of the form <N,S>, where N is a name and S is a set of values—and such a 
pair in turn is certainly a value.   
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the	disjointness	assumption,	since	they	certainly	wouldn’t	be	disjoint,	and	yet	neither	would	be	
a	subtype	of	the	other.			
	
12.2	 The	uniqueness	of	omega	is	guaranteed	because	the	definition	of	every	other	scalar	type	
is	required	to	be	accompanied	by	an	example	value	of	the	type	in	question	(hence,	the	type	in	
question	must	be	nonempty).		As	for	alpha,	so	long	as	there	are	at	least	two	distinct	type	
hierarchies,	then	no	type—in	particular,	no	root	type—can	possibly	contain	all	scalar	values,	
since	distinct	root	types	are	disjoint	(and	nonempty).		But	there	will	be	at	least	two	distinct	type	
hierarchies,	thanks	to	part	d.	of	IM	Prescription	20.		Thus,	the	uniqueness	of	alpha	is	
guaranteed	as	well.			
	
12.3	 A	(nondummy)	union	type	serves	as	a	basis	for	specifying	operators	that	apply	to	values	
and	variables	of	several	different	types,	all	of	them	immediate	subtypes	of	the	union	type	in	
question.		A	dummy	type13	does	the	same,	but	in	situations	where	it	doesn’t	make	sense	(for	
some	reason)	to	specify	a	possrep	at	the	level	of	the	union	type—i.e.,	the	dummy	type,	in	this	
case—in	question.			
	
12.4	 Let	T	be	a	union	type	other	than	omega.14		Then	T	must	have	at	least	two	immediate	
subtypes	because	if	it	had	just	one	or	none	at	all,	then—since	“proper	subtypes	are	proper	
subsets”—there’d	be	some	values	of	type	T	that	weren’t	values	of	any	immediate	subtype	of	T.		
But	there	can’t	be	any	such	values,	by	definition	of	the	very	concept	of	a	union	type.			

An	immediate	subtype	of	a	union	type	can	be	a	union	type.		For	example,	suppose	as	in	
the	examples	in	the	body	of	the	chapter	that	ELLIPSE	is	a	union	type.		ELLIPSE	has	CIRCLE	as	an	
immediate	subtype.		But	CIRCLE	might	be	a	union	type	in	turn,	with	immediate	subtypes	the	
regular	types	O_CIRCLE	and	NON_O_CIRCLE	(see	Exercise	12.8).			

An	immediate	subtype	of	a	union	type	can	be	a	dummy	type,	but	only	if	the	union	type	in	
question	is	also	a	dummy	type.		See	the	answer	to	Exercise	12.6	for	further	discussion.		Note:		
Type	omega	is	a	special	case	here,	however.		Type	omega	is	a	dummy	type,	but	it’s	a	subtype	of	
every	scalar	type,	regular	types	included;	so	omega	is	an	example	(actually	the	only	one)	of	a	
dummy	type	with	regular	types	as	proper	supertypes.			

There’s	no	intrinsic	reason	why	the	immediate	subtypes	of	a	union	type	have	to	be	
disjoint,	but	if	they’re	not	they’ll	violate	the	disjointness	assumption,	and	we’ll	be	moving	into	
the	realm	of	multiple	inheritance	(see	Part	III	of	this	book).			
	

                                                             
 
13 Other than type omega, that is (see the next footnote).   
 
14 Type omega is excluded because it has no immediate subtypes at all, of course (as I said in the body of the chapter, it’s really a 
pathological case).   
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12.5	 A	type	that’s	not	a	union	type	can	have	an	immediate	subtype	that	is.		For	example,	type	
RECTANGLE,	which	isn’t	a	union	type,	has	SQUARE	as	an	immediate	subtype.		Suppose	every	
square	is	either	a	“large	square”	or	a	“small	square,”	and	no	square	is	both.		Then	we	could	
define	LARGE_SQUARE	and	SMALL_SQUARE	as	immediate	subtypes	of	SQUARE,	and	SQUARE	
itself	would	be	a	union	type.			
	
12.6	 Unless	it’s	type	omega—which	is	a	very	special	case,	discussed	in	the	answer	to	
Exercise	12.4—a	dummy	type	can’t	have	a	regular	supertype.		In	fact,	IM	Prescription	20	
explicitly	states	as	much.		But	it’s	worth	taking	a	moment	to	think	about	why	it	does	so.		Let	
type	Tʹ	be	an	immediate	subtype	of	type	T,	and	let	Tʹ	and	T	be	a	dummy	type	and	a	regular	
type,	respectively.		Since	it’s	a	regular	type,	T	has	a	possrep	and	a	selector,	and	so	there’s	a	way	
to	select	any	given	value	of	type	T.		In	particular,	therefore,	there’s	a	way	to	select	any	given	
value	of	type	Tʹ.		But	a	dummy	type	has	no	possrep	and	no	selector,	and	so	there	isn’t	supposed	
to	be	a	way	to	select	a	given	value	of	type	Tʹ	after	all.		There	seems	to	be	some	kind	of	
contradiction	here.			

Another	way	to	think	about	the	matter	is	this:		If	T	has	a	possrep,	then	Tʹ	at	least	has	an	
inherited	possrep,	even	if	it	doesn’t	have	a	declared	one.		But	of	course	we	could	always	make	
that	inherited	possrep	an	explicitly	declared	one	if	we	wanted	to.		However,	it’s	of	the	essence	
of	the	dummy	type	idea	that	there’s	no	possrep	that	makes	sense	(think	of	type	
PLANE_FIGURE,	for	example);	indeed,	if	there	were	such	a	possrep,	there’d	be	no	point	in	
making	the	type	a	dummy	type	in	the	first	place—we	might	as	well	make	it	a	regular	type.			

The	net	of	all	the	foregoing	(speaking	very	loosely!)	is	that	as	we	travel	up	the	type	
hierarchy,	once	we	encounter	a	dummy	type,	it’s	dummy	types	all	the	way,	from	that	point	to	
the	very	top	(i.e.,	up	to	and	including	the	root,	and	in	fact	including	type	alpha	as	well).			
	
12.7	 There’s	no	intrinsic	reason	why	a	type	that	has	a	union	type	as	an	immediate	supertype	
can’t	have	any	other	immediate	supertypes,	but	if	it	does	they’ll	violate	the	disjointness	
assumption	and	we’ll	be	moving	into	the	realm	of	multiple	inheritance	(see	Part	III	of	this	book).			
	
12.8	 Here’s	type	CIRCLE	as	a	regular	union	root	type:		 
 

TYPE CIRCLE UNION POSSREP ( R LENGTH , CTR POINT )  
                              CONSTRAINT R > LENGTH ( 0.0 ) ;  
	

Here’s	the	rest	of	the	type	hierarchy:			
	
TYPE O_CIRCLE  
     IS { CIRCLE  
          CONSTRAINT THE_CTR ( CIRCLE ) = POINT ( 0.0 , 0.0 )  
          POSSREP ( R = THE_R ( CIRCLE ) )  
          NOT { CIRCLE { LENGTH ( 1.0 ) , POINT ( 1.0 , 1.0 ) ) } } ;  
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TYPE NON_O_CIRCLE  
     IS { CIRCLE  
          CONSTRAINT THE_CTR ( CIRCLE ) ≠ POINT ( 0.0 , 0.0 )  
          POSSREP ( R   = THE_R ( CIRCLE ) ,  
                    CTR = THE_CTR ( CIRCLE ) )  
          NOT { CIRCLE ( LENGTH ( 1.0 ) , POINT ( 0.0 , 0.0 ) ) } } ;  
	

Here’s	the	definition	of	operator	AREA_OF:			
	
OPERATOR AREA_OF ( C CIRCLE ) RETURNS AREA ;  
   /* declared type of parameter C is a union type, */  
   /* but the following implementation code works   */  
   /* for both O-circles and non O-circles:         */  
   RETURN ( 3.14159 * ( THE_R ( C ) ^ 2 ) ) ;  
END OPERATOR ;  

	
12.9 Here’s	type	CIRCLE	as	a	dummy	root	type:		 
 

TYPE CIRCLE UNION ;  
	

Here’s	the	rest	of	the	type	hierarchy:			
	
TYPE O_CIRCLE  
     IS { CIRCLE POSSREP ( R LENGTH )  
          CONSTRAINT R > LENGTH ( 0.0 )  
          NOT  
          { NON_O_CIRCLE { LENGTH ( 1.0 ) , POINT ( 1.0 , 1.0 ) ) } } ;  
 
TYPE NON_O_CIRCLE  
     IS { CIRCLE POSSREP ( R LENGTH , CTR POINT )  
          CONSTRAINT R > LENGTH ( 0.0 ) AND  
                     CTR ≠ POINT ( 0.0 , 0.0 ) }  
          NOT { O_CIRCLE ( LENGTH ( 1.0 ) ) } } ;  
	

Operator	definitions:			
	
OPERATOR AREA_OF ( C CIRCLE ) RETURNS AREA ;  
   /* declared type of parameter C is a dummy type; */  
   /* no implementation code provided at this level */  
END OPERATOR ;  
 
OPERATOR AREA_OF VERSION O_AREA ( O O_CIRCLE ) RETURNS AREA ;  
   /* implementation version for type O_CIRCLE */  
   RETURN ( 3.14159 * ( THE_R ( O ) ^ 2 ) ) ;  
END OPERATOR ;  
 
OPERATOR AREA_OF VERSION N_AREA ( N NON_O_CIRCLE ) RETURNS AREA ;  
   /* implementation version for type NON_O_CIRCLE */  
   RETURN ( 3.14159 * ( THE_R ( N ) ^ 2 ) ) ;  
END OPERATOR ;  
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Of	course,	the	implementation	code	here	for	types	O_CIRCLE	and	NON_O_CIRCLE	is	
essentially	the	same.		We	can	simplify	the	situation	by	defining	THE_R	to	apply	at	the	dummy	
type	level:			

	
OPERATOR THE_R ( C CIRCLE ) RETURNS LENGTH ;  
   /* declared type of parameter C is a dummy type; */  
   /* no implementation code provided at this level */  
END OPERATOR ;  
	

Then,	e.g.,	the	assignment		
	
L := THE_R ( C ) ;  
	

(where	L	is	of	declared	type	LENGTH	and	C	is	of	declared	type	CIRCLE)	will	effectively	be	
shorthand	for	something	like	the	following:			
	

L := CASE  
        WHEN IS_O_CIRCLE ( C ) THEN  
                THE_R ( TREAT_AS_O_CIRCLE ( C ) )   
        WHEN IS_NON_O_CIRCLE ( C ) THEN  
                THE_R ( TREAT_AS_NON_O_CIRCLE ( C ) )   
     END CASE ;  
	
Now	we	can	drop	the	two	implementation	versions	of	AREA_OF	for	types	O_CIRCLE	and	

NON_O_CIRCLE	and	replace	the	AREA_OF	specification	at	the	CIRCLE	level	by	the	following:			
	
OPERATOR AREA_OF ( C CIRCLE ) RETURNS AREA ;  
   RETURN ( 3.14159 * ( THE_R ( C ) ^ 2 ) ) ;  
END OPERATOR ;  

	
12.10	 Consider	the	example	from	the	body	of	the	chapter	in	which	ELLIPSE	is	a	union	type—
not	a	dummy	type—with	CIRCLE	and	NONCIRCLE	as	nonunion	immediate	subtypes.		Since	type	
ELLIPSE	can’t	sensibly	be	said	to	exist	until	types	CIRCLE	and	NONCIRCLE	have	been	defined,	in	
practice	it	seems	likely	that	all	three	type	definitions	would	have	to	be	bundled	up	into	a	single	
statement.15		(All	we	might	need	to	do,	syntactically	speaking,	to	achieve	such	a	bundling	is	
replace	the	first	two	semicolons	by	commas.)			

Suppose,	however,	that	(a)	the	suggested	syntactic	solution—i.e.,	using	commas	instead	
of	semicolons—isn’t	supported,	and	(b)	the	system	therefore	requires	CIRCLE	and	NONCIRCLE	
to	be	mentioned	in	the	ELLIPSE	definition.		We	might	try:			

	

                                                             
 
15 I note in passing that another reason why distinct type definitions might need to be bundled up into a single statement is the 
fact that, as we saw several times in the body of the chapter, the definition of type T1 might refer in its NOT specification to 
some type T2 that’s not a supertype of T1.   
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TYPE ELLIPSE UNION { CIRCLE , NONCIRCLE } ...  
     POSSREP ( A LENGTH , B LENGTH , CTR POINT ... ) ;  
	
But	the	very	fact	that	it	mentions	CIRCLE	and	NONCIRCLE	lends	further	weight	to	the	idea	

that	the	ELLIPSE	definition	needs	to	be	bundled	with	the	CIRCLE	and	NONCIRCLE	definitions—
for	otherwise	we’re	faced	with	the	possibility	that	a	type	definition	might	be	allowed	to	
complete	execution	even	if	it	includes	a	reference	to	something	that	doesn’t	yet	exist,	and	in	
fact	might	never	exist.		And	if	we	do	bundle	the	three	definitions	into	a	single	statement,	then	
allowing	CIRCLE	and	NONCIRCLE	to	be	mentioned	in	the	ELLIPSE	definition	doesn’t	seem	to	
achieve	very	much.			

Despite	the	foregoing,	let’s	stay	for	the	moment	with	the	assumption	that	three	separate	
statements	are	required.		What	happens	if	we	work	bottom	up,	as	it	were,	and	define	the	
subtypes	first?—		

	
TYPE CIRCLE IS { ELLIPSE ...  
	
Well,	we	run	into	a	problem	right	away:	namely,	we	have	a	reference,	again,	in	the	

definition	of	one	type	to	another	that	hasn’t	yet	been	defined,	and	might	never	be	defined.		So	
that	won’t	work.			

Perhaps	we	could	define	the	subtypes	first,	without	mentioning	the	supertype	at	all?—	
	
TYPE CIRCLE    POSSREP ( R LENGTH , CTR POINT ) ;  
TYPE NONCIRCLE POSSREP ( A LENGTH , B LENGTH , CTR POINT ... ) ;  
TYPE ELLIPSE   UNION   { CIRCLE , NONCIRCLE } ... ;  
	
But	now	what	do	we	do	about	the	possrep	for	type	ELLIPSE?		Note	that	we	do	want	it	to	

have	a	possrep	(it’s	not	a	dummy	type,	and	we	don’t	want	it	to	be	a	dummy	type).		But	if	we	do	
specify	a	possrep,	then	at	best	there’ll	be	some	kind	of	redundancy	(i.e.,	repetition	of	
specifications	that	have	already	been	given—and	must	already	have	been	given—for	types	
CIRCLE	and	NONCIRCLE);	at	worst,	there’ll	be	some	kind	of	inconsistency	(what	happens	if	
there’s	a	conflict	with	the	specifications	already	given	for	types	CIRCLE	and	NONCIRCLE?).			

Finally,	even	if	we	can	resolve	the	foregoing	issues	satisfactorily,	it	doesn’t	seem	easy	(or	
possible?)	to	make	this	“bottom	up”	style	conform	to	the	requirement	of	IM	Prescription	10	
that	types	CIRCLE	and	NONCIRCLE	be	defined	by	constraining	type	ELLIPSE.			

From	such	considerations,	I	conclude	that	there	doesn’t	seem	to	be	an	easy	way	to	make	
the	original	suggestion—i.e.,	that	if	T	is	a	union	type,	then	the	definition	of	T	should	mention	T’s	
immediate	subtypes—work,	nor	does	there	seem	to	be	much	point	in	trying.		By	contrast,	what	
definitely	does	seem	to	be	desirable	is	to	find	a	way	of	bundling	several	type	definitions	up	into	
a	single	statement.			
	
	



  

 

Chapter  13 
 
 

I n t e r l u d e : 
 
 

T h e   S   b y   C   C o n t r o v e r s y 
 
 

When men understand what each other mean, they see, for the most part,  
that controversy is either superfluous or hopeless.   

—Cardinal Newman: 
Sermon at Oxford (1839) 

 
 

This chapter is heavily based on Appendix F (“A Closer Look at Specialization by Constraint”) 
of the Manifesto book.  However, it does also contain quite a lot of new material.   
 
Over the past few chapters, I’ve relied heavily on our ellipses and circles example; in particular, 
I’ve relied on the mathematical fact that an ellipse is a circle if and only if its semiaxis lengths a 
and b are equal.  In terms of our inheritance model, what this means is that if an invocation of the 
ELLIPSE selector produces an ellipse with a = b, then specialization by constraint (S by C) 
comes into play and the result of that invocation is in fact of type CIRCLE.   

As noted in Chapter 8, however, not everyone agrees with us on these matters.  In fact, 
arguments have raged for years in the literature (especially the object literature) over exactly the 
ellipses and circles example.  By way of illustration, consider the following quote from Section 
23.4.3.1 of Bjarne Stroustrup’s book The C++ Programming Language (3rd edition, Addison-
Wesley, 1997):   

 
[In] mathematics a circle is a kind of an ellipse, but in most programs a circle should not be derived 
from an ellipse or an ellipse derived from a circle.  The often-heard arguments “because that’s the 
way it is in mathematics” and “because the representation of a circle is a subset of that of an 
ellipse” are not conclusive and most often wrong.  This is because for most programs, the key 
property of a circle is that it has a center and a fixed distance to its perimeter.  All behavior of a 
circle (all operations) must maintain this property (invariant; [here Stroustrup gives a reference to 
Section 24.3.7.1 of his book, which explains the concept of invariants]).  On the other hand, an 
ellipse is characterized by two focal points that in many programs can be changed independently of 
each other.  If those focal points coincide, the ellipse looks like a circle, but it is not a circle because 
its operations do not preserve the circle invariant.  In most systems, this difference will be reflected 
by having a circle and an ellipse provide sets of operations that are not subsets of each other.   
 



 
 
262      Chapter 13 / The S by C Controversy 

Now, the obvious response to such claims, it seems to me, is that if someone wants to work 
with constructs that look a bit like ellipses and circles but manifestly aren’t ellipses and circles, 
then clearly they must be allowed to—but if they then go on to insist on calling those constructs 
ellipses and circles as such, I would have to question their wisdom in doing so.  At the very least 
they’re going to run the risk of causing a great deal of confusion.1   

Be that as it may, perhaps you can begin to see why I said in Chapter 8 that the concept of 
S by C (and G by C) was controversial—so controversial, in fact, that (somewhat against our 
own better judgment) we omitted it entirely from the first version of our model.2  Why?  
Essentially because everyone else seemed to have done the same thing (or so we were told, at 
any rate)—not a very good reason, you might think.  In this chapter, I’d like to offer some 
observations in this connection and review a little of the related history.   

So why was there this broad sentiment against S by C?—indeed, why does that sentiment 
persist to this day?  (Note:  For simplicity, throughout what follows I’ll use “S by C” as a 
convenient shorthand label, most of the time, for specialization by constraint and generalization 
by constraint considered in combination.)  The answer seems to have something to do with 
performance; there seems to be a widespread belief that S by C must be difficult to implement 
efficiently and must therefore perform badly.  Now, performance isn’t a model concern, by 
definition—we’d always rather get the model right first and worry about the implementation 
afterward—but we do have some thoughts on the performance issue, which I’ll discuss in the 
section “Some Implementation Considerations” later in this chapter.  First, however, I want to 
take a closer look at S by C as such.  Thus, the chapter overall is structured as follows:   

 
! The next two sections, immediately following this introductory material, offer a brief 

historical overview.   
 

! The two sections following that overview summarize the benefits of S by C and suggest 
that the reason it typically hasn’t been supported in the past is because most of the work on 
inheritance seems to have been done in an object context specifically.   
 

! The final section offers the promised thoughts on implementation and performance.   
 

There’s a postscript, too, having to do with the logical difference between object IDs and 
foreign keys.   
 
 
                                                             
 
1 I’ve elaborated on these arguments—in particular, on the quote from Stroustrup’s book—in my paper “Is a Circle an Ellipse?” 
in the book Date on Database: Writings 2000-2006 (Apress, 2006).  Now, I apologize for the self-advertisement here; however, 
if you’re interested in this topic, then I do think that paper is worth reading, if only for its “Technical Correspondence” section, 
which gives some idea of the truly amazing amount of confusion that’s out there on questions like the one at hand.   
 
2 I refer to the version documented in the first edition of the Manifesto book, viz., C. J. Date and Hugh Darwen: Foundation for 
Object / Relational Databases: The Third Manifesto (Addison-Wesley, 1998).  Note:  Hugh Darwen’s foreword to the present 
book has more to say regarding the backdrop for our original lack of support for S by C.   
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THE THREE OUT OF FOUR “RULE”  
 
It’s instructive to begin by taking a look at a historical issue that’s related (or appears to be 
related, at any rate) to the S by C controversy.  The issue in question is known informally as “the 
three out of four rule,”3 and it turns out that S by C—or G by C, rather, which is part of the same 
overall phenomenon, of course—is the key to resolving it.   

I’ve said that S by C is controversial.  To say it one more time, S by C means among other 
things that the system should be aware that, e.g., if an ellipse has equal semiaxes, then it’s really 
a circle.  Now, I’ve assumed throughout preceding chapters, somewhat tacitly perhaps, that the 
inverse notion—i.e., that the system should be aware that, e.g., if an ellipse is really a circle, then 
its semiaxes must be equal—isn’t controversial at all;4 taking both notions together, in fact, what 
we have is basically just the type constraint for circles (a given value is a circle if and only if it’s 
an ellipse with equal semiaxes).  Note, incidentally, that without type constraints we don’t even 
have a way of specifying the values that go to make up a given type; after all, that’s exactly what 
a type constraint is—viz., a specification of the values that constitute the type in question.   

Not everyone agrees with the foregoing, however (in other words, our position on type 
constraints is controversial too).  By way of example, consider the following lightly edited 
extract from Stanley B. Zdonik and David Maier: “Fundamentals of Object-Oriented Databases,” 
in Readings in Object-Oriented Database Systems (Zdonik and Maier, eds.; Morgan Kaufmann, 
1990):   

 
We can list four features of a subtyping mechanism that all seem to be desirable, yet ... it is not 
possible to combine them in a single type system.  The four features are:   
 
! Substitutability  
! Static type checking  
! Mutability  
! Type constraints  
 
[Let me break in at this point in order to explain a few things.  First of all, “static type checking” is 
just another term for compile time type checking.  Second,“mutability” just means updatability, 
“mutator” being the object term for an update operator (the object term for a read-only operator is 
“observer”).  Third, Zdonik and Maier refer to the last item in their list not as type constraints but 
rather as “specialization via constraints.”  But this latter term doesn’t refer to S by C as such; 
rather, it refers to the more fundamental (?) notion that some type T′ might be defined as a 
“constrained” form of a given type T.  In other words, it really is talking about type constraints.  
(What Zdonik and Maier actually say is this:  “Specialization via constraints occurs whenever the 
operation redefinition on a subtype constrains one of the arguments to be from a smaller value set 
than the corresponding operation on the supertype.”  As I said in Chapter 8, I don’t find this 

                                                             
 
3 I call your attention to the deliberately different positioning of the quotation marks in the title to this section.   
 
4 Though I did point out in Chapter 8 that if this is all the system knows, then “circular noncircles” can occur.   
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definition very clear, but “constraining one of the arguments to be from a smaller value set” surely 
requires there to be some kind of constraint in effect in order to do the constraining—and what else 
can that constraint be, if not a type constraint?  Moreover, Zdonik and Maier then go on to claim, 
in effect (see the example below), that specialization via constraints implies that if we assign a 
circle value to an ellipse variable, one thing we subsequently can’t do is assign a value to that 
variable that’s “just an ellipse” and not a circle, and this state of affairs certainly has something to 
do with type constraints.)  To continue:]   
 
All four of these properties seem to be desirable ... We submit, however, that it is impossible to 
have all four of them in the same type system.  This conflict can be illustrated with the following 
example.  [I’ve replaced Zdonik and Maier’s example by one that’s essentially similar to theirs but 
conforms to our own notation and our own running example.]   
 
VAR E ELLIPSE ;  
VAR C CIRCLE ;  
 
C := CIRCLE ( LENGTH ( 3.0 ) , ... ) ;  
E := C ;  
THE_A ( E ) := LENGTH ( 4.0 ) ;  
 
[The first assignment assigns to C a circle of radius three.]  The [second] assignment must be 
allowed ... if we have substitutability and mutability ... The [third assignment] would type check at 
compile time ... Of course, [that assignment] ... will fail [at run time] even though the compile time 
check determined that it was all right.   
 
[And the extract concludes:]   
 
We observe that any three of the four features seem to work just fine.  No one of them is obviously 
the one that must be discarded, but in any type system, at least one of them must be sacrificed to 
achieve consistency with the others.   
 
Now, perhaps you can see right away what’s wrong with this argument.  To be specific, in 

our model, G by C would occur on the third assignment, MST(E) would become ELLIPSE again, 
and everything would indeed “work just fine.”  However, Zdonik and Maier don’t consider the 
possibility of G by C, so let’s agree to ignore that possibility ourselves for the time being and see 
where the argument takes us.  I’ll begin by taking a closer look at the four features and seeing 
how each relates to the example at hand:   

 
! Substitutability:  As explained in Chapter 7, type inheritance implies substitutability (value 

substitutability, at any rate), so this feature can’t possibly be discarded.  The second 
assignment in the example appeals to value substitutability.   
 

! Static type checking:  Zdonik and Maier define static type checking to mean that there’s 
“no need to insert expensive run time [type] checks [into the compiled] code,” and also that 
“the coder can be assured that [run time type] errors can never occur.”  In our inheritance 
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model, by contrast, run time type errors certainly can occur in the context of TREAT (see 
Chapter 10), even if static type checking is performed.5  So perhaps it might be argued that 
static type checking is the feature we’ve discarded.   

However, I would argue that to insist that everything be fully type checkable at 
compile time is to throw the baby out with the bathwater.  For example, consider the 
following code fragment (as usual, the declared types of variables E and C are ELLIPSE 
and CIRCLE, respectively):   

 
VAR L LENGTH ;  
 
E := C ;  
L := THE_R ( E ) ;  
 

The expression THE_R(E) in the last line here will fail on a compile time type check, 
of course.  So now we have no way to obtain the radius of the circle that’s the current value 
of E (we can’t use TREAT, because TREAT intrinsically can’t be fully type checked at 
compile time).  So there’s really no point in saying that the current value of E is of type 
CIRCLE; we might as well convert that circle to make it “just an ellipse” when we do the 
assignment of C to E.6  And so we’ve lost substitutability!—and hence the whole idea of 
type inheritance, in fact.   
 

! Mutability:  As noted earlier, mutability just means updatability.  Updatability in turn 
implies support for variables and assignment (and the example does involve variables and 
assignment, clearly).  Now, I could certainly be persuaded—indeed, it’s obvious, as we saw 
in Chapters 1 and 2—that assignment as such is the only update operator (or “mutator”) 
that’s logically necessary.  But that still leaves us with mutability as a sine qua non.   

Now, it’s possible that what Zdonik and Maier mean by the term mutability isn’t 
assignment as such, but rather the idea that certain mutators work in such a way as to 
assign to some component of their target while leaving other components unchanged (as in 
the assignment to THE_A(E) in the example).  If so, then I agree that such operators are 
very desirable in practice, but it’s still the case that they’re logically unnecessary, in the 
final analysis.  Thus, the possibility in question—the possibility, that is, that Zdonik and 
Maier are really talking about some piecemeal kind of “mutability”—doesn’t seem to be 
germane to the bigger issue.   
 

! Type constraints:  As I’ve said, Zdonik and Maier don’t consider the possibility of 
generalization by constraint.  As a consequence, they claim that if type constraint checking 
is done, then the assignment to THE_A(E) will fail at run time.  To be more specific, they 
claim that the assignment to THE_A(E) will fail because the most specific type of the 

                                                             
 
5 They can’t occur anywhere else, though.   
 
6 Of course, such a conversion couldn’t be done in our model (and if it could, the result would be a “circular noncircle”).   
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target is CIRCLE, and assignment to THE_A for a circle will, in general, violate the 
constraint on circles that the semiaxis lengths a and b must be equal.  (I don’t agree with 
this argument, of course—I’m just doing my best to explain Zdonik and Maier’s point of 
view.)  According to Zdonik and Maier, then, it follows that if we want the assignment not 
to fail at run time, the system mustn’t be informed of the constraint.  But this conclusion is 
surely unacceptable; surely, the more constraints the system is aware of and can enforce, 
the better.  After all, we surely we want our data to be as correct as possible at all times.  
Don’t we?   

 
In fairness to Zdonik and Maier, let me now add that they’re not alone in coming to the 

conclusion they do; two other writers, Nelson Mattos and Linda G. DeMichiel, examine the 
foregoing claims in their paper “Recent Design Trade-Offs in SQL3” (ACM SIGMOD Record 
23, No. 4, December 1994)7 and come to the same conclusion: viz., that type constraints are the 
feature that must be discarded.  Their analysis goes somewhat as follows:   

 
! Can we discard substitutability?  Well, no:  As we’ve already seen, substitutability—value 

substitutability, that is—can’t possibly be thrown away without undermining the whole 
idea, and point, of type inheritance.   
 

! Can we discard static type checking?  Well, no:  Discarding static type checking is highly 
undesirable, of course, and in any case it solves nothing—in the example, the assignment to 
THE_A(E) will still fail at run time (absent support for G by C, that is).   
 

! Can we discard mutability?  Well, no:  We must have assignment, at least, and component 
level update operators too are highly desirable in practice.  (I note in passing that Mattos 
and DeMichiel do in fact assume that the term mutability refers to the idea of component 
level updating specifically, not just to wholesale assignment.)   

 
Mattos and DeMichiel thus conclude that “the most appropriate [solution] is to not permit 

specialization via constraints” (meaning, to say it again, that they advocate not enforcing, and 
therefore not even declaring, type constraints).  They claim that to do otherwise would mean 
“[forcing] the overloading of all [operators] defined on supertypes.”  What this claim means in 
terms of our example is that assignment to THE_A would have to be overloaded for a circle in 
such a way as to have the side effect of assignment to THE_B as well, so that the circle still 
satisfies the constraint a = b after the update.8  And they go on to say:   

 

                                                             
 
7 “SQL3” was the working title at the time for what ultimately became the 1999 version of the SQL standard (viz., SQL:1999).   
 
8 Note that this really is overloading, not merely defining different implementation versions (because assignment to THE_A for 
an ellipse and assignment to THE_A for a circle will now have different semantics, and the user will need to understand the 
difference).   
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This option [i.e., of forcing overloading] seems to be unacceptable because we believe that ... users 
are not likely to define type hierarchies themselves, but to buy them as class libraries from third 
party vendors.  It is an important requirement that users be able to define ... subtypes of these type 
hierarchies [sic] ... If we force all operators to be overloaded, users will have to redefine every 
[operator] provided by the class libraries whenever they need to [define such a subtype].   

 
Now, I certainly agree that “forcing overloading” in the sense described is unacceptable in 

general.  In the particular case of assignment via a THE_ pseudovariable such as THE_A, in fact, 
I would argue that the semantics of such an assignment are—for very good reasons—prescribed 
by the model and simply mustn’t be changed, or overloaded, in the manner suggested (not in any 
other manner either, come to that).  And even if those semantics weren’t prescribed by the 
model, I would still argue that (a) changing the semantics of an operator in arbitrary ways is a 
bad idea in general, and (b) changing the semantics of an operator in such a way as to cause 
arbitrary side effects is an even worse one; it’s a good general principle to insist that operators 
have exactly the requested effect, no more and no less.9  What’s more, I note that the option of 
changing the semantics in the manner suggested isn’t always available, anyway.  For example, 
let type ELLIPSE have another immediate subtype NONCIRCLE, with the intuitively obvious 
semantics; let the constraint a > b apply to noncircles; and consider an assignment to THE_A for 
a noncircle that, if accepted, would set a equal to b.  What would be an appropriate overloading 
for that assignment?—i.e., exactly what side effect would be appropriate in order to ensure that 
the result is still of type NONCIRCLE and not CIRCLE?10   

On the face of it, therefore, the conclusion that type constraints have to be rejected might 
seem to be inescapable (if there’s no G by C, that is).  But observe the following implications of 
adopting that position:   

 
! As already explained, assignment to THE_A is not reimplemented (or overloaded) for 

circles.   
 

! The fact that the current value of E in the example is a circle does not cause the assignment 
to THE_A to fail.   
 

! But the result is that after that assignment, variable E contains a “noncircular circle”—that 
is, it contains a value of type CIRCLE for which a > b.  (The type is still CIRCLE because, 
according to the scheme under consideration, nothing has been done to change it.)   
 

! Even worse, the fact that assignment to THE_A is supported (without any type checking) 
for a variable of declared type ELLIPSE but current most specific type CIRCLE suggests 

                                                             
 
9 In fact it’s basically just The Assignment Principle (see Chapter 2).   
 
10 Actually, and despite Mattos and DeMichiel’s claims, no overloading as such would be required at all if the system did support 
type constraints!—an assignment to a variable of declared type NONCIRCLE that attempts to set a equal to b will simply fail on 
a type constraint violation.   
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rather strongly that assignment to THE_A should be supported (again without any type 
checking) for a variable of declared type CIRCLE.   
 

! So let C be such a variable of declared type CIRCLE.  After such an assignment, then, 
variable C will (in general) contain a “noncircular circle”—that is, a value of type CIRCLE 
for which a > b.   
 

! So the constraint a = b isn’t being enforced for type CIRCLE.   
 

! More generally, type constraints won’t and can’t be enforced—and there’s no point in even 
letting them be stated, therefore—even if inheritance is currently not supported at all, just 
in case such support might be added at some future time!11   

 
To me, these implications, the last one in particular, seem even more unacceptable than the 
option of “forcing overloading.”   

So what’s to be done?  Well, let’s step back a moment and take stock.  It seems to me that 
the system should indeed support all four of the features mentioned (substitutability, static type 
checking, mutability, and type constraints).  More precisely, it seems to me that:   

 
! The system should support The Principle of Value Substitutability 100 percent.   

 
! It should also support static type checking to the maximum extent possible (the only place 

where run time type checking is needed being in the context of TREAT).   
 

! It should also support mutability—meaning not only that it should support assignment per 
se, but also that it should support component level update operators as a shorthand.   
 

! It should also support type constraints—meaning in particular that it should be aware of the 
fact that circles are subject to the constraint a = b, and meaning further that assignment to 
THE_A(C) fails at compile time if the declared type of C is CIRCLE.   
 

! But it should additionally support S by C and G by C!  In particular, if the declared type of 
E is ELLIPSE, then it should always permit assignment to THE_A(E)—subject of course 
to the constraint a ≥ b—and it should be prepared for MST(E) to change on such an 
assignment, either “down” from ELLIPSE to CIRCLE or “up” from CIRCLE to ELLIPSE, 
as and when appropriate.   

 

                                                             
 
11 This is the way the SQL standard is, incidentally.  See Chapter 22 for further discussion.   
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In other words, S by C and G by C are the solution to “the three out of four problem.”  In 
fact, we can now see that the three out of four “rule” isn’t really a rule at all, so long as S by C 
and G by C are supported—as I believe they should be.   
 
 
WHAT DOES INHERITANCE REALLY MEAN?  
 
This section is partly a repeat of material from various earlier chapters.  But the material is 
important, and I think it bears some repetition.   
 
As explained in Chapter 11, update operators are inherited only conditionally in our model.  For 
example, assume that assignment via THE_A isn’t inherited by type CIRCLE from type 
ELLIPSE.  Doesn’t this state of affairs raise an obvious question (some might say it’s the 
question): namely, what does inheritance really mean?  A good model of inheritance must surely 
have a good answer to this question.  But does such a model even exist?  If assignment via 
THE_A applies to variables of type ELLIPSE but not to variables of type CIRCLE, is it 
reasonable to regard type CIRCLE as a subtype of type ELLIPSE?  After all, to say that type 
CIRCLE is a subtype of type ELLIPSE means that all operators that apply to type ELLIPSE 
apply to type CIRCLE too, doesn’t it?   

Well, no, it doesn’t.  As I said in Chapter 3:   
 
It’s important in the inheritance context—as in all others!—to distinguish very carefully between 
values and variables.  When I say that, e.g., every circle is an ellipse, what I mean, more precisely, 
is that every circle value is an ellipse value.  I certainly don’t mean that every circle variable is an 
ellipse variable—i.e., that a variable of declared type CIRCLE is a variable of declared type 
ELLIPSE, and hence can contain a value that’s an ellipse and not a circle.  In other words, and 
speaking somewhat loosely once again, inheritance applies to values, not variables (although 
naturally there are implications for variables too, as will be seen).  Indeed, we conjecture that much 
of the confusion we observe in this field—and there’s a lot of it—is due precisely to a failure to 
distinguish properly between values and variables.   

 
Thus, it seems to me that the key to what I referred to above as the question is to recognize  
 

! The logical difference between values and variables, and hence  
 

! The logical difference between read-only and update operators, and hence  
 

! The logical difference between value and variable substitutability,  
 

and, of course, to act appropriately upon such recognition.   
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It further seems to me that the positions argued in the papers discussed in the previous 
section12—I refer to the papers by Zdonik & Maier and Mattos & DeMichiel—stem from a 
failure to make these crucial distinctions.  And it seems still further to me that such failures are at 
least partly responsible for the lack of consensus, noted earlier in this book, on a formal, 
rigorous, and abstract inheritance model.  By contrast, our own position is as follows:  First, we 
do believe there’s such a thing as a good inheritance model; we believe further that any such 
model must pay careful attention to the logical differences (values vs. variables and the rest) 
articulated in this book; and we believe still further that any such model must support S by C and 
G by C.  And yes, we do believe a circle is an ellipse!—see the discussions in the next two 
sections.   
 
 
BENEFITS OF S BY C  
 
I’ve shown that one advantage of S by C and G by C is that together they solve the three out of 
four “problem.”  But of course they bring many other advantages with them as well, and those 
advantages are the subject of this section.   

First, however, I ought to consider whether there are any disadvantages.  The obvious one 
is as follows.  Recall from Chapter 8 that S by C has the fundamental consequence that—at least 
as far as the model is concerned—a selector invocation might return a value of some proper 
subtype of the specified target type.  For example, the ELLIPSE selector invocation  

 
ELLIPSE ( LENGTH ( ... ) , LENGTH ( ... ) , POINT ( ... ) )  
 

will return a value of type CIRCLE, not just ELLIPSE, if the two LENGTH invocations happen 
to return the same value at run time.  Thus, it follows that—at least conceptually—S by C must 
be implemented inside selector implementation code.  Note immediately, however, that I do say 
“at least conceptually.”  In fact, I’ll argue in the section “Some Implementation Considerations” 
later that it’s never actually necessary to compute the most specific type of the result of a selector 
invocation—not at the time of that invocation, at any rate.  Nevertheless, suppose for the moment 
that the implementation does in fact have to determine the most specific type of the result of a 
selector invocation as soon as that result is computed.  Let’s consider some of the implications.   

First of all, then, every time we define a new proper subtype T′, the selector(s) for each 
proper supertype13 T of T′ will need to be reimplemented, or at least revised, because those 
selectors might now return values of that new type T′ as their most specific type.  But those 
revisions can clearly be automated!  In the case of ellipses and circles, for example, the system 
knows exactly when an ellipse is in fact a circle, and it also knows exactly which circle the 
ellipse in question is.  Note in particular, therefore, that what we don’t have to do is what Mattos 

                                                             
 
12 Argued also in a host of similar writings.   
 
13 Or perhaps (depending on the implementation) just for each immediate supertype.   
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and DeMichiel said we’d have to do: viz., “redefine every [operator] provided by the class 
libraries whenever [we] need to [define a subtype].”  In other words, the possible need to revise 
certain selectors—which, let me stress, is the only disadvantage to the S by C idea as far as I can 
see—is perhaps a minor burden on the system, but it’s no burden at all on any human user.14   

Now I turn to the advantages.  I’ve numbered them for convenience.   
 

1. The first is simply the overriding point that S by C means the model is a better model of 
reality.  “The more the system knows, the better” is surely a good general principle.   
 

2. It’s a direct consequence of S by C that values of most specific type ELLIPSE correspond 
to noncircles—i.e., to ellipses that definitely aren’t circles in the real world.  By contrast, in 
other approaches (i.e., without S by C), values of most specific type ELLIPSE can have 
a = b and can thus correspond to circles in the real world (the “circular noncircles” 
phenomenon).  Hence, defining CIRCLE as a subtype of ELLIPSE in such approaches 
partitions the set of ellipses, not into circles vs. noncircles, but rather into circles vs. 
“maybe circles”—intuitively not a very satisfactory state of affairs.15   
 

3. Following on from the previous point, it’s also a direct consequence of S by C that values 
of most specific type CIRCLE correspond to ellipses that are definitely circles in the real 
world.  In other words, “noncircular circles” and similar nonsenses can’t occur.   
 

4. More compile time type checking can be done and fewer run time type errors can occur; in 
fact, run time type errors can occur solely on an attempt to TREAT a value to a type it 
doesn’t possess.  (By contrast, in our original model, which didn’t support S by C, 
additional run time type errors could occur—for example, on an attempt to assign via 
THE_A to a variable of declared type ELLIPSE but current most specific type CIRCLE, as 
in the example earlier illustrating “specialization via constraints.”)   
 

5. Assignments are logically simpler (especially assignments to THE_ pseudovariables, which 
in our original model involved a complicated CASE expression on the right side in their 
expansion).  In particular, changing types “up” or “down” is easy.  That is, given variable E 
of declared type ELLIPSE, in order to change the most specific type of E from ELLIPSE to 
CIRCLE or the other way around, it’s sufficient just to update E appropriately.   
 

6. Changing types “sideways” is also easy.  That is, given (say) type ELLIPSE with subtypes 
CIRCLE and NONCIRCLE, in order to change the most specific type of variable E (of 

                                                             
 
14 It’s not even a performance burden.  Again, see the section “Some Implementation Considerations,” later.   
 
15 In some systems, moreover (including SQL systems, incidentally), it can also be the case—point 3 notwithstanding—that 
values of most specific type CIRCLE have a ≠ b (the “noncircular circles” phenomenon).  If so, then defining CIRCLE as a 
subtype of ELLIPSE partitions the set of ellipses not into “circles vs. maybe circles” but—what seems to me to be worse—into 
“maybe circles vs. maybe circles” (if you see what I mean).   
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declared type ELLIPSE) from CIRCLE to NONCIRCLE or the other way around, it’s 
sufficient just to update E appropriately.  (In our original model, by contrast, changing 
types “sideways” in such a manner was a considerably more complex process, involving a 
“TREAT UP” operation on E—see points 7 and 8 below—to force it to be “just an ellipse” 
first, followed by an assignment with a complicated CASE expression on its right side 
second.  What’s more, the overall process didn’t work properly anyway if ELLIPSE was a 
union type, as in fact it is in the foregoing example.  All of these complications go away 
with S by C.)   
 

7. Equality comparisons are easy.  For example, given our usual variables E and C of declared 
types ELLIPSE and CIRCLE, respectively, we can test them for equality as follows:   

 
E = C  
 
In our original model, by contrast, we would have had to have written something like this:   
 
TREAT_UP_AS_ELLIPSE ( E ) = TREAT_UP_AS_ELLIPSE ( C )  
 
(This expression can be read as “treat both comparands as just ellipses and then compare 
the two ellipses.”)   
 

8. In fact, the TREAT UP operator mentioned in points 6 and 7, which was included in our 
original model for a variety of reasons, becomes completely unnecessary with S by C and 
G by C and so can be dropped.  (Actually it was only shorthand anyway, but any 
simplification is generally to be desired.)  Note:  Perhaps I should point out that our model 
does still support “treating up” as well as “treating down,” but only in a harmless kind of 
way.  Given our usual variable C, for example, the expression TREAT_AS_ELLIPSE (C) 
is valid, but it can never fail; in fact, it’s almost a “no op.”   
 

9. With S by C and G by C, the rules regarding conditional inheritance of update operators 
apply to declared types.  In our original model, by contrast, they applied to most specific 
types instead, a fact that made them harder to understand and harder to implement and led 
to more run time type checking and more run time type errors.   
 

 10. More code reuse is achievable, and programs are more immune to the introduction of new 
subtypes.  For example, a program that assigns to THE_A(E) will still work after type 
CIRCLE is introduced (which it might not have done under our original model).   
 

 11. There’s never any logical need to CAST—i.e., convert—a value of type ELLIPSE to type 
CIRCLE, because an ellipse that can logically be “converted to” type CIRCLE will in fact 
be of type CIRCLE already, under S by C.  The operator itself thus becomes unnecessary 
(which wasn’t the case, under our original model).   



 
 

The S by C Controversy / Chapter 13      273 

 
 12. S by C can also have the effect of making certain implementation versions of certain 

operators logically unnecessary.  For example, the update version of MOVE discussed in 
Chapter 7 for ellipses and rectangles will work for any combination of most specific 
argument types—ELLIPSE or CIRCLE for the first argument and RECTANGLE or 
SQUARE for the second argument—whereas such was not the case with our original 
model.   

 
In fact, I’d like to go further; I’d like to argue that S by C is the only conceptually valid way 

of defining subtypes!—so long as the supertype is a regular type, at any rate (S by C from a 
dummy type makes no sense, as we saw in Chapter 12).  I justify this strong claim as follows.  
Let scalar type T′ be a proper subtype of (regular) scalar type T.  Then:   

 
! Loosely, T′ and T are both sets (more precisely, the set of values |T′| constituting T′ is a 

subset of the set of values |T| constituting T).   
 

! Therefore T and T′ both have membership predicates—predicates, that is, such that a given 
value is of the type in question if and only if it satisfies the corresponding predicate.  Let 
those predicates be P and P′, respectively.   
 

! Since we’re dealing with finite sets only, we can for simplicity regard predicates P and P′ 
as effectively just enumerating the values in |T| and |T′|, respectively.   
 

! Since every value of type T′ is also a value of type T, it follows that predicate P′ can be 
formulated in terms of values of type T (not T′) only.   
 

! And that predicate P′, formulated in terms of values of type T, is precisely the constraint 
that values of type T have to satisfy in order to be values of type T′.  In other words, a value 
of type T is specialized to type T′ precisely if it satisfies the constraint P′.  Note:  P′ is what 
IM Prescription 10 calls the specialization constraint for T′.  In Tutorial D, it’s specified 
via the <is def> on the definition of that type T′.   

 
Thus, to repeat, we see S by C as the only conceptually valid way of defining subtypes.  In 

particular, therefore (as noted a couple of sections back), our answer to the notorious question “Is 
a circle an ellipse?” is a very firm yes.   
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WHAT ABOUT OBJECTS?  
 
The Manifesto book includes the following very strong claim:  Support for objects in the object 
oriented sense is incompatible with support for a good model of inheritance—and I’ve now laid 
sufficient groundwork to be able to justify that claim.  Let me explain.   

I begin by reminding you that object languages typically make heavy use of object IDs, or 
in other words pointers,16 and variables in such languages typically contain such pointers instead 
of regular nonpointer values.  Thus, for example, the analog of our usual variables E and C in 
such a language would typically be variables—let’s call them XE and XC—that contain pointers 
to ellipses and circles instead of ellipses and circles as such.  Furthermore, when I say pointers to 
ellipses and circles, I really mean pointers to ellipse and circle variables,17 because by definition 
it’s variables, not values, that have addresses.   

Next, I remind you that support for pointers necessarily includes support for associated 
referencing and dereferencing operators as well (or something equivalent to those operators, at 
any rate).  Here are loose definitions:   

 
! Referencing:  Given a variable V, the referencing operator applied to V returns a pointer 

to V.   
 

! Dereferencing:  Given a variable P containing a pointer, the dereferencing operator applied 
to P returns the variable the pointer in P points to.   

 
So consider the following code fragment:   
 
VAR E  ELLIPSE ;  
VAR XE PTR_TO_ELLIPSE ;  
 
E  := CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) ;  
XE := PTR_TO ( E ) ;  
 
I’m assuming here that:   
 

! If T is a type, then PTR_TO_T is a type too, and its values are pointers to, or object IDs for, 
variables of type T.  In other words, PTR_TO_ is a type generator (a scalar type generator, 
in fact).   
 

! If V is a variable of type T, then the operator invocation PTR_TO (V) returns a pointer to V.  
In other words, PTR_TO is the referencing operator mentioned above.   

 

                                                             
 
16 See Chapter 22 for arguments in support of my claim here that object IDs really are just pointers.   
 
17 An object language would say they’re pointers to ellipse and circle objects.   
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The effect of the code fragment is thus to set the variable E to contain a circle of radius five 
and then to set the variable XE to contain a pointer to E.  Note the appeal to substitutability in the 
first of these assignments.   

Now let’s introduce another variable:   
 
VAR XC PTR_TO_CIRCLE ;  
 
If we assume, not unreasonably, that type PTR_TO_CIRCLE is a proper subtype of type 

PTR_TO_ELLIPSE,18 we can now perform the following assignment:   
 
XC := TREAT_AS_PTR_TO_CIRCLE ( XE ) ;  
 

Now XC also contains a pointer to E—in fact, it contains the same pointer as XE does.   
Finally, we attempt the following assignment (let’s call it Assignment Z):   
 
THE_A ( DEREF ( XE ) ) := LENGTH ( 6.0 ) ;  
 
DEREF here is the dereferencing operator—it takes a variable of some pointer type as 

argument and returns the variable that the pointer variable in question currently points to.19  
Thus, the intent of Assignment Z is, loosely, to update the length of the a semiaxis of the ellipse 
variable E that XE currently points to, setting it to six.  So what happens?  Well, it seems there 
are three possibilities, all of them bad.  I’ll consider each in turn.   

 
1. Assignment Z fails on a run time type error, because MST(E) is CIRCLE and assignment to 

THE_A isn’t supported for type CIRCLE (again as in the “specialization via constraints” 
discussion earlier in this chapter).  In this case, the model is bad because (a) it leads to run 
time type errors in a context other than TREAT, and (b) more important, it doesn’t support 
G by C and so isn’t “a good model of reality.”   
 

2. Assignment Z “succeeds” (i.e., there’s no run time type error and the update is done), but 
G by C doesn’t occur.  In this case, the model is bad because (a) it fails to support G by C 
and so isn’t “a good model of reality”; (b) variable XC now points to a “noncircular circle”; 
and (c) more generally, type constraints can’t be supported (see that “specialization via 
constraints” discussion once again).   
 

                                                             
 
18 Such would certainly be the case for the SQL analogs of these types, incidentally (see Chapter 22).   
 
19 Note that the DEREF invocation in the example appears on the left side of the assignment and is thus being used as a kind of 
pseudovariable (I say a “kind of” pseudovariable, because the overall assignment isn’t just shorthand for something else, as it 
would have to be if the DEREF invocation were a true pseudovariable—see Exercise 2.17 in Chapter 2).  It follows that support 
for pointers implies a need to extend the syntax and semantics of assignment somewhat.  I omit the details here, since the whole 
point of the example under discussion is to bolster the argument that pointers as such shouldn’t be supported in the first place.   
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3. Assignment Z “succeeds” (i.e., there’s no run time type error and the update is done), and 
G by C does occur.  In this case, the model is bad because (a) variable XC, of declared type 
PTR_TO_CIRCLE, now points to a variable of current most specific type ELLIPSE, and 
hence (b) type constraints can’t be supported.  Note:  In practice, this option is probably a 
nonstarter, precisely because of point (a); thus, G by C probably does not occur, and we’re 
back with Case 2.   

 
Conclusion:  Whichever option we choose, the model is bad.  And the culprit, at least in 

this particular example, is the concept of “shared variables”:  Pointer variables XE and XC 
“share” the ellipse variable E.  Furthermore, it’s pointers (i.e., object IDs) that permit that sharing 
in the first place.  It follows that object IDs—at least if they permit shared variables—and a good 
model of inheritance are incompatible.   

As a matter of fact, we don’t even need to invoke the concept of shared variables in order 
to illustrate the problem.  Consider the following simpler version of the example:   

 
VAR E  ELLIPSE ;  
VAR XC PTR_TO_CIRCLE ;  
 
E := CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) ;  
XC := TREAT_AS_PTR_TO_CIRCLE ( PTR_TO ( E ) ) ;  
THE_A ( E ) := LENGTH ( 6.0 ) ;  
 
The first assignment here sets E to contain a circle of radius five.  The second sets XC to 

point to E.  The third (“Assignment Z”) attempts to update the length of the a semiaxis of the 
ellipse variable E to six.  What happens?  Without going into details, it should be clear that there 
are the same three possibilities as before, again all of them bad, and the overall conclusion is the 
same as before as well:  Object IDs and a good model of inheritance are incompatible.   

For a third and final example, consider the following still simpler code fragment:   
 
VAR C  CIRCLE ;  
VAR XE PTR_TO_ELLIPSE ;  
 
C  := CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) ;  
XE := PTR_TO ( C ) ;  
THE_A ( DEREF ( XE ) ) := LENGTH ( 6.0 ) ;  
 
Here S by C and G by C have no part to play (variable C can never have most specific type 

ELLIPSE), but the final assignment still either raises a run time type error or produces a 
noncircular circle.  Once again, therefore, I conclude that object IDs and a good model of 
inheritance are incompatible.   

Darwen and I conjecture that examples like those above, and in particular the conclusions 
arising from such examples, go some way toward explaining why there haven’t been any good 
inheritance models in the past so far as we know.  To be specific, all of the prior work on 
inheritance that we’re aware of has been done in an object context specifically, and the object 
world generally seems to take it as a sine qua non that object IDs must be supported.  As we’ve 
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just seen, however, object IDs imply that the model must be bad.  In other words, (a) objects 
imply object IDs; (b) object IDs and a good model of inheritance are incompatible; (c) hence, 
objects per se and a good model of inheritance are incompatible!   

What’s more, since it’s clearly an assumption underlying Zdonik and Maier’s claims 
regarding “the three out of four rule” that object support is a desideratum, it’s tempting to 
suggest that we should really have been talking all along about “a four out of five rule” instead, 
where the fifth element—and clearly the one to be discarded—was objects themselves.   
 
 
SOME IMPLEMENTATION CONSIDERATIONS  
 
To summarize to this point:  S by C (including G by C) is an area where our approach to 
inheritance differs markedly from what’s found in a typical object language.  The following 
quote from a paper by James Rumbaugh20 illustrates the point very well:   
 

Is SQUARE a subclass of RECTANGLE? ... Stretching the x dimension of a rectangle is a perfectly 
reasonable thing to do.  But if you do it to a square, then the object is no longer a square.  This is 
not necessarily a bad thing conceptually.  When you stretch a square you do get a rectangle ... But 
... most object-oriented languages do not want objects to change class ... [This] suggests [a] design 
principle for classification systems:  A subclass should not be defined by constraining a superclass.   
 
Observe that Rumbaugh’s conclusion—i.e., his “design principle for classification 

systems”—is the diametric opposite of our own, which is that S by C is the only conceptually 
valid way of defining a subtype (or subclass, to use Rumbaugh’s term).  Note too, however, that 
one of Rumbaugh’s reasons for taking the position he does is that “[object] languages do not 
want objects to change class.”  Our own model, by contrast, was deliberately not constrained by 
existing languages or implementations;21 we wanted to define the abstract model first and leave 
implementation concerns till later.  In particular, we included S by C because we found it useful, 
as well as being logically correct (or so it seemed to us).  But we would certainly drop it if it 
turned out to be impossible to implement, or impossible to implement efficiently.   

So can it be implemented efficiently?  Well, it’s relevant here to observe that Rumbaugh 
buttresses his conclusion with the following argument:   
                                                             
 
20 James Rumbaugh: “A Matter of Intent: How to Define Subclasses,” Journal of Object-Oriented Programming (September 
1996).  Incidentally, this paper is one of many we’ve seen that fail to distinguish properly between values and variables.  Here’s a 
direct quote:  “Barbara Liskov is responsible for the Liskov Substitution Principle that an instance [sic] of a subclass must be 
substitutable and usable wherever a variable [sic!] of one of its ancestor classes is allowed.  This principle has helped to avoid a 
lot of confusion in forming class hierarchies and affects most discussions of [object] classification.”   

Perhaps I should add that it was precisely because of this quote that I felt I needed to take a careful look at the Liskov 
Substitution Principle (LSP).  I wanted to know whether LSP was the same thing as substitutability, as this latter term is 
understood in our model.  I reported on what I found in another paper—“What Does Substitutability Really Mean?”—in the book 
already mentioned in an earlier footnote, Date on Database: Writings 2000-2006 (Apress, 2006).  This isn’t the place to discuss 
the conclusions of that paper in detail; let me just say that one thing that (it seemed to me) LSP most definitely did not do was 
distinguish adequately—or indeed at all—between values and variables.   
 
21 Actually the first version was, as previously noted (and it was defective for that very reason).   



 
 
278      Chapter 13 / The S by C Controversy 

 
It would be computationally infeasible to support a rule based, intensional definition of class 
membership, because you would have to check the rules after each operation that affects an object.   
 

(The phrase “rule based, intensional definition of class membership” here refers to S by C and 
G by C; it means, for example, that a given ellipse is defined to be a member of the class of 
circles if—and only if?—it satisfies the rule that a = b.  As for “operation[s] that affect an 
object,” the operations in question are update operations, of course, or more fundamentally just 
assignments.)   

However, we reject the foregoing argument; that is, we believe the computational aspects 
of S by C can be handled both simply and efficiently.  To be more specific, we reject both  

 
a. The suggestion that S by C is “computationally infeasible” (i.e., that it imposes intolerable 

computational overhead), and  
 
b. The suggestion that the most specific type has to be (re)computed “after each operation that 

affects an object.”   
 

Let me elaborate.  Let X be an expression.  Then the first and overriding point is that it’s 
never necessary to compute the current most specific type MST(X), as such, of that expression X; 
it’s only necessary to determine in certain contexts whether the current value v(X) of X is of 
some particular type—or, to be more specific, whether it’s of some particular proper subtype of 
the declared type DT(X) of X.  By way of illustration, consider the simple type graph shown in 
Fig. 13.1, which shows (a) type PARALLELOGRAM as having two immediate subtypes, 
RECTANGLE and RHOMBUS, and (b) each of these latter types as having type SQUARE as an 
immediate subtype:22   
 

            ┌───────────────┐ 
            │ PARALLELOGRAM │ 
            └───────┬───────┘ 
       ┌────────────┴────────────┐ 
┌──────▼──────┐           ┌──────▼──────┐ 
│  RECTANGLE  │           │   RHOMBUS   │ 
└──────┬──────┘           └──────┬──────┘ 
       └────────────┬────────────┘ 
            ┌───────▼───────┐ 
            │    SQUARE     │ 
            └───────────────┘ 
 
Fig. 13.1: Example of a type graph  

 

                                                             
 
22 As you can see, the example involves multiple inheritance, which I haven’t yet discussed in detail.  So if you want to skip this 
section for now and come back to it later, please feel free to do so.   
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Now let expression X have declared type PARALLELOGRAM, and consider the 
expression TREAT_AS_RECTANGLE (X).  In order to evaluate that expression, we clearly 
don’t need to compute MST(X) as such—all we need to do is check whether IS_RECTANGLE 
(X) evaluates to TRUE.  In particular, if MST(X) happens to be SQUARE, there’s no need to 
determine that fact in order to evaluate IS_RECTANGLE (X).   

Observe next that the remarks of the preceding paragraph apply if X is a selector invocation 
in particular.  To revert for a moment to our usual example of ellipses and circles:  As we know, 
the selector invocation  

 
ELLIPSE ( LENGTH ( 5.0 ) , LENGTH ( 5.0 ) , POINT ( ... ) )  
 

is defined by our model to return a value at run time of most specific type CIRCLE, not 
ELLIPSE.  But there’s no need for the implementation to perform S by C, as such, at the time 
that selector invocation is evaluated; all it has to do, to repeat, is to be able to ascertain 
subsequently that the value in question is indeed a circle, if and when some expression—for 
example, the expression TREAT_AS_CIRCLE (X)—is evaluated that depends in some way on 
that fact.   

As a basis for a more searching discussion, refer to Fig. 13.1 again.  Suppose again that 
DT(X) is PARALLELOGRAM, and suppose we need to determine whether v(X) is of type 
SQUARE.  Now, there are two paths in the graph from PARALLELOGRAM to SQUARE, via 
RECTANGLE and RHOMBUS respectively, and the system needs to choose one in order to 
make that determination.  Suppose it chooses the one via RHOMBUS.  If v(X) fails to satisfy the 
constraint for RHOMBUS, then it’s certainly not of type SQUARE; however, if it does satisfy 
the constraint for RHOMBUS, then it needs to be tested against the constraint for SQUARE.  On 
the face of it, therefore, it seems that no more than two nodes of the graph need be visited in 
order to discover whether v(X) is a square: two if it’s a rhombus, otherwise just one.   

As we’ll see in Chapter 14, however, the <is def> for type SQUARE looks like this:   
 
IS { RECTANGLE , RHOMBUS }  
 

(irrelevant details omitted).  What this specification means is that a given value is of type 
SQUARE if and only if it’s of type RECTANGLE and of type RHOMBUS.  Thus, it looks as if 
it might be necessary to traverse the path from PARALLELOGRAM to RECTANGLE, as well 
as the one from PARALLELOGRAM to RHOMBUS, in order to determine whether v(X) 
satisfies the constraint for type RECTANGLE as well as the one for type RHOMBUS.  
However, we can avoid this apparent need to visit additional nodes by labeling the arc from 
RHOMBUS to SQUARE with the constraint for type RECTANGLE.23  Then, if the 

                                                             
 
23 If there were any intervening nodes between PARALLELOGRAM and RECTANGLE, the constraint in question would have 
to be the logical AND of all constraints on the path from PARALLELOGRAM to RECTANGLE.  And if there were more than 
one such path, the system would have to choose one, just as it had to choose whether to follow the RECTANGLE or RHOMBUS 
path to SQUARE in the previous discussion.   
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implementation discovers that v(X) is a rhombus, it can immediately check to see whether it’s a 
rectangle (and hence a square) too, without having to visit any additional nodes.   

Here then is a pseudocode algorithm (“TEST_S”) that embodies the foregoing ideas and 
can be used to test whether some specified value v of some known type T is of some specified 
type S.  Note in particular that S isn’t necessarily a subtype of T (observe in Fig. 13.1 that neither 
of RECTANGLE and RHOMBUS is a subtype of the other).  Nor does the algorithm rely on the 
disjointness assumption holding, so it works for multiple as well as for single inheritance.   

 
OPERATOR TEST_S ( v value , T type , S type ) RETURNS BOOLEAN ;  
   IF S = T THEN RETURN ( TRUE ) ;  
   ELSE BEGIN ;  
           let T′ be some immediate subtype of T  
                     that’s also a supertype of S ;  
           let IC be the constraint on the arc from T to T′ ;  
           IF v satisfies IC  
              THEN RETURN ( TEST_S ( v , T′ , S ) ) ;  
              ELSE RETURN ( FALSE ) ;  
           END IF ;  
        END ;  
   END IF ;  
END OPERATOR ;  
 
This algorithm is certainly “computationally feasible,” and it should be clear that it doesn’t 

impose any intolerable overhead.  Of course, we do have to consider how often it’s invoked; 
could it be that it’s invoked so frequently that those invocations in themselves constitute an 
excessive burden?  In order to examine this question, we first need to pin down the contexts in 
which such invocations occur.  Careful examination of the Manifesto model shows there are 
precisely three such contexts:   

 
1. TREAT:  The expression TREAT_AS_S (X), where S is a proper subtype of DT(X), is 

evaluated by raising a type error if TEST_S (X, DT(X), S) returns FALSE.   
 

2. Type testing:  The expression IS_S (X), where S is a proper subtype of DT(X), is logically 
equivalent to TEST_S (X, DT(X), S).   
 

3. Binding:  As explained under IM Prescription 17 in Chapter 11 (subsection “The Binding 
Process”), (a) operators are allowed to have several implementation versions, each with a 
different version signature, and (b) the system is generally expected to bind a given 
invocation to what might be described as the “most appropriate” implementation version.24  
Let Op be an operator, then, and let OpI be some invocation of Op.  If the most specific 
types of the arguments are all known (which won’t be the case until run time, in general), 
then the binding problem for OpI reduces to one already solved in existing systems.  
However, determining those most specific types itself clearly does involve overhead, so 

                                                             
 
24 As also noted in Chapter 11, however, there’s usually no requirement in the model per se that it actually do so.   
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let’s focus for the moment on the corresponding declared types instead (which are known 
at compile time).  If any of those types is a proper subtype of that of the corresponding 
parameter and an implementation version specific to that proper subtype is available, then 
at least part of the binding process can be done at compile time.  At run time, the system 
will need to know which implementation versions are available to suit the declared types of 
the arguments.  And if there are several such, and if at least one has a parameter whose 
declared type is a proper subtype of that of the corresponding argument, then the system 
does have to do some type testing (i.e., it does need to invoke TEST_S at run time).  I’ll 
have more to say in connection with this point in the very last sentence of this section.   
 
Nothing else requires TEST_S to be invoked.  In particular, equality comparisons don’t; on 

the contrary, in order to evaluate the comparison X = Y, it’s sufficient (a) to determine the most 
specific common supertype of DT(X) and DT(Y) (which can be done at compile time) and then 
(b) to invoke the “=” operator for that common supertype.  (Actually, any common supertype 
that’s not a dummy type can be chosen for this purpose.)   

I offer one further argument to justify my claim that S by C doesn’t entail excessive 
overhead:  Whenever the assignment X := Y is executed, either explicitly or implicitly, the 
system knows the declared type of Y and can thus flag X internally as being of that type.  Such a 
flag could allow subsequent invocations of TEST_S on X to be performed on a smaller portion of 
the type graph, or even to be eliminated entirely in some cases.  In the same kind of way, 
whenever X is specified as an argument to some operator invocation that requires run time 
examination of the types of its arguments, the system can take the opportunity to “remember” 
any types it discovers.   

I turn now to the suggestion that the most specific type has to be (re)computed “after each 
operation that affects an object” (quoting Rumbaugh once again).  In fact, of course, we’ve 
already seen that there’s no need to compute the most specific type, as such, at all.  In particular, 
if variable V is updated by some invocation of some update operator, there’s no need to 
determine MST(V) after that invocation (not at the time of the invocation, at any rate).  All that’s 
needed is to be able to determine subsequently whether V is of some specified type—and I’ve 
already discussed that requirement at length.   

Finally, I return to the question of how often TEST_S needs to be invoked, in order to 
consider whether those invocations in themselves might constitute a serious performance burden.  
By way of a thought experiment, suppose the system doesn’t support inheritance at all (and so 
certainly doesn’t support S by C in particular), and suppose we have a user defined type 
POLYGON.  Then there are two possibilities:  (a) We might want, on certain occasions, to 
execute different code depending on whether a given polygon is in fact a rectangle or “just a 
polygon,” or (b) we might not.  For example, suppose we want to implement an AREA_OF 
operator for polygons.  Then we might or might not want to test whether the argument to a given 
AREA_OF invocation is in fact a rectangle, and use the simple “height times width” formula 
when it is.   
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a. Suppose we do want to perform such a test.  In effect, then, we’ll have to include our own 
implementation of the IS_RECTANGLE operator—in effect, our own implementation of 
TEST_RECTANGLE—inside the AREA_OF code.  Clearly, support for inheritance and 
S by C would make our task a little easier in this case, because there wouldn’t be any need 
for us to provide that implementation after all.  Moreover, the effect on overall system 
performance will be more or less the same either way; the main difference is just that the 
type testing will be done by the system instead of the application, if S by C is supported.   
 

b. By contrast, suppose we don’t want to perform such a test.  In that case, support for S by C 
(and TEST_S) would clearly impose no overhead at all, because the type testing simply 
wouldn’t be done.   

 
Analogous remarks apply to TREAT operations and the binding process (these being the 

other areas requiring invocation of TEST_S, if S by C is supported).  Let’s consider the binding 
process briefly.  To continue with the AREA_OF example, the question is:  Would we include 
code in the AREA_OF implementation, not only to test whether the argument to a given 
AREA_OF invocation is a rectangle, but also to use the simple “height times width” formula 
when it is?   

 
a. Suppose we would include such code.  In effect, then, we’ll be providing code for two 

separate versions of the AREA_OF operator bundled together inside the AREA_OF 
implementation, as well as code to perform the run time binding process.  In this case, 
direct support for inheritance with S by C would (again) surely make our task a little easier, 
and the effect on overall system performance will be more or less the same either way.   
 

b. By contrast, suppose we wouldn’t include such code.  In that case, support for S by C 
clearly imposes no overhead at all.   

 
In conclusion, it’s worth pointing out that (as the foregoing discussion indicates) what 

overhead S by C does impose is a function of the number of distinct implementation versions 
that have been defined, not a function of the number of subtypes as such.   
 
 
POSTSCRIPT: A NOTE ON FOREIGN KEYS  
 
In the object world, object IDs are used to identify and reference objects.  In the relational world, 
somewhat analogous functionality is provided by key and foreign key values.25  Now, in the 
body of the chapter, we saw that object IDs and a good model of inheritance are incompatible.  

                                                             
 
25 Note, however, that those key and foreign key values are used to identify tuples, not objects, and tuples and objects are most 
certainly not the same thing (logical difference!)—in part because objects are supposed to be “encapsulated” and tuples aren’t.   
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So why don’t those problems with object IDs occur in connection with key and foreign key 
values as well? Or do they occur?   

In fact they don’t.  By way of illustration, consider this example once again (the second of 
the examples discussed in the section “What about Objects?” earlier):   

 
VAR E  ELLIPSE ;  
VAR XC PTR_TO_CIRCLE ;  
 
E := CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) ;  
XC := TREAT_AS_PTR_TO_CIRCLE ( PTR_TO ( E ) ) ;  
THE_A ( E ) := LENGTH ( 6.0 ) ;  
 
Ignoring irrelevant aspects, a relational analog of this example might involve relation 

variables (i.e., relvars) that look something like this:   
 
VAR R1 BASE RELATION { K ELLIPSE , ... } KEY { K } ;  
 
VAR R2 BASE RELATION { K CIRCLE , ... }  KEY { ... }  
       FOREIGN KEY { K } REFERENCES R1 ;  
 
For simplicity, assume no referential actions—cascade update, etc.—are specified (this 

simplifying assumption doesn’t affect the argument in any material respect).  Assume also that 
both relvars are initially empty.   

Observe now that every value of K in R1 that matches some value of K in R2 must be of 
type CIRCLE, not just of type ELLIPSE.  So let’s insert a tuple into each of the two relvars:   

 
INSERT R1 RELATION { TUPLE  
     { K CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) } , ... } ;  
 
INSERT R2 RELATION { TUPLE  
     { K CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) } , ... } ;  
 
Finally, let’s try to update the tuple (forgive the sloppy manner of speaking here) in R1:   
 
UPDATE R1 WHERE K = CIRCLE ( LENGTH ( 5.0 ) , POINT ( 1.0 , 1.0 ) ) :  
        { THE_A ( K ) := LENGTH ( 6.0 ) } ;  
 
This UPDATE attempts to “G by C” the circle in the single tuple in R1 so that its most 

specific type becomes just ELLIPSE.  That attempt fails, however (and the overall UPDATE 
fails), on a referential integrity violation.  So we do get a run time error.  But the error in 
question is an integrity constraint violation, not a type error as such (integrity constraint 
violations are always possible, of course).  What we don’t get is a noncircular circle, nor a 
G by C failure as such.  Overall, in fact, we have a system in which noncircular circles can’t 
occur, type constraints can be supported, and in particular S by C and G by C can be supported 
too.   
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Part III of this book consists of three chapters.  It revisits the concepts introduced in Part II for 
scalar types and single inheritance and considers what happens to those concepts under multiple 
inheritance (albeit still for scalar types only).   
 
 
 
 



 



  

	

Chapter  14 
 
 

A n   O v e r v i e w   o f 
 
 

M u l t i p l e   I n h e r i t a n c e 
 
 

[The] insane root  
That takes the reason prisoner  

—William Shakespeare: 
Macbeth (1606) 

 
 

This chapter and the next two explain what happens to our inheritance model when multiple 
inheritance is taken into account.  In fact, it turns out that IM Prescriptions 1-20 as defined and 
discussed in Part II need no revision or reformulation at all, although some of them do have 
implications that aren’t always immediately obvious, and one in particular—number 8, on 
common subtypes and supertypes—needs especially careful discussion.  I’ll deal with that one in 
the next chapter.  In this chapter, by contrast, I just want to lay some general groundwork.   

As you know, single inheritance means every proper subtype has exactly one immediate 
supertype, from which it inherits operators and constraints; by contrast, multiple inheritance 
means a proper subtype can have several immediate supertypes, and it inherits operators and 
constraints from all of them.  Fig. 14.1, a repeat of Fig. 13.1 from Chapter 13, shows a simple 
example.  Note in particular that type SQUARE in that figure has two immediate supertypes, and 
hence that the example is indeed an example of multiple inheritance as such.   
 

            ┌───────────────┐ 
            │ PARALLELOGRAM │ 
            └───────┬───────┘ 
       ┌────────────┴────────────┐ 
┌──────▼──────┐           ┌──────▼──────┐ 
│  RECTANGLE  │           │   RHOMBUS   │ 
└──────┬──────┘           └──────┬──────┘ 
       └────────────┬────────────┘ 
            ┌───────▼───────┐ 
            │    SQUARE     │ 
            └───────────────┘ 
 
Fig. 14.1 (same as Fig. 13.1): Example of a type graph  
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Fig. 14.1 will serve as the basis for discussions and explanations throughout this part of the 
book.  First, however, I need to make a few further preliminary remarks:   

 
! To repeat something I said in Chapter 3, multiple inheritance support isn’t just desirable, 

it’s logically required.  Other writers agree with this position, too.  For example:1   
 
Most modern ... systems allow [multiple inheritance] ... A generally accepted view is that a modern 
... language should support [multiple inheritance], despite the fact that [it] introduces many 
conceptual and technical intricacies.   
 
We’ll be taking a look at some of those “conceptual and technical intricacies” in this part of 
the book (also in the next, Part IV).   
 

! For simplicity, throughout this part of the book (as in Part II) I’ll take the unqualified terms 
type, subtype, and supertype to refer to scalar types, subtypes, and supertypes specifically; 
the unqualified terms value, variable, (read-only) operator, expression, and result to refer 
to scalar values, variables, operators, expressions, and results specifically; and the 
unqualified term constraint to refer to a type constraint specifically (barring explicit 
statements to the contrary in every case).   

 
! I’ll continue to assume that all of the types under discussion are members of some given set 

of available types GSAT, and that the root and leaf type concepts in particular are to be 
understood in terms of that set.   

 
! Finally, I’ll continue to use the symbols T and T′ to refer generically to a pair of types such 

that T′ is a subtype of T—equivalently, such that T is a supertype of T′.   
 
 
THE RUNNING EXAMPLE  
 
Like the running example in Part II of this book, the example of Fig. 14.1 involves a set of 
geometric types.  The types in question are PARALLELOGRAM, RECTANGLE, RHOMBUS, 
and SQUARE, where, as the figure shows, PARALLELOGRAM is a root type; SQUARE is a 
leaf type; and SQUARE has two immediate supertypes, RECTANGLE and RHOMBUS, each of 
which has PARALLELOGRAM as its sole immediate supertype.   

As the caption indicates, the structure in Fig. 14.1 is actually an example of a type graph.  
Of course, type graphs, like type hierarchies before them, aren’t part of our inheritance model as 
such—they’re merely an intuitively convenient way of depicting subtype / supertype 

                                                             
 
1 The quote is from “On the Notion of Inheritance,” by Antero Taivalsaari (ACM Comp. Surv. 28, No. 3, September 1996).   
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relationships, which are.  And the following observations should suffice to show that the 
relationships depicted in Fig. 14.1 in particular do make good intuitive sense:   

 
! Every parallelogram has a “long” diagonal of length ld and a “short” one of length sd, 

where ld ≥ sd (and those diagonals intersect at the parallelogram’s center and bisect each 
other).   

 
! Every parallelogram also has two “long” sides of length ls and two “short” ones of length 

ss, where ls ≥ ss (and the long sides are opposite each other and parallel, and so are the 
short sides).   

 
! A rectangle is a parallelogram for which ld = sd.  Unlike parallelograms in general, every 

rectangle has a unique circumscribed circle (i.e., a circle that passes through each of that 
rectangle’s four vertices); hence, every rectangle has a property that’s unique to those 
parallelograms that happen to be rectangles, viz., that circumscribed circle.  Of course, it 
also has a unique diagonal length, which parallelograms in general don’t have.   

 
! A rhombus is a parallelogram for which ls = ss.2  Unlike parallelograms in general, every 

rhombus has a unique inscribed circle (i.e., a circle that touches each of that rhombus’s four 
sides); hence, every rhombus has a property that’s unique to those parallelograms that 
happen to be rhombi, viz., that inscribed circle.  Of course, it also has a unique side length, 
which parallelograms in general don’t have.   

 
! A square is a parallelogram that’s both a rectangle and a rhombus.3  Unlike rectangles and 

rhombi in general, every square has a unique associated annulus that’s defined by the 
difference between the corresponding circumscribed and inscribed circles; hence, every 
square has a property that’s unique to those parallelograms that happen to be both 
rectangles and rhombi, viz., that annulus.  Moreover, every square has both a unique side 
length, which rectangles in general don’t have, and a unique diagonal length, which rhombi 
in general don’t have.   

 
 

                                                             
 
2 I note in passing that a parallelogram that’s not a rhombus is sometimes called a rhomboid—a rather unfortunate term, perhaps, 
given that one of the dictionary definitions of rhomboid is “like a rhombus”!   
 
3 Note in particular, therefore, that the disjointness assumption doesn’t hold—types RECTANGLE and RHOMBUS overlap, yet 
neither is a subtype of the other.   
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POSSIBLE REPRESENTATIONS  
 
This section has little or nothing to do with type inheritance as such—it has to do with with 
issues that are specific to the choice of running example—but I think it’s necessary.  At least it 
gives some idea of the kind of thing a type designer might need to give careful consideration to in 
practice.   
 
It’s instructive to consider the question of what possreps we might want to define in the running 
example.  First let’s consider the root type, type PARALLELOGRAM.  Let p be a parallelogram, 
with vertices (in clockwise sequence) A, B, C, D, and let the center of p be E, as illustrated in 
Fig. 14.2.   
 
                            A                                                              B 
 
 
 
 
          D                                                             C 
 

Fig. 14.2: Parallelogram p  
 

Now, it should be clear that there are many different ways of “possibly representing” p.4  
The first and most obvious one is surely just to use the four vertices A, B, C, and D.  Of course, 
it’s not the case that every set of four points defines a parallelogram, so we’ll need to impose 
some appropriate constraints on the points A, B, C, D.  There are several different ways to state 
those constraints, too.  For example, we might say that sides AB and DC must be of equal length 
and sides BC and AD must be of equal length also; alternatively, we might say that sides AB and 
DC must be parallel and sides BC and AD must be parallel also; and there are clearly other 
possibilities as well.  Note too that A, B, C, and D must all be distinct—in fact, no three of them 
can be collinear, which implies that they must all be distinct a fortiori.  (Exercise:  Check this 
latter claim!)  So here’s a first attempt at defining type PARALLELOGRAM:   

 
TYPE PARALLELOGRAM   /* first attempt */  
     POSSREP ( A POINT , B POINT , C POINT , D POINT )  
     CONSTRAINT NOT COLLINEAR ( A , B , C )  
            AND NOT COLLINEAR ( B , C , D )  
            AND NOT COLLINEAR ( C , D , A )  
            AND NOT COLLINEAR ( D , A , B )  
            AND DIST ( A , B ) = DIST ( D , C )  
            AND DIST ( B , C ) = DIST ( A , D ) ;  

                                                             
 
4 In contrast to type PLANE_FIGURE (the root type in the running example in Part II of this book), type PARALLELOGRAM 
is—in fact, must be, as we’ll see in Chapter 15—a regular type, not a dummy type, and so it certainly does need a possrep.  
(Actually, not only isn’t it a dummy type, it isn’t even a union type, because some parallelograms are neither rectangles nor 
rhombi.)   

                   E 
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I’m assuming here that:   

 
! COLLINEAR returns TRUE if and only if its three POINT arguments lie on a straight line.   
 
! DIST returns the distance between its two POINT arguments as a value of type LENGTH.   

 
However, there’s at least one problem with the A – B – C – D possrep, as you might have 

already realized: namely, that the vertices A, B, C, and D aren’t all independent of one another—
as soon as any three of them are pinned down, the fourth is fully determined.5  What’s more, 
using just three of the vertices, say A, B, and C, as a possrep would simplify the type constraint 
considerably:   

 
TYPE PARALLELOGRAM   /* second attempt */  
     POSSREP ( A POINT , B POINT , C POINT )  
     CONSTRAINT NOT COLLINEAR ( A , B , C ) ;  
 

Note in particular that we no longer need to say that AB and DC must be of equal length and that 
BC and AD must be of equal length as well.   

Of course, if we do go with a three-vertex possrep as just suggested, there’s the problem 
that there are four different vertex triples we could use, without there being any obvious reason 
to choose any particular triple over the other three.  There’s also the problem that whichever 
triple we do choose, the vertex left out will necessarily “look and feel” different from the other 
three; for example, if we choose the A – B – C triple, then THE_A, THE_B, and THE_C 
operators will “automatically” be defined, but a THE_D operator won’t be.  Partly for such 
reasons, let’s assume until further notice that we do go with the A – B – C – D possrep despite 
the redundancy, and let’s see what some of the implications of that decision might be.   

Note:  It’s worth mentioning that choosing the A – B – C – D possrep doesn’t violate the 
The Third Manifesto in any way; that is, the Manifesto book doesn’t actually require possrep 
components to be mutually independent, or in other words to be fully orthogonal to one another.  
However, the book does at least say that such orthogonality might be desirable, and the 
arguments in the subsection immediately following tend to support that position rather strongly.   
 
How to “Update a Parallelogram”  
 
Choosing the A – B – C – D possrep for type PARALLELOGRAM has the obvious advantage 
that all four operators THE_A, THE_B, THE_C, and THE_D are available for parallelograms 

                                                             
 
5 This statement is slightly oversimplified.  For example, if we’re given A, B, and C, and we also know that AC is a diagonal 
(equivalently, that A and C represent opposite vertices), then D is indeed fully determined, as can easily be seen from Fig. 14.1.  
But if AC is not a diagonal but a side, then either AB or BC could be a diagonal, and each of these possibilities corresponds to a 
different D (so given only A, B, and C, there are three different possible D’s altogether).  I’ll come back to such matters later; for 
now, please take it on trust that we can indeed use just three vertices as the basis for a possrep if we want to.   
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(and hence for rectangles, rhombi, and squares as well).  But what about the corresponding 
pseudovariables?  Well, it should be obvious that any attempt to “update a parallelogram”—if 
you’ll forgive such a sloppy manner of speaking—via just one of the four pseudovariables will 
necessarily fail.  Why?  Because if it didn’t, the result wouldn’t be a parallelogram any longer 
(unless the update was a “no op,” I suppose).  On the face of it, then, any such updating would 
seem to require some kind of multiple assignment.6   

Let’s consider an example.  To be specific, let P be a variable of declared type 
PARALLELOGRAM; let p be a value of most specific type PARALLELOGRAM;7 and let p be 
assigned to P.  Now suppose we want to update P in such a way that, after the update, P contains 
a parallelogram obtained from p by extending side AB by one unit of length at the “B” end and 
simultaneously extending side DC by one unit of length at the “C” end (thereby ensuring that the 
result is still a parallelogram as such).  So we might try a multiple assignment looking something 
like this:   

 
THE_B ( P ) := SHIFT ( THE_B ( P ) ) ,     /* warning -   */  
THE_C ( P ) := SHIFT ( THE_C ( P ) ) ;     /* invalid !!! */  
 
I’m assuming for the sake of the example that SHIFT is a read-only operator that does 

whatever’s necessary to “shift” its point argument as required (or, rather, to return the point that 
marks the position that would be reached if its point argument had been so shifted).  Note:  
Further details of SHIFT as such—for example, a parameter (presumably needed in practice) to 
specify the direction of shifting—are irrelevant to the present discussion, and I’ll ignore them to 
avoid undesirable distractions.   

Of course, the individual assignments in the foregoing multiple assignment both have the 
same target variable, viz., P.  According to the discussion of such matters in Chapter 2, therefore, 
the assignment overall is shorthand for the following:   
 

P :=  
WITH ( P := PARALLELOGRAM ( THE_A ( P ) , SHIFT ( THE_B ( P ) ) ,  
                            THE_C ( P ) , THE_D ( P ) ) ) :  
            PARALLELOGRAM ( THE_A ( P ) , THE_B ( P ) ) ,  
                            SHIFT ( THE_C ( P ) ) , THE_D ( P ) ) ;  

 
But now there’s another problem!  Here again, but deliberately reformatted, is the first of 

the two foregoing PARALLELOGRAM selector invocations (i.e., the one inside the WITH 
specification):   

 

                                                             
 
6 Refer to Chapter 2 if you need to refresh your memory regarding the concept of multiple assignment.   
 
7 I assume here and elsewhere in this chapter that it’s still legitimate to talk about “the”—i.e., the unique—most specific type of 
a value, even in the multiple inheritance context.  I’ll show in the next chapter that such an assumption is justified (at least in the 
case of scalar types, which is what we’re talking about here).   
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PARALLELOGRAM ( THE_A ( P ) ,  
                SHIFT ( THE_B ( P ) ) ,  
                THE_C ( P ) ,  
                THE_D ( P ) )  
 

And this invocation will clearly fail—because if it didn’t, whatever it returned certainly wouldn’t 
be a parallelogram, because it would violate the constraint on parallelograms that sides AB and 
DC are supposed to be of equal length.8   

In order to get around this problem, what we need to do is perform the entire update en 
bloc, using a single assignment and an explicit selector invocation instead of a multiple 
assignment and pseudovariables:   

 
P := PARALLELOGRAM ( THE_A ( P ) , SHIFT ( THE_B ( P ) ) ,  
                     SHIFT ( THE_C ( P ) ) , THE_D ( P ) ) ;  

 
What this example shows, in other words, is that if we do go for the A – B – C – D possrep, 

then we probably won’t be able to make much use of THE_A etc. as pseudovariables at all!—
which does tend to suggest that choosing such a possrep isn’t a very good idea.  In other words, 
it probably is a good idea after all to choose a possrep in which the components are all 
orthogonal, even though the Manifesto doesn’t actually require us to do so.  For example, if we 
choose the A – B – C possrep, we can at least still use THE_A, THE_B, and THE_C as 
pseudovariables,9 even if we no longer have THE_D available.  From this point forward, 
therefore, I’ll assume just to be definite that the A – B – C possrep is the one to go for.   
 
Resolving Ambiguities  
 
Even if we agree to use the A – B – C possrep, however, there’s still another problem: namely, 
which vertex is which?  Let me elaborate.  Let i, j, and k be any three noncollinear points.  At 
first blush, then, it might appear that any permutation of i, j, and k could be used as the A, B, and 
C arguments to an invocation of the PARALLELOGRAM selector, and the result produced 
would be the same parallelogram—call it p—in every case.  But then what would the value of, 
say, THE_A(p) be?  What this thought experiment shows is that choosing A – B – C as a possrep 
is insufficient by itself; we need a way of saying which of A, B, and C is which.10   

Well, actually the foregoing paragraph doesn’t quite state the problem accurately (nor is the 
problem quite as bad as that paragraph might suggest).  Whichever three vertices we choose, it 
                                                             
 
8 Recall from Chapter 2 that type constraints are checked on selector invocations.  (Indeed, they must be; to repeat from that 
chapter, we can never tolerate an expression that’s supposed to denote a value of some type T but in fact doesn’t—even if we’re 
immediately going to go on and remedy the situation, as it were, as indeed we are in the case at hand.  As Chapter 2 also says, “a 
value of type T that’s not a value of type T” is a contradiction in terms.)   
 
9 Of course, use of these pseudovariables will still be subject to the pertinent type constraint (i.e., updating via any of them must 
be such as to ensure that the points A, B, C remain noncollinear).   
 
10 The situation here is reminiscent of the one discussed in connection with type RECTANGLE in the answer to Exercise 3.10 in 
Chapter 3.   
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must be the case that two of them are opposite one another.  To be definite, let’s agree that A and 
C are the opposite ones—so AC is a diagonal and not a side—and hence that B is the odd one 
out, as it were; in other words, let’s require that the argument corresponding to parameter B 
always be that “odd one out.”  So now we need to find a way of distinguishing between the A 
and C vertices.  The following will do the trick.  Let V1 and V2 be the A and C vertices (not 
necessarily in that order), and let their cartesian coordinates be (x1,y1) and (x2,y2), respectively.  
Then:   

 
! If x1 = x2, then let A be that one of V1 and V2 with the smaller y coordinate.   
 
! Otherwise, let A be that one of V1 and V2 with the smaller x coordinate.   
 

Of course, all I’ve done here is define a simple ordering according to which, given any two 
distinct points, one of those points is first with respect to that ordering and the other is second.   

 
Aside:		Another	and	possibly	slightly	better	solution	would	be	to	use	a	possrep	consisting	
not	of	the	three	vertices	A,	B,	and	C	as	such	but	rather	just	of	vertex	B	together	with	a	line	
segment	representing	the	diagonal	AC.		Recall	from	Chapter	2	that	line	segments	are	
defined	to	have	a	specific	begin	point	and	specific	end	point,	and	thus	have	a	direction	to	
them;	so,	to	say	that	diagonal	AC	is	the	line	segment	from	A	to	C	(rather	than	from	C	to	A)	
is	to	say	that	A	is	the	begin	point	and	C	is	the	end	point	with	respect	to	that	diagonal,	and	
all	ambiguities	are	thereby	removed.		That	said,	however,	for	definiteness	I’ll	stay	with	the	
A	–	B	–	C	possrep	as	previously	described.		End	of	aside.			
 
But we’re still not done!—we’ve pinned down A and C precisely, but there are still two 

choices for B, one on either side of the AC diagonal.  So here I’ll appeal to the mathematical 
result that says that the point with cartesian coordinates (x,y) is on one side of diagonal AC if it 
makes the expression (x2-x1)*(y-y1) - (y2-y1)*(x-x1) positive and on the other side if it makes 
that same expression negative.  Let’s take B to be the vertex that makes it positive.  Then the 
final version of the PARALLELOGRAM type definition looks like this:   

 
TYPE PARALLELOGRAM   /* third and final attempt */  
     POSSREP ( A POINT , B POINT , C POINT )  
     CONSTRAINT NOT COLLINEAR ( A , B , C )  
            AND WITH ( X1 := THE_X ( A ) , Y1 := THE_Y ( A ) ,  
                       X  := THE_X ( B ) , Y  := THE_Y ( B ) ,  
                       X2 := THE_X ( A ) , Y2 := THE_Y ( C ) ) :  
                IF X1 = X2 THEN Y1 < Y2 ELSE X1 < X2 END IF  
                AND ( X2 – X1 ) * ( Y – Y1 ) > ( Y2 – Y1 ) * ( X – X1 ) ;  
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More Possreps  
 
I said earlier that there were many different ways of possibly representing the parallelogram p 
from Fig. 14.2.  I’ve considered a couple in some detail, but here in outline are several more:   

 
! We could use any two adjacent vertices (A and B, say) and the center E.  There are four 

possible choices for the pair of adjacent vertices.   
 
! We could use any two adjacent sides (AB and BC, say).  There are four possible choices for 

the pair of adjacent sides.   
 
! We could use a pair of opposite sides (AB and DC, say).  There are two choices here.   
 
! We could use the diagonals AC and BD.   
 
! We could use a pair of adjacent half-diagonals (EA and EB, say).  Four choices here.   
 
! We could use one vertex, the interior angle at that vertex, and the lengths of the sides that 

meet at that vertex (for example, the point A, the angle DAB, and the lengths of sides AB 
and AD).  Four choices.   

 
And so on, probably.  I’ll leave it as an exercise (if you’re interested) to think about what type 
constraints would be required in each of the foregoing cases.   
 
 
POSSIBLE REPRESENTATIONS CONTINUED  
 
So much for type PARALLELOGRAM; what about the other three types in Fig. 14.1?  Given 
our choice of an A – B – C possrep for type PARALLELOGRAM, the obvious possrep for type 
RECTANGLE—at least, so it seems to me—is one that involves those same three vertices plus 
an additional constraint.  That additional constraint in turn can be specified in several different 
ways; one simple one is just to say that the diagonals must be of equal length.  So here’s a 
plausible type definition:   

 
TYPE RECTANGLE  
     IS { PARALLELOGRAM  
          CONSTRAINT LD ( PARALLELOGRAM ) = SD ( PARALLELOGRAM )  
          POSSREP ( A = THE_A ( PARALLELOGRAM ) ,  
                    B = THE_B ( PARALLELOGRAM ) ,  
                    C = THE_C ( PARALLELOGRAM ) )  
          NOT { PARALLELOGRAM ( POINT ( 0.0 , 2.0 ) ,  
                                POINT ( 4.0 , 2.0 ) ,  
                                POINT ( 3.0 , 0.0 ) ) } } ;  
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I’ve assumed the availability of operators LD and SD that return the length of the long 
diagonal and that of the short diagonal, respectively, of a given parallelogram (see the section 
“Operators,” later).  The purpose of the NOT specification is to show that there’s at least one 
value that’s a parallelogram and not a rectangle, thereby ensuring that types RECTANGLE and 
PARALLELOGRAM are in conformance with the requirement—see IM Prescription 5—that, 
for scalar types at least, proper subtypes shall be proper subsets.   

 
Aside:		The	fact	that	the	declared	possreps	for	type	RECTANGLE	and	its	immediate	
supertype	PARALLELOGRAM	are	identical11	does	have	one	small	consequence	that’s	
worth	spelling	out	explicitly.		By	way	of	example,	consider	the	(read-only)	operator	THE_A,	
which	applies	to	values	of	type	PARALLELOGRAM	because	one	of	the	components	of	the	
sole	possrep	for	that	type	has	a	component	called	A.		Normally,	then,	that	same	operator	
would	apply	to	values	of	type	RECTANGLE	as	well,	thanks	to	inheritance.		In	fact,	however,	
we’ve	effectively	overridden	that	operator	by	specifying	a	possrep	for	type	RECTANGLE	
that	also	has	a	component	called	A.		Of	course,	we’ve	also	specified	that	this	latter	
component	is	equal	to	“THE_A	(PARALLELOGRAM),”	so	the	two	THE_A	operators	are	
effectively	one	and	the	same	anyway.		End	of	aside.			
 
Next, type RHOMBUS.  Here the obvious possrep involves the three vertices A, B, and C 

once again, plus a constraint to say that the sides must all be of the same length.  So we have:   
 
TYPE RHOMBUS  
     IS { PARALLELOGRAM  
          CONSTRAINT LS ( PARALLELOGRAM ) = SS ( PARALLELOGRAM )  
          POSSREP ( A = THE_A ( PARALLELOGRAM ) ,  
                    B = THE_B ( PARALLELOGRAM ) ,  
                    C = THE_C ( PARALLELOGRAM ) )  
          NOT { PARALLELOGRAM ( POINT ( 0.0 , 2.0 ) ,  
                                POINT ( 4.0 , 2.0 ) ,  
                                POINT ( 4.0 , 0.0 ) ) } } ;  

 
I’ve assumed the availability of operators LS and SS that return the length of the long side 

and the short side, respectively, of a given parallelogram (again see the section “Operators,” 
later).   

Finally, type SQUARE.  Given that any particular square is both a rectangle and a rhombus 
(and therefore satisfies the constraints that the diagonals are of equal length and the sides are all 
of equal length as well),12 two opposite vertices are sufficient to determine the square in question 
uniquely.  Hence:   

                                                             
 
11 Indeed, the type definitions in this section all lend weight to the suggestion from Chapter 3 (section “The Running Example”) 
to the effect that if T′ is an immediate subtype of T, then it might be convenient to have some syntactic shorthand for defining a 
possrep for T′ that’s similar, or even identical, to some possrep for T.   
 
12 In fact, type SQUARE is the intersection type for types RECTANGLE and RHOMBUS (see Chapter 15).   
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TYPE SQUARE  
     IS { RECTANGLE , RHOMBUS  
          POSSREP ( A = THE_A ( RECTANGLE ) ,  
                    C = THE_C ( RECTANGLE ) )  
          NOT { RECTANGLE ( POINT ( 0.0 , 2.0 ) ,  
                            POINT ( 4.0 , 2.0 ) ,  
                            POINT ( 4.0 , 0.0 ) ) ,  
                RHOMBUS   ( POINT ( 3.0 , 4.0 ) ,  
                            POINT ( 8.0 , 4.0 ) ,  
                            POINT ( 5.0 , 0.0 ) ) } } ;  
 
Points arising:   
 

! The specialization constraint here says a given value s is of type SQUARE if and only if 
IS_RECTANGLE (s) and IS_RHOMBUS (s) both evaluate to TRUE.  No additional 
CONSTRAINT specification is stated, or indeed allowed.  Note:  Such an additional 
specification is allowed—in fact it’s required—if and only if (a) the subtype being defined 
has exactly one immediate supertype (which is always the case with single inheritance, of 
course) and (b) that supertype is a regular type, not a dummy type.   

 
! Note that the possrep for type SQUARE is defined in terms of the possrep for its immediate 

supertype RECTANGLE.  However, it could equally well have been defined in terms of 
the possrep for its immediate supertype RHOMBUS instead—it would have made no 
difference.  (The slight degree of arbitrariness involved in such cases might be considered a 
little unsatisfactory.  Perhaps more study is required.)   

 
! Following on from the previous point, however, I now observe that the <is def>  
 

IS { RECTANGLE , RHOMBUS }  
 
—irrelevant details omitted for simplicity—can be regarded as shorthand for either or 
both13 of the following:   

 
IS_RECTANGLE ( s ) AND LS ( s ) = SS ( s )  
 
IS_RHOMBUS   ( s ) AND LD ( s ) = SD ( s )  
 
(where s denotes an arbitrary value of the type being defined, viz., type SQUARE).  In 
other words, the specified <is def> does conform, albeit implicitly, to that part of IM 
Prescription 10 that requires the definition of a type such as SQUARE to include an 
appropriate specialization constraint for each of the type in question’s immediate 
supertypes.   

                                                             
 
13 By “both” here, I mean the logical AND, of course.   
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! Finally, note the NOT specification, which guarantees that the set of values constituting 

type SQUARE is a proper subset of the set of values constituting type RECTANGLE and a 
proper subset of the set of values constituting type RHOMBUS.   

 
 
OPERATORS  
 
In this section I show definitions (some just in outline) for a set of operators that would surely 
prove useful in practice in connection with the running example.  Note that several of these 
definitions make use of type LINESEG (“line segment”), which was defined in Chapter 2 as 
follows:   

 
TYPE LINESEG POSSREP ( BEGIN POINT , END POINT ) ;  
 
Now to the operators as such.  The first few just return the sides of a parallelogram as line 

segments (note that, e.g., AB and BA are the same side but distinct line segments):   
 
OPERATOR AB ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( THE_A ( P ) , THE_B ( P ) ) ) ;  
END OPERATOR ;  
 
OPERATOR BA ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( THE_B ( P ) , THE_A ( P ) ) ) ;  
END OPERATOR ;  
 
Similarly for operators BC and CB, of course (I’ll skip the details).  But CD and DC, and 

AD and DA, all involve vertex D, and of course we don’t have a THE_D operator for type 
PARALLELOGRAM.  Now, we can define an operator that provides the functionality—at least 
the read-only functionality—of such a hypothetical “THE_D” operator, but I don’t think it would 
be a good idea to call it THE_D as such.  Let’s call it DVX instead (for “D vertex”):   

 
OPERATOR DVX ( P PARALLELOGRAM ) RETURNS POINT ;  
   RETURN ( some expression that computes the location of vertex D ) ;  
END OPERATOR ;  
 
Now I can define CD and DC:   
 
OPERATOR CD ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( THE_C ( P ) , DVX ( P ) ) ) ;  
END OPERATOR ;  
 
OPERATOR DC ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( DVX ( P ) , THE_C ( P ) ) ) ;  
END OPERATOR ;  
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And similarly for AD and DA, of course (again I’ll skip the details).   
Now let’s do for the diagonals the same kind of thing we’ve just done for the sides (i.e., 

define operators that return the corresponding line segments):   
 
OPERATOR AC ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( THE_A ( P ) , THE_C ( P ) ) ) ;  
END OPERATOR ;  
 
OPERATOR CA ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( THE_C ( P ) , THE_A ( P ) ) ) ;  
END OPERATOR ;  
 
OPERATOR BD ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( THE_B ( P ) , DVX ( P ) ) ) ;  
END OPERATOR ;  
 
OPERATOR DB ( P PARALLELOGRAM ) RETURNS LINESEG ;  
   RETURN ( LINESEG ( DVX ( P ) , THE_B ( P ) ) ) ;  
END OPERATOR ;  
 
Now, we’re probably going to need to work with the actual lengths of these various sides 

and diagonals from time to time.  To that end, let me define an auxiliary operator (LEN) that 
returns the length of an arbitrary line segment:   

 
OPERATOR LEN ( LSG LINESEG ) RETURNS LENGTH ;  
   RETURN ( DIST ( THE_BEGIN ( LSG ) , THE_END ( LSG ) ) ) ;  
END OPERATOR ;  
 
Hence:   
 
OPERATOR LS ( P PARALLELOGRAM ) RETURNS LENGTH ;  
   /* “length of long side of” */  
   RETURN ( MAX { LEN ( AB ( P ) ) , LEN ( BC ( P ) ) } ) ;  
END OPERATOR ;  
 
OPERATOR SS ( P PARALLELOGRAM ) RETURNS LENGTH ;  
   /* “length of short side of” */  
   RETURN ( MIN { LEN ( AB ( P ) ) , LEN ( BC ( P ) ) } ) ;  
END OPERATOR ;  
 
OPERATOR LD ( P PARALLELOGRAM ) RETURNS LENGTH ;  
   /* “length of long diagonal of” */  
   RETURN ( MAX { LEN ( AC ( P ) ) , LEN ( BD ( P ) ) } ) ;  
END OPERATOR ;  
 
OPERATOR SD ( P PARALLELOGRAM ) RETURNS LENGTH ;  
   /* “length of short diagonal of” */  
   RETURN ( MIN { LEN ( AC ( P ) ) , LEN ( BD ( P ) ) } ) ;  
END OPERATOR ;  
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Next I’ll define some operators to return the interior angles at the vertices of a given 
parallelogram:   

 
OPERATOR DAB ( P PARALLELOGRAM ) SYNONYMS { BAD , BCD , DCB }  
   RETURNS ANGLE ;  
   RETURN ( WITH LAB := LEN ( AB ( P ) ) , 
                 LAD := LEN ( AD ( P ) ) ,  
                 LDB := LEN ( DB ( P ) ) ) :  
      ARCCOS ( ( LAB ^ 2 + LAD ^ 2 - LDB ^ 2 ) / ( 2 * LAB * LAD ) ) ;  
END OPERATOR ;  
 
Operator DAB returns the interior angle at vertex A.  Note the SYNONYMS specification, 

which defines some alternative names for that same operator.  (More precisely, BAD really is 
that same operator; BCD and DCB ought by rights to return the interior angle at vertex C, not A, 
but of course the interior angles at C and A are equal.)  ABC is similar:   

 
OPERATOR ABC ( P PARALLELOGRAM ) SYNONYMS { CBA , ADC , CDA }  
   RETURNS ANGLE ;  
   RETURN ( WITH LBA := LEN ( BA ( P ) ) , 
                 LBC := LEN ( BC ( P ) ) ,  
                 LAC := LEN ( AC ( P ) ) ) :  
      ARCCOS ( ( LBA ^ 2 + LBC ^ 2 - LAC ^ 2 ) / ( 2 * LBA * LBC ) ) ;  
END OPERATOR ;  
 
A couple of obvious further operators:   
 
OPERATOR AREA_OF ( P PARALLELOGRAM ) RETURNS AREA ;  
   /* “area of” */  
   RETURN ( some expression that computes the area of P ) ;  
END OPERATOR ;  
 
OPERATOR CTR_OF ( P PARALLELOGRAM ) SYNONYMS { CTR } RETURNS POINT ;  
   /* “center of” */  
   RETURN ( some expression that computes the center E of P ) ;  
END OPERATOR ;  
 
All of the foregoing operators apply to parallelograms, and hence to rectangles and rhombi, 

and hence to squares as well (note in particular that type SQUARE inherits all of these operators 
from both of its immediate supertypes RECTANGLE and RHOMBUS, a point I’ll return to in 
the section “Two Remarks on Operator Inheritance,” later).  The following operators, by 
contrast, don’t apply to parallelograms in general:   

 
OPERATOR DIAG ( R RECTANGLE ) RETURNS LENGTH ;  
   /* “diagonal of” */  
   RETURN ( LD ( R ) ) ;  
END OPERATOR ;  
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OPERATOR SIDE ( R RHOMBUS ) RETURNS LENGTH ;  
   /* “side of” */  
   RETURN ( LS ( R ) ) ;  
END OPERATOR ;  
 
OPERATOR CIRCUM_CIRCLE ( R RECTANGLE ) RETURNS CIRCLE ;  
   /* “circumscribed circle of” */  
   RETURN ( some expression that computes the required circle ) ;  
END OPERATOR ;  
 
OPERATOR IN_CIRCLE ( R RHOMBUS ) RETURNS CIRCLE ;  
   /* “inscribed circle of” */  
   RETURN ( some expression that computes the required circle ) ;  
END OPERATOR ;  
 
OPERATOR ANNULUS ( S SQUARE ) RETURNS ANNULUS ;  
   /* “annulus of” */  
   RETURN ( some expression that computes the required annulus ) ;  
END OPERATOR ;  

 
 
TYPE GRAPHS  
 
In our running example, types RECTANGLE and RHOMBUS each have one immediate 
supertype, PARALLELOGRAM, and type SQUARE has two, RECTANGLE and RHOMBUS.  
The obvious question arises:  Could we additionally define PARALLELOGRAM as an 
immediate supertype of SQUARE?  In terms of Fig. 14.1, such a definition would involve an 
additional arc from type PARALLELOGRAM to type SQUARE (see Fig. 14.3).  So could we 
add such an arc?   
 

            ┌───────────────┐ 
            │ PARALLELOGRAM │ 
            └───────┬───────┘ 
       ┌────────────┼────────────┐ 
┌──────▼──────┐     │     ┌──────▼──────┐ 
│  RECTANGLE  │     │     │   RHOMBUS   │ 
└──────┬──────┘     │     └──────┬──────┘ 
       └────────┐   │   ┌────────┘ 
            ┌───▼───▼───▼───┐ 
            │    SQUARE     │ 
            └───────────────┘ 
 
Fig. 14.3 (modified version of Fig. 14.1): A graph that’s not a valid type graph  

 
Well, observe that if we did add that extra arc, we’d be in violation of IM Prescription 5.  

Paraphrasing considerably, that prescription says among other things that:   
 
! First, type T is an immediate supertype of type T′ if there’s just one path in the graph from 

T to T′ and that path contains no type that’s both a proper subtype of T and a proper 
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supertype of T′—so PARALLELOGRAM is definitely not an immediate supertype of 
SQUARE according to Fig. 14.3 (not according to Fig. 14.1 either, come to that).   

 
! Second, type T is a nonimmediate supertype of type T′ if every path in the graph from T 

to T′ contains at least one type that’s both a proper subtype of T and a proper supertype 
of T′ 14—so PARALLELOGRAM isn’t a nonimmediate subtype of SQUARE either, again 
according to Fig. 14.3 (though it is according to Fig. 14.1).   

 
! But, third, every proper supertype of type T′ is supposed to be either an immediate or a 

nonimmediate supertype of T′—and that’s why the prescription is violated, because 
PARALLELOGRAM, though clearly it is a supertype of SQUARE, is apparently neither 
an immediate one nor a nonimmediate one (once again, according to Fig. 14.3, that is).   

 
At the very least, then, we’d have to revise IM Prescription 5 if we wanted to permit that 

additional arc.  So do we want to permit it?   
We answer this question in the negative.  First, permitting such an arc doesn’t provide any 

additional functionality, because all of the operators and constraints that type SQUARE would 
then inherit “immediately” from type PARALLELOGRAM it already inherits anyway, 
transitively, via the intermediate types RECTANGLE and RHOMBUS.  Second, permitting such 
an extension to our understanding of the term immediate supertype certainly has the potential to 
complicate certain other concepts and definitions unduly.  We therefore reject such an extension.  
As already indicated, we don’t need to change our model in any way to achieve this result—IM 
Prescription 5 already takes care of matters for us.   

Now, multiple inheritance clearly implies that we can no longer talk about type hierarchies 
as such; instead, we need to introduce the more general concept of a type graph.  Here’s a 
definition:15   

 
Definition:  A type graph is a directed acyclic graph (TG, say), consisting of a finite set N 
of nodes and a finite set D of directed arcs that together satisfy the following properties:   
 
1. TG is empty if and only if N is empty (in which case D is necessarily empty too).   
 
2. Each node is given the name of a type.   
 

                                                             
 
14 In principle, this condition would be satisfied if there were no paths from T to T′ at all.  However, IM Prescription 5 guarantees 
that at least one such path does exist, because it requires T to be a proper supertype of T′.   
 
15 Of course, a type hierarchy is a special case of a type graph as here defined.   
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3. No two nodes have the same name.  Also, no node is named either T_alpha or 
T_omega for any possible type T; by convention, the types with these names—which 
are primarily conceptual in nature anyway—aren’t represented in the graph at all.16   

 
4. There’s an arc from node T to node T′ if and only if type T is an immediate supertype 

of type T′.   
 
5. If there’s an arc from node T to node T′, then node T′ isn’t reachable from node T via 

any other path, where (a) a path from node T to node T′ is a sequence of n arcs A1 
(from T to T1, say), A2 (from T1 to T2, say), ..., An (from T(n-1), say, to T′) such that 
n ≥ 0, and n = 0 implies T = T′ (i.e., there’s always a path from node T to itself); (b) a 
node T′ is reachable from a node T if and only if there’s a path from node T to node 
T′.   

 
6. If the graph includes any nodes at all, then—because it’s directed and acyclic—it 

necessarily contains at least one node that has no immediate supertype node.  Such a 
node is called a root node, and the type corresponding to that node is called a root 
type.   

 
7. If the graph includes any nodes at all, then—again because it’s directed and acyclic—

it necessarily contains at least one node that has no immediate subtype node.  Such a 
node is called a leaf node, and the type corresponding to that node is called a leaf 
type.   

 
8. If nodes T1 and T2 are distinct root nodes, then no node is reachable from both T1 

and T2.   
 
9. If nodes T1, T2, T′, and T′′ are such that there exist paths from both T1 and T2 to both 

T′ and T′′, then there must exist a node T that’s common to every such path.   
 
Explanation:   
 

! Points 1, 2, and 3 are self-explanatory, except for the remark concerning types T_alpha and 
T_omega.  Since this part of the book is concerned with scalar types only, the only 
“T_alpha and T_omega” types we need concern ourselves with for present purposes are the 
scalar types alpha and omega, respectively, and so point 3 reduces just to saying that alpha 
and omega aren’t represented in the graph.  The more general terms T_alpha and T_omega 
will be explained in Part IV of this book (see Chapter 19).   

                                                             
 
16 More generally, in the case of tuple and relation types, no type that has an attribute of some superroot or subleaf type—see the 
discussion of IM Prescription 26 in Chapter 19—is represented in the graph.   
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! Point 4 is also self-explanatory.  Point 5 reflects the fact that no type T can be both an 

immediate and a nonimmediate supertype of the same type T′.   
 
! Points 6 and 7 are obvious generalizations of the corresponding portions of the “type 

hierarchy” definition for the single inheritance case (see Chapter 3).  Note that a root type 
can be regarded as an entry point into the overall type graph.  Note too that we don’t 
assume that there’s exactly one root type.   

 
! Point 8 is discussed in the next section but one.   
 
! Finally, point 9 is discussed in the next chapter (see Exercise 15.5 in that chapter).   

 
Observe now that it follows from the foregoing definition that any given type graph TG can 

be divided into a set of disjoint partitions P1, P2, ..., Pr—a nonempty set, unless TG itself is 
empty—such that (a) each Pi (i = 1, 2, ..., r) contains exactly one root node and one or more leaf 
nodes, and (b) no type in Pi (i = 1, 2, ..., r) overlaps any type in Pj (j = 1, 2, ..., r; j ≠ i).  
Moreover, if Pi contains just one leaf node, then that partition forms a lattice, with least upper 
bound the pertinent root node and greatest lower bound that leaf node.  Note:  Refer to Chapter 5 
if you need to refresh your memory regarding the concept of lattices in general, and the concept 
of type lattices in particular.   

Of course, in this part of the book we’re concerned with scalar types only, in which case:   
 
! Even if Pi doesn’t contain just one leaf node, it can always be converted into a lattice by 

violating point 3 and introducing the minimal scalar type (viz., type omega).   
 
! However, the lattices in question aren’t type lattices as such—at least, not as this latter term 

is usually understood (again see Chapter 5)—because they don’t contain the maximal 
scalar type (viz., type alpha).   

 
! On the other hand, if again we violate point 3 by introducing both types alpha and omega, 

then the entire graph becomes a single type lattice, with alpha and omega as least upper 
bound and greatest lower bound, respectively.   

 
 
TWO REMARKS ON OPERATOR INHERITANCE  
 
Consider the read-only operator AREA_OF, which is defined for type PARALLELOGRAM and 
is inherited from that type by type RECTANGLE and also by type RHOMBUS.  As a 
consequence, type SQUARE inherits that operator from both of its immediate supertypes.  What 
are the implications of this state of affairs?   
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Well, if there’s an implementation version of AREA_OF that’s specific to squares, there’s 
no problem:  The invocation AREA_OF (s), where s is of most specific type SQUARE, will 
unambiguously refer to that particular version.  But if there’s no such specific version, then there 
are two possibilities:   

 
! Types RECTANGLE and RHOMBUS have no implementation versions of their own.  In 

this case, the PARALLELOGRAM version must necessarily be used, and again there’s 
no problem.   

 
! At least one of RECTANGLE and RHOMBUS does have an implementation version of its 

own.  For generality, in fact, we can assume they both do, because if either one doesn’t 
then the PARALLELOGRAM version will apply to that one anyway.   

 
Now there are two further possibilities:   

 
! If those two versions implement the same semantics—i.e., if the expression AREA_OF (s) 

gives the same result, no matter which version is invoked—then again there’s no problem.  
(No problem so far as the model’s concerned, that is.  However, whoever defines the 
invocation signature for AREA_OF corresponding to an argument of type SQUARE—see 
the discussion of IM Prescription 17 in Chapter 11—will certainly have to decide, and will 
have to specify at “operator definition time,” which of the two versions is the one to be 
invoked.  In practice, of course, such decisions will be guided by performance concerns or 
other such pragmatic considerations.  But these matters are of no concern to a user who just 
wants to obtain the area of some specific square.)   
 

! However, if the semantics of those two versions differ, then it matters very much which 
version is inherited by type SQUARE.  But now the situation is absurd!  To say that 
SQUARE is a subtype of both RECTANGLE and RHOMBUS is to say that any given 
square is both a rectangle and a rhombus.  But then to go on and say that the area of that 
square depends on whether we think of it as a rectangle or as a rhombus is surely nonsense.  
Thus, to repeat something I said at the end of the discussion of IM Prescription 17 in 
Chapter 11, we reject the suggestion that changing operator semantics can ever be a good 
idea; further, we define our model to say simply that if a change in semantics occurs, the 
implementation is in violation—i.e., it’s not an implementation of the model—and the 
implications are unpredictable.   

 
Now I turn to another issue, related to the previous one but different.  Suppose some 

read-only operator Op has been defined for rectangles and another operator with the same name 
Op has been defined for rhombi.  Suppose further that these operators aren’t inherited from 
parallelograms—i.e., there’s no operator called Op for type PARALLELOGRAM—and so the 
two operators named Op really are different operators (in other words, we’re talking about 
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overloading, not inclusion polymorphism).  Suppose further for simplicity that each of these 
operators takes just one parameter (of type RECTANGLE and type RHOMBUS, respectively).  
What do we do about the inheritance of Op by type SQUARE?   

On the face of it, there is a problem here:  By the very notion of type inheritance, both 
operators must indeed be inherited by type SQUARE, and it appears, therefore, that an 
invocation Op (s), where s is of declared type SQUARE, will be ambiguous.  Clearly, then, what 
we have to do is prevent such a situation from arising.  But that’s exactly what the following rule 
(part of IM Prescription 17) does for us:   

 
If two distinct operators (either both read-only or both update operators) have the same name and 
the same number n of parameters, then for some j (1 ≤ j ≤ n) the declared types of their jth 
parameters, as given by their respective specification signatures, shall be disjoint.   

 
In the example, the two operators do have the same name and the same number of 

parameters (viz., one).17  Moreover, their sole parameter has declared type RECTANGLE in the 
one case and RHOMBUS in the other, and these types aren’t disjoint.  The example thus clearly 
violates the foregoing rule.   

Note:  We wouldn’t expect that rule to cause any significant hardship in practice, because 
the system should be able to detect violations as soon as they occur (i.e., at “operator definition 
time” once again).   
 
 
IM PRESCRIPTIONS 1 - 7 REVISITED  
 
In Part II of this book I discussed IM Prescriptions 1-20 as they applied to scalar types and single 
inheritance.  Now we need to review those prescriptions to see what additional discussion, if any, 
is needed to cater for multiple inheritance (though still for scalar types only).  This section 
considers IM Prescriptions 1-7, which were originally discussed in Chapter 5.18  In fact, it’s 
mostly concerned with IM Prescription 7 in particular, since there really isn’t very much to say 
regarding IM Prescriptions 1-6.  But just for the record:   
 
! IM Prescription 1 (types are sets):  No further discussion needed.   
 
! IM Prescription 2 (subtypes are subsets):  No further discussion needed.   
 
! IM Prescription 3 (“subtype of” is reflexive):  No further discussion needed.   
 

                                                             
 
17 If they had the same name but different numbers of parameters, then they would certainly have different specification 
signatures and there wouldn’t be any ambiguity.   
 
18 Of the remainder, numbers 8 and 9 are discussed in Chapter 15 and the rest in Chapter 16.   
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! IM Prescription 4 (“subtype of” is transitive):  No further discussion needed.   
 
! IM Prescription 5 (proper and immediate subtypes and supertypes):  This prescription still 

applies 100 percent.  Note, however, that it does require among other things that if T and T′ 
are scalar types and T′ is a nonempty immediate subtype of T (and isn’t a root type), then 
the definition of T′ must be accompanied by a specification of an example value that’s of 
type T and not of type T′.  It follows that if (scalar, nonempty, nonroot) type T′ has n 
distinct immediate supertypes T1, T2, ..., Tn—and with multiple inheritance, n can be 
greater than one—then its definition must be accompanied by specifications of an example 
value that’s of type T1 and not of type T′, an example value that’s of type T2 and not of 
type T′, ..., and an example value that’s of type Tn and not of type T′.  For an illustration of 
this point, see the definition of type SQUARE earlier in this chapter.   

 
! IM Prescription 6 (scalar root and leaf types):  No further discussion needed.   

 
As for IM Prescription 7 (disjoint and overlapping types), here repeated from Chapter 5 is 

the text of that prescription:   
 

Types T1 and T2 shall be disjoint if and only if no value is of both type T1 and type T2.  Types T1 
and T2 shall overlap if and only if there exists at least one value that is common to both.  Distinct 
root types shall be disjoint.  If types T1 and T2 are distinct immediate subtypes of the same scalar 
type T, then there shall exist at least one value that is of type T1 and not of type T2.   

 
Now, with single inheritance, this prescription was tightly bound up with the disjointness 

assumption, which says that types T1 and T2 are disjoint if and only if neither is a subtype of the 
other.  With multiple inheritance, however, that assumption no longer holds.  For example, types 
RECTANGLE and RHOMBUS certainly aren’t disjoint, even though neither is a subtype of the 
other, because some rectangles aren’t rhombi and some rhombi aren’t rectangles.  Of course, 
those values that are both rectangles and rhombi are, precisely, squares; but until such time as we 
actually define type SQUARE, we still don’t have multiple inheritance as such.  Thus, in order to 
support multiple inheritance, it’s necessary but not sufficient that we relax the disjointness 
assumption.  (More precisely, if we relax it for leaf types only, we still don’t have multiple 
inheritance; if we relax it for nonleaf types, we do.)   

We don’t have to drop that assumption in its entirety, however, nor do we wish to.  Rather, 
what we do, in effect, is simplify it to say just that distinct root types must be disjoint—which is, 
of course, guaranteed by virtue of IM Prescription 7 anyway, but let’s take a closer look.   

First, you might recall the term least specific type, which was mentioned in a note attached 
to IM Prescription 8 and was briefly discussed in Chapter 6 (see also Exercise 3.5 in Chapter 3).  
One of the things that note said was that the least specific type for, or of, any given scalar value 
is unique.  In fact this point is surely obvious, but let me spell out the details:   
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Definition:  Let value v be of type T and not of any proper supertype of T; then T is the 
least specific type of v.  Note that T is necessarily a maximal type and is thus unique; 
hence, if v is a scalar value in particular, the least specific type of v is alpha.  Informally, 
however, least specific types are often defined to exclude the pertinent maximal type, thus:  
Let v be of type T and not of any proper supertype of T apart from the pertinent maximal 
type; then T—which is necessarily a root type—is the least specific type of v.19   
 
Note:  Throughout the rest of this book, I’ll use the term least specific type in this latter, 

informal sense (that is, I’ll take the least specific type of any given value to be a root type), 
barring explicit statements to the contrary.   

To see that least specific types must be unique, consider the example represented by the 
graph shown in Fig. 14.4 (note that I don’t refer to that graph as a type graph, because it isn’t 
one):   

 
┌─────────────┐           ┌─────────────┐ 
│  RECTANGLE  │           │   RHOMBUS   │ 
└──────┬──────┘           └──────┬──────┘ 
       └────────────┬────────────┘ 
            ┌───────▼───────┐ 
            │    SQUARE     │ 
            └───────────────┘ 
 
Fig. 14.4: Another graph that’s not a valid type graph  

 
As the figure suggests, no type PARALLELOGRAM has been defined.  Apparently, then, 

type SQUARE has two immediate supertypes, RECTANGLE and RHOMBUS, both of which 
are root types; thus, if v is a value of type SQUARE, it’s also a value of both of those root types.  
But such a state of affairs violates IM Prescription 7, which requires that distinct root types be 
disjoint; so we don’t allow it.   

Now, it should be obvious that the same simple analysis applies even if additional types 
appear in the graph between SQUARE and RECTANGLE and/or between SQUARE and 
RHOMBUS (i.e., if SQUARE is a proper subtype, but not necessarily an immediate subtype, of 
both RECTANGLE and RHOMBUS).  It follows that:   

 
a. The graph shown in Fig. 14.4 isn’t a valid type graph.   
 
b. More generally, no type can have two or more distinct root types as proper supertypes.   
 
c. Hence, the least specific type of any given value is unique, as previously stated.   
 

                                                             
 
19 This latter part of the definition (i.e., the informal part) relies, tacitly, on the assumption that v is scalar.  It’ll need some slight 
extension when we get to tuple and relation types (see the final paragraph of the section “Closing Remarks” in Chapter 18).   
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So now I’ve effectively explained point 8 of the definition of the type graph concept from a 
couple of sections back, which (as you’ll recall) reads as follows:   

 
 If nodes T1 and T2 are distinct root nodes, then no node is reachable from both T1 and T2.   

 
The reason is that if node T′ were reachable from both T1 and T2, then certain values of type T′ 
would be values of both type T1 and type T2 and would thus have two distinct least specific 
types.   

I turn now to the final sentence of IM Prescription 7:  If types T1 and T2 are distinct 
immediate subtypes of the same scalar type T, then there shall exist at least one value that is of 
type T1 and not of type T2.  Let’s agree to refer to the requirement articulated in this sentence as 
“the noninclusion requirement.”  Now, if the disjointness assumption holds, then T1 and T2 will 
be disjoint, and so the noninclusion requirement will necessarily be satisfied a fortiori.  But with 
multiple inheritance, of course, the disjointness assumption doesn’t hold, and so T1 and T2 can 
certainly overlap (think of RECTANGLE and RHOMBUS, for example).  But what we don’t 
want—as the name “the noninclusion requirement” is meant to suggest—is for every value of T1 
to be a value of T2 or the other way around; in other words, we don’t want |T1| to be included in 
|T2| or the other way around.  Why not?  Well:   

 
a. If |T1| = |T2|, then clearly T1 and T2 should be collapsed into a single type.   

 
b. If |T1| ⊂ |T2|, then clearly T1 should be a proper subtype of T2.   

 
Now, if T1 and T2 are immediate subtypes of type T and we believe they overlap, then IM 

Prescription 8 requires us to define their intersection type T′ (see Chapter 15); moreover, if T1 
and T2 are regular types, then (in accordance with IM Prescription 5) the definition of T′ will be 
accompanied by examples of (a) a value that’s of type T1 and not of type T′ and (b) a value that’s 
of type T2 and not of type T′.  But if |T1| ⊆ |T2|, then |T′| will be equal to |T1|, and so no value 
will exist that’s of type T1 and not of type T′, and the definition of T′ will therefore fail.  So the 
noninclusion requirement of that final sentence of IM Prescription 7 will necessarily be satisfied 
in this case.  However, if T1 and T2 do in fact overlap but we think they’re disjoint, then type T′ 
won’t be defined; as previously noted in Chapter 3, then, the resulting type schema will be in 
violation of the model, and the consequences will be unpredictable.  In particular, the 
noninclusion requirement might be violated in such a situation.   

By the way, it’s important to note that the noninclusion requirement has, and in fact 
implies, the following important generalization:  No two distinct types T1 and T2, neither of 
which is a subtype of the other, are such that |T1| ⊆ |T2| or the other way around.  In fact, this is 
easy to see.  Let the least specific types (i.e., the root types) corresponding to T1 and T2 be T1* 
and T2*, respectively.  Then:   
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! If T1* and T2* are distinct, they’re certainly disjoint, so T1 and T2 are disjoint too; hence, 
it’s definitely not the case that |T1| ⊆ |T2| or the other way around.   

 
! Otherwise, define type T to be the union of all proper supertypes of T1 and T2, all the way 

up to and including their common least specific type T* (which is the same as both T1* 
and T2* in this case).  Then T1 and T2 are distinct immediate subtypes of T, and the 
conditions of the noninclusion requirement apply.   

 
 
TYPE DEFINITIONS  
 
I’ll close this chapter by repeating for ease of reference the definitions I’ll be assuming from this 
point forward for types PARALLELOGRAM, RECTANGLE, RHOMBUS, and SQUARE.   

 
TYPE PARALLELOGRAM   /* third and final attempt */  
     POSSREP ( A POINT , B POINT , C POINT )  
     CONSTRAINT NOT COLLINEAR ( A , B , C )  
            AND WITH ( X1 := THE_X ( A ) , Y1 := THE_Y ( A ) ,  
                       X  := THE_X ( B ) , Y  := THE_Y ( B ) ,  
                       X2 := THE_X ( A ) , Y2 := THE_Y ( C ) ) :  
                IF X1 = X2 THEN Y1 < Y2 ELSE X1 < X2 END IF  
                AND ( X2 – X1 ) * ( Y – Y1 ) > ( Y2 – Y1 ) * ( X – X1 ) ;  
 
TYPE RECTANGLE  
     IS { PARALLELOGRAM  
          CONSTRAINT LD ( PARALLELOGRAM ) = SD ( PARALLELOGRAM )  
          POSSREP ( A = THE_A ( PARALLELOGRAM ) ,  
                    B = THE_B ( PARALLELOGRAM ) ,  
                    C = THE_C ( PARALLELOGRAM ) )  
          NOT { PARALLELOGRAM ( POINT ( 0.0 , 2.0 ) , 
                                POINT ( 4.0 , 2.0 ) ,  
                                POINT ( 3.0 , 0.0 ) ) } } ;  
 
TYPE RHOMBUS  
     IS { PARALLELOGRAM  
          CONSTRAINT LS ( PARALLELOGRAM ) = SS ( PARALLELOGRAM )  
          POSSREP ( A = THE_A ( PARALLELOGRAM ) ,  
                    B = THE_B ( PARALLELOGRAM ) ,  
                    C = THE_C ( PARALLELOGRAM ) )  
          NOT { PARALLELOGRAM ( POINT ( 0.0 , 2.0 ) ,  
                                POINT ( 4.0 , 2.0 ) ,  
                                POINT ( 4.0 , 0.0 ) ) } } ;  
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TYPE SQUARE  
     IS { RECTANGLE , RHOMBUS  
          POSSREP ( A = THE_A ( RECTANGLE ) ,  
                    C = THE_C ( RECTANGLE ) )  
          NOT { RECTANGLE ( POINT ( 0.0 , 2.0 ) ,  
                            POINT ( 4.0 , 2.0 ) ,  
                            POINT ( 4.0 , 0.0 ) ) ,  
                RHOMBUS   ( POINT ( 3.0 , 4.0 ) ,  
                            POINT ( 8.0 , 4.0 ) ,  
                            POINT ( 5.0 , 0.0 ) ) } } ;  

 
 
EXERCISES  
 
14.1  Consider the following table:   
 

┌──────┬───────┬───────┬───────┬────────┬───────────────┐ 
│ Case │ A     │ B     │ C     │ valid? │ MST           │ 
├══════┼───────┼───────┼───────┼────────┼───────────────┤ 
│  1   │ (0,0) │ (1,5) │ (4,0) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  2   │ (0,0) │ (2,3) │ (4,0) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  3   │ (0,0) │ (3,4) │ (8,0) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  4   │ (2,3) │ (0,0) │ (4,0) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  5   │ (2,4) │ (0,0) │ (2,6) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  6   │ (2,4) │ (0,0) │ (2,2) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  7   │ (0,0) │ (5,0) │ (5,3) │        │               │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  8   │ (0,0) │ (5,0) │ (5,5) │        │               │ 
└──────┴───────┴───────┴───────┴────────┴───────────────┘ 

 
The table is based on the type definitions from the section “Type Definitions” in the body 

of the chapter; it represents eight selector invocations (actually literals)—or would-be selector 
invocations or literals, perhaps—for type PARALLELOGRAM.  Which ones are valid and 
which not?  Also, for those that are valid, what’s the most specific type of the value returned?  
Note:  I haven’t bothered to show those selector invocations in full syntactic detail—I’ve just 
shown the arguments, in cartesian coordinate form, corresponding to vertices A, B, and C (and 
for simplicity I’ve used literals of type INTEGER, not RATIONAL, to denote the x and y 
coordinates of those arguments).   
 
14.2 Write some implementation code for operators AREA_OF, CTR_OF, CIRCUM_CIRCLE, 
IN_CIRCLE, and ANNULUS from the section “Operators” in the body of the chapter.   
 
14.3 A scalene triangle is a triangle with no two equal angles (equivalently, it’s one with no two 
equal sides).  A right triangle is a triangle one of whose angles is a right angle.  Obviously, some 
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scalene triangles are right triangles and some aren’t, and some right triangles are scalene and 
some aren’t.  Sketch a corresponding type graph.   
 
14.4 What possreps do you think might be reasonable for the various types involved in 
Exercise 14.3?  Note:  Don’t attempt to give formal Tutorial D type definitions—just state your 
thoughts in natural language prose.  For example, if you think the three vertices constitute a 
reasonable possrep for triangles, say just that.  Also, can you think of any alternative possreps?  
What operators do you think might be useful in connection with these types?   
 
 
ANSWERS		
	
14.1 ┌──────┬───────┬───────┬───────┬────────┬───────────────┐ 

│ Case │ A     │ B     │ C     │ valid? │ MST           │ 
├══════┼───────┼───────┼───────┼────────┼───────────────┤ 
│  1   │ (0,0) │ (1,5) │ (4,0) │ yes    │ PARALLELOGRAM │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  2   │ (0,0) │ (2,3) │ (4,0) │ yes    │ RHOMBUS       │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  3   │ (0,0) │ (3,4) │ (8,0) │ yes    │ RHOMBUS       │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  4   │ (2,3) │ (0,0) │ (4,0) │ no     │ n/a           │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  5   │ (2,4) │ (0,0) │ (2,6) │ yes    │ PARALLELOGRAM │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  6   │ (2,4) │ (0,0) │ (2,2) │ no     │ n/a           │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  7   │ (0,0) │ (5,0) │ (5,3) │ no     │ n/a           │ 
├──────┼───────┼───────┼───────┼────────┼───────────────┤ 
│  8   │ (0,0) │ (5,0) │ (5,5) │ yes    │ SQUARE        │ 
└──────┴───────┴───────┴───────┴────────┴───────────────┘ 

	
14.2	 Instead	of	showing	actual	code,	I	content	myself	with	giving	definitions	and	explanations	
that	will	enable	you	to	write	that	code	yourself	if	you	feel	motivated	to	do	so:			

	
!	 The	area	of	a	parallelogram	is	the	length	of	one	of	its	sides	multiplied	by	the	

perpendicular	distance	between	that	side	and	its	opposite	side.			
	

!	 The	center	of	a	parallelogram	is	the	point	at	which	its	diagonals	intersect.			
	

!	 Given	a	rectangle	r,	(a)	the	radius	of	the	circumscribed	circle	is	half	the	length	of	the	
diagonal	of	r,	and	(b)	its	center	is	the	center	of	r.			
	

!	 Given	a	rhombus	r,	(a)	the	radius	of	the	inscribed	circle	is	given	by	the	formula		
	

( ld * sd ) / ( 2 * SQRT ( ld ^ 2 + sd ^ 2 ) )  
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where	ld	and	sd	are	the	length	of	the	long	diagonal	of	r	and	the	length	of	the	short	
diagonal	of	r,	respectively,	and	(b)	its	center	is	the	center	of	r.			
	

!	 An	annulus	can	be	represented	by	a	pair	of	concentric	circles.			
	
14.3             ┌──────────────┐ 

            │   TRIANGLE   │ 
            └───────┬──────┘ 
       ┌────────────┴────────────┐ 
┌──────▼─────┐            ┌──────▼─────┐ 
│  SCALENE   │            │  RIGHT     │ 
│  TRIANGLE  │            │  TRIANGLE  │ 
└──────┬─────┘            └──────┬─────┘ 
       └────────────┬────────────┘ 
            ┌───────▼──────┐ 
            │   RIGHT      │ 
            │   SCALENE    │ 
            │   TRIANGLE   │ 
            └──────────────┘ 

	
14.4	 Type	TRIANGLE:		The	obvious	possrep	consists	of	the	three	vertices	A,	B,	C,	with	a	
constraint	to	the	effect	that	the	points	in	question	are	not	collinear.		A	constraint	that	pins	
down	which	vertex	is	which	will	be	needed	too;	perhaps	we	could	define	an	ordering	for	points,	
somewhat	along	the	lines	of	the	one	defined	in	the	body	of	the	chapter	in	connection	with	type	
PARALLELOGRAM.		Another	possibility	would	be	to	define	an	ordering	based	on	the	sizes	of	the	
interior	angles	at	the	vertices.			
	
Type	SCALENE_TRIANGLE:		Same	possrep	as	for	type	TRIANGLE,	together	with	an	<is	def>	to	the	
effect	that	a	scalene	triangle	“is	a”	triangle	(and	so	inherits	constraints	and	operators	from	that	
type),	together	with	a	further	constraint	to	the	effect	that	no	two	of	the	angles	ABC,	BCA,	CAB	
are	equal	(or	one	to	the	effect	that	no	two	of	the	sides	AB,	BC,	CA	are	of	the	same	length).			
	
Type	RIGHT_TRIANGLE:		Same	possrep	as	for	type	TRIANGLE,	together	with	an	<is	def>	to	the	
effect	that	a	right	triangle	“is	a”	triangle	(and	so	inherits	constraints	and	operators	from	that	
type),	together	with	a	further	constraint	to	the	effect	that	one	of	the	angles	ABC,	BCA,	CAB	is	a	
right	angle.		Subsidiary	exercise:		It	might	be	desirable	to	insist	that	the	right	angle	be	at	one	
specific	vertex,	say	vertex	A.		How	might	this	effect	be	achieved?			
	
Type	RIGHT_SCALENE_TRIANGLE:		Same	possrep	as	for	type	TRIANGLE,	together	with	an	<is	
def>	to	the	effect	that	a	right	scalene	triangle	“is	a”	scalene	triangle	and	also	“is	a”	right	triangle	
(and	so	inherits	constraints	and	operators	from	both	of	those	types).			
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Alternative	possreps:		For	triangles	in	general	(i.e.,	scalene,	right,	or	otherwise),	one	alternative	
possrep	that	springs	to	mind	involves	one	vertex,	say	A,	together	with	either	(a)	the	sides	AB	
and	AC	that	meet	at	that	vertex	or	(b)	the	third	side	BC.		Since	sides	are	line	segments,	
however,	to	specify	(say)	the	side	AB	is	effectively	to	specify	the	begin	point	A	and	the	end	
point	B;	so	these	possreps	aren’t	significantly	different	from	ones	already	discussed	(though	
they	might	simplify	that	business	of	pinning	down	which	vertex	is	which).		Many	other	possreps	
might	be	defined	also.			
	
Operators:		Some	obvious	operators	that	spring	to	mind	are	operators	that	return	the	sides	of	a	
given	triangle	(i.e.,	as	line	segments);	operators	that	return	the	angles;	operators	that	return	
the	lengths	of	the	sides;	an	operator	that	returns	the	area;	operators	that	return	the	median	
corresponding	to	a	specific	vertex	or	specific	side;	an	operator	that	returns	the	centroid;	
operators	to	return	the	unique	inscribed	and	circumscribed	circles;	and	so	on.			
	
	



  

Chapter  15 
 
 

I M   P r e s c r i p t i o n s   8 – 9   R e v i s i t e d 
 
 

Let no one enter who is ignorant of geometry.   
—Plato (c. 400 BCE) 

 
There is no royal road to geometry.   

—Euclid (c. 300 BCE) 
 
 

As we know from Chapter 3, the disjointness assumption has the important consequence that 
every value has a unique most specific type.  With multiple inheritance, however, that 
assumption no longer holds, and so the question is:  Does that same property hold with multiple 
inheritance anyway?—i.e., is it still true with multiple inheritance that every value has a unique 
most specific type?  In fact the answer to this question is yes, thanks to IM Prescription 8.1  This 
chapter examines this issue, as well as several related issues.   

First, however, let me make a preliminary point.  The text of IM Prescription 8 begins thus:   
 

Let T1, T2, ..., Tm (m ≥ 0) ... be scalar types.   
 

Clearly, we can assume without loss of generality that types T1, T2, ..., Tm are all distinct.  
Moreover, we can also assume, thanks to the noninclusion requirement of IM Prescription 7 (see 
Chapter 14) that no two distinct types Ti and Tj (1 ≤ i, j ≤ m; i ≠ j), neither of which is a subtype 
of the other, are such that the set of values |Ti| constituting Ti is a subset of the set of values |Tj| 
constituting Tj.  I’ll rely on these two assumptions (sometimes just tacitly) throughout this 
chapter.   
 
 
LEAST SPECIFIC COMMON SUBTYPES  
 
To repeat, it’s my claim that the property that most specific types are unique follows from IM 
Prescription 8.  More specifically, I claim that property follows from that portion of the 
prescription that has to do with common subtypes.  Let me quote that portion again (the text that 
follows is based on the full text in Chapter 4 but is somewhat edited here):   

 

                                                             
 
1 IM Prescription 8 was originally discussed in Chapter 6.   
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! Let T1, T2, ..., Tm (m ≥ 0) and T′ be scalar types.  Then type T′ shall be a common subtype 
for, or of, types T1, T2, ..., Tm if and only if, whenever a given value is of type T′, it is also 
of each of types T1, T2, ..., Tm.2  Further, that type T′ shall be the least specific common 
subtype—also known as the intersection type or intersection subtype—for T1, T2, ..., Tm 
if and only if no proper supertype of T′ is also a common subtype for those types.  Note:  
Given such types T1, T2, ..., Tm, it can be shown that a unique least specific common 
subtype T′ always exists.   

 
By way of illustration, type SQUARE is clearly the least specific common subtype, or 

intersection type, for types RECTANGLE and RHOMBUS in our running example.  Note:  For 
convenience, until further notice I’ll take “IM Prescription 8” (or just “this prescription” or “the 
prescription”) to refer to the foregoing reduced version, having to do with common subtypes 
specifically.   

Now, before I try to show how this prescription does in fact guarantee the uniqueness of 
most specific types, I think we need to examine the question of whether the prescription is 
reasonable in itself (in the multiple inheritance context, that is).  In other words, does it make 
sense to say, with multiple inheritance in particular, that every set of scalar types has a least 
specific common subtype?  Further, does it seem reasonable to say, as the prescription claims, 
that the subtype in question is unique?   

Well, we saw in Chapter 6 that it certainly makes sense if m, the number of scalar types in 
the given set of types T1,T2,...,Tm, is either zero or one.  Just to remind you:   

 
! If m = 0, meaning the given set of types is empty, the unique least specific common 

subtype is the maximal scalar type, viz., type alpha.   
 
! If m = 1, meaning the given set of types is a singleton set and contains just one type T1, the 

unique least specific common subtype is that type T1 itself.   
 

What happens if m = 2?  Tailored to this specific case, the prescription becomes:   
 
! Let T1, T2, and T′ be scalar types.  Then type T′ shall be a common subtype for, or of, 

types T1 and T2 if and only if, whenever a given value is of type T′, it is also of types T1 
and T2.  Further, that type T′ shall be the least specific common subtype—also known as 
the intersection type or intersection subtype—for T1 and T2 if and only if no proper 
supertype of T′ is also a common subtype for those two types.  Note:  Given such types T1 
and T2, it can be shown that a unique least specific common subtype T′ always exists.   

 
Or more colloquially (think of types RECTANGLE, RHOMBUS, and SQUARE once again):   

                                                             
 
2 In other words, as we saw in the answer to Exercise 6.2 in Chapter 6, T′ is a common subtype for T1, T2, ..., Tm if and only if it 
satisfies the predicate FORALL v (IF v ∊ |T′| THEN v ∊ INTERSECT {|T1|, |T2|, ..., |Tm|}).   
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! Any two scalar types T1 and T2 shall have a unique least specific common subtype.   

 
Now, this simplified form of the prescription was effectively shown in Chapter 6 to be 

reasonable as well if T1 and T2 are either:   
 

a. Disjoint, in which case their least specific common subtype is the minimal scalar type, viz., 
type omega, or  

 
b. Not disjoint, but such that one is a subtype of the other.  For definiteness, assume T2 is a 

subtype of T1.  Then every subtype of T2 is a common subtype for T1 and T2; of those 
common subtypes, moreover, the least specific is clearly T2 itself.   

 
So the only case not already discussed, under our current assumption that m = 2, is the case 

where T1 and T2 overlap and neither is a subtype of the other (a case that can’t occur with single 
inheritance, of course, which is why it wasn’t discussed in Chapter 6).  For this case, the 
prescription becomes:   

 
! Let scalar types T1 and T2 overlap, and let neither be a subtype of the other; then they shall 

have at least one common subtype.  Note:  Given such types T1 and T2, it can be shown 
that a unique least specific common subtype T′ always exists.   
 
Well, our various discussions of rectangles, rhombi, and squares in Chapter 14 should be 

sufficient to convince you that this situation is reasonable too.  To be specific, we can appeal to 
the fact that type T′ is the intersection type, as such, for types T1 and T2; that is, the set of values 
|T′| is the set theory intersection |T1| ∩ |T2| of the sets of values |T1| and |T2|.  Since the 
intersection of two sets is unique by definition, it follows that type T′ is unique as well; that is, 
there can’t be any other type T′′, distinct from T′, that’s also a common subtype for T1 and T2 but 
is less specific than—i.e., is a proper supertype of—T′.  Thus, T′ is indeed the least specific 
common subtype of T1 and T2 in this case as well, as required.  Moreover, since neither of |T1| 
and |T2| is included in the other, it follows that T′ must be distinct from both T1 and T2 as well.   

Here’s a slightly different way to say the same thing.  Let types T1 and T2 overlap.  Then 
there can’t exist two distinct types T′ and T′′, both of which are common subtypes of T1 and T2, 
and both of which are “least specific.”  For if they did both satisfy those conditions, then they’d 
both be the intersection type for T1 and T2; in other words, they’d be one and the same.  In other 
words, the situation illustrated in Fig. 15.1 below makes no sense.  Note:  That figure illustrates 
(but doesn’t rely on) a point to be discussed later in this chapter—viz., that if types T1 and T2 
have a common subtype T′, they also have a common supertype T.   
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            ┌───────────────┐ 
            │       T       │ 
            └───────┬───────┘ 
        ┌───────────┴────────────┐ 
┌───────▼───────┐        ┌───────▼───────┐ 
│      T1       │        │      T2       │ 
└────┬──────┬───┘        └────┬─────┬────┘  
     │      └───────┐         │     │ 
     │      ┌───────┼─────────┘     │ 
     │      │       └─────────┐     │ 
┌────▼──────▼───┐        ┌────▼─────▼────┐ 
│       T′      │        │      T′′      │ 
└───────────────┘        └───────────────┘ 

 
Fig. 15.1: Another graph that’s not a valid type graph  

 
To summarize to this point, then:  I’ve shown that any two types have a unique least 

specific common subtype.  The following statement is a rough and ready way of remembering 
this result (it’s not so precise, but I believe it can be helpful from the standpoint of intuition 
nonetheless):   

 
! If two types overlap, they have a nonempty common subtype; conversely, if two types have 

a nonempty common subtype, they overlap.   
 

See Figs. 15.2 and 15.3 later in the chapter for several illustrations of this state of affairs.   
 
Three or More Overlapping Types  
 
Back to IM Prescription 8 as such.  I’ve now considered the cases where m ≤ 2; so what about 
the case where m > 2?  As it turns out, the argument in Chapter 6 regarding this case applies here 
unchanged, because that argument didn’t rely on single inheritance as such (all it relied on was a 
prior demonstration to the effect that the prescription did make sense for m ≤ 2).  Thus, I claim 
that IM Prescription 8 does in fact make sense in all possible cases.   

The foregoing paragraph notwithstanding, let’s take a closer look at the case m = 3, just for 
interest.  Let scalar types T1, T2, and T3 overlap pairwise, and let the corresponding intersection 
types—which we now definitely know are required—be Ta (for T2 and T3), Tb (for T3 and T1), 
and Tc (for T1 and T2).3  Then types Ta, Tb, and Tc will also overlap pairwise, in general; 
however, it’s easy to see that the three intersection types required for these types Ta, Tb, and Tc 
taken pairwise are all one and the same type, T′ say.  More specifically, it’s easy to see that the 
set of values |T′| is precisely the intersection |T1| ∩ |T2| ∩ |T3| of the sets of values |T1|, |T2|, and 
|T3|.  Hence type T′ is obviously unique, and so it’s the intersection type for T1, T2, and T3, and 

                                                             
 
3 Of course, it’s possible that types T1, T2, T3, Ta, Tb, Tc aren’t all distinct, but in general they will be.  See Exercise 15.6 at the 
end of the chapter for further discussion.   
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also for Ta, Tb, and Tc.  What’s more, it should be clear without going into details that the 
foregoing argument can readily be generalized to deal with the case of arbitrary m > 2.   
 
 
MOST SPECIFIC TYPES  
 
Now I can get back to my real goal: viz., showing that most specific types are unique.  Despite 
the fact that I’ve already appealed to the most specific type concept many times in previous 
chapters, I’ll begin with a definition:    
 

Definition:  Let value v be of type T.  If and only if no proper subtype T′ of type T exists 
such that v is also of type T′, then T is the most specific type for, or of, v.   

 
Why We Want Most Specific Types to Be Unique  
 
Perhaps I should explain why we want most specific types to be unique anyway.  In fact, the 
reason is easy to see.  By way of illustration, suppose a given value s could be both a rectangle 
and a rhombus, and suppose further that type SQUARE hasn’t yet been defined.  Then that value 
s would have two distinct most specific types, RECTANGLE and RHOMBUS.  And one 
immediate (and unpleasant) consequence of this state of affairs would appear to be as follows:   

 
! Suppose an operator named Op has been defined for rectangles and another operator with 

the same name Op has been defined for rhombi.   
 
! Suppose further for simplicity that each of these operators takes just one parameter.   
 
! Then an invocation of Op with argument s would be ambiguous.   
 

Note carefully, however, that I said the foregoing situation would appear to be a 
consequence (of the fact that s has two distinct most specific types, that is).  In fact it isn’t a 
consequence at all, and the foregoing argument is specious.  To see why, suppose that (a) the 
expression that denotes the argument s to the Op invocation is exp, and hence that (b) the 
invocation in question looks like this: Op(exp).  By definition, then, exp has a declared type 
DT(exp).  Moreover, that declared type must be either RECTANGLE or RHOMBUS—it can’t 
be anything else, because no operator named Op is defined for anything else (or let’s assume as 
much for the sake of the discussion, at any rate)—and so the system will know at compile time 
which operator to invoke, and there’s no ambiguity.4   

                                                             
 
4 Note the logical difference between the situation sketched in this paragraph and the second of the two problems discussed in the 
section “Two Remarks on Operator Inheritance” in Chapter 14.   



 
 
320      Chapter 15 / IM Prescriptions 8 - 9 Revisited 

So the question stands:  Why exactly do we insist on most specific types being unique?  
Well, let’s stay with the same basic example; i.e., let’s assume we’re given just two types, 
RECTANGLE and RHOMBUS, neither of which is a subtype of the other.  Does it make sense 
to say that some value exists that has both of these types as its most specific type?  If it does, 
then:   

 
! First of all, there must be situations in which the value s of some expression exp of declared 

type RECTANGLE is to be treated as if it were a value of type RHOMBUS (or the other 
way around).  Why must such situations exist?  Because if they don’t, then there’s no sense 
in which it can possibly be of interest to say that s has both types.  So this first point 
implies that the expression TREAT_AS_RHOMBUS (exp) must be legal.  But IM 
Prescription 145 says this expression is legal only if types RECTANGLE and RHOMBUS 
overlap—which they do, of course, but the compiler isn’t (and can’t be) aware of that fact, 
because type SQUARE hasn’t been defined.  Therefore:   

 
a. To repeat, given the TREAT invocation TREAT_AS_T (exp), IM Prescription 14 

requires T and DT(exp) to overlap.   
 
b. But if the compiler has to allow the expression TREAT_AS_RHOMBUS (exp) 

anyway, the foregoing requirement no longer applies.  So we might as well drop it, 
since it’s now effectively meaningless.   

 
c. Thus, certain compile time checks now become impossible, which in turn increases 

the likelihood of more run time type errors.   
 
! By a similar argument, the expression IS_RHOMBUS (exp) must presumably also be legal 

(it’ll give TRUE if and only if s, the current value of expression exp, has RHOMBUS as 
one of its types).  Remarks similar to those above regarding IM Prescription 14 thus apply 
to IM Prescription 15 as well.   

 
! Similar remarks apply to equality comparisons also (IM Prescription 12).  In this case, 

however, there’s a little more that can usefully be said.6  Consider the following code 
fragment:   
 
VAR RE RECTANGLE ;  
VAR RH RHOMBUS ;  
 
IF RH = RE THEN ... ;  

                                                             
 
5 See Chapter 16 for further discussion of IM Prescription 14 (also of IM Prescriptions 11, 12, and 15, all of which are referenced 
in the next few bullet items) in the multiple inheritance context.   
 
6 Actually I could have made an argument analogous to the one that follows in my discussions of IM Prescriptions 14 and 15 as 
well.   
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Clearly, the comparison RH = RE can give TRUE only if RH and RE both have the same 
current value s, which must be, by definition, a square.  What’s more, the user will 
certainly be aware of this fact; that is, type SQUARE must certainly exist in the user’s 
mind, as it were, even if that type hasn’t been explicitly defined.  Thus, there doesn’t seem 
to be any advantage in allowing type SQUARE not to be defined; at the same time, there 
do seem to be plenty of advantages in requiring such a definition.   

 
! It should be clear without going into details that the arguments of the previous bullet item 

apply to assignment also (IM Prescription 11), mutatis mutandis.   
 
The net of all of the above is this:  Not only does it seem reasonable and desirable to 

require most specific types to be unique, it also seems unreasonable and undesirable not to.  And 
let me add one last point.  Suppose most specific types don’t have to be unique after all.  Then 
distinct leaf types will sometimes overlap (indeed, that’s exactly what happens with types 
RECTANGLE and RHOMBUS, if type SQUARE isn’t defined).  But it would surely seem a 
little odd to say, as The Third Manifesto effectively does say, that scalar leaf types have to be 
disjoint without inheritance but don’t have to be disjoint with it; in fact, it would constitute, at 
least arguably, an incompatibility between the Manifesto as such and our inheritance model.  
(Without inheritance, of course, all types are leaf types.)  And it would make no sense to change 
the Manifesto in this regard, for that would be to give up on static type checking altogether, 
contrary to one of the Manifesto’s explicitly stated aims.   
 
How IM Prescription 8 Implies Most Specific Type Uniqueness  
 
Here then is how IM Prescription 8 implies our desired result, viz., that most specific types are 
unique.  Suppose, contrariwise, that there exists some value v that’s of two distinct most specific 
types, T1 and T2 say.  Observe that, by definition, (a) neither of T1 and T2 is a subtype of the 
other (since T1 and T2 are both “most specific”), and (b) neither of |T1| and |T2| is a subset of the 
other (since T1 and T2 are distinct).  By IM Prescription 8, then, v must also be of some type T′ 
that’s a common subtype of T1 and T2.  Furthermore, T′ must be a proper subtype of both T1 and 
T2, since neither of these latter two types is a subtype of the other.  But to say that v is of some 
proper subtype of (e.g.) T1 is to contradict the hypothesis that T1 was a most specific type for v 
in the first place.   

By way of illustration of these ideas, consider the type graph shown in Fig. 15.2 (type 
EQUILATERAL in that figure consists of polygons whose sides are all the same length).  Note 
in particular that, e.g., types QUADRILATERAL and EQUILATERAL overlap, and neither is a 
subtype of the other.  In accordance with IM Prescription 8, then, they must have a least specific 
common subtype—that is, a subtype T′ such that a polygon that’s both quadrilateral and 
equilateral is a value of type T′ and not of any proper supertype of T′—and so they do: viz., type 
RHOMBUS.  (Note that any polygon that’s both quadrilateral and equilateral is indeed a 
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rhombus.)  Of course, type SQUARE is also a common subtype for types QUADRILATERAL 
and EQUILATERAL; however, it’s not the intersection type as such, because some polygons 
(which?) are both quadrilateral and equilateral but not squares.   

 
            ┌───────────────┐ 
            │    POLYGON    │ 
            └───────┬───────┘ 
        ┌───────────┴────────────┐ 
┌───────▼───────┐        ┌───────▼───────┐ 
│ QUADRILATERAL │        │  EQUILATERAL  │ 
└───────┬───────┘        └─────────┬─────┘  
        └───────────┐              │ 
            ┌───────▼───────┐      │ 
            │ PARALLELOGRAM │      │ 
            └───────┬───────┘      │ 
       ┌────────────┴────────────┐ │ 
┌──────▼──────┐           ┌──────▼─▼────┐ 
│  RECTANGLE  │           │   RHOMBUS   │ 
└──────┬──────┘           └──────┬──────┘ 
       └────────────┬────────────┘ 
            ┌───────▼───────┐ 
            │    SQUARE     │ 
            └───────────────┘ 
 
Fig. 15.2: Most specific types are unique (example)  

 
Here for the record is a list showing the intersection types for every pair of types in 

Fig. 15.2 that satisfy the pertinent conditions (i.e., they overlap, and neither is a subtype of the 
other):   

 
QUADRILATERAL  and  EQUILATERAL  :  RHOMBUS  
PARALLELOGRAM  and  EQUILATERAL  :  RHOMBUS  
RECTANGLE      and  EQUILATERAL  :  SQUARE  
RECTANGLE      and  RHOMBUS      :  SQUARE  

 
Aside:		Given	the	foregoing,	it	might	be	thought	that	(e.g.)	the	<is	def>	for	type	SQUARE	
could	specify	either	IS	{RECTANGLE,	EQUILATERAL}	or	IS	{RECTANGLE,	RHOMBUS}.		
However,	IM	Prescription	10—see	Chapter	16—requires	the	<is	def>	in	question	to	
contain	a	specialization	constraint	for	each	pertinent	immediate	supertype,	and	the	latter	
specification	is	thus	the	correct	one.		End	of	aside.			

 
 
LEAF TYPES  
 
As noted in passing earlier, IM Prescription 8 has the further consequence that (as with single 
inheritance) distinct scalar leaf types are disjoint.  For suppose, contrariwise, that types T1 and 
T2 are distinct but overlapping scalar leaf types.  In accordance with IM Prescription 8, then, T1 
and T2 must have a common subtype T′.  Moreover, since T1 and T2 are distinct and are leaf 



 
 

IM Prescriptions 8 - 9 Revisited / Chapter 15      323 

types, neither is a subtype of the other, and hence T′ must be a proper subtype of both.  But if 
they have a proper subtype, they can’t have been leaf types in the first place.   
 
 
MOST SPECIFIC COMMON SUPERTYPES  
 
IM Prescription 8 has yet another important consequence: namely, not only do any two scalar 
types T1 and T2 have exactly one least specific common subtype, but they also have exactly one 
most specific common supertype.  Here (lightly edited once again) is the portion of IM 
Prescription 8 that has to do with supertypes:   
 
! Let T1, T2, ..., Tm (m ≥ 0) and T be scalar types.  Then type T shall be a common 

supertype for, or of, types T1, T2, ..., Tm if and only if, whenever a given value is of at 
least one of types T1, T2, ..., Tm, it is also of type T.7  Further, that type T shall be the most 
specific common supertype for T1, T2, ..., Tm if and only if no proper subtype of T is also a 
common supertype for those types.  Note:  Given such types T1, T2, ..., Tm, it can be 
shown that a unique most specific common supertype T always exists.   
 

And here’s the tailored version for the case m = 2:8   
 
! Let T1, T2, and T be scalar types.  Then type T shall be a common supertype for, or of, 

types T1 and T2 if and only if, whenever a given value is of at least one of types T1 and T2, 
it is also of type T.  Further, that type T shall be the most specific common supertype for 
T1 and T2 if and only if no proper subtype of T is also a common supertype for those types.  
Note:  Given such types T1 and T2, it can be shown that a unique most specific common 
supertype T always exists.   

 
Or more colloquially:   

 
! Any two scalar types T1 and T2 shall have a most specific common supertype.   

 
As with our discussion of least specific common subtypes in an earlier section, however, 

this simplified form of the prescription is obviously valid—and for that reason not really very 
interesting—if T1 and T2 are either disjoint or such that one is a subtype of the other.  So let’s 
focus on the case where T1 and T2 overlap and neither is a subtype of the other.  For this case, 
the prescription becomes:   

                                                             
 
7 In other words, as we saw in the answer to Exercise 6.2 in Chapter 6, T is a common supertype for T1, T2, ..., Tm if and only if 
it satisfies the predicate FORALL v (IF v ∊ UNION {|T1|, |T2|, ..., |Tm|} THEN v ∊ |T|).   
 
8 The cases m = 0 and m = 1 aren’t worth discussing in detail.  For the record, though, if m = 0, the most specific common 
supertype is omega; if m = 1, it’s T1.   
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! Let scalar types T1 and T2 overlap, and let neither be a subtype of the other; then they shall 

have at least one common supertype.  Note:  Given such types T1 and T2, it can be shown 
that a unique most specific common supertype T always exists.   
 
Does this claim make sense?  Let’s investigate.  (You might want to draw some diagrams 

as you work through the following explanation.)   
 
! First of all, since they overlap, T1 and T2 certainly have at least one common supertype: 

viz., the applicable root type (which is unique, of course).  Note:  Recall that two types can 
overlap—and hence have a nonempty common subtype—only if they’re subtypes of the 
same root type, thanks to IM Prescription 7.   

 
! So suppose T1 and T2 have two distinct common supertypes, Ta and Tb say, neither of 

which is a subtype of the other.   
 
! By virtue of IM Prescription 8, then, Ta and Tb also overlap, since they have a common 

subtype (actually at least two common subtypes, T1 and T2).   
 
! We can assume that Ta and Tb don’t have a common proper subtype T that’s also a 

common proper supertype of T1 and T2 (because to assume otherwise would be to assume 
the result we’re trying to prove).  In other words, Ta and Tb are both “most specific” 
common supertypes for T1 and T2, loosely speaking.   

 
Now rename the types as follows:   

 
1. Rename T1 and T2 as T′ and T′′, respectively.   
 
2. Rename Ta and Tb as T1 and T2, respectively.   
 

Then we have exactly the invalid situation shown previously in Fig. 15.1!—see the section 
“Least Specific Common Subtypes,” earlier.  It follows that our original assumption must be 
false; that is, the original “distinct common supertypes” Ta and Tb can’t be distinct after all, and 
so T1 and T2 have precisely one most specific common supertype as claimed.9   

It should be clear without going into details that the foregoing argument can readily be 
generalized to deal with the case of arbitrary m > 2.   

                                                             
 
9 Let me remind you from Chapter 6 that, while the set of values |T′| of the least specific common subtype T′ of T1 and T2 is 
certainly the intersection |T1| ∩ |T2| of the sets of values |T1| and |T2|, the set of values |T| of the most specific common supertype 
T of T1 and T2 isn’t necessarily the union |T1| ∪ |T2| of the sets of values |T1| and |T2|; rather, it’s some proper superset of that 
union, in general.  For example, some parallelograms are neither rectangles nor rhombi.   
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The foregoing result is so important that I’d like to state it again in different words, as 
follows:   

 
! If two types overlap—i.e., if they have a nonempty least specific common subtype—then 

they also have a most specific common supertype.   
 
The following statement is strictly weaker than the foregoing but is nonetheless worth 

spelling out as an aid to intuition:   
 
! If two types have a nonempty common subtype, they also have a common supertype.   

 
(The converse is false, of course:  Two types can have a common supertype without having a 
nonempty common subtype.  For example, types ELLIPSE and RECTANGLE from the 
running example in Part II of this book have a common supertype, PLANE_FIGURE, but no 
common subtype other than the empty type omega.)   
 
 
OVERLAPPING REGULAR TYPES  
 
Suppose types T1 and T2 overlap and are regular types.  Then their most specific common 
supertype, T say (which we now know is unique), must be a regular type also.  For suppose not; 
i.e., suppose T is a dummy type.  Let T1 and T2 have possible representations PR1 and PR2, 
respectively.  In general, then, PR1 and PR2 will be quite independent of one another, because 
(since T is a dummy type) there’s no common source—i.e., no supertype possrep—for them to 
be derived from.  In particular, therefore, PR1 might have a component C1 not present in PR2, 
and PR2 might have a component C2 not present in PR1.   

Now let T′ be the (also unique) least specific common subtype for types T1 and T2.  Then 
there’s no way, in general, for an invocation of the selector corresponding to PR1 to return a 
value of type T′ (and hence of type T2), because that selector has no parameter corresponding to 
C2.  (To put it another way, if an invocation of the selector corresponding to PR1 returns some 
value v, then the expression THE_C2(v) is undefined.)  Equivalently, specialization by constraint 
from type T1 to type T′ doesn’t work (and the same goes for S by C from type T2 to type T′, of 
course).  In other words, allowing T to be a dummy type leads to a violation of IM Prescription 
10 (see Chapters 8 and 16).   

By way of an example to illustrate the foregoing discussion, consider the type graph of 
Fig. 14.1 from Chapter 14 once again.  While type PARALLELOGRAM could possibly have a 
dummy type, say PLANE_FIGURE (not shown in that figure), as a proper supertype, type 
PARALLELOGRAM itself must be a regular type,10 because types RECTANGLE and 
RHOMBUS are regular types and they overlap.  Thus, every value of type RECTANGLE can be 

                                                             
 
10 The fact that PARALLELOGRAM must be a regular type was previously mentioned in footnote 4 in Chapter 14.   



 
 
326      Chapter 15 / IM Prescriptions 8 - 9 Revisited 

obtained via some invocation of the PARALLELOGRAM selector, and the same goes for every 
value of type RHOMBUS.   
 
 
AN EXTENDED EXAMPLE  
 
The full implications of all of the points discussed in the preceding sections are far from obvious 
and (in my experience) not always immediately grasped.  Here therefore is another example, a 
little more complicated than the one given in Fig. 15.2, that repays careful study.  Refer to 
Fig. 15.3.   
 

                   ┌───────────────┐ 
                   │ QUADRILATERAL │ 
                   └───────┬───────┘ 
        ┌──────────────────┼──────────────────┐ 
  ┌─────▼─────┐      ┌─────▼────┐     ┌───────▼───────┐ 
  │ TRAPEZOID ├──┐   │   KITE   ├─┐   │    CYCLIC     │ 
  └─────┬─────┘  │   └──┬───────┘ │   │ QUADRILATERAL │ 
        │        │      │         │   └┬────────┬─────┘ 
        │        └──────┼─────────┼────┼───┐    │ 
┌───────▼───────┐       │    ┌────┼────┘┌──▼────▼───┐ 
│ PARALLELOGRAM │ ┌─────┼────┼────┼─────┤ ISOSCELES │ 
└───────┬───┬───┘ │     │    │    │     │ TRAPEZOID │ 
        │  ┌┼─────┘     │    │    │     └───────────┘ 
        │  │└───────────┼────┼────┼───────────┐ 
        │  │            │    │    └────────┐  │ 
  ┌─────▼──▼──┐      ┌──▼────▼─┐        ┌──▼──▼─────┐ 
  │ RECTANGLE │      │  RIGHT  │        │  RHOMBUS  │ 
  └─────┬─────┘      │  KITE   │        └─────┬─────┘ 
        │            └────┬────┘              │ 
        └─────────────────┼───────────────────┘ 
                    ┌─────▼─────┐ 
                    │  SQUARE   │ 
                    └───────────┘ 
 
Fig. 15.3: An extended example  

 
Perhaps I should remind you of the definitions of some of the possibly less familiar 

geometric terms mentioned in the figure:   
 
! A trapezoid is a quadrilateral with at least one pair of opposite sides parallel.11   
 

                                                             
 
11 You might or might not be interested to know that a quadrilateral with at least one pair of opposite sides parallel is called a 
trapezoid in the U.S. and a trapezium in the U.K., while a quadrilateral with possibly no parallel sides at all is called a trapezium 
in the U.S. and a trapezoid in the U.K.  Caveat lector.   
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! A kite is a quadrilateral with mirror symmetry about a diagonal, such that no interior angle 
is greater than 180°.12  If ABCD is a kite that’s symmetric about diagonal AC, then AB = 
AD and CB = CD.   

 
! A cyclic quadrilateral is a quadrilateral whose vertices lie on a circle.  A quadrilateral is 

cyclic if and only if opposite interior angles add up to 180°.   
 
! An isosceles trapezoid is a trapezoid with mirror symmetry about the line that connects the 

midpoints of its parallel sides.  If ABCD is an isosceles trapezoid with AB parallel to CD, 
then (a) BC = AD and (b) the interior angles at A and B are equal, as are the interior angles 
at C and D.   

 
! A right kite is a kite in which the angles subtended by the diagonal of symmetry are right 

angles.  If ABCD is a right kite that’s symmetric about diagonal AC, then the angles at B 
and D are right angles.   

 
One specific point illustrated by this example is the following:  Suppose we delete types 

PARALLELOGRAM, ISOSCELES_TRAPEZOID, RECTANGLE, RIGHT_KITE, and 
RHOMBUS.  Then type QUADRILATERAL will have three immediate subtypes TRAPEZOID, 
KITE, and CYCLIC_QUADRILATERAL, and the intersection type for that set of three types 
will be their sole immediate subtype SQUARE.   

In closing this section, let me remind you of the following point from Chapter 3:  Clearly—
unfortunate though it might be—it will always be possible to make mistakes in setting up the 
type graph.  For example, we might define the overlapping types RECTANGLE and RHOMBUS 
and forget to define the necessary intersection type SQUARE.  The consequences of such 
mistakes will be unpredictable, in general; it’s to be hoped that some kind of mechanical aid will 
be available in practice to help the person defining the type graph to avoid them.   
 
 
MODEL OF A SCALAR VARIABLE  
 
It follows from everything I’ve said in this chapter so far that the model of a scalar variable 
defined in IM Prescription 9—i.e., as a named ordered triple of the form <DT,MST,v>—is still 
valid (and likewise for our model of scalar expressions).  It follows also that the algorithm 
FIND_MST given in Chapter 8 for computing the most specific type of a given value is still valid 
also.13  For example, suppose we’re given a parallelogram p with vertices (in clockwise 

                                                             
 
12 If this latter condition isn’t satisfied (i.e., if some interior angle—necessarily that at one end of the diagonal of symmetry—is 
greater than 180°), the figure isn’t a kite but a dart.   
 
13 More to the point, perhaps, the algorithm TEST_S given in Chapter 13 for testing whether some specified value v is of some 
specified type S is still valid also.   
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sequence) A, B, C, D, such that AC = BD (so p is in fact a rectangle) and AB = BC (so p is a 
rhombus as well).  First, the algorithm will examine the type constraint for (say) type 
RECTANGLE, since RECTANGLE is a proper subtype of PARALLELOGRAM; it will 
discover that p satisfies that constraint, and so p is certainly of type RECTANGLE.  Next, it will 
examine the type constraint for type SQUARE, since SQUARE is a proper subtype of 
RECTANGLE; it will then discover that p also satisfies the type constraint for type 
RHOMBUS—yes, I do mean RHOMBUS—and hence that it satisfies the type constraint for 
type SQUARE as well.  Thus, p is of all four types PARALLELOGRAM, RECTANGLE, 
RHOMBUS, and SQUARE, and MST(p) is SQUARE.   
 
 
EXERCISES  
 
15.1 For each pair of types in Fig. 15.3, identify the corresponding intersection type.   
 
15.2 How many possreps can you think of for type RIGHT_KITE from Fig. 15.3?   
 
15.3 What do you think the <is def> for type SQUARE from Fig. 15.3 should look like?   
 
15.4 Give a concrete example of distinct types T1, T2, T3, T4, T5 such that T1 and T2 have T3 as 
an immediate subtype and T3 has T4 and T5 as immediate subtypes.   
 
15.5 Point 9 from the definition of the type graph concept in Chapter 14 reads as follows:   

 
If nodes T1, T2, T′, and T′′ are such that there exist paths from both T1 and T2 to both T′ 
and T′′, then there must exist a node T that’s common to every such path.   
 

Show that this requirement is implied by IM Prescription 8.   
 
15.6 Let scalar types T1, T2, and T3 and overlap pairwise, and let the corresponding intersection 
types be Ta (for T2 and T3), Tb (for T3 and T1), and Tc (for T1 and T2).  Give a nontrivial 
concrete example to illustrate this situation, and confirm that Ta, Tb, and Tc also overlap 
pairwise, and that the three intersection types required for these latter types considered pairwise 
are in fact all the same type.   
 
 
ANSWERS		
	
15.1	 Since	there	are	10	types	in	the	figure,	there	are	100	pairs	of	types	altogether.		But	the	
interesting	cases	are,	of	course,	those	where	the	types	involved	overlap	and	neither	is	a	
subtype	of	the	other.		Note:		It	might	help	to	make	the	obvious	point	that	a	given	type	Tʹ	is	an	
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intersection	type	in	this	“interesting”	sense	if	and	only	if	the	node	representing	type	Tʹ	in	the	
type	graph	has	two	or	more	distinct	incoming	arcs.			

Here	then	are	the	pairs	of	types	that	satisfy	the	foregoing	conditions,	together	with	the	
corresponding	intersection	type	in	each	case:			

	
TRAPEZOID            and KITE                  :  SQUARE  
TRAPEZOID            and CYCLIC_QUADRILATERAL  :  ISOSCELES_TRAPEZOID  
TRAPEZOID            and RIGHT_KITE            :  SQUARE  
 
KITE                 and CYCLIC_QUADRILATERAL  :  RIGHT_KITE  
KITE                 and PARALLELOGRAM         :  RHOMBUS  
KITE                 and ISOSCELES_TRAPEZOID   :  SQUARE  
KITE                 and RECTANGLE             :  SQUARE  
 
CYCLIC_QUADRILATERAL and PARALLELOGRAM         :  RECTANGLE  
CYCLIC_QUADRILATERAL and RHOMBUS               :  SQUARE  
 
PARALLELOGRAM        and RIGHT_KITE            :  SQUARE  
 
ISOSCELES_TRAPEZOID  and RIGHT_KITE            :  SQUARE  
ISOSCELES_TRAPEZOID  and RHOMBUS               :  SQUARE  
 
RECTANGLE            and RIGHT_KITE            :  SQUARE  
RECTANGLE            and RHOMBUS               :  SQUARE  
 
RIGHT_KITE           and RHOMBUS               :  SQUARE  

	
15.2	 First	let’s	consider	kites	in	general,	not	just	right	kites	(since	any	possrep	that	works	for	
kites	in	general	must	obviously	work	for	right	kites	as	well,	though	it’ll	need	additional	
constraints	in	the	latter	case).		Let	ABCD	be	such	a	kite,	with	vertices	in	clockwise	sequence	A,	
B,	C,	D,	and	let	AC	be	the	diagonal	of	symmetry.		Then	there	are	two	choices	as	to	which	vertex	
we	call	B;	for	definiteness,	let’s	choose	the	one	with	the	smaller	x	coordinate	(unless	BD	is	
parallel	to	the	y	axis,	in	which	case	let’s	choose	the	one	with	the	smaller	y	coordinate).		Then	
either	of	the	combinations	D	–	A	–	C,	B	–	A	–	C	can	serve	as	a	basis	for	a	possrep.			

Now	let	ABCD	be	a	right	kite	specifically.		Then	either	of	the	combinations	D	–	A	–	B,		D	–	C	
–	B	can	additionally	serve	as	a	basis	for	a	possrep,	with	the	additional	constraint	that	the	
interior	angle	at	B	(equivalently,	at	D)	is	a	right	angle.		And	here	are	some	further	possibilities:			

	
!	 D,	A,	and	the	length	of	side	DC	(or	BC)		
	
!	 A,	B,	and	the	length	of	side	BC	(or	DC)		
	
!	 D,	C,	and	the	length	of	side	DA	(or	BA)		
	
!	 B,	C,	and	the	length	of	side	AB	(or	AD)		
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!	 The	interior	angle	at	A	(or	C)	and	the	midpoint	of	the	diagonal	BD		
	

And	so	on.			
	
15.3	 IS { RECTANGLE , RIGHT_KITE , RHOMBUS ... }		
	
See	the	discussion	of	IM	Prescription	10	in	Chapter	16	for	further	explanation.			
	
15.4	 Here	are	a	couple	of	simple	examples.		First,	take	T1	and	T2	to	be	RECTANGLE	and	
RHOMBUS,	respectively;	T3	is	then	SQUARE.		Now	suppose	every	square	is	either	a	“large	
square”	or	a	“small	square,”	and	no	square	is	both.		Then	we	could	define	T4	and	T5	to	be	
LARGE_SQUARE	and	SMALL_SQUARE,	respectively,	both	of	them	immediate	subtypes	of	T3	
(i.e.,	SQUARE).		Note,	incidentally,	that	SQUARE	is	both	an	intersection	type	and	a	union	type	
(but	not	a	dummy	type!)	in	this	example.			

Second,	consider	character	strings	that	have	at	least	one	space	at	each	end.		Each	such	
string	is	both	a	string	with	a	leading	space	and	a	string	with	a	trailing	space,	and	so	the	
corresponding	type	could	well	be	an	intersection	type.		Also,	each	such	string	either	consists	
entirely	of	spaces	or	contains	at	least	one	nonspace	character,	and	so	the	corresponding	type	
could	have	immediate	subtypes.			
	
15.5	 IM	Prescription	8	requires	T1	and	T2	to	have	a	common	subtype	S	such	that	a	given	value	
is	of	each	of	the	types	T1	and	T2	if	and	only	if	it’s	of	type	S.		Therefore	each	value	of	T'	must	be	
a	value	of	type	S.		Therefore	T'	is	a	subtype	of	S.		By	a	similar	argument,	T''	is	also	a	subtype	of	S.		
Therefore	either	T'	is	S	(and	T''	is	a	subtype	of	T'),	or	T''	is	S	(and	T'	is	a	subtype	of	T''),	or	S	is	a	
proper	supertype	of	both	T'	and	T''	as	well	as	being	a	subtype	of	both	T1	and	T2.		In	all	of	these	
cases	S	lies	on	each	of	the	paths	from	T1	to	T',	from	T1	to	T'',	from	T2	to	T',	and	from	T2	to	T''.			
	
15.6	 	Consider	the	natural	numbers.		Some	are	divisible	by	2,	some	by	3,	and	some	by	5.		Let	T1	
be	those	divisible	by	both	2	and	3	(i.e.,	multiples	of	6);	let	T2	be	those	divisible	by	both	3	and	5	
(i.e.,	multiples	of	15);	and	let	T3	be	those	divisible	by	both	5	and	2	(i.e.,	multiples	of	10).		Then	
Ta	is	those	divisible	by	both	15	and	10;	Tb	is	those	divisible	by	both	10	and	6;	and	Tc	is	those	
divisible	by	both	6	and	15.		Further,	a	natural	number	is	clearly	an	element	of	both	Tb	and	Tc	if	
and	only	if	it’s	a	multiple	of	30;	an	element	of	both	Tc	and	Ta	if	and	only	if	(again)	it’s	a	multiple	
of	30;	and	an	element	of	both	Ta	and	Tb	if	and	only	if	(once	again)	it’s	a	multiple	of	30.		Thus,	
the	three	intersection	types	for	Ta,	Tb,	and	Tc	taken	pairwise	are	clearly	all	the	same	type.			
	
	



  

Chapter  16 
 
 

I M   P r e s c r i p t i o n s   1 0 – 2 0   R e v i s i t e d 
 
 

And now the fancy passes by,  
And nothing will remain  

—A. E. Housman: 
A Shropshire Lad (1896) 

 
 

Chapters 14 and 15 discussed the impact of multiple inheritance considerations on the first nine 
prescriptions of our inheritance model (though only for scalar types, of course).  The present 
chapter completes the process by examining the remaining prescriptions, viz., IM Prescriptions 
10-20.  It’s convenient to treat these prescriptions in two batches—numbers 10-15 in the section 
immediately following, and numbers 16-20 in the next.   
 
 
IM PRESCRIPTIONS 10 - 15  
 
IM Prescriptions 10-15 still apply 100 percent, and quite frankly there isn’t much to say about 
them—but there is a little, as will be seen.  Note:  IM Prescriptions 10 and 11were originally 
discussed in Chapter 8; IM Prescriptions 12 and 13 were originally discussed in Chapter 9; and 
IM Prescriptions 14 and 15 were originally discussed in Chapter 10.   
 
IM Prescription 10: Specialization by Constraint  
 
The only point worth mentioning explicitly here is this:  If type T′ is an immediate subtype for 
two or more regular types T1, T2, ..., Tm, then the type definition for type T′ will include a 
specification—actually an <is def>, in Tutorial D terms—of the form IS {T1,T2,...,Tm ...} 
(irrelevant details omitted),1 and that specification is both necessary and sufficient to define the 
required specialization constraints in their entirety.  For example, the definition of type 
SQUARE includes the following:   
 

IS { RECTANGLE , RHOMBUS ... }  
 

As noted in Chapter 14, this specification is effectively shorthand for the following:   
                                                             
 
1 For the record, though, that <is def> will also contain (following the commalist of type names T1, T2, ..., Tm and preceding the 
closing brace) at least one derived possrep definition, followed by a NOT specification.   
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IS_RECTANGLE ( s ) AND LS ( s ) = SS ( s )  
 
AND  
 
IS_RHOMBUS   ( s ) AND LD ( s ) = SD ( s )  
 

(where s denotes an arbitrary value of type SQUARE).  In other words, the specified <is def> 
does indeed serve to define the required specialization constraints for type SQUARE in terms of 
types RECTANGLE and RHOMBUS.   
 
IM Prescription 11: Assignment with Inheritance  
 
Given the assignment V := X, where V is a variable reference and X is an expression, this 
prescription requires the declared type DT(X) of the expression X to be a subtype of the declared 
type DT(V) of the variable V (this is a compile time check).  For example, the assignment in the 
following code fragment will fail on a compile time type error— 

 
VAR RE RECTANGLE ;  
VAR RH RHOMBUS ;  
 
RE := RH ;  
 

—because type RHOMBUS isn’t a subtype of type RECTANGLE.  Of course, those types do 
overlap; so if we believe variable RH will in fact contain a rectangle at run time, then what we 
need to do in order to achieve what’s presumably the desired effect in the example is write the 
assignment like this:   
 

RE := TREAT_AS_RECTANGLE ( RH ) ;  
 

Note:  If variable RH does contain a rectangle at run time, that rectangle will in fact be a 
square (necessarily so), and so we could alternatively—and equally correctly—have written the 
assignment like this:   
 

RE := TREAT_AS_SQUARE ( RH ) ;  
 
See the discussion of IM Prescription 14 below.   
 
IM Prescription 12: Equality with Inheritance  
 
Given the comparison X = Y, where X and Y are expressions, this prescription requires the 
declared types DT(X) and DT(Y) of the expressions X and Y to overlap (this is a compile time 
check).  For example, the equality comparison in the following code fragment is certainly valid:   
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VAR RE RECTANGLE ;  
VAR RH RHOMBUS ;  
 
IF RE = RH THEN ... ;  
 
In fact, as we know from the previous chapter, DT(X) and DT(Y) overlap if and only if they 

have a nonempty common subtype.  In the example, DT(RE) is RECTANGLE and DT(RH) is 
RHOMBUS, and types RECTANGLE and RHOMBUS do have a nonempty common subtype, 
viz., type SQUARE.  And, of course, the comparison will give TRUE if and only if the two 
variables both contain the same value at run time (necessarily a value of the pertinent common 
subtype).   
 
IM Prescription 13: Join etc. with Inheritance  
 
I’ll illustrate this prescription with a few examples.  Let relational expressions RX and RY have 
declared types RELATION {P RECTANGLE} and RELATION {P RHOMBUS}, respectively.  
Also, let the values rx and ry currently denoted by expressions RX and RY, respectively, be as 
shown here:   

 
 rx                    ry 
┌────────────────┐    ┌──────────────┐ 
│ P  : RECTANGLE │    │ P  : RHOMBUS │ 
├════════════════┤    ├══════════════┤ 
│ p1 : rectangle │    │ p2 : square  │ 
│ p2 : square    │    │ p3 : rhombus │ 
└────────────────┘    └──────────────┘ 

 
(Most specific types are shown in lowercase italics.)  Given these sample values, then, rx 
UNION ry, rx INTERSECT ry, rx MINUS ry, and ry MINUS rx are as shown below (rx JOIN ry 
is identical to rx INTERSECT ry in this simple example):   
 

 rx UNION ry           rx INTERSECT ry  rx MINUS ry        ry MINUS rx 
┌────────────────────┐ ┌─────────────┐ ┌────────────────┐ ┌──────────────┐ 
│ P  : PARALLELOGRAM │ │ P  : SQUARE │ │ P  : RECTANGLE │ │ P  : RHOMBUS │ 
├════════════════════┤ ├═════════════┤ ├════════════════┤ ├══════════════┤ 
│ p1 : rectangle     │ │ p2 : square │ │ p1 : rectangle │ │ p3 : rhombus │ 
│ p2 : square        │ └─────────────┘ └────────────────┘ └──────────────┘ 
│ p3 : rhombus       │ 
└────────────────────┘ 

 
Note the attribute declared types in particular in these pictures—especially the first one, 

where I’m relying on the fact that PARALLELOGRAM is the most specific common supertype 
of types RECTANGLE, SQUARE, and RHOMBUS.  For further explanation, see the discussion 
of IM Prescription 24 in Chapter 18.   
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IM Prescription 14: TREAT  
 
Given the TREAT invocation TREAT_AS_T (X), where X is an expression, this prescription 
requires T and the declared type DT(X) of the expression X to overlap (this is a compile time 
check).  Thus, for example, the following code fragment is valid:   
 

VAR RE RECTANGLE ;  
VAR RH RHOMBUS ;  
 
RH := TREAT_AS_RHOMBUS ( RE ) ;  
 
The TREAT invocation here is valid because types RECTANGLE and RHOMBUS do 

overlap (i.e., they have a nonempty common subtype, viz., type SQUARE); moreover, it will 
succeed if and only if the current value of variable RE is of type SQUARE (i.e., if and only if RE 
currently contains a value of that common subtype).  As noted under IM Prescription 11 above, 
therefore, the assignment shown could equally well have been expressed as follows:   

 
RH := TREAT_AS_SQUARE ( RE ) ;  
 
Note:  Perhaps you’ll recall the following remarks (lightly edited here) from the discussion 

of TREAT in Chapter 10:   
 

Given the expression TREAT_AS_T (X), T would normally be a proper subtype of DT(X).  But 
there’s no reason to insist on this state of affairs, and with multiple inheritance, in fact, it would be 
counterproductive to do so.   

 
Now I can explain these remarks.  To be specific, if we required T to be a proper subtype of 
DT(X), then an expression such as the following wouldn’t be valid:2   
 

TREAT_AS_RHOMBUS ( RE )  
 

(On the other hand, we’ve already seen that this particular expression could be harmlessly 
replaced by the following—  
 

TREAT_AS_SQUARE ( RE )  
 

—and this latter expression does satisfy the property that T is a proper subtype of DT(X).)   
 

                                                             
 
2 Indeed, we saw in Chapter 10 that an expression such as TREAT_AS_ELLIPSE (C), where DT(C) is CIRCLE, really ought to 
be valid as well, even if it might not be particularly useful.  (As a matter of fact, the same goes for TREAT_AS_ELLIPSE (E), 
where DT(E) is ELLIPSE.)  As we’ve already seen, therefore, it would be undesirable even in the single inheritance case to insist 
that T must always be a proper subtype of DT(X).   
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IM Prescription 15: Type Testing  
 
Given the IS_T invocation IS_T (X), where X is an expression, this prescription requires T and 
the declared type DT(X) of the expression X to overlap (this is a compile time check).  Thus, for 
example, the following code fragment is valid:   
 

VAR RE RECTANGLE ;  
 
IF IS_RHOMBUS ( RE ) THEN ... ;  
 
The type test here is valid because types RECTANGLE and RHOMBUS do overlap (i.e., 

they have a nonempty common subtype, viz., type SQUARE); moreover, it will give TRUE if 
and only if the current value of variable RE is of type SQUARE (i.e., if and only if RE currently 
contains a value of that common subtype).  In other words, the IF statement shown could equally 
well have been expressed as follows:   

 
IF IS_SQUARE ( RE ) THEN ... ;  
 
Note:  Perhaps you’ll recall the following remarks (lightly edited here) from the discussion 

of IS_T in Chapter 10:   
 

Given the expression IS_T (X), T will often be a proper subtype of DT(X).  But there’s no reason to 
insist on this state of affairs, and with multiple inheritance, in fact, it would be counterproductive to 
do so.   

 
Now I can explain these remarks.  To be specific, if we required T to be a proper subtype of 
DT(X), then an expression such as the following wouldn’t be valid:3   
 

IS_RHOMBUS ( RE )  
 

(On the other hand, we’ve already seen that this particular expression could be harmlessly 
replaced by the following—  
 

IS_SQUARE ( RE )  
 

—and this latter expression does satisfy the property that T is a proper subtype of DT(X).)   
 
 

                                                             
 
3 Footnote 2 applies here also, mutatis mutandis.   
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IM PRESCRIPTIONS 16 - 20  
 
These prescriptions also all apply 100 percent, but there’s even less to say about them than there 
was to say about IM Prescriptions 10-15.   So I’ll content myself with simply listing the 
prescriptions together with their informal titles, just to remind you what they’re all about.  Note 
that numbers 16-19 all have to do with the general issue of substitutability (they were discussed 
in depth in Chapter 11).  Number 20 has to do with union, dummy, and maximal and minimal 
types; it was discussed in depth in Chapter 12.   

 
! IM Prescription 16: Value substitutability  
 
! IM Prescription 17: Operator signatures  
 
! IM Prescription 18: Read-only parameters to update operators  
 
! IM Prescription 19: Variable substitutability  
 
! IM Prescription 20: Union and dummy types etc.  
 
 

EXERCISES  
 
16.1 With reference to Fig. 15.3 in Chapter 15, is type QUADRILATERAL a union type?  If it 
is, do you think it should be a dummy type?  Justify your answers.   
 
16.2 The answer to Exercise 12.4 in Chapter 12 showed that a union type (other than type 
omega) must have at least two immediate subtypes.  But do those immediate subtypes have to be 
pairwise disjoint?   
 
16.3 Can a type have more than one dummy type as an immediate subtype?   
 
The remaining exercises all appeal to a family of types called RATIONAL_p_q (p ≥ 1, q ≥ 0) 
such that a given value is of type RATIONAL_p_q if and only if it’s a number whose literal 
representation in decimal notation takes the form int.frac, where:   

 
! int and frac are both sequences of decimal digits  
 
! int consists of at most p - q significant digits  
 
! frac consists of at most q significant digits  
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Note:  It’s worth pointing out that this family of types is very similar, though not identical, to the 
SQL family of types DECIMAL(p,q).  In other words, DECIMAL (like CHAR, VARCHAR, 
etc.) can be regarded as a type generator in SQL.   
 
16.4 Is it true that type RATIONAL_p′_q′ is a subtype of type RATIONAL_p_q if and only if 
p′ ≤ p and q′ ≤ q both hold?  Do you agree that this is a case of multiple inheritance?   
 
16.5 Does value substitutability apply?   
 
16.6 Are there any operators that apply to values of type RATIONAL_p′_q′ and not to values of 
type RATIONAL_p_q?   
 
16.7 Do S by C and G by C apply?   
 
16.8 Is there a nonempty type that’s a subtype of all possible types in the family?   
 
16.9 Consider the literal 0012.30.  What’s the declared type of that literal?  What’s the most 
specific type?   
 
 
ANSWERS		
	
16.1	 Given	that	there	exist	quadrilaterals	that	aren’t	trapezoids,	kites,	or	cyclic,	it	doesn’t	seem	
to	make	much	sense	to	make	QUADRILATERAL	a	union	type.		Thus,	it’s	not	a	dummy	type	
either,	a	fortiori.			
	
16.2	 No,	they	don’t.		For	example,	suppose	we’re	interested	in	rectangles	and	rhombi	but	not	
in	any	other	parallelograms.		Then	PARALLELOGRAM	would	be	a	union	type,	with	two	
immediate	subtypes,	RECTANGLE	and	RHOMBUS,	that	overlap.			
	
16.3	 Yes,	it	can,	but	only	if	the	type	in	question	is	itself	a	dummy	type	(see	the	answer	to	
Exercise	12.6	in	Chapter	12).		For	example,	suppose,	not	entirely	unreasonably,	that	type	
POLYGON	is	a	dummy	type.		Then	polygons	in	general	might	be	divided	into	regular	vs.	irregular	
polygons,	each	of	which	might	conceivably	be	a	dummy	type	in	turn.			
	
16.4	 First	note	that	this	exercise	and	the	ones	that	follow	constitute	a	multiple	inheritance	
analog	of	the	exercises	in	Chapter	8.		Second,	yes,	type	RATIONAL_pʹ_qʹ	is	a	subtype	of	type	
RATIONAL_p_q	if	and	only	if	pʹ	≤	p	and	qʹ	≤	q	both	hold,	as	the	following	analysis	demonstrates:			
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!	 If	pʹ	<	p,	then	every	value	of	type	RATIONAL_pʹ_q	satisfies	the	type	constraint	for	type	
RATIONAL_p_q.		Likewise,	if	qʹ	<	q,	then	every	value	of	type	RATIONAL_p_qʹ	satisfies	the	
type	constraint	for	type	RATIONAL_p_q.		Thus,	if	pʹ	≤	p	and	qʹ	≤	q,	then	RATIONAL_pʹ_qʹ	is	
a	subtype	of	RATIONAL_p_q.		(And	if	either	of	those	“≤”	symbols	is	replaced	by	a	“<”	
symbol,	then	RATIONAL_pʹ_qʹ	is	a	proper	subtype	of	RATIONAL_p_q.)			

	
!	 If	pʹ	>	p,	then	some	values	of	type	RATIONAL_pʹ_q	have	an	int	portion	of	more	than	p	-	q	

significant	digits	and	so	aren’t	values	of	type	RATIONAL_p_q.		Likewise,	if	qʹ	>	q,	then	
some	values	of	type	RATIONAL_p_q	have	a	frac	portion	of	more	than	q	significant	digits	
and	so	aren’t	values	of	type	RATIONAL_p_q.		Thus,	if	pʹ	>	p	or	qʹ	>	q,	then	RATIONAL_pʹ_qʹ	
isn’t	a	subtype	of	RATIONAL_p_q.			

	
Yes,	this	is	a	case	of	multiple	inheritance.		To	see	that	this	is	so,	consider	the	following	

specific	case:			
	
!	 Type	RATIONAL_3_1	is	a	proper	subtype	of	type	RATIONAL_4_1	(every	value	of	type	

RATIONAL_3_1	is	a	value	of	type	RATIONAL_4_1	as	well—to	be	specific,	a	value	of	type	
RATIONAL_4_1	for	which	the	integer	part	consists	of	at	most	three	significant	digits).			

	
!	 Type	RATIONAL_3_1	is	also	a	proper	subtype	of	type	RATIONAL_4_2	(every	value	of	type	

RATIONAL_3_1	is	a	value	of	type	RATIONAL_4_2	as	well—to	be	specific,	a	value	of	type	
RATIONAL_4_2	for	which	the	fractional	part	consists	of	at	most	one	significant	digit).			

	
!	 Neither	of	RATIONAL_4_1	and	RATIONAL_4_2	is	a	subtype	of	the	other;	for	example,	

999.9	is	a	value	of	the	first	type	that’s	not	a	value	of	the	second,	while	99.99	is	a	value	of	
the	second	type	that’s	not	a	value	of	the	first.		Thus	RATIONAL_3_1	has	two	distinct	
proper	supertypes,	neither	of	which	is	a	subtype	of	the	other,	and	so	we’re	dealing	with	
multiple	inheritance.			

	
16.5	 Yes,	by	definition.			
	
16.6	 In	principle,	yes—for	example,	any	operator	for	which	some	rational	operand	is	
constrained	to	consist	of	no	more	than	pʹ	significant	digits	would	be	such	an	operator—but	it	
has	to	be	admitted	that	concrete	examples	of	such	operators	do	tend	to	seem	very	contrived.			
	
16.7	 Yes,	by	definition.			
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16.8	 Let	ZERO	be	a	type	containing	just	the	value	0.0.		Then	ZERO	is	a	nonempty	subtype	of	
every	type	in	the	family.		(Of	course,	type	ZERO	isn’t	itself	a	member	of	the	RATIONAL_p_q	
family.)			
	
16.9	 We	don’t	really	have	enough	information	to	answer	this	question—it’s	a	matter	of	how	
the	pertinent	language	is	defined.		But	it’s	probably	reasonable	to	assume	that	the	declared	
type	of	the	specified	literal	is	RATIONAL_3_1.		Indeed,	if	it	isn’t,	then	the	literal	isn’t	very	useful!		
Note	that	the	declared	type	can’t	be	RATIONAL_p_q	for	some	p	>	3	or	some	q	>	1,	for	then	the	
literal	couldn’t	be	assigned	to	a	variable	of	declared	type	RATIONAL_3_1,	even	though	it	clearly	
denotes	a	value	of	that	type	(we’d	have	to	assign	CAST_AS_RATIONAL_3_1	(0012.30)	instead—
not	a	very	user	friendly	state	of	affairs).		At	the	same	time	the	declared	type	can’t	be	
RATIONAL_p_q	for	some	p	<	3	or	some	q	<	1,	because	the	value	denoted	by	the	literal	certainly	
has	type	RATIONAL_3_1	(as	well	as	some	user	defined	proper	subtype	thereof,	possibly,	if	any	
such	exists),	and	the	declared	type	of	an	expression	can’t	possibly	be	a	proper	subtype	of	the	
most	specific	type	of	the	value	it	denotes.			
	
	



  

	



P a r t   I V 
 
 
 

T U P L E   A N D 
 

R E L A T I O N   I N H E R I T A N C E 
 
 
 

The title of this book is Type Inheritance and Relational Theory, but—with the exception of the 
preliminary material in Chapters 2 and 3 and the discussions of IM Prescription 13 in Chapters 9 
and (briefly) 16, plus a few miscellaneous remarks here and there—it hasn’t really had much to 
say so far regarding relational theory as such.  But Part IV of this book, which consists of four 
chapters, remedies that situation somewhat.  To be specific, it revisits all of the concepts 
introduced in Parts II and III for scalar types and considers what happens to those concepts when 
tuple and relation types are taken into account as well.   
 
 
 



 



  

	

Chapter  17 
 
 

T u p l e / R e l a t i o n   V a l u e s 
 
 

w i t h   I n h e r i t a n c e 
 
 

Everything exists, nothing has value  
—E. M. Forster: 

A Passage to India (1924) 
 
 

Consider the following tuple types:   
 

TUPLE { E ELLIPSE , R RECTANGLE }    /* “tuple type ER” */  
TUPLE { E CIRCLE  , R RECTANGLE }    /* “tuple type CR” */  
TUPLE { E ELLIPSE , R SQUARE    }    /* “tuple type ES” */  
TUPLE { E CIRCLE  , R SQUARE    }    /* “tuple type CS” */  
 
Note the informal names (“tuple type ER,” etc.) for these types as given in the comments.  

Now, observing with reference to the running example from Part II of this book that CIRCLE 
and SQUARE are subtypes of ELLIPSE and RECTANGLE, respectively, it should be clear that 
every tuple of type CS is also a tuple of both type CR and type ES, and further that every tuple of 
type CR or type ES is also a tuple of type ER.  Thus, it should also be clear that tuple type CS is 
a subtype of both tuple type CR and tuple type ES, and further that tuple types CR and ES are 
both subtypes of tuple type ER.  In other words, subtype / supertype relationships hold as 
indicated in Fig. 17.1 below.   
 

            ┌───────────────┐ 
            │    type ER    │ 
            └───────┬───────┘ 
       ┌────────────┴────────────┐ 
┌──────▼──────┐           ┌──────▼──────┐ 
│   type CR   │           │   type ES   │ 
└──────┬──────┘           └──────┬──────┘ 
       └────────────┬────────────┘ 
            ┌───────▼───────┐ 
            │    type CS    │ 
            └───────────────┘ 
 
Fig. 17.1: A type graph involving tuple or relation types  
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Here are some further points arising in connection with this example that should be clear as 
well but in any case are worth spelling out explicitly:   

 
! All four tuple types have the same attribute names.   
 
! Each of the four tuple types overlaps (i.e., has values in common with) each of the other 

three.   
 
! Every pair of tuple types out of the four has at least one common subtype and at least one 

common supertype.  In particular, the pair CR and ES, neither of which is a subtype of the 
other, has both (a) a common subtype (viz., type CS) that’s not one of the types in question, 
and (b) a common supertype (viz., type ER) that’s also not one of the types in question.   
 

! In fact, every pair of tuple types out of the four has both a least specific common subtype—
i.e., an intersection type—and a most specific common supertype.  In the case of the pair 
CR and ES in particular, CS is the least specific common subtype and ER is the most 
specific common supertype.   
 
Next, all of the foregoing remarks apply to relation types also, mutatis mutandis.  That is, 

given relation types as follows—  
 

RELATION { E ELLIPSE , R RECTANGLE }    /* “relation type ER” */  
RELATION { E CIRCLE  , R RECTANGLE }    /* “relation type CR” */  
RELATION { E ELLIPSE , R SQUARE    }    /* “relation type ES” */  
RELATION { E CIRCLE  , R SQUARE    }    /* “relation type CS” */  
 

—it should be clear that:1   
 
! All four relation types have the same attribute names.   
 
! Each of the four relation types overlaps each of the other three.   
 
! Every pair of relation types out of the four has at least one common subtype and at least 

one common supertype.  In particular, the pair CR and ES, neither of which is a subtype of 
the other, has both (a) a common subtype (viz., type CS) that’s not one of the types in 
question, and (b) a common supertype (viz., type ER) that’s also not one of the types in 
question.   
 

! In fact, every pair of relation types out of the four has both a least specific common 
subtype—i.e., an intersection type—and a most specific common supertype.  In the case of 

                                                             
 
1 Actually, for reasons to be discussed later in this chapter as well as in the next, these points might not be quite as clear as they 
seem (not as clear as their tuple counterparts, at any rate).  But they’re valid nonetheless.   
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the pair CR and ES in particular, CS is the least specific common subtype and ER is the 
most specific common supertype.   
 
It follows that Fig. 17.1 can serve to depict the foregoing relation subtype / supertype 

relationships as well as the tuple ones discussed earlier.  That being the case, I’ll use it as basis 
for most of my examples (both tuple and relation examples) throughout this part of the book.2  
Also, for brevity, most of the time I’ll refer to the types involved by those informal names ER, 
CR, ES, and CS.  However, I must stress the point that those names are indeed informal.  The 
correct names are as shown earlier.  For example, the correct name for “tuple type ER” is:   
 

TUPLE { E ELLIPSE , R RECTANGLE }  
 
Similarly, the correct name for “relation type ER” is:   
 

RELATION { E ELLIPSE , R RECTANGLE }  
 

I’d also like to stress the fact that, regardless of whether we’re talking about tuple or 
relation types, the type graph of Fig. 17.1 involves multiple inheritance.  In fact it should be 
obvious that tuple and relation type inheritance will usually be multiple inheritance specifically, 
which is why I chose to discuss multiple inheritance first, in the previous part of the book.  (It’s 
also another reason why I claim support for type inheritance in general must include support for 
multiple inheritance in particular.)  Now I’m in a position to discuss tuple and relation 
inheritance as such.   

Now, you might be thinking it would be better, at least from a pedagogic point of view, to 
treat tuple types exclusively first, and then to extend that treatment to cover relation types as 
well.  In practice, however, tuple and relation type inheritance are so intricately intertwined that 
it’s virtually impossible to treat them separately.  Indeed, it turns out (as you’ll soon see) that 
many of the concepts and definitions to be discussed:   

 
a. Come in pairs (a tuple version and a relation version), and  
 
b. Are both recursive (meaning they refer to themselves) and mutually recursive (meaning 

they refer to each other).  Note:  Actually these two points shouldn’t come as a surprise, 
given that tuples and relations can have tuple valued attributes or relation valued attributes 
or both.   

 

                                                             
 
2 Note, therefore, that—again with reference to the running example from Part II of this book—I’m effectively replacing the 
scalar type hierarchy from that example by two separate such hierarchies, one rooted in type ELLIPSE and the other in type 
RECTANGLE (in other words, I’m ignoring types POLYGON and PLANE_FIGURE altogether, unless the context demands 
otherwise).  These remarks apply throughout this chapter and the next three.   
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Terminology:  In what follows, I’ll use the abbreviation tuple / relation to stand for either 
tuple and relation or tuple or relation, as the sense demands (at least when such terms are used 
as a qualifier, as in, e.g., the phrase “tuple and relation types,” which I’ll abbreviate accordingly 
to just tuple / relation types).  Also, I’ll continue to use the symbols T and T′ generically to refer 
to a pair of types such that T′ is a subtype of T (equivalently, such that T is a supertype of T′)—
but now, of course, those types might be tuple or relation types instead of just scalar types as 
previously.   
 
 
TUPLE / RELATION PRESCRIPTIONS  
 
There are eight prescriptions in our model that have to do with tuple / relation inheritance 
specifically, and the following brief summary gives some sense of what they cover:   

 
! IM Prescription 21: Empty types  
 
! IM Prescription 22: Tuple / relation subtypes and supertypes  
 
! IM Prescription 23: Proper and immediate tuple / relation subtypes and supertypes  
 
! IM Prescription 24: Common tuple / relation subtypes and supertypes  
 
! IM Prescription 25: Tuple / relation maximal and minimal types  
 
! IM Prescription 26: Tuple / relation root and leaf types  
 
! IM Prescription 27: Tuple / relation most specific types  
 
! IM Prescription 28: Model of a tuple / relation variable  

 
The present chapter deals with the first three from this list; the others are discussed in the 

next three chapters.   
 
 
IM PRESCRIPTION 21: EMPTY TYPES  
 
Type T shall be an empty type if and only if it is either an empty scalar type or an empty tuple 
type.  Scalar type T shall be empty if and only if T is type omega.  Tuple type T shall be empty if 
and only if T has at least one attribute that is of some empty type.  An empty type shall be 
permitted as the type of (a) an attribute of a tuple type or relation type; (b) nothing else.   
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——— ♦♦♦♦♦ ——— 
 
I discuss this prescription in this part of the book because it does concern itself, mostly, with 
tuple types specifically and thus wouldn’t have made a lot of sense prior to this point—though it 
does necessarily discuss the sole empty scalar type (viz., type omega) as well because, ultimately, 
those empty tuple types all derive from type omega.  Also, the last sentence of the prescription in 
the Explorations version referred to declared types specifically, not to types in general, but the 
intrusion of that qualifier “declared” in that version seems to be unnecessarily restrictive.   
 
The intent of this prescription is simply to provide an explicit definition for the concept of an 
empty type—a concept that has given rise to more than its fair share of difficulties in the past, I 
might add—and to say exactly where such types are permitted.   

First of all, as the prescription says (and as we already know, of course), there’s exactly one 
empty scalar type: viz., type omega.  By contrast, there can be any number of empty tuple types 
(note that the definition of this latter concept as given in the prescription is recursive).  Here are 
some examples:   

 
TUPLE { E omega }  
 
TUPLE { E ELLIPSE , R omega }  
 
TUPLE { E ELLIPSE , X TUPLE { R omega } }  

 
Now let RT be an arbitrary relation type, with heading H.  By definition, then, there’s 

always at least one relation of type RT—namely, the relation with heading H and body the empty 
set, or in other words the empty relation of type RELATION H.3  It follows that there’s no such 
thing as an empty relation type, which is why IM Prescription 21 makes no mention of such a 
thing (not explicitly, at any rate).   

Now, the prescription says an empty type is permitted only in certain circumstances.  In 
order to see how and why this restriction is reasonable, let’s consider one at a time each of the 
various constructs in our model to which the concept of having a type applies:   
 
! Scalar and tuple values and variables:  By definition, there’s no value—and hence no 

scalar or tuple value in particular—of any empty type.  It follows that an attempt to define a 
scalar or tuple variable with an empty declared type will certainly fail at run time if not at 
compile time, because there’s no initial value that can be assigned to that variable.   

                                                             
 
3 I note in passing that “the empty relation of type RELATION H” (for any given heading H) is also the empty relation of type 
RELATION H’ for all headings H′ such that RELATION H′ is a proper subtype of type RELATION H (see the discussion of IM 
Prescription 23, later).  Another way of saying the same thing is this:  Let T and T′ be the relation types RELATION H and 
RELATION H′, respectively, and let type T′ be a subtype of type T.  Further, let heading H have an attribute of some empty type.  
Then the sets |T| and |T′| are equal—both contain just one value, viz., the empty relation of type T.   

For tuples, the situation is analogous but not quite the same.  To be specific, let T and T′ be the tuple types TUPLE H and 
TUPLE H′, respectively, and let type T′ be a subtype of type T.  Further, let heading H have an attribute of some empty type.  
Then the sets |T| and |T′| are equal—in fact, both are empty.  Again, see IM Prescription 23 later for further discussion.   
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! Relation values and variables:  As we saw above, there’s no relation value (i.e., no 

relation) of any empty type, because there aren’t any empty relation types.  Hence, there’s 
no way a relation variable (i.e., a relvar) can possibly be defined with an empty declared 
type.   

 
! Possible representation (“possrep”) components:  An attempt to define a scalar type T 

with a possrep component of some empty declared type will certainly fail at run time if not 
at compile time, because there’s no example value that can be specified for that type T.   

 
! Read-only operators:  Let Op be a read-only operator.  By definition, no invocation of Op 

can return a result of any empty type.  It follows that an attempt to define an invocation 
signature for Op—and, a fortiori, an attempt to define the specification signature for Op—
with an empty declared type is illegal (if the violation isn’t caught at compile time, any 
corresponding invocation of Op will certainly fail at run time).   

 
! Expressions:  By definition, any given expression represents an invocation of some 

read-only operator.  It follows that no expression can be of any empty type.   
 
! Parameters:  Let operator Op have a parameter P.  By definition, (a) P is replaced by an 

argument when Op is invoked and (b) no argument can be of any empty type.  It follows 
that an attempt to define an invocation signature for Op—and, a fortiori, an attempt to 
define the specification signature for Op—with a parameter of some empty declared type is 
illegal (if the violation isn’t caught at compile time, any corresponding invocation of Op 
will certainly fail at run time).   

 
! Attributes:  In contrast to all of the above, attributes of tuple and relation types can be of 

some empty type.4  With regard to tuple types in particular, however, a tuple type TT with 
an attribute of some empty type is (as IM Prescription 21 states) necessarily empty in turn, 
and it can’t be used as the type of anything other than some attribute of some other tuple 
type or some relation type.   

 
 
IM PRESCRIPTION 22: TUPLE / RELATION SUBTYPES AND SUPERTYPES  
 
Let T and T′ be both tuple types or both relation types.  Then type T′ shall be a subtype of type T, 
and type T shall be a supertype of type T′, if and only if (a) T and T′ have the same attribute 
names A1, A2, ..., An and (b) for all j (j = 1, 2, ..., n), the type of attribute Aj of T′ is a subtype of 

                                                             
 
4 This observation is true of attributes of minimal types in particular, but a type doesn’t have to be a minimal type in order to have 
such an attribute.  See Chapter 19 for further discussion.   
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the type of attribute Aj of T.  Tuple t shall be of tuple type T if and only if t has a heading that is 
that of some subtype of T.  Relation r shall be of relation type T if and only if r has a heading that 
is that of some subtype of T (in which case every tuple in the body of r shall also have a heading 
that is that of some subtype of T).   
 

——— ♦♦♦♦♦ ——— 
 
The third and fourth sentences of this prescription have been tightened up somewhat, compared 
to the corresponding sentences in the Explorations version.  Here for example is the Explorations 
version of the third sentence:   
 

Tuple t shall be of some subtype of tuple type T if and only if the heading of t is that of some 
subtype of T.   

 
But this sentence fails to specify just which subtypes of T are the ones that tuple t is 

supposed to be of!  By way of example, if t is TUPLE {E c, R r}, where c and r are of most 
specific types CIRCLE and RECTANGLE, respectively, then the sentence would apparently 
allow t to be of tuple type ES and/or of tuple type CS.  (After all, (a) tuple t in this example has 
heading {E CIRCLE, R RECTANGLE};5 (b) that heading is the heading of some subtype of 
tuple type ER; and (c) tuple types ES and CS are each “some subtype” of tuple type ER.)  By 
contrast, the revised version— 
 

Tuple t shall be of tuple type T if and only if t has a heading that is that of some subtype of T.   
 
—states explicitly, in effect, that tuple t in the example is of tuple types CR and ER and no 
others.   

Analogous remarks apply to the fourth sentence of the prescription also, regarding relation 
types.6   
 
Tuple Subtypes, Supertypes, and Values  
 
In the introduction to this chapter, I said the following:   
 
                                                             
 
5 It has heading{E ELLIPSE, R RECTANGLE} as well, of course.  For simplicity, however, I adopt the convention throughout 
the remainder of this book that to say a tuple or relation has heading H is to say that H is the heading of the most specific type of 
the tuple or relation in question (see the discussion of IM Prescription 27 in Chapter 20), unless the context demands otherwise.  
Analogously (somewhat), I also adopt the convention throughout the remainder of this book that to say a tuplevar or relvar has 
heading H is to say that H is the heading of the declared type of the tuplevar or relvar in question (and similarly for (a) tuplevar 
and relvar attributes, (b) read-only operators, (c) parameters, and (d) expressions, mutatis mutandis, unless the context demands 
otherwise).   
 
6 However, I note in passing that, perhaps a little counterintuitively, it’s possible (a) for some given relation r to be of type 
RELATION H and not of any proper subtype of that type and yet (b) for some or even all of the tuples in that relation to be of 
some proper subtype of type TUPLE H.  See the discussion of relation most specific types in Chapter 20.   



 
 
350      Chapter 17 / Tuple / Relation Values with Inheritance 

[It] should ... be clear that tuple type CS is a subtype of both tuple type CR and tuple type ES, and 
further that tuple types CR and ES are both subtypes of tuple type ER.   

 
Well, I do think these things should be clear, at least intuitively, but let’s examine them a 

little more carefully.  First of all, let’s agree for simplicity that—as far as this subsection is 
concerned, at any rate—the unqualified term type refers to a tuple type specifically, barring 
explicit statements to the contrary.7  Now let me call your attention to something I said earlier: 
viz., that types ER, CR, ES, and CS all have the same attribute names.  Thus, if we define a tuple 
variable (or “tuplevar”) as follows—  

 
VAR TV TUPLE { E ELLIPSE , R RECTANGLE } ;  
 

—then, clearly, (a) variable TV is of declared type ER; equally clearly, (b) a tuple of any of the 
four types ER, CR, ES, and CS can be assigned to that variable.  Note:  Recall that in Tutorial D 
tuple types are simply available for use, as it were (typically but not necessarily as the declared 
type of some tuple variable, as in the example); they don’t have to be separately, explicitly 
defined.  In fact, for reasons mentioned in passing in Chapter 2, Tutorial D doesn’t provide any 
kind of explicit “define tuple type” operator anyway.  Thus, all four types ER, CR, ES, and CS 
are certainly available for us to use as we see fit whenever and however we want to.   

Now let’s concentrate for a moment on the two extreme cases, types ER and CS.  Does it 
really make sense to regard type CS as a subtype of type ER?  Well, it’s certainly true that:   

 
! Every type constraint that applies to values of type ER applies to values of type CS as well, 

while the converse is false.  Note:  Since Tutorial D doesn’t provide any kind of explicit 
“define tuple type” operator, the only type constraints that apply to a tuple type T are ones 
implied by those that apply to the attributes of T.  Thus, there’s no way type ER could be 
subject to any type constraint that didn’t also apply to type CS.  But type CS is certainly 
subject to constraints that don’t apply to values of type ER in general; to be specific, it’s 
subject to the constraints that (a) values of attribute E must be of type CIRCLE and 
(b) values of attribute R must be of type SQUARE.   

 
! Every operator that applies to values of type ER applies to values of type CS as well, while 

the converse is false.  Note:  The operators that apply to values of type ER (and therefore to 
values of type CS as well) are (a) the generic tuple operators required by The Third 
Manifesto (tuple comparisons, tuple rename, tuple join, and so on), together with (b) those 
user defined tuple operators, if any, that have been defined for values of type ER.  The 
operators that apply to values of type CS but not to values of type ER are (a) “compound” 
operators, as in, e.g., THE_R (E FROM csx)—where csx is an expression of tuple type 
CS—that rely on attribute E being of type CIRCLE or attribute R being of type SQUARE, 

                                                             
 
7 As we’ll see in the next subsection (and as you’d surely expect), everything the present subsection has to say about tuple types 
applies to relation types as well, mutatis mutandis.   
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together with (b) those user defined tuple operators, if any, that have been defined for 
values of type CS specifically.   

 
Clearly, all of these observations are in accord with our usual understanding of what it 

means for one type to be a subtype of another, and so there does seem to be a good prima facie 
case for regarding CS as a subtype of ER (and ER as a supertype of CS).  But is it useful to do 
so?  The answer, of course, is yes.  In particular, the concept of value substitutability applies, 
meaning that wherever the system expects a value of type ER, we can always substitute a value 
of type CS instead.  Among other things, therefore, we can assign a value of type CS to a 
variable of type ER, and we can test a variable of type CS and one of type ER for equality (see 
Chapter 20 for further discussion).   

So much for the relationship between the “extreme” cases ER and CS.  Analogously, of 
course, it does make sense to say that types CR and ES are subtypes of type ER and supertypes 
of type CS, while neither of types CR and ES is a subtype of the other.   

With the foregoing discussion by way of motivation, then, let’s try to pin down exactly 
what it means for tuple type TT′ to be a subtype of tuple type TT.  Note:  Here and elsewhere in 
this chapter I choose to depart slightly from our usual “T′ vs. T” naming convention, despite the 
fact that the pertinent IM prescriptions themselves don’t.   

First of all, of course, TT′ and TT must have the same attribute names, for otherwise there’s 
no way a value of type TT′ can possibly be a value of type TT.  So we might attempt a definition 
along the following lines:   

 
Definition:  Let tuple types TT and TT′ have headings  
 
{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
 
respectively.  Then tuple type TT′ is a subtype of tuple type TT (and tuple type TT is a 
supertype of tuple type TT′) if and only if, for all j (j = 1, 2, ..., n), type Tj′ is a subtype of 
type Tj (equivalently, type Tj is a supertype of type Tj′).   
 
And in fact this definition is perfectly acceptable, provided we understand that, for any 

given j, types Tj and Tj′ might themselves be tuple types in turn or even relation types (because, 
as noted earlier, tuples can have tuple and relation valued attributes).  In other words, the 
foregoing definition of what it means for one tuple type to be a subtype of another:   

 
a. Is certainly recursive, but also  

 
b. Relies on a definition of what it means for one relation type to be a subtype of another, a 

possibility I haven’t yet discussed in detail.   
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So I need to discuss relation subtypes and supertypes.  I’ll do that in the next subsection.  
First, however, let me finish up the present subsection by stating for the record exactly what it 
means for a given tuple to be of a given type (note that I haven’t actually done this yet—not 
quite, anyway).  The necessary definition is straightforward, however:   
 

Definition:  Let tuple type TT have heading  
 

{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  
 

Then tuple t has, or is of, type TT if and only if it has a heading of the form  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
 
where, for all j (j = 1, 2, ..., n), type Tj′ is a subtype of type Tj (equivalently, type Tj is a 
supertype of type Tj′).   
 
Or in other words (more simply, and relying on the notion already defined of what it means 

for some tuple type TT′ to be a subtype of tuple type TT):   
 
Definition:  Tuple t is of type TT if and only it’s of some subtype TT′ of type TT.8   
 
Thus, for example, the tuple returned by the “tuple type ER” selector invocation  
 
TUPLE { E CIRCLE ( ... ) , R SQUARE ( ... ) }  
 

is of all four of the tuple types ER, CR, ES, CS.  Note:  In particular, it’s certainly of type CS.  In 
other words, specialization by constraint has occurred in this example.  To repeat something I 
said in Chapter 8, if S by C is performed as described in that chapter for scalar types, it’ll happen 
automatically for tuple and relation types as well, and nothing more needs to be said about the 
matter.   
 
Relation Subypes, Supertypes, and Values  
 
I turn now to relation types.  Let’s agree for simplicity that (at least as far as this subsection is 
concerned) the unqualified term type refers to a relation type specifically, barring explicit 
statements to the contrary.  By way of example, suppose we define a relation variable—i.e., a 
relvar—as follows:   

 
VAR RV BASE RELATION { E ELLIPSE , R RECTANGLE } KEY { E , R } ;  
 

                                                             
 
8 This definition might look circular, but it’s not (see Exercise 17.3 at the end of the chapter).   
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Then it should be clear that, in accordance with the discussions of the previous subsection, the 
relation that’s the value of relvar RV at any given time might contain tuples of any mixture of the 
four tuple types ER, CR, ES, and CS.  It seems reasonable to suggest, therefore, that the type of 
that relation value might be any of the corresponding relation types ER, CR, ES, and CS.  For 
example, if every tuple in that relation value is of tuple type CS, then it surely seems reasonable 
to say that the relation value is of relation type CS.   

Without going through the detailed analysis, therefore—it parallels that already given for 
the tuple case in the previous subsection—it should be clear that we can regard relation type CS 
as a subtype of relation type ER, and so on.  Here’s the definition:   

 
Definition:  Let relation types RT and RT′ have headings  
 
{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
 
respectively.  Then relation type RT′ is a subtype of relation type RT (and relation type RT 
is a supertype of relation type RT′) if and only if, for all j (j = 1, 2, ..., n), type Tj′ is a 
subtype of type Tj (equivalently, type Tj is a supertype of type Tj′).   
 
Once again, however, it must be understood that, for any given j, types Tj and Tj′ might 

themselves be tuple or relation types.  As I hope you were expecting, therefore, the foregoing 
definition of what it means for one relation type to be a subtype of another:   

 
a. Is recursive, and 
 
b. Relies on a definition of what it means for one tuple type to be a subtype of another (but 

this latter is a possibility we’ve already discussed).   
 
So what exactly does it mean for some relation to be of a given type?  It turns out that the 

answer to this question isn’t quite as straightforward as its tuple counterpart was.  I’ll give the 
definition first:   

 
Definition:  Let relation type RT have heading  

 
{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  

 
Then relation r has, or is of, type RT if and only if every tuple t in the body of r has a 
heading of the form  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
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where, for all j (j = 1, 2, ..., n), type Tj′ is a subtype of type Tj (equivalently, type Tj is a 
supertype of type Tj′).   
 
In other words, every tuple t in the body of r is of some type TT′ such that TT′ is a subtype 

of TT, where TT in turn is that specific tuple type that has the same heading as relation type RT.  
Note carefully, however, that different tuples t in the body of r can be of different types TT′, just 
so long as all of those types TT′ are subtypes of that same type TT.9   

Now, I claim that what the foregoing paragraph boils down to—as I hope you’d expect—is 
simply this:   

 
Definition:  Relation r is of type RT if and only it’s of some subtype RT′ of type RT.   
 
However, I can’t fully justify this claim yet, because ultimately it relies on a concept that 

I’m not yet in a position to explain properly—viz., the concept of the most specific type of a 
relation.10  So I’ll have to come back to this issue later (see the discussion of IM Prescription 27 
in Chapter 20).  Meanwhile, let’s look at some examples.   

Consider the relations shown below, all of which are certainly of relation type ER (but 
notice that the headings aren’t always the heading of that type as such).  Most specific types are 
shown in lowercase italics.11   

 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ e1 : ellipse │ r1 : rectangle │ 
│ c2 : circle  │ r2 : rectangle │ 
│ e3 : ellipse │ s3 : square    │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ e1 : ellipse │ r1 : rectangle │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : CIRCLE  │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ c2 : circle  │ r2 : rectangle │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 

                                                             
 
9 To jump ahead of ourselves for a moment, let those various types TT′ have TT* as their most specific common supertype; then 
(a) TT* must be a subtype of that tuple type that has the same heading as relation type RT, and (b) relation r is of most specific 
type RT*, where RT* is that relation type that has the same heading as tuple type TT*.  See the discussion of IM Prescription 27 
in Chapter 20 for further explanation.   
 
10 I did touch on that concept in Chapter 9, however, when I explained our conventions for drawing pictures of relations.   
 
11 If you study those relations carefully, you’ll see that several of them illustrate the points made in footnote 9.   
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┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ c2 : circle  │ r2 : rectangle │ 
│ e3 : ellipse │ s3 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : SQUARE    │ 
├══════════════╪════════════════┤ 
│ e3 : ellipse │ s3 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : CIRCLE  │ R  : SQUARE    │ 
├══════════════╪════════════════┤ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : omega   │ R  : omega     │ 
├══════════════╪════════════════┤ 
└──────────────┴────────────────┘ 

 
Perhaps I should elaborate briefly on the last of these examples.  By definition, no scalar 

value is of type omega and no tuple value has an attribute of type omega.  But a relation value 
can have an attribute of type omega—though any such relation will necessarily be empty (as 
indeed it is in the case at hand).   
 
 
IM PRESCRIPTION 23:  
PROPER AND IMMEDIATE TUPLE / RELATION SUBTYPES AND SUPERTYPES  
 
Let T and T′ be both tuple types or both relation types, with headings  

 
{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
 

respectively.  Then T′ shall be a proper subtype of T, and T shall be a proper supertype of T′, if 
and only if (a) for all j (j = 1, 2, ..., n), type Tj′ is a subtype of Tj and (b) there exists at least one j 
(j = 1, 2, ..., n) such that Tj′ is a proper subtype of Tj.  Also, T′ shall be an immediate subtype of 
T, and T shall be an immediate supertype of T′, if and only if (a) there exists some j (j = 1, 2, ..., 
n) such that Tj′ is an immediate subtype of Tj and (b) for all k (k = 1, 2, ..., n, k ≠ j), Tk′ = Tk.  If 
and only if T′ is a proper but not an immediate subtype of T, then T′ shall be a nonimmediate 
subtype of T and T shall be a nonimmediate supertype of T′.   
 

——— ♦♦♦♦♦ ——— 
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This prescription is just the tuple / relation analog of IM Prescription 5 (see Chapter 5).  It wasn’t 
included in the Explorations version of the prescriptions, but that was just an oversight—the 
concepts involved were always meant to be part of our inheritance model, and tacitly always 
were.  Of course, the reason for the oversight was probably just that the definitions are all fairly 
obvious; however, I’ll give a few examples for the record (most of them involving tuple types 
specifically, just to be definite).  I’ll also spell out the details of one particular implication of the 
prescription (a slightly unobvious implication, to my way of thinking).  Here first are the 
examples:   

 
! Tuple type ER is a proper supertype of each of tuple types CR, ES, and CS.  It’s also a 

supertype of itself, but of course not a proper one.   
 
! Tuple type CS is a proper subtype of each of tuple types ER, CR, and ES.  It’s also a 

subtype of itself, but of course not a proper one.   
 
! Tuple type ER is an immediate supertype of each of tuple types CR and ES.  It’s also a 

proper supertype of tuple type CS, but not an immediate one.   
 
! Tuple type CS is an immediate subtype of each of tuple types CR and ES.  It’s also a 

proper subtype of tuple type ER, but not an immediate one.   
 

There’s a minor anomaly, however (this is the point I referred to above as being “slightly 
unobvious”).  Recall that if T′ and T are scalar types and T′ is a proper subtype of T, then the set 
of values |T′| is—in fact, is required to be—a proper subset of the set of values |T|.  And the same 
is true if T′ and T are tuple types—unless type T has an attribute of some empty type, in which 
case (as noted in footnote 3) |T| and |T′| are both empty and are therefore equal.  By way of 
illustration, let T and T′ be as follows:   

 
TUPLE { E CIRCLE , R omega }    /* “tuple type T”  */  
 
TUPLE { E omega  , R omega }    /* “tuple type T′” */  
 
In accordance with IM Prescription 23, then, T′ is clearly a proper subtype of T (as a matter 

of fact, it’s also an immediate subtype of T); equally clearly, however, |T′| isn’t a proper subset of 
|T|, since as I’ve already said both sets, and hence both types, are in fact empty.   

As for relation types, a similar but not identical situation arises.  To be specific, if T′ and T 
are relation types and T′ is a proper subtype of T, then the set of values |T′| is a proper subset of 
the set of values |T|—unless type T has an attribute of some empty type, in which case |T′| and |T| 
are again equal.  This time, however, they’re not empty; rather, they both contain exactly one 
value.  By way of illustration, let T and T′ be as follows:   
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RELATION { E CIRCLE , R omega }    /* “relation type T”  */  
 
RELATION { E omega  , R omega }    /* “relation type T′” */  
 
Here T′ is a proper subtype of T but, again, the set of values |T′| isn’t a proper subset of the 

set of values |T|—both contain just one value, viz., the following empty relation:   
 
┌──────────────┬────────────────┐ 
│ E  : omega   │ R  : omega     │ 
├══════════════╪════════════════┤ 
└──────────────┴────────────────┘ 

 
 
EXERCISES  
 
17.1 In the introduction to this chapter, I said it should be obvious that tuple and relation type 
inheritance will usually be multiple inheritance specifically (italics added).  When won’t it be?   
 
17.2 Identify as many ways as you can think of for a type to be empty.   
 
17.3 In the body of the chapter, I said that tuple t was of type TT if and only if it was of some 
subtype of type TT.  Why isn’t this definition circular?   
 
17.4 Is it true that (scalar, tuple, or relation) types T1 and T2 have a least specific common 
subtype and a most specific common supertype if and only if those types T1 and T2 belong to the 
same type lattice?   
 
17.5 Is it true that two tuple types overlap if and only if they belong to the same type lattice?  
What about relation types?   
 
17.6 Give an example of an operator that might be defined for relations of relation type CS and 
not for relations of relation type ER.   
 
17.7 If Op is an operator that applies to relations of relation type ER, do you think it might make 
sense to define distinct implementation versions of Op corresponding to relation types CR, ES, 
and CS?   
 
17.8 The following might be proposed as a picture of a certain relation:   
 

┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ e3 : ellipse │ s3 : square    │ 
│ e5 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
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Do you see anything wrong with it?   
 
17.9 Our model of inheritance, as it applies to tuple and relation types, has been criticized on the 
grounds that we can’t explicitly define, e.g., tuple type TT′ to be an explicitly constrained 
subtype of tuple type TT.  (In other words, all tuple and relation subtyping is implicit in our 
model, being based as it is purely on the types of the pertinent attributes, and there’s no way to 
specify any explicit specialization constraint in connection with tuple or relation types.)12  
Discuss.   
 
17.10 With reference to Fig. 15.3 in Chapter 15, let PKC be the following relation type:   
 

RELATION { P PARALLELOGRAM , K KITE , C CYCLIC_QUADRILATERAL }  
 
Show all immediate supertypes and all immediate subtypes of this type.  How many proper 
subtypes does it have?   
 
 
ANSWERS		
	
17.1	 By	way	of	motivation	(i.e.,	to	show	that	the	question	is	a	reasonable	one),	let	me	first	give	
a	couple	of	examples	that	don’t	involve	multiple	inheritance:		(a)	The	type	TUPLE	{E	ELLIPSE}	
has	just	one	immediate	subtype,	viz.,	TUPLE	{E	CIRCLE}.		(b)	The	type	TUPLE	{E	ELLIPSE,	
X	INTEGER}	also	has	just	one	immediate	subtype,	viz.,	TUPLE	{E	CIRCLE,	X	INTEGER}.		And	so	on.			

Now	let’s	consider	the	general	question.		For	simplicity,	let’s	agree	to	ignore	tuple	and	
relation	maximal	and	minimal	types.13		Observe	next	that	the	question	really	makes	sense	only	
with	respect	to	some	given	tuple	or	relation	type	(i.e.,	it	might	make	sense	to	say	of	some	given	
tuple	or	relation	type	that	it’s	either	involved	or	not	involved	in	multiple	inheritance,	but	it	
doesn’t	make	sense	to	say	such	a	thing	of	tuple	and	relation	types	in	general).		That	said,	let	me	
propose	some	definitions:			
	
!	 Type	T	is	“involved	in	inheritance”	if	and	only	if	it	has	an	immediate	supertype	or	an	

immediate	subtype.			
	

                                                             
 
12 According to the BNF grammar in Chapter 3, when we state, via an <is def> in a formal type definition, that some type T′ is an 
immediate subtype of some other type T, T is required to be a scalar type specifically—but it might be more correct to say it’s 
required to be a nongenerated type specifically (and hence not a tuple or relation type in particular).  Of course, nongenerated 
types are indeed always scalar, but generated types might be scalar too.   
 
13 In the interest of accuracy, I note that “maximal and minimal types” here ought really to be “types with an attribute of some 
superroot or subleaf type” (see the discussion of IM Prescription 26 in Chapter 19).   
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!	 Type	T	is	“involved	in	multiple	inheritance”	if	and	only	if	it	has	at	least	two	distinct	
immediate	supertypes	or	at	least	two	distinct,	overlapping	immediate	subtypes.			

	
Now	let	T	be	a	tuple	or	relation	type	specifically,	and	let	T	have	heading		

	
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  

	
Then	type	T	will	be	involved	in	multiple	inheritance	if	and	only	if	(a)	for	some	j	(j	=	1,	2,	...,	n),	Tj	
is	involved	in	multiple	inheritance,	or	(b)	for	some	j	(j	=1,2,	...,	n)	and	k	(k	=	1,	2,	...,	n),	Tj	and	Tk	
are	distinct	and	are	both	involved	in	inheritance.			
	
17.2	 (a)	There’s	just	one	way	in	which	a	scalar	type	can	be	empty,	and	that’s	if	it’s	type	omega	
(in	other	words,	a	scalar	type	is	empty	if	and	only	if	it’s	type	omega).		(b)	Likewise,	there’s	just	
one	way	in	which	a	tuple	type	can	be	empty,	and	that’s	if	it	has	at	least	one	attribute	of	some	
empty	type	(in	other	words,	a	tuple	type	is	empty	if	and	only	if	it	has	such	an	attribute)—but	of	
course	this	definition	is	recursive.		(c)	There’s	no	way	at	all	in	which	a	relation	type	can	be	
empty,	because	such	a	type	always	contains	at	least	one	value,	viz.,	the	pertinent	empty	
relation.			
	
17.3	 It’s	not	circular	because	it’s	basically	just	an	abbreviated	form	of	a	longer,	more	explicit	
definition,	and	that	longer	definition	in	turn	ultimately	relies	on	the	notion	of	what	it	means	for	
one	scalar	type	to	be	a	subtype	of	another,	a	notion	that	has	already	been	fully	and	
independently	defined	elsewhere.			
	
17.4	 First	let	me	define	the	term	type	lattice	as	I’m	using	it	here	(this	definition	is	basically	as	
given	in	Chapter	5	but	is	tightened	up	just	slightly):			
	

Definition:		Let	T	be	a	type,	and	let	the	corresponding	maximal	type	be	T_alpha;	then	the	
set	of	all	subtypes	of	T_alpha	is	the	type	lattice	with	respect	to	T.			

	
So:		Is	it	true	that	types	T1	and	T2	have	a	least	specific	common	subtype	and	a	most	specific	
common	supertype	if	and	only	if	those	types	T1	and	T2	belong	to	the	same	type	lattice?		For	
scalar	types,	the	answer	is	yes,	albeit	trivially,	because	all	scalar	types	belong	to	the	same	type	
lattice	(see	Chapters	5	and	6).		As	for	tuple	and	relation	types,	let	me	first	note	that:			
	
!	 It	follows	from	IM	Prescription	22	that	if	T_alpha	is	a	maximal	tuple	or	relation	type,	

with	attributes	A1,	A2,	...,	An,	then	T	is	a	subtype	of	T_alpha	if	and	only	if	(a)	T	is	a	tuple	
type	or	a	relation	type	accordingly;	(b)	the	attributes	of	T	have	those	same	names	A1,	
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A2,	...,	An;	and	(c)	for	all	j	(j	=	1,	2,	...,	n),	the	type	of	attribute	Aj	of	T	is	a	subtype	of	the	
type	of	attribute	Aj	of	T_alpha.				

	
!	 It	follows	from	the	previous	point	that	if	T1	and	T2	are	both	tuple	types	or	both	relation	

types,	then	T1	and	T2	belong	to	the	same	type	lattice	if	and	only	if	(a)	their	attributes	
have	the	same	names	A1,	A2,	...,	An,	and	(b)	there	exist	type	lattices	TL1,	TL2,	...,	TLj	such	
that,	for	all	j	(j	=	1,	2,	...,	n),	attribute	Aj	of	T1	and	attribute	Aj	of	T2	both	belong	to	TLj.			

	
(Note	the	recursive	nature	of	the	second	of	these	points.)		And	yes,	it	does	follow	from	these	
considerations	that	tuple	or	relation	types	T1	and	T2	have	a	least	specific	common	subtype	and	
a	most	specific	common	supertype	if	and	only	if	they	belong	to	the	same	type	lattice.		Note:		
For	further	explanation,	see	the	next	three	chapters—especially	Chapter	18,	where	the	issues	
involved	in	this	exercise	are	examined	in	detail,	and	Chapter	19,	where	the	concept	of	a	tuple	/	
relational	maximal	type	is	explained.			
	
17.5	 For	tuple	types,	it’s	false	(though	it’s	at	least	true	that	types	from	different	lattices	are	
disjoint).		For	example,	consider	the	following	pairs	of	types:			
	

TUPLE { E ELLIPSE , R RECTANGLE }   and   TUPLE { E omega , R omega }  
TUPLE { A ELLIPSE }                 and   TUPLE { A RECTANGLE }  
TUPLE { X omega }                   and   TUPLE { X omega }  

	
Each	of	these	pairs	is	such	that	the	two	types	involved	(a)	belong	to	the	same	type	lattice	but	
(b)	are	disjoint.			

For	relation	types,	it’s	true:		Types	from	the	same	type	lattice	certainly	overlap	because	
they	always	have	the	pertinent	empty	relation	in	common,	and	types	from	different	lattices	are	
disjoint.			
	
17.6	 An	example	might	be	an	operator	MAX_R	that	computes	the	maximum	radius	of	the	
circles	that	are	values	of	attribute	E	in	a	relation	of	type	CS.			
	
17.7	 Yes,	of	course	(but	see	the	further	remarks	regarding	this	issue	at	the	end	of	the	section	
discussing	IM	Prescription	27	in	Chapter	20).			
	
17.8	 The	picture	ignores	S	by	C.		If	the	body	is	as	shown,	then	attribute	R	in	the	heading	should	
be	of	type	SQUARE	(see	the	subsection	“Pictures	of	Relations”	in	the	section	discussing	IM	
Prescription	13	in	Chapter	9).			
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17.9	 I’ll	make	just	three	points	here:			
	
!	 The	Third	Manifesto	requires	tuple	and	relation	type	names	to	take	the	form	they	do	for	a	

very	good	reason:	namely,	that	it	facilitates	the	all	important	process	of	type	inference	
(the	process,	that	is,	of	determining	the	type	of	the	result	of	evaluating	an	arbitrarily	
complex	tuple	or	relation	expression).		See	the	Manifesto	book	for	further	explanation,	
also	the	answer	to	Exercise	21.4	in	Chapter	21.			

	
!	 Another	response	to	the	criticism	is	that	sometimes	there	are	obvious	workarounds	that	

will	achieve	what	seems	to	be	the	desired	effect.		To	take	a	concrete	example,	consider	
the	type	TUPLE	{N	INTEGER}.		Now,	it’s	true	that	we	can’t	define	a	type	whose	values	are	
explicitly	constrained	to	be	just	those	tuples	of	that	given	type	for	which	the	value	of	
attribute	N	is	positive.		But	we	don’t	need	to	define	such	a	type	anyway!		All	we	need	to	
do	is	define	a	subtype	of	type	INTEGER,	called	(say)	POSINT,	whose	values	are	just	the	
positive	integers;	then	the	desired	type	is	exactly	the	type	TUPLE	{N	POSINT}.			

	
!	 By	way	of	another	example,	consider	the	type	TUPLE	{X	INTEGER,	Y	INTEGER,	Z	INTEGER}.		

Suppose	we’d	like	to	define	a	type	whose	values	are	just	those	tuples	of	that	given	type	
for	which	the	Z	value	is	equal	to	the	sum	of	the	X	and	Y	values.		The	technique	illustrated	
in	the	previous	bullet	item	won’t	work	here.		Thus,	the	workaround	in	this	case	is	to	
define	an	explicit	constraint	for	every	variable	that	we	might	think	of,	informally,	as	being	
of	the	desired	type. 	For	example:			

	
VAR TV TUPLE { X INTEGER , Y INTEGER , Z INTEGER } ;  
 
CONSTRAINT TC Z FROM TV = X FROM TV + Y FROM TV ;  

	
Note:		Constraint	TC	here	isn’t	a	type	constraint,	however;	in	fact,	it	isn’t	a	legal	constraint	
at	all,	according	to	Tutorial	D	as	currently	defined!		Here’s	what	that	definition	says:		“The	
[constraint]	mustn’t	reference	any	variables	other	than	database	relvars.”		But	it	does	also	
go	on	to	say	this:		“Tutorial	D	doesn’t	support	constraints	that	reference	any	other	kinds	
of	variables,	though	there’s	no	logical	reason	why	it	shouldn’t.”			

	
17.10	 Type	PKC	has	three	immediate	supertypes,	viz.:			
	

RELATION { P TRAPEZOID     , K KITE          , C CYCLIC_QUADRILATERAL }  
RELATION { P PARALLELOGRAM , K QUADRILATERAL , C CYCLIC_QUADRILATERAL }  
RELATION { P PARALLELOGRAM , K KITE          , C QUADRILATERAL        }  
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It	has	six	immediate	subtypes,	viz.:			
	

RELATION { P RECTANGLE     , K KITE          , C CYCLIC_QUADRILATERAL }  
RELATION { P RHOMBUS       , K KITE          , C CYCLIC_QUADRILATERAL }  
RELATION { P PARALLELOGRAM , K RIGHT_KITE    , C CYCLIC_QUADRILATERAL }  
RELATION { P PARALLELOGRAM , K RHOMBUS       , C CYCLIC_QUADRILATERAL }  
RELATION { P PARALLELOGRAM , K KITE          , C RIGHT_KITE           }  
RELATION { P PARALLELOGRAM , K KITE          , C ISOSCELES_TRAPEZOID  }  

	
As	for	proper	subtypes,	believe	it	or	not,	there	are	149	of	them	(!).		Note:		To	understand	why	
there	are	so	many,	see	the	discussion	of	IM	Prescription	26	in	Chapter	19.			
	
	



  

	

Chapter  18 
 
 

T u p l e / R e l a t i o n   V a l u e s   w i t h 
 
 

I n h e r i t a n c e   ( c o n t . ) 
 
 

I have known her continue in this a quarter of an hour  
—William Shakespeare: 

Macbeth (1606) 
 

He’s not such a super type  
—rather a common type, really  

—Anon.: 
Where Bugs Go 

 
 

The previous chapter explained the basic concept of tuple and relation subtypes and supertypes; 
in particular, it touched on the fact that every pair of tuple types and every pair of relation types 
has both a least specific common subtype—i.e., an intersection type—and a most specific 
common supertype (just so long as the types in question both belong to the same type lattice, of 
course, as we saw in the answer to Exercise 17.4).  For example, consider the pair of (either tuple 
or relation) types CR and ES from Fig. 17.1.  For that pair, type CS is the least specific common 
subtype and type ER is the most specific common supertype.  This chapter explains such matters 
in depth.   
 
 
IM PRESCRIPTION 24:  
COMMON TUPLE / RELATION SUBTYPES AND SUPERTYPES  
 
Let T1, T2, ..., Tm (m ≥ 0), T, and T′ be all tuple types or all relation types, with headings  

 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  
 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  
 
  ......................................  
 



 
 
364      Chapter 18 / Tuple / Relation Values with Inheritance (cont.) 

{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  
 
{ <A1,T01>  , <A2,T02>  , ... , <An,T0n>  }  
 
{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 

respectively.  Then:   
 

a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, for all j 
(j = 1, 2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., Tmj.  Further, that 
type T shall be the most specific common supertype for T1, T2, ..., Tm if and only if no 
proper subtype of T is also a common supertype for those types.   
 

b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, for all j 
(j = 1, 2, ..., n), type T0j′ is a common subtype for types T1j, T2j, ..., Tmj.  Further, that type 
T′ shall be the least specific common subtype—also known as the intersection type or 
intersection subtype—for T1, T2, ..., Tm if and only if no proper supertype of T′ is also a 
common subtype for those types.   

 
Note:  Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to 

IM Prescription 25) that a unique most specific common supertype T and a unique least specific 
common subtype T′ always exist.  In the case of that particular common subtype T′, moreover, it 
can also be shown that whenever a given value is of each of types T1, T2, ..., Tm, it is also of 
type T′ (hence the alternative term intersection type)—in which case, for all j (j = 1, 2, ..., n), 
type T0j′ is the intersection type for types T1j, T2j, ..., Tmj.  And it can further be shown that 
every tuple value and every relation value has both a unique least specific type and a unique 
most specific type (regarding the latter, see also IM Prescription 27).   
 

——— ♦♦♦♦♦ ——— 
 
This prescription was number 23 in the Explorations version.  However, the following sentence 
also appeared in that version, immediately following the word “respectively”:  “Further, for all 
j (j = 1, 2, ..., n), let types T1j, T2j, ..., Tmj have a common subtype (and hence a common 
supertype also).” But that sentence adds nothing—it could even be argued to contradict parts a. 
and b. of the prescription, slightly—and is therefore omitted here.   
 
 
COMMON TUPLE SUBTYPES  
 
Once again I’ll focus on tuple types specifically until further notice.  Let tuple types TT1 and TT2 
be such that (a) they have the same attribute names and (b) attributes with the same name have 
overlapping types (thus, TT1 and TT2 certainly belong to the same type lattice); then it should be 
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clear that types TT1 and TT2 themselves overlap as well.1  For example, we know from Part II of 
this book that scalar types ELLIPSE and CIRCLE overlap, and so do scalar types RECTANGLE 
and SQUARE; as a direct consequence, therefore, each of the tuple types ER, CR, ES, and CS in 
Fig. 17.1 overlaps each of the other three.  And if tuple types TT1 and TT2 overlap, it seems 
reasonable to say they must have at least one nonempty common subtype.  For completeness, 
moreover, it also seems reasonable to say that if tuple types TT1 and TT2 don’t overlap, then 
they do still have at least one common subtype (though any such subtype will necessarily be 
empty), just so long as:   

 
a. TT1 and TT2 have the same attribute names.  (If they don’t have the same attribute names, 

then they’re from different type lattices, and the notion of having a common subtype 
doesn’t apply.)   

 
b. Attributes of TT1 and TT2 with the same name have types from the same type lattice.  (If 

attributes with the same name don’t have types from the same type lattice, then again TT1 
and TT2 are themselves from different type lattices, and the notion of having a common 
subtype again doesn’t apply.)   

 
The following definition generalizes these ideas to apply to any set of tuple types from the 

same type lattice (actually the definition doesn’t require the types in question all to be from the 
same type lattice, but if they’re not it becomes vacuous, thanks to points a. and b. above):   
 

Definition:  Let TT1, TT2, ..., TTm (m ≥ 0), and TT′ be all tuple types, with headings  
 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  

 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  

 
  ......................................  

 
{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  

 
{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 
respectively.  Then type TT′ is a common subtype for, or of, types TT1, TT2, ..., TTm if and 
only if, for all j (j = 1, 2, ..., n), type T0j′ is a common subtype for types T1j, T2j, ..., Tmj.2  
Note:  If m = 1, then TT′ is TT1.  If m = 0, then TT′ is the tuple type with heading  

 
                                                             
 
1 Once again, see Chapter 5 (or the answer to Exercise 17.4 in Chapter 17) for an explanation of the term type lattice as I’m using 
it here.  Note in particular that the lattice in question explicitly includes the pertinent maximal and minimal types (see the 
discussion of IM Prescription 25 in Chapter 19); in fact, it includes all types having an attribute of some pertinent superroot or 
subleaf type (see the discussion of IM Prescription 26, also in Chapter 19).   
 
2 In other words, as we saw (in effect) in the answer to Exercise 6.2 in Chapter 6, TT′ is a common subtype for TT1, TT2, ..., TTm 
if and only if it satisfies the predicate FORALL t (IF t ∊ |TT′| THEN t ∊ INTERSECT {|TT1|, |TT2|, ..., |TTm|}).   
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{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
 

where, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type T0j 
(see IM Prescription 25).   

 
Here are some examples:   

 
1. Each of the tuple types ER, CR, ES, and CS overlaps each of the other three, and they have 

CS as a common subtype.  And if we limit our attention to tuple types ER and CR only, of 
course they overlap, and they have both CR and CS as common subtypes.   

 
2. Scalar types ELLIPSE and RECTANGLE are disjoint.  As a direct consequence, tuple 

types TUPLE {A ELLIPSE} and TUPLE {A RECTANGLE} are disjoint as well—even 
though they belong to the same type lattice—and so their sole common subtype is in fact 
the pertinent minimal type, viz., type TUPLE {A omega} (an empty type).   

 
3. Types TUPLE {A ELLIPSE} and TUPLE {B ELLIPSE} are also disjoint (even though 

they have the same attribute types), because they have different attribute names.  In fact, 
they’re from distinct type lattices, and hence have no common subtype by definition.   

 
4. Types TUPLE {X RELATION {A ELLIPSE}} and TUPLE {X RELATION 

{B ELLIPSE}} are also disjoint, even though they have the same attribute names, because 
corresponding attribute types are from distinct type lattices.  As a consequence, as in the 
previous example, the specified tuple types are also from distinct type lattices, and hence 
have no common subtype by definition.   

 
5. Let TX be the type TUPLE {X omega}.  This type is empty (in fact, it’s the minimal type 

for types of the form TUPLE {X T}, where T is a scalar type).  Since it’s empty, TX 
doesn’t overlap with any type at all (not even itself).  Thus, if TY is any type from the same 
type lattice—i.e., if TY is of the form TUPLE {X T} for some scalar type T—then the only 
subtype TX and TY have in common is TX itself.   

 
6. Consider types TUPLE {X omega, Y CHAR} and TUPLE {X CHAR, Y omega}.  These 

types belong to the same type lattice.  They don’t overlap, however, (a) because they’re 
both empty, and (b) more specifically, because attributes X and Y are each of type omega 
in one case and CHAR in the other, and omega and CHAR don’t overlap.  So their sole 
common subtype is the pertinent minimal type, viz., type TUPLE {X omega, Y omega} 
(another empty type).   

 
7. Let T0 be the type TUPLE { }.  This type isn’t empty—it contains just one tuple, viz., the 

empty tuple (also written TUPLE { } in Tutorial D).  In fact, T0 is the sole type in its 



 
 

Tuple / Relation Values with Inheritance (cont.) / Chapter 18      367 

lattice, and so it’s the sole common subtype for every subset of the types in that lattice (!).  
It’s also the pertinent minimal type (and the pertinent maximal type as well, come to that).   

 
Next, not only is it intuitively obvious that any set of m tuple types TT1, TT2, ..., TTm from 

the same type lattice must have at least one common subtype, I think it’s also intuitively obvious 
that (as the note attached to IM Prescription 24 in fact says) one of the common subtypes in 
question must be the least specific or intersection subtype in particular.  Here by way of example 
are the least specific or intersection types corresponding to Examples 1-7 above:   
 

1. CS (for ER, CR, ES, and CS); CR (for ER and CR).   
 
2. TUPLE {A omega}.   
 
3. Not applicable.   
 
4. Not applicable.   
 
5. TUPLE {X omega}.   
 
6. TUPLE {X omega, Y omega}.   
 
7. TUPLE { }.   

 
And here’s the precise definition:   
 

Definition:  Let TT1, TT2, ..., TTm (m ≥ 0), and TT′ be all tuple types, with headings  
 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  
 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  
 
  ......................................  
 
{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  
 
{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 
respectively.  Then type TT′ is the least specific common subtype—also known as the 
intersection type or intersection subtype—for, or of, types TT1, TT2, ..., TTm if and only if, 
for all j (j = 1, 2, ..., n), type T0j′ is the least specific common subtype for types T1j, T2j, ..., 
Tmj.  Note:  If m = 1, then TT′ is TT1.  If m = 0, then TT′ is the tuple type with heading  

 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
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where, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type T0j 
(see IM Prescription 25).   

 
 
COMMON TUPLE SUPERTYPES  
 
Given the discussions of the previous section, I think it’s at least reasonable to expect that if 
tuple types TT1, TT2, ..., TTm all belong to the same type lattice, then they not only have at least 
one common subtype, they have at least one common supertype as well—so this time I’ll just 
jump straight in with a definition:   
 

Definition:  Let TT, TT1, TT2, ..., and TTm (m ≥ 0) be all tuple types, with headings  
 
{ <A1,T01> , <A2,T02> , ... , <An,T0n> }  
 
{ <A1,T11> , <A2,T12> , ... , <An,T1n> }  
 
{ <A1,T21> , <A2,T22> , ... , <An,T2n> }  
 
  ....................................  
 
{ <A1,Tm1> , <A2,Tm2> , ... , <An,Tmn> }  
 
respectively.  Then type TT is a common supertype for, or of, types TT1, TT2, ..., TTm if 
and only if, for all j (j = 1, 2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., 
Tmj.3  Note:  If m = 1, then TT is TT1.  If m = 0, then TT is the tuple type with heading  

 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type T0j 
(see IM Prescription 25).   

 
(As with the definition of common subtype from the previous section, this definition doesn’t 
actually require the types mentioned all to be from the same type lattice, but if they’re not it 
becomes vacuous.)   

Here are some examples:   
 

1. Tuple types ER, CR, ES, and CS have ER as a common supertype.  Tuple types CS and CR 
have both CR and ER as common supertypes.   

 

                                                             
 
3 In other words, as we saw (in effect) in the answer to Exercise 6.2 in Chapter 6, TT is a common supertype for TT1, TT2, ..., 
TTm if and only if it satisfies the predicate FORALL t (IF t ∊ UNION {|TT1|, |TT2|, ..., |TTm|} THEN t ∊ |TT|).   
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2. Tuple types TUPLE {A ELLIPSE} and TUPLE {A RECTANGLE} have TUPLE 
{A PLANE_FIGURE} as their sole common supertype4 (apart from the pertinent maximal 
type TUPLE {A alpha}).   

 
3. Types TUPLE {A ELLIPSE} and TUPLE {B ELLIPSE} are from distinct type lattices, 

and hence have no common supertype, by definition.   
 
4. Types TUPLE {X RELATION {A ELLIPSE}} and TUPLE {X RELATION 

{B ELLIPSE}} are also from distinct type lattices and have no common supertype, by 
definition.   

 
5. Let TX be the type TUPLE {X alpha}.  This type is the maximal type for types of the form 

TUPLE {X T}, where T is a scalar type.  Thus, if TY is any type from the same type lattice, 
then the only supertype TX and TY have in common is TX itself.   

 
6. Consider types TUPLE {X CHAR, Y alpha} and TUPLE {X alpha, Y CHAR}.  These 

types belong to the same type lattice.  Neither is a supertype of the other, however, because 
attributes X and Y are each of type CHAR in one case and alpha in the other, and CHAR 
isn’t a supertype of alpha (though alpha is a supertype of CHAR, of course).  So their sole 
common supertype is the pertinent maximal type, viz., type TUPLE {X alpha, Y alpha}.   

 
7. Let T0 be the type TUPLE { }.  As noted in the previous section, then, this type is the 

sole type in its lattice, and so it’s the sole common supertype for every subset of the types 
in that lattice (!).   

 
Next, not only is it intuitively obvious that any set of m tuple types TT1, TT2, ..., TTm from 

the same type lattice must have at least one common supertype, I think it’s also intuitively 
obvious (as the note attached to IM Prescription 24 in fact says) that one of the common 
supertypes in question must be the most specific common supertype in particular.  Here by way 
of example are the most specific common supertypes corresponding to Examples 1-7 above:   
 

1. ER (for ER, CR, ES, and CS); CR (for CS and CR).   
 
2. TUPLE {A PLANE_FIGURE}.   
 
3. Not applicable.   
 
4. Not applicable.   

                                                             
 
4 Here and in a few analogous contexts in this chapter I’m reinstating type PLANE_FIGURE, just for the sake of the example, as 
a proper supertype—in fact, the most specific common supertype—for types ELLIPSE and RECTANGLE.   
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5. TUPLE {X alpha}.   
 
6. TUPLE {X alpha, Y alpha}.   
 
7. TUPLE { }.   

 
And here’s the precise definition:   
 

Definition:  Let TT, TT1, TT2, ..., and TTm (m ≥ 0) be all tuple types, with headings  
 
{ <A1,T01> , <A2,T02> , ... , <An,T0n> }  
 
{ <A1,T11> , <A2,T12> , ... , <An,T1n> }  
 
{ <A1,T21> , <A2,T22> , ... , <An,T2n> }  
 
  ....................................  
 
{ <A1,Tm1> , <A2,Tm2> , ... , <An,Tmn> }  
 
respectively.  Then type TT is the most specific common supertype for, or of, types TT1, 
TT2, ..., TTm if and only if, for all j (j = 1, 2, ..., n), type T0j is the most specific common 
supertype for types T1j, T2j, ..., Tmj.  Note:  If m = 1, then TT is TT1.  If m = 0, then TT is 
the tuple type with heading  

 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type T0j 
(see IM Prescription 25).   

 
 
COMMON RELATION SUBTYPES  
 
I turn now to the question of common relation subtypes and supertypes.  Before we start getting 
into details, however, it’s worth noting that the analysis that follows, in this section and the next, 
is similar but not identical to the analysis we’ve already been through in previous sections in 
connection with common tuple subtypes and supertypes—basically because a tuple type can be 
empty but a relation type can’t.   



 
 

Tuple / Relation Values with Inheritance (cont.) / Chapter 18      371 

Let relation types RT1 and RT2 belong to the same type lattice5 (i.e., let them have the 
same attribute names, and let attributes with the same name have types that have a common 
subtype); then types RT1 and RT2 overlap.6  Here’s the definition:   
 

Definition:  Let RT1, RT2, ..., RTm (m ≥ 0), and RT′ be all relation types, with headings  
 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  
 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  
 
  ......................................  
 
{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  
 
{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 
respectively.  Then type RT′ is a common subtype for, or of, types RT1, RT2, ..., RTm if and 
only if, for all j (j = 1, 2, ..., n), type T0j′ is a common subtype for types T1j, T2j, ..., Tmj.7  
Note:  If m = 1, then RT′ is RT1.  If m = 0, then RT′ is the relation type with heading  

 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type T0j 
(see IM Prescription 25).   

 
(As with the tuple analog of this definition earlier, this definition doesn’t actually require the 
types mentioned all to be from the same type lattice, but if they’re not it becomes vacuous.)   

Here are some examples:   
 

1. Each of the relation types ER, CR, ES, and CS overlaps each of the other three, and they 
have CS as a common subtype.  Similarly, relation types ER and CR overlap, and they have 
both CR and CS as common subtypes.   

 
2. Scalar types ELLIPSE and RECTANGLE are disjoint.  However, relation types 

RELATION {A ELLIPSE} and RELATION {A RECTANGLE} aren’t disjoint—they 
overlap, and have as their sole common subtype the pertinent minimal type, viz., type 
RELATION {A omega}.  In other words, the sole relation of that minimal type is also of 

                                                             
 
5 Footnote 1 applies here also.   
 
6 Note the difference here vis-à-vis the tuple case.  To be specific, two relation types overlap if and only if they belong to the 
same type lattice, whereas two tuple types overlap if and only if they belong to the same type lattice and attributes with the same 
name have types that overlap in turn (implying among other things that the tuple types in question are both nonempty).   
 
7 In other words, as we saw (in effect) in the answer to Exercise 6.2 in Chapter 6, RT′ is a common subtype for RT1, RT2, ..., RTm 
if and only if it satisfies the predicate FORALL r (IF r ∊ |RT′| THEN r ∊ INTERSECT {|RT1|, |RT2|, ..., |RTm|}).   
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types RELATION {A ELLIPSE} and RELATION {A RECTANGLE}.  Of course, the 
relation in question contains no tuples—i.e., it’s an empty relation—but type RELATION 
{A omega} as such is nonempty.   

 
3. In contrast to the foregoing, types RELATION {A ELLIPSE} and RELATION 

{B ELLIPSE} are disjoint (even though they have the same attribute types), because 
they’re from distinct type lattices, and hence have no common subtype by definition.   

 
4. Types RELATION {X TUPLE {A ELLIPSE}} and RELATION {X TUPLE 

{B ELLIPSE}} are also disjoint, even though they have the same attribute names, because 
corresponding attribute types are from distinct type lattices.  As a consequence, as in the 
previous example, the specified relation types are also from distinct type lattices, and thus 
have no common subtype by definition.   

 
5. Let RX be the type RELATION {X omega}.  This type is the minimal type for types of the 

form RELATION {X T}, where T is a scalar type, and it contains just one value, viz., the 
pertinent empty relation.  Thus, if RY is any type from the same type lattice—i.e., if RY is 
of the form RELATION {X T} for some scalar type T—then the only subtype RX and RY 
have in common is RX itself.   

 
6. Consider types RELATION {X omega, Y CHAR} and RELATION {X CHAR, Y omega}.  

These types belong to the same type lattice, and therefore they overlap.  Note, however, 
that attributes X and Y are each of type omega in one case and CHAR in the other, and 
omega and CHAR don’t overlap; so the sole common subtype for the two specified relation 
types is the pertinent minimal type, viz., type RELATION {X omega, Y omega}.   

 
7. Let R0 be the type RELATION { }.  This type isn’t empty—it contains two rather 

important relations, viz., TABLE_DUM and TABLE_DEE (see the answer to 
Exercise 2.24 in Chapter 2).  However, R0 is the sole type in its lattice, and so it’s the sole 
common subtype for every subset of the types in that lattice (!).  It’s also the pertinent 
minimal type (and the pertinent maximal type as well, come to that).   

 
Next, not only is it intuitively obvious that any set of m relation types RT1, RT2, ..., RTm 

from the same type lattice must have at least one common subtype, I think it’s also intuitively 
obvious that (as the note attached to IM Prescription 24 in fact says) one of the common 
subtypes in question must be the least specific or intersection subtype in particular.  Here by way 
of example are the intersection subtypes corresponding to Examples 1-7 above:   
 

1. CS (for ER, CR, and ES); CR (for ER and CR).   
 
2. RELATION {A omega}.   
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3. Not applicable.   
 
4. Not applicable.   
 
5. RELATION {X omega}.   
 
6. RELATION {X omega, Y omega}.   
 
7. RELATION { }.   

 
And here’s the definition:   
 

Definition:  Let RT1, RT2, ..., RTm (m ≥ 0), and RT′ be all relation types, with headings  
 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  
 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  
 
  ......................................  
 
{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  
 
{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 
respectively.  Then type RT′ is the least specific common subtype—also known as the 
intersection type or intersection subtype—for, or of, types RT1, RT2, ..., RTm if and only if, 
for all j (j = 1, 2, ..., n), type T0j′ is the least specific common subtype for types T1j, T2j, ..., 
Tmj.  Note:  If m = 1, then RT′ is RT1.  If m = 0, then RT′ is the relation type with heading  

 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type T0j 
(see IM Prescription 25).   

 
 
COMMON RELATION SUPERTYPES  
 
By now the pattern should be familiar ... If relation types RT1, RT2, ..., RTm all belong to the 
same type lattice, then not only do they have at least one common subtype, they have at least one 
common supertype as well:   
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Definition:  Let RT and RT1, RT2, ..., RTm (m ≥ 0) be all relation types, with headings  
 
{ <A1,T01> , <A2,T02> , ... , <An,T0n> }  
 
{ <A1,T11> , <A2,T12> , ... , <An,T1n> }  
 
{ <A1,T21> , <A2,T22> , ... , <An,T2n> }  
 
  ....................................  
 
{ <A1,Tm1> , <A2,Tm2> , ... , <An,Tmn> }  
 
respectively.  Then type RT is a common supertype for, or of, types RT1, RT2, ..., RTm if 
and only if, for all j (j = 1, 2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., 
Tmj.8  Note:  If m = 1, then RT is RT1.  If m = 0, then RT is the relation type with heading  

 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type T0j 
(see IM Prescription 25).   

 
(As with the tuple analog of this definition in the section “Common Tuple Supertypes,” this 
definition doesn’t actually require the types mentioned all to be from the same type lattice, but if 
they’re not it becomes vacuous.)   

Here are some examples:   
 

1. Relation types ER, CR, ES, and CS have ER as a common supertype.  Relation types CS 
and CR have both CR and ER as common supertypes.   

 
2. Relation types RELATION {A ELLIPSE} and RELATION {A RECTANGLE} have 

RELATION {A PLANE_FIGURE} as their sole common supertype (apart from the 
pertinent maximal type RELATION {A alpha}).   

 
3. Types RELATION {A ELLIPSE} and RELATION {B ELLIPSE} are from distinct type 

lattices, and hence have no common supertype, by definition.   
 
4. Types RELATION {X TUPLE {A ELLIPSE}} and RELATION {X TUPLE 

{B ELLIPSE}} are also from distinct type lattices and have no common supertype, by 
definition.   

 

                                                             
 
8 In other words, as we saw (in effect) in the answer to Exercise 6.2 in Chapter 6, RT is a common supertype for RT1, RT2, ..., 
RTm if and only if it satisfies the predicate FORALL r (IF r ∊ UNION {|RT1|, | RT2|, ..., |RTm|} THEN r ∊ |RT|).   
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5. Let RX be the type RELATION {X alpha}.  This type is the maximal type for types of the 
form RELATION {X T}, where T is a scalar type.  Thus, if RY is any type from the same 
type lattice, then the only supertype RX and RY have in common is RX itself.   

 
6. Consider types RELATION {X CHAR, Y alpha} and RELATION {X alpha, Y CHAR}.  

These types belong to the same type lattice.  Neither is a supertype of the other, however, 
because attributes X and Y are each of type CHAR in one case and alpha in the other, and 
CHAR isn’t a supertype of alpha.  So their sole common supertype is the pertinent 
maximal type, viz., type RELATION {X alpha, Y alpha}.   

 
7. Let R0 be the type RELATION { }.  As noted in the previous section, then, this type is the 

sole type in its lattice, and so it’s the sole common supertype for every subset of the types 
in that lattice (!).   

 
Next, not only is it intuitively obvious that any set of m relation types RT1, RT2, ..., RTm 

from the same type lattice must have at least one common supertype, I think it’s also intuitively 
obvious that (as the note attached to IM Prescription 24 in fact says) one of the common 
supertypes in question must be the most specific common supertype in particular.  Here by way 
of example are the most specific common supertypes corresponding to Examples 1-7 above:   
 

1. ER (for ER, CR, and ES); CR (for CS and CR).   
 
2. RELATION {A PLANE_FIGURE}.   
 
3. Not applicable.   
 
4. Not applicable.   
 
5. RELATION {X alpha}.   
 
6. RELATION {X alpha, Y alpha}.   
 
7. RELATION { }.   

 
And here’s the definition:   
 

Definition:  Let RT and RT1, RT2, ..., RTm (m ≥ 0) be all relation types, with headings  
 
{ <A1,T01> , <A2,T02> , ... , <An,T0n> }  
 
{ <A1,T11> , <A2,T12> , ... , <An,T1n> }  
 
{ <A1,T21> , <A2,T22> , ... , <An,T2n> }  
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  ....................................  
 
{ <A1,Tm1> , <A2,Tm2> , ... , <An,Tmn> }  
 
respectively.  Then type RT is the most specific common supertype for, or of, types RT1, 
RT2, ..., RTm if and only if, for all j (j = 1, 2, ..., n), type T0j′ is the most specific common 
supertype for types T1j, T2j, ..., Tmj.  Note:  If m = 1, then RT is RT1.  If m = 0, then RT is 
the relation type with heading  

 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type T0j 
(see IM Prescription 25).   

 
 
CLOSING REMARKS  
 
I showed in Chapter 15 that:   
 
! If two scalar types have a nonempty least specific common subtype, then they also have a 

most specific common supertype (moreover, that supertype is a proper subtype of type 
alpha).  However, the converse is false.   
 

The corresponding statement for tuple types is similar but not quite analogous:   
 

! If two tuple types have a nonempty least specific common subtype, then they also have a 
most specific common supertype (though that supertype might be the pertinent maximal 
type).9  However, the converse is false.   
 

However, the corresponding statement for relation types is rather different:   
 

! If two relation types have a—necessarily nonempty—least specific common subtype, then 
they also have a most specific common supertype (though that supertype might be the 
pertinent maximal type).10  In this case, however, the converse is true as well.   
 
Finally, that note attached to IM Prescription 24 says it can be shown that every tuple or 

relation value has a unique least specific type and a unique most specific type.  The least specific 
type is, of course, the pertinent maximal type or, if superroot types are ignored (see the 
                                                             
 
9 In the interest of accuracy, I note that “the pertinent maximal type” here ought really to be “some pertinent superroot type” (see 
the discussion of IM Prescription 26 in Chapter 19).   
 
10 The previous footnote applies here also.   
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discussion of Prescription 26 in Chapter 19), the pertinent root type.  As for the most specific 
type, see the discussion of IM Prescription 27 in Chapter 20.   
 
 
EXERCISES  
 
18.1 State necessary and sufficient conditions for (a) two tuple types to overlap, (b) two relation 
types to overlap.   
 
18.2 Is it true that (a) no tuple type can possibly overlap any type that’s not a tuple type and 
(b) no relation type can possibly overlap any type that’s not a relation type?   
 
18.3 With reference to Fig. 15.3 in Chapter 15, consider tuple types defined as follows (tuple 
types just to be definite—they could have been relation types instead):   
 

TUPLE { P PARALLELOGRAM , K KITE ,       C CYCLIC_QUADRILATERAL }  
TUPLE { P RHOMBUS       , K RIGHT_KITE , C ISOSCELES_TRAPEZOID  }  
TUPLE { P RECTANGLE     , K RIGHT_KITE , C RHOMBUS              }  
 

What are the most specific common supertypes and least specific common subtypes for these 
types taken pairwise?  What about the most specific common supertype and least specific 
common subtype for all three types taken together?   
 
 
ANSWERS		
	
18.1	 (a)	Two	tuple	types	overlap—equivalently,	they	have	a	nonempty	intersection	type—if	
and	only	if	they’re	from	the	same	type	lattice	and	so	have	the	same	attribute	names,	and	
attributes	with	the	same	name	have	overlapping	types	in	turn.		(b)	Two	relation	types	overlap—
equivalently,	they	have	a	nonempty	intersection	type—if	and	only	if	they’re	from	the	same	type	
lattice.			
	
18.2	 Yes,	it	is,	because	distinct	type	lattices	are	disjoint.		In	particular,	therefore,	every	tuple	
type	lattice	is	disjoint	from	(a)	the	(unique)	scalar	type	lattice	and	also	from	(b)	every	relation	
type	lattice.		Hence,	no	tuple	type	can	overlap	with	any	scalar	type	or	any	relation	type.		
Similarly	for	relation	types,	mutatis	mutandis.			
	
18.3	 Let’s	agree	to	refer	to	the	three	specified	types,	informally,	as	types	PKC,	RRI,	and	RRR,	
respectively.		For	PKC	and	RRI,	the	most	specific	common	supertype	is	PKC	and	the	least	specific	
common	subtype	is	RRI.		For	RRI	and	RRR,	the	most	specific	common	supertype	is		
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TUPLE { P PARALLELOGRAM , K RIGHT_KITE , C QUADRILATERAL        }  
	
and	the	least	specific	common	subtype	is		
	

TUPLE { P SQUARE        , K RIGHT_KITE , C SQUARE               }  
	
For	RRR	and	PKC,	the	most	specific	common	supertype	is		
	

TUPLE { P PARALLELOGRAM , K KITE       , C QUADRILATERAL        }  
	
and	the	least	specific	common	subtype	is		
	

TUPLE { P RECTANGLE     , K RIGHT_KITE , C SQUARE               }  
	
For	all	three	types	taken	together,	the	most	specific	common	supertype	is		
	

TUPLE { P PARALLELOGRAM , K KITE       , C QUADRILATERAL        }  
	
and	the	least	specific	common	subtype	is		
	

TUPLE { P SQUARE        , K RIGHT_KITE , C SQUARE               }  
	
	



  

	

Chapter  19 
 
 

T u p l e / R e l a t i o n 
 
 

M a x i m a l   a n d   M i n i m a l   T y p e s   e t c . 
 
 

Nothing at all takes place in the universe  
in which some rule of the maximum or minimum does not appear.   

—Leonhard Euler: 
Methodus Inveniendi Lineas Curvas (1744) 

 
 

The previous chapter mentioned T_alpha and T_omega several times.  Both are generic names; 
they denote the maximal type and the minimal type, respectively, with respect to some specified 
type T, or in other words the least upper bound and the greatest lower bound, respectively, with 
respect to the type lattice to which that type T belongs.  If T is scalar, of course, those “T_” 
prefixes can be dropped, since all scalar types belong to the same type lattice and there’s exactly 
one maximal and exactly one minimal scalar type: viz., alpha and omega, respectively.  Alpha 
and omega were discussed under IM Prescription 20 in Chapter 12; the tuple / relation 
counterpart to that prescription is IM Prescription 25, which—along with IM Prescription 26, to 
which it’s closely related—is the principal topic of the present chapter.   
 
 
IM PRESCRIPTION 25: TUPLE / RELATION MAXIMAL AND MINIMAL TYPES  
 
Let T, T_alpha, and T_omega be all tuple types or all relation types, with headings  

 
{ <A1,T1>       , <A2,T2>       , ... , <An,Tn>       }  
 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  
 

respectively.  Then (a) type T_alpha shall be the maximal type with respect to type T if and 
only if, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type Tj; 
(b) type T_omega shall be the minimal type with respect to type T if and only if, for all j (j = 1, 
2, ..., n), type Tj_omega is the minimal type with respect to type Tj.   
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——— ♦♦♦♦♦ ——— 
 
This prescription was number 24 in the Explorations version.  It has been reworded slightly, 
however, in order to correct a logical error in that earlier formulation.   
 
As you’ll recall from Chapter 12, alpha and omega aren’t just scalar types, they’re union types, 
and indeed dummy types.  Now, tuple and relation analogs of alpha and omega certainly exist 
(though the specifics are a little more complicated than they are in the scalar case, as you might 
expect), but they’re not tuple / relation union or dummy types as such—in fact, there aren’t any 
tuple / relation union or dummy types as such (not formally, at any rate).  Let’s take a closer 
look.  I’ll begin by considering maximal types specifically.  Here are the definitions:1   
 

Definition:  Let tuple types TT and TT_alpha have headings  
 
{ <A1,T1> ,       <A2,T2> ,       ... , <An,Tn>       }  
 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
 
respectively.  Then tuple type TT_alpha is the maximal type with respect to tuple type TT if 
and only if, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type 
Tj.   
 
Definition:  Let relation types RT and RT_alpha have headings  
 
{ <A1,T1> ,       <A2,T2> ,       ... , <An,Tn>       }  
 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
 
respectively.  Then relation type RT_alpha is the maximal type with respect to relation type 
RT if and only if, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to 
type Tj.   
 
These definition are just as you’d expect, though it’s worth pointing that once again they’re 

both recursive and mutually recursive.  Here are a couple of examples.  First, the maximal type 
with respect to the tuple type  

 
TUPLE { E ELLIPSE , R RECTANGLE }  
 

is TUPLE {E alpha, R alpha}.  Likewise, the maximal type with respect to the relation type  
 
                                                             
 
1 All of the definitions in this chapter are taken more or less verbatim from the pertinent IM prescription (i.e., either IM 
Prescription 25 or IM Prescription 26, as applicable).  I’ve repeated them inline in the body of the text, however, in order to keep 
the text flowing properly, and more particularly to save you from having to keep on referring back to the prescription in question.   
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RELATION { E ELLIPSE , R RECTANGLE }  
 

is RELATION {E alpha, R alpha}.  Note, therefore, that—in contrast to scalar types, where 
there’s just one maximal type that applies to all possible scalar types—(a) distinct tuple types can 
correspond to distinct maximal types and (b) distinct relation types can also correspond to 
distinct maximal types.  More specifically, note that:   

 
! If types T1 and T2 belong to distinct type lattices, then—and only then—the corresponding 

maximal types are distinct.  (This observation applies to types in general, regardless of 
whether they’re scalar, tuple, or relation types.)   
 

! Tuple type TT_alpha contains every tuple whose type is some subtype of some supertype 
of tuple type TT (equivalently, every tuple whose type is some supertype of some subtype 
of tuple type TT), and nothing else.2   

 
! Relation type RT_alpha contains every relation whose type is some subtype of some 

supertype of relation type RT (equivalently, every relation whose type is some supertype of 
some subtype of relation type RT), and nothing else.   

 
The definitions for minimal types parallel the foregoing definitions for maximal types, of 

course:   
 
Definition:  Let tuple types TT and TT_omega have headings  
 
{ <A1,T1> ,       <A2,T2> ,       ... , <An,Tn>       }  
 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  
 
respectively.  Then tuple type TT_omega is the minimal type with respect to tuple type TT if 
and only if, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type 
Tj.   
 
Definition:  Let relation types RT and RT_omega have headings  
 
{ <A1,T1> ,       <A2,T2> ,       ... , <An,Tn>       }  
 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  
 

                                                             
 
2 “Type” in this sentence really means the most specific type of the tuple in question (see Chapter 20).  An analogous remark 
applies to the next bullet item also.   
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respectively.  Then relation type RT_omega is the minimal type with respect to relation 
type RT if and only if, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with 
respect to type Tj.   
 
Here are a couple of examples.  First, the minimal type with respect to the tuple type  
 
TUPLE { E ELLIPSE , R RECTANGLE }  
 

is TUPLE {E omega, R omega}.  Likewise, the minimal type with respect to the relation type  
 

RELATION { E ELLIPSE , R RECTANGLE }  
 

is RELATION {E omega, R omega}.  Note, therefore, that—in contrast to scalar types, where 
there’s just one minimal type that applies to all possible scalar types—(a) distinct tuple types can 
correspond to distinct minimal types and (b) distinct relation types can also correspond to distinct 
minimal types.  More specifically, note that:   
 
! If types T1 and T2 belong to distinct type lattices, then—and only then—the corresponding 

minimal types are distinct.  (This observation applies to types in general, regardless of 
whether they’re scalar, tuple, or relation types.)   
 

! Tuple type TT_omega isn’t necessarily empty (though in practice it usually will be; for 
example, the particular example shown above, TUPLE {E omega, R omega}, is certainly 
empty).  The following conceptually important counterexample was mentioned in 
Chapter 18:  Let T0 be the type TUPLE { }.  Then T0_omega is equal to T0 (i.e., T0 is its 
own minimal type),3 and it contains exactly one value: namely, the 0-tuple (i.e., the tuple 
with the empty set of attributes).   

 
! Relation type RT_omega is definitely not empty; in fact, as mentioned several times 

previously in this book, there’s no such thing as an empty relation type.  To be specific, 
RT_omega contains exactly one value—viz., the empty relation of type RT, or in other 
words the sole relation whose heading is that of type RT_omega.  A conceptually important 
case is as follows:  Let R0 be the type RELATION { }.  Then R0_omega is equal to R0 
(i.e., R0 is its own minimal type),4 and it contains exactly two values: namely, 
TABLE_DUM and TABLE_DEE (see the answer to Exercise 2.24 in Chapter 2).   

 

                                                             
 
3 It’s its own maximal type too; in fact, of course, it’s the only type in its lattice, and therefore— in accordance with IM 
Prescription 26 as discussed later in this chapter—(a) it’s also both a root type and a leaf type, and (b) that type lattice doesn’t 
contain any superroot or subleaf types (again, see IM Prescription 26).   
 
4 The previous footnote applies here too (see also Exercise 19.2 at the end of the chapter).   
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By the way, since relation types are never empty, type RT_omega (unlike its scalar and 
tuple counterparts) can serve as a declared type.  For example, the following is a legitimate relvar 
definition:5   
 

VAR ERV BASE RELATION { E omega , R omega } KEY { } ;  
 
Tuple / Relation Union and Dummy Types (?)  
 
As noted earlier, the union and dummy type concepts don’t apply to tuple and relation types—at 
least, not formally—because union and dummy types are always scalar by definition.  However, 
those concepts do apply informally.  By way of example, suppose as we did in Chapter 12 that 
scalar type ELLIPSE is a dummy type, with immediate regular subtypes CIRCLE and 
NONCIRCLE, and consider the following tuple types (tuple types only, for simplicity):   

 
! TUPLE { E ELLIPSE }  

 
If ELLIPSE is a dummy type, there won’t be any values of this tuple type—let’s call it 
TE—that aren’t values of some proper subtype of TE; thus, TE might be implicitly 
regarded as a union tuple type, and indeed as a dummy tuple type as well.  Now, the 
purpose of a scalar union or dummy type is to provide a basis for defining operators that 
apply to values and variables of several different types, all of them immediate subtypes of 
the union or dummy type in question.  And the same goes for a tuple or relation “union or 
dummy type” such as type TE, mutatis mutandis.  In other words (and as the example 
illustrates), the situation is analogous to the situation that arises in connection with 
specialization by constraint:  If some scalar type happens to be a union or dummy type, 
then certain tuple and relation types will effectively be “union or dummy types” 
automatically, and nothing more needs to be said about the matter.   
 

! TUPLE { E CIRCLE , X alpha }  
 
This one too might be considered a tuple dummy type, if it were thought useful to do so.   
 

! TUPLE { E omega }  
 
This is an example of an empty tuple type.  It too might be regarded as a dummy tuple type.   
 

                                                             
 
5 Two points here:  (a) First, note that relvar ERV has an empty key.  Empty keys were mentioned in passing in the answer to 
Exercise 2.24 in Chapter 2, but for a discussion of empty keys in general see, e.g., Hugh Darwen’s book An Introduction to 
Relational Database Theory (2010), available as a free download from http://bookboon.com.  (b) Second, although relvar ERV is 
(by definition) a variable, its value is constant!  To be specific, its value will always be the sole relation of the specified type (an 
empty relation, of course).   
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! TUPLE { X CIRCLE , Y TUPLE { Z omega } }  
 
This is a more complicated example of an empty tuple type.   

 
 
IM PRESCRIPTION 26: TUPLE / RELATION ROOT AND LEAF TYPES  
 
A root type shall be a scalar root type (see IM Prescription 6), a tuple root type, or a relation root 
type.  A type shall be a tuple root type if and only if it is a tuple type TT such that every attribute 
of TT is of a root type.  A type shall be a relation root type if and only if it is a relation type RT 
such that every attribute of RT is of a root type.   

A leaf type shall be a scalar leaf type (see IM Prescription 6), a tuple leaf type, or a relation 
leaf type.  A type shall be a tuple leaf type if and only if it is a tuple type TT such that every 
attribute of TT is of a leaf type.  A type shall be a relation leaf type if and only if it is a relation 
type RT such that every attribute of RT is of a leaf type.   

A superroot type shall be a scalar superroot type, a tuple superroot type, or a relation 
superroot type.  A type shall be a scalar superroot type if and only if it is type alpha.  A type TT 
shall be a tuple superroot type if and only if it is a proper supertype of some tuple root type (in 
which case at least one attribute of TT must be of some superroot type).  A type RT shall be a 
relation superroot type if and only if it is a proper supertype of some relation root type (in which 
case at least one attribute of RT must be of some superroot type).   

A subleaf type shall be a scalar subleaf type, a tuple subleaf type, or a relation subleaf 
type.  A type shall be a scalar subleaf type if and only if it is type omega.  A type TT shall be a 
tuple subleaf type if and only if it is a proper subtype of some tuple leaf type (in which case at 
least one attribute of TT must be of some subleaf type).  A type RT shall be a relation subleaf 
type if and only if it is a proper subtype of some relation leaf type (in which case at least one 
attribute of RT must be of some subleaf type).   
 

——— ♦♦♦♦♦ ——— 
 
This prescription is new—it didn’t appear in the Explorations version.   
 
Superroot Types  
 
Here repeated from Chapters 4 and 5 (but lightly edited here) is IM Prescription 6:   
 

A scalar type that has type alpha as its sole immediate supertype shall be a root type; a type that 
has type omega as its sole immediate subtype shall be a leaf type.   

 
As you can see, this prescription has to do with scalar types specifically.  Now, tuple and 

relation root and leaf types exist too, of course, but once again the definitions are a little more 
complicated than they are in the scalar case.  By way of example, consider Fig. 17.1 from 
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Chapter 17 once again, and assume for definiteness that types ER, CR, ES, and CS are all tuple 
types specifically.  Clearly (?), type ER is the root type here; equally clearly, the type  

 
TUPLE { E alpha , R alpha }  
 

is the corresponding maximal type.  But what about these two types?— 
 
TUPLE { E alpha   , R RECTANGLE }  
 
TUPLE { E ELLIPSE , R alpha     }  
 

Refer to Fig. 19.1.6   
 

                     ┌──────────────────────────┐ 
                     │ TUPLE {E alpha, R alpha} │ 
                     └─────────────┬────────────┘ 
                ┌──────────────────┴──────────────────┐ 
┌───────────────▼──────────────┐       ┌──────────────▼─────────────┐ 
│ TUPLE {E alpha, R RECTANGLE} │       │ TUPLE {E ELLIPSE, R alpha} │ 
└───────────────┬──────────────┘       └──────────────┬─────────────┘ 
                └──────────────────┬──────────────────┘ 
                  ┌────────────────▼───────────────┐ 
                  │ TUPLE {E ELLIPSE, R RECTANGLE} │ 
                  └────────────────────────────────┘ 
 
Fig. 19.1: Root, superroot, and maximal types (example)  

 
As the figure indicates, the two types just mentioned—viz., types TUPLE {E alpha, 

R RECTANGLE} and TUPLE {E ELLIPSE, R alpha}—effectively act as intermediaries, 
coming between the root type TUPLE {E ELLIPSE, R RECTANGLE} and the corresponding 
maximal type TUPLE {E alpha, R alpha}.  It follows that we certainly can’t say that a tuple root 
type, like a scalar root type, has just one immediate supertype, where the supertype in question is 
the corresponding maximal type.  To spell out the details:  Every value of type TUPLE 
{E ELLIPSE, R RECTANGLE} is certainly a value of both of those intermediary types, and 
every value of either of those intermediary types is certainly a value of type TUPLE {E alpha, 
R alpha}.   

So how exactly can we define the root type concept for tuples (or relations) in such a way 
as to preserve the notion that, in the case at hand, type TUPLE {E ELLIPSE, R RECTANGLE} 
is indeed a root type?  Actually the answer is straightforward.  Here it is:   
 

Definition:  A tuple or relation type T is a root type if and only if every attribute of T is of 
some root type (i.e., if and only if every proper supertype of T is a superroot type).   

 

                                                             
 
6 I note in passing—for what it’s worth—that the graphs in Figs. 19.1 and 19.2 (later) aren’t type graphs, technically speaking, 
because they contravene point 3 of the type graph definition as given in Chapter 14.   
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Now, this definition—which is recursive, of course— makes reference to the concept of a 
superroot type, which can be defined as follows (again the definition is recursive):   
 

Definition:  A superroot type is a scalar, tuple, or relation superroot type.  A scalar type is 
a superroot type if and only if it’s type alpha; a tuple or relation type is a superroot type if 
and only if it’s a proper supertype of some tuple or relation root type (in which case it must 
have at least one attribute of some superroot type).   

 
Thus, all of the tuple types shown in Fig. 19.1 are superroot types apart from TUPLE 

{E ELLIPSE, R RECTANGLE}—i.e., tuple type ER—which is a root type but not a superroot 
type.  As the definition states, root types as such aren’t superroot types, but all proper supertypes 
of a root type are.7   

Caveat:  As IM Prescription 26 says, if tuple or relation type T is a superroot type, then T 
must have at least one attribute of some superroot type.  However, the converse is false.  For 
example, the type TUPLE {E CIRCLE, R alpha} does have an attribute (viz., attribute R) of 
some superroot type, but it’s not itself a superroot type, because attribute E isn’t of a root type.  
Similar remarks apply to subleaf types also, mutatis mutandis.   
 
Subleaf Types  
 
Turning now to subleaf types:  Subleaf types are at the opposite extreme, as it were, from 
superroot types.  With reference to Fig. 17.1 once again, for example, it should be obvious that 
the types  

 
TUPLE { E CIRCLE , R omega  }  
 
TUPLE { E omega  , R SQUARE }  
 

both effectively act as intermediaries, coming between the leaf type TUPLE {E CIRCLE, 
R SQUARE} and the minimal type TUPLE {E omega, R omega}.  (To spell out the details:  
Every tuple of type TUPLE {E omega, R omega} is certainly a tuple of both intermediary 
types—if you see what I mean—and every tuple of either of those intermediary types is certainly 
a tuple of type TUPLE {E CIRCLE, R SQUARE}.8  Refer to Fig. 19.2.)  It follows that we 
certainly can’t say that a tuple leaf type, like a scalar leaf type, has just one immediate subtype, 
where the subtype in question is the corresponding minimal type.   
 
                                                             
 
7 Perhaps it would be better—more consistent, at any rate, and more in accordance with mathematical convention—to introduce 
the term “proper superroot,” and then define a root type to be a superroot type after all but not a proper one.  For the purposes of 
this book, however, I’ll stay with the definitions as given above.  Analogous remarks apply to subleaf types also, mutatis 
mutandis (see the next subsection).   
 
8 In fact, of course, these remarks are vacuously true, because—apart from the leaf type TUPLE {E CIRCLE, R SQUARE}—the 
types mentioned are all empty.   
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                   ┌──────────────────────────────┐ 
                   │  TUPLE {E CIRCLE, R SQUARE}  │ 
                   └───────────────┬──────────────┘ 
                ┌──────────────────┴──────────────────┐ 
┌───────────────▼─────────────┐       ┌───────────────▼─────────────┐ 
│  TUPLE {E CIRCLE, R omega}  │       │  TUPLE {E omega, R SQUARE}  │ 
└───────────────┬─────────────┘       └───────────────┬─────────────┘ 
                └──────────────────┬──────────────────┘ 
                    ┌──────────────▼─────────────┐ 
                    │  TUPLE {E omega, R omega}  │ 
                    └────────────────────────────┘ 
 
Fig. 19.2: Leaf, subleaf, and minimal types (example)  

 
So we proceed as follows.  First we define the concept of a (tuple or relation) leaf type 

appropriately:   
 

Definition:  A tuple or relation type T is a leaf type if and only if every attribute of T is of 
some leaf type (i.e., if and only if every proper subtype of T is a subleaf type).   

 
And we define the concept of a subleaf type thus:   
 

Definition:  A subleaf type is a scalar, tuple, or relation subleaf type.  A scalar type is a 
subleaf type if and only if it’s type omega; a tuple or relation type is a subleaf type if and 
only if it’s a proper subtype of some tuple or relation leaf type (in which case it must have 
at least one attribute of some subleaf type).   

 
Thus, all of the tuple types shown in Fig. 19.2 are subleaf types except for type TUPLE 

{E CIRCLE, R SQUARE}—i.e., tuple type CS—which is a leaf type but not a subleaf type.  As 
the definition says, leaf types as such aren’t subleaf types, but all proper subtypes of a leaf type 
are.   
 
 
EXERCISES  
 
19.1 Give an example, different from the one in the body of the chapter, of a tuple type TT for 
which the corresponding minimal type TT_omega is nonempty.   
 
19.2 Let R0 be the type RELATION { }.  Which of the following are true statements?  (a) R0 is 
a root type; (b) R0 is a superroot type; (c) R0 is the maximal type in its lattice; (d) R0 is a leaf 
type; (e) R0 is a subleaf type; (f) R0 is the minimal type in its lattice.   
 
19.3 Consider the type RELATION {A omega}.  This type isn’t a union type, not even in the 
weak sense in which that notion applies to tuple and relation types.  But why isn’t it, exactly?   
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19.4 Let type T′ be an immediate subtype of type T.  Is it true that |T| = |T′| if and only if T is a 
subleaf type (in which case T′ is a subleaf type also, necessarily)?   
 
19.5 If ELLIPSE is a union type, with regular immediate subtypes CIRCLE and NONCIRCLE 
(only), what can be said about the relation types RELATION {E ELLIPSE, S SQUARE} and 
RELATION {E ELLIPSE, S omega}?   
 
19.6 With reference to Fig. 15.3 in Chapter 15, let PKC be the following relation type:   
 

RELATION { P PARALLELOGRAM , K KITE , C CYCLIC_QUADRILATERAL }  
 
What are the root and leaf types corresponding to type PKC?  And given those root and leaf 
types, what corresponding superroot and subleaf types are there?   
 
 
ANSWERS		
	
19.1	 The	example	in	the	body	of	the	chapter	was	as	follows:		Let	T0	be	the	type	TUPLE	{	}.		Then	
T0_omega	is	just	T0	itself,	and	it	contains	exactly	one	value	(viz.,	the	0-tuple).		And	the	
following	examples	build	on	this	one:			

	
!	 The	tuple	type		

	
TUPLE { Z TUPLE { } }  

	
is	nonempty,	because	the	tuple	TUPLE	{Z	TUPLE	{	}}	is	a	value	of	that	type.9		Also,	that	type	
has	no	immediate	subtypes	and	is	therefore	minimal	(in	fact,	it’s	the	only	type	in	its	
lattice).			
	

!	 The	choice	of	attribute	name	Z	in	the	previous	example	is	clearly	arbitrary,	so	there	are	as	
many	such	tuple	types	as	there	are	attribute	names.			
	

!	 The	tuple	type		
	

TUPLE { ZZ TUPLE { Z TUPLE { } } }  
	

also	has	no	immediate	subtypes	and	contains	just	one	value.			

                                                             
 
9 Don’t be confused here—the first appearance of the expression TUPLE {Z TUPLE { }} in this bullet item is the name of the 
type, the second denotes a value (indeed, the sole value) of that type.  Note:  That second appearance is actually a tuple selector 
invocation; in fact, it’s a tuple literal.   
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!	 Moreover,	types	such	as		
	

TUPLE { ZZ1 TUPLE { Z TUPLE { } } , ZZ2 TUPLE { Z TUPLE { } } }  
	

further	demonstrate	the	existence	of	an	indefinitely	large	number	of	nonempty	minimal	
tuple	types.			

	
!	 And	then,	of	course,	there’s			
	

TUPLE { ZZ RELATION { } }  
	

(which	contains	two	values).		And	so	on.			
	
19.2	 	First	of	all,	as	noted	in	passing	in	the	body	of	the	chapter	(also	in	Chapter	18),	type	R0	is	
the	only	type	in	its	lattice,	from	which	it	follows	immediately	that	(a),	(c),	(d),	and	(f)	are	true	
and	(b)	and	(e)	are	false.		(Regarding	these	last	two,	incidentally,	in	fact	there	are	no	superroot	
or	subleaf	types	in	this	lattice	at	all.		Compare	footnote	3.)			
	
19.3	 Because	RELATION	{A	omega}	{	}	is	a	value	(a	relation)	whose	most	specific	type	is	
RELATION	{A	omega}	(see	Chapter	20).		This	state	of	affairs	violates	the	definition	of	a	union	
type,	which	says	that	no	value	of	a	union	type	T	can	have	most	specific	type	equal	to	T.		Note:		
Since	the	specified	type	RELATION	{A	omega}	is	certainly	a	subleaf	type,	this	exercise	shows	
that	subleaf	types	aren’t	necessarily	union	types	(or	dummy	types	either,	a	fortiori).			
	
19.4	 Yes,	it	is.		Observe,	therefore,	that	the	notion	that	“proper	subtypes	are	proper	subsets”	is	
violated	only	in	the	very	special	case	where	T	and	Tʹ	are	both	subleaf	types.			
	
19.5	 The	following	discussion	answers	the	question	for	both	of	the	specified	relation	types:			
	
!	 RELATION	{E	ELLIPSE,	S	SQUARE}	can	be	regarded	as	a	regular	union	relation	type,	with	

three	immediate	subtypes	(two	regular	and	one	dummy):	RELATION	{E	CIRCLE,	
S	SQUARE},	RELATION	{E	NONCIRCLE,	S	SQUARE},	and	RELATION	{E	ELLIPSE,	S	omega}.			

	
!	 Each	of	those	three	types	has	two	immediate	subtypes	in	turn.		The	first	has	

RELATION	{E	CIRCLE,	S	omega}	and	RELATION	{E	omega,	S	SQUARE};	the	second	has	
RELATION	{E	NONCIRCLE,	S	omega}	and	RELATION	{E	omega,	S	SQUARE};	and	the	third	
has	RELATION	{E	CIRCLE,	S	omega}	and	RELATION	{E	NONCIRCLE,	S	omega}.			
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!	 The	three	types	RELATION	{E	CIRCLE,	S	omega},	RELATION	{E	NONCIRCLE,	S	omega},	and	
RELATION	{E	omega,	S	SQUARE},	which	can	all	be	regarded	as	dummy	relation	types,10	
have	as	their	unique	common	subtype	RELATION	{E	omega,	S	omega},	which	is	the	
minimal	type	in	the	lattice.		(It’s	not	a	dummy	type,	though,	for	reasons	explained	in	the	
answer	to	Exercise	19.3.)			

	
!	 Of	all	of	these	various	relation	types,	those	(and	only	those)	with	at	least	one	attribute	of	

type	omega	are	subleaf	types,	and	each	of	those	subleaf	types	has	the	empty	relation	
with	heading	{E	omega,	S	omega}	as	its	sole	value.			

	
19.6	 The	(necessarily	unique)	root	type	is		
	

RELATION { P QUADRILATERAL , K QUADRILATERAL , C QUADRILATERAL }  
	
The	sole	leaf	type	is		
	

RELATION { P SQUARE        , K SQUARE        , C SQUARE        }  
	
The	following	are	all	of	the	superroot	types	(the	first	one	is	the	maximal	type	PKC_alpha):			
	

RELATION { P alpha         , K alpha         , C alpha         }  
RELATION { P alpha         , K alpha         , C QUADRILATERAL }  
RELATION { P QUADRILATERAL , K alpha         , C alpha         }  
RELATION { P alpha         , K QUADRILATERAL , C alpha         }  
RELATION { P alpha         , K QUADRILATERAL , C QUADRILATERAL }  
RELATION { P QUADRILATERAL , K alpha         , C QUADRILATERAL }  
RELATION { P QUADRILATERAL , K QUADRILATERAL , C alpha         }  

	
The	following	are	all	of	the	subleaf	types	(the	last	one	is	the	minimal	type	PKC_omega):			
	

RELATION { P omega         , K QUADRILATERAL , C QUADRILATERAL }  
RELATION { P QUADRILATERAL , K omega         , C QUADRILATERAL }  
RELATION { P QUADRILATERAL , K QUADRILATERAL , C omega         }  
RELATION { P omega         , K omega         , C QUADRILATERAL }  
RELATION { P QUADRILATERAL , K omega         , C omega         }  
RELATION { P omega         , K QUADRILATERAL , C omega         }  
RELATION { P omega         , K omega         , C omega         }  

	

                                                             
 
10 Two points here regarding those three dummy types:  First, each has just one immediate subtype; second, each has at least one 
regular supertype.  But didn’t I argue in the answers to Exercises 12.4 and 12.6 in Chapter 12 that neither of these situations 
could ever be the case?  Well, yes, I did; but of course my arguments in those answers had to do with scalar types specifically 
(where “proper subtypes are proper subsets”), and they can easily be seen not to apply to relation types.  Regarding the second 
point, moreover, my answer to Exercise 12.6 explicitly excluded what I called “the pathological case” of type omega, which is an 
example of a (scalar) dummy type with regular supertypes, and the second of the foregoing points is, of course, just a logical 
consequence of that pathological case.   



  

	

Chapter  20 
 
 

T u p l e / R e l a t i o n   V a r i a b l e s 
 
 

w i t h   I n h e r i t a n c e 
 
 

Q: What type of inheritance do you hope for from your relations?   
A: Variable—it depends on how those relations change.   

—Tinley Roquot 
(with apologies to Ambrose Bierce) 

 
 

We saw in Chapter 15 that scalar values, at least, always have a unique most specific type, even 
with multiple inheritance.  And the same goes for tuple and relation values as well, though once 
again the details are a little more complicated than they are in the scalar case.  Such matters are 
the principal focus of this chapter.   
 
 
IM PRESCRIPTION 27: TUPLE / RELATION MOST SPECIFIC TYPES  
 
Let H be a heading defined as follows:   

 
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  
 

Then:   
 

a. If t is a tuple of type TUPLE H, meaning t shall take the form  
 
TUPLE { <A1,MST1,v1> , <A2,MST2,v2> , ... , <An,MSTn,vn> }  

 
where, for all j (j = 1, 2, ..., n), type MSTj is a subtype of type Tj and is the most specific 
type of value vj, then the most specific type of t shall be  
 
TUPLE { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  

 
b. If r is a relation of type RELATION H, let the body of r consist of tuples t1, t2, ..., tm (m ≥ 

0).  Tuple ti (i = 1, 2, ..., m) shall take the form  
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TUPLE { <A1,MSTi1,vi1> , <A2,MSTi2,vi2> , ... , <An,MSTin,vin> }  

 
where, for all j (j = 1, 2, ..., n), type MSTij is a subtype of type Tj and is the most specific 
type of value vij (note that MSTij is different for different tuples ti, in general).  Then the 
most specific type of r shall be  

 
RELATION { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  

 
where, for all j (j = 1, 2, ..., n), type MSTj is the most specific common supertype of those 
most specific types MSTij, taken over all tuples ti.   

 
——— ♦♦♦♦♦ ——— 

 
This prescription was number 25 in the Explorations version.  Several textual revisions and 
corrections have been made in the version given here, but the general intent of the prescription 
hasn’t changed.   
 
Despite what I said in the introduction to this chapter, in the tuple case the most specific type 
concept isn’t really all that complicated; in fact, it’s quite straightforward.  Here’s the definition:   
 

Definition:  Let tuple t be as follows:   
 
TUPLE { <A1,v1> , <A2,v2> , ... , <An,vn> }  
 
Then the most specific type of t is the tuple type with heading  

 
{ <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  

 
where, for all j (j = 1, 2, ..., n), type MSTj is the most specific type of value vj.   
 
Once again I think this definition is more or less as you’d expect (it’s recursive, of course).  

By way of example, consider the expression  
 
TUPLE { E EX , R RX }  
 

This expression represents an invocation of the selector for the tuple type TUPLE {E ELLIPSE, 
R RECTANGLE} (“tuple type ER”), denoting (let’s say) tuple t.  Now let the most specific types 
of the expressions EX and RX be CIRCLE and SQUARE, respectively.  Then specialization by 
constraint comes into play, and the most specific type of t is  
 

TUPLE { E CIRCLE , R SQUARE }  
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(“tuple type CS”).   
I turn now to relations.  This time, I think it’s instructive to consider some examples before 

attempting to come up with a definition as such.  Below are some examples of relations of 
relation type ER (actually they’re the same as the ones shown in the section on IM Prescription 
22—“tuple / relation subtypes and supertypes”—in Chapter 17).   

 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ e1 : ellipse │ r1 : rectangle │ 
│ c2 : circle  │ r2 : rectangle │ 
│ e3 : ellipse │ s3 : square    │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ e1 : ellipse │ r1 : rectangle │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : CIRCLE  │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ c2 : circle  │ r2 : rectangle │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ c2 : circle  │ r2 : rectangle │ 
│ e3 : ellipse │ s3 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : SQUARE    │ 
├══════════════╪════════════════┤ 
│ e3 : ellipse │ s3 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : CIRCLE  │ R  : SQUARE    │ 
├══════════════╪════════════════┤ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 
┌──────────────┬────────────────┐ 
│ E  : omega   │ R  : omega     │ 
├══════════════╪════════════════┤ 
└──────────────┴────────────────┘ 

 
Now, those relations are indeed all of relation type ER as stated, but in most cases the 

corresponding most specific types are proper subtypes of that type (as indeed the specified 
headings indicate). Thus, if we define a relvar ERV as follows— 

 
VAR ERV BASE RELATION { E ELLIPSE , R RECTANGLE } KEY { E , R } ;  
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—and then assign one of the relations shown to this relvar, specialization by constraint will come 
into play once again, and the current most specific type of relvar ERV will become the most 
specific type of the relation in question.   

As their headings show, then, the most specific types of these relations, in order from top to 
bottom, are relation types ER, ER again, CR, ER again, ES, CS, and ER_omega, respectively.  
(For convenience I use the label ER_omega here as a shorthand name for the relation type 
RELATION {E omega, R omega}.)  Let’s focus for a moment on the first of the relations shown 
(let’s call it TopRel).  Relation TopRel has most specific type ER.  What’s more, it would still 
have most specific type ER even if we removed the only tuple—viz., the (e1,r1) tuple—that’s 
actually of tuple type ER.  (But if we removed the (c2,r2) tuple as well, the result would then 
have relation type ES as its most specific type.)   

Now, you might feel something slightly counterintuitive is going on here, and so it is, in a 
way.  For example, in the case of relation TopRel, I seem to be saying (rather loosely) that the 
most specific type is the least specific of the types of the tuples it contains!—and in fact that is 
what I’m saying, in that particular case.  And an analogous, though not identical, remark applies 
in all of the other cases too, of course.  So the obvious question is:  Why?  In the case of TopRel, 
for example, why didn’t I define the most specific type to be relation type CS (the other 
“extreme” type) instead?  Well, suppose I did.  Then:   

 
! Certain of the attributes in certain of the tuples in that relation would contain “values of the 

wrong type.”  The (e1,r1) tuple, for example, contains an E value of type ELLIPSE (not 
CIRCLE) and an R value of type RECTANGLE (not SQUARE), and thus certainly isn’t of 
tuple type CS (in fact, it’s of tuple type ER).   
 

! But allowing a relation of relation type CS to contain a tuple of tuple type ER would be a 
contradiction in terms—it would mean, for example, that attribute E of such a relation, of 
type CIRCLE, might contain values that are “just ellipses” and not circles.  Indeed, such a 
state of affairs would be just as bad as allowing a variable of declared type CIRCLE to 
contain a value that’s “just an ellipse.”   

 
It follows that we must define the most specific type MST(r) for relation r in the way I’ve 

done in the examples: namely, in such a way that the type corresponding to attribute A of MST(r) 
is the most specific common supertype—and not, as might have been expected, the least specific 
common subtype—of the most specific types of all of the A values in r.  (My apologies if you 
need to read that sentence several times in order to understand it.)  Hence we have the following 
definition:   

 
Definition:  Let relation r be as follows:   
 
RELATION { <A1,T1> , <A2,T2> , ... , <An,Tn> } { t1, t2, ... , tm }  
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(m ≥ 0).  Further, let tuple ti be as follows:   
 
TUPLE { <A1,MSTi1,vi1> , <A2,MSTi2,vi2> , ... , <An,MSTin,vin> }  

 
(i = 1, 2, ..., m), where, for all j (j = 1, 2, ..., n), type MSTij is a subtype of type Tj and is the 
most specific type of value vij (note that MSTij is different for different tuples ti, in 
general).  Then the most specific type of r is the relation type with heading:   

 
{ <A1,MST1>, <A2,MST2>, ... , <An,MSTn> }  

 
where, for all j (j = 1, 2, ..., n), type MSTj is the most specific common supertype of the 
types MSTij, taken over all tuples ti.  Note:  If m = 1, then the most specific type of r is the 
relation type with heading that of the most specific type of t1.  If m = 0, then the most 
specific type of r is the relation type with heading  

 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  

 
where, for all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type Tj 
(see IM Prescription 25).   
 
One final remark to close this section:  It follows from all of the above that if relation r is 

of high cardinality, then testing r to see whether it’s of some specified type might be quite time 
consuming, because it requires every tuple in r to be examined.  One implication of this state of 
affairs is that the implementer of an operator that has a parameter of some relation type might 
want to avoid having special implementation versions of that operator to deal with proper 
subtypes of that relation type.  For example, suppose operator AVG_AREA computes the 
average area for the ellipses appearing in attribute E of some relation r.  Suppose further that two 
implementation versions of that operator exist, one for when the most specific common 
supertype of E values in r is ELLIPSE and one for when it’s CIRCLE.  Suppose finally that r 
contains a billion tuples, none of which contains “just an ellipse.”  Then the implementation will 
have to examine all billion tuples—at run time, please observe—in order to perform the 
corresponding binding process.   
 
 
IM PRESCRIPTION 28: MODEL OF A TUPLE / RELATION VARIABLE  
 
Let V be a tuple variable or relation variable of declared type T, and let T have attributes A1, A2, 
..., An.  Then we can model V as a named set of named ordered triples of the form 
<DTj,MSTj,vj> (j = 1, 2, ..., n), where:   
 

a. The name of the set is the name of the variable, V.   
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b. The name of each triple is the name of the corresponding attribute.   
 
c. DTj is the name of the declared type of attribute Aj.   
 
d. MSTj is the name of the most specific type—also known as the current most specific 

type—for, or of, attribute Aj.  (If V is a relation variable, then the most specific type of Aj is 
the most specific common supertype of the most specific types of the m values in vj—see 
the explanation of vj below.)   

 
e. If V is a tuple variable, vj is a value of most specific type MSTj—the current value for, or 

of, attribute Aj.  If V is a relation variable, then let the body of the current value of V consist 
of m tuples (m ≥ 0); label those tuples (in some arbitrary sequence) “tuple 1,” “tuple 2,” ..., 
“tuple m”; then vj is a sequence of m values (not necessarily all distinct), being the Aj 
values from tuple 1, tuple 2, ..., tuple m (in that order).  Note that those Aj values are all of 
type MSTj.   

 
We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components, 
respectively, of attribute Aj of this model of tuple variable or relation variable V.  We also use the 
notation DT(V), MST(V), v(V) to refer to the overall declared type, overall current most specific 
type, and overall current value, respectively, of this model of tuple variable or relation variable 
V.   

Now let X be a tuple expression or relation expression.  By definition, X specifies an 
invocation of some tuple operator or relation operator Op.  Thus, the notation DTj(V), MSTj(V), 
vj(V) just introduced can be extended in an obvious way to refer to the declared type DTj(X), the 
current most specific type MSTj(X), and the current value vj(X), respectively, of the DTj, MSTj, 
vj components, respectively, of attribute Aj of tuple expression or relation expression X—where 
DTj(X) is the declared type of Aj for the invocation of Op in question (see IM Prescription 17) 
and is known at compile time, and MSTj(X) and vj(X) refer to the result of evaluating X and 
therefore can’t be known until run time (in general).   
 

——— ♦♦♦♦♦ ——— 
 
This prescription was number 26 in the Explorations version.   
 
IM Prescription 28 extends the model of a scalar variable from IM Prescription 9 to take tuple 
and relation variables into account as well.  Basically, of course, a tuple variable (i.e., a tuplevar) 
of declared type TT is a variable whose permitted values are tuples of type TT, and a relation 
variable (i.e., a relvar) of declared type RT is a variable whose permitted values are relations of 
type RT.  But there’s a little more that can usefully be said.   
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First let’s consider tuple variables specifically.  Let tuple variable TV be of declared type 
TT, and let TT have attributes A1, A2, ..., An.  Then we can model TV as a named set of n named 
ordered triples, each such triple being of the form <DTj,MSTj,vj>, where:   

 
! The name of the set is the name of the variable, viz., TV.   
 
! The name of triple <DTj,MSTj,vj> is the name of the corresponding attribute of TV 

(equivalently, the name of the corresponding attribute of TT), viz., Aj.   
 
! DTj is the name of the declared type of attribute Aj of TV (equivalently, the name of the 

declared type of attribute Aj of TT).   
 
! vj is the value of attribute Aj within the current value of TV.   
 
! MSTj is the name of the most specific type—also known as the current most specific type—

for, or of, attribute Aj within the current value of TV (in other words, it’s the name of the 
most specific type of value vj).   

 
We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components, 
respectively, of attribute Aj of this model of tuple variable TV.  Of course, it must always be the 
case that MST(Aj) is some subtype of DT(Aj).  Note that MST(Aj) and v(Aj) change with time, in 
general; note too that MST(Aj) is in fact implied by v(Aj).   

We also use the notation DT(TV), MST(TV), v(TV) to refer to the overall declared type, 
overall current most specific type, and overall current value (respectively), of tuple variable TV.  
In other words (using Tutorial D notation):   

 
! DT(TV)   ≝  TUPLE { A1  DT1 , A2  DT2 , ... , An  DTn }  
 
! MST(TV)  ≝  TUPLE { A1 MST1 , A2 MST2 , ... , An MSTn }  
 
! v(TV)    ≝  TUPLE { A1   v1 , A2   v2 , ... , An   vn }  
 

(The symbol “≝” means “is defined as.”)   
Note:  Since no tuple variable can have an empty declared type, it follows that the declared 

types DT(TV) and DT1, DT2, ..., DTn must all be nonempty.  And since no tuple value can have 
an empty most specific type, it follows that the most specific types MST(TV) and MST1, MST2, 
..., MSTn must all be nonempty as well.  Also, it should be clear without going into details that 
the foregoing definitions can readily be extended to apply to arbitrary tuple expressions instead 
of just to tuple variables specifically.   

Turning now to relation variables (i.e., relvars):  Let relvar RV be of declared type RT, and 
let RT have attributes A1, A2, ..., An.  Let the body of the current value of RV consist of m tuples, 
and let those tuples be labeled (in some arbitrary sequence) “tuple t1,” “tuple t2,” ..., “tuple tm.”  
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Then we can model RV as a named set of named ordered triples, each such triple being of the 
form <DTj,MSTj,vj>, where:   

 
! The name of the set is the name of the variable, viz., RV.   
 
! The name of triple <DTj,MSTj,vj> is the name of the corresponding attribute of RV 

(equivalently, the name of the corresponding attribute of RT), viz., Aj.   
 
! DTj is the name of the declared type of attribute Aj of RV (equivalently, the name of the 

declared type of attribute Aj of RT).   
 
! vj is a sequence of m values (not necessarily all distinct), being the values of attribute Aj 

from tuples t1, t2, ..., tm (in that order) within the current value of RV.   
 
! MSTj is the name of the most specific type—also known as the current most specific 

type—for, or of, attribute Aj within the current value of RV (that type is in fact the most 
specific common supertype of the most specific types of the m values in vj, and hence the 
most specific type of vj as such).   

 
We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components, 
respectively, of attribute Aj of this model of relvar RV.  Of course, it must always be the case that 
MST(Aj) is some subtype of DT(Aj).  Note that MST(Aj) and v(Aj) change with time, in general; 
note too that MST(Aj) is in fact implied by v(Aj).   

We also use the notation DT(RV), MST(RV), v(RV) to refer to the overall declared type, 
overall current most specific type, and overall current value (respectively), of relvar RV.  In other 
words (using Tutorial D notation):   

 
! DT(RV)   ≝  RELATION { A1  DT1 , A2  DT2 , ... , An  DTn }  
 
! MST(RV)  ≝  RELATION { A1 MST1 , A2 MST2 , ... , An MSTn }  
 
! v(RV)    ≝  RELATION { TUPLE { A1 v11 , A2 v12 , ... , An v1n } ,  

                        TUPLE { A1 v21 , A2 v22 , ... , An v2n } ,  
                          ....................................      
                        TUPLE { A1 vm1 , A2 vm2 , ... , An vmn } }  
 

Here, of course, I’m using the symbol vij to denote the value of attribute Aj within tuple ti 
(i = 1, 2, ..., m; j = 1, 2, ..., n).  By way of example, let relvar ERV be defined as follows— 

 
VAR ERV BASE RELATION { E ELLIPSE , R RECTANGLE } KEY { E , R } ;  
 

—and let the following relation be assigned to it:   
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┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : SQUARE    │ 
├══════════════╪════════════════┤ 
│ e3 : ellipse │ s3 : square    │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 

 
Then:   
 
! DT(RV)   ≝  RELATION { E ELLIPSE , R RECTANGLE }  
 
! MST(RV)  ≝  RELATION { E ELLIPSE , R SQUARE }  
 
! v(RV)    ≝  RELATION { TUPLE { E e3 , R s3 } ,  

                        TUPLE { E c4 , R s4 } }  
 

Finally, it should be clear without going into details that the foregoing definitions can 
readily be extended to apply to arbitrary relational expressions instead of just to relation 
variables specifically.   
 
 
IM PRESCRIPTIONS 11 - 15  REVISITED  
 
All of the IM prescriptions discussed in Parts II and III of this book apply essentially unchanged 
to tuples and relations as well.  However, IM Prescriptions 11-15 in particular do merit a little 
further discussion.  Note:  Despite the title of this chapter, the matters discussed in this section 
have little to do (for the most part) with tuple and relation variables as such, but it’s convenient 
to deal with them here.   
 
IM Prescription 11: Assignment with Inheritance  
 
Given the assignment V := X, where V is a variable reference and X is an expression, this 
prescription requires the declared type DT(X) of the source expression X to be a subtype of the 
declared type DT(V) of the target variable V (this is a compile time check).  Here’s an example in 
which the target variable is a tuple variable specifically:   
 

VAR TV1 TUPLE { P POINT , E ELLIPSE , R RECTANGLE } ;  
VAR TV2 TUPLE { P POINT , E CIRCLE  , R SQUARE    } ;  
 
TV2 := TUPLE { P POINT ( ... ) , E CIRCLE ( ... ) , R SQUARE ( ... ) } ;  
TV1 := TV2 ;  
 
After the second assignment here:   
 

! DT(TV1) is unchanged (it’s the tuple type specified in the definition of TV1, of course).   
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! MST(TV1) is the same as MST(TV2) (in fact it’s the tuple type specified in the definition of 
TV2, but only because that type happens to be the most specific type of the current value of 
TV2).1   

 
! v(TV1) is the same as v(TV2).   
 

Suppose now that TV1 had been defined slightly differently:   
 
VAR TV1 TUPLE { Q POINT , E ELLIPSE , R RECTANGLE } } ;  
 

(The difference is that the point valued attribute is now called Q instead of P.)  The assignment 
of TV2 to TV1 will now fail on a compile time type error, because the declared type of TV2 is 
no longer a subtype of that of TV1.  However, the following assignment is valid:   
 

TV1 := TV2 RENAME { P AS Q } ;  
 

It’s only fair to point out a minor oddity here, however.  Given scalar variables E and C of 
declared types ELLIPSE and CIRCLE, respectively, we can assign C to E.  Yet if TE and TC are 
tuple variables, of tuple types TUPLE {E ELLIPSE} and TUPLE {C CIRCLE}, respectively, we 
can’t assign TC to TE; we have to assign TC RENAME {C AS E} to TE instead.  The reason for 
this seeming anomaly is, of course, that tuple types have attributes, and the attribute names are 
part of the type; scalar types, by contrast, have no attributes, and so the question of the names of 
such attributes being somehow part of the type doesn’t arise.   

Finally, it should be clear without going into details that relational assignment obeys the 
same general rules as tuple assignment does.  I leave provision of examples as an exercise for 
you.   
 
IM Prescription 12: Equality with Inheritance  
 
Given the comparison X = Y, where X and Y are expressions, this prescription requires the 
declared types DT(X) and DT(Y) of the expressions X and Y to overlap (this is a compile time 
check).  Here’s an example to illustrate tuple comparison:   
 

VAR TV1 TUPLE { E ELLIPSE , R SQUARE    } ;    /* “tuple type ES” */  
VAR TV2 TUPLE { E CIRCLE  , R RECTANGLE } ;    /* “tuple type CR” */  
 
IF TV1 = TV2 THEN ... ;  
 
The comparison here is valid because tuple types ES and CR do overlap (their intersection 

type is tuple type CS, which is nonempty).  Further, the comparison will give TRUE if and only 

                                                             
 
1 As usual I’m assuming here that types POINT, CIRCLE, and SQUARE have no proper subtype other than type omega.   



 
 

Tuple / Relation Variables with Inheritance / Chapter 20      401 

if the current values of tuple variables TV1 and TV2 are both of tuple type CS (and those current 
values are equal, of course).   

Relational comparison is analogous.  Further elaboration seems unnecessary, except to note 
that (as you would surely expect) the rules regarding relational comparison operators other than 
equality, such as “⊆”, follow the same general pattern as those for equality (see Exercise 20.3 at 
the end of the chapter).   
 
IM Prescription 13: Join etc. with Inheritance  
 
This prescription applies to tuple and relation types essentially unchanged.  E.g., if the declared 
type of attribute A of relational expression RX is tuple type ES and the declared type of attribute 
A of relational expression RY is tuple type CR, then the declared type of attribute A of (RX) JOIN 
(RY)—assuming the relations denoted by RX and RY are joinable, of course—is tuple type CS.   
 
IM Prescription 14: TREAT  
 
Given the TREAT invocation TREAT_AS_T (X), where X is an expression, this prescription 
requires T and the declared type DT(X) of the expression X to overlap (this is a compile time 
check).  And the prescription is sufficient to cover tuples and relations as well as scalars, 
provided the reference within the text of that prescription to “a logical equivalent”—i.e., to an 
operator of the form TREAT_AS_T (X)—can be taken to include one of the more general form  
 

TREAT_AS_SAME_TYPE_AS ( Y , X )  
 
where X and Y are tuple or relation expressions, as applicable, and DT(Y) is T.  Let’s consider the 
tuple case specifically.  Consider the following example:   
 

VAR TV1 TUPLE { E ELLIPSE , R RECTANGLE } ;   /* “tuple type ER” */  
VAR TV2 TUPLE { E CIRCLE ,  R SQUARE    } ;   /* “tuple type CR” */  
 
TV2 := TUPLE { E CIRCLE ( ... ) , R SQUARE ( ... ) } ;  
TV1 := TV2 ;  
 
After the second assignment, the current value of TV1 consists of a circle and a square, not 

just an ellipse and a rectangle (if you see what I mean).  Suppose now we want to assign that 
value back to TV2.  Then the following assignment will not work:   

 
TV2 := TV1 ;        /* warning: compile time type error! */  
 

(It fails because DT(TV1) isn’t a subtype of DT(TV2).)  By contrast, the following will work:   
 

TV2 := TREAT_AS_SAME_TYPE_AS ( TV2 , TV1 ) ;  
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The expression on the right side here has declared type the same as that of variable TV2, so the 
compile time type checking succeeds.2  Then at run time:   

 
! If the current value of TV1 is indeed of that type—viz., DT(TV2), or in other words 

TUPLE { E CIRCLE, R SQUARE}—then that TREAT invocation yields a result, res say, 
with (a) MST(res) equal to MST(TV1), which is the same as DT(TV2) in the example, and 
(b) v(res) equal to v(TV1).  So that value can be assigned to TV2.   

 
! However, if the current value of TV1 is only of the (declared) type of TV1, not of TV2, 

then the invocation fails on a run time type error, and no assignment occurs (variable TV2 
remains unchanged).   

 
In other words, the TREAT_AS_SAME_TYPE_AS operator as just discussed is indeed a 

tuple analog of TREAT as defined for scalar types in Chapter 10.  The “SAME TYPE AS” 
format is provided primarily because our tuple type naming conventions don’t lend themselves to 
the simpler format available in the scalar case.3   

Without going into further details, I think it should be clear that the following operators can 
and should also be supported:   

 
! A relational version of TREAT_AS_SAME_TYPE_AS  
 
! Tuple / relation operators of the form  

 
X : TREAT_AS_SAME_TYPE_AS ( Y , A )  
 
where X is a tuple or relational expression, A is a tuple or relation valued attribute of the 
tuple or relation denoted by X, and Y is an expression such that DT(Y) is some proper 
subtype of DT(A).   

 
IM Prescription 15: Type Testing  
 
Given the IS_T invocation IS_T (X), where X is an expression, this prescription requires T and 
the declared type DT(X) of the expression X to overlap (this is a compile time check).  And the 
prescription is sufficient to cover tuples and relations as well as scalars, provided the reference 
within the text of that prescription to “a logical equivalent”—i.e., to an operator of the form 
IS_T (X)—can be taken to include one of the more general form 

                                                             
 
2 It’s worth pointing out explicitly that the TREAT invocation in this example is logically equivalent to the tuple selector 
invocation TUPLE {E TREAT_AS_CIRCLE (E FROM TV1), R TREAT_AS_SQUARE (R FROM TV1)}.  Question:  Do you 
think an analogous remark can always be made of tuple / relation TREAT invocations?  (Answer:  Yes, it can.)   
 
3 Even if all types involved are scalar, however, there are likely to be situations where this more general format will prove useful, 
or possibly even necessary.   
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IS_SAME_TYPE_AS ( Y , X )  

 
where X and Y are tuple or relation expressions, as applicable, and DT(Y) is T.4  Without going 
into details, I think it should be clear that a relational operator of the following form can and 
should also be supported:   

 
X : IS_SAME_TYPE_AS ( Y , A )  
 

where X is a relational expression, A is an attribute of the relation denoted by X, and Y is an 
expression such that DT(Y) is some subtype of DT(A).5   
 
 
EXERCISES  
 
20.1 With reference to the type graph of Fig. 14.1 in Chapter 14, let relvar RV be defined as 
follows:   
 

VAR RV BASE  
    RELATION { PX PARALLELOGRAM , PY PARALLELOGRAM }  
    KEY { PX , PY } ;  

 
Here are some possible “states” (i.e., sample values) for this relvar.  What are the corresponding 
most specific types?   
 

┌────────────────────┬────────────────────┐ 
│ PX : PARALLELOGRAM │ PY : PARALLELOGRAM │ 
├════════════════════╪════════════════════┤ 
│ x1 : rectangle     │ y1 : rectangle     │ 
│ x2 : rhombus       │ y2 : rectangle     │ 
│ x3 : rectangle     │ y3 : square        │ 
│ x4 : square        │ y4 : square        │ 
└────────────────────┴────────────────────┘ 
┌────────────────────┬────────────────────┐ 
│ PX : PARALLELOGRAM │ PY : PARALLELOGRAM │ 
├════════════════════╪════════════════════┤ 
│ x2 : rhombus       │ y2 : rectangle     │ 
│ x4 : square        │ y4 : square        │ 
└────────────────────┴────────────────────┘ 

                                                             
 
4 As with TREAT, (a) this “SAME TYPE AS” format is provided primarily because our tuple type naming conventions don’t 
lend themselves to the simpler format available with scalar types, and (b) in any case, even with scalar types, there are likely to 
be situations where this more general format will prove useful, or possibly even necessary.   
 
5 “NOT” versions of all of these operators could and probably should be provided also (see the answer to Exercise 10.8 in 
Chapter 10).   
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┌────────────────────┬────────────────────┐ 
│ PX : PARALLELOGRAM │ PY : PARALLELOGRAM │ 
├════════════════════╪════════════════════┤ 
│ x3 : rectangle     │ y3 : square        │ 
│ x4 : square        │ y4 : square        │ 
└────────────────────┴────────────────────┘ 
┌────────────────────┬────────────────────┐ 
│ PX : PARALLELOGRAM │ PY : PARALLELOGRAM │ 
├════════════════════╪════════════════════┤ 
│ x4 : square        │ y4 : square        │ 
└────────────────────┴────────────────────┘ 
┌────────────────────┬────────────────────┐ 
│ PX : PARALLELOGRAM │ PY : PARALLELOGRAM │ 
├════════════════════╪════════════════════┤ 
└────────────────────┴────────────────────┘ 

 
20.2 Let relation r have attributes A1, A2, ..., An (only).  Explain the most specific type of r in 
your own words.  Give some examples.   
 
20.3 Let RX and RY be relational expressions.  Is it true that RY ⊆ RX can evaluate to TRUE 
only if MST(RY) is a subtype of MST(RX)?   
 
20.4 Let relvars RV1 and RV2 be defined as follows:   
 

VAR RV1 BASE RELATION { E omega , C CIRCLE } KEY { } ;  
 
VAR RV2 BASE RELATION { E omega , C omega  } KEY { } ;  

 
At all times, each of these relvars must necessarily have as its value the sole relation of most 
specific type RELATION {E omega, C omega} (right?).  So is the following assignment legal?   
 

RV2 := RV1 ;  
 
If not, what needs to be done to it to make it legal?   
 
20.5 As a final exercise before we move on to those other approaches to inheritance to be 
described in the next part of the book, can you think of any practical applications of our 
inheritance model, over and above its use in connection with geometric types as exhaustively 
discussed in chapters prior to this point?   
 
 
ANSWERS		
	
20.1	 The	most	specific	types	(from	top	to	bottom)	are	as	follows:			

	
! RELATION { PX PARALLELOGRAM , PY RECTANGLE }  
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! RELATION { PX RHOMBUS       , PY RECTANGLE }  
 
! RELATION { PX RECTANGLE     , PY SQUARE    }  
 
! RELATION { PX SQUARE        , PY SQUARE    }  
 
! RELATION { PX omega         , PY omega     }  

	
20.2	 First	let	me	spell	out	something	that	might	have	already	occurred	to	you	but	deserves	to	
be	stated	explicitly	anyway.6		In	Chapter	2,	I	said	this:			
	

[Every]	value	is	certainly	of	some	type.		In	other	words,	if	v	is	a	value,	then	v	can	be	thought	of	as	
carrying	around	with	it	a	kind	of	flag	that	announces	“I’m	an	integer”	or	“I’m	a	supplier	number”	
or	“I’m	a	rectangle”	(etc.,	etc.).			

	
And	in	a	footnote	I	added	this:			
	

Since	tuples	and	relations	are	values,	these	remarks	apply	to	tuples	and	relations	in	particular.		For	
tuples	and	relations,	however,	the	function	of	what	I’m	referring	to	here	as	“a	kind	of	flag”	is	
performed	by	the	pertinent	heading.			

	
And	then	in	Chapter	5	I	said	this:			
	

[With	inheritance,	a	value]	might	have	to	carry	around	several	distinct	flags—e.g.,	“I’m	an	ellipse”	
and	“I’m	a	circle.”		(Of	course,	a	flag	that	specifies	just	the	most	specific	type	is	all	that’s	logically	
required.)			

	
Putting	these	remarks	together,	it’s	clear	that	tuples	and	relations	might	effectively	have	

to	have	several	distinct	headings—one	corresponding	to	the	pertinent	most	specific	type,	and	
one	corresponding	to	each	proper	supertype	of	that	specific	type.		For	example,	the	following	
relation	(r,	say)—	
	

┌──────────────┬────────────────┐ 
│ E  : CIRCLE  │ R  : RECTANGLE │ 
├══════════════╪════════════════┤ 
│ c2 : circle  │ r2 : rectangle │ 
│ c4 : circle  │ s4 : square    │ 
└──────────────┴────────────────┘ 

	
—has	all	of	the	following	headings:7			

                                                             
 
6 I did touch on these matters in footnote 5 in Chapter 17, though.   
 
7 Of course, it would have even more if we were to reinstate types PLANE_FIGURE and POLYGON.   
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{ E CIRCLE  , R RECTANGLE }  
{ E ELLIPSE , R RECTANGLE }  
{ E alpha   , R RECTANGLE }  
{ E CIRCLE  , R alpha     }  
{ E ELLIPSE , R alpha     }  
{ E alpha   , R alpha     }  

 
Of	these,	the	first	one	listed	corresponds	to	relation	r’s	most	specific	type.			

Definitions	of	tuple	/	relation	most	specific	types	were	given	in	the	body	of	the	chapter,	of	
course,	but	here’s	an	alternative	(and	rather	more	succinct)	definition	for	the	relational	case:			

	
Definition:		Let	relation	r	have	attributes	A1,	A2,	...,	An	(only).  Then	the	most	specific	type	
of	r	is	the	type	RELATION	H	such	that	each	tuple	of	r	is	of	type	TUPLE	H	and	there’s	no	
heading	Hʹ	such	that	TUPLE	Hʹ	is	a	proper	subtype	of	TUPLE	H	and	each	tuple	of	r	is	of	type	
TUPLE	Hʹ.			
	
Here	are	some	examples:			

	
!	 The	most	specific	type	of	both	TABLE_DEE	and	TABLE_DUM	is	RELATION	{	}.			
	
!	 Let	r	be	the	relation	denoted	by	the	following	relation	literal:			
	

RELATION { TUPLE { E1 ELLIPSE ( LENGTH ( 4.0 ) ,  
                                LENGTH ( 4.0 ) ,  
                                POINT  ( 1.0 , 2.0 ) ,  
                   E2 ELLIPSE ( LENGTH ( 4.0 ) ,  
                                LENGTH ( 4.0 ) ,  
                                POINT  ( 0.0 , 0.0 ) ) } }  

	
Then	the	most	specific	type	of	r	is	RELATION	{	E1	CIRCLE,	E2	CIRCLE	}—or	if	as	elsewhere	
in	the	book	type	CIRCLE	has	a	proper	subtype	O_CIRCLE,	then	it’s	RELATION	{	E1	CIRCLE,	
E2	O_CIRCLE	}.			

	
!	 By	contrast,	let	r	be	the	relation	denoted	by	the	following	relation	literal:			
	

RELATION { TUPLE { E1 ELLIPSE ( LENGTH ( 4.0 ) ,  
                                LENGTH ( 4.0 ) ,  
                                POINT  ( 1.0 , 2.0 ) ,  
                   E2 ELLIPSE ( LENGTH ( 4.0 ) ,  
                                LENGTH ( 4.0 ) ,  
                                POINT  ( 1.0 , 0.0 ) ) } ,  
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           TUPLE { E1 ELLIPSE ( LENGTH ( 5.0 ) ,  
                                LENGTH ( 4.0 ) ,  
                                POINT  ( 1.0 , 2.0 ) ,  
                   E2 ELLIPSE ( LENGTH ( 3.0 ) ,  
                                LENGTH ( 3.0 ) ,  
                                POINT  ( 0.0 , 0.0 ) ) } }  

	
Then	the	most	specific	type	of	r	is	RELATION	{	E1	ELLIPSE,	E2	CIRCLE	},	because	the	most	
specific	type	of	at	least	one	E1	value	is	ELLIPSE	and	that	of	at	least	one	E2	value	is	CIRCLE	
(and	the	most	specific	type	of	no	value	of	E1	is	less	specific	than	ELLIPSE	and	the	most	
specific	type	of	no	value	of	E2	is	less	specific	than	CIRCLE).			

	
20.3	 Yes,	it	is.		To	spell	out	the	details:			
	
!	 First,	RY	⊆	RX	can’t	possibly	be	true	if	DT(RY)	and	DT(RX)	(and	hence	MST(RY)	and	

MST(RX),	a	fortiori)	are	from	different	type	lattices.		In	this	case,	in	fact,	the	expression	
“MST(RY)	is	a	subtype	of	MST(RX)”	isn’t	even	defined,	and	the	comparison	RY	⊆	RX	will	
fail	on	a	compile	time	type	error.			

	
!	 Second,	if	DT(RY)	and	DT(RX)	are	from	the	same	type	lattice	and	MST(RY)	is	a	subtype	of	

MST(RX),	then	RY	⊆	RX	might	evaluate	to	TRUE.		Such	is	the	case,	for	example,	if	RY	and	
RX	happen	to	have	the	values	ry	and	rx	shown	below:			

	
      ry                                    rx  

┌──────────────┬────────────────┐     ┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │     │ E  : ELLIPSE │ R  : RECTANGLE │ 
├══════════════╪════════════════┤     ├══════════════╪════════════════┤ 
│ e1 : ellipse │ r1 : rectangle │     │ e1 : ellipse │ r1 : rectangle │ 
│ c4 : circle  │ s4 : square    │     │ c2 : circle  │ r2 : rectangle │ 
└──────────────┴────────────────┘     │ e3 : ellipse │ s3 : square    │ 
                                      │ c4 : circle  │ s4 : square    │ 
                                      └──────────────┴────────────────┘ 

 
!	 Third,	if	DT(RY)	and	DT(RX)	are	from	the	same	type	lattice	but	MST(RY)	isn’t	a	subtype	of	

MST(RX),	then	(a)	by	definition,	the	relation	ry	denoted	by	RY	must	contain	a	tuple	of	type	
TUPLE	H	such	that	RELATION	H	is	a	proper	supertype	of	MST(RX);	(b)	also	by	definition,	
the	tuple	in	question	can’t	possibly	appear	in	the	relation	rx	denoted	by	RX;	hence,	
(c)	RY	⊆	RX	must	evaluate	to	FALSE.		Here’s	an	example	of	this	situation:			
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      ry                                    rx  
┌──────────────┬────────────────┐     ┌──────────────┬────────────────┐ 
│ E  : ELLIPSE │ R  : RECTANGLE │     │ E  : CIRCLE  │ R  : RECTANGLE │ 
├══════════════╪════════════════┤     ├══════════════╪════════════════┤ 
│ e1 : ellipse │ r1 : rectangle │     │ e1 : circle  │ r1 : rectangle │ 
│ c4 : circle  │ s4 : square    │     │ c2 : circle  │ r2 : rectangle │ 
└──────────────┴────────────────┘     │ e3 : circle  │ s3 : square    │ 
                                      │ c4 : circle  │ s4 : square    │ 
                                      └──────────────┴────────────────┘ 

	
20.4	 It’s	not	legal	according	to	our	inheritance	model,	because	DT(RV1)	isn’t	a	subtype	of	
DT(RV2).		The	legal	version	is:			
	

RV2 := TREAT_AS_SAME_TYPE_AS ( RV2 , RV1 ) ;  
	
But	the	fact	that	the	TREAT	is	necessary	is	admittedly	a	little	odd,	given	that	(as	the	exercise	
states)	the	sole	possible	value	of	RV1	is	in	fact	the	sole	possible	value	of	RV2	as	well.			
	
20.5	 First	of	all,	the	exercise	does	ask	for	applications	“over	and	above	its	use	in	connection	
with	geometric	types,”	but	I	think	I	should	point	out	that	what	some	call	“geometric	modeling”	
does	have	wide	application	in	such	areas	as	geographic	information	systems	and	display	
graphics.		Thus,	I	think	the	potential	for	using	our	inheritance	model	in	such	contexts	is	worth	
further	investigation,	to	say	the	least.			

Second,	our	model	works	well	for	any	data	to	which	the	notion	of	scale	applies.		Examples	
include	certain	kinds	of	numeric	data,	obviously	enough—see,	e.g.,	the	exercises	in	Chapter	16.		
Consider	also	types	such	as	DECIMAL(5,1),	which	are	found	in	SQL	and	many	other	languages.		
Another	example,	very	important	in	practice,	is	the	timeline,	which	can	be	divided	up	according	
to	many	different	scales—days,	weeks,	business	days,	months,	hours,	milliseconds,	and	so	on.		
A	detailed	discussion	of	the	application	of	our	inheritance	model	to	this	particular	problem	area	
can	be	found	in	C.	J.	Date,	Hugh	Darwen	and	Nikos	A.	Lorentzos:	Time	and	Relational	Theory:	
Temporal	Data	in	the	Relational	Model	and	SQL	(Morgan	Kaufmann,	2014).			

Another	possible	application	of	our	model	is	illustrated	by	the	exercises	in	Chapter	8.		
And—despite	the	remarks	in	the	answer	to	Exercise	3.14	in	Chapter	3—it	might	be	used,	
judiciously,	in	connection	with	types	like	INTEGER	and	RATIONAL,	too.			

Finally,	despite	my	criticisms	of	examples	like	those	typically	found	in	other	writings	on	
inheritance—I	refer	to	such	examples	as	employees	vs.	programmers,	monthly	vs.	hourly	
employees,	full	time	vs.	part	time	employees,	professors	vs.	assistant	professors,	circles	vs.	
colored	circles,	and	numerous	others	like	them—you	might	be	surprised	to	learn	that	our	
inheritance	model	can	in	fact	be	used	in	connection	with	such	situations	after	all.		See	the	
section	“Structural	Inheritance	for	Scalar	Types	Using	the	Manifesto	Model”	in	Chapter	21	for	
further	details.			
	



P a r t   V 
 
 
 

O T H E R   A P P R O A C H E S 
 
 
 

This final part of the book contains two fairly lengthy chapters that look at some alternative 
approaches to the question of type inheritance.  Let me apologize immediately for the fact that 
these chapters might both appear quite complicated, and especially for what might seem to be an 
excessive number of asides and footnotes.  Naturally I’ve done my best to explain the subject 
matter as clearly as I can; but (as I said in the preface) it seems to me that the complexities are 
innate; I mean, I believe the chapters are complicated because the material they describe is 
complicated.  Certainly I’ve tried hard not to introduce any additional complications, over and 
above ones that are intrinsic to what’s being described.   
 
 



 



  

Chapter  21 
 
 

S t r u c t u r a l   I n h e r i t a n c e 
 
 

Circles ain’t red  
Ellipses ain’t blue  
Lemons ain’t sweet  
All this is true  

—Anon.: 
Where Bugs Go 

 
 

This chapter is based in part on Appendix G (“A Closer Look at Structural Inheritance”) of the 
Manifesto book.  However, all of the material is revised here, sometimes extensively.   
 
The inheritance model described in Parts II-IV of this book is concerned with what’s often called 
behavioral inheritance, on the grounds that what’s inherited is “behavior” (i.e., operators).  But 
there’s another kind of inheritance as well, so called “structural” inheritance, where what’s 
inherited is representations.  Now, I claimed in Chapter 3 that those inherited representations 
were physical representations specifically (so long as the types involved were scalar types, at any 
rate); however, I did also say that some might disagree with that claim, and I’ll examine it more 
closely in what follows (actually in the next section).  I also mentioned in that same chapter 
something called “the EXTENDS relationship,” which is a form of structural inheritance in 
which the representations involved are explicitly visible to the user.  This chapter investigates 
such matters in depth.   

The plan of the chapter is as follows.  The section immediately following these 
introductory remarks takes a look at a simple example, with a view to exposing the real issues 
underlying the idea of structural inheritance.  The next section considers what might be involved 
in supporting that idea.  The subsequent two sections then (a) examine a particular concrete 
realization of the idea (“subtables and supertables”) in some detail and (b) offer some thoughts 
on examples of a certain common kind, of which “COLORED_CIRCLE is a subtype of 
CIRCLE” is typical.1  The final section shows how it might be possible to achieve some support 
for structural inheritance for scalar types without departing from the prescriptions of our own 
inheritance model as described in previous chapters.  And there’s a postscript, too, which offers a 
brief survey of the literature in connection with these matters.   
 
                                                             
 
1 Other examples of the same general nature include “programmers are a subtype of employees” (see the next section, also 
Chapter 1) and “toll highways are a subtype of highways” (see Chapter 11).   
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AN INTRODUCTORY EXAMPLE  
 
The following example is typical of those commonly used in connection with the concept of 
structural inheritance.  Consider employees and programmers.  Assume for the sake of the 
example that every programmer is an employee but some employees aren’t programmers; 
assume further that employees and programmers are represented by types EMP and PGMR, 
respectively.  Clearly, there’s some kind of parallel here with our familiar example of ellipses 
and circles, where every circle is an ellipse but some ellipses aren’t circles; thus, it seems 
reasonable, at least on the face of it, to say that PGMR is a subtype of EMP (“programmers are a 
subtype of employees”).  But does this notion stand up to closer inspection?   

Well, let’s focus for a moment on employees alone and ignore programmers.  Suppose 
every employee has an employee number (ENO), a name (ENAME), a department number 
(DNO), and a salary (SALARY).  As the Manifesto book shows, then, there are two approaches 
we might consider for dealing with this situation (two ways, that is, in which we might choose to 
represent this state of affairs formally):  We could define an EMP type (scalar by definition), or 
we could define an EMP relvar (nonscalar by definition).  As I’ve said, however, I’m assuming 
for the moment that we’re going with the first of these options.2  Hence:   

 
! To repeat, that EMP type is scalar, and so it must be “encapsulated,” meaning it has no user 

visible structure.  Note:  I deliberately use the object term encapsulated here because most 
of the work on structural inheritance has been done in an object context specifically.   
 

! That type will presumably have a possrep with (a) components ENO, ENAME, DNO, and 
SALARY, and hence (b) a set of THE_ operators for accessing those components.   

 
Now I can go on to define type PGMR to be a proper subtype of type EMP, much as earlier 

in this book I defined type CIRCLE to be a proper subtype of type ELLIPSE.  That PGMR type 
will inherit all operators (all read-only operators, at any rate) that apply to employees in general, 
and will additionally have certain operators of its own.  For example, suppose programmers, 
unlike employees in general, have a certain language skill (LANG, say, where typical LANG 
values are “Java,” “SQL,” and so on);3 then there’ll be an operator to retrieve the LANG value 
for a given programmer.  Note immediately, however, that it follows that the possrep for EMP—
i.e., the supertype—will have to include a LANG component (of type CHAR, say), despite the 
fact that employees who aren’t programmers don’t have a language skill property:   
                                                             
 
2 You might be thinking that this first option is obviously the wrong way to go.  If so, then I would agree with you!—and as 
you’ll soon see, the present section will very quickly be agreeing with you as well.  Indeed, the Manifesto book agrees with you 
too; in fact, it argues strongly in favor of the second option (see the answer to Exercise 21.1 at the end of the chapter for a 
summary of the Manifesto arguments in this connection).  Nevertheless, there are those who would argue that the first option 
might be reasonable too.  See the answer to Exercise 1.10 in Chapter 1 for a possible explanation for this state of affairs, and/or 
some of the books on object orientation mentioned in the postscript to this chapter.   
 
3 For simplicity, I’m assuming that each programmer has just one language in which he or she is proficient.  That assumption 
isn’t very realistic, of course, but the point isn’t important for present purposes.   
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TYPE EMP POSSREP  
   ( ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY , LANG CHAR ) ;  
 
Now the specialization constraint for type PGMR, required by IM Prescription 10, might 

specify that a value e of type EMP is a value of type PGMR if and only if THE_LANG (e) isn’t 
the empty string.  Of course, the fact that the LANG possrep component is required in the first 
place, even for nonprogrammers, is sufficient to show that this design isn’t a very good one;4 but 
at least if we did adopt it, then it would certainly be the case that PGMR is a subtype of EMP in 
the sense of our inheritance model.  However, the kind of inheritance involved is, by definition, 
behavioral, not structural.  Please understand, therefore, that designs like the one just briefly 
discussed are not what I want to concentrate on in this chapter!  As indicated in footnote 2, in 
fact, we’d be much more likely in practice to represent employees and programmers not as types 
at all but as relvars, perhaps like this:   

 
VAR EMP BASE RELATION  
  { ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY }  
  KEY { ENO } ;  
 
VAR PGMR BASE RELATION  
  { ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY , LANG CHAR }  
  KEY { ENO } ;  
 
CONSTRAINT E_AND_P_DISJOINT IS_EMPTY ( EMP { ENO } JOIN PGMR ) ;  
 
Note the constraint in particular, which says in effect that employee e is represented in 

relvar PGMR if and only if e is a programmer, and in relvar EMP if and only if e isn’t a 
programmer.  (In fact, it might have been better to call this latter relvar NONPGMR rather than 
EMP, but I have my reasons, which I hope will become apparent later, for wanting to stay with 
the name EMP.)  Thus, the name, department number, and salary for any given employee e as 
well as the pertinent employee number) are represented in just one of the two relvars.  As for the 
language skill, note that the corresponding attribute (LANG) appears in relvar PGMR only, not 
in relvar EMP.   

Now, this design involves two relation types, neither of which is a subtype of the other as 
far as our model is concerned.  (Recall that relation type RT′ can be a subtype of relation type RT 
in our model only if RT′ and RT have the same attribute names, which isn’t the case here.)  
Under structural inheritance, however, we might say that the type RT′ corresponding to relvar 
PGMR inherits the structure of the type RT corresponding to relvar EMP but extends that 
structure to include an additional attribute (LANG); and then we might to go on to say—under 
this very different notion of inheritance!—that type RT′ is indeed a subtype of supertype RT after 
all.5  And if we do, then what we have is an example of “the EXTENDS relationship.”   
                                                             
 
4 It also serves, not incidentally, to bolster the Manifesto book’s arguments in favor of the alternative design (see footnote 2).   
 
5 As noted in Chapter 7, some writers would describe RT′ here not as a subtype but as a derived type.   
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Now, in Chapter 3 I said we don’t preclude support for such inheritance; however, I also 
said it had nothing to do with our model.  Now I can elaborate on these remarks:   

 
! With regard to whether it has anything to do with our model (I deliberately consider the 

second remark first):  It’s clear that if we limit our attention to scalar or “encapsulated” 
types, then any structural inheritance that might apply is merely an implementation issue, 
because scalar types have no structure to inherit (no structure visible to the user, that is).6  
In an object system, therefore, objects, if they’re properly encapsulated, ought not to be 
subject to structural inheritance at all as far as the model is concerned.  But the picture is 
muddied by the fact that even “encapsulated” objects in such systems do typically expose 
at least part of their internal structure to the user in the form of what are called (among 
other things) public instance variables.7  For example, an EMP object might have public—
i.e., user visible—instance variables ENO, ENAME, DNO, and SALARY.   

Now, you might be thinking there’s no harm in the foregoing notion—you might be 
thinking that public instance variables are just like possrep components in our own scalar 
types.  But I don’t think they are.  For one thing, there’s no guarantee, or requirement, that 
the public instance variables for a given object constitute a complete representation for the 
object in question (e.g., an EMP object might have ENO and SALARY, but no ENAME 
and DNO, public instance variables).  For another, in a system supporting structural 
inheritance, public instance variables are explicitly inherited, which possrep components 
explicitly aren’t (see the section “Scalar Types Revisited,” later).  Third, there’s no notion 
of a given object being able to have two or more distinct sets of public instance variables, 
thereby exposing two or more distinct “possible representations.”  Fourth, I think there’s a 
strong argument that public instance variables are physical, anyway; that is, they expose at 
least part of the physical representation of the objects in question (meaning, by the way, 
that the dividing line between model and implementation is somewhat fuzzy, to say the 
least, in such a system).8  Why do I say this?—I mean, why do I claim that public instance 
variables expose the physical representation?  Because systems that support such public 
instance variables typically also support private instance variables, which definitely aren’t 
visible to the user—so what’s the point in having public ones at all, if not to expose at least 
some aspects of the physical representation?   

                                                             
 
6 Well, scalar types do have possreps, of course, and those possreps in turn certainly have structure that’s visible to the user.  As 
I’ll explain in the section “Scalar Types Revisited,” however, I don’t think it’s appropriate to regard the kind of inheritance that 
applies to possreps—such as it is—to be structural inheritance as such.   
 
7 An unfortunate term, in my opinion, since it lends weight to the rather suspect notion that one variable (the containing object) 
might contain others (the instance variables).  See footnote 28 later, also Exercise 21.7 at the end of the chapter, for further 
discussion of that “suspect notion.”   
 
8 This situation is perhaps not as surprising as it might be, given that object languages have their origin in the programming 
world, while the idea of there being a sharp distinction between model and implementation has its origin much more in the world 
of databases.  Of course, this isn’t to say the distinction in question goes unrecognized in the programming world—not at all—
but it does seem to be rather less emphasized in that world (despite the fact that object languages in particular are supposed to be 
very much about such issues as abstraction, encapsulation, and information hiding).   
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Moreover, if public instance variables are indeed physical in the foregoing sense, then 
structural inheritance applied to such variables definitely means it’s physical 
representations that are inherited, which is why I claim such inheritance has nothing to do 
with our model.9   

 
! With regard to the question of precluding support:  On the face of it, our model can’t 

handle the kind of inheritance illustrated by the example of employees and programmers 
(relvar version).10  Do we want it to?  I mean, do we want to revise our model so that 
there’s a way to inform the system that relvars EMP and PGMR participate in some kind of 
“EXTENDS relationship” (together with support for whatever that entails)?  Or is there a 
sense in which we might say that our model can handle that kind of inheritance after all?  
Subsequent sections investigate these questions in detail.  But first let me spell out an 
obvious but important point, viz.:   

 
If we want to examine the possibility of inheriting user visible structure, then (by definition) 
we’re talking about tuple and/or relation types, because as far as our model is concerned 
(again by definition) those are the only types that possess any such structure.11   
 
To be absolutely precise, then, the principal question I’ll be examining in the next couple of 
sections is this:   
 
Can we make sense of the idea of structural inheritance for tuple or relation types?   

 
Note:  Despite everything I’ve said in this section so far, it still might seem intuitively 

reasonable to say (as I did in my opening paragraph), at least informally, that every programmer 
is an employee.  But I think there’s a better way to characterize the situation—a way, that is, that 
points up the logical difference between, e.g., the example of employees and programmers, on 
the one hand, and the example of ellipses and circles on the other—and that’s to say that a 
programmer is an employee who has a language skill.  In other words, the crucial relationship 
                                                             
 
9 In case you find the arguments presented here less than fully convincing—the arguments, that is, regarding the idea that public 
instance variables are physical, and in particular regarding the negative impact of those variables on the goal of data 
independence—I’d like to refer you to Chapter 25 (“Object Databases”) of my book An Introduction to Database Systems (8th 
edition, Addison-Wesley, 2004), where those arguments are spelled out in more detail.  Note also the quotes in footnote 50, 
which I think are telling in this connection; see also Appendix A, and footnote 28 in Chapter 22.   
 
10 By “our model” here, of course I mean our model as such, as opposed to an implementation of our model.  Obviously 
implementations are at liberty to make use of physical representation inheritance if there’s some advantage to be gained in doing 
so (just so long as all such implementation concerns remain hidden from the user, of course).   
 
11 Two points here:  First, to repeat from footnote 6, I discount the suggestion that scalar types have user visible structure too (of 
a kind), in the form of the applicable possreps, and that structural inheritance might thus perhaps apply to scalar types after all.  
(While some kind of inheritance might indeed be said to apply to possreps—again, see the section “Scalar Types Revisited,” 
previously mentioned in footnote 6—I don’t think it’s helpful to regard that kind of inheritance as structural inheritance as such.)  
Second, when I say that tuple and relation types do have user visible structure, I don’t mean to suggest that the structure in 
question is the physical representation of the tuples and relations in question; rather, the physical representation of tuples and 
relations should be hidden from the user, just as it is for scalars.   
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here isn’t the “is a” relationship (a programmer “is a” employee) but, rather, the “has a” 
relationship (a programmer “has a” language skill).  Contrast the situation with ellipses and 
circles:  Although we might say a circle “has a” property (the radius) that ellipses in general 
don’t have, that property is really just a degenerate form of a property (a semiaxis length) that 
ellipses in general do have.  The situation is different with employees and programmers:  A 
programmer’s language skill doesn’t correspond to any property that nonprogrammer employees 
might have.   

I’ll have quite a lot more to say regarding the logical difference between “is a” and “has a” 
in later sections of this chapter.   

 
A Remark on Object Languages  
 
Even if it’s true as I’ve claimed that public instance variables do expose physical representations, 
the fact remains that (a) many object systems, if not all, do support “the EXTENDS relationship” 
for scalar types with such variables, and (b) they clearly obtain some benefits from doing so (in 
particular, code reuse benefits), because otherwise they wouldn’t do it.  Thus, I certainly don’t 
want anything I’ve said so far in this chapter to be construed as implying otherwise.  In such a 
system, then, we might define types EMP and PGMR thus (to invent some syntax on the fly):   

 
TYPE EMP PUBLIC ( ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY ) ;  
 
TYPE PGMR EXTENDS EMP PUBLIC ( LANG CHAR ) ;  
 
But the considerations involved—or some of them, at least—in a system that supports such 

type definitions will necessarily be very similar to those involved, mutatis mutandis, in a system 
that supports “the EXTENDS relationship” in connection with relation or (perhaps more 
especially) tuple types.  So let me quickly move on to the next section, which addresses exactly 
this latter issue.   
 
 
TUPLE TYPES, VALUES, AND VARIABLES  
 
For definiteness, I’ll focus in this section on tuple types specifically (the arguments I’ll be 
presenting all apply equally well to relation types, mutatis mutandis); thus, all types, values, 
variables, etc., mentioned in this section will be tuple types, values, variables, etc., specifically, 
barring explicit statements to the contrary.  So the question we need to explore reduces to this:  
Can we make sense of the notion of structural inheritance for tuple types?  Well, suppose tuple 
type TT′ “extends” tuple type TT by adding further attributes, and suppose we want to say that 
TT′ is a subtype of TT, therefore.  For example (to invent some syntax on the fly again):   

 
TYPE EMP_TT  TUPLE { ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY } ;  
 
TYPE PGMR_TT TUPLE EXTENDS EMP_TT { LANG CHAR } ;  
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Well, right away we run into a syntax problem.  As explained elsewhere in this book, 

(a) the Manifesto requires tuple type names to take the form TUPLE H (or some logical 
equivalent to TUPLE H), where H is the pertinent heading, and (b) in Tutorial D at least, there’s 
no separate “define tuple type” operator.  There are good reasons for these rules, too (see 
Exercise 21.3 at the end of the chapter).  For present purposes, however, I’m going to have to 
overlook those rules and reasons and assume that syntax along the foregoing lines, involving in 
particular two explicit “define tuple type” statements, is valid after all.  Note in particular how 
“the EXTENDS relationship” between the two types is manifested in that syntax.   

Given those type definitions, then, we can go on to define tuple variables (i.e., tuplevars) of 
the types in question.  For example:   

 
VAR EMP_V  EMP_TT ;  
 
VAR PGMR_V PGMR_TT ;  
 
Values of variable EMP_V are tuples with four attributes (ENO, ENAME, DNO, and 

SALARY); values of variable PGMR_V are tuples with five attributes (the same four, plus 
LANG).  Note in particular that the set of values constituting type PGMR_TT is the set of tuples 
appearing in the body of the result of the join—actually the cartesian product—of (a) the 
“universal relation” containing all tuples of type  

 
TUPLE { ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY }  
 

—in other words, type EMP_TT—and (b) the “universal relation” containing all tuples of type  
 

TUPLE { LANG CHAR }  
 

These Subtypes Aren’t Subsets  
 
In our usual example of types ELLIPSE and CIRCLE, every circle is an ellipse, and so the set 
|CIRCLE| of all circles is a subset of the set |ELLIPSE| of all ellipses.  The situation is very 
different with types EMP_TT and PGMR_TT, however:   

 
! No value of type PGMR_TT is a value of type EMP_TT; conversely, no value of type 

EMP_TT is a value of type PGMR_TT, either—in fact, the two types are disjoint.   
 

! Thus, the set |PGMR_TT| of all values of type PGMR_TT isn’t a subset of the set 
|EMP_TT| of all values of type EMP_TT; conversely, the set |EMP_TT| isn’t a subset of 
the set |PGMR_TT|, either—in fact, the two sets are disjoint.   
 
Now, in our own inheritance model, to say that type T′ is a subtype of type T is to say that 

the set |T′| is a subset of the set |T| (that’s IM Prescription 2).  It follows that we can’t say 
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PGMR_TT is a subtype of type EMP_TT without doing considerable violence to the 
commonsense notion of subtyping, and indeed to our inheritance model in general.  Let’s agree, 
therefore, to drop the terminology of subtyping, as such, in this connection; let’s agree to say 
rather that (e.g.) PGMR_TT is an extension of EMP_TT.12  Analogously, let’s agree to say that 
EMP_TT is a projection of PGMR_TT, since it’s obtained from PGMR_TT by (in effect) 
projecting away an attribute.  Then we can at least say that the set of projections of all 
PGMR_TT tuples, taken over all attributes except LANG, is a subset of—in fact, is identical 
to—the set of all EMP_TT tuples.   

To pursue the point a moment longer:  Despite the foregoing, those who advocate the idea 
of structural inheritance normally do refer to EMP_TT and PGMR_TT as supertype and subtype, 
respectively (see the subsection immediately following).  But that terminology is really bad, 
because the “subtuples” (i.e., tuples of the “subtype”) have a superset of the attributes of the 
“supertuples” (i.e., tuples of the “supertype”)!  A programmer tuple, for example, has all of the 
attributes of an employee tuple, plus one more (LANG).  And, of course, this use—or abuse, 
rather—of terminology flies directly in the face of conventional relational usage.  To spell the 
point out:  In conventional relational usage, “t2 is a subtuple of t1” means t2 is a projection of t1; 
but in the proposed “bad” terminology, it means t1 is a projection of t2.   
 
Substitutability  
 
In Chapter 3, I said that in many ways the whole point of inheritance is substitutability; for 
example, a program that works for ellipses can work for circles too, because we can always 
substitute a circle wherever the system expects an ellipse.  So what about employees and 
programmers (meaning types EMP_TT and PGMR_TT, respectively)?  Does substitutability 
apply?—i.e., can we substitute a value of type PGMR_TT for one of type EMP_TT?   

Well, we’ve seen that no tuple of type PGMR_TT is a tuple of type EMP_TT (and vice 
versa).  Thus, if Op is an operator that takes a parameter of type EMP_TT, it can’t validly be 
invoked with an argument of type PGMR_TT instead.  In other words, inclusion polymorphism 
doesn’t apply, and so there’s no value substitutability either.  Of course, we can validly invoke 
Op with an argument that’s the projection over all but LANG of some tuple of type PGMR_TT.  
By definition, however, that projection is of type EMP_TT, not PGMR_TT, and it hardly seems 
appropriate to dignify this rather trivial possibility with the grand name of substitutability.   

So what can we do?  There wouldn’t be much point in supporting structural inheritance in 
the first place if it turned out to provide no substitutability.  So how can we rescue the situation?   

Well, one thing we might do is say that if Op is invoked with a tuple argument that has all 
of the attributes of type EMP_TT and more besides, then those additional attributes are simply 
ignored.  (In other words, we might get the system to perform the tuple projections mentioned 
above automatically.)   

                                                             
 
12 In connection with this terminology, Hugh Darwen has suggested that (unlike our own model, which is based on specialization 
by constraint or S by C) structural inheritance might be thought of as being based on specialization by extension or S by E.   
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Aside:		If	we	did	adopt	such	a	scheme,	however,	there	wouldn’t	be	any	need	to	pretend	
that	type	PGMR_T	is	a	subtype,	as	such,	of	type	EMP_T.		In	other	words,	we	wouldn’t	be	
talking	about	inheritance	as	such	at	all,	and	we	could	therefore	drop	the	subtype	/	
supertype	terminology	entirely.		Of	course,	if	we	aren’t	talking	about	inheritance,	then	it’s	
not	at	all	clear	why	we’re	even	having	this	discussion	anyway.		But	never	mind,	let’s	
soldier	on.		End	of	aside.			
 
Another thing we would probably have to do is expand our notion of what it means for 

variable V to be of declared type T, such that the value of V at any time could be of type any 
extension of T13 (as well as of any subtype of T as usual).  Then, for example, it would be 
possible to assign a value of most specific type PGMR_TT to a variable of declared type 
EMP_TT.  Indeed, if we didn’t expand our notion (i.e., of what it means to declare something to 
be of a certain type) in such a way, then we couldn’t have, e.g., a relvar RV with an attribute E of 
declared type EMP_TT, such that some tuples in the current value of RV contain an E value of 
type PGMR_TT instead of EMP_TT.  So it looks as if at least part of the solution to the problem 
of rescuing substitutability is necessarily going to have to involve such a scheme.   

However, one obvious consequence of that scheme is the pragmatic one that the 
implementation might now not be able to tell ahead of time, in general, how much storage to 
allocate for any given variable.14  As a result, we might have to switch to an implementation in 
which storage is allocated at run time and variables are implemented by means of pointers to 
such allocated storage.  Not that that’s a problem in itself, of course—but then it might be 
tempting to have that aspect of the implementation show through to the user at the model level; 
that is, variables in such a system might be defined to contain pointers instead of actual data 
values.  (Such is typically the case in object systems, for example.15)  And you won’t be 
surprised to hear that having pointers visible at the model level is something we’re adamantly 
opposed to.  For one thing, it violates the prescriptions of the relational model (and the 
prescriptions of the Manifesto accordingly, of course).  For another, we saw in Chapter 13 that 
user visible pointers make specialization by constraint impossible (to quote from that chapter, 
object IDs and a good model of inheritance are incompatible—and object IDs are, of course, just 
pointers by another name).   

                                                             
 
13 This seems to be what SQL does, incidentally (though not for tuple—or rather row—types as such, but instead for what it calls 
“structured types”).  See Chapter 22 for further discussion.   
 
14 On the other hand, a similar remark applies to certain system defined types already (think of, e.g., type XML in SQL, or type 
CHAR in Tutorial D).   
 
15 As a matter of fact it’s the case to some extent in SQL as well (again see Chapter 22), a state of affairs that rather seriously 
undermines claims to the effect that SQL conforms to the relational model or that SQL DBMSs are relational.   
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Another thing we’d probably have to do is use overloading polymorphism16—in which 
case, however, again we wouldn’t need to pretend that PGMR_T is a subtype of EMP_T, and 
again we could drop the subtype / supertype terminology, therefore.  For example, suppose we 
want to conduct a “what if” experiment to determine the total cost to the company of raising 
certain salaries by 10 percent.  As part of that experiment, we presumably need to be able to 
compute the hypothetical new salary for certain employees, regardless of whether the employee 
in question is a programmer or a nonprogrammer.  To that end, we could define two operators, 
both called RAISE, thus:   

 
OPERATOR RAISE ( E EMP_TT ) RETURNS MONEY ;  
   RETURN ( ( SALARY FROM E ) * 1.1 ) ;  
END OPERATOR ;  
 
OPERATOR RAISE ( P PGMR_TT ) RETURNS MONEY ;  
   RETURN ( ( SALARY FROM P ) * 1.1 ) ;  
END OPERATOR ;  
 
Now, e.g., the expression RAISE (e) will cause the “programmers” or “employees” RAISE 

operator to be invoked depending on whether e is a programmer or “just an employee.”   
Of course, once we start down the overloading path, there’s nothing to stop different 

operators with the same name from implementing different semantics (indeed, in many ways 
that’s the whole point).  For example, suppose the salary increase for a given employee is 
supposed to be 25 percent if the employee is a programmer but only 10 percent otherwise:   

 
OPERATOR RAISE ( E EMP_TT ) RETURNS MONEY ;  
   RETURN ( ( SALARY FROM E ) * 1.1 ) ;  
END OPERATOR ;  
 
OPERATOR RAISE ( P PGMR_TT ) RETURNS MONEY ;  
   RETURN ( ( SALARY FROM P ) * 1.25 ) ;  
END OPERATOR ;  
 
Let me now modify the foregoing example in order to illustrate another point (the modified 

version is very contrived but is sufficient for my purpose).  Suppose the new salary is to be 
computed by increasing the original salary by 10 percent and then (for programmers only) 
doubling the result:   

 
OPERATOR RAISE ( E EMP_TT ) RETURNS MONEY ;  
   RETURN ( ( SALARY FROM E ) * 1.1 ) ;  
END OPERATOR ;  
 

                                                             
 
16 Recall that overloading polymorphism really means overloading operator names (to say that Op is overloaded really means 
there are two or more distinct operators with that same name Op).  I note in passing that the particular kind of overloading 
polymorphism under discussion here is also referred to in the literature as extension polymorphism, for obvious reasons (see, e.g., 
Stanley B. Zdonik and David Maier: “Fundamentals of Object-Oriented Databases,” in Readings in Object-Oriented Database 
Systems, Zdonik and Maier, eds.; Morgan Kaufmann, 1990).  As noted in Chapter 2, it’s also referred to as ad hoc polymorphism.   
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OPERATOR RAISE ( P PGMR_TT ) RETURNS MONEY ;  
   RETURN ( 2 * RAISE ( TREAT_AS_EMP_TT ( P ) ) ) ;  
END OPERATOR ;  
 
The first of these operators is straightforward.  The second, however, involves an 

invocation of TREAT, which, for the purposes of this discussion, I assume has been given 
somewhat revised semantics.17  To be specific, I assume that TREAT_AS_EMP_TT (P) means 
“treat the argument P—which is actually of type PGMR_TT, of course—as if it were of type 
EMP_TT instead.”  Thus, the second RAISE operator computes its result by (a) invoking the 
first RAISE operator to increase the salary by 10 percent and then (b) doubling that increased 
salary.  In other words, we’re talking here about the mechanism usually called operator 
delegation—the function of increasing the salary by 10 percent isn’t implemented explicitly for 
type PGMR_TT but is “delegated” to type EMP_TT instead.   

Observe carefully that operator delegation isn’t the same thing as operator inheritance.  To 
be specific, we can’t say in the foregoing example that the operator “increase salary by 10 
percent”—i.e., the RAISE operator that applies to values of type EMP_TT—is inherited by 
programmers from employees, because PGMR_TT isn’t a subtype of EMP_TT.  (At least, I 
showed earlier that there’s no reason for it to be, and for the sake of the present discussion I’m 
assuming it isn’t.)  Now, it’s true that, like inheritance, delegation might imply a certain amount 
of code reuse; unlike inheritance, however, delegation is really more of an implementation issue 
(and perhaps an optimization issue) than it is a model issue.  Observe, moreover, that whereas 
the “is a” relationship leads naturally to inclusion polymorphism (as we know from Parts II-IV of 
this book), the “has a” relationship—which, let me remind you, is the fundamental issue here—
seems to lead naturally to overloading polymorphism instead, which in turn seems to lead 
(frequently if not always) to delegation.18   
 
 
SUBTABLES AND SUPERTABLES  
 
Parts II-IV of this book describe a detailed model for what in relational terms might be called 
domain inheritance (since types were called domains in Codd’s early papers).  When approached 
regarding the possibility of inheritance in a relational context, however, many people—perhaps 
most—immediately jump to the conclusion that what’s under discussion is some kind of relation 
or table inheritance.19  In particular, I mentioned in Chapter 3 the fact that SQL (meaning the 
                                                             
 
17 To be specific, I’m assuming that the expression TREAT_AS_EMP_TT (PX) returns the EMP_TT value that’s obtained by 
projecting away the LANG attribute from the PGMR_TT value that’s the current value of expression PX.  Note that the form of 
TREAT used in this expression does rely on type PGMR_TT being an extension of type EMP_TT.   
 
18 I remark in passing that the implementation code shown in Chapter 2 for operators such as “=”, “<”, etc., in connection with 
user defined types might be regarded as constituting further examples of delegation.   
 
19 In this section I favor the SQL terms table, row, and column over their relational counterparts relation (and/or relvar), tuple, 
and attribute because the discussions and examples are all based on SQL—though I haven’t hesitated to omit or simplify many 
SQL details if they’re irrelevant to my purpose.   
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SQL standard in particular) supports something it calls “subtables and supertables,” according to 
which some table T′ (the subtable) inherits all of the columns of some distinct table T (the 
supertable) and then adds some more of its own.  An example (employees and programmers once 
again) is shown in Fig. 21.1.   
 

 EMP  /* supertable */ 
┌─────┬───────┬─────┬────────┐ 
│ ENO │ ENAME │ DNO │ SALARY │ 
└═════┴───────┴─────┴────────┘ 

 
 PGMR  /* subtable */ 
┌─────┬───────┬─────┬────────┬──────┐ 
│ ENO │ ENAME │ DNO │ SALARY │ LANG │ 
└═════┴───────┴─────┴────────┴──────┘ 
└──── inherited from EMP ────┘ 

 
Fig. 21.1: Subtables and supertables—an example  

 
Here are SQL definitions for this example (irrelevant details omitted, but note in particular 

the UNDER specifications in the CREATE TYPE for type PGMR_T and the CREATE TABLE 
for table PGMR):20   

 
CREATE TYPE EMP_T  
  AS ( ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY ) ;  
 
CREATE TYPE PGMR_T  
       UNDER EMP_T  
  AS ( LANG CHAR ) ;  
 
CREATE TABLE EMP OF EMP_T  
     ( UNIQUE ( ENO ) ) ;  
 
CREATE TABLE PGMR OF PGMR_T  
       UNDER EMP ;  
 
Explanation:  EMP_T and PGMR_T are user defined types,21 and PGMR_T is defined to 

be a “subtype” of “supertype” EMP_T (“subtype” and “supertype” in quotation marks because 
they’re obviously not subtypes and supertypes in the sense of our model).  Tables EMP and 
PGMR are then declared to be “of” types EMP_T and PGMR_T, respectively.22  Observe that 

                                                             
 
20 Tables EMP and PGMR are both base tables.  In general, subtable and supertables in SQL can be either base tables or views.  
For simplicity, however, I’ll assume that all SQL tables mentioned in this chapter are base tables specifically, barring explicit 
statements to the contrary.   
 
21 Actually they’re what SQL calls structured types, which for the purposes of the present discussion you can think of as table 
types (but see Chapter 22).   
 
22 Because of this fact—the fact, that is, that they’re declared to be “of” some type—each of the tables has, in addition to the 
columns shown in Fig. 21.1, what SQL calls a self-referencing column.  However, self-referencing columns are irrelevant so far 
as the present chapter is concerned, so I’ll ignore them here.  For further information, see Chapter 22.   
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table EMP has four columns, corresponding to the four “attributes”—SQL’s term—of type 
EMP_T.  By contrast, table PGMR has just one column of its own, corresponding to the sole 
explicitly declared attribute of type PGMR_T; conceptually, however, it has four more (shown in 
Fig. 21.1 in italics) that it inherits from table EMP.  Nonprogrammers have a row in EMP only, 
while programmers have a row in both tables—so every row in PGMR has a counterpart in 
EMP, but the converse is false.23  However, the properties ENO, ENAME, DNO, and SALARY 
aren’t recorded twice for programmers; rather, the PGMR table inherits those properties from the 
EMP table, as already explained.  (In other words, you can think of columns ENO, ENAME, 
DNO, and SALARY in table PGMR as virtual, if you like.)  Note that the uniqueness constraint 
UNIQUE (ENO) is also inherited by table PGMR from table EMP.   

Now, it should be clear right away that subtables and supertables are basically just another 
example of structural inheritance (or “the EXTENDS relationship”), as it applies to the case of 
tables specifically.  It follows that much of the discussion in the previous section applies more or 
less unchanged, and I won’t bother to make those same points all over again.  However, there are 
quite a few additional points that are worth calling out explicitly, and that’s the purpose of the 
present section.   

 
Aside:		What	follows	is	the	way	the	SQL	standard	works,	more	or	less.		However,	I	must	
caution	you	that	different	systems	and	different	writers	interpret	the	idea	of	subtables	
and	supertables	in	different	ways.		By	way	of	example,	see	the	books	(both	published	by	
Morgan	Kaufmann	in	1999)	Universal	Database	Management:	A	Guide	to	Object	/	
Relational	Technology,	by	Cynthia	Maro	Saracco,	and	Object-Relational	DBMSs:	Tracking	
the	Next	Great	Wave	(2nd	edition),	by	Michael	Stonebraker	and	Paul	Brown	(with	Dorothy	
Moore).		Both	of	these	books	embrace	the	idea	of	inheritance.		However:			
	
a.	 They	both	assume	that	the	kind	of	inheritance	in	question	is	based	on	“subtables	

and	supertables”	specifically.24			
	
b.	 Moreover,	their	version	of	that	notion	differs	significantly	from	the	version	espoused	

by	the	SQL	standard.		The	most	obvious	difference	is	that	in	their	version	table	EMP	
would	contain	rows	for	nonprogrammers	only,	whereas	in	the	SQL	standard	it	
contains	rows	for	all	employees.			

	
                                                             
 
23 Contrast the situation with the EMP and PGMR relvars (as opposed to tables) as discussed in the section “An Introductory 
Example” earlier.  Just to remind you, (a) relvar PGMR resembled table PGMR in that it had a tuple for every programmer, but 
(b) relvar EMP differed from table EMP in that it had tuples for nonprogrammers only, instead of for all employees.   
 
24 They also assume operator overloading instead of inclusion polymorphism. What’s more, they embrace (as the SQL standard 
does also, as we’ve already seen) the idea that table definitions and table type definitions should be kept separate; as a 
consequence, they allow several distinct tables to be of the same separately declared and explicitly named table type.  (Just to 
remind you, Tutorial D by contrast explicitly does not support a separate “define relation type” operator, for reasons explained in 
Chapter 2.  See also Exercise 21.3 at the end of the chapter.)   
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End	of	aside.			
 

First of all, then, here are the implications of the design of Fig. 21.1 on the usual SQL 
retrieval and update operators:   

 
! SELECT:  Retrieval from EMP behaves normally; retrieval from PGMR behaves as if 

PGMR actually contained columns ENO, ENAME, DNO, and SALARY (as well as 
column LANG, of course).  More generally:  Retrieval from table T behaves as if T 
contained all of the columns of all of the proper supertables of T,25 as well as the columns 
that are specific to T as such.   

 
! INSERT:  INSERT into EMP behaves normally; INSERT into PGMR effectively causes 

new rows to appear in both EMP and PGMR.  More generally:  INSERT into table T 
inserts (a) rows into T and (b) corresponding rows into all of the proper supertables of T.   

 
! DELETE:  DELETE from EMP causes rows to disappear from EMP and (if the rows in 

question happen to correspond to programmers) from PGMR too; DELETE from PGMR 
causes rows to disappear from both EMP and PGMR.26  More generally:  DELETE from 
table T deletes (a) rows from T, as well as (b) corresponding rows from all of the proper 
supertables of T and from all of the proper subtables of T.   

 
! UPDATE:  Updating columns ENO or ENAME or DNO or SALARY in EMP causes the 

same updates to be applied to corresponding rows (if any) in PGMR; updating those 
columns in PGMR causes the same updates to be applied to corresponding rows in EMP; 
updating column LANG in PGMR updates PGMR only.  More generally:  Updating 
columns in table T updates corresponding columns in corresponding rows in (a) all of the 
proper supertables of T and (b) all of the proper subtables of T.   
 
By the way, the update behavior sketched above means we aren’t just dealing with a 

conventional foreign key relationship from PGMR to EMP, with conventional referential 
actions—for if we were, then, e.g., deleting a row from PGMR couldn’t possibly cause deletion 
of a row from EMP.  The reason I mention this rather obvious point is that (a) despite what I’ve 
just said, the fact remains that ENO in table PGMR is, conceptually speaking, a foreign key 
                                                             
 
25 Note that SQL does use the terminology of proper supertables and proper subtables (and every table is both a supertable and a 
subtable of itself, though of course not a proper one in either case).  It also supports the concept of immediate supertables and 
immediate subtables, though it uses the adjective direct in place of immediate.  Also, here’s as good a place as any to mention 
that, in SQL, (a) the set of all subtables of a given table is called a subtable family, and (b) no table can have more than one 
immediate supertable.  (This latter state of affairs is a consequence of two facts taken in combination—first, the fact that SQL’s 
support for subtables and supertables is tightly bound up with its support for type inheritance, as can be seen from the 
interconnections between the CREATE TABLE and CREATE TYPE statements in the example; second, the fact that SQL 
doesn’t support multiple inheritance, as we’ll see in Chapter 22.)   
 
26 In other words, there’s a more or less conventional “cascade delete” rule from EMP to PGMR, but there’s also another such 
rule that cascades the other way, as it were.  Analogous remarks apply to UPDATE also.   
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referencing EMP nonetheless, and (b) we can exploit that fact if we want to, as I’ll show in a few 
moments.   

Next, in addition to the conventional SQL operators described above, there are at least two 
further operations of an updating nature, viz., INSERT ONLY and DELETE ONLY,27 that a 
system supporting subtables and supertables would seem to need (though SQL doesn’t support 
them).  To elaborate:   

 
! INSERT ONLY:  Suppose an existing nonprogrammer becomes a programmer.  If we try to 

use the regular INSERT operator to insert an appropriate row into PGMR, the system will 
attempt to insert a corresponding row into EMP as well—an attempt that will fail on a key 
uniqueness violation.  By contrast, INSERT ONLY would let us insert a row into PGMR 
only.  More generally:  If T′ is a proper subtable of supertable T, then INSERT ONLY will 
let us insert a row into T′ without simultaneously inserting a corresponding row into T.   

 
! DELETE ONLY:  Conversely, suppose an existing programmer becomes a nonprogrammer.  

If we try to use the regular DELETE operator to delete the appropriate row from PGMR, 
the system will delete the corresponding row from EMP as well—a side effect that 
presumably wasn’t desired.  By contrast, DELETE ONLY would let us delete a row from 
PGMR only.  More generally:  If T′ is a proper subtable of supertable T, then DELETE 
ONLY will let us delete a row from T′ without simultaneously deleting the corresponding 
row from T.  (It will still cascade to delete corresponding rows from proper subtables of T′, 
however.)   

 
Of course, the obvious question now is:  What if anything do the foregoing ideas have to do 

with inheritance?  Well, it should be clear that they have nothing to do with the prescriptions for 
relation types as described in Part IV of this book.  According to those prescriptions, if RT′ and 
RT are relation types such that RT′ is a subtype of supertype RT, there’s no notion that RT′ 
somehow “inherits columns”—or attributes, rather—from RT; rather, RT′ and RT have the same 
columns (very loosely speaking!).  So far as our model is concerned, in fact, the subtype / 
supertype relationship is actually implied, in part, by that very fact, viz., the fact that RT′ and RT 
do have “the same columns” (recall once again that in Tutorial D, at least, we have no way of 
explicitly defining tuple and relation types outside of the statements that make use of those types, 
and hence no way of explicitly stating that one such type is a subtype of another).  To repeat, 
then:  What do subtables and supertables have to do with inheritance?   

Well, the fact that our model is a model of type inheritance specifically doesn’t in and of 
itself rule out the possibility of support for some kind of table inheritance as well.  Indeed, our 
model should provide a framework for understanding whether some sense might be made of such 
a notion; after all, that model is quite general and does necessarily address the implications of 
type inheritance for values and variables in general—including relation values and variables in 

                                                             
 
27 An UPDATE ONLY operator makes no sense, however, for reasons that should soon become obvious.   
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particular—and of course tables in the present context are really just relation variables (in other 
words, relvars), at least to a first approximation.   

But therein lies the rub.  Tables are indeed variables; thus, to talk of “subtables and 
supertables” is to talk of what might be called “subvariables and supervariables” ... whatever that 
might mean!  (How can two distinct variables possibly be such that one is a “subvariable” of the 
other?)  This state of affairs suggests immediately that:   

 
! First, whatever “subtables and supertables” might be all about, the one thing they’re 

definitely not about is type inheritance; the tables in question are variables, and variables 
aren’t types.   
 

! Second, the idea seems suspect right away.  Inheritance applies to values, not variables!  
(To paraphrase a remark I made in Chapter 3:  “To say a circle is an ellipse is to say that 
every circle value is an ellipse value, not that every circle variable is an ellipse variable.”)  
What then can it mean to say that table (or relation variable) PGMR is a “sub” anything of 
table (or relation variable) EMP?28   

 
Thus, while it might be possible to make some kind of sense out of “subtables and 

supertables,” I claim (and I’ll try to show below) that it’s a completely different phenomenon, 
one that has essentially nothing to do with type inheritance as such.   

Observe next that when we talk of PGMR being a “subtable” of “supertable” EMP (and 
inheriting columns from EMP), what we really mean is that each PGMR row inherits certain 
column values from the corresponding EMP row.  In other words, we should really be talking 
about “subrows and superrows,” not “subtables and supertables” at all.29  (And then I pointed out 
in the previous section—though there I was talking about tuples rather than rows—that this latter 
terminology is really not very good, because each “subrow” is actually a superset of the 
corresponding “superrow.”)30   

                                                             
 
28 In Chapter 11 (“Array Variables”) of his book A Discipline of Programming (Prentice-Hall, 1976), Edsger W. Dijkstra makes 
the point rather strongly that the elements of an array variable aren’t themselves variables.  This observation is specific to arrays 
as such, of course, but the point that no variable can be a “subvariable” of another is generally valid and applies to variables of all 
kinds.  In particular, it applies to relvars; that is, a relvar is most certainly not, as has sometimes been suggested (and as SQL 
effectively seems to think, given its support—see Chapter 22—for tables that contain pointers to rows in other tables), a 
collection of tuplevars.  See the answer to Exercise 21.7 at the end of the chapter for further discussion of this issue.   

Note:  An apologist for the subtables and supertables idea might argue that it’s only the “sub and super” terminology 
that’s bad, and that a subtable is better thought of as being derived from its supertable in some way, much as a view is derived 
from a base table.  Certainly there’s no suggestion that table PGMR is somehow contained in table EMP, analogous to the way 
the elements of a given array variable are contained in that array variable (the specific situation discussed by Dijkstra).  But this 
argument fails to account for columns that aren’t so derived, like column LANG in table PGMR.   
 
29 As a matter of fact, SQL in particular does use these terms (i.e., subrow and superrow)—but it also uses the terms subtable and 
supertable.   
 
30 More precisely (or more bizarrely, depending on your point of view) each proper subrow is actually a proper superset of its 
immediate superrow.  Note:  In fact (and following on from the previous footnote), SQL does use these terms as well—i.e., it 
uses the terms proper subrow and proper superrow, in addition to the terms proper subtable and proper supertable mentioned in 
footnote 25.   



 
 

Structural Inheritance / Chapter 21      427 

It follows from all of the above that, whatever else they might be, “subtables and 
supertables” aren’t an application of our inheritance ideas in which the variables are relvars 
specifically.  Nor are they an application of our inheritance ideas in which the variables are 
tuplevars (or “rowvars,” rather) specifically, because the only tuplevars we deal with in our 
model are “free standing” ones—to say it once again, there is not, nor can there be, any notion of 
a tuplevar somehow being contained within some relvar.   

So why might subtables and supertables be a good idea?  What are the advantages?  Well, 
the only one I can see (and it’s a pretty minor one) is this:  Informing the system that, e.g., 
PGMR is a subtable of supertable EMP is shorthand for stating certain new kinds of referential 
actions declaratively.  To be specific, it allows:   

 
! Insertion of a row into PGMR to cause automatic insertion of the corresponding row into 

EMP, and  
 

! Deletion of a row from PGMR to cause automatic deletion of the corresponding row from 
EMP.   

 
(I ignore explicit UPDATEs for simplicity.)   

But there’s no need to pretend that columns are “inherited” by PGMR from EMP in order 
to achieve these effects!  In fact, I believe the entire functionality—such as it is—of subtables 
and supertables, including INSERT ONLY and DELETE ONLY functionality, could be 
achieved by means of the conventional view mechanism.  Let me illustrate.  Suppose we were to 
define two regular base tables, EMP and EMP_LANG, as follows (note the foreign key 
constraint in particular):   

 
CREATE TABLE EMP ( ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY ,  
       UNIQUE ( ENO ) ) ;  
 
CREATE TABLE EMP_LANG ( ENO CHAR , LANG CHAR ,  
       UNIQUE ( ENO ) ,  
       FOREIGN KEY ( ENO ) REFERENCES EMP ( ENO ) ) ;  
 
Let’s also define PGMR as a view of these two base tables, thus:   

 
CREATE VIEW PGMR  
  AS ( SELECT ENO , ENAME , DNO , SALARY , LANG  
       FROM   EMP NATURAL JOIN EMP_LANG ) ;  

 
Then tables EMP, EMP_LANG, and PGMR together not only provide all of the 

functionality of subtables and supertables, they also get around the need for those INSERT 
ONLY and DELETE ONLY operators (trivially so, in fact—the effects of those operators can 
now be achieved by conventional INSERTs and DELETEs on table EMP_LANG).  Note:  As a 
bonus, the scheme just outlined could serve as a basis for implementing subtables and supertables 
(if they’re regarded as worth implementing at all, that is).   
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In sum, it looks as if the whole business of a subtable inheriting columns from a supertable 
is nothing but a syntactic shorthand.  Not that there’s anything wrong with syntactic shorthands 
in general, I hasten to add—but this particular shorthand doesn’t seem to be very useful, and in 
any case it’s already more than adequately (in my opinion, better) supported by the conventional 
view mechanism.   
 

Aside:		Actually,	I’m	fairly	suspicious	about	the	whole	subtables	and	supertables	idea	
anyway.		It	seems	to	me	likely	that	we’re	dealing	with	a	confusion	over	model	vs.	
implementation	once	again.		To	be	more	specific,	I	suspect	that	if	table	Tʹ	and	table	T	are	a	
subtable	and	corresponding	supertable,	respectively,	then	the	intent	is	simply	that	(a)	
those	tables	should	be	implemented,	for	performance	reasons,	as	a	single,	combined	
“stored	table”	in	physical	storage,	and	then	(b)	“stored	rows”	corresponding	to	those	
rows	of	table	T	that	have	no	counterpart	in	table	Tʹ	will	have	nulls	in	positions	
corresponding	to	columns	that	appear	in	table	Tʹ	only.31		But	such	implementation	
concerns	should	never	show	through	to	the	model	level!		As	I’ve	explained	at	length	
elsewhere—see,	e.g.,	my	book	SQL	and	Relational	Theory:	How	to	Write	Accurate	SQL	
Code	(3rd	edition,	O’Reilly,	2015)—the	relational	model	quite	deliberately	has	nothing	to	
say	regarding	physical	storage	matters.		End	of	aside.			
 
Finally, it’s worth noting that the terminology of subtables and supertables might quite 

reasonably be applied “the other way around,” as it were.  That is, which of tables T and T′ is 
regarded as the subtable and which the supertable might quite reasonably depend on context.  For 
example, consider an SQL version of the suppliers-and-parts database from Chapter 1.  Suppose 
for the sake of the example that status information can be missing for certain suppliers.  Then 
one way we might design the database, in SQL terms, would be to have two base tables S and S′ 
that look like this:   

 
 S 
┌─────┬───────┬────────┬──────┐ 
│ SNO │ SNAME │ STATUS │ CITY │ 
└═════┴───────┴────────┴──────┘ 

 
 S′ 
┌─────┬───────┬──────┐ 
│ SNO │ SNAME │ CITY │ 
└═════┴───────┴──────┘ 

 
Table S corresponds to suppliers with a known status value, while table S′ corresponds to 

suppliers for whom the status information is missing.  And the point about this example—which 
                                                             
 
31 I’m on record in many places as objecting to the whole idea of SQL-style nulls—rejecting them out of hand, in fact—and so 
you might be surprised to see me mention such a thing so casually (or at all!) here.  But the nulls I’m talking about in the present 
context are an implementation concept merely; in other words, they’re an entirely different thing from SQL-style nulls.  In 
particular, they’re explicitly not part of the model, and they explicitly don’t show through as SQL-style nulls at the user level.   
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illustrates, incidentally, a possible basis (though not the only one) for dealing with the 
phenomenon of “missing information” without using nulls—is that it would be quite natural to 
refer to S here as the supertable and S′ as the subtable; but now the supertable has a superset of 
the columns of the subtable, instead of the other way around as they are in the employees and 
programmers example.   
 
More on INSERT ONLY and DELETE ONLY  
 
I’d like to elaborate on those INSERT ONLY and DELETE ONLY operators briefly.  Here again 
are the SQL definitions for the employees and programmers example:   

 
CREATE TYPE EMP_T  
  AS ( ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY ) ;  
 
CREATE TYPE PGMR_T  
       UNDER EMP_T  
  AS ( LANG CHAR ) ;  
 
CREATE TABLE EMP OF EMP_T  
     ( UNIQUE ( ENO ) ) ;  
 
CREATE TABLE PGMR OF PGMR_T  
       UNDER EMP ;  
 
I’ll consider INSERT ONLY first.  By way of example, suppose a new employee 

(employee Joe, with employee number E8, say) joins the company as a programmer.  Then all 
we have to do to reflect this fact in the database is insert a row into table PGMR, as follows:   
 

INSERT INTO PGMR ( ENO , ENAME , DNO , SALARY , LANG )  
       VALUES ( 'E8' , 'Joe' , dx , sx , lx ) ;  

 
(where dx, sx, and lx denote the pertinent DNO, SALARY, and LANG values).32  This INSERT 
on table PGMR will have the side effect of inserting a corresponding row into table EMP.  But 
suppose by contrast that Joe already exists as an employee and has only just now become a 
programmer.  If we try to perform that same INSERT on PGMR, then, as noted earlier, the 

                                                             
 
32 I note in passing that the syntax surrounding the entire “subtables and supertables” idea in SQL is hardly very user friendly, 
relying as it does on several levels of indirection.  The INSERT statement in this example illustrates the point perfectly.  To be 
specific, observe that that INSERT statement asserts—in effect, and among several other things—that the target table PGMR is 
supposed to have a column called ENO.  If you want to check this, you can go to the corresponding CREATE TABLE; however, 
that statement just says PGMR is “of PGMR_T” and “under EMP.”  If now you go to the CREATE TYPE for PGMR_T, you 
find it just says PGMR_T is “under EMP_T”; if you go to the CREATE TABLE for EMP instead, you find it just says EMP is 
“of EMP_T.”  Either way, you then go to the CREATE TYPE for EMP_T, where (at last!) you do find there’s something called 
ENO.  However, that “something” still isn’t a column as such; instead, as noted earlier in this chapter, it’s what SQL rather 
unfortunately calls an attribute (see Chapter 22 for further discussion).  However, SQL has a rule according to which a table 
that’s defined to be “of” some type has columns that are derived in the obvious way from the attributes of the type in question, 
and so the issue is finally resolved.   



 
 
430      Chapter 21 / Structural Inheritance 

implicit INSERT on EMP will fail on a key uniqueness violation.  Rather, what we’d like to do is 
something like this (note the boldface ONLY):   
 

INSERT ONLY INTO PGMR ( ENO , ENAME , DNO , SALARY , LANG )  
       VALUES ( 'E8' , 'Joe' , dx , sx , lx ) ;  

 
But we can’t, in SQL.  Instead, what we apparently have to do is first delete the existing row for 
Joe from table EMP:   
 

DELETE FROM EMP WHERE ENO = 'E8' ;  
 
And now we can do the INSERT, which will have the effect among other things of reinstating 
the row we just deleted:   
 

INSERT INTO PGMR ( ENO , ENAME , DNO , SALARY , LANG )  
       VALUES ( 'E8' , 'Joe' , dx , sx , lx ) ;  

 
Now, this “solution” is bad enough on its face—but what makes it much worse is that if 

table EMP has any other proper subtables apart from PGMR, that DELETE we had to do on 
EMP will cascade to delete corresponding rows from those subtables as well, and of course the 
subsequent INSERT on PGMR won’t reinstate those rows.  Thus, it looks as if INSERT ONLY 
is rather more than just something that might be “nice to have.”33   

I turn now to DELETE ONLY.  Suppose employee Joe used to be a programmer but has 
just ceased to be so.  If we try to reflect this fact in the database by deleting the row for Joe from 
table PGMR—  
 

DELETE FROM PGMR WHERE ENO = 'E8' ;  
 
—then, as noted earlier, the row for Joe will be deleted from table EMP as well,34 which 
presumably isn’t what we wanted (after all, Joe is still an employee).  Instead, what we’d like to 
do is something like this (again note the boldface ONLY):   
 

DELETE ONLY FROM PGMR WHERE ENO = 'E8' ;  
 
But we can’t, in SQL.  Instead, therefore, what we apparently have to do is delete the row for Joe 
from table PGMR— 
                                                             
 
33 What makes it worse still, at least in the case of SQL specifically, is that deleting the “old” row for Joe and then inserting a 
“new” one will cause Joe to be assigned a brand new “REF value,” with the consequence that existing references to Joe 
elsewhere in the database will now no longer be valid (they’ll become what are sometimes called dangling references).  A similar 
problem occurs in connection with SQL’s lack of support for DELETE ONLY as well (see subsequent discussion).  Note:  REF 
values and related matters are explained in detail in Chapter 22.   
 
34 More generally, the row for Joe will be deleted (a) from all supertables of PGMR, including both EMP and PGMR in 
particular, and (b) from all subtables of any of the tables mentioned under (a) here.  The full consequences of this state of affairs I 
leave as something for you to meditate upon.   



 
 

Structural Inheritance / Chapter 21      431 

 
DELETE FROM PGMR WHERE ENO = 'E8' ;  

 
(which will have the undesirable side effect of deleting corresponding rows from proper 
subtables of PGMR as well, if any)35—and then reinsert the row for Joe into table EMP:   
 

INSERT INTO EMP ( ENO , ENAME , DNO , SALARY )  
       VALUES ( 'E8' , 'Joe' , dx , sx ) ;  

 
Like INSERT ONLY, therefore, DELETE ONLY looks as if it’s rather more than just something 
that would be “nice to have.”   

Note:  As a matter of fact, SQL does support something that looks syntactically rather like 
DELETE ONLY (though not INSERT ONLY).  However, the semantics are very different.  
Assume again that (a) EMP and PGMR are the only tables we have and that (b) rows for 
employee Joe currently appear in both.  Then the SQL statement  
 

DELETE FROM ONLY ( PGMR ) WHERE ENO = 'E8' ;  
 
will—unlike DELETE ONLY—delete the row for Joe from table PGMR as requested, and will 
“cascade up” to delete the corresponding row from table EMP as well.  However, it won’t delete 
anything at all if a row for Joe also appears in some proper subtable of table PGMR (which isn’t 
possible in the example, of course, because table PGMR doesn’t have any proper subtables).  
That’s the significance of that ONLY specification.  Thus, for example, if the foregoing 
DELETE were addressed to table EMP instead, as follows—  
 

DELETE FROM ONLY ( EMP ) WHERE ENO = 'E8' ;  
 
—then nothing would happen (i.e., nothing would be deleted), because a row for employee Joe 
does appear in some proper subtable of table EMP (viz., table PGMR).  In other words, the 
DELETE just shown is logically equivalent to, and can be regarded as shorthand for, the 
following:   
 

DELETE FROM EMP  
       WHERE ENO = 'E8' AND ENO NOT IN ( SELECT ENO FROM PGMR ) ;  

 
ONLY can be used in SELECT expressions too.  For example, the SQL expression  
 
SELECT ENO FROM ONLY ( EMP )  
 

                                                             
 
35 The previous footnote applies here also, of course.   
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returns employee numbers—or rows containing employee numbers, rather—such that the 
employee numbers in question appear in table EMP and not in table PGMR.  In other words, the 
expression is logically equivalent to, and can be regarded as shorthand for, the following:   
 

SELECT ENO FROM EMP  
       WHERE ENO NOT IN ( SELECT ENO FROM PGMR )  

 
ONLY can also be used with UPDATE.  The effect is to apply the requested updates only 

(a) to rows in the target table T that have no counterpart in any proper subtable of T, as well as 
(b) to counterparts in proper supertables of T of those rows in T and (c) to counterparts in other 
proper subtables of the proper supertables mentioned under (b).   
 
 
SCALAR TYPES REVISITED  
 
In the section “An Introductory Example,” I said, paraphrasing, that if structural inheritance is to 
play any part at all in our type inheritance model, then it must be in connection with tuple and 
relation types specifically, because those are the only types with any structure to inherit.  Despite 
this state of affairs, discussions in the literature often begin with examples like this:  “Let type 
COLORED_CIRCLE be a subtype of type CIRCLE,” or something along similar lines.36  Note 
that the types involved in this particular example are clearly scalar, and yet the inheritance 
involved is equally clearly structural (of some kind or another).  In this section, I want to discuss 
examples like this one in some depth.  Before I do so, however, I’d like to examine two kinds of 
inheritance that do apply to scalar types and might (but I think shouldn’t) be regarded as 
examples of “structural inheritance for scalar types.”  Both have to do with possible 
representations or possreps.   

 
! First, recall that if scalar type T′ is a subtype of scalar type T, then every possrep for T is 

necessarily, albeit implicitly, a possrep for T′ as well; for example, every possrep for 
ellipses is necessarily a possrep for circles as well.  As noted in Chapter 3 and elsewhere, 
therefore, we might regard possreps as further “properties” that are inherited, albeit silently, 
by subtypes from supertypes, when the types in question are scalar.  And then we might go 
further and regard such inheritance as structural inheritance, of a kind.  I’d frankly prefer 
not to, however, because I think to do so just muddies the issue.  Note in particular that the 
possrep that’s inherited in this way by scalar type T′ is identical to the corresponding 
possrep for scalar type T; there’s no notion, as there is with structural inheritance as usually 
understood, of that inherited structure for T′ having—or probably having, at any rate—
additional components, over and above those found in the structure for T.  In other words, 
“the EXTENDS relationship” as such doesn’t apply.   
 

                                                             
 
36 I did touch on this particular example under the discussion of IM Prescription 2 in Chapter 5, as you might recall.   
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! Second, if scalar type T′ is a proper subtype, then every declared possrep for T′ is certainly 
derived from some declared possrep for some immediate supertype T, and we might regard 
that derivation process too as structural inheritance, of a kind.37  Here, however, the derived 
possrep not only has no additional components over and above those in the possrep for the 
supertype, it typically has fewer (think of ellipses and circles, for example).  Certainly there 
doesn’t seem any good reason for it to have more.  Again, therefore, this kind of 
inheritance isn’t structural inheritance as usually understood; in particular, “the EXTENDS 
relationship” as such again doesn’t apply.   

 
I turn now to the colored circles example.  Now, the wording of that example clearly 

implies, or assumes, that colored circles are a special case of circles in general.  But are they?  I 
don’t think so.  By definition, surely, colored circles are images (on a display screen perhaps), 
whereas circles in general are not images but geometric figures in two-dimensional space.  Thus, 
it seems to me more reasonable to regard type COLORED_CIRCLE, not as a subtype of type 
CIRCLE, but rather as a completely separate type.  Now, that separate type might well have a 
possrep in which one component is of type CIRCLE, thus— 

 
TYPE COLORED_CIRCLE POSSREP ( CIR CIRCLE , COL COLOR ) ... ;  
 

—but it’s not, to repeat, a subtype of type CIRCLE, any more than it’s a subtype of the type of 
its other possrep component (viz., COLOR).  To put it another way, a colored circle is a circle 
exactly as much as it is a color (which is to say, of course, that it’s not a circle, any more than it’s 
a color).  Yet another way of saying the same thing is to say that every colored circle has a circle 
property but is not a circle (just as it has a color property but is not a color).  As with employees 
and programmers, therefore, I think that what we’re really talking about here is the “has a” 
relationship, not the “is a” relationship that I claim characterizes inheritance and subtyping as 
such.   

I now present a series of arguments to bolster the foregoing conclusion.  (Well, I say “a 
series of arguments,” but I should probably admit up front that the arguments in question are 
really all just the same argument in different guises, as you’ll soon see.)  I’ll begin by reminding 
you of the following remarks from Chapter 5:   

 
It’s an obvious corollary of IM Prescription 2 that there can’t be more values of type T′ than there 
are of type T.  This apparently trivial observation can be very helpful in pinpointing errors and 
clearing up confusions.   
 

                                                             
 
37 In this connection, let me remind you of the following remarks from Chapter 3 (slightly paraphrased here):  If T′ is an 
immediate subtype of T, then it might be convenient to have some syntactic shorthand for declaring a possrep for T′ along the 
lines of “same as possrep PR for T but subtracting component(s) A, B, ..., C and adding component(s) X, Y, ..., Z.”  As I also said 
in that chapter, however, the issue is a purely syntactic one, and I don’t propose to discuss it any further in this book.  Note:  I’m 
assuming here for simplicity that T is a regular type.   
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In the case at hand, it’s surely obvious—as I also pointed out in Chapter 5—that there are 
more colored circles than there are just plain circles.  (I’m assuming here, reasonably enough, 
that two circles that differ in color but are otherwise identical are the same circle but different 
colored circles.)  Thus, this simple test should be sufficient to show right away that it’s really not 
reasonable to describe type COLORED_CIRCLE as a subtype, as such, of type CIRCLE.   

 
Aside:		It’s	not	exactly	an	extension	of	type	CIRCLE,	either	(even	if,	despite	everything	I’ve	
said	about	such	matters,	we	were	to	allow	the	use	of	such	terminology	in	connection	with	
possreps).		However,	if	the	language	were	such	as	to	permit	me	to	define	type	
COLORED_CIRCLE	a	little	differently,	thus—	
	
TYPE COLORED_CIRCLE EXTENDS CIRCLE POSSREP ( COL COLOR ) ... ;  
	
—then	we	might	perhaps	more	reasonably	describe	it	as	an	extension,	as	such,	of	type	
CIRCLE	(more	precisely,	we	might	describe	it	as	having	a	possrep	that’s	an	extension	of	a	
possrep	for	type	CIRCLE).		End	of	aside.			
 
Second, recall from Chapter 2 that if S is a selector for type T, then every value of type T 

must be produced by some invocation of S.38  But no CIRCLE selector invocation can possibly 
produce a value of type COLORED_CIRCLE, since the CIRCLE selector has no color 
parameter; hence, a value of type COLORED_CIRCLE isn’t a value of type CIRCLE, and type 
COLORED_CIRCLE isn’t a subtype of type CIRCLE.   

Third, as noted above, we might informally regard possreps as further “properties” that are 
inherited by subtypes from supertypes.  Yet our CIRCLE possrep, with its radius and center 
components, can’t be a possrep for colored circles, because it has no color component.  Once 
again, therefore, type COLORED_CIRCLE can’t be a subtype of type CIRCLE.   

Last, there’s no way to obtain a colored circle from a circle via S by C!—that is, there’s no 
constraint we can write for type COLORED_CIRCLE that, if satisfied by a given value of type 
CIRCLE, means the circle in question is really a colored circle.  And the reason is, of course, 
again basically that the CIRCLE possrep has no color component.   

It should be clear, then, that CIRCLE and COLORED_CIRCLE are completely different 
types.  However, it’s probably true as suggested earlier that type COLORED_CIRCLE will have 
a possrep in which one component is of type CIRCLE.  And it’s probably also true that we’d like 
to be able to say that, e.g., the operator CTR which returns the center of a given colored circle is 
basically just the THE_CTR operator that applies to the CIRCLE component CIR of the possrep 
for that colored circle.  Once again, then, we’re talking about the concept of delegation—the 
responsibility for implementing the operator CTR for type COLORED_CIRCLE is delegated to 
the type, CIRCLE, of a certain component of one of its possreps.   

                                                             
 
38 Actually, Chapter 2 makes a stronger statement—it says that every value of every type must be denotable by means of some 
literal.  But every literal is a selector invocation, of course (it’s a special case).   
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STRUCTURAL INHERITANCE FOR SCALAR TYPES  
USING THE MANIFESTO MODEL  
 
Despite everything I’ve said in this chapter to this point, the fact remains that it does seem very 
natural (even attractive) to be able to say things like “every programmer is an employee”; after 
all, I’ve said it myself more than once in this very chapter.  In other words, structural 
inheritance—meaning, more specifically, “structural inheritance for scalar types,” if that’s not a 
contradiction in terms—might nevertheless be what people really want from an inheritance 
mechanism.  Yet such support is likely to be problematic for various reasons, as I’ve tried to 
show in preceding sections.  In the present section, therefore, I want to show how our own model 
can effectively be used to achieve “structural inheritance for scalar types,” without having to 
support any such notion directly and without violating any of our IM prescriptions.   

It’s convenient to begin by repeating something I said in Chapter 11.  In my discussion of 
IM Prescription 17 in that chapter, I said this:   

 
We reject the suggestion that changing operator semantics can ever be a good idea, and [so] we 
define our model to say that if a change in semantics occurs, then the implementation is in 
violation—i.e., it’s not an implementation of the model, and the implications are unpredictable.   
 
We’re not without our critics on this issue, of course.  The typical counterargument goes 

something like this:   
 
One significant advantage that’s often claimed for object orientation is code reuse.  The idea is that 
some existing class might be “almost right” for a new application, and that much of it can be reused 
by a subclass that introduces some additions and changes.  For example, suppose a company has a 
class called EMPLOYEE, with various operators, including a PAYROLL operator that (among 
other things) computes the net pay for a given employee.  Suppose the company now introduces a 
new kind of employee who is paid in a different way, perhaps at an hourly rate instead of monthly.  
The company might be able to reuse most of the PAYROLL code by creating a subclass, 
HOURLY_EMPLOYEE, with its own PAYROLL operator.  The new subclass might not find the 
representation of the original class to be sufficient, so it will probably need to add new instance 
variables, such as HOURS_WORKED.  Overloading the PAYROLL operator makes it possible to 
process a column of employees, some of whom are paid by the hour, without putting logic into the 
application to branch on employee type, using the principle called polymorphism.  However, this 
example of code reuse and polymorphism will clearly not work under the constraint that the 
semantics of the PAYROLL operator mustn’t change as we go from class EMPLOYEE to class 
HOURLY_EMPLOYEE.  So a refusal to allow changes in semantics forfeits the advantage of code 
reuse, one of the principal advantages claimed for object orientation.   
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(The foregoing extract is based on a complaint from one particular critic, but I’ve revised the 
original text considerably.  In particular, I’ve replaced the example by one of my own.  Of 
course, I’ve done my best to preserve the essential nature of the original argument.)   

So what’s wrong with that argument?  The overriding point, it seems to me, is simply that 
examples like the one described aren’t examples of type inheritance.  If employees have a 
monthly salary, and hourly employees are employees, then it follows as the night the day that 
hourly employees have a monthly salary!—for otherwise they’re not employees in the first place, 
by definition.  To put it another way, to say that hourly employees are somewhat like regular 
employees isn’t the same as saying that hourly employees are a special case of regular 
employees.  A mechanism that allows us to say that hourly employees are “somewhat like” 
regular employees might possibly be useful—it might even allow a certain amount of code 
reuse—but, to repeat, that mechanism isn’t type inheritance.  After all, if to say that type B is a 
subtype of type A just means that type B is “somewhat like” type A except that certain properties 
are added and/or dropped and/or altered, then absolutely any type whatsoever could be regarded 
as a subtype of absolutely any type whatsoever!   

In fact, it seems to me that, once again, what we’re really talking about here is the “has a” 
relationship, not the “is a” relationship at all—hourly employees “have a” certain property that 
employees in general don’t have.  (The same is true for monthly employees as well, come to 
that.)  Note in particular that, once again, S by C doesn’t apply.   
 
A Possible Solution  
 
Despite the foregoing analysis, it turns out that we can handle the example of monthly vs. hourly 
employees within the framework of our own inheritance model, if we want to; more specifically, 
we can handle it without having to rely on any such suspect notion as structural inheritance for 
scalar types.  The key is to recognize that what we’re talking about in that example indeed isn’t 
the “is a” relationship and inclusion polymorphism—rather, it’s the “has a” relationship and 
overloading.  In other words, we might agree that it can be useful, informally, to talk as if 
monthly and hourly employees were both special cases of the abstract concept “employees in 
general,” but we don’t have to agree that such talk has anything to do with specialization (i.e., 
S by C) in the sense of our model.  Thus, we proceed as follows.   

First we define three relvars (actually base relvars) looking something like this:   
 
VAR EMP BASE RELATION                /* employees in general */  
  { ENO ... ,  
    DNO ... }  
  KEY { ENO } ;  
 
VAR MONTHLY_EMP BASE RELATION        /* monthly employees    */  
  { ENO ... ,  
    MONTHLY_RATE ... }  
  KEY { ENO }  
  FOREIGN KEY { ENO } REFERENCES EMP ;  
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VAR HOURLY_EMP BASE RELATION         /* hourly employees     */  
  { ENO ... ,  
    HOURLY_RATE ... ,  
    HOURS_WORKED ... }  
  KEY { ENO }  
  FOREIGN KEY { ENO } REFERENCES EMP ;  
 
We also define some constraints—database constraints, that is, not type constraints, in 

Manifesto terms—to ensure that every employee is either monthly or hourly and no employee is 
both:   

 
CONSTRAINT MONTHLY_AND_HOURLY_SPAN  
            ( MONTHLY_EMP { ENO }  
              UNION  
              HOURLY_EMP { ENO } ) = EMP { ENO } ;  
 
CONSTRAINT MONTHLY_AND_HOURLY_DISJOINT  
   IS_EMPTY ( MONTHLY_EMP { ENO }  
              INTERSECT  
              HOURLY_EMP { ENO } ) ;  
 
We also define a couple of views (i.e., virtual relvars):   
 
VAR MONTHLY_EMP_INFO VIRTUAL ( EMP JOIN MONTHLY_EMP ) KEY { ENO } ;  
 
VAR HOURLY_EMP_INFO  VIRTUAL ( EMP JOIN HOURLY_EMP )  KEY { ENO } ;  
 
Assume now that the three base relvars (and hence the two views as well, in effect) have all 

been appropriately “populated.”  Now, the object of the exercise is to be able to “[overload] the 
PAYROLL operator [and thus make] it possible to process a column of employees, some of 
whom are paid by the hour, without putting logic into the application to branch on employee 
type.”  It follows that we’re going to need a relvar that includes an attribute of some scalar 
employee type, some of whose values represent monthly employees and others hourly 
employees.39  To that end, then, let’s define three scalar types, S_EMP, S_MONTHLY_EMP, 
and S_HOURLY_EMP (“S” for scalar, irrelevant details omitted), thus:   

 
TYPE S_EMP UNION ;            /* dummy type   */  
 
TYPE S_MONTHLY_EMP            /* regular type */  
     IS { S_EMP  
          POSSREP ( ENO ... , DNO ... ,  
                              MONTHLY_RATE ... ) } ;  

                                                             
 
39 The attribute in question can’t be of a tuple type, because tuples from relvars EMP, MONTHLY_EMP, and HOURLY_EMP 
are of three different types (in fact, they belong to three different type lattices).  Thus, if the attribute in question were of any of 
those three tuple types, it couldn’t take on values of either of the other two.   
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TYPE S_HOURLY_EMP             /* regular type */  
     IS { S_EMP  
          POSSREP ( ENO ... , DNO ... ,  
                              HOURLY_RATE ... , HOURS_WORKED ... ) } ;  
 
Every value of type S_EMP is in fact a value of either type S_MONTHLY_EMP or type 

S_HOURLY_EMP (and not both)—there are no values of most specific type S_EMP.  However, 
there’s no “S by C” from S_EMP to either S_MONTHLY_EMP or S_HOURLY_EMP, because 
S_EMP is a dummy type.40  But value substitutability applies—we can (in fact, we must) use a 
value of type either S_MONTHLY_EMP or S_HOURLY_EMP wherever a value of type 
S_EMP is expected.   

Now we can define the PAYROLL operator.  Here first is the specification signature, at the 
S_EMP level:   

 
OPERATOR PAYROLL ( E S_EMP ) RETURNS MONEY ;  
   /* specification signature only */  
END OPERATOR ;  
 
And here are the implementation versions for monthly and hourly employees:41   
 
OPERATOR PAYROLL VERSION M_PAYROLL ( E S_MONTHLY_EMP ) RETURNS MONEY ;  
   RETURN ( some expression that computes on basis of monthly rate ) ;  
END OPERATOR ;  
 
OPERATOR PAYROLL VERSION H_PAYROLL ( E S_HOURLY_EMP ) RETURNS MONEY ;  
   RETURN ( some expression that computes on basis of hourly rate ) ;  
END OPERATOR ;  
 
Now we define a relvar (actually a view) that contains just the desired attribute, EMP, of 

type S_EMP:   
 
VAR REQD_VIEW VIRTUAL  
   ( ( EXTEND MONTHLY_EMP_INFO :  
       { EMP := S_MONTHLY_EMP ( ENO , DNO , MONTHLY_RATE ) } ) { EMP }  
     UNION  
     ( EXTEND HOURLY_EMP_INFO :  
       { EMP := S_HOURLY_EMP ( ENO , DNO , HOURLY_RATE ,  
                                           HOURS_WORKED ) } ) { EMP } ) ;  

                                                             
 
40 Despite this fact, I would still expect THE_ENO and THE_DNO (but not THE_MONTHLY_RATE, THE_HOURLY_RATE, 
or THE_HOURS_WORKED) operators and pseudovariables to be defined at the S_EMP level.  Compare the analogous example 
in Chapter 12, under the discussion of IM Prescription 20, where I defined THE_CTR to apply at the ELLIPSE level even when 
ELLIPSE was a dummy type.   
 
41 I refer to them as implementation versions, and technically that’s correct.  Note, however, that they violate our own prohibition 
(mentioned near the beginning of the present section) against changing semantics!  But that’s because what we’re doing in this 
example is using (a) the mechanism of inclusion polymorphism to achieve (b) the effect of overloading polymorphism, for which 
changing semantics isn’t an issue.  (On the contrary, in fact:  With overloading polymorphism, changing semantics is the whole 
point—or a large part of the point, at any rate.)   
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Explanation:   

 
! Consider for the moment just the EXTEND operation in lines 2-3.  Here it is again:   

 
EXTEND MONTHLY_EMP_INFO :  
     { EMP := S_MONTHLY_EMP ( ENO , DNO , MONTHLY_RATE ) }  
 
The expression on the right side of the “:=” symbol inside the braces here is an invocation 
of the S_MONTHLY_EMP selector.  Let t be a tuple in the current value of view (i.e., 
virtual relvar) MONTHLY_EMP_INFO.  For that tuple t, then, that selector invocation 
returns a value v of type S_MONTHLY_EMP, with THE_ENO(v), THE_DNO(v), and 
THE_MONTHLY_RATE(v) equal to the ENO, DNO, and MONTHLY_RATE values 
from that tuple t.  So the EXTEND operation effectively appends that S_MONTHLY_EMP 
value v to that tuple t as the value of a new attribute, called EMP.  Of course, the analogous 
extension is performed on every MONTHLY_EMP_INFO tuple.   

 
! Similarly, the EXTEND in lines 5-7 effectively appends a new attribute called EMP to 

every HOURLY_EMP_INFO tuple.   
 
! Two projections are now performed, to discard all attributes of the extended forms of 

MONTHLY_EMP_INFO and HOURLY_EMP_INFO except the “new” attribute EMP, 
and the union of those two projections is then taken.   

 
! That union is used to define view REQD_VIEW.  That view has just one attribute, EMP, 

whose declared type (in accordance with IM Prescription 13) is S_EMP.   
 

So, “to process [the] column of employees, some of whom are paid by the hour, without 
putting logic into the application to branch on employee type”:   

 
EXTEND REQD_VIEW : { PAY := PAYROLL ( EMP ) }  
 
Attribute PAY in the relation that results from this expression contains, for any given 

employee, exactly the result that’s desired.   
 
Another Example  
 
This subsection sketches a similar (but different) solution to a similar (but different) problem.  
This time the problem involves multiple inheritance instead of single and inclusion 
polymorphism instead of overloading.  It has to do with employees again; this time, however, 
(a) some employees are part time and some are full time; (b) some employees are managers and 
some are nonmanagers; and (c) I assume for the sake of the example that we want to treat part 
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time managers differently, somehow, from the way we treat either full time managers or part 
time nonmanagers.   

Here then is a possible approach to this problem, in outline.  First of all, here’s the 
relational design:   

 
VAR EMP BASE RELATION                       /* all employees       */  
  { ENO ... ,  
    DNO ... }  
  KEY { ENO } ;  
 
VAR PART_TIME_EMP BASE RELATION             /* part time employees */  
  { ENO ... ,  
    DAY_OFF ... }  
  KEY { ENO }  
  FOREIGN KEY { ENO } REFERENCES EMP ;  
 
VAR MANAGER_EMP BASE RELATION               /* managers            */  
  { ENO ... ,  
    BUDGET ... }  
  KEY { ENO }  
  FOREIGN KEY { ENO } REFERENCES EMP ;  
 
VAR PART_TIME_MANAGER_EMP BASE RELATION     /* part time managers  */  
  { ENO ... ,  
    OTHER_STUFF ... }  
  KEY { ENO }  
  FOREIGN KEY { ENO } REFERENCES PART_TIME_EMP  
  FOREIGN KEY { ENO } REFERENCES MANAGER_EMP ;  
 
Note:  There are no relvars specific to full time employees, full time managers, full time 

nonmanagers, or part time nonmanagers (though there could be), because according to the terms 
of the example it’s only part time managers that need special treatment of some kind.   

Next we define the following scalar types (shown here in outline only—the details are 
tedious but straightforward—but note in particular that type S_EMP includes two BOOLEAN 
possrep components, PART_TIME and MANAGER, to indicate whether a given employee is 
part or full time and whether he or she is a manager):   

 
TYPE S_EMP  
     POSSREP ( ENO ... ,       DNO ... ,  
               PART_TIME ... , DAY_OFF ... ,  
               MANAGER ... ,   BUDGET ... ,  
               OTHER_STUFF ... ) ;  
 
/* If NOT ( THE_PART_TIME (e) ), then THE_DAY_OFF (e) and    */  
/* THE_OTHER_STUFF (e) are both special “missing” values;    */  
/* if NOT ( THE_MANAGER (e) ), then THE_BUDGET (e) and       */  
/* THE_OTHER_STUFF (e) are both special “missing” values.    */  
/* These constraints need to be stated formally, of course;  */  
/* I omit the details here.                                  */  
 
/* This is not a GOOD design! — but it’s a possible one.     */  
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/* Note in particular that type S_EMP is a regular type (it  */  
/* might or might not be a union type), and so subtyping     */  
/* (e.g., to S_PART_TIME_EMP) can and must be done via S by  */  
/* C, as indicated here:                                     */  
 
TYPE S_PART_TIME_EMP  
     IS { S_EMP  
          CONSTRAINT THE_PART_TIME ( S_EMP )  
          POSSREP ( ENO         = THE_ENO ( S_EMP ) ,  
                    DNO         = THE_DNO ( S_EMP ) ,  
                    DAY_OFF     = THE_DAY_OFF ( S_EMP ) ,  
                    MANAGER     = THE_MANAGER ( S_EMP ) ,  
                    BUDGET      = THE_BUDGET ( S_EMP ) ,  
                    OTHER_STUFF = THE_OTHER_STUFF ( S_EMP ) } ) ;  
 
/* Type S_MANAGER_EMP is very similar ... As for type        */  
/* S_PART_TIME_MANAGER_EMP, it looks something like this:    */  
 
TYPE S_PART_TIME_MANAGER_EMP  
     IS { S_PART_TIME_EMP , S_MANAGER_EMP  
          POSSREP ( ENO = ... /* etc., etc. */ ) } ;  
 
Now we can define operators that apply only at the S_PART_TIME_MANAGER_EMP 

level (for example), define relvars with attributes of type S_EMP that contain values of any of 
the four types, and so on and so forth.   

As the comments above suggest, the foregoing is perhaps not a very elegant solution to the 
problem, but at least it gets the job done, and it abides 100 percent by the prescriptions of our 
inheritance model.   
 
 
POSTSCRIPT: A SURVEY OF THE LITERATURE  
 
As noted near the beginning of the previous section, many people do seem to think, despite 
everything I’ve said in this chapter, that what an inheritance mechanism really needs to do is 
support structural inheritance specifically (meaning structural inheritance for scalar types 
specifically).  Certainly a survey of the literature tends to support this conclusion.  To put it 
another way, there seems to be almost universal agreement in the literature—in the object 
literature, at any rate, which seems to be the only place where such matters are discussed—that:   
 

a. Scalar types have user visible structure (“public instance variables”),42 and  
 
b. If scalar type T′ is a proper subtype of scalar type T, then T′ has all of T’s public instance 

variables, plus (usually) some additional ones of its own.   
 
                                                             
 
42 Which is odd when you come to think about it, because (as mentioned in an earlier footnote) the object literature also, and 
universally, lays strong emphasis on the notion of encapsulation—and encapsulation, if it means anything, surely means that 
types don’t have any such user visible structure.  Doesn’t it?   
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To bolster these claims on my part, I now offer a few quotes from the literature, with 
occasional commentary by myself.  By the way, I think I should say that the references I cite are 
far from being the only ones I consulted in carrying out this brief survey.  However, I do think 
they constitute a sufficiently representative sample.43  Note:  It’s telling, perhaps, that not one of 
the references I examined, including those cited below in particular, gives anything close to a 
formal definition of the term subtype.  Most of them don’t even bother to give an informal 
definition either.  Nor do they even have an entry for subtype in their index, for the most part.   
 
! From Elisa Bertino and Lorenzo Martino: Object-Oriented Database Systems: Concepts 

and Architectures (Addison-Wesley, 1993):   
 
[An] instance44 of the subtype can be used in every context in which an instance of the supertype 
can correctly appear ... The system must only allow, in the definition of a subtype, the addition of 
new attributes or methods and very restricted modifications of the inherited attributes and methods.   

 
Aside:		Many	publications	from	the	object	world	draw	a	distinction,	as	we	do	not,	
between	types	and	classes,	and—as	you	might	recall	from	Chapter	2—this	book	by	
Bertino	and	Martino	is	one	that	does	(or	at	least	tries	to).		To	quote:		“Object-oriented	
systems	can	be	classified	into	two	main	categories—systems	supporting	the	notion	of	
class	and	those	supporting	the	notion	of	type	...	[Although]	there	are	no	clear	lines	of	
demarcation	between	them,	the	two	concepts	are	fundamentally	different	[sic!]	...	Often	
the	concepts	type	and	class	are	used	interchangeably.		However,	when	both	are	present	
in	the	same	language,	the	type	is	used	to	indicate	the	specification	of	the	interface	of	a	set	
of	objects,	while	class	is	an	implementational	notion	[so	why	is	it	“in	the	language”	at	all,	
if	it’s	just	“an	implementational	notion”?].		Therefore	...	a	type	is	a	set	of	objects	which	
share	the	same	behavior	...	[and]	a	class	is	a	set	of	objects	which	have	exactly	the	same	
internal	structure	and	therefore	the	same	attributes	and	the	same	methods.		[But	if	all	
objects	in	a	“class”	have	the	same	attributes	and	the	same	methods,	isn’t	that	class	a	type,	
by	the	authors’	own	definition?]		The	class	defines	the	implementation	of	a	set	of	objects,	
while	a	type	describes	how	such	objects	can	be	used	...With	inheritance,	a	class	called	a	
subclass	can	be	defined	on	the	basis	of	the	definition	of	another	class	called	a	superclass.”		
[But	surely—in	accordance	with	their	own	earlier	definitions—the	authors	should	be	
talking	here	in	terms	of	types,	not	classes?].		End	of	aside.			

                                                             
 
43 Except, perhaps, for the fact that (I hope for obvious reasons) I tend to focus not on what might be called “pure object” 
writings, but rather on ones that have to do with object databases specifically.   
 
44 Instance is another term that virtually none of the sources I examined seems to define.  From context, however, it generally 
seems to be nothing more than just another term for object—which reduces the question of what it does mean to a previously 
unsolved problem, viz., what’s an object?  (See the section “Values vs. Variables” in Chapter 2.)  More seriously, it does seem 
likely that the term is supposed to cover both values and variables—in which case, of course, we run directly into another 
problem, viz., that none of the sources in question seems to distinguish properly (or at all?) between value substitutability and 
variable substitutability (etc., etc.).   
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! From R. G. G. Cattell and Douglas K. Barry (eds.): The Object Data Standard: ODMG 

3.0 (Morgan Kaufmann, 2000):   
 
[A] subtype’s interface may define characteristics in addition to those defined on its supertypes.  
These new aspects of state or behavior apply only to instances of the subtype (and any of its 
subtypes).  A subtype’s interface also can be refined to specialize state and behavior.  For example, 
the Employee type might have an operation for calculate_paycheck.  The Salaried_Employee and 
Hourly_Employee class implementations might each refine that behavior to reflect their specialized 
needs.   

 
Incidentally, note the switch in the last sentence here from the terminology of “types” to 
that of “classes” (?).  Note too that the phrase “class implementations” does tend to suggest 
that classes as such aren’t just “an implementational notion” (because if they were, then 
“class implementations” should be just “classes”).45   

 
Aside:		In	the	section	of	the	book	containing	the	text	just	quoted,	we	also	find	this:		“For	
example,	Associate_Professor	is	a	subtype	of	Professor	...	an	Associate_Professor	instance	
is	also	logically	a	Professor	instance.”		I	find	this	example	interesting,	because	professors	
surely	have	properties	(e.g.,	tenure)	that	associate	professors	don’t.		In	other	words,	I	
think	an	argument	could	be	made	that	the	example	has	the	type	hierarchy	upside	down.		
More	generally,	I	think	the	example	illustrates	the	point	that	it	can	be	difficult	to	get	the	
subtype	/	supertype	relationships	right,	absent	well	defined	notions	of	type	constraints	
and	type	constraint	inheritance—because	these	notions	can	serve	to	make	it	crystal	clear,	
with	respect	to	any	such	relationship,	which	type	is	the	subtype	and	which	the	supertype.		
End	of	aside.			

 
! From Mary E. S. Loomis: Object Databases: The Essentials (Addison-Wesley, 1995):   

 
[A] developer can use a type to define other types, which are called its subtypes ... A subtype may 
introduce additional characteristics (i.e., attributes, relationships, and operations) that are not part of 
the supertype’s specification ... A subtype can be substituted for the supertype in any context where 
the supertype is valid.   
 
Incidentally, note the sloppy use of subtype and supertype in the last sentence here, where 
what’s surely meant is an “instance” (?) of the subtype or supertype in question.  (Maybe 

                                                             
 
45 I feel obliged to note in passing that this book also contains a number of claims that I think are (to say the least) somewhat 
contentious.  For example, on page 3 we find this:  “We go further than relational systems, as we support a unified object model 
for sharing data across programming languages.”  Also on page 3:  “We have used the relational standard SQL as the basis for 
[the Object Query Language] OQL ... though OQL supports more powerful capabilities.”  And on page 10: “The ODMG Object 
Model ... includes significantly richer semantics than does the relational model, by declaring relationships and operations 
explicitly.”  Your comments here.   
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it’s not fair to raise this criticism here; the sloppiness I refer to is actually widespread in the 
object literature.)   

 
! From R. G. G. Cattell: Object Data Management (revised edition, Addison-Wesley,1994):   

 
Documents [meaning, presumably, document types] that have additional attributes or associated 
procedures ... may be declared to be subtypes of [type] document.  Such objects are said to inherit 
the attributes, relationships, and procedures associated with documents, and may have their own 
attributes, relationships, or procedures as well.   

 
! From Jan L. Harrington: Object-Oriented Database Design Clearly Explained (Morgan 

Kaufmann, 2000):   
 

The Animal class provides the data common to all types of animals.  The subgroups—Mammals, 
Reptiles, and Fish—add the data specific to themselves ... [The] subgroups are known as subclasses 
or derived classes.   

 
By the way, neither subtype nor subclass appears in the index of this book, but there’s a 
glossary, which contains the following entries among others:   

 
Subtype:  The object-oriented database model’s term for a subclass.   
 
Subclass:  A class that is a more specific example of classes above it in an inheritance hierarchy.   

 
! From James Martin and James J. Odell: Object-Oriented Methods: A Foundation (2nd 

edition, Prentice-Hall (1997):   
 

This book is the only one I’ve found that agrees with us (albeit only partially) that type 
constraints in general, and S by C and G by C in particular, should be supported.  Consider 
the following extracts:   

 
Pages 29-30:  Specifying the method of ... classification changes [i.e., changes in most specific type 
of an object] is a technique at the very heart of OO process specification ... [The] collection of 
concepts that applies [sic] to an object can change over time—a phenomenon called dynamic 
classification ... Most OO programming languages [insist that] an object can be an instance of only 
one ... class for life ... However, in OO analysis, we are not modeling how computer languages and 
databases work, we are analyzing the enterprise world as people understand it.   
 
As far as I can tell, this extract seems to be saying that (a) S by C and G by C are what’s 
needed in the real world but (b) object systems don’t support them.   
 
Page 128:  A classification event is the classification of an existing object.  For example, ... a 
PERSON object [might become] a member of the EMPLOYEE set ... A declassification event is 
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the declassification of an existing object.  [For example, ...] a PERSON object [might be removed 
from] ... the EMPLOYEE set—after which the object remains a PERSON, but is no longer an 
EMPLOYEE.   
 
Unfortunately, the authors nowhere address the question of how these “classifications and 
declassifications” might actually be effected in practice.  By contrast, our model explains 
these aspects in detail (we even offer some observations on how they might be efficiently 
implemented).  Of course, since their book is really concerned with object analysis and 
design, not with object application programming, the authors’ lack of specificity might 
perhaps be justified.  Anyway, it’s good to find a book that seems to agree that S by C is 
logically required.  That said, however, I have to say too that several other aspects of the 
book do seem a little puzzling.  Here are a few examples:   
 
Page 26:  An object is anything to which a concept applies.  It is an instance of a type.   
 
One implication of this definition is surely that values and variables are both objects.  
However, the question of values vs. variables is never discussed, although examples of 
objects in the book certainly include both.  Value isn’t in the glossary; variable is, but it’s 
defined as “synonymous with field,” where a field in turn is defined as “an implementation 
of a property”—and so variable is perhaps to be understood as a (public?) instance variable 
specifically, at least as far as the cited reference is concerned (?).   
 
Page 143:  All operations ... require objects as variables [sic].   
 
Page 361:  [An] argument [is] ... any object that is a parameter [sic!].   
 
Page 40:  A ... relation ... is a type whose instances are tuples.   
 
Several comments on this one!  First, of course, a relation has a type but is not a type.  
Second, “instances” of a relation type are surely, by definition, relations, not tuples (?).  
Third, it’s clear—at least, I think it’s clear—that instances here refers to values, whereas 
such is usually not the case at other points in the book.   
 
Pages 33-35:  [We use] the term concept ... to mean a notion or idea that we apply to objects in our 
awareness ... A recommended term for concept in the object-oriented analysis standards community 
is type.  Therefore ... the name type will be used ... In [the Unified Modeling Language] UML, there 
is a basic concept called class.  Here, classes used in analysis are called types and classes used for 
implementation purposes are called implementation classes.  Page 15:  The extension [of a concept] 
is the set of all objects to which the concept applies.  Page 27:  [A] set is a particular collection, or 
class, of objects ... Class is technically considered to be the correct word when referring to the 
collection of objects to which a concept applies ... Some [writers] argue that set and class mean the 
same thing.  Since class has a different meaning in OO programming languages, the word set will 
be used to avoid confusion.  It is worth noting, however, that the inspiration for using the term class 
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in OO originally came from the centuries-old mathematical notion.  Page 386:  The extension of 
the concept MORTAL [is] the collection, or set, of things to which the definition applies ... The set 
of MORTAL objects, therefore is not a fixed collection.  Page 354:  [The term] extension [is] used 
interchangeably with set.   
 
Sorting out what these remarks might mean I leave as an exercise for you!   

 
 
EXERCISES  
 
21.1 With reference to the section “An Introductory Example,” why do you think the Manifesto 
book recommends defining EMP and PGMR as relvars rather than types?   
 
21.2 Explain “is a” vs. “has a” in your own words.   
 
21.3 Why does the Manifesto insist that tuple and relation types have names of the form 
TUPLE H and RELATION H (or something logically equivalent), respectively?   
 
21.4 What’s a subtuple?   
 
21.5 Explain the semantic difference between DELETE ONLY and the use of the ONLY option 
on SQL’s regular DELETE statement.   
 
21.6 What do you understand by the term delegation?   
 
21.7 In the body of the chapter, I claimed that the notion of “variables containing variables” 
makes no sense.  But why doesn’t it?   
 
 
ANSWERS		
	
21.1	 	The	following	answer	focuses	on	employees	specifically,	but	the	discussion	applies	
equally	to	programmers,	mutatis	mutandis.		It	consists	for	the	most	part	of	a	lightly	edited	
version	of	text	from	Appendix	B	(“A	Design	Dilemma?”)	of	the	Manifesto	book.			

First,	then,	here	are	Tutorial	D	definitions	for	the	two	possible	designs—i.e.,	employees	as	
a	type	(Design	T)	vs.	employees	as	a	relvar	(Design	R):			

	
TYPE EMP POSSREP             / * “Design T” */  
   ( ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY ) ;  
 
VAR  EMP BASE RELATION       / * “Design R” */  
   { ENO CHAR , ENAME CHAR , DNO CHAR , SALARY MONEY } KEY { ENO } ;  
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Note	in	particular	that	the	EMP	type	is	scalar	or	“encapsulated,”	while	the	EMP	relvar	isn’t.			

Now	I	want	to	argue	that	the	choice	between	these	two	designs	is	really	no	choice	at	all.		
Observe	first	that	Design	T	gives	us	no	way	to	hire	and	fire!—and	so	that	design	is	clearly	
inadequate	as	it	stands.		The	reason	is	that,	loosely	speaking,	type	EMP	is	the	set	of	all	possible	
employees	(i.e.,	it’s	not	just	the	ones	who	currently	work	for	the	company),	and	there’s	simply	
no	way	to	insert	a	new	employee	into	that	set	or	delete	an	existing	one.		To	put	it	another	way,	
the	set	in	question	contains	all	possible	values	of	the	form		

	
EMP ( eno , name , dno , sal )  
	

(where	eno,	name,	dno,	and	sal	are	values	of	types	CHAR,	CHAR,	CHAR,	and	MONEY,	
respectively),	regardless	of	whether	any	employee	currently	exists	having	those	values	as	the	
pertinent	properties.		In	other	words:		Types	are	static.		Note:		If	you’re	having	difficulty	with	
this	idea,	consider	the	simpler	example	of	type	INTEGER.		That	type	just	is	the	set	of	all	integers,	
and	it’s	clearly	not	possible	to	insert	new	integers	or	delete	existing	ones.46			

It	follows	from	the	foregoing	that	Design	T	additionally	requires	an	accompanying	relvar,	
perhaps	looking	like	this:			

	
VAR EMPV BASE RELATION { EMP EMP } KEY { EMP } ;  
	
Relvar	EMPV	has	a	tuple	for	every	employee	currently	of	interest	(meaning,	presumably,	

every	employee	who	currently	works	for	the	company),	and	now	of	course	we	do	have	a	way	to	
hire	new	employees	and	fire	existing	ones.		Note	carefully,	however,	that	relvar	EMPV	does	
indeed	have	just	one	attribute,	not	four,	thanks	to	encapsulation.47		Note	too	that	the	KEY	
specification	is	almost	a	“no	op”;	in	particular,	note	that	what	it	doesn’t	say	is	that	employee	
numbers	are	unique.		If	we	wanted	to	say	such	a	thing,	we’d	have	to	define	a	separate	
constraint	(a	database	constraint,	in	Manifesto	terms),	perhaps	along	the	following	lines:			

	
CONSTRAINT ENO_UNIQUE  
           COUNT ( EMPV ) =  
           COUNT ( ( EXTEND EMPV :  
                          { ENO := THE_ENO ( EMP ) } ) { ENO } ) ;  
	
One	implication	of	the	Design	T	approach	is	thus	that	it	tends	to	suggest	that	the	database	

will	wind	up	containing	a	large	number	of	relvars	with	just	one	attribute	each,	and	possibly	with	
                                                             
 
46 After all, suppose it were possible to “insert a new integer.”  Where would that “new integer” come from?   
 
47 Note the difference here vis-à-vis SQL’s “typed tables”!  “Typed tables” in SQL are tables defined by means of a CREATE 
TABLE statement of the form CREATE TABLE <table name> OF <type name>.  They’re discussed in detail in Chapter 22, but 
the salient point here is that they’re definitely not encapsulated.  Examples were given in the section “Subtables and Supertables” 
in the body of the present chapter.   
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a	large	number	of	constraints	looking	like	the	one	just	shown	as	well:	a	state	of	affairs	that	
should	give	us	some	pause,	you	might	think.			

Anyway,	now	we	can	at	least	“hire	and	fire.”		We	can	also	perform	operations	analogous,	
though	not	identical,	to	the	kinds	of	relational	operations	we	would	probably	have	performed	
on	relvar	EMP	if	we’d	opted	for	Design	R	instead.		Here	are	a	couple	of	examples:			

	
!	 (“Restriction”)	Get	employees	with	salary	greater	than	$50,000:			

	
EMPV WHERE THE_SALARY ( EMP ) > MONEY ( 50000 )  

	
!	 (“Projection”)	Get	all	employee	name	/	salary	pairs:			

	
( EXTEND EMPV : { ENAME  := THE_ENAME  ( EMP ) , 
                  SALARY := THE_SALARY ( EMP ) } ) { ENAME , SALARY }  
	
Observe,	however,	that	the	result	in	this	latter	example	has	two	attributes,	not	one!		

Thus,	it	should	be	clear	that	(a)	given	the	single-attribute	relvar	EMPV	required	by	Design	T,	we	
can	create	the	four-attribute	relvar	EMP	required	by	Design	R	(as	a	view,	perhaps);	
furthermore,	(b)	we’d	probably	want	to	do	exactly	that	in	practice,	because,	for	a	variety	of	
reasons,	that	four-attribute	relvar	is	considerably	more	convenient	than	the	single-attribute	
one.			

Here	to	spell	it	out	is	a	definition	for	that	four-attribute	view	(let’s	call	it	EMPX):			
	
VAR EMPX VIRTUAL  
    ( ( EXTEND EMPV : { ENO    := THE_ENO    ( EMP ) ,  
                        ENAME  := THE_ENAME  ( EMP ) ,  
                        DNO    := THE_DNO    ( EMP ) ,  
                        SALARY := THE_SALARY ( EMP ) } )  
      { ENO , ENAME , DNO , SALARY } )  
     KEY { ENO } ;  
	

Note	in	particular	that	the	KEY	specification	for	this	relvar	EMPX	does	say	that	employee	
numbers	are	unique.			

What	the	foregoing	analysis	seems	to	show	is	that	we	can	start	off	with	Design	T,	the	type	
design,	if	we	like,	which	means	we	also	need	an	associated	single-attribute	relvar—but	we’ll	
quickly	find	that,	in	effect,	we’ll	have	to	create	Design	R	(the	relvar	design)	as	well.		So	Design	T	
implies	that	we	wind	up	with	everything	in	Design	R,	plus	the	type	EMP,	plus	the	single-
attribute	relvar	EMPV	and	constraint	ENO_UNIQUE	as	well.		So	what	was	the	point	of	opting	for	
Design	T	in	the	first	place?		And	what	purpose	is	served,	exactly,	in	Design	T	by	type	EMP	and	
that	single-attribute	relvar	EMPV	and	that	constraint?			
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Given	all	of	the	above,	what	then	is	the	criterion	for	making	something	a	type	and	not	a	
relvar?		(We	must	have	some	types,	of	course,	if	only	for	the	obvious	reason	that	relvars	can’t	
be	defined	without	them.)		Well,	here	are	some	pertinent	considerations:			
	
!	 In	conventional	design	terms,	types	correspond,	loosely,	to	properties	and	relvars	to	

entities	(or	sets	of	properties	and	sets	of	entities,	rather).		Hence,	if	something	is	“only”	a	
property,	it	should	map	to	a	type	and	not	a	relvar.			

The	trouble	with	this	idea,	of	course,	is	that	“one	person’s	property	is	another	
person’s	entity.”		For	example,	consider	colors.		We	normally	tend	to	think	of	the	color	
“red,”	say,	as	a	property,48 not	an	entity,	and	thus	we’d	normally	represent	colors	as	a	
type,	surely.		But	some	users	might	be	very	interested	in	“red”	as	an	entity,	with	further	
properties	of	its	own	(shade,	for	example,	or	intensity),	in	which	case	we	might	want	to	
represent	colors	by	a	relvar.		Perhaps	this	is	an	example	of	a	situation	where	we	need	
both	a	type	and	a	relvar	(the	relvar	representing	just	those	colors	that	happen	to	be	
currently	of	interest	for	some	reason).			

	
!	 Another	important	general	point	is	that	if	the	ability	to	“hire	and	fire”—or	something	

analogous	to	that	ability—is	a	requirement,	then	we’re	definitely	talking	about	entities,	
not	properties,	and	we	should	definitely	be	aiming	for	a	relvar	design.			

	
Given	such	considerations,	incidentally,	it’s	odd	that	so	many	articles	and	presentations	

on	object	systems	use	employees,	programmers,	and	so	forth	as	examples	of	object	classes.		
Of	course,	an	object	class	is	just	a	type—at	least,	it	is	as	far	as	I’m	concerned—and	so	those	
presentations	are	typically	forced	to	go	on	to	define	some	kind	of	“collection”	for	those	
employees,	another	such	“collection”	for	those	programmers,	and	so	on.49		What’s	more,	
those	“collections”	are	collections	of	encapsulated	objects,	and	they	therefore	effectively	omit	
those	all	important	(and	user	visible)	attribute	names.		As	a	consequence,	they	don’t	lend	
themselves	very	well	to	the	formulation	of	ad	hoc	queries,	declarative	integrity	constraints,	
and	so	forth—a	fact	that	advocates	of	the	approach	themselves	often	admit,	apparently	
without	being	aware	that	it’s	precisely	the	lack	of	user	visible	attribute	names	(in	effect,	the	
encapsulation)	that	causes	the	difficulties.50			
                                                             
 
48 As a property of some entity, that is.  The concept of a property in isolation makes no sense.   
 
49 SQL’s typed tables once again?—except that (as noted in an earlier footnote) those typed tables aren’t encapsulated.  Indeed, 
the arguments of the present paragraph might give some hint as to why that is.   
 
50 In fact, object systems typically support ad hoc queries (etc.) precisely by breaking encapsulation—a process that might 
conveniently be referred to as decapsulation—and exposing physical representations!  Here are a couple of quotes to illustrate the 
point.  1. “All object DBMS products currently require that [object components] referenced in ... queries be public [i.e., visible to 
the user]” (from Mary E. S. Loomis: Object Databases: The Essentials, Addison-Wesley, 1995).  2. “Query management ... is 
one situation where violating encapsulation is almost obligatory” (from Elisa Bertino and Lorenzo Martino: Object-Oriented 
Database Systems: Concepts and Architectures, Addison-Wesley, 1993).   
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Overall,	it’s	my	belief	that	the	most	appropriate	design	approach	will	emerge	if	careful	
consideration	is	given	to	the	distinction	between	(a)	declarative	sentences	in	natural	language,	
on	the	one	hand,	and	(b)	the	vocabulary	used	in	the	construction	of	such	sentences,	on	the	
other.		Basically,	it’s	unencapsulated	tuples	in	relations	that	stand	for	such	sentences,	and	it’s	
encapsulated	values	in	attributes	in	those	tuples	that	stand	for	particular	elements—typically	
nouns—in	those	sentences.		As	I	put	it	in	my	book	SQL	and	Relational	Theory:	How	to	Write	
Accurate	SQL	Code	(3rd	edition,	O’Reilly,	2015):			

	
Types	give	us	our	vocabulary—the	things	we	can	talk	about—and	relations	give	us	the	ability	to	
say	things	about	the	things	we	can	talk	about.			
	
Let	me	elaborate.		First,	consider	the	EMP	relvar	of	Design	R	once	again,	and	consider	this	

tuple:			
	
TUPLE { ENO 'E7' ,  ENAME 'Amy' , DNO 'D5' , SALARY MONEY ( 60000 ) }  
	

Inserting	this	tuple	into	the	relvar	means	(let’s	agree)	that	the	database	now	contains	
something	asserting	that	the	following	declarative	sentence	is	true:			

	
Employee	E7,	named	Amy,	is	assigned	to	department	D5	and	earns	a	salary	of	$60,000.			
	
By	contrast,	consider	the	EMP	type	of	Design	T.		Where	the	relvar	of	Design	R	allowed	us	

to	insert	the	tuple	just	shown,	with	the	interpretation	just	explained,	the	type	of	Design	T	
merely	allows	us	to	write	the	following	selector	invocation:			

	
EMP ( 'E7' , 'Amy' , 'D5' , MONEY ( 60000 ) )  
	

This	selector	invocation	doesn’t	of	itself	assert	the	truth	of	anything	at	all	(neither	does	it	deny	
it,	of	course).		Rather,	it	constitutes	nothing	more	than	a	certain	rather	heavy	duty	noun,	
something	like	“an	E7-numbered,	Amy-named,	D5-assigned,	$60,000-earning	employee.”		Now,	
we	can	if	we	like	form	a	tuple	containing	just	that	“noun”—i.e.,	that	EMP	value—and	then	
insert	that	tuple	into	the	single-attribute	relvar	EMPV	that	Design	T	additionally	requires.		
Speaking	a	trifle	loosely,	however,	to	do	what	I’ve	just	described	is	(a)	simply	to	place	a	“There	
exists”	in	front	of	that	noun	to	form	a	declarative	sentence,	and	then	(b)	to	assert	that	the	
sentence	in	question	is	in	fact	true.			

Of	course,	the	“true	fact”	asserted	by	the	four-attribute	tuple	in	Design	R	is	exactly	the	
same	as	the	“true	fact”	asserted	in	different	words,	as	it	were,	by	the	one-attribute	tuple	in	
Design	T.		So	which	of	the	two	ways	of	asserting	that	fact	do	you	think	is	the	more	economical,	
the	more	communicative,	and	the	more	amenable	to	further	reasoning?			
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21.2	 See	the	body	of	the	chapter.			
	
21.3	 So	that	the	type	of	the	result	of	evaluating	an	arbitrary	tuple	or	relational	expression	can	
be	pinned	down	precisely	and	understood	by	both	the	system	and	the	user.		With	reference	to	
the	suppliers-and-parts	database,	for	example	(see	Chapter	1),	the	projection	of	S	over	STATUS	
and	CITY—i.e.,	S	{STATUS,CITY},	in	Tutorial	D	notation—is	of	type		
	

RELATION { STATUS INTEGER , CITY CHAR }  
	
And	the	join	of	S	and	P	on	CITY—S	JOIN	P,	in	Tutorial	D—is	of	type		
	

RELATION {SNO SNO , SNAME NAME , STATUS INTEGER , CITY CHAR ,  
          PNO PNO , PNAME NAME , COLOR COLOR , WEIGHT WEIGHT } 

	
21.4	 It	depends	on	context!		In	the	relational	world,	a	subtuple	of	tuple	t	is	a	subset	(i.e.,	a	
projection)	of	t.		In	the	world	of	structural	inheritance,	a	subtuple	of	tuple	t	is	likely	to	be	a	
superset	(i.e.,	an	extension)	of	t.			
	
21.5	 Loosely,	(a)	DELETE	ONLY	deletes	rows	from	the	target	table	and	corresponding	rows	from	
that	table’s	subtables,	but	doesn’t	delete	corresponding	rows	from	the	target	table’s	
supertables;	(b)	SQL’s	DELETE	with	the	ONLY	option	deletes	rows	from	the	target	table	and	
corresponding	rows	from	that	table’s	supertables	(and	subtables	of	those	supertables),	but	only	
if	there	are	no	corresponding	rows	in	the	target	table’s	subtables.		For	more	details,	see	the	
body	of	the	chapter.			
	
21.6	 See	the	body	of	the	chapter.			
	
21.7	 I’ll	consider	the	case	of	array	variables	specifically,	just	to	be	definite,	but	the	following	
arguments	generalize	to	nonscalar	variables	of	any	kind,	including	relvars	in	particular.		Let	A	be	
an	array	variable,	and	assume	for	the	sake	of	the	discussion	that	its	current	contents	are	to	be	
regarded	as	a	set	of	element	variables	(not	values!)	A[1],	A[2],	...,	A[m].		Then:			
	
a.	 Every	assignment	to	A	will	have	the	side	effect	of	updating	some	of	those	A[i]’s	(for	some	

values	of	i)	as	well,	and	every	assignment	to	A[i]	(for	some	i)	will	have	the	side	effect	of	
updating	A	as	well.		In	a	sense,	therefore,	A	and	the	A[i]’s	are	in	lockstep,	as	it	were.		
Certainly	they’re	not	totally	independent	variables.			

	
b.	 Consider	the	following	multiple	assignment:			
	

A := a , A[i] := ai ;  
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Note	that,	by	our	assumption,	the	individual	assignments	here	have	different	target	
variables,	so	they	can’t	be	combined	into	a	single	assignment.		So	what	are	the	semantics	
of	this	multiple	assignment?		In	particular,	do	they	differ	from	those	of	the	following?—		

	
A[i] := ai , A := a ;  

	
Also,	what	happens	if	the	expression	ai	takes	the	form	A[j]	for	some	j	≠	i?			
	

c.	 How	about	this	one	(j	≠	i)?—		
	

A[i]:= A[j] , A[j] := aj ;  
	

Again	the	individual	assignments	here	have	different	target	variables,	so	they	can’t	be	
combined	into	a	single	assignment.			
	
Note	further	that	if	A	is	a	“variable	length	array,”	then	elements	can	be	inserted	and	

deleted—in	which	case	“inserting	an	tuple	into	A”	doesn’t	just	update	variable	A,	it	apparently	
creates	a	new	element	variable!		Likewise,	“deleting	an	element	from	A”	also	doesn’t	just	
update	variable	A,	it	apparently	drops	some	existing	element	variable.		Thus,	there	seems	to	be	
some	mixing	of	realms—more	specifically,	some	mixing	of	data	operations	and	metadata	
operations—going	on.		Overall,	in	other	words,	the	idea	of	“variables	containing	variables”	does	
seem	to	confuse	a	variety	of	concepts	that	would	much	better	be	kept	separate.			
	
	



  

Chapter  22 
 
 

I n h e r i t a n c e   i n   S Q L 
 
 

The hardest thing of all is to find a black cat in a dark room,  
especially if there is no cat.   

—Confucius (551-479 BCE) 
 
 

This chapter is based in part on material from (a) Chapters 5 and 20 of my book An Introduction 
to Database Systems (8th edition, Addison-Wesley, 2004) and (b) Appendix H of the Manifesto 
book.  However, all of that material is revised here, usually extensively, and there’s a great deal 
of new material as well.   
 
This chapter presents an overview of SQL’s type support, including of course its support for type 
inheritance in particular.  I’d like to stress that word overview, however; the treatment is very far 
from exhaustive—many details are simplified, and some features are omitted altogether.  But I 
hope there’s enough here to give you some idea of the extent of SQL’s support in this area and 
also, perhaps, to give you some idea of what might be missing.  Note:  As noted in the preface, 
all references to SQL in this book, and hence in this chapter in particular, should be understood 
as referring to the SQL standard specifically.  The reference document is:1   
 

International Organization for Standardization (ISO): Database Language SQL, Document 
ISO/IEC 9075:2008 (2011)  

 
In this connection, you might find the following book helpful (it’s a complete tutorial 

reference and guide to the SQL standard as of 1997):   
 

C. J. Date (with Hugh Darwen): A Guide to the SQL Standard (4th edition, Addison-
Wesley, 1997)  

 
Although this book is now fairly old as these things are measured in the computing field, just 
about everything it says is still applicable to the version of the standard that’s current at the time 
of writing (viz., “SQL:2011”).   

                                                             
 
1 It’s interesting to note, incidentally, that although SQL is almost universally thought of (and indeed described) as a “relational” 
database standard, that reference document doesn’t describe it as such—in fact, it never uses the term relational at all, nor the 
term relation.   
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The following books together provide a comprehensive discussion of the 1999 version of 
the standard (“SQL:1999”):   

 
Jim Melton and Alan R. Simon: SQL:1999—Understanding Relational Components 
(Morgan Kaufmann, 2002)  

 
Jim Melton: Advanced SQL:1999—Understanding Object-Relational and Other Advanced 
Features (Morgan Kaufmann, 2003)  
 
SQL:1999 was the first version of the standard to include user defined types and type 

inheritance support.  As a consequence, these two books do contain fairly extensive coverage of 
those topics, which the one mentioned above by Darwen and myself doesn’t.  Note:  For the 
record, let me add that there have been two versions, or “editions,” of the standard since 
SQL:1999, viz., SQL:2003 and the current version, SQL:2011.  So far as I know, however, there 
are no books dedicated to any version more recent than SQL:1999.  As a consequence, I’ve 
found in writing the present chapter that I’ve frequently had to refer to the second of the 
foregoing books in particular (and I’m pleased to be able to acknowledge that debt here).  Please 
note, therefore, that all otherwise unattributed references to “Melton” throughout what follows 
should be understood as references to that specific book.   

One last introductory point:  There are no exercises and answers in this chapter because this 
isn’t supposed to be a book about SQL.  If you want to test your understanding of the material, 
however, you should be able to take many of the exercises from previous chapters and adapt 
them to the SQL context.   
 
 
SQL SCALAR TYPES WITHOUT INHERITANCE  
 
Before I can discuss SQL’s support for type inheritance, I need to explain SQL’s support for 
types as such (i.e., without inheritance).  I’ll discuss scalar types in this section and nonscalar 
types in the next.   
 
System Defined Types  
 
As we saw in Chapter 2, system defined types are necessarily scalar.  SQL supports the 
following system defined types:   

 
BOOLEAN     INTEGER          CHARACTER(n)  
            SMALLINT         CHARACTER VARYING(n)  
            BIGINT           CHARACTER LARGE OBJECT(n)  
            NUMERIC(p,q)     BINARY(n)  
            DECIMAL(p,q)     BINARY VARYING(n)  
            FLOAT(p)         BINARY LARGE OBJECT(n)  
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These types should all be reasonably self-explanatory; note in particular that literals of 
essentially conventional format are supported in every case.2  Note:  SQL supports several other 
system defined types as well, including an “XML document” type (XML), a variety of “national 
character string types” (NATIONAL CHARACTER(n), etc.), and a variety of datetime types 
(DATE, TIME, TIMESTAMP, INTERVAL).  However, details of these additional types are 
beyond the scope of this book.  Points arising:   
 

1. A number of defaults, abbreviations, and alternative spellings are also supported, including 
INT for INTEGER, CHAR for CHARACTER, VARCHAR for CHARACTER 
VARYING, VARBINARY for BINARY VARYING, CLOB for CHARACTER LARGE 
OBJECT, and BLOB for BINARY LARGE OBJECT.3  Note:  With regard to the various 
“binary” types here, note that BINARY doesn’t mean binary numbers, it means bit 
strings—or, perhaps more accurately, byte strings, since the associated length specifications 
(see point 2 below) give the corresponding length in “octets.”  (Further evidence that this 
latter interpretation is correct is provided by the fact that “binary” literals take the form of a 
sequence of hexadecimal digits enclosed in single quotes, preceded by the letter X.)   

 
2. As you can see, SQL, unlike Tutorial D, requires its various character string types (CHAR, 

VARCHAR, and CLOB) to have an associated length specification.  In fact, as explained in 
Chapter 2, these “types” aren’t really types at all, they’re type generators.  By contrast, 
CHAR(25), for example, is a type, and it’s obtained by invoking the type generator CHAR 
with the value 25 as sole argument to that invocation.  Analogous remarks apply to every 
“scalar type” in the foregoing list apart from type BOOLEAN and the various integer types 
(SMALLINT, INTEGER, BIGINT).  For simplicity, however, I’ll overlook this point in 
what follows—most of the time, at any rate—and continue to refer to CHAR and the rest as 
if they were indeed types as such, just as SQL itself does.   

 
3. Explicit assignment and explicit equality comparisons are supported for all of these types.  

For assignment, the syntax is:   
 
SET <scalar variable ref> = <scalar exp> ;  
 

                                                             
 
2 Well ... perhaps they’re not quite as self-explanatory as all that.  For example (and despite that remark about literal formats 
being “essentially conventional”), there aren’t really any NUMERIC or DECIMAL literals, as such, at all!  Instead, the literal 
(e.g.) 123.45 is considered to be of type neither NUMERIC(p,q) nor DECIMAL(p,q) for some p and q, but rather of a type for 
which no specific SQL keyword exists: viz., “exact numeric.”  (Analogously, the literal 5E2 is considered to be of type, not 
FLOAT(p) for some p, but rather another type for which no specific SQL keyword exists: viz., “approximate numeric.”)  For the 
record, the difference between NUMERIC(p,q) and DECIMAL(p,q)—where p > 0, q ≥ 0, and p ≥ q—is that the former has 
precision exactly p decimal digits and the latter has precision at least p decimal digits.  According to the standard, moreover, 
“digits” here means significant digits in both cases, which is rather surprising if true—it would surely seem more reasonable to 
say NUMERIC(p,q) has at most p significant digits and DECIMAL(p,q) has at most r significant digits for some r ≥ p (for 
otherwise, e.g., 3.0 wouldn’t be a value either of type NUMERIC(5,1) or of type DECIMAL(5,1)).   
 
3 The “object” types mentioned here aren’t object types in the object oriented sense.   
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For equality comparison, the syntax is:   
 
<scalar exp> = <scalar exp>  
 

4. For system defined types SQL supports a weak form of strong typing (if you see what I 
mean).4  To be specific, (a) BOOLEAN values can be assigned only to BOOLEAN 
variables and compared only with BOOLEAN values; (b) numeric values can be assigned 
only to numeric variables and compared only with numeric values (where “numeric” means 
INTEGER, SMALLINT, BIGINT, NUMERIC, DECIMAL, or FLOAT); (c) character 
string values can be assigned only to character string variables and compared only with 
character string values (where “character string” means CHAR, VARCHAR, or CLOB);5 
and (d) bit string values can be assigned only to bit string variables and compared only with 
bit string values (where “bit string” means BINARY, VARBINARY, or BLOB).  Thus, an 
attempt to compare, e.g., a number and a character string is illegal.  However, an attempt to 
compare, e.g., two numbers is legal, even if those numbers are of different types, say 
DECIMAL and FLOAT, respectively (in this example, the DECIMAL value will be 
coerced to type FLOAT before the comparison is done).6   

 
DISTINCT Types  
 
SQL supports two kinds of user defined types, DISTINCT types and structured types,7 both of 
which are defined by means of the CREATE TYPE statement.  Now, DISTINCT types are scalar 
types, which is why I discuss them in the present section.  By contrast, structured types can be 
regarded as either scalar or nonscalar, depending on context.  (At least, that’s the official story—
but I don’t really believe it; as far as I can see, there’s essentially no context in which a 
structured type behaves as if it were truly scalar.  For that reason, I’ve chosen to discuss 
structured types in the next section, under the general heading of nonscalar types.)   

Be that as it may, for now let’s focus on DISTINCT types.  Here by way of example is an 
SQL definition for type WEIGHT as a DISTINCT type (note that, perhaps a little surprisingly, 
“DISTINCT” does not appear as a keyword in that definition):   
 

CREATE TYPE WEIGHT AS DECIMAL(5,1) FINAL ;  
 

                                                             
 
4 See the answer to Exercise 2.6 in Chapter 2 for a brief explanation of the notion of strong typing.   
 
5 The answer to that same Exercise 2.6 in Chapter 2 gives further details regarding the assignment and comparison of character 
strings in SQL.   
 
6 As explained in the answer to that same Exercise 2.6 in Chapter 2, the term coercion just means implicit type conversion.   
 
7 I depart from the standard in setting the word “DISTINCT,” in the DISTINCT type context, in all caps in order to stress the 
point that the word isn’t being used in that context in its ordinary natural language sense.   
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As the example suggests, in its simplest form—i.e., ignoring various optional features—the 
syntax for defining a DISTINCT type looks like this:   
 

CREATE TYPE <type name> AS <underlying type name> FINAL ;  
 
Points arising:   
 

1. FINAL means this type can’t have any proper subtypes.  DISTINCT types are required to 
be “final” in this sense.8   

 
2. The <underlying type name> is the name of a system defined type, and it defines the 

representation of values of the DISTINCT type in question.  Note carefully that the 
representation in question is the actual representation, not just some possible 
representation; in fact, SQL doesn’t support any kind of “possrep” notion at all.   

 
3. There’s nothing analogous to Tutorial D’s CONSTRAINT specification; in other words, 

SQL doesn’t really support type constraints,9 apart from the obvious implicit constraint that 
values of the type must be representable in terms of the underlying type.  In the case of type 
WEIGHT, for example, there’s no way to specify in the pertinent CREATE TYPE 
statement that, for any given WEIGHT value, the corresponding DECIMAL(5,1) value 
must be greater than zero (!) and less than 5000, say.  Rather, every value d of type 
DECIMAL(5,1)—even if d ≤ 0 or d ≥ 5000—corresponds to some unique WEIGHT value 
w, and every WEIGHT value w corresponds to some unique DECIMAL(5,1) value d.   

 
4. Comparison operators that apply to the DISTINCT type seem—though the standard is 

curiously reticent on the matter—to be those that apply to the underlying type.  Note:  
Apart from assignment (see point 7 below), other operators that apply to the underlying 
type do not apply to the DISTINCT type.  For example, let WT be an SQL variable of 
declared type WEIGHT.  Then all of the following will fail on a compile time type error:   

 
WT + WT  
WT + 14.7  
WT * 2  
 

5. Selectors and THE_ operators are supported (not by those names, however).  For example, 
if DW is an SQL variable of declared type DECIMAL(5,1), then the expression 
WEIGHT(DW) returns the corresponding weight value (“selector functionality”); and if 
WT is an SQL variable of declared type WEIGHT, then the expression DECIMAL(WT) 
returns the corresponding DECIMAL(5,1) value (“THE_ operator functionality”).  Hence, 

                                                             
 
8 Actually a DISTINCT type can’t have any proper supertypes either.   
 
9 The justification, such as it is, for this (in my opinion, highly regrettable) omission was explained in Chapter 13.   
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the following examples are valid (table P in these examples is, of course, an SQL analog of 
relvar P from the suppliers-and-parts database in Chapter 1):   

 
SELECT PNO ,  
       DECIMAL ( WEIGHT )             /* “THE_ operator functionality” */  
       AS DWT  
FROM   P  
WHERE  WEIGHT > WEIGHT ( DW )         /* “selector functionality       */  

 
DELETE  
FROM   P  
WHERE  WEIGHT = WEIGHT ( 14.7 ) ;     /* “selector functionality”      */  
 
(The expression WEIGHT(14.7) in the second of these examples is effectively a WEIGHT 
literal, though SQL doesn’t use that term.)   

Note:  Since the representation (i.e., the underlying type) for any given DISTINCT 
type always has exactly one component, these “selectors” and “THE_ operators” are really 
nothing more than simple CASTs (in other words, they’re really just type conversion 
operators—see the answer to Exercise 2.6 in Chapter 2).  Indeed, explicit CASTs can be 
used in their place.10  For example, CAST (DW AS WEIGHT) could be used instead of, 
and is logically equivalent to, WEIGHT(DW), and CAST (WT AS DECIMAL(5,1)) could 
be used instead of, and is logically equivalent to, DECIMAL(WT).  Also, if DT1 and DT2 
are distinct DISTINCT types, then explicit CASTs can optionally be defined for mapping 
between values of type DT1 and values of type DT2.   
 

6. With one important exception (see point 7 below), strong typing does apply to DISTINCT 
types.  Note in particular that comparisons between values of a DISTINCT type and values 
of the underlying representation type are illegal.  Hence, the following are not valid, even if 
(as before) the SQL variable DW in the first example is of type DECIMAL(5,1):   

 
SELECT PNO , DECIMAL ( WEIGHT ) AS DWT  
FROM   P  
WHERE  WEIGHT > DW             /* warning: illegal! */  
 
DELETE  
FROM   P  
WHERE  WEIGHT = 14.7 ;         /* warning: illegal! */  

 
7. The sole exception to strong typing, mentioned under points 4 and 6 above, has to do with 

assignment.  For example, if we want to retrieve some WEIGHT value into some 
DECIMAL(5,1) variable—DW, say—then some type conversion clearly has to occur.  
Now, we can certainly perform that conversion explicitly, as here:   
 

                                                             
 
10 The CAST operators in question are system defined; that is, creating DISTINCT type DT with underlying type UT 
automatically causes the system to create operators for casting from DT to UT and vice versa.    
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SELECT DECIMAL ( WEIGHT )  
INTO   DW                      /* DW is of type DECIMAL(5,1) */  
FROM   P  
WHERE  PNO = PNO('P1') ;  
 
However, the following is also legal (and an appropriate coercion will occur):   
 
SELECT WEIGHT                 /* instead of DECIMAL(WEIGHT) */  
INTO   DW  
FROM   P  
WHERE  PNO = PNO('P1') ;  

 
Coercions in the opposite direction are valid as well.11   

 
8. Additional operators can be defined as required.  Note:  The SQL term for such operators is 

routines, and there are three kinds: functions, procedures, and methods.  Functions and 
procedures correspond very roughly to our read-only and update operators, respectively; 
methods can be regarded as functions also, but unlike functions in general they’re tightly 
associated with a particular type—necessarily a user defined type12—and they’re invoked 
using a different syntactic style.  Methods are discussed in the subsection “Methods” 
below.  Here by contrast is an example of a function as such—i.e., one that’s not a 
method13—called ADDWT (“add weight”), which allows two WEIGHT values to be added 
and returns the result as another WEIGHT value:   

 
CREATE FUNCTION ADDWT ( W1 WEIGHT , W2 WEIGHT ) RETURNS WEIGHT  
       RETURN ( WEIGHT ( DECIMAL ( W1 ) + DECIMAL ( W2 ) ) ) ;  

 
All of the following will now be legal expressions of type WEIGHT:   

 
ADDWT ( WT , WT )  
ADDWT ( WT , WEIGHT ( 14.7 ) )  
ADDWT ( WEIGHT ( 14.7 ) , WT )  
ADDWT ( WEIGHT ( 14.7 ) , WEIGHT ( 3.0 ) )  

 
Note:  If we wanted, e.g., ADDWT(WT,14.7) and ADDWI(14.7,WT) to be legal 
expressions as well, we could define two further ADDWT functions, one taking a 
WEIGHT parameter and a DECIMAL(5,1) parameter in that order, and the other taking a 

                                                             
 
11 Please note, however, that (to say it again) assignment as such is the sole exception to the strong typing rule.  Thus, for 
example, if operator Op has a parameter P of declared type WEIGHT, then—at least according to my reading of the standard—
invoking Op with an argument A corresponding to P of declared type DECIMAL(5,1) won’t work, even though such an 
invocation might be thought of informally as causing A to be assigned to P.   
 
12 Note this point carefully!  One implication is that what SQL calls the subject parameter (and corresponding subject 
arguments)—see the subsection “Methods” below—must necessarily be of some user defined type.   
 
13 For simplicity, from this point forward I’ll take the unqualified term function to mean, specifically, a function that’s not a 
method, unless the context demands otherwise.   
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DECIMAL(5,1) parameter and a WEIGHT parameter in that order.  I’ll leave the details as 
an exercise.  Note, however, that an analogous remark does not apply to methods (see the 
subsection immediately following)—at least, not 100 percent (why not?).   

 
Methods  
 
Recall from Chapter 7 that method is basically just an object term for operator; in fact, methods 
were added to SQL in 1999 (along with user defined types) as part of an explicit attempt to make 
SQL more “object like.”14  By way of example, consider the function ADDWT discussed above.  
Suppose that for some reason we decide to use a method instead of a conventional function to 
provide ADDWT functionality (in order to avoid confusion with ADDWT as defined above, let’s 
agree to call that method MADDWT).  What we have to do, then, is this.  First, we extend the 
definition of type WEIGHT to contain an appropriate signature,15 thus:   
 

CREATE TYPE WEIGHT AS DECIMAL(5,1) FINAL  
            METHOD MADDWT ( W2 WEIGHT ) RETURNS WEIGHT ;  

 
We also define the method as such (i.e., we provide the necessary implementation code), as 

follows:   
 

CREATE METHOD MADDWT ( W2 WEIGHT ) RETURNS WEIGHT  
       FOR WEIGHT  
       RETURN ( WEIGHT ( DECIMAL ( SELF ) + DECIMAL ( W2 ) ) ) ;  

 
Now all of the following are legal MADDWT invocations (WT in these examples is once 

again an SQL variable of type WEIGHT):   
 

WT . MADDWT ( WT )  
WT . MADDWT ( WEIGHT ( 14.7 ) )  
WEIGHT ( 14.7 ) . MADDWT ( WT )  
WEIGHT ( 14.7 ) . MADDWT ( WEIGHT ( 3.0 ) )  

 
Explanation:   
 

                                                             
 
14 It’s worth noting here that, to quote Melton (page 113), “SQL’s object facilities were quite consciously designed to be similar 
to Java’s”—though in the next paragraph he also says that “it’s somewhat unclear in the SQL standard exactly what an object is” 
(italics in the original).   
 
15 The term signature in SQL corresponds, more or less, to our specification signature (SQL has nothing—well, nothing explicit, 
at any rate—corresponding to our invocation signature).  A signature in SQL consists of the operator name, a sequence of 
parameter declared types, and an indication of whether the operator in question is a procedure or a function (methods here 
counting as functions).  Note:  The foregoing is the standard’s own definition of the term, but subsequent uses of “signature” in 
the reference document seem to suggest that—for a function, at any rate—the result declared type is part of the signature too.  
What definitely, but perhaps a little surprisingly, appears not to be part of the signature is any indication as to which parameters if 
any are subject to update.   



 
 

Type Inheritance in SQL / Chapter 22      461 

1. Methods in SQL always have this kind of two-part, lockstep definition (signature in 
CREATE TYPE, implementation code in CREATE METHOD).  By contrast, functions 
and procedures are defined via separate CREATE FUNCTION and CREATE 
PROCEDURE statements (the first of these was illustrated in the previous subsection, of 
course).  These statements are analogous, somewhat, to the CREATE METHOD statement 
shown in the example, but functions and procedures aren’t tightly tied to one particular 
type as methods are—only methods have their specification signature included in the 
pertinent type definition, and only methods have “FOR <type name>” specified as part of 
their definition.16   
 

2. Unlike functions and procedures, methods are “selfish.”  Recall from Chapter 11 that what 
this means is that one parameter (SQL calls it the subject parameter) is singled out for 
special semantic treatment (see point 3 below), and hence special syntactic treatment also, 
necessarily (see point 4 below).  The term selfish method derives from the fact that the 
subject parameter is typically unnamed and so has to be referenced within the method’s 
implementation code in some ad hoc way, typically by means of the keyword SELF.  Note:  
Both of these points apply to SQL specifically (note the appearance of the keyword SELF 
in the MADDWT code above).  Note too that MADDWT has two parameters, but only 
one, the second, is explicitly named and mentioned inside the parentheses following the 
operator name in the CREATE METHOD statement.  Note finally that those parentheses 
are required even if there’s nothing for them to enclose (i.e., even if the method has no 
parameters other than the subject one).   

 
3. The special semantic treatment consists in using the type—meaning, more precisely, the 

most specific type—of the argument corresponding to the subject parameter (i.e., the 
“subject argument”), and that type alone, to control the run time binding process.17  Note:  
Like our own inheritance model, SQL does support the notion of most specific types, as 
we’ll see later in this chapter.  However, that notion is significant only in the context of 
structured types, and it’s therefore not very relevant for the purposes of the present section.   

 
4. The special syntactic treatment consists in the fact that any given method is regarded as 

being “for” some particular type: viz., the declared type of the subject parameter.  As noted 
under point 1 above, this state of affairs is reflected in SQL by (a) the fact that the method 

                                                             
 
16 Two points here.  First, the fact that the signature for a given method has to be specified as part of the pertinent type definition 
means that creating a new method M for an existing type T is slightly nontrivial, involving as it does an alteration to the definition 
of type T.  Second, the signature and the implementation code are both provided automatically in the special case in which (a) the 
type defined in the CREATE TYPE statement in question is a structured type, not a DISTINCT type, and (b) the method in 
question is a constructor, an observer, or a mutator function for that type (see the section “SQL Nonscalar Types without 
Inheritance,” later).  Note:  As we’ll also see later, the methods referred to in part (b) of the foregoing sentence are indeed 
methods, even though SQL refers to them as functions.   
 
17 In practice it might be possible to do some or even all of the binding at compile time, but methods in general always involve (at 
least conceptually) some degree of run time binding.   
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signature appears as part of the definition of the type in question, together with (b) the fact 
that the type in question is explicitly mentioned, via the FOR specification, in the definition 
of the method.  (In other words, and indeed as already noted, the type and the method are in 
lockstep, as it were.  See Chapter 11 if you need to remind yourself why we deliberately 
chose not to adopt any analogous mechanism in The Third Manifesto.)   

 
5. As the examples indicate (but simplifying slightly), the syntax for a method invocation 

takes the form  
 
<subject argument exp> . <method name> ( <argument exp commalist> )  

 
Note:  Such an expression has sometimes been described (at least in early object systems) 
as “sending a message” to the argument denoted by the <subject argument exp>, saying, in 
effect, “apply method <method name> to yourself, using further arguments as specified in 
the <argument exp commalist>.”  

 
 
SQL NONSCALAR TYPES WITHOUT INHERITANCE  
 
Like Tutorial D, SQL supports certain nonscalar type generators (the SQL term is type 
constructors, but I’ll call them type generators here for consistency with earlier chapters).  The 
ones that are of most interest to us in the present context are (a) the ROW type generator, which 
is, of course, SQL’s counterpart to Tutorial D’s TUPLE type generator,18 and (b) the CREATE 
TYPE statement itself, when considered in its capacity to define what SQL calls structured types 
specifically.  I’ll deal with row types first.   
 
Row Types  
 
SQL’s row types resemble Tutorial D’s tuple types in that they’re simply available for use 
whenever they’re needed (typically as the declared type of some variable); they don’t have to be 
separately defined, and in fact they can’t be.  (Note that exactly the opposite is the case with 
structured types, as we’ll see in the subsection “Structured Types” later in this section.)  Here’s 
an example of an SQL row variable definition:   
 

DECLARE PRV /* “part row variable” */  
        ROW ( PNO    PNO ,  
              PNAME  NAME ,  
              COLOR  COLOR ,  
              WEIGHT WEIGHT , 
              CITY   VARCHAR(20) ) ;  

                                                             
 
18 SQL also supports (a) two further nonscalar type generators, ARRAY and MULTISET (but SQL’s array and multiset types  
aren’t very important in the larger scheme of things, and I propose to ignore them for the purposes of this chapter), and (b) a 
scalar type generator called REF, which I’ll be discussing later in the present section.   
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As you can see, the type of variable PRV is indeed a row type, and it’s specified by means 

of an invocation of the ROW type generator (I’m assuming for the sake of the example that 
PNO, NAME, and COLOR are user defined types—probably DISTINCT types—that have 
already been defined; type WEIGHT is as defined in the previous section; and CITY has a 
system defined type, viz., VARCHAR(20)).  Note:  For some reason, SQL refers to the 
components of row types produced by invocation of the ROW type generator—also to the 
components of values and variables of such row types—not as columns but as fields.  In the 
example, therefore, the SQL row variable PRV has five fields, called PNO, PNAME, COLOR, 
WEIGHT, and CITY.  What’s more, those fields are ordered left to right; thus, e.g., PNO is the 
first field of that variable, PNAME is the second, and so on.   

SQL also supports row assignment.  Here’s a simple example:   
 
SET PRV = ROW ( PNO('P1') , NAME('Nut') , COLOR('Red') ,  
                                          WEIGHT(12.0) , 'London' ) ;  

 
The expression on the right side here is a row selector invocation (SQL would call it a row value 
constructor invocation);19 in fact, it’s a row literal, though SQL doesn’t use that term.20  Note:  
Actually, the keyword ROW in an SQL row value constructor invocation is optional, and in 
practice is almost always omitted (probably because earlier versions of SQL didn’t support it).  
Thus, the foregoing example could be simplified slightly to just:   

 
SET PRV = ( PNO('P1') , NAME('Nut') , COLOR('Red') ,  
                                      WEIGHT(12.0) , 'London' ) ;  

 
The parentheses are required, though.   

Here’s a slightly more complicated example:   
 
SET PRV = ( P WHERE PNO = PNO('P1') ) ;  
 

In this case the expression on the right side isn’t a row selector invocation, it’s a row subquery—
i.e., it’s an SQL table expression in parentheses that’s acting as a row expression.  Simplifying 
slightly, the table t returned by that table expression is required to contain exactly one row r; so 
long as it does, t is coerced to r, and r can then be assigned to the row variable referenced on the 
                                                             
 
19 SQL uses the term constructor in numerous contexts.  However, I have to say that, at least in contexts like the one at hand, I 
find that term rather inappropriate, suggesting as it does that values don’t simply exist as I said they did in Chapter 2 but have to 
be “constructed.”  I prefer our term selector.   
 
20 Incidentally, the example illustrates the somewhat peculiar fact that, while the fields of a given row type RT have names (and 
those field names are explicitly considered to be part of the type), literals of that type RT don’t have such names; instead, they 
consist simply of a sequence of literals of the applicable field types.  (In the example, the literal on the right side of the 
assignment denotes a value of the row type that’s the type of row variable PRV.)  Contrast the situation with tuple types and 
literals in Tutorial D.  (Incidentally, it follows from the foregoing that, even without inheritance, the very same row literal in 
SQL might denote a value of any number of different row types, and “the” intended type of such a literal can’t be determined in 
general just by looking at it.  The consequences of this state of affairs are unclear.)   
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left side.  A Tutorial D analog of this assignment would look like this (note the explicit 
extraction here of the pertinent tuple from the single-tuple relation containing it):   

 
PRV := TUPLE FROM ( P WHERE PNO = PNO('P1') ) ;  
 

But SQL has no explicit counterpart to Tutorial D’s TUPLE FROM operator as such.   
I turn now to row equality comparisons.21  Here’s a simple example:   
 
PRV = ( PNO('P1') , NAME('Nut') , COLOR('Red') ,  
                                  WEIGHT(12.0) , 'London' )  

 
By way of another example, consider the following SELECT expression, which contains an 

explicit row equality comparison in the WHERE clause:   
 
SELECT PNO  
FROM   P  
WHERE  ( COLOR , CITY ) = ( COLOR('Red') , 'London' )  

 
This SELECT expression is logically equivalent to the following:   

 
SELECT PNO  
FROM   P  
WHERE  COLOR = COLOR('Red') AND CITY = 'London'  

 
I’ll give one more example, in order to illustrate another point.  Consider the following 

CREATE TABLE statement:   
 

CREATE TABLE NADDR  
     ( NAME VARCHAR(25) NOT NULL ,  
       ADDR ROW ( STREET CHAR(50) ,  
                  CITY   VARCHAR(20) ,  
                  STATE  CHAR(2) ,  
                  ZIP    CHAR(5) ) NOT NULL ,  
       UNIQUE ( NAME ) ) ;  
 
Observe in particular that column ADDR of table NADDR is defined to be of a certain row 

type, with fields STREET, CITY, STATE, and ZIP.  (In general, fields of a given row type can 
be of any type whatsoever, including other row types in particular.)  References to such fields 
make use of dot qualification as illustrated in the following retrieval example (the syntax is 
<exp>.<field name>, where <exp> is a row expression and <field name> is the name of a field of 
the row type of that expression):   
                                                             
 
21 For completeness I should mention that SQL row comparisons actually support not just equality but all six of the usual 
comparison operators: “=”, “<>” (not equals), “<”, “>”. “<=”, and “>=”.  The full details are quite complicated, however 
(especially when coercions and nulls are taken into account), and I therefore omit them here.  You can find the specifics if you’re 
interested in the book mentioned in the introduction to this chapter, A Guide to the SQL Standard (4th edition, Addison-Wesley, 
1997), by Hugh Darwen and myself.   
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SELECT NT.NAME  
FROM   NADDR AS NT  
WHERE  NT.ADDR.STATE = 'CA'  

 
NT here is a correlation name.  For technical reasons, having to do with avoiding a certain 

syntactic ambiguity that might otherwise occur, SQL requires explicit correlation name qualifiers 
to be used in field references like the one in the example (NT.ADDR.STATE).22   

Here by contrast is an update example:23   
 
UPDATE NADDR  
SET    ADDR.STATE = 'NH'  
WHERE  NAME = 'Joe' ;  
 

Observe that this latter example doesn’t use correlation names at all.   
 
Aside:		Two	points	of	detail	here.		First,	since	a	field	within	a	row	type	can	itself	be	of	
some	row	type,	field	references	can	involve	lots	of	dots	(as	in,	e.g.,	R1.F2.F3.F4.F5).		
Second,	observe	that	I’ve	defined	a	column	constraint	(NOT	NULL)	on	column	ADDR	in	the	
CREATE	TABLE	statement,	in	order	to	prevent	nulls	from	appearing	as	entries	in	the	
column	in	question.		In	general,	however,	such	a	constraint	won’t	prevent	nulls	from	
appearing	in	fields	within	entries	in	the	column	in	question.		(Note	that	a	row	with	nulls	in	
some	of	its	fields—even	in	all	of	its	fields!—is	logically	distinct	from	a	null	row.		A	NOT	
NULL	constraint	on	column	ADDR	will	ensure	that	no	entry	in	that	column	either	is	null	or	
has	a	null	in	every	field,	but	it	won’t	prevent	such	an	entry	from	having	nulls	in	some	of	its	
fields	and	not	in	others.)		If	we	want	to	prohibit	nulls	entirely,	therefore,	we’ll	have	to	
specify	a	series	of	additional	constraints—probably	as	part	of	the	pertinent	CREATE	TABLE	
statement—along	the	lines	of	the	one	shown	here:			
	
CHECK ( ADDR.STREET IS NOT NULL )  

	
What	we	can’t	do	is	attach	a	NOT	NULL	specification	to	the	definition	of	field	STREET	as	
such,	as	part	of	the	definition	of	column	ADDR.		End	of	aside.			

 

                                                             
 
22 In certain contexts, at any rate, but not in others!  The very next example (an UPDATE example) illustrates this point.  Further 
details are beyond the scope of this book.   
 
23 Actually this example seems to be illegal, because according to the standard ADDR.STATE doesn’t seem to be a legal SET 
clause target.  However, I presume this state of affairs is just an oversight, and I choose to ignore it here.   
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Table Types  
 
So much for row types; what about table types?  Interestingly, SQL doesn’t really support the 
concept of a table type at all;24 more specifically, it doesn’t support a TABLE type generator (or 
table type constructor, as SQL would probably call it).  In other words, it has nothing directly 
analogous to Tutorial D’s RELATION type generator.  Of course, it does have a mechanism, 
CREATE TABLE, for defining what by rights should be called table variables.  Here’s an 
example (it’s an SQL analog of the Tutorial D definition of relvar S from the suppliers-and-
parts database in Chapter 1):   
 

CREATE TABLE S  
     ( SNO    SNO         NOT NULL ,  
       SNAME  NAME        NOT NULL ,  
       STATUS INTEGER     NOT NULL ,  
       CITY   VARCHAR(20) NOT NULL ,  
       UNIQUE ( SNO ) ) ;  

 
Note carefully, however, that there’s nothing in this example—no sequence of linguistic 

tokens—that can logically be labeled “an invocation of the TABLE type generator.”  (This fact 
might become more apparent when you realize that the specification UNIQUE (SNO), which 
defines a certain integrity constraint on suppliers, doesn’t have to come after the column 
definitions but can appear almost anywhere—e.g., between the definitions of columns SNAME 
and STATUS.  Not to mention those NOT NULL specifications on the individual column 
definitions, which also define certain integrity constraints.)  In fact, to the extent that the variable 
S can be regarded (in SQL) as having any type at all, that type is nothing more than bag of rows, 
where the rows in question have fields of types (in left to right order) SNO, NAME, INTEGER, 
and VARCHAR(20).   

As a matter of fact, SQL’s treatment of tables is really quite strange when you come to 
think about it.  As Melton says, quite correctly,“the table is SQL’s most fundamental data 
structure”; yet, to repeat, there’s no table type generator!  One consequence of this state of affairs 
is that no column of any table in SQL can be of a “table type”—in other words, SQL doesn’t 
support table valued columns.25  Further evidence that SQL doesn’t really regard tables as “first 
class citizens” is provided by the fact that it fails to provide direct support for either table 
assignment or table equality comparisons.  Of course, it’s true that workarounds are available for 
such operations—but workarounds shouldn’t be necessary in the first place.   
 

                                                             
 
24 Despite the fact that it does support something it calls “typed tables.”  We’ll be looking at these in some detail in the subsection 
“Typed Tables,” later.  The term is hardly very appropriate, however, because (as we’ll see) if TT is a “typed table” that has been 
defined to be “of type T,” then TT is certainly not of type T, and neither are its rows.   
 
25 It does support columns that contain values that are multisets [i.e., bags] of rows, but such values aren’t tables in the SQL 
sense (and such columns therefore aren’t table valued columns), because SQL’s table operators don’t apply to them.   
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Structured Types  
 
Recall now that SQL supports two kinds of user defined types, DISTINCT types (discussed in 
the previous section) and structured types.26  Here are a couple of examples of structured type 
definitions:   
 

CREATE TYPE POINT  
  AS ( X FLOAT , Y FLOAT ) FINAL ;  
 
CREATE TYPE LINESEG  
  AS ( BEGIN POINT , END POINT ) NOT FINAL ;  

 
(Actually the second example fails because BEGIN and END are reserved words in SQL, but I 
choose to ignore that detail here.)  In its simplest form, then—i.e., ignoring a variety of optional 
features—the syntax for creating a structured type is:   
 

CREATE TYPE <type name>  
  AS ( <attribute commalist> ) [ NOT ] FINAL ;  

 
Points arising:   
 

1. Note that “STRUCTURED” doesn’t appear as a keyword in the definition.  Instead, if the 
keyword AS is followed by an opening parenthesis,27 then the type being defined is a 
structured type; otherwise it’s a DISTINCT type.   
 

2. FINAL means this type can’t have any proper subtypes; NOT FINAL means it can.  Purely 
for the sake of the example—not for any really good reason—I’ve specified FINAL for 
type POINT and NOT FINAL for type LINESEG.   

 
3. The <attribute commalist>—which mustn’t be empty—specifies the physical 

representation of values of the type being defined.28  Each <attribute> consists of an 
<attribute name> followed by a <type name>.  (Note, therefore, that in SQL tables have 
columns; rows have fields; and structured types have attributes.)   

                                                             
 
26 According to Melton, structured types in SQL were originally called abstract data types or ADTs.   
 
27 Or if (a) the keyword UNDER appears following the <type name> (see the section “The SQL Approach to Inheritance,” later), 
or if (b) the AS specification is omitted entirely (see the discussion of IM Prescription 20 near the end of this chapter).   
 
28 Some might dispute my use of the qualifier physical here, but I stand by it (despite the fact that the standard says, paraphrasing 
slightly, that “physical representations of values of user defined types are undefined”).  Incidentally, Melton appears to agree 
with me on this point.  On page 56 of his book, he gives an example of changing the representation (i.e., the attributes) of a 
certain type, and goes on to say “Perhaps obviously, [the] data in the database would have to be converted to [the new 
representation], but that’s not relevant to the example.”  Clearly, such conversion will be necessary only if representations are 
physical.  And on page 31 he says “the fact that [SQL’s] object model doesn’t allow for private attributes, but only for public 
attributes, makes it impossible to completely hide the implementation details of types”—implying, again, that the attributes in 
question constitute the physical implementation of the type in question.   
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4. For each attribute, the system will automatically define two operators, one observer 

function and one mutator function (actually they’re methods, but SQL refers to them as 
functions), that provide functionality somewhat analogous to that of Tutorial D’s THE_ 
operators and (in effect) pseudovariables.  For example, if LS, P, and Z are SQL variables 
of types LINESEG, POINT, and FLOAT, respectively, then all of the following 
assignments are valid:   

 
SET Z = P.X ;                /* “observes” X attribute of P */  
 
SET P.X = Z ;                /* “mutates” X attribute of P  */  
 
SET X = LS.BEGIN.X ;         /* “observes” X attribute of   */  
                             /* BEGIN attribute of LS       */  
 
SET LS.BEGIN.X = Z ;         /* “mutates” X attribute of    */  
                             /* BEGIN attribute of LS       */  
 

Note:  SQL’s mutators aren’t actually mutators in the conventional object sense of the 
term (i.e., they aren’t update operators; in fact, of course, as I’ve already said, they’re 
functions, and functions in general are read-only).  However, they (i.e., SQL’s mutators) 
can be used in such a way as to achieve conventional mutator functionality.  For example, 
“SET P.X = Z”—which, believe it or not, doesn’t explicitly contain a mutator invocation—
is defined to be shorthand for “SET P = P.X(Z),” which does.29  But I’ll continue to talk 
about mutators as if they really were update operators, for simplicity.   

 
5. No selectors are provided automatically, but somewhat analogous functionality can be 

achieved as follows.  First of all, I need to explain that given a structured type T, SQL 
automatically provides what it calls a constructor function for T,30 having that same name 
T.  It’s important to understand, however, that the constructor function for type T returns 
the same value on every invocation: namely, that value of type T whose attributes all have 
the applicable default value.31  For example, the constructor function invocation  
 

                                                             
 
29 To elaborate briefly:  The expression P.X(Z) denotes an invocation of the mutator called X, and P and Z denote the subject 
argument and an additional argument, respectively, to that invocation.  That invocation returns a point with x coordinate equal to 
the x coordinate of the point currently contained in P and y coordinate equal to Z, and the SET statement then causes that point to 
be assigned to P.   
 
30 So long as T is instantiable, that is (see the section “The SQL Approach to Inheritance,” later).  Note:  As mentioned in 
footnote 16 (and despite the nomenclature), constructor functions, like observer functions and mutator functions before them, are 
actually methods; unlike other methods, however, they—constructor functions, that is—have no subject parameter.   
 
31 The default value for a given attribute can be specified along with the pertinent <attribute> within the definition of the 
pertinent structured type.  If no such default value is specified explicitly, the default value—the “default default”—will be null.  
Note:  For reasons beyond the scope of this book, the default must be null if the type of the attribute in question is either a row 
type or a user defined type.  As a consequence, the constructor function invocation LINESEG( ), for example, will necessarily 
return a kind of “pseudo” line segment whose BEGIN and END components are both “null points.”   
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POINT ( )  
 
returns the point with default X and Y values.  Now, however, we can invoke the X and Y 
mutators to replace the result of that constructor function invocation by the point we really 
want.  Moreover, we can bundle up the initial construction and those subsequent mutations 
into a single expression, as in this example:   
 
POINT ( ) . X ( 5.0 ) . Y ( 2.5 )  
 
This expression overall returns the point with cartesian coordinates (5.0,2.5).  Explanation:  
First, POINT( ) is, as we’ve just seen, a POINT constructor function invocation, and it 
returns—at least, let’s agree it does for the sake of the example—what we might think of as 
a “pseudopoint,” with x and y coordinates both null.32  Second, the result of that invocation 
becomes the subject argument to the X mutator invocation, which effectively replaces that 
pseudopoint by another, this one having x coordinate 5.0 and y coordinate null. Third, the 
result of that invocation becomes the subject argument to the Y mutator invocation, which 
effectively replaces that second pseudopoint by a real point with x coordinate 5.0 and y 
coordinate 2.5.   

Here’s a more complex example (and I’ll leave it to you to explain this one to 
yourself to your own satisfaction):   

 
LINESEG ( ) . BEGIN ( POINT ( ) . X ( 5.0 ) . Y ( 2.5 ) )  
            . END   ( POINT ( ) . X ( 7.3 ) . Y ( 0.8 ) )  

 
Aside:		Actually	there’s	another	way	of	obtaining	“selector	functionality,”	one	that	you	
might	find	a	little	more	user	friendly.		First,	in	the	definition	of	the	pertinent	type,	we	can	
give	the	signature	for	a	constructor	method,33	having	(necessarily)	the	same	name	as	the	
type	in	question.		For	example:			

	
CREATE TYPE POINT  
  AS ( X FLOAT , Y FLOAT ) FINAL  
       CONSTRUCTOR METHOD POINT ( X FLOAT , Y FLOAT ) RETURNS POINT  
       SELF AS RESULT ;  

	
(Note	the	required	SELF	AS	RESULT	specification.)		Next	we	define	the	code	for	that	
method:			

	

                                                             
 
32 Note that a “pseudopoint” with both coordinates null is not itself considered to be null (i.e., it’s not “a null point”).  Compare 
the remarks earlier in this chapter on the logical difference between a null row and a row all of whose fields are null.   
 
33 Not to be confused with a constructor function, naturally, despite the fact that (as previously noted) a constructor function is 
actually a method.   
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CREATE CONSTRUCTOR METHOD POINT ( X FLOAT , Y FLOAT ) RETURNS POINT  
       FOR POINT  
       BEGIN  
          SET SELF.X = X ;  
          SET SELF.Y = Y ;  
          RETURN SELF ;  
       END ;  

	
And	now	the	expression		
	
NEW POINT ( X , Y )  
	
will	return	the	point	whose	x	and	y	coordinates	are	equal	to	the	values	of	variables	X	and	
Y	(whatever	those	values	might	be),	respectively.		Explanation:		The	keyword	NEW	causes	
(a)	the	POINT	constructor	function	to	be	invoked	and	then	(b)	the	value	returned	by	that	
invocation—viz.,	a	pseudopoint	with	x	and	y	coordinates	both	null—to	be	passed	as	the	
subject	argument	to	an	invocation	of	the	POINT	constructor	method.			

By	the	way,	I	hope	I	haven’t	confused	you	with	all	the	different	X’s	and	Y’s	in	the	
foregoing	example.		Just	to	spell	the	differences	out,	though:		The	X	and	Y	in	the	signature	
and	in	the	first	line	of	the	constructor	method	definition	(also	on	the	right	side	of	the	two	
assignments)	are	parameters;	the	X	and	Y	in	the	expressions	SELF.X	and	SELF.Y	are	
attributes	of	the	POINT	type;	and	the	X	and	Y	in	the	NEW	expression	are	SQL	variables	of	
type	POINT.		End	of	aside.			

 
6. The comparison operators that apply to values of a given structured type are specified by 

means of a separate CREATE ORDERING statement.34  Here are two examples:   
 

CREATE ORDERING FOR POINT EQUALS ONLY BY STATE ;  
 
CREATE ORDERING FOR LINESEG EQUALS ONLY BY STATE ;  

 
EQUALS ONLY means that “=” and “<>” (not equals) are the only valid comparison 
operators for values of the type in question.  The alternative to EQUALS ONLY is FULL, 
meaning that “<”, “<=”, etc., are allowed in addition to “=” and “<>”.  BY STATE means 
that two values v1 and v2 of the type in question are equal if and only if every attribute of 
v1 has the same value as the corresponding attribute of v2.  (Alternatives to BY STATE are 
possible but are beyond the scope of this book.)  Note:  If a given structured type has no 
associated “ordering,” then no comparisons at all, not even equality comparisons, can be 

                                                             
 
34 Note that those comparison operators, including “=” in particular, are still specified via CREATE ORDERING—emphasis 
added—even if ordering as such (meaning, basically, support for “<”) doesn’t apply!  Note too that CREATE TYPE and 
CREATE ORDERING are separate statements, but it’s not possible to have more than one CREATE ORDERING for a given 
CREATE TYPE.   
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performed on values of that type—a state of affairs with far reaching consequences, as you 
might imagine.   
 

7. In addition to the operators already mentioned (observers, mutators, constructor functions 
and methods, assignments, and comparisons), other operators can be defined as required.   

 
8. Strong typing applies to structured types.   
 

Let’s take a look at how structured types might be used.  Here again, repeated from near the 
beginning of this subsection, is the original definition for the structured type POINT:   
 

CREATE TYPE POINT  
  AS ( X FLOAT , Y FLOAT ) FINAL ;  

 
This type can now be used in the definitions of SQL variables and columns in SQL tables.  For 
example, let’s extend our previous definition of table NADDR from the subsection “Row Types” 
to include an additional column called LOCATION, whose value within a given row is the 
geographic point on the map corresponding to the ADDR value in that row:   
 

CREATE TABLE NADDR  
     ( NAME ...         NOT NULL ,   /* type omitted for simplicity   */  
       ADDR ROW ( ... ) NOT NULL ,   /* fields omitted for simplicity */  
       LOCATION POINT   NOT NULL ,  
       UNIQUE ( NAME ) ) ;  
 
Column LOCATION is of type POINT,35 and we can access the components—i.e., values 

of the POINT attributes—of a given LOCATION value using dot qualification syntax, more or 
less as if that LOCATION value were just a simple row value.  Here are a couple of examples:36   

 
SELECT NT.LOCATION.X , NT.LOCATION.Y  
FROM   NADDR AS NT  
WHERE  NT.NAME = 'Joe'  
 
UPDATE NADDR  
SET    LOCATION.X = 7.3 ,    /* Note: 7.3 coerced to type FLOAT! */  
       LOCATION.Y = 0.8      /* Note: 0.8 coerced to type FLOAT! */  
WHERE  NAME = 'Joe' ;  
 

                                                             
 
35 I’m assuming for the sake of the example, not very realistically, that “geographic points on the map”—i.e., values of column 
LOCATION—are represented in terms of cartesian coordinates instead of conventional map coordinates, such as latitude and 
longitude.   
 
36 Note that the SELECT example not only uses dot qualifications, it uses explicit correlation names as qualifiers (such explicit 
names being required in this context, at least in the SELECT clause though not necessarily in the WHERE clause).  By contrast, 
the UPDATE example doesn’t use correlation names at all.  Further details of these matters are beyond the scope of this book.   
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When used as in these examples, therefore, an SQL structured type effectively behaves 
rather like a row type, as you can see.  Note in particular that, at least in the context at hand, 
structured types certainly do seem to be nonscalar,37 inasmuch as they certainly do have user 
visible components—again, just like a row type.  The only differences are that:   

 
! The components are called attributes instead of fields.   
 
! The structured type, unlike the analogous row type, has a separately and explicitly declared 

name (POINT, in the example).  I’ll have a little more to say regarding this state of affairs 
at the very end of the subsection “Typed Tables” immediately following.   

 
Typed Tables  
 
So far, then, SQL’s structured types look as if they might not be too hard to understand.  But 
there’s more to come, much more.  The crucial point is this:  SQL also allows a base table38 to be 
defined to be “OF” some structured type, in which case all kinds of further considerations come 
into play.  In order to illustrate and discuss some of those further considerations, let me first 
extend the definition of type POINT slightly, as follows (note the third line in particular):   
 

CREATE TYPE POINT  
  AS ( X FLOAT , Y FLOAT ) FINAL  
       REF IS SYSTEM GENERATED ;  

 
Now I can define a table to be “OF” this type—for example:   
 
CREATE TABLE POINTS OF POINT   
     ( REF IS PID SYSTEM GENERATED ) ;  
 
Explanation:   
 

1. REF is a scalar type generator, and the corresponding generated types are called reference 
types (loosely, “REF types”).  More precisely, if a structured type T is defined with a “REF 
option”—e.g., REF IS SYSTEM GENERATED39—then the corresponding generated type 
is called REF(T), and values of that type (loosely, “REF values”) serve as unique identifiers 
for rows within tables, if any, that are defined to be “OF” type T.  In the example, then, the 

                                                             
 
37 I.e., they’re not “encapsulated,” to use the jargon.  In other words, as noted in footnote 50 in Chapter 21, perhaps we could say 
they’ve been “decapsulated” (assuming they were ever encapsulated in the first place, which I’m not sure I really believe).   
 
38 Or a view—but details of the view case are beyond the scope of this book.  For simplicity, I’ll take the unqualified term table 
throughout the rest of this chapter to mean a base table specifically, barring explicit statements to the contrary.   
 
39 Other REF options—e.g., REF IS USER GENERATED—are also available, but the details are beyond the scope of this book.  
Note:  Actually, REF IS SYSTEM GENERATED is the default.  In the example, therefore, I could have left the original type 
definition for type POINT unchanged.   
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system automatically generates a type called REF (POINT), whose values are references to 
rows within tables, if any, that are defined to be “OF” type POINT.40   

 
2. In the example, table POINTS is a table that has been defined to be “OF” some structured 

type (type POINT, of course, in this particular case).  That table is thus an example of what 
the standard calls, not very aptly, both a typed table and a referenceable table.  To spell the 
point out:  All typed tables are referenceable tables, and all referenceable tables are typed 
tables.  As the standard puts it:   

 
A table ... whose row type is derived from a structured type is called a typed table.  Only a base 
table or a view can be a typed table.   
 
And elsewhere:   
 
A referenceable table is necessarily also a typed table ... A typed table is called a referenceable 
table.   

 
But a “referenceable table” is actually not referenceable—rather, its rows are.  Indeed, it’s 
important to understand that a row in a “typed” or “referenceable” table is the only 
construct in SQL that can and does have a REF value to identify it.  Thus, to say a given 
table is “referenceable” is to say that (a) its rows have certain identifying REF values 
associated with them, and (b) those REF values can then be used elsewhere—in particular, 
in rows in tables elsewhere in the database—as references to the rows in question.41   
 
Note:  I’ll show in just a few moments how the association is established between those 
REF values and the rows in question, and how those REF values can then be used to 
reference those rows.   

 
3. Let “typed table” TT be “OF” type T.  Then that keyword “OF” is really not very 

appropriate, because (as mentioned in footnote 24) table TT is actually not “of” type T, and 
neither are its rows.42  To elaborate:   

 

                                                             
 
40 There seems to be some confusion in the standard—not to say inconsistency—as to when the generation of type REF (POINT) 
actually occurs, but for present purposes you can take it to be when the first or only table “OF” type POINT is created.   
 
41 Be aware that SQL uses the terminology of referencing in two quite different senses.  One is as sketched here.  The other, and 
older, sense has to do with foreign keys—a foreign key value in one row is said to reference the row that contains the 
corresponding target key value.  I’ll have more to say about foreign keys vs. REF values later in this chapter.   
 
42 Which accounts for all of those quotation marks, of course, surrounding “OF” and “typed table,” in the text prior to this point.  
I’ll drop them from this point forward because I know how annoying they can be—but I do wish language designers could be a 
little more careful in their choice of terminology and keywords.  Quite apart from anything else, poor choices make the language 
just that much harder to teach, learn, and understand.   
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a. First of all—but please note that this first point is purely hypothetical!—if table TT 
had just one column and that column were actually of type T, then we might 
reasonably say something to the effect that the table is of type TABLE(T) and its 
rows are of type ROW(T).  (Not in SQL, though, because “TABLE(T)” and 
“ROW(T)” aren’t legitimate SQL constructs.)   

 
b. But, in general, table TT doesn’t have just one column.  Rather, it has one column for 

each attribute of T, plus one additional column (see point c. below).  Thus, table 
POINTS in particular has columns called X and Y, both of type FLOAT and both of 
them explicitly visible to the user,43 together with the additional column discussed 
under point c. below.  What it most definitely doesn’t have is a column of type 
POINT.   

 
Aside:		If	we	want	to	impose	a	NOT	NULL	constraint	on	those	columns	X	and	Y—
which	of	course	I	would	strongly	suggest	we	do	want	to	do—we	can	do	so	by	
extending	the	REF	option	specification	within	the	CREATE	TABLE	statement	for	table	
POINTS	to	contain	some	appropriate	“column	options,”	as	shown	here:			
	
CREATE TABLE POINTS OF POINT   
     ( REF IS PID SYSTEM GENERATED  
       X WITH OPTIONS NOT NULL  
       Y WITH OPTIONS NOT NULL ) ;  
	
And	if	we	additionally	want	to	say	that	no	two	rows	existing	in	POINTS	at	the	same	
time	have	the	same	X	value	and	the	same	Y	value:			
	
CREATE TABLE POINTS OF POINT   
     ( REF IS PID SYSTEM GENERATED  
       X WITH OPTIONS NOT NULL  
       Y WITH OPTIONS NOT NULL  
       UNIQUE ( X , Y ) ) ;  
	
We	could	even	effectively	bundle	these	NOT	NULL	and	uniqueness	specifications	
together	into	a	single	PRIMARY	KEY	specification,	like	this:			
	
CREATE TABLE POINTS OF POINT   
     ( REF IS PID SYSTEM GENERATED  
       PRIMARY KEY ( X , Y ) ) ;  
	

                                                             
 
43 So in this context once again, the structured type definitely seems to be nonscalar (or “decapsulated”)—again, just like a row 
type.  (In the case at hand, in other words, the user must be explicitly aware that (a) type POINT has attributes called X and Y 
and (b) those attributes are both of type FLOAT.)   
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For	reasons	that	aren’t	entirely	clear,	however,	such	bundling	is	permitted	only	if	the	
pertinent	table	has	no	proper	supertable.		In	other	words,	only	root	tables	are	
allowed	to	have	primary	keys	as	such44	(see	the	section	“The	SQL	Approach	to	
Inheritance,”	later).		But	note	the	implication:		A	self-referencing	column—see	point	
c.	below—isn’t	necessarily	regarded	as	constituting	the	primary	key	as	such	(if	any)	
for	the	pertinent	table.		(It	is,	however,	automatically	considered	to	be	both	UNIQUE	
and	NOT	NULL.)		End	of	aside.			

 
c. As noted under point b. above, table TT has another column as well: namely, a 

column of the applicable REF type, REF(T).  However, the syntax for defining that 
column is not the normal column definition syntax but instead looks like this:   

 
REF IS <column name> SYSTEM GENERATED  
 
This extra column is called a self-referencing column, and it’s used to contain those 
unique IDs or “references” for the rows of the table being defined.45  The ID for a 
given row is assigned (and placed in that row in the self-referencing column position) 
when the row is first inserted into the table, and it remains associated with that row 
until the row is deleted.  In the example, therefore, table POINTS actually has three 
columns (PID, X, and Y, in that left to right order), not just two.  (Column PID is the 
self-referencing column, of course.)  It follows that what the standard calls the “row 
type” of that table—see the first quote from the standard under point 2 above—is 
precisely this:   

 
ROW ( PID REF ( POINT ) , X FLOAT , Y FLOAT )  
 

d. It’s worth noting in passing that the attachment of a unique ID to a given row—i.e., 
placing a REF value in the self-referencing column position when the row in question 
is inserted—is regarded by some people as transforming that row into an object.46  
Nothing else in SQL is regarded as an “object.”   

                                                             
 
44 Root table isn’t an SQL term; rather, such tables are called maximal supertables.  However, I’ll stay with our familiar “root” 
terminology in this chapter.   
 
45 Don’t be confused—the CREATE TYPE statement specifies REF IS SYSTEM GENERATED, the CREATE TABLE statement 
specifies REF <column name> IS SYSTEM GENERATED.  Incidentally, it’s not at all clear why it should be necessary to define 
the table to be OF some structured type in the first place, instead of just defining an appropriate column in the usual way, in order 
to obtain this “unique ID” functionality, but that’s the way it is.   
 
46 For example:  “Once an instance [sic] of a structured type has a unique identity, then it really behaves exactly as an object is 
expected to behave in an object-oriented environment.  For all practical purposes, it is an object” (Melton, page 30—but see 
footnote 14!).  Also:  “[A] typed table is, in many ways, no different than an ordinary SQL table, but it has the important 
characteristic that its rows can be manipulated through method invocations in addition to ordinary SQL data manipulation 
statements” (Melton, page 109).  Note, however, that these remarks of Melton’s shouldn’t be construed as meaning that a row 
from a table that has been defined to be OF type T can be used as an argument to an operator invocation where the corresponding 
parameter has declared type T, because it can’t.   
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Now, I have to say I think there’s something very problematic going on with all of this.  Of 

course, the basic idea is intuitively straightforward—the idea, that is, that any given row r has a 
unique ID, and that ID never changes so long as r exists in the database.  (It’s never reused, 
either.)  But what exactly does that phrase “any given row r” mean?  For one thing, is r a value, 
or is it a variable?  Well, it can’t be a value, because then it never could change (in fact, like all 
values, it would be self-identifying, and it wouldn’t need any form of additional ID).  So it must 
be a variable; indeed, it is a variable, because as just indicated SQL allows it to be updated.47  
Moreover, when those REF values are used as references to the rows in question, then they’re 
acting as nothing but pointers to those rows.48  So we’re back to that business, discussed briefly 
in the previous chapter, of variables containing variables: specifically, to the notion—I would 
say the logical absurdity—of table variables containing row variables.49   

By the way, another good question to ponder in this connection is as follows (I touched on 
this question, somewhat indirectly, in the answer to Exercise 21.7 in Chapter 21):  Is this notion 
of table variables containing row variables consistent in any way with the notion that table (or 
relation) assignment is the only update operator we need?   

I have another question too.  When someone says a certain REF value is being used to 
identify a certain row, I want to ask:  Which row is it, exactly, that’s that “certain row”?  Surely, 
the only possible answer to this question is:  It’s the row identified by that particular REF value.  
(Certainly SQL doesn’t require any other kind of “row identifier.”)  So it seems to me that, as 
well as involving a logical absurdity as noted above, there’s something circular about the whole 
idea.   

 
Aside:		I	suppose	it	might	be	possible	to	rescue	the	idea,	in	part,	by	inventing	a	scheme	
along	the	following	lines:		1.	Assume	the	existence	of	operations	that	(a)	insert	a	single	
row	into	a	table	and	(b)	update	a	specific	row	within	a	table.		2.	When	row	r	is	inserted	

                                                             
 
47 Further evidence that it must be a variable is provided by the fact that those REF values are really just slightly abstract 
addresses, and values don’t have addresses, variables do (recall from Chapter 2 that values don’t have location, variables do).   
 
48 Some might dispute my claim here that those REF values are acting as pointers, but I think the discussions in the next 
subsection support it rather strongly, and I stand by it.  (I note in passing that certain remarks of Melton’s indicate his agreement 
with me on this issue, too.)  Of course, if they are pointers, then the tables containing them can’t possibly represent relations (or 
relvars) in the relational model sense.  Indeed, it’s not clear why such tables are supported in SQL at all; certainly there seems to 
be no useful functionality that can be achieved with them that can’t equally well—in fact, better—be achieved without them.  
And in connection with that issue, I’d like to mention something else, too.  A tutorial overview of SQL:1999 (“SQL:1999, 
Formerly Known as SQL3,” by Andrew Eisenberg and Jim Melton) appeared in ACM SIGMOD Record 28, No. 1 (March 1999).  
Observing that, while it certainly did describe the object features of SQL, the article did nothing to justify them, Darwen and I 
wrote to the then editor of SIGMOD Record as follows:  “With reference to [the subject article]—in particular, with reference to 
the sections Objects ... Finally and Using REF Types—we have a question:  What useful purpose is served by the features 
described in those sections?  To be more specific, what useful functionality is provided that can’t be obtained via features already 
found in SQL:1992?”  Our letter was never published, however, and to this day our question remains unanswered.  

  
49 What’s more, those row variables (regardless of whether or not they’re considered to be contained in table variables) constitute 
a violation of Codd’s Information Principle; which states that the only kind of variable permitted in a relational database is the 
relvar (i.e., the relation variable) specifically.  See Appendix B or my book SQL and Relational Theory: How to Write Accurate 
SQL Code (3rd edition, O’Reilly, 2015) for a discussion of some of the (serious!) consequences of such a violation.   
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into	table	T,	it’s	given	a	unique	identifier	(perhaps	the	timestamp	of	the	insertion).		3.	That	
identifier	never	changes,	even	when	the	row	is	updated.			

Given	such	a	scheme,	however,	it	still	wouldn’t	really	be	rows	as	such	that	had	
unique	identifiers,	it	would	be	row	insertion	events.		(Note	that	two	rows	r1	and	r2	might	
be	identical	in	all	respects	except	for	the	time	of	their	insertion.)		And	I’m	not	at	all	
comfortable	with	the	importance	such	a	scheme	would	attach	to	the	“update	row”	and	
(more	particularly)	“insert	row”	operations—especially	since	there	aren’t	any	such	
operations	in	the	relational	model,	nor	is	there	any	logical	need	for	them.		What’s	more,	
of	course,	the	whole	scheme	still	involves	the	notion	of	“variables	containing	variables,”	
with	all	that	that	entails.		End	of	aside.			
 
Of course, in order to be able to proceed with the rest of this chapter, I’m simply going to 

have to overlook all of the foregoing concerns.  But I’m not at all happy about it.   
One final point to close this subsection:  As I’ve had occasion to point out several times in 

previous chapters (see, e.g., Chapter 2), there’s deliberately no explicit “define tuple type” 
operator in Tutorial D; instead, there’s a TUPLE type generator, which can be invoked in (e.g.) 
the definition of a tuple variable.  As a consequence, the only names tuple types have in 
Tutorial D are names of the form  

 
TUPLE { A1 T1 , A2 T2 , ..., An Tn }  
 

while tuples as such take the form  
 
TUPLE { A1 v1 , A2 v2 , ..., An vn }  
 

One important consequence of this discipline is that it’s immediately clear in Tutorial D when 
two tuple types are one and the same, and when two tuples are of the same type.   

Now, I observed in the subsection “Row Types” near the beginning of the present section 
that row types in SQL are similar (somewhat) to Tutorial D’s tuple types in the foregoing 
respect.  But structured types are different; there is an explicit “define structured type” operator 
(viz., CREATE TYPE), and structured types do have additional and explicit names.  For 
example, consider the following SQL definitions:   

 
CREATE TYPE POINT1 AS ( X FLOAT , Y FLOAT ) FINAL ;  
CREATE TYPE POINT2 AS ( X FLOAT , Y FLOAT ) FINAL ;  
 
DECLARE V1 POINT1 ;  
DECLARE V2 POINT2 ;  
 
POINT1 and POINT2 are distinct (not DISTINCT!) types; thus, variables V1 and V2 are of 

different types, and they can’t be compared with one another, and neither can be assigned to the 
other.  Note:  Despite the foregoing state of affairs, you might be thinking that at least every 
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value of either type is also a value of the other.  However, such thinking is erroneous.  It’s true 
that every value of either type has the same representation as some value of the other—but the 
values as such aren’t the same.  Rather, values of V1 are values of type POINT1, values of V2 
are values of type POINT2, and no value of type POINT1 is a value of type POINT2 and no 
value of type POINT2 is a value of type POINT1.  (Also, if we define tables T1 and T2 to be of 
types POINT1 and POINT2, respectively, then those two tables—even though they have “the 
same” columns X and Y—have different row types, because of those self-referencing columns.  
Thanks to Hugh Darwen for this observation.)   
 
Operations Involving Typed Tables  
 
Recall this definition for table NADDR from a few pages back:   
 

CREATE TABLE NADDR  
     ( NAME ...         NOT NULL ,   /* type omitted for simplicity   */  
       ADDR ROW ( ... ) NOT NULL ,   /* fields omitted for simplicity */  
       LOCATION POINT   NOT NULL ,  
       UNIQUE ( NAME ) ) ;  
 
Now let’s revise this definition so that column LOCATION contains, not values of the 

structured type POINT as such, but pointers to rows in table POINTS instead:   
 

CREATE TABLE NADDR  
     ( NAME ...                            NOT NULL ,  
       ADDR ROW ( ... )                    NOT NULL ,  
       LOCATION REF ( POINT ) SCOPE POINTS NOT NULL ,  
       UNIQUE ( NAME ) ) ;  
 
Explanation:   
 

1. First of all, note that table NADDR is still a regular table, not a typed table—a table doesn’t 
have to be a typed table in order to have a column of some REF type.  (It has to be, and in 
fact is, a typed table if and only if the column in question is a self-referencing column.)   

 
2. Values of column LOCATION are defined to be values of type REF (POINT).50   
 
3. The specification SCOPE POINTS limits the REF values appearing in column LOCATION 

of table NADDR to ones appearing in column PID of table POINTS, thereby guaranteeing 
that the REF values in question do indeed point to rows currently appearing in table 

                                                             
 
50 But this raises a question:  What does the result from a query of the form SELECT LOCATION FROM NADDR look like?  
More specifically, if the result is displayed, what do the displayed LOCATION values look like?  Are there any REF literals?  
(Answer:  No, there aren’t.  The only thing the standard has to say about such matters is this:  “In a host variable, a REF value is 
materialized as an N-octet value, where N is implementation defined.”)   
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POINTS as such.51  (The table named in a SCOPE clause must be a typed table 
specifically.  No REF value can ever appear in the self-referencing column of two or more 
such tables—at least, not so long as the tables in question are root tables.)  “Currently 
appearing” here means, of course, that if some expression involving column LOCATION is 
evaluated at time t, then every value of that column that’s relevant to that specific 
evaluation is a value that appears in column PID of table POINTS at that same time t.   

 
Now suppose we want to retrieve the x and y coordinates of the location for Joe.  What we 

need to do, then, is (a) start with the row for Joe in table NADDR, (b) follow the pointer from 
Joe’s LOCATION column value over to the corresponding row in table POINTS, and then 
(c) extract the X and Y column values from that POINTS row.  So we need an operator that will 
“follow a pointer.”  In SQL, that operator is called dereference, and it’s written in concrete 
syntactic form as a hyphen followed by a “greater than” symbol.52  Here then is an SQL 
formulation of the specified query:   

 
SELECT LOCATION -> X , LOCATION -> Y  
FROM   NADDR  
WHERE  NAME = 'Joe'  

 
This expression yields a result of two columns, both of type FLOAT, called X and Y, 

respectively.  The two subexpressions in the SELECT clause might be read as “the X in the row 
that LOCATION points to” and “the Y in the row that LOCATION points to,” respectively.   

Incidentally, note that what appears following the dereferencing symbol is, technically, an 
attribute name, not a column reference.  Thus, the following, which might have been thought to 
have been an expansion or clarification of the expression shown above, will actually fail on a 
syntax error:53   
 

SELECT LOCATION -> POINTS.X , LOCATION -> POINTS.Y    /* syntax error! */  
FROM   NADDR  
WHERE  NAME = 'Joe'  

 
And while I’m talking about syntax, let me point out another little oddity: namely, that the 

selected items (i.e., the ones mentioned in the SELECT clause), in expressions like the one just 
shown, don’t actually come “from” the table mentioned in the FROM clause.   
 

Aside:		As	a	matter	of	fact	SQL	also	supports	another	dereferencing	operator,	explicitly	
called	DEREF.		Here’s	an	example:			

                                                             
 
51 Except that dangling references can occur.  In SQL, a dangling reference is a REF value that points to a row that no longer 
exists (in the example, such a situation can arise if suitable precautions aren’t taken when a row is deleted from table POINTS).  
The result of “dereferencing” such a reference—see further discussion in a few moments—is defined to be null.   
 
52 We’ve met this operator before, in Chapter 13, where it was called DEREF.   
 
53 Even though the expression SELECT POINTS.X, POINTS.Y FROM POINTS is legal!   
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SELECT DEREF ( LOCATION ) AS JOE_POINT  
FROM   NADDR  
WHERE  NAME = 'Joe'  

	
Technically,	this	expression	yields	a	result	table	of	just	one	column,	called	JOE_POINT,	of	
type	POINT.		However,	the	significance	of	this	fact—the	fact,	that	is,	that	the	result	table	
has	just	that	one	column,	a	state	of	affairs	that	appears	to	constitute	the	sole	situation	in	
SQL	in	which	it	might	be	argued	that	structured	types	are	“encapsulated”	or	scalar—is	
unclear,	to	say	the	least,	given	that	the	observer	and	mutator	functions	associated	with	
type	POINT	can	and	must	be	used	to	expose	the	X	and	Y	coordinates	of	JOE_POINT	values	
within	rows	in	that	result	table.		End	of	aside.			

 
What about updates on table NADDR?  Well, DELETEs are straightforward, and there’s 

nothing special to say about them.  INSERTs are another matter, though.  The question is:  When 
we insert a row into that table, what do we do about the necessary LOCATION value?  Well, 
languages that, like SQL, support pointers and a dereferencing operator usually support a 
corresponding referencing operator as well, which, given a variable V, returns the address of—
i.e., a pointer to—V.54  But SQL doesn’t.  As a consequence, we can’t invoke that operator in 
order to obtain the address of some row from table POINTS.  Instead, we need to write an 
expression—typically a scalar subquery55—that will explicitly extract the PID value from the 
row in question, and then plug that value into the row we’re inserting into table NADDR.  For 
example:   

 
INSERT INTO NADDR ( NAME , ADDR , LOCATION )  
            VALUES ( 'Joe' ,  
                     jax ,  
                   ( SELECT PID  
                     FROM   POINTS  
                     WHERE  X = 5.0 AND Y = 2.5 ) ) ;  
 

(where jax is some expression that evaluates to Joe’s address).  A similar approach can be used 
with UPDATE statements, if necessary.   
 

                                                             
 
54 We met this operator in Chapter 13 as well, where it was called PTR_TO.  As a matter of fact the operator is rather unusual, 
inasmuch as it’s certainly read-only, and yet (as with an update operator) its argument—its sole argument, in fact—must be a 
variable specifically.   
 
55 A scalar subquery in SQL is, loosely, an SQL table expression in parentheses that’s acting as a scalar expression.  Simplifying 
slightly, the table t returned by that table expression is required to consist of one column and one row (r, say); so long as it does, t 
is coerced to r, and r is then coerced to the single value v it contains.  Note:  Despite the terminology (viz., “scalar subquery”), 
the value v itself doesn’t actually have to be scalar—it might be a row, for example.   
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Aside:		Note	that,	while	we	can	certainly	retrieve	data	from	table	POINTS	by	following	
pointers	from	table	NADDR,	we	can’t	update	it	in	the	same	way	(i.e.,	we	can’t	do	what	
might	be	called	“update	via	dereferencing”).		For	example,	the	following	is	illegal:			
	
UPDATE NADDR  
SET    LOCATION -> X = 7.3 ,      /* warning: illegal! */  
       LOCATION -> Y = 0.8        /* warning: illegal! */  
WHERE  NAME = 'Joe' ;  
	
On	the	other	hand,	the	following,	which	achieves	the	presumably	intended	effect,	is	legal:			
	
UPDATE POINTS  
SET    X = 7.3 ,  
       Y = 0.8  
WHERE  PID =  
     ( SELECT LOCATION  
       FROM   NADDR  
       WHERE  NAME = 'Joe' ) ;  
	
End	of	aside.			

 
Now, so far I’ve considered only queries on, or via, a table that has pointers into another 

(necessarily typed) table.  What about queries on a typed table as such?  In fact such queries just 
follow SQL’s normal rules.56  For example, the following expression will return the y 
coordinates of all points currently represented in table POINTS that have x coordinate 5.0:   
 

SELECT Y  
FROM   POINTS  
WHERE  X = 5.0  

 
Updates are reasonably straightforward too, except for a couple of issues.57  The first is that 

(of course) we can’t insert into or update column PID, since values in that column are provided 
by the system and never change.  The second is that care might be needed in connection with 

                                                             
 
56 For simplicity I assume here that the tables in question have no subtables or supertables.  Subtables and supertables, and 
queries and updates on such tables, are discussed in Chapter 21.  Do note, however, that subtables and supertables in SQL must 
be typed tables specifically.   
 
57 Well, there’s one point I must mention, because if it’s correct it’s certainly very odd (but perhaps it’s not correct).  On page 76 
of his book, Melton says this:  “You can never change the most specific type of a structured type instance to any type other than 
the one it had when it was created, not even to a proper supertype or a proper subtype.”  Now, it’s true that this remark refers to 
instances, not values or variables (see footnote 83); but if “instance” means value, the remark is trivially true and wouldn’t be 
worth making, so I have to assume it means variable.  So let structured type T have an attribute E of declared type ELLIPSE; let 
typed table TT be declared to be of type T; and let a row r be inserted into TT in which the E value is of most specific type 
ELLIPSE.  Then the most specific type of r has an E component of most specific type ELLIPSE.  And if r is updated—I assume 
for the sake of the argument that r counts as a variable!—in such a way that it now contains a value of most specific type 
CIRCLE (where CIRCLE is a proper subtype of type ELLIPSE) in the E column position, the most specific type of r is 
apparently still considered to have an E component of most specific type ELLIPSE.  Circular noncircles!  (Noncircular circles are 
possible too, of course.)   
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deletions in order to avoid producing “dangling references” (i.e., REF values somewhere that 
point to a row that no longer exists).   

I’ll finish up this subsection with two further observations:   
 
! First, here’s a quote from the Manifesto book (it’s somewhat paraphrased here, however, 

in order to fit the present context better):   
 

In a relational database, no table or row has any “hidden” component that (a) can be accessed only 
by invocation of some special operator instead of by means of a simple column reference, or that 
(b) causes invocations of the usual operators on tables or rows to have irregular effects.   

 
Do you think self-referencing columns abide by this principle?  I’ll leave it to you to be 
the judge.   

 
! Second, I really do think those REF values are pointers.  The thing about pointers is:  They 

point—I mean, they have a direction to them, and they have a single, specific target.  Note 
the asymmetry this state of affairs gives rise to.  In our example, to get from a given row in 
table NADDR to the corresponding row in table POINTS (or to the X and Y values in that 
corresponding row, rather), we can write something like this:   
 
SELECT LOCATION -> X , LOCATION -> Y  
FROM   NADDR  
WHERE  NAME = ...  
 
But to get from a given row in table POINTS to the corresponding row(s) in table NADDR 
(or to the NAME and ADDR values in those corresponding rows, rather), we have to write 
something like this:   
 
SELECT NAME , ADDR  
FROM   NADDR  
WHERE  LOCATION =  
     ( SELECT PID  
       FROM   POINTS  
       WHERE  X = ... AND Y = ... )  
 
Contrast the situation with relational keys and foreign keys.  Key and foreign key values 
are regular data values, and they’re thus, like all data values in a relational database, what 
might be called “n-way associative.”  For example, the part number P1, in some tuple in 
relvar SP (or indeed in any tuple anywhere in the database), is simultaneously linked—
speaking purely logically, of course—not just to the pertinent part tuple in relvar P but to 
all shipment tuples in relvar SP (and indeed to all tuples anywhere in the database) that 
happen to contain that same part number.  As a consequence, queries like  
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SELECT *  
FROM   P  
WHERE  PNO IN  
     ( SELECT PNO  
       FROM   SP  
       WHERE  ... )  
 
and  
 
SELECT *  
FROM   SP  
WHERE  PNO IN  
     ( SELECT PNO  
       FROM   P  
       WHERE  ... )  
 
are much more symmetric.  So which do you think REF values more closely resemble?—
pointers, or foreign keys?58   

 
Structured Types and “Scalarness” Revisited  
 
I’ve said I don’t really think there’s any context in which a structured type behaves as if it were 
truly scalar (or “encapsulated”).  To be specific, it always seems to be the case that its attributes 
are, or are effectively, visible to the user—and that’s more or less the definition of what it means 
not to be scalar.  But am I being entirely fair here?  Let’s take a closer look.   

Consider the following definition for type POINT once again:   
 

CREATE TYPE POINT  
  AS ( X FLOAT , Y FLOAT ) FINAL ;  

 
Given this definition, the X and Y observer and mutator functions (which are provided 

automatically by the system, remember) allow us to refer to the cartesian coordinates of any 
given point P via dot qualification, thus:  P.X, P.Y.  But if we wanted to, we could define 
additional observer and mutator functions RHO and THETA for this type (where RHO and 
THETA correspond to polar instead of cartesian coordinates, of course).59  And if we did, then a 

                                                             
 
58 For an extensive discussion of the logical difference between pointers and foreign keys, I refer you to my paper “Inclusion 
Dependencies and Foreign Keys,” in C. J. Date and Hugh Darwen: Database Explorations: Essays on The Third Manifesto and 
Related Topics (available free online at www.thethirdmanifesto.com).  See also my paper “Object IDs vs. Relational Keys,” in 
C. J. Date (with Hugh Darwen and David McGoveran): Relational Database Writings 1994-1997 (Addison-Wesley, 1998).  Here 
let me just note for the record the following Tutorial D analogs of the two SQL expressions I said were “much more symmetric”: 
P MATCHING (SP WHERE ...) and SP MATCHING (P WHERE ...).   
 
59 I don’t think we could define a polar constructor method, though, because, although a given structured type is allowed to have 
any number of such methods, they must all have different signatures.  (Recall that in SQL a signature consists of the operator 
name, a sequence of parameter declared types, and an indication of whether the operator in question is a procedure or a function.  
In the case of type POINT, a cartesian constructor method and a polar constructor method would both be functions, would both 
have the same operator name POINT, and would both have two parameters each of declared type FLOAT, and thus would have 
the same signature.)   
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user of the type could behave more or less as if it had been defined with attributes RHO and 
THETA instead of X and Y.  In particular, that user could refer to the polar coordinates for any 
given point P via dot qualification, thus:  P.RHO, P.THETA.  The net effect would thus be to 
make type POINT look rather like, in our terms, a scalar type with two distinct possreps.60   

In contrast with our approach, however, those two “possreps” wouldn’t be named; in 
particular, therefore, there wouldn’t be a POLAR “selector” as such.  Nevertheless, we’d 
presumably still be able to “select” a point by its polar coordinates as illustrated in this example:   

 
POINT ( ) . RHO ( 2.7 ) . THETA ( 1.0 )  
 
With discipline, therefore, it does seem that SQL’s nonscalar structured types might be 

made to behave somewhat like Tutorial D’s scalar types with possreps.  There’s at least one 
difference, though (possibly only a minor one):   

 
! In Tutorial D, specification of a given possrep implies that THE_ operators and 

pseudovariables will be defined, automatically, for each component of that possrep.   
 

! In SQL, by contrast, the possrep notion as such doesn’t exist; thus, it would be entirely 
possible to define, say, a RHO observer and/or mutator, but no THETA observer and/or 
mutator, for type POINT.   
 

On balance, therefore, I think I still have to say that SQL’s structured types are really much more 
nonscalar than they are scalar.   
 
 
THE SQL APPROACH TO INHERITANCE  
 
At last (not before time, you might be thinking) I come to the topic that’s the real point of this 
chapter: SQL’s approach to inheritance.  First of all, SQL does allow some type T′ to be 
explicitly defined as a proper subtype of some other type T—but only if types T′ and T are 
structured types specifically, and even in that case it supports single inheritance only.  Thus, SQL 
has (a) no explicit support for multiple inheritance, (b) no explicit inheritance support for 
generated types,61 and (c) no inheritance support at all for either system defined types or 
DISTINCT types.  That said, however:   

 
                                                             
 
60 Since SQL doesn’t support type constraints, however, the logical relationships between those two “possreps” wouldn’t be 
explicitly visible to the user but would effectively be hidden inside the code implementing those observer and mutator methods.  
Note in particular that the RHO and THETA mutators would have to be responsible for maintaining those relationships.   
 
61 In fairness, it might be argued that our model doesn’t have much in the way of explicit inheritance support for generated types 
either.  But it does have some—think of tuple / relation maximal and minimal types, for example, also superroot and subleaf 
types—and it also has a very great deal of implicit support (everything, in fact, that’s a logical consequence for such types of its 
inheritance support for nongenerated types).   
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! SQL does have some implicit (and limited) inheritance support in connection with certain 
generated types.  For example, the type VARCHAR(3) is implicitly a subtype of type 
VARCHAR(5).62  As a consequence, it has some implicit (and limited) inheritance 
support in connection with certain row and structured types also.   

 
! As another consequence of the same point, SQL has some implicit (and limited) multiple 

inheritance support also.  For example, the type NUMERIC(3,1) is implicitly a subtype of 
both type NUMERIC(4,1) and type NUMERIC(3,2), neither of which is a subtype of the 
other.  Hence, it has some implicit (and limited) multiple inheritance support in 
connection with certain row and structured types also.   

 
But the foregoing exceptions aren’t officially considered by the SQL standard to be part of its 
inheritance support as such.  In what follows, therefore, I’ll limit my attention for the most part 
to SQL’s explicit support only (and hence to structured types only).   

Second, then, that explicit support has clearly (?) been designed on the assumption that 
those structured subtypes and supertypes will typically be used in connection with SQL’s support 
for subtables and supertables.63  Now, I described this latter support in some detail in Chapter 21; 
in particular, I showed in that chapter that the kind of inheritance involved in that support, 
whatever else it might be, is certainly not type inheritance as such, since tables aren’t types.64  
Thus, I don’t propose to say much more about it here.  Rather—merely in order to avoid leaving 
any false impressions—I’ll content myself with describing, albeit only in outline, a few issues 
that I deliberately didn’t discuss at all in that previous chapter:   

 
1. Suppose the pertinent structured types are organized into a type hierarchy TH.  Then the 

pertinent subtables and supertables must be organized into a table hierarchy BH that 
corresponds one to one with the types in DH, where DH is a type hierarchy that’s derived 
from TH in accordance with the rules spelled out in Exercise 3.12 in Chapter 3.   

 
2. Every table B in BH must be defined to be OF type BT, where BT is the type that 

corresponds to B in DH.  Thus, B must be a typed table specifically.   
 
                                                             
 
62 Note, however, that I’m using “subtype” here in our sense, not SQL’s (in fact, the subtyping in question relies implicitly on our 
own model’s notion of specialization by constraint).  A similar remark applies to the next bullet item also.   
 
63 If I’m right on this, however, then I have to say too that I don’t understand why it was thought necessary, or desirable, to 
design the language that way.  After all, Parts II-IV of this book showed how inheritance clearly makes sense without relying on 
any such assumption.  In other words, I don’t see why we shouldn’t just ignore SQL’s subtables and supertables altogether and 
simply use SQL’s structured types as column types in tables (etc.), much as Tutorial D’s user defined types can be used as 
attribute types in relvars (etc.).  Of course, if this approach had been adopted, then I suppose difficulties might have arisen from 
the fact that SQL’s structured types aren’t properly scalar.  But isn’t that putting the cart before the horse?  I mean, the reason 
why SQL’s structured types aren’t properly scalar is almost certainly because it was assumed they’d be used as the basis for 
defining SQL’s typed tables.  Food for thought here, perhaps.   
 
64 Indeed, how could it possibly be type inheritance, when tables in SQL don’t really even have types?  (Note that, for reasons 
explained in detail earlier in this chapter, I reject any suggestion that SQL’s so called “typed tables” might be said to have types.)   
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3. Every table in BH will therefore have a self-referencing column, BID say.  BID is explicitly 
defined—typically via a specification of the form REF IS BID SYSTEM GENERATED—
only for the table at the root of hierarchy BH; for all other tables in BH, it’s inherited.   

 
4. To take a concrete example, let structured types EMP_T and PGMR_T and tables EMP and 

PGMR be as sketched in the section “Subtables and Supertables” in Chapter 21, and let a 
row for employee Joe appear in both tables.  Then the value of the self-referencing column 
will be the same in both of those rows.  Note:  “Both of those rows” is perhaps a slightly 
misleading way of putting it; the value in question will certainly appear in the row for Joe 
in table EMP and will therefore also appear, but virtually, in the row for Joe in table 
PGMR.   

 
To repeat, SQL’s support for inheritance in connection with structured types seems to have 

been designed on the assumption that it’ll be used in connection with subtables and supertables 
specifically.  But it doesn’t have to be used that way, and in some respects it’s easier to see the 
forest as well as the trees if we ignore subtables and supertables entirely.  And so I will, from this 
point forward.  To be more specific, what I plan to do in the remainder of this chapter is describe 
and analyze SQL’s inheritance support in some detail, using the prescriptions of our own 
inheritance model (which make no mention of “subtables and supertables,” of course) as an 
organizing principle, or basis, for such a description and analysis.   
 
Ellipses and Circles  
 
It’s convenient to begin by giving some possible65 SQL structured type definitions for types 
ELLIPSE and CIRCLE from earlier parts of the book (and let’s assume until further notice that 
these two are the only structured types we have to deal with):   
 

CREATE TYPE ELLIPSE  
  AS ( A LENGTH , B LENGTH , CTR POINT )  
       NOT FINAL ;  
 
CREATE TYPE CIRCLE UNDER ELLIPSE  
  AS ( R LENGTH )  
       NOT FINAL ;  
 
Points arising:   
 

1. The UNDER clause in the definition of type CIRCLE identifies ELLIPSE as that type’s 
immediate supertype (or direct supertype, in SQL terms).  Thus, properties that apply to 
ellipses in general are inherited, unconditionally, by circles in particular (and the AS clause 

                                                             
 
65 Possible but perhaps unlikely, as we’ll see in the subsection “Concluding Remarks” at the very end of this chapter.   



 
 

Type Inheritance in SQL / Chapter 22      487 

specifies additional attributes66—SQL’s term again—that apply to circles in particular and 
not to ellipses in general).  Note, however, that:   

 
a. Properties here doesn’t mean, as it does in our model, operators and type constraints, 

it means operators and structure (i.e., attributes).  In other words, SQL supports both 
behavioral inheritance and structural inheritance—the latter because (as we know 
from earlier in this chapter) the attributes that make up the internal structure of a 
structured type are definitely visible to the user.  As for type constraints, they’re not 
inherited because SQL doesn’t support them, and so there aren’t any to inherit.   

 
b. Following on from point a., operators here doesn’t mean, as it does in our model, just 

read-only operators, it means “routines” (i.e., all procedures, all functions, and all 
methods).  In other words, SQL fails to distinguish adequately between values and 
variables, and it requires unconditional inheritance of update operators as well as 
read-only ones—with the consequence that, e.g., circles might be noncircular, 
noncircles might be circular, and so on.  (To pursue the point a moment longer:  In 
our model, if some value v is of most specific type ELLIPSE, then it’s definitely a 
noncircle, and if it’s of most specific type CIRCLE, then it’s definitely a circle.  In 
SQL, by contrast, if v is of most specific type ELLIPSE, it might in fact be a circle, 
and if it’s of most specific type CIRCLE, it might in fact be a noncircle.)   

 
2. Here now by way of example is AREA_OF as a method for type ELLIPSE:   

 
CREATE METHOD AREA_OF ( ) RETURNS AREA  
       FOR ELLIPSE  
       RETURN ( 3.14159 * SELF.A * SELF.B ) ;  

 
The CREATE TYPE statement for type ELLIPSE will need to be revised to include the 
corresponding signature, of course:   
 
METHOD AREA_OF ( ) RETURNS AREA  
 

3. By default, the foregoing method will be inherited by type CIRCLE.  Of course, although it 
doesn’t make very much sense to do so in this rather simple example, we could if we 
wanted explicitly define another version of AREA_OF for type CIRCLE specifically:67   
 
CREATE METHOD AREA_OF ( ) RETURNS AREA  
       FOR CIRCLE  
       RETURN ( 3.14159 * SELF.R * SELF.R ) ;  

                                                             
 
66 Zero or more such additional attributes, in general.  Of course, there’s just one in the example.   
 
67 Functions and procedures can have versions too.  An example (ADDWT) was mentioned earlier in the chapter—though that 
example really illustrated overloading, not “versions” in our sense, because it didn’t involve any subtyping.   
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If we do, we’ll also need to extend the CREATE TYPE statement for type CIRCLE to add 
the following:   
 
METHOD AREA_OF ( ) RETURNS AREA  
 
Now an invocation of AREA_OF will invoke either the ELLIPSE or the CIRCLE version 
of the method, depending on the most specific type of the subject argument.  In other 
words, the AREA_OF method now has two implementation versions.  Note, however, that 
this fact is explicitly not hidden from the user, and neither is the implementation code for 
those two versions.  Now, such user visibility might make sense in the context of 
overloading, but it doesn’t make much sense in the context of inclusion polymorphism—
and in the case at hand, of course (viz., AREA_OF), inclusion polymorphism is really what 
we’re dealing with.68   

 
4. Assuming for the sake of the example that reference types REF (ELLIPSE) and REF 

(CIRCLE) do in fact both exist—see footnote 40—then REF (CIRCLE) will automatically 
be considered a proper subtype of REF (ELLIPSE).  

 
5. Recall now that in order to be able to support even simple equality comparisons between 

values of some structured type, a suitable “ordering” [sic] needs to be defined.  For 
example:   

 
CREATE ORDERING FOR ELLIPSE EQUALS ONLY BY STATE ;  

 
Now “=” and “<>” comparisons on comparands of most specific type ELLIPSE, CIRCLE, 
or a mixture are legitimate.69   
 
So much for ellipses and circles, at least for the time being.  As promised, I now propose to 

analyze SQL’s inheritance support in detail, using our own inheritance model as a basis for that 
analysis and the ellipses and circles example as a basis for illustrations.  Before I begin, however, 
I’d like to elaborate on why I think using our model in such a manner is a reasonable thing to do.  
Naturally, we (I mean Darwen and myself) believe our model is valuable in and of itself.  
However, we also believe it can be useful as a yardstick or framework—i.e., as a basis against 
                                                             
 
68 I note in passing that different versions in SQL can optionally be given their own “specific name”—corresponding to what 
elsewhere in this book I’ve referred to as a version name—thereby making it possible (e.g.) to drop a specific version 
individually.  A similar remark applies to overloaded operators such as ADDWT (see footnote 67).    
 
69 There are some mysteries here, though.  First, according to my reading of the standard, CREATE ORDERING ... BY STATE 
can be specified solely at the root type level.  So if as elsewhere in this book the pertinent root type is PLANE_FIGURE, not 
ELLIPSE, how could such a specification possibly make any sense, given that—as we’ll see when we get to the discussion of IM 
Prescription 20 later in this section—PLANE_FIGURE probably doesn’t have any “state” for comparisons to be based on?  
Second (again according to my reading of the standard), comparisons on values of a proper subtype are based solely on those 
attributes that the subtype in question inherits from the pertinent root type, which if true doesn’t seem to make much sense either.   
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which alternative proposals, and indeed concrete implementations, can indeed be analyzed, 
criticized, evaluated, and perhaps judged.  Please note immediately, however, that we expressly 
don’t want our ideas to be used in connection with any kind of “checklist” evaluation (not of 
SQL and not of anything else, either).  We do think our ideas can serve as a convenient 
framework for structuring discussions, but they’re not meant to serve as a basis for any kind of 
scoring scheme.  We’re not interested in scoring schemes.   

With the foregoing caveat in mind, let’s now examine SQL to see how it measures up 
against our inheritance model prescriptions.  For each prescription in turn, I’ll give an informal 
statement (in the pertinent subsection heading) of what that prescription is all about, just as a 
reminder, and then I’ll discuss SQL’s support or lack thereof for the pertinent concepts.  Note:  
For the sake of what follows—and despite everything I’ve had to say about such matters in this 
chapter prior to this point—I’m going to have to assume, in connection with those prescriptions 
that have to do with scalar types specifically, that SQL’s structured types are scalar after all (or 
that they’re meant to be scalar, at any rate).   
 
IM Prescription 1: Types Are Sets  
 
SQL conforms to this prescription, but it does so in a rather peculiar way, owing to its 
assumption that inheritance means structural inheritance specifically.  For example, values of 
type CIRCLE have an attribute R (radius) that values that are “just of type ELLIPSE” don’t 
have; thus, values of type CIRCLE certainly can’t be considered as values that are “just of type 
ELLIPSE.”  Yet substitutability applies:  A value of type CIRCLE can be used wherever a value 
of type ELLIPSE is expected (in which case the R attribute of the CIRCLE value in question is 
presumably just ignored, if the context in question isn’t prepared to deal with it).  It follows 
that—if ELLIPSE and CIRCLE are the only types we have, and speaking rather loosely—the set 
of values that might be thought of, in a certain sense, as constituting type ELLIPSE is the union 
of (a) the set of values that conform to the (a,b,ctr) structure of ellipses and (b) the set of values 
that conform to the (a,b,ctr,r) structure of circles.70  And it follows further that, again in a certain 
sense, the set of values that can be thought of as constituting some given type T isn’t fully known 
until all proper subtypes of T have been defined.   

And yet ... If c is a value of type CIRCLE, then what we might call the projection of c on 
(a,b,ctr) will indeed be a value that’s “just of type ELLIPSE.”  In a different sense, therefore, the 
set of values that are just of type ELLIPSE is known as soon as type ELLIPSE is defined.  
However, the fact remains that the set of all values that can be used where a value of type 
ELLIPSE is expected is indeed not fully known until all proper subtypes of type ELLIPSE have 
been defined.   
 

                                                             
 
70 In case you’re concerned about the fact that if c is a value of type CIRCLE, then the values of a, b, and r for c will—or at least 
should—all be equal, I’m going to have to ask you not to worry about it for now.  I’ll come back to this question in the subsection 
“Concluding Remarks” at the very end of the chapter (see in particular footnote 86).   
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IM Prescription 2: Subtypes Are Subsets  
 
The remarks under IM Prescription 1 apply here also, mutatis mutandis (i.e., SQL conforms to 
this prescription too, but again in a slightly peculiar way):   
 
! If we agree to regard a value of type CIRCLE as a value of type ELLIPSE (see the 

discussion above of IM Prescription 1), then the set of values constituting type CIRCLE is 
indeed a subset of the set of values constituting type ELLIPSE (a proper subset, in fact).   

 
! Alternatively, if we choose not to regard a value of type CIRCLE as a value of type 

ELLIPSE, then at least the projection of a CIRCLE value on (a,b,ctr) is such a value, and 
so the set of such projections is a subset of the set of ELLIPSE values.  (It’s not a proper 
subset, though; in fact, the set of projections of those CIRCLE values on (a,b,ctr) is 
identical to that set of ELLIPSE values.)  Note:  In Chapter 5, I said it’s an obvious 
corollary of IM Prescription 2 that there can’t be more values of type T′ than there are of 
type T.  Under the present interpretation, however, this corollary doesn’t hold, because 
there are—at least potentially—more, not fewer, values of type CIRCLE than there are of 
type ELLIPSE.71   

 
IM Prescription 3: “Subtype of” Is Reflexive  
 
SQL conforms to this prescription.   
 
IM Prescription 4: “Subtype of” Is Transitive  
 
SQL conforms to this prescription.   
 
IM Prescription 5: Proper and Immediate Subtypes and Supertypes  
 
SQL does use the terminology of proper subtypes and supertypes.  As for immediate subtypes 
and supertypes, however, it uses the term direct in place of the (in my view, more apt) 
immediate.  Also, it fails to support the idea that if T is an immediate supertype of T′, then the 
definition of T′ should be accompanied by a specification of an example value that’s of type T 
and not of type T′ (i.e., in order to guarantee that proper subtypes are proper subsets).  See IM 
Prescription 2 above for further discussion of this latter point.   
 

                                                             
 
71 There won’t be more if we can guarantee that if c is a value of type CIRCLE, then the values of a, b, and r for c are all equal 
(see the previous footnote).  But we can’t—at least, not very easily, and certainly not declaratively as part of the definition of 
type CIRCLE—because SQL doesn’t support type constraints.  Again, see footnote 86 for further explanation.   
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IM Prescription 6: Scalar Root and Leaf Types  
 
SQL conforms to this prescription—i.e., it does support the scalar root and leaf type concepts, 
though its term for root type is “maximal supertype” (not to be confused with maximal types in 
the sense of our model).  If ELLIPSE and CIRCLE are the only types we have, therefore, 
ELLIPSE is a maximal supertype.  (Oddly, SQL’s term for leaf type isn’t “minimal subtype” but 
“leaf type”; thus, if, again, ELLIPSE and CIRCLE are the only types we have, then CIRCLE is a 
leaf type.)  Note, however, that SQL defines these concepts without mentioning types alpha and 
omega; in fact, it doesn’t mention types alpha and omega, or analogs of those types, anywhere at 
all.  It also doesn’t mention the term lattice (but then neither does our own model, at least not 
explicitly).  This latter omission is unsurprising, however, given that SQL’s explicit inheritance 
support provides for scalar types only, implying among other things that the types concerned 
would all be part of the same type lattice anyway—just so long as the complete set of available 
scalar types includes some presumably user defined analog of alpha, at any rate.   
 
IM Prescription 7: Disjoint and Overlapping Types  
 
SQL conforms to this prescription, insofar as it’s possible to do so—which might not be very 
far—while (a) supporting single inheritance only and (b) not supporting type constraints.  For 
example, do you think the SQL types DECIMAL(5,1) and NUMERIC(5,1) are distinct?  (Yes.)  
And disjoint?  (No.)  How about types CHAR(25) and VARCHAR(25)?   
 
IM Prescription 8: Common Subtypes and Supertypes  
 
SQL’s conformance to this prescription is partial only, owing to its lack of support for types 
alpha and omega.  To be specific:   

 
! If the types in question—T1, T2, ..., Tm, say—don’t all belong to the same type hierarchy, 

then they don’t have any common subtypes or common supertypes at all.   
 
! If types T1, T2, ..., Tm do all belong to the same type hierarchy, then (a) they certainly 

have a common supertype, even if it’s only the pertinent root type, but (b) they don’t have 
a common subtype unless they’re all supertypes of the same leaf type (in which case, 
however, they do—though the common subtype in question is necessarily just the most 
specific of types T1, T2, ..., Tm).   

 
! If types T1, T2, ..., Tm have a common supertype, then they have both a least specific and 

a most specific common supertype.   
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! If types T1, T2, ..., Tm have a common subtype, then they have both a least specific and a 
most specific common subtype (though those common subtypes are both necessarily just 
the most specific of types T1, T2, ..., Tm).   

 
However, at least it’s true—in fact, it’s obvious (?)—that every value does at least have a unique 
most specific type; in other words, the “MST uniqueness” property does apply.   
 
IM Prescription 9: Model of a Scalar Variable  
 
SQL conforms to the spirit of this prescription, though it doesn’t use the <DT,MST,v> notation.  
It does use the terms declared type and most specific type; however, it doesn’t regard variables as 
such, or expressions, as having associated most specific types—only values have any such 
thing.72  Thus, when I refer in what follows to the most specific type of some variable, what I 
mean is, of course, the most specific type of the current value of the variable in question.  (Well, 
that’s what it means in our model too—but in our model we explicitly state as much.)   
 
IM Prescription 10: Specialization by Constraint  
 
Since SQL doesn’t support type constraints, it doesn’t conform to this prescription either; in fact, 
its lack of support for both S by C and G by C is more or less total (other than as noted in 
footnote 62).  Note, however, that this lack doesn’t mean the most specific type of a variable 
can’t change (where, as explained under IM Prescription 9, by “the most specific type of a 
variable” I really mean the most specific type of the value that’s the current value of the variable 
in question).  For example, consider the following SQL code fragment:   
 

DECLARE E ELLIPSE ;  
 
SET E = CX ;  
SET E = EX ;  

 
CX and EX here are, let’s agree, expressions that return values of most specific types 

CIRCLE and ELLIPSE, respectively.  According to my reading of the standard, then:   
 

! After the first assignment, the variable E (which has declared type ELLIPSE) has most 
specific type CIRCLE.73   
 

                                                             
 
72 This observation is true as far as it goes.  However, what it really signifies isn’t exactly clear, given that (among other things) 
SQL seems to be in two minds as to whether a row in a typed table is a value or a variable.  In this connection, see in particular 
footnote 57.   
 
73 Which means, incidentally (just to spell the point out), that a variable of declared type ELLIPSE, with attributes A, B, and 
CTR, now contains a value of type CIRCLE, with attributes A, B, CTR, and R.   
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! After the second, it has most specific type ELLIPSE.74   
 
Note carefully, however, that these effects are not obtained by S by C and G by C as such 

(they can’t be, since by definition there are no constraints available to control any such S by C or 
G by C process).   

 
IM Prescription 11: Assignment with Inheritance  
 
SQL appears to conform to this prescription, modulo the discussion under IM Prescription 10.   
 
IM Prescription 12: Equality with Inheritance  
 
SQL fails to conform to this prescription for several reasons.  First of all, SQL’s support for 
equality is deeply flawed anyway, even without inheritance.  That is, it violates the TTM 
prescription on equality, which (as we saw in Chapter 2) reads as follows:   
 

D shall support the equality comparison operator “=” for every type T.  Let v1 and v2 be values, 
and consider the equality comparison v1 = v2.  The values v1 and v2 shall be of the same type T.  
The comparison shall return TRUE if and only if v1 and v2 are the very same value.   

 
Details of some but not all of SQL’s deficiencies in this regard can be found in the Manifesto 
book.75  I’ll mention just one of them here, which is that, for some types (including certain 
system defined types in particular, such as type XML), equality isn’t even defined.   

Second, equality isn’t necessarily defined for user defined types either.  In particular, if T is 
a structured type, then T has an associated “=” operator if, but only if, an appropriate “ordering” 
has been defined for it (see the discussion of CREATE ORDERING earlier in this chapter).76  
Note that this particular criticism applies regardless of whether there’s any type inheritance 
involved.   

Third, even if “=” is defined for some given structured type, the semantics of that operator 
are at least potentially user defined and thus, in effect, arbitrary.  (This criticism too applies 
                                                             
 
74 But this conclusion is partly guesswork, I fear; I mean, it’s my attempt to make sense of what the standard does have to say 
about such assignments, which is this:  “[An] expression E whose declared type is some user defined type UDT1 is assignable to 
a [variable] S whose declared type is some user defined type UDT2 if and only if UDT1 is a subtype of UDT2.  The effect of the 
assignment ... is that the value of S is V, obtained by the evaluation of E.  The most specific type of V is some subtype of UDT1, 
possibly UDT1 itself, while the declared type of S remains UDT2.”  Well, I think you can see that this extract leaves a number of 
questions unanswered!  Note in particular that it doesn’t say which specific “subtype of UDT1” is that “most specific type of V”  
(perhaps we’re supposed to read “The most specific type of V is some subtype of UDT1” as meaning “The most specific type of 
V must be some subtype of UDT1”?).  In any case, there does seem to be some contradiction between what I think the standard is 
trying to say here and footnote 57, q.v.   
 
75 Further details can be found in A Guide to the SQL Standard (4th edition, Addison-Wesley, 1997), by Hugh Darwen and 
myself, also in my book SQL and Relational Theory: How to Write Accurate SQL Code (3rd edition, O’Reilly, 2015).   
 
76 And even then UNIQUE, DISTINCT, UNION, INTERSECT, GROUP BY, and a host of other operations of a similar nature, 
can’t be applied to a column of the type in question, if the pertinent CREATE ORDERING specifies EQUALS ONLY!  (Thanks 
to Hugh Darwen for this observation.)   
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regardless of whether there’s any type inheritance involved.)  In fact, SQL doesn’t even require 
the most specific types of the comparands to be the same in order for an “=” comparison to give 
TRUE.  Thus, for example, SQL would allow an equality comparison between, say, an ellipse 
and a polygon to give TRUE.   

It follows from all of the above that there’s no guarantee that SQL will support joins, 
unions, intersections, and differences properly, especially (but not exclusively) if any structured 
types are involved.  (Yet again, this criticism applies even without type inheritance.)   
 
IM Prescription 13: Join etc. with Inheritance  
 
SQL conforms to this prescription insofar as it conforms to IM Prescription 12, q.v.   
 
IM Prescription 14: TREAT  
 
SQL conforms to this prescription inasmuch as it does support a TREAT operator (in fact, the 
operator in question is called TREAT).  For example, the SQL analog of  
 

TREAT_AS_CIRCLE ( E )  
 
is  
 

TREAT ( E AS CIRCLE )  
 
But SQL has no direct counterpart to the generalized form TREAT_AS_SAME_TYPE_AS 
(Y,X), nor to the relational expression RX : TREAT_AS_T (A).   
 
IM Prescription 15: Type Testing  
 
SQL conforms to this prescription.  The SQL analog of  
 

IS_T ( X )  
 
is  
 

TYPE ( X ) [ IS ] OF ( T )  
 
The optional IS is a noiseword.  A negated form is supported too; that is, the SQL analog of  
 

IS_NOT_T ( X )  
 
(see Exercise 10.8 in Chapter 10) is  
 

TYPE ( X ) [ IS ] NOT OF ( T )  
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In both cases, the expression following OF is basically just a parenthesized, nonempty 

commalist of type names77 (so SQL has no support for anything corresponding to our 
IS_SAME_TYPE_AS (Y,X) and IS_NOT_SAME_TYPE_AS (Y,X) operators).  An analogous 
remark applies to all of the operators discussed in the remainder of this subsection.   

SQL also supports a counterpart to the relational operator RX : IS_T(A), but its support is 
clumsy.  Let relvar R have attributes A, B, and C (only)  Then the SQL analog of R :IS_T (A) 
looks like this:   

 
SELECT TREAT ( A AS T ) AS A , B , C  
FROM   R  
WHERE  TYPE ( A ) IS OF ( T )  
 

For obvious reasons, such expressions become increasingly cumbersome as the degree of R 
increases.   

Unlike Tutorial D (see Exercise 10.9 in Chapter 10), SQL also supports “most specific 
type” analogs of the foregoing operators.  Here’s the SQL analog of “IS_MS_T (X)” (again, see 
Exercise 10.9):   

 
TYPE ( X ) [ IS ] OF ( ONLY T )  
 

(The keyword ONLY here would seem to be rather misleading, however, except in the special 
case where T is a root type.)78  And—under the same assumptions as before—here’s the SQL 
analog of “R : IS_MS_T (A)”:   

 
SELECT TREAT ( A AS T ) AS A , B , C  
FROM   R  
WHERE  TYPE ( A ) IS OF ( ONLY T ) )  
 
SQL also provides an operator (actually a method) called SPECIFICTYPE that returns the 

most specific type of its sole argument as a VARCHAR string.   
 

IM Prescription 16: Value Substitutability  
 
SQL conforms to this prescription, though it doesn’t use the term substitutability (value or 
otherwise), nor the term polymorphism (read-only or otherwise).  It does, however, talk about 
both (a) overriding methods and (b) overloading functions and methods.  In our terms (and to a 
first approximation only, probably), overriding here seems to refer to the idea that an operator 
                                                             
 
77 The expression TYPE(X) IS OF (T1,T2,...,Tm) returns TRUE if and only if X is of type T1 or type T2 or ... or type Tm; the 
expression TYPE(X) IS NOT OF (T1,T2,...,Tm) returns TRUE if and only if X is not of type T1 and not of type T2 and ... and not 
of type Tm (in other words, if and only if TYPE(X) IS OF (T1,T2,...,Tm) returns FALSE).   
 
78 It might help to point out that the keyword ONLY here is playing a role analogous to the one it plays in SQL’s SELECT ... 
FROM ONLY ... and DELETE FROM ONLY ... (see Chapter 21).   
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can have two or more implementation versions, and overloading seems to refer sometimes to 
overloading as defined earlier in this book and sometimes to inclusion polymorphism.  But it’s 
hard to be sure.   
 
IM Prescription 17: Operator Signatures  
 
It’s implicit in this prescription that (a) it should at least be possible to perform the binding 
process at run time,79 and also that (b) all of the arguments to a given operator invocation should 
participate equally in that run time binding process.  In fact, SQL did conform to these 
requirements, more or less, when inheritance was first introduced, but it changed at the eleventh 
hour.  The reason for the change was that C++ and Java, the two most likely host languages for 
applications using the object features of SQL, both perform run time binding on the basis of the 
first argument only.  That’s why SQL now supports both (a) “selfish methods,” as in C++ and 
Java, for which the binding process is performed at run time on the basis of the most specific 
type of just that first argument (i.e., the subject argument),80 and (b) “non method” operators 
(viz., functions and procedures), for which the binding process is performed at compile time on 
the basis of the declared types of all of the pertinent argument expressions.81  Thus, SQL fails to 
conform to this prescription for methods, because of their “selfish” nature, and at least arguably 
fails for functions and procedures too, because of their lack of support for run time binding.   

As for the different kinds of signatures required by IM Prescription 17, (a) SQL’s methods 
conform insofar as they conform to the run time binding part of this prescription (see above), and 
(b) SQL’s functions and procedures conform only partially (in effect, specification and 
invocation signatures are combined in this latter case).   

SQL has no requirement that if “the same” operator has several distinct implementation 
versions, then those versions all implement the same semantics.  Given the emphasis on 
structural inheritance, in fact, it’s likely that they won’t.   
 
IM Prescription 18: Read-Only Parameters to Update Operators  
 
SQL conforms to this prescription.   
 
IM Prescription 19: Variable Substitutability  
 
SQL fails to conform to this prescription, since it requires update operators to be inherited 
unconditionally.   
                                                             
 
79 In SQL, binding is called subject routine determination.   
 
80 As mentioned in footnote 17, it might be possible to do part or even all of the binding at compile time (i.e., on the basis of the 
declared type of the expression denoting the subject argument), but methods in general always involve, at least conceptually, 
some degree of run time binding.   
 
81 It’s not clear that all arguments participate equally in that process, though, because according to the standard the argument 
expressions are explicitly considered in order from left to right.   
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IM Prescription 20: Union and Dummy Types etc.  
 
SQL’s conformance to this prescription is partial only.  To elaborate, suppose we extend our 
ellipses and circles example to include type PLANE_FIGURE as an immediate (“direct”) 
supertype of type ELLIPSE (recall also from Part II of this book that PLANE_FIGURE was 
originally a dummy type and had no possrep):82   
 

CREATE TYPE PLANE_FIGURE  
       NOT INSTANTIABLE  
       NOT FINAL ;  

 
NOT INSTANTIABLE means the type being defined has no “instances,” where the term 

instance means a value whose most specific type is the type in question;83 in other words, the 
type in question is what our inheritance model would call a union type.  Such a type must have at 
least one INSTANTIABLE subtype.  (INSTANTIABLE means the type in question does have at 
least one such instance; i.e., the type in question isn’t a union type, so there does exist at least 
one value whose most specific type is the type in question.  Types ELLIPSE and CIRCLE are 
INSTANTIABLE.  However, INSTANTIABLE is the default, which is why I didn’t bother to 
specify it explicitly when I defined those types originally.  Leaf types are required to be 
INSTANTIABLE.)   

So NOT INSTANTIABLE types correspond to our union types (and INSTANTIABLE 
types correspond to our nonunion types, of course).  Moreover, a NOT INSTANTIABLE type 
with no attributes, like PLANE_FIGURE in the example, is effectively a dummy type (though 
SQL doesn’t use that term, nor does it have any explicit equivalent).84  But SQL has no support 
for the special dummy types alpha and omega.   
 

                                                             
 
82 Of course, we’ll also have to add UNDER PLANE_FIGURE to the definition of type ELLIPSE.   
 
83 My interpretation here of what NOT INSTANTIABLE means—i.e., that every “instance” of the type being defined has as its 
most specific type some proper subtype of that type—is undeniably correct, but what exactly is meant in SQL contexts by the 
term instance is rather less clear.  The 2011 version of the standard uses the phrase “instance of a value,” suggesting that instance 
perhaps means what I called in Chapter 2 an appearance (since “appearance of a value” does make sense, while “value of a 
value” doesn’t).  By contrast, the 1999 version of the standard defines an instance to be a physical representation of a value.  
Melton’s book includes the following:  “Making a type INSTANTIABLE imposes no requirement on your application to actually 
create any instances of the type,” which suggests rather strongly (to me, at any rate) that an instance is a variable—especially 
since these “instances” do certainly seem to be updatable.  Yet elsewhere that same book states explicitly (indeed, it stresses the 
point) that “instances are values, not objects.”  But then on the very next page it talks about “instances of values,” and elsewhere 
it talks about “constructing a value.”  Overall, there does seem to be a considerable degree of muddle surrounding this notion.   
 
84 It doesn’t use the term “regular type” either (nor does it have anything equivalent); however, any structured type that has at 
least one attribute—possibly inherited—is effectively a regular type.  (As noted previously, the clause AS (<attribute 
commalist>) on CREATE TYPE, if specified, must contain at least one <attribute>; however, it doesn’t have to be specified—
i.e., it can be omitted entirely—in which case, if the type being defined is a root type, then that type will have no attributes at all.  
See the discussion of IM Prescription 20 later in this section.)   
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IM Prescription 21: Empty Types  
 
SQL fails to conform to this prescription (there are no empty types in SQL).  Note in particular 
that PLANE_FIGURE isn’t empty, even though it has no attributes, because every ellipse “is a” 
plane figure, and type ELLIPSE certainly isn’t empty (why not?).   
 
IM Prescription 22: Tuple / Relation Subtypes and Supertypes   
 
If “tuples” is interpreted to mean rows, then SQL conforms to this prescription with respect to 
tuples.  Having no relation (or table) type generator, it obviously fails to conform with respect to 
relations.  Note:  SQL’s conformance with respect to tuples (or rows, rather) is vacuous, though, 
because no user defined operator can have a row valued parameter.  (Actually the support is 
vacuous in another sense too, because implementations at the time of writing typically—perhaps 
universally—don’t support row types anyway.)   
 
IM Prescription 23: Proper and Immediate Tuple / Relation Subtypes and Supertypes  
 
The remarks under IM Prescription 22 apply here also.   
 
IM Prescription 24: Common Tuple / Relation Subtypes and Supertypes  
 
The remarks under IM Prescription 22 apply here also, modulo the discussion under IM 
Prescription 8.   
 
IM Prescription 25: Tuple / Relation Maximal and Minimal Types  
 
SQL fails to conform to this prescription.   
 
IM Prescription 26: Tuple / Relation Root and Leaf Types   
 
The remarks under IM Prescription 22 apply here also, partly (but SQL has no support for 
superroot or subleaf types).   
 
IM Prescription 27: Tuple / Relation Most Specific Types  
 
The remarks under IM Prescription 22 apply here also.   
 
IM Prescription 28: Model of a Tuple / Relation Variable  
 
The remarks under IM Prescription 22 apply here also, modulo the discussion under IM 
Prescription 9.   



 
 

Type Inheritance in SQL / Chapter 22      499 

 
Concluding Remarks  
 
This brings me to the end of my analysis of SQL’s support for type inheritance in terms of our 
own inheritance model.  In conclusion, however, I need to make it clear that I think my analysis 
might have been unfair, or at least misleading, in one important respect.  To be specific, I don’t 
think SQL’s type inheritance mechanism was ever intended for examples like our ellipses and 
circles example (certainly it wasn’t designed to support the idea that subtypes should be obtained 
by constraining supertypes; indeed it couldn’t have been, given that SQL doesn’t support type 
constraints anyway).85  Let me elaborate.   

Take another look at the SQL definitions I gave earlier for ellipses and circles (irrelevant 
details omitted):   
 

CREATE TYPE ELLIPSE ...  
  AS ( A LENGTH , B LENGTH , CTR POINT ) ... ;  
 
CREATE TYPE CIRCLE UNDER ELLIPSE  
  AS ( R LENGTH ) ... ;  
 
With these definitions, circles have attributes A, B, CTR (inherited from ellipses), and R 

(specified for circles only).  And if it’s true as I claimed earlier in this chapter that the specified 
attributes constitute the physical representation, then any given circle will be physically 
represented by a collection of four values, three of which will supposedly all be the same!86  For 
such reasons, it’s likely that the definition of type CIRCLE will actually not specify any 
attributes of its own at all—instead, it will simply inherit the attributes specified for type 
ELLIPSE, like this:   

 
CREATE TYPE ELLIPSE ...  
  AS ( A LENGTH , B LENGTH , CTR POINT ) ... ;  
 
CREATE TYPE CIRCLE UNDER ELLIPSE ... ;    /* no AS specification */  
 
On the other hand, the representation for type CIRCLE will now not have an R (“radius”) 

attribute, and so there won’t be any automatically provided methods for “observing” and 
“mutating” the radius of any given circle.  And then on the third hand ... If the representation 
does have an R attribute, and if we do “mutate” it (i.e., while leaving the A and B attributes 

                                                             
 
85 As explained earlier, in fact, it seems to have been designed on the basis of an assumption that it’ll be used in conjunction with 
SQL’s support for subtables and supertables specifically (most of the time, at any rate).   
 
86 I say they’ll supposedly all be the same, but of course there are no type constraints available to guarantee that they are—that’s 
left to the user (or, perhaps more realistically, to the definer of the constructors and mutators for types ELLIPSE and CIRCLE; it 
would of course be possible to incorporate tests in the implementation code for those methods to ensure that ellipses have a > b 
and circles have a = b = r).  Note, however, that by “circles” in the foregoing I don’t mean all possible values of type CIRCLE—
rather, I mean only what SQL would probably call “instances” of that type that have been explicitly “constructed” (and similarly 
for “ellipses,” of course, mutatis mutandis).   
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unchanged), then we’ll wind up with a “noncircular circle”—i.e., a “circle” for which the A, B, 
and R values aren’t all the same after all.   

For one reason or another, therefore, it might reasonably be argued that “ellipses and 
circles” is a bad example to use as a basis for illustrating SQL’s type inheritance functionality.  
Certainly SQL doesn’t deal with that example very well.  So let’s switch to a different example:   

 
CREATE TYPE CIRCLE  
  AS ( R LENGTH , CTR POINT ) ... ;  
 
CREATE TYPE COLORED_CIRCLE UNDER CIRCLE  
  AS ( COL COLOR ) ... ;  
 
Observe that this example is exactly the one I was deprecating in Chapter 21, where I 

claimed, in effect, that colored circles aren’t circles in the same kind of way that, e.g., circles are 
ellipses.  But if we’re talking about inheriting, and possibly extending, representations, then the 
example begins to make a little more sense.  Certainly it’s reasonable to think of a colored circle 
as being represented as indicated—i.e., by extending the representation (radius and center) of a 
circle to contain an additional (color) component.87  Moreover, if we say that type 
COLORED_CIRCLE is “UNDER” type CIRCLE, then it’s also reasonable to think of operators 
that work for circles in general—for example, an operator to compute the area—as applying to 
colored circles in particular (thus, colored circles can be substituted for circles).  But the one 
thing that doesn’t make sense is to think of colored circles being a constrained form of circles in 
general, or equivalently to think of colored circles being obtained from circles via specialization 
by constraint.  In other words, SQL’s inheritance mechanism seems to be designed, not for 
dealing with inheritance at all in the sense in which that term is understood in our model, but 
rather for dealing with what in Chapter 21 I called delegation.  Recall from that chapter that 
delegation means that the responsibility for implementing certain operators associated with the 
type in question is “delegated” to some other type (typically the type of some component of the 
original type’s representation).  For example, “compute the area” for a colored circle is 
effectively implemented by invoking “compute the area” on the corresponding circle.  And so it 
might have been clearer to call the SQL mechanism a delegation mechanism in the first place, 
instead of pretending it had anything to do with subtypes.   
 
 

                                                             
 
87 Though I would prefer to think of it (as we did in Chapter 21) as having a circle component—instead of explicit radius and 
center components—and then additionally having that color component.   



 
 
 
 

A P P E N D I X E S 
 
 
 

The subject of type inheritance seems mostly to have been investigated in an object context 
specifically.  By contrast, the inheritance model defined by Darwen and myself was constructed 
from first principles, using a combination of logic, common sense, and well established criteria 
for language design, and being guided by our background knowledge of relational theory.  In 
particular, we saw no need to appeal to any concepts or mechanisms from the object world, nor 
did we do so.  As a consequence, our solutions to certain inheritance issues differ, sometimes 
markedly, from approaches discussed in the object literature to those same issues.  Appendixes A 
and B offer a little more by way of background explanation as to why we don’t always agree 
with those object approaches.  Finally, Appendix C provides for purposes of quick reference a 
glossary of some of the more important terms and concepts involved in our own approach.   
 
 

 



 
 



  

Appendix  A 
 
 

E n c a p s u l a t i o n   I s   a   R e d   H e r r i n g 
 
 

This appendix is based on a column that first appeared in Database Programming & Design 12, 
No. 9 (September 1998).  It doesn’t have much to do with the principal topic of this book (i.e., 
type inheritance) as such—at least, not directly—but it does have certain implications for that 
topic, which is why I wanted to include it here.   
 
I mentioned the notion of encapsulation several times in the body of this book (mostly in 
Chapters 21 and 22, but also elsewhere in passing).  Encapsulation is widely perceived as a key 
feature, or benefit, of object technology.  But it seems to me that the focus on encapsulation has 
always been a little bit off base; rather, what’s important, as I tried to explain in Chapter 2, is just 
to make a clear distinction between types and representations.  Indeed, as the title of this 
appendix indicates, I feel that encapsulation per se is a little bit of a red herring, and in what 
follows I’d like to try to explain why I feel this way.   
 
 
WHAT DOES ENCAPSULATION MEAN?  
 
By now you should have a pretty good idea of what encapsulation means, but for the record let 
me take a moment to spell it out anyway.  Basically, a data type is said to be encapsulated if 
values, and hence variables also, of the type in question have no user visible components (and 
then those values and variables are said to be encapsulated as well).  For example, in their book 
on Smalltalk (Smalltalk-80: The Language and its Implementation, by Adele Goldberg and 
David Robson, Addison-Wesley, 1983),1 the authors say this:   

 
An object consists of some private memory and a set of operations ... An object’s public properties 
are the messages that make up its interface ... An object’s private properties are a set of instance 
variables that make up its private memory.   

 
Now, there does seem to be a slight element of confusion in this extract—does the term 

object really mean an object, or does it mean an object type?—but I think the general meaning is 
clear.  To be more specific, I think we can reasonably take the term message to mean the 
specification signature for some operator, and the term instance variable to mean some 

                                                             
 
1 Smalltalk is widely credited with being the first object oriented system and language (though Smalltalk in turn was surely 
influenced by SIMULA—see O. J. Dahl and K. Nygaard: “SIMULA: An Algol-Based Simulation Language,” CACM 9, No. 9, 
September 1966), and Goldberg and Robson were two of the team responsible for its design and development.   
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component of the physical representation of the object(s) in question.  If so, then it follows that 
the Smalltalk user is able to operate on values and variables of an encapsulated type solely by 
means of the operators that have been explicitly defined in connection with that type.  For 
example, we might have a type CIRCLE, and we might be able to invoke operators that return 
the area, or the circumference, or the radius (and so on) of any given circle.  However, we 
couldn’t legitimately say that circles have an area component, or a circumference component, or 
a radius component (and so on).  One important consequence is that we don’t know, nor do we 
need to know, how circles are represented inside the system; rather, that representation is visible 
solely to the code that implements the operators.  In other words, the type is of interest to users—
it’s part of the model—while the representation is of interest to the implementation only.   

Here’s another quote that covers more or less the same ground as the previous one but goes 
into a little more detail.  It’s from that tutorial on object databases mentioned several times in this 
book already (viz., Stanley B. Zdonik and David Maier: “Fundamentals of Object-Oriented 
Databases,” in Zdonik and Maier (eds.): Readings in Object-Oriented Database Systems, Morgan 
Kaufmann, 1990):   

 
Encapsulation [means each type has] a set of [operations and] a representation ... that is allocated 
for each [object of the type in question].  This representation is used to store the state of the object.  
Only the methods implementing operations for the objects are allowed to access the representation, 
thereby making it possible to change the representation without disturbing the rest of the system.  
Only the methods would need to be recoded.   

 
Observe now that—as this quote effectively suggests—encapsulation can be regarded as 

nothing more than the familiar database notion of data independence in another guise (I touched 
on this point in passing in Chapter 2).  After all, if we do manage to keep type and representation 
properly separated, and if we also succeed in our goal of keeping the representation hidden, then 
we can change that representation as much as we like without having to change application 
programs (we only have to change the code that implements the operations).   

Perhaps now you begin to see why I don’t think the notion of encapsulation, as such, is all 
that significant.  After all, it basically just means that we don’t have to worry about what we 
shouldn’t need to worry about: namely, physical representations (also known as actual or internal 
representations).  In other words, encapsulation really is, as already claimed, just a logical 
consequence of the crucial distinction we already draw—the logical difference, in fact—between 
type and representation.  But of course there’s quite a bit more that can usefully be said on the 
subject; hence this appendix.   

One last point on the definition of the term:  While preparing this appendix, I took the 
trouble to look up “encapsulation” in a number of books (nearly 20 of them, in fact) on object 
technology and related matters.  It was a pretty dispiriting exercise, I can tell you—and I was 
very struck by the fact that I could nowhere find a really precise definition of the concept.  (The 
best explanations were in the Smalltalk book already mentioned, by Goldberg and Robson, and I 
think it’s telling that that particular book doesn’t seem to use the term “encapsulation,” as such, 
at all.  Certainly it’s not in the index.)  Anyway, one thing I did discover was that some writers 
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seem to think the concept refers specifically to the physical bundling, or “packaging,” of data 
representation definitions and operator definitions.  For example, here’s a quote from The Object 
Database Handbook: How to Select, Implement, and Use Object-Oriented Databases, by 
Douglas K. Barry (Wiley Publishing, 1996):   

 
Encapsulation refers to the concept of including processing or behavior with the object instances 
defined by the [type].  Encapsulation allows code and data to be packaged together.   

 
But it seems to me that to interpret the term in this way is to mix model and 

implementation considerations.  The user shouldn’t care, and shouldn’t need to care, whether or 
not code and data are “packaged together”!  Thus, it’s my belief that—from the user’s point of 
view, at least, which is to say from the point of view of the model—encapsulation simply means 
what I said before: namely, that the data in question has no user visible components and can be 
operated upon only by means of the pertinent operators.2   
 
 
BUT WHAT ABOUT AD HOC QUERY?  
 
Now, you might be aware that the concept of encapsulation is in conflict, somewhat, with the 
requirement to be able to perform ad hoc queries.3  After all, encapsulation means data can be 
accessed only via predefined operators, while ad hoc query means, more or less by definition, 
that access is required in ways that can’t have been predefined.  For example, suppose that (as 
elsewhere in this book) we have a type called POINT, denoting points in two-dimensional space.  
Suppose we also have a predefined operator to “get”—that is, read or retrieve—the x coordinate 
of any given point, but no analogous predefined operator to get the corresponding y coordinate.  
Then even the following simple queries— 
 
! Get the y coordinate of point p  
 
! Get all points on the x axis  
 
! Get all points with y coordinate less than five  

 
(and many others like them)—obviously can’t be handled; in fact, they can’t even be formulated.   

                                                             
 
2 Two further points in connection with the extract quoted:  First, I note that,  not only does it use the deprecated term instance—
which I’ve had occasion to complain about elsewhere in this book—but it does so in the phrase “object instances.”  Since 
instance, whatever it means, is generally taken to be a synonym for object (another less than fully explained term!), the extract 
quoted is apparently talking about “object objects.”  Second, it says the “processing or behavior” is included with those “object 
instances.”  I find this hard to believe.  Surely it would be included with the object type, not with the “object instances”?   
 
3 I’ve touched on this point previously too.  See footnote 50 in Chapter 21.   
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Now, The Third Manifesto deals with this issue by requiring that (at least in the case of a 
regular type) operators be defined that expose some possible representation for values and 
variables of the type in question.  As you know, we call those operators “THE_ operators.”  In 
the case of type POINT, for example, operators THE_X and THE_Y might be defined, thereby 
allowing operations such as the following:   

 
PY := THE_Y ( P ) ;  
/* get y coordinate of point in variable P  and */  
/* assign it to RATIONAL variable PY            */  
 
DP := LENGTH ( SQRT ( THE_X ( P ) ^ 2 + THE_Y ( P ) ^ 2 ) ) ;  
/* get distance of point in variable P from the */  
/* origin and assign it to LENGTH variable DP   */  

 
(and so on).  Thus, THE_X and THE_Y effectively expose a possible representation—namely, 
cartesian coordinates x and y—for points, thereby making it possible to perform ad hoc queries 
involving points.4  Note carefully, however, that this fact doesn’t mean that points are physically 
represented by cartesian coordinates inside the system; it merely means, to repeat, that cartesian 
coordinates are a possible representation.  The physical representation might be cartesian 
coordinates x and y, or it might be polar coordinates ρ and θ, or it might be something else 
entirely.  In other words, THE_ operators don’t violate encapsulation, and they don’t undermine 
data independence.   
 

Aside:		I	remark	in	passing	that	DATE	and	TIME	in	SQL	serve	as	examples	of	built	in	(i.e.,	
system	defined)	types	for	which	certain	possible	representations	are	effectively	exposed.		
For	example,	dates	have	an	exposed	possible	representation	consisting	of	a	YEAR	
component,	a	MONTH	component,	and	a	DAY	component.		Though	I	should	perhaps	add	
that	those	“possible”	representations	are	likely	to	be	rather	close—in	practice,	they’re	
probably	identical—to	the	physical	ones,	in	SQL,	since	(as	we	saw	in	Chapter	22)	SQL	
doesn’t	really	have	a	possrep	notion,	as	such,	at	all.		End	of	aside.			

 
 
WE DON’T ALWAYS WANT ENCAPSULATION  
 
Another reason why I don’t think encapsulation as such is all that important has to do with 
another point over which there seems to be a certain amount of confusion in the literature, and 
that’s as follows:  Some types are definitely not encapsulated anyway, nor do we want them to 
be.  I refer in particular to certain generated types—types, that is, that have been defined by 
means of certain type generators, such as ARRAY, LIST, TUPLE, and RELATION.  To fix our 
ideas, let’s focus on RELATION as a familiar example (though remarks analogous to those that 
                                                             
 
4 And ad hoc updates, too, and more generally making it possible to define any further read-only and update operators that might 
be desired for operating on values and variables of type POINT.   
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follow apply to ARRAY and the rest as well, of course).  So instead of the POINT type discussed 
in the previous section, let’s consider a POINTS relvar (relation variable), defined thus:   

 
VAR POINTS BASE  
    RELATION { X RATIONAL , Y RATIONAL }  
    KEY { X , Y } ;  

 
Now, this relvar definition makes use of the RELATION type generator to specify the 

(generated) type of the relvar, which is, of course, a specific relation type—namely, the relation 
type  

 
RELATION { X RATIONAL , Y RATIONAL }  

 
And this type is certainly not encapsulated—it has user visible components, viz., the attributes X 
and Y.  And, of course, it’s precisely the fact that it does have those user visible components that 
makes it possible for us to perform ad hoc queries on relvar POINTS; for example, we can 
project it over attribute Y, or restrict it to just those tuples with Y value less than five.   

I note in passing that the book on object / relational DBMSs by Stonebraker and others—
viz., Michael Stonebraker and Paul Brown (with Dorothy Moore): Object-Relational DBMSs: 
Tracking the Next Great Wave (2nd edition, Morgan Kaufmann, 1999), mentioned in passing in 
Chapter 215—makes essentially the same point:   

 
Base types are completely encapsulated.  The only way to manipulate [a value of] a base type is to 
retrieve it or execute a function that takes [a value of] its type as an argument.  In contrast, row 
objects are completely transparent.  You can see all the fields, and they are readily available in the 
query language.  Of course, an intermediate position is to allow some fields of a row object to be 
public (visible) and the remainder to be private (encapsulated).  This is the approach used by C++.   

 
I take “base types” here to mean scalar types; similarly, I take “row objects” to mean nonscalar, 
generated types, or rather values (and/or variables?) of such types.  However, I should say too 
that it’s not clear, when Stonebraker et al. talk about being able to “see all the fields” of a “row 
object,” whether they properly distinguish as The Third Manifesto does between physical and 
possible representations.  On the whole, it seems likely that they’re considering physical 
representations only—in which case they seem to be agreeing with my remarks in Chapter 21, to 
the effect that such “fields” (at least the public ones, which I referred to in that chapter as public 
instance variables) definitely serve to expose the physical representation in question.   

Anyway, to get back to my main argument:  Please note very carefully that the fact that 
relation types aren’t encapsulated doesn’t mean we lose data independence.  In the case of the 
POINTS relvar, for instance, there’s no logical reason why that relvar can’t be represented 
physically by polar coordinates ρ and θ instead of cartesian coordinates x and y.  (I know it 
probably can’t be represented that way in today’s SQL products, but I regard that state of affairs 
                                                             
 
5 See also Appendix B for further discussion of this book.   
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as a defect in those products.  As I’ve had occasion to complain elsewhere—see, e.g., my book 
SQL and Relational Theory: How to Write Accurate SQL Code (3rd edition, O’Reilly, 2015)—
today’s SQL products provide very much less data independence than relational technology is 
theoretically capable of.)  In other words, we still have to make a clear distinction between types 
and representations, even with nonencapsulated types like the relation type illustrated in the 
example.  To say it again, the fact that some given type isn’t encapsulated doesn’t in and of itself 
necessarily mean that data independence is undermined.   
 
 
SCALAR vs. NONSCALAR TYPES  
 
In The Third Manifesto, we require support for both a TUPLE and a RELATION type generator; 
as a consequence, users are able to specify whatever tuple and relation types they want (e.g., as 
part of a tuplevar or relvar definition).  We also require users to be able to define types that, 
unlike tuple and relation types, are just “simple” types—that is, types like POINT, LENGTH, 
ELLIPSE, CIRCLE, and so on—possibly even types like RATIONAL, if they’re not provided as 
system defined types.  And we opted for the term scalar types as a generic way of referring to 
such “simple” types (and then we naturally talked in terms of scalar values and scalar variables 
and scalar operators as well).   

Now, the reason we chose the term scalar was because:   
 

a. It was already available (it’s been used with the meaning we had in mind for many years in 
the world of programming languages).   

 
b. What’s more, it did seem to be the obviously correct generic term to contrast with terms 

such as “tuple” and “relation” (and “array” and “list” and all the rest).  In fact, we would 
argue that it’s obviously correct even though the physical representation of those “scalar” 
values and variables can be as complicated as you like.  For example, a given scalar value 
might have a physical representation consisting of an array of stacks of lists of character 
strings, in appropriate circumstances.  (Yet again I stress the importance of not confusing 
types and representations.)   

 
And now I observe that our term “scalar” means exactly the same thing as “encapsulated”!  

In other words, a type is encapsulated if and only if it’s scalar in the foregoing sense.  Thus, I 
feel that if the industry had opted, as we did in The Third Manifesto, for the already available 
term scalar, there would have been no need to invent the term encapsulated at all.  And I further 
feel that we might thereby have avoided some of the confusions I’ve been talking about in this 
appendix.   

Note:  Because they have no user visible components, scalar types—encapsulated types, if 
you insist—are sometimes said to be atomic.  I would rather not use such terminology, however, 
because it’s led to too much misunderstanding in the past (on my own part as much as anyone 
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else’s, I hasten to add); instead, I prefer to concentrate on our “new, improved” understanding of 
the true nature of first normal form.   

 
Aside:		The	term	first	normal	form	(abbreviated	1NF)	is	due	to	Codd,	inventor	of	the	
concept.		He	discusses	it—though,	oddly	enough,	not	by	that	name—on	page	6	of	his	
book	The	Relational	Model	for	Database	Management	Version	2	(Addison-Wesley,	1990),	
where	he	says	this:			
	
Atomic	data	cannot	be	decomposed	into	smaller	pieces	by	the	DBMS	...	The	values	in	the	domains	
on	which	each	relation	is	defined	are	required	to	be	atomic	with	respect	to	the	DBMS.			
	
(Recall	from	Chapter	1	that	domain	is	just	another	word	for	type.)		The	crucial	point	about	
this	extract	as	far	as	this	appendix	is	concerned	is	simply	that	(a)	Codd	is	asserting,	in	
effect,	that	relations	must	be	in	1NF,	meaning	their	attributes	must	all	be	of	some	scalar—
or	“atomic”—type,6	and	(b)	he	is	contrasting	such	“atomic”	values	with	“compound	
values”	such	as	tuples	and	relations.		End	of	aside.			

 
 
SUMMARY 
 
In this appendix I’ve tried to show why, in my opinion, the term “encapsulated” is more trouble 
than it’s worth.  To summarize:   
 
! First of all, the term “scalar” seems (at least to me) to capture the essential idea better, and 

it has a longer and more respectable pedigree than “encapsulated” does.   
 
! Second, there seems to be a widespread misunderstanding to the effect that all data should 

be encapsulated.  I’ve tried to show that this idea is mistaken, and again I think that to talk 
in terms of scalar vs. nonscalar types makes the true state of affairs much clearer and 
reduces the risk of confusion.   

 
! Third, some people seem to think of “encapsulation” as a physical rather than a logical 

concept anyway (see the quote from Barry in the section “What Does Encapsulation 
Mean?” for an illustration of this point).   

 
I therefore think it’s worth trying to avoid the term “encapsulation” altogether—which is 

precisely why I didn’t make much use of it in the body of this book.   
                                                             
 
6 Of course, we now know that this position of Codd’s (i.e., regarding the definition of 1NF) is unnecessarily restrictive; as we 
saw in Chapter 2 of this book, relational attributes don’t have to be limited to being scalar but can be, e.g., tuple or even relation 
valued.  For further discussion of such matters, see my paper “What First Normal Form Really Means,” in the book Date on 
Database: Writings 2000-2006 (Apress, 2006).   



  

 



  

	

Appendix  B 
 
 

P e r s i s t e n c e   N o t 
 
 

O r t h o g o n a l   t o   T y p e 
 
 

This appendix is based in part on a column that first appeared on the Database Programming & 
Design website www.dbpd.com (October 1998).  Like Appendix A, it doesn’t have much to do 
with the principal topic of this book (i.e., type inheritance) as such—at least, not directly—but it 
does have certain implications for that topic, which is why I wanted to include it here.   
 
I explained in the previous appendix why I felt the focus in the object world on encapsulation 
was a little off base.  Now I want to turn my attention to another well known object dictum: 
namely, that persistence [should be] orthogonal to type, which I’ll refer to as POTT for short.  
POTT means, essentially, that (a) any data structure that can be created in a conventional 
application program—for example, an array, or a linked list, or a stack—can be stored as an 
object in an object database, while at the same time (b) the structure of such an object remains 
exactly as user visible as it would be if it weren’t “persistent.”  For example, let EMPS be the set 
of all employees in a given company.  Then EMPS might be represented in an object database as 
either a linked list or an array—among other things, of course, but let’s agree to limit our 
attention for now to just those two possibilities—and users will have to know which it is, 
because the access operators will differ accordingly.   

One of the earliest papers, if not the earliest, to articulate the POTT position was “Types 
and Persistence in Database Programming Languages,” by Malcolm P. Atkinson and O. Peter 
Buneman (ACM Comp. Surv. 19, No. 2, June 1987).1  Atkinson in particular was also one of the 
authors of The Object-Oriented Database System Manifesto,2 which proposed a set of features 
that the authors claimed a DBMS would have to support if it was to qualify for the label “object 
oriented”—and, of course, those features did include POTT.  Subsequently, the Third Generation 
Database System Manifesto,3 by Stonebraker et al., also endorsed POTT as an objective for 

                                                             
 
1 This paper is a good starting point for reading in the area of database programming languages in general (such languages being 
regarded by many people as the sine qua non of object database systems).   
 
2 Malcolm Atkinson, François Bancilhon, David DeWitt, Klaus Dittrich, David Maier, and Stanley Zdonik: “The Object-Oriented 
Database System Manifesto,” Proc. 1st International Conference on Deductive and Object-Oriented Databases (Kyoto, Japan, 
1989, published by Elsevier Science in 1990).   
 
3 Michael Stonebraker, Lawrence A. Rowe, Bruce G. Lindsay, James Gray, Michael Carey, Michael Brodie, Philip Bernstein, 
and David Beech: “Third Generation Database System Manifesto,” ACM SIGMOD Record 19, No. 3 (September 1990).   
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future database systems.  (To quote:  “Persistent X for a variety of X’s is a good idea.”)  And the 
authors of The Object Database Standard: ODMG 3.04—referred to in what follows simply as 
ODMG—agree also (unsurprisingly):   

 
[An] object DBMS [is] a DBMS that integrates database capabilities with object-oriented 
programming language capabilities.  [It] makes database objects appear as programming language 
objects ... [It] extends the programming language with transparently persistent data ... and other 
database capabilities [italics added for emphasis].   

 
The position of The Third Manifesto is very different.  As the Manifesto book puts it:   

 
Databases (and nothing else) are persistent ... [Since] the only kind of variable we permit within a 
database is, very specifically, the [relation variable or] relvar, the only kind of variable that might 
possess the property of persistence is the relvar.   

 
In what follows, I want to try and explain why we—that is, Hugh Darwen and I, the authors of 
The Third Manifesto—take the position we do in this regard.   
 
 
POTT VIOLATES DATA INDEPENDENCE  
 
One reason we reject POTT is that it can lead to a loss of data independence, as I now explain.  
As I’ve already said, POTT means that any data structure that can be created in a conventional 
application program can be stored as an object in an object database, and further that the 
structure of such objects is visible to the user.  Now, this “anything goes” approach to what can 
be kept in the database is a major point of difference between the object model and the relational 
model, of course, so let’s take a closer look at it.  Note:  I assume for the sake of the discussion 
that the term object model is well defined and well understood, though such an assumption is 
perhaps a little charitable to the object world.   

Be that as it may, we can characterize the difference between the two approaches as 
follows:   
 
! The object model says we can put anything we like in the database (any structure we can 

create with the usual programming language mechanisms).   
 
! The relational model says the same thing—but then goes on to insist that whatever we do 

put there must be presented to the user in pure relational form.   
 

More precisely, the relational model, quite rightly, says nothing whatsoever about what can 
be physically stored.  It therefore imposes no limits on what structures are allowed at the 
                                                             
 
4 R. G. G. Cattell and Douglas K. Barry (eds.), The Object Data Standard: ODMG 3.0 (Morgan Kaufmann, 2000).   
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physical level; the only requirement is that whatever structures are in fact physically stored must 
be mapped to relations at the logical level, and hence be hidden from the user.5  Relational 
DBMSs thus make a clear distinction between the logical and physical levels of the system—in 
other words, between the model and its implementation—and object systems don’t.   

As I’ve already said, one consequence of this state of affairs is that (contrary to claims 
sometimes heard elsewhere) object systems might well provide less data independence than 
relational systems can, or do.  For example, suppose the implementation, within some object 
database, of the object representing that set EMPS of all employees in some given company is 
changed from an array to a linked list.  What are the implications for existing code that accesses 
that object?  (Answer:  It breaks.)   

I should perhaps ask the further question:  Why would we want to change the 
implementation of an object in such a manner, anyway?  The answer is surely performance.  
Ideally, therefore, such a change should not affect anything except performance; in practice, 
however, it does.   

It seems to me, in fact, that the ability to have all of these different ways of representing 
data at the logical level is an example of what I’ve referred to elsewhere as spurious generality.6  
I would argue further that the whole idea seems to stem from a failure to make a clean separation 
between model and implementation (we might need lots of different representations at the 
physical level, but we don’t need the same thing at the logical level).  Indeed, I remember Codd 
once saying to a member of the audience at a conference (in response to a question during a 
panel discussion):  “If you tell me that you have 50 different ways of representing data in your 
system—at the logical level, that is—then I’ll tell you that you have 49 too many.”   
 
 
POTT CAUSES ADDITIONAL COMPLEXITY  
 
It should be obvious that POTT leads to additional complexity—and by “complexity” here I 
mean, primarily, complexity for the user, though in certain respects life gets more complicated 
for the system too.  For example, the relational model supports just one “collection type 
generator” (to use a common object term): viz., RELATION.  It also supports a set of generic 
operators—join, project, and so forth—that apply to all “collections” of that type (in other words, 
to all relations).  By contrast, ODMG supports four collection type generators, viz., SET, BAG, 
LIST, and ARRAY, each with its own set of operators that apply to collections of the type in 
question.  And I would argue that the ODMG operators are certainly more complicated, and at 

                                                             
 
5 Turning this statement around, one thing the relational model clearly doesn’t say is that relations must be stored as such, with 
(e.g.) one file per relation, one record per tuple, and one field per attribute—a style of implementation that I’ve referred to 
elsewhere as “direct image,” and one that’s unfortunately found in most if not all of the leading SQL products today.  For further 
discussion of such matters, I refer you to my book Go Faster! The TransRelationaltm Approach to DBMS Implementation (2002, 
2011, available free online at http://bookboon.com).   
 
6 E.g., in the paper “Database Graffiti,” in C. J. Date (with Hugh Darwen and David McGoveran), Relational Database Writings 
1994-1997 (Addison-Wesley, 1998).   



 
 
514      Appendix B / Persistence Not Orthogonal to Type 

the same time less powerful, than their relational counterparts.  Here by way of example are the 
ODMG operators for lists:   

 
IS_EMPTY    
IS_ORDERED  
ALLOWS_DUPLICATES  
CONTAINS_ELEMENT  
INSERT_ELEMENT  
REMOVE_ELEMENT  
CREATE_ITERATOR  
CREATE_BIDIRECTIONAL_ITERATOR  
REMOVE_ELEMENT_AT  
RETRIEVE_ELEMENT_AT  
REPLACE_ELEMENT_AT  
INSERT_ELEMENT_AFTER  
INSERT_ELEMENT_BEFORE  
INSERT_ELEMENT_FIRST  
INSERT_ELEMENT_LAST  
REMOVE_FIRST_ELEMENT  
REMOVE_LAST_ELEMENT  
RETRIEVE_FIRST_ELEMENT  
RETRIEVE_LAST_ELEMENT  
CONCAT  
APPEND  

 
Incidentally, it’s worth pointing out in passing that the one “collection type generator” that 

ODMG most obviously does not support is RELATION!  The ODMG book claims that “the 
ODMG data model encompasses the relational data model by defining a TABLE type,”7 but that 
“TABLE type” (actually it’s a type generator) is severely deficient in many respects.  In 
particular, many of the crucial relational operators—including join in particular—are missing.  (I 
should mention too that there are numerous additional problems with claims to the effect that 
“the ODMG data model” “encompasses” or “is more powerful than” the relational model, but 
this appendix isn’t the place to go into details.  A few examples of such claims were mentioned 
in passing in Chapter 21.)   

Now, ODMG does support a query language, called OQL.  OQL is a read-only language 
(update operators are omitted) that’s loosely patterned after SQL.  To be more specific:   
 
! OQL provides SQL-style SELECT – FROM – WHERE queries against sets, bags, lists, 

and arrays (though not relations).   
 
! It also provides analogs of the SQL GROUP BY, HAVING, and ORDER BY constructs.   
 

                                                             
 
7 That claim appears in Section 2.4.2.1 (“Table Type”) of the ODMG book, which reads in its entirety as follows:  The ODMG 
data model encompasses the relational data model by defining a Table type to express SQL tables.  The ODMG Table type is 
semantically equivalent to a collection of structs.  (A “struct” can be thought of as an SQL-style row.)   Note:  The foregoing text 
appears in Version 2.0 of the ODMG book.  Interestingly, it seems to have been dropped from Version 3.0.   
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! It also supports union, intersection, and difference operations, together with certain special 
operations for lists and arrays (for example, “get the first element”).   

 
! It also supports “path expressions” for “traversing relationships” (in other words, following 

pointers) between objects.   
 

And the ODMG book makes a number of specific claims regarding OQL.  Here are a 
couple of them (italics added in both cases):8   
 
! “We have used the relational standard SQL as the basis for OQL, where possible, though OQL 

supports more powerful capabilities.”   
 
! “[OQL] is more powerful [than a relational query language].”   

 
In my opinion, by contrast, OQL illustrates very well my point that POTT leads to 

additional complexity.  That is, I would argue that OQL isn’t more powerful, it’s more 
complicated (the computing community often seems to confuse these two notions).  And the 
extra complication derives from the fact that so many different data structures are exposed to the 
user.  And that state of affairs is a direct consequence, it seems to me, of a failure to appreciate 
the advantages of keeping model and implementation rigidly apart.   

Let’s take a moment to investigate this issue of increased complexity a little more closely.  
First of all, note that when we talk of lists in the database, arrays in the database, and so on, what 
we’re really talking about is list variables, array variables, and so on—just as, when we talk of 
relations in the database, we really mean relation variables (relvars).  Now, the only kinds of 
variables we find in a relational database are, of course, those relation variables specifically (that 
is, variables whose values are relations); relational databases don’t permit list variables 
(variables whose values are lists), or array variables (variables whose values are arrays), or any 
other kinds of variables.  It follows that to allow, say, list variables in the database would 
constitute a major departure from the classical relational model.   

Why exactly would that departure be so major?  Well, orthogonality would dictate, first of 
all, that we’d have to define a whole new query language for lists—that is, a set of list operators 
(a “list algebra”?), analogous to the operators we already have for relations (the relational 
algebra).9  Of course, we’d certainly need to worry about the concept of closure in connection 
with that language.  And we’d need to define a set of list update operators, analogous to the 
existing relational ones.  We’d need to be able to define list integrity and security constraints, 
and list views.  The catalog would need to describe list variables as well as relation variables.  
(And what would the catalog itself consist of?—list variables? or relation variables? or a mixture 
of the two?)  We’d need a list design theory, analogous to the existing body of relational design 

                                                             
 
8 The first of these claims is repeated from Chapter 21.   
 
9 Note that the ODMG operators listed on the previous page come nowhere near constituting such a “list algebra.”   
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theory.  We’d also need guidelines as to when to use list variables and when relation variables.  
And so on (I’m sure this list of issues—pun intended—isn’t exhaustive).   

The net of all this is:   
 
! Assuming that such a “list algebra” can be defined, and all of the other questions raised in 

the previous paragraph answered satisfactorily, now we’ll have two ways of doing things 
where one sufficed previously.  In other words, as already noted, adding a new kind of 
variable certainly adds complexity, but it doesn’t add any power—there’s nothing (at least, 
nothing useful) that can be done with a mixture of list and relation variables that can’t be 
done with relation variables alone.   

 
! Thus, the user interface will now be more complex and involve more choices—very likely 

without good guidelines as to how to make such choices.   
 
! As a direct consequence of the foregoing, database applications—including in particular 

general purpose applications or “front ends”—will become more difficult to write and more 
difficult to maintain.   

 
! Those applications will also become more vulnerable to changes in the database structure; 

that is (again as noted earlier), some degree of data independence will be lost.  Consider 
what happens, for example, if the representation of some piece of information is changed 
from relation variables to list variables or the other way around.   

 
All of the foregoing is, of course, in direct conflict with Codd’s Information Principle.  

Codd stated that principle in various forms and various publications over the years; indeed, I 
heard him refer to it on occasion as “the fundamental principle underlying the relational model.”  
One way to state it is as follows:   
 

At all times, all information in the database must be cast explicitly in terms of relations and 
in no other way.   

 
In his book,10 Codd gives a number of arguments in support of this principle (arguments 

with which I concur, of course).  In fact, the real point is this:  As we’ve argued in the Manifesto 
book, relations are both necessary and sufficient for representing any data we like (at the logical 
level, of course); thus, we must have relations, and we don’t need anything else.   
 
 

                                                             
 
10 E. F. Codd: The Relational Model for Database Management Version 2 (Addison-Wesley, 1990).   
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CONCLUDING REMARKS  
 
So where did POTT come from?  It seems to me that what we have here is (as so often) a 
fundamental confusion between model and implementation.  To be specific, (a) it has been 
observed that certain SQL products don’t perform very well on certain operations (especially 
joins), and (b) it has been conjectured that performance would improve if we could use, say, lists 
or arrays instead of relations.11  But, of course, such thinking is seriously confused—it mixes 
logical and physical levels.  Nobody is arguing that lists and so forth might not be useful at the 
physical level; the question is whether those lists and so forth should be exposed at the logical 
level.  And it’s the position of relational advocates in general, and Darwen and myself as authors 
of The Third Manifesto in particular, that the answer to that question is a very firm no.   
 
 
POSTSCRIPT: THE FIRST AND SECOND MANIFESTOS  
 
As I explained in Chapter 1, the reason we call our Manifesto “the third” is that we originally 
wrote it to be seen, at least in part, as a response to two earlier ones (both of which were 
mentioned in the introduction to this appendix); the first was The Object-Oriented Database 
System Manifesto (1989) and the second was the Third Generation Database System Manifesto 
(1990).  The following notes briefly describing and analyzing these two earlier proposals are 
based on material from Appendix J (“References and Bibliography”) of the Manifesto book.   

Note:  Throughout what follows, use of the first person plural, in the comments in 
particular, refers as usual to Hugh Darwen and myself.  Also, I need to make it clear that those 
comments are based on the premise that the object of the exercise12 is to define features of a 
good, genuine, general purpose DBMS.  We don’t deny that some of the features we object to13 
might be useful for a highly specialized DBMS, tied to some specific application area such as 
(e.g.) CAD/CAM, with no need for (e.g.) declarative integrity constraint support—but then we 
would question whether such a system is truly a DBMS as such, as that term is usually 
understood.14   
 

                                                             
 
11 Or pointers instead of foreign keys!—which is, I believe, one major reason why object database systems support object IDs.  
Note:  For some additional conjectures regarding possible origins of the POTT idea, see the extended extract from my paper 
“Why ‘The Object Model’ Is Not a Data Model,” quoted in the final pages of this appendix.   
 
12 Pun intended.   
 
13 Pun intended.   
 
14 In this connection, again I refer you to my paper “Why ‘The Object Model’ Is Not a Data Model” (see footnote 11).   
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The Object-Oriented Database System Manifesto  
 
The aim of this document, like that of our own Manifesto, is to propose a foundation for future 
DBMSs.  As noted in Chapter 1, however, it virtually ignores the relational model; in fact, it 
doesn’t seem to take the idea of a model, as such, very seriously at all.  Here’s a direct quote:   
 

With respect to the specification of the system, we are taking a Darwinian approach:  We hope that, 
out of the set of experimental prototypes being built, a fit model will emerge.  We also hope that 
viable implementation technology for that model will evolve simultaneously.   

 
In other words, the authors are suggesting that the code should be written first, and that a model 
might possibly be developed later by abstracting from that code.  By contrast, we believe it 
would be better to develop the model first (which is what happened in the relational case, of 
course; indeed, it’s also what we’re advocating in connection with our approach to inheritance, 
as I hope the body of this book makes clear).   

Be that as it may, the paper goes on to propose the following as mandatory features—i.e., 
features that, it suggests, definitely must be supported if the DBMS in question is to warrant the 
label “object oriented”:   

 
1. Collections    8.   User defined types  
2. Object IDs    9.   Persistence  
3. Encapsulation  10.   Large databases  
4. Types or classes  11.   Concurrency  
5. Inheritance  12.   Recovery  
6. Late binding  13.   Ad hoc query  
7. Computational completeness  

 
The paper also discusses certain optional features, including multiple inheritance and 

compile time type checking; certain “open” features, including language style (“we see no reason 
why we should impose one programming paradigm more than another: the logic programming 
style, the functional programming style, or the imperative programming style could all be 
chosen”); and certain features on which the authors could reach no consensus, including—a little 
surprisingly, considering their importance—views and integrity constraints.   

Here now in a nutshell are our positions on the proposed mandatory features (only).   
 
! We agree that Number 8 is crucial and Number 5 is highly desirable (though we note that, 

as mentioned in Chapter 3, the authors are deliberately vague as to exactly what Number 5 
might mean).  Number 4 is implied by Number 8.  Number 6 is more or less implied by 
Number 5 (and is therefore probably desirable too), but it’s primarily an implementation 
issue, not a model issue (it’s just another term for run time binding).  We agree with 
Number 7.   



 
 

Persistence Not Orthogonal to Type / Appendix B      519 

 
! We agree that Numbers 10-13 are important, but they’re independent of whether the system 

is relational, an object system, or something else entirely.  Note:  The point is worth 
repeating from Appendix A, however, that Number 13 in particular—i.e., ad hoc query 
support—can be difficult to achieve in a pure object system, because it clashes with the 
object goal of encapsulation and the idea that all access has to be by means of predefined 
methods.15  We note too that providing many different data structures at the logical level, as 
object systems do, inevitably makes the query interface, if any, more complicated (in fact, 
OQL, mentioned earlier in this appendix, provides an eloquent illustration of this point).   

 
! With regard to Numbers 1 and 9, the only kind of “collection” we want (and indeed the 

only kind we need)—and certainly the only kind of data construct we want to possess the 
property of “persistence”—is, very specifically, the database relvar.  To repeat, we firmly 
reject the whole POTT idea (“persistence orthogonal to type”).   

 
! As explained in Appendix A, we think the emphasis on encapsulation (Number 3) is a little 

off base.  What’s important is to distinguish between type and representation (and hence, in 
database terms, to achieve data independence).  After all, unencapsulated relations can 
provide just as much data independence, in principle, as encapsulated objects can.   

 
! We reject Number 2 outright.   
 

All of that being said, let me now add that—and it is to the credit of the authors that they 
recognize as much—their paper was never really intended to be more than a stake in the ground.  
To quote:   

 
We have taken a position, not so much expecting it to be the final word as to erect a provisional 
landmark to orient further debate.   

 
The Third Generation Database System Manifesto  
 
In part, this second manifesto is a response to—i.e., a counterproposal or rebuttal to—the first.  
Let me explain the title.  Basically, first generation database systems are the old hierarchic and 
network (CODASYL) systems, such as IMS and IDMS, respectively; second generation systems 
are relational (or at least SQL) systems; and third generation systems are whatever comes next.  
Here’s a quote:   
 

                                                             
 
15 In connection with this point, I refer you to footnote 50 in Chapter 21 once again.   



 
 
520      Appendix B / Persistence Not Orthogonal to Type 

Second generation systems made a major contribution in two areas, nonprocedural data access and 
data independence, and these advances must not be compromised by third generation systems.   

 
(Of course, we believe relational systems made rather more than just two “major contributions,” 
but let that pass.)  In other words, third generation systems, whatever else they might do, must 
certainly support the relational model.  Unfortunately, the authors then go on to say that 
supporting the relational model really means supporting SQL, a position that’s very close to 
being a contradiction in terms.   

The following features are claimed as essential requirements of a third generation DBMS 
(I’ve paraphrased the original text somewhat):   

 
1. Provide traditional database services plus richer object structures and rules  
 

! Rich type system  
! Inheritance  
! Functions and encapsulation  
! Optional system assigned tuple IDs  
! Rules (e.g., integrity rules), not tied to specific objects  
 

2. Subsume second generation DBMSs  
 

! Navigation only as a last resort  
! Intensional and extensional set definitions (meaning collections that are maintained 

automatically by the system and collections that are maintained manually by the user, 
respectively)  

! Updatable views  
! Clustering, indexes, etc., hidden from the user  
 

3. Support open systems  
 

! Multiple language support  
! Persistence orthogonal to type  
! SQL (characterized as “intergalactic dataspeak”)  
! Queries and results must be the lowest level of client / server communication  
 
Again we offer our own comments and reactions:   
 

1. Traditional database services and richer object structures and rules:  Of course we agree 
with “traditional database services.”  We also agree with “rich type system” and “[type] 
inheritance,” so long as it’s understood that (a) type is just another (and, in my opinion, 
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better) term for domain,16 and (b) the sole use made of such types as far as the database is 
concerned is as the domains over which attributes of database relvars are defined17 (in other 
words, we don’t want those “richer object structures” to appear as variables in the database, 
either in place of or alongside such database relvars).  “Functions”—we prefer the term 
operators—are implied by “rich type system.”  Regarding “encapsulation,” see 
Appendix A.  Regarding “tuple IDs,” there seems to be some confusion here between 
tuples and “objects,” a point that might be the cause for some alarm;18 we reject object IDs, 
of course, but we support the idea of system keys, and such keys might possibly be thought 
of as (necessarily user visible) “tuple IDs.”  As for rules:  We certainly support integrity 
rules specifically, of course; further, we don’t preclude support for other kinds of rules 
(e.g., security rules), though if this latter is what the authors mean by “rules,” then it seems 
to us something of a secondary issue.   

 
2. Subsume second generation DBMSs:  If by “subsume” here the authors mean it’s the 

relational model that must be subsumed, then we reject the suggestion categorically (but 
perhaps they don’t mean that).  “Navigation only as a last resort”:  We take a firmer stand 
and reject navigation entirely; we think it’s incumbent on anyone who thinks that 
navigation is ever necessary to show first that there’s some problem for which a 
nonnavigational (relational) solution is logically—or at least effectively—impossible.  We 
also reject “extensional set definitions” (in the sense meant here), because the meaning of 
any set thus defined is hidden in some application instead of being exposed in the database.  
We agree with support for updatable views.19  Finally, we also agree that access 
mechanisms—indexes and the like—should be hidden from the user (they aren’t always 
hidden in certain object systems, or indeed in certain SQL systems, but they were always 
supposed to be hidden in true relational systems).   

 
3. Support open systems:  We agree with this objective in principle (and we have no objection 

to “multiple language support”), but of course we reject the idea of “persistence orthogonal 
to type.”  We also reject SQL (we’re in this business for the long haul).  We do agree with 
the general sense of “queries and results being the lowest level of client / server 
communication”—though the term client / server sounds a little quaint these days—but 
remark that this objective seems to be in conflict with the earlier objectives concerning 
“extensional set definition” and “navigation.”   
 

                                                             
 
16 The reason I mention this rather obvious point will become clear in the discussion of the first book mentioned in the subsection 
“Related Publications,” later in this section.   
 
17 And as the types of those database relvars themselves, of course, in the case of relation types.   
 
18 It turns out we were right to be alarmed, too (we originally wrote this commentary in the 1990s).  See Chapter 22.   
 
19 In this connection I’d like to draw your attention to another recent book of mine, View Updating and Relational Theory: 
Solving the View Update Problem (O’Reilly, 2013).   
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To close this subsection, I’d like to draw your attention to another paper: “Comments on 
the Third Generation Database System Manifesto,” by David Maier (Tech. Report No. CS/E 
91-012, Oregon Graduate Center, Beaverton, Ore., April 1991), which is, as the title indicates, a 
review and analysis of the second manifesto.  Maier is highly critical of just about everything in 
this latter document; we agree with some of his criticisms and disagree with others.  However, 
we do find the following remarks interesting, since they bear out our own contention that “object 
orientation” really involves just one good idea—viz., proper type support:   

 
Many of us in the object-oriented database field have struggled to distill out the essence of “object 
orientedness” for a database system ... My own thinking about ... the most important features of 
OODBs has changed over time.  At first I thought [the most important features were] inheritance 
and the message model.  Later I came to think that object identity, support for complex state, and 
encapsulation of behavior were more important.  Recently, after starting to hear from users of 
OODBMSs about what they most value about those systems, I think that type extensibility is the 
key.  Identity, complex state, and encapsulation are still important, but [only] insomuch as they 
support the creation of new data types.   
 

Related Publications  
 
To conclude this appendix, I’d like to mention and briefly comment on a few more publications 
that have to do with topics raised in the first two manifestos (especially with that business of 
“persistence orthogonal to type” or POTT).  The first is a book—one I’ve mentioned a couple of 
times already in the present book, in fact:   
 
! Michael Stonebraker and Paul Brown (with Dorothy Moore): Object-Relational DBMSs: 

Tracking the Next Great Wave (2nd edition, Morgan Kaufmann, 1999)20  
 

This book is a tutorial on object / relational systems.  It’s heavily—in fact, almost 
exclusively—based on the Universal Data Option of Informix’s Dynamic Server product.21  That 
Universal Data Option was based on an earlier system called Illustra, a commercial product that 
Stonebraker himself was instrumental in developing.  Regrettably, the authors of the book 
nowhere come right out in support of (a) our position that, as explained in Chapter 1, a true 
“object / relational” system would be nothing more nor less than a true relational system, nor 
(b) our position that today’s “relational” systems aren’t true relational systems at all, but SQL 
systems merely.   

Be that as it may, Stonebraker et al. claim that a “good” object / relational DBMS must 
possess the following four “cornerstone characteristics,” with features as indicated:   

 
                                                             
 
20 This book is indeed in its second edition as stated, but most of the commentary that follows is based on the first edition.  There 
are many cosmetic differences between the two editions, but the overall message is the same in both.   
 
21 Informix was acquired by IBM in 2001.   
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1. Base type extension  
 

! Dynamic linking of user defined functions  
! Client or server activation of user defined functions  
! Secure user defined functions  
! Callback in user defined functions  
! User defined access methods  
! Data types of arbitrary length  
 

2. Complex objects  
 

! Type constructors  
! User defined functions  
! Data types of arbitrary length 
! SQL support  
 

3. Inheritance  
 

! Data and function inheritance  
! Overloading  
! Inheritance of types, not tables  
! Multiple inheritance  
 

4. Rule system  
 

! Retrievals as well as updates are events and actions  
! Integration of rules with type and inheritance extensions  
! Rich execution semantics for rules  
! No infinite loops  
 
To elaborate:  
 

1. Base type extension:  The authors use this term to mean that users must be able to define 
their own scalar types and operators (they use the term functions, however, reserving 
operators for functions like “+” that make use of some special notation); they also, most 
unfortunately, assert that “a data type is both information and operations [whereas] the 
relational notion of a domain includes only the stored [sic!] representation, and there is no 
behavior associated with a domain.”22  Dynamic linking is self-explanatory (but it’s a 

                                                             
 
22 This claim is obviously incorrect if taken literally, because it implies there aren’t any operators at all, not even “=” (and without 
“=” we can’t even tell whether a given value is a value of the domain in question).  See footnote 16.   
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pragmatic issue, not a logical requirement).  Client or server activation means it must be 
possible to execute user defined functions in the same address space as the DBMS (at the 
server) and also in other address spaces (at the client); moreover, such executions must be 
secure—i.e., they mustn’t be allowed to read or (worse) update anything that’s supposed to 
be protected.  (For obvious reasons, this problem is likely to be particularly severe if the 
execution occurs at the server.)  The fancy term callback just means user defined functions 
must be allowed to perform database operations.  User defined access methods means that 
type definers or implementers must be able to extend the system by introducing new 
storage structures and corresponding access code.  Data types of arbitrary length just 
means there mustn’t be any predefined limit on the amount of storage required for the 
physical representation of any given value.   

Note:  The Third Manifesto suggests that function definitions and type definitions are 
better kept separate, not bundled together.  Stonebraker et al. agree with this position.   

 
2. Complex objects:  The authors use this term to mean that certain type generators—they use 

the term type constructors—must be supported.  (A “complex object” is presumably either 
a value or a variable of such a generated type.)  In particular, the following type generators 
“must” be supported:   

 
! Composites (records)  
! Sets  
! References  
 

The term composites here corresponds, more or less, to our TUPLE type generator 
(though there seems to be some confusion over whether or not corresponding “composite” 
values and variables are encapsulated).  Sets is self-explanatory.  As for references, here’s a 
quote:  “An object / relational DBMS allows a column in a table to contain ... a [pointer] to 
a [row] ... in another table ... [The] actual value stored ... is an [object identifier or] OID.”  
The Third Manifesto categorically prohibits such a state of affairs, of course;23 in fact, we 
find here, regrettably, a certain amount of confusion once again over the logical difference 
between values and variables, also over the logical difference between model and 
implementation.   

The user defined functions and data types of arbitrary length features just mean that 
(of course) generated types are indeed types; hence, users must be able to define functions 
that operate on values and variables of such generated types, and again there mustn’t be 

                                                             
 
23 In this connection, I’d like to mention the following.  In 1997, I wrote a paper with the title “Don’t Mix Pointers and 
Relations!”  The purpose of that paper was to criticize efforts to do exactly that (i.e., mix pointers and relations, which is what 
Stonebraker et al. are proposing here) in the working draft of what became SQL:1999.  Don Chamberlin (who incidentally is 
often described as “the father of SQL”) wrote another paper in response to mine titled “Relations and References—Another Point 
of View” and defending those efforts.  However, it seemed to me that Chamberlin’s paper missed much of the point of mine, and 
so I wrote a rebuttal (“Don’t Mix Pointers and Relations—Please!”).  Chamberlin’s paper was published alongside the first of my 
two papers in InfoDB 10, No. 6 (April 1997).  Both of mine (but, sadly, not Chamberlin’s) can be found in C. J. Date (with Hugh 
Darwen and David McGoveran), Relational Database Writings 1994-1997 (Addison-Wesley, 1998).   
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any predefined limit on the amount of storage required for the physical representation of 
any given value.   

Last, we agree with the SQL support feature, but only as an aid to migration,24 not 
because such support is desirable in itself.25   

 
3. Inheritance:  We agree with the desirability of inheritance support.  As noted in 

Chapter 21, however, Stonebraker et al. unfortunately use this term to refer not to type 
inheritance as such but rather to that business of “subtables and supertables,” a very 
different notion.  Moreover, the authors don’t really address the question of an abstract 
inheritance model at all, nor do they mention most of the intrinsic complexities that seem to 
occur in connection with inheritance in general.  For the record, however, we offer a few 
comments on the features the authors list under their “inheritance” heading.  Data and 
function inheritance means a subtable inherits both columns and (user defined) functions 
from its supertable(s).  Overloading means polymorphism (but it’s definitely, as stated, 
overloading polymorphism, not inclusion polymorphism).  Inheritance of types, not tables 
means—to use the terminology of The Third Manifesto—that relation type definitions and 
relvar definitions must be kept separate,26 and hence that several relvars can be of the same 
separately and explicitly named relation type.  (Recall that Tutorial D by contrast 
explicitly does not support a separate “define relation type” operator, for reasons explained 
in Chapter 2 and elsewhere.)  Multiple inheritance is self-explanatory (at least, the basic 
idea is, though the consequences might not be).   

 
4. Rule system:  We agree that a rule system might be desirable in practice, but rule systems 

are at least arguably independent of whether the system is object / relational or something 
else.  I therefore choose not to discuss them here.   

 
It’s noteworthy, incidentally, that Stonebraker et al. nowhere discuss the debate over the 

equations domain = class vs. relvar = class (see Chapter 1).  Indeed, their examples suggest 
rather strongly that relvar = class is the right equation, though they never come out and say as 
much explicitly, and Stonebraker is on record elsewhere as stating that the opposite is the case.   
 

——— ♦♦♦♦♦ ——— 
 

                                                             
 
24 In fact the Manifesto book has some concrete proposals to make in this connection.   
 
25 One obvious difference between the first and second editions of Stonebraker et al.’s book is worth commenting on here—viz., 
the increased emphasis on SQL as such in the second edition.  In fact, the first three of the four “cornerstone characteristics” are 
explicitly relabeled on page xii of the second edition thus: support for base type extension in an SQL context, support for 
complex objects in an SQL context, and support for inheritance in an SQL context.   
 
26 Inheritance of types, not tables would seem to contradict “subtable and supertable support,” but it doesn’t.   
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The second publication I’d like to mention in this subsection also has to do with object / 
relational systems specifically:   
 
! Won Kim: “Bringing Object / Relational Down to Earth,” Database Programming & 

Design 10, No. 7 (July 1997)  
 

In this article, author Kim claims that “confusion is sure to reign” in the marketplace for 
object / relational DBMSs because, first, “an inordinate weight has been placed on the role of 
data type extensibility” and, second, “the measure of a product’s object / relational completeness 
... is a potentially serious area of perplexity.”  And he goes on to propose “a practical metric for 
object / relational completeness that can be used as a guideline for determining whether a 
product is truly [object / relational]”—an idea that inevitably invites comparison with the 
approach taken in The Object-Oriented Database System Manifesto to the question of 
determining whether a DBMS is truly object oriented.   

Kim’s scheme (metric is really not the mot juste, since there’s nothing quantitative about it) 
involves the following criteria:   

 
1. Data model  5.   Performance and scalability  
2. Query language  6.   Database tools  
3. Mission critical services  7.   Harnessing the power  
4. Computational model  

 
With respect to Criterion Number 1, Kim takes the position—very different from ours—

that the data model must be “the Core Object Model defined by the Object Management Group,” 
which, he says, “comprises the relational data model as well as the core object-oriented modeling 
concepts of object-oriented programming languages.”  According to Kim, it thus includes all of 
the following concepts: class (Kim adds “or type”—?), instance, attribute, integrity constraints, 
object IDs, encapsulation, (multiple) class inheritance, (multiple) ADT inheritance (ADT = 
abstract data type), data of type reference, set-valued attributes, class attributes, class methods, 
and more besides.  (Note that relations, which of course we regard as both crucial and 
fundamental, aren’t even mentioned!  Kim claims that the Core Object Model includes the entire 
relational model in addition to everything in the foregoing list, but it doesn’t.)   

As for Criterion Number 2 (“query language”), Kim’s position—again very different from 
ours, in at least two major ways—is that the language must be some kind of “Object SQL” (i.e., a 
version of SQL that has been extended to deal with all of the various constructs just listed).   

Criteria Numbers 3-6 all have to do with the implementation rather than the model.  In 
other words, they might be important in practice; by definition, however, none of them can be a 
feature, or one of the features, that distinguishes a system that’s object / relational from one that 
isn’t.  In other words, it’s not clear exactly what Kim’s metric is supposed to be measuring.   

The final criterion (“harnessing the power”) constitutes an interesting, and major, point of 
difference between Kim’s position and ours.  Our opinion, as explained in Chapter 1, is that user 
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defined types constitute the primary justification for object / relational systems.  Kim’s opinion, 
by contrast, is that user defined types are merely a secondary feature (indeed, they’ve been 
“oversold”), and they constitute just one aspect of “harnessing the power.”  The other, he claims, 
is the ability of an object / relational DBMS to act as the basis for “heterogeneous database 
fusion”—i.e., to serve as a unified front end to a variety of disparate databases “including RDBs, 
OODBs, hierarchical databases, CODASYL databases, and even flat files.”  As explained my 
book An Introduction to Database Systems (8th edition, Addison-Wesley, 2004), however, such 
functionality is more properly ascribed to what’s usually called data access middleware, not to a 
DBMS (whether it be object / relational or some other kind).   
 

——— ♦♦♦♦♦ ——— 
 
The last publication I’d like to mention—with apologies—is a paper by myself:   
 
! “Why ‘The Object Model’ Is Not a Data Model,” in C. J. Date (with Hugh Darwen and 

David McGoveran): Relational Database Writings 1994-1997 (Addison-Wesley, 1998)  
 

In this paper, I argue among other things that (a) “the object model” is really a model of 
storage, not data, and that (b) partly because of that fact, object and relational database systems 
are more different than is usually realized.  The following excerpt, lightly edited here, captures 
the essence of the argument:   

 
Object databases grew out of a desire on the part of object application programmers—for a variety 
of application specific reasons—to keep their application specific objects in persistent memory.  
That persistent memory might perhaps be regarded as a database, but the important point is that it 
was indeed application specific; it wasn’t a shared, general purpose database, intended to be 
suitable for applications that might not have been foreseen at the time the database was defined.  As 
a consequence, many features that database professionals regard as essential were simply not 
requirements in the object world, at least not originally.  Thus, there was little perceived need for:   
 
! Data sharing across applications  
! Physical data independence  
! Ad hoc queries  
! Views and logical data independence  
! Application independent, declarative integrity constraints  
! Data ownership and a flexible security mechanism  
! Concurrency control  
! A general purpose catalog  
! Application independent database design  
 

These requirements all surfaced later, after the basic idea of storing objects in a database was 
first conceived, and thus all constitute add-on features to the original object model ... One important 
consequence is that there really is a difference in kind between an object DBMS and a relational 
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DBMS.  In fact, it could be argued that an object DBMS isn’t really a DBMS at all—at least, not in 
the same sense that a relational DBMS is a DBMS.  For consider:   
 
! A relational DBMS comes ready for use.  In other words, as soon as the system is installed, 

users (application programmers and end users) can start building databases, writing 
applications, running queries, and so on.   

 
! An object DBMS, by contrast, can be thought of as a kind of DBMS construction kit.  When 

it’s originally installed, it isn’t available for immediate use by application programmers and 
end users.  Instead, it must first be tailored by suitably skilled technicians, who must define 
the necessary classes and methods, etc. (the system provides a set of building blocks—class 
library maintenance tools, method compilers, etc.—for this purpose).  Only when that 
tailoring activity is done will the system be available for use by application programmers and 
end users; in other words, the result of that tailoring will indeed more closely resemble a 
DBMS in the more familiar sense of the term.   

 
! Note further that the resultant “tailored” DBMS will indeed be application specific; it might, 

for example, be suitable for CAD/CAM applications, but be essentially useless for, e.g., 
medical applications.  In other words, it still won’t be a general purpose DBMS, in the same 
sense that a relational DBMS is a general purpose DBMS.   

 
This same paper also contains a detailed examination of the object ID concept, and in that 

connection I’d like to quote another extended extract (also lightly edited here):   
 

Consider the following:   
 

! In a traditional programming language, when a variable is declared, a name is typically 
specified for that variable, and that variable can then be referenced by that name from that 
point forward.   

 
! At the implementation level, by contrast, when an area of storage is allocated, it isn’t given 

a name; instead, the system returns the address of that storage, and that storage can then be 
referenced by that address from that point forward.   

 
What happens in an object system?  When an object is “constructed,” it isn’t given a name; 

instead, the constructor operation returns an object ID—which is to say, an address—for the new 
object.27  I conclude that an “object” in an object system is much more like an area of storage than 
it is like a conventional variable.   

My next point is related to my previous one:  Given an object type, object systems permit the 
construction of any number of individual objects of that type.  For example, given type CIRCLE, 

                                                             
 
27 I’m taking “object” here to mean a variable—sometimes called a mutable object—specifically.  (Values, also known as 
immutable objects, are of course never “constructed” but simply exist.)  As we now see, however, mutable objects lack one very 
important feature of a typical variable (viz., a name); in that respect, therefore, they’re somewhat less than true variables.  (On the 
other hand, they’re also more than just plain storage, inasmuch as they are at least usually typed.)   
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the user is at liberty to construct as many CIRCLE “variables” (mutable objects) as he or she 
desires: one, two, a hundred, a million, possibly none at all.  As a direct consequence of this state of 
affairs, individual CIRCLE “variables” do not—in fact, cannot—have names in the usual sense but 
are distinguished by address (object ID) instead, as we’ve already seen.   

Now, it’s interesting, and relevant, to note that a close parallel to the foregoing state of affairs 
can be found in one of the first programming languages I ever learned (viz., PL/I), in the form of 
what PL/I calls “based variables.”  Consider the following PL/I code fragment (I’ve numbered the 
lines for purposes of subsequent reference):   
 
1. DECLARE 1 CIRCLE BASED ,  
2.           2 RADIUS ... ,  
3.           2 CENTER ... ;  
4. DECLARE C_PTR POINTER ;  
 
5. ALLOCATE CIRCLE SET ( C_PTR ) ;  
6. C_PTR -> RADIUS = some radius value ;  
7. C_PTR -> CENTER = some center value ;  
 

Explanation:   
 
! Lines 1-3 declare a “based variable”—actually a based structure variable—called CIRCLE, 

with components RADIUS and CENTER.  The specification BASED means that the 
declaration is really just a template; no storage will be allocated for circles at compile time.   

 
! Line 4 declares a “regular” (i.e., nonbased) variable, a pointer variable called C_PTR.  

Storage is allocated by the compiler for this variable.   
 
! Line 5 allocates storage for an unnamed CIRCLE variable—that is, an unnamed variable 

whose structure conforms to the template defined in lines 1-3.  It also returns a pointer to 
that storage—equivalently, to that unnamed variable—in the pointer variable C_PTR.   

 
! Lines 6-7 assign values to the RADIUS and CENTER components of the particular 

CIRCLE variable that the pointer variable C_PTR currently happens to point to.   
 

The parallels to object systems are obvious:  The based variable declaration for CIRCLE 
corresponds to an object type definition; ALLOCATE CIRCLE is an invocation of the 
corresponding constructor; access to a given CIRCLE variable by means of its address 
corresponds to access to a given object by means of its object ID; “construction” and initialization 
are logically distinct operations.  And, of course, any number of individual unnamed CIRCLE 
variables can be allocated, each with its own address, just as any number of individual unnamed 
objects can be constructed, each with its own object ID.   

Why bother with these parallels?  Well, Robert Sebesta, in his book Concepts of 
Programming Languages (6th edition, Addison-Wesley, 2004), refers to variables like the 
allocated CIRCLE variable in the foregoing example as explicit heap-dynamic variables:  
“Explicit heap-dynamic variables are nameless ... memory cells that are allocated and deallocated 
by explicit run-time instructions specified by the programmer ... These variables can only be 
referenced through pointer or reference variables” (my italics).  And he goes on to say:  “Explicit 
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dynamic variables [and the corresponding pointers] are often used for dynamic structures, such as 
linked lists and trees, which need to grow and shrink during execution.  Such structures can be 
built conveniently using pointers and explicit heap-dynamic variables.”   

So the point is this:  Just as pointers and explicit heap-dynamic variables can be used to 
build and maintain “dynamic structures” in programming languages like PL/I, so object IDs and 
objects can be used to build and maintain such structures in object systems.  In particular, object 
databases can and do generally include such dynamic structures.   

Observe now that relational systems can and do generally involve dynamic structures also.  
The difference is that in the relational case those structures are built and maintained using, not 
pointers, but rather the mechanisms—usually keys and and foreign keys—prescribed by the 
relational model.  There’s no logical need to use pointers instead of keys for such a purpose.  And 
there are good reasons not to!  To quote Sebesta again:  “The disadvantages of explicit heap-
dynamic variables are the difficulty of using pointer and reference variables correctly, along with 
the cost of references to the variables [and of the associated] allocations and deallocations “ (my 
italics again).  To be specific, pointers lead to pointer chasing, and pointer chasing is notoriously 
error prone.28   

It’s worth mentioning that Codd certainly agreed with the foregoing.  When he first defined 
the relational model, he very deliberately excluded pointers.  And in his book The Relational 
Model for Database Management Version 2 (Addison-Wesley, 1990), he explained why:   
 

It is safe to assume that all kinds of users [including end users in particular] understand the act of 
comparing values, but that relatively few understand the complexities of pointers.  The relational 
model is based on this fundamental principle ... [The] manipulation of pointers is more bug-prone than 
is the act of comparing values, even if the user happens to understand the complexities of pointers.   

 
In view of the foregoing, it’s curious that so many people seem to regard object IDs as the 

sine qua non of the object model.29  For example, The Object-Oriented Database System Manifesto 
says “Thou shalt support object identity”—but it doesn’t give any logical justification for such an 
edict.  Likewise, in his paper “A Shift in the Landscape (Assessing SQL3’s New Object 
Direction),” Database Programming & Design 9, No. 8 (August 1996), Jim Melton says 
“References in the form of object identifiers are the key [sic!] to the object oriented paradigm,” but 
he provides no evidence in support of this strong claim.  And in a useful annotated and 
comprehensive anthology of writings on the subject compiled by Declan Brady (a private 
communication dated July 1st, 1996, containing “the substance of everything I’ve managed to 
unearth on the [subject] of object IDs”), numerous similar assertions can be found.  So far as I can 
see, however, none of those assertions is accompanied by any logical supporting arguments.   
 
The arguments earlier in this appendix against the “persistence orthogonal to type” idea are 

also based in part on this paper.   

                                                             
 
28 Indeed, it’s this aspect of object systems that gives rise to the criticisms, sometimes heard, to the effect that such systems “look 
like CODASYL warmed over.”   
 
29 Personally, I would have said user defined types were the sine qua non.   



  

Appendix  C 
 
 

G l o s s a r y   o f   T e r m s 
 
 

The Manifesto model of type inheritance involves a number of concepts that in some cases, at 
least, you probably weren’t previously familiar with, and for that reason you might have 
experienced some difficulty in keeping them all straight in your head while you were reading the 
text.  As an aide mémoire, therefore, this appendix provides a brief summary of some of the 
more important of those concepts.  Note, however, that for ease of understanding the definitions 
that follow are sometimes a little rough and ready; they’re accurate as far as they go, but they’re 
not always quite as complete or precise as those in the body of the book, and in a few cases 
they’re quite considerably reworded.  Also, the full implications of certain of the definitions—
common subtype is a case in point—for tuple and relation types are deliberately omitted.   
 

——— ♦♦♦♦♦ ——— 
 
alpha  The maximal scalar type.   
 
binding  The process of determining which version of a given operator is to be executed in 
response to a given invocation of the operator in question.   
 
common subtype  Type T′ is a common subtype for, or of, types T1, T2, ..., Tm if and only if, 
whenever a given value is of type T′, it’s also of each of types T1, T2, ..., Tm.   
 
common supertype  Type T is a common supertype for, or of, types T1, T2, ..., Tm if and only 
if, whenever a given value is of at least one of types T1, T2, ..., Tm, it’s also of type T.   
 
compile time binding  Given an expression OpI denoting an invocation of some operator Op, 
the process of finding, at compile time, the invocation signature for Op for which the declared 
types of the parameters exactly match the declared types of the corresponding argument 
expressions in OpI, thereby causing the corresponding version of Op to be invoked at run time 
(unless the compiler’s decision is overridden at run time by run time binding, q.v.).   
 
declared type  The type specified when some item (such as a variable, an attribute, a parameter, 
or a read-only operator) is declared.  Moreover, since every expression—even if it’s just a literal 
or a simple variable reference—consists essentially of an invocation of some read-only operator, 
it follows that expressions have a declared type too.   
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delegation  A mechanism according to which the responsibility for implementing some operator 
Op for some type T is delegated to some other type, typically but not necessarily the type of 
some component of some possrep for T.   
 
derived possrep  Let T′ be a scalar type with at least one regular immediate supertype.  Then 
each possrep declared for T′ is a derived possrep, explicitly defined in terms of some possrep for 
some regular immediate supertype of T′.  Contrast inherited possrep.   
 
disjointness assumption  A simplifying assumption, valid with single but not multiple 
inheritance, to the effect that types T1 and T2 are disjoint if and only if neither is a subtype of the 
other.   
 
DT(X)  The declared type of X.   
 
dummy type  A union type with no possrep.   
 
generalization by constraint  Let types T′′, T′, and T be such that T′′ is a proper subtype of T′ 
and T′ is a subtype of T, and let v′ be a value that satisfies the type constraint for type T′ and not 
for any proper subtype of T′.  Also, let V be a variable of declared type T, and let the most 
specific type of V be T′′.  Finally, let the value v′ be assigned to V.  Then generalization by 
constraint (G by C) occurs, and the most specific type of V becomes T′.   
 
immediate subtype  Type T′ is an immediate subtype of type T if and only if it’s a proper 
subtype of T and there’s no type that’s both a proper supertype of T′ and a proper subtype of T.   
 
immediate supertype  Type T is an immediate supertype of type T′ if and only if it’s a proper 
supertype of T′ and there’s no type that’s both a proper subtype of T and a proper supertype of T′.   
 
implementation version  Let type T be a proper supertype of type T′, and let Op be a read-only 
operator that applies to values of type T and hence, by definition, to values of type T′ also 
(read-only just to be definite; the implementation version concept applies to update operators too, 
mutatis mutandis).  Then it’s possible, though not required, for Op to have two distinct 
implementation versions, one for values of type T and one for values of type T′.  If so, however, 
then both versions should implement the same semantics.   
 
inclusion polymorphism  Every read-only operator that applies to values of a given type T 
necessarily applies to values of every proper subtype T′ of T.  Such an operator is thus 
polymorphic, and the kind of polymorphism it exhibits is called inclusion polymorphism, on the 
grounds that the relationship between T and T′ is basically that of set inclusion.  As for update 
operators, an update operator that applies to variables of type T might or might not apply to 
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variables of some proper subtype T′ of T.  If it does, then it too is said to exhibit inclusion 
polymorphism.   
 
inherited possrep  Let T′ be a scalar type with at least one regular immediate supertype T.  Then 
every possrep PR (declared or otherwise) for values of type T is necessarily, albeit implicitly, an 
inherited possrep for values of type T′ as well.  However, PR isn’t considered a derived possrep 
(q.v.) for type T′ unless it’s explicitly declared.   
 
intersection type  Least specific common subtype.  Also known as intersection subtype.   
 
invocation signature  See signature.   
 
leaf type  A scalar type T is a leaf type if and only if the only immediate subtype of T is omega.  
A tuple or relation type T is a leaf type if and only if every attribute of T is of some leaf type.   
 
least specific common subtype  Type T′ is the least specific common subtype for types T1, T2, 
..., Tm if and only if it’s a common subtype for T1, T2, ..., Tm and no proper supertype of T′ is 
also a common subtype for those types.   
 
least specific common supertype  The applicable maximal type.   
 
least specific type  Let value v be of type T and not of any proper supertype of T; then T is the 
least specific type of v.  Note that T is necessarily a maximal type (e.g., if v is a scalar value in 
particular, the least specific type of v is alpha).  Informally, however, least specific types are 
often defined to exclude superroot types, thus:  Let v be of type T and let T be a root type; then 
T is the least specific type of v.   
 
maximal type  The least upper bound with respect to a given type lattice (i.e., the type within 
that lattice that contains the union of all of the sets of values in all of the types in that lattice).   
 
minimal type  The greatest lower bound with respect to a given type lattice (i.e., the type within 
that lattice that contains the intersection of all of the sets of values in all of the types in that 
lattice).   
 
most specific common subtype  The applicable minimal type.   
 
most specific common supertype  Type T is the most specific common supertype for types T1, 
T2, ..., Tm if and only if it’s a common supertype for T1, T2, ..., Tm and no proper subtype of T is 
also a common supertype for those types.   
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most specific type  Let value v be of type T.  If and only if no proper subtype T′ of type T exists 
such that v is also of type T′, then T is the most specific type for, or of, v.   
 
MST(X)  The most specific type of X.   
 
omega  The minimal scalar type.   
 
overloading  Same as overloading polymorphism.   
 
overloading polymorphism  Using the same name for two or more different operators.  The 
operators in question must have different specification signatures (q.v.) but should preferably 
have similar semantics.   
 
proper subtype  Type T′ is a proper subtype of type T if and only if it’s a subtype of T and T and 
T′ are distinct.   
 
proper supertype  Type T is a proper supertype of type T′ if and only if it’s a supertype of T′ 
and T and T′ are distinct.   
 
regular type  A scalar type that’s not a dummy type.   
 
root type  A scalar type T is a root type if and only if the only immediate supertype of T is 
alpha.  A tuple or relation type T is a root type if and only if every attribute of T is of some root 
type.   
 
run time binding  Given some invocation OpI of some operator Op, the process of finding, at 
run time, the invocation signature for Op for which the declared types of the parameters exactly 
match the most specific types of the corresponding arguments to OpI, thereby causing the 
corresponding version of Op to be invoked.   
 
signature  Let Op be a read-only operator, with parameters P1, P2, ..., Pn, and let parameter Pi 
have declared type DTi (i = 1, 2, ..., n).  Then Op has a specification signature and a set of 
invocation signatures, where:   

 
! The specification signature consists of the operator name, the parameter declared types 

PDT1, PDT2, ..., PDTn, and the result declared type RDT.   
 
! Each invocation signature consists of one possible combination of argument expression 

declared types ADT1, ADT2, ..., ADTn, together with the declared type IRDT of the result 
produced by an invocation of Op with arguments of most specific types equal to the 
declared types ADT1, ADT2, ..., ADTn, respectively, specified in the invocation signature 
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in question.  ADT1, ADT2, ..., ADTn, and IRDT are necessarily subtypes of PDT1, PDT2, 
..., PDTn, and RDT, respectively.   

 
Now let Op be an update operator, with parameters P1, P2, ..., Pn, and let parameter Pi 

have declared type PDTi (i = 1, 2, ..., n).  Then (again) Op has a specification signature and a set 
of invocation signatures, where:   

 
! The specification signature consists of the operator name, the parameter declared types 

PDT1, PDT2, ..., PDTn, and an indication as to which parameters are subject to update.   
 
! Each invocation signature consists of one possible combination of argument expression 

declared types ADT1, ADT2, ..., ADTn.  ADT1, ADT2, ..., ADTn are necessarily subtypes of 
PDT1, PDT2, ..., PDTn, respectively.   

 
specialization by constraint  Let S be a selector of declared type T, and let X be an expression 
denoting an invocation of S.  Let the value returned by X be x.  Further, let x satisfy the type 
constraint for proper subtype T′ of T and not for any proper subtype of T′.  Then specialization by 
constraint (S by C) occurs, and the most specific type of X becomes T′.   
 
specialization constraint  Let T be a regular type, and let T′ be a nonempty immediate subtype 
of T.  Then the type constraint for type T′ will specify that, in order for some given value to be of 
type T′, that value must be of type T and must additionally satisfy some further constraint.  That 
type constraint is the specialization constraint for type T′.   
 
specification signature  See signature.   
 
subleaf type  A scalar type is a subleaf type if and only if it’s type omega.  A tuple or relation 
type is a subleaf type if and only if it’s a proper subtype of some tuple or relation leaf type (in 
which case it must have at least one attribute of some subleaf type).   
 
substitutability  Value substitutability or variable substitutability or both, as the context 
demands.   
 
subtype  Type T′ is a subtype of type T if and only if every value of type T′ is a value of type T.   
 
superroot type  A scalar type is a superroot type if and only if it’s type alpha.  A tuple or 
relation type is a superroot type if and only if it’s a proper supertype of some tuple or relation 
root type (in which case it must have at least one attribute of some superroot type).   
 
supertype  Type T is a supertype of type T′ if and only if every value of type T′ is a value of 
type T.   
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T_alpha  The maximal type with respect to the type lattice containing type T.   
 
T_omega  The minimal type with respect to the type lattice containing type T.   
 
type constraint error  The error that occurs if a selector is invoked with arguments that violate 
the applicable type constraint.  Such errors are detected at run time.  Contrast type error.   
 
type error  The error that occurs if an operator is invoked with argument types not matching 
those specified for some invocation signature for the operator in question.  Such errors are 
detected at compile time (except, sometimes, in the context of TREAT).  Contrast type 
constraint error.   
 
type lattice  Given some type T, the set of all subtypes of the corresponding maximal type 
T_alpha (equivalently, the set of all supertypes of the corresponding minimal type T_omega) is 
the type lattice corresponding to T.   
 
union type  A scalar type T such that every value v of type T has as its most specific type some 
proper subtype of T.   
 
v(X)  The value of X.   
 
value substitutability  Wherever a value of type T is permitted, a value of any subtype of T can 
be substituted.   
 
variable substitutability  Wherever a variable of declared type T is permitted, a variable of 
declared type some nonempty subtype of T can be substituted—but only if such substitution 
makes sense.   
 
version  Same as implementation version.   
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