
www.allitebooks.com

http://www.allitebooks.org

Ubuntu Server
Cookbook

Arm yourself to make the most of the versatile, powerful
Ubuntu Server with over 100 hands-on recipes

Uday R. Sawant

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ubuntu Server Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-306-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Uday R. Sawant

Reviewer
Dominik Jakub Szynk

Commissioning Editor
Neil Alexander

Acquisition Editor
Divya Poojari

Content Development Editor
Deepti Thore

Technical Editor
Devesh Chugh

Copy Editor
Safis Editing

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Uday R. Sawant has completed his master's in computer applications from Mumbai
University. He is skilled with more than four years of experience in software development
and operations field.

He is an expert with the LAMP stack, JavaScript, and cloud infrastructure. Before starting as a
software developer, he worked extensively with server hardware and has more than two years
of experience as system administrator.

Currently, he is working as a software scientist in a Mumbai-based start-up called Sweet
Couch. His responsibilities include developing backend services, setting up real-time
communication server, and automating various daily tasks. With immense interest in machine
learning, he likes to spend his spare time exploring this subject. His first book was Instant
Building Multi-Page Forms with Yii How-To published by Packt Publishing.

I would like to thank Packt Publishing for giving me another opportunity to
work with them and write my second book. A big thanks goes to my parents
for their support throughout the time of writing this book. Also, I would like
to thank my team at Sweet Couch as without their support, it would have
not been possible to write a full length book. A special thanks to Mr. Mitul
Thakkar who always encouraged me to keep on writing. Finally, thanks to
Preeti Singh, an editor for this book, for keeping things on track.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

i

Table of Contents
Preface	 vii
Chapter 1: Managing Users and Groups	 1

Introduction	 1
Creating a user account	 2
Creating user accounts in batch mode	 6
Creating a group	 7
Adding group members	 8
Deleting a user account	 9
Managing file permissions	 11
Getting root privileges with sudo	 15
Setting resource limits with limits.conf	 17
Setting up public key authentication	 19
Securing user accounts	 22

Chapter 2: Networking	 27
Introduction	 27
Connecting to a network with a static IP	 28
Installing the DHCP server	 32
Installing the DNS server	 34
Hiding behind the proxy with squid	 42
Being on time with NTP	 45
Discussing load balancing with HAProxy	 48
Tuning the TCP stack	 51
Troubleshooting network connectivity	 54
Securing remote access with OpenVPN	 60
Securing a network with uncomplicated firewall	 65
Securing against brute force attacks	 69
Discussing Ubuntu security best practices	 73

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Working with Web Servers	 77
Introduction	 77
Installing and configuring the Apache web server	 79
Serving dynamic contents with PHP	 84
Hosting multiple websites with a virtual domain	 88
Securing web traffic with HTTPS	 92
Installing Nginx with PHP_FPM	 97
Setting Nginx as a reverse proxy	 102
Load balancing with Nginx	 106
Setting HTTPs on Nginx	 110
Benchmarking and performance tuning of Apache	 113
Securing the web server	 115
Troubleshooting the web server	 119

Chapter 4: Working with Mail Servers	 123
Introduction	 123
Sending e-mails with Postfix	 123
Enabling IMAP and POP3 with Dovecot	 127
Adding e-mail accounts	 130
Mail filtering with spam-assassin	 133
Troubleshooting the mail server	 135
Installing the Zimbra mail server	 138

Chapter 5: Handling Databases	 143
Introduction	 143
Installing relational databases with MySQL	 144
Storing and retrieving data with MySQL	 147
Importing and exporting bulk data	 150
Adding users and assigning access rights	 152
Installing web access for MySQL	 154
Setting backups	 158
Optimizing MySQL performance – queries	 159
Optimizing MySQL performance – configuration	 164
Creating MySQL replicas for scaling and high availability	 167
Troubleshooting MySQL	 171
Installing MongoDB	 173
Storing and retrieving data with MongoDB	 174

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 6: Network Storage	 179
Introduction	 179
Installing the Samba server	 180
Adding users to the Samba server	 183
Installing the secure FTP server	 187
Synchronizing files with Rsync	 189
Performance tuning the Samba server	 193
Troubleshooting the Samba server	 195
Installing the Network File System	 199

Chapter 7: Cloud Computing	 203
Introduction	 203
Creating virtual machine with KVM	 204
Managing virtual machines with virsh	 208
Setting up your own cloud with OpenStack	 213
Adding a cloud image to OpenStack	 217
Launching a virtual instance with OpenStack	 222
Installing Juju a service orchestration framework	 226
Managing services with Juju	 230

Chapter 8: Working with Containers	 233
Introduction	 234
Installing LXD, the Linux container daemon	 235
Deploying your first container with LXD	 238
Managing LXD containers	 242
Managing LXD containers – advanced options	 245
Setting resource limits on LXD containers	 246
Networking with LXD	 250
Installing Docker	 254
Starting and managing Docker containers	 258
Creating images with a Dockerfile	 262
Understanding Docker volumes	 268
Deploying WordPress using a Docker network	 271
Monitoring Docker containers	 275
Securing Docker containers	 277

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Chapter 9: Streaming with Ampache	 281
Introduction	 281
Installing the Ampache server	 281
Uploading contents and creating catalogs	 288
Setting on-the-fly transcoding	 290
Enabling API access for remote streaming	 292
Streaming music with Ampache	 294

Chapter 10: Communication Server with XMPP	 297
Introduction	 297
Installing Ejabberd	 298
Creating users and connecting with the XMPP client	 301
Configuring the Ejabberd installation	 308
Creating web client with Strophe.js	 313
Enabling group chat	 318
Chat server with Node.js	 322

Chapter 11: Git Hosting	 327
Introduction	 327
Installing Git	 328
Creating a local repository with Git CLI	 331
Storing file revisions with Git commit	 333
Synchronizing the repository with a remote server	 337
Receiving updates with Git pull	 341
Creating repository clones	 344
Installing GitLab, your own Git hosting	 346
Adding users to the GitLab server	 348
Creating a repository with GitLab	 350
Automating common tasks with Git hooks	 352

Chapter 12: Collaboration Tools	 357
Introduction	 357
Installing the VNC server	 358
Installing Hackpad, a collaborative document editor	 363
Installing Mattermost – a self-hosted slack alternative	 369
Installing OwnCloud, self-hosted cloud storage	 375

v

Table of Contents

Chapter 13: Performance Monitoring	 381
Introduction	 381
Monitoring the CPU	 382
Monitoring memory and swap	 388
Monitoring the network	 394
Monitoring storage	 400
Setting performance benchmarks	 404

Chapter 14: Centralized Authentication Service	 411
Introduction	 411
Installing OpenLDAP	 412
Installing phpLDAPadmin	 416
Ubuntu server logins with LDAP	 420
Authenticating Ejabberd users with LDAP	 423

Index	 427

vii

Preface
Welcome to Ubuntu Server Cookbook, a step-by-step guide to your own Ubuntu server.

Ubuntu is an open source operating system, or rather, I should say that Ubuntu is a mission to
provide quality software to everybody without any cost. As mentioned on the official site, the
meaning of the word Ubuntu is I am, cause we are and Ubuntu is working hard towards their
mission by being more than just a free operating system.

Ubuntu is based on Debian, a well-established Linux distribution. However, Debian is kind of
limited to geeks. Ubuntu added an easy user interface named Unity that made it popular with
various desktop users. One answer on Ask Ubuntu compares Ubuntu and Debian to a local
restaurant and a farmer, respectively. Ubuntu carefully selects the best things from Debian
and adds its own flavors to make it easy and more enjoyable for the end users. It's still Debian
at base, but it more easier to use and more stable with frequent updates and a definite
release cycle.

Users can choose an Ubuntu operating system from nine different flavors, starting with
lightweight desktop to a fully loaded multimedia editing system. In addition to desktop
systems, Ubuntu provides separate editions for various server platforms, cloud systems,
mobile devices, and tablets. The new versions are released every six months with a major
release in April and updates in October. All security updates are released throughout the year,
as and when necessary. Every new version released in an even year (2014, 2016, and so on)
are tagged for Long Term Support (LTS). These versions receive extended support period of
five years and are generally used in production environments.

At the time of writing, Ubuntu has already taken a major share in the server market and has
already become a default choice of millions of cloud users. According to an article by Dustin
Kirkland, a member of the product team at Canonical, "November 2015 has seen over
2 million cloud instances being launched with Ubuntu Server. That's nearly one instance per
second" and these are just the numbers from cloud services. Ubuntu is being used in Desktop
systems, laptops, mobiles, routers, and even to control your cars, drones, and countless
Internet of Things (IoT) devices. Docker hub, a popular container repository reports more
than 40 million pulls of official Ubuntu image.

Preface

viii

The purpose of this book is to provide step-by-step solutions using the Ubuntu server. We
will focus on common, server-related tasks such as user management, installing various
packages for web servers, database, some low hanging fruits in performance and security,
and many more. The book also covers the latest development in the container world with
LXD and Docker. All recipes are based on the Ubuntu server, Xenial Xerus (version 16.04),
the latest LTS release of Ubuntu.

What this book covers
The book is divided into multiple chapters, covering details of specific tasks.

Chapter 1, Managing Users and Groups, covers common user management tasks such as
adding or removing user accounts, creating separate groups, assigning access rights, and
setting user-level resource limits.

Chapter 2, Networking, explore the various network management functions, including network
configuration, setting up DNS and DHCP servers, installing network proxy, and VPN setup.
It also includes performance tuning tips and firewall setup.

Chapter 3, Working with Web Servers, provides a detailed configuration of web servers.
This chapter covers both Apache and Nginx. You will also find some advance topics such
as reverse proxy and load balancing using Nginx.

Chapter 4, Working with Mail Servers, explains the installation and configuration of your
e-mail server.

Chapter 5, Handling Databases, discusses the popular relational database server, MySQL.
It also covers MongoDB as a NoSQL database system, which is quite a hot technology in
recent days.

Chapter 6, Network Storage, explains how to set up the good old Samba server along with
FTP and Rsync details. Additionally, it includes the basics of NFS.

Chapter 7, Cloud Computing, includes details on virtualization with the Ubuntu server and
some advance tools from Ubuntu to set up your own cloud system with OpenStack and Juju.

Chapter 8, Working with Containers, introduces Linux containers (LXC) and a container
management tool by Ubuntu, LXD. This chapter also covers another hot topic, Docker.

Chapter 9, Streaming with Ampache, helps you to set up your own streaming server. We will
take a quick look at Ampache, an open source web application for media streaming.

Chapter 10, Communication Server with XMPP, covers the installation of XMPP-based chat
server, Ejabberd.

Preface

ix

Chapter 11, Git Hosting, covers basic work flow of version control system Git and an open
source web-based repository management tool GitLab.

Chapter 12, Collaboration Tools, explores more open source tools for your team and also covers
the various tools to help your team stay connected.

Chapter 13, Performance Monitoring, introduces various monitoring tools that can help you
optimize the performance of your Ubuntu server.

Chapter 14, Centralized Authentication Service, saves some efforts by introducing LDAP.
This chapter covers the LDAP-based centralized authentication and authorization.

What you need for this book
The book is written with the help of Ubuntu server 16.04 and few virtual machines with
VirtualBox. The recipes should work fine with Ubuntu version 14.04 and higher. For most of
the recipes, a minimum hardware configuration of 512 MB memory with single CPU is enough.
However, a few recipes such as OpenStack installation require additional hardware resources.
The specific requirements are given in the respective recipes, if any.

Feel free to use any virtualization tool of your choice. Also, you can skip the local set up and
use cloud servers. Many cloud providers give free introductory service for limited period. You
can use these services to test your setup.

Who this book is for
Ubuntu Server Cookbook is intended for system administrators with a basic understanding
of Linux operating system. If you are a software developer or a newbie system administrator
and want to setup your own servers, this book is an ideal guide for you. You are not required
to have an in-depth knowledge or hands-on experience with Ubuntu, but you should know
the basic commands for directory navigation, file management, and file editing tool. An
understanding of computer networks and Internet is advisable.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Preface

x

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can
check other log files like /var/log/mail.err and /var/log/upstart/dovecot.log "

A block of code is set as follows:

disable_plaintext_auth = yes

Any command-line input or output is written as follows:

$ sudo adduser bob

Preface

xi

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "You can access the Inbox
panel on port 7071."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

xii

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Ubuntu-Server-Cookbook. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from: http://www.packtpub.com/sites/default/files/
downloads/UbuntuServerCookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Ubuntu-Server-Cookbook
https://github.com/PacktPublishing/Ubuntu-Server-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/UbuntuServerCookbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/UbuntuServerCookbook_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

xiii

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

Chapter 1

1

1
Managing Users

and Groups

In this chapter, we will cover the following recipes:

ff Creating a user account

ff Creating user accounts in batch mode

ff Creating a group

ff Adding group members

ff Deleting a user account

ff Managing file permissions

ff Getting root privileges with sudo

ff Setting resource limits with limits.conf

ff Setting up public key authentication

ff Securing user accounts

Introduction
In this chapter, you will see how to add new users to the Ubuntu server, update existing
users, and set permissions for users. You will get to know the default setting for new users
and how to change them. Also, you will take a look at secure shell (SSH) access and securing
user profiles.

Managing Users and Groups

2

Creating a user account
While installing Ubuntu, we add a primary user account on the server; if you are using the
cloud image, it comes preinstalled with the default user. This single user is enough to get
all tasks done in Ubuntu. There are times when you need to create more restrictive user
accounts. This recipe shows how to add a new user to the Ubuntu server.

Getting ready
You will need super user or root privileges to add a new user to the Ubuntu server.

How to do it…
Follow these steps to create the new user account:

1.	 To add a new user in Ubuntu, enter following command in your shell:
$ sudo adduser bob

2.	 Enter your password to complete the command with sudo privileges:

3.	 Now enter a password for the new user:

Chapter 1

3

4.	 Confirm the password for the new user:

5.	 Enter the full name and other information about the new user; you can skip this part
by pressing the Enter key.

6.	 Enter Y to confirm that information is correct:

Managing Users and Groups

4

7.	 This should have added new user to the system. You can confirm this by viewing the
file /etc/passwd:

How it works…
In Linux systems, the adduser command is higher level command to quickly add a new user
to the system. Since adduser requires root privileges, we need to use sudo along with the
command, adduser completes following operations:

1.	 Adds a new user.

2.	 Adds a new default group with the same name as the user.

3.	 Chooses UID (user ID) and GID (group ID) conforming to the Debian policy.

4.	 Creates a home directory with skeletal configuration (template) from /etc/skel.

5.	 Creates a password for the new user.

6.	 Runs the user script, if any.

If you want to skip the password prompt and finger information while adding the new user,
use the following command:

$ sudo adduser --disabled-password --gecos "" username

Alternatively, you can use the useradd command as follows:

$ sudo useradd -s <SHELL> -m -d <HomeDir> -g <Group> UserName

Where:

ff -s specifies default login shell for the user

ff -d sets the home directory for the user

ff -m creates a home directory if one does not already exist

ff -g specifies the default group name for the user

Creating a user with the command useradd does not set password for the user account.
You can set or change the user password with the following command:

$sudo passwd bob

Chapter 1

5

This will change the password for the user account bob.

Note that if you skip the username part from the above command
you will end up changing the password of the root account.

There's more…
With adduser, you can do five different tasks:

ff Add a normal user

ff Add a system user with system option

ff Add user group with the--group option and without the--system option

ff Add a system group when called with the --system option

ff Add an existing user to existing group when called with two non-option arguments

Check out the manual page man adduser to get more details.

You can also configure various default settings for the adduser command. A configuration
file /etc/adduser.conf can be used to set the default values to be used by the adduser,
addgroup, and deluser commands. A key value pair of configuration can set various default
values, including the home directory location, directory structure skel to be used, default
groups for new users, and so on. Check the manual page for more details on adduser.conf
with following command:

$ man adduser.conf

See also
ff Check out the command useradd, a low level command to add new user to system

ff Check out the command usermod, a command to modify a user account

ff See why every user has his own group at http://unix.stackexchange.com/
questions/153390/why-does-every-user-have-his-own-group

http://unix.stackexchange.com/questions/153390/why-does-every-user-have-his-own-group
http://unix.stackexchange.com/questions/153390/why-does-every-user-have-his-own-group

Managing Users and Groups

6

Creating user accounts in batch mode
In this recipe, you will see how to create multiple user accounts in batch mode without using
any external tool.

Getting ready
You will need a user account with root or root privileges.

How to do it...
Follow these steps to create a user account in batch mode:

1.	 Create a new text file users.txt with the following command:
$ touch users.txt

2.	 Change file permissions with the following command:
$ chmod 600 users.txt

3.	 Open users.txt with GNU nano and add user account details:
$ nano users.txt

4.	 Press Ctrl + O to save the changes.

5.	 Press Ctrl + X to exit GNU nano.

6.	 Enter $ sudo newusers users.txt to import all users listed in users.txt file.

7.	 Check /etc/passwd to confirm that users are created:

Chapter 1

7

How it works…
We created a database of user details listed in same format as the passwd file. The default
format for each row is as follows:

username:passwd:uid:gid:full name:home_dir:shell

Where:

ff username: This is the login name of the user. If a user exists, information for user will
be changed; otherwise, a new user will be created.

ff password: This is the password of the user.

ff uid: This is the uid of the user. If empty, a new uid will be assigned to this user.

ff gid: This is the gid for the default group of user. If empty, a new group will be
created with the same name as the username.

ff full name: This information will be copied to the gecos field.

ff home_dir: This defines the home directory of the user. If empty, a new home
directory will be created with ownership set to new or existing user.

ff shell: This is the default login shell for the user.

The new user command reads each row and updates the user information if the user already
exists, or it creates a new user.

We made the users.txt file accessible to owner only. This is to protect this file,
as it contains the user's login name and password in unencrypted format.

Creating a group
Group is a way to organize and administer user accounts in Linux. Groups are used to
collectively assign rights and permissions to multiple user accounts.

Managing Users and Groups

8

Getting ready
You will need super user or root privileges to add a group to the Ubuntu server.

How to do it...
Follow these steps to create a group:

1.	 Enter the following command to add a new group:
$ sudo addgroup guest

2.	 Enter your password to complete addgroup with root privileges.

How it works…
Here, we are simply adding a new group guest to the server. As addgroup needs root
privileges, we need to use sudo along with the command. After creating a new group,
addgroup displays the GID of the new group.

There's more…
Similar to adduser, you can use addgroup in different modes:

ff Add a normal group when used without any options

ff Add a system group with the--system option

ff Add an existing user to an existing group when called with two non-option arguments

Check out the manual page for the addgroup(man addgroup) to get more details.

See also
ff Check out groupadd, a low level utility to add new group to the server

Adding group members
Once you have groups in place, you can add existing users as well as new users to that group.
All access rights and permissions assigned to the group will be automatically available to all
the members of the group.

Getting ready
You will need super user or root privileges to add a group member to the Ubuntu server.

Chapter 1

9

How to do it…
Follow these steps to add group members:

1.	 Here, you can use adduser command with two non-option arguments:
$ sudo adduser john guest

2.	 Enter your password to complete addgroup with root privileges.

How it works…
As mentioned previously, you can use the adduser command to add an existing user to an
existing group. Here, we have passed two non-option arguments:

ff john: This is the name of the user to be added to the group

ff guest: This is the name of the group

There's more…
Alternatively, you can use the command usermod to modify the group assigned to the user:

$ sudo usermod -g <group> <username>

To add a user to multiple groups, use the following command:

$ sudo usermod -a -G <group1>,<group2>,<group3> <username>

This will add <username> to <group1>, <group2>, and <group3>. Without flag –a, any
previously assigned groups will be replaced with new groups.

Deleting a user account
If you no longer need a user account, it is good idea to delete that account.

Getting ready
You will need super user or root privileges to delete a group from the Ubuntu server.

www.allitebooks.com

http://www.allitebooks.org

Managing Users and Groups

10

How to do it...
Follow these steps to delete the user account:

1.	 Enter the following command to delete a user account:
$ sudo deluser --remove-home john

2.	 Enter your password to complete addgroup with root privileges:

How it works…
Here, we used the deluser command with the option --remove-home. This will delete
the user account named john and also remove the home and mail spool directories
associated with john. By default, the deluser command will delete the user without
deleting the home directory.

It is a good idea to keep a backup of user files before removing the home directory and any
other files. This can be done with an additional flag along with the deluser command:

$ deluser --backup --remove-home john

This will create a backup file with the name john.tar.gz in the current working directory,
and then the user account and the home directory will removed.

There's more…
When called with the --group option, the deluser command will remove the group.
Similarly, when called with two non-option arguments, the deluser command will try to
remove a user from a specific group:

$ deluser john guest # this will remove user john from group guest

$ deluser --group guest # this will remove a group

Chapter 1

11

If you want to disable the user account rather than delete it, you can do it with the
following commands:

$ sudo usermod --expiredate 1 john # disable the user account john

$ sudo usermod --expiredate "" john # re-enable user account john

$ sudo usermod -e YYYY-MM-DD john # specify expiry date

See also
ff Refer to the manual page for deluser with man deluser

Managing file permissions
We have created users and groups. In this recipe, you will work with default file permissions
for users and groups, as well as see how to modify those permissions.

Getting ready
Create two users, user1 and user2. Create new group editor and add user1 and user2
as members.

How to do it…
Follow these steps to manage file permissions, follow these steps:

1.	 To change groups for files and directories:

1.	 Log in with user1.

2.	 Create a new directory documents under home:
	 user1@ubuntu:~$ mkdir documents

3.	 Create a text file under documents:
	 user1@ubuntu:~$ echo "hello world"> documents/file.txt

4.	 Now log in with user2:
	 user1@ubuntu:~$ su user2

Managing Users and Groups

12

5.	 Try to edit the same text file. It should say Permission denied:
user2@ubuntu:/home/user1$ echo "hello again">
documents/file.txt

6.	 log in as user1 and change the group of documents to editor:
	 user1@ubuntu:~$ chgrp -R editor documents

7.	 Switch to user2 and try editing the same file. Now it should work:

2.	 To set permissions with chmod, follow these steps:

1.	 Create simple shell script with the following command:
	 $ echo 'echo "Hello World!!"'> hello.sh

2.	 Execute a shell script with the following command:
	 $./hello.sh

3.	 Set executable permission to hello.sh with the following command:
	 $ chmod u+x hello.sh

Chapter 1

13

4.	 Check new permission with the following command:
	 $ ls -l

5.	 Execute hello.sh again:

3.	 To protect shared files with sticky bit, follow these steps:

1.	 Log in as user1 and set sticky bit for directory documents:
	 user1@ubuntu:~$ chmod +t documents

2.	 Log in as user2 and create a new file.

3.	 Try to delete any file under documents. It should fail:

How it works…
When you create a new file or directory in Ubuntu, the default permissions for files are read
and write access to owner and owner's private group, along with read, write, and execute
access for directories. You can check the default setting with umask -S.

In our example, we have user1 and user2. Both of them are members of the editor group.
When user1 creates a file, the default permissions are limited to user1 and its private group
(user1) named after the user account. This is the reason user2 sees Permission denied
on editing file. By changing the group of documents to editor we allow all members of
editor to read and write to files in documents.

Managing Users and Groups

14

With the chmod command, we can set permissions at a more granular level. In our example of
hello.sh, we have set the executable permission for hello.sh. Similarly, we can set read
permission as follows:

$chmod +r filename

To set write permission, use the following command:

$chmod +w filename

You can set more selective permissions with additional parameters before mode expression
as follows:

$chmod ugo+x filename

Here, u sets the permission for user, g for group, and o for all others.

To remove permissions, replace + with -. For example, $chmod o-w filename.
Alternatively, you can use the Octal format to specify permissions:

$chmod 777 filename

This gives read, write, and execute permission to user group and others, whereas the
command $chmod 600 filename gives set, read, and write permissions for owner and
no permission to groups and others. In Octal format [777], the first bit is used for the user or
owner of the file, the second bit is for group, and the third bit is for everyone else. Check out
the following table for more information:

Notation Octal value Permissions
-|---|---|--- 0|000|000|000 Regular files, no permissions
d|r--|r--|r-- d|400|400|400 Directory, read permission to owner, group, and

others
-|rw-|r--|r-- -|644|644|644 Regular file, read and write permission to owner

and read permission to group or others
-|rwx|rwx|rwx -|777|777|777 Regular file, all permissions to everyone

Finally, when you share files within a group of users, there are chances that someone deletes
the file that is required by other users. Sticky bit can protect these file from deletion. When
sticky bit is set, only the owner or a user with root privileges can delete a file.

You can set sticky bit with the command chmod as $chmod +t directoryName. Sticky
bit is shown in long listing (ls -l) with symbol t or T. Additionally, sticky bit works only with
directories and is ignored on ordinary files.

Chapter 1

15

There's more…
Many times when working as a root user, all files and directories created are owned by root.
A non-root user can't write to these directories or files. You can use the command chown to
change the ownership of such files and assign them to respective users.

To change ownership of a file, use the following command:

$chown newuser filename

To change the owner as well as the group of file, use the following command:

$chown newuser:newgroup filename

You can skip changing owner and change only the group with the following command:

$chown :newgroup filename

Note that the chown command can only be used by users with root privileges.

Getting root privileges with sudo
When you create a new Ubuntu server in the cloud, by default you get the root account.
This account has full system access with no restrictions at all and should only be used for
administrative tasks. You can always create a new user account with fewer privileges. But
there are times when you need extra root privileges to add a new user or change some system
setting. You can use the sudo command to temporarily get extra privileges for a single
command. In this recipe, you will see how to grant sudo privileges to a newly created user.

Getting ready
You will need a root account or an account with root privileges.

How to do it...
Follow these steps to get the root privileges with sudo:

1.	 Add new user if required:
$sudo adduser john

2.	 Make john a member of sudo group with the following command:

$sudo adduser username sudo

Managing Users and Groups

16

How it works…
All sudo access rules are configured in a file located at /etc/sudoers. This file contains a
list of users and groups that are allowed to use the sudo command:

alan ALL=(ALL:ALL)ALL // allow sudo access to user alan
%sudo ALL=(ALL) ALL // allow sudo access to members of sudo

The line alan ALL=(ALL:ALL) ALL specifies that the user alan can run any
command as any user and optionally set any group (taken from man pages for
sudoers: man sudoers).

The entry %sudo ALL=(ALL) ALL specifies that any member of system group sudo can run
any command as any user.

All we have to do is add a new user to the group sudo and that user will automatically get
sudo privileges. After getting the membership of the sudo group, user needs to log out and
log back in for the changes to take effect. Basically, the user shell needs to be restarted
with new privileges. Optionally, you can always go and change the sudoers file for a
specific condition.

Make sure that you use the visudo tool to make any changes to
sudoers file.

There's more…
Here, we will discuss how to set a password-less sudo and some additional benefits of sudo.

Setting password less sudo
sudo is a useful and handy tool for temporary root privileges, but you need to enter your
password every time. This creates problems especially for users with no password set. This
problem can be solved by setting the NOPASSWD flag in the sudoers file. Make sure you use
the visudo tool to edit the sudoers file:

1.	 Open the sudoers file with the visudo command:
$sudo visudo

2.	 Select the line for user or group you want to allow password-less sudo access.

3.	 Add NOPASSWD after closing the bracket:
%sudo ALL=(ALL:ALL) NOPASSWD: ALL

4.	 Press Ctrl + O and then confirm with the Enter key to save the changes.

5.	 Press Ctrl + X to exit visudo.

Chapter 1

17

Now, the users of the group sudo should be able to use the sudo command without providing
a password. Alternatively, you can add a separate entry to limit password-less access to a
specific user.

Note that the sudoers program performs cache authentication for a small time (default
is 15 minutes). When repeated within timeout, you may notice password-less sudo without
setting the NOPASSWD flag.

Other uses of sudo
In addition to running a single command with sudo, you might want to execute a list of
commands with the sudo privileges. Then, you can open a shell with root access (# prompt)
with the command $sudo -s. The shell environment remains same as original user, but now
you can execute commands as a root user.

Alternatively, you can switch user to root with the command $sudo su -. This command will
open a new shell as a root user.

See also
ff Check manual pages for sudo with $man sudo

ff For more details on adduser, check the Creating user account recipe

Setting resource limits with limits.conf
Ubuntu is a multiuser and multi-process operating system. If a single user or process is
consuming too many resources, other processes might not be able to use the system.
In this recipe, you will see how to set resource limits to avoid such problems.

Getting ready
User account with root privileges is required.

How to do it...
Following are the steps to set the resource limits:

1.	 Check the CPU use limit with $ulimit –t.

2.	 To set new limit, open limits.conf with the following command:
$sudo nano /etc/security/limits.conf

Managing Users and Groups

18

3.	 Scroll to the end of the file and add following lines:
username soft cpu 0 # max cpu time in minutes

username hard cpu 1000 # max cpu time in minutes

4.	 Enter Ctrl + O to save the changes.

5.	 Enter Ctrl + X to exit GNU nano editor.

How it works…
PAM stands for pluggable authentication module. The PAM module pam_limits.so
provides functionality to set a cap on resource utilization. The command ulimit can be
used to view current limits as well as set new limits for a session. The default values used by
pam_limits.so can be set in /etc/security/limits.conf.

In this recipe, we are updating limits.conf to set a limit on CPU uses by user username.
Limits set by the ulimit command are limited to that session. To set the limits permanently,
we need to set them in the limits.conf file.

The syntax of the limits.conf file is as follows:

<domain> <type> <item> <value>

Here, <domain> can be a username, a group name, or a wildcard entry.

<type> denotes the type of the limit and it can have the following values:

ff soft: This is a soft limit which can be changed by user

ff hard: This is a cap on soft limit set by super user and enforced by kernel

<item> is the resource to set the limit for. You can get a list of all items with $ulimit –a:

Chapter 1

19

In our example, we have set soft limit on CPU uses to 0 minutes and hard limit to 1000
minutes. You can changes soft limit values with the ulimit command. To view existing limits
on open files, use the command $ulimit -n. To change limits on open files, pass the new
limit as follows:

$ulimit -n 4096

An unprivileged process can only set its soft limit value between 0 and hard limit, and it can
irreversibly lower hard limit. A privileged process can change either limit values.

There's more…
The command ulimit can be used to set limits on per process basis. You can't use the
ulimit command to limit resources at the user level. You can use cgroups to set a cap on
resource use.

Setting up public key authentication
In this recipe, you will see how to set up secure public key authentication.

Getting ready
You might need root privileges for certain tasks.

How to do it...
Follow these steps to set up public key authentication:

1.	 Add a new user. You can skip this step if you have already created a user:
$sudo adduser john

2.	 Log in as john and change to the home directory with cd ~/:

3.	 Create a .ssh directory if it doesn't already exist:
$ mkdir .ssh

4.	 Create a file named authorized_keys under the .ssh directory:
$ touch .ssh/authorized_keys

5.	 Set permissions on the .ssh directory to 700:
$chmod 700 .ssh

Managing Users and Groups

20

6.	 Set permissions for authorized_keys to 600:
$ chmod 600 .ssh/authorized_keys

7.	 Generate public key pair on your local system with the following command:
$ ssh-keygen

8.	 Copy the generated public key from the .ssh/id_rsa.pub file to the
authorized_keys file on the server.

9.	 Now, open an ssh connection from local to server with the following command:
$ ssh john@server

10.	 If asked for confirmation, type yes and press the Enter key to continue:

How it works…
Logging in with SSH supports different authentication methods. Public key authentication
and password-based authentication are two common methods. To log in with public
key authentication, we need a public private key pair. We generate this key pair with the
ssh-keygen command. This command creates two files under the .ssh directory in the
user's home:

ff id_rsa: This is the private key file

ff id_rsa.pub: This is the public key file

You can view the contents of the files with $cat id_rsa.pub. It should start with something
like ssh-rsa AAAA...(except for the trailing dots).

We then copy the contents of public key to the server's authorized_keys file. Ensure that
all contents are listed on single line in the authorized_keys file.

Chapter 1

21

Also, ensure the permissions are properly set for the .ssh directory, and ensure that the
authorized_keys file and directory are owned by the user. The permissions for the .ssh
directory limits read, write, and execute permissions to the owner of the file. Similarly, for
authorized_keys file, permissions are limited to read and write for owner only. This
ensures that no other user can modify the data in the .ssh directory. If these permissions
are not properly set, the SSH daemon will raise the warning Permission denied?.

Working of SSH authentication
When the SSH client initiates a connection with the server, the server sends public key
identification of server to client. If a client is connecting to the server for the first time, it
shows a warning and asks for user confirmation to store the server key in the known_hosts
file under the .shh directory. After receiving the identity, the client authenticates server to
ensure that it is really the intended server.

After server authentication, the server sends a list of possible authentication methods.
The client selects the authentication method and selection to the server. After receiving the
authentication method, the server sends a challenge string encrypted with client's private key.
The client has to decrypt this string and send it back to server along with previously shared
session key. If the response from the client matches the response generated by the server,
then client authentication succeeds.

There's more…
You might be searching for a secure option to install key on server. Here's one way!

If your local system has the ssh-copy-id tool installed, you can directly add your public key
to the server's authorized_keys file with a single command:

$ ssh-copy-id john@serverdomain

After providing the password, your local public key will be added to the authorized_keys
file under the .ssh directory of the user john.

Troubleshooting SSH connections
Most of the connection issues are related with configuration problems. If you happen to face
any such issue, read the error message in detail. It is descriptive enough to understand the
mistake. You can also go through following checklist:

ff Check if the SSH daemon is running. Check the port in use and port conflicts, if any

ff Check whether the firewall configuration allows SSH ports

ff Check the list of configuration methods that are enabled

Managing Users and Groups

22

ff Check permissions for your private keys on your local system

ff Check authorized_keys file for your public key on the server

ff Check for any entry with the old address of the server in known_hosts on the
local system

Additionally, you can use the verbose flag (-v or -vvv) with the ssh command to get details
of every step taken by the SSH client. Also, check SSH daemon logs on server.

SSH tools for the Windows platform
If your local system runs Windows, then you can use tools provided by puTTYto generate new
keys and connect to the server:

ff putty.exe: This is the SSH client on Windows

ff puttygen.exe: This tool generates public or private keys

ff pscp.exe: This is the SCP client for secure file transfer

When using public key generated by the puttygen.exe tool, make sure that you convert the
key to OpenSSH key format. Remove all comments and prepend ssh-rsa. Additionally, the
entire key should be listed on a single line.

Another easy option is to use puttygen.exe. Load your private key in PuTTYgen and then
copy the public key from the Key section of the PuTTYgen window.

See also
ff For more information on the full working of SSH authentication,

visit http://www.slashroot.in/secure-shell-how-does-ssh-work

Securing user accounts
In this recipe, we will look at ways to make user profiles more secure.

How to do it...
Follow these steps to secure the user account:

1.	 Set a strong password policy with the following steps:

�� Open the /etc/pam.d/common-password file with GNU nano:
	 $ sudo nano /etc/pam.d/common-password

�� Find the line similar to this:
password [success=1 default=ignore] pam_unix.so obscure
sha512

http://www.slashroot.in/secure-shell-how-does-ssh-work

Chapter 1

23

�� Add minlen to the end of this line:
password [success=1 default=ignore] pam_unix.so obscure
sha512 minlen=8

�� Add this line to enforce alphanumeric passwords:
password requisite pam_cracklib.so ucredit=-1 lcredit=-1
dcredit=-1 ocredit=-1

�� Save changes and exit GNU nano editor.

�� Press Ctrl + O to save changes.

�� Press Ctrl + X to exit GNU nano editor.

2.	 Secure the home directory with the following steps:

�� Check home directory permissions with the following command:
$ ls -ld /home/username

�� Restrict permissions to user and group with the following command:
$ chmod 750 /home/username

�� Change adduser default permissions by editing /etc/adduser.conf.
Find DIR_MODE=0755 and change it to DIR_MODE=0750.

3.	 Disable SSH access to root user with the following step:

�� Open /etc/ssh/sshd_config and add or edit PermitRootLogin to
PermitRootLogin no

4.	 Disable password authentication with the following step:

�� Open /etc/ssh/sshd_config and add or edit
PasswordAuthentication no

5.	 Install fail2ban with sudo apt-get install fail2ban.

How it works…
This recipe discussed a few important steps to make user accounts more secure.

A password is the most important aspect in securing user accounts. A weak password can be
easily broken with brute force attacks and dictionary attacks. It is always a good idea to avoid
password-based authentication, but if you are still using it, then make sure you enforce a
strong password policy.

Password authentication is controlled by the PAM module pam_unix, and all settings
associated with login are listed at /etc/pam.d/login. An additional configuration file
/etc/pam.d/common-password includes values that control password checks.

Managing Users and Groups

24

The following line in the primary block of common-password file defines the rules for
password complexity:

password [success=1 default=ignore] pam_unix.so obscure sha512

The default setting already defines some basic rules on passwords. The parameter obscure
defines some extra checks on password strength. It includes the following:

ff Palindrome check

ff Case change only

ff Similar check

ff Rotated check

The other parameter, sha512, states that the new password will be encrypted with the
sha512 algorithm. We have set another option, minlen=8, on the same line, adding
minimum length complexity to passwords.

For all settings of the pam_unix module, refer to the manual pages
with the command man pam_unix.

Additionally, we have set alphanumeric checks for new passwords with the PAM module
pam_cracklib:

password requisite pam_cracklib.so ucredit=-1 lcredit=-1 dcredit=-
1 ocredit=-1

The preceding line adds requirement of one uppercase letter, one lowercase letter, one digit
(dcredit), and one special character (ocredit)

There are other PAM modules available, and you can search them with the
following command:

$ apt-cache search limpam-

You might also want to secure the home directory of users. The default permissions on Ubuntu
allow read and execute access to everyone. You can limit the access on the home directory
by changing permission on the home directory as required. In the preceding example, we
changed permissions to 750. This allows full access to the user, and allows read and execute
access to the user's primary group.

You can also change the default permissions on the user's home directory by changing
settings for the adduser command. These values are located at /etc/adduser.conf. We
have changed default permissions to 750, which limits access to the user and the group only.

Chapter 1

25

Additionally, you can disable remote login for the root account as well as disable
password-based authentication. Public key authentication is always more secure
than passwords, unless you can secure your private keys. Before disabling password
authentication, ensure that you have properly enabled public key authentication and
you are able to log in with your keys. Otherwise, you will lock yourself out of the server.

You might want to install a tool like fail2ban to watch and block repeated failed actions. It
scans through access logs and automatically blocks repeated failed login attempts. This can
be a handy tool to provide a security against brute force attacks.

Chapter 2

27

2
Networking

In this chapter, we will cover the following recipes:

ff Connecting to a network with a static IP

ff Installing the DHCP server

ff Installing the DNS server

ff Hiding behind the proxy with squid

ff Being on time with NTP

ff Discussing load balancing with HAProxy

ff Tuning the TCP stack

ff Troubleshooting network connectivity

ff Securing remote access with OpenVPN

ff Securing a network with uncomplicated firewall

ff Securing against brute force attacks

ff Discussing Ubuntu security best practices

Introduction
When we are talking about server systems, networking is the first and most important factor.
If you are using an Ubuntu server in a cloud or virtual machine, you generally don't notice the
network settings, as they are already configured with various network protocols. However,
as your infrastructure grows, managing and securing the network becomes the priority.

Networking

28

Networking can be thought of as an umbrella term for various activities that include network
configurations, file sharing and network time management, firewall settings and network
proxies, and many others. In this chapter, we will take a closer look at the various networking
services that help us set up and effectively manage our networks, be it in the cloud or a local
network in your office.

Connecting to a network with a static IP
When you install Ubuntu server, its network setting defaults to dynamic IP addressing, that is,
the network management daemon in Ubuntu searches for a DHCP server on the connected
network and configures the network with the IP address assigned by DHCP. Even when you
start an instance in the cloud, the network is configured with dynamic addressing using
the DHCP server setup by the cloud service provider. In this chapter, you will learn how to
configure the network interface with static IP assignment.

Getting ready
You will need an Ubuntu server with access to the root account or an account with sudo
privileges. If network configuration is a new thing for you, then it is recommended to try
this on a local or virtual machine.

How to do it…
Follow these steps to connect to the network with a static IP:

1.	 Get a list of available Ethernet interfaces using the following command:
$ ifconfig -a | grep eth

Chapter 2

29

2.	 Open /etc/network/interfaces and find the following lines:
auto eth0

iface eth0 inet dhcp

3.	 Change the preceding lines to add an IP address, net mask, and default gateway
(replace samples with the respective values):
auto eth0

iface eth0 inet static

 address 192.168.1.100

 netmask 255.255.255.0

 gateway 192.168.1.1

 dns-nameservers 192.168.1.45 192.168.1.46

4.	 Restart the network service for the changes to take effect:
$ sudo /etc/init.d/networking restart

5.	 Try to ping a remote host to test the network connection:

$ ping www.google.com

www.allitebooks.com

http://www.allitebooks.org

Networking

30

How it works…
In this recipe, we have modified the network configuration from dynamic IP assignment to
static assignment.

First, we got a list of all the available network interfaces with ifconfig -a. The -a option
of ifconfig returns all the available network interfaces, even if they are disabled. With the
help of the pipe (|) symbol, we have directed the output of ifconfig to the grep command.
For now, we are interested with Ethernet ports only. The grep command will filter the received
data and return only the lines that contain the eth character sequence:

 ubuntu@ubuntu:~$ ifconfig -a | grep eth

 eth0 Link encap:Ethernet HWaddr 08:00:27:bb:a6:03

Here, eth0 means first Ethernet interface available on the server. After getting the name of
the interface to configure, we will change the network settings for eth0 in interfaces file at
/etc/network/interfaces. By default, eth0 is configured to query the DHCP server for
an IP assignment. The eth0 line auto is used to automatically configure the eth0 interface
at server startup. Without this line, you will need to enable the network interface after each
reboot. You can enable the eth0 interface with the following command:

 $ sudo ifup eth0

Similarly, to disable a network interface, use the following command:

 $ sudo ifdown eth0

The second iface eth0 inet static line sets the network configuration to static
assignment. After this line, we will add network settings, such as IP address, netmask,
default gateway, and DNS servers.

After saving the changes, we need to restart the networking service for the changes to take
effect. Alternatively, you can simply disable the network interface and enable it with ifdown
and ifup commands.

There's more…
The steps in this recipe are used to configure the network changes permanently. If you need
to change your network parameters temporarily, you can use the ifconfig and route
commands as follows:

1.	 Change the IP address and netmask, as follows:
$ sudo ifconfig eth0 192.168.1.100 netmask 255.255.255.0

Chapter 2

31

2.	 Set the default gateway:
$ sudo route add default gw 192.168.1.1 eth0

3.	 Edit /etc/resolv.conf to add temporary name servers (DNS):
nameserver 192.168.1.45

nameserver 192.168.1.46

4.	 To verify the changes, use the following command:
$ ifconfig eth0

$ route -n

5.	 When you no longer need this configuration, you can easily reset it with the
following command:
$ ip addr flush eth0

6.	 Alternatively, you can reboot your server to reset the temporary configuration.

IPv6 configuration
You may need to configure your Ubuntu server for IPv6 IP address. Version six IP addresses
use a 128-bit address space and include hexadecimal characters. They are different from
simple version four IP addresses that use a 32-bit addressing space. Ubuntu supports IPv6
addressing and can be easily configured with either DHCP or a static address. The following is
an example of static configuration for IPv6:

iface eth0 inet6 static

address 2001:db8::xxxx:yyyy

gateway your_ipv6_gateway

See also
You can find more details about network configuration in the Ubuntu server guide:

ff https://help.ubuntu.com/lts/serverguide/network-configuration.
html

ff Checkout the Ubuntu wiki page on IP version 6 - https://wiki.ubuntu.com/IPv6

https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://wiki.ubuntu.com/IPv6

Networking

32

Installing the DHCP server
DHCP is a service used to automatically assign network configuration to client systems.
DHCP can be used as a handy tool when you have a large pool of systems that needs to be
configured for network settings. Plus, when you need to change the network configuration, say
to update a DNS server, all you need to do is update the DHCP server and all the connected
hosts will be reconfigured with new settings. Also, you get reliable IP address configuration
that minimizes configuration errors and address conflicts. You can easily add a new host to
the network without spending time on network planning.

DHCP is most commonly used to provide IP configuration settings, such as IP address, net
mask, default gateway, and DNS servers. However, it can also be set to configure the time
server and hostname on the client.

DHCP can be configured to use the following configuration methods:

ff Manual allocation: Here, the configuration settings are tied with the MAC address of
the client's network card. The same settings are supplied each time the client makes
a request with the same network card.

ff Dynamic allocation: This method specifies a range of IP addresses to be assigned
to the clients. The server can dynamically assign IP configuration to the client on
first come, first served basis. These settings are allocated for a specified time period
called lease; after this period, the client needs to renegotiate with the server to
keep using the same address. If the client leaves the network for a specified time,
the configuration gets expired and returns to pool where it can be assigned to other
clients. Lease time is a configurable option and it can be set to infinite.

Ubuntu comes pre-installed with the DHCP client, dhclient. The DHCP dhcpd server daemon
can be installed while setting up an Ubuntu server or separately with the apt-get command.

Getting ready
Make sure that your DHCP host is configured with static IP address.

You will need an access to the root account or an account with sudo privileges.

How to do it…
Follow these steps to install a DHCP server:

1.	 Install a DHCP server:
$ sudo apt-get install isc-dhcp-server

Chapter 2

33

2.	 Open the DHCP configuration file:
$ sudo nano -w /etc/dhcp/dhcpd.conf

3.	 Change the default and max lease time if necessary:
default-lease-time 600;

max-lease-time 7200;

4.	 Add the following lines at the end of the file (replace the IP address to match
your network):
subnet 192.168.1.0 netmask 255.255.255.0 {

 range 192.168.1.150 192.168.1.200;

 option routers 192.168.1.1;

 option domain-name-servers 192.168.1.2, 192.168.1.3;

 option domain-name "example.com";

}

5.	 Save the configuration file and exit with Ctrl + O and Ctrl + X.

6.	 After changing the configuration file, restart dhcpd:

$ sudo service isc-dhcp-server restart

How it works…
Here, we have installed the DHCP server with the isc-dhcp-server package. It is open
source software that implements the DHCP protocol. ISC-DHCP supports both IPv4 and IPv6.

After the installation, we need to set the basic configuration to match our network settings. All
dhcpd settings are listed in the /etc/dhcp/dhcpd.conf configuration file. In the sample
settings listed earlier, we have configured a new network, 192.168.1.0. This will result in IP
addresses ranging from 192.168.1.150 to 192.168.1.200 to be assigned to clients. The
default lease time is set to 600 seconds with maximum bound of 7200 seconds. A client can
ask for a specific time to a maximum lease period of 7200 seconds. Additionally, the DHCP
server will provide a default gateway (routers) as well as default DNS servers.

If you have multiple network interfaces, you may need to change the interface that dhcpd
should listen to. These settings are listed in /etc/default/isc-dhcp-server. You can
set multiple interfaces to listen to; just specify the interface names, separated by a space,
for example, INTERFACES="wlan0 eth0".

Networking

34

There's more…
You can reserve an IP address to be assigned to a specific device on network. Reservation
ensures that a specified device is always assigned to the same IP address. To create a
reservation, add the following lines to dhcpd.conf. It will assign IP 192.168.1.201 to the
client with the 08:D2:1F:50:F0:6F MAC ID:

host Server1 {

 hardware ethernet 08:D2:1F:50:F0:6F;

 fixed-address 192.168.1.201;

}

Installing the DNS server
DNS, also known as name server, is a service on the Internet that provides mapping between
IP addresses and domain names and vice versa. DNS maintains a database of names and
related IP addresses. When an application queries with a domain name, DNS responds with a
mapped IP address. Applications can also ask for a domain name by providing an IP address.

DNS is quite a big topic, and an entire chapter can be written just on the DNS setup. This
recipe assumes some basic understanding of the working of the DNS protocol. We will cover
the installation of BIND, installation of DNS server application, configuration of BIND as a
caching DNS, and setup of Primary Master and Secondary Master. We will also cover some
best practices to secure your DNS server.

Getting ready
In this recipe, I will be using four servers. You can create virtual machines if you want to simply
test the setup:

1.	 ns1: Name server one/Primary Master

2.	 ns2: Name server two/Secondary Master

3.	 host1: Host system one

4.	 host2: Host system two, optional

�� All servers should be configured in a private network. I have used the
10.0.2.0/24 network

�� We need root privileges on all servers

Chapter 2

35

How to do it…
Install BIND and set up a caching name server through the following steps:

1.	 On ns1, install BIND and dnsutils with the following command:
$ sudo apt-get update

$ sudo apt-get install bind9 dnsutils

2.	 Open /etc/bind/named.conf.optoins, enable the forwarders section,
and add your preferred DNS servers:
forwarders {
 8.8.8.8;
 8.8.4.4;
};

3.	 Now restart BIND to apply a new configuration:
$ sudo service bind9 restart

4.	 Check whether the BIND server is up and running:
$ dig -x 127.0.0.1

5.	 You should get an output similar to the following code:
;; Query time: 1 msec

;; SERVER: 10.0.2.53#53(10.0.2.53)

6.	 Use dig to external domain and check the query time:

7.	 Dig the same domain again and cross check the query time. It should be less than
the first query:

Networking

36

Set up Primary Master through the following steps:

1.	 On the ns1 server, edit /etc/bind/named.conf.options and add the acl block
above the options block:
acl "local" {

 10.0.2.0/24; # local network

};

2.	 Add the following lines under the options block:
recursion yes;

allow-recursion { local; };

listen-on { 10.0.2.53; }; # ns1 IP address

allow-transfer { none; };

3.	 Open the /etc/bind/named.conf.local file to add forward and reverse zones:
$ sudo nano /etc/bind/named.conf.local

4.	 Add the forward zone:
zone "example.com" {

 type master;

 file "/etc/bind/zones/db.example.com";

};

5.	 Add the reverse zone:
zone "2.0.10.in-addr.arpa" {

 type master;

 file "/etc/bind/zones/db.10";

};

6.	 Create the zones directory under /etc/bind/:
$ sudo mkdir /etc/bind/zones

7.	 Create the forward zone file using the existing zone file, db.local, as a template:
$ cd /etc/bind/

$ sudo cp db.local zones/db.example.com

8.	 The default file should look similar to the following image:

Chapter 2

37

9.	 Edit the SOA entry and replace localhost with FQDN of your server.

10.	 Increment the serial number (you can use the current date time as the serial number,
201507071100)

11.	 Remove entries for localhost, 127.0.0.1 and ::1.

12.	 Add new records:
; name server - NS records
@ IN NS ns.exmple.com
; name server A records
ns IN A 10.0.2.53
; local - A records
host1 IN A 10.0.2.58

13.	 Save the changes and exit the nano editor. The final file should look similar to the
following image:

Networking

38

14.	 Now create the reverse zone file using /etc/bind/db.127 as a template:
$ sudo cp db.127 zones/db.10

15.	 The default file should look similar to the following screenshot:

16.	 Change the SOA record and increment the serial number.

17.	 Remove NS and PTR records for localhost.

18.	 Add NS, PTR, and host records:
; NS records
@ IN NS ns.example.com
; PTR records
53 IN PTR ns.example.com
; host records
58 IN PTR host1.example.com

19.	 Save the changes. The final file should look similar to the following image:

Chapter 2

39

20.	 Check the configuration files for syntax errors. It should end with no output:
$ sudo named-checkconf

21.	 Check zone files for syntax errors:
$ sudo named-checkzone example.com
/etc/bind/zones/db.example.com

22.	 If there are no errors, you should see an output similar to the following:
zone example.com/IN: loaded serial 3

OK

23.	 Check the reverse zone file, zones/db.10:
$ sudo named-checkzone example.com /etc/bind/zones/db.10

24.	 If there are no errors, you should see output similar to the following:
zone example.com/IN: loaded serial 3

OK

25.	 Now restart the DNS server bind:
$ sudo service bind9 restart

26.	 Log in to host2 and configure it to use ns.example.com as a DNS server.
Add ns.example.com to /etc/resolve.conf on host2.

27.	 Test forward lookup with the nslookup command:
$ nslookup host1.example.com

28.	 You should see an output similar to following:
$ nslookup host1.example.com

Server: 10.0.2.53

Address: 10.0.2.53#53

Name: host1.example.com

Address: 10.0.2.58

29.	 Now test the reverse lookup:
$ nslookup 10.0.2.58

30.	 It should output something similar to the following:

$ nslookup 10.0.2.58

Server: 10.0.2.53

Address: 10.0.2.53#53

58.2.0.10.in-addr.arpa	 name = host1.example.com

Networking

40

Set up Secondary Master through the following steps:

1.	 First, allow zone transfer on Primary Master by setting the allow-transfer option
in /etc/bind/named.conf.local:
zone "example.com" {

 type master;

 file "/etc/bind/zones/db.example.com";

 allow-transfer { 10.0.2.54; };

};

zone "2.0.10.in-addr.arpa" {

 type master;

 file "/etc/bind/zones/db.10";

 allow-transfer { 10.0.2.54; };

};

A syntax check will throw errors if you miss semicolons.

2.	 Restart BIND9 on Primary Master:
$ sudo service bind9 restart

3.	 On Secondary Master (ns2), install the BIND package.

4.	 Edit /etc/bind/named.conf.local to add zone declarations as follows:
zone "example.com" {

 type slave;

 file "db.example.com";

 masters { 10.0.2.53; };

};

zone "2.0.10.in-addr.arpa" {

 type slave;

 file "db.10";

 masters { 10.0.2.53; };

};

5.	 Save the changes made to named.conf.local.

6.	 Restart the BIND server on Secondary Master:
$ sudo service bind9 restart

Chapter 2

41

7.	 This will initiate the transfer of all zones configured on Primary Master. You can check
the logs on Secondary Master at /var/log/syslog to verify the zone transfer.

A zone is transferred only if the serial number under the SOA
section on Primary Master is greater than that of Secondary
Master. Make sure that you increment the serial number after
every change to the zone file.

How it works…
In the first section, we have installed the BIND server and enabled a simple caching DNS
server. A caching server helps to reduce bandwidth and latency in name resolution. The server
will try to resolve queries locally from the cache. If the entry is not available in the cache, the
query will be forwarded to external DNS servers and the result will be cached.

In the second and third sections, we have set Primary Master and Secondary Master
respectively. Primary Master is the first DNS server. Secondary Master will be used as
an alternate server in case the Primary server becomes unavailable.

Under Primary Master, we have declared a forward zone and reverse zone for the example.
com domain. The forward zone is declared with domain name as the identifier and contains
the type and filename for the database file. On Primary Master, we have set type to master.
The reverse zone is declared with similar attributes and uses part of an IP address as an
identifier. As we are using a 24-bit network address (10.0.2.0/24), we have included the
first three octets of the IP address in reverse order (2.0.10) for the reverse zone name.

Lastly, we have created zone files by using existing files as templates. Zone files are the actual
database that contains records of the IP address mapped to FQDN and vice versa. It contains
SOA record, A records, and NS records. An SOA record defines the domain for this zone; A
records and AAAA records are used to map the hostname to the IP address.

When the DNS server receives a query for the example.com domain, it checks for zone files
for that domain. After finding the zone file, the host part from the query will be used to find
the actual IP address to be returned as a result for query. Similarly, when a query with an IP
address is received, the DNS server will look for a reverse zone file matching with the queried
IP address.

See also
ff Checkout the DNS configuration guide in the Ubuntu server guide at https://

help.ubuntu.com/lts/serverguide/dns-configuration.html

ff For an introduction to DNS concepts, check out this tutorial by the DigitalOcean
community at https://www.digitalocean.com/community/tutorials/an-
introduction-to-dns-terminology-components-and-concepts

https://help.ubuntu.com/lts/serverguide/dns-configuration.html
https://help.ubuntu.com/lts/serverguide/dns-configuration.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts

Networking

42

ff Get manual pages for BIND9 at http://www.bind9.net/manuals

ff Find manual pages for named with the following command:

$ man named

Hiding behind the proxy with squid
In this recipe, we will install and configure the squid proxy and caching server. The term
proxy is generally combined with two different terms: one is forward proxy and the other is
reverse proxy.

When we say proxy, it generally refers to forward proxy. A forward proxy acts as a gateway
between a client's browser and the Internet, requesting the content on behalf of the client.
This protects intranet clients by exposing the proxy as the only requester. A proxy can also be
used as a filtering agent, imposing organizational policies. As all Internet requests go through
the proxy server, the proxy can cache the response and return cached content when a similar
request is found, thus saving bandwidth and time.

A reverse proxy is the exact opposite of a forward proxy. It protects internal servers from
the outside world. A reverse proxy accepts requests from external clients and routes them
to servers behind the proxy. External clients can see a single entity serving requests, but
internally, it can be multiple servers working behind the proxy and sharing the load. More
details about reverse proxies are covered in Chapter 3, Working with Web Servers.

In this recipe, we will discuss how to install a squid server. Squid is a well-known application in
the forward proxy world and works well as a caching proxy. It supports HTTP, HTTPS, FTP, and
other popular network protocols.

Getting ready
As always, you will need access to a root account or an account with sudo privileges.

How to do it…
Following are the steps to setup and configure Squid proxy:

1.	 Squid is quite an old, mature, and commonly used piece of software. It is generally
shipped as a default package with various Linux distributions. The Ubuntu package
repository contains the necessary pre-compiled binaries, so the installation is as easy
as two commands.

2.	 First, update the apt cache and then install squid as follows:
$ sudo apt-get update

$ sudo apt-get install squid3

http://www.bind9.net/manuals

Chapter 2

43

3.	 Edit the /etc/squid3/squid.conf file:
$ sudo nano /etc/squid3/squid.conf

4.	 Ensure that the cache_dir directive is not commented out:
cache_dir ufs /var/spool/squid3 100 16 256

5.	 Optionally, change the http_port directive to your desired TCP port:
http_port 8080

6.	 Optionally, change the squid hostname:
visible_hostname proxy1

7.	 Save changes with Ctrl + O and exit with Ctrl + X.

8.	 Restart the squid server:
$ sudo service squid3 restart

9.	 Make sure that you have allowed the selected http_port on firewall.

10.	 Next, configure your browser using the squid server as the http/https proxy.

How it works…
Squid is available as a package in the Ubuntu repository, so you can directly install it with the
apt-get install squid command. After installing squid, we need to edit the squid.
conf file for some basic settings. The squid.conf file is quite a big file and you can find a
large number of directives listed with their explanation. It is recommended to create a copy of
the original configuration file as a reference before you do any modifications.

In our example, we are changing the port squid listens on. The default port is 3128. This is
just a security precaution and it's fine if you want to run squid on the default port. Secondly,
we have changed the hostname for squid.

Other important directive to look at is cache_dir. Make sure that this directive is enabled,
and also set the cache size. The following example sets cache_dir to /var/spool/suid3
with the size set to 100MB:

cache_dir ufs /var/spool/squid3 100 16 256

To check the cache utilization, use the following command:

$ sudo du /var/spool/squid3

Networking

44

There's more…
Squid provides lot more features than a simple proxy server. Following is a quick list of some
important features:

Access control list
With squid ACLs, you can set the list of IP addresses allowed to use squid. Add the following
line at the bottom of the acl section of /etc/squid3/squid.conf:

acl developers src 192.168.2.0/24

Then, add the following line at the top of the http_access section in the same file:

http_access allow developers

Set cache refresh rules
You can change squid's caching behavior depending on the file types. Add the following line to
cache all image files to be cached—the minimum time is an hour and the maximum is a day:

refresh_pattern -i \.(gif|png|jpg|jpeg|ico)$ 3600 90% 86400

This line uses a regular expression to find the file names that end with any of the listed file
extensions (gif, png, and etc)

Sarg – tool to analyze squid logs
Squid Analysis Report Generator is an open source tool to monitor the squid server usages. It
parses the logs generated by Squid and converts them to easy-to-digest HTML-based reports.
You can track various metrics such as bandwidth used per user, top sites, downloads, and so
on. Sarg can be quickly installed with the following command:

$ sudo apt-get install sarg

The configuration file for Sarg is located at /etc/squid/sarg.conf. Once installed, set the
output_dir path and run sarg. You can also set cron jobs to execute sarg periodically.
The generated reports are stored in output_dir and can be accessed with the help of a
web server.

Squid guard
Squid guard is another useful plugin for squid server. It is generally used to block a list of
websites so that these sites are inaccessible from the internal network. As always, it can
also be installed with a single command, as follows:

$ sudo apt-get install squidguard

The configuration file is located at /etc/squid/squidGuard.conf.

Chapter 2

45

See also
ff Check out the squid manual pages with the man squid command

ff Check out the Ubuntu community page for squid guard at
https://help.ubuntu.com/community/SquidGuard

Being on time with NTP
Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network.
Although Ubuntu has a built-in clock that is helpful for keeping track of local events, it may
create issues when the server is connected over a network and provides time-critical services
to the clients. This problem can be solved with the help of NTP time synchronization. NTP
works by synchronizing time across all servers on the Internet.

NTP uses hierarchies of servers with top-level servers synchronizing time with atomic clocks.
This hierarchy levels are known as stratum, and the level can range between 1 and 15, both
inclusive. The highest stratum level is 1 and is determined by the accuracy of the clock the
server synchronizes with. If a server synchronizes with other NTP server with stratum level 3,
then the stratum level for this server is automatically set to 4.

Another time synchronization tool provided by Ubuntu is ntpdate, which comes preinstalled
with Ubuntu. It executes once at boot time and synchronizes the local time with Ubuntu's NTP
servers. The problem with ntpdate is that it matches server time with central time without
considering the big drifts in local time, whereas the NTP daemon ntpd continuously adjusts
the server time to match it with the reference clock. As mentioned in the ntpdate manual
pages (man ntpdate), you can use ntpdate multiple times throughout a day to keep time
drifts low and get more accurate results, but it does not match the accuracy and reliability
provided by ntpd.

In this recipe, we will set up a standalone time server for an internal network. Our time
server will synchronize its time with public time servers and provide a time service to
internal NTP clients.

How to do it…
Following are the steps to install and configure NTP daemon:

1.	 First, synchronize the server's time with any Internet time server using the
ntpdate command:
$ ntpdate -s ntp.ubuntu.com

2.	 To install ntpd, enter the following command in the terminal:
$ sudo apt-get install ntp

https://help.ubuntu.com/community/SquidGuard

Networking

46

3.	 Edit the /etc/ntp.conf NTP configuration file to add/remove external NTP servers:
$ sudo nano /etc/ntp.conf

4.	 Set a fallback NTP server:
server ntp.ubuntu.com

5.	 Block any external access to the server, comment the first restrict line, and add
the following command:
restrict default noquery notrust nomodify

6.	 Allow the clients on local network to use the NTP service:
restrict 192.168.1.0 mask 255.255.255.0

7.	 Save changes with Ctrl + O and exit nano with Ctrl + X.

8.	 Reload the NTP daemon with the following command:

$ sudo service ntp restart

How it works…
Sometimes, the NTP daemon refuses to work if the time difference between local time and
central time is too big. To avoid this problem, we have synchronized the local time and central
time before installing ntpd. As ntpd and ntpdate both use the same UDP port, 123, the
ntpdate command will not work when the ntpd service is in use.

Make sure that you have opened UDP port 123 on the firewall.

After installing the NTP server, you may want to set time servers to be used. The default
configuration file contains time servers provided by Ubuntu. You can use the same default
servers or simply comment the lines by adding # at the start of each line and add the servers
of your choice. You can dig into http://www.pool.ntp.org to find time servers for your
specific region. It is a good idea to provide multiple reference servers, as NTP can provide
more accurate results after querying each of them.

You can control polling intervals for each server with the minpoll
and maxpoll parameters. The value is set in seconds to the power of
two. minpoll defaults to 6 (2^6 = 64 sec) and maxpoll defaults to
10 (2^10 = 1024 sec).

http://www.pool.ntp.org

Chapter 2

47

Additionally, we have set a fallback server that can be used in case of network outage or any
other problems when our server cannot communicate with external reference servers. You
can also use a system clock as a fallback, which can be accessed at 127.127.1.0. Simply
replace the fallback server with the following line to use a system clock as a fallback:

server 127.127.0.1

Lastly, we have set access control parameters to protect our server from external access. The
default configuration is to allow anyone to use the time service from this server. By changing
the first restrict line, we blocked all external access to the server. The configuration
already contains the exception to local NTP service indicated by the following:

restrict 127.0.0.1

We created another exception by adding a separate line to allow access to the clients on local
network (remember to replace the IP range with your network details):

restrict 192.168.1.0 mask 255.255.255.0

There's more…
A central DHCP server can be configured to provide NTP settings to all DHCP clients. For this
to work, your clients should also be configured to query NTP details from DHCP. A DHCP client
configuration on Ubuntu already contains the query for network time servers.

Add the following line to your DHCP configuration to provide NTP details to the clients:

subnet 192.168.1.0 netmask 255.255.255.0 {

 ...

 option ntp-servers your_ntp_host;

}

On the clientside, make sure that your dhclient.conf contains ntp-servers in its
default request:

request subnet-mask, broadcast-address, time-offset, routers,

 ...

 rfc3442-classless-static-routes, ntp-servers,

See also
ff Check the default /etc/ntp.conf configuration file. It contains a short explanation

for each setting.

ff Check the manual pages for ntpd with man ntpd.

Networking

48

Discussing load balancing with HAProxy
When an application becomes popular, it sends an increased number of requests to the
application server. A single application server may not be able to handle the entire load
alone. We can always scale up the underlying hardware, that is, add more memory and more
powerful CUPs to increase the server capacity; but these improvements do not always scale
linearly. To solve this problem, multiple replicas of the application server are created and the
load is distributed among these replicas. Load balancing can be implemented at OSI Layer 4,
that is, at TCP or UDP protocol levels, or at Layer 7, that is, application level with HTTP, SMTP,
and DNS protocols.

In this recipe, we will install a popular load balancing or load distributing service, HAProxy.
HAProxy receives all the requests from clients and directs them to the actual application
server for processing. Application server directly returns the final results to the client.
We will be setting HAProxy to load balance TCP connections.

Getting ready
You will need two or more application servers and one server for HAProxy:

ff You will need the root access on the server where you want to install HAProxy

ff It is assumed that your application servers are properly installed and working

How to do it…
Follow these steps to discus load balancing with HAProxy:

1.	 Install HAProxy:
$ sudo apt-get update

$ sudo apt-get install haproxy

2.	 Enable the HAProxy init script to automatically start HAProxy on system boot.
Open /etc/default/haproxy and set ENABLE to 1:

Chapter 2

49

3.	 Now, edit the HAProxy /etc/haproxy/haproxy.cfg configuration file. You may
want to create a copy of this file before editing:
$ cd /etc/haproxy

$ sudo cp haproxy.cfg haproxy.cfg.copy

$ sudo nano haproxy.cfg

4.	 Find the defaults section and change the mode and option parameters to match
the following:
mode tcp

option tcplog

5.	 Next, define frontend, which will receive all requests:
frontend www
 bind 57.105.2.204:80 # haproxy public IP
 default_backend as-backend # backend used

6.	 Define backend application servers:
backend as-backend
 balance leastconn
 mode tcp
 server as1 10.0.2.71:80 check # application srv 1
 server as2 10.0.2.72:80 check # application srv 2

7.	 Save and quit the HAProxy configuration file.

8.	 We need to set rsyslog to accept HAProxy logs. Open the rsyslog.conf file,
/etc/rsyslog.conf, and uncomment following parameters:
$ModLoad imudp

$UDPServerRun 514

Networking

50

9.	 Next, create a new file under /etc/rsyslog.d to specify the HAProxy log location:
$ sudo nano /etc/rsyslog.d/haproxy.conf

10.	 Add the following line to the newly created file:
local2.* /var/log/haproxy.log

11.	 Save the changes and exit the new file.

12.	 Restart the rsyslog service:
$ sudo service rsyslog restart

13.	 Restart HAProxy:
$ sudo service haproxy restart

14.	 Now, you should be able to access your backend with the HAProxy IP address.

How it works…
Here, we have configured HAProxy as a frontend for a cluster of application servers. Under
the frontend section, we have configured HAProxy to listen on the public IP of the HAProxy
server. We also specified a backend for this frontend. Under the backend section, we have
set a private IP address of the application servers. HAProxy will communicate with the
application servers through a private network interface. This will help to keep the internal
network latency to a minimum.

HAProxy supports various load balancing algorithms. Some of them are as follows:

ff Round-robin distributes the load in a round robin fashion. This is the default
algorithm used.

ff leastconn selects the backend server with fewest connections.

ff source uses the hash of the client's IP address and maps it to the backend. This
ensures that requests from a single user are served by the same backend server.

We have selected the leastconn algorithm, which is mentioned under the backend section
with the balance leastconn line. The selection of a load balancing algorithm will depend
on the type of application and length of connections.

Lastly, we configured rsyslog to accept logs over UDP. HAProxy does not provide separate
logging system and passes logs to the system log daemon, rsyslog, over the UDP stream.

Chapter 2

51

There's more …
Depending on your Ubuntu version, you may not get the latest version of HAProxy from the
default apt repository. Use the following repository to install the latest release:

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:vbernat/haproxy-1.6 # replace 1.6 with
required version

$ sudo apt-get update && apt-get install haproxy

See also
ff An introduction to load balancing the HAProxy concepts at https://www.

digitalocean.com/community/tutorials/an-introduction-to-
haproxy-and-load-balancing-concepts

Tuning the TCP stack
Transmission Control Protocol and Internet Protocol (TCP/IP) is a standard set of protocols
used by every network-enabled device. TCP/IP defines the standards to communicate over
a network. TCP/IP is a set of protocols and is divided in two parts: TCP and IP. IP defines the
rules for IP addressing and routing packets over network and provides an identity IP address
to each host on the network. TCP deals with the interconnection between two hosts and
enables them to exchange data over network. TCP is a connection-oriented protocol and
controls the ordering of packets, retransmission, error detection, and other reliability tasks.

TCP stack is designed to be very general in nature so that it can be used by anyone for any
network conditions. Servers use the same TCP/IP stack as used by their clients. For this
reason, the default values are configured for general uses and not optimized for high-load
server environments. New Linux kernel provides a tool called sysctl that can be used to
modify kernel parameters at runtime without recompiling the entire kernel. We can use
sysctl to modify and TCP/IP parameters to match our needs.

In this recipe, we will look at various kernel parameters that control the network. It is not
required to modify all parameters listed here. You can choose ones that are required and
suitable for your system and network environment.

It is advisable to test these modifications on local systems before doing any changes on live
environment. A lot of these parameters directly deal with network connections and related
CPU and memory uses. This can result in connection drops and/or sudden increases in
resource use. Make sure that you have read the documentation for the parameter before you
change anything.

https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts

Networking

52

Also, it is a good idea to set benchmarks before and after making any changes to sysctl
parameters. This will give you a base to compare improvements, if any. Again, benchmarks
may not reveal all the effects of parameter changes. Make sure that you have read the
respective documentation.

Getting ready…
You will need root access.

Note down basic performance metrics with the tool of your choice.

How to do it…
Follow these steps to tune the TCP stack:

1.	 Set the maximum open files limit:
$ ulimit -n # check existing limits for logged in user
ulimit -n 65535 # root change values above hard limits

2.	 To permanently set limits for a user, open /etc/security/limits.conf and add
the following lines at end of the file. Make sure to replace values in brackets, <>:
<username> soft nofile <value> # soft limits
<username> hard nofile <value> # hard limits

3.	 Save limits.conf and exit. Then restart the user session.

4.	 View all available parameters:
sysctl -a

5.	 Set the TCP default read-write buffer:
echo 'net.core.rmem_default=65536' >> /etc/sysctl.conf
echo 'net.core.wmem_default=65536' >> /etc/sysctl.conf

6.	 Set the TCP read and write buffers to 8 MB:
echo 'net.core.rmem_max=8388608' >> /etc/sysctl.conf
echo 'net.core.wmem_max=8388608' >> /etc/sysctl.conf

7.	 Increase the maximum TCP orphans:
echo 'net.ipv4.tcp_max_orphans=4096' >> /etc/sysctl.conf

8.	 Disable slow start after being idle:
echo 'net.ipv4.tcp_slow_start_after_idle=0' >>
/etc/sysctl.conf

9.	 Minimize TCP connection retries:
echo 'net.ipv4.tcp_synack_retries=3' >> /etc/sysctl.conf

echo 'net.ipv4.tcp_syn_retries =3' >> /etc/sysctl.conf

Chapter 2

53

10.	 Set the TCP window scaling:
echo 'net.ipv4.tcp_window_scaling=1' >> /etc/sysctl.conf

11.	 Enable timestamps:
echo 'net.ipv4.tcp_timestamp=1' >> /etc/sysctl.conf

12.	 Enable selective acknowledgements:
echo 'net.ipv4.tcp_sack=0' >> /etc/sysctl.conf

13.	 Set the maximum number of times the IPV4 packet can be reordered in the TCP
packet stream:
echo 'net.ipv4.tcp_reordering=3' >> /etc/sysctl.conf

14.	 Send data in the opening SYN packet:
echo 'net.ipv4.tcp_fastopen=1' >> /etc/sysctl.conf

15.	 Set the number of opened connections to be remembered before receiving
acknowledgement:
echo 'tcp_max_syn_backlog=1500' >> /etc/sysctl.conf

16.	 Set the number of TCP keep-alive probes to send before deciding the
connection is broken:
echo 'tcp_keepalive_probes=5' >> /etc/sysctl.conf

17.	 Set the keep-alive time, which is a timeout value after the broken connection
is killed:
echo 'tcp_keepalive_time=1800' >> /etc/sysctl.conf

18.	 Set intervals to send keep-alive packets:
echo 'tcp_keepalive_intvl=60' >> /etc/sysctl.conf

19.	 Set to reuse or recycle connections in the wait state:
echo 'net.ipv4.tcp_tw_reuse=1' >> /etc/sysctl.conf

echo 'net.ipv4.tcp_tw_recycle=1' >> /etc/sysctl.conf

20.	 Increase the maximum number of connections:
echo 'net.ipv4.ip_local_port_range=32768 65535' >>
/etc/sysctl.conf

21.	 Set TCP FIN timeout:

echo 'tcp_fin_timeout=60' >> /etc/sysctl.conf

Networking

54

How it works…
The behavior of Linux kernel can be fine tuned with the help of various Linux kernel
parameters. These are the options passed to the kernel in order to control various aspects of
the system. These parameters can be passed while compiling the kernel, at boot time, or at
runtime using the /proc filesystem and tools such as sysctl.

In this recipe, we have used sysctl to configure network-related kernel parameters to fine
tune network settings. Again, you need to cross check each configuration to see if it's
working as expected.

Along with network parameters, tons of other kernel parameters can be configured with the
sysctl command. The -a flag to sysctl will list all the available parameters:

$ sysctl -a

All these configurations are stored in a filesystem at the /proc directory, grouped in their
respective categories. You can directly read/write these files or use the sysctl command:

ubuntu@ubuntu:~$ sysctl fs.file-max

fs.file-max = 98869

ubuntu@ubuntu:~$ cat /proc/sys/fs/file-max

98869

See also
Find the explanation of various kernel parameters at the following websites:

ff http://www.cyberciti.biz/files/linux-kernel/Documentation/
networking/ip-sysctl.txt

ff https://www.kernel.org/doc/Documentation/networking/ip-sysctl.
txt

Troubleshooting network connectivity
Networking consists of various components and services working together to enable systems
to communicate with each other. A lot of times it happens that everything seems good, but we
are not able to access other servers or the Internet. In this recipe, we will look at some tools
provided by Ubuntu to troubleshoot the network connectivity issues.

Getting ready
As you are reading this recipe, I am assuming that you are facing a networking issue.
Also, I am assuming that the problems are with a primary network adapter, eth0.

http://www.cyberciti.biz/files/linux-kernel/Documentation/networking/ip-sysctl.txt
http://www.cyberciti.biz/files/linux-kernel/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Chapter 2

55

You may need access to root account or account with similar privileges.

How to do it…
Follow these steps to troubleshoot network connectivity:

1.	 Let's start with checking the network card. If it is working properly and is detected by
Ubuntu. Check boot time logs and search for lines related to Ethernet, eth:
$ dmesg | grep eth

2.	 If you don't find anything in the boot logs, then most probably, your network hardware
is faulty or unsupported by Ubuntu.

3.	 Next, check whether the network cable is plugged in and is working properly. You can
simply check the LED indicators on the network card or use the following command:
$ sudo mii-tool

4.	 If you can see a line with link ok, then you have a working Ethernet connection.

5.	 Next, check whether a proper IP address is assigned to the eth0 Ethernet port:
$ ifconfig eth0

Networking

56

6.	 Check whether you can find a line that starts with inet addr. If you cannot find this
line or it is listed as inet addr 169.254, then you don't have an IP address assigned.

7.	 Even if you see a line stating the IP address, make sure that it is valid for network
that you are connected to.

8.	 Now assuming that you have not assigned an IP address, let's try to get
dynamic IP address from the DHCP server. Make sure that eth0 is set for
dynamic configuration. You should see line similar to iface eth0 inet dhcp:
$ cat /etc/network/interfaces

9.	 Execute the dhclient command to query the local DHCP server:
$ sudo dhclient -v

Chapter 2

57

10.	 If you can see a line similar to bound to 10.0.2.15, then you are assigned with a
new IP address. If you keep getting DHCPDISCOVER messages, this means that your
DHCP server is not accessible or not assigning an IP address to this client.

11.	 Now, if you check the IP address again, you should see a newly IP address listed:
$ ifconfig eth0

12.	 Assuming that you have received a proper IP address, let's move on to the
default gateway:
$ ip route

13.	 The preceding command lists our default route. In my case, it is 10.0.2.2. Let's try
to ping the default gateway:
$ ping –c 5 10.0.2.2

14.	 If you get a response from the gateway, this means that your local network is
working properly. If you do not get a response from gateway, you may want to
check your local firewall.

15.	 Check the firewall status:
$ sudo ufw status

16.	 Check the rules or temporarily disable the firewall and retry reaching your gateway:
$ sudo ufw disable

17.	 Next, check whether we can go beyond our gateway. Try to ping an external server.
I am trying to ping a public DNS server by Google:
$ ping -c 5 8.8.8.8

Networking

58

18.	 If you successfully receive a response, then you have a working network connection.
If this does not work, then you can check the problem with the mtr command. This
command will display each router between your server and the destination server:
$ mtr -r -c 1 8.8.8.8

19.	 Next, we need to check DNS servers:
$ nslookup www.ubuntu.com

20.	 If you received an IP address for Ubuntu servers, then the DNS connection is working
properly. If it's not, you can try changing the DNS servers temporarily. Add the
nameserver entry to /etc/resolve.conf above other nameserver, if any:
nameserver 8.8.8.8

21.	 At this point, you should be able to access the Internet. Try to ping an external server
by its name:

$ ping -c 3 www.ubuntu.com

Chapter 2

59

There's more…
The following are some additional commands that may come handy while working with
a network:

ff lspci lists all pci devices. Combine it with grep to search for specific device.

ff Lsmod shows the status of modules in Linux kernels.

ff ip link lists all the available network devices with status and
configuration parameters.

ff ip addr shows the IP addresses assigned for each device.

ff ip route displays routing table entries.

ff tracepath/traceroute lists all the routers (path) between local and remote hosts.

ff iptables is an administration tool for packet filtering and NAT.

ff dig is a DNS lookup utility.

ff ethtool queries and controls network drivers and hardware settings.

ff route views or edits the IP routing table.

ff telnet was the interface for telnet protocol. Now it is a simple tool to quickly check
remote working ports.

ff Nmap is a powerful network mapping tool.

ff netstat displays network connections, routing tables, interface stats, and more.

ff ifdown and ifup start or stop the network interface. They are similar to ifconfig
down or ifconfig up.

Networking

60

Securing remote access with OpenVPN
VPN enables two or more systems to communicate privately and securely over the public
network or Internet. The network traffic is routed through the Internet, but is encrypted. You
can use VPN to set up a secure connection between two datacenters or to access office
resources from the leisure of your home. The VPN service is also used to protect your online
activities, access location restricted contents, and bypass restrictions imposed by your ISP.

VPN services are implemented with a number of different protocols, such as Point-to-Point
Tunneling Protocol (PPTP), Layer two tunneling protocol (L2TP), IPSec, and SSL. In this
recipe, we will set up a free VPN server, OpenVPN. OpenVPN is an open source SSL VPN
solution and provides a wide range of configurations. OpenVPN can be configured to use
either TCP or UDP protocols. In this recipe, we will set up OpenVPN with its default UDP
port 1194.

Getting ready…
You will need one server and one client system and root or equivalent access to both systems.

How to do it…
1.	 Install OpenVPN with the following command:

$ sudo apt-get update

$ sudo apt-get install openvpn easy-rsa

2.	 Now, set up your own certification authority and generate certificate and keys for the
OpenVPN server.

3.	 Next, we need to edit the OpenVPN files that are owned by the root user, and the
build-ca script needs root access while writing new keys. Temporarily, change to
root account using sudo su:
$ sudo su

Copy the Easy-RSA directory to /etc/openvpn:

cp -r /usr/share/easy-rsa /etc/openvpn/

4.	 Now edit /etc/openvpn/easy-rsa/vars and change the variables to match
your environment:
 export KEY_COUNTRY="US"

 export KEY_PROVINCE="ca"

 export KEY_CITY="your city"

 export KEY_ORG="your Company"

Chapter 2

61

 export KEY_EMAIL="you@company.com"

 export KEY_CN="MyVPN"

 export KEY_NAME="MyVPN"

 export KEY_OU="MyVPN"

5.	 Generate a Master certificate with the following commands:
cd /etc/openvpn/easy-vars

source vars

./clean-all

./build-ca

6.	 Next, generate a certificate and private key for the server. Replace the server
name with the name of your server:
./build-key-server servername

7.	 Press the Enter key when prompted for the password and company name.

8.	 When asked for signing the certificate, enter y and then press the Enter key.

9.	 Build Diffie Hellman parameters for the OpenVPN server:
./build-dh

10.	 Copy all the generated keys and certificates to /etc/openvpn:
cp /etc/openvpn/easy-rsa/keys/{servername.crt,
servername.key, ca.crt, dh2048.pem} /etc/openvpn

11.	 Next, generate a certificate for the client with the following commands:
cd /etc/openvpn/easy-rsa

source vars

./build-key clientname

12.	 Copy the generated key, certificate, and server certificate to the client system.
Use a secure transfer mechanism such as SCP:
/etc/openvpn/ca.crt

/etc/openvpn/easy-rsa/keys/clientname.crt

/etc/openvpn/easy-rsa/keys/clientname.key

13.	 Now, configure the OpenVPN server. Use the sample configuration files provided
by OpenVPN:
$ gunzip -c /usr/share/doc/openvpn/examples/sample-config-
files/server.conf.gz > /etc/openvpn/server.conf

Networking

62

14.	 Open server.conf in your favorite editor:
nano /etc/openvpn/server.conf

15.	 Make sure that the certificate and key path are properly set:
ca ca.crt

cert servername.crt

key servername.key

dh dh2048.pen

16.	 Enable clients to redirect their web traffic through a VPN server. Uncomment
the following line:
push "redirect-gateway def1 bypass-dhcp"

17.	 To protect against DNS leaks, push DNS settings to VPN clients and uncomment the
following lines:
push "dhcp-option DNS 208.67.222.222"

push "dhcp-option DNS 208.67.220.220"

18.	 The preceding lines point to OpenDNS servers. You can set them to any DNS server of
your choice.

19.	 Lastly, set OpenVPN to run with unprivileged user and group and uncomment the
following lines:
user nobody

group nogroup

20.	 Optionally, you can enable compression on the VPN link. Search and uncomment the
following line:
comp-lzo

21.	 Save the changes and exit the editor.

22.	 Next, edit /etc/sysctl to enable IP forwarding. Find and uncomment the following
line by removing the hash, #, in front of it:
#net.ipv4.ip_forward=1

23.	 Update sysctl settings with the following command:
sysctl -p

24.	 Now start the server. You should see an output similar to the following:
service openvpn start

 * Starting virtual private network daemon(s)

 * Autostarting VPN 'server'

Chapter 2

63

25.	 When it starts successfully, OpenVPN creates a new network interface named tun0.
This can be checked with the ifconfig command:
ifconfig tun0

tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-
00-00-00-00-00-00-00-00-00

 inet addr:10.8.0.1 P-t-P:10.8.0.2
Mask:255.255.255.255

26.	 If the server does not start normally, you can check the logs at /var/log/syslog. It
should list all the steps completed by the OpenVPN service.

How it works…
OpenVPN is the open source VPN solution. It is a traffic-tunneling protocol that works in client-
server mode. You might already know that VPN is widely used to create a private and secure
network connection between two endpoints. It is generally used to access your servers or
access office systems from your home. The other popular use of VPN servers is to protect your
privacy by routing your traffic through a VPN server. OpenVPN needs two primary components,
namely a server and a client. The preceding recipe installs the server component. When the
OpenVPN service is started on the OpenVPN host, it creates a new virtual network interface,
a tun device named tun0. On the client side, OpenVPN provides the client with tools that
configure the client with a similar setup by creating a tap device on the client's system.

Once the client is configured with a server hostname or IP address, a server certificate, and
client keys, the client initiates a virtual network connection using a tap device on client to a
tun device on the server. The provided keys and certificate are used to cross-check server
authenticity and then authenticate itself. As the session is established, all network traffic on
the client system is routed or tunneled via a tap network interface. All the external services
that are accessed by the OpenVPN client, and you get to see the requests as if they are
originated from the OpenVPN server and not from the client. Additionally, the traffic between
the server and client is encrypted to provide additional security.

There's more…
In this recipe we have installed and configured OpenVPN server. To use the VPN service from
your local system you will need a VPN client tool.

Following are the steps to install and configure VPN client on Ubuntu systems:

1.	 Install the OpenVPN client with a similar command the one we used to install
the server:
$ sudo apt-get update

$ sudo apt-get install openvpn

Networking

64

2.	 Copy the sample client.conf configuration file:
$ sudo cp /usr/share/doc/openvpn/examples/sample-config-
files/client.conf /etc/openvpn/

3.	 Copy the certificates and keys generated for this client:
$ scp user@yourvpnserver:/etc/openvpn/easy-
rsa/keys/client1.key /etc/openvpn

4.	 You can use other tools such as SFTP or WinSCP on the Windows systems.

5.	 Now edit client.conf, enable client mode, and specify the server name or address:
client

remote your.vpnserver.com 1194

6.	 Make sure that you have set the correct path for keys copied from the server.

7.	 Now save the configuration file and start the OpenVPN server:
$ service openvpn start

8.	 This should create the tun0 network interface:
$ ifconfig tun0

9.	 Check the new routes created by VPN:
$ netstat -rn

10.	 You can test your VPN connection with any What's My IP service. You can also take a
DNS leak test with online DNS leak tests.

For Windows and Mac OS systems, OpenVPN provides respective client tools. You
need an OpenVPN profile with the .ovpn extension. A template can be found with
the OpenVPN client you are using or on the server under OpenVPN examples. The
following is the complete path:

/usr/share/doc/openvpn/examples/sample-config-
files/client.conf

Note that OpenVPN provides a web-based admin interface
to manage VPN clients. This is a commercial offering
that provides an easy-to-use admin interface to manage
OpenVPN settings and client certificates.

Chapter 2

65

Securing a network with uncomplicated
firewall

It is said that the best way to improve server security is to reduce the attack surface. Network
communication in any system happens with the help of logical network ports, be it TCP ports
or UDP ports. One part of the attack surface is the number of open ports that are waiting
for connection to be established. It is always a good idea to block all unrequired ports. Any
traffic coming to these ports can be filtered, that is, allowed or blocked with the help of a
filtering system.

The Linux kernel provides a built-in packet filtering mechanism called netfilter, which is used
to filter the traffic coming in or going out of the system. All modern Linux firewall systems use
netfilter under the hood. Iptables is a well-known and popular user interface to set up and
manage filtering rules for netfilter. It is a complete firewall solution that is highly configurable
and highly flexible. However, iptables need effort on the user's part to master the firewall
setup. Various frontend tools have been developed to simplify the configuration of iptables.
UFW is among the most popular frontend solutions to manage iptables.

Uncomplicated firewall (UFW) provides easy-to-use interface for people unfamiliar
with firewall concepts. It provides a framework for managing netfilter as well as the
command-line interface to manipulate the firewall. With its small command set and plain
English parameters, UFW makes it quick and easy to understand and set up firewall rules.
At the same time, you can use UFW to configure most of the rules possible with iptables.
UFW comes preinstalled with all Ubuntu installations after version 8.04 LTS.

In this recipe, we will secure our Ubuntu server with the help of UFW and also look at some
advance configurations possible with UFW.

Getting ready
You will need an access to a root account or an account with root privileges.

How to do it…
Follow these steps to secure network with uncomplicated firewall:

1.	 UFW comes preinstalled on Ubuntu systems. If it's not, you can install it with the
following commands:
$ sudo apt-get udpate

$ sudo apt-get install UFW

Networking

66

2.	 Check the status of UFW:
$ sudo ufw status

3.	 Add a new rule to allow SSH:
$ sudo ufw allow ssh

4.	 Alternatively, you can use a port number to open a particular port:
$ sudo ufw allow 22

5.	 Allow only TCP traffic over HTTP (port 80):
$ sudo ufw allow http/tcp

6.	 Deny incoming FTP traffic:
$ sudo ufw deny ftp

7.	 Check all added rules before starting the firewall:
$ sudo ufw show added

8.	 Now enable the firewall:
$ sudo ufw enable

Chapter 2

67

9.	 Check the ufw status, the verbose parameter is optional:
$ sudo ufw status verbose

10.	 Get a numbered list of added rules:
$ sudo ufw status numbered

11.	 You can also allow all ports in a range by specifying a port range:
$ sudo ufw allow 1050:5000/tcp

Networking

68

12.	 If you want to open all ports for a particular IP address, use the following command:
$ sudo ufw allow from 10.0.2.100

13.	 Alternatively, you can allow an entire subnet, as follows:
$ sudo ufw allow from 10.0.2.0/24

14.	 You can also allow or deny a specific port for a given IP address:
$ sudo ufw allow from 10.0.2.100 to any port 2222

$ sudo ufw deny from 10.0.2.100 to any port 5223

15.	 To specify a protocol in the preceding rule, use the following command:
$ sudo ufw deny from 10.0.2.100 proto tcp to any port 5223

16.	 Deleting rules:
$ sudo ufw delete allow ftp

17.	 Delete rules by specifying their numbers:
$ sudo ufw status numbered

$ sudo ufw delete 2

18.	 Add a new rule at a specific number:
$ sudo ufw insert 1 allow 5222/tcp	 # Inserts a rule at
number 1

19.	 If you want to reject outgoing FTP connections, you can use the
following command:
$ sudo ufw reject out ftp

20.	 UFW also supports application profiles. To view all application profiles,
use the following command:
$ sudo ufw app list

21.	 Get more information about the app profile using the following command:
$ sudo ufw app info OpenSSH

22.	 Allow the application profile as follows:
$ sudo ufw allow OpenSSH

23.	 Set ufw logging levels [off|low|medium|high|full] with the help of the
following command:
$ sudo ufw logging medium

Chapter 2

69

24.	 View firewall reports with the show parameter:
$ sudo ufw show added # list of rules added

$ sudo ufw show raw # show complete firewall

25.	 Reset ufw to its default state (all rules will be backed up by UFW):

$ sudo ufw reset

There's more…
UFW also provides various configuration files that can be used:

ff /etc/default/ufw: This is the main configuration file.

ff /etc/ufw/sysctl.conf: These are the kernel network variables. Variables in this
file override variables in /etc/sysctl.conf.

ff /var/lib/ufw/user[6].rules or /lib/ufw/user[6].rules are the rules
added via the ufw command.

ff /etc/ufw/before.init are the scripts to be run before the UFW initialization.

ff /etc/ufw/after.init are the scripts to be run after the UFW initialization.

See also
ff Check logging section of the UFW community page for an explanation of UFW logs at

https://help.ubuntu.com/community/UFW

ff Check out the UFW manual pages with the following command:

$ man ufw

Securing against brute force attacks
So you have installed minimal setup of Ubuntu, you have setup SSH with public key
authentication and disabled password authentication, and you have also allowed only single
non-root user to access the server. You also configured a firewall, spending an entire night
understanding the rules, and blocked everything except a few required ports. Now does this
mean that your server is secured and you are free to take a nice sound sleep? Nope.

Servers are exposed to the public network, and the SSH daemon itself, which is probably the
only service open, and can be vulnerable to attacks. If you monitor the application logs and
access logs, you can find repeated systematic login attempts that represent brute force attacks.

https://help.ubuntu.com/community/UFW

Networking

70

Fail2ban is a service that can help you monitor logs in real time and modify iptables rules to
block suspected IP addresses. It is an intrusion-prevention framework written in Python. It can
be set to monitor logs for SSH daemon and web servers. In this recipe, we will discuss how to
install and configure fail2ban.

Getting ready
You will need access to a root account or an account with similar privileges.

How to do it…
Follow these steps to secure against brute force attacks:

1.	 Fail2ban is available in the Ubuntu package repository, so we can install it with a
single command, as follows:
$ sudo apt-get update

$ sudo apt-get install fail2ban

2.	 Create a copy of the fail2ban configuration file for local modifications:
$ sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

3.	 Open a new configuration file in your favorite editor:
$ sudo nano /etc/fail2ban/jail.local

4.	 You may want to modify the settings listed under the [DEFAULT] section:

5.	 Add your IP address to the ignore IP list.

6.	 Next, set your e-mail address if you wish to receive e-mail notifications of the
ban action:
destemail = you@provider.com

sendername = Fail2Ban

mta = sendmail

Chapter 2

71

7.	 Set the required value for the action parameter:
action = $(action_mwl)s

8.	 Enable services you want to be monitored by setting enable=true for each
service. SSH service is enabled by default:
[ssh]

enable = true

9.	 Set other parameters if you want to override the default settings.

10.	 Fail2ban provides default configuration options for various applications.
These configurations are disabled by default. You can enable them
depending on your requirement.

11.	 Restart the fail2ban service:
$ sudo service fail2ban restart

12.	 Check iptables for the rules created by fail2ban:
$ sudo iptables -S

13.	 Try some failed SSH login attempts, preferably from some other system.

Networking

72

14.	 Check iptables again. You should find new rules that reject the IP address with failed
login attempts:

How it works…
Fail2ban works by monitoring the specified log files as they are modified with new log entries.
It uses regular expressions called filters to detect log entries that match specific criteria, such
as failed login attempts. Default installation of fail2ban provides various filters that can be
found in the /etc/fail2ban/filter.d directory. You can always create your own filters
and use them to detect log entries that match your criteria.

Once it detects multiple logs matching with the configured filters within the specified timeout,
fail2ban adjusts the firewall settings to reject the matching IP address for configured
time period.

There's more…
Check out the article about defending against brute force attacks at
http://www.la-samhna.de/library/brutessh.html.

The preceding articles shows multiple options to defend against SSH brute force attacks.
As mentioned in the article, you can use iptables to slow down brute force attacks by
blocking IP addresses:

$ iptables -A INPUT -p tcp --dport 22 -m state --state NEW -m
recent --set --name SSH -j ACCEPT

$ iptables -A INPUT -p tcp --dport 22 -m recent --update --seconds
60 --hitcount 4 --rttl --name SSH -j LOG --log-prefix "SSH_brute_force "

$ iptables -A INPUT -p tcp --dport 22 -m recent --update --seconds
60 --hitcount 4 --rttl --name SSH -j DROP

These commands will create an iptables rule to permit only three SSH login attempts per
minute. After three attempts, whether they are successful or not, the attempting IP address
will be blocked for another 60 seconds.

http://www.la-samhna.de/library/brutessh.html

Chapter 2

73

Discussing Ubuntu security best practices
In this recipe, we will look at some best practices to secure Ubuntu systems. Linux is
considered to be a well secured operating system. It is quite easy to maintain the security and
protect our systems from unauthorized access by following a few simple norms or rules.

Getting ready
You will need access to a root or account with sudo privileges. These steps are intended for a
new server setup. You can apply them selectively for the servers already in productions.

How to do it…
Follow these steps to discuss Ubuntu security best practices:

1.	 Install updates from the Ubuntu repository. You can install all the available updates or
just select security updates, depending on your choice and requirement:
$ sudo apt-get update

$ sudo apt-get upgrade

2.	 Change the root password; set a strong and complex root password and note it down
somewhere. You are not going to use it every day:
$ sudo passwd

3.	 Add a new user account and set a strong password for it. You can skip this step if the
server has already set up a non-root account, like Ubuntu:
$ sudo adduser john

$ sudo passwd john

4.	 Add a new user to the Sudoers group:
$ sudo adduser john sudo

5.	 Enable the public key authentication over SSH and import your public key to
new user's authorized_keys file.

6.	 Restrict SSH logins:

1.	 Change the default SSH port:
	 port 2222

2.	 Disable root login over SSH:
	 PermitRootLogin no

Networking

74

3.	 Disable password authentication:
	 PasswordAuthentication no

4.	 Restrict users and allow IP address:

	 AllowUsers john@(your-ip) john@(other-ip)

7.	 Install fail2ban to protect against brute force attacks and set a new SSH port
in the fail2ban configuration:
$ sudo apt-get install fail2ban

8.	 Optionally, install UFW and allow your desired ports:
$ sudo ufw allow from <your-IP> to any port 22 proto tcp

$ sudo ufw allow 80/tcp

$ sudo ufw enable

9.	 Maintain periodic snapshots (full-disk backups) of your server. Many cloud
service providers offer basic snapshot tools.

10.	 Keep an eye on application and system logs. You may like to set up log-monitoring
scripts that will e-mail any unidentified log entry.

How it works…
The preceding steps are basic and general security measures. They may change
according to your server setup, package selection, and the services running on your
server. I will try to cover some more details about specific scenarios. Also, I have not
mentioned application-specific security practices for web servers and database servers.
A separate recipe will be included in the respective chapters. Again, these configurations
may change with your setup.

The steps listed earlier can be included in a single shell script and executed at first server
boot up. Some cloud providers offer an option to add scripts to be executed on the first run of
the server. You can also use centralized configuration tools such as Ansible, Chef/Puppet, and
some others. Again, these tools come with their own security risks and increase total attack
surface. This is a tradeoff between ease of setup and server security. Make sure that you
select a well-known tool if you choose this route.

I have also mentioned creating single user account, except root. I am assuming that you
are setting up your production server. With production servers, it is always a good idea to
restrict access to one or two system administrators. For production servers, I don't believe in
setting up multiple user accounts just for accountability or even setting LDAP-like centralized
authentication methods to manage user accounts. This is a production environment and not
your backyard. Moreover, if you follow the latest trends in immutable infrastructure concepts,
then you should not allow even a single user to interfere with your live servers. Again, your
mileage may vary.

Chapter 2

75

Another thing that is commonly recommended is to set up automated and unattended
security updates. This depends on how trusted your update source is. You live in a world
powered by open source tools where things can break. You don't want things to go haywire
without even touching the servers. I would recommend setting up unattended updates on your
staging or test environment and then periodically installing updates on live servers, manually.
Always have a snapshot of the working setup as your plan B.

You may want to skip host-based firewalls such as UFW when you have specialized firewalls
protecting your network. As long as the servers are not directly exposed to the Internet, you
can skip the local firewalls.

Minimize installed packages and service on single server. Remember the Unix philosophy, do
one thing and do it well, and follow it. By minimizing the installed packages, you will effectively
reduce the attack surface, and maybe save little on resources too. Think of it as a house
with a single door verses a house with multiple doors. Also, running single service from one
server provides layered security. This way, if a single server is compromised, the rest of your
infrastructure remains in a safe state.

Remember that with all other tradeoffs in place, you cannot design a perfectly secured
system, there is always a possibility that someone will break in. Direct your efforts to
increase the time required for an attacker to break into your servers.

See also
ff First 5 Minutes Troubleshooting A Server at http://devo.ps/blog/

troubleshooting-5minutes-on-a-yet-unknown-box/

ff Try to break in your own servers at http://www.backtrack-linux.org/

ff What Can Be Done To Secure Ubuntu Server? at http://askubuntu.
com/questions/146775/what-can-be-done-to-secure-ubuntu-server

http://devo.ps/blog/troubleshooting-5minutes-on-a-yet-unknown-box/
http://devo.ps/blog/troubleshooting-5minutes-on-a-yet-unknown-box/
http://www.backtrack-linux.org/
http://askubuntu.com/questions/146775/what-can-be-done-to-secure-ubuntu-server
http://askubuntu.com/questions/146775/what-can-be-done-to-secure-ubuntu-server

Chapter 3

77

3
Working with Web

Servers

In this chapter, we will cover the following recipes:

ff Installing and configuring the Apache web server

ff Serving dynamic contents with PHP

ff Hosting multiple websites with a virtual domain

ff Securing web traffic with HTTPS

ff Installing Nginx with PHP_FPM

ff Setting Nginx as a reverse proxy

ff Load balancing with Nginx

ff Setting HTTPs on Nginx

ff Benchmarking and performance tuning of Apache

ff Securing the web server

ff Troubleshooting the web server

Introduction
A web server is a tool that publishes documents on a network, generally the Internet. HTTP is
called a language of the Internet and web servers, apart from browsers, are native speakers
of HTTP. Web servers generally listen on one or multiple ports for requests from clients and
accept requests in the form of URLs and HTTP headers. On receiving a request, web servers
look for the availability of the requested resource and return the contents to the client. The
term web server can refer to one or multiple physical servers or a software package, or both of
them working together.

Working with Web Servers

78

Some well known web servers include the Apache web server, Microsoft IIS, and Nginx.
Apache web server is the most popular web server package available across platforms such
as Windows and Linux. It is an open source project and freely available for commercial use.
Nginx, which is again an open source web server project, started to overcome the problems
in a high-load environment. Because of its lightweight resource utilization and ability to
scale even on minimal hardware, Nginx quickly became a well known name. Nginx offers a
free community edition as well as a paid commercial version with added support and extra
features. Lastly, Microsoft IIS is a web server specifically designed for Windows servers.
Apache still has the major share in the web server market, with Nginx rapidly taking over
with some other notable alternatives such as lighttpd and H2O.

Apache is a modularized web server that can be extended by dynamically loading extra
modules as and when required. This provides the flexibility to run a bare minimum web
server or a fully featured box with modules to support compression, SSL, redirects, language
modules, and more. Apache provides multiple connection processing algorithms called
multi-processing modules (MPM). It provides an option to create a separate single threaded
process for each new request (mpm_prefork), a multi-threaded process that can handle
multiple concurrent requests (mpm_worker), or the latest development of mpm_event, which
separates the active and idle connections.

Nginx can be considered the next generation of web servers. Its development started to solve
the C10k problem, that is, handling ten thousand connections at a time. Apache, being a
process-driven model, has some limitations when handling multiple concurrent connections.
Nginx took advantage of the event-driven approach with asynchronous, non-blocking
connection handling algorithms. A new connection request is handled by a worker process
and placed in an event loop where they are continuously checked for events. The events are
processed asynchronously. This approach enables Nginx to run with a much lower memory
footprint and lower CPU use. It also eliminates the overload of starting a new process for a
new connection. A single worker process started by Nginx can handle thousands of concurrent
connections.

It is possible that some terms used throughout this chapter are unknown
to you. It is not possible to explain everything in a Cookbook format. A quick
Google search for a term will give you more details on them.

Both Apache and Nginx can be configured to process dynamic contents. Apache provides
respective language processors such as mod_php and mod_python to process dynamic
contents within the worker process itself. Nginx depends on external processors and uses
CGI protocols to communicate with external processors. Apache can also be configured to
use an external language processor over CGI, but the choice depends on performance and
security considerations.

Chapter 3

79

While both Apache and Nginx provide various similar features, they are not entirely
interchangeable. Each one has its own pros and cons. Where Nginx excels at serving
static contents, Apache performs much better processing dynamic contents. Many web
administrators prefer to use Apache and Nginx together.

Nginx is commonly used as a frontend caching/reverse proxy handling client
requests and serving static contents, while Apache is used as a backend
server processing dynamic contents.

Nginx handles a large number of connections and passes limited requests of dynamic
contents to backend Apache servers. This configuration also allows users to scale
horizontally by adding multiple backend servers and setting Nginx as a load balancer.

In this chapter, we will be working with both Apache and Nginx servers. We will learn
how to set up Apache with PHP as a language for dynamic contents. We will look at some
important configurations of Apache. Later, we will set up Nginx with an optional PHP
processor, PHP_FPM, and configure Nginx to work as a reverse proxy and load balancer.
We will also look at performance and security configurations for both the servers.

Installing and configuring the Apache web
server

In this recipe, we will simply install the Apache web server from the Ubuntu package
repository. We will also look at the basic configuration options and set up our first web page.

Getting ready
You will need access to a root account or an account with sudo privileges.

I will be using Apache to refer to the Apache web server. The Apache web server is the most
popular project by the Apache Foundation and is generally known as just Apache.

How to do it…
Follow these steps to install and configure the Apache web server:

1.	 Install Apache2 from the Ubuntu package repository:
$ sudo apt-get update

$ sudo apt-get install apache2

www.allitebooks.com

http://www.allitebooks.org

Working with Web Servers

80

2.	 Check if Apache2 has installed successfully. The command wget should download
the index.html file:
$ wget 127.0.0.1

3.	 You can also open a browser on a local machine and point it to the server IP address.
You should see a default It works! page customized for Ubuntu:

4.	 Now, let's proceed with creating our first virtual host. First create a directory structure.
Change the directory to /var/www/ and create a new directory for the contents of
our site:
$ cd /var/www

$ sudo mkdir example.com

5.	 Change the ownership and group of the directory example.com:
$ sudo chown ubuntu:www-data example.com

6.	 Set the file permissions to secure web contents:
$ sudo chmod 750 example.com

Chapter 3

81

7.	 Create the required directories under the example.com directory:
$ cd example.com

$ mkdir public_html

8.	 Create a index.html file under the public_html directory:
$ echo 'Hello World ...' > public_html/index.html

9.	 Next, we need to set up a new virtual host under the Apache configuration.

10.	 Copy the default Virtual Host file under /etc/apache2/sites-available and
use it as a starting point for our configuration:
$ cd /etc/apache2/sites-available

$ sudo cp 000-default.conf example.com.conf

11.	 Edit example.com.conf to match it with the following example. Change the
parameters as per your requirements:

12.	 Save the changes and exit example.com.conf.

13.	 If you are using the same port as the default VirtualHost, do not forget to disable
the default one:
$ sudo a2dissite 000-default.conf

14.	 Finally, enable our new VirtualHost with a2ensite and reload Apache:
$ sudo a2ensite example.com.conf

$ sudo service apache2 reload

15.	 Start your browser and point it to the domain or IP address of your server:

Working with Web Servers

82

How it works…
The Apache package for Ubuntu is included in the default package repository. We need
a single command to install the Apache web server. Installation creates a structure of
configuration files under /etc/apache2 and a sample web page under /var/www/html.

As mentioned in the default It works! page, Apache2 does not use a single configuration file
such as httpd.conf in older versions, but rather separates its configuration across multiple
configuration files. These files are named after their respective uses. apache2.conf is now a
main configuration file and creates a central configuration by including all other files.

conf-available, mods-available, and sites-available contain configuration
snippets and other files for global configurations, modules, and virtual hosts respectively.
These configurations are selectively activated under their enabled counterparts with symbolic
links for each configuration to be enabled.

envvars contains all environment variables and default values for Apache to work.

ports.conf defines the ports Apache should listen on.

The default web page is created under the /var/www/html directory.

In this recipe, we have created our virtual host for the domain name example.com and
hosted it under the directory /var/www/example.com. Next, we have to change the owner
and default group of this directory to the user, ubuntu and group, www-data. This grants full
access to the user ubuntu and allows read and execute access to the group www-data. If
you have observed the contents of the envvars file, you may have noticed that the variable
APACHE_RUN_GROUP is set to www-data. This means Apache process will be started as
the group www-data. By setting a default group, we have allowed Apache process to read
the contents of the example.com directory. We have also enabled write access to the logs
directory so that Apache processes can log to this directory.

After creating the virtual host configuration and setting the respective options, all we need to
do is enable a new virtual host or site. Apache2 provides the respective commands to enable
or disable configurations, modules, and sites. a2ensite will be used to enable the site from
options available under sites-available. Basically, this will create a symbolic link under
the sites-enabled directory to a specified site configuration. Similarly, a2dissite will
disable the site by removing the symbolic link from the sites-enabled directory. Similar
commands are available to work with configurations and modules.

There's more…
You may want to get rid of the warning that says Could not reliably determine the
server's fully qualified domain name. This warning appears because the Apache
process could not find the default FQDN for this server. You can set the default FQDN simply
by creating a new configuration file and then enabling this new configuration:

Chapter 3

83

1.	 Create a new file under the conf-available directory:
$ sudo vi /etc/apache2/conf-available/fqdn.conf

2.	 Add a server name variable to this file:
ServerName localhost

3.	 Save the changes and enable this configuration:
$ sudo a2enconf fqdn

4.	 Reload the Apache server:

$ sudo service apache2 reload

HTTP version 2 support
If you are looking for HTTP2 support, Apache does provide a separate module for that. Apache
version 2.4.17 ships with a module, mod_http2, that implements the latest HTTP version,
HTTP2. It is still an experimental implementation and needs to be enabled manually. This
version of Apache (2.4.17) is available with Ubuntu Xenial (16.04) in the default package
repository. If you are using Ubuntu 14.04, you can use the external repository as follows:

$ sudo add-apt-repository -y ppa:ondrej/apache2

Once the required version of Apache is installed, you can enable mod_http2 as follows:

$ sudo a2enmod http2

Next, edit the specific virtual host file to enable the HTTP2 protocol for a specific site.
Note that you need to configure your site to use an SSL/TLS connection:

<VirtualHost *:443>

 Protocols h2 http/1.1

 ...

</VirtualHost>

Finally, restart your Apache server:

$ sudo service apache2 restart

H2O, the new name in web servers, is developed around the HTTP2 protocol. It does support
both HTTP 1.1 and a stable implementation of the HTTP2 protocol. You may want to check this
out as your local or development server.

Working with Web Servers

84

See also
You can read more by following the links:

ff There is a good Q and A about permissions for web directory at http://
serverfault.com/questions/357108/what-permissions-should-my-
website-files-folders-have-on-a-linux-webserver

ff You can find more details about installing the Apache web server at https://help.
ubuntu.com/lts/serverguide/httpd.html

ff Apache official documentation - http://httpd.apache.org/docs/2.4/

Serving dynamic contents with PHP
In this recipe, we will learn how to install PHP and set it to work alongside the Apache web
server. We will install PHP binaries and then the Apache module mod_php to support
PHP-based dynamic contents.

Getting ready
You will need access to a root account or an account with sudo privileges.

The Apache web server should be installed and working properly.

How to do it…
Follow these steps to serve dynamic contents with PHP:

1.	 Install PHP7 and the Apache module for PHP support:
$ sudo apt-get update

$ sudo apt-get install -y php7.0 libapache2-mod-php7.0

2.	 Check if PHP is properly installed and which version has been installed:
$ php -v

http://serverfault.com/questions/357108/what-permissions-should-my-website-files-folders-have-on-a-linux-webserver
http://serverfault.com/questions/357108/what-permissions-should-my-website-files-folders-have-on-a-linux-webserver
http://serverfault.com/questions/357108/what-permissions-should-my-website-files-folders-have-on-a-linux-webserver
https://help.ubuntu.com/lts/serverguide/httpd.html
https://help.ubuntu.com/lts/serverguide/httpd.html
http://httpd.apache.org/docs/2.4/

Chapter 3

85

3.	 Create index.php under the public_html directory of our site:
$ cd /var/www/example.com/public_html

$ vi index.php

4.	 Add the following contents to index.php:
<?php echo phpinfo(); ?>

5.	 Save and exit the index.php file.

6.	 Open example.com.conf from sites-available:
$ sudo vi /etc/apache2/sites-available/example.com.conf

7.	 Add the following line under the VirtualHost directive:
DirectoryIndex index.php index.html

8.	 Save the changes and reload Apache:
$ sudo service apache2 reload

9.	 Now, access your site with your browser, and you should see a page with information
regarding the installed PHP:

Working with Web Servers

86

How it works…
Here, we have installed PHP binaries on our server along with the Apache module
libapache2-mod-php7.0 to support dynamic content coded in PHP. A module,
mod_php, runs inside Apache process and processes PHP scripts from within Apache
itself. For mod_php to work, Apache needs to run with the mpm_prefork module.
PHP setup completes all these settings and restarts the Apache server:

After we have installed PHP and mod_php, we simply need to create a PHP script. We have
created index.php with little code to display phpinfo. At this stage, if you have both
index.html and index.php under the same directory; by default, index.html will take
over and be rendered first. You will need to explicitly specify index.php to access the page
as http://127.0.0.1/index.php. We have set a directive, DirectoryIndex, under
Apache Virtual Host to set index.php as a default index file.

PHP settings
All PHP settings are listed under its own configuration file, php.ini. PHP comes with two sets
of configurations, as follows:

/usr/lib/php/7.0/php.ini-development

The /usr/lib/php/7.0/php.ini-productionDevelopment file is customized for
a development environment and enables options like display_errors. For production
systems, you can use the configuration file, php.ini-production.

The preceding files can be treated as a reference configuration that ships with the PHP
installation. A copy of php.ini-production can be found under /etc/php/7.0. Apache
and CLI configurations are separated in respective directories. You can directly edit settings
under these files or simply use default files by creating a symbolic link to the development or
production file as follows:

$ cd /etc/php/7.0/apache2

$ sudo mv php.ini php.ini.orig

$ sudo ln -s /usr/lib/php/7.0/php.ini-development php.ini

Chapter 3

87

There's more…
Along with PHP, Apache supports various other scripting languages for dynamic content.
You can install modules for Perl, Python, Ruby, and other scripting languages.

Add Python support:

$ sudo apt-get install libapache2-mod-python

Add Perl support:

$ sudo apt-get install libapache2-mod-perl2

Add Ruby support:

$ sudo apt-get install libapache2-mod-passenger

Installing the LAMP stack
If you are interested in installing the entire LAMP stack, then Ubuntu provides a
single command to do so. Use the following command to install Apache, PHP,
and MySQL collectively:

$ sudo apt-get install lamp-server^

Notice the caret symbol at the end of the command. If you miss this symbol, apt will return an
error saying package not found.

lamp-server is set in the Ubuntu repository as a task to install and
configure Apache, PHP, and MySQL collectively. The caret symbol in apt-get
command is used to specify the task rather than the package. Alternatively,
you can use the tasksel command as $ sudo tasksel install
lamp-server. Tasksel is a program used to ease the installation of
packages that are commonly used together.

Upgrading PHP under Ubuntu 14
As of Ubuntu 14.10, Ubuntu does not provide a package for PHP7 in its repository, but you can
use a Debian package repository to upgrade your PHP version. This repository is maintained
by Ondřej Surý.

Working with Web Servers

88

Use the following commands to upgrade to PHP 7:

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:ondrej/php

$ sudo apt-get update

$ sudo apt-get install php7.0

Check the PHP version after installation completes:

$ php -v

Hosting multiple websites with a virtual
domain

Setting multiple domains on a single server is a very commonly asked question. In fact, it is
very easy to do this with virtual host. In this recipe, we will set up two domains on a single
server and set up a sub-domain as well. We will also look at IP-based virtual hosts.

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need the Apache server installed and working. This recipe describes configuration for
Apache version 2.4

You may need a DNS set up if you want to access configured domains over the Internet.

We will set up two domains, namely example1.dom and example2.com, and a sub-domain,
dev.example1.com.

How to do it…
Follow these steps to host multiple websites with a virtual domain:

1.	 Change the directory to /var/www and create a directory structure for the required
domains and sub-domain. Also create a blank index.html for each domain:
$ cd /var/www

$ sudo mkdir -p example1.com/public_html

$ sudo touch example1.com/public_html

$ sudo cp -R example1.com example2.com

$ sudo cp -R example1.com dev.example1.com

Chapter 3

89

2.	 Change the directory ownership and file permissions on the newly created directories:
$ sudo chown -R ubuntu:www-data example*

$ sudo chown -R ubuntu:www-data dev.example1.com

$ chmod 750 -R example*

$ chmod 750 -R dev.example1.com

Note the use of the wildcard syntax (chmod 750 -R
example*). You can use a similar syntax with various other
commands in Linux and save some repeated typing or copy and
paste work.

3.	 Edit the index.html file for each domain with the respective text:

4.	 Next, we need to create virtual host configuration for each domain. Change the
directory to /etc/apache2/sites-available and copy the default virtual host
file 000-default.conf:
$ cd /etc/apache2/sites-available

$ sudo cp 000-default.conf example1.com.conf

5.	 Edit the new virtual host file and set ServerName, DocumentRoot, and other
variables to match your environment. The final file should look something like this:
<VirtualHost *:80>

 ServerName example1.com

 ServerAlias www.example1.com

 DocumentRoot /var/www/example1.com/public_html

 ...

</VirtualHost>

6.	 Now copy this virtual host file to create example2.com.conf and dev.example1.
com.conf and modify the respective settings in each of them. You need to update
the serverName, serverAlias, and DocumentRoot parameters.

Working with Web Servers

90

7.	 Here, we are done with the setup and configuration part. Now enable the virtual hosts
and reload the Apache server for the settings to take effect:
$ sudo a2ensite example*

$ sudo a2ensite dev.example1.com.conf

$ sudo service apache2 reload

8.	 You can check all enabled virtual hosts with the following command:
$ sudo a2query -s

9.	 Next, to test our setup, we need to configure the hosts' setup on the local system.
Open and edit the /etc/hosts file and add host entries. If you have Windows as
your local system, you can find the hosts file under %systemroot%\System32\
drivers\etc:

10.	 Finally, try to access domains by their names. You should see text entered in the
respective index.html files for each domain:

How it works…
Multiple domain hosting works with the concept of NamedVirtualHost. We have configured
virtual hosts with ServerName and ServerAlias. When a client sends a request with a domain
name, it sends a host name in the request headers. This host name is used by Apache to
determine the actual virtual host to serve this request. If none of the available virtual hosts
match the requested host header, then the default virtual host or the first virtual host will be
used to serve the request.

Chapter 3

91

In this example, we have used hosts file to map test domain names with local IP. With the
actual domain name, you need to point DNS servers to the IP address of your web server.
Generally, all popular hosting providers host their own DNS servers. You need to add these
DNS servers to your domain setting with domain registrar. Then, on your hosting side, you
need to set respective A records and CNAME records. An A record points to an IP address and
the CNAME record is an alias for the A record used for pointing a subdomain to an A record.
Your hosting provider should give you details on how to configure domains and subdomains.

In previous versions of Apache server, you might need to enable NameVirtualHost under
the configuration file. Find a line similar to #NameVirtualHost 172.20.30.40 and
uncomment it by removing the # symbol at the start.

You can also set up IP-based virtual hosts. If you have multiple IP addresses available on your
server, you can set the virtual host to listen on a particular IP address. Use the following steps
to set up an IP-based virtual host:

1.	 Get a list of the available IP addresses:
$ ifconfig | grep "inet addr"

ubuntu@ubuntu:~$ ifconfig | grep "inet addr"

inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0

inet addr:192.168.56.102 Bcast:192.168.56.255
Mask:255.255.255.0

inet addr:127.0.0.1 Mask:255.0.0.0

2.	 Edit the virtual host configuration and set it to match the following:

Listen 80

<VirtualHost 192.168.56.102>

 DocumentRoot /var/www/example1.com/public_html

 ServerName example1.com

</VirtualHost>

See also
ff Apache documentation at https://httpd.apache.org/docs/2.2/vhosts/

examples.html

ff Refer to the Installing and configuring the Apache web server recipe for the
installation and configuration of the Apache web server.

https://httpd.apache.org/docs/2.2/vhosts/examples.html
https://httpd.apache.org/docs/2.2/vhosts/examples.html

Working with Web Servers

92

Securing web traffic with HTTPS
HTTP is a non-secure protocol commonly used to communicate over the Web. The traffic is
transferred in plain text form and can be captured and interpreted by a third-party attacker.
Transport Layer Security and Secure Socket Layer protocols (TLS/SSL) can be used to
secure the traffic between client and server. These protocols encapsulate normal traffic in an
encrypted and secure wrapper. It also validates the identity of the client and server with SSL
keys, certificates, and certification authorities.

When HTTP is combined with TLS or SSL, it is abbreviated as HTTPS or HTTP secure. Port 443
is used as a standard port for secured HTTP communication. Nearly all leading web servers
provide inbuilt support for enabling HTTPS. Apache has a module called mod_ssl that
enables the use of HTTPS.

To set up your servers with SSL/TLS encrypted traffic, you will need an SSL certificate and a
key pair that can be used to encrypt traffic. Generally, the certificate and keys are obtained
from a trusted signing authority. They charge you some fees to verify your ownership of
the web property and allocate the required signed certificates. You can also generate self-
signed certificates for internal use. Few certification authorities provide a free SSL certificate.
Recently, Mozilla has started a free and automated certificate authority named Let's Encrypt.
At the time of writing, the service is in public beta and has started allocating certificates. Let's
Encrypt offers a client that can be used to obtain certificates and set up automated renewal.
You can also find various unofficial clients for Apache and Nginx servers.

In this recipe, we will learn how to create our own self-signed certificate and set up the Apache
server to serve contents over a secure channel.

Getting ready
You will need access to a root account or an account with sudo privileges. I assume that you
have the Apache server preinstalled. You will also need OpenSSL installed.

Make sure your firewall, if any, allows traffic on port 443. Check Chapter 2, Networking,
Securing network with uncomplicated firewall recipe for more details on Uncomplicated
Firewall.

How to do it…
Follow these steps to secure web traffic with HTTPS:

1.	 First, we will start by creating a self-signed SSL certificate. Create a directory under
/etc/apache2 to hold the certificate and key:
$ sudo mkdir /etc/apache2/ssl

Chapter 3

93

2.	 Change to the new directory and enter the following command to create a certificate
and SSL key:
$ cd /etc/apache2/ssl

$ sudo openssl req -x509 -nodes -days 365 \

-newkey rsa:2048 -keyout ssl.key -out ssl.crt

3.	 This will prompt you to enter some information about your company and website.
Enter the respective details and press Enter for each prompt:

4.	 After you are done with it, you can check the generated certificate and key:
$ ls -l

5.	 Next, we need to configure Apache to use SSL. We will enable SSL for the previously
created virtual host.

6.	 Open the Virtual Host configuration file, example.com.conf. After removing
comments, it should look similar to the following:

7.	 Now, copy the entire <VirtualHost *:80> ... </VirtualHost> tag and paste
it at the end of the file.

Working with Web Servers

94

8.	 Under the newly copied contents, change the port from 80 to 443.

9.	 Add the following lines below the DocumentRoot line. This will enable SSL
and specify the path to the certificate and key:
SSLEngine on

SSLCertificateFile /etc/apache2/ssl/ssl.crt

SSLCertificateKeyFile /etc/apache2/ssl/ssl.key

10.	 The final file should look something like this:

11.	 Save the changes, exit example.com.conf, and enable the mod_ssl module on
the Apache server:
$ sudo a2enmod ssl

12.	 Next, enable the Virtual Host example.com. If it's already enabled, it will return a
message saying site example.com already enabled:
$ sudo a2ensite example.com.conf

13.	 Reload the Apache server for the changes to take effect:
$ sudo service apache2 reload

Chapter 3

95

14.	 Now, open your browser on the client system and point it to your domain name or IP
address with HTTPS at the start:
https://example.com

15.	 Your browser may return an error saying Invalid Certification Authority. This is fine
as we are using a self-signed certificate. Click Advanced and then click Proceed to
example.com to open a specified page:

16.	 Once the page is loaded completely, find the padlock icon in the upper right corner of
the browser and click on it. The second section with the green lock icon will display the
encryption status. Now your communication with the server is encrypted and secure:

Working with Web Servers

96

How it works…
We have created a self-signed certificate to secure an HTTP communication. The key will be
used to encrypt all communication with clients. Another thing to note is that we have defined
a separate Virtual Host entry on port 443. This Virtual Host will be used for all requests
that are received over port 443. At the same time, we have allowed non-secured HTTP
communication for the same Virtual Host. To disable non-secure communication on port 80,
you can simply comment out the original Virtual Host configuration. Alternatively, you can
separate both configurations into two files and enable or disable with the a2ensite and
a2dissite commands.

Some of the parameters used for generating a key and certificate are as follows:

ff - nodes specifies that we do not want to use a passphrase for a key.

ff - days this specifies the number of days the certificate is valid for. Our certificate is
valid for 365 days, that is, a year.

ff - newkey rsa:2048 this option is used to generate a certificate along with a
private key. rsa:2048 specifies the 2048 bit long RSA private key.

I have modified the existing Virtual Host entry to demonstrate the minimal configuration
required to enable secure HTTP communication. You can always use the default secure
Virtual Host configuration available under sites-available/default-ssl.conf.
This file provides some additional parameters with respective comments.

The certificate created in this recipe will not be trusted over the Internet but can be used
for securing local or internal communication. For production use, it is advisable to get a
certificate signed from an external, well known certification authority. This will avoid the
initial errors in browsers.

There's more…
To get a signed certificate from an external certification authority, you will need a
CSR document.

The following are the steps to generate a CSR:

1.	 Generate a key for the CSR:
$ openssl genrsa -des3 -out server.key 2048

2.	 You will be asked to enter a passphrase for the key and then verify it. They will be
generated with name server.key.

Chapter 3

97

3.	 Now, remove the passphrase from the key. We don't want to enter a passphrase each
time a key is used:
$ openssl rsa -in server.key -out server.key.insecure

$ mv server.key server.key.secure

$ mv server.key.insecure server.key

4.	 Next, create the CSR with the following command:
$ openssl req -new -key server.key -out server.csr

5.	 A CSR file is created with the name server.csr, and now you can submit this CSR
for signing purposes.

See also
ff Refer to the Installing and configuring the Apache web server recipe for the

installation and configuration of the Apache web server.

ff Check out the certificates and security in the Ubuntu server guide at https://
help.ubuntu.com/lts/serverguide/certificates-and-security.html

ff How to set up client verification at http://askubuntu.com/
questions/511149/how-to-setup-ssl-https-for-your-site-on-
ubuntu-linux-two-way-ssl

ff Apache documentation on SSL configuration at http://httpd.apache.org/
docs/2.4/ssl/ssl_howto.html

ff Free SSL certificate with Mozilla Let's Encrypt at https://letsencrypt.org/
getting-started/

ff Easily generate SSL configuration for your web server at Mozilla SSL Configuration
Generator at https://mozilla.github.io/server-side-tls/ssl-config-
generator/

Installing Nginx with PHP_FPM
In this recipe, we will learn how to install and set up Nginx as a web server. We will also install
PHP to be able to serve dynamic content. We need to install PHP_FPM (FastCGI Process
Manager), as Nginx doesn't support the native execution of PHP scripts. We will install the
latest stable version available from the Nginx package repository.

Getting ready
You will need access to a root account or an account with sudo privileges.

https://help.ubuntu.com/lts/serverguide/certificates-and-security.html
https://help.ubuntu.com/lts/serverguide/certificates-and-security.html
http://askubuntu.com/questions/511149/how-to-setup-ssl-https-for-your-site-on-ubuntu-linux-two-way-ssl
http://askubuntu.com/questions/511149/how-to-setup-ssl-https-for-your-site-on-ubuntu-linux-two-way-ssl
http://askubuntu.com/questions/511149/how-to-setup-ssl-https-for-your-site-on-ubuntu-linux-two-way-ssl
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://letsencrypt.org/getting-started/
https://letsencrypt.org/getting-started/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/

Working with Web Servers

98

How to do it…
Follow these steps to install Nginx with PHP_FPM:

1.	 Update the apt package repository and install Nginx. As of writing this Ubuntu 16.04
repository contains latest stable release of Nginx with version 1.10.0:
$ sudo apt-get update
$ sudo apt-get install nginx

2.	 Check if Nginx is properly installed and running:
$ sudo service nginx status

3.	 Check the installed version of Nginx:
$ nginx -v

4.	 You may want to point your browser to the server IP or domain. You should see a
default Nginx welcome page:

5.	 Next, proceed with installing PHP_FPM:
$ sudo apt-get install php7.0-fpm

6.	 Configure Nginx to use the PHP processor. Nginx sites are listed at /etc/nginx/
sites-available. We will modify the default site:
$ sudo nano /etc/nginx/sites-available/default

7.	 Find a line stating the priority of the index file and add index.php as a first option:
index index.php index.html index.htm;

Chapter 3

99

8.	 Next, add the following two location directives:
location / {

 try_files $uri $uri/ /index.php;

}

location ~ \.php$ {

 include fastcgi_params;

 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;

 fastcgi_param QUERY_STRING $query_string;

 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;

}

9.	 Save the changes and exit the file. It should look similar to this:

10.	 Change the PHP settings to disable PATH_TRANSLATED support. Find an option,
cgi.fix_pathinfo, and uncomment it with the value set to 0:
$ sudo nano /etc/php/7.0/fpm/php.ini

cgi.fix_pathinfo=0

11.	 Now, restart PHP_FPM and Nginx for the changes to take effect:
$ sudo service php7.0-fpm restart

$ sudo service nginx restart

Working with Web Servers

100

12.	 Create an index.php file with some PHP code in it at the path mentioned in the
default site configuration:
$ sudo nano /var/www/html/index.php

<?php phpinfo(); ?>

13.	 Open your browser and point it to your server. You should see the result of your
PHP script:

How it works…
Here, we have installed the latest stable version of the Nginx server with PHP_FPM to support
dynamic content scripted with PHP. The Ubuntu repository for version 16.04 contains the
latest stable release of Nginx, So installing Nginx is as easy as a single command. If you are
interested in more recent versions Nginx maintains their own package repository for mainline
packages. You just need to add repository, the rest of the installation process is similar to a
single apt-get install nginx command.

If you are running the Apache server on the same machine, you may want to
change the default port Nginx runs on. You can find these settings under site
configurations, located at /etc/nginx/sites-available. Nginx creates
default site configuration with the filename set to default. Find the lines
that start with listen and change the port from its default, 80, to any port
number of your choice.

After installing Nginx, we need to configure it to support dynamic content. Here, we have
selected PHP as a dynamic content processor. PHP is a popular scripting language and very
commonly used with web servers for dynamic content processing. You can also add support
for other modules by installing their respective processors. After installing PHP_FPM, we
have configured Nginx to use PHP_FPM and pass all PHP requests to the FPM module on
a socket connection.

Chapter 3

101

We have used two location blocks in configuration. The first block search is for static content,
such as files and directories, and then if nothing matches, the request is forwarded to index.
php, which is in turn forwarded to the FastCGI module for processing. This ensures that Nginx
serves all static content without executing PHP, and only requests that are not static files and
directories are passed to the FPM module.

The following is a brief description of the parameters used under FastCGI configuration:

ff The parameter try_files configures Nginx to return 404 pages, that is, the page
not found error, for any requests that do not match website content. This is limited to
static files.

ff With the parameter fastcgi_param, you can forward the script name and query
string to the PHP FPM process.

ff One more optional parameter is cgi.fix_pathinfo=0, under the PHP
configuration file php.ini. By default, PHP is set to search for the exact script
filename and then search for the closest match if the exact name is not found. This
may become a security risk by allowing an attacker to execute random scripts with
simple guesswork for script names. We have disabled this by setting its value to 0.

Finally, after we restart PHP_FPM and Nginx, our server is ready to process static as well as
dynamic content. All static content will be handled by Nginx itself, and requests for URLs that
end with .php will be forwarded to PHP_FPM for processing. Nginx may cache the processed
result for future use.

There's more…
If you are running Ubuntu 12.10, you may need to install the following dependencies before
adding the Nginx repository to the installation sources:

1.	 Install python-software-properties and software-properties-common:
$ sudo apt-get install python-software-properties

$ sudo apt-get install software-properties-common

2.	 You may want to remove your Apache installation completely. Use the following
commands to remove Apache:

$ sudo service apache2 stop

$ sudo apt-get remove --purge apache2 apache2-utils apache2.2-
bin apache2-common

Nginx maintains their own package repositories for stable and mainline releases. These
repositories can be used to get the latest updates of Nginx as and when available. Use the
stable repository, - $ sudo add-apt-repository ppa:nginx/stable.

Working with Web Servers

102

Use the mainline repository - $ sudo add-apt-repository ppa:nginx/development.

See also
ff Common Nginx pitfalls at http://wiki.nginx.org/Pitfalls

ff Nginx Quick start guide at http://wiki.nginx.org/QuickStart

Setting Nginx as a reverse proxy
Apache and Nginx are two popular open source web servers. Both are very powerful, but at
the same time have their own disadvantages as well. Apache is not good at handling high load
environments with multiple concurrent requests and Nginx does not have inbuilt support for
dynamic content processing. Many administrators overcome these problems by using both
Apache and Nginx together. Nginx handles all incoming requests and only passes requests for
dynamic content to Apache. Additionally, Nginx can provide a catching option which enables
the server to respond to a request with results from a similar previous request. This helps to
reduce the overall response time and minimize the load sent to Apache.

In this recipe, we will learn how to set up a web server configured with a reverse proxy.
We will use Nginx as a reverse proxy, which will serve all static content and pass the
requests for dynamic content to Apache.

Getting ready
You will need access to a root account or an account with sudo privileges.

I assume that Apache is installed and running with a virtual host, example.com.

How to do it…
Follow these steps to set Nginx as a reverse proxy:

1.	 Install Nginx with the following command:
$ sudo apt-get update

$ sudo apt-get install nginx

2.	 Create a new site configuration under /etc/nginx/sites-available and add
the following content to it:
$ sudo nano /etc/nginx/sites-available/reverse_proxy

server {

 listen 80;

http://wiki.nginx.org/Pitfalls
http://wiki.nginx.org/QuickStart

Chapter 3

103

 root /var/www/example.com;

 index index.php index.html index.htm;

 server_name example.com;

 location / {

 try_files $uri $uri/ /index.php;

 }

 location ~ \.php$ {

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $remote_addr;

 proxy_set_header Host $host;

 proxy_pass http://127.0.0.1:8080;

 }

 location ~* \.(js|css|jpg|jpeg|png|svg|html|htm)$ {

 expires 30d;

 }

 location ~ /\.ht {

 deny all;

 }

}

3.	 Enable this new configuration by creating a symbolic link under sites-enabled:
$ sudo ln -s /etc/nginx/sites-available/reverse_proxy \

/etc/nginx/sites-enabled/reverse_proxy

4.	 Optionally, disable the default site by removing the symbolic link from
sites-enabled:
$ sudo rm /etc/nginx/sites-enabled/default

5.	 Next, we need to change the Apache settings to listen on port 8080. This will leave
port 80 to be used by Nginx:
$ sudo nano /etc/apache2/ports.conf

listen 127.0.0.1:8080

Working with Web Servers

104

6.	 Also change NameVirtualHost, if you are using it:
NameVirtualHost 127.0.0.1:8080

7.	 Change the virtual hosts settings to listen on port 8080:
$ sudo nano /etc/apache2/sites-available/example.com

<VirtualHost 127.0.0.1:8080>

 ServerName example.com

 ServerAdmin webmaster@example.com

 DocumentRoot /var/www/example.com/public_html

</VirtualHost>

8.	 Save the changes and restart Apache for the changes to take effect:
$ sudo service apache2 restart

9.	 Now, restart Nginx:
$ sudo service nginx restart

10.	 Check for open ports with the following command:
$ sudo netstat -pltn

11.	 Open your browser and point it to the IP address of your server. It should load the
page configured under the Apache virtual host, example.com.

How it works…
With the proxy_pass parameter, we have simply asked Nginx to pass all requests for PHP
scripts to Apache on 127.0.0.1 on port 8080. Then, we set Apache to listen on the loopback
IP and port 8080, which will receive requests forwarded by Nginx and process them with an
internal PHP processor. All non-PHP content will still be served by Nginx from the /var/www
directory. The try_files $uri $uri/ /index.php; option sets Nginx to search for the
file with a specified name and then look for the folder; lastly, if both file and folder are not
found, send the request to index.php, which will then be processed by Apache.

Chapter 3

105

Other options used with proxy pass ensures that Apache and PHP scripts receive the actual
hostname and IP of the client and not of the Nginx server. You can use an additional module
named libapache2-mod-rpaf on Apache. This module provides an option to set a proxy IP
address and rename the parameters sent by the proxy server. You can install the module with
the following command:

$ sudo apt-get install libapache2-mod-rpaf

The configuration file for this module is available at /etc/apache2/mods-available/
rpaf.conf.

You can find various other proxy options and their respective explanations in the Nginx
documentation at http://nginx.org/en/docs/http/ngx_http_proxy_module.html

Finally, with Nginx set as a frontend, Apache will not have to interact directly with HTTP clients.
You may want to disable some of the Apache modules that will not be used in this setup:

$ sudo a2dismod deflate cgi negotiation autoindex

As always, do not forget to reload Apache after any changes.

There's more…
Nginx can be set to cache the response received from the backend server and thereby
minimize repeated requests on backend servers, as well as the response time. Nginx can
cache the content in local files and serve new requests from the cache. The cache can be
invalidated or even disabled based on the request received. To enable caching, add the
following settings to the Nginx site configuration:

 proxy_cache_path /data/nginx/cache levels=1:2 keys_zone=backend-
cache:8m max_size=50m;

 proxy_cache_key "$scheme$request_method$host$request_uri$args";

 server {

 ## add other settings heres

 location / {

 proxy_pass 127.0.0.1:8080;

 proxy_cache backend-cache;

 proxy_cache_bypass $http_cache_control;

 add_header X-Proxy-Cache $upstream_cache_status;

 proxy_cache_valid 200 302 10m;

 proxy_cache_valid 404 1m;

 }

 }

http://nginx.org/en/docs/http/ngx_http_proxy_module.html

Working with Web Servers

106

You may need to create the proxy path directory /data/nginx/cache and set the appropriate
file permissions. Set the directory ownership to www-data and restrict permissions to 700. You
can use any location for cache data and not necessarily /data/nginx/cache.

This configuration sets the cache validity of 10 minutes, which is quite a lengthy period. This
will work if you have static content that rarely changes. Instead, if you are serving dynamic
content that is frequently updated, then you can take advantage of microcaching by setting
the cache validity to a very small period of a few seconds. Add the following parameters to
further improve your caching configuration for microcaching:

ff proxy_cache_lock on: Queues additional requests while the cache is
being updated

ff proxy_cache_use_stale updating: Uses stale data while the cache is
being updated

HAProxy and Varnish
HAProxy and Varnish are other popular options for the reverse proxy and the caching proxy,
respectively. Both of them can offer improved performance when compared with Nginx.
HAProxy can also be used as a Layer 4 and Layer 7 load balancer. We covered HAProxy in
Chapter 2, Networking, in the Load Balancing with HAProxy recipe.

See also
ff Nginx admin guide on reverse proxies at https://www.nginx.com/resources/

admin-guide/reverse-proxy/

ff Understanding Nginx proxying, load balancing, and caching at https://www.
digitalocean.com/community/tutorials/understanding-nginx-http-
proxying-load-balancing-buffering-and-caching

ff Nginx proxy module documentation at http://nginx.org/en/docs/http/ngx_
http_proxy_module.html

Load balancing with Nginx
When an application becomes popular and the number of requests increases beyond the
capacity of a single server, we need to scale horizontally. We can always increase the capacity
(vertical scaling) of a server by adding more memory and processing power, but a single
server cannot scale beyond a certain limit. While adding separate servers or replicas of the
application server, we need a mechanism which directs the traffic between these replicas. The
hardware or software tool used for this purpose is known as a load balancer. Load balancers
work as transparent mechanisms between the application server and client by distributing
the requests between available instances. This is a commonly used technique for optimizing
resource utilization and ensuring fault tolerant applications.

https://www.nginx.com/resources/admin-guide/reverse-proxy/
https://www.nginx.com/resources/admin-guide/reverse-proxy/
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html

Chapter 3

107

Nginx can be configured to work as an efficient Layer 7 as well as Layer 4 load balancer. Layer
7 is application layer of HTTP traffic. With Layer 4 support, Nginx can be used to load balance
database servers or even XMPP traffic. With version 1.9.0, Nginx has enabled support for
Layer 4 load balancing in their open source offerings.

In this recipe, we will learn how to set up Nginx as a load balancer.

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need a minimum of three servers, as follows:

ff An Nginx server, which will be set as a load balancer

ff Two or more application servers with a similar code base set up on all

How to do it…
Follow these steps to set load balancing with Nginx:

1.	 I assume that you already have Nginx installed. If not, you can refer to the Installing
Nginx with PHP_FPM recipe of this chapter.

2.	 Now, create a new configuration file under /etc/nginx/sites-available.
Let's call it load_balancer:
$ sudo nano /etc/nginx/sites-available/load_balancer

3.	 Add the following lines to this load_balancer file. This is the minimum
configuration required to get started with load balancing:
upstream backend {

 server srv1.example.com;

 server srv2.example.com;

 server 192.168.1.12:8080;

 # other servers if any

}

server {

 listen 80;

 location / {

 proxy_pass http://backend;

 }

}

Working with Web Servers

108

4.	 Enable this configuration by creating a symlink to load_balancer under
sites-enabled:
$ sudo ln -s /etc/nginx/sites-available/load_balancer
/etc/nginx/sites-enabled/load_balancer

5.	 You may want to disable all other sites. Simply remove the respective links under
sites-enabled.

6.	 Check the configuration for syntax errors:
$ sudo nginx -t

7.	 Now, reload Nginx for the changes to take effect:
$ sudo service nginx reload

8.	 Yes, you are ready to use a load balancer. Open your favorite browser and point
it to the IP of your Nginx server. You should see the contents of example.com or
whatever domain you have used.

How it works…
We have created a very basic configuration for a load balancer. With this configuration,
Nginx takes the traffic on port 80 and distributes it between srv1.example.com and
srv2.example.com. With an upstream directive, we have defined a pool of servers that
will actually process the requests. The upstream directive must be defined in a HTTP context.
Once the upstream directive is defined, it will be available for all site configurations.

All configuration files defined under sites-available are combined
in the main configuration file, /etc/nginx/nginx.conf, under the
HTTP directive. This enables us to set other directives in site-specific
configurations without specifying the HTTP block.

When defining servers under an upstream directive, you can also use the IP address and
port of the application server. This is an ideal configuration, especially when both the load
balancer and the application servers are on the same private network, and this will help
minimize the communication overhead between Nginx and backend servers.

Next, under the server block, we have configured Nginx to proxy_pass all requests to our
backend pool.

Chapter 3

109

While setting backend servers, we have not explicitly specified any load balancing algorithm.
Nginx provides various load balancing algorithms that define the server that will receive a
particular request. By default, Nginx uses a round-robin algorithm and passes requests to
each available server in sequential order. Other available options are as follows:

ff least_connection: This passes the request to the host with the fewest
active connections.

ff least_time: Nginx chooses the host with the lowest latency. This option is available
with Nginx plus.

ff ip_hash: A hash of clients' IP addresses, and is used to determined the host to send
the request to. This method guarantees that requests with the same IP address are
served by the same host, unless the selected host is down.

Hash uses a user defined key to generate a hash value and then uses the hash to determine
the processing host.

There's more…
Nginx provides various other load balancing features, such as weighted load balancing, active
and passive health checks, backup servers, and session persistence. With the latest commits
to the open source version, it now supports TCP load balancing as well. These settings can be
updated at runtime with the help of HTTP APIs. The following are a few examples of different
load balancing configurations:

ff Set server weights:
upstream app-servers {

 server srv1.example.com weight 3;

 server srv2.example.com;

}

ff Health checkups and backup servers:
upstream app-servers {

 server srv1.example.com max_fails 3 fail_timeout 10;

 server srv2.example.com fail_timeout 50;

 192.168.1.12:8080 backup;

}

Working with Web Servers

110

ff Session persistence with cookies:

upstream app-servers {

 server srv1.example.com;

 server srv2.example.com;

 sticky cookie srv_id expires=1h domain=.example.com
path=/;

}

Check the Nginx load balancing guide for various other load balancing options and their
respective details.

See also
ff Nginx admin guide for load balancers at https://www.nginx.com/resources/

admin-guide/load-balancer

Setting HTTPs on Nginx
In this recipe, we will learn how to enable HTTPs communication on the Nginx server.

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
Follow these steps to set HTTPs on Nginx:

1.	 Obtain a certificate and the related keys from a certification authority or create a
self-signed certificate. To create a self-signed certificate, refer to the Securing web
traffic with HTTPS recipe in this chapter.

2.	 Create a directory to hold all certificate and keys:
$ sudo mkdir -p /etc/nginx/ssl/example.com

3.	 Move the certificate and keys to the preceding directory. Choose any secure method,
such as SCP, SFTP, or any other.

4.	 Create a virtual host entry or edit it if you already have one:
$ sudo nano /etc/nginx/sites-available/example.com

https://www.nginx.com/resources/admin-guide/load-balancer
https://www.nginx.com/resources/admin-guide/load-balancer

Chapter 3

111

5.	 Match your virtual host configuration with the following:
server {

 listen 80;

 server_name example.com www.example.com;

 return 301 https://$host$request_uri;

}

server {

 listen 443 ssl;

 server_name example.com www.example.com;

 root /var/www/example.com/public_html;

 index index.php index.html index.htm;

 ssl on;

 ssl_certificate
 /etc/nginx/ssl/example.com/server.crt;

 ssl_certificate_key
 /etc/nginx/ssl/example.com/server.key;

 # if you have received ca-certs.pem from Certification
 Authority

 #ssl_trusted_certificate /etc/nginx/ssl/example.com/ca-
 certs.pem;

 ssl_session_cache shared:SSL:10m;

 ssl_session_timeout 5m;

 keepalive_timeout 70;

 ssl_ciphers "HIGH:!aNULL:!MD5 or HIGH:!aNULL:!MD5:!3DES";

 ssl_prefer_server_ciphers on;

 ssl_protocols TLSv1.2 TLSv1.1 TLSv1;

 add_header Strict-Transport-Security "max-age=31536000";

 location / {

 try_files $uri $uri/ /index.php;

 }

Working with Web Servers

112

 location ~ \.php$ {

 include fastcgi_params;

 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;

 }

}

6.	 Enable this configuration by creating a symbolic link to it under sites-
enabled:
$ sudo ln -s /etc/nginx/sites-available/example.com
/etc/nginx/sites-enabled/example.com

7.	 Check the configuration for syntax errors:
$ sudo nginx -t

8.	 Reload Nginx for the changes to take effect:
$ sudo service nginx reload

9.	 Open your browser and access the site with domain or IP with HTTPS.

How it works…
When you know some basic configuration parameters, Nginx is quite simple to set up. Here,
we have taken a few SSL settings from the default configuration file and added a simple
redirection rule to redirect non-HTTPs traffic on port 80 to port 443. The first server block
takes care of the redirection.

In addition to specifying the server certificate and keys, we have enabled session resumption
by setting the cache to be shared across the Nginx process. We also have a timeout value
of 5 minutes.

All other settings are common to the Nginx setup. We have allowed the virtual host to match
with example.com, as well as www.example.com. We have set the index to search index.
php, followed by index.html and others. With location directives, we have set Nginx to
search for files and directories before forwarding the request to a PHP processor. Note that
if you create a self-signed certificate, you will notice your browser complaining about invalid
certification authority.

See also
ff Nginx HTTPs guide at http://nginx.org/en/docs/http/configuring_

https_servers.html

http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html

Chapter 3

113

Benchmarking and performance tuning of
Apache

In this recipe, we will learn some performance tuning configurations that may help to squeeze
out the last bit of performance from the available hardware. Before diving into performance
tuning, we need to evaluate our servers and set a benchmark which can be used to measure
improvements after any changes. We will be using a well known HTTP benchmarking tool,
Apache Bench (ab). Various other benchmarking tools are available and each one has its
own feature set. You can choose the one that best suits your needs.

Getting ready
You will need two systems: one with the web server software installed and another to run
Apache Bench. You will need root access or access to an account with similar privileges.

You will also need to modify a few network parameters to handle a large network load. You
will also need to set a higher open files limit, in limits.conf, on both systems. Check the
Tuning TCP Stack recipe in Chapter 2, Networking.

How to do it…
1.	 Install the Apache Bench tool. This is available with the package apache2-utils:

$ sudo apt-get install apache2-utils

2.	 If you need to, you can check all the available options of the ab tool as follows:
$ ab -h

3.	 Now we are ready to generate network load. Execute the following command
to start ab:

$ ab -n 10000 -c 200 -t 2 -k "http://192.168.56.103/index.php"

Working with Web Servers

114

It will take some time to complete the command depending on the parameters.
You should see similar results to the following (partial) output:

Additionally, you may want to benchmark your server for CPU, memory, and IO performance.
Check the Setting performance benchmarks recipe in Chapter 13, Performance Monitoring.

Now that we have a benchmark for server performance with stock installation, we can
proceed with performance optimization. The following are some settings that are generally
recommended for performance tuning:

ff Apache related settings:

�� Remove/disable any unused modules

�� Enable mod_gzip/mod_deflate

�� Turn HostnameLookups off

�� Use IP address in configuration files

�� Use persistence connection by enabling keepalive, then set
keepalive timeout

�� Limit the uses of AllowOverride or completely disable it with
AllowOverride none

�� Disable ExtendedStatus; this is useful while testing but not in production

ff Nginx related settings:

�� Set worker_processes to the count of your CPU cores or simply set it
to auto

�� Set the number of worker_connections to test multiple values to find the
best match for your servers

�� Set the keepalive_requests and keepalive_timeout values; these
reduce the overhead of creating new connections

�� Enable idle connections with upstream servers by setting the
keepalive value

Chapter 3

115

�� Enable log buffering with buffer and flush parameters to access_log; this
will reduce IO requests while logging

�� Reduce the log-level - you can set it to warn the user or display an error while
in production

�� Set the sendfile directive to use an efficient sendfile() call from the
operating system

�� Enable caching and compression

�� Make sure that you track the performance changes after each set of
modifications; this way you will have exact knowledge regarding what
worked and what not

�� You should also tune the TCP stack. The details of the TCP stack settings are
covered in Chapter 2, Networking.

There's more…
Various other tools are available for benchmarking different features of the web server.
The following are some well known tools, as well as a few latest additions:

ff Httperf: A web server benchmarking tool with some advanced options

ff Perfkit: a cloud benchmark tool by Google

ff Wrk: https://github.com/wg/wrk

ff H2load: HTTP2 load testing tool at https://nghttp2.org/documentation/
h2load-howto.html

See also
ff Apache performance tuning guide at https://httpd.apache.org/docs/2.4/

misc/perf-tuning.html

ff Nginx performance tuning guide at https://www.nginx.com/blog/tuning-
nginx/

Securing the web server
In this recipe, we will learn some steps for securing web server installation.

https://github.com/wg/wrk
https://nghttp2.org/documentation/h2load-howto.html
https://nghttp2.org/documentation/h2load-howto.html
https://httpd.apache.org/docs/2.4/misc/perf-tuning.html
https://httpd.apache.org/docs/2.4/misc/perf-tuning.html
https://www.nginx.com/blog/tuning-nginx/
https://www.nginx.com/blog/tuning-nginx/

Working with Web Servers

116

Getting ready
You will need access to a root account or an account with sudo privileges.

You may need to have a web server stack installed and running.

How to do it…
Follow these steps to secure the web server:

1.	 Disable any unwanted modules. You can check all enabled modules with the
following command:
$ a2query -m

2.	 Disable modules with the following command:
$ sudo a2dismod status

3.	 Hide the web server's identity. For Apache, edit /etc/apache2/conf-available/
security.conf and set the following values:
ServerSignature Off

ServerTokens Prod

4.	 You may want to check other options under security.conf.

5.	 Next, disable the Apache server status page:
$ sudo a2dismod status

6.	 For Nginx, edit /etc/nginx/nginx.conf and uncomment the following line:
server_tokens off;

7.	 In production environments, minimize the detail shown on error pages. You can
enable the PHP Suhosin module and strict mode.

8.	 Disable directory listing. On Apache, add the following line to the virtual host
configuration:
<Directory /var/www/example.com>

 Options -Indexes

</Directory>

9.	 You can also disable directory listing globally by setting Options -Indexes in
/etc/apache2/apache2.conf.

Chapter 3

117

10.	 Restrict access to the following directories:
<Directory /var/www/ >

 Order deny,allow # order of Deny and Allow

 Deny from all # Deny web root for all

</Directory>

11.	 Disable directory level settings and the use of .htaccess. This also helps
improve performance:
<Directory />

 AllowOverride None # disable use of .htaccess

</Directory>

12.	 Disable the following symbolic links:
<Directory />

 Options -FollowSymLinks

</Directory>

13.	 You can also install mod_security and mod_evasive for added security.
mod_security acts as a firewall by monitoring traffic in real time, whereas
mod_evasive provides protection against Denial of Service attacks by
monitoring request data and requester IP.

14.	 For Apache, you can install mod_security as a plugin module as follows:
$ sudo apt-get install libapache2-modsecurity

$ sudo a2enmod mod-security

15.	 On Nginx, you need to first compile mod_security and then compile Nginx with
mod_security enabled.

16.	 Turn of server side includes and CGI scripts:
<Directory />

 Options -ExecCGI -Includes

</Directory>

17.	 Limit request body, headers, request fields, and max concurrent connections; this will
help against DOS attacks.

Working with Web Servers

118

18.	 Set the following variables on Apache:
TimeOut

KeepAliveTimeout

RequestReadTimeout

LimitRequestBody

LimitRequestFields

LimitRequestFieldSize

LimitRequestLine

MaxRequestWorkers

19.	 For Nginx, configure the following variables to control buffer overflow attacks:
client_body_buffer_size

client_header_buffer_size

client_max_body_size

large_client_header_buffers

20.	 Enable logging and periodically monitor logs for any new or unrecognized events:
<VirtualHost *:80>

 ErrorLog /var/log/httpd/example.com/error_log

 CustomLog /var/log/httpd/example.com/access_log combined

</VirtualHost>

21.	 Set up HTTPs and set it to use modern ciphers. You can also disable the use of SSL
and enforce TLS.

How it works…
In this recipe, I have listed the various options available to make your web server more
secure. It is not necessary to set all these settings. Disabling some of these settings,
especially FollowSymlinks and AllowOverride, may not suit your requirements
or your environment. You can always choose the settings that apply to your setup.

Various settings listed here are available in their respective configuration files, mostly under
/etc/apache2 for the Apache web server and /etc/nginx for the Nginx server.

Also, do not forget to reload or restart your server after setting these options.

You should also set your Ubuntu environment to be more secure. You can find more details on
securing Ubuntu in Chapter 2, Networking.

Chapter 3

119

See also
ff Installing mod_evasive at https://www.linode.com/docs/websites/

apache-tips-and-tricks/modevasive-on-apache

ff Apache security tips at http://httpd.apache.org/docs/2.4/misc/
security_tips.html

ff Setting up mod_security at https://www.digitalocean.com/community/
tutorials/how-to-set-up-mod_security-with-apache-on-debian-
ubuntu

Troubleshooting the web server
In this recipe, we will cover some common issues with Apache and Nginx and list the basic
steps for overcoming those issues. The steps mentioned here are general troubleshooting
methods; you may need to change them based on your setup and environment.

Getting ready
You may need root level access to your web server system.

How to do it…
Web server problems can be grouped in a few broad categories, such as a server not working,
a particular domain or virtual host is not accessible, problems with a specific module
configuration, and access denied errors. The following section lists each of these problems
and their possible solutions.

Web server not accessible
1.	 The first step is to check your local Internet connection. Try to access the server from

another system from another network.

2.	 Check if the DNS settings point to your web server.

3.	 If your network is working properly, then try to ping to the server IP address.

4.	 On the web server, check the firewall or any other tool that may block communication.

https://www.linode.com/docs/websites/apache-tips-and-tricks/modevasive-on-apache
https://www.linode.com/docs/websites/apache-tips-and-tricks/modevasive-on-apache
http://httpd.apache.org/docs/2.4/misc/security_tips.html
http://httpd.apache.org/docs/2.4/misc/security_tips.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-mod_security-with-apache-on-debian-ubuntu
https://www.digitalocean.com/community/tutorials/how-to-set-up-mod_security-with-apache-on-debian-ubuntu
https://www.digitalocean.com/community/tutorials/how-to-set-up-mod_security-with-apache-on-debian-ubuntu

Working with Web Servers

120

5.	 Open a telnet connection to web server on port 80, or whatever port you have used
for web server. If you see output similar to following screenshot, then your web server
is working:

6.	 Make sure that the web server port is not being used by some other process:
$ sudo netstat -plutn

7.	 If required, reload or restart the web server process:
$ sudo service apache2 reload/restart

8.	 Check the Apache/Nginx logs listed under the /var/log/ directory and
view the entire file in a scrollable format:
$ less /var/log/apache2/error.log

9.	 See the continuous stream of logs as they are added to the log file:
$ tail -f /var/log/nginx/error.log

10.	 You may want to run Apache with extended log levels. Find the variable
LogLevel in /etc/apache2/apache2.conf and set its value to debug:
$ sudo nano /etc/apache2/apache2.conf

LogLevel debug

11.	 Run Apache in debug single process mode:

$ sudo apache2ctl -X # debug mode single worker

Virtual host not accessible
1.	 Make sure you have enabled virtual host configuration:

ubuntu@ubuntu:~$ a2query -s

example.com (enabled by site administrator)

Chapter 3

121

2.	 Check the virtual host configuration for any syntax errors:
ubuntu@ubuntu:~$ sudo apache2ctl -t

Syntax OK

3.	 On Nginx, use the following command:
ubuntu@ubuntu:~$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax
is ok

nginx: configuration file /etc/nginx/nginx.conf test is
successful

4.	 Check the virtual host's details and other Apache configurations:
$ sudo apache2ctl -S

5.	 Make sure your virtual host IP and port configuration matches the one defined with
NamedVirtualHost.

6.	 Check DocumentRoot - does it point to proper files?

�� On Apache:
<VirtualHost *:80>

 DocumentRoot /var/www/html

<VirtualHost>

�� On Nginx:

server {

 root /usr/share/nginx/html;

}

Working with Web Servers

122

7.	 Crosscheck your ServerName and ServerAlias variables - do they match your
domain name?

�� On Apache, these settings should look similar to this:
<VirtualHost *:80>

 ServerName example.com

 ServerAlias www.example.com

</virtualHost>

�� On Nginx, the ServerName is defined as this:
server {

 server_name example.com www.example.com;

}

Access denied or forbidden errors
Check directory permissions for the virtual host root directory. Are they accessible to the web
server? Check the web server user and group (commonly www-data) have ready permissions.
If required, you can set permissions with chown and chmod commands.

ubuntu@ubuntu:~$ ls -l /var/www/

drwxr-x--- 3 ubuntu www-data 4096 Aug 4 23:00 example.com

drwxr-xr-x 2 ubuntu www-data 4096 Aug 2 23:04 public_html

Secondly, make sure that you have properly set directory permissions in the virtual host
configuration. Are they restricting file access?

Use the following commands to set directory permissions in the virtual host configuration:

<Directory /var/www/>

 AllowOverride None

 Order Deny,Allow

 Deny from all

</Directory>

Apache downloads .php files
Make sure that the mod_php module is installed and enabled:

ubuntu@ubuntu:~$ ls -l /etc/apache2/mods-available | grep php

-rw-r--r-- 1 root root 897 Jul 2 21:26 php7.0.conf

-rw-r--r-- 1 root root 59 Jul 2 21:26 php7.0.load

ubuntu@ubuntu:~$ a2query -m | grep php

php7.0 (enabled by maintainer script)

123

4
Working with
Mail Servers

In this chapter, we will cover the following recipes:

ff Sending e-mails with Postfix

ff Enabling IMAP and POP3 with Dovecot

ff Adding e-mail accounts

ff Mail filtering with spam-assassin

ff Troubleshooting the mail server

ff Installing the Zimbra mail server

Introduction
In this chapter, we will learn how to set up an e-mail server. We will be using Postfix
MTA to send e-mails and Dovecot to enable receiving e-mails. We will also install the
Zimbra e-mail server, which is all-in-one one package to set up sending and receiving
e-mails and web access. By the end of this chapter, you will be able to send e-mails with
your own e-mail server.

Sending e-mails with Postfix
In this recipe, we will set up Postfix Mail Transfer Agent (MTA). This will be a very basic setup
which will enable us to send and receive e-mails from our server. Postfix is an open source
MTA which routes e-mails to their destination. It is a default MTA for Ubuntu and is available in
Ubuntu's main package repository.

Working with Mail Servers

124

Getting ready
You will need access to a root account or an account with sudo privileges.

A domain name (FQDN) is required while configuring Postfix. You can configure your local
server for testing, but make sure that you set the proper host entries and hostname.

How to do it…
Follow these steps to send e-mails with Postfix:

1.	 Install Postfix and mailutils with the following commands:
$ sudo apt-get update

$ sudo apt-get install postfix mailutils -y

2.	 The installation process will prompt you to enter some basic configuration details.
When asked for General type of mail configuration:, select Internet Site and then
click on <Ok>:

3.	 On the next screen, enter your domain name, for example, mail.example.com,
and answer the other questions. You can leave them with default values:

Chapter 4

125

4.	 After installation completes, we need to modify the Postfix configuration under
/etc/postfix/main.cf:
$ sudo nano /etc/postfix/main.cf

5.	 Set myhostname to point to your domain name:
myhostname = mail.example.com

6.	 Ensure mynetworks is set to the local network. This will secure your server
from spammers:
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128

7.	 Also check mydestination. It should contain your domain name:
mydestination = example.com, ubuntu, localhost.localdomain,
localhost

8.	 Change the mail storage format to Maildir from the default mbox. Search and
uncomment the following line:
home_mailbox = Maildir/

9.	 Optionally, you can change the TLS keys used by Postfix. Find the TLS parameters
section and point the variables to your key path:

10.	 Save the configuration file and exit.

11.	 Now, reload Postfix for the changes to take effect:
$ sudo service postfix reload

Test if everything is working as expected. Open a telnet connection to the mail server:
$ telnet localhost 25

Working with Mail Servers

126

You should see an output similar to the following screenshot:

12.	 Now, send your first e-mail from this server. Type sendmail user@domain and
press Enter. Then, type your message, and when done with that press Ctrl + D to
send an e-mail.

13.	 To read your e-mails, log in with the user you send e-mails to. Start the mail program
with the command mail. This should show you a list of e-mails received by this user
account. The output should look similar to following screenshot:

14.	 To read any e-mail, type in the mail number and press Enter. Type q followed by Enter
to quit the mail reader.

How it works…
Postfix installation is quite a simple task; you need to be sure that you have configured the
proper settings and then you are up and running in minutes. The Postfix installation process
itself prompts for basic settings.

If you miss providing configuration during installation, you can
always recall the same dialogue box with the reconfigure
command as follows:
$ sudo dpkg-reconfigure postfix

Other parameters include mynetworks and mydestination. With mynetwork, we have
restricted the uses of the mail server to the local network. Only users on the local network can
use this server to send and receive e-mails. The parameter mydestination specifies the
domain names that Postfix is going to serve. For all other domains that are not listed under
mydestination, Postfix will simply act as a forwarder.

Chapter 4

127

We have configured Postfix to use the Maildir format for storing e-mails. This is a new
storage format and provides various improvements over the default format, mbox. Also,
Maildir is used by various IMAP and POP servers. With Maildir, each new message is
stored in a separate file. This avoids file locking when working with messages and provides
protection against mailbox corruption.

Now if you send an e-mail to a local domain, it will be delivered to the inbox of the respective
user, which can be read with mail command. If you send e-mails to an external mail server,
such as Gmail, chances are your mail gets delivered to spam. You need to include a number
of different parameters in your e-mail headers and then make sure that your server IP is not
blacklisted. It would be a good idea to use an external mail server such as Mail Chimp or
Gmail for sending e-mails.

See also
ff An article by Jeff Atwood on sending e-mails through code. This may help you get your

e-mails out of spam: http://blog.codinghorror.com/so-youd-like-to-
send-some-email-through-code/

ff Mailbox formats: http://wiki.dovecot.org/MailboxFormat

ff The difference between port 465 and 587: http://stackoverflow.com/
questions/15796530/what-is-the-difference-between-ports-465-
and-587

Enabling IMAP and POP3 with Dovecot
In this recipe, we will learn how to install and set up Dovecot to enable accessing e-mails
over IMAP and POP3 protocols. This will enable mail clients such as thunderbird to download
e-mails on a user's local system.

Getting ready
You will need access to a root account or an account with sudo privileges

Make sure that you have set up Postfix and are able to send and receive e-mails on
your server.

You may need an e-mail client to connect to and test the Dovecot setup.

http://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/
http://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/
http://wiki.dovecot.org/MailboxFormat
http://stackoverflow.com/questions/15796530/what-is-the-difference-between-ports-465-and-587
http://stackoverflow.com/questions/15796530/what-is-the-difference-between-ports-465-and-587
http://stackoverflow.com/questions/15796530/what-is-the-difference-between-ports-465-and-587

Working with Mail Servers

128

How to do it…
Follow these steps to enable IMAP and POP3 with Dovecot:

1.	 First, install the Dovecot binaries from the Ubuntu main repository:
$ sudo apt-get update

$ sudo apt-get install dovecot-imapd dovecot-pop3d

2.	 You will be prompted for a hostname to be used for certificate generation. Type in
a full hostname, for example mail.example.com. You can skip this step if you
already have certificates.

3.	 Next, proceed with configuring Dovecot. Open the file /etc/dovecot/dovecot.
conf:
$ sudo nano /etc/dovecot/dovecot.conf

4.	 Find the Enable installed protocols section and add a new line to set the
protocols that you want Dovecot to support:
protocols = pop3 pop3s imap imaps

5.	 Open /etc/dovecot/conf.d/10-mail.conf and set the mailbox to be used.
Dovecot supports mbox as well as Maildir. Make sure you set the correct path of
your mail directory:
mail_location = mbox:~/mail:INBOX=/var/spool/mail/%u

6.	 Open /etc/dovecot/conf.d/10-ssl.conf and uncomment or change the
following lines to enable SSL authentication. Here, I have used certificates created by
Postfix. You can use your own certificates or use the one generated by Dovecot:
ssl = yes
ssl_cert = < /etc/ssl/certs/ssl-cert-snakeoil.pem
ssl_key =</etc/ssl/private/ssl-cert-snakeoil.key

7.	 Restart the Dovecot daemon:
$ sudo service dovecot restart

8.	 Test Dovecot by creating a telnet connection. You should see an output similar to
the following:

$ telnet localhost pop3

Chapter 4

129

How it works…
Dovecot is one of the most popular Mail Delivery Agents (MDA) with support for IMAP and
POP3 protocols. It works with both major mailbox formats, namely mbox and Maildir. The
installation process is simple, and a minimal configuration can get you started with your own
IMAP or POP3 service.

Dovecot developers have tried to simplify the configuration by separating it across various
small files for each section. All these configuration files are located under /etc/dovecot/
conf.d. If you prefer to use a single configuration file, you can replace the default file with
the entire working configuration. To get all enabled configurations, use the doveconf -n
command:

mv /etc/dovecot/dovecot.conf /etc/dovecot/dovecot.conf.old

doveconf -n > /etc/dovecot/dovecot.conf

In this recipe, we have configured Dovecot to support POP3, POP3 secure, IMAP, and IMAP
secure. You can choose a single protocol or any combination of them. After setting protocol
support, we have set the mailbox type to mbox. If you are using Maildir as your mailbox
format, instead replace the mailbox setting with following line:

mail_location = maildir:~/Maildir

Now, when a user wants to check his e-mails, they need to authenticate with the Dovecot
server. At this stage, only users with a user account on the server will be able to access their
e-mails with Dovecot. To support users without creating a user account, we will need to set up
Virtual Users, which is covered in the next recipes.

If you plan to skip SSL setup, you may need to enable plain text authentication under the
configuration file, /etc/dovecot/conf.d/10-auth.conf. Find and uncomment the
following line and set it to no:

disable_plaintext_auth = yes

The default setting is to allow plain text authentication over SSL connections only. That means
the clients that do not support SSL will not be allowed to log in.

See also
ff Dovecot wiki Quick-configuration at http://wiki2.dovecot.org/

QuickConfiguration

http://wiki2.dovecot.org/QuickConfiguration
http://wiki2.dovecot.org/QuickConfiguration

Working with Mail Servers

130

Adding e-mail accounts
In this recipe, we will learn how to add e-mail accounts to Postfix. The easiest way to add a
new e-mail account to Postfix is to add a new user account on your server. Postfix will check
for user accounts and deliver e-mails to respective users. We will create a virtual user setup
so that we do not need to create user accounts for each e-mail user.

Getting ready
You will need access to a root account or an account with sudo privileges.

I assume that you have completed your basic Postfix setup and that it is working properly.

How to do it…
Follow these steps to add e-mail account:

1.	 Create a new user account:
$ useradd -s /usr/bin/nologin -m vmail

2.	 Get the UID and GID for this account:
$ grep vmail /etc/passwd

vmail:x:1001:1001::/home/vmail:/usr/bin/nologin

3.	 Create a base directory layout for domains and users:
$ sudo mkdir -p /home/vmail/example.org/bob

$ sudo mkdir -p /home/vmail/example.net/alice

4.	 Allow only the user vmail to access these files:
$ sudo chown -R vmail:vmail /home/vmail

$ chmod -R 700 /home/vmail

5.	 Next, configure Postfix. Edit /etc/postfix/main.cf and add the following lines:
virtual_mailbox_base = /home/vmail
virtual_mailbox_domains = /etc/postfix/virtual_domains
virtual_mailbox_maps = hash:/etc/postfix/virtual_maps
virtual_alias_maps = hash:/etc/postfix/virtual_alias
virtual_uid_maps = static:1001 # user ID for user vmail
virtual_gid_maps = static:1001 # group ID for user vmail

Chapter 4

131

6.	 Create the file virtual_domains under /etc/postfix:
$ sudo nano /etc/postfix/virtual_domains

example.org
example.net

7.	 Create the virtual_maps file:
$ sudo nano /etc/postfix/virtual_maps

bob@example.org example.org/bob/

alice@example.org example.org/alice/

@example.org example.org/catchall/ # catch all address

8.	 Create the virtual_alias file and optionally set a redirect:
$ sudo nano /etc/postfix/virtual_alias

redirect emails for tim to bob

tim@example.org bob@example.org

9.	 Now generate database of virtual maps and aliases by hashing respective files:
$ sudo postmap /etc/postfix/virtual_maps

$ sudo postmap /etc/postfix/virtual_alias

10.	 Reload Postfix and send an e-mail to the newly created address:

$ sudo postfix reload

$ sendmail bob@example.org

How it works…
Here, we have created a virtual mailbox setup to enable our Postfix server to serve multiple
domains as well as add e-mail users without creating user accounts on the server. All e-mails
received by virtual users will be stored under the home directory of the vmail user (virtual_
mailbox_base in Postfix configuration). When you need to add a new e-mail account, simply
add the e-mail address with its respective domain to the virtual_maps file. In case you
need to support a new domain, you can easily add it to the virtual_domains file.

The third file we used is virtual_alias. You can set e-mail forwarding in this file. It is
handy when you need to create a new alias for an e-mail address or forward e-mails to one or
multiple accounts. We have set a catchall entry in the virtual_alias file; this setting will
redirect all e-mails received on nonexistent accounts to catchall@example.org, which can
be checked by the domain administrator.

Working with Mail Servers

132

There's more…
Using files for virtual users and domains is good for getting started with setup. But once you
need to add more and more user accounts and domains it is a good idea to move the users
and domains to a database server. This can be easily done by changing the lookup table
type. Postfix supports a variety of lookup table types, which include LDAP, MySQL, PGSQL,
memcache, SQLite, and many others.

To use MySQL as a backend database, complete the following steps:

1.	 Create respective tables for virtual_domain, virtual_maps,
and virtual_alias.

2.	 Change the Postfix configuration to use MySQL as a lookup table:
virtual_mailbox_domains = mysql:/etc/postfix/mysql-virtual-domains
virtual_mailbox_maps = mysql:/etc/postfix/mysql-virtual-maps
virtual_alias_maps = mysql:/etc/postfix/mysql-virtual-alias

3.	 Add the respective details to each file using the following commands:
$ sudo nano /etc/postfix/mysql-virtual-domains

user = mysql_user
password = mysql_password
hosts = 127.0.0.1
dbname = mysql_db_name
query = SELECT 1 FROM virtual_domains WHERE name='%s'

$ sudo nano /etc/postfix/mysql-virtual-maps

...
query = SELECT 1 FROM virtual_users WHERE email='%s'

$ sudo nano /etc/postfix/mysql-virtual-alias

...
query = SELECT destination FROM virtual_aliases WHERE
source='%s'

4.	 You can test your mapping with the following command. This should output 1
as a result:
$ postmap -q bob@example.org mysql:/etc/postfix/mysql-virtual-maps

5.	 Finally, restart the Postfix daemon.

Chapter 4

133

Web console for virtual mailbox administration
The Vimbadmin package provides a web console for virtual mailbox administration. It is a
PHP-based open source package. You can get source code and installation instructions at
https://github.com/opensolutions/ViMbAdmin.

See also
ff Postfix guide at http://www.postfix.org/VIRTUAL_README.html

ff Postfix lookup table types at http://www.postfix.org/DATABASE_README.
html#types

Mail filtering with spam-assassin
In this recipe, we will learn how to install and set up a well-known e-mail filtering program,
spam-assassin.

Getting ready
You will need access to a root account or an account with sudo privileges.

You need to have Postfix installed and working.

How to do it…
Follow these steps to filter mail with spam-assassin:

1.	 Install spam-assassin with the following command:
$ sudo apt-get update
$ sudo apt-get install spamassassin spamc

2.	 Create a user account and group for spam-assassin:
$ sudo groupadd spamd
$ sudo useradd -g spamd -s /usr/bin/nologin \
-d /var/log/spamassassin -m spamd

3.	 Change the default settings for the spam daemon. Open /etc/default/
spamassassin and update the following lines:
ENABLED=1
SAHOME="/var/log/spamassassin/"
OPTIONS="--create-prefs --max-children 5 --username spamd -
-helper-home-dir ${SAHOME} -s ${SAHOME}spamd.log"
PIDFILE="${SAHOME}spamd.pid"
CRON=1

https://github.com/opensolutions/ViMbAdmin
http://www.postfix.org/VIRTUAL_README.html
http://www.postfix.org/DATABASE_README.html#types
http://www.postfix.org/DATABASE_README.html#types

Working with Mail Servers

134

4.	 Optionally, configure spam rules by changing values in /etc/spamassassin/
local.cf:
trusted_networks 10.0.2. # set your trusted network
required_score 3.0 # 3 + will be marked as spam

5.	 Next, we need to change the Postfix settings to pass e-mails through spam-
assassin. Open /etc/postfix/master.cf and find the following line:
smtp inet n - - - -
smtpd

6.	 Add the content filtering option:
-o content_filter=spamassassin

7.	 Define the content filter block by adding the following lines to the end of the file:
spamassassin unix - n n - -
pipe
 user=spamd argv=/usr/bin/spamc -f -e
 /usr/sbin/sendmail -oi -f ${sender} ${recipient}

8.	 Finally, restart spam-assassin and Postfix:
$ sudo service spamassassin start

$ sudo service postfix reload

9.	 You can check spam-assassin and mail logs to verify that spam-assassin is
working properly:

$ less /var/log/spamassassin/spamd.log

$ less /var/log/mail.log

Chapter 4

135

How it works…
Spam filtering works with the help of a piping mechanism provided by Postfix. We have created
a new Unix pipe which will be used to filter e-mails. Postfix will pass all e-mails through this
pipe, which will be then scanned through spam-assassin to determine the spam score. If
given e-mail scores below the configured threshold, then it passes the filter without any
modification; otherwise, spam-assassin adds a spam header to the e-mail.

Spam-assassin works with a Bayesian classifier to classify e-mails as spam or not spam.
Basically, it checks the content of the e-mail and determines the score based on content.

There's more…
You can train spam-assassin's Bayesian classifier to get more accurate spam detections.

The following command will train spam-assassin with spam contents (--spam):

$ sudo sa-learn --spam -u spamd --dir ~/Maildir/.Junk/* -D

To train with non-spam content, use the following command (--ham):

$ sudo sa-learn --ham -u spamd --dir ~/Maildir/.INBOX/* -D

If you are using the mbox format, replace --dir ~/Maildir/.Junk/* with the
option --mbox.

See also
ff Sa-learn - train SpamAssassin's Bayesian classifier at https://spamassassin.

apache.org/full/3.2.x/doc/sa-learn.html and https://wiki.apache.
org/spamassassin/BayesInSpamAssassin

ff Learn about Bayesian classification at https://en.wikipedia.org/wiki/
Naive_Bayes_classifier

Troubleshooting the mail server
Sometimes you may face problems such as e-mails not being sent, delayed delivery or mail
bouncing, issues while fetching e-mails, and login failures. In this recipe, we will learn how to
identify the exact problem behind these issues. We will learn how to use debugging tools and
read the logs of Postfix and Dovecot.

https://spamassassin.apache.org/full/3.2.x/doc/sa-learn.html
https://spamassassin.apache.org/full/3.2.x/doc/sa-learn.html
https://wiki.apache.org/spamassassin/BayesInSpamAssassin
https://wiki.apache.org/spamassassin/BayesInSpamAssassin
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Working with Mail Servers

136

Getting ready
You will need access to a root account or an account with sudo privileges.

It is assumed that you have already installed Postfix and Dovecot servers.

How to do it…
Follow these steps to troubleshoot the mail server:

1.	 Start with checking the status of Postfix and Dovecot. If you get output that says
stop/waiting or not running then the respective service is not running:
$ sudo service postfix status

$ sudo service dovecot status

2.	 Try to restart the respective services. Restarting may give you error messages.
Also check for startup logs under /var/log/mail.log:
$ sudo service postfix restart

$ less /var/log/mail.log

3.	 You can use a tail command to monitor the stream of logs while the service is
running. You can easily filter the output of tail by piping it to a grep command:
$ tail -f /var/log/mail.log

Use grep to only view selected logs:

$ tail -f /var/log/mail.log | grep "dovecot"

Chapter 4

137

4.	 Use grep -v to filter/remove selected logs:
$ tail -f /var/log/mail.log | grep -v "dovecot"

5.	 You can check other log files such as /var/log/mail.err and /var/log/
upstart/dovecot.log.

You may want to enable verbose logging to get detailed debugging information.
To enable debug mode on Dovecot, edit 10-logging.conf and enable auth_
verbose and mail_debug variables:
$ sudo nano /etc/dovecot/conf.d/10-logging.conf

auth_verbose = yes
mail_debug = yes

Restart Dovecot:

$ sudo service dovecot restart

6.	 To enable verbose logging on Postfix, edit master.cf file and add the -v argument:
$ sudo nano /etc/postfix/master.cf

smtp inet n - - - - smtpd
-v

Restart Postfix.

7.	 Turn off chroot operations:
$ sudo nano /etc/postfix/master.cf

smtp inet n - n - - smtpd

8.	 Check user account with Dovecot:
$ doveadm username useremail@example.com

9.	 If you have set virtual users, check if they are working properly:
$ postmap -q bob@example.org mysql:/etc/postfix/mysql-virtual-
maps

10.	 Check respective ports used by Postfix and Dovecot. Postfix uses ports 25, 465, 587
and Dovecot uses port 993 and 995:
$ telnet localhost 993

Working with Mail Servers

138

11.	 Check netstat to make sure services are listening:
$ sudo netstat -plutn

12.	 Check for DNS resolution and MX records:
$ host -t mx example.com

13.	 Check if spam filters and antivirus scanners are working properly.

See also
ff Postfix debugging - http://www.postfix.org/DEBUG_README.html

ff Postfix book (troubleshooting) at http://www.postfix-book.com/debugging.
html

ff Dovecot troubleshooting at http://wiki2.dovecot.org/WhyDoesItNotWork

Installing the Zimbra mail server
Until now, we have installed Postfix, Dovecot, spam-assassin, and other tools separately. In
this recipe, we will learn how to install the Zimbra collaboration server, which covers all tools
in a single package. The Zimbra server contains Postfix, MySQL, OpenLDAP, ClamAV, and
Spam-Assassin, Calendar, and various other features. Zimbra provides a paid option as well
as an open source version. We will be installing an open source version of the Zimbra server
in single server mode.

Getting ready
As always, you will need access to a root account or an account with sudo privileges.

For Zimbra to work properly, you will need the following minimum configuration for your server:

ff At least 1.5 GHz of CPU 2 GHz recommended

ff Minimum 8 GB of memory

ff Minimum 10 GB of storage 20 GB recommended

http://www.postfix.org/DEBUG_README.html
http://www.postfix-book.com/debugging.html
http://www.postfix-book.com/debugging.html
http://wiki2.dovecot.org/WhyDoesItNotWork

Chapter 4

139

You will need to set proper DNS and MX records for your domain.

You will also need various ports, as follows:

ff Postfix/LMTP 25, 7025

ff HTTP 80, 443

ff POP3 110, 995

ff IMAP 143, 993

ff LDAP 389

How to do it…
Follow these steps to install Zimbra collaboration server:

1.	 Install the dependency packages before starting with the Zimbra installation:
$ sudo apt-get update

$ sudo apt-get install libperl5.18 libaio1 unzip pax sysstat
sqlite3 libgmp10

2.	 Download and extract the Zimbra open source package using the following command:
$ wget https://files.zimbra.com/downloads/8.6.0_GA/zcs-
8.6.0_GA_1153.UBUNTU14_64.20141215151116.tgz

$ tar -zxvf zcs-8.6.0_GA_1153.UBUNTU14_64.20141215151116.tgz

$ cd zcs-8.6.0_GA_1153.UBUNTU14_64.20141215151116

3.	 Make sure you have set the proper hostname and hosts entries in respective files:
$ cat /etc/hosts

127.0.0.1 localhost

119.9.107.28 mail.server.local mail

$ cat /etc/hostname

mail.server.local

4.	 Start the Zimbra installation by executing the installer:
$ sudo ./install.sh

Working with Mail Servers

140

5.	 The installation process will ask you to agree with License Agreement. Type y and
press Enter to continue:

6.	 On acceptance of agreement, Zimbra will check for dependencies and then ask for
the component selection. I have chosen to skip a few components. Type y when
asked for confirmation:

7.	 Type y when asked for package selection confirmation.

8.	 The installation process will take some time. As installation completes,
the Zimbra configuration menu will be displayed. Here, you need to set
an admin account password:

9.	 On the main menu, select 6 to choose zimbra-store and then type 4 for the admin
password. The new prompt will ask for the admin account password:

Chapter 4

141

10.	 Then, type r to come back to the main menu and then type a to apply settings,
and again press Enter to save settings:

11.	 Finally, apply all configurations when asked. Zimbra will ask you to send installation
notification to Zimbra. Choose Yes by typing y to notify Zimbra:

12.	 Now you can access your Zimbra server with the domain name of your server or IP
address. Your browser may prompt for a non-trusted server certificate, as shown in
the following screenshot:

Working with Mail Servers

142

13.	 You can access the Inbox panel on port 7071, https://yourserver.tld:7071.

How it works…
Zimbra combines various commonly used packages in a single package and provides a
web interface to work with them. It reduces the efforts required in installing and configuring
all tools separately. For any additional features, you can always switch to the Zimbra
collaboration server, Network Edition.

There's more…
If you are planning to use Zimbra on your local network, you will need a DNS server set up.
Alternatively, you can use the tool dnsmasq. It is a small package that sets up a quick DNS
environment on your local network.

See also
ff Zimbra open source features at https://www.zimbra.com/open-source/

features

https://www.zimbra.com/open-source/features
https://www.zimbra.com/open-source/features

Chapter 5

143

5
Handling Databases

In this chapter, we will cover the following recipes:

ff Installing relational databases with MySQL

ff Storing and retrieving data with MySQL

ff Importing and exporting bulk data

ff Adding users and assigning access rights

ff Installing web access for MySQL

ff Setting backups

ff Optimizing MySQL performance – queries

ff Optimizing MySQL performance – configuration

ff Creating MySQL replicas for scaling and high availability

ff Troubleshooting MySQL

ff Installing MongoDB

ff Storing and retrieving data with MongoDB

Introduction
In this chapter, we will learn how to set up database servers. A database is the backbone of
any application, enabling an application to efficiently store and retrieve crucial data to and
from persistent storage. We will learn how to install and set up relational databases with
MySQL and NoSQL databases with MongoDB.

Handling Databases

144

MySQL is a popular open source database server used by various large scale applications. It
is a mature database system that can be scaled to support large volumes of data. MySQL is
a relational database and stores data in the form of rows and columns organized in tables. It
provides various storage engines, such as MyISAM, InnoDB, and in-memory storage. MariaDB
is a fork of a MySQL project and can be used as a drop-in replacement for MySQL. It was
started by the developers of MySQL after Oracle took over Sun Microsystems, the owner of the
MySQL project. MariaDB is guaranteed to be open source and offers faster security releases
and advanced features. It provides additional storage engines, including XtraDB by Percona
and Cassandra for the NoSQL backend. PostgreSQL is another well-known name in relational
database systems.

NoSQL, on the other hand, is a non-relational database system. It is designed for distributed
large-scale data storage requirements. For some types of data, it is not efficient to store it
in the tabular form offered by relational database systems, for example, data in the form
of a document. NoSQL databases are used for these types of data. Some emerging NoSQL
categories are document storage, key value store, BigTable, and the graph database.

In this chapter, we will start by installing MySQL, followed by storing and manipulating data
in MySQL. We will also cover user management and access control. After an introduction to
relational databases, we will cover some advanced topics on scaling and high availability.
We will learn how to set up the web administration tool, PHPMyAdmin, but the focus will be
on working with MySQL through command line access. In later recipes, we will also cover the
document storage server, MongoDB.

Installing relational databases with MySQL
In this recipe, we will learn how to install and configure the MySQL database on an
Ubuntu server.

Getting ready
You will need access to a root account or an account with sudo privileges.

Make sure that the MySQL default port 3306 is available and not blocked by any firewall.

How to do it…
Follow these steps to install the relational database MySQL:

1.	 To install the MySQL server, use the following command:
$ sudo apt-get update

$ sudo apt-get install mysql-server-5.7

Chapter 5

145

The installation process will download the necessary packages and then prompt you
to enter a password for the MySQL root account. Choose a strong password:

2.	 Once the installation process is complete, you can check the server status with the
following command. It should return an output similar to the following:
$ sudo service mysql status

mysql.service - MySQL Community Server

 Loaded: loaded (/lib/systemd/system/mysql.service

 Active: active (running) since Tue 2016-05-10 05:

3.	 Next, create a copy of the original configuration file:
$ cd /etc/mysql/mysql.conf.d

$ sudo cp mysqld.cnf mysqld.cnf.bkp

4.	 Set MySQL to listen for a connection from network hosts. Open the configuration file
/etc/mysql/mysql.conf.d/mysqld.cnf and change bind-address under the
[mysqld] section to your server’s IP address:
$ sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf

bind-address = 10.0.2.6

For MySQL 5.5 and 5.6, the configuration file can be found at
/etc/mysql/my.cnf

Handling Databases

146

5.	 Optionally, you can change the default port used by the MySQL server. Find the
[mysqld] section in the configuration file and change the value of the port
variable as follows:
port = 30356

Make sure that the selected port is available and open under firewall.

6.	 Save the changes to the configuration file and restart the MySQL server:
$ sudo service mysql restart

7.	 Now open a connection to the server using the MySQL client. Enter the password
when prompted:
$ mysql -u root -p

8.	 To get a list of available commands, type \h:

mysql> \h

How it works…
MySQL is a default database server available in Ubuntu. If you are installing the Ubuntu
server, you can choose MySQL to be installed by default as part of the LAMP stack. In this
recipe, we have installed the latest production release of MySQL (5.7) from the Ubuntu
package repository. Ubuntu 16.04 contains MySQL 5.7, whereas Ubuntu 14.04 defaults to
MySQL version 5.5.

If you prefer to use an older version on Ubuntu 16, then use following command:

$ sudo add-apt-repository ‘deb http://archive.ubuntu.com/ubuntu
trusty universe’

$ sudo apt-get update

$ sudo apt-get install mysql-server-5.6

After installation, configure the MySQL server to listen for connections from external hosts.
Make sure that you open your database installation to trusted networks such as your private
network. Making it available on the Internet will open your database to attackers.

Chapter 5

147

There’s more…

Securing MySQL installation
MySQL provides a simple script to configure basic settings related to security. Execute this
script before using your server in production:

$ mysql_secure_installation

This command will start a basic security check, starting with changing the root password.
If you have not set a strong password for the root account, you can do it now. Other settings
include disabling remote access to the root account and removing anonymous users and
unused databases.

MySQL is popularly used with PHP. You can easily install PHP drivers for MySQL with the
following command:

$ sudo apt-get install php7.0-mysql

See also
ff The Ubuntu server guide mysql page at

https://help.ubuntu.com/14.04/serverguide/mysql.html

Storing and retrieving data with MySQL
In this recipe, we will learn how to create databases and tables and store data in those tables.
We will learn the basic Structured Query Language (SQL) required for working with MySQL.
We will focus on using the command-line MySQL client for this tutorial, but you can use the
same queries with any client software or code.

Getting ready
Ensure that the MySQL server is installed and running. You will need administrative access to
the MySQL server. Alternatively, you can use the root account of MySQL.

How to do it…
Follow these steps to store and retrieve data with MySQL:

1.	 First, we will need to connect to the MySQL server. Replace admin with a user
account on the MySQL server. You can use root as well but it’s not recommended:
$ mysql -u admin -h localhost -p

https://help.ubuntu.com/14.04/serverguide/mysql.html

Handling Databases

148

2.	 When prompted, enter the password for the admin account. If the password is
correct, you will see the following MySQL prompt:

3.	 Create a database with the following query. Note the semi-colon at the end of query:
mysql > create database myblog;

4.	 Check all databases with a show databases query. It should list myblog:
mysql > show databases;

5.	 Select a database to work with, in this case myblog:
mysql > use myblog;

Database changed

6.	 Now, after the database has changed, we need to create a table to store our data.
Use the following query to create a table:
CREATE TABLE `articles` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `title` varchar(255) NOT NULL,
 `content` text NOT NULL,
 `created_at` timestamp NOT NULL DEFAULT
CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1;

7.	 Again, you can check tables with the show tables query:
mysql > show tables;

Chapter 5

149

8.	 Now, let’s insert some data in our table. Use the following query to create a
new record:
mysql > INSERT INTO `articles` (`id`, `title`, `content`,
`created_at`)
VALUES (NULL, ‘My first blog post’, ‘contents of article’,
CURRENT_TIMESTAMP);

9.	 Retrieve data from the table. The following query will select all records from the
articles table:
mysql > Select * from articles;

10.	 Retrieve the selected records from the table:
mysql > Select * from articles where id = 1;

11.	 Update the selected record:
mysql > update articles set title=”New title” where id=1;

Handling Databases

150

12.	 Delete the record from the articles table using the following command:

mysql > delete from articles where id = 2;

How it works…
We have created a relational database to store blog data with one table. Actual blog
databases will need additional tables for comments, authors, and various entities. The
queries used to create databases and tables are known as Data Definition Language (DDL),
and queries that are used to select, insert, and update the actual data are known as Data
Manipulation Language (DML).

MySQL offers various data types to be used for columns such as tinyint, int, long,
double, varchar, text, blob, and so on. Each data type has its specific use and a
proper selection may help to improve the performance of your database.

Importing and exporting bulk data
In this recipe, we will learn how to import and export bulk data with MySQL. Many times it
happens that we receive data in CSV or XML format and we need to add this data to the
database server for further processing. You can always use tools such as MySQL workbench
and phpMyAdmin, but MySQL provides command-line tools for the bulk processing of data
that are more efficient and flexible.

How to do it…
Follow these steps to import and export bulk data:

1.	 To export a database from the MySQL server, use the following command:
$ mysqldump -u admin -p mytestdb > db_backup.sql

2.	 To export specific tables from a database, use the following command:
$ mysqldump -u admin -p mytestdb table1 table2 >
table_backup.sql

3.	 To compress exported data, use gzip:
$ mysqldump -u admin -p mytestdb | gzip > db_backup.sql.gz

4.	 To export selective data to the CSV format, use the following query. Note that this will
create articles.csv on the same server as MySQL and not your local server:
SELECT id, title, contents FROM articles
INTO OUTFILE ‘/tmp/articles.csv’
FIELDS TERMINATED BY ‘,’ ENCLOSED BY ‘”’
LINES TERMINATED BY ‘\n’;

Chapter 5

151

5.	 To fetch data on your local system, you can use the MySQL client as follows:

�� Write your query in a file:
$ nano query.sql
select * from articles;

�� Now pass this query to the mysql client and collect the output in CSV:

$ mysql -h 192.168.2.100 -u admin -p myblog < query.sql >
output.csv

The resulting file will contain tab separated values.

6.	 To import an SQL file to a MySQL database, we need to first create a database:
$ mysqladmin -u admin -p create mytestdb2

7.	 Once the database is created, import data with the following command:
$ mysql -u admin -p mytestdb2 < db_backup.sql

8.	 To import a CSV file in a MySQL table, you can use the Load Data query.
The following is the sample CSV file:

Now use the following query from the MySQL console to import data from CSV:

LOAD DATA INFILE ‘c:/tmp/articles.csv’
INTO TABLE articles
FIELDS TERMINATED BY ‘,’ ENCLOSED BY ‘”’
LINES TERMINATED BY \n IGNORE 1 ROWS;

See also
ff MySQL select-into syntax at

https://dev.mysql.com/doc/refman/5.6/en/select-into.html

ff MySQL load data infile syntax at
https://dev.mysql.com/doc/refman/5.6/en/load-data.html

ff Importing from and exporting to XML files at
https://dev.mysql.com/doc/refman/5.6/en/load-xml.html

https://dev.mysql.com/doc/refman/5.6/en/select-into.html
https://dev.mysql.com/doc/refman/5.6/en/load-data.html
https://dev.mysql.com/doc/refman/5.6/en/load-xml.html

Handling Databases

152

Adding users and assigning access rights
In this recipe, we will learn how to add new users to the MySQL database server. MySQL
provides very flexible and granular user management options. We can create users with full
access to an entire database or limit a user to simply read the data from a single database.
Again, we will be using queries to create users and grant them access rights. You are free to
use any tool of your choice.

Getting ready
You will need a MySQL user account with administrative privileges. You can use the MySQL
root account.

How to do it…
Follow these steps to add users to MySQL database server and assign access rights:

1.	 Open the MySQL shell with the following command. Enter the password for the admin
account when prompted:
$ mysql -u root -p

2.	 From the MySQL shell, use the following command to add a new user to MySQL:
mysql> create user ‘dbuser’@’localhost’ identified by
‘password’;

3.	 You can check the user account with the following command:
mysql> select user, host, password from mysql.user where
user = ‘dbuser’;

4.	 Next, add some privileges to this user account:
mysql> grant all privileges on *.* to ‘dbuser’@’localhost’
with grant option;

5.	 Verify the privileges for the account as follows:
mysql> show grants for ‘dbuser’@’localhost’

Chapter 5

153

6.	 Finally, exit the MySQL shell and try to log in with the new user account. You should
log in successfully:

mysql> exit

$ mysql -u dbuser -p

How it works…
MySQL uses the same database structure to store user account information. It contains a
hidden database named MySQL that contains all MySQL settings along with user accounts.
The statements create user and grant work as a wrapper around common insert
statements and make it easy to add new users to the system.

In the preceding example, we created a new user with the name dbuser. This user is allowed
to log in only from localhost and requires a password to log in to the MySQL server. You
can skip the identified by ‘password’ part to create a user without a password, but of
course, it’s not recommended.

To allow a user to log in from any system, you need to set the host part to a %, as follows:

mysql> create user ‘dbuser’@’%’ identified by ‘password’;

You can also limit access from a specific host by specifying its FQDN or IP address:

mysql> create user ‘dbuser’@’host1.example.com’ identified by ‘password’;

Or

mysql> create user ‘dbuser’@’10.0.2.51’ identified by ‘password’;

Note that if you have an anonymous user account on MySQL, then a user created with
username’@’% will not be able to log in through localhost. You will need to add a
separate entry with username’@’localhost.

Handling Databases

154

Next, we give some privileges to this user account using a grant statement. The preceding
example gives all privileges on all databases to the user account dbuser. To limit the
database, change the database part to dbname.*:

mysql> grant all privileges on dbname.* to ‘dbuser’@’localhost’ with
grant option;

To limit privileges to certain tasks, mention specific privileges in a grant statement:

mysql> grant select, insert, update, delete, create

 -> on dbname.* to ‘dbuser’@’localhost’;

The preceding statement will grant select, insert, update, delete, and create
privileges on any table under the dbname database.

There’s more…
Similar to preceding add user example, other user management tasks can be performed with
SQL queries as follows:

Removing user accounts
You can easily remove a user account with the drop statement, as follows:

mysql> drop user ‘dbuser’@’localhost’;

Setting resource limits
MySQL allows setting limits on individual accounts:

mysql> grant all on dbname.* to ‘dbuser’@’localhost’

 -> with max_queries_per_hour 20

 -> max_updates_per_hour 10

 -> max_connections_per_hour 5

 -> max_user_connections 2;

See also
ff MySQL user account management at https://dev.mysql.com/doc/

refman/5.6/en/user-account-management.html

Installing web access for MySQL
In this recipe, we will set up a well-known web-based MySQL administrative tool—phpMyAdmin.

https://dev.mysql.com/doc/refman/5.6/en/user-account-management.html
https://dev.mysql.com/doc/refman/5.6/en/user-account-management.html

Chapter 5

155

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need a web server set up to serve PHP contents.

How to do it…
Follow these steps to install web access for MySQL:

1.	 Enable the mcrypt extension for PHP:
$ sudo php5enmod mcrypt

2.	 Install phpmyadmin with the following commands:
$ sudo apt-get update

$ sudo apt-get install phpmyadmin

3.	 The installation process will download the necessary packages and then prompt you
to configure phpmyadmin:

4.	 Choose <yes> to proceed with the configuration process.

Handling Databases

156

5.	 Enter the MySQL admin account password on the next screen:

6.	 Another screen will pop up; this time, you will be asked for the new password for the
phpmyadmin user. Enter the new password and then confirm it on the next screen:

7.	 Next, phpmyadmin will ask for web server selection:

8.	 Once the installation completes, you can access phpMyAdmin at http://server-
ip/phpmyadmin. Use your admin login credentials on the login screen. The
phpmyadmin screen will look something like this:

Chapter 5

157

How it works…
PHPMyAdmin is a web-based administrative console for MySQL. It is developed in PHP and
works with a web server such as Apache to serve web access. With PHPMyAdmin, you can do
database tasks such as create databases and tables; select, insert, update data; modify table
definitions; and a lot more. It provides a query console which can be used to type in custom
queries and execute them from same screen.

With the addition of the Ubuntu software repository, it has become easy to install
PHPMyAdmin with a single command. Once it is installed, a new user is created on the MySQL
server. It also supports connecting to multiple servers. You can find all configuration files
located in the /etc/phpmyadmin directory.

There’s more…
If you want to install the latest version of phpMyAdmin, you can download it from their official
website, https://www.phpmyadmin.net/downloads/. You can extract downloaded
contents to your web directory and set MySQL credentials in the config.inc.php file.

See also
ff Read more about phpMyAdmin in the Ubuntu server guide at https://help.

ubuntu.com/lts/serverguide/phpmyadmin.html

ff Install and secure phpMyAdmin at https://www.digitalocean.com/
community/tutorials/how-to-install-and-secure-phpmyadmin-on-
ubuntu-14-04

https://www.phpmyadmin.net/downloads/
https://help.ubuntu.com/lts/serverguide/phpmyadmin.html
https://help.ubuntu.com/lts/serverguide/phpmyadmin.html
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-14-04

Handling Databases

158

Setting backups
In this recipe, we will learn how to back up the MySQL database.

Getting ready
You will need administrative access to the MySQL database.

How to do it…
Follow these steps to set up the backups:

1.	 Backing up the MySQL database is the same as exporting data from the server. Use
the mysqldump tool to back up the MySQL database as follows:
$ mysqldump -h localhost -u admin -p mydb > mydb_backup.sql

2.	 You will be prompted for the admin account password. After providing the password,
the backup process will take time depending on the size of the database.

3.	 To back up all databases, add the --all-databases flag to the
preceding command:
$ mysqldump --all-databases -u admin -p alldb_backup.sql

4.	 Next, we can restore the backup created with the mysqldump tool with the
following command:
$ mysqladmin -u admin -p create mydb

$ mysql -h localhost -u admin -p mydb < mydb_backup.sql

5.	 To restore all databases, skip the database creation part:

$ mysql -h localhost -u admin -p < alldb_backup.sql

How it works…
MySQL provides a very general tool, mysqldump, to export all data from the database server.
This tool can be used with any type of database engine, be it MyISAM or InnoDB or any
other. To perform an online backup of InnoDB tables, mysqldump provides the --single-
transaction option. With this option set, InnoDB tables will not be locked and will be
available to other applications while backup is in progress.

Oracle provides the MySQL Enterprise backup tool for MySQL Enterprise edition users. This
tool includes features such as incremental and compressed backups. Alternatively, Percona
provides an open source utility known as Xtrabackup. It provides incremental and
compressed backups and many more features.

Chapter 5

159

Some other backup methods include copying MySQL table files and the mysqlhotcopy script
for InnoDB tables. For these methods to work, you may need to pause or stop the MySQL
server before backup.

You can also enable replication to mirror all data to the other server. It is a mechanism to
maintain multiple copies of data by automatically copying data from one system to another.
In this case, the primary server is called Master and the secondary server is called Slave.
This type of configuration is known as Master-Slave replication. Generally, applications
communicate with the Master server for all read and write requests. The Slave is used as a
backup if the Master goes down. Many times, the Master-Slave configuration is used to load
balance database queries by routing all read requests to the Slave server and write requests
to the Master server. Replication can also be configured in Master-Master mode, where both
servers receive read-write requests from clients.

See also
ff MySQL backup methods at http://dev.mysql.com/doc/refman/5.6/en/

backup-methods.html

ff Percona XtraBackup at https://www.percona.com/doc/percona-
xtrabackup/2.2/index.html

ff MySQL binary log at http://dev.mysql.com/doc/refman/5.6/en/binary-
log.html

Optimizing MySQL performance – queries
MySQL performance optimizations can be divided into two parts. One is query optimization
and the other is MySQL server configuration. To get optimum results, you have to work on both
of these parts. Without proper configuration, queries will not provide consistent performance;
on the other hand, without proper queries and a database structure, queries may take much
longer to produce results.

In this recipe, we will learn how to evaluate query performance, set indexes, and identify the
optimum database structure for our data.

Getting ready
You will need access to an admin account on the MySQL server.

You will need a large dataset to test queries. Various tools are available to generate test data.
I will be using test data available at https://github.com/datacharmer/test_db.

http://dev.mysql.com/doc/refman/5.6/en/backup-methods.html
http://dev.mysql.com/doc/refman/5.6/en/backup-methods.html
https://www.percona.com/doc/percona- xtrabackup/2.2/index.html
https://www.percona.com/doc/percona- xtrabackup/2.2/index.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log.html
https://github.com/datacharmer/test_db

Handling Databases

160

How to do it…
Follow these steps to optimize MySQL performance:

1.	 The first and most basic thing is to identify key columns and add indexes to them:
mysql> alter table salaries add index (salary);

2.	 Enable the slow query log to identify long-running queries. Enter the following
commands from the MySQL console:
mysql> set global log_slow_queries = 1;

mysql> set global slow_query_log_file =
‘/var/log/mysql/slow.log’;

3.	 Once you identify the slow and repeated query, execute that query on the database
and record query timings. The following is a sample query:
mysql> select count(*) from salaries where salary between
30000 and 65000 and from_date > ‘1986-01-01’;

4.	 Next, use explain to view the query execution plan:
mysql> explain select count(*) from salaries where salary
between 30000 and 65000 and from_date > ‘1986-01-01’;

Chapter 5

161

5.	 Add required indexes, if any, and recheck the query execution plan. Your new index
should be listed under possible_keys and key columns of explain output:
mysql> alter table `salaries` add index (`from_date`) ;

6.	 If you found that MySQL is not using a proper index or using another index than
expected then you can explicitly specify the index to be used or ignored:
mysql> select * from salaries use index (salaries) where
salary between 30000 and 65000 and from_date > ‘1986-01-
01’;

mysql> select * from salaries where salary between 30000
and 65000 and from_date > ‘1986-01-01’ ignore index
(from_date);

Now execute the query again and check query timings for any improvements.

7.	 Analyze your data and modify the table structure. The following query will show the
minimum and maximum length of data in each column. Add a small amount of buffer
space to the reported maximum length and reduce additional space allocation if any:
mysql> select * from `employees` procedure analyse();

The following is the partial output for the analyse() procedure:

8.	 Check the database engines you are using. The two major engines available in
MySQL are MyISAM and InnoDB:

mysql> show create table employees;

How it works…
MySQL uses SQL to accept commands for data processing. The query contains the operation,
such as select, insert, and update; the target that is a table name; and conditions to
match the data. The following is an example query:

select * from employee where id = 1001;

In the preceding query, select * is the operation asking MySQL to select all data for a row.
The target is the employee table, and id = 1001 is a condition part.

Handling Databases

162

Once a query is received, MySQL generates query execution plan for it. This step contains
various steps such as parsing, preprocessing, and optimization. In parsing and pre-processing,
the query is checked for any syntactical errors and the proper order of SQL grammar. The
given query can be executed in multiple ways. Query optimizer selects the best possible path
for query execution. Finally, the query is executed and the execution plan is stored in the query
cache for later use.

The query execution plan can be retrieved from MySQL with the help of the explain query
and explain extended. Explain executes the query until the generation of the query execution
plan and then returns the execution plan as a result. The execution plan contains table names
used in this query, key fields used to search data, the number of rows needed to be scanned,
and temporary tables and file sorting used, if any. The query execution plan shows possible
keys that can be used for query execution and then shows the actual key column used. Key is
a column with an index on it, which can be a primary index, unique index, or non-unique index.
You can check the MySQL documentation for more details on query execution plans and
explain output.

If a specific column in a table is being used repeatedly, you should consider adding a proper
index to that column. Indexes group similar data together, which reduces the look up time
and total number of rows to be scanned. Also keep in mind that indexes use large amounts of
memory, so be selective while adding indexes.

Secondly, if you have a proper index set on a required column and the query optimization
plan does not recognize or use the index, you can force MySQL to use a specific index with the
USE INDEX index_name statement. To ignore a specific index, use the statement IGNORE
INDEX index_name.

You may get a small improvement with table maintenance commands. Optimize table is useful
when a large part of the table is modified or deleted. It reorganizes table index data on physical
storage and improves I/O performance. Flush table is used to reload the internal cache.
Check table and Analyze table check for table errors and data distribution respectively. The
improvements with these commands may not be significant for smaller tables. Reducing the
extra space allocated to each column is also a good idea for reducing total physical storage
used. Reduced storage will optimize I/O performance as well as cache utilization.

You should also check the storage engines used by specific tables. The two major storage
engines used in MySQL are MyISAM and InnoDB. InnnoDB provides full transactional
support and uses row-level locking, whereas MyISAM does not have transaction support and
uses table-level locking. MyISAM is a good choice for faster reads where you have a large
amount of data with limited writes on the table. MySQL does support the addition of external
storage engines in the form of plugins. One popular open source storage engine is XtraDB by
Percona systems.

Chapter 5

163

There’s more…
If your tables are really large, you should consider partitioning them. Partitioning tables
distributes related data across multiple files on disk. Partitioning on frequently used keys can
give you a quick boost. MySQL supports various different types of partitioning such as hash
partitions, range partitions, list partitions, key partitions, and also sub-partitions.

You can specify hash partitioning with table creation as follows:

create table employees (
 id int not null,
 fname varchar(30),
 lname varchar(30),
 store_id int
) partition by hash(store_id) partitions 4;

Alternatively, you can also partition an existing table with the following query:

mysql> alter table employees partition by hash(store_id) partitions
4;

Sharding MySQL
You can also shard your database. Sharding is a form of horizontal partitioning where you
store part of the table data across multiple instances of a table. The table instance can exist
on the same server under separate databases or across different servers. Each table instance
contains parts of the total data, thus improving queries that need to access limited data.
Sharding enables you to scale a database horizontally across multiple servers.

The best implementation strategy for sharding is to try to avoid it for as long as possible.
Sharding requires additional maintenance efforts on the operations side and the use of proxy
software to hide sharding from an application, or to make your application itself sharding
aware. Sharding also adds limitations on queries that require access to the entire table.
You will need to create cross-server joins or process data in the application layer.

See also
ff The MySQL optimization guide at https://dev.mysql.com/doc/refman/5.6/

en/optimization.html

ff MySQL query execution plan information at https://dev.mysql.com/doc/
refman/5.6/en/execution-plan-information.html

ff InnoDB storage engine at https://dev.mysql.com/doc/refman/5.6/en/
innodb-storage-engine.html

ff Other storage engines available in MySQL at https://dev.mysql.com/doc/
refman/5.6/en/storage-engines.html

https://dev.mysql.com/doc/refman/5.6/en/optimization.html
https://dev.mysql.com/doc/refman/5.6/en/optimization.html
https://dev.mysql.com/doc/refman/5.6/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/5.6/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html

Handling Databases

164

ff Table maintenance statements at http://dev.mysql.com/doc/refman/5.6/
en/table-maintenance-sql.html

ff MySQL test database at https://github.com/datacharmer/test_db

Optimizing MySQL performance –
configuration

MySQL has hundreds of settings that can be configured. Version 5.7 ships with many
improvements in default configuration values and requires far fewer changes. In this recipe,
we will look at some of the most important parameters for tuning MySQL performance.

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need access to a root account on the MySQL server.

How to do it…
Follow these steps to improve MySQL configuration:

1.	 First, create a backup of the original configuration file:
$ cd /etc/mysql/mysql.conf.d
$ sudo cp mysqld.cnf mysqld.cnf.bkp

2.	 Now open my.cnf for changes:
$ sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf

3.	 Adjust the following settings for your InnoDB tables:
innodb_buffer_pool_size = 512M # around 70% of total ram
innodb_log_file_size = 64M
innodb_file_per_table = 1
innodb_log_buffer_size = 4M

4.	 If you are using MyISAM tables, set the key buffer size:
key_buffer_size = 64M

5.	 Enable the slow query log:
slow_query_log = 1
slow_query_log_file = /var/lib/mysql/mysql-slow.log
long_query_time = 2

6.	 Disable the query cache:
query_cache_size = 0

http://dev.mysql.com/doc/refman/5.6/en/table-maintenance-sql.html
http://dev.mysql.com/doc/refman/5.6/en/table-maintenance-sql.html
https://github.com/datacharmer/test_db

Chapter 5

165

7.	 Set the maximum connections as per your requirements:
max_connections = 300

8.	 Increase the temporary table size:
tmp_table_size = 32M

9.	 Increase max_allowed_packet to increase the maximum packet size:
max_allowed_packet = 32M

10.	 Enable binary logging for easy recovery and replication:
log_bin = /var/log/mysql/mysql-bin.log

11.	 Additionally, you can use mysqltuner.pl, which gives general recommendations
about the MySQL best practices:

$ wget http://mysqltuner.pl/ -O mysqltuner.pl

$ perl mysqltuner.pl

How it works…
The preceding example shows some important settings for MySQL performance tuning.
Ensure that you change one setting at a time and assess its results. There is no silver bullet
that works for all, and similarly, some of these settings may or may not work for you. Secondly,
most settings can be changed at runtime with a SET statement. You can test settings in
runtime and easily reverse them if they do not work as expected. Once you are sure that
settings work as expected, you can move them to the configuration file.

The following are details on the preceding settings:

ff innodb_buffer_pool_size: the size of the cache where InnoDB data and indexes
are cached. The larger the buffer pool, the more data can be cached in it. You can
set this to around 70% of available physical memory as MySQL uses extra memory
beyond this buffer. It is assumed that MySQL is the only service running on server.

ff log_file_size: the size of the redo logs. These logs are helpful in faster writes
and crash recovery.

ff innodb_file_per_table: This determines whether to use shared table space or
separate files for each table. MySQL 5.7 defaults this setting to ON.

ff key_buffer_size: determines the key buffer for MyISAM tables.

ff slow_query_log and long_query_time enable slow query logging and set slow
query time respectively. Slow query logging can be useful for identifying repeated
slow queries.

ff Query_cache_size caches the result of a query. It is identified as a bottleneck for
concurrent queries and MySQL 5.6 disables it by default.

Handling Databases

166

ff max_connections sets the number of maximum concurrent connections allowed.
Set this value as per your application's requirements. Higher values may result in
higher memory consumption and an unresponsive server. Use connection pooling in
the application if possible.

ff max_allowed_packet sets the size of the packet size that MySQL can send at a
time. Increase this value if your server runs queries with large result sets. mysqld
set it to 16M and mysqldump set it to 24M. You can also set this as a command-line
parameter.

ff log_bin enables binary logging, which can be used for replication and also for crash
recovery. Make sure that you set proper rotation values to avoid large dump files.

There’s more…
MySQL performance tuning primer script: This script takes information from show status and
show variables statements. It gives recommendations for various settings such as slow query
log, max connections, query cache, key buffers, and many others. This shell script is available
at http://day32.com/MySQL.

You can download and use this script as follows:

$ wget http://day32.com/MySQL/tuning-primer.sh

$ sh tuning-primer.sh

Percona configuration wizard
Percona systems provide a developer-friendly, web-based configuration wizard to create
a configuration file for your MySQL server. The wizard is available at http://tools.
percona.com

MySQL table compression
Depending on the type of data, you can opt for compressed tables. Compression is useful for
tables with long textual contents and read-intensive workloads. Data and indexes are stored in
a compressed format, resulting in reduced I/O and a smaller database size, though it needs
more CPU cycles to compress and uncompress data. To enable compression, you need an
InnoDB storage engine with innodb_file_per_table enabled and the file format set
to Barracuda. Check MySQL documents for more details on InnoDB compression at
https://dev.mysql.com/doc/innodb/1.1/en/innodb-compression.html.

See also
ff MySQL tuner script at https://github.com/major/MySQLTuner-perl

ff MySQL docs at https://dev.mysql.com/doc/refman/5.7/en/
optimization.html

http://day32.com/MySQL
http://tools.percona.com
http://tools.percona.com
https://dev.mysql.com/doc/innodb/1.1/en/innodb-compression.html
https://github.com/major/MySQLTuner-perl
https://dev.mysql.com/doc/refman/5.7/en/optimization.html
https://dev.mysql.com/doc/refman/5.7/en/optimization.html

Chapter 5

167

ff InnoDB table compression at https://dev.mysql.com/doc/refman/5.7/en/
innodb-table-compression.html

Creating MySQL replicas for scaling and
high availability

When your application is small, you can use a single MySQL server for all your database
needs. As your application becomes popular and you get more and more requests, the
database starts becoming a bottleneck for application performance. With thousands of
queries per second, the database write queue gets longer and read latency increases. To
solve this problem, you can use multiple replicas of the same database and separate read
and write queries between them.

In this recipe, we will learn how to set up replication with the MySQL server.

Getting ready
You will need two MySQL servers and access to administrative accounts on both.

Make sure that port 3306 is open and available on both servers.

How to do it…
Follow these steps to create MySQL replicas:

1.	 Create the replication user on the Master server:
$ mysql -u root -p

mysql> grant replication slave on *.* TO
‘slave_user’@’10.0.2.62’ identified by ‘password’;

mysql> flush privileges;

mysql> quit

2.	 Edit the MySQL configuration on the Master server:
$ sudo nano /etc/mysql/my.cnf

[mysqld]

bind-address = 10.0.2.61 # your master server ip

server-id = 1

log-bin = mysql-bin

binlog-ignore-db = “mysql”

https://dev.mysql.com/doc/refman/5.7/en/innodb-table-compression.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-table-compression.html

Handling Databases

168

3.	 Restart MySQL on the Master server:
$ sudo service mysql restart

4.	 Export MySQL databases on the Master server. Open the MySQL connection and lock
the database to prevent any updates:
$ mysql -u root -p

mysql> flush tables with read lock;

5.	 Read the Master status on the Master server and take a note of it. This will be used
shortly to configure the Slave server:
mysql> show master status;

6.	 Open a separate terminal window and export the required databases. Add the names
of all the databases you want to export:
$ mysqldump -u root -p --databases testdb >
master_dump.sql

7.	 Now, unlock the tables after the database dump has completed:
mysql> UNLOCK TABLES;

mysql> quit;

8.	 Transfer the backup to the Slave server with any secure method:
$ scp master_backup.sql
ubuntu@10.0.2.62:/home/ubuntu/master_backup.sql

9.	 Next, edit the configuration file on the Slave server:
$ sudo nano /etc/mysql/my.cnf
[mysqld]
bind-address = 10.0.2.62
server-id = 2
relay_log=relay-log

10.	 Import the dump from the Master server. You may need to manually create a
database before importing dumps:
$ mysqladmin -u admin -p create testdb
$ mysql -u root -p < master_dump.sql

Chapter 5

169

11.	 Restart the MySQL server:
$ sudo service mysql restart

12.	 Now set the Master configuration on the Slave. Use the values we received from show
master status command in step 5:
$ mysql -u root -p

mysql > change master to

master_host=’10.0.2.61’, master_user=’slave_user’,

master_password=’password’, master_log_file=’mysql-
bin.000010’,

master_log_pos=2214;

13.	 Start the Slave:
mysql> start slave;

14.	 Check the Slave's status. You should see the message Waiting for master to
send event under Slave_IO_state:

mysql> show slave status\G

Now you can test replication. Create a new database with a table and a few sample records on
the Master server. You should see the database replicated on the Slave immediately.

How it works…
MySQL replication works with the help of binary logs generated on the Master server. MySQL
logs any changes to the database to local binary logs with a lightweight buffered and sequential
write process. These logs will then be read by the slave. When the slave connects to the Master,
the Master creates a new thread for this replication connection and updates the slave with
events in a binary log, notifying the slave about newly written events in binary logs.

On the slave side, two threads are started to handle replication. One is the IO thread, which
connects to the Master and copies updates in binary logs to a local log file, relay_log. The
other thread, which is known as the SQL thread, reads events stored on relay_log and
applies them locally.

Handling Databases

170

In the preceding recipe, we have configured Master-Slave replication. MySQL also supports
Master-Master replication. In the case of Master-Slave configuration, the Master works as
an active server, handling all writes to database. You can configure slaves to answer read
queries, but most of the time, the slave server works as a passive backup server. If the
Master fails, you manually need to promote the slave to take over as Master. This process
may require downtime.

To overcome problems with Master - Slave replication, MySQL can be configured in
Master-Master relation, where all servers act as a Master as well as a slave. Applications
can read as well as write to all participating servers, and in case any Master goes down,
other servers can still handle all application writes without any downtime. The problem
with Master-Master configuration is that it’s quite difficult to set up and deploy. Additionally,
maintaining data consistency across all servers is a challenge. This type of configuration is
lazy and asynchronous and violates ACID properties.

In the preceding example, we configured the server-id variable in the my.cnf file. This
needs to be unique on both servers. MySQL version 5.6 adds another UUID for the server,
which is located at data_dir/auto.cnf. If you happen to copy data_dir from Master to
host or are using a copy of a Master virtual machine as your starting point for a slave, you may
get an error on the slave that reads something like master and slave have equal mysql server
UUIDs. In this case, simply remove auto.cnf from the slave and restart the MySQL server.

There’s more…
You can set MySQL load balancing and configure your database for high availability with the
help of a simple load balancer in front of MySQL. HAProxy is a well known load balancer that
supports TCP load balancing and can be configured in a few steps, as follows:

1.	 Set your MySQL servers to Master - Master replication mode.

2.	 Log in to mysql and create one user for haproxy health checks and another for
remote administration:
mysql> create user ‘haproxy_admin’@’haproxy_ip’;

mysql> grant all privileges on *.* to ‘haproxy_admin’@’haproxy_ip’
identified by ‘password’ with
grant option;

mysql> flush privileges;

3.	 Next, install the MySQL client on the HAProxy server and try to log into the mysql
server with the haproxy_admin account.

Chapter 5

171

4.	 Install HAProxy and configure it to connect to mysql on the TCP port:
listen mysql-cluster
 bind haproxy_ip:3306
 mode tcp
 option mysql-check user haproxy_check
 balance roundrobin
 server mysql-1 mysql_srv_1_ip:3306 check
 server mysql-2 mysql_srv_2_ip:3306 check

5.	 Finally, start the haproxy service and try to connect to the mysql server with the
haproxy_admin account:

$ mysql -h haproxy_ip -u hapoxy_admin -p

See also
ff MySQL replication configuration at http://dev.mysql.com/doc/refman/5.6/

en/replication.html

ff How MySQL replication works at https://www.percona.com/
blog/2013/01/09/how-does-mysql-replication-really-work/

ff MySQL replication formats at http://dev.mysql.com/doc/refman/5.5/en/
replication-formats.html

Troubleshooting MySQL
In this recipe, we will look at some common problems with MySQL and learn how to
solve them.

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need administrative privileges on the MySQL server.

http://dev.mysql.com/doc/refman/5.6/en/replication.html
http://dev.mysql.com/doc/refman/5.6/en/replication.html
https://www.percona.com/blog/2013/01/09/how-does-mysql-replication-really-work/
https://www.percona.com/blog/2013/01/09/how-does-mysql-replication-really-work/
http://dev.mysql.com/doc/refman/5.5/en/replication-formats.html
http://dev.mysql.com/doc/refman/5.5/en/replication-formats.html

Handling Databases

172

How to do it…
Follow these steps to troubleshoot MySQL:

1.	 First, check if the MySQL server is running and listening for connections on the
configured port:
$ sudo service mysql status

$ sudo netstat -pltn

2.	 Check MySQL logs for any error messages at /var/log/mysql.log and mysql.err.

3.	 You can try to start the server in interactive mode with the verbose flag set:
$ which mysqld

/usr/sbin/mysqld

$ sudo /usr/sbin/mysqld --user=mysql --verbose

4.	 If you are accessing MySQL from a remote system, make sure that the server is set to
listen on a public port. Check for bind-address in my.cnf:
bind-address = 10.0.247.168

5.	 For any access denied errors, check if you have a user account in place and if it is
allowed to log in from a specific IP address:
mysql> select user, host, password from mysql.user where user
= ‘username’;

6.	 Check the user has access to specified resources:
mysql > grant all privileges on databasename.* to
‘username’@’%’;

7.	 Check your firewall is not blocking connections to MySQL.

8.	 If you get an error saying mysql server has gone away, then increase
wait_timeout in the configuration file. Alternatively, you can re-initiate a
connection on the client side after a specific timeout.

9.	 Use a repair table statement to recover the crashed MyISAM table:
$ mysql -u root -p

mysql> repair table databasename.tablename;

10.	 Alternatively, you can use the mysqlcheck command to repair tables:

$ mysqlcheck -u root -p --auto-repair \

--check --optimize databasename

Chapter 5

173

See also
ff InnoDB troubleshooting at https://dev.mysql.com/doc/refman/5.7/en/

innodb-troubleshooting.html

Installing MongoDB
Until now, we have worked with the relational database server, MySQL. In this recipe, we
will learn how to install and configure MongoDB, which is a not only SQL (NoSQL) document
storage server.

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
To get the latest version of MongoDB, we need to add the MongoDB source to Ubuntu
installation sources:

1.	 First, import the MongoDB GPG public key:
$ sudo apt-key adv \

--keyserver hkp://keyserver.ubuntu.com:80 \

--recv 7F0CEB10

2.	 Create a list file and add an install source to it:
$ echo “deb http://repo.mongodb.org/apt/ubuntu
“$(lsb_release
-sc)”/mongodb-org/3.0 multiverse” | sudo tee
/etc/apt/sources.list.d/mongodb-org-3.0.list

3.	 Update the apt repository sources and install the MongoDB server:
$ sudo apt-get update

$ sudo apt-get install -y mongodb-org

4.	 After installation completes, check the status of the MongoDB server:
$ sudo service mongod status

5.	 Now you can start using the MongoDB server. To access the Mongo shell, use the
following command:

$ mongo

https://dev.mysql.com/doc/refman/5.7/en/innodb-troubleshooting.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-troubleshooting.html

Handling Databases

174

How it works…
We have installed the MongoDB server from the MongoDB official repository. The Ubuntu
package repository includes the MongoDB package in it, but it is not up to date with the
latest release of MongoDB. With GPG keys, Ubuntu ensures the authenticity of the packages
being installed. After importing the GPG key, we have created a list file that contains the
installation source of the MongoDB server.

After installation, the MongoDB service should start automatically. You can check logs at
/var/log/mongodb/mongod.log.

See also
ff MongoDB installation guide at http://docs.mongodb.org/manual/tutorial/

install-mongodb-on-ubuntu/

Storing and retrieving data with MongoDB
In this recipe, we will look at basic CRUD operations with MongoDB. We will learn how to
create databases, store, retrieve, and update stored data. This is a recipe to get started with
MongoDB.

Getting ready
Make sure that you have installed and configured MongoDB. You can also use the MongoDB
installation on a remote server.

How to do it…
Follow these steps to store and retrieve data with MongoDB:

1.	 Open a shell to interact with the Mongo server:
$ mongo

2.	 To open a shell on a remote server, use the command given. Replace server_ip
and port with the respective values:
$ mongo server_ip:port/db

3.	 To create and start using a new database, type use dbname. Since schemas in
MongoDB are dynamic, you do not need to create a database before using it:
> use testdb

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

Chapter 5

175

4.	 You can type help in Mongo shell to get a list of available commands and help
regarding a specific command:

> help: Let’s insert our first document:

> db.users.insert({‘name’:’ubuntu’,’uid’:1001})

5.	 To view the created database and collection, use the following commands:
> show dbs

> show collections

6.	 You can also insert multiple values for a key, for example, which groups a user
belongs to:
> db.users.insert({‘name’:’root’,’uid’:1010, ‘gid’:[1010,
1000, 1111]})

7.	 Check whether a document is successfully inserted:
> db.users.find()

8.	 To get a single record, use findOne():
> db.users.findOne({uid:1010})

Handling Databases

176

9.	 To update an existing record, use the update command as follows:
> db.users.update({name:’ubuntu’}, {$set:{uid:2222}})

10.	 To remove a record, use the remove command. This will remove all records with a
name equal to ubuntu:
> db.users.remove({‘name’:’ubuntu’})

11.	 To drop an entire collection, use the drop() command:
> db.users.drop()

12.	 To drop a database, use the dropDatabase() command:

> db.users.dropDatabase()

How it works…
The preceding examples show very basic CRUD operations with the MongoDB shell interface.
MongoDB shell is also a JavaScript shell. You can execute all JS commands in a MongoDB
shell. You can also modify the shell with the configuration file, ~/.mongorc.js. Similar to
shell, MongoDB provides language-specific drivers, for example, MongoDB PHP drivers to
access MongoDB from PHP.

MongoDB works on the concept of collections and documents. A collection is similar to a table
in MySQL and a document is a set of key value stores where a key is similar to a column in a
MySQL table. MongoDB does not require any schema definitions and accepts any pair of keys
and values in a document. Schemas are dynamically created. In addition, you do not need
to explicitly create the collection. Simply type a collection name in a command and it will be
created if it does not already exist. In the preceding example, users is a collection we used to
store all data. To explicitly create a collection, use the following command:

> use testdb

> db.createCollection(‘users’)

You may be missing the where clause in MySQL queries. We have already used that with the
findOne() command:

> db.users.findOne({uid:1010})

You can use $lt for less than, $lte for less than or equal to, $gt for greater than, $gte for
greater than or equal to, and $ne for not equal:

> db.users.findOne({uid:{$gt:1000}})

In the preceding example, we have used the where clause with the equality condition
uid=1010. You can add one more condition as follows:

> db.users.findOne({uid:1010, name:’root’})

Chapter 5

177

To use the or condition, you need to modify the command as follows:

> db.users.find ({$or:[{name:’ubuntu’}, {name:’root’}]})

You can also extract a single key (column) from the entire document. The find command
accepts a second optional parameter where you can specify a select criteria. You can use
values 1 or 0. Use 1 to extract a specific key and 0 otherwise:

> db.users.findOne({uid:1010}, {name:1})

> db.users.findOne({uid:1010}, {name:0})

There’s more…
You can install a web interface to manage the MongoDB installation. There are various open
source web interfaces listed on Mongo documentation at http://docs.mongodb.org/
ecosystem/tools/administration-interfaces/.

When you start a mongo shell for the first time, you may see a warning message regarding
transperent_hugepage and defrag. To remove those warnings, add the following lines to
/etc/init/mongod.conf, below the $DAEMONUSER /var/run/mongodb.pid line:

if test -f /sys/kernel/mm/transparent_hugepage/enabled; then
 echo never > /sys/kernel/mm/transparent_hugepage/enabled
fi
if test -f /sys/kernel/mm/transparent_hugepage/defrag; then
 echo never > /sys/kernel/mm/transparent_hugepage/defrag
fi

http://docs.mongodb.org/ecosystem/tools/administration-interfaces/
http://docs.mongodb.org/ecosystem/tools/administration-interfaces/

Handling Databases

178

Find more details on this Stack Overflow post at http://stackoverflow.com/
questions/28911634/how-to-avoid-transparent-hugepage-defrag-warning-
from-mongodb

See also
ff Mongo CRUD tutorial at https://docs.mongodb.org/manual/applications/

crud/

ff MongoDB query documents at https://docs.mongodb.org/manual/
tutorial/query-documents/

http://stackoverflow.com/questions/28911634/how-to-avoid-transparent-hugepage-defrag-warning-from-mongodb
http://stackoverflow.com/questions/28911634/how-to-avoid-transparent-hugepage-defrag-warning-from-mongodb
http://stackoverflow.com/questions/28911634/how-to-avoid-transparent-hugepage-defrag-warning-from-mongodb
https://docs.mongodb.org/manual/applications/crud/
https://docs.mongodb.org/manual/applications/crud/
https://docs.mongodb.org/manual/tutorial/query-documents/
https://docs.mongodb.org/manual/tutorial/query-documents/

179

6
Network Storage

In this chapter, we will cover the following recipes:

ff Installing the Samba server

ff Adding users to the Samba server

ff Installing the secure FTP server

ff Synchronizing files with Rsync

ff Performance tuning the Samba server

ff Troubleshooting the Samba server

ff Installing the Network File System

Introduction
Often we need to store a lot of data and local systems don't have enough space. Sometimes,
we need to quickly share this data across multiple systems and users. Also, when you have
a big network, chances are you have Linux systems as well as Windows or Mac. Centralized
networked storage can help to solve these storage and sharing problems. Linux provides
various options, such as Samba and NFS, to host a centralized storage server and share data
across multiple computers.

In this chapter, we will learn how to set up a centralized storage system. We will set up the
Samba server and NFS server. We will learn how to enable synchronization with Rsync and set
Windows clients to access storage servers.

Network Storage

180

Installing the Samba server
In this recipe, we will learn how to install Samba as our network storage server. Samba is
a collection of open source applications that implement Server Message Block (SMB)
and Common Internet File System (CIFS) protocols on Unix systems. This allows Samba
to be accessible across different types of network system. Samba provides various other
functionalities, such as a domain controller for the networks of Windows systems. In this
recipe, we will focus on using Samba as a storage server.

Getting ready
You will need access to a root account or an account with sudo privileges

If your server is using any firewall system, make sure to open the necessary network ports.
Samba runs on TCP 139 and 445 and UDP ports 137 and 138. Check Chapter 2, Networking,
for more details on firewall configuration.

How to do it…
Follow these steps to install the Samba server:

1.	 Install the Samba server with the following command:
$ sudo apt-get update

$ sudo apt-get install samba -y

2.	 After installation is complete, you can check the Samba version with the
following command:
$ smbd --version

3.	 Next, we need to configure Samba to enable sharing on the network. First, create a
backup of the original configuration file:
$ sudo cp /etc/samba/smb.conf /etc/samba/smb.conf.orignl

4.	 Next, open smb.conf and replace its contents with the following:
[global]

workgroup = WORKGROUP

server string = Samba Server

netbios name = ubuntu

security = user

map to guest = bad user

Chapter 6

181

dns proxy = no

[Public]

path = /var/samba/shares/public

browsable =yes

writable = yes

guest ok = yes

read only = no

create mask = 644

5.	 Next, we need to create a shared directory:
$ sudo mkdir -p /var/samba/shares/public

6.	 Change the directory permissions to make it world writable:
$ sudo chmod 777 /var/samba/shares/public

7.	 Restart the Samba service for the changes to take effect:

$ sudo service smbd restart

Now you can access this Samba share on the Windows client. Open Windows Explorer and
in the address bar, type in \\ubuntu or \\your-server-ip. You should see the shared
directory, Public, as follows:

Network Storage

182

How it works…
Samba is quite an old technology, especially in the age of Cloud storage such as Dropbox
and Amazon S3. However, when it comes to private networking, Samba offers a hassle-free
setup and is always available for free. All you need is a small server with some free storage
space. The release of Samba 4 has added Active Directory (AD) support. Now it's possible
to set up Windows AD on Linux servers. Support for AD comes with a wide range of other
features, including DNS for name resolution, centralized storage, and authentication with
LDAP and Kerberos.

As you can see in the preceding example, setting up Samba is quick and easy, and you can
easily get started with network storage within minutes. We can install the Samba server with a
single command, as Samba packages are available in the Ubuntu default package repository.
After installation, we have created a new quick and dirty configuration file which defines a
few parameters, such as the server name (netbios name) and a share definition. We have
created a publicly-shared directory where everyone can read and write the contents.

Once you are done with installation and initial testing, make sure that you remove public
sharing and enable authenticated access to your Samba shares. You don't want the server to
fill up with data from unknown people. In the next recipes, we will take a closer look at user
management and access control for Samba shares.

There's more…
To secure your Samba installation and limit access to your local network or subnet, you can
use the following configuration parameters:

[globals]
hosts deny = ALL
hosts allow = xxx.xxx.xxx.xxx/yy 127.
interfaces = eth0 lo
bind interfaces only = Yes

This configuration limits Samba to listen only on listed interfaces. In this case, its eth0,
the Ethernet network, and lo, localhost. Connection requests from all other
hosts are denied.

Tools for personal file sharing
If you need a simple file sharing tool for your personal use and do not want to set up and
configure Samba, then you can try using a tool named OwnCloud. It is very similar to Dropbox
and is open source. It gives you web access to all your files and documents. Plus, you get
desktop and mobile client apps to sync all files to a remote server.

Chapter 6

183

Another good tool is BitTorrent Sync. Again, this is a file synchronization tool, but this time it is
peer-to-peer file synchronization. If you really care about the privacy and security of data, then
this tool is made for you. All files are synchronized between two or more systems (say, your
desktop and laptop) without the use of any centralized server.

See also
ff Ubuntu server guide for Samba at https://help.ubuntu.com/lts/

serverguide/samba-fileserver.html

Adding users to the Samba server
In the previous recipe, we installed the Samba server and created a public share accessible
to everyone. In this recipe, we will learn how to add authentication to the Samba server and
password protect shared directories.

Getting ready
You will need access to a root account or an account with sudo privileges.

Make sure that the Samba server is installed and running.

How to do it…
Follow these steps to add users to the Samba server:

1.	 Create a new user account. You can use any existing account or add a new
Samba only account with the following command. Change smbuser to your
desired username:
$ sudo useradd -d /home/smbuser -s /sbin/nologin smbuser

2.	 Now, we need to allocate a Samba password to this new user. First, enter your sudo
password, followed by the new password for your Samba account, and then verify
the password:
$ sudo smbpasswd -a smbuser

https://help.ubuntu.com/lts/serverguide/samba-fileserver.html
https://help.ubuntu.com/lts/serverguide/samba-fileserver.html

Network Storage

184

3.	 Create a shared directory for this user and change its ownership:
$ sudo chown smbuser:smbuser /var/samba/share/smbuser

4.	 Next, edit the Samba configuration to add the preceding share:
[Private]

path = /var/samba/shares/smbuser

browsable = yes

writable = yes

valid users = smbuser

5.	 Save the changes to the configuration file and reload the Samba server:
$ sudo service smbd reload

6.	 Now, check in Windows Explorer. You should see the new shared directory. On trying
to open that directory, you will be asked for a Samba username and password:

How it works…
Samba allows various different types of configuration for shared resources. In the previous
recipe, we learned how to set up a public share, and in this recipe we have created a private
share for a single user. We have created a new user with the nologin permission. This will
allow smbuser to access only the Samba shared directory and nothing else. You can also use
existing user accounts on the Ubuntu server.

Chapter 6

185

After adding a user, we set a password to be used with the Samba server. Samba maintains a
database of passwords separately from Ubuntu passwords. You can enable or disable Samba
users with the following commands:

ff Enable a Samba user:
$ sudo smbpasswd -e username

ff Disable a Samba user:
$ sudo smbpasswd -d username

ff Remove a Samba user:

$ sudo smbpasswd -x username

To enable multiple users to access a shared resource, you can specify the list of users under
the valid users line, as follows:

valid users = userone, usertwo, userthree

Similarly, you can limit write permissions to a set of users, as follows:

write list = userone, usertwo

Samba also supports the sharing of users, home directories. This will enable users to create
shares for all existing Ubuntu users with a single block of configuration. Add the following lines
to the Samba configuration to enable the sharing of home directories:

[homes]

browseable = No

valid users = %S

After this configuration, user's home directories will be available at //server-name/user-
name. You will be required to provide a username and password to access these shares.
Home directories are by default shared as read only. To enable write permissions, add the
following line to the preceding block:

writable = yes

Note that on Windows, you will not be able to access multiple home directories from a single
Windows system. Windows does not allow multiple user authentications to a single host.

Network Storage

186

Alternatively, to share a directory with a group of users, you can use group sharing. Use the
following line to share a directory with a group of users:

path=/var/samba/shares/group-share

valid users = @groupname

Then, set group ownership on the directory, group-share:

$ sudo chgrp groupname /var/samba/shares/group-share

There are some other directives such as create mask, directory mask, force user,
and force group. These directives can be used to determine the permissions and
ownership of the newly created files under Samba share.

After any changes to the Samba configuration file, use testparm to check the configuration
for any syntax errors:

$ testparm

It should show the Loaded services file OK message, as listed in following screenshot:

There's more…
With the release of version 4, Samba can be set as a domain controller. Check the official
documentation for more details at the following link:

https://wiki.samba.org/index.php/Setup_a_Samba_Active_Directory_
Domain_Controller

You can also configure the Samba server to authenticate against the LDAP server.
LDAP installation and configuration is covered in Chapter 14, Centralized Auth Service.
For more details on Samba and LDAP integration, check out the Ubuntu server guide at
https://help.ubuntu.com/lts/serverguide/samba-ldap.html.

https://wiki.samba.org/index.php/Setup_a_Samba_Active_Directory_Domain_Controller
https://wiki.samba.org/index.php/Setup_a_Samba_Active_Directory_Domain_Controller
https://help.ubuntu.com/lts/serverguide/samba-ldap.html

Chapter 6

187

See also
ff Linux home server Samba guide at http://www.brennan.id.au/18-

Samba.html#useraccounts

Installing the secure FTP server
In this recipe, we will learn how to install the File Transfer Protocol (FTP) server and configure
it to use SSL encryption.

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
Follow these steps to install the secure FTP server:

1.	 Install vsftpd with the following command:
$ sudo apt-get update

$ sudo apt-get install vsftpd

2.	 After installation, we can configure vsftpd by editing /etc/vsftpd.conf.

3.	 First create the SSL certificate for the FTP server:
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout /etc/ssl/private/vsftpd.pem -out
/etc/ssl/private/vsftpd.pem

4.	 Next, configure Vsftpd. Add or edit the following lines in vsftpd.conf:
anonymous_enable=no
local_enable=yes
write_enable=yes
chroot_local_user=yes
Add the SSL certificate created in the previous step:
rsa_cert_file=/etc/ssl/private/vsftpd.pem
rsa_private_key_file=/etc/ssl/private/vsftpd.pem
ssl_enable=yes
ssl_ciphers=high
force_local_data_ssl=yes
force_local_logins_ssl=yes

http://www.brennan.id.au/18- Samba.html#useraccounts
http://www.brennan.id.au/18- Samba.html#useraccounts

Network Storage

188

5.	 Save and exit the configuration file.

6.	 Restart the Vsftpd server:
$ sudo service vsftpd restart

7.	 Now you can use any FTP client that supports the SFTP protocol to connect to your
FTP server. The following is the configuration screen for SFTP client FileZilla:

How it works…
FTP is an insecure protocol and you should avoid using it, especially in a production
environment. Limit use of FTP to downloads only and use more secure methods, such as
SCP, to upload and transfer files on servers. If you have to use FTP, make sure that you have
disabled anonymous access and enable SFTP to secure your data and login credentials.

In this recipe, we have installed Vsftpd, which is a default FTP package in the Ubuntu
repository. Vsftpd stands for very secure FTP daemon, and it is designed to protect against
possible FTP vulnerabilities. It supports both FTP and SFTP protocols.

As Vsftpd is available in the Ubuntu package repository, installation is very simple, using only
a single command. After Vsftpd installed, we created an SSL certificate to be used with an
FTP server. With this configuration, we will be using the SFTP protocol, which is more secure
than FTP. You can find more details about SSL certificates in Chapter 3, Working with
Web Servers.

Chapter 6

189

Under the Vsftpd configuration, we have modified some settings to disable anonymous
logins, allowed local users to use FTP, enabled write access, and used chroot for local users.
Next, we have set a path for previously generated SSL certificates and enabled the use of
SSL. Additionally, you can force the use of TLS over SSL by adding the following lines to the
configuration file:

ssl_tlsv1=yes
ssl_sslv2=no
ssl_sslv3=no

There's more…
This recipe covers FTP as a simple and easy-to-use tool for network storage. FTP is inherently
insecure and you must avoid its use in a production environment. Server deployments can
easily be automated with simple Git hooks or the sophisticated integration of continuous
deployment tools such Chef, Puppet, or Ansible.

See also
ff Ubuntu server FTP guide at https://help.ubuntu.com/lts/serverguide/

ftp-server.html

Synchronizing files with Rsync
In this recipe, we will learn how to use the Rsync utility to synchronize files between two
directories or between two servers.

How to do it…
Follow these steps to synchronize files with Rsync:

1.	 Set up key-based authentication between source and destination servers. We can
use password authentication as well, which is described later in this recipe.

2.	 Create a sample directory structure on the source server. You can use existing files
as well:
ubuntu@src$ mkdir sampledir

ubuntu@src$ touch sampledir/file{1..10}

https://help.ubuntu.com/lts/serverguide/ftp-server.html
https://help.ubuntu.com/lts/serverguide/ftp-server.html

Network Storage

190

3.	 Now, use the following command to synchronize the entire directory from the
source server to your local system. Note the / after sampledir. This will copy
contents of sampledir in the backup. Without /, the entire sampledir will be
copied to the backup:
ubuntu@dest$ rsync -azP -e ssh
ubuntu@10.0.2.8:/home/ubuntu/sampledir/ backup

As this is the first time, all files from sampledir on the remote server will be
downloaded in a backup directory on your local system. The output of the
command should look like the following screenshot:

4.	 You can check the downloaded files with the ls command:
$ ls -l backup

5.	 Add one new file on the remote server under sampledir:
ubuntu@src$ touch sampledir/file22

6.	 Now re-execute the rsync command on the destination server. This time, rsync will
only download a new file and any other update files. The output should look similar to
the following screenshot:
ubuntu@dest$ rsync -azP -e ssh
ubuntu@10.0.2.8:/home/ubuntu/sampledir backup

7.	 To synchronize two local directories, you can simply specify the source and
destination path with rsync, as follows:

$ rsync /var/log/mysql ~/mysql_log_backup

Chapter 6

191

How it works…
Rsync is a well known command line file synchronization utility. With Rsync, you can
synchronize files between two local directories, as well as files between two servers. This
tool is commonly used as a simple backup utility to copy or move files around systems. The
advantage of using Rsync is that file synchronization happens incrementally, that is, only new
and modified files will be downloaded. This saves bandwidth as well as time. You can quickly
schedule a daily backup with a cron and Rsync. Open a cron jobs file with ctontab-e and
add the following line to enable daily backups:

$ crontab -e # open crontab file

@daily rsync -aze ssh ubuntu@10.0.2.50:/home/ubuntu/sampledir
/var/backup

In the preceding example, we have used a pull operation, where we are downloading files from
the remote server. Rsync can be used to upload files as well. Use the following command to
push files to the remote server:

$ rsync -azP -e ssh backup
ubuntu@10.0.2.50:/home/ubuntu/sampledir

Rsync provides tons of command line options. Some options that are used in the
preceding example are –a, a combination of various other flags and stands for achieve.
This option enables recursive synchronization and preserves modification time, symbolic
links, users, and group permissions. Option -z is used to enable compression while
transferring files, while option -P enables progress reports and the resumption of
interrupted downloads by saving partial files.

We have used one more option, -e, which specifies which remote shell to be used
while downloading files. In the preceding command, we are using SSH with public key
authentication. If you have not set public key authentication between two servers, you will be
asked to enter a password for your account on the remote server. You can skip the -e flag and
rsync will use a non-encrypted connection to transfer data and login credentials.

Note that the SSH connection is established on the default SSH port, port 22. If your remote
SSH server runs on a port other than 22, then you can use a slightly modified version of the
preceding command as follows:

rsync -azP -e "ssh -p port_number" source destination

Anther common option is --exclude, which specifies the pattern for file names to be
excluded. If you need to specify multiple exclusion patterns, then you can specify all such
patterns in a text file and include that file in command with the options --exclude-
from=filename. Similarly, if you need to include some specific files only, you can specify the
inclusion pattern with options --include=pattern or --include-from=filename.

Network Storage

192

Exclude a single file or files matching with a single pattern:

$ rsync -azP --exclude 'dir*' source/ destination/

Exclude a list of patterns or file names:

$ rsync -azP --exclude-from 'exclude-list.txt' source/
destination/

By default, Rsync does not delete destination files, even if they are deleted from the source
location. You can override this behavior with a --delete flag. You can create a backup of
these files before deleting them. Use the --backup and --backup-dir options to enable
backups. To delete files from the source directory, you can use the --remove-source-
files flag. Another handy option is --dry-run, which simulates a transfer with the given
flags and displays the output, but does not modify any files. You should use --dry-run
before using any deletion flags.

Use this to remove source files with --dry-run:

$ rsync --dry-run --remove-source-files -azP source/
destination/

There's more…
Rsync is a great tool to quickly synchronize the files between source and destination,
but it does not provide bidirectional synchronization. It means the changes are synchronized
from source to destination and not vice versa. If you need bi-directional synchronization,
you can use another utility, Unison. You can install Unison on Debian systems with the
following command:

$ sudo apt-get -y install unison

Once installed, Unison is very similar to Rsync and can be executed as follows:

$ unison /home/ubuntu/documents
ssh://10.0.2.56//home/ubuntu/documents

You can get more information about Unison in the manual pages with the following command:

$ man unison

If you wish to have your own Dropbox-like mirroring tool which continuously monitors for local
file changes and quickly replicates them to network storage, then you can use Lsyncd. Lsyncd
is a live synchronization or mirroring tool, which monitors the local directory tree for any events
(with inotify and fsevents), and then after few seconds spawns a synchronization process to
mirror all changes to a remote location. By default, Lsyncd uses Rsync for synchronization.

Chapter 6

193

As always, Lsyncd is available in the Ubuntu package repository and can be installed with a
single command, as follows:

$ sudo apt-get install lsyncd

To get more information about Lsyncd, check the manual pages with the following command:

$ man lsyncd

See also
ff Ubuntu Rsync community page at https://help.ubuntu.com/community/

rsync

Performance tuning the Samba server
In this recipe, we will look at Samba configuration parameters in order to get optimum
performance out of your Samba installation.

Getting ready
You will need root access or an account with sudo privileges.

It is assumed that you have installed the Samba server and it is properly working.

How to do it…
1.	 Open the Samba configuration file located at /etc/samba/smb.conf:

$ sudo vi /etc/samba/smb.conf

2.	 Add or edit the following options under the global section of the configuration file:
[global]
log level = 1
socket options = TCP_NODELAY IPTOS_LOWDELAY SO_RCVBUF=131072 SO_
SNDBUF=131072 SO_KEEPALIVE
read raw = Yes
write raw = Yes
strict locking = No
oplocks = yes
max xmit = 65535
dead time = 15

https://help.ubuntu.com/community/rsync
https://help.ubuntu.com/community/rsync

Network Storage

194

getwd cache = yes
aio read size = 16384
aio write size = 16384
use sendfile = true

3.	 Save the configuration file and restart the Samba service:

$ sudo service smbd restart

How it works…
The Samba server provides various configuration parameters. It uses TCP sockets to connect
with clients and for data transfer. You should compare Samba's performance with similar TCP
services such as FTP.

The preceding example lists some commonly used configuration options for Samba. Some of
these options may work for you and some of them may not. The latest Samba version ships
with default values for these options that work fairly well for common network conditions. As
always, test these options one at a time or in a group, and benchmark each modification to
get optimum performance.

The explanation for the preceding is as follows:

ff log level: The default log level is set to 0. Samba produces a lot of debugging
information and writing all this to disk is a slow operation. Increasing the log level
results in increased logs and poor performance. Unless you are debugging the server,
it is good to have the log level set to the lowest value.

ff socket options: These are the TCP/IP stack level options.

ff read raw and write raw: These options enable Samba to use large read and
writes to a network up to 64 KB in a single request. Some older clients may have
issues with raw reads and writes. Check your setup before using these options.

ff dead time and so_keepalive: These options set periodic checks for dead
connections and close such connections and free unused memory.

ff oplocks: This allows clients to cache files locally and results in overall performance
improvement. The default setting disables oplocks.

ff aio read size and aio write size: This Asynchronous IO (AIO) allows Samba
to read and write asynchronously when a file's size is bigger than the specified size
values.

You can find various other options and respective explanations in the Samba manual pages.
Use the following command to open the manual pages on your server:

$ man smbd

Chapter 6

195

Troubleshooting the Samba server
In this recipe, we will look at the various tools available for troubleshooting Samba shares.

How to do it…
Samba troubleshooting can be separated in to three parts: network connectivity, Samba
process issues, and Samba configuration issues. We will go through each of them step by
step. As a first step for troubleshooting, let's start with network testing.

Checking network connectivity
Follow these steps to check network connectivity:

1.	 Send ping requests to the Samba server to check network connectivity:
$ ping samba-server-ip

2.	 Check name resolution. Ping the Samba server by its name. Windows uses netbios
for name resolution:
$ ping samba-server-name

3.	 Check the Samba configuration for network restrictions. Temporarily open Samba to
all hosts.

4.	 Use tcpdump to check Samba network communication. Start tcpdump as follows
and let it run for some time while accessing the Samba server from clients. All
packets will be logged in a file named tcpdump in the current directory:
$ sudo tcpdump -p -s 0 -w tcpdumps port 445 or port 139

5.	 If you know the client IP address, you can filter tcpdumps with the following
command:
$ sudo tcpdump -s 0 -w tcpdumps host client_IP

Network Storage

196

6.	 Connect to the Samba process with telnet:
$ echo "hello" | telnet localhost 139

7.	 Check whether your Samba server uses a firewall. If so, check the allowed ports
on your firewall. If the firewall is on, make sure you have allowed the Samba ports
as follows:

8.	 Try connecting to FTP or a similar TCP service on the Samba server. This may identify
the problems with the TCP stack.

9.	 Use nmblookup to test netbios name resolution for Windows systems.

Checking the Samba service
Follow these steps to check Samba service:

1.	 Check whether the Samba service has started properly:
$ sudo service samba status

2.	 Use netstat to check the Samba daemon is listening on the network:
$ sudo netstat -plutn

Chapter 6

197

3.	 Use ps to check the Samba processes. Look for the process name, smbd, in the
output of the following command:
$ ps aux

4.	 Use strace to view the Samba process logs. This will list all filesystem activities by
smbd process:

$ strace smbd

Checking Samba logs
Follow these steps to check Samba logs:

1.	 Check Samba log files for any warning or errors.

2.	 Increase the log level to get more debugging information:
[global]
log level = 3

3.	 Enable logging for a specific client with client-specific configuration. First, set the
following options under smb.conf to enable client-specific configuration:
[global]
 log level = 0
 log file = /var/log/samba/log.%m
 include = /etc/samba/smb.conf.%m

4.	 Now create a new configuration file for a specific client:
$ sudo vi /etc/samba/smb.conf.client1
[global]
log level = 3

5.	 Similarly, you can create separate logs for each Samba user:

[global]
 log level = 0
 log file = /var/log/samba/log.%u
 include = /etc/samba/smb.conf.%u

Network Storage

198

Checking Samba configuration
Follow these steps to check Samba configuration:

1.	 Check the registered users and accounts in the Samba server user database with the
pdbedit command:
$ sudo pdbedit -L

2.	 Check the shares with the smbtree command:

3.	 Use the testparm command to find any errors in the Samba configuration:
$ testparm

4.	 Check for allowed users and group names. Make sure that group names start with
the @ symbol.

5.	 Back up your configuration files and then use minimal configuration to test Samba:
[global]
 workgroup = WORKGROUP
 security = user
 browsable = yes
[temp]
 path = /tmp
 public = yes

Publicly writable directories are not good for server security.
Remove the preceding configuration as soon as testing is finished.

Chapter 6

199

6.	 Test your configuration with smbcclient. It should list all Samba shares:

$ smbclient -L localhost -U%

See also
ff Samba docs troubleshooting at https://www.samba.org/samba/docs/using_

samba/ch12.html

Installing the Network File System
Network File System (NFS) is a distributed filesystem protocol that allows clients to access
remote files and directories as if they are available on the local system. This allows client
systems to leverage large centrally shared storage. Users can access the same data from
any system across the network. A typical setup for NFS includes a server that runs the NFS
daemon, nfsd, and lists (export) files and directories to be shared. A client system can mount
these exported directories as their local file system.

In this recipe, we will learn how to install the NFS server and client systems.

Getting ready
You will need two Ubuntu systems: one as a central NFS server and another as a client.
For this recipe, we will refer to the NFS server with the name Host and the NFS client with
the name Client. The following is an example IP address configuration for the Host and
Client systems:

Host - 10.0.2.60
Client - 10.0.2.61

You will need access to a root account on both servers, or at least an account with
sudo privileges.

https://www.samba.org/samba/docs/using_samba/ch12.html
https://www.samba.org/samba/docs/using_samba/ch12.html

Network Storage

200

How to do it…
Follow these steps to install NFS:

1.	 First, we need to install the NFS server:
$ sudo apt-get update

$ sudo apt-get install nfs-kernel-server

2.	 Create the directories to be shared:
$ sudo mkdir /var/nfs

3.	 Add this directory to NFS exports under /etc/exports:
$ sudo nano /etc/exports

4.	 Add the following line to /etc/exports:
/var/nfs	 *(rw,sync,no_subtree_check)

5.	 Save and close the exports file.

6.	 Now, restart the NFS service:
$ sudo service nfs-kernel-server restart

7.	 Next, we need to configure the client system to access NFS shares.

8.	 Create a mount point for NFS shares.

9.	 Install the nfs-common package on the client side:
$ sudo apt-get install nfs-common

$ sudo mkdir -p /var/nfsshare

10.	 Mount the NFS shared directory on the newly-created mount point:
$ sudo mount 10.0.2.60:/var/nfs /var/nfsshare

11.	 Confirm the mounted share with the following command:
$ mount -t nfs

12.	 Now, change the directory to /var/nfsshare, and you are ready to use NFS.

Chapter 6

201

How it works…
In the preceding example, we have installed the NFS server and then created a directory that
will share with clients over the network. The configuration file /etc/exports contains all
NFS shared directories. The syntax to add new exports is as follows:

directory_to_share client_IP_or_name(option1, option2,
option..n)

The options used in exports are as follows:

ff rw: This enables read/write access. You can enable read-only access with
the ro option.

ff sync: This forces the NFS server to write changes to disk before replying to requests.
sync is the default option; you can enable async operations by explicitly stating async.
Async operations may get a little performance boost but at the cost of data integrity.

ff no_subtree_check: This disables subtree checking, which provides more stable
and reliable NFS shares.

You can check the exports documentation for more export options. Use the man command
to open the exports manual pages, as follows:

$ man exports

In the preceding example, we have used the mount command to mount the NFS share. Once
the client system has restarted, this mount will be removed. To remount the NFS share on
each reboot, you can add the following line to /etc/fstab file:

10.0.2.60:/var/nfs /var/nfsshare nfs4 _netdev,auto 0 0

To mount all shares exported by the NFS server, you can use the following command:

$ sudo mount 10.0.2.60:/ /var/nfsshare

There's more…
NFS 4.1 adds support for pNFS, which enables clients to access the storage device
directly and in parallel. This architecture eliminates scalability and performance issues
with NFS deployments.

Network Storage

202

See also
ff NFS exports options at http://manpages.ubuntu.com/manpages/trusty/

man5/exports.5.html

ff Parallel NFS at http://www.pnfs.com/

ff NFS documentation in manual pages, by using the following command:

$ man nfs

http://manpages.ubuntu.com/manpages/trusty/man5/exports.5.html
http://manpages.ubuntu.com/manpages/trusty/man5/exports.5.html
http://www.pnfs.com/

203

7
Cloud Computing

In this chapter, we will cover the following recipes:

ff Creating virtual machine with KVM

ff Managing virtual machines with virsh

ff Setting up your own cloud with OpenStack

ff Adding a cloud image to OpenStack

ff Launching a virtual instance with OpenStack

ff Installing Juju a service orchestration framework

ff Managing services with Juju

Introduction
Cloud computing has become the most important terminology in the computing sphere.
It has reduced the effort and cost required to set up and operate the overall computing
infrastructure. It has helped various businesses quickly start their business operations
without wasting time planning their IT infrastructure, and has enabled really small teams to
scale their businesses with on-demand computing power.

The term cloud is commonly used to refer to a large network of servers connected to the
Internet. These servers offer a wide range of services and are available for the general public
on a pay-per-use basis. Most cloud resources are available in the form of Software as a
Service (SaaS), Platform as a Service (PaaS), or Infrastructure as a Service (IaaS). A SaaS
is a software system hosted in the cloud. These systems are generally maintained by large
organizations; a well-known example that we commonly use is Gmail and the Google Docs
service. The end user can access these application through their browsers. He or she can just
sign up for the service, pay the required fees, if any, and start using it without any local setup.
All data is stored in the cloud and is accessible from any location.

Cloud Computing

204

PaaS provide a base platform to develop and run applications in the cloud. The service
provider does the hard work of building and maintaining the infrastructure and provides
easy-to-use APIs that enable developers to quickly develop and deploy an application.
Heroku and the Google App Engine are well-known examples of PaaS services.

Similarly, IaaS provides access to computing infrastructure. This is the base layer of cloud
computing and provides physical or virtual access to computing, storage, and network
services. The service builds and maintains actual infrastructure, including hardware assembly,
virtualization, backups, and scaling. Examples include Amazon AWS and the Google Compute
Engine. Heroku is a platform service built on top of the AWS infrastructure.

These cloud services are built on top of virtualization. Virtualization is a software system that
enables us to break a large physical server into multiple small virtual servers that can be used
independently. One can run multiple isolated operating systems and applications on a single
large hardware server. Cloud computing is a set of tools that allows the general public to
utilize these virtual resources at a small cost.

Ubuntu offers a wide range of virtualization and cloud computing tools. It supports
hypervisors, such as KVM, XEN, and QEMU; a free and open source cloud computing platform,
OpenStack; the service orchestration tool Juju and machine provisioning tool MAAS. In this
chapter, we will take a brief look at virtualization with KVM. We will install and set up our own
cloud with OpenStack and deploy our applications with Juju.

Creating virtual machine with KVM
Ubuntu server gives you various options for your virtualization needs. You can choose from
KVM, XEN, QEMU, VirtualBox, and various other proprietary and open source tools. KVM, or
Kernel virtual machine, is the default hypervisor on Ubuntu. In this recipe, we will set up a
virtual machine with the help of KVM. Ubuntu, being a popular cloud distribution provides
prebuilt cloud images that can be used to start virtual machines in the cloud. We will use one
of these prebuilt images to build our own local virtual machine.

Getting ready
As always, you will need access to the root account or an account with sudo privileges.

How to do it…
Follows these steps to install KVM and launch a virtual machine using cloud image:

1.	 To get started, install the required packages:
$ sudo apt-get install kvm cloud-utils \

genisoimage bridge-utils

Chapter 7

205

Before using KVM, you need to check whether your CPU
supports hardware virtualization, which is required by KVM.
Check CPU support with the following command:
$ kvm-ok

You should see output like this:
INFO: /dev/kvm exists

KVM acceleration can be used.

2.	 Next, download the cloud images from the Ubuntu servers. I have selected the
Ubuntu 14.04 Trusty image:
$ wget http://cloud-
images.ubuntu.com/releases/trusty/release/ubuntu-14.04-server-
cloudimg-amd64-disk1.img -O trusty.img.dist

This image is in a compressed format and needs to be converted into an
uncompressed format. This is not strictly necessary but should save on-demand
decompression when an image is used. Use the following command to convert
the image:

$ qemu-img convert -O qcow2 trusty.img.dist trusty.img.orig

3.	 Create a copy-on-write image to protect your original image from modifications:
$ qemu-img create -f qcow2 -b trusty.img.orig trusty.img

4.	 Now that our image is ready, we need a cloud-config disk to initialize this image
and set the necessary user details. Create a new file called user-data and add the
following data to it:
$ sudo vi user-data

#cloud-config

password: password

chpasswd: { expire: False }

ssh_pwauth: True

This file will set a password for the default user, ubuntu, and enable password
authentication in the SSH configuration.

5.	 Create a disk with this configuration written on it:
$ cloud-localds my-seed.img user-data

Cloud Computing

206

6.	 Next, create a network bridge to be used by virtual machines. Edit /etc/network/
interfaces as follows:
auto eth0

iface eth0 inet manual

auto br0

iface br0 inet dhcp

 bridge_ports eth0

On Ubuntu 16.04, you will need to edit files under the /etc/network/
interfaces.d directory. Edit the file for eth0 or your default network
interface, and create a new file for br0. All files are merged under
/etc/network/interfaces.

7.	 Restart the networking service for the changes to take effect. If you are on an SSH
connection, your session will get disconnected:
$ sudo service networking restart

8.	 Now that we have all the required data, let's start our image with KVM, as follows:
$ sudo kvm -netdev bridge,id=net0,br=br0 \

-net user -m 256 -nographic \

-hda trusty.img -hdb my-seed.img

This should start a virtual machine and route all input and output to your console.
The first boot with cloud-init should take a while. Once the boot process
completes, you will get a login prompt. Log in with the username ubuntu and the
password specified in user-data.

9.	 Once you get access to the shell, set a new password for the user ubuntu:

$ sudo passwd ubuntu

After that, uninstall the cloud-init tool to stop it running on the next boot:
$ sudo apt-get remove cloud-init

Your virtual machine is now ready to use. The next time you start the machine, you
can skip the second disk with the cloud-init details and route the system console to
VNC, as follows:

$ sudo kvm -netdev bridge,id=net0,br=br0 \

-hda trusty.img \

-m 256 -vnc 0.0.0.0:1 -daemonize

Chapter 7

207

How it works…
Ubuntu provides various options to create and manage virtual machines. The previous recipe
covers basic virtualization with KVM and prebuilt Ubuntu Cloud images. KVM is very similar
to desktop virtualization tools such as VirtualBox and VMware. It comes as a part of the
Qemu emulator and uses hardware acceleration features from the host CPU to boost the
performance of virtual machines. Without hardware support, the machines need to run
inside the Qemu emulator.

After installing KVM, we have used Ubuntu cloud image as our pre-installed boot disk. Cloud
images are prebuilt operating system images that do not contain any user data or system
configuration. These images need to be initialized before being used. Recent Ubuntu releases
contain a program called cloud-init, which is used to initialize the image at first boot. The
cloud-init program looks for the metadata service on the network and queries user-data
once the service is found. In our case, we have used a secondary disk to pass user data
and initialize the cloud image.

We downloaded the prebuilt image from the Ubuntu image server and converted it to
uncompressed format. Then, we created a new snapshot with the backing image set to the
original prebuilt image. This should protect our original image from any modifications so that
it can be used to create more copies. Whenever you need to restore a machine to its original
state, just delete the newly created snapshot images and recreate it. Note that you will need
to use the cloud-init process again during such restores.

This recipe uses prebuilt images, but you can also install the entire operating system on
virtual machines. You will need to download the required installation medium and attach a
blank hard disk to the VM. For installation, make sure you set the VNC connection to follow
the installation steps.

There's more…
Ubuntu also provides the virt-manager graphical interface to create and manage KVM
virtual machines from a GUI. You can install it as follows:

$ sudo apt-get install virt-manager

Alternatively, you can also install Oracle VirtualBox on Ubuntu. Download the .deb file for your
Ubuntu version and install it with dpkg -i, or install it from the package manager as follows:

1.	 Add the Oracle repository to your installation sources. Make sure to substitute
xenial with the correct Ubuntu version:
$ sudo vi /etc/apt/sources.list

deb http://download.virtualbox.org/virtualbox/debian xenial
contrib

Cloud Computing

208

2.	 Add the Oracle public keys:
wget -q
https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- |
sudo apt-key add -

3.	 Install VirtualBox:

$ sudo apt-get update && sudo apt-get install virtualbox-5.0

See also
ff VirtualBox downloads: https://www.virtualbox.org/wiki/Linux_

Downloads

ff Ubuntu Cloud images on a local hypervisor: https://help.ubuntu.com/
community/UEC/Images#line-105

ff The Ubuntu community page for KVM: https://help.ubuntu.com/community/
KVM

Managing virtual machines with virsh
In the previous recipe, we saw how to start and manage virtual machines with KVM. This
recipe covers the use of Virsh and virt-install to create and manage virtual machines. The
libvirt Linux library exposes various APIs to manage hypervisors and virtual machines.
Virsh is a command-line tool that provides an interface to libvirt APIs.

To create a new machine, Virsh needs the machine definition in XML format. virt-install is
a Python script to easily create a new virtual machine without manipulating bits of XML. It
provides an easy-to-use interface to define a machine, create an XML definition for it and then
load it in Virsh to start it.

In this recipe, we will create a new virtual machine with virt-install and see how it can be
managed with various Virsh commands.

Getting ready
You will need access to the root account or an account with sudo privileges.

ff Install the required packages, as follows:
$ sudo apt-get update

$ sudo apt-get install -y qemu-kvm libvirt-bin virtinst

ff Install packages to create the cloud init disk:
$ sudo apt-get install genisoimage

https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://help.ubuntu.com/community/UEC/Images#line-105
https://help.ubuntu.com/community/UEC/Images#line-105
https://help.ubuntu.com/community/KVM
https://help.ubuntu.com/community/KVM

Chapter 7

209

ff Add your user to the libvirtd group and update group membership for the
current session:

$ sudo adduser ubuntu libvirtd

$ newgrp libvirtd

How to do it…
We need to create a new virtual machine. This can be done either with an XML definition
of the machine or with a tool called virt-install. We will again use the prebuilt Ubuntu Cloud
images and initialize them with a secondary disk:

1.	 First, download the Ubuntu Cloud image and prepare it for use:
$ mkdir ubuntuvm && cd ubuntuvm

$ wget -O trusty.img.dist \

http://cloud-images.ubuntu.com/releases/trusty/release/ubuntu-
14.04-server-cloudimg-amd64-disk1.img

$ qemu-img convert -O qcow2 trusty.img.dist trusty.img.orig

$ qemu-img create -f qcow2 -b trusty.img.orig trusty.img

2.	 Create the initialization disk to initialize your cloud image:
$ sudo vi user-data

#cloud-config

password: password

chpasswd: { expire: False }

ssh_pwauth: True

$ sudo vi meta-data

instance-id: ubuntu01;

local-hostname: ubuntu

$ genisoimage -output cidata.iso -volid cidata -joliet \

-rock user-data meta-data

3.	 Now that we have all the necessary data, let's create a new machine, as follows:
$ virt-install --import --name ubuntu01 \

--ram 256 --vcpus 1 --disk trusty.img \

--disk cidata.iso,device=cdrom \

--network bridge=virbr0 \

--graphics vnc,listen=0.0.0.0 --noautoconsole -v

Cloud Computing

210

This should create a virtual machine and start it. A display should be opened on the
local VNC port 5900. You can access the VNC through other systems available on the
local network with a GUI.

You can set up local port forwarding and access VNC from your local
system as follows:
$ ssh kvm_hostname_or_ip -L 5900:127.0.0.1:5900

$ vncviewer localhost:5900

4.	 Once the cloud-init process completes, you can log in with the default user, ubuntu,
and the password set in user-data.

5.	 Now that the machine is created and running, we can use the virsh command to
manage this machine. You may need to connect virsh and qemu before using them:
$ virsh connect qemu:///system

6.	 Get a list of running machines with virsh list. The --all parameter will show all
available machines, whether they are running or stopped:
$ virsh list --all # or virsh --connect qemu:///system list

7.	 You can open a console to a running machine with virsh as follows. This should give
you a login prompt inside the virtual machine:
$ virsh console ubuntu01

To close the console, use the Ctrl +] key combination.

8.	 Once you are done with the machine, you can shut it down with virsh shutdown.
This will call a shutdown process inside the virtual machine:
$ virsh shutdown ubuntu01

You can also stop the machine without a proper shutdown, as follows:

$ virsh destroy ubuntu01

9.	 To completely remove the machine, use virsh undefine. With this command,
the machine will be deleted and cannot be used again:

$ virsh destroy ubuntu01

Chapter 7

211

How it works…
Both the virt-install and virsh commands collectively give you an easy-to-use
virtualization environment. Additionally, the system does not need to support hardware
virtualization. When it's available, the virtual machines will use KVM and hardware
acceleration, and when KVM is not supported, Qemu will be used to emulate virtual hardware.

With virt-install, we have easily created a KVM virtual machine. This command
abstracts the XML definition required by libvirt. With a list of various parameters, we can
easily define all the components with their respective configurations. You can get a full list
of virt-install parameters with the --help flag.

The virtinst package, which installs virt-install,
also contains some more commands, such as virt-clone,
virt-admin, and virt-xml. Use tab completion in your bash
shell to get a list of all virt-* commands.

Once the machine is defined and running, it can be managed with virsh subcommands.
Virsh provides tons of subcommands to manage virtual machines, or domains as they are
called by libvirt. You can start or stop machines, pause and resume them, or stop them
entirely. You can even modify the machine configuration to add or remove devices as needed,
or create a clone of an existing machine. To get a list of all machine (domain) management
commands, use virsh help domain.

Once you have your first virtual machine, it becomes easier to create new machines using the
XML definition from it. You can dump the XML definition with virsh dumpxml machine, edit
it as required, and then create a new machine using XML configuration with virsh create
configuration.xml.

There are a lot more options available for the virsh and virt-install commands; check
their respective manual pages for more details.

There's more…
In the previous example, we used cloud images to quickly start a virtual machine. You do not
need to use cloud machines, and you can install the operating system on your own using the
respective installation media.

Cloud Computing

212

Download the installation media and then use following command to start the installation.
Make sure you change the -c parameter to the downloaded ISO file, along with the location:

$ sudo virt-install -n ubuntu -r 1024 \

--disk path=/var/lib/libvirt/images/ubuntu01.img,bus=virtio,size=4 \

-c ubuntu-16.04-server-i386.iso \

--network network=default,model=virtio

--graphics vnc,listen=0.0.0.0 --noautoconsole -v

The command will wait for the installation to complete. You can access the GUI installation
using the VNC client.

Forward your local port to access VNC on a KVM host. Make sure you replace 5900 with the
respective port from virsh vncdisplay node0:

$ ssh kvm_hostname_or_ip -L 5900:127.0.0.1:5900

Now you can connect to VNC at localhost:5900.

Easy cloud images with uvtool
Ubuntu provides another super easy tool named uvtool. This tool focuses on the creation
of virtual machines out of Ubuntu Cloud images. It synchronizes cloud images from Ubuntu
servers to your local machine. Later, these images can be used to launch virtual machines in
minutes. You can install and use uvtool with the following commands:

$ sudo apt-get install uvtool

Download the Xenial image from the cloud images:

$ uvt-simplestreams-libvirt sync release=xenial arch=amd64

Start a virtual machine:

$ uvt-kvm create virtsys01

Finally, get the IP of a running system:

$ uvt-kvm ip virtsys01

Check out the manual page with the man uvtool command and visit the official uvtool page
at https://help.ubuntu.com/lts/serverguide/cloud-images-and-uvtool.
html for more details.

https://help.ubuntu.com/lts/serverguide/cloud-images-and-uvtool.html

Chapter 7

213

See also
ff Check out the manual pages for virt-install using $ man virt-install

ff Check out the manual pages for virsh using $ man virsh

ff The official Libvirt site: http://libvirt.org/

ff The Libvirt documentation on Ubuntu Server guide: https://help.ubuntu.com/
lts/serverguide/libvirt.html

Setting up your own cloud with OpenStack
We have already seen how to create virtual machines with KVM and Qemu, and how to
manage them with tools such as virsh and virt-manager. This approach works when you need
to work with a handful of machines and manage few hosts. To operate on a larger scale, you
need a tool to manage host machines, VM configurations, images, network, and storage, and
monitor the entire environment. OpenStack is an open source initiative to create and manage
a large pool of virtual machines (or containers). It is a collection of various tools to deploy IaaS
clouds. The official site defines OpenStack as an operating system to control a large pool of
compute, network, and storage resources, all managed through a dashboard.

OpenStack was primarily developed and open-sourced by Rackspace, a leading cloud
service provider. With its thirteenth release, Mitaka, OpenStack provides tons of tools
to manage various components of your infrastructure. A few important components of
OpenStack are as follows:

ff Nova: Compute controller

ff Neutron: OpenStack networking

ff Keystone: Identity service

ff Glance: OpenStack image service

ff Horizon: OpenStack dashboard

ff Cinder: Block storage service

ff Swift: Object store

ff Heat: Orchestration program

OpenStack in itself is quite a big deployment. You need to decide the required components,
plan their deployment, and install and configure them to work in sync. The installation itself
can be a good topic for a separate book. However, the OpenStack community has developed
a set of scripts known as DevStack to support development with faster deployments. In this
recipe, we will use the DevStack script to quickly install OpenStack and get an overview of its
workings. The official OpenStack documentation provides detailed documents for the Ubuntu
based installation and configuration of various components. If you are planning a serious
production environment, you should read it thoroughly.

http://libvirt.org/
https://help.ubuntu.com/lts/serverguide/libvirt.html
https://help.ubuntu.com/lts/serverguide/libvirt.html

Cloud Computing

214

Getting ready
You will need a non-root account with sudo privileges. The default account named ubuntu
should work.

The system should have at least two CPU cores with at least 4 GB of RAM and 60 GB of disk
space. A static IP address is preferred. If possible, use the minimal installation of Ubuntu.

If you are performing a fresh installation of Ubuntu Server, press F4 on
the first screen to get installation options, and choose Install Minimal
System. If you are installing inside a virtual machine, choose Install
Minimal Virtual Machine. You may need to go to the installation
menu with the Esc key before using F4.

DevStack scripts are available on GitHub. Clone the repository or download and extract it to
your installation server. Use the following command to clone:

$ git clone https://git.openstack.org/openstack-dev/devstack \

-b stable/mitaka --depth 1

$ cd devstack

You can choose to get the latest release by selecting the master branch. Just skip the -b
stable/mitaka option from the previous command.

How to do it…
Once you obtain the DevStack source, it's as easy as executing an installation script. Before
that, we will create a minimal configuration file for passwords and basic network configuration:

1.	 Copy the sample configuration to the root of the devstack directory:
$ cp samples/local.conf

2.	 Edit local.conf and update passwords:
ADMIN_PASSWORD=password

DATABASE_PASSWORD=password

RABBIT_PASSWORD=password

SERVICE_PASSWORD=$ADMIN_PASSWORD

3.	 Add basic network configuration as follows. Update IP address range as per your local
network configuration and set FLAT_INTERFACE to your primary Ethernet interface:
FLOATING_RANGE=192.168.1.224/27

Chapter 7

215

FIXED_RANGE=10.11.12.0/24

FIXED_NETWORK_SIZE=256

FLAT_INTERFACE=eth0

Save the changes to the configuration file.

4.	 Now, start the installation with the following command. As the Mitaka stable branch
has not been tested with Ubuntu Xenial (16.04), we need to use the FORCE variable.
If you are using the master branch of DevStack or an older version of Ubuntu, you can
start the installation with the ./stack.sh command:
$ FORCE=yes ./stack.sh

The installation should take some time to complete, mostly depending on your
network speed. Once the installation completes, the script should output the
dashboard URL, keystone API endpoint, and the admin password:

5.	 Now, access the OpenStack dashboard and log in with the given username
and password. The admin account will give you an admin interface. The login
screen looks like this:

Cloud Computing

216

6.	 Once you log in, your admin interface should look something like this:

Now, from this screen, you can deploy new virtual instances, set up different cloud
images, and configure instance flavors.

How it works…
We used DevStack, an unattended installation script, to install and configure basic OpenStack
deployment. This will install OpenStack with the bare minimum components for deploying
virtual machines with OpenStack. By default, DevStack installs the identity service, Nova
network, compute service, and image service. The installation process creates two user
accounts, namely admin and dummy. The admin account gives you administrative access
to the OpenStack installation and the dummy account gives you the end user interface. The
DevStack installation also adds a Cirros image to the image store. This is a basic lightweight
Linux distribution and a good candidate to test OpenStack installation.

The default installation creates a basic flat network. You can also configure DevStack to
enable Neutron support, by setting the required options in the configuration. Check out the
DevStack documentation for more details.

Chapter 7

217

There's more…
Ubuntu provides its own easy-to-use OpenStack installer. It provides options to install
OpenStack, along with LXD support and OpenStack Autopilot, an enterprise offering by
Canonical. You can choose to install on your local machine (all-in-one installation) or choose a
Metal as a Service (MAAS) setup for a multinode deployment. The single-machine setup will
install OpenStack on multiple LXC containers, deployed and managed through Juju. You will
need at least 12 GB of main memory and an 8-CPU server. Use the following commands to get
started with the Ubuntu OpenStack installer:

$ sudo apt-get update

$ sudo apt-get install conjure-up

$ conjure-up openstack

While DevStack installs a development-focused minimal installation of OpenStack, various
other scripts support the automation of the OpenStack installation process. A notable project
is OpenStack Ansible. This is an official OpenStack project and provides production-grade
deployments. A quick GitHub search should give you a lot more options.

See also
ff A step-by-step detailed guide to installing various OpenStack components on Ubuntu

server: http://docs.openstack.org/mitaka/install-guide-ubuntu/

ff DevStack Neutron configuration: http://docs.openstack.org/developer/
devstack/guides/neutron.html

ff OpenStack Ansible: https://github.com/openstack/openstack-ansible

ff A list of OpenStack resources: https://github.com/ramitsurana/awesome-
openstack

ff Ubuntu MaaS: http://www.ubuntu.com/cloud/maas

ff Ubuntu Juju: http://www.ubuntu.com/cloud/juju

ff Read more about LXD and LXC in Chapter 8, Working with Containers

Adding a cloud image to OpenStack
In the previous recipe, we installed and configured OpenStack. Now, to start using the service,
we need to upload virtual machine images. The OpenStack installation uploads a test image
named Cirros. This is a small Linux distribution designed to be used as a test image in the
cloud. We will upload prebuilt cloud images available from Ubuntu.

http://docs.openstack.org/mitaka/install-guide-ubuntu/
http://docs.openstack.org/developer/devstack/guides/neutron.html
http://docs.openstack.org/developer/devstack/guides/neutron.html
https://github.com/openstack/openstack-ansible
https://github.com/ramitsurana/awesome-openstack
https://github.com/ramitsurana/awesome-openstack
http://www.ubuntu.com/cloud/maas
http://www.ubuntu.com/cloud/juju

Cloud Computing

218

Getting ready
Make sure you have installed the OpenStack environment and you can access the OpenStack
dashboard with valid credentials. It is not necessary to have an admin account to create and
upload images.

Select the cloud image of your choice and get its download URL. Here, we will use the Trusty
Ubuntu Server image. The selected image format is QCOW2, though OpenStack support
various other image formats. The following is the URL for the selected image:

https://cloud-images.ubuntu.com/trusty/current/trusty-server-
cloudimg-amd64-disk1.img

How to do it…
The OpenStack dashboard provides a separate section for image management. You can see
the images that are already available and add or remove your own images. Follow these steps
to create your own image:

1.	 Log in to your OpenStack dashboard. On successful login, you should get an
Overview page for your account.

2.	 Now, from the left-hand side Project menu, under the Compute submenu,
click on Images:

https://cloud-images.ubuntu.com/trusty/current/trusty-server- cloudimg-amd64-disk1.img
https://cloud-images.ubuntu.com/trusty/current/trusty-server- cloudimg-amd64-disk1.img

Chapter 7

219

This should show you a list of all publicly available images—something like this:

3.	 Click on the Create Image button to add a new image. This should open a popup box
with various details. Here, you can choose to add an image URL or enter an image
path if you have downloaded the image to your local machine.

4.	 Fill in the name and other required details. Under Image Source, select the
image location, and in the next box, Image Location, enter the URL for the Ubuntu
Cloud image.

5.	 Under Format, select the image format of your selected image. In this case,
it's QCOW2.

6.	 Enter amd64 under Architecture. Make sure you match this with your selected image.

7.	 Enter the minimum disk and RAM size. As we have selected an Ubuntu image, the
minimum disk size should be 5 GB and minimum RAM 256 MB. These values will
affect the selection of instance flavors while creating a new instance.

8.	 Finally, click on the Create Image button to save the details and add the image to
OpenStack. This will download the image from the source URL and save it in the
image repository. The resulting image will be listed under the Project tab, as follows:

Now, the image is ready can be used to launch new cloud instances.

Cloud Computing

220

How it works…
OpenStack is a cloud virtualization platform and needs operating system images to launch
virtual machines in the cloud. The Glance OpenStack imaging service provides the image-
management service. It supports various types of image, including Qemu format, raw disk
files, ISO images, and images from other virtualization platforms, as well as Docker images.
Like every other thing in OpenStack, image management works with the help of APIs provided
by Glance.

OpenStack, being a cloud platform, is expected to have ready-to-use images that can be used
to quickly start a virtual instance. It is possible to upload the operating system installation
disk and install the OS to a virtual instance, but that would be a waste of resources. Instead,
it is preferable to have prebuilt cloud images. Various popular operating systems provide their
respective cloud images, which can be imported to cloud systems. In the previous example,
we used the Ubuntu Cloud image for the Ubuntu Trusty release.

We imported the image by specifying its source URI. Local image files can also be uploaded by
selecting the image file as an image source. You can also build your own images and upload
them to the image store to be used in the cloud. Along with the image source, we need to
provide a few more parameters, which include the type of the image being uploaded and the
minimum resource requirements of that image. Once the image has been uploaded, it can be
used to launch a new instance in the cloud. Also, the image can be marked as public so that it
is accessible to all OpenStack users. You will need specific rights for your OpenStack account
to create public images.

There's more…
OpenStack images can also be managed from the command line with the client called
glance. To access the respective APIs from the command line, you need to authenticate
with the Glance server. Use the following steps to use glance from the command line:

1.	 First, add authentication parameters to the environment:
export OS_USERNAME=demo

export OS_PASSWORD=password

export OS_AUTH_URL=http://10.196.69.158/identity

export OS_TENANT_ID=8fe52bb13ca44981aa15d9b62e9133f4

Chapter 7

221

DevStack makes things even easier by providing a script,
openrc. It's located under the root directory of DevStack and
can be used as follows:
$ source openrc demo # source openrc username

You are then ready, without multiple export commands.

2.	 Now, use the following command to obtain the image list for the specified user:

$ glance image-list

You can get a list of available command-line options with glance help.

See also
ff Read more about OpenStack image management: http://docs.openstack.

org/image-guide/

ff Command-line image management: http://docs.openstack.org/user-
guide/common/cli_manage_images.html

ff Dashboard image management: http://docs.openstack.org/user-
guide/dashboard_manage_images.html

ff Glance documentation: http://docs.openstack.org/developer/glance/

http://docs.openstack.org/image-guide/
http://docs.openstack.org/image-guide/
http://docs.openstack.org/user- guide/common/cli_manage_images.html
http://docs.openstack.org/user- guide/common/cli_manage_images.html
http://docs.openstack.org/user- guide/dashboard_manage_images.html
http://docs.openstack.org/user- guide/dashboard_manage_images.html
http://docs.openstack.org/developer/glance/

Cloud Computing

222

Launching a virtual instance with
OpenStack

Now that we have OpenStack installed and have set our desired operating system image,
we are ready to launch our first instance in a self-hosted cloud.

Getting ready
You will need credentials to access the OpenStack dashboard.

Uploading your own image is not necessary; you can use the default Cirros image to launch
the test instance.

Log in to the OpenStack dashboard and set the SSH key pair in the Access & Security tab
available under the Projects menu. Here, you can generate a new key pair or import your
existing public key.

If you generate a new key pair, a file with the .pem extension will be
downloaded to your local system. To use this key with PuTTy, you need
to use PuTTYgen and extract the public and private keys.

How to do it…
OpenStack instances are the same virtual machines that we launch from the command line
or desktop tools. OpenStack give you a web interface to launch your virtual machines from.
Follow these steps to create and start a new instance:

1.	 Select the Instance option under the Projects menu and then click on the Launch
Instance button on the right-hand side. This should open a modal box with various
options, which will look something like this:

Chapter 7

223

2.	 Now, start filling in the necessary details. All fields that are marked with * are
required fields. Let's start by naming our instance. Enter the name in the Instance
Name field.

3.	 Set the value of Count to the number of instances you want to launch. We will leave it
at the default value of 1.

4.	 Next, click on the Source tab. Here, we need to configure the source image for our
instance. Set Select Boot Source to Image and select No for Create New Volume.
Then, from the Available Images section, search the desired image and click on
the button with the + sign to select the image. The list should contain our recently
uploaded image. The final screen should look something like this:

5.	 Next, on the Flavor tab, we need to select the desired resources for our instance.
Select the desired flavor by clicking on the + button. Make sure that the selected row
does not contain any warning signs.

6.	 Now, from the Key Pair tab, select the SSH key pair that we just created. This is
required to log in to your instance.

7.	 Finally, click on the Launch Instance button from the bottom of the modal box. A new
instance should be created and listed under the instances list. It will take some time
to start; wait for the Status column to show Active:

Cloud Computing

224

8.	 You are now ready to access your virtual instance. Log in to your host console and
try to ping the IP address of your instance. Then, open an SSH session with the
following command:

$ ssh -i your_key ubuntu@instance_ip

This should give you a shell inside your new cloud instance. Try to ping an external
server, such as an OpenDNS server, from within an instance to ensure connectivity.

To make this instance available on your local network, you will need to assign a
floating IP address to it. Click on the drop-down arrow from the Actions column and
select Associate Floating IP. This should add one more IP address to your instance
and make it available on your local network.

How it works…
OpenStack instances are the same as the virtual machines that we build and operate with
common virtualization tools such as VirtualBox and Qemu. OpenStack provides a central
console for deploying and managing thousands of such machines on multiple hosts.
Under the hood, OpenStack uses the same virtualization tools as the others. The preferred
hypervisor is KVM, and if hardware acceleration is not available, Qemu emulation is used.
OpenStack supports various other hypervisors, including VMware, XEN, Hyper-V, and Docker.
In addition, a lightervisor, LXD, is on its way to a stable release. Other than virtualization,
OpenStack adds various other improvements, such as image management, block storage,
object storage, and various network configurations.

In the previous example, we set various parameters before launching a new instance;
these include the instance name, resource constraints, operating system image, and login
credentials. All these parameters will be passed to the underlying hypervisor to create and
start the new virtual machine. A few other options that we have not used are volumes and
networks. As we have installed a very basic OpenStack instance, new developments in
network configurations are not available for use. You can update your DevStack configuration
and install the OpenStack networking component Neutron.

Volumes, on the other hand, are available and can be used to obtain disk images of the
desired size and format. You can also attach multiple volumes to a single machine, providing
extended storage capacity. Volumes can be created separately and do not depend on the
instance. You can reuse an existing volume with a new instance, and all data stored on it will
be available to the new instance.

Here, we have used a cloud image to start a new instance. You can also choose a previously
stored instance snapshot, create a new volume, or use a volume snapshot. The volume can
be a permanent volume, which has its life cycle separate from the instance, or an ephemeral
volume, which gets deleted along with the instance. Volumes can also be attached at instance
runtime or even removed from an instance, provided they are not a boot source.

Chapter 7

225

Other options include configuration and metadata. The configuration tab provides an option to
add initialization scripts that are executed at first boot. This is very similar to cloud-init data.
The following is a short example of a cloud-init script:

#cloud-config

package_update: true

package_upgrade: true

password: password

chpasswd: { expire: False }

ssh_pwauth: True

ssh_authorized_keys:

 - your-ssh-public-key-contents

This script will set a password for the default user (ubuntu in the case of Ubuntu images),
enable password logins, add an SSH key to authorize keys, and update and upgrade
packages.

The metadata section adds arbitrary data to instances in the form of key-value pairs. This data
can be used to identify an instance from a group and automate certain tasks.

Once an instance has been started, you have various management options from the Actions
menu available on the instance list. From this menu, you can create instance snapshots; start,
stop, or pause instances; edit security groups; get the VNC console; and so on.

There's more…
Similar to the glance command-line client, a compute client is available as well and is named
after the compute component. The nova command can be used to create and manage cloud
instances from the command line. You can get detailed parameters and options with the nova
help command or, to get help with a specific subcommand, nova help <subcommand>.

See also
ff The cloud-init official documentation: https://cloudinit.readthedocs.io/

en/latest/

ff More on cloud-init: https://help.ubuntu.com/community/CloudInit

ff OpenStack instance guide: http://docs.openstack.org/user-guide/
dashboard_launch_instances.html

ff Command-line cheat sheet: http://docs.openstack.org/user-guide/cli_
cheat_sheet.html#compute-nova

https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/
https://help.ubuntu.com/community/CloudInit
http://docs.openstack.org/user-guide/dashboard_launch_instances.html
http://docs.openstack.org/user-guide/dashboard_launch_instances.html
http://docs.openstack.org/user-guide/cli_cheat_sheet.html#compute-nova
http://docs.openstack.org/user-guide/cli_cheat_sheet.html#compute-nova

Cloud Computing

226

Installing Juju a service orchestration
framework

Up to now in this chapter, we have learned about virtualization and OpenStack for deploying
and managing virtual servers. Now, it's time to look at a service-modeling tool, Juju. Juju is a
service-modeling tool for Ubuntu. Connect it to any cloud service, model your application, and
press deploy—done. Juju takes care of lower-level configuration, deployments, and scaling,
and even monitors your services.

Juju is an open source tool that offers a GUI and command-line interface for modeling
your service. Applications are generally deployed as collections of multiple services. For
example, to deploy WordPress, you need a web server, a database system, and perhaps a
load balancer. Service modeling refers to the relations between these services. Services are
defined with the help of charms, which are collections of configurations and deployment
instructions, such as dependencies and resource requirements. The Juju store provides
more than 300 predefined and ready-to-use charms.

Once you model your application with the required charms and their relationships, these
models can be stored as a bundle. A bundle represents a set of charms, their configurations,
and their relationships with each other. The entire bundle can be deployed to a cloud or
local system with a single command. Also, similar to charms, bundles can be shared and are
available on the Juju store.

This recipe covers the installation of Juju on Ubuntu Server. With the release of Xenial, the
latest Ubuntu release, Canonical has also updated the Juju platform to version 2.0.

Getting ready
You need access to the root account or an account with sudo privileges.

Make sure you have the SSH keys generated with your user account. You can generate a new
key pair with the following command:

$ ssh-keygen -t rsa -b 2048

How to do it…
Juju 2.0 is available in the Ubuntu Xenial repository, so installation is quite easy. Follow these
steps to install Juju, along with LXD for local deployments:

1.	 Install Juju, along with the LXD and ZFSUtils packages. On Ubuntu 16, LXD should
already be installed:
$ sudo apt-get update

$ sudo apt-get install juju-2.0 lxd zfsutils-linux

Chapter 7

227

2.	 The LXD installation creates a new group, lxd, and adds the current user to it.
Update your group membership with newgrp so that you don't need to log out
and log back in:
$ newgrp lxd

3.	 Now, we need to initialize LXD before using it with Juju. We will create a new ZFS pool
for LXD and configure a local lxd bridge for container networking with NAT enabled:
$ sudo lxd init

Name of the storage backend to use (dir or zfs): zfs

Create a new ZFS pool (yes/no)? yes

Name of the new ZFS pool: lxdpool

Would you like to use an existing block device (yes/no)? no

Size in GB of the new loop device (1GB minimum): 20

Would you like LXD to be available over the network (yes/no)? no

Do you want to configure the LXD bridge (yes/no)? yes

LXD has been successfully configured.

4.	 Now that LXD has been configured, we can bootstrap Juju and create a controller
node. The following command will bootstrap Juju with LXD for local deployments:
$ juju bootstrap juju-controller lxd

This command should take some time to finish as it needs to fetch the container
image and the install Juju tools inside the container.

5.	 Once the bootstrap process completes, you can check the list of controllers,
as follows:
$ juju list-controllers

CONTROLLER MODEL USER SERVER

local.juju-controller* default admin@local
10.155.16.114:17070

6.	 You can also check the LXD container created by Juju using the lxc list command:
$ lxc list

7.	 From Juju 2.0 onwards, every controller will install the Juju GUI by default. This is a
web application to manage the controller and its models. The following command will
give you the URL of the Juju GUI:
$ juju gui

...

https://10.201.217.65:17070/gui/2331544b-1e16-49ba-8ac7-
2f13ea147497/

...

Cloud Computing

228

8.	 You may need to use port forwarding to access the web console. Use the following
command to quickly set up iptables forwarding:
$ sudo iptables -t nat -A PREROUTING -p tcp --dport 17070 -j
DNAT \

--to-destination 10.201.217.65:17070

9.	 You will also need a username and password to log in to the GUI. To get these details,
use the following command:

$ juju show-controller --show-passwords juju-controller

...

accounts:

 admin@local:

 user: admin@local

 password: 8fcb8aca6e22728c6ac59b7cba322f39

When you log in to the web console, it should look something like this:

Now, you are ready to use Juju and deploy your applications either with a command
line or from the web console.

Chapter 7

229

How it works…
Here, we installed and configured the Juju framework with LXD as a local deployment
backend. Juju is a service-modeling framework that makes it easy to compose and deploy an
entire application with just a few commands. Now, we have installed and bootstrapped Juju.
The bootstrap process creates a controller node on a selected cloud; in our case, it is LXD.
The command provides various optional arguments to configure controller machines, as well
as pass the credentials to the bootstrap process. Check out the bootstrap help menu with the
juju bootstrap --help command.

We have used LXD as a local provider, which does not need any special credentials to connect
and create new nodes. When using pubic cloud providers or your own cloud, you will need
to provide your username and password or access keys. This can be done with the help of
the add-credentials <cloud> command. All added credentials are stored in a plaintext
file: ~/.local/share/juju/credentials.yaml. You can view a list of available cloud
credentials with the juju list-credentials command.

The controller node is a special machine created by Juju to host and manage data and models
related to an environment. The container node hosts two models, namely admin and default,
and the admin model runs the Juju API server and database system. Juju can use multiple
cloud systems simultaneously, and each cloud can have its own controller node.

From version 2.0 onwards, every controller node installs the Juju GUI application by default. The
Juju GUI is a web application that provides an easy-to-use visual interface to create and manage
various Juju entities. With its simple interface, you can easily create new models, import charms,
and set up relations between them. The GUI is still available as a separate charm and can be
deployed separately to any machine in a Juju environment. The command-line tools are more
than enough to operate Juju, and it is possible to skip the installation of the GUI component
using the --no-gui option with the bootstrap command.

There's more…
In the previous example, we used LXD as a local deployment backend for Juju. With LXD,
Juju can quickly create new containers to deploy applications. Along with LXD, Juju supports
various other cloud providers. You can get a full list of supported cloud providers with the
list-clouds option:

$ juju list-clouds

Cloud Computing

230

Juju also provides the option to fetch updates to a supported cloud list. With the
update-clouds subcommand, you can update your local cloud with the latest
developments from Juju.

Along with public clouds, Juju also supports OpenStack deployments and MaaS-based
infrastructures. You can also create your own cloud configuration and add it to Juju with
the juju add-cloud command. Like with LXD, you can use virtual machines or even
physical machines for Juju-based deployments. As far as you can access the machine with
SSH, you can use it with Juju. Check out the cloud-configuration manual for more details:
https://jujucharms.com/docs/devel/clouds-manual

See also
ff Read more about Juju concepts at https://jujucharms.com/docs/devel/

juju-concepts

ff Get to know Juju-supported clouds or how to add your own at https://
jujucharms.com/docs/devel/clouds

ff The Juju GUI: https://jujucharms.com/docs/devel/controllers-gui

ff Juju controllers: https://jujucharms.com/docs/devel/controllers

ff Refer to Chapter 8, Working with Containers for more details about LXD containers

ff Learn how to connect Juju to a remote LXD server: https://insights.ubuntu.
com/2015/11/16/juju-and-remote-lxd-host/

Managing services with Juju
In the previous recipe, we learned how to install the Juju service orchestration framework.
Now, we will look at how to use Juju to deploy and manage a service.

Getting ready
Make sure you have installed and bootstrapped Juju.

How to do it…
We will deploy a sample WordPress installation with a load balancer. The MySQL service will
be used as the database for WordPress. Both services are available in the Juju Charm store.

https://jujucharms.com/docs/devel/clouds-manual
https://jujucharms.com/docs/devel/juju-concepts
https://jujucharms.com/docs/devel/juju-concepts
https://jujucharms.com/docs/devel/clouds
https://jujucharms.com/docs/devel/clouds
https://jujucharms.com/docs/devel/controllers-gui
https://jujucharms.com/docs/devel/controllers
https://insights.ubuntu.com/2015/11/16/juju-and-remote-lxd-host/
https://insights.ubuntu.com/2015/11/16/juju-and-remote-lxd-host/

Chapter 7

231

Follow these steps to manage services with Juju:

1.	 Let's start by deploying the WordPress service with juju deploy. This should give
you the following output:
$ juju deploy wordpress

Added charm "cs:trusty/wordpress-4" to the model.

Deploying charm "cs:trusty/wordpress-4" with the charm series
"trusty".

2.	 Now, deploy a MySQL service to store WordPress contents:
$ juju deploy mysql

Added charm "cs:trusty/mysql-38" to the model.

Deploying charm "cs:trusty/mysql-38" with the charm series
"trusty".

3.	 Now, you can use juju status to confirm your deployed services. It should
show you the deployed services, their relations, and respective machine statuses,
as follows:
$ juju status

4.	 Now that both services have been deployed, we need to connect them together so
that wordpress can use the database service. Juju calls this a relation, and it can
be created as follows:
$ juju add-relation mysql wordpress

5.	 Finally, we need to expose our wordpress service so that it can be accessed outside
our local network. By default, all charms start as unexposed and are accessible only
on a local network:

$ juju expose wordpress

You can get the IP address or DNS name of the wordpress instance with the juju status
command from the Machines section. Note that in a local LXD environment, you may need a
forwarded port to access WordPress.

Cloud Computing

232

How it works…
In this example, we deployed two separate services using Juju. Juju will create two separate
machines for each of them and deploy the service as per the instructions in the respective
charms. These two services need to be connected with each other so that wordpress knows
the existence of the MySQL database. Juju calls these connections relations. Each charm
contains a set of hooks that are triggered on given events. When we create a relation between
WordPress and MySQL, both services are informed about it with the database-relation-
changed hook. At this point, both services can exchange the necessary details, such as
MySQL ports and login credentials. The WordPress charm will set up a MySQL connection and
initialize a database.

Once both services are ready, we can expose them to be accessed on a public network. Here,
we do not need MySQL to be accessible by WordPress users, so we have only exposed the
wordpress service. WordPress can access MySQL internally, with the help of a relation.

You can use the Juju GUI to visualize your model and add or remove charms and their
relations. At this point, if you open a GUI, you should see your charms plotted on the graph
and connected with each other through a small line, indicating a relation. The GUI also
provides an option to set constraints on a charm and configure charm settings, if any.

Note that both charms internally contain scaling options. WordPress is installed behind an
Nginx reverse proxy and can be scaled with extra units as and when required. You can add
new units to the service with a single command, as follows:

$ juju add-unit mysql -n 1

There's more…
When you no longer need these services, the entire model can be destroyed with the
juju destroy-model <modelname> command. You can also selectively destroy
particular services with the remove-service command and remove relations with
remove-relations. Check out the Juju manual page for tons of commands that are
not listed in the Juju help menu.

See also
ff How to create your own charm: https://jujucharms.com/docs/stable/

authors-charm-writing

ff More about hooks: https://jujucharms.com/docs/stable/authors-
hook-environment

https://jujucharms.com/docs/stable/authors-charm-writing
https://jujucharms.com/docs/stable/authors-charm-writing
https://jujucharms.com/docs/stable/authors- hook-environment
https://jujucharms.com/docs/stable/authors- hook-environment

233

8
Working with

Containers

In this chapter, we will cover the following recipes:

ff Installing LXD, the Linux container daemon

ff Deploying your first container with LXD

ff Managing LXD containers

ff Managing LXD containers – advanced options

ff Setting resource limits on LXD containers

ff Networking with LXD

ff Installing Docker

ff Starting and managing Docker containers

ff Creating images with a Dockerfile

ff Understanding Docker volumes

ff Deploying WordPress using a Docker network

ff Monitoring Docker containers

ff Securing Docker containers

Working with Containers

234

Introduction
Containers are quite an old technology and existed in the form of chroot and FreeBSD Jails.
Most of us have already used containers in some form or other. The rise of Docker gave
containers the required adoption and popularity. Ubuntu has also released a new tool named
LXD with Ubuntu 15.04.

A container is a lightweight virtual environment that contains a process or set of processes.
You might already have used containers with chroot. Just as with containers, we create an
isolated virtual environment to group and isolate a set of processes. The processes running
inside the container are isolated from the base operating system environment, as well as
other containers running on the same host. Such processes cannot access or modify anything
outside the container. A recent development in the Linux kernel to support namespaces
and cgroups has enabled containers to provide better isolation and resource-management
capabilities.

One of the reasons for the widespread adoption of containers is the difference between
containers and hypervisor-based virtualization, and the inefficiencies associated with virtual
machines. A VM requires its own kernel, whereas containers share the kernel with the host,
resulting in a fast and lightweight isolated environment. Sharing the kernel removes much
of the overhead of VMs and improves resource utilization, as processes communicate with a
single shared kernel. You can think of containers as OS-level virtualization.

With containers, the entire application can be started within milliseconds, compared to virtual
minutes. Additionally, the image size becomes much smaller, resulting in easier and faster
cloud deployments. The shared operating system results in smaller footprints, and saved
resources can be used to run additional containers on the same host. It is normal to run
hundreds of containers on your laptop.

However, containerization also has its own shortcomings. First, you cannot run cross-platform
containers. That is, containers must use the same kernel as the host. You cannot run Windows
containers on a Linux host, and vice versa. Second, the isolation and security is not as strong as
hypervisor-based virtualization. Containers are largely divided into two categories: OS containers
and application containers. As the name suggests, application containers are designed to host
a single service or application. Docker is an application container. You can still run multiple
processes in Docker, but it is designed to host a single process.

OS containers, on the other hand, can be compared to virtual machines. They provide user
space isolation. You can install and run multiple applications and run multiple processes
inside OS containers. LXC on Linux and Jails on BSD are examples of OS containers.

In this chapter, we will take a look at LXC, an OS container, and Docker, an application
container. In the first part of the chapter, we will learn how to install LXC and deploy a
containerized virtual machine. In subsequent recipes, we will work with Docker and related
technologies. We will learn to create and deploy a container with Docker.

Chapter 8

235

Installing LXD, the Linux container daemon
LXC is a system built on the modern Linux kernel and enables the creation and management
of virtual Linux systems or containers. As discussed earlier, LXC is not a full virtualization
system and shares the kernel with the host operating system, providing lightweight
containerization. LXC uses Linux namespaces to separate and isolate the processes running
inside containers. This provides much better security than simple chroot-based filesystem
isolation. These containers are portable and can easily be moved to another system with a
similar processor architecture.

Ubuntu 15.04 unveiled a new tool named LXD, which is a wrapper around LXC. The official
page calls it a container hypervisor and a new user experience for LXC. Ubuntu 16.04 comes
preinstalled with its latest stable release, LXD 2.0. With LXD, you no longer need to work
directly with lower-level LXC tools.

LXD adds some important features to LXC containers. First, it runs unprivileged containers by
default, resulting in improved security and better isolation for containers. Second, LXD can
manage multiple LXC hosts and can be used as an orchestration tool. It also supports the live
migration of containers across hosts.

LXD provides a central daemon named LXD and a command-line client named lxc.
Containers can be managed with the command-line client or the REST APIs provided by the
LXD daemon. It also provides an OpenStack plugin, nova-compute-lxd, to deploy containers on
the OpenStack cloud.

In this recipe, we will learn to install and configure the LXD daemon. This will set up a base for
the next few recipes in this chapter.

Getting ready
You will need access to the root account or an account with sudo privileges.

Make sure that you have enough free space available on disk.

How to do it…
Ubuntu 16.04 ships with the latest release of LXD preinstalled. We just need to initialize the
LXD daemon to set the basic settings.

1.	 First, update the apt cache and try to install LXD. This should install updates to the
LXD package, if any:
$ sudo apt-get update

$ sudo apt-get install lxd

Working with Containers

236

If you are using Ubuntu 14.04, you can install LXD using the
following command:
$ sudo apt-get -t trusty-backports install lxd

2.	 Along with LXD, we will need one more package named ZFS—the most important
addition to Ubuntu 16.04. We will be using ZFS as a storage backend for LXD:
$ sudo apt-get install zfsutils-linux

3.	 Once LXD has been installed, we need to configure the daemon before we start using
it. Use lxd init to start the initialization process. This will ask some questions
about the LXD configuration:

$ sudo lxd init

Name of the storage backend to use (dir or zfs): zfs

Create a new ZFS pool (yes/no)? yes

Name of the new ZFS pool: lxdpool

Would you like to use an existing block device (yes/no)? no

Size in GB of the new loop device (1GB minimum): 10

Would you like LXD to be available over the network (yes/no)?
no

Do you want to configure the LXD bridge (yes/no)? yes

Warning: Stopping lxd.service, but it can still be activated
by: lxd.socket

LXD has been successfully configured.

Now, we have our LXD setup configured and ready to use. In the next recipe, we will start our
first container with LXD.

How it works…
Ubuntu 16.04 comes preinstalled with LXD and makes it even easier to start with system
containers or operating system virtualization. In addition to LXD, Ubuntu now ships with inbuilt
support for ZFS (OpenZFS), a filesystem with support for various features that improve the
containerization experience. With ZFS, you get faster clones and snapshots with copy-on-write,
data compression, disk quotas, and automated filesystem repairs.

Chapter 8

237

LXD is a wrapper around lower-level LXC or Linux containers. It provides the REST API for
communicating and managing LXC components. LXD runs as a central daemon and adds
some important features, such as dynamic resource restrictions and live migrations between
multiple hosts. Containers started with LXD are unprivileged containers by default, resulting in
improved security and isolation.

This recipe covers the installation and initial configuration of the LXD daemon. As mentioned
previously, LXD comes preinstalled with Ubuntu 16. The installation commands should fetch
updates to LXD, if any. We have also installed zfsutils-linux, a user space package
to interact with ZFS. After the installation, we initialized the LXD daemon to set basic
configuration parameters, such as the default storage backend and network bridge
for our containers.

We selected ZFS as the default storage backend and created a new ZFS pool called lxdpool,
backed by a simple loopback device. In a production environment, you should opt for a
physical device or separate partition. If you have already created a ZFS pool, you can directly
name it by choosing no for Create new ZFS pool. To use a separate storage device or
partition, choose yes when asked for block storage.

Use the following commands to get ZFS on Ubuntu 14.04:
$ sudo apt-add-repository ppa:zfs-native/stable

$ sudo apt-get update && sudo apt-get install ubuntu-zfs

ZFS is the recommended storage backend, but LXD also works with various other options,
such as Logical Volume Manager (LVM) and btrfs (pronounced "butter F S"), that offer nearly
the same features as ZFS or a simple directory-based storage system.

Next, you can choose to make LXD available on the network. This is necessary if you are
planning a multi-host setup and support for migration. The initialization also offers to
configure the lxdbr0 bridge interface, which will be used by all containers. By default, this
bridge is configured with IPv6 only. Containers created with the default configuration will have
their veth0 virtual Ethernet adapter attached to lxdbr0 through a NAT network. This is the
gateway for containers to communicate with the outside world. LXD also installs a local DHCP
server and the dnsmasq package. DHCP is used to assign IP addresses to containers, and
dnsmasq acts as a local name-resolution service.

If you misplace the network bridge configuration or need to update it, you can use the
following command to get to the network configuration screen:

$ sudo dpkg-reconfigure -p medium lxd

Working with Containers

238

There's more…
The LXD 2.0 version, which ships with Ubuntu 16, is an LTS version. If you want to get your
hands on the latest release, then you can install stable versions from the following repository:

$ sudo add-apt-repository ppa:ubuntu-lxc/lxd-stable

For development releases, change the PPA to ppa:ubuntu-lxc/lxd-git-master.

For more information, visit the LXC download page at https://linuxcontainers.org/
lxc/downloads/.

If you still want to install LXC, you can. Use the following command:

$ sudo apt-get install lxc

This will install the required user space package and all the commands necessary to work
directly with LXC. Note that all LXC commands are prefixed with lxc-, for example, lxc-
create and lxc-info. To get a list of all commands, type lxc- in your terminal and press
Tab twice.

See also
ff For more information, check the LXD page of the Ubuntu Server guide: https://

help.ubuntu.com/lts/serverguide/lxd.html

ff The LXC blog post series is at https://www.stgraber.org/2013/12/20/lxc-
1-0-blog-post-series/

ff The LXD 2.0 blog post series is at https://www.stgraber.org/2016/03/11/
lxd-2-0-blog-post-series-012/

ff Ubuntu 16.04 switched to Systemd, which provides its own container framework,
systemd-nspawn; read more about systemd containers on its Ubuntu man page
at http://manpages.ubuntu.com/manpages/xenial/man1/systemd-
nspawn.1.html

ff See how to get started with systemd containers at https://community.
flockport.com/topic/32/systemd-nspawn-containers

Deploying your first container with LXD
In this recipe, we will create our first container with LXD.

https://linuxcontainers.org/lxc/downloads/
https://linuxcontainers.org/lxc/downloads/
https://help.ubuntu.com/lts/serverguide/lxd.html
https://help.ubuntu.com/lts/serverguide/lxd.html
https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://www.stgraber.org/2016/03/11/lxd-2-0-blog-post-series-012/
https://www.stgraber.org/2016/03/11/lxd-2-0-blog-post-series-012/
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-nspawn.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-nspawn.1.html
https://community.flockport.com/topic/32/systemd-nspawn-containers
https://community.flockport.com/topic/32/systemd-nspawn-containers

Chapter 8

239

Getting ready
You will need access to the root account or an account with sudo privileges.

How to do it…
LXD works on the concept of remote servers and images served by those remote servers.
Starting a new container with LXD is as simple as downloading a container image and starting
a container out of it, all with a single command. Follow these steps:

1.	 To start your first container, use the lxc launch command, as follows:
$ lxc launch ubuntu:14.04/amd64 c1

LXC will download the required image (14.04/amd64) and start the container.
You should see the progress like this:

2.	 As you can see in the screenshot, lxc launch downloads the required image,
creates a new container, and then starts it as well. You can see your new container in
a list of containers with the lxc list command, as follows:
$ lxc list

3.	 Optionally, you can get more details about the containers with the lxc info
command:
$ lxc info c1

Working with Containers

240

4.	 Now that your container is running, you can start working with it. With the lxc
exec command, you can execute commands inside a container. Use the following
command to obtain the details of Ubuntu running inside a container:
$ lxc exec c1 -- lsb_release -a

5.	 You can also open a bash shell inside a container, as follows:

$ lxc exec c1 -- bash

How it works…
Creating images is a time-consuming task. With LXD, the team has solved this problem by
downloading the prebuilt images from trusted remote servers. Unlike LXC, where images are
built locally, LXD downloads them from the remote servers and keep a local cache of these
images for later use. The default installation contains three remote servers:

ff Ubuntu: This contains all Ubuntu releases

ff Ubuntu-daily: This contains all Ubuntu daily builds

ff images: This contains all other Linux distributions

You can get a list of available remote servers with this command:

$ lxc remote list

Similarly, to get a list of available images on a specific remote server, use the
following command:

$ lxc image list ubuntu:

In the previous example, we used 64-bit Ubuntu 14.04 from one of the preconfigured remote
servers (ubuntu:). When we start a specific container, LXD checks the local cache for the
availability of the respective image; if it's not available locally, the required images gets
fetched from the remote server and cached locally for later use. These images are kept in
sync with remote updates. They also expire if not used for a specific time period, and expired
images are automatically removed by LXD. By default, the expiration period is set to 10 days.

Chapter 8

241

You can find a list of various configuration parameters for LXC and LXD
documented on GitHub at https://github.com/lxc/lxd/blob/
master/doc/configuration.md.

The lxc launch command creates a new container and then starts it as well. If you want
to just create a container without starting it, you can do that with the lxc init command,
as follows:

$ lxc init ubuntu:xenial c2

All containers (or their rootfs) are stored under the /var/lib/lxd/containers directory,
and images are stored under the /var/lib/lxd/images directory.

All LXD containers are non-privileged containers by default. You do not
need any special privileges to create and manage containers. On the
other hand, LXD does support privileged containers as well.

While starting a container, you can specify the set of configuration parameters using the
--config flag. LXD also supports configuration profiles. Profiles are a set of configuration
parameters that can be applied to a group of containers. Additionally, a container can have
multiple profiles. LXD ships with two preconfigured profiles: default and docker.

To get a list of profiles, use the lxc profile list command, and to get the contents of a
profile, use the lxc profile show <profile_name> command.

Sometimes, you may need to start a container to experiment with something—execute a few
random commands and then undo all the changes. LXD allows us to create such throwaway
or ephemeral containers with the -e flag. By default, all LXD containers are permanent
containers. You can start an ephemeral container using the --ephemeral or -e flag. When
stopped, an ephemeral container will be deleted automatically.

With LXD, you can start and manage containers on remote servers as well. For this, the LXD
daemon needs to be exposed to the network. This can be done at the time of initializing LXD
or with the following commands:

$ lxc config set core.https_address "[::]"

$ lxc config set core.trust_password some-password

Next, make sure that you can access the remote server and add it as a remote for LXD with
the lxc remote add command:

$ lxc remote add remote01 192.168.0.11 # lxc remote add name server_ip

https://github.com/lxc/lxd/blob/master/doc/configuration.md
https://github.com/lxc/lxd/blob/master/doc/configuration.md

Working with Containers

242

Now, you can launch containers on the remote server, as follows:

$ lxc launch ubuntu:xenial remote01:c1

There's more…
Unlike LXC, LXD container images do not support password-based SSH logins. The container
still has the SSH daemon running, but login is restricted to a public key. You need to add a key
to the container before you can log in with SSH. LXD supports file management with the lxc
file command; use it as follows to set your public key inside an Ubuntu container:

$ lxc file push ~/.ssh/id_rsa.pub \

c1/home/ubuntu/.ssh/authorized_keys \

--mode=0600 --uid=1000

Once the public key is set, you can use SSH to connect to the container, as follows:

$ ssh ubuntu@container_IP

Alternatively, you can directly open a root session inside a container and get a bash shell with
lxc exec, as follows:

$ lxc exec c1 -- bash

See also
ff The LXD getting started guide: https://linuxcontainers.org/lxd/getting-

started-cli/

ff The Ubuntu Server guide for LXC: https://help.ubuntu.com/lts/
serverguide/lxd.html

ff Container images are created using tools such as debootstrap, which you can read
more about at https://wiki.debian.org/Debootstrap

ff Creating LXC templates from scratch: http://wiki.pcprobleemloos.nl/
using_lxc_linux_containers_on_debian_squeeze/creating_a_lxc_
virtual_machine_template

Managing LXD containers
We have installed LXD and deployed our first container with it. In this recipe, we will learn
various LXD commands that manage the container lifecycle.

https://linuxcontainers.org/lxd/getting-started-cli/
https://linuxcontainers.org/lxd/getting-started-cli/
https://help.ubuntu.com/lts/serverguide/lxd.html
https://help.ubuntu.com/lts/serverguide/lxd.html
https://wiki.debian.org/Debootstrap
http://wiki.pcprobleemloos.nl/using_lxc_linux_containers_on_debian_squeeze/creating_a_lxc_virtual_machine_template
http://wiki.pcprobleemloos.nl/using_lxc_linux_containers_on_debian_squeeze/creating_a_lxc_virtual_machine_template
http://wiki.pcprobleemloos.nl/using_lxc_linux_containers_on_debian_squeeze/creating_a_lxc_virtual_machine_template

Chapter 8

243

Getting ready…
Make sure that you have followed the previous recipes and created your first container.

How to do it…
Follow these steps to manage LXD containers:

1.	 Before we start with container management, we will need a running container. If
you have been following the previous recipes, you should already have a brand new
container running on your system. If your container is not already running, you can
start it with the lxc start command:
$ lxc start c1

2.	 To check the current state of a container, use lxc list, as follows:
$ lxc list c1

This command should list only containers that have c1 in their name.

3.	 You can also set the container to start automatically. Set the boot.autostart
configuration option to true and your container will start automatically on system
boot. Additionally, you can specify a delay before autostart and a priority in the
autostart list:
$ lxc config set c1 boot.autostart true

4.	 Once your container is running, you can open a bash session inside a container using
the lxc exec command:
$ lxc exec c1 -- bash

root@c1:~# hostname

c1

This should give you a root shell inside a container. Note that to use bash, your
container image should have a bash shell installed in it. With alpine containers,
you need to use sh as the shell as alpine does not contain the bash shell.

Working with Containers

244

5.	 LXD provides the option to pause a container when it's not being actively used. A
paused container will still hold memory and other resources assigned to it, but not
receive any CPU cycles:
$ lxc pause c1

6.	 Containers that are paused can be started again with lxc start.

7.	 You can also restart a container with the lxc restart command, with the option to
perform a stateful or stateless restart:
$ lxc restart --stateless c1

8.	 Once you are done working with the container, you can stop it with the lxc stop
command. This will release all resources attached to that container:
$ lxc stop c1

At this point, if your container is an ephemeral container, it will be deleted
automatically.

9.	 If the container is no longer required, you can explicitly delete it with the lxc
delete command:

$ lxc delete c1

There's more…
For those who do not like to work with command line tools, you can use a web-based
management console known as LXD GUI. This package is still in beta but can be used
on your local LXD deployments. It is available on GitHub at https://github.com/dobin/
lxd-webgui.

See also
ff Get more details about LXD at https://www.stgraber.org/2016/03/19/lxd-

2-0-your-first-lxd-container-312/

ff LXC web panel: https://lxc-webpanel.github.io/install.html

https://github.com/dobin/lxd-webgui
https://github.com/dobin/lxd-webgui
https://www.stgraber.org/2016/03/19/lxd-2-0-your-first-lxd-container-312/
https://www.stgraber.org/2016/03/19/lxd-2-0-your-first-lxd-container-312/
https://lxc-webpanel.github.io/install.html

Chapter 8

245

Managing LXD containers – advanced
options

In this recipe, we will learn about some advanced options provided by LXD.

How to do it…
Follow these steps to deal with LXD containers:

1.	 Sometimes, you may need to clone a container and have it running as a separate
system. LXD provides a copy command to create such clones:
$ lxc copy c1 c2 # lxc copy source destination

You can also create a temporary copy with the --ephemeral flag and it will be
deleted after one use.

2.	 Similarly, you can create a container, configure it as per you requirements, have
it stored as an image, and use it to create more containers. The lxc publish
command allows you to export existing containers as a new image. The resulting
image will contain all modifications from the original container:
$ lxc publish c1 --alias nginx # after installing nginx

The container to be published should be in the stopped state. Alternatively, you can
use the --force flag to publish a running container, which will internally stop the
container before exporting.

3.	 You can also move the entire container from one system to another. The move
command helps you with moving containers across hosts. If you move a container on
the same host, the original container will be renamed. Note that the container to be
renamed must not be running:
$ lxc move c1 c2 # container c1 will be renamed to c2

4.	 Finally, we have the snapshot and restore functionality. You can create snapshots of
the container or, in simple terms, take a backup of its current state. The snapshot can
be a stateful snapshot that stores the container's memory state. Use the following
command to create a snapshot of your container:
$ lxc snapshot c1 snap1 # lxc snapshot container cnapshot

5.	 The lxc list command will show you the number of snapshots for a given
container. To get the details of every snapshot, check the container information with
the lxc info command:
$ lxc info c1

...

Working with Containers

246

Snapshots:

 c1/shap1 (taken at 2016/05/22 10:34 UTC) (stateless)

You can skip the snapshot name and LXD will name it for you. But, as
of writing this, there's no option to add a description with snapshots.
You can use the filename to describe the purpose of each snapshot.

6.	 Once you have the snapshots created, you can restore it to go back to a point or
create new containers out of your snapshots and have both states maintained. To
restore your snapshot, use lxc restore, as follows:
$ lxc restore c1 snap1 # lxc restore container snapshot

7.	 To create a new container out of your snapshot, use lxc copy, as follows:
$ lxc copy c1/snap1 c4 # lxc copy container/snapshot
new_container

8.	 When you no longer need a snapshot, delete it with lxc delete, as follows:

$ lxc delete c1/snap1 # lxc delete container/snapshot

How it works…
Most of these commands work with the rootfs or root filesystem of containers. The
rootfs is stored under the /var/lib/lxd/containers directory. Copying creates a copy
of the rootfs while deleting removes the rootfs for a given container. These commands
benefit with the use of the ZFS file system. Features such as copy-on-write speed up the copy
and snapshot operations while reducing the total disk space use.

Setting resource limits on LXD containers
In this recipe, we will learn to set resource limits on containers. LXD uses the cgroups feature
in the Linux kernel to manage resource allocation and limits. Limits can be applied to a single
container through configuration or set in a profile, applying limits to a group of containers at
once. Limits can be dynamically updated even when the container is running.

Chapter 8

247

How to do it…
We will create a new profile and configure various resource limits in it. Once the profile is
ready, we can use it with any number of containers. Follow these steps:

1.	 Create a new profile with the following command:
$ lxc profile create cookbook

Profile cookbook created

2.	 Next, edit the profile with lxc profile edit. This will open a text editor with a
default profile structure in YML format:
$ lxc profile edit cookbook

Add the following details to the profile. Feel free to select any parameters and change
their values as required:

name: cookbook

config:

 boot.autostart: "true"

 limits.cpu: "1"

 limits.cpu.priority: "10"

 limits.disk.priority: "10"

 limits.memory: 128MB

 limits.processes: "100"

description: A profile for Ubuntu Cookbook Containers

devices:

 eth0:

 nictype: bridged

 parent: lxdbr0

 type: nic

Save your changes to the profile and exit the text editor.

3.	 Optionally, you can check the created profile, as follows:
$ lxc profile show cookbook

Working with Containers

248

4.	 Now, our profile is ready and can be used with a container to set limits. Create a new
container using our profile:
$ lxc launch ubuntu:xenial c4 -p cookbook

5.	 This should create and start a new container with the cookbook profile applied to it.
You can check the profile in use with the lxc info command:
$ lxc info c4

6.	 Check the memory limits applied to container c4:
$ lxc exec c4 -- free -m

7.	 Profiles can be updated even when they are in use. All containers using that profile
will be updated with the respective changes, or return a failure message. Update your
profile as follows:

$ lxc profile set cookbook limits.memory 256MB

How it works…
LXD provides multiple options to set resource limits on containers. You can apply limits using
profiles or configure containers separately with the lxc config command. The advantage
of creating profiles is that you can have various parameters defined in one central place, and
all those parameters can be applied to multiple containers at once. A container can have
multiple profiles applied and also have configuration parameters explicitly set. The overlapping
parameters will take a value from the last applied profile. Also the parameters that are set
explicitly using lxc config will override any values set by profiles.

The LXD installation ships with two preconfigured profiles. One is default, which is applied
to all containers that do not receive any other profile. This contains a network device for
a container. The other profile, named docker, configures the required kernel modules to
run Docker inside the container. You can view the parameters of any profile with the lxc
profile show profile_name command.

Chapter 8

249

In the previous example, we used the edit option to edit the profile and set multiple
parameters at once. You can also set each parameter separately or update the profile with the
set option:

$ lxc profile set cookbook limits.memory 256MB

Similarly, use the get option to read any single parameter from a profile:

$ lxc profile get cookbook limits.memory

Profiles can also be applied to a running container with lxc profile apply. The following
command will apply two profiles, default and cookbook, to an existing container, c6:

$ lxc profile apply c6 default,cookbook

We could have skipped the network configuration in the cookbook
profile and had our containers use the default profile along with
cookbook to combine both configurations.

Updating the profiles will update the configuration for all container using that profile. To modify
a single container, you can use lxc config set or pass the parameters directly to a new
container using the -c flag:

$ lxc launch ubuntu:xenial c7 -c limits.memory=64MB

Similar to lxc profile, you can use the edit option with lxc config to modify
multiple parameters at once. The same command can also be used to configure or read
server parameters. When used without any container name, the command applies to the
LXD daemon.

There's more…
The lxc profile and lxc config commands can also be used to attach local devices to
containers. Both commands provide the option to work with various devices, which include
network, disk IO, and so on. The simplest example will be to pass a local directory to a
container, as follows:

$ lxc config device add c1 share disk \

source=/home/ubuntu path=home/ubuntu/shared

Working with Containers

250

See also
ff Read more about setting resource limits at https://www.stgraber.

org/2016/03/26/lxd-2-0-resource-control-412

ff For more details about LXC configuration, check the help menu for the lxc profile
and lxc config commands, as follows:

$ lxc config --help

Networking with LXD
In this recipe, we will look at LXD network setup. By default, LXD creates an internal
bridge network. Containers are set to access the Internet through Network Address
Translation (NAT) but are not accessible from the Internet. We will learn to open a service
on a container to the Internet, share a physical network with a host, and set a static IP
address to a container.

Getting ready
As always, you will need access to the root account or an account with sudo privileges.

Make sure that you have created at least one container.

How to do it…
By default, LXD sets up a NAT network for containers. This is a private network attached to the
lxdbr0 port on the host system. With this setup, containers get access to the Internet, but
the containers themselves or the services running in the containers are not accessible from
an outside network. To open a container to an external network, you can either set up port
forwarding or use a bridge to attach the container directly to the host's network:

1.	 To set up port forwarding, use the iptables command, as follows:
$ sudo iptables -t nat -A PREROUTING -p tcp -i eth0 \

--dport 80 -j DNAT --to 10.106.147.244:80

This will forward any traffic on the host TCP port 80 to the containers' TCP port
80 with the IP 10.106.147.244. Make sure that you change the port and IP
address as required.

https://www.stgraber.org/2016/03/26/lxd-2-0-resource-control-412
https://www.stgraber.org/2016/03/26/lxd-2-0-resource-control-412

Chapter 8

251

2.	 You can also set a bridge that connects all containers directly to your local network.
The bridge will use an Ethernet port to connect to the local network. To set a bridge
network with the host, we first need to create a bridge on the host and then configure
the container to use that bridge adapter.

To set up a bridge on the host, open the /etc/network/interfaces file and add
the following lines:
auto br0

iface br0 inet dhcp

 bridge_ports eth0

Make sure that you replace eth0 with the name of the interface connected to the
external network.

3.	 Enable IP forwarding under sysctl. Find the following line in /etc/sysctl.conf
and uncomment it:
net.ipv4.ip_forward=1

4.	 Start a new bridge interface with the ifup command:
$ sudo ifup br0

Note that if you are connected to a server over SSH, your connection
will break. Make sure to have a snapshot of the working state before
changing your network configuration.

5.	 If required, you can restart the networking service, as follows:
$ sudo service networking restart

6.	 Next, we need to update the LXD configuration to use our new bridge interface.
Execute a reconfiguration of the LXD daemon and choose <No> when asked to
create a new bridge:
$ sudo dpkg-reconfigure -p medium lxd

Working with Containers

252

7.	 Then on the next page, choose <Yes> to use an existing bridge:

8.	 Enter the name of the newly created bridge interface:

This should configure LXD to use our own bridge network and skip the internal bridge.
You can check the new configuration under the default profile:

$ lxc profile show default

9.	 Now, start a new container. It should receive the IP address from the router on your
local network. Make sure that your local network has DHCP configured:

Chapter 8

253

How it works…
By default, LXD sets up a private network for all containers. A separate bridge, lxdbr0, is set
up and configured in the default profile. This network is shared (NAT) with the host system,
and containers can access the Internet through this network. In the previous example,
we used IPtables port forwarding to make the container port 80 available on the external
network. This way, containers will still use the same private network, and a single application
will be exposed to the external network through the host system. All incoming traffic on host
port 80 will be directed to the container's port 80.

You can also set up your own bridge connected to the physical network. With this bridge,
all your containers can connect to and be directly accessible over your local network. Your
local DHCP will be used to assign IP addresses to containers. Once you create a bridge, you
need to configure it with LXD containers either through profiles or separately with container
configuration. In the previous example, we reconfigured the LXD network to set a new bridge.

If you are using virtual machines for hosting containers and want to set
up a bridge, then make sure that you have enabled promiscuous mode
on the network adapter of the virtual machine. This can be enabled
from the network settings of your hypervisor. Also, a bridge setup may
not work if your physical machine is using a wireless network.

LXD supports more advanced network configuration by attaching the host eth interface
directly to a container. The following settings in the container configuration will set the network
type to a physical network and use the host's eth0 directly inside a container. The eth0
interface will be unavailable for the host system till the container is live:

$ lxc config device add c1 eth0 nic nictype=physical parent=eth0

There's more…
LXD creates a default bridge with the name lxdbr0. The configuration file for this bridge is
located at /etc/default/lxd-bridge. This file contains various configuration parameters,
such as the address range for the bridge, default domain, and bridge name. An interesting
parameter is the additional configuration path for dnsmasq configurations.

The LXD bridge internally uses dnsmasq for DHCP allocation. The additional configuration
file can be used to set up various dnsmasq settings, such as address reservation and name
resolution for containers.

Working with Containers

254

Edit /etc/default/lxd-bridge to point to the dnsmasq configuration file:

Path to an extra dnsmasq configuration file

LXD_CONFILE="/etc/default/dnsmasq.conf"

Then, create a new configuration file called /etc/default/dnsmasq.conf with the
following contents:

dhcp-host=c5,10.71.225.100

server=/lxd/10.71.225.1

#interface=lxdbr0

This will reserve the IP 10.71.225.100 for the container called c5, and you can also ping
containers with that name, as follows:

$ ping lxd.c5

See also
ff Read more about bridge configuration at https://wiki.debian.org/LXC/

SimpleBridge

ff Find out more about LXD bridge at the following links:
�� https://insights.ubuntu.com/2016/04/07/lxd-networking-

lxdbr0-explained/

�� http://askubuntu.com/questions/754323/lxd-2-0-local-
networking

�� https://insights.ubuntu.com/2015/11/10/converting-eth0-
to-br0-and-getting-all-your-lxc-or-lxd-onto-your-lan/

ff Read more about dnsmasq at https://wiki.debian.org/HowTo/dnsmasq

ff Sample dnsmasq configuration file: http://oss.segetech.com/intra/srv/
dnsmasq.conf

ff Check the dnsmasq manual pages with the man dnsmasq command

Installing Docker
In last few recipes, we learned about LXD, an operating system container service. Now,
we will look at a hot new technology called Docker. Docker is an application container
designed to package and run a single service. It enables developers to enclose an app with
all dependencies in an isolated container environment. Docker helps developers create a
reproducible environment with a simple configuration file called a Dockerfile. It also provides
portability by sharing the Dockerfile, and developers can be sure that their setup will work the
same on any system with the Docker runtime.

https://wiki.debian.org/LXC/SimpleBridge
https://wiki.debian.org/LXC/SimpleBridge
https://insights.ubuntu.com/2016/04/07/lxd-networking-lxdbr0-explained/
https://insights.ubuntu.com/2016/04/07/lxd-networking-lxdbr0-explained/
http://askubuntu.com/questions/754323/lxd-2-0-local-networking
http://askubuntu.com/questions/754323/lxd-2-0-local-networking
https://insights.ubuntu.com/2015/11/10/converting-eth0-to-br0-and-getting-all-your-lxc-or-lxd-onto-your-lan
https://insights.ubuntu.com/2015/11/10/converting-eth0-to-br0-and-getting-all-your-lxc-or-lxd-onto-your-lan
https://wiki.debian.org/HowTo/dnsmasq
http://oss.segetech.com/intra/srv/dnsmasq.conf
http://oss.segetech.com/intra/srv/dnsmasq.conf

Chapter 8

255

Docker is very similar to LXC. Its development started as a wrapper around the LXC API to help
DevOps take advantage of containerization. It added some restrictions to allow only a single
process to be running in a container, unlike a whole operating system in LXC. In subsequent
versions, Docker changed its focus from LXC and started working on a new standard library for
application containers, known as libcontainer.

It still uses the same base technologies, such as Linux namespaces and control groups,
and shares the same kernel with the host operating system. Similarly, Docker makes use of
operating system images to run containers. Docker images are a collection of multiple layers,
with each layer adding something new to the base layer. This something new can include a
service, such as a web server, application code, or even a new set of configurations. Each
layer is independent of the layers above it and can be reused to create a new image.

Being an application container, Docker encourages the use of a microservice-based
distributed architecture. Think of deploying a simple WordPress blog. With Docker, you will
need to create at least two different containers, one for the MySQL server and the other for
the WordPress code with PHP and the web server. You can separate PHP and web servers
in their own containers. While this looks like extra effort, it makes your application much
more flexible. It enables you to scale each component separately and improves application
availability by separating failure points.

While both LXC and Docker use containerization technologies, their use cases are different.
LXC enables you to run an entire lightweight virtual machine in a container, eliminating the
inefficiencies of virtualization. Docker enables you to quickly create and share a self-dependent
package with your application, which can be deployed on any system running Docker.

In this recipe, we will cover the installation of Docker on Ubuntu Server. The recipes after that
will focus on various features provided by Docker.

Getting ready
You will need access to the root account or an account with sudo privileges.

How to do it…
Recently, Docker released version 1.11 of the Docker engine. We will follow the installation
steps provided on the Docker site to install the latest available version:

1.	 First, add a new gpg key:
$ sudo apt-key adv --keyserver hkp://p80.pool.sks-
keyservers.net:80 --recv-keys
58118E89F3A912897C070ADBF76221572C52609D

Working with Containers

256

2.	 Next, add a new repository to the local installation sources. This repository is
maintained by Docker and contains Docker packages for 1.7.1 and higher versions:
$ echo "deb https://apt.dockerproject.org/repo ubuntu-xenial
main" | \

sudo tee /etc/apt/sources.list.d/docker.list

If you are using an Ubuntu version other than 16.04 (Xenial), then make
sure that you replace the repository path with the respective codename.
For example, on Ubuntu 14.04 (Trusty), use the following repository:
deb https://apt.dockerproject.org/repo ubuntu-
trusty main

3.	 Next, update the apt package list and install Docker with the following commands:
$ sudo apt-get update

$ sudo apt-get install docker-engine

4.	 Once the installation completes, you can check the status of the Docker service,
as follows:
$ sudo service docket status

5.	 Check the installed Docker version with docker version:
$ sudo docker version

Client:

 Version: 1.11.1

 API version: 1.23

 ...

Server:

 Version: 1.11.1

 API version: 1.23

 ...

Chapter 8

257

6.	 Download a test container to test the installation. This container will simply print a
welcome message and then exit:
$ sudo docker run hello-world

7.	 At this point, you need to use sudo with every Docker command. To enable a
non-sudo user to use Docker, or to simply avoid the repeated use of sudo, add the
respective usernames to the docker group:

$ sudo gpasswd -a ubuntu docker

The docker group has privileges equivalent to the root account.
Check the official Docker installation documentation for more details.

Now, update group membership, and you can use Docker without the
sudo command:

$ newgrp docker

How it works…
This recipe installs Docker from the official Docker repository. This way, we can be sure to get
the latest version. The Ubuntu 16.04 repository also contains the package for Docker with
version 1.10. If you prefer to install from the Ubuntu repository, it's an even easier task with a
single command, as follows:

$ sudo apt-get install docker.io

As of writing this, Docker 1.11 is the latest stable release and the first release to have been
built on Open Container Initiative standards. This version is built on runc and containerd.

Working with Containers

258

There's more…
Docker provides a quick installation script, which can be used to install Docker with a
single command. This scripts reads the basic details of your operating system, such as the
distribution and version, and then executes all the required steps to install Docker. You can
use the bootstrap script as follows:

$ sudo curl -sSL https://get.docker.com | sudo sh

Note that with this command, the script will be executed with sudo privileges. Make sure you
cross-check the script's contents before executing it. You can download the script without
executing it, as follows:

$ curl -sSL https://get.docker.com -o docker_install.sh

See also
ff The Docker installation guide: http://docs.docker.com/installation/

ubuntulinux/

ff Operating system containers versus application containers: https://blog.
risingstack.com/operating-system-containers-vs-application-
containers/

ff What Docker adds to lxc-tools: http://stackoverflow.com/
questions/17989306/what-does-docker-add-to-lxc-tools-the-
userspace-lxc-tools

ff A curated list of Docker resources: https://github.com/veggiemonk/
awesome-docker

Starting and managing Docker containers
So, we have installed the latest Docker binary. In this recipe, we will start a new container with
Docker. We will see some basic Docker commands to start and manage Docker containers.

Getting ready
Make sure that you have installed Docker and set your user as a member of the Docker group.

You may need sudo privileges for some commands.

http://docs.docker.com/installation/ubuntulinux/
http://docs.docker.com/installation/ubuntulinux/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
http://stackoverflow.com/questions/17989306/what-does-docker-add-to-lxc-tools-the-userspace-lxc-tools
http://stackoverflow.com/questions/17989306/what-does-docker-add-to-lxc-tools-the-userspace-lxc-tools
http://stackoverflow.com/questions/17989306/what-does-docker-add-to-lxc-tools-the-userspace-lxc-tools
https://github.com/veggiemonk/awesome-docker
https://github.com/veggiemonk/awesome-docker

Chapter 8

259

How to do it…
Let's create a new Docker container and start it. With Docker, you can quickly start a container
with the docker run command:

1.	 Start a new Docker container with the following command:
$ docker run -it --name dc1 ubuntu /bin/bash

Unable to find image 'ubuntu:trusty' locally

trusty: Pulling from library/ubuntu

6599cadaf950: Pull complete

23eda618d451: Pull complete

...

Status: Downloaded newer image for ubuntu:trusty

root@bd8c99397e52:/#

Once a container has been started, it will drop you in a new shell running inside it.
From here, you can execute limited Ubuntu or general Linux commands, which will be
executed inside the container.

2.	 When you are done with the container, you can exit from the shell by typing exit or
pressing Ctrl + D. This will terminate your shell and stop the container as well.

3.	 Use the docker ps command to list all the containers and check the status of your
last container:
$ docker ps -a

By default, docker ps lists all running containers. As our container is no longer
running, we need to use the -a flag to list all available containers.

Working with Containers

260

4.	 To start the container again, you can use the docker start command. You can use
the container name or ID to specify the container to be started:
$ docker start -ia dc1

The -i flag will start the container in interactive mode and the -a flag will attach to a
terminal inside the container. To start a container in detached mode, use the start
command without any flags. This will start the container in the background and return
to the host shell:

$ docker start dc1

5.	 You can open a terminal inside a detached container with docker attach:
$ docker attach dc1

6.	 Now, to detach a terminal and keep the container running, you need the key
combinations Ctrl + P and Ctrl + Q. Alternatively, you can type exit or press Ctrl + C
to exit the terminal and stop the container.

7.	 To get all the details of a container, use the docker inspect command with the
name or ID of the container:
$ docker inspect dc1 | less

This command will list all the details of the container, including container status,
network status and address, and container configuration files.

Use grep to filter container information. For example, to get the IP
address from the docker inspect output, use this:
$ docker inspect dc1 | grep-iipaddr

8.	 To execute a command inside a container, use docker exec. For example, the
following command gets the environment variables from the dc1 container:
$ docker exec dc1 env

Chapter 8

261

This one gets the IP address of a container:

$ docker exec dc1 ifconfig

9.	 To get the processes running inside a container, use the docker top command:
$ docker top dc1

10.	 Finally, to stop the container, use docker stop, which will gracefully stop the
container after stopping processes running inside it:
$ docker stop dc1

11.	 When you no longer need the container, you can use docker rm to remove/delete it:

$ docker rm dc1

Want to remove all stopped containers with a single command?
Use this:
$ docker rm $(dockerps -aq)

How it works…
We started our first Docker container with the docker run command. With this command,
we instructed the Docker daemon to start a new container with an image called Ubuntu,
start an interactive session (-i), and allocate a terminal (-t). We also elected to name our
container with the --name flag and execute the /bin/bash command inside a container
once it started.

Working with Containers

262

The Docker daemon will search for Ubuntu images in the local cache or download the image
from Docker Hub if the specified image is not available in the local cache. Docker Hub is a
central Docker image repository. It will take some time to download and extract all the layers
of the images. Docker maintains container images in the form of multiple layers. These layers
can be shared across multiple container images. For example, if you have Ubuntu running on
a server and you need to download the Apache container based on Ubuntu, Docker will only
download the additional layer for Apache as it already has Ubuntu in the local cache, which
can be reused.

Docker provides various other commands to manage containers and images. We have already
used a few of them in the previous example. You can get the full list of all available commands
from the command prompt itself, by typing docker followed by the Enter key. All commands
are listed with their basic descriptions. To get more details on any specific subcommand, use
its help menu, as follows:

$ docker rmi --help

There's more…
Docker images can be used to quickly create runc containers, as follows:

$ sudo apt-get install runc

$ mkdir -p runc/rootfs && cd runc

$ docker run --name alpine alpine sh

$ docker export alpine > alpine.tar

$ tar -xf alpine.tar -C rootfs

$ runc spec

$ sudo runc start alpine

See also
ff Docker run documentation: http://docs.docker.com/engine/reference/

commandline/run/

ff Check manual entries for any Docker command: $ man docker create

Creating images with a Dockerfile
This recipe explores image creation with Dockerfiles. Docker images can be created in
multiple ways, which includes using Dockerfiles, using docker commit to save the container
state as a new image, or using docker import, which imports chroot directory structure as
a Docker image.

http://docs.docker.com/engine/reference/commandline/run/
http://docs.docker.com/engine/reference/commandline/run/

Chapter 8

263

In this recipe, we will focus on Dockerfiles and related details. Dockerfiles help in automating
identical and repeatable image creation. They contain multiple commands in the form of
instructions to build a new image. These instructions are then passed to the Docker daemon
through the docker build command. The Docker daemon independently executes these
commands one by one. The resulting images are committed as and when necessary, and it is
possible that multiple intermediate images are created. The build process will reuse existing
images from the image cache to speed up build process.

Getting ready
Make sure that your Docker daemon is installed and working properly.

How to do it…
1.	 First, create a new empty directory and enter it. This directory will hold our Dockerfile:

$ mkdir myimage

$ cd myimage

2.	 Create a new file called Dockerfile:
$ touch Dockerfile

3.	 Now, add the following lines to the newly created file. These lines are the instructions
to create an image with the Apache web server. We will look at more details later in
this recipe:
FROM ubuntu:trusty

MAINTAINER ubuntu server cookbook

Install base packages

RUN apt-get update && apt-get -yq install apache2 && \

apt-get clean && \

rm -rf /var/lib/apt/lists/*

RUN echo "ServerName localhost" >>
/etc/apache2/apache2.conf

ENV APACHE_RUN_USER www-data

ENV APACHE_RUN_GROUP www-data

ENV APACHE_LOG_DIR /var/log/apache2

Working with Containers

264

ENV APACHE_PID_FILE /var/run/apache2.pid

ENV APACHE_LOCK_DIR /var/www/html

VOLUME ["/var/www/html"]

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

4.	 Save the changes and start the docker build process with the following command:
$ docker build.

This will build a new image with Apache server installed on it. The build process will
take a little longer to complete and output the final image ID:

5.	 Once the image is ready, you can start a new container with it:
$ docker run -p 80:80 -d image_id

Replace image_id with the image ID from the result of the build process.

Chapter 8

265

6.	 Now, you can list the running containers with the docker ps command. Notice the
ports column of the output:

$ docker ps

Apache server's default page should be accessible at your host domain name or IP address.

How it works…
A Dockerfile is a document that contains several commands to create a new image. Each
command in a Dockerfile creates a new container, executes that command on the new
container, and then commits the changes to create a new image. This image is then used as
a base for executing the next command. Once the final command is executed, Docker returns
the ID of the final image as an output of the docker build command.

This recipe demonstrates the use of a Dockerfile to create images with the Apache web
server. The Dockerfile uses a few available instructions. As a convention, the instructions file is
generally called Dockerfile. Alternatively, you can use the -f flag to pass the instruction file to
the Docker daemon. A Dockerfile uses the following format for instructions:

comment

INSTRUCTION argument

All instructions are executed one by one in a given order. A Dockerfile must start with the FROM
instruction, which specifies the base image to be used. We have started our Dockerfile with
Ubuntu:trusty as the base image. The next line specifies the maintainer or the author of the
Dockerfile, with the MAINTAINER instruction.

Working with Containers

266

Followed by the author definition, we have used the RUN instruction to install Apache on our
base image. The RUN instruction will execute a given command on the top read-write layer and
then commit the results. The committed image will be used as a starting point for the next
instruction. If you've noticed the RUN instruction and the arguments passed to it, you can see
that we have passed multiple commands in a chained format. This will execute all commands
on a single image and avoid any cache-related problems. The apt-get clean and rm
commands are used to remove any unused files and minimize the resulting image size.

After the RUN command, we have set some environment variables with the ENV instruction.
When we start a new container from this image, all environment variables are exported to the
container environment and will be accessible to processes running inside the container. In
this case, the process that will use such a variable is the Apache server.

Next, we have used the VOLUME instruction with the path set to /var/www/html. This
instruction creates a directory on the host system, generally under Docker root, and mounts
it inside the container on the specified path. Docker uses volumes to decouple containers
from the data they create. So even if the container using this volume is removed, the data will
persist on the host system. You can specify volumes in a Dockerfile or in the command line
while running the container, as follows:

$ docker run -v /var/www/html image_id

You can use docker inspect to get the host path of the volumes attached to container.

Finally, we have used the EXPOSE instruction, which will expose the specified container port to
the host. In this case, it's port 80, where the Apache server will be listening for web requests.
To use an exposed port on the host system, we need to use either the -p flag to explicitly
specify the port mapping or the -P flag, which will dynamically map the container port to the
available host port. We have used the -p flag with the argument 80:80, which will map the
container port 80 to the host port 80 and make Apache accessible through the host.

The last instruction, CMD, sets the command to be executed when running the image. We are
using the executable format of the CMD instruction, which specifies the executable to be run
with its command-line arguments. In this case, our executable is the Apache binary with -D
FOREGROUND as an argument. By default, the Apache parent process will start, create a child
process, and then exit. If the Apache process exits, our container will be turned off as it no
longer has a running process. With the -D FOREGROUND argument, we instruct Apache to run
in the foreground and keep the parent process active. We can have only one CMD instruction
in a Dockerfile.

The instruction set includes some more instructions, such as ADD, COPY, and
ENTRYPOINT. I cannot cover them all because it would run into far too many pages.
You can always refer to the official Docker site to get more details. Check out the reference
URLs in the See also section.

Chapter 8

267

There's more…
Once the image has been created, you can share it on Docker Hub, a central repository of
public and private Docker images. You need an account on Docker Hub, which can be created
for free. Once you get your Docker Hub credentials, you can use docker login to connect
your Docker daemon with Docker Hub and then use docker push to push local images to
the Docker Hub repository. You can use the respective help commands or manual pages to
get more details about docker login and docker push.

Alternatively, you can also set up your own local image repository. Check out the Docker
documents for deploying your own registry at https://docs.docker.com/registry/
deploying/.

GitLab, an open source Git hosting server, now supports container
repositories. This feature has been added in GitLab version 8.8.
Refer to Chapter 11, Git Hosting, for more details and installation
instructions for GitLab.

We need a base image or any other image as a starting point for the Dockerfile. But how do
we create our own base image?

Base images can be created with tools such as debootstrap and supermin. We need to create
a distribution-specific directory structure and put all the necessary files inside it. Later, we can
create a tarball of this directory structure and import the tarball as a Docker image using the
docker import command.

See also
ff Dockerfile reference: https://docs.docker.com/reference/builder/

ff Dockerfile best practices: https://docs.docker.com/articles/dockerfile_
best-practices

ff More Dockerfile best practices: http://crosbymichael.com/dockerfile-
best-practices.html

ff Create a base image: http://docs.docker.com/engine/articles/
baseimages/

https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/reference/builder/
https://docs.docker.com/articles/dockerfile_best-practices
https://docs.docker.com/articles/dockerfile_best-practices
http://crosbymichael.com/dockerfile-best-practices.html
http://docs.docker.com/engine/articles/baseimages/
http://docs.docker.com/engine/articles/baseimages/

Working with Containers

268

Understanding Docker volumes
One of the most common questions seen on Docker forums is how to separate data from
containers. This is because any data created inside containers is lost when the container gets
deleted. Using docker commit to store data inside Docker images is not a good idea. To
solve this problem, Docker provides an option called data volumes. Data volumes are special
shared directories that can be used by one or more Docker containers. These volumes persist
even when the container is deleted. These directories are created on the host file system,
usually under the /var/lib/docker/ directory.

In this recipe, we will learn to use Docker volumes, share host directories with Docker
containers, and learn basic backup and restore tricks that can be used with containers.

Getting ready
Make sure that you have the Docker daemon installed and running. We will need two or
more containers.

You may need sudo privileges to access the /var/lib/docker directory.

How to do it…
Follow these steps to understand Docker volumes:

1.	 To add a data volume to a container, use the -v flag with the docker run
command, like so:
$ docker run -dP -v /var/lib/mysql --name mysql\

-e MYSQL_ROOT_PASSWORD= passwdmysql:latest

This will create a new MySQL container with a volume created at /var/lib/mysql
inside the container. If the directory already exists on the volume path, the volume
will overlay the directory contents.

2.	 Once the container has been started, you can get the host-specific path of the volume
with the docker inspect command. Look for the Mounts section in the output of
docker inspect:
$ docker inspect mysql

Chapter 8

269

3.	 To mount a specific directory from the host system as a data volume, use the
following syntax:
$ mkdir ~/mkdir

$ docker run -dP -v ~/mysql:/var/lib/mysql \

--name mysql mysql:latest

This will create a new directory named mysql at the home path and mount it as a
volume inside a container at /var/lib/mysql.

4.	 To share a volume between multiple containers, you can use named volume containers.

First, create a container with a volume attached to it. The following command will
create a container with its name set to mysql:

$ docker run -dP -v /var/lib/mysql --name mysql\

-e MYSQL_ROOT_PASSWORD= passwd mysql:latest

5.	 Now, create a new container using the volume exposed by the mysql container and
list all the files available in the container:
$ docker run --rm --volumes-from mysql ubuntu ls -l
/var/lib/mysql

Working with Containers

270

6.	 To back up data from the mysql container, use the following command:
$ docker run --rm--volumes-from mysql -v ~/backup:/backup \

$ tar cvf /backup/mysql.tar /var/lib/mysql

7.	 Docker volumes are not deleted when containers are removed. To delete volumes
along with a container, you need to use the -v flag with the docker rm command:

$ dockerrm -v mysql

How it works…
Docker volumes are designed to provide persistent storage, separate from the containers' life
cycles. Even if the container gets deleted, the volume still persists unless it's explicitly specified
to delete the volume with the container. Volumes can be attached while creating a container
using the docker create or docker run commands. Both commands support the -v flag,
which accepts volume arguments. You can add multiple volumes by repeatedly using the volume
flag. Volumes can also be created in a Dockerfile using the VOLUME instruction.

When the -v flag is followed by a simple directory path, Docker creates a new directory inside
a container as a data volume. This data volume will be mapped to a directory on the host
filesystem under the /var/lib/docker directory. Docker volumes are read-write enabled by
default, but you can mark a volume to be read-only using the following syntax:

$ docker run -dP -v /var/lib/mysql:ro --name mysql mysql:latest

Once a container has been created, you can get the details of all the volumes used by it, as
well as its host-specific path, with the docker inspect command. The Mounts section from
the output of docker inspect lists all volumes with their respective names and paths on
the host system and path inside a container.

Rather than using a random location as a data volume, you can also specify a particular
directory on the host to be used as a data volume. Add a host directory along with the volume
argument, and Docker will map the volume to that directory:

$ docker run -dP -v ~/mysql:/var/lib/mysql \

--name mysql mysql:latest

In this case, /var/lib/mysql from the container will be mapped to the mysql directory
located at the user's home address.

Need to share a single file from a host system with a container? Sure, Docker supports that
too. Use docker run -v and specify the file source on the host and destination inside the
container. Check out following example command:

$ docker run --rmd -v ~/.bash_history:/.bash_history ubuntu

Chapter 8

271

The other option is to create a named data volume container or data-only container. You
can create a named container with attached volumes and then use those volumes inside
other containers using the docker run --volumes-from command. The data volumes
container need not be running to access volumes attached to it. These volumes can be shared
by multiple containers, plus you can create temporary, throwaway application containers by
separating persistent data storage. Even if you delete a temporary container using a named
volume, your data is still safe with a volume container.

From Docker version 1.9 onwards, a separate command, docker volume, is available to
manage volumes. With this update, you can create and manage volumes separately from
containers. Docker volumes support various backend drivers, including AUFS, OverlayFS,
BtrFS, and ZFS. A simple command to create a new volume will be as follows:

$ docker volume create --name=myvolume

$ docker run -v myvolume:/opt alpine sh

See also
ff The Docker volumes guide: http://docs.docker.com/engine/userguide/

dockervolumes/

ff Clean up orphaned volumes with this script: https://github.com/chadoe/
docker-cleanup-volumes

Deploying WordPress using a Docker
network

In this recipe, we will learn to use a Docker network to set up a WordPress server. We will
create two containers, one for MySQL and the other for WordPress. Additionally, we will set up
a private network for both MySQL and WordPress.

How to do it…
Let's start by creating a separate network for WordPress and the MySQL containers:

1.	 A new network can be created with the following command:
$ docker network create wpnet

http://docs.docker.com/engine/userguide/dockervolumes/
http://docs.docker.com/engine/userguide/dockervolumes/
https://github.com/chadoe/docker-cleanup-volumes
https://github.com/chadoe/docker-cleanup-volumes

Working with Containers

272

2.	 Check whether the network has been created successfully with docker network ls:
$ docker network ls

3.	 You can get details of the new network with the docker network inspect
command:
$ docker network inspect wpnet

4.	 Next, start a new MySQL container and set it to use wpnet:
$ docker run --name mysql -d \

-e MYSQL_ROOT_PASSWORD=password \

--net wpnet mysql

Chapter 8

273

5.	 Now, create a container for WordPress. Make sure the WORDPRESS_DB_HOST
argument matches the name given to the MySQL container:
$ docker run --name wordpress -d -p 80:80 \

--net wpnet\

-e WORDPRESS_DB_HOST=mysql\

-e WORDPRESS_DB_PASSWORD=password wordpress

6.	 Inspect wpnet again. This time, it should list two containers:

Now, you can access the WordPress installation at your host domain name or IP address.

How it works…
Docker introduced the container networking model (CNM) with Docker version 1.9. CNM
enables users to create small, private networks for a group of containers. Now, you can set up
a new software-assisted network with a simple docker network create command. The
Docker network supports bridge and overlay drivers for networks out of the box. You can use
plugins to add other network drivers. The bridge network is a default driver used by a Docker
network. It provides a network similar to the default Docker network, whereas an overlay
network enables multihost networking for Docker clusters.

Working with Containers

274

This recipe covers the use of a bridge network for wordpress containers. We have created a
simple, isolated bridge network using the docker network command. Once the network
has been created, you can set containers to use this network with the --net flag to docker
run command. If your containers are already running, you can add a new network interface to
them with the docker network connect command, as follows:

$ # docker network connect network_name container_name

$ docker network connect wpnet mysql

Similarly, you can use docker network disconnect to disconnect or remove a
container from a specific network. Additionally, this network provides an inbuilt discovery
feature. With discovery enabled, we can communicate with other containers using their
names. We used this feature while connecting the MySQL container to the wordpress
container. For the WORDPRESS_DB_HOST parameter, we used the container name rather
than the IP address or FQDN.

If you've noticed, we have not mentioned any port mapping for the mysql container. With
this new wpnet network, we need not create any port mapping on the MySQL container. The
default MySQL port is exposed by the mysql container and the service is accessible only to
containers running on the wpnet network. The only port available to the outside world is port
80 from the wordpress container. We can easily hide the WordPress service behind a load
balancer and use multiple wordpress containers with just the load balancer exposed to the
outside world.

There's more…
Docker also supports links to create secure communication links between two or more
containers. You can set up a WordPress site using linked containers as follows:

1.	 First, create a mysql container:
$ docker run --name mysql -d \

-e MYSQL_ROOT_PASSWORD=password mysql

2.	 Now, create a wordpress container and link it with the mysql container:

$ docker run --name wordpress -d -p 80:80 --link mysql:mysql

And you are done. All arguments for wordpress, such as DB_HOST and ROOT_
PASSWORD, will be taken from the linked mysql container.

The other option to set up WordPress is to set up both WordPress and MySQL in a single
container. This needs process management tools such as supervisord to run two or more
processes in a single container. Docker allows only one process per container by default.

Chapter 8

275

See also
You can find the respective Dockerfiles for MySQL and WordPress containers at the
following addresses:

ff Docker Hub WordPress: https://hub.docker.com/_/wordpress/

ff Docker Hub MySQL: https://hub.docker.com/_/mysql/

ff Docker networking: https://blog.docker.com/2015/11/docker-multi-
host-networking-ga/

ff Networking for containers using libnetwork: https://github.com/docker/
libnetwork

Monitoring Docker containers
In this recipe, we will learn to monitor Docker containers.

How to do it…
Docker provides inbuilt monitoring with the docker stats command, which can be
used to get a live stream of the resource utilization of Docker containers.

1.	 To monitor multiple containers at once using their respective IDs or names,
use this command:
$ docker stats mysql f9617f4b716c

If you need to monitor all running containers, use the following command:
$ docker stats $(dockerps -q)

https://hub.docker.com/_/wordpress/
https://hub.docker.com/_/mysql/
https://blog.docker.com/2015/11/docker-multi-host-networking-ga/
https://blog.docker.com/2015/11/docker-multi-host-networking-ga/
https://github.com/docker/libnetwork
https://github.com/docker/libnetwork

Working with Containers

276

2.	 With docker logs, you can fetch logs of your application running inside a container.
This can be used similarly to the tail -f command:
$ docker logs -f ubuntu

3.	 Docker also records state change events from containers. These events include start,
stop, create, kill, and so on. You can get real-time events with docker events:
$ docker events

To get past events, use the --since flag with docker events:

$ docker events --since '2015-11-01'

4.	 You can also check the changes in the container filesystem with the docker diff
command. This will list newly added (A), changed (C), or deleted (D) files.
$ docker diff ubuntu

5.	 Another useful command is docker top, which helps look inside a container.
This commands displays the processes running inside a container:

$ docker top ubuntu

How it works…
Docker provides various inbuilt commands to monitor containers and the processes
running inside them. It uses native system constructs such as namespaces and cgroups.
Most of these statistics are collected from the native system. Logs are directly collected
from running processes.

Need something more, possibly a tool with graphical output? There are various such tools
available. One well-known tool is cAdvisor by Google. You can run the tool itself as a Docker
container, as follows:

docker run -d -p 8080:8080 --name cadvisor \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:rw \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

google/cadvisor:latest

Once the container has been started, you can access the UI at your server domain or IP on
port 8080 or any other port that you use. cAdvisor is able to monitor both LXC and Docker
containers. In addition, it can report host system resources.

Chapter 8

277

There's more…
Various external tools are available that provide monitoring and troubleshooting services.
Sysdig is a similar command-line tool that can be used to monitor Linux systems and
containers. Read some examples of using sysdig at https://github.com/draios/
sysdig/wiki/Sysdig%20Examples.

Also, check out Sysdig Falco, an open source behavioral monitor with container support.

See also
ff Docker runtime metrics at http://docs.docker.com/v1.8/articles/

runmetrics/

ff cAdvisor at GitHub: https://github.com/google/cadvisor

Securing Docker containers
In this recipe, we will learn Docker configurations that may result in slightly improved security
for your containers. Docker uses some advanced features in the latest Linux kernel, which
include kernel namespaces to provide process isolation, control groups to control resource
allocation, and kernel capabilities and user namespaces to run unprivileged containers. As
stated on the Docker documentation page, Docker containers are, by default, quite secure.

This recipe covers some basic steps to improve Docker security and reduce the attack surface
on the Ubuntu host as well as the Docker daemon.

How to do it…
The first and most common thing is to use the latest versions of your software. Make sure that
you are using the latest Ubuntu version with all security updates applied and that your Docker
version is the latest stable version:

1.	 Upgrade your Ubuntu host with the following commands:
$ sudo apt-get update

$ sudo apt-get upgrade

2.	 If you used a Docker-maintained repository when installing Docker, you need not
care about Docker updates, as the previous commands will update your Docker
installation as well.

https://github.com/draios/sysdig/wiki/Sysdig%20Examples
https://github.com/draios/sysdig/wiki/Sysdig%20Examples
http://docs.docker.com/v1.8/articles/runmetrics/
http://docs.docker.com/v1.8/articles/runmetrics/
https://github.com/google/cadvisor

Working with Containers

278

3.	 Set a proper firewall on your host system. Ubuntu comes preinstalled with UFW; you
simply need to add the necessary rules and enable the firewall. Refer to Chapter 2,
Networking for more details on UFW configuration.

On Ubuntu systems, Docker ships with the AppArmor profile. This profile is installed
and enforced with a Docker installation. Make sure you have AppArmor installed
and working properly. AppArmor will provide better security against unknown
vulnerabilities:

$ sudo apparmor_status

4.	 Next, we will move on to configure the Docker daemon. You can get a list of all
available options with the docker daemon --help command:
$ docker daemon --help

5.	 You can configure these settings in the Docker configuration file at /etc/default/
docker, or start the Docker daemon with all required settings from the command
line.

6.	 Edit the Docker configuration and add the following settings to the DOCKER_OPTS
section:
$ sudo nano /etc/default/docker

7.	 Turn off inter-container communication:
--icc=false

8.	 Set default ulimit restrictions:
--default-ulimitnproc=512:1024 --default-ulimitnofile=50:100

9.	 Set the default storage driver to overlayfs:
---storage-driver=overlay

10.	 Once you have configured all these settings, restart the Docker daemon:
$ sudo service docker restart

11.	 Now, you can use the security bench script provided by Docker. This script checks
for common security best practices and gives you a list of all the things that need to
be improved.

12.	 Clone the script from the Docker GitHub repository:
$ git clone https://github.com/docker/docker-bench-
security.git

Chapter 8

279

13.	 Execute the script:
$ cd docker-bench-security

$ sh docker-bench-security.sh

Try to fix the issues reported by this script.

14.	 Now, we will look at Docker container configurations.

The most important part of a Docker container is its image. Make sure that you
download or pull the images from a trusted repository. You can get most of the
images from the official Docker repository, Docker Hub.

15.	 Alternatively, you can build the images on your own server. Dockerfiles for the
most popular images are quite easily available and you can easily build images
after verifying their contents and making any changes if required.

When building your own images, make sure you don't add the root user:

RUN group add -r user && user add -r -g user user

USER user

16.	 When creating a new container, make sure that you configure CPU and memory
limits as per the containers requirements. You can also pass container-specific
ulimit settings when creating containers:
$ docker run --cpu-shares1024 --memory 512 --cpuset-cpus 1

17.	 Whenever possible, set your containers to read-only:
$ docker run --read-only

18.	 Use read-only volumes:
$ docker run -v /shared/path:/container/path:ro ubuntu

19.	 Try not to publish application ports. Use a private Docker network or Docker links
when possible. For example, when setting up WordPress in the previous recipe, we
used a Docker network and connected WordPress and MySQL without exposing
MySQL ports.

Working with Containers

280

20.	 You can also publish ports to a specific container with its IP address. This may create
problems when using multiple containers, but is good for a base setup:

$ docker run -p 127.0.0.1:3306:3306 mysql

See also
ff Most of these recommendations are taken from the Docker security cheat sheet at

https://github.com/konstruktoid/Docker/blob/master/Security/

ff The Docker bench security script: https://github.com/docker/docker-
bench-security

ff The Docker security documentation: http://docs.docker.com/engine/
articles/security/

https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security
http://docs.docker.com/engine/articles/security/
http://docs.docker.com/engine/articles/security/
https://github.com/konstruktoid/Docker/blob/master/Security/

281

9
Streaming with

Ampache

In this chapter, we will cover the following recipes:

ff Installing the Ampache server

ff Uploading contents and creating catalogs

ff Setting on-the-fly transcoding

ff Enabling API access for remote streaming

ff Streaming music with Ampache

Introduction
This chapter covers the installation and configuration of the open source audio and video
streaming service, Ampache. It is a web-based streaming application that allows you to upload
your own audio/video contents and access them across multiple Internet-enabled devices.
You can easily set up your home media server using Ampache and your old personal computer
running Ubuntu. We will focus on installing Ampache on the Ubuntu server, but you can install
Ampache on any Linux distribution of your choice.

Installing the Ampache server
This recipe covers the installation of the Ampache server. It is a simple PHP-based web
application. Once installed and set up, you can use a web interface to play your audio/video
files or use any of the various popular streaming clients to stream content over the intranet
or even the Internet.

Streaming with Ampache

282

Getting ready
We will be using Ubuntu Server 16.04, but you can choose to have any version of Ubuntu.

Additionally, we will need the Samba server. It will be used as shared network storage.

As always, access to a root account or an account with sudo privileges will be required.

How to do it…
Ampache is a web application developed in PHP. We will start the installation with the LAMP
stack. This recipe covers installation with the Apache web server, but you can choose any
other web server:

1.	 Install the LAMP stack if it's not already installed:
$ sudo apt-get update

$ sudo apt-get install apache2 mysql-server-5.5 php7 \

php7-mysql php7-curl libapache2-mod-php7

For more details on Apache and PHP installation, check
Chapter 3, Working with Web Server.

2.	 Next, download the latest Ampache server source code. Ampache is a
PHP application:
$ wget https://github.com/ampache/ampache/archive/3.8.0.tar.gz

Extract achieve contents under a web root directory

$ tar -xf 3.8.0.tar.gz -C /var/www

$ mv /var/www/ampache-3.8.0 /var/www/ampache

3.	 We also need to create some configuration files. You can use the default
configuration that ships with the Ampache setup and rename the existing files:
$ cd /var/www/ampache

$ mv rest/.htaccess.dist rest/.htaccess

$ mv play/.htaccess.dist play/.htaccess

$ mv channel/.htaccess.dist channel/.htaccess

Chapter 9

283

4.	 The Ampache web setup will save the configuration under the config directory. It will
need write access to that directory:
$ chmod 777 -R config

5.	 Next, we need to configure the Apache web server, enable mod_rewrite, and set a
virtual host pointing to the Ampache directory.

6.	 Enable mod_rewrite with the following command:
$ sudo a2enmod rewrite

7.	 Create a new virtual host configuration:
$ cd /etc/apache2/sites-available/

$ sudo vi ampache.conf

8.	 Add the following lines to ampache.conf:
<VirtualHost *:80>
 DocumentRoot /var/www/ampache
 <Directory /var/www/ampache/>
 DirectoryIndex index.php
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/error.log
 LogLevel warn
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

9.	 Now, disable any default configuration that is using port 80, or alternatively you can
use a port other than 80 for Ampache installation.

10.	 Reload the Apache server for the changes to take effect:
$ sudo service apache2 reload

Streaming with Ampache

284

Here, we have installed and configured the base setup. Now, we can move on to
configuration through a web-based installer. You can access the web installer at the
domain name or IP address of your server. The installer should greet you with a big
Ampache logo and a language selection box; something similar to the following:

11.	 Select the language of your choice and click the Start configuration button.

12.	 On the next page, Ampache will check all the requirements and show you a list
of settings that need to be fixed. These are mostly the configuration changes
and file permissions.

Chapter 9

285

13.	 Most of these requirements should already be marked with a green OK button.
You need to fix things that are marked in red. The requirements screen will look
as follows:

14.	 Click the Continue button when you are done reviewing all the requirements.

15.	 On the next page, you need to configure the MySQL settings. Fill in the necessary
details and select Create Database User to create a new Ampache user under the
MySQL server:

Streaming with Ampache

286

16.	 Click Insert Database to configure database settings.

17.	 The next screen will confirm the database settings and write the configuration
changes to a file under the config directory. You can choose to change the
installation type and enable transcoding configuration from this screen. Once done,
click the Continue button to write the configuration file. If you see any errors, scroll to
the bottom of the page and click the write button to write config changes.

18.	 Finally, the web setup will ask for admin account credentials for the Ampache server.
The Create Admin Account form will be shown with Username and Password fields,
as follows. Set the admin account username and password and click the Create
Account button:

19.	 Once the account is created, the Ampache installation script will redirect you to the
web player screen. If it shows a login screen, use the admin account credentials
created in the last step to log in. The landing page of the web player will be rendered
as follows:

You have completed the Ampache setup process. Now you need to upload content and
enjoy your own streaming server. We will learn to create a catalog and upload content in the
next recipe.

Chapter 9

287

How it works…
Ampache is a web application written in PHP. We have downloaded the latest Ampache code
and set it to work with our web server using Virtual Host configuration. Ampache provides
sample htaccess files that set required redirection rules. We have enabled respective rules
by renaming the sample files. If you are using a web server other than Apache, make sure
you check the Ampache documentation for your web server. It supports Nginx and lighttpd as
web servers.

Ampache has made it easy to cross-check all requirements and configure your database
connection using the web installer. The installer checks for the required PHP settings and
extensions and returns a simple page with things that need to fixed. Next, we can configure
database settings and push schema directly from the web installer.

Once everything is configured, the web installer returns the login page, from where you can
access the Ampache server.

There's more…
The Ampache community have created a Docker image for the Ampache server. If you have a
Docker system set up, you can quickly get started with Ampache with its Docker image.

You can get the Dockerfile at https://github.com/ampache/ampache-docker.

Ampache is also available in the Ubuntu package repository and can be installed with the
following single command:

$ sudo apt-get install ampache mysql-server-5.5

The currently available version of Ampache is 3.6. If you don't care about the latest and
greatest updates, you can use the Ubuntu repository for quick and easy installation.

See also
ff Ampache installation guide: https://github.com/ampache/ampache/wiki/

Installation

https://github.com/ampache/ampache-docker
https://github.com/ampache/ampache/wiki/Installation
https://github.com/ampache/ampache/wiki/Installation

Streaming with Ampache

288

Uploading contents and creating catalogs
So, we have installed the Ampache streaming server. Now, we will learn how to upload our
audio/video content and create our first catalog.

Getting ready
You will need audio and video files to be uploaded on your server and enough space to save
all this content. I will be using podcasts from Ubuntu podcasts in the MP3 format.

Upload all content to your Ampache server and note the directory path. I will be using the
podcasts directory under home for my user.

Open the Ampache server homepage and log in with admin credentials.

How to do it…
Ampache provides the admin page, where you can perform all administrative tasks, such as
catalogue management, user management, and other configurations. We will create a new
catalogue from the admin panel and then point it to already uploaded content:

1.	 From your Ampache homepage, click on the admin icon in the upper-left corner of the
screen. This should list all administrative tools:

Chapter 9

289

2.	 Now, click on the Add a Catalog link. This should load the Add a Catalog page:

3.	 Enter the catalog name. Use a name that describes your content. I will use
Ubuntu podcasts.

4.	 Set the Catalog Type to local, as we will be loading content from your local filesystem.

5.	 Enter the path for your MP3 (or video) files, /home/ubuntu/podcasts in my case.

6.	 Click on the Add Catalog button. This will create a new catalog and import all content
to it. The process will check for meta tags and try to collect more information about
the content. It will take some time to process all the files and add details to the
Ampache database:

7.	 Finally, click Continue to complete catalog creation and go to the catalog list:

Streaming with Ampache

290

8.	 Once catalog creation is complete, you can go to the homepage by clicking the home
icon (first) in the upper-left of the screen and then clicking on the song title link. This
should list all the files available under your catalog directory:

9.	 From this song list, you can play songs/podcasts, add or remove ratings, add them to
playlists, and more:

How it works…
Catalog creation simply reads the content from the upload directory and adds the respective
details to the MySQL database. The process tries to gather more details about content using
information collected from meta tags and track titles or file names. This information is then
used to group the content by artist and album. Note that Ampache is not tagging software
where you upload random content and receive a well-organized media library. For Ampache to
work well, you need to have properly tagged and well-organized content.

Setting on-the-fly transcoding
Transcoding means converting media from one format to another. Suppose your music files
are in a format different to MP3 and your media player only understands MP3 format. In that
case, you need to convert your music files to MP3. This conversion task is done by transcoder
programs. There are various transcoding programs available, such as ffmpeg and avconv.
These programs need codec before they can convert media from source format to destination
format. We need to separately install and configure these components.

Chapter 9

291

Ampache supports on-the-fly transcoding of media files. That is, your music that is not in an
MP3 format can be converted into the MP3 format just before it is delivered to your music
player, and your high definition video content can be optimized for mobile consumption to
reduce bandwidth use.

In this recipe, we will learn how to install and configure transcoding programs with Ampache.

Getting ready
Make sure you have working a setup of the Ampache server.

You will need access to a root account or an account with root privileges.

How to do it…
Ampache depends on external libraries for transcoding to work. We will first install the
dependencies and then configure Ampache to work with them:

1.	 First, add the ffmpeg PPA to the Ubuntu installation sources:
$ sudo apt-add-repository ppa:mc3man/trusty-media

$ sudo apt-get update

2.	 Now, install ffmpeg and other required codecs:
$ sudo apt-get install flac mp3splt lame faad ffmpeg vorbis-
tools

3.	 Next, we need to configure Ampache and enable transcoding. Open the configuration
file located at /var/www/ampache/config/ampache.cfg.php, find the following
lines in the file, and uncomment them:
max_bit_rate = 576
min_bit_rate = 48
transcode_flac = required
transcode_mp3 = allowed
encode_target = mp3
transcode_cmd = "ffmpeg"

Here, we have set ffmpeg for the encoding/decoding of media files. You can choose
any encoder of your choice. Change the value of transcode_cmd respectively.

4.	 Next, enable debug mode to get details of the transcoding. Find the debug section in
the configuration file and set it as follows:
debug = true
Enable log file path which is, by default, set to null
log_path = "/var/log/ampache"

Streaming with Ampache

292

5.	 Save the changes to the configuration file and reload the Apache web server:

$ sudo service apache2 reload

Now your transcoding setup should be working. You should be able to upload media in a
different format and play it as MP3 or other respective formats.

It often happens that we have content in a format that is not supported by the device we are
using for playback. Maybe the device does not have the required codec or the hardware is not
capable of playing a high bit rate. We may even need to convert content to a lower bit rate and
reduce the bandwidth used to stream. The transcoding feature of Ampache helps us to cover
these scenarios.

With transcoding, you can convert the content to the desired device-supported format before
actually starting the streaming. This is called on-the-fly transcoding. The contents are encoded
in a new format as and when needed. Once the conversion is completed, the new format can
be cached for repeat use. In the above example, we set Ampache to convert FLAC files to MP3
using the ffmpeg tool. Now whenever we request a file that is originally available in the FLAC
format, Ampache will convert it to MP3 before streaming it to our device.

Ampache uses external, well-established media conversion tools for transcoding. Any tool that
works with the Ubuntu command line can be configured to work with Ampache. Refer to the
Ampache configuration file to get more details and configuration examples.

Enabling API access for remote streaming
A streaming client needs to get the details of the media available on the streaming server.
The client needs to authenticate with server access the catalog and list of songs and even
request offline access to store media locally. With Ampache, we can use its REST and XML
APIs. Through these APIs, clients can communicate with Ampache. You can even write your
own client tool using any of the supported APIs.

This recipe covers the setup process for streaming content to remote devices. As of writing
this, Ampache allows all users to use all available APIs. We will learn how to modify this
setting and configure it to limit access based on user accounts.

Getting ready
Open Ampache in your browser and log in with admin credentials.

Chapter 9

293

How to do it…
We will create a separate user account for remote streaming. From the Ampache homepage,
click on the admin icon in the top-left corner and then click on the Add User link from the
User Tools section. An add user menu will be shown that looks like this:

1.	 Fill in the Username, E-mail, and Password fields for the new user account and set
User Access to User.

2.	 Click the Add User button to create this user and then click Continue.

3.	 We will use this new user account to log in from the remote client.

4.	 Next, we need to configure access rights and allow this user to use APIs to
stream music.

5.	 Click on the admin icon and then click on the Add ACL link under the Access
Control section.

6.	 Set the name for this access control list.

7.	 Set level to Read/Write.

Streaming with Ampache

294

8.	 Set the user to the user account created in the previous step.

9.	 Set ACL type to Stream Access.

10.	 Set the start and end IP addresses to 0.0.0.0 and 255.255.255.255 respectively.

11.	 Click Create ACL to save the settings.

12.	 Click on the Add ACL link again and repeat the preceding settings, except, for ACL
Type that choose API/RPC.

13.	 Now you can use Ampache streaming from your mobile client. When asked for your
username and password, use our new user account, and for the streaming server
URL, use your Ampache FQDN followed by /ampache, for example:

http://myampachehost.com/ampache

14.	 If your client needs an API key, you can generate one from the User Tools section.

15.	 Click on the Browse Users link and then select the user account in question. Click
the edit icon to update user details and then click on the generate API key icon.

16.	 Finally, click the Update User button to save your changes.

How it works…
By default, the Ampache server creates an Access Control List that allows all access to all
users. It is a good idea to create a separate user and grant only the required permissions. Here,
we have created a new user account with access to the REST API and to stream content. This
will allow better control over users and content, as well as allow us to set various user-specific
default settings, such as default bitrate and encoding formats.

Streaming music with Ampache
We have set up the Ampache server and configured it for streaming. In this recipe, we will
learn how to set up an Android client to play content from our Ampache server.

Getting ready
You will need an Android or iOS phone or tablet. We will focus on the configuration of an
Android client, but the same configuration should work with an iOS device, and even desktop
clients such as VLC.

Chapter 9

295

How to do it…
Follow these steps to stream music with Ampache:

1.	 First, install Just Player on your Android device. It is an Ampache client and uses
XML APIs to stream content from Ampache. It is available from the Play Store.

2.	 Once installed, open the settings of Just Player and search for Ampache under
cloud player.

3.	 We need to add our Ampache server details here. Enter the server URL as the
domain name or IP address of your Ampache server and append /ampache at
the end, for example:

http://myampacheserver.com/ampache

4.	 Next, enter the username and password in their respective fields. You can use the
user account created in the last recipe.

5.	 Click Check to confirm the settings and then save.

Now you should be able to access your Ampache songs on your Android device or phone.

297

10
Communication Server

with XMPP

In this chapter, we will cover the following recipes:

ff Installing Ejabberd

ff Creating users and connecting with the XMPP client

ff Configuring the Ejabberd installation

ff Creating web client with Strophe.js

ff Enabling group chat

ff Chat server with Node.js

Introduction
Extensible Messaging and Presence Protocol (XMPP) is a communication protocol
that provides near-real-time message passing between two or more entities. XMPP is
based on XML and transfers data in predefined formats that are known to server as well
as client systems. Being an XML-based protocol, you can easily extend XMPP to suit your
requirements. It also provides various standard extensions to extend the base functionality
of the XMPP server.

In this chapter, we will learn how to set up our own XMPP server. The main focus will be on
implementing a simple chat application. In later recipes, we will also look at a Node.js and
socket-based alternative to implementing the messaging server.

We will be working with a popular XMPP server Ejabberd. It is a well-known XMPP
implementation supported by ProcessOne. Ejabberd is based on Erlang, a functional
programming language specifically designed for soft real-time communication.

Communication Server with XMPP

298

Installing Ejabberd
In this recipe, we will learn how to install the Ejabberd XMPP server. We will be using an
integrated installation package that is available from the Ejabberd download site. You can
also install Ejabberd from the Ubuntu package repository, but that will give you an older, and
probably outdated, version.

Getting ready
You will need an Ubuntu server with root access or an account with sudo privileges.

How to do it…
The following are the steps to install Ejabberd:

1.	 Download the Ejabberd installer with the following command. We will be downloading
the 64-bit package for Debian-based systems.

2.	 Make sure you get the updated link to download the latest available version:
$ wget https://www.process-one.net/downloads/downloads-
action.php?file=/ejabberd/15.11/ejabberd_15.11-0_amd64.deb -O
ejabberd.deb

3.	 Once the download completes, you will have an installer package with the .deb
extension. Use the dpkg command to install Ejabberd from this package:
$ sudo dpkg -i ejabberd.deb

4.	 When installation completes, check the location of the Ejabberd executable:
$ whereis ejabberd

5.	 Now you can start the Ejabberd server, as follows:
$ sudo /opt/ejabberd-15.11/bin/ejabberdctl start

Chapter 10

299

6.	 The start command does not create any output. You can check the server status
with the ejabberdctl status command:
$ sudo /opt/ejabberd-15.11/bin/ejabberdctl status

7.	 Now your XMPP server is ready to use. Ejabberd includes a web-based admin panel.
Once the server has started, you can access it at http://server_ip:5280/
admin. It should ask you to log in, as shown in the following screenshot:

8.	 The admin panel is protected with a username and password. Ejabberd installation
creates a default administrative user account with the username and password both
set to admin.

In older versions of Ejabberd, you needed to create an admin account
before logging in. The Ejabberd configuration file grants all admin rights
to the username admin. The following command will help you to create a
new admin account:
$ sudo ejabberdctl register_user admin ubuntu password

Communication Server with XMPP

300

9.	 To log in, you need a JID (XMPP ID) as a username, which is a username and
hostname combination. The hostname of my server is ubuntu and the admin JID
is admin@ubuntu. Once you have entered the correct username and password, an
admin console will be rendered as follows:

How it works…
Ejabberd binaries are available as a Debian package. It includes a minimum Erlang runtime
and all other dependencies. You can download the latest package from the Ejabberd
download page.

The installer unpacks all the contents at the /opt/ejabberd-version directory. You can
get an exact location of the installation with the whereis command. All executable files are
generally located under the bin directory. We will mostly be working with ejabberdctl,
which is a command line administrative tool. It provides various options to manage and
monitor Ejabberd installation. You can see the full list of supported options by entering
ejabberdctl without any options.

The following screenshot shows the partial output of executing ejabberdctl without
any options:

Chapter 10

301

If the server is not running, you will only see options to start the
server or launch a debug console.

If you have noticed, I am using sudo with each ejabberdctl command. You can avoid the
use of the sudo command by switching to the ejabberd user, which is created at the time
of Ejabberd installation. The installer creates a system user account, ejabberd, and sets its
home directory to the Ejabberd installation directory, /opt/ejabberd-version. You will still
need to use sudo to switch user accounts as the ejabberd user has no password set. Use
the following command to log in as the ejabberd user:

$ sudo su ejabberd

In addition to creating the system user to run the Ejabberd process, the installer also creates
an ejabberd admin account. The username and password for the administrator account is
set to admin/admin. Make sure that you change this password before using your server in
production. The installation process also creates a default XMPP host. The hostname is set to
match your server hostname. It can be modified from the configuration file.

Once the server has started, you can access the handy web administrative console to manage
most of the Ejabberd settings. You can add new users, create access control lists and set access
rules, check the participating servers (node), and all hosted XMPP domains (host). Additionally,
you can enable or disable Ejabberd modules separately for each domain. That means if you are
using the same server to host xmpp1.example1.com and xmpp2.example2.com, you can
enable a multi-user chat for xmpp1.example1.com and disable the same module for
xmpp2.example2.com.

See also
ff Ejabberd download page at https://www.process-one.net/en/ejabberd/

downloads/

Creating users and connecting with the
XMPP client

We have installed the XMPP server, Ejabberd. In this recipe, we will learn how to add new
user accounts to the Ejabberd server. We will also learn how to configure the XMPP client
and connect to our server.

https://www.process-one.net/en/ejabberd/downloads/
https://www.process-one.net/en/ejabberd/downloads/

Communication Server with XMPP

302

Getting ready
Make sure that you have installed the Ejabberd server and it is running properly.

Additionally, you will need XMPP client software. You can choose from multiple free and open
source clients such as pidgin, PSI, Adium, Gajim, and many more. I will be using PSI as it
provides various low-level administrative features.

How to do it…
Ejabberd supports multiple methods for registering a new user account. These include
adding a new user from the command line, creating a new user from the admin panel,
and allowing clients to register with the server using in-band registration. Here, we will
create a new user from a command line admin tool. Later in this recipe, I will briefly
explain another two methods.

Follow these steps to create a user account and connect it with a XMPP client:

1.	 Use the following command to register a new user using the ejabberdctl command:
$ # ejabberdctl register username host password

$ sudo ejabberdctl register user1 ubuntu password

2.	 You can get a list of registered users with the registered_users option to
ejabberdctl:
$ # ejabberdctl registered_users host

$ sudo ejabberdctl registered_users ubuntu

3.	 Now you can create a connection to the server with the XMPP client and your new
account. Download and install the XMPP client tool, PSI.

Chapter 10

303

4.	 Open PSI, click the General tab, and then select Account Setup. This will open the
XMPP Accounts window, which looks something like this:

5.	 Click the Add button in the XMPP Accounts window. This will open another window
named Add Accounts:

Communication Server with XMPP

304

6.	 Now, in the Add Account window, enter the name for this connection, or you can
choose to keep the name as Default. Click the Add button to open one more window.

7.	 In the newly opened window, enter the account details that we created with the
ejabberdctl command:

8.	 On the Account tab, enter the full XMPP address (JID) and password for your account.

If your server IP address is mapped with a domain name and your
JID refers to the same domain, you can click Save and the account
setup is completed for you. If not, you need to provide a server IP or
FQDN in the Connection tab.

Chapter 10

305

9.	 Click on the Connection tab, then click to check the Manually Specify Server Host/
Port: checkbox, and then enter the server IP or FQDN and change the port to match
your configuration:

10.	 Next, click the Save button to complete the account setup and then click Close to
close the account setup window. Your account will be listed in the main window of
Psi, as follows:

11.	 Now you are ready to connect to your XMPP server. Select the listed account and
change the drop-down box at the bottom to Online. This will start the connection
process and set the user status as Online.

Communication Server with XMPP

306

12.	 The PSI client will show a prompt regarding self-signed certificates if you are using the
default certificate provided by Ejabberd. Click Trust this certificate to proceed.

It will take a few seconds to complete the connection process. Once connected,
your PSI status will change to Online:

13.	 Now click General menu to add XMPP contacts or to join a group chat or to send a
message to existing contact. To change your Instant Messaging account status, click
on the Status menu and select your desired option.

How it works…
The preceding example demonstrates the account creation and client setup process for
connecting with the XMPP server. We have used an administrative command to create an
XMPP account and then configured client software to use the existing account.

You can also create a new account from the Ejabberd web console. The web console lists all
the configured hostnames under the Virtual Hosts section, and each host lists options for user
and access management, and other administration tools. Both these options need the server
administrator to create an account.

Additionally, XMPP supports an extension that enables a user to self-register with the server.
This is called in-band registration (xep-0077), where a user can send his registration request
with his desired username, password, and other details, such as email, and the server creates
a new user account. This is useful with public XMPP servers where administrators cannot
handle all registration requests. The Ejabberd server supports in-band registration with the
mod_register plugin, which is enabled by default. From the client side, you can use any
XMPP client that supports in-band registration. If you have noticed, PSI also supports in-band
registration and provides an option to register a new account in the Add Account process:

Chapter 10

307

There's more…
When it is an XMPP administration task, PSI is a handy tool. It provides a debug console
where you can monitor all XML data transfers between the client and server, as well as send
arbitrary XML stanzas to the server. You can access the XML console from right-clicking the
menu of your PSI account. Once opened, check Enable checkbox to enable traffic monitoring.
The XML Console looks similar to the following screenshot:

XML Console also allows the filtering of traffic based on packet type. Button Dump Ringbuf
can be used to dump any traffic before opening the XML Console.

Communication Server with XMPP

308

Another option is service discovery from the right-click menu. You need to log in as an
administrator to see all the options under service discovery. From here, you can monitor user
accounts and various services that are available on the server. The Service Discovery window
looks something like this:

See also
ff A list of XMPP client tools at https://xmpp.org/xmpp-software/clients/

Configuring the Ejabberd installation
Ejabberd comes with various default settings that make it easy to get started. We can install
Ejabberd and start using it as soon as installation completes. This works when we are testing
our setup, but when we need a production server, we need to make a number of changes to
the default installation. Ejabberd provides a central configuration file through which we can
easily configure our XMPP installation.

This recipe covers the basic configuration of the Ejabberd server.

https://xmpp.org/xmpp-software/clients/

Chapter 10

309

Getting ready
Make sure that you have installed the Ejabberd server.

You will need access to a root account or an account with sudo privileges.

How to do it…
Ejabberd configuration files are located under the conf directory in the Ejabberd installation.
On the Ubuntu server, it should be /opt/ejabberd-version/conf.

Follow these steps to configure the Ejabberd installation:

1.	 Open the ejabberd.yml file. It contains configuration settings in the YML format.

2.	 Let us start by setting the domain for our XMPP service. This is located under the
SERVED HOSTNAMES section in the configuration file. The default setting uses the
server hostname as a host for the XMPP service.

3.	 Add a fully qualified domain name under the hosts section. You can choose to keep
the default host entry or remove it:

4.	 Next, you may want to change the default ports for XMPP connections. Search for
the LISTENING PORTS section in ejabberd.yml and change the respective ports.
I will use the default port configuration. The following is the configuration snippet
listing port 5222:

Communication Server with XMPP

310

5.	 The LISTENING PORTS section contains different port configurations, each serving
a separate service. Three of them are enabled by default and serve a client to server
connection (5222), server to server connection (5269), and HTTP module for admin
console and http_bind service (5280).

6.	 The same section contains the parameter named certfile, which specifies the SSL
certificate file to be used while creating client connections. The default settings point
to a certificate created by the Ejabberd installation process. You can change it to your
own signed certificate.

7.	 Also note the shaper and access settings. These settings specify the connection
throttling and access control settings used for the client to server connections
respectively.

8.	 At the end of the LISTENING PORTS section, there is a configuration for BOSH (port
5280) connections, as well as the web admin panel. This section also enables web
socket connections with the ejabberd_http_ws module.

9.	 Under the AUTHENTICATION section, you can configure the authentication
mechanism to be used. By default, Ejabberd uses internal authentication but it
can be set to use external scripts, system-level authentication, external databases,
or even a centralized LDAP service. The following is the list of all supported options:

10.	 Default internal authentication works well enough and we will proceed with it. If
you are planning to use a different authentication mechanism, make sure that you
comment out internal authentication.

Chapter 10

311

11.	 You can also enable anonymous login support, where clients can open an XMPP
connection without a username and password. Simply uncomment the respective
settings from Anonymous login support:

12.	 Next, under the DATABASE SETUP section, you can set Ejabberd to use an external
database system. Ejabberd supports all leading relational database systems,
including SQLite. The following is the list of all supported database systems:

13.	 The default database settings use an inbuilt database server known as Mnesia.
It provides in-memory and disk-based storage and can be easily replicated across
Ejaberd nodes. Mnesia works well even for very busy XMPP operations.

14.	 To define an admin user, search for the ACCESS CONTROL LISTS section and add
your desired username and hostname under the admin users list:

This same section includes a list of blocked users.

You can also define your own access control lists, which can be used to restrict
permissions to specific hostnames or users. The Access Rules section define the
rules applicable to listed ACLs.

Communication Server with XMPP

312

15.	 Finally, under the modules section, you can configure the modules to be used
by Ejabberd. Modules are plugins to extend the functionality of the Ejabberd server.
Comment out the modules that you are not planning to use. You can also enable or
disable any module in runtime from the web admin panel. The following is the partial
list of modules:

Each module is named after respective XEPs (XMPP extensions). You can get details
of the functionality of any module by looking for the related XEP. Also check the
Ejabberd documentation to find out the dependencies between modules.

16.	 Once you are done with all the configuration, you can restart the Ejabberd server with
ejabberdctl restart or reload configuration changes with the ejabberdctl
reload_config command:

$ sudo bin/ejabberdctl reload_config

How it works…
Most of the core settings of Ejabberd are controlled through the configuration file, ejabberd.
yml. Alternatively, you can change settings with the ejabberdctl command, but those
settings will not persist after restart. If you need the settings to be permanent, change them in
the configuration file. You can always reload the configuration file changes without restarting
the server.

While editing the configuration file, make sure that you follow the indentation and spacing as
shown in examples. Ejabberd configuration follows the YML format and any change in spacing
will leave that setting undefined. The good news is that the latest version of Ejabberd will
prompt you about any mistakes in configuration.

There's another file named ejabberdctl.cfg that contains Erlang runtime settings.
You may need to update those parameters while performance tuning the Ejabberd server.

Chapter 10

313

There's more…
The Ejabberd server is highly extensible and customizable thanks to its modular architecture.
Most Ejabberd features are implemented as external modules. Modules are pluggable
components that can be used to extend core functionality. These modules can be enabled or
disabled as per requirements and do not affect the core functionality. Ejabberd modules are
written in either Erlang or Elixir.

Ejabberd modules work with the hook mechanism implemented in the Ejabberd core. Hooks
are nothing but simple events such as message received, user logged in, and connection time
out. You can get a full list of supported hooks in the Ejabberd documentation, although it may
not be a complete list. Each hook gets its own handler chain, with each handler assigned with
a priority number. When you enable a module, it registers a given handler with a respective
hook and a position or priority in the handler chain. When a hook is triggered by an event,
it executes each handler in a chain, one after another. Additionally, a handler function may
request to stop processing hooks and not to execute any further handlers.

The Ejabberd administrative command ejabberdctl provides an option to search for
and install external modules. Ejabberd takes care of downloading the module, compiling,
and installing it. You can even write your own module and add it to the local repository for
installation. Check Ejabberd's developer documents for more details on module development.

See also
ff List of XMPP extensions at http://xmpp.org/xmpp-protocols/xmpp-

extensions/

ff Ejabberd document at link - https://www.process-one.net/docs/ejabberd/
guide_en.html

ff Ejabberd developer documentation at http://docs.ejabberd.im/developer/
modules/

ff Ejabberd hooks at http://docs.ejabberd.im/developer/hooks/

Creating web client with Strophe.js
In this recipe, we will learn how to use web technologies to create a web-based XMPP client.
I will demonstrate the use of the popular JavaScript library StropheJS to create a basic web
client and connect to the XMPP server.

http://xmpp.org/xmpp-protocols/xmpp-extensions/
http://xmpp.org/xmpp-protocols/xmpp-extensions/
http://docs.ejabberd.im/developer/modules/
http://docs.ejabberd.im/developer/modules/
http://docs.ejabberd.im/developer/hooks/
https://www.process-one.net/docs/ejabberd/guide_en.html
https://www.process-one.net/docs/ejabberd/guide_en.html

Communication Server with XMPP

314

Strophe is a collection of libraries that can be used to communicate with the XMPP server.
It contains libstrophe, which is a C-based implementation of XMPP client functionalities,
and Strophe.js, which is a JavaScript implementation. Strophe provides core XMPP client
functionality and can be extended with custom modules. The community has contributed
various extensions to support additional XMPP functions.

With a limit on page count, I will focus on a simple demo of Strophe.js where we download the
code and modify an example to connect with our XMPP server.

Getting ready
You will need the XMPP server installed and running. You can also use public XMPP servers,
but make sure that you register with them and obtain your username (JID) and password.

You will need at least two user accounts to communicate with each other.

As we are using a web-based connection, it needs a Bidirectional-streams Over Synchronous
HTTP (BOSH) extension enabled on the XMPP server. Ejabberd supports this functionality with
mod_http_bind and it should be enabled by default.

Download and extract the latest source achieve from the Strophe.js site: http://strophe.
im/strophejs/.

Optionally, you will need a web server set up to access a web client.

How to do it…
I assume the source code is located in the StropheJS directory. We will use one of the
examples shipped with the StropheJS source:

1.	 Change the directory to examples under the extracted StropheJS code. This
directory contains multiple examples, demonstrating different features of StropheJS.
We will use echobot.js and echobot.html as our starting point.

2.	 Open echobot.js and change the BOSH_SERVICE URL on the first line, as follows:
var BOSH_SERVICE = 'http://hostname:5280/http-bind';

3.	 Replace the hostname with your XMPP domain or XMPP server IP address.
For example, if your XMPP server is available at xmpp.mysrv.com, then the
BOSH_SERVICE URL will be as follows:
var BOSH_SERVICE = 'http://xmpp.mysrv.com:5280/http-bind';

http://strophe.im/strophejs/
http://strophe.im/strophejs/

Chapter 10

315

4.	 Optionally, you can enable debug logging to watch actual data exchanged between
client and server. Find the $(document).ready() section and uncomment the
following lines:
// uncomment the following lines to spy on the wire
traffic.
connection.rawInput = function (data) { log('RECV: ' +
data); };
connection.rawOutput = function (data) { log('SEND: ' +
data); };

5.	 Save the changes to echobot.js and open echobot.html in your browser.
You should see a page with two text fields, one for JID and another for Password:

6.	 Enter your JID (XMPP username) and respective password and click connect.

7.	 Now, Strophe.js will try to open an XMPP connection and log in with the given details.
If the connection is successful, you should see the following screen:

8.	 The last line includes your JID, with a unique identifier for the current session
appended at the end. This form of JID is also called full JID.

Communication Server with XMPP

316

9.	 Open a separate client connection with, say, PSI, log in with some other user, and
send a message on your given JID. This should print your message on the web page
and the same message will be echoed back to the sender. Your web page should look
similar to the following screenshot:

When you are done playing around, click disconnect to properly
close the XMPP connection.

How it works…
Strophe.js is a JavaScript-based XMPP client library that makes it easy to write your own
web-based XMPP clients. Strophe handles all actual communication parts, such as the encoding
and decoding of XML stanzas, the connection procedure, and so on. You can use simple APIs
provided by Strophe to create your client. Strophe.js uses jQuery to work with the HTML DOM,
so if you are familiar with jQuery you will feel at home when working with Strophe.

If you browse through the code in echobot.js, you will see two main event handlers:
onConnect and onMessage. These event handlers are attached to specific events and are
executed when that event occurs. The onConnect handler is attached to a connection object
to capture any change in connection state, and onMessage is attached as a handler for
message events. It will be triggered when our client receives any message from the server.

If you are interested in the syntax for the addHandler function, it is as follows:

addHandler: function (handler,ns,name,type,id,from,options)

Chapter 10

317

The handler parameter is the actual function to manipulate an incoming message object; ns
is the XMPP namespace and can be used to receive packets only from a certain namespace.
It defaults to jabber:client, the name parameter, which is the name of an element to act
upon—in our case, it is message. You can use iq or presence to receive respective data
types. Other parameters add more filtering options, where you can specify a specific ID for
the message, type of the message packet (chat or normal or group, defaults to chat) and
other options.

The handler function onMessage gets triggered whenever a connection object receives
a new message from the server. Then, it parses the received data and extracts all required
information. As it is an echo bot, it simply reads the message and echoes it back to the
sender. The new message packet is generated with the following lines:

var reply = $msg({to: from, from: to, type: 'chat'})
 .cnode(Strophe.copyElement(body));

The message is passed to a connection object with the following lines, which in turn sends
it to the server:

connection.send(reply.tree());

The last section initiates the Strophe client on page load (ready). When we click on the
connect button, a click handler in this section gets triggered and opens a new connection
with the XMPP server. The same button is changed to disconnect so that we can send a
proper disconnect request to the server.

There's more…
Strophe.js supports WebSocket-based XMPP connections, and the latest version of Ejabberd
has also added support for WebSockets. WebSockets provides noticeable performance
improvements and reduces connection time over BOSH connections. In the preceding
example, we have used the BOSH protocol, which can be replaced with WebSocket simply
by changing the BOSH_SERVICE URL as follows:

var BOSH_SERVICE = 'ws:// hostname:5280/websocket';

If you need a secure WebSocket connection, use the wss protocol instead of:

wsvar BOSH_SERVICE = 'wss:// hostname:5280/websocket';

You should check other examples, mainly prebind and restore. Both demonstrate
connection features that can help in reducing connection delay.

Communication Server with XMPP

318

See also
ff StropheJS official page at http://strophe.im/strophejs/

ff StropheJS GitHub repo at https://github.com/strophe/strophejs

ff StropheJS API documentation at http://strophe.im/strophejs/doc/1.1.3/
files/strophe-js.html

ff StropheJS plugins at https://github.com/metajack/strophejs-plugins

Enabling group chat
In this recipe, we will learn how to set up and use the group chat feature of XMPP. Group chat
is also called Multi User Chat (MUC). Ejabberd supports MUC with the help of an extension
and is enabled by default.

Getting ready
You will need the Ejabberd server set up and running. Make sure you have enabled MUC with
the mod_muc and mod_muc_admin modules.

You will need two users for the group chat. One of them needs to have admin rights to set up
MUC and create rooms.

Check your XMPP client for the support of MUC or conference protocol. I will be using PSI as a
client for this recipe.

How to do it…
For multi-user chat, we need two or more users logged in on the server at the same time, plus
a chat room. Let's first set up our chat client with user accounts and create a chat room.

Follow these steps to enable group chat:

1.	 Open PSI and set up two different accounts. Log in to the XMPP server and set the
Status to Online. Your PSI window should look something like this:

http://strophe.im/strophejs/
https://github.com/strophe/strophejs
http://strophe.im/strophejs/doc/1.1.3/files/strophe-js.html
http://strophe.im/strophejs/doc/1.1.3/files/strophe-js.html
https://github.com/metajack/strophejs-plugins

Chapter 10

319

2.	 You can access the MUC statistics on the Ejabberd web panel to check
available rooms.

3.	 Now we will create our first chat room. In PSI, click the General menu, select Service
Discovery, and then select your admin account:

4.	 This will open a Service Discovery window with a list of all administrative services on
your Ejabberd XMPP server:

Communication Server with XMPP

320

5.	 Look for the Chatrooms node under the Name column and double-click it to browse
its options. A new window will pop up, which should look something like this:

6.	 Now type the name of the chat room you want to create under the Room information
section. Set your nickname as it should be displayed to other participants and click
the Join button.

7.	 This will open a new window for your chat room. You will notice the chat room name
on the title bar of the window. As the user admin created this room, he is assigned as
a moderator:

8.	 For now, the admin is the only participant in this room. Repeat the same steps with
other user accounts to get them to join this room. Make sure that you use the same
room name again. Once a new user joins the room, the admin user will get notified.
Both users can see each other in the participants section:

Chapter 10

321

You can always share your room name with other users to let them in.

How it works…
A group chat works in a similar way to a one on one chat. In a one-on-one chat, we send a
message to the JID of a specific user, while in a multi-user chat we send a message to the JID
of a chat room. As the message is received on room ID, XMPP takes care of forwarding it to all
participants in that room.

There's more…
By default, XMPP chat rooms are not persistent and will be deleted when all participants leave
that room. PSI uses the default configuration to quickly create a new chat room. Once the
chat room is created, you can configure it in the same chat room window. Click on the options
button, the downward triangle in the upper-right corner of the chat room window, and then
select Configure room:

Communication Server with XMPP

322

On the first tab, you can set members, administrators, and ban user accounts. On the
General tab, you can set other room configurations. You can mark a room as persistent and
make it private password-protected. This tab contains a number of other options; check them
at your leisure.

You may have noticed we have used an admin account to create a chat room. You can allow
non-admin users to act as an MUC admin. Open the Ejabberd configuration and search for
muc_admin configuration. Add your desired username below the admin entry and set it
to allow.

See also
ff Candy - JavaScript-based multi-user chat client at https://candy-chat.github.

io/candy/

ff Strophe.js MUC plugin at https://github.com/metajack/strophejs-
plugins/tree/master/muc

Chat server with Node.js
Up to now, this chapter has covered XMPP and its usages. It is a good, mature protocol with
multiple servers developed around it. Sometimes, however, you may need to set up a quick
application that uses a simple message transfer, or develop a small chat application for your
team. For such projects, XMPP servers may turn out to be overkill. You may not use all the
features of XMPP and waste resources, even for a basic setup. Plus, developing an XMPP
application is a time consuming process.

In this case, you can quickly start using Node.js-based socket communication. Node.js has
gained popularity in the developer community. It is a framework developed in a commonly
known language, JavaScript. In this recipe, we will learn how to develop a message passing
application using Node.js sockets. We will use Socket.io, a popular Node.js library, to work
with sockets and a demo app provided by Socket.io.

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
We are going to set up a Node.js-based application, so we need to install Node.js on our
Ubuntu server.

https://candy-chat.github.io/candy/
https://candy-chat.github.io/candy/
https://github.com/metajack/strophejs-plugins/tree/master/muc
https://github.com/metajack/strophejs-plugins/tree/master/muc

Chapter 10

323

Follow these steps to install Node.js:

1.	 Install Node.js with the following command:
$ sudo apt-get update

$ sudo apt-get install nodejs

2.	 Optionally, check your Node.js version:
$ node -v

3.	 Next, download the sample application from the Socket.io GitHub repo:
$ wget https://github.com/rauchg/chat-
example/archive/master.zip

4.	 Unzip the downloaded contents. This will create a new directory named
chat-sample-master:
$ unzip master.zip

5.	 Change the path to the newly created directory:
$ cd chat-sample-master

6.	 Next, we will need to install the dependencies for this sample application. Use the
following Node.js command to install all dependencies.
$ npm install

7.	 This will fetch all dependencies and install them in the node_modules directory
under chat-sample-master. Once the install command completes, you can
start your application with the following command:
$ node index.js

ubuntu: ~/chat-example-master $ node index.js listening on
*:3000

8.	 This will start an inbuilt HTTP server and set it to listen on default port 3000. Now you
can access the app at http://server-ip:3000. The screen will look similar to the
following image:

9.	 Open another instance in a separate browser window and start sending your messages.

Communication Server with XMPP

324

How it works…
We have set up a very simple application that listens on a given Node.js socket. To send a
message, we have used the socket.emit() function, which writes the data from text box
to socket:

$('form').submit(function(){
 socket.emit('chat message', $('#m').val());
 ...
});

When this message is received on the server side, the server writes it to all connected
sockets, resulting in a group chat scenario:

io.on('connection', function(socket){
 socket.on('chat message', function(msg){
 io.emit('chat message', msg);
 });
});

Similarly, to receive a message, we keep listening on the socket, and when an event chat
message happens, we write the received data to an HTML page as a message:

socket.on('chat message', function(msg){
 $('#messages').append($('').text(msg));
});

This is very basic application and can be extended easily to implement one-on-one chat.
All we need is a unique ID for all clients and a little modification to the interface to separate
messages. Right now, the message is sent as it is; you can collect the message and create
a JSON object to contain sender and receiver IDs, plus any additional information.

The advantage of using NodeJS is quick and easy development. JavaScript is a commonly
used language and you can easily get support from the large community. You can always
develop the application as per your requirements. The disadvantage is regarding scaling;
you will need to code the clustering mechanism on your own, whereas for XMPP, clustering
is implemented by nearly all leading servers.

Chapter 10

325

There's more…
The Node.js setup available with the Ubuntu repository is not the latest one. You can
download the latest version from the node official download page.

Download NodeJS binaries for Linux. Choose your desired version by visiting the NodeJS
download page. As of writing this, the latest stable version is 5.1:

$ wget https://nodejs.org/download/release/v5.1.0/node-v5.1.0-linux-
x64.tar.xz

Extract binaries and move it to /use/local so that it is accessible globally:

$ tar Jxv --strip=1 -C /usr/local/

Check the node version with the following command:

$ node -v

See also
ff Node.js download page: https://nodejs.org/en/download

ff Node: how to install: https://github.com/nodejs/help/issues/41

ff Sample chat application on GitHub: https://github.com/rauchg/chat-
example

https://nodejs.org/en/download
https://github.com/nodejs/help/issues/41
https://github.com/rauchg/chat-example
https://github.com/rauchg/chat-example

327

11
Git Hosting

In this chapter, we will cover the following recipes:

ff Installing Git

ff Creating a local repository with Git CLI

ff Storing file revisions with Git commit

ff Synchronizing the repository with a remote server

ff Receiving updates with Git pull

ff Creating repository clones

ff Installing GitLab, your own Git hosting

ff Adding users to the GitLab server

ff Creating a repository with GitLab

ff Automating common tasks with Git hooks

Introduction
In this chapter, we will learn how to set up a popular version control system: Git. A version
control system, also known as revision control system, can be thought of as a repository of
files that record every single change in a file. Every update to a file or set of files is recorded
as a new version, with some metadata about that specific modification. Metadata contains
details of who made the change, a small comment explaining why the change was made,
details on exactly what changed in each file, and a timestamp. You can easily switch back to
an older version when needed.

Git Hosting

328

Version control systems are generally used to track software source code, but they can be used
with virtually any type of file. It is necessary for collaborative work where two or more people
are working on the same file. Everyone maintains their own local copy of each file and works on
them. When a person satisfactorily completes his work, he sends the updated file to the central
repo. Others can synchronize their local copies with this central repo and receive any updates. If
two people happen to modify the same file at the same time, they can choose what to keep and
what to remove before sending updates to the central repository. If any issue happens with the
latest updates, source code can be replaced with previous known-to-work versions. This allows
you to track the changes over time and find the cause of the problem.

Over time, multiple version control systems have been developed; some are centralized
version control systems (CVCS) and others are distributed version control systems.
Centralized systems consist of a single central server that hosts all the versions and updates.
Everyone sends new changes to the central server and gets updates from it. This makes
it easy to administer the repository and enable fine-grained control, but it also becomes a
candidate for a single point of failure. If a central server goes down, no one can push changes
or get updates. CVS and Subversion are well known centralized version control systems.

Distributed version control systems, on the other hand, overcome this problem by distributing
a full copy of the repository on each participating system. If a central server goes down, a
copy from any client can be sent to the server to restore it. One can even choose to promote a
client as a new server. Git, Mercurial, and Bazaar are examples of distributed version control
systems. Bazaar is sponsored and developed by Canonical, the developer of Ubuntu. It is
primarily focused on community-supported open source software development.

In this chapter, we will focus on Git, a popular version control system. It was primarily
developed by Linus Torvalds to support the development of the Linux kernel. Git is influenced
by the lessons learned from other version control systems. It was developed with the aim to
support large projects, such as the Linux kernel, and the need for a fully distributed system
and high speed. Later, GitHub, a social network for code and developers, ensured the
widespread adoption of Git.

In this chapter, we will learn how to work with Git. Starting with the basics, such as installing
Git and using it locally, we will also cover some advanced features of Git. We will also set up
our own Git hosting with GitLab, an open source tool.

Installing Git
This recipe covers the installation of Git binaries on the Ubuntu server. As always, we will
install the latest available Git package.

Chapter 11

329

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
Git maintains a separate repository of the latest binaries on Launchpad. We will use PPA for
this repository,to install the latest Git version:

1.	 Add PPA to the Ubuntu installation source:
$ sudo add-apt-repository ppa:git-core/ppa

2.	 Update the apt repository cache:
$ sudo apt-get update

3.	 Now, install Git with a simple apt-get install git command:
$ sudo apt-get install git -y

4.	 Once installation completes, you can check the Git version with the following
command. You can cross check the version with the official Git download page:
$ git version

5.	 Now introduce yourself to Git by providing your name and email address. Git will add
this information to every commit message made by you:
$ git config --global user.name "Your Name"

$ git config --global user.email "email@domain.com"

6.	 You can cross-check the configuration by using the --list parameter to git config:
$ git config --list

7.	 Use git help to get a list of the basic daily use commands:

$ git help

How it works…
Here, we have the installed the latest Git version from the repository maintained by Git
developers. The Ubuntu default package repository contains the Git package, but often
it is not updated. Ubuntu 14.04 still provides Git version 1.9.1.

Git Hosting

330

Once the Git packages are installed, you need to identify yourself to Git. This information
is used to tag the commits created by you. We have globally set the username and email
with the git config command. Now, whenever you create a new commit in any repository
on this system, the commit will get tagged with your username and email. This helps in
tracking who did what, especially when you are working in a large group. You can get a list of
configuration settings with the command git config --list, and the output should look
something like the following:

$ git config --list

user.name=yourname

user.email=youremail@example.com

If you execute the same command from within a repository directory, the list will show some
extra settings specific to that repository:

~/sample-repo$ git config --list

user.name=yourname

user.email=youremail@example.com

core.repositoryformatversion=0

core.filemode=true

core.bare=false

core.logallrefupdates=true

Now, if you are not already familiar with Git, you can make use of the git help command
to get documentation and manual pages. The default help menu lists commonly used
commands with a short description. You can get a list of all available commands with the
same git help command and a flag, -a.

$ git help -a

Additionally, the installation contains some guides or manual pages to help you get started
with Git. To get a list of the available guides, use:

$ git help -g

The common Git guides are as follows:

ff attributes: Defines attributes per path

ff glossary: A Git glossary

ff ignore: Specifies intentionally untracked files to ignore

To open a particular guide, use the git help guidename or the man git[guidename]
command:

$ git help everyday # or man giteveryday

Chapter 11

331

There's more…
Git has become a mainstream version control system, especially after the rise of the social
coding site GitHub. There are other well-known version control systems available, such as
Subversion and Mercurial. Facebook uses a modified version of Mercurial for their internal
code hosting. Bazaar is another distributed version control system sponsored and developed
by Canonical, the force behind Ubuntu. Bazaar provides tight integration with Launchpad,
a collaborative development platform by Canonical.

You can get more details about Bazaar on their official page at http://bazaar.
canonical.com/en/.

See also
You can read more by following these links:

ff Git basics: https://git-scm.com/book/en/v2/Getting-Started-Git-
Basics

ff Git book: https://git-scm.com/book/en/v2

ff Check out the Git interactive tutorial at: https://try.github.io and
http://git.rocks/

ff Launchpad: https://launchpad.net/

Creating a local repository with Git CLI
Now that we have the Git binaries installed, let's take a step forward and create our first local
Git repository.

Getting ready
Make sure that you have installed Git.

http://bazaar.canonical.com/en/
http://bazaar.canonical.com/en/
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2
https://try.github.io
http://git.rocks/
https://launchpad.net/

Git Hosting

332

How to do it…
We will take a common path by starting a new pet project, where we will simply create
a new local directory, add some files to it, and then realize, Ohh I am gonna need a version
control system:

1.	 So, yes, quickly create your new project:
$ mkdir mynewproject

$ touch mynewproject /index.html

$ touch mynewproject /main.js

$ touch mynewproject/main.css

2.	 Add some sample content to these files by editing them:

Now you need to create a Git repository for this project. Sure, Git covered you with
the git init command.

3.	 Make sure you are in the project directory and then initialize a new repository,
as follows:

$ cd mynewproject

$ git init

This will initialize a new empty repository under the project directory. A new hidden directory
gets created with the name .git. This directory will contain all the metadata of your Git
repository and all revisions of every single file tracked by Git.

How it works…
Here, we have used the git init command to initialize a new repository on our local
system. The files created before initializing a repo are optional; you can always skip that step
and directly use git init to create a new local repository. Later, when you need to push
(synchronize) this repo with a remote hosted repository, you can simply use the git remote
add command. We will see examples of git remote add in the next recipes.

With the git init command, you can also create a bare repository by using the --bare
flag. The difference between a normal repository and a bare repository is that a bare
repository does not have a working copy. You cannot use a bare repository directly to edit and
commit files. Unlike a normal repository, where revision history, tags, and head information is
stored in a separate .git directory, a bare repo stores all this data in the same directory. It is
meant to be a central shared repository where multiple people can commit their changes. You
need to clone these types of repositories to access and edit files. The changes can be pushed
using the git push command from the cloned copy.

Chapter 11

333

There's more…
You can also use git clone to clone existing repositories. The repository can be local or
remote. The clone command will replicate the contents of a parent repository, including
revision history and other details. We will see more details of git clone in the next recipes.

See also
You can read more by following these links:

ff Git init: https://git-scm.com/docs/git-init

ff Git clone: https://git-scm.com/docs/git-clone

Storing file revisions with Git commit
We have initialized a new repository for our project. Now we will learn how to store file
modifications using git add and git commit.

Getting ready
Make sure you have initialized a new git repository and created sample files under your project
directory. Follow the previous recipes to get more details.

How to do it…
Now that we have a new repo initialized for our project, let's go ahead and check in our files.

1.	 Before we add any files, simply check the current status of the repo with the
git status command. This should list all the files under the Untracked files
list, as follows:
$ git status

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-clone

Git Hosting

334

As shown by git status, none of our files are being tracked by Git. We need to
add those files before Git tracks any changes to them.

2.	 Let's add all the files to the tracking list with git add:
$ git add .

This command does not create any output, but stages all untracked files to be added
to the repo. The symbol (.) specifies the current directory and processes all files
under the current directory. You can also specify file name(s) to add specific files.

3.	 Now check the git status again. This time, it will show newly added files marked by
green text and a message saying Changes to be committed:

4.	 Next, commit the current state of the files with the git commit command. Commit
means asking Git to save the current state of staged files:
$ git commit -m "First commit"

The git commit command will display details of updates to the repository, along
with the commit ID (4459fcc). In this case, we have added three new files without
any new insertion or deletion of contents.

Chapter 11

335

5.	 Now if you check the git status again, it should show the nothing to commit
message:
$ git status

On branch master

nothing to commit, working directory clean

6.	 Next, make some changes in any file and check the repo status again. This time,
it should show the modified files as follows:

7.	 You can check the exact differences to the previous version and current modifications
with the git diff command. Use git diff without any file name to get all
modifications in all files, or use it with a file name to check specific files:
$ git diff

Git Hosting

336

8.	 Now you can repeat the add and commit process to store these changes. We have
modified an existing file without creating new files. We can use the -a flag with git
commit to stage changes and commit them in a single command, as follows:

$ git commit -a -m "index.html updated"

The -a flag will stage all modified files and commit will proceed with newly staged contents.
Note that this only works with modified files. If you have created any new file, you need to use
git add to stage them.

How it works…
This recipe uses two primary commands: git add and git commit. The first one stages the
content for the next commit, and the second actually stores the current state of the content.
The git add command is used to add new files, stage updates to existing files, and remove
any entries of deleted files. All these modifications to the current working tree are staged for
the next commit. The command can be used multiple times to stage multiple modifications.
Additionally, you can stage all files under the current directory at once by adding a single file,
naming it explicitly, or even choosing a single line from a bunch of updates in the single file.

Once the modifications are staged, you can use git commit to store the updates. When the
changes are committed, Git stores the updates in the revision history and changes Git Head
to point to the latest revision. All updated files are stored in the form of a binary large object
(blob) as a new snapshot. The commit process also triggers some hooks or events that can be
used to execute external scripts to carry out some additional functions. Later in this chapter,
we will discuss Git hooks in more detail.

Other than git add and git commit, we have used git status and git diff commands.
As the name suggests, git status shows the current status of the repository in question. It
lists all files that have been modified after the last commit, newly created or deleted files, and
any updates that have already been staged. The git diff command can be used to list all
modifications to a given file. It compares the current state of a file against its last committed
or indexed state. Note that you can use git diff before indexing any file with git add.

There's more…
Another useful command is git checkout. It can be used to discard any modifications and
restore a file to its previous state, or restore the deleted file to its known revision.

Chapter 11

337

Synchronizing the repository with a remote
server

Up to now, we have learned how to create a local Git repository and add or update files to it.
In this recipe, we will learn how to set up a remote repo and synchronize local code with it.
We will be using GitHub to host our remote repository; feel free to choose any other code
hosting service.

Getting ready
You will need a GitHub account. Sign up for a free account if you do not already have one.

How to do it…
To create a new repository on GitHub, log in to your GitHub account and create a new
public repository:

1.	 Click the Create repository button. Make sure that the checkbox Initialize this
repository with a README is unchecked. The new repository form should look
something like this:

Git Hosting

338

2.	 On the next page, you will be given an option to initialize this repository. We already
have a local repository, so we will use the ... or push an existing repository from the
command line option:

3.	 Copy both commands and execute them on a local Git repository:
$ git remote add origin https://github.com/sawantuday/
mynewproject.git

$ git push -u origin master

The first command, git remote, adds a reference to the remote repository on
GitHub and sets it as its origin. The next command, git push, synchronizes all local
content with the remote repository. The git push command will show the details,
as follows:

Chapter 11

339

4.	 You will be prompted to authenticate with your GitHub account from the command
line. Enter your GitHub username and password. This ensures that you are allowed to
push the changes to the repository. Alternatively, you can add your local SSH public
key to your GitHub account to avoid manual authentication.

Now you can use your GitHub repository to share code with others or clone it to some other
system. On the GitHub page, check the code tab to take a look at files in the repository.

How it works…
Local repositories are good for personal work. A single person can work with them easily.
A centrally hosted repository is required when you need to share the code base with a
group of people. Everyone can make a local copy of the central code base and send their
changes back to the central copy. GitHub solves this problem by hosting repositories that are
accessible over the Internet. You can simply create a free public repository and share its URL
with colleagues. Through access control, you can select who can check in their code. You can
also set up your own centrally hosted repository. All you need is a system accessible over your
network or Internet.

Here, we have created a central shared repository on GitHub. GitHub provides various options
to initialize a repository and add code to it. As we already have our local repository ready, we
just need to add a reference to the remote repo and synchronize our changes with git push.
The git remote command is used to add a reference to the remote repository. We have set
the remote repository as origin, that is, the default remote repository. When using git push
or git pull commands, if we do not specify any remote name it is assumed to be origin.
Also, by default, Git marks the first remote as origin.

Next, we used Git push to push or synchronize our local contents to a remote copy. We have
explicitly mentioned the remote name as origin and the remote branch as master. By default,
Git always pushes to a remote named origin and branch master.

There's more…
You can create your own remote copy on a local shared server. All you need is a normal user
account on that server.

Log in to the shared server and create a bare repository with the following command:

$ git init --bare shared_repo

This will create an empty bare repository under the shared_repo directory. If you check its
contents, you will find all Git-specific files and directories.

Git Hosting

340

Now you can clone this repo from your workstation or use the git remote add command
to add a remote to your already initialized repository. Use the following command to clone the
repo. Replace the username with the user account on a shared server:

$ git clone ssh://user@ server_ip_or_name/full/path/to/repo

This command will ask for the password of the user account you have used in the username.
Additionally, you can remove the password prompt by setting key-based SSH authentication
with a shared server.

GitHub pages
You can host your own simple static website with GitHub for free. All you need is a Git
repository hosted on GitHub. Follow these steps to get your own GitHub page:

1.	 Create a new repository with the name username.github.io, where username
should be your GitHub username.

2.	 Clone this repository to your local system. If you already have a project created on
your local system, you can add this repository as a remote. Check this recipe for how
to add a remote.

3.	 Create index.html if you do not have one. Add some content to index.html.

4.	 Stage all content, commit to the local repository, and then push to GitHub.

5.	 Next, point your browser to username.github.io. You should see the content of
index.html.

GitHub pages works with websites generated using static website generators such as Jeykyll,
Hugo, and Octopress. By default, you get a github.io sub-domain, but you can use your own
domain name as well.

See also
Check the manual pages for git remote and git push with man git-remote and
man git-push respectively:

ff Read more about generating SSH keys: https://help.github.com/articles/
generating-ssh-keys/

ff Get free hosting for your static website at GitHub pages: https://pages.github.
com/

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/
https://pages.github.com/
https://pages.github.com/

Chapter 11

341

Receiving updates with Git pull
In the last recipe, we learned how to set up a remote repository and send local changes to a
remote using the git push command. The story is not complete yet. When the repository is
shared by multiple people, everyone will push their own changes. The central repository will
keep on updating. When you want to synchronize or push your changes to the central repo,
you need to download any updates made by other users and then push your modifications on
top of that. A git pull command will be used to pull down any updates to the remote central
repository to your local repository.

This recipe covers the git pull command. We will use this command to resolve a rejected push,
but it is generally used simply to update your local copy.

Getting ready
You will need one central remote repository; it may be hosted on GitHub or anywhere else.

Secondly, you will need two local copies of the central repo. Use the git clone command to
create a local replica of the remote repository. These two copies are used for demonstration
purposes; in the real world, you will already have multiple copies with different users of
your repository:

$ git clone https://github.com/sawantuday/mynewproject.git local_copy_1

$ git clone https://github.com/sawantuday/mynewproject.git local_copy_2

Now enter local_copy_1, create a new file with random content and then commit and push
the changes back to the remote repository:

$ cd local_copy_1

$ echo "// Modifications by user 1" >> index.php

$ git add .

$ git commit -m "Index.php created with comments"

$ git push origin master

Your push command should complete without any errors or warnings.

Next, enter local_copy_2 and create a new file with random contents:

$ cd local_copy_2

$ echo "\\ Modifications by user 2" >> main.php

Git Hosting

342

How to do it…
Suppose you are user two working on a copy, local_copy_2. You cloned the repository
and started working with the code base. In the meantime, user one completed his work and
pushed his changes back to the central repo. Now, after you have completed your work, you
are ready to send updates to the remote repo:

1.	 Commit your modifications to the local repository:
$ git add .

$ git commit -m "main.php created with comments"

2.	 Try to push your commit to the central repo:
$ git push origin master

This time, your push should fail, saying someone else had already updated the
remote repository. Git will give you details of a rejected push, as follows:

Chapter 11

343

3.	 Now you need to pull remote changes; first, with git pull, merge any potential conflicts,
and then try to push again:
$ git pull origin master

4.	 You will be asked to enter a merge message in nano or a similar editor. Simply accept
the pre-filled message and save the file by pressing Ctrl + O, then press Enter to save,
and then Ctrl + X to exit.

5.	 Now try to push again. This time it should complete successfully:

$ git push origin master

How it works…
As we saw in the previous example, git pull is used to pull the remote modifications to
the local repository. It is a good idea to use git pull before starting your work on the local
copy. This way you can be sure that you have all remote updates in your local repository,
thus reducing the chances of a rejected push.

The git pull command can be used any time, even to simply update your local codebase
with the remote copy. I have used it in a commit and push flow just to demonstrate the
rejected push and merge scenario.

The example demonstrates the simple automated merge. It may happen that both user one
and user two are working on the same file and incidentally modify the same part of the code.
Git will report a Merge conflict, as follows:

Git Hosting

344

Now, in this case, Git may not be able to automatically merge both updates. It will combine
both updates in single file and mark them in a special format, as follows:

In this case, you need to decide what to keep and what to remove. Once you are done with
solving conflicts, remove the special tags added by Git and commit the conflicting file. After
that, you can push your updates along with the new commit for merging.

See also
You can read more by following these links:

ff Git pull: https://git-scm.com/docs/git-pull

ff Git merge: https://git-scm.com/docs/git-merge

ff Git fetch: https://git-scm.com/docs/git-fetch

Creating repository clones
Git clone allows you to create a copy of your repository in a new directory or location. It can
be used to replicate a remote repository on your local system or create a local clone to be
shared over an intranet. This recipe covers the git clone command. We will learn to create
a clone of a remote repository and then take a look at various transport protocols supported
by Git for cloning.

Getting ready
You will need Git binaries installed on your local system, plus a remote repository. Note down
the full path (clone URL) of the remote repository.

https://git-scm.com/docs/git-pull
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-fetch

Chapter 11

345

How to do it…
Create a clone of the repository with the git clone command, as follows:

$ git clone ssh://ubuntu@192.168.0.100:22/home/ubuntu/cookbook.git \
ubuntu_cookbook

You will be asked to enter a password for the user account ubuntu.

This command will create a new directory named ubuntu_cookbook and clone the
repository cookbook.git into this directory.

How it works…
As seen in the previous example, the git clone command will create a new copy of an
existing repository. The repository can be a local repository or one located on a remote server.
Git supports various protocols to transfer the content between two systems. This includes well-
known protocols such as SSH, HTTP/S, and rsync. In addition, Git provides a native transport
protocol named Git. Note that the Git protocol does not require any authentication and should
be used carefully. In the previous example, we have used the SSH protocol. When working with
local repositories, you can use file///path/to/repo.git or even an absolute path
/path/to/repo.git format.

Cloning requires a single argument, which is the path of the repository to be cloned. You can
skip the destination directory and Git will create a clone in a new directory named after the
repository name.

You can also create a new bare clone with the --bare option of the git clone command.
This is useful for creating a shared central clone that is used by a group of people.

Another important option is the depth clone. When cloning a large repository that contains
years of work, and you do not really need the entire history of the repository, the option
--depth can be used to copy only a specified number of revisions. This will help you in
quickly downloading just the tip of an entire repository, and will save you some bandwidth by
avoiding unnecessary downloads. The syntax for the --depth option is as follows:

git clone --depth 1 https://github.com/torvalds/linux.git mylinux

See also
You can read more by following these links:

ff Git clone: https://git-scm.com/docs/git-clone

https://git-scm.com/docs/git-clone

Git Hosting

346

Installing GitLab, your own Git hosting
Up to now in this chapter, we have worked with the Git command line interface (CLI). It is a
very flexible and powerful interface. This recipe covers the installation of a web interface for
Git repositories. We will install GitLab, an open source self-hosted Git server. Through GitLab,
you can do most administrative tasks, such as creating new repositories, managing access
rights, and monitoring history. You can easily browse your files or code and quickly make small
edits. GitLab is also adding support for collaboration tools.

Getting ready
You will need access to a root account or an account with sudo privileges

Make sure you check out the minimum requirements for installation. You can use a single
core 1 GB server for an installation with less than 100 users. An server with 2 cores and
2 GB RAM is recommended.

Also check the available disk space. The installer itself takes around 400 MB of disk space.

How to do it…
We will use the recommended Omnibus Package Installer. It provides a .deb package for
Debian/Ubuntu systems. Additionally, the omnibus installation takes care of housekeeping
tasks such as restarting the worker process to maintain memory use. If you choose to
follow the manual installation process, you can get the detailed installation guide from
the GitLab documentation:

1.	 First, we will need to download the installer package. Download the latest installer
package from the GitLab download page at https://packages.gitlab.com/
gitlab/gitlab-ce:
$ wget https://packages.gitlab.com/gitlab/gitlab-ce/packages/
ubuntu/xenial/gitlab-ce_8.7.1-ce.1_amd64.deb/download

2.	 Once download completes, install GitLab using the dpkg command, as follows:
$ sudo dpkg -i gitlab-ce_8.7.1-ce.1_amd64.deb

3.	 After installation, use the following command to configure GitLab:
$ sudo gitlab-ctl reconfigure

https://packages.gitlab.com/gitlab/gitlab-ce
https://packages.gitlab.com/gitlab/gitlab-ce

Chapter 11

347

4.	 Optionally, check the system status with the gitlab-ctl status command. It
should return a list of processes and their respective PIDs, as follows:
ubuntu@ubuntu:~$ sudo gitlab-ctl status

[sudo] password for ubuntu:

run: gitlab-workhorse: (pid 806) 57803s; run: log: (pid 805)
57803s

run: logrotate: (pid 31438) 202s; run: log: (pid 810) 57803s

run: nginx: (pid 813) 57803s; run: log: (pid 812) 57803s

run: postgresql: (pid 817) 57803s; run: log: (pid 811) 57803s

5.	 Then, open your browser and point it to your server IP or hostname. You will be asked
to set a new password for the administrator account. Once you set a new password,
use root as the username and your password to login.

How it works…
GitLab is a Ruby-based web application that provides centralized hosting for your Git
repositories. We have installed an open source community edition of GitLab using their
Omnibus installer. It is an integrated installer package that combines all dependencies and
default settings. The installer combines Nginx, Redis, Sidekiq, Unicorn, and PostgreSQL.
Unfortunately, the community edition with the Omnibus installer does not support switching to
the MySQL database server. To use MySQL, you need to follow the manual installation process
and compile GitLab from source, along with other various dependencies.

The configuration file is located at /etc/gitlab/gitlab.rb. It is quite a lengthy file and
contains numerous parameters, separated by each component. Some important settings to
look at include external_url, where you can set your domain name, database settings, if
you are planning to use external PostgreSQL setup, and email server settings, to set up your
outgoing email server. If you choose to modify any settings, you will need to reconfigure the
installation using the gitlab-ctl reconfigure command. You can get a list of enabled
configurations using the gitlab-ctl show-config command.

The GitLab Omnibus package ships with some extra components: GitLab CI, a continuous
integration service, and GitLab mattermost, an integrated installation of mattermost that
provides an internal communication functionality with a chat server and file sharing.
GitLab CI is enabled by default and can be accessed at http://ci.your-gitlab-
domain.com. You can enable mattermost from the configuration file and then access it at
http://mattermost.your-gitlab-domain.com.

Git Hosting

348

There's more…
Git provides an inbuilt web interface to browse your repositories. All you need is a repository,
web server, and the following command:

$ git instaweb --httpd apache2 # defaults to lighttpd

You can access the page at http://server-ip:1234

Check the GitWeb documentation for more details at https://git-scm.com/docs/gitweb.

See also
Check out the requirements for GitLab installation: https://github.com/gitlabhq/
gitlabhq/blob/master/doc/install/requirements.md.

Adding users to the GitLab server
We have set up our own Git hosting server with GitLab, but it still contains a single admin user
account. You can start using the setup and create a new repository with an admin account,
but it is a good idea to set up a separate non-root account. In this recipe, we will cover the
user management and access control features of the GitLab server.

Getting ready
Make sure you have followed the previous recipe and installed the GitLab server.

Login to GitLab with your root or admin account.

You will need to configure the email server before creating a user account. You can use
an external email service, such as sendgrid or mailgun. Update your GitLab email server
configuration and reconfigure the server for the changes to take effect.

How to do it…
The default landing page for GitLab is a projects page. The same page is listed even when you
log in as root. To create a new user, we need to access the admin area:

1.	 To open the admin console, click on the admin area icon located at the top-right
corner of the screen. Alternatively, you can add /admin to the base URL and access
the admin area.

The admin dashboard will greet you with details about your installation and the
features and components list. The left-hand menu will list all available options.

https://git-scm.com/docs/gitweb
https://github.com/gitlabhq/gitlabhq/blob/master/doc/install/requirements.md
https://github.com/gitlabhq/gitlabhq/blob/master/doc/install/requirements.md
/admin

Chapter 11

349

2.	 Click on the Users menu to get user account-related options.

3.	 Next, click on the big green New User button to open a new user form.

Now fill in the required details such as name, username, and email. The form should
looks something like this:

4.	 You cannot set a password for a new user account on the create user form. The reset
password link will be mailed to the user at a given email ID. A new user can set his
password through that link:

5.	 Under the Access section, you can mark this user as admin and set a limit on
projects created by him:

Git Hosting

350

6.	 Next, under the profile section, you can add some more details for this user account.

7.	 Now, click on the Create User button at the bottom-left of the form. This will save the
given details and trigger a password reset email. A screen will change to the User
Details page where you can see the account details, groups, and projects of a given
user, as well as other details. From the same page, you can block or remove the
user account.

A little workaround if you do not have email server set up is to click on the
edit button on the user details page. This will open the same form as add
new user, with the password fields enabled. Type in the new password,
then confirm them, and click on the Save changes button. You have set
the password for your new user without a reset email or the email server.

The new user account is ready to be used. Open the login page in a new window or private
browser and use the email or username and newly set password to log in.

Creating a repository with GitLab
Now that we have set up our own Git hosting and created a new user account, we can start
using our Git hosting by creating a new Git repository.

Getting ready
This recipe uses the GitLab setup. Make sure that you have followed the previous recipe and
installed your GitLab server.

Log in with your user account on the GitLab server. You can choose the admin account, but a
normal user account is recommended.

If you need to use SSH to clone and push to your repositories, you will need to set up your SSH
key. From the dashboard, click on Profile Settings and then select SSH Keys to add a new
SSH key. Check Chapter 2, Networking, for more details on how to create an SSH key.

How to do it…
In the previous recipe, we learned how to create a local repository and then push it to
the remote. Here, we will first create a remote or hosted repository and then clone it to
our local system:

1.	 Log in to your GitLab account. You will be greeted with the Welcome screen detailing
your projects.

Chapter 11

351

2.	 Click on the NEW PROJECT button to create a new repository:

3.	 On a new screen, enter the project or repository name in the project path field.
Add an optional descriptive message and select the proper checkbox to make your
repository public or private:

4.	 Next, click on the Create Project button to create a new repository. This will redirect
you to the repository page.

Git Hosting

352

A URL for your repository is listed, with some details on how to use your new
repository. You can use HTTP URL if you have not set up SSH keys. Additionally, you
may need to replace the hostname with the server IP from the repository URL:

5.	 Alternatively, you can create a readme file from the GitLab interface itself. Click on
the README link to open a file editor in your browser.

When you clone the private repository using its HTTP URL, a local Git daemon will ask you for
the username and password details for authentication.

Automating common tasks with Git hooks
One of the more interesting features of Git is hooks. With hooks, you can tie an arbitrary script
to various Git events. Whenever a particular event, such as a git commit or git push,
occurs, the script attached to that event gets executed.

Typically, an event consists of several steps, and a script can be attached to each of these
steps. The most common steps are pre-event and post-event, with pre hooks executed before
the event and post hooks after the event. A pre hook, such as pre-commit, is generally used
to cross-check the updates and can approve or reject an actual event. A post hook is used to
execute additional activities after an event, such as start a built process when a new push is
received or a notification sent.

Every Git repository consists of a .git/hooks directory with sample scripts. You can start
using those hooks by removing the .sample extension from the script name. Additionally, the
hook scripts belong to a single repository instance and do not get copied with the repository
clone. So, if you add some hooks to your local repository and then push changes to the
remote, the hooks will not get replicated on the remote. You will need to manually copy those
scripts on the remote system. Built-in sample hooks generally use the shell scripts, but you
can use any scripting language, such as Python or even PHP.

In this recipe, we will learn how to use Git hooks. We will create our own post-commit hook
that deploys to a local web server.

Chapter 11

353

Getting ready
We will need a local web server installed. I have used an Apache installation; feel free to use
your favorite server:

1.	 Set up a new virtual host under Apache and enable it:
$ cd /var/www/

$ sudo mkdir git-hooks-demo

$ sudo chown ubuntu:ubuntu git-hooks-demo

$ cd git-hooks-demo

2.	 Create index.html and add the following contents to it:
$ vi index.html

<!DOCTYPE html>
<html>
<head><title>Git hooks demo</title></head>
 <body>
 <h2>Deployed Manually </h2>
 </body>
</html>

3.	 Create the virtual host configuration:
$ cd /etc/apache2/sites-available

$ sudo cp 000-default.conf git-hooks-demo.conf

4.	 Open the virtual host configuration, git-hooks-demo.conf, and replace its
contents with following:
<VirtualHost *:80>
 DocumentRoot /var/www/git-hooks-demo/html
</VirtualHost>

5.	 Check the initial version by visiting your IP address in your browser.

6.	 Next, initialize a Git repository under the home directory:
$ cd ~/

$ mkdir git-hooks-repo

$ cd git-hooks-repo

$ git init

7.	 Copy index.html from the web root to the repository:

$ cp /var/www/git-hooks-demo/index.html .

Now we are equipped with the basic requirements to create our Git hook.

Git Hosting

354

How to do it…
Git hooks are located under the .git/hooks directory. We will create a new post commit
hook that deploys the latest commit to our local web server. We will be using a shell script to
write our hook:

1.	 Create a new file under the .git/hooks directory of your repository:
$ touch .git/hooks/post-commit

2.	 Add the following contents to our post-commit hook:
#!/bin/bash
echo "Post commit hook started"
WEBROOT=/var/www/git-hooks-demo
TARBALL=/tmp/myapp.tar
echo "Exporting repository contents"
git archive master --format=tar --output $TARBALL
mkdir $WEBROOT/html_new
tar -xf $TARBALL -C $WEBROOT/html_new --strip-components 1
echo "Backup existing setup"
mv $WEBROOT/html $WEBROOT/backups/html-'date +%Y-%m-%d-%T'
echo "Deploying latest code"
mv $WEBROOT/html_new $WEBROOT/html
exit 0

3.	 We need to set executable permissions to a post-commit file so that Git can
execute it:
$ chmod +x .git/hooks/post-commit

4.	 Now, update the index.html content. Change the line <h2>Deployed Manually
</h2> to <h2>Deployed using Git Hooks </h2>.

5.	 Commit the changes as usual. We have edited the existing file, so staging and
committing can be done in a single command, as follows:

$ git commit -a -m "deployed using hooks"

This time, the git commit result should output all echo statements from our git hook.
It should look as follows:

Chapter 11

355

You can check the latest deployed index.html by visiting the IP address of your system:

How it works…
We have created a simple post commit hook that exports all files from the Git repository,
backs up the existing live site, and replaces it with new contents. This is a very simple shell
script, set to execute after each commit event on the local repository. A script that starts with
a hash bang signature defines that the script is expecting bash runtime. Later, we defined
the WEBROOT and TARBALL variables, which contain the full path for the web-root directory
and backup location respectively. Next, we created an archive of all the files with the git
archive command. This command creates an archive of a named tree; a tree can be a
specific commit ID or a branch. We have used a master branch for our export. The contents
are exported in a tarball format with the export location set using the --output parameter.
Once we have the tarball in place, we need to replace the live site with contents from the
tarball. We have also taken a backup of the running site, just in case anything goes wrong.

This is a very primitive script and deploys only to the local server. To deploy on a remote
server, you will need to use some synchronization tools such as rsync to update the content
on a remote server. Make sure you are using an SSH connection for your deployments to
live servers. Many blogs advise you to have a Git instance running on a live web server and
setting it to deploy the live site using a post-receive hook. This can be an option for
staging or a demo server, but on a live server I would try to avoid installing any tool other than
a web server. Any additional packages will increase the effective attack surface and may
compromise the security of your servers. Who knows whether Git contains some unknown
shocks (remember shell shock?)

Note that we are creating a backup on each new commit. You may end up with an out of disk
space error if your deployment is big or if you are doing frequent commits. That is not a big
problem, though. The script can be easily modified to delete any directories created X days
before. You can even choose to keep the last, say, 10 backups and delete others.

Git Hosting

356

As we are deploying to a local web server, we have set the script to be a post-commit
hook. If you choose to deploy it on a remote server, then make sure you set the script as
a post receive or update script. We commit on a local repository and push updates to the
remote server.

As we have seen, this is a plain shell script, and you can easily use any bash command
in this script. Additionally, you can execute the script manually using the sh script.sh
command or the short hand notation, ./script.sh. This will help in debugging the script
and monitoring the output without the need to create any Git commits. Also make sure that
the script file is set as executable and that all directories you are working with are writable by
your user account.

If you are using remote repositories hosted with GitHub or GitLab, they provide a webhook
feature which works similar to Git hooks. You will need to set a script accessible over the Web
through a URL. When a particular event happens, GitLab will make a POST request to a given
URL with the relevant event data.

See also
ff Read more about Git hooks at https://git-scm.com/docs/githooks

ff Customizing Git hooks at https://git-scm.com/book/en/v2/Customizing-
Git-Git-Hooks

357

12
Collaboration Tools

In this chapter, we will cover the following recipes:

ff Installing the VNC Server

ff Installing Hackpad, a collaborative document editor

ff Installing Mattermost – a self-hosted slack alternative

ff Installing OwnCloud, self-hosted cloud storage

Introduction
This chapter covers various collaboration tools. Collaboration enables people to share
thoughts and solve problems collectively. With the help of the Internet, we can communicate
quickly and more effectively. Tools such as WhatsApp and Slack have changed the way we
communicate personally, as well as in corporate life. Services such as Google Docs hosts our
documents in the cloud, which can then be shared with multiple people and simultaneously
modified by them. Need a comment on your latest edit? Click that chat button and send your
request. Need to discuss face to face? Click another button to start video call. Need to send a
long detailed message? Yes, we've got e-mail services.

Most of these services are hosted by Internet giants and available as SAAS (Software as a
Service) products. Simply choose subscription plans and start using them. Many of these
services even offer free basic plans. The only problem with these services is you've got to
trust a service provider with your data. All your messages, emails, photos, and important
documents are hosted with some third party.

In this chapter, we will learn to how set up various open source tools on our own servers.
We have already installed an email and instant messaging service, central Git hosting, and
a file server. This chapter will focus on more advanced collaboration tools. We will cover the
VNC server to share your desktop, the OwnCloud server for document and file sharing, and
Mattermost, an open source Slack alternative.

Collaboration Tools

358

Installing the VNC server
VNC (Virtual Network Computing) enables us to access the GUI of a remote system
over a secured network. The VNC client installed on a local system captures the input events
of a mouse and keyboard and transfers them to the remote VNC server. Those events are
executed on a remote system and the output is sent back to the client. VNC is a desktop
sharing tool and is generally used to access the desktop system for remote administration
and technical support.

With Ubuntu server, we rarely need a desktop environment. However, if you are a newbie
administrator or quite unfamiliar with the command line environment, then GUI becomes a
handy tool for you. Plus, you may want to deploy a shared remote desktop environment where
people can collaborate with each other. This recipe covers the installation of the VNC server
on Ubuntu Server 14.04. We will install a GUI component that is required by VNC and then
install and configure the VNC server.

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
The Ubuntu server and cloud editions generally ship with a minimal installation footprint
and do not contain GUI components. We will use Gnome-core as our desktop component.
Gnome-core is a part of an open source desktop environment.

1.	 Access the server shell and use the following command to install gnome-core:
$ sudo apt-get update

$ sudo apt-get install gnome-core -y

This will take some time as the command needs to download a bunch of components
and install them.

2.	 Once Gnome is installed, we can proceed with VNC server installation using the
following command:
 $ sudo apt-get install vnc4server -y

3.	 When installation completes, start a new VNC session by using the
following command:

$ vncserver

Chapter 12

359

As this is the first time we have started VNC, you will be prompted to set up a password.
This session will also create a few configuration files required for VNC. Your screen should
look similar to the screenshot below:

1.	 Next, we will edit the default configuration files created by our first session, kill the
VNC process, and then edit the configuration file:
$ vncserver -kill :1

Killing Xvnc4 process ID 2118

2.	 Edit the default configuration file and set it to use the Gnome session. Open ~/.vnc/
xstartup and uncomment or add the following line to it:
$ nano ~/.vnc/xstartup

#!/bin/sh

Uncomment the following two lines for normal desktop:

unset SESSION_MANAGER

exec /etc/X11/xinit/xinitrc

#[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup

#[-r $HOME/.Xresources] && xrdb $HOME/.Xresources

#xsetroot -solid grey

#vncconfig -iconic &

#x-terminal-emulator -geometry 80x24+10+10 -ls -title "$VNCDESKTOP
Desktop" &

#x-window-manager &

metacity &

gnome-settings-daemon &

gnome-panel &

Collaboration Tools

360

3.	 Optionally, disable the Gnome startup script. This will stop Gnome from starting with
a system boot and you will see a CLI login instead of the new Gnome-based graphical
login screen. Open /etc/init/gdm.conf and comment out the following lines:
$ sudo nano /etc/init/gdm.conf

#start on ((filesystem

and runlevel [!06]

and started dbus

and plymouth-ready)

or runlevel PREVLEVEL=S)

4.	 Save all modifications in configuration files and start a new VNC session. This time,
we will add screen resolution and color depth options:
$ vncserver -geometry 1366x768 -depth 24

5.	 Next, from your local system, install the VNC client software and open it. I have used
the TightVNC client. Enter your server IP address and a VNC desktop number to be
connected. Here, we have created a single session to a sample IP address, which will
be 192.168.0.1:1:

Chapter 12

361

6.	 Click Connect; you will be prompted for a password to authenticate your session:

7.	 Enter the password that we created while starting the first session. You should see a
desktop screen with a basic Gnome theme. The following is the scaled screenshot of
the VNC viewer:

Collaboration Tools

362

How it works…
VNC works with a client-server model. We have installed the VNC server daemon on our
Ubuntu Server and a client on the local system. The server daemon communicates with the
GUI buffer or frame buffer on the server side and transfers that buffer data to the client. The
client renders that buffer in specially designed software called the VNC viewer. In addition to
rendering the remote buffer, the VNC client or viewer captures mouse and keyboard (input)
events happening over the client window. Those events are then sent to the VNC server, which
applies them to the current graphics frame and any updates are sent back to client.

The pevious example uses simple Gnome-core components. This is a basic graphics suite
which contains graphics drives, plus some other tools such as the Firefox browser and an
instant messaging client. You can even choose to have a limited setup and install selective,
required selected required Gnome packages as follows:

$ sudo apt-get install gnome-panel gnome-settings-daemon \

metacity nautilus gnome-terminal

This GUI does not match the one provided by Ubuntu Desktop. If you prefer to have the same
experience as Ubuntu Desktop, you can separately install a package, ubuntu-desktop:

$ sudo apt-get install ubuntu-desktop

VNC does support multiple sessions to a single server. You may have noticed in the
connection address used previously that we used :1 to represent the first session or display.
This is shorthand for the full port number, which is 5901 for the first session, 5092 for the
second, and so on. You can use the full port or just the last digit to refer to a session. Notice
the change in desktop number when we start multiple VNC sessions:

Additionally, you can start a new VNC session for different users with its own password.
Simply log in or switch (su user1) to the user account, start vncserver, set the password,
and you are done.

Chapter 12

363

See also
ff How VNC works on Stack Overflow - http://stackoverflow.com/

questions/4833152/how-realvnc-works

Installing Hackpad, a collaborative
document editor

In this recipe, we will install a collaborative document editor, Hackpad. It is a document editor
based on an open source editor, EtherPad. Hackpad was acquired by Dropbox, and in early
2015 they open sourced its code.

Getting ready
You will need a system with at least 2 GB of memory.

As always, you will need an account with super user privileges.

How to do it…
Hackpad is a web application based on Java. We will need to install the JDK; Scala, which
is another programming language; and MySQL as a data store. We will start by installing
dependencies and then cloning the Hackpad repository from GitHub.

1.	 Install JDK and Scala. The installation document mentions Sun JDK as a requirement
but it works with Open JDK.
$ sudo apt-get update

$ sudo apt-get install openjdk-7-jdk scala -y

2.	 Install the MySQL server. You can get more details on MySQL installation in the
chapter handling the database:
$ sudo apt-get install mysql-server-5.6

3.	 Next, clone the Hackpad repository. You can choose not to install Git and download
the ZIP archive of Hackpad from GitHub:
$ git clone https://github.com/dropbox/hackpad.git

4.	 This will create a new directory, hackpad. Before we run the build script, we need to
set some configuration parameters to match our environment. Change the directory
to hackpad and edit the bin/exports.sh file as follows:
export SCALA_HOME="/usr/share/java"
export SCALA_LIBRARY_JAR="$SCALA_HOME/scala-library.jar"
export JAVA_HOME="/usr/share/java"

http://stackoverflow.com/questions/4833152/how-realvnc-works
http://stackoverflow.com/questions/4833152/how-realvnc-works

Collaboration Tools

364

5.	 Next, create a configuration file as a copy of the default configuration, as follows:
$ cp etherpad/etc/etherpad.localdev-default.properties \
etherpad/etc/etherpad.local.properties

6.	 Edit the newly created configuration, get the admin email address, and search for the
following line in etherpad/etc/etherpad.local.properties:
etherpad.superUserEmailAddresses =
__email_addresses_with_admin_access__

Replace it with:
etherpad.superUserEmailAddresses = admin@yourdomain.tld

Optionally, you can set the project to production mode by setting isProduction
to true:

devMode = false
verbose = true
etherpad.fakeProduction = false
etherpad.isProduction = true

7.	 If you are using a domain name other than localhost, then configure the same with
the following option:
topdomains =yourdomain.tld,localhost

8.	 Set your email host settings. You will need an email address to receive your
registration confirmation email. However, this is not a hard requirement for
initial setup:
smtpServer = Your SMTP server
smtpUser = SMTP user
smtpPass = SMTP password

9.	 Next, run a build script from the bin directory:
$./bin/build.sh

10.	 Once the build completes, set up the MySQL database. The script will create a new
database named hackpad and a MySQL user account. You will be asked to enter
your MySQL root account password:
$./contrib/scripts/setup-mysql-db.sh

Chapter 12

365

11.	 Finally, you can start the server by executing run.sh from the bin directory:
$./bin/run.sh

This will take a few seconds to start the application. Once you see the HTTP server is
listening to the line, you can access Hackpad at http://yourdomain.tld:9000:

12.	 Access Hackpad and register with an email address that is used for an admin
account. If you have set up an email server, you should receive a confirmation
email containing a link to activate your account.

If you have not set up email server access to the MySQL database to get your
authentication token, open the MySQL client and use the following queries to
get your token. The MySQL password for the Hackpad account is taken from the
configuration file:

$ mysql -h localhost -u hackpad -ppassword
mysql> use hackpad;
mysql> select * from email_signup;

Collaboration Tools

366

13.	 Select your token from the row matching your email address and replace it in the
following URL. In this case, the auth toke is PgEJoGAiL3E2ZDl2FqMc:
http://yourdomain.com:9000/ep/account/validate-
email?email=user@youremail.com&token=your_auth_token_from_db

The full auth URL for my admin account will look like this:

http://localhost.local:9000/ep/account/validate-email?email=admin@
localhost.local&token= PgEJoGAiL3E2ZDl2FqMc

14.	 Open this URL in the browser and your account registration will be confirmed. You will
be logged in to your Hackpad account.

Once you log in to your new account, Hackpad will start with a welcome screen listing
all the default pads that looks something like the following:

You can click any of them and start editing or create a new document. When opened,
you will get a full page to add contents, with basic text editing options in the top bar:

The document can be shared using the invite box or simply by sharing the URL.

Chapter 12

367

How it works…
As mentioned before, Hackpad is a collaborative editor based on an open source project,
EtherPad. It allows you to create online documents directly in your browser. In the same way
as Google Docs, you can use Hackpad to create and store your documents in the cloud. Plus,
you can access Hackpad from any device. All your documents will be rendered in a proper
format suitable for your device.

When you log in for the first time, the home screen will greet you with stock pads. You can edit
existing pads or start a new one from the top bar. An editor will give you a basic text editing
setting, plus options to create lists and add comments. You can even add data in a tabular
format. Click on the gear icon from the top bar and it will give you options to view document
history, get an embedded link, or delete the document.

Every change in the document will be marked with your username, and if two or more people
are working with the document at the same time, then the specific line being edited by each
user is marked with the user's tag:

On the right-hand side of the document, you can see the options to invite your peers to
collaborate on this document. You can invite people using their email address. Make sure that
you have configured your email server before using this feature. Alternatively, the invites are
also shown in a chat window with clickable links, as shown in the following screenshot:

Collaboration Tools

368

At the bottom of the document, you can find all activity logs about the new initiation and the
editing of this document. There is an option to chat with participating people directly from the
same window. It is located at the bottom corner of the right-hand side; it's the small bar with a
chat icon named after your domain. This provides one-to-one chat, as well as a group chat:

Note that this setup does not work with IP addresses. You will need a domain
name that maps to an IP address. You can set localhost files to set up local
domain mappings, or use a local DNS server for your internal network.

There's more
Hackpad is a collaborative document editor. You can add snippets of code in a given
document but not entire code files. To edit your code, you can use an open source Cloud
IDE named Cloud 9 IDE. Check out the GitHub repo at https://github.com/c9/core/.
Alternatively, you can get Docker images set up quickly and play around with the IDE.

Using Hackpad with Docker
The Hackpad setup contains a Docker file as well. If you have Docker installed, you can build a
Docker image for Hackpad. Simply change your directory to Hackpad git repo and build a
Docker image with the following command:

$ docker build -t hackpad

https://github.com/c9/core/

Chapter 12

369

See also
Read more about Hackpad at the following links:

ff Hackpad with Docker at https://github.com/dropbox/hackpad/blob/
master/DOCKER.md

ff Hackpad repo at https://github.com/dropbox/hackpad

ff Etherpad at http://etherpad.org/

ff Cloud 9 IDE at https://c9.io/

Installing Mattermost – a self-hosted slack
alternative

This recipe covers another open source collaboration tool, Mattermost. Mattermost
is a modern communication tool that includes one-to-one chat, group chat IRC-like
channels, file sharing, and a super-fast search functionality. It can be thought of as a modern
IRC tool. Mattermost is well known as an open source Slack alternative, but the Mattermost
website says it is not limited to being a Slack alternative. You can find a list of features at
http://www.mattermost.org/features.

The GitHub repository contains a step-by-step guide for installing Mattermost on production
servers. We will use the same guide as our base.

Getting ready
You will need a 64-bit Ubuntu server and access to an account with sudo privileges.
Mattermost prebuilt binaries are available only on a 64-bit platform. If you are running 32-bit
Ubuntu, you will need to compile Mattermost from source. We will use MySQL as a database
for Mattermost. I will use the same server for the database and Mattermost. You may want to
separate these services on two different servers for better performance.

Create a separate MySQL user account and database for Mattermost. I will use the lowercase
mattermost as a database name as well as a username.

Additionally, you will need a proxy if you are planning to load balance multiple Mattermost
instances or have a secure setup with SSL enabled.

https://github.com/dropbox/hackpad/blob/master/DOCKER.md
https://github.com/dropbox/hackpad/blob/master/DOCKER.md
https://github.com/dropbox/hackpad
http://etherpad.org/
https://c9.io/
http://www.mattermost.org/features

Collaboration Tools

370

You will need a separate storage directory for shared multimedia contents. You should use a
separate large volume specifically assigned for this purpose. Make sure that the directory is
owned by the current user. To keep things simple, I will use a data directory under the current
user's home, that is, /home/ubuntu/mattermost-data.

How to do it…
Mattermost is based on Golang as a backend and React, a JavaScript framework, for the
frontend. Golang is capable of creating self-sufficient independent binaries. We will download
the prebuilt package available on GitHub. As of writing this, the latest stable version is 1.3.0:

1.	 Download the Mattermost archive with the following command:
$ wget
https://github.com/mattermost/platform/releases/download/v1.3.
0/mattermost.tar.gz

2.	 Extract content from the archive. This will create a new directory named
mattermost:
$ tar -xf mattermost.tar.gz

3.	 Next, edit the Mattermost configuration file located under the config directory:
$ cd mattermost

$ vi config/config.json

4.	 It is already configured to use MySQL as a data source. We need to set our username
and password details for the database. Search for the SqlSettings section and
replace the content of the DataSource parameter with the following line:
"DataSource": "mattermost:
password@tcp(localhost:3306)/mattermost?charset=utf8mb4,utf
8"

5.	 Next, search for the FileSettings section and set the Directory parameter to the
directory we created for multimedia content:
"Directory":"/home/ubuntu/mattermost-data/"

6.	 Now, run the Mattermost server with the following command, and wait for the server
to start listening:
$./bin/platform

7.	 Now you can access the Mattermost service at the hostname of your server at
http://server_ip_or_host:8065. However, the service is still running
from the console and will be terminated when we close the terminal.

8.	 Terminate this process by pressing Ctrl + C and set a startup daemon so that
we can start Mattermost in the backend and automatically start the service on
system reboot.

Chapter 12

371

9.	 Create a new upstart configuration under the /etc/init directory:
$ sudo nano /etc/init/mattermost.conf

10.	 Add the following content to the newly created file:
start on runlevel [2345]
stop on runlevel [016]
respawn
chdir /home/ubuntu/mattermost
setuid ubuntu
exec bin/platform

11.	 Now you can start Mattermost with any of the following commands:
$ sudo start mattermost

Or

$ sudo service mattermost start

Optionally, if you want to load balance the Mattermost service using Nginx or HAProxy
in front of it, please refer to Chapter 3, Working with Web Servers, for detail on how to
do so. The use of a load balancer will also give you an option to enable SSL security
for all communication.

12.	 Once you start the Mattermost service and access the homepage, you will be asked
to sign up. Create an account with an email address and you can start using your own
Mattermost instance. You can access the server at http://yourserver:8065.

How it works…
Mattermost is all about team communication and collaboration. When you access the
Mattermost server for the first time and sign up with your email address, you will get an
option to create a new team or join existing teams.:

Collaboration Tools

372

To join an existing team, you need to submit your email address and Mattermost will reply with
links to the team page where you are a member. If you have not yet created a team, simply
proceed with signup. On signup, after you have entered your email address, you will be asked
to select a team name and URI or a web address for your team page. Enter a good name for
your team and click Next:

On the next page, you will be asked to choose a URL for your team page. The box should be
pre-filled with a suggested URL. Feel free to change it if you have a better idea:

Once you are done with signup, you will be greeted with a welcome message and a simple
walkthrough of the Mattermost service. Once you are done with the introduction, you will land
on the Town Square channel. This is a prebuilt public channel accessible to all users. There's
one more prebuilt channel named Off-Topic listed on the left side menu. You can create
your own public channel, create a Private Group, or have a one-to-one chat through Direct
Messages.

Chapter 12

373

Before you start using the service, invite some more users to your team. Click on the Invite
others to this team link or click on your username at the top left and then select the Invite
New Member link. Here, you can enter the email and name of a single member to invite them.
Optionally, you can get a team invite link, which can be shared with a group:

The username menu on the left gives you some more options. You can update team settings,
manage team members, and even create a new team altogether. You will need to be a team
admin to access these options. If you are part of multiple teams, then you can see an option
to switch to a different team.

The team members will receive all communication in public channels. A user can decide to
be a part of a channel or leave it and not receive any communication from a specific channel.
Other options are Private group and Direct messages. In private groups, you can communicate
and share with selected people and not the entire team, whereas in a direct message, as the
name suggests, it is a one-to-one chat.

Collaboration Tools

374

Every single message shared using Mattermost is archived and stored on the Mattermost
server. Users can access their respective communication history and even search for a
specific message, or documents from a specific user. Shared documents also become part of
the archive and are available for later use. The search menu is available at the top-right corner
of the screen.

The first user to sign up on Mattermost will get additional admin rights and can access the
System Console (from the username menu) to configure system settings and set global
defaults. Here, you can configure the database, set your email server and configure email
notifications, configure default team settings, check system logs, and much more. When using
Mattermost in production mode, make sure that you have configured the SMTP service under
email settings and enabled email notifications. You can also enable email verification where
account activation will need a user to verify their email address.

There's more …
The Mattermost service provides an option to integrate with various other popular services.
One such service we have worked with is the GitLab server. While working with Git, we have
seen the installation process of the GitLab omnibus package. The omnibus package contains
Mattermost as a configurable component. If you have GitLab installed through the Omnibus
package, check its configuration to enable the Mattermost service. Alternatively, you can
configure GitLab integration from the Mattermost settings as well.

From version 1.1, Mattermost added support for web hooks to integrate with external services.
Mattermost supports both incoming and outgoing hooks. Incoming hooks can pull events from
external services and vice versa. These hooks are compatible with Slack APIs and the tools
developed to work with Slack should work with self-hosted Mattermost as well.

See also
Read more about Mattermost by following these resources:

ff Mattermost features: http://www.mattermost.org/features

ff Installation on Ubuntu: http://docs.mattermost.com/install/prod-ubuntu.
html

ff Mattermost Dockerfile: https://hub.docker.com/r/mattermost/platform/

ff Mattermost web-hooks: http://www.mattermost.org/webhooks/

ff Mattermost Source Code on GitHub: https://github.com/mattermost/
platform

http://www.mattermost.org/features
http://docs.mattermost.com/install/prod-ubuntu.html
http://docs.mattermost.com/install/prod-ubuntu.html
https://hub.docker.com/r/mattermost/platform/
http://www.mattermost.org/webhooks/
https://github.com/mattermost/platform
https://github.com/mattermost/platform

Chapter 12

375

Installing OwnCloud, self-hosted cloud
storage

OwnCloud is a self-hosted file storage and synchronization service. It provides client tools
to upload and sync all your files to a central storage server. You can access all your data
through a well-designed web interface, which can be accessed on any device of your choice.
In addition to a simple contact service, OwnCloud supports contacts, email, and calendar
synchronization. Plus, all your data is stored on your own server, making it a more
secure option.

In this recipe, we will learn how to install the OwnCloud service on the Ubuntu server. We will
be working with a basic OwnCloud setup that includes file sharing and storage. Later, you can
add separate plugins to extend the capability of your OwnCloud installation.

Getting ready
You will need access to an account with sudo privileges.

How to do it…
OwnCloud is a PHP-based web application. Its dependencies include a web server, PHP
runtime, and a database server. We will use the installation package provided by OwnCloud.
The package takes care of all dependencies, plus it will help in updating our installation
whenever a new version is available. We will install the latest stable version of OwnCloud.
As of writing this, OwnCloud does not provide any packages for Ubuntu 16.04. I have used
the package for Ubuntu 15.10:

1.	 Add the OwnCloud repository public key to your Ubuntu server:
$ wget
https://download.owncloud.org/download/repositories/stable/Ubu
ntu_15.10/Release.key -O owncloud.key

$ sudo apt-key add - < owncloud.key

2.	 Next, add the OwnCloud repository to installation sources. Create a new source list:
$ sudo touch /etc/apt/sources.list.d/owncloud.list

3.	 Add an installation path to the newly created source list:
$ sudo nano /etc/apt/sources.list.d/owncloud.list

deb
http://download.owncloud.org/download/repositories/stable/Ubun
tu_15.10/ /

Collaboration Tools

376

4.	 Update installation sources with the apt-get update command:
$ sudo apt-get update

5.	 Install the OwnCloud package. This will download and install all dependencies,
download the OwnCloud package, and set up the Apache web server virtual host
configuration. By default, OwnCloud use SQLite as a default database. This can be
changed at the signup page:
$ sudo apt-get install owncloud

6.	 Once installed, you can access your OwnCloud installation at http://your_
server/owncloud. This will open the registration page for an admin account. Enter
the admin username and password for a new account. The first user to register will
be marked as the admin of the OwnCloud instance.

Your server may return a Not Found error for the preceding
URL. In that case, you need to configure Apache and point it to
the OwnCloud setup. Open the default virtual host file /etc/
apache2/sites-available/000-default.conf and
change DocumentRoot to match the following:
DocumentRoot /var/www/owncloud

Reload the Apache server for the changes to take effect. Now you
should be able to access OwnCloud at http://your_server.

The same page contains a warning saying the default database is SQLite. Click the configure
database link; this will show you the option to enter database connection details. Enter all the
required details and click submit.

Once registration completes, you will be redirected to the OwnCloud homepage. If you need
any help, this page contains the OwnCloud user manual. You can start uploading content or
create new text files right from the homepage.

Optionally, install OwnCloud desktop and mobile applications to sync files across all
your devices.

How it works…
OwnCloud is a web application that enables you to synchronize and share files across the
web. Store a backup of all your files on a central OwnCloud server, or use it as a central place
to send and receive files. OwnCloud also provides native applications for all platforms so that
you can easily replicate the necessary data across all your devices. Once you have logged in
to your account, OwnCloud will list the default directory structure with a PDF file for the user
manual. The screen should look similar to the following:

Chapter 12

377

With the recent updates, OwnCloud has removed various default packages and reduced the
overall binary size. For now, the default installation contains a file browser, an activity monitor,
and a gallery. The file browser supports the uploading, viewing, and sharing of files. You can
create new text files and open PDF files right from the browser:

Collaboration Tools

378

Default features can be extended from the Apps submenu accessible from the Files link at
the top, left of the screen. It gives you a list of installed and enabled or disabled apps. Plus,
you can search for apps across categories such as Multimedia, Productivity, Games, and
Tools. Choose your desired category, scroll to the desired app and click enable to install
a new component:

OwnCloud also allows flexible user management. When logged in as an admin user,
you can access the Users menu from the top-right login section of the screen. Under
users, you can create a new user, assign them to a group, create a new group, and
even set the disk quota allowed:

Next is the admin section, which is again accessible to users from the admin group at the
top-right of the screen. This section lists all the administrative settings relating to the core
OwnCloud setup, as well as for installed apps. Each section contains a link to detailed
documentation. The important part of the settings is the email server setup. By default,
OwnCloud uses default PHP-based emails. It is recommended you set up an SMTP service.
You can use external SMTP service providers, such as MailChimp, or set up your own SMTP
server. At the bottom of the admin settings page, you can see some links to improve your
OwnCloud experience. This includes performance tuning the OwnCloud setup, security
guidelines, theme support, and so on.

Chapter 12

379

See also
ff OwnCloud repositories: https://download.owncloud.org/download/

repositories/stable/owncloud/

ff OwnCloud admin manual: https://doc.owncloud.org/server/8.2/admin_
manual/

https://download.owncloud.org/download/repositories/stable/owncloud/
https://download.owncloud.org/download/repositories/stable/owncloud/
https://doc.owncloud.org/server/8.2/admin_manual/
https://doc.owncloud.org/server/8.2/admin_manual/

381

13
Performance Monitoring

In this chapter, we will cover the following recipes:

ff Monitoring the CPU

ff Monitoring memory and swap

ff Monitoring the network

ff Monitoring storage

ff Setting performance benchmarks

Introduction
When starting a new server, we tend to use stock images of the Ubuntu server and default
installation process. The focus is on developing and improving the application code. The base
operating system is not given much attention until we hit some performance issues. Once
you reach the tip of application level optimizations and have collected all low-hanging fruit,
the next obvious target is system monitoring and resource optimization. In this chapter, we
will focus on various performance monitoring tools. We will learn to use various tools to track
down the bottlenecks and then briefly look at possible solutions.

The chapter is separated in various recipes, and each covers the monitoring of a single
system resource, such as the CPU and memory. At the end of the chapter, we will learn
how to set up a performance baseline and use it to compare different configurations of
system parameters.

Performance Monitoring

382

Monitoring the CPU
Modern CPUs generally do not become bottlenecks for performance. The processing power
is still far ahead of the data transfer speeds of I/O devices and networks. Generally, the CPU
spends a big part of processing time waiting for synchronous IO to fetch data from the disk or
from a network device. Tracking exact CPU usage is quite a confusing task. Most of the time,
you will find higher CPU use, but in reality, the CPU is waiting for data to become available.

In this recipe, we will focus on tracking CPU performance. We will look at some common tools
used to get CPU usage details.

Getting ready
You may need sudo privileges to execute some commands.

How to do it…
Let's start with the most commonly used monitoring command that is top command. The
top command shows a summarized view of various resource utilization metrics. This includes
CPU usage, memory and swap utilization, running processes, and their respective resource
consumption, and so on. All metrics are updated at a predefined interval of three seconds.

Follow these steps to monitor the CPU:

1.	 To start top, simply type in top in your command prompt and press Enter:
$ top

Chapter 13

383

2.	 As you can see in the preceding screenshot, a single Python process is using 80% of
CPU time. The CPU is still underutilized, with 58% time in idle processes:

Optionally, you can use the htop command. This is the same process monitor as top,
but a little easier to use, and it provides text graphs for CPU and memory utilization.
You will need to install htop separately:

$ sudo apt-get install htop # one time command

$ htop

3.	 While top is used to get an overview of all running processes, the command pidstat
can be used to monitor CPU utilization by an individual process or program. Use the
following command to monitor CPU consumed by MySQL (or any other task name):
$ pidstat -C mysql

4.	 With pidstat, you can also query statistics for a specific process by its process ID or
PID, as follows:
$ pidstat -p 1134

Performance Monitoring

384

5.	 The other useful command is vmstat. This is primarily used to get details on virtual
memory usages but also includes some CPU metrics similar to the top command:

6.	 Another command for getting processor statistics is mpstat. This returns the same
statistics as top or vmstat but is limited to CPU statistics. Mpstat is not a part of
the default Ubuntu installation; you need to install the sysstat package to use the
mpstat command:
$ sudo apt-get install sysstat -y

7.	 By default, mpstat returns combined averaged stats for all CPUs. Flag -P can be
used to get details of specific CPUs. The following command will display statistics for
processor one (0) and processor two (1), and update at an interval of 3 seconds:
$ mpstat -P 0,1 3

8.	 One more command, sar (System Activity Reporter), gives details of
system performance.

The following command will extract the CPU metrics recorded by sar. Flag -u will
limit details to CPU only and -P will display data for all available CPUs separately.
By default, the sar command will limit the output to CPU details only:

$ sar -u -p ALL

Chapter 13

385

9.	 To get current CPU utilization using sar, specify the interval, and optionally, counter
values. The following command will output 5 records at an interval of 2 seconds:
$ sar -u 2 5

10.	 All this data can be stored in a file specified by the (-o) flag. The following command
will create a file named sarReport in your current directory, with details of
CPU utilization:

$ sar -u -o sarReport 3 5

Other options include flag –u, to limit the counter to CPU, and flag A, to get system-wide
counters that include network, disk, interrupts, and many more. Check sar manual (man
sar) to get specific flags for your desired counters.

Performance Monitoring

386

How it works…
This recipe covers some well known CPU monitoring tools, starting with the very commonly
used command, top, to the background metric logging tool SAR.

In the preceding example, we used top to get a quick summarized view of the current state
of the system. By default, top shows the average CPU usage. It is listed in the third row of top
output. If you have more than one CPU, their usage is combined and displayed in one single
column. You can press 1 when top is running to get details of all available CPUs. This should
expand the CPU row to list all CPUs. The following screenshot shows two CPUs available on my
virtual machine:

The CPU row shows various different categories of CPU utilization, and the following is a list of
their brief descriptions:

ff us: Time spent in running user space processes. This reflects the CPU consumption
by your application.

ff sy: Time taken by system processes. A higher number here can indicate too many
processes, and the CPU is spending more time process scheduling.

ff ni: Time spent with user space processes that are assigned with execution priority
(nice value).

ff id: Indicates the time spent in idle mode, where the CPU is doing nothing.

ff wa: Waiting for IO. A higher value here means your CPU is spending too much
time handling IO operations. Try improving IO performance or reducing IO at
application level.

ff hi/si: Time spent in hardware interrupts or software interrupts.

ff st: Stolen CPU cycles. The hypervisor assigned these CPU cycles to another virtual
machine. If you see a higher number in this field, try reducing the number of virtual
machines from the host. If you are using a cloud service, try to get a new server, or
change your service provider.

Chapter 13

387

The second metric shown is the process level CPU utilization. This is listed in a tabular format
under the column head, %CPU. This is the percentage of CPU utilization by each process.
By default, the top output is automatically sorted in descending order of CPU utilization.
Processes that are using higher CPU get listed at top. Another column, named TIME+,
displays total CPU time used by each process. Check the processes section on the screen,
which should be similar to the following screenshot:

If you have noticed the processes listed by top you should see that top itself is listed in the
process list. Top is considered as a separate running process and also consumes CPU cycles.

To get help on the top screen, press H; this will show you various
key combinations to modify top output. For additional details, check
out the manual pages with the command, man top. When you are
done with top, press Q, to exit or use the exit combination, Ctrl + C.

With top, you can get a list of processes or tasks that are consuming most of the CPU time. To
get more details of these tasks, you can use the command, pidstat. By default, pidstat
shows CPU statistics. It can be used with a process name or process ID (pid). With pidstat,
you can also query memory usages, IO statistics, child processes, and various other process
related details. Check the manual page for pidstat using the command man pidstat.

Both commands, top as well as pidstat, give a summarized view of CPU utilization. Top
output is refreshed at a specific interval and you cannot extract utilization details over a
specific time period. Here comes the other handy command that is vmstat. When run without
any parameters, vmstat outputs a single line with memory and CPU utilization, but you can
ask vmstat to run infinitely and update the latest metrics at specific intervals using the delay
parameter. All the output lines are preserved and can be used to compare the system stats for
a given period. The following command will render updated metrics every 5 seconds:

$ vmstat 5

Performance Monitoring

388

Optionally, specify the count after delay parameter to close vmstat after specific repetitions.
The following command will update the stats 5 times at 1 second intervals and then exit:

$ vmstat 1 5

The details provided by vmstat are quite useful for real-time monitoring. The tool sar helps
you to store all this data in log files and then extract specific details whenever needed.
Sar collects data from various internal counters maintained by the Linux kernel. It collects
data over a period of time which can be extracted when required. Using sar without any
parameters will show you the data extracted from the previously saved file. The data is
collected in a binary format and is located at the /var/log/sysstat directory. You
may need to enable data collection in the /etc/default/sysstat file. When the stats
collection is enabled, sar automatically collects data every 10 minutes. Sar is again available
from the package sysstat. Along with the sar package, sysstat combines two utilities:
command sa1 to record daily system activity data in a binary format, and command sa2
to extract that data to a human readable format. All data collected by sar can be extracted
in a human readable format using the sa2 command. Check the manual pages for both
commands to get more details.

There's more…
Similar to sar, one more well-known tool is collectd. It gathers and stores system statistics,
which can later be used to plot graphs.

See also
ff Get information on your system CPU with the following command:

$ less /proc/cpuinfo

ff Details on /proc file system: http://tldp.org/LDP/Linux-Filesystem-
Hierarchy/html/proc.html

Monitoring memory and swap
Memory is another important component of system performance. All files and data that
are currently being used are kept in the system main memory for faster access. The CPU
performance also depends on the availability of enough memory. Swap, on the other hand, is
an extension to main memory. Swap is part of persistent storage, such as hard drives or solid
state drives. It is utilized only when the system is low on main memory.

In this chapter, we will learn how to monitor system memory and swap utilization.

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html

Chapter 13

389

Getting ready
You may need sudo privileges for some commands.

How to do it…
In the last recipe, we used commands top and vmstat to monitor CPU utilization. These
commands also provided details of memory usage. Let's start with the top command again:

1.	 Run the top command and check for the Mem and Swap rows:

2.	 The memory line displays the size of total available memory, size of used memory,
free memory, and the memory used for buffers and the file system cache. Similarly,
swap row should display the allocated size of the swap if you have enabled the
swapping. Along with these two lines, top shows per process memory utilization as
well. The columns VIRT, RES, SHR, and %MEM all show different memory allocation
for each process:

3.	 Similar to the top command, you can query memory statistics for a specific PID or
program by using the pidstat command. By default, pidstat displays only CPU
statistics for a given process. Use flag -r to query memory utilization and page faults:
$ pidstat -C mysql -r

Performance Monitoring

390

4.	 Next, we will go through the vmstat command. This is an abbreviation of virtual
memory statistics. Enter the command vmstat in your console and you should see
output similar to the following screenshot:

Using vmstat without any option returns a single line report of memory, swap, io,
and CPU utilization. Under the memory column, it shows the amount of swap, free
memory, and the memory used for cache and buffers. It also display a separate swap
column with Swap In (si) and Swap Out (so) details.

5.	 To get detailed statistics of memory and event counters, use flag -s. This should
display a table, as follows:
$ vmstat -s

6.	 Another handy command is free, which displays the amount of used and available
memory in the system. Use it as follows, with the -h flag to get human-friendly units:
$ free -h

Chapter 13

391

7.	 Finally, command sar can give you periodic reports of memory utilization. Simply
enable sar to collect all reports and then extract memory reports from it or set a
specific command to log only memory and swap details.

8.	 Finally, use sar to monitor current memory and swap utilizations. The following
command will query the current memory (-r) and swap (-S) utilization:
$ sar -rS 1 5

9.	 For more details on using sar, check Monitoring the CPU recipe or read the manual
pages using the man sar command. The command sar is available in the package
sysstat; you will need to install it separately if not already installed.

10.	 All these tools show process-level memory statistics. If you are interested in memory
allocation inside a particular process, then the command pmap can help you. It
reports the memory mapping of a process, including details of any shared libraries
in use and any program extensions with their respective memory consumptions.
Use pmap along with the PID you want to monitor as follows:

$ sudo pmap -x 1322

All information displayed by pmap is read from a file named maps located
in the /proc/ file system. You can directly read the file as follows:

$ sudo cat /proc/1322/maps

How it works…
System memory is the primary storage for processes in execution. It is the fastest available
storage medium, but is volatile and limited in storage space. The limited storage is generally
extended with the help of slower, disk-based Swap files. Processes that are not being actively
executed are swapped to disk so that active processes get more space in the faster main
memory. Similar to other operating systems, Ubuntu provides various tools to monitor system-
wide memory utilization as well as memory uses by process. Commonly used tools include
top, vmstat, and free.

Performance Monitoring

392

We have used the top command to monitor CPU uses and know that top provides a
summarized view of system resource utilization. Along with a CPU summary, top also provides
the memory statistics. This includes overall memory utilization plus per process usage. The
summary section in the top output displays the total available and used memory. It also
contains a separate row for swap. By default, all Ubuntu systems enable the swap partition
with nearly the same size as main memory. Some cloud service providers disable the cache
for performance reasons.

The details section of top shows per process memory usage separated into multiple columns:

ff Column VIRT shows the virtual memory assigned to a task or process; this includes
memory assigned for program code, data, and shared libraries, plus memory that is
assigned but not used.

ff Column RES shows the non-swapped physical memory used by processes. Whereas
column SHR shows the amount of shared memory, this is the memory that can be
shared with other processes through shared libraries.

ff The column %MEM shows the percentage of main memory assigned to a specific
process. This is a percentage of RES memory available to task out of total
available memory.

ff By default, all memory values are shown in the lowest units, KB. This can be changed
using the key combination, Shift + E for summary rows and E for process columns.

Similar to top, the command ps lists running processes but without refreshing the list.
Without any options, ps shows the list of processes owned by the current user. Use it as
follows to get a list of all running processes:

$ ps aux

Sometimes it is useful to monitor a specific process over a period of
time. Top shows you a list of all running processes and ps gives you
a one-time list. The following command will help you monitor a single
program within top:
$ top -p $(pgrep process-name | head -20 | tr "\\n"
"," | sed 's/,$//')

The command vmstat gives you overall detail regarding memory and swap utilization. The
memory column shows the amount of available memory. Next to the memory column, the
swap column indicates the amount of memory read from disk (si) or written to disk (so)
per second. Any activity in the si and so columns indicates active swap utilization. In that
case, you should either increase the physical memory of the system or reduce the number
of processes running. Large numbers under the swap column may also indicate higher CPU
utilization, where the CPU waits for IO operations (wa) to complete. As seen before, you can
specify the delay and interval options to repeatedly query vmstat reports.

Chapter 13

393

One more command, named free, shows the current state of system memory. This shows
overall memory utilization in the first row and swap utilization in the second row. You may get
confused by looking at the lower values in the free column and assume higher memory uses.
Part of free memory is being used by Linux to improve file system performance by caching
frequently used files. The memory used for file caching is reflected in the buff/cache
column and is available to other programs when required. Check the last column, named
available, for the actual free memory.

If you are on Ubuntu 14.04 or lower, the output of the free command
will contain three rows, with overall memory utilization in the first row,
actual memory utilization with cache and buffer adjustments in the
second, and swap listed in the third row.

The second row of free output displays the swap utilization. You may see swap being used
under the used column. This is the amount of swap allocated but not effectively used. To
check if your system is effectively swapping, use the command vmstat 1 and monitor si/so
columns for any swap activity.

System swapping behavior also depends on the value of the kernel parameter named
vm.swappiness. Its value can range between 0 to 100, where 0 configures the kernel to
avoid swapping as much as possible and 100 sets it to swap aggressively. You can read the
current swappiness value using the following command:

$ sudo sysctl vm.swappiness

vm.swappiness = 60

To modify the swappiness value for the current session, use the sysctl command with
a new value, as follows. It is a good idea to use lower values and avoid swapping as much
as possible:

$ sudo sysctl vm.swappiness=10

vm.swappiness = 10

To permanently set swappiness, you need to edit the /etc/sysctl.conf file and add or
uncomment vm.swappiness=10 to it. Once the file is updated, use the following command
to read and set a new value from the configuration file:

$ sudo sysctl -p

Check the swapon and swapoff commands if you need to enable swapping or disable it.

Performance Monitoring

394

There's more…
Most of these statistics are read from the /proc partition. The two main files listing details of
memory and swap are /proc/meminfo and /proc/swaps.

The command lshw (list hardware) can give you the details of actual hardware. This includes
the physical memory configuration, the firmware version, CPU details, such as clock speed,
the cache, and various other hardware information. Use lshw as follows:

$ sudo lshw

See also
ff Check the swapon and swapoff commands to enable or disable swap files:

$ man swapon

$ man swapoff

Monitoring the network
When we are talking about a server, its network is the most important resource. Especially
in the cloud network, when it is the only communication channel to access the server and
connect with other servers in the network. The network comes under an Input/Output device
category. Networks are generally slow in performance and are an unreliable communication
channel. You may lose some data while in transit, data may be exposed to external entities, or
a malicious guy can update original data before it reaches you.

The Ubuntu server, as well as Linux in general, provides tons of utilities to ease network
monitoring and administration. This recipe covers some inbuilt tools to monitor network
traffic and its performance. We will also look at a few additional tools that are worth a space
on your system.

Getting ready
Some commands may need sudo access.

You may need to install a few tools.

Chapter 13

395

How to do it…
1.	 We will start with a commonly used command, that is, ifconfig. We mostly use

this command to read the network configuration details such as the IP address.
When called without any parameters, ifconfig displays details of all active network
interfaces as follows:

2.	 These details contain the IP address assigned to each network interface, its hardware
address, the maximum packet size (MTU) and basic statistics of received (RX) and
transmitted (TX) packets, and the count of errors or dropped packets, and so on.

3.	 If you are only interested in quick network statistics, use ifconfig with flag -s,
as follows:

4.	 If you do not see a specific network interface listed in the active list, then query for all
available interfaces with the -a option to ifconfig.

Performance Monitoring

396

5.	 Another commonly used command is ping. It sends ICMP requests to a specified
host and waits for the reply. If you query for a host name, ping will get its IP address
from DNS. This also gives you confirmation that the DNS is working properly. Ping
also gives you the latency of your network interface. Check for the time values in the
output of the ping command:

6.	 Next, comes netstat. It is mainly used to check network connections and routing
tables on the system. The commonly used syntax is as follows:
$ sudo netstat -plutn

7.	 The preceding command should list all TCP (-t) / UDP (-u) connections, plus any
ports that are actively listening (-l) for connection. The flag, -p, queries the program
name responsible for a specified connection. Note that flag -p requires sudo
privileges. Also check flag -a to get all listening as well as non-listening sockets,
or query the routing table information with flag -r as follows:
$ netstat -r

Chapter 13

397

8.	 You can also get protocol level network statistics using the netstat command
as follows:
$ netstat -s

9.	 One more utility very similar to netstat is ss. It displays detailed TCP socket
information. Use ss without any parameters to get a list of all the sockets with
a state established.

10.	 Another command, lsof, gives you a list of all open files. It includes the files used for
network connections or sockets. Use with flag -i to list all network files, as follows:
$ sudo lsof -i

Performance Monitoring

398

11.	 To filter output, use flag -s with protocol and state as filter options:
$ sudo lsof -iTCP -sTCP:LISTEN

12.	 Next, we will look at a well-known tool, tcpdump. It collects network traffic and
displays it to a standard output or dump in a file system. You can dump the content
of the packets for any network interface. When no interface is specified, tcpdump
defaults to the first configured interface, which is generally eth0. Use it as follows to
get a description of packets exchanged over eth0:
$ sudo tcpdump -i eth0

13.	 To log raw packets to a file, use flag -w. These logged packets can later be read with
the -r flag. The following command will log 100 packets from the interface eth0 to
the file tcpdump.log:
$ sudo tcpdump -i eth0 -w tcpdump.log -c 100

$ tcpdump -r tcpdump.log

14.	 Next, to get statistics of network traffic, use the command sar. We have already
used sar to get CPU and memory statistics. To simply extract all network statistics,
use sar as follows:
$ sar -n ALL 1 5

15.	 This will log all network statistics at an interval of 1 second. You can also enable
periodic logging in the file /etc/default/sysstat. For network specific usage of
sar, check flag -n in the man pages.

16.	 There is one more utility named collectl which is similar to sar. In the same way
as sar, you will need to separately install this command as well:
$ sudo apt-get install collectl

Chapter 13

399

17.	 Once installed, use collectl with the -s flag and value sn to get statistics about
the network. Using it without any parameters gives you statistics for the CPU, disk,
and network:

How it works…
This recipe covers various network monitoring commands including the commonly used
ifconfig and ping, netstat, tcpdump, and collectl.

If you have been working with Linux systems for a while, you should have already used the
basic network commands, ifconfig and ping. Ifconfig is commonly used to read network
configuration and get details of network interfaces. Apart from its basic use, ifconfig can
also be used to configure the network interface. See Chapter 2, Networking, to get more
details on network configuration. With netstat, you can get a list of all network sockets and
their respective processes using those socket connections. With various parameters, you
can easily separate active or listening connections and even separate connections with the
protocol being used by the socket. Additionally, netstat provides details of routing table
information and network statistics as well. The command ss provides similar details to netstat
and adds some more information. You can use ss to get memory usages of socket (-m) and
the process using that particular socket (-p). It also provides various filtering options to get
the desired output. Check the manual pages of ss with the command, man ss.

There's more…
Following are some more commands that can be useful when monitoring network data.
With a limit on page count, it is not possible to cover them all, so I am simply listing the
relevant commands:

Performance Monitoring

400

Many of these commands need to be installed separately. Simply type
in the command if it's not available, and Ubuntu will help you with a
command to install the respective package.

ff nethogs: Monitors per process bandwidth utilization

ff ntop / iftop: Top for network monitoring

ff iptraf: Monitors network interface activity

ff vnstat: Network traffic monitoring with logging

ff ethtool: Queries and configures network interfaces

ff nicstat / ifstat / nstat: Network interface statistics

ff tracepath: Traces a network route to destination host

Monitoring storage
Storage is one of the slowest components in a server's system, but is still the most important
component. Storage is mainly used as a persistence mechanism to store a large amount of
processed/unprocessed data. A slow storage device generally results in heavy utilization of
read write buffers and higher memory consumption. You will see higher CPU usage, but most
of the CPU time is spent waiting for I/O requests.

The recent developments of the flash storage medium have vastly improved storage
performance. Still, it's one of the slowest performing components and needs proper
planning— I/O planning in the application code, plus enough main memory for read
write buffers.

In this recipe, we will learn to monitor storage performance. The main focus will be on local
storage devices rather than network storage.

Getting ready
As always, you will need sudo access for some commands.

Some of the commands many not be available by default. Using them will prompt you if the
command is not available, along with the process necessary to install the required package.

Install the sysstat package as follows. We have already used it in previous recipes:

$ sudo apt get install sysstat

Chapter 13

401

How to do it…
1.	 The first command we will look at is vmstat. Using vmstat without any option

displays an io column with two sub entries: bytes in (bi) and bytes out (bo). Bytes
in represents the number of bytes read in per second from the disk and bytes out
represents the bytes written to the disk:

2.	 Vmstat also provides two flags, -d and -D, to get disk statistics. Flag -d displays disk
statistics and flag -D displays a summary view of disk activity:

3.	 There's one more option, -p, that displays partition-specific disk statistics.
Use the command lsblk to get a list of available partitions and then use the
vmstat -p partition:

Performance Monitoring

402

4.	 Another command, dstat, is a nice replacement for vmstat, especially for disk
statistics reporting. Use it with flag -d to get disk read writes per seconds. If you
have multiple disks, you can use dstat to list their stats separately:
$ dstat -d -D total,sda

5.	 Next, we will look at the command iostat. When used without any options, this
command displays basic CPU utilization, along with read write statistics for each
storage device:

6.	 The column tps specifies the I/O requests sent to a device per second,
and kb_read/s and kb_wrtn/s specifies per second blocks read and blocks
written respectively. kb_read and kb_wrtn shows the total number of blocks
read and written.

7.	 Some common options for iostat include –d, that displays disk only statistics,
-g that displays statistics for a group of devices, flag -p to display partition specific
stats, and -x to get extended statistics. Do not forget to check the manual entries for
iostat to get more details.

8.	 You can also use the command iotop, which is very similar to the top command but
it displays disk utilization and relevant processes.

9.	 The command lsof can display the list of all open files and respective processes
using that file. Use lsof with the process name to get files opened by that process:
$ lsof -c sshd

Chapter 13

403

10.	 To get a list of files opened by a specific PID, use the following command: $ lsof
-p 1134. Or, to get a list of files opened by a specific user, use the $ lsof -u
ubuntu command.

All these commands provide details on the read write performance of a storage
device. Another important detail to know is the availability of free space. To get
details of space utilization, you can use command df -h. This will list a partition-
level summary of disk space utilization:

11.	 Finally, you can use the sar command to track disk performance over a period of
time. To get real-time disk activity, use sar with the -d option, as follows:
$ sar -d 1

12.	 Use flag -F to get details on file system utilization and flag -S to display swap
utilization. You can also enable sar logging and then extract details from those logs.
Check the previous recipes in this chapter for how to enable sar logging. Also check
manual entries for sar to get details of various options.

Performance Monitoring

404

Setting performance benchmarks
Until now, in this chapter we have learned about various performance monitoring tools and
commands. This recipe covers a well-known performance benchmarking tool: Sysbench.
The purpose of performance benchmarking is to get a sense of system configuration and the
resulting performance. Sysbench is generally used to evaluate the performance of heavy load
systems. If you read the Sysbench introduction, it says that Sysbench is a benchmarking tool
to evaluate a system running database under intensive load. It is also being used as a tool to
evaluate the performance of multiple cloud service providers.

The current version of Sysbench supports various benchmark tests including CPU, memory,
IO system, and OLTP systems. We will primarily focus on CPU, memory, and IO benchmarks.

Getting ready
Before using Sysbench, we will need to install it. Sysbench is available in the Ubuntu package
repository with a little older (0.4.12) version. We will use the latest version (0.5) from Percona
Systems, available in their repo.

To install Sysbench from the Percona repo, we need to add the repo to our installation
sources. Following are the entries for Ubuntu 14.04 (trusty). Create a new file under
/etc/apt/source.list.d and add the following lines to it:

$ sudo vi /etc/apt/sources.list.d/percona.list

deb http://repo.percona.com/apt trusty main

deb-src http://repo.percona.com/apt trusty main

Next, add the PGP key for the preceding repo:

$ sudo apt-key adv --keyserver keys.gnupg.net --recv-keys
1C4CBDCDCD2EFD2A

Now we are ready to install the latest version of Sysbench from the Percona repo. Remember
to update the apt cache before installation:

$ sudo apt-get update

$ sudo apt-get install sysbench

Once installed, you can check the installed version with the --version flag to sysbench:

$ sysbench --version

sysbench 0.5

Chapter 13

405

How to do it…
Now that we have Sysbench installed, let's start with performance testing our system:

1.	 Sysbench provides a prime number generation test for CPU. You can set the number
of primes to be generated with the option --cpu-max-prime. Also set the limit on
threads with the --num-threads option. Set the number of threads equal to the
amount of CPU cores available:
$ sysbench --test=cpu --num-threads=4 \

--cpu-max-prime=20000 run

2.	 The test should show output similar to the following screenshot:

3.	 Following are the extracted parts of the result from multiple tests with a different
thread count on a system with a dual core CPU. It is clear that using two threads
give better results:

Threads 1 2 3 4
Total time 33.0697s 15.4335s 15.6258s 15.7778s

Performance Monitoring

406

4.	 Next, we will run a test for main memory. The memory tests provides multiple options,
such as block-size, total data transfer, type of memory operations, and access
modes. Use the following command to run memory tests:
$ sysbench --test=memory --memory-block-size=1M \

--num-threads=2 \

--memory-total-size=100G --memory-oper=read run

5.	 Following is part of the output from the memory test:

6.	 If you have enabled huge page support, set the memory test support allocation from
the huge page pool with the parameter, --memory-hugetlb. By default, it's set
to off.

7.	 Next comes the storage performance test. This test also provides you with a number
of options to test disk read write speeds. Depending on your requirements, you can
set parameters like block-size, random or sequential read writes, synchronous or
asynchronous IO operations, and many more.

8.	 For the fileio test we need a few sample files to test with. Use the sysbench
prepare command to create test files. Make sure to set a total file size greater than
the size of memory to avoid caching effects. I am using a small 1GBnode with 20G
disk space, so I am using 15 files of 1G each:
$ sysbench --test=fileio --file-total-size=15G \

--file-num=15 prepare

Chapter 13

407

9.	 Once the test preparation is complete, you can run the fileio test with different
options, depending on what you want to test. The following command will perform
random write operations for 60 seconds:
$ sysbench --test=fileio --file-total-size=15G \

--file-test-mode=rndwr --max-time=60 \

--file-block-size=4K --file-num=15 --num-threads=1 run

10.	 To perform random read operations, change --file-test-mode to rndrd, or to
perform sequential read operations, use seqrd. You can also combine read write
operations with rndrw or seqrewr. Check the help menu for more options.

To get a full list of available options, enter the sysbench
command without any parameter. You can also query details of
a specific test with sysbench --test=<name> help. For
example, to get help with I/O tests, use:
$ sysbench --test=fileio help

11.	 When you are done with the fileio test, execute the cleanup command to delete
all sample files:
$ sysbench --test=fileio cleanup

12.	 Once you have gathered various performance details, you can try updating various
performance tuning parameters to boost performance. Make sure you repeat related
tests after each change in parameter. Comparing results from multiple tests will help
you to choose the required combination for best performance and a stable system.

Performance Monitoring

408

There's more…
Sysbench also supports testing MySQL performance with various tests. In the same way as
the fileio test, Sysbench takes care of setting a test environment by creating tables with
data. When using Sysbench from the Percona repo, all OLTP test scripts are located at
/usr/share/doc/sysbench/tests/db/. You will need to specify the full path when
using these scripts. For example:

$ sysbench --test=oltp

The preceding command will change to the following:

$ sysbench --test=/usr/share/doc/sysbench/tests/db/ol1tp.lua

Graphing tools
Sysbench output can be hard to analyze and compare, especially with multiple runs.
This is where graphs come in handy. You can try to set up your own graphing mechanism,
or simply use prebuilt scripts to create graphs for you. A quick Google search gave me two
good, looking options:

ff A Python script to extract data from Sysbench logs: https://github.com/tsuna/
sysbench-tools

ff A shell script to extract Sysbench data to a CSV file, which can be converted
to graphs: http://openlife.cc/blogs/2011/august/one-liner-
condensing-sysbench-output-csv-file

More options
There are various other performance testing frameworks available. Phoronix Test Suite,
Unixbench, and Perfkit by Google are some popular names. Phoronix Test Suite focuses on
hardware performance and provides a wide range of performance analysis options, whereas
Unixbench provides an option to test various Linux systems. Google open-sourced their
performance toolkit with a benchmarker and explorer to evaluate various cloud systems.

https://github.com/tsuna/sysbench-tools
https://github.com/tsuna/sysbench-tools
http://openlife.cc/blogs/2011/august/one-liner-condensing-sysbench-output-csv-file
http://openlife.cc/blogs/2011/august/one-liner-condensing-sysbench-output-csv-file

Chapter 13

409

See also
ff Get more details on benchmarking with Sysbench at https://wiki.mikejung.

biz/Benchmarking

ff Sysbench documentation at http://imysql.com/wp-content/
uploads/2014/10/sysbench-manual.pdf

ff A sample script to run batch run multiple Sysbench tests at https://gist.
github.com/chetan/712484

ff Sysbench GitHub repo at https://github.com/akopytov/sysbench

ff Linux performance analysis in 60 seconds. A good read for what to check when
you are debugging a performance issue at http://techblog.netflix.
com/2015/11/linux-performance-analysis-in-60s.html

https://wiki.mikejung.biz/Benchmarking
https://wiki.mikejung.biz/Benchmarking
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://gist.github.com/chetan/712484
https://gist.github.com/chetan/712484
https://github.com/akopytov/sysbench
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

411

14
Centralized

Authentication Service

In this chapter, we will cover the following recipes:

ff Installing OpenLDAP

ff Installing phpLDAPadmin

ff Ubuntu server logins with LDAP

ff Authenticating Ejabberd users with LDAP

Introduction
When you have a large user base using multiple services across the organization,
a centralized authentication service becomes a need rather than a luxury. It becomes
necessary to quickly add new user accounts across multiple services when a new user
comes in, and deactivate the respective access tokens when a user leaves the organization.
A centralized authentication service enables you to quickly respond by updating the user
database on a single central server.

Various different services are available to set up centralized authentication. In this
chapter, we will learn how to set up a centralized authentication service using a Lightweight
Directory access Protocol (LDAP). A directory is a special database designed specifically
for high volume lookups. LDAP directories are tree-based data structures, also known as
Directory Information Trees (DIT). Each node in a tree contains a unique entry with its own
set of attributes.

Centralized Authentication Service

412

LDAP is specifically designed for high volume read systems with limited write activities. These
directories are commonly used for storing details of users with their respective access control
lists. Some examples include shared address books, shared calendar services, centralized
authentication for systems such as Samba, and storage DNS systems. LDAP provides
lightweight access to the directory services over the TCP/IP stack. It is similar to the X.500
OSI directory service, but with limited features and limited resource requirements. For more
details on LDAP, check out the OpenLDAP admin guide at http://www.openldap.org/
doc/admin24/intro.html.

Installing OpenLDAP
This recipe covers the installation and initial configuration of LDAP. The Ubuntu package
repository makes the installation easy by providing the required packages for the
LDAP service.

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
Let's start with installing the LDAP package and helper utilities:

1.	 Update your repository using the apt-get update command and then install the
OpenLDAP package, slapd:
$ sudo apt-get update

$ sudo apt-get install slapd ldap-utils

2.	 You will be asked to enter the admin password and to confirm it.

3.	 The installation process simply installs the package without any configuration. We
need to start the actual configuration process with the reconfiguration of the slapd
package. Use the following command to start the re-configuration process:
$ sudo dpkg-reconfigure slapd

4.	 This command will ask you a series of questions including the domain name, admin
account, password, database type, and others. Match your answers as follows:

�� Omit LDAP server configuration – NO.

http://www.openldap.org/doc/admin24/intro.html
http://www.openldap.org/doc/admin24/intro.html

Chapter 14

413

�� DNS Domain name – Enter your domain name. You can use any domain
name. For this setup, I will be using example.com. This domain name will
determine the top structure of your directory:

�� Organization name – Enter your organization name. I am using example as
my organization.

�� Admin password – Enter a password for the admin account. It can be the
same as the one entered during installation, or a totally different one. Make
sure you note this password as it will be used to access the admin account.

�� Database backend – HDB

�� Remove the database when slapd is purged - this is about removing the
database in case you uninstall the slapd package. Choose NO as you don't
want the database to be deleted:

�� Move old database - YES

Centralized Authentication Service

414

�� Allow the LDAPv2 protocol - unless you are planning to use some old tools,
choose NO:

5.	 Once you have answered all the questions, the process will reconfigure the LDAP
service. Now your LDAP service is installed and ready to use:

6.	 Now you can use utility commands to query existing data. To test whether the LDAP
service is installed and running properly, use the ldapsearch -x command. You
should see output similar to following screenshot:

Chapter 14

415

7.	 Use ldapsearch as follows to query our newly added domain, example.com:
$ ldapsearch -x -LLL -H ldap:/// -b dc=example,dc=com dn

8.	 The following command will query the default content for example.com:

$ ldapsearch -x -LLL -b dc=example,dc=com

The ldap-utils package also provides more commands to configure the LDAP service,
but it is quite a lengthy and complex task. In the next recipe, we will learn how to set up a
web-based admin interface that make things a little easier.

How it works…
With the respective packages available in the Ubuntu package repository, installing
OpenLDAP is quite an easy task. All we have to do is install the required binaries and then
configure the LDAP system to serve our desired domain. We have installed two packages:
one is slapd, the LDAP daemon, and the other is ldap-utils, which provides various
commands to work with the LDAP daemon. After installation is complete, we have
re-configured LDAP to match our required directory setup. We have chosen to go with LDAPv3
API and disabled LDAPv2. If you have any older systems working with LDAPv2, then you will
need to enable support for old APIs.

Centralized Authentication Service

416

See also
ff Open LDAP admin guide at http://www.openldap.org/doc/admin24/intro.

html

ff Ubuntu OpenLDAP guide at https://help.ubuntu.com/lts/serverguide/
openldap-server.html

ff LDAP protocol RFC at http://www.rfc-editor.org/rfc/rfc2251.txt

ff LDAP protocol technical details at http://www.rfc-editor.org/rfc/rfc3377.
txt

ff Get more help with LDAP configuration using the man ldap.conf command.

Installing phpLDAPadmin
In the previous recipe, we installed the LDAP service, but working with LDAP using the
command line interface is quite a complex and lengthy task. This recipe covers the installation
of a user interface, phpLDAPadmin. The phpldapadmin package provides an easy-to-use
web-based user interface for the LDAP service.

Getting ready
Make sure that you have the LDAP service installed and running.

How to do it…
Follow these steps to install phpLDAPadmin:

1.	 The Ubuntu package repository makes things easy again by providing the package
for phpLDAPadmin. The web interface can be quickly installed in a single command
as follows:
$ sudo apt-get install phpldapadmin

2.	 The installation process takes care of installing all dependencies including PHP and
the Apache web server. It also creates necessary configurations and sets up Apache
with the required settings for phpLDAPadmin. Once installation is complete, you can
access the admin interface at http://youServerIP/phpldapadmin.

http://www.openldap.org/doc/admin24/intro.html
http://www.openldap.org/doc/admin24/intro.html
https://help.ubuntu.com/lts/serverguide/openldap-server.html
https://help.ubuntu.com/lts/serverguide/openldap-server.html
http://www.rfc-editor.org/rfc/rfc2251.txt
http://www.rfc-editor.org/rfc/rfc3377.txt
http://www.rfc-editor.org/rfc/rfc3377.txt

Chapter 14

417

3.	 Before we access the admin page, let's make some small changes in the
configuration file. The file is located at /etc/phpldapadmin/config.php. By
default, phpLDAPadmin shows warning messages for unused template files. These
warning messages get shown in the main interface before the actual content. To hide
them, search for hide_template_warning in the configuration file and set it to
true. You will also need to uncomment the same line:
$config->custom->appearance['hide_template_warning'] =
true;

4.	 The other settings should have already been set by the installation process. You can
cross-check the following settings:
$servers->setValue('server','host','127.0.0.1');

$servers->setValue(

 'login','bind_id',

 'cn=admin,dc=example,

 dc=com'

);

$servers->setValue(

 'server','base',array('dc=example,dc=com')

);

5.	 Once you are done with the configuration file changes, save and close it and then
access the admin interface through your browser:

Centralized Authentication Service

418

6.	 Click on the login link on the left of the page to get the login dialogue box. The
username (Login DN) field is already filled with details for the admin account. Make
sure the details match the domain you have set up. Enter the password for the admin
account and click the Authenticate button:

You can also log in as an anonymous user. In the login box, do not enter
a password, click to check the Anonymous checkbox, and then click
the Authenticate button. This gives you a read-only view, which is quite
useful when you just need to verify some details.

7.	 You should have noticed the warning on the login box saying the connection is
unencrypted. This is just a reminder that you are using the admin console over
a non-HTTPs connection. You can set up Apache with SSL certificates to get an
encrypted, secure connection with your LDAP server. Check Chapter 3, Working
with Web Servers, for more details on how to set up SSL certificates on the
Apache web server.

8.	 Once you log in to phpLDAPadmin, you can see the domain listed in the left-hand side
menu. Click on the domain link to view its details.

Chapter 14

419

9.	 Next, click on the small plus link (+) to expand the domain link and see its children.
With the default settings, it should show only the admin account:

10.	 Along with the link for the admin account, you will see an option to create a new
entry. Clicking on this link will show you a list of templates for the new entry:

While clicking on some of these templates, for example Generic: User
Account, you may notice a PHP error saying Error trying to get
non-existent value. The form rendering fails and you cannot see the
complete form the with submit button. This is a small bug and can be fixed
with a small edit.
Open /usr/share/phpldapadmin/lib/TemplateRender.php.
Search for the following line:
$default = $this->getServer()

->getValue('appearance','password_hash');

Now update the preceding command as follows:
$default = $this->getServer()

->getValue('appearance','password_hash_custom');

Centralized Authentication Service

420

Now you are ready to create groups and respective user accounts on your LDAP server.

How it works…
In this recipe, we have installed a web-based administration console for the LDAP server.
The ldap-utils package provides various commands to work with the LDAP server, but it
is quite a complex and lengthy task. A graphical user interface gives you a better listing of all
options and existing configurations, making things a little easier.

The phpLDAPadmin package is a PHP/Apache-based web application that provides a
graphical interface for the LDAP server. It displays all options and configurations in an
easy-to-use graphical format and passes all user actions to LDAP APIs.

There's more…
Apache directory studio is another user interface for LDAP administration. It is a desktop
application based on Java. You can get more details at https://directory.apache.
org/studio/.

See also
ff A StackOverflow answer for the phpLDAPadmin error message at

http://stackoverflow.com/a/21195761/1012809

Ubuntu server logins with LDAP
So, we have installed and configured our own centralized auth server with LDAP. Now is the
time to use LDAP to authenticate client logins. In this recipe, we will set up a separate Ubuntu
server to use our LDAP server for authenticating users.

Getting ready
You will need a new Ubuntu server to be set as an LDAP client. Also, sudo privileges are
needed for the initial setup.

Make sure you have followed the previous recipes and have set up your LDAP server.

https://directory.apache.org/studio/
https://directory.apache.org/studio/
http://stackoverflow.com/a/21195761/1012809

Chapter 14

421

How to do it…
1.	 We will need to install the LDAP client-side package on the client system. This

package will install all the required tools to authenticate with the remote LDAP server:
$ sudo apt-get update

$ sudo apt-get install ldap-auth-client nscd

2.	 The installation process will ask you some questions regarding your LDAP server and
its authentication details. Answer those questions as follows:

�� LDAP server URI: ldap://you-LDAP-server-IP: Make sure you
change the protocol line from ldapi:/// to ldap://

�� Distinguished name of search base: Match this to the domain set
on the LDAP server in the format dc=example,dc=com

�� LDAP version to use: 3

�� Make local root database admin: Yes

�� Does LDAP database require login: No

�� LDAP account for root: cn=admin,dc=example,dc=com

�� LDAP root account password: The password for the LDAP
admin account

3.	 Next, we need to change the authentication configuration to check with the LDAP
server. First, run the following command to set the name service switch file /etc/
nsswitch.conf:
$ sudo auth-client-config -t nss -p lac_ldap

4.	 This will change /etc/nsswitch.conf as follows:

Centralized Authentication Service

422

5.	 Next, add the following line to /etc/pam.d/common-session. This will create a
local home directory for LDAP users. Edit the common-session file and add the
following line at the end of the file:
session required pam_mkhomedir.so umask=0022
skel=/etc/skel

6.	 Now restart the nscd service with the following command:
$ sudo /etc/init.d/nscd restart

Now you should be able to log in with the user account created on your LDAP server.
I have set up an Organizational Unit (OU) named users and created an admin user
under it:

7.	 Next, change the login to the newly created LDAP user account with the
su username command. You will need to enter a password that is configured on
LDAP server. As this is a first-time login for this new user, our PAM settings have
created a new home directory for him:

This new user is a member of the admin group on the LDAP server, so he will get sudo
privileges on the local server as well.

You can always use a default login prompt to log in with LDAP users, as well as local user
accounts that already exist on the server.

Chapter 14

423

How it works…
Here we have configured the Ubuntu server to authenticate with our centralized LDAP
system. This is not limited to the Ubuntu server and you can configure the Ubuntu desktop
in a similar way as well. Using a centralized authentication makes it easy to administer
hundreds of user accounts from a single place. A user can still log in as a local user if
he has any local credentials.

Using centralized authentication enables you to log in from any system. You will get the
same access rights and permissions from any terminal. Additionally, if the LDAP configuration
supports roaming profiles then all your data will be replicated to any new system you log
in from. You may have noticed the home directory for the LDAP user account is located
in the /home/users directory and not in /home. This separates your account from any
local users.

Finally, the groups and roles configured on the LDAP server also apply on the system you are
logging in from. So, if the user is assigned admin rights on the LDAP server, he will get admin
rights, including sudo privileges, on the system he is logged in from. This is because Ubuntu
contains a default group named admin with sudo privileges. When a user logs in with his
LDAP account, the groups and roles assigned to his LDAP account are matched with local
groups and roles. You can either disable such groups from any remote systems, or set the
proper access rights on the LDAP server itself.

See also
ff The Ubuntu community page for LDAP client authentication at

https://help.ubuntu.com/community/LDAPClientAuthentication

Authenticating Ejabberd users with LDAP
In this recipe, we will learn to set up the Ejabberd server to authenticate the user with our
LDAP server. Until now, we have set up the LDAP server and used it to log in to the Ubuntu
server with a user account created on the LDAP server. This recipe covers the configuration of
an external service to work with our LDAP installation.

The Ejabberd server provides built-in support for LDAP-based authentication. You can use
LDAP for user authentication as well as vCard storage. As stated in the Ejabberd admin guide,
Ejabberd use LDAP as a read-only data source. We cannot create new user accounts in the
LDAP directory, but we can change passwords if the mod_register module is enabled.

https://help.ubuntu.com/community/LDAPClientAuthentication

Centralized Authentication Service

424

Getting ready
You will need the Ejabberd service installed and running. Go through Chapter 10,
Communication Server with XMPP, for details on the installation and configuration
of the Ejabberd server.

Create a user account on the LDAP server to be used with Ejabberd.

How to do it…
As Ejabberd provides inbuilt support for LDAP-based authentication, we simply need to edit
configurations and set the auth method to LDAP. If you have used a Debian package for
the Ejabberd installation, your Ejabberd should be installed in /opt/ejabberd-version
directory and the configuration can be found at /etc/ejabberd-version/conf. If you
have installed Ejabberd from source, all configuration files are located in the /etc/ejabberd
directory:

1.	 Open ejabberd.yml from your Ejabberd configuration directory and search
for Authentication. With the default settings, it should contain the following line
indicating internal authentication:
auth_method: internal

2.	 Comment out that line by changing it as follows:
auth_method: internal

3.	 Next, find Authentication using LDAP. This section contains a few parameters
and configures communication with the LDAP server. Search and update the
following parameters:
ldap_servers:

 - "domain/IP of LDAP server"

ldap_port: 389

ldap_rootdn: "cn=admin,dc=example,dc=com"

ldap_password: "password"

ldap_base: "ou=ejabberd,dc=example,dc=com"

I have used a default admin account to authenticate with the LDAP server itself. In a
production environment, you should change it to a different account. With a default
LDAP setup, you can skip the ldap_rootdn and ldap_password settings to enable
anonymous connection.

4.	 Next, under the ldap_base parameter, I have restricted users to the Organizational
Unit named Ejabberd. Only the user accounts that are configured under the
Ejabberd unit can log in with the Ejabberd server.

Chapter 14

425

5.	 Now, save the configuration file changes and close the file, and then restart the
Ejabberd server with the following command:
$ sudo /opt/ejabberd-version/bin/ejabberdctl restart

6.	 If the server fails to restart, check the log files for any configuration errors.
Alternatively, you can use the reload_config option to ejabberdctl to
update the in-memory configuration without restarting:
$ sudo /opt/ejabberd-version/bin/ejabberdctl reload_config

7.	 Once the server has started, you can log in with your LDAP accounts. You will need a
JID to log in with Ejabberd, which is a combination of a UID from the LDAP server and
any host configured on Ejabberd, for instance, uday@cookbook.com, where uday
is the UID on LDAP and cookbook.com is the host served by Ejabberd server. The
domain entries on the LDAP server and Ejabberd need not match.

The following is the default host entry for my Ejabberd installation:

8.	 Now you can log in to Ejabberd with your LDAP username. Here is the account set
up in my chat client with the JID uday@ubuntu, where uday is my LDAP user and
ubuntu is the Ejabberd host:

Once all things are set up, you should be able to connect to the Ejabberd server using your
LDAP user account.

Centralized Authentication Service

426

How it works…
Here, we have set up Ejabberd as an example of LDAP-based authentication. Similar to
Ejabberd, various other systems support centralized authentication through LDAP with
either built-in support or with a plug-in module. Make sure that you create a proper directory
structure with organizational units, roles, and separate users in proper groups. Also use a
separate user account for authenticating with the LDAP server itself. You need to set the
respective LDAP credentials in the Ejabberd configuration file. If somehow your Ejabberd
server gets compromised, then the LDAP server credentials are readily available to an
attacker. To limit the risk, using separate and limited accounts is a good idea. Ejabberd
also supports anonymous authentication with the LDAP server and mostly uses it as a
read-only database. So, even if you skip the authentication details (depending on the LDAP
configuration), Ejabberd should work well and authenticate your users.

Ejabberd also provides good enough debug logging, where you can see the actual
communication with the LDAP server. You will need to set logging to debug mode in the
Ejabberd configuration. The log files are located in the /opt/ejabberd-version/logs
directory or the /var/log/ejabberd directory, depending on the source of the
Ejabberd installation.

See also
ff Ejabberd docs LDAP section at https://www.process-one.net/docs/

ejabberd/guide_en.html#ldap

https://www.process-one.net/docs/ejabberd/guide_en.html#ldap
https://www.process-one.net/docs/ejabberd/guide_en.html#ldap

427

Index
A
access rights

assigning 152, 153
Active Directory (AD) support 182
Ampache

server, installing 281-287
URL 287
used, for streaming music 294

Apache
about 78
benchmarking 113, 114
performance tuning 113, 114

Apache Bench (ab) 113
Apache web server

about 82
configuring 80, 81
HTTP version 2 support 83
installing 79
working 82

API access
enabling, for remote streaming 292-294

B
backups

setting up 158, 159
bare repository 332
batch mode

user account, creating 6, 7
Bazaar

URL 331
benchmarking, with Sysbench

URL 409
Bidirectional-streams Over

Synchronous HTTP (BOSH) 314

binary large object (blob) 336
brute force attacks

reference 72
securing against 69-72

bulk data
exporting 150, 151
importing 150, 151

C
C10k problem 78
cAdvisor 276
Candy

URL 322
catalog

creating 288-290
centralized version control

systems (CVCS) 328
Certificate Signing Request (CSR)

generating 96, 97
chat server

with Node.js 322-324
Cloud 9 IDE

URL 369
command line interface (CLI) 346
commands, for network connectivity

dig 59
ethtool 59
ifdown 59
ifup 59
ip addr 59
ip link 59
ip route 59
iptables 59
Lsmod 59
lspci 59

428

netstat 59
Nmap 59
route 59
telnet 59
tracepath/traceroute 59

Common Internet File System (CIFS)
protocol 180

common tasks
automating, with Git hooks 352-355

container 234
containerd 257
container networking model (CNM) 273
contents

uploading 288-290
CPU

monitoring 382-388
references 388

CPU utilization
defining 386

D
data

retrieving, MongoDB used 174-178
retrieving, MySQL used 147-150
storing, MongoDB used 174-178
storing, MySQL used 147-150

Data Definition Language (DDL) 150
Data Manipulation Language (DML) 150
debootstrap 267
DHCP

about 32
dynamic allocation 32
manual allocation 32

DHCP server
installing 32, 33
IP reservation 34
manual allocation 34

Diffie Hellman parameters 61
Directory Information Tree (DIT) 411
DNS 34
DNS configuration guide

reference 41
DNS server

installing 34-41

Docker
Hackpad, using with 368
installing 254-257

Docker containers
managing 258-262
monitoring 275, 276
securing 277-279
starting 258-262

Dockerfile
about 263
images, creating with 263-267

Docker network
used, for deploying WordPress 271-273

Docker volumes 268-270
Dovecot

URL 129
used, for enabling IMAP and POP3 127-129

dynamic contents
serving, with PHP 84-86
support, for scripting languages 87

E
Ejabberd

about 297
docs, URL 426
installing 298-301
installation, configuring 308-312
references 313
URL 301
users, authenticating with LDAP 423-426

e-mails
accounts, adding 130-132
sending, Postfix used 123-127

Etherpad
URL 369

event driven approach 78
Extensible Messaging and Presence

Protocol (XMPP) 297

F
file permissions

managing 11-14
file revisions

storing, with Git commit 333-336

429

files
synchronizing, Rsync used 189-193

File Transfer Protocol (FTP) server 187
first container

deploying, with LXD 238-242
forward proxy 42
free hosting

URL 340
full JID 315

G
GID (group ID) 4
Git

installing 328-330
URL 331

Git CLI
local repository, creating with 331, 332

Git clone
URL 333

Git commit
file revisions, storing with 333-336

Git Hooks
references 356

GitHub 331
Git init

URL 333
GitLab

installing 346-348
repository, creating with 350, 351
requirements, for installation 348
server, users adding to 348-350

Git merge
URL 344

Git pull
updates, receiving with 341-344
URL 344

gitweb documentation
URL 348

graphing tools
references 408

group
chat, enabling 318-321
creating 7, 8
members, adding 8, 9

H
H2load 115
Hackpad

installing 363-368
repo, URL 369
using, with Docker 368
using with Docker, URL 369

HAProxy
about 106
load balancing algorithms 50
load balancing, with 48, 49, 50

Httperf 115
HTTPS

about 92
communication, enabling, on Nginx 110-112
web traffic, securing with 92-96

I
Ifconfig 399
images

creating, with Dockerfile 262-267
IMAP and POP3

enabling, Dovecot used 127-129
InnoDB storage engine

URL 163
InnoDB table compression

URL 167
ISC-DHCP 33

K
kernel parameters

reference 54

L
LAMP stack

installing 87
Launchpad

URL 331
Layer two tunneling protocol (L2TP) 60
LDAP

client authentication, URL 423
Ejabberd users, authenticating with 423-426
Ubuntu server logins, defining with 420- 422

430

libcontainer 255
libstrophe 314
Lightweight Directory access

Protocol (LDAP) 411
limits.conf

used, for setting resource limits 17, 18
Linux home server Samba guide

URL 187
Linux performance analysis

URL 409
load balancing

with HAProxy 48-50
with Nginx 106-109

load balancing algorithms
leastconn 50
Round-robin 50
source 50

local repository
creating, with Git CLI 331, 332

Logical Volume Manager (LVM) 237
LXC 235
LXD (Linux Container Daemon)

about 235
installing 235-238
networking with 250-254

LXD containers
advance options 245
dealing 245, 246
managing 242-244
resource limits, setting 246-249

LXD GUI
reference 244

M
mailbox formats

URL 127
mail filtering

with spam-assassin 133-135
mail server

troubleshooting 135-137
Mattermost

features, URL 374
installing 369-374
Source Code on GitHub, URL 374

URL 369, 370
web-hooks, URL 374

Mattermost Dockerfile
URL 374

memory
monitoring 388-393

Mnesia 311
MongoDB

installing 173
installing, URL 174
used, for retrieving data 174-177
used, for storing data 174-177

MongoDB query documents
URL 178

multiple websites
hosting, with virtual domain 88-91

multi-processing modules (MPM) 78
Multi User Chat (MUC) 318
music

streaming, Ampache used 294
MySQL

about 144
installation, securing 147
performance, optimizing 159-162
performance tuning 164-166
sharding 163
table compression 166
troubleshooting 171, 172
used, for installing relational

database 144-146
used, for retrieving data 147-150
used, for storing data 147-150
web access, installing 154-157

MySQL backup methods
URL 159

MySQL binary log
URL 159

MySQL docs
URL 166

MySQL load data infile syntax
URL 151

MySQL optimization guide
URL 163

MySQL query execution plan
URL 163

431

MySQL replicas
creating, for high availability 167-171
creating, for scaling 167-170

MySQL select-into syntax
URL 151

MySQL test database
URL 164

MySQL tuner script
URL 166

Mysql user account management
URL 154

N
NamedVirtualHost 90
netfilter 65
network

connecting, with static IP 28-30
IPv6 configuration 31
monitoring 394-399
securing, with uncomplicated firewall 65-68
temporary IP assignment 30, 31

Network Address Translation (NAT) 250
network configuration

reference 31
network connectivity

troubleshooting 54-58
Network File System (NFS)

about 199
installing 199-201
URL 202

networking 28
Network Time Protocol (NTP) 45
NFS exports options

URL 202
Nginx

HTTPs, setting 110-112
installing, with PHP_FPM 97-101
load balancing with 106-109
setting, as reverse proxy 102-106

Node.js
chat server, defining with 322-324
references 325

NoSQL 144
Not Found error 376
ntpdate 45

O
on-the-fly transcoding

setting 290, 291
OpenLDAP

admin guide, URL 412
installing 412-415
references 416

OpenVPN
remote access, securing with 60-63
VPN client, configuring 63, 64

Organizational Unit (OU) 422
OwnCloud

admin manual, URL 379
installing 375-378
repositories, URL 379

P
Parallel NFS

URL 202
password authentication 23
password less sudo

setting 16
Percona

configuration wizard 166
XtraBackup, URL 159

Perfkit 115
performance benchmarks

graphing tools 408
setting 404-407

performance tuning
Samba server 193, 194

personal file sharing
tools 182

PHP
dynamic contents, serving with 84-86
settings 86
upgrading, under Ubuntu 14, 87, 88

PHP_FPM
Nginx, installing with 97-101

phpLDAPadmin
installing 416-420
references 416-420

phpMyAdmin
URL 157

432

Point-to-Point Tunneling Protocol (PPTP) 60
Postfix

lookup table types, URL 133
URL 133
used, for sending e-mails 123-127

process ID (pid) 387
proxy 42
public key authentication

setting up 19, 20

R
relational database

installing, MySQL used 144-146
remote access

securing, with OpenVPN 60-63
remote servers

images 240
repository, synchronizing with 337-340
Ubuntu 240
Ubuntu-daily 240

remote streaming
API access, enabling 292-294

repository
clones, creating 344, 345
creating, with GitLab 350, 351
GitHub pages 340
synchronizing, with remote server 337-340

resource limits
setting, limits.conf used 17, 18

reverse proxy 42
root privileges

getting, sudo used 15, 16
Rsync

used, for synchronizing files 189-192
runc 257

S
SAAS (Software as a Service) product 357
Samba server

installing 180-182
network connectivity, checking 195, 196
performance tuning 193, 194
Samba configuration, checking 198
Samba logs, checking 197

Samba service, checking 196
troubleshooting 195
URL 186
users, adding 183-185

Sarg
about 44
used, for analyzing squid logs 44

sar (System Activity Reporter) 384
secure FTP server

installing 187-189
Secure Socket Layer (SSL) protocol 92
ServerAlias 90
Server Message Block (SMB) 180
ServerName 90
SFTP 64
spam-assassin

used, for mail filtering 133-135
squid

about 42
access control list 44
cache refresh rules, setting 44
logs, analyzing with Sarg 44
used, for hiding behind proxy 42, 43

squid guard 44
SSH authentication

about 22
SSH connections, troubleshooting 21
SSH tools, for Windows platform 22
working 21

SSH connections
troubleshooting 21

SSH keys
URL 340

SSH tools
for Windows platform 22

standalone time server
setting up, for internal network 45-47

static IP
for connecting to network 28-30

storage
monitoring 400-403

stratum 45
Strophe.js

references 318
web client, creating with 313-317

433

Strophe.js MUC plugin
URL 322

Strophe.js site
URL 314

Structured Query Language (SQL) 147
sudo

password less sudo, setting 16
used, for getting root privileges 15, 16
uses 17

supermin 267
supervisord 274
Swap

monitoring 388-393
Sysbench

about 404
documentation, URL 409

Sysbench GitHub repo
URL 409

Sysbench logs
URL 408

Sysbench tests
URL 409

Sysdig 277

T
table maintenance statements

URL 164
TCP stack

tuning 51-54
Transmission Control Protocol and Internet

Protocol (TCP/IP) 51
Transport Layer Security (TLS) protocol 92
troubleshooting, web server

about 119
access denied 122
Apache downloads .php files 122
forbidden errors 122
virtual host not accessible 120-122
web server not accessible 119, 120

U
Ubuntu

installation, URL 374
security best practices 73-75
server guide, URL 147, 183

UFW community page
reference 69

UID (user ID) 4
Uncomplicated Firewall (UFW) 65
user account

connecting, with XMPP client 301-308
creating 2-5, 301-308
creating, in batch mode 6, 7
deleting 9, 10
removing 154
resource limits, setting 154
securing 22, 23

useradd command 5
usermod command

URL 5
users

adding 152, 153
adding, to GitLab server 348-350
adding, to Samba server 183-186

V
Varnish 106
Vimbadmin package 133
virtual domain

multiple websites, hosting with 88-90
Virtual Host file 81
VNC Server

installing 358-362
VNC (Virtual Network Computing)

about 358-362
on Stack Overflow, URL 363

W
web access

installing, MySQL used 154-157
web client

creating, with Strophe.js 313-317
Web console

for virtual mailbox administration 133
web server

about 77, 78
securing 115-118
troubleshooting 119

434

web traffic
securing, with HTTPS 92-96

WinSCP 64
WordPress

deploying, Docker network used 271-274
WordPress blog 255
Wrk 115

X
XML files

URL 151
XMPP client tools

URL 308
XMPP extensions

URL 313

Z
Zimbra collaboration server

installing 138-142

	Cover

	Copyright
	Credits
	About the Author
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Managing Users
and Groups

	Introduction
	Creating a user account
	Creating user accounts in batch mode
	Creating a group
	Adding group members
	Deleting a user account
	Managing file permissions
	Getting root privileges with sudo
	Setting resource limits with limits.conf
	Setting up public key authentication
	Securing user accounts

	Chapter 2: Networking

	Introduction
	Connecting to a network with a static IP
	Installing the DHCP server
	Installing the DNS server
	Hiding behind the proxy with squid
	Being on time with NTP
	Discussing load balancing with HAProxy
	Tuning the TCP stack
	Troubleshooting network connectivity
	Securing remote access with OpenVPN
	Securing a network with uncomplicated firewall
	Securing against brute force attacks
	Discussing Ubuntu security best practices

	Chapter 3: Working with Web Servers

	Introduction
	Installing and configuring the Apache web server
	Serving dynamic contents with PHP
	Hosting multiple websites with a virtual domain
	Securing web traffic with HTTPS
	Installing Nginx with PHP_FPM
	Setting Nginx as a reverse proxy
	Load balancing with Nginx
	Setting HTTPs on Nginx
	Benchmarking and performance tuning of Apache
	Securing the web server
	Troubleshooting the web server

	Chapter 4: Working with
Mail Servers

	Introduction
	Sending e-mails with Postfix
	Enabling IMAP and POP3 with Dovecot
	Adding e-mail accounts
	Mail filtering with spam-assassin
	Troubleshooting the mail server
	Installing the Zimbra mail server

	Chapter 5: Handling Databases

	Introduction
	Installing relational databases with MySQL
	Storing and retrieving data with MySQL
	Importing and exporting bulk data
	Adding users and assigning access rights
	Installing web access for MySQL
	Setting backups
	Optimizing MySQL performance – queries
	Optimizing MySQL performance – configuration
	Creating MySQL replicas for scaling and high availability
	Troubleshooting MySQL
	Installing MongoDB
	Storing and retrieving data with MongoDB

	Chapter 6: Network Storage

	Introduction
	Installing the Samba server
	Add users to the Samba server
	Installing the secure FTP server
	Synchronizing files with Rsync
	Performance tuning the Samba server
	Troubleshooting the Samba server
	Installing the Network File System

	Chapter 7: Cloud Computing

	Introduction
	Creating virtual machine with KVM
	Managing virtual machines with virsh
	Setting up your own cloud with OpenStack
	Adding a cloud image to OpenStack
	Launching a virtual instance with OpenStack
	Installing Juju a service orchestration framework
	Managing services with Juju

	Chapter 8: Working with Containers

	Introduction
	Installing LXD, the Linux container daemon
	Deploying your first container with LXD
	Managing LXD containers
	Managing LXD containers – advanced options
	Setting resource limits on LXD containers
	Networking with LXD
	Installing Docker
	Starting and managing Docker containers
	Creating images with a Dockerfile
	Understanding Docker volumes
	Deploying WordPress using a Docker network
	Monitoring Docker containers
	Securing Docker containers

	Chapter 9: Streaming with Ampache

	Introduction
	Installing the Ampache server
	Uploading contents and creating catalogs
	Setting on-the-fly transcoding
	Enabling API access for remote streaming
	Streaming music with Ampache

	Chapter 10: Communication Server with XMPP

	Introduction
	Installing Ejabberd
	Creating users and connecting with the XMPP client
	Configuring the Ejabberd installation
	Creating web client with Strophe.js
	Enabling group chat
	Chat server with Node.js

	Chapter 11: Git Hosting

	Introduction
	Installing Git
	Creating a local repository with Git CLI
	Storing file revisions with Git commit
	Synchronizing the repository with a remote server
	Receiving updates with Git pull
	Creating repository clones
	Installing Gitlab, your own Git hosting
	Adding users to the Gitlab server
	Creating a repository with Gitlab
	Automating common tasks with Git hooks

	Chapter 12: Collaboration Tools

	Introduction
	Installing the VNC server?
	Installing Hackpad, a collaborative document editor
	Installing Mattermost – a self hosted slack alternative
	Installing OwnCloud, self hosted cloud storage

	Chapter 13: Performance Monitoring

	Introduction
	Monitoring the CPU
	Monitoring memory and Swap
	Monitoring the network
	Monitoring storage
	Setting performance benchmarks

	Chapter 14: Centralized Authentication Service

	Introduction
	Installing OpenLDAP
	Installing phpLDAPadmin
	Ubuntu server logins with LDAP
	Authenticating Ejabberd users with LDAP

	Index

