
Colt McAnlis & Aleks Haecky

Understanding
Compression
DATA COMPRESSION FOR MODERN DEVELOPERS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Colt McAnlis and Aleks Haecky

Understanding Compression
Data Compression for Modern Developers

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-96153-7

[LSI]

Understanding Compression
by Colt McAnlis and Aleks Haecky

Copyright © 2016 Colton McAnlis and Aleks Haecky. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Tim McGovern
Production Editor: Melanie Yarbrough
Copyeditor: Octal Publishing, Inc.
Proofreader: Jasmine Kwityn

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Melanie Yarbrough

July 2016: First Edition

Revision History for the First Edition
2016-07-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491961537 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Understanding Compression, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491961537
http://www.allitebooks.org

From CLM
To JAM and MLM: I swear to Zuul, that if you don’t eat your broccoli right now, I’m
going to write a book. And in the dedication of that book, I’m going to call you out as

being afraid of a piece of foliage that humans have been eating for thousands of genera‐
tions. Then, 20 years from now, when you have kids of your own, I’m going to pull that
book out, and show you what I wrote, and laugh in your face, because you’ll know how

crazy you’re making me right now. #parenting
To KMKM: How about another decade, just for good measure?

From AH
To AHS and GHS: I hoped you’d learn to cook. Instead, you proved that humankind can

survive on fresh apples and stale supermarket sushi.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. xi

Preface. xv
Chapter Synopsis 18

1. Let’s Not Be Boring. 1
The Five Buckets of Compression Algorithms 1
Claude Shannon Is Infuriating! 2
The Only Thing You Need to Know about Data Compression 3

A World Built on Data Compression 4

2. Do Not Skip This Chapter. 9
Understanding Binary 9

Base 10 System 9
Binary Number System 10

Information Theory 13
An Excursion into Binary Search 14
Entropy: The Minimum Bits Needed to Represent a Number 16
Standard Number Lengths 17

3. Breaking Entropy. 19
Understanding Entropy 19
What This Entropy Stuff Is Good For 21
Understanding Probability 22
Breaking Entropy 23

Example 1: Delta Coding 24
Example 2: Symbol Grouping 25
Example 3: Permutations 26

v

www.allitebooks.com

http://www.allitebooks.org

Information Theory Versus Data Compression 31

4. Variable-Length Codes. 33
Morse Code 33
Probability, Entropy, and Codeword Size 36
Variable-Length Codes 38

Using VLCs 38
Creating VLCs 42
A Handful of Example VLCs 44
Finding the Right Code for Your Data Set 51

5. Statistical Encoding. 53
Statistically Compressing to Entropy 53
Huffman Coding 55

Building a Huffman Tree 55
Generating Codewords 57
Encoding and Decoding 58
Practical Implementations 58

Arithmetic Coding 60
Finding the Right Number 61
Encoding 62
Picking the Right Output Value 64
Decoding 64
Practical Implementations 69

Asymmetric Numeral Systems 69
Encoding and Decoding Using a Transform Table 70
Creating the Reference Table 71
Using ANS for Compression 74
Decoding Example 75
So Where Does the Compression Come From? 76

Practical Compression: Which Statistical Algorithm Do I Choose? 77

6. Adaptive Statistical Encoding. 79
Locality Matters for Entropy 79
Adaptive VLC Encoding 81

Dynamically Building a VLC Table 81
Literals 84
Resets 87
Knowing When to Reset 88
Using This in Practice 89

Adaptive Arithmetic Coding 89
Adaptive Huffman Coding 90

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Modern Choice 91

7. Dictionary Transforms. 93
A Basic Dictionary Transform 94

Finding the Right “Words” 95
The Lempel-Ziv Algorithm 98

How LZ Works 99
Encoding 104
Decoding 105
Compressing LZ output 106
LZ Variants 107

Collect Them All! 110

8. Contextual Data Transforms. 111
Run-Length Encoding 112

Dealing with Short Runs 112
Compressing 114

Delta Coding 115
XOR Delta Coding 118
Frame of Reference Delta Coding 119
Patched Frame of Reference Delta Coding 120
Compressing Delta-Encoded Data 123
Does It Work on Text? 123

Move-to-Front Coding 123
Avoiding Rogue Symbols 125
Compressing MTF 126

Burrows–Wheeler Transform 126
Ordering Is Important! 128
How BWT Works 128
Inverse BWT 130
Practical Implementations 132
Compressing BWT 132

9. Data Modeling. 135
The Chains of Markov 136

Markov and Compression 139
Practical Implementations 145

Prediction by Partial Matching 145
The Search Trie 147
Compressing a Symbol 149
Choosing a Sensible N Value 150
Dealing with Unknown Symbols 150

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Context Mixing 150
Types of Models 151
Types of Mixing 153

The Next Big Thing? 154

10. Switching Gears. 155
Media-Specific Compression 155
General-Purpose Compression 156
Compression in Practice 157

11. Evaluating Compression. 159
Compression Usage Scenarios 159

Compressed Offline, Decompressed On-Client 159
Compressed On-Client, Decompressed In-Cloud 160
Compressed In-Cloud, Decompressed On-Client 160
Compressed On-Client, Decompressed On-Client 161

Compression Need 161
Compression Ratio 162
Compression Performance 163
Decompression Performance 164
Ability to Decode-Stream 164
Comparing Compressors 165

12. Compressing Image Data Types. 167
Understanding Quality Versus File Size 167

What Reduces Image Quality? 169
Measuring Image Quality 171
Making This Work 173

Image Dimensions Are Important 173
Choosing the Correct Image Format 175

PNG 175
JPG 176
GIF 177
WebP 177
And Now for Choosing... 177

GPU Texture Formats 179
Vector Formats 180
Eyes on the Prize 182

13. Serialized Data. 183
Understanding Common Use Cases 184

Dynamically Server-Built Data 184

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Statically Built Server-Owned Data 184
Dynamically Client-Built Data 184
Statically Client-Owned Data 184

Issues with Serialized Formats 185
Human-Readable Text 185
Slow Decode Times 186

Smaller Serialized Data 186
Use a Binary Serialization Format 186
Restructure Lists for Better Compression 187
Organize for Efficient Fetching 188
Segment Out Data into the Proper Compression Format 191

14. Lossy Data Compression. 193

15. Making the World a Little Smaller. 195
Data Compression and You 195
Data Compression and the Bottom Line 195

User Acquisition and Retention 195
Running Costs 196
Planning Ahead 197

Making Your Users’ Lives a Little More Magical and Less Expensive 197
Thinking About What’s Next in Technology 198

The Next Five Billion Users 198
Mobile Networks 198

...Starting Now 199

Glossary of Compression Words. 201

Index. 209

Table of Contents | ix

Foreword

When I first began programming, I had no idea what data compression was nor why
it mattered. Luckily, my Apple II Plus computer came with 0.000048 GB of memory
(48 KB), which was quite a lot in 1979, and was enough to let me explore program‐
ming and computer graphics without realizing that my programs and data were con‐
stantly being compressed and decompressed behind the scenes in order to reduce
their size in memory. Thanks, Woz!

After programming for a few years, I had discovered:

• Data compression took time and could slow down my software.
• Changing my data organization could make the compressed data smaller.
• There are a bewildering variety of complicated data compression algorithms.

This led to the realization that compression was not a rigid black box; rather, it’s a
flexible tool that greatly influenced the quality of my software and could be manipu‐
lated in several ways:

• Changing compression algorithms could make my software run faster.
• Pairing my data organization with the right compression algorithm could make

my data smaller.
• Choosing the wrong data organization or algorithm could make my data larger

(and/or run slower).

Ah! Now I knew why data compression mattered. If things weren’t fitting into mem‐
ory or were decompressing too slowly, I could slightly change my data organization to
better fit the compression algorithm. I’d simply put numbers together in one group,
strings in another, build tables of recurring data types, or truncate fractions into inte‐
gers. I didn’t need to do the hard work of evaluating and adopting new compression
algorithms if I could fit my data to the algorithm.

Then, I began making video games professionally, and most of the game data was cre‐
ated by not-so-technical artists, designers, and musicians. It turned out that math was

xi

not their favorite topic of discussion, and they were less than excited about changing
the game data so that it would take advantage of my single go-to compression algo‐
rithm. Well, if the data organization couldn’t be improved, that left choosing the best
compression algorithm to pair up with all of this great artistic data.

I surveyed the various compression algorithms and found there were a couple of
broad categories suitable for my video game data:

Lossless
• De-duplication (LZ)
• Entropy (Huffman, Arithmetic)

Lossy
• Reduced precision (truncation or decimation)
• Image/video
• Audio

For text strings and binary data, I used LZ to compress away repeating duplicate data
patterns. Pixel data went through lossy vector quantization (VQ) to map pixels to a
color palette. Audio data went through lossy decimation and linear predictive coding
(LPC) to reduce the bits per second. The output of any of those compressors could
then go into a lossless Huffman compressor for additional statistical entropy com‐
pression, if the CPU was fast enough.

During the 1980s and 1990s, I worked on about 30 games, most of which used these
compression algorithms along with simple data build tools that performed limited
optimizations of the data organization.

But then, around the year 2000, the situation became more complex. There is an
ongoing arms race between data generation tools and data display and analysis. The
consequences have been software performance, storage size, network congestion, and
the efficient pairing of compression algorithms with data organization.

This data flood has been partially offset by larger storage (Blu-ray discs, terabyte hard
drives, cloud storage), faster multicore CPUs, new lossless compression algorithms
such as BWT, ANS, and PAQ, as well as dramatic improvements in lossy codecs for
image, video, and audio data. However, data sizes are growing faster each year and
dwarf the slow improvements in network bandwidth, compression algorithm
improvements, and storage capacity.

Which brings us to the present and why this book matters.

How can a programmer learn which algorithms to use on their data and which data
changes will help or hinder a particular algorithm? What would really help is an over‐
view of the major data compression algorithms to guide developers through the

xii | Foreword

myriad choices now available. Most developers don’t need to wade through all the
theory and math details required to implement these algorithms; instead, they need a
road map of the strengths and weaknesses of these algorithms, and how to take
advantage of them for specific use cases.

I’ve greatly enjoyed implementing, using, and watching the evolution of data com‐
pression algorithms over the past 37 years. I hope this book will help demystify data
compression and provide a starting point for software engineers to learn about com‐
pression algorithms and help them make better software.

— John Brooks, CTO, Blue Shift, Inc.

Foreword | xiii

1 This is the number as of 2015. If you’re reading this book some time in the future, it will be different. Also,
thanks for reading the book! Also, how did you survive the robo-apocalypse?

Preface

Data compression is everywhere, and it’s as utterly essential for modern computing as
it was, when one megabyte was a lot, and data was transferred in kilobits per second.
In a sense, we have come full circle, from antique computers with limited memory
and bandwidth, to mobile devices with limited memory and costly data plans.

Fortunately, there are tools, APIs, and packages that can compress your data for you.
Understanding how they work will help you to choose the right compression for your
data, which will directly translate into happier users, cost savings, and more revenue
for you.

Data compression is built on math, and let’s face it, for most mere mortals, math is
hard. Like, really hard. Like, it used to be one of the hardest things about being a pro‐
grammer. Imagine Claude Shannon, the father of data compression, who was really
good at math, hacking away at some chalkboard, scribbling rows and rows of crazy
complex equations.

What’s even more crazy, is that modern programmers don’t really need to know math.
Any eight-year-old kid in the world can jump online, work through a tutorial, and
publish their own web page or application before even enrolling in Algebra class.

And this is, we believe, why the field of data compression has been stagnant over the
past 20 years. Despite the fact that two billion1 people are on mobile devices and reg‐
ularly experience problems with memory capacity and poor Internet connectivity,
data compression remains a semi-stagnant computational technology. Because pro‐
grammers don’t know math.

Because math is hard.

xv

You see, compression isn’t really about data. The early founders of data compression
weren’t thinking about data. They were thinking about statistics. They were looking
for, and found, different ways to manipulate the probability distributions of symbols in
data sets, and exploit those trends to produce smaller data sets that contained the
same information.

As computing became more common and less mathematical, the average program‐
mer needed to know less and less about statistics and other advanced math. And so,
despite the early 2000s bringing the largest technology boom in computing history,
data compression has had maybe two or three advances in its entire scientific field.

Because compression is hard.

Because it’s built on math.

Now, let’s be fair and practical here. Today, most programmers and content develop‐
ers don’t need to know advanced math or understand how compression works,
because they can just grab a decent data compression library, throw their data at it,
and ship it out into the wild-blue yonder.

However, moving forward, this is not going to be enough. Predictions are that by
2025, five billion humans will be using computers and transferring data over the
Internet. Considering that data production has gone through the roof, we’re about to
have too much data, with carriers that can’t transfer it fast enough, and data ware‐
houses too small to hold it all. Of course, one solution is faster, better compression,
using innovative algorithms that have yet to be invented.

Using math.

Which is hard.

The other solution is to teach anyone who will listen how compression works. So,
instead of grabbing some random compression tool, you can choose the very best
compression and get your data to your users in the most efficient manner.

That’s where this book comes from. It’s an attempt to minimize the vast, enormous
craziness that is the science of data compression, and reduce it to something that
mere mortals can understand and apply to their daily data needs. We will try to
explain the fundamentals of data compression with tables, diagrams, and data flows—
and as little math as possible. Much like Colt’s YouTube video series Compressor
Head, this book hopes to teach compression to pretty much anybody who’s survived
high school—even if you’re not a programmer.

But let’s be honest: if you want to really understand this stuff, you’ll need to do the
mental gymnastics. Compression, like riding a bicycle, is difficult until your mind
goes “grok,” and then it all makes perfect sense. But you must stick it out and work
through the examples to get there.

xvi | Preface

https://g.co/compressorhead
https://g.co/compressorhead

Just to be clear, our goal is not to make you a compression expert. That would require
pretty heavy mathematics (which is hard!). Our goal is to make you understand com‐
pression algorithms. Sometimes, this will mean using the proper terminology; some‐
times it will mean using wrong but far more descriptive terminology. We’re not trying
to prepare you for water-cooler conversations with other compression folk. We want
to give you enough information that you can make the right business decisions about
compression.

Finally, and honestly, data compression is also really cool. Well, we think so, and we
hope that you’ll think so, too, as you are delving into this book.

We had fun writing this book, and we hope you’ll have fun digging into the science of
data compression.

How to Read This Book
Like any good story, this book answers all the W questions. What is data compression
and why do you want to know about it? When was data compression invented? Who
are the people who dedicated their lives to eliminating a few more bits? Where in
your product development cycles should you care about the size of your data? And
most importantly, how does it all work to save you bits, money, and your user’s data
plans?

This being an actual, printed volume of pages organized in chronological order, we
strongly suggest you start at the beginning and work your way through each chapter.
You see, each chapter builds on the previous chapter, not just historically, but also
introducing terminology and evolving algorithms. We built the book to be read in an
orderly fashion, and the easiest way through the material is to follow that path.

How to Read This Book Backwards
If you are the kind of person whose eyes sparkle more at the sight of money than
intricate algorithms, you may read this book backwards. Let yourself be thoroughly
convinced that data compression is the most amazing thing since sliced bread (with
butter!), and then, energized by those convictions, tackle the work of understanding
how compression actually works (because understanding it will result in, you guessed
it, more money). Ready?

Preface | xvii

Chapter Synopsis
Let’s face it, chapter synopsis chapters are boring, and we promised you that, like Wil‐
liam Goldman in The Princess Bride, we’d stick with just the juicy bits. So, while we
ask you not to skip chapter two, feel free to skip this synopsis. Skim the table of con‐
tents to find out about, well, the contents of this book, or just go ahead and read the
book since you are already holding it in your hands. But if you want to dip your toes
into the topic before taking the plunge, here is a little warning on what you are get‐
ting yourself into.

Chapter 1, Let’s Not Be Boring
In this chapter we tell you everything you need to know if you don’t have time to
actually read this book. We can divide compression algorithms into five buckets:
variable-length codes, statistical compression, dictionary encodings, context
modeling, and multi-context modeling. Claude Shannon invented a way of meas‐
uring the information content of a message and called it Information Entropy.
The whole point of compression is to encode data using fewest possible symbols
into the fewest possible bits. The foundation of the whole internet is data com‐
pression. You should compress all your data. That’s it. You can stop reading now.

Chapter 2, Do Not Skip This Chapter
Don’t skip this chapter because it lays out the fundamentals, such as how to rep‐
resent the whole world in zeros and ones, an introduction to Information
Theory, and Entropy as the Minimum Bits Needed to Represent a Number.

Chapter 3, Breaking Entropy
According to Claude Shannon, Entropy puts a limit on how small you can make
a data set. Compression is all about breaking this limit by exploiting two proper‐
ties of real data: ordering and relationships between symbols.

Chapter 4, Variable-Length Codes
You’ll learn how to string together 0s and 1s to make unique, variable length
codewords, and then assign the shortest ones to the most probable symbols in
the dataset. And you’ll meet Peter Elias.

Chapter 5, Statistical Encoding
One size never fits all, and statistical encoders create custom VLCs that are opti‐
mized for particular datasets. You’ll build a Huffman tree using sticky notes,
explore arithmetic coding, and meet Jarek Duda who usurped them both by
introducing arithmetic numerical systems.

Chapter 6, Adaptive Statistical Encoding
Real data streams change, and adaptive encoders optimize themselves according
to the local properties of the data they are processing.

Chapter 7, Dictionary Transforms
If you can’t compress your data as is any further, you can preprocess it into a
more compressible form by considering “words”, and encoding how they are
repeated in the data set, before applying statistical compression.

Chapter 8, Contextual Data Transforms
There are as many different transforms as there are data sets, but in modern
computing there are a couple of big ones that matter the most: run-length encod‐
ing and delta encoding. What they have in common is that they consider what
has come before to determine what is going to happen next.

Chapter 9, Data Modeling
Multicontext encoders take into account the last few observed symbols in order
to identify the ideal number of bits for encoding the current symbol. Think of it
as creating a brand new huffman tree each time you read in a new symbol. The
fancy words include Markov chains, prediction by partial matching, and tries.
Use them to impress your friends.

Chapter 10, Switching Gears
This chapter takes a short excursion into media-specific compression and opens
the door to becoming practical about your data.

Chapter 11, Evaluating Compression
For every data stream, there’s a different compression algorithm. And for every
use case, there’s a...different compression algorithm. Learn about all the things
you need to consider before picking what’s best for your needs.

Chapter 12, Compressing Image Data Types
If you’re an application developer, chances are that the bulk of your content is
image data. Save bits in images by exploiting patterns and cleverly omitting
information in a way that the human brain won’t notice. We’ll look at PNG, JPG,
GIF, and WebP.

Chapter 13, Serialized Data
Serialized content is the second most common data format you’ll be sending
around in your networked applications. Kick JSON and XML in favor of binary
serialization formats.

Chapter 14, Lossy Data Compression
Actually, that’s a different book.

Chapter 15, Making the World a Little Smaller
Why you must care about data compression to grow your audience, your busi‐
ness, and your bottom line.

1 Yep, that’s the last time we’ll say this.

CHAPTER 1

Let’s Not Be Boring

Welcome to the first chapter of a book about a niche section of computing. We’re sup‐
posed to set the stage here for the entire book (that’s what the publisher says), and
really hook the reader (that would be you). We’re expected to talk about history, a
handful of basics, and anything else that we can do to try and ease you into the topic
of compression as gently (but interestingly) as possible. Without math. Because math
is hard.1

But let’s be real, that’s boring for you to read, and for us to write.

So here’s what we’re going to do, instead. This book is about compression. And com‐
pression is all about the most compact representation of data. So, we’re going to run
through this introductory stuff in the shortest, most compressed form possible.

First, we’re going to talk about buckets. Then, we’re going to introduce you to this
rebel named Claude Shannon, who pretty much ruined our life while simultaneously
creating every important thing that you love about computers. Finally, we are going
to reveal to you the one essential thing you need to know about data compression.
And without going out of our way (hardly!), we’ll make clear how compression pays
off in better, cheaper, and faster apps.

Do we have a deal?

The Five Buckets of Compression Algorithms
Data compression algorithms are a really, really big space. Fortunately, these algo‐
rithms fall into a few buckets, which makes things a lot easier to understand. To

1

2 It’s important to note that according to modern information theory, there is a point at which removing any
more bits removes the ability for you to uniquely recover your data stream properly. So, our compression goal
is to remove as many bits as possible to get to this point, and then remove no more.

throw the words at you, they are variable-length codes, statistical compression, dictio‐
nary encodings, context modeling, and multicontext modeling. Each of these five high-
level buckets contains a horde of algorithm variations, which is a good thing; each
variation differs slightly in intended input data, performance, memory constraints,
and output sizes. Picking the correct variant means carrying out tests on your data
and the encoders to find the one that works best.

Now, you can use these buckets together, because some buckets contain algorithms
whose entire purpose is to transform the data so that another bucket can be more
efficient at compressing it.

For you to be viewed as a compression guru, you need to understand the buckets,
how they fit together, and what types of variants to use from which bucket for your
own data sets.

Let’s get started.

Claude Shannon Is Infuriating!
Back in the 1940s, a statistical researcher named Claude Shannon published several
papers detailing research he did while working in the military during World War II,
and later at Bell Labs.

Claude was a pretty smart guy (and very good at math). Before he left the University
of Michigan in 1936, he’d racked up bachelor’s degrees in engineering and mathemat‐
ics. He then went on to do a bunch of crazy post-graduate stuff at the Massachusetts
Institute of Technology, and his master’s thesis, “A Symbolic Analysis of Relay and
Switching Circuits”, became the foundation of modern electrical switch-based com‐
puting.

In 1948, Shannon published A Mathematical Theory of Communication, which
detailed how to best encode information that a sender wants to transmit, thus invent‐
ing the entire field of Information Theory. Messages can be encoded in many ways—
think “alphabet” or “Morse code”—but for every message, there is a most efficient
way to encode it, where “efficient” means using the fewest possible letters or symbols
(or bits, or units of information). What “fewest” boils down to depends on the infor‐
mation content of the message. Shannon invented a way of measuring the information
content of a message and called it information entropy.

Data compression is a practical application of Shannon’s research, which asks, “How
compact can we make a message before we can no longer recover it?”2

2 | Chapter 1: Let’s Not Be Boring

https://www.cs.virginia.edu/~evans/greatworks/shannon38.pdf
https://www.cs.virginia.edu/~evans/greatworks/shannon38.pdf
http://bit.ly/28OvyFH

So wait...why is he infuriating?

Well, although we can thank Mr. Shannon for helping to create the modern comput‐
ers on which this book is being typed (and on which you’re most likely reading it), his
work on information theory is directly the thing we’re trying to defeat. You can look
at data compression as a rebellion against information entropy. Every compression
algorithm computer scientists write tries to disprove Claude Shannon’s research, and
compress the data further than its measured entropy. We scrape and pull and steal any
bits we can from a message, to make it as small as possible, each time trying to break
below Shannon’s definition of entropy and get to a new level of information under‐
standing. Millions upon millions of hours of engineering time over the past 60 years
have been solely dedicated to creating algorithms to defeat—or cleverly sneak around
—a concept created by this brilliant man.

The Only Thing You Need to Know about Data
Compression
OK, here’s what you need.

Data compression works via two simple ideas:

• Reduce the number of unique symbols in your data (smallest possible “alpha‐
bet”).

• Encode more frequent symbols with fewer bits (fewest bits for most common
“letters”).

Boom. Done. That’s it.

Sixty years of compression research boiled down to two bullet points. Every single
algorithm in data compression focuses on doing one of these two things. It trans‐
forms the data to be more compressible by shuffling or reducing the number of sym‐
bols, or it takes advantage of the fact that some symbols are more common than
others, and encodes more common symbols with fewer bits.

What makes applied data compression so complex is that there’s a gazillion ways to
do these two things, depending on the kind of data you have. You’ll need to take the
following considerations into account:

• Different data needs to be treated differently. Words in a book and floating-point
numbers, for example, respond to very different algorithms.

• Some data can be transformed first to make it more compressible.

The Only Thing You Need to Know about Data Compression | 3

3 Because data plans are metered and horribly expensive in most parts of the world.
4 Check out “The Web Back in 1996–1997” for a historical detour.

• Data might be skewed. For example, temperature data taken in summer might be
skewed toward high temperatures; that is, it might contain a lot more high tem‐
peratures than near-freezing ones.

Your challenge as a programmer is to figure out the best way, or combination of ways,
for compressing any block of data that a user throws at your application. And your
challenge as a content developer is to figure out how to throw data at your users and
not break their bank accounts.3

That, my dear adventurer, is what the rest of this book is about. It’s your field guide to
understanding what in the compression world is worthy of your attention, and how
the algorithms work conceptually, so that you can choose the right ones and apply
them to your super awesome social/mobile/web/media application data.

A World Built on Data Compression
Let’s be clear about this: the computing world that you live in, right now, is built
entirely on the back of data compression algorithms.

Yup. Every piece of it.

Every web page, image, song, cat video, streaming Internet movie, selfie, video game
download, microtransaction, and OS update works only because of compression
algorithms. In fact, you can’t throw a single bit of data around the Internet without
running into some compressed content.

What’s so amazing about data compression technology is that it’s responsible for
some of the largest changes in personal computing over the past 40 years, and no one
knows about it.

For example, do you download or stream music instead of buying a CD? If so, you
have compression to thank.

Music compression
See, in 1996, a joint working group (a bunch of smart people from different compa‐
nies) unveiled the MP3 file format. This new audio format changed the nature of
audio on computers. Until that point, the WAV file format was the most dominant
and accepted format for creating, storing, and transferring audio data. Everyone used
it, but the files were irresponsibly huge. A three-minute song could be roughly 30 MB
in size and take around 9 minutes to download.4 Forget about streaming!

4 | Chapter 1: Let’s Not Be Boring

http://royal.pingdom.com/2008/09/16/the-web-in-1996-1997/

5 Note that MP3 is a lossy data compression format; that is, some information is lost during compression. We
briefly talk about this type of data compression later in the book.

6 The first portable MP3 player was launched in 1997 by SaeHan Information Systems, and AT&T set up the
first streaming service.

7 ASCII art was actually invented by creative folks with typewriters.

The invention of MP3 meant that anyone could get a full-length, three-minute song
as about 1–3 MB of data at impressive audio quality levels.5 Users could even plop
CDs into their computers and convert an entire album to the MP3 format to listen to
digitally.

This combination of smaller file size and good quality gave birth to one of the biggest
consumer innovations of our time: Napster. This service made it possible for people
to trade MP3s with one another, free of cost. Of course, this opened up a massive
legal problem: folks would buy a CD, convert the audio to MP3, and then share it
with their friends, who never had to pay for the original disc. As you can imagine, the
companies who make money off CD sales were infuriated and did everything within
their power to successfully shut down the Napster service.

And so, the late 1990s/early 2000s were riddled with legal battles and governmental
policy changes attempting to stop this kind of music sharing. There was even legisla‐
tion proposed that would make the use of the MP3 format illegal.

Apple, rather than fighting this new digital phenomenon, decided to build a product
around it. In 1998, it launched the iPod, one of the first portable devices dedicated to
storing and playing MP3 files. With it came the iTunes Store, where customers could
legally purchase MP3 files for personal use.6

Today digital music distribution has become the new normal, with a plethora of com‐
panies trying to find better ways to sell music to you.

The massive success of the iPod product eventually led to the development and
release of the iPhone device, changing the face of personal computing forever. (But
that’s a different story.)

Image compression
Let’s cycle back in time a bit further to the birth of the Internet. In 1978, when the
first connections of the Internet structure were created, the amount of data sent was
pretty minimal. The small number of users would primarily send and receive text
data, or images that were created entirely out of characters, as demonstrated in
Figure 1-1.7

The Only Thing You Need to Know about Data Compression | 5

https://en.wikipedia.org/wiki/ASCII_art
https://en.wikipedia.org/wiki/Napster

Figure 1-1. A castle, made of ASCII art. Source: Wikipedia, no author.

The issue at hand was that real image information, stored in 24-bits-per-pixel format,
was entirely too hefty for early connection modems. So, of course, the compression
gurus went right at it. To test their new image compression algorithms, they needed a
corpus of images. Being part of a male-dominated industry, they might have had a
bias toward gentlemen’s magazines for source material; thus, they ended up with the
now famous Lena image (see Figure 1-2), a picture of Lena Söderberg from the pages
of the November 1972 issue of Playboy magazine.

6 | Chapter 1: Let’s Not Be Boring

https://en.wikipedia.org/w/index.php?title=ASCII_art&oldid=87086275
https://en.wikipedia.org/wiki/Lena_S%C3%B6derberg

Figure 1-2. “Lena.” Original full portrait photographed by Dwight Hooker and published
as “Playmate of the Month” in the November 1972 issue of Playboy magazine. This 512 x
512 electronic/mechanical scan of a section of the full portrait was created by Alexander
Sawchuk et al. and is available from the USC-SIPI image database. Licenses under Fair
Use via Wikipedia.

When they unveiled the results of their research, they used a cropped, PG-13 version
of the image in their paper, and provided the original version for others to test their
own compression algorithms on, as well. For a long time, Lena was the gold-standard
corpus image for testing the majority of image compression algorithms. Thankfully,
since then, less controversial image corpora have been created. (The Kodak compa‐
ny’s image test suite is our personal favorite.) However, Lena is often still included as
a litmus test in many image compression papers today.

Video compression
Fast-forward to 2001 and the launch of YouTube, a website where users could upload
any video they recorded, for free, for everyone to see.

Until this point, the dominant way of sending around video information had been in
the MOV format, which was nothing more advanced than a series of JPG images
strung together in order. Unsurprisingly, the files were insanely large. So, the idea that
you could just load a web page and watch a video was mind-boggling.

The Only Thing You Need to Know about Data Compression | 7

http://bit.ly/28Ji2TN
https://en.wikipedia.org/wiki/File:Lenna.png
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/

8 We’ll explore Burrows–Wheeler transform deeply in Chapter 8.

Genome mapping
In 2008, in an attempt to tackle disease and human mortality, scientists started to map
and test the human genome. A single genome sequence represents an enormous
amount of data—more than 14 GB just to describe the makeup of a human. These
data sizes were larger than most systems were able to handle (and cloud computing
hadn’t become a big thing yet).

Compression, once again, came to the rescue. Researchers were able to find that
BWT8 was the most efficient way to store DNA information in a compressed form,
and they could even perform operations on it without having to decompress it first.

By 2014, researchers had created one of the fastest protein folders on the planet,
combining scalable cloud computing and compressed data transfer between host
computers.

Compression and the economy
So, you see, compression has been at the heart of many massive changes in comput‐
ing technology and culture. The reason for this lies in simple economic theory: com‐
pressed files are smaller files. Meaning, it takes less time to transfer them, and it costs
less to do so, as well. Distributors pay less to distribute, and customers pay less to
consume. In a modern world in which computing time is literally money, compres‐
sion represents the most economically viable way to shorten the gap between content
distributors and content consumers.

8 | Chapter 1: Let’s Not Be Boring

www.allitebooks.com

https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform
http://www.allitebooks.org

1 For now. We are sure quantum computing or Babylonian counting will change this one day.

CHAPTER 2

Do Not Skip This Chapter

Even if you are familiar with binary numbers, DO NOT SKIP THIS CHAPTER. We
are going to begin digging into information theory as well, which is required for
understanding the rest of this book.

Understanding Binary
It might seem a bit odd to start a book about data compression with a primer on
binary numbers. Bear with us here. Everything in data compression is about reducing
the number of bits used to represent a given data set. To expand on this concept, and
the ramifications of its mathematics, let’s just take a second and make sure everyone
is on the same page.

Base 10 System
Modern human mathematics is built around the decimal—base 10—number system.1

This system makes it possible for us to use the digits [0,1,2,3,4,5,6,7,8,9] strung
together to represent number values. Back in elementary school, you might have been
exposed to the concept of numeric columns, where, for example, the value 193 is split
into three columns of hundreds, tens, and ones.

Hundreds Tens Ones
1 9 3

9

Effectively, 193 is equivalent to 1 * 100 + 9 * 10 + 3. And as soon as you grasped that
pattern, maybe you realized that you could count to any number.

Later, when you learned about exponents, you were able to replace the “hundreds”
and “tens” with their “base ten to the power” equivalents, and a new pattern emerged.

102 101 100

1 9 3

So:

193 = 1 * 100 + 9 * 10 + 3 = (1 * 102) + (9 * 101) + (3 * 100)

Because each column can contain only a single-digit number, what happens when we
add another 1 to 9? Counting up from 9 gives us 10 (two digits). So, we keep the zero
in our current 100 column and shift the 1 to the next column to the left, which is
101 and happens to represent “tens.”

As we count up further, we hit 19 + 1 = two tens (2 * 101), and by the time we get to
99, yep, we shift left for 1 * 102.

Binary Number System
The binary number system works under the exact same principles as the decimal sys‐
tem, except that it operates in base 2 rather than base 10. So, instead of columns in
the table being powers to the base of ten:

10 | Chapter 2: Do Not Skip This Chapter

102 | 101| 100

they are powers to a base of two:

22 | 21 | 20

Instead of having available the digits 0–9 before we have to shift, we can only use 0–1.

Counting in binary becomes “zero,” “one,” and because 21 is the next column already,
“two” is 1-0, “three” becomes 1-1, and “four,” being 22, shifts us over again to 1-0-0.

Converting from binary to decimal
As you were reading the previous section, we’ll bet that your brain already converted
the small binary numbers into their decimal equivalents, because unless you work
with binary numbers all the time, you understand the value of a binary number by its
decimal equivalent.

Let’s be explicit and say we have the binary number 1010 and fill it into our powers
columns.

23 22 21 20

1 0 1 0

To get the equivalent decimal number, we add up the values of the columns that have
a 1 in them. The preceding table yields the following:

Understanding Binary | 11

23 + 21 = 8 + 2 = 10

Thus, binary 1010 equals decimal 10.

Conversion from binary to decimal is straightforward. Converting from decimal to
binary is a little more complicated.

Converting from decimal to binary
An easy method for converting a decimal number to its binary equivalent is to repeat‐
edly divide it by two and string together the remainders, which are either “1” or a “0.”

This is easiest understood by doing. So, let’s convert the decimal number 294 into its
binary-number equivalent using that method.

1. We begin by dividing 294 by 2, which gives us 147 with a remainder of 0.
2. We divide the result 147 by 2, which is 73 plus a reminder of 1.
3. Dividing 73 by 2, we continue to build up the table that follows.

Note that if the decimal number being divided is even, the result will be whole and
the remainder will be equal to 0. If the decimal number is odd, the result will not
divide completely, and the remainder will be a 1.

Number as it’s divided by 2

294 Column equivalent
147 remainder 0 (LSB) 20

73 remainder 1 21

36 remainder 1 22

18 remainder 0 23

9 remainder 0 24

4 remainder 1 25

2 remainder 0 26

1 remainder 0 27

0 remainder 1 (MSB) 28

Now arrange all the remainders from right to left, with the least significant bit (LSB)
on the right, and the most significant bit (MSB) on the left:

100100110

12 | Chapter 2: Do Not Skip This Chapter

There you have it: 100100110 is the binary equivalent of decimal 294, obtained using
the divide-by-2 decimal-to-binary conversion technique.

When It Works, It Works
It turns out that this divide-by-the-base method also works for conversion to other
number bases. One base used commonly in computer science is base 16, or hexadeci‐
mal. Because we don’t have a digit to represent decimal 11, we use the letter A for 10,
B for 11, until F for 15. Try converting the number 3053 to hexadecimal by dividing
by 16, and lining up the reminders from right to left. Hint: the result is pretty sleepy.

Information Theory
Now that we’re all on the same page with the binary system, let’s talk about what this
means in the context of information theory.

in·for·ma·tion the·o·ry
(noun)

the mathematical study of the coding of information in the form of sequences of
symbols, impulses, etc., and of how rapidly such information can be transmitted,
e.g., through computer circuits or telecommunications channels.

According to information theory, the information content of a number is equal to the
number of binary (yes/no) decisions that you need to make before you can uniquely
identify that number in a set.

Every Child Is an Expert in Applied Information Theory
The game 20 Questions is a perfect illustration of the information content concept.
The way we played it was that the first player would think up whatever they wanted,
and the other player(s) had to figure out what it might be by asking at most 20 ques‐
tions that could be answered by “yes” or “no.”

Being kids, we varied the game by restricting the domain (it has to be an animal), or
letting the game only go until you had gotten “no” as an answer 10 times (and,
without shame, the first player resorted to lying or changing the object if someone
was too quick at figuring out the answer).

The game suggests that the information required to identify an arbitrary object is at
most 20 bits. Mathematically, if each question is structured to eliminate half the
objects, 20 questions will actually allow the questioner to distinguish between 220 or
1,048,576 objects.

That’s an awful lot of objects.

Information Theory | 13

https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Twenty_Questions

2 If the array has an even number of elements, there is not really a center. We just choose whether to go with the
left-of-center or right-of-center element. It doesn’t matter which.

We can take this one step further.

Consider this narrative setting: There is a 10 × 10–foot tiled state room with a vaulted
ceiling. It has a four-poster king-sized bed facing the eastern window, a small, antique
writing table along the north wall, and a heavy 18th-century armoire to the west of
the bed.

You could write all of this up in a page of JSON or your favorite scripting language.

Or you could do it a bit differently: encode the 100 tiles of the grid using 7 bits, the
four cardinal directions with 2 bits, and the three pieces of furniture with 2 bits each.
Arranged in an order of tile-furniture-direction, your bed might be described as
10010100111. (The meta-information on the “meaning” of the bit codes can be in
your head, coded into the software assembling the room, or attached to the data).

Now, the entire room takes 44 bits to describe—or 6 bytes—which is quite some sav‐
ings from the full text or a JSON file, if you ask us. (Or just ask the mobile users who
are downloading your game.)

This is a process of data compression in a nutshell.

An Excursion into Binary Search
Suppose that we’re given a sorted range of numbers in an array, say 0–15, and we’d
like to find where the number 10 exists in the array.

The binary search algorithm works by dividing the data set in the array in half, and
determining if 10 is greater or smaller than the pivot value at the center.2 Depending
on the result of this decision, we split the array and keep the part of the data set that
contains 10. We then compare to the new pivot value and split again. We keep split‐
ting until all we have left is the number 10. (If this sounds a little bit like playing 20
Questions, that’s because it is!)

Now, while searching for the number, each time we decide on greater or smaller, let’s
output a single bit to a stream, to represent which decision we’ve made (0 for smaller,
1 for greater).

This is much easier to understand when you do it, so let’s play this out in a fancy dia‐
gram, which you can see in Figure 2-1.

14 | Chapter 2: Do Not Skip This Chapter

Figure 2-1. Binary search on a restricted number space. When we keep a log of the deci‐
sions (high/low) at each level, we end up with the binary version of the number.

The resulting output stream is the binary value 1010, which interestingly enough, is
exactly the binary representation for the number 10. We were able to represent the
number by logging how many yes/no decisions we needed to uniquely describe it, in
the given set of data with length 2n – 1.

If you want to be left alone at a party, start talking to people about
this topic. It’s a sure-fire way to become the awkward person stand‐
ing near the chips and dip.

Information Theory | 15

3 Sorry about the math, but this one is foundational for all that follows.

Entropy: The Minimum Bits Needed to Represent a Number
So, given a random integer value, we can convert that value to binary form. Sadly,
though, if given a number, it’s not instantly obvious how many bits it will require
without going through the process of binary conversion. This is a boring process, but
thankfully, mathematics has produced a formula that makes it easier for us:3

log2(x) = -(log(x) / log(2)) = number of binary digits needed to represent
a number

Mathematically speaking, log2 will return a floating-point number.

For example, log2(10) = 3.321 bits.

Technically speaking, you can’t represent 3.321 bits on modern computer hardware
(because we can’t represent fractions of bits), so we are forced to round up to the next
whole integer, using the ceil (or ceiling) function, updating our formula like so (this
is a spiffed-up version, so we are going to use spiffed-up capital letters to make the
distinction):

LOG2(x) = ceil(log(x) / log(2))

Of course, now there is another problem: technically, we’re off by one bit for powers
of two.

Take the number 2 (or any power of 2 for that matter):

LOG2(2) = ceil(log(2) / log(2)) = 1

LOG2(4) = ceil(log(4) / log(2)) = 2

The result is true from a mathematics perspective, but fails in the fact that we need
two and three bits to represent the numbers 2 (bin = 10) and 4 (bin = 100) on our
system. As such, we add a slight skewing to our method to ensure that our log results
are accurate for powers of two.

LOG2(x) = ceil(log(x+1) / log(2))

16 | Chapter 2: Do Not Skip This Chapter

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions

Just to help you understand this concept a bit more, here’s a table that displays some
interesting data about LOG2 and the number of bits required to represent numbers:

Value LOG2(value) Binary value

0 1 0

1 1 1

2 2 10

3 2 11

4 3 100

7 3 111

15 4 1111

255 8 11111111

65535 16 1111111111111111

9.332622e+157 525 …….

So, given any decimal integer number, we can easily determine the minimum number
of bits needed to represent it in binary by calculating its LOG2. Shannon defined this
LOG2 of a variable as its entropy, or rather, the least number of bits required to repre‐
sent that value.

Standard Number Lengths
The LOG2 form of numbers is efficient but not practical for the way we build com‐
puter components.

The issue lies between representing the number in the least bits possible, confusion
on how to decode a binary string of numbers (without knowing their LOG2 lengths),
and performance in hardware execution.

Modern computers compromise by using fixed-length buckets of bits for numbers of
different sizes. The fundamental bucket is one byte, which is made up of eight bits.
And the integer buckets typically available in modern programming languages are a
short with 16 bits, an integer with 32 bits, and a long with 64 bits. As such, our deci‐
mal number 10, converted to binary as 1010, would be a short and represented as
0000000000001010. This is a lot of wasted bits.

The point here is that the majority of algorithms we use in the development of
modern applications all tend to use defined bit ranges rather than the LOG2 size.
Which is basically the difference between information theory and implementation
practicality. Any bit stream we have will always be rounded up to the next byte-
aligned size in computer memory. This can get confusing: for example, when we’ve
just saved 7 bits of data, our machine reports that our data still remains the same
number of bytes long.

Information Theory | 17

The goal in practical data compression is to get as close as possible to the theoretical
limit of compressibility. That’s why, to learn and understand compression algorithms,
moving forward with the rest of this book, we will only think in terms of LOG2.

18 | Chapter 2: Do Not Skip This Chapter

1 Shannon denoted entropy with the term H (capital Greek letter Eta), named after Boltzmann’s H-theorem.
2 Note, the formula for H uses the mathematical definition of log2(), which is different from the LOG2() we

defined in Chapter 2. In this case, we don’t expect the output to be rounded up to the next highest integer, and
the value is allowed to be negative.

3 You can find implementations of this algorithm in various languages over at Rosetta Code.

CHAPTER 3

Breaking Entropy

Understanding Entropy
Because he had nothing better to do, Dr. Shannon called the LOG2 version of a num‐
ber entropy, or the smallest number of bits required to represent a value. He further
extended the concept of entropy (why not recycle terminology...) to entire data sets,
where you could describe the smallest number of bits needed to represent the entire
data set. He worked out all the math and gave us this lovely formula for H(s)1 as the
Entropy of a Set:

H s = − ∑
i = 1

n
pilog2 pi

This might look rather intimidating,2 so let’s pick it apart:3

19

https://en.wikipedia.org/wiki/H-theorem
http://rosettacode.org/wiki/Entropy

4 It doesn’t matter whether the values are sorted; that is, it has no effect on entropy, as we’ll see later in the chap‐
ter. We chose this ordering because it’s easy to see how many there are of each letter.

en·tro·py
(noun)

A thermodynamic quantity representing the unavailability of a system’s thermal
energy for conversion into mechanical work, often interpreted as the degree of
disorder or randomness in the system. (wrt physics)

Lack of order or predictability; gradual decline into disorder. (wrt H.P. Lovecraft)

A logarithmic measure of the rate of transfer of information in a particular
message or language. (in information theory)

To be practical and concrete, let’s begin with a group of letters; for example:

G = [A,B,B,C,C,C,D,D,D,D]4

First, we calculate the set S of the data grouping G. (This is “set” in the mathematical
sense: a group of numbers that occur only once, and whose ordering doesn’t matter.)

S = set(G) = [A,B,C,D]

This is the set of unique symbols in G.

Next, we calculate the probability of occurrence for each symbol in the set.

Here is the mathematical formula:

P vi = count vi /len G

What this means is that the frequency or probability P of a symbol v is the number of
times that symbol occurs in set G (that is, count(v)), divided by the length of the set
G.

Shifting from math to tables, let’s figure out the probability of each symbol inside of
G. Because we have 10 symbols in G, len(G) is 10, and thus the probability for each
symbols is a multiple of 0.1:

20 | Chapter 3: Breaking Entropy

Symbol Count Probability
A 1 0.1

B 2 0.2

C 3 0.3

D 4 0.4

 Total must be: 1.0

With the probabilities for our unique symbols calculated, we can now go ahead and
compute the Shannon entropy H of the set G. Gaze again upon this lovely formula;
and fear not, as the gist is much simpler than you might think:

H s = − ∑
i = 1

n
pilog2 pi

Firstly, for each symbol, multiply the probability of that symbol against log2 of the
probability of that symbol. Secondly, add it all up, and voilà, you’ve got your entropy
for the set.

So, let’s apply this to G.

Symbol ∑ Probability p log2(p) p * log2(p)
1 0.1 -3.321 -0.3321

2 0.2 -2.321 -0.4642

3 0.3 -1.736 -0.5208

4 0.4 -1.321 -0.5284

 SUM -1.8455

Summing that last column together gives a value of –1.8455 (give or take a few
qubits). The Entropy equation applies a final sign inversion (that minus sign before
the big ∑), giving us ~1.8455 bits per symbol to represent this dataset… Ta-da!

What This Entropy Stuff Is Good For
Because G = [A,B,B,C,C,C,D,D,D,D] has an entropy of H(G) = ~1.8455, we can
roughly say that G can be encoded by using 2 bits per value (by rounding up to the
next whole bit).

We assign the following 2-bit character encodings:

A -> 00

What This Entropy Stuff Is Good For | 21

5 Remember that in practice we can’t represent fractional bits...yet.
6 Which is a complete and utter lie...but we’ll get to that in a minute.

B -> 01

C -> 10

D -> 11

Our binary-encoded grouping Ge then looks like this:

e = [00,01,01,10,10,10,11,11,11,11]

With this encoding, we end up with a size of Ge (denoted as |Ge| in most texts) as 20
bits.

Now for the fun part: We can calculate the final size of Ge without having to actually
do the encoding step. All we have to do is multiply the rounded-up5 entropy value H
by the length of G (|G|):

H(G) * |G| = 2 * 10 = 20 bits = |Ge|

And according to Shannon entropy, that’s as small as you can make this data set.6

So, wrapping all this up, entropy generally represents the minimum number of bits
per symbol, on average, that you need in order to encode your data set so as to pro‐
duce the smallest version of it.

Understanding Probability
At its core, Shannon entropy is built upon the evaluation of the probability of sym‐
bols in the data stream, in an inverse sort of way.

Basically, the more frequently a symbol occurs, the less it contributes to the overall
information content of the data set. Which…seems completely counter-intuitive.

We can find a real-world example of this in fishing. Suppose that you are sitting at the
shoreline, reel and rod and fancy hat, in your lawn chair, watching the river and your
bobber. Every few minutes, you take note of the state of the bobber, which remains
unchanged. But every hour or so, a fish bites. That’s the thing you are interested in!
So, very low information over a long time, with the occasional really important thing
happening. If you represented the measurements you take with 0 for “no fish” and 1
for “fish!”, you could easily write your notes as 0000000010000000001000000000001.

22 | Chapter 3: Breaking Entropy

7 Take that, “Theory”!

Statistically (and sportingly!) speaking, the interesting parts are the events when the
fish are biting. The rest is just redundancy.

But enough metaphor, let’s take a look at a few numerical examples. The next table
shows some sets of probabilities (we don’t care about the actual symbols for now) and
their associated entropies:

Probability set P(G) Entropy H(G) For a set of 1000 symbols…
[0.001, 0.002, 0.003, 0.994] 0.06 994 would be the same

[0.25, 0.25, 0.003, 0.497] 1.53 497 would be the same

[0.1, 0.1, 0.4, 0.4] 1.72 800 would be equally shared by two symbols

[0.1, 0.2, 0.3, 0.4] 1.84 One symbol would dominate but not by much

[0.25, 0.25, 0.25, 0.25] 2 Each symbol would occur 250 times

So, what’s going on here?

In the first row, the fourth symbol claims the overwhelming majority of the probabil‐
ity. This data set is dominantly composed of that one symbol, with a sprinkling of the
others somewhere in it randomly. Because one symbol contributes to so much of the
data stream’s content, it means there’s less overall information in the data set, hence
the lower entropy value.

In the last row of the table, you can see that all four symbols are equally probable, and
thus they contribute equally to the data stream’s content. The result is that there’s
more information in the data set, and therefore we need more bits, per symbol, to
represent it.

For example, playing whack-a-mole is interesting because all slots are equally proba‐
ble, and you never know from which one the mole is going to pop up, which is what
makes it a lot more interesting than fishing.

Breaking Entropy
The bleeding edge of data compression is all about messing with this entropy. In fact,
the entire science of compression is about calling entropy a big fat liar on the Inter‐
net.

The truth is that, in practice,7 it’s entirely possible to compress data to a form smaller
than defined by entropy. We do this by exploiting two properties of real data.
Entropy, as defined by Shannon, cares only about probability of occurrence, regard‐

Breaking Entropy | 23

8 Don’t worry, we’ll talk about this in more depth in Chapter 8.

less of symbol ordering. But ordering is one fundamental piece of information for
real data sets, and so are relationships between symbols.

For example, these two sets, the ordered [1,2,3,4] and the unordered [4,1,2,3], have
the same entropy, but you intuitively recognize that there is additional information in
that ordering. Or using letters, [Q,U,A,R,K] and [K,R,U,Q,A] also have the same
entropy. But not only does [Q,U,A,R,K] represent a word with meaning in the English
language, there are rules about the occurrence of letters. For example, Q is usually
followed by U.

Let’s look at some examples of how we can exploit these properties to break entropy.
(Roll up your sleeves, we’re gonna compress some data!)

The key to breaking entropy is to exploit the structural organization of a data set to
transform its data into a new representation that has a lower entropy than the source
information.

Example 1: Delta Coding
Let’s take a set of increasing numbers, [0,1,2,3,4,5,6,7], and call it set A.

Now, shuffle that set to get set B = [1,0,2,4,3,5,7,6].

These two sets have a few unique characteristics with respect to information theory:

• All the symbols are equally probable, and there are no duplicates.
• Set A and set B have the same exact entropy of H = 3.

So, according to Dr. Shannon, we should assign 3 bits per symbol, requiring 24 bits
total to encode each set. It turns out that it is possible to easily break entropy and
encode set A in fewer bits. Here is how:

Set A is effectively just a linearly increasing run of numbers. So, instead of encoding
each number, we could transform the stream and encode each number by its differ‐
ence from the previous one. Set A encoded would then look like this:

[0,1,1,1,1,1,1,1]

And the entropy of this stream is only H(A) = 1. Not bad, eh?

This type of transform is known as Delta Coding, or the process of encoding a series
of numbers as the difference from the previous number.8

24 | Chapter 3: Breaking Entropy

9 A multiset is a set for which multiple occurrences of the same element are allowed.
10 Of course, although in theory there is a difference between the two ways of grouping, for this tiny data set, in

practice, we’d still need 2 bits either way. But remember that right now we are only concerned with beating
Shannon.

11 It’s worth pointing out that there’s a sweet spot with respect to symbol grouping, and an entire field of data
transforms that help you find the optimal parsing; they are called “Dictionary Encoders,” and we will discuss
them in Chapter 7.

So let’s talk about set B. Because it’s not linearly increasing, delta coding won’t really
work on it, as we’d get [1,–1,2,2,–1,2,2,–1] with an entropy of H(B) = 2, which doesn’t
look so bad at first. However, first we would need to encode the multiset9 B as
[01,00,10,10,00,10,10,00] using a total of 16 bits. In addition, we’d also need to store
for the decoder that the codeword “00” represents the symbol –1, which takes up
additional space. So, not much of a win, if any. (In fact, for some sets, delta coding
might even require more bits overall than just encoding the data directly.)

Ordering Matters!
Entropy says that the ordering of symbols doesn’t matter, but delta coding proves that
to not be the case. If there’s a high correlation between two adjacent values, delta cod‐
ing can transform the data in such a way that it changes the entropy to a lower value.

Example 2: Symbol Grouping
Suppose that you have a string S = “TOBEORNOTTOBEORTOBEORNOT”, which
has the unique set of symbols [O,T,B,E,R,N] and entropy H(S) = 2.38.

Any human can look at this and realize that there are duplicate words here. So, what
if instead of using individual letters as symbols, we used words? This gives us the
unique set [TO,BE,OR,NOT] and an entropy of H(S) = 1.98.

So, if using words instead of symbols has given us a lower entropy value for the
stream, how far can we take this? It looks like the term “TOBEORNOT” is used mul‐
tiple times. Could we collapse that into one symbol?

Let’s just try that:

set(S)=[TOBEORNOT,TO,BE,OR] with an entropy H(S)=1.9210

Take that, entropy!11

Breaking Entropy | 25

12 The maximum value of a set A of elements is denoted by max(A) and is equal to the last element of a sorted
(i.e., ordered) version of A.

Symbol Grouping Matters!
Symbol grouping proves that if there are various groupings of contiguous values in
our data set, we can use them to reduce entropy. Basically, by preprocessing our data
to find optimal symbol groupings, we get a lower entropy score.

Example 3: Permutations
The interesting thing about set B [1,0,2,4,3,5,7,6] from Example 1 is that it’s a shuffled
version, or permutation, of set A [0,1,2,3,4,5,6,7].

In mathematics, the notion of permutation relates to the act of rearranging, or permut‐
ing, all the members of a set into some sequence or order.

Effectively, a permutation is a shuffled version of an original set for which the order
of elements matters, and no items are repeated. From a classical definition, permuta‐
tions only exist as a shuffling of a run of numbers. For example [2,1,3,4] is a valid
permutation of [1,2,3,4], whereas [5,2,7,9] is not.

Permutations are notoriously difficult to compress. (Some would say impossibly diffi‐
cult, but we are not sure they really understand the meaning of that word). The rea‐
son for this is simple: according to entropy, a permutation is incompressible, because
there’s no information in the ordering itself (because it’s not ordered anymore). Each
value is equally probable, and thus takes the same number of bits to represent.

The size of the encoded set Q = [2,1,3,0] is len(Q) * log2(max(Q)) = 8 bits,12 which we
can generalize to N * LOG2(N). Keep this number in mind. As you begin to explore
more of compression, information theory, and entropy, this value will continue to
kick you square in the face as a glaring reminder of how little you matter in the uni‐
verse.

26 | Chapter 3: Breaking Entropy

Compressing Permutations by Using Elimination Coding
So, remember how we said permutations weren’t compressible? We lied to you. It
wasn’t a big lie, but it was a necessary lie to let you understand the gravity of the situa‐
tion. We are sorry for that. In truth, permutations are slightly compressible, but not
enough to be really interesting or of any practical use. Let us show you how.

Let’s begin with set C = [5, 7, 1, 4, 6, 3, 2, 0].

Encoding this by the number values in the set, with 3 bits, dictated by the maximum
value 7, yields:

101 111 001 100 110 011 010 000

which is 24 bits long.

Now, let’s encode “by the index,” instead. It works like this. (You might want to follow
along using old-fashioned paper and pencil.)

Round 1

Create an array with eight empty, indexed slots to hold the numbers.

1. Start with the first number in the set, which is 5.
2. Calculate its Free-Slot-Index: find the index of the slot with the value of our

number. In our case, 5 is at index 5.
3. Determine how many bits you need to encode the Free-Slot-Index. This is done

by calculating LOG2 of the number of slots. Because there are 8 slots, LOG2(8) =
3 bits. So, we encode the number 5 using 3 bits, which is 101.

4. Now, remove the slot with value 5 from the array.

The output stream contains: 101

The new working array is:

Breaking Entropy | 27

Round 2

1. Take the next number in the set C = [5, 7, 1, 4, 6, 3, 2, 0], which is 7.
2. Free-Slot-Index: find the index of the slot with the value of your number. This

time, 7 is at index 6.
3. There are 7 free slots left, and LOG2(7) = 3. So, we output Free-Slot-Index 6

using 3 bits as 110.
4. Remove the slot with value 7 from the array.

Output stream: 101 110

New working array:

Round 3

1. Take the next number in C, which is 1.
2. Free-Slot-Index: find the index of the slot with the value of your number. In our

case, it’s at index 1.
3. Calculate the LOG2 of the total number of free slots, where LOG2(6) = 3. Output

the index 1 using 3 bits as 001.
4. Remove the slot with value 1.

Output stream: 101 110 001

New working array:

Round 4

1. The next number in the set is 4.
2. Its Free-Slot-Index is 3.
3. There remain 5 free slots, so LOG2(5) = 3 bits.
4. Output index 3 using the 3 bits as 011.
5. Remove the slot with value 4.

28 | Chapter 3: Breaking Entropy

www.allitebooks.com

http://www.allitebooks.org

Output stream: 101 110 001 011

Round 5

Now things are finally starting to get interesting.

(We are halfway through our set [5, 7, 1, 4, 6, 3, 2, 0]).

1. Our next number is 6.
2. Its Free-Slot-Index is 3.
3. At this point, the number of free slots has dropped to 4, so LOG2(4) = 2, and we

now only need 2 bits to encode an index.
4. Output 3 using 2 bits as 11.
5. Remove the slot with value 6.

Output stream: 101 110 001 011 11

Finishing up

1. The next number is 3.
2. It’s at Free-Slot-Index 2.
3. We encode with 2 bits as 10.
4. Remove the slot with value 3.

Output stream: 101 110 001 011 11 10

1. The next number 2, at Free-Slot-Index 1, can be encoded with 1 bit.
2. And we encode 0 with the last Free-Slot-Index, 0, using also 1 bit.

Breaking Entropy | 29

Final Output stream: 101 110 001 011 11 10 1 0

Length: 18 bits

And here is how this works out saving 6 bits. Look at the table to compare:

Instead of encoding the numbers, which would cost us 24 bits, by encoding the
indexes, we only need 18 bits—a savings of about 25%. So, we’ve seen how this saves
us bits, but...

Why does this save us bits?

Statistics says that for a permutation, there are N! (aka factorial(N)) possible combi‐
nations (for an array of length N, where each value is between 0–N and never
repeated). So, when the first value is used, we know that it can’t be used again any‐
where else. This means that for the second value, we have (N - 1)! options left. The
third value has (N - 2)! options left (and so on). At some point, LOG((N - X)!) of the
indexes will become less than LOG(N!) of the permutation by a full integer value. As
such, we can identify which of the remaining options we have left, by using fewer bits.

This method works regardless of the size of the permutation. If you encode content
this way, you’ll always be ensured to produce a final stream smaller than entropy. For
example, if you have a permutation containing all of the numbers from 0 to 65,535,
you can compress it to only 90% of the original space, regardless of how shuffled it is.
In practice this doesn’t usually buy you enough space to make it worthwhile.

Decoding works in the opposite manner. You begin with a blank array of slots and
read the next LOG2(#OpenSlots) bits from the stream, representing the number of
blank spaces to count, to determine what the source number was.

1. We have 8 free slots, so we read the first 3 bits from the input stream, which are
101.

2. 101 is the binary version of 5. At index 5 we have the number 5, so our first num‐
bers is 5. Now we remove that slot from the free slot list.

3. We have 7 free slots, reading LOG2(7) = 3 bits, giving us 110, which is decimal
index 6, so the next number is 7.

4. And now it’s your turn.

30 | Chapter 3: Breaking Entropy

13 Well, to be fair, it’s really good at estimating the compression when only considering statistical compressors
(see Chapter 4), but as soon as you begin combining them with contextual compressors, it kinda gets thrown
out the window.

Information Theory Versus Data Compression
These simple experiments prove that there’s some wiggle room when it comes to
information theory and entropy. Remember that entropy defines the minimum
number of bits required per symbol, on average, to encode the data stream. This
means that some symbols will use fewer bits and some will use more bits than indica‐
ted by entropy.

The algorithmic art of data compression is really about trying to break entropy. Or
rather, to transform your data in such a way that the new version has a lower entropy
value. That’s really the dance here: information theory sets the rules, and data com‐
pression brilliantly side-steps them with the gusto of a bullfighter.

And that’s really it. That’s what this entire book is about: how to apply data transfor‐
mation to create lower entropy data streams (and then properly compress them).
Understanding the dynamic between information theory and data compression will
help you to put in perspective the give-and-take that these two have in the informa‐
tion world around us.

Kolmogorov Complexity
As we’ve already discussed, entropy is a horrible metric for evaluating compression.13

There exists another complexity measurement that might be more accurate, but it’s
not really standardized in terms of usage.

Kolmogorov complexity is a measure of the computational resources needed to specify
an object. It is named after Andrey Kolmogorov, who first published on the subject in
1963.

For example, consider the following two strings of 32 lowercase letters and digits:

abababababababababababababababab

4c1j5b2p0cv4w1x8rx2y39umgw5q85s7

We could write a simple program in Python to generate the first string:

< v = 'ab' * 16 >

Information Theory Versus Data Compression | 31

https://en.wikipedia.org/wiki/Kolmogorov_complexity

Notice that the program to generate the string is smaller than the string itself. As an
effective way of compression, you could just send the program to someone and have
them regenerate the source string.

The second stream doesn’t follow a pattern, and so the program needed to generate it
is much larger than the source stream; so, no compression here.

Here’s a handy primer:

Entropy
Number of yes/no questions needed to uniquely describe a piece of data.

Kolmogorov complexity
The size of the program needed to uniquely generate your data.

It can be shown that the Kolmogorov complexity of any string cannot be more than a
few bytes larger than the length of the string itself (basically, a program that writes out
each element of the string). Strings whose Kolmogorov complexity is small relative to
the string’s size, like the ‘abab’ example above, are not considered to be complex.

Kolmogorov complexity really begins to shine when you start talking about using
logic synthesis or program synthesis for compression, which in essence take the bit
stream of your data set and reverse-generate a program that will uniquely generate it.

To be fair, this is all kinda hand-wavy. Entropy is far from the best solution, but it’s a
“good enough” metric that most folks rely on it. Discovering a more accurate solution
might involve a lot of random searches through data information and analysis space.
The main point here is that, despite being around for almost 50 years, data compres‐
sion science is still young. We don’t have all the answers, and really, that’s what you
should be helping with.

32 | Chapter 3: Breaking Entropy

https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Program_synthesis

1 You can listen to a sample.

CHAPTER 4

Variable-Length Codes

The examples in the previous chapter showed two things: we can save bits by encod‐
ing some symbols with fewer or more bits than others, and that this doesn’t work well
when there are duplicate symbols in the data set. And let’s face it, real-life data sets are
full of duplicates.

This, at its core, is why the LOG2 number system doesn’t properly represent the true
information content of a data set. This chapter shows how you can do some nifty
things based on probability and duplication that can yield impressive compression
results.

Morse Code
To begin talking about transmitting real-life data, let’s go way back to the age of the
telegraph and Morse code.

Beginning in 1836, American artist Samuel F. B. Morse, American physicist Joseph
Henry, and American machinist Alfred Vail developed an electrical telegraph system.
This system sent pulses of electric current1 along wires, and the pulses interacted with
an electromagnet that was located at the receiving end of the telegraph system, creat‐
ing audible taps, or, when a paper (ticker) tape was moved under the thing doing the
tapping at a constant rate, a paper record of the signals received.

The telegraph was a fantastic invention in terms of being able to communicate human
information across long distances. Eventually losing the wires (see Figure 4-1), it
evolved into the mobile device in your pocket.

33

https://www.youtube.com/watch?v=xsDk5_bktFo

Figure 4-1. British post office engineers inspect Guglielmo Marconi’s wireless telegraphy
equipment during a demonstration on Flat Holm island, May 13, 1897. This was the
world’s first demonstration of the transmission of radio signals over open sea, between
Lavernock Point and Flat Holm Island, a distance of three miles. Source: Wikipedia.

However, the developers now needed a way to represent human concepts, such as
language, in a way that the signals of electric current could carry. The device itself
worked very simplistically for the operator: push the telegraph key to make a connec‐
tion and send current across the wire; leave the key up, and no current is sent. Even
though binary code hadn’t been invented yet, back in the 1800s, this system was effec‐
tively using the same idea for communicating information.

Perhaps the simplest way to encode some text information would be to number all of
the English characters—A to Z—with numeric values 0–26. You could then use the
number of pulses, along with pairing, to determine what digit you were transmitting.
For example, you could translate “THE HAT” into 20-8-5 8-1-20. In reality, the sys‐
tem would also need a way to determine the differences between words, spaces, punc‐
tuation, and eventually end-of-message, but you get the gist.

Remember, though, that these signals were transmitted by a human operator banging
on a telegraph key. So, “THE HAT” would cost the same number of operator actions
as “FAT CAT” and “TIP TOP.” This gets gets pretty crazy when you have a post office
sending 100 to 200 telegrams of 50 words each, all day long. It quickly became appa‐

34 | Chapter 4: Variable-Length Codes

https://commons.wikimedia.org/wiki/File:Post_Office_Engineers.jpg

rent that the number of physical actions required to send a message was becoming
too high. Physical hardware (the machine) and human hardware (the operator’s
wrist) were wearing down faster than expected. The solution was to use statistics to
reduce overall work. You see, some letters in the English language are used more fre‐
quently than others. For example, E is used 12% of the time, whereas G is used only
2% of the time. If the operator is going to be banging out more “E”s during the day,
we should make those as fast and easy as possible, right?

And thus, Morse code was invented.

This system applied a set of long and short pulses to each character in the English
alphabet; the more frequent the character, the smaller and simpler the code. Thus, the
most common letter in English, the letter “E,” has the shortest code, a single dot, and
“X” unsurprisingly is long-ish, and all numbers use five pulses. Figure 4-2 shows the
original character set.

Figure 4-2. Morse code assigns dots and dashes to symbols based on their probability of
occurrence in the English language. The more probable a symbol, the shorter its code.
This image is an early version of Morse code, defined specifically by telegraph companies
for transmitting small sets of information. Morse has evolved since then, and looks very
different now.

Even back in the 1800s, this was one of the first realizations of assigning variable-
length codes to symbols in order to reduce the overall amount of work that needed to
be done to communicate a message.

It makes sense then that Claude Shannon (who was an expert in Morse code) would
be able to take advantage of this concept in his early research of information theory
to produce the first generation of a new field of technology, called “data compression,”
all with the help of variable-length codes.

Morse Code | 35

http://aa9pw.com/morsecode/

Probability, Entropy, and Codeword Size
For the sake of data compression, our goal is simple: given symbols in a data set,
assign the shortest codes to the most probable symbols.

But let’s take a step back for a second and consider how entropy plays into all of this.
Imagine a large data set that only contains two symbols [A,B]. We can compute the
probability of each symbol (P(A) and P(B), respectively) and see how the probabili‐
ties affect the entropy of the set. The following table shows sample probabilities and
their corresponding set entropies.

P(A) P(B) Entropy of set

0.99 0.01 0.08

0.9 0.1 0.47

0.8 0.2 0.72

0.7 0.3 0.88

0.6 0.4 0.97

0.5 0.5 1

0.4 0.6 0.97

0.3 0.7 0.88

0.2 0.8 0.72

0.1 0.9 0.47

0.01 0.99 0.08

A few things are immediately obvious when you look at this table:

• When P(A) == P(B), both symbols are equally likely, and entropy is at its maxi‐
mum value of LOG2(# symbols); thus, not very compressible.

• The more probable one symbol is, the lower the entropy value, and thus, the
more compressible the data set.

• For our two-symbol set, entropy doesn’t care which symbol is more probable.
H([0.9,0.1]) is equivalent to H([0.1,0.9]).

This means several important things to us if we want to assign variable-length codes
to a given symbol.

First, as the redundancy of the set goes down, the entropy goes up, approaching the
LOG2 value of the data set.

For example, in the table that follows, we have four symbols with equal probability.
The entropy of this set is –4(0.25log2(0.25)) = 2. Therefore, in this case, two is the
smallest number of bits needed, on average, to represent each symbol.

36 | Chapter 4: Variable-Length Codes

Symbol Probability Codeword size Codeword

A 0.25 2 bits 00

B 0.25 2 bits 01

C 0.25 2 bits 10

D 0.25 2 bits 11

Four symbols with equal probabilities and entropy of 2 require 2 bits per symbol.

Second, the more probable one symbol is, the more compressible the data set
becomes because of its lower entropy.

Much like Morse code, we can improve the situation, use codewords of varying
lengths, and assign the smallest codeword to the most probable symbol. So, in con‐
trast to the previous example, consider a 4-symbol set with the skewed probabilities
shown in Table 4-1.

Table 4-1. Four symbols with skewed probabilities can use variable-length codes and entropy
is only 1.57

Symbol Probability Codeword size Codeworda

A 0.49 1 bit 0

B 0.25 2 bits 10

C 0.25 3 bits 110

D 0.01 3 bits 111
a Wait, this looks weird, right? Why can’t we assign the codewords as [0,1,00,10] for [A,B,C,D]? The magic word is “prefix
property,” which is basically a requirement on how to structure your codes so that you can decode them later. We’re about to
talk about this in a few pages, so stick with us.

Given the string AAABBCCD (as a substring of a much larger dataset), and assuming
equal probabilities, we would need 16 bits, while with the skewed probabilities shown
in Table 4-1, it would only require 13 bits to encode. Small savings, but important
once you imagine a realistic dataset with thousands or millions of symbols.

The calculated entropy of Table 4-1 also supports its smaller compressed size. The
entropy of the table is ~1.57, and thus the smallest number of bits needed, on average,
to represent each symbol is 1.57 bits.

So, what do we gain by having fractional bits, given that we can’t actually use frac‐
tional bits in our data stream? Keep in mind that our examples are very, very short.
To obtain results close to the theoretical possibility, the input stream would need to
have thousands of symbols.

Third, the length of our codewords is tied to the probability of the symbols, not the
symbols themselves.

Probability, Entropy, and Codeword Size | 37

If we take our previous example and swap the probabilities of A and D, the sizes of
our codewords don’t change, they just get moved around, as demonstrated here:

Symbol Probability Codeword size

A 0.01 3

B 0.25 2

C 0.25 3

D 0.49 1

Variable-Length Codes
So, given an input data set, we can calculate the probability of the symbols involved,
and then assign variable-length codes (VLCs) to the most probable symbols to ach‐
ieve compression. Great!

Of course, there are two big unknowns here. First, how are we supposed to use VLCs
in our applications for compression? Second, how do we build VLCs for a data set?

Using VLCs
It’s basically a three-step process to encode your data using VLCs:

1. Walk through the data set and calculate the probability for all symbols.
2. Assign codewords to symbols based upon their probability; more frequent sym‐

bols are assigned smaller codewords.
3. Walk through the data set again, and when you encode a symbol, output its code‐

word to the compressed bit stream.

Let’s dig into each stage a little more.

Calculating symbol probabilities
This process involves creating a histogram of the symbols in your data set. That is,
you walk through your data and add up the occurrences of each unique symbol. The
histogram depicted in Figure 4-3 is basically just a mapping between the symbol itself
and its count, or frequency.

38 | Chapter 4: Variable-Length Codes

Figure 4-3. A sample string and its histogram, counting the number of occurrences for
each character.

Assigning codewords to symbols
Next, sort your histogram by frequency of occurrence (see Figure 4-4), and assign a
VLC to each symbol, beginning with the smallest codeword in the VLC set. The end
result is that the more frequent the symbol, the smaller its assigned codeword, which
results in data compression.

Figure 4-4. After sorting our histogram by symbol count, we can assign codes to symbols.
This is often called the “codeword table.” Note that the codewords do not represent stan‐
dard binary numbers. This is because of the importance of encoding and decoding
(which we’re about to discuss).

Variable-Length Codes | 39

Encoding
Encoding a stream of symbols with VLCs is very straightforward. You read symbols
one by one from the stream. For each symbol read, look up its variable-length code
according to the codeword table and emit the bits of that codeword to the output
stream. Concatenate the codes to create a single, long bit stream.

After the entire input stream has been processed, attach the symbol-to-codeword
table to the head of the output stream, as illustrated in Figure 4-5, so that the decoder
can use it to recover the source data.

Figure 4-5. Example encoding takes a symbol from the input stream, finds its codeword,
and emits the codeword to the output stream. As a final step, the symbol-to-codeword
table is prepended to the output data so that the decoder can use it later.

For example, to encode the stream “TOBEORNOT” using the table we just created,
the first symbol is a “T,” which emits the codeword 00 to the output stream. “O” fol‐
lows, outputting 11. This continues, and “TOBEORNOT” ends up as this 24-bit
stream: 001101110111010001011100.

Comparing this to the 72-bit source stream (using an even 3 bits per character), we
have a savings of roughly 66%.

40 | Chapter 4: Variable-Length Codes

Decoding
In general, the decoder does the inverse of the encoder. It reads some bits, checks
them against the table, finds the correlated symbol, and outputs the symbol to the
stream, as shown in Figure 4-6.

Figure 4-6. Decoding works in reverse. We read in some bits, find the symbol for those
bits, and output the symbol.

However, decoding is slightly more complex because of the different lengths of the
codewords. Basically, the decoder reads bits one at the time until they match one of
the codewords. At that point, it outputs the associated symbol and starts reading for
the next codeword.

Let’s look at this with the bit stream we created, 001101110111010001011100, and use
the previous table to recover our original string:

1. Read 0.
2. Check the table. There are no single-bit codewords.
3. Read 0. Find the codeword 00. Output T.
4. Read the next bit, which is 1.
5. Read 1 again. Find the codeword 11. Output O.

Now it gets more interesting:

1. Read 0, then read 1. At this point, we have multiple matches in the table. This
symbol could be B, R, or N. So we read in a third bit, giving us “011.” Now, we
have an exact and unique match with the letter B.

Variable-Length Codes | 41

2. In good tradition, decoding the rest is left as an exercise for you to carry out.
After you reach the end of the bit stream, you should have recovered the original
input string. (Or just refer to Figure 4-7.)

Figure 4-7. Example decoding. We read in each codeword, find the associated symbol in
the codeword table, and emit it to the output stream.

Creating VLCs
We want to take a second and point out a small nuance in Morse code. Consider the
following Morse encoded message:

•••

Can you figure out what the message is?

Looking back at our table, these three dots appear to be an “S” value.

Take a second look, though. This might also be three E symbols in a row (one dot
each).

The ability for an operator to determine which symbol it is has to do with a bit of
cheating. See, there are a lot of other things an operator can do to determine what
symbol it is. For example, there’s little chance that “eee” would be a valid message in

42 | Chapter 4: Variable-Length Codes

the 1800s, especially if the operator knew its context (CATEEE is not a valid English
word, but CATS is).

“Fist” Fights
Technically speaking, in the real world, senders can “cheat” by separating symbols
with very short pauses. But pauses aren’t uniform, and vary depending on the pat‐
terning of the person sending the message. The variation of individual operators in
their signal durations is called their “fist,” and it’s unique to each person. Experienced
operators, in fact, can recognize specific individuals by their fist alone, and there was
even a concept of having a “good fist” or a “poor fist,” which related to the clarity of
the messages sent by a specific operator.

This extra work that an operator can do to determine the message is not something
we can duplicate in the world of compression. We only have 0s and 1s without spaces
to work with. As such, Morse code doesn’t work too well as a set of codewords.
Instead, we need to find a way to bind 0s and 1s together that lets the decoder
uniquely decipher the resulting stream.

The prefix property
So, at any given moment, the decoder needs to be able to take a look at the bits read
so far and determine whether they uniquely match the codeword for a symbol, or
whether it needs to read another bit. To do this properly, the codewords of the VLC
set must take into account two principles:

• Assign short codes to the most frequent symbols
• Obey the prefix property

Let’s take a look at how a potential VLC can fall over. Assume the bit stream 0101111
and the following VLC table:

Symbol Codeword

A 0

B 10

C 101

D 111

Then, the decoding process looks like this:

1. The decoder sees 0, which is unambiguously A. So it outputs A.
2. The decoder sees 1, which can be the beginning of B, C, or D.

Variable-Length Codes | 43

3. The decoder reads another 0, which narrows the choice to B or C.
4. The decoder reads 1. This presents an ambiguity. In our bits read, 101, do we

have 10 + 1, representing a B plus the beginning of a new symbol B, C, or D?
or
Do we have 101 for a symbol C?

At this point, you can no longer continue with the decoding process, because you’ve
lost the ability to determine what type of value is being read in. Your choice of code‐
words has made it impossible to uniquely distinguish between different symbols, as
illustrated in Figure 4-8.

Figure 4-8. Decoding a binary stream with VLCs can be difficult if one code is the prefix
of another code.

In comes the VLC prefix property, which dictates:
After a code has been assigned to a symbol, no other code can start with that bit pat‐
tern.

In other words, each symbol is unambiguously identifiable by its prefix, which is the
only way in which VLCs can work.

The prefix property is required for a VLC to work properly. This
means that VLCs will tend to be larger compared to binary repre‐
sentation.
The general trade-off is that you get a larger code, but you can
decode it without knowing anything about symbol size in advance.
And because you have some very short codewords for common
symbols, VLCs give great compression for symbol streams for
which a small number of symbols have very high probability.

A Handful of Example VLCs
In this section, we are going to introduce you to a handful of VLCs that, historically,
were commonly used and useful in real life. Choosing the right VLC and assigning

44 | Chapter 4: Variable-Length Codes

the right codes to your symbols is another challenge altogether, as we’ll briefly dis‐
cuss.

How Were These VLC Codes Built?
Well, back in the day, it was all blood, sweat, and tears. A mathematician would sit
down and figure out a new unique way to take integers and convert them into VLCs.
The resulting codes were called universal codes, and basically, they assigned positive
integers into binary variable-length codewords. Typically, universal codes follow the
rule that the smaller the number, the fewer bits it’s given, under the assumption that
smaller integers were more frequent than larger ones.

These VLCs could assign bit lengths in very different ways. For example, one code
might add a single bit for each integer value, so that 1 = 1 bit, 2 = 2 bits, 8 = 8 bits, and
so on. Or there can be sharp changes so that 1 = 1 bits, 2 = 5 bits, and 8 = 12 bits.

This is because each VLC assumes a specific probability of symbol distribution. If the
Nth symbol is two times more probable than the Nth + 1 symbol, it should have one
less bit. Where, if the Nth, N + 1, N + 2, N + 3 symbols are all somewhat equally prob‐
able, you might want all of them to have codewords of equal length. So, each of the
VLCs we are going to introduce is associated with an ideal probability distribution,
and thus better for data sets whose probabilities match that distribution closely.

As such, we list the ideal probability for most of the VLCs we are going to discuss, but
note that it’s interesting but not super-mega-important to know, so we are not going
to explain it in detail.

It’s worth noting that universal codes are a specific class of prefix codes. There are
other types of VLC codes such as uniquely decodable codes or nonsingular codes, just
to throw the names at you. (We don’t specifically talk about those codes in this book
using those terms, but note that they are represented because each prefix code is
uniquely decodable and nonsingular.)

Binary code
We introduced binary code in Chapter 2 and hope you haven’t forgotten everything
since then, because binary code is ubiquitous in computing and thus always the end
result of compression.

After Peter Elias, it is customary to denote the standard binary representation of the
integer n by B(n). This representation is considered the beta or binary code, and it
does not satisfy the prefix property. For example, the binary representation of 2 = 102
is also the prefix of 4 =1002.

Now, given a set of integers between 0 and n, we can represent each in
1+floor(log2(n)) bits; that is, we can use a fixed-length representation to get around

Variable-Length Codes | 45

2 Note, you could flip the bits here, if you wanted, and make it 0001. The basic idea is that some bit is used as
the value, and the other bit is used as the delimiter.

the prefix issue, as long as we’re provided the value n in advance. In other words, if
we know how many numbers we need to represent, we can easily determine how
many bits that requires. However, if we don’t know the number of distinct integers in
the set in advance, we cannot use a fixed-length representation.

Meet Peter Elias
Professor Peter Elias was born on November 23, 1923, in New Brunswick, New Jersey,
the son of an engineer in Thomas A. Edison’s laboratory.

He attended Swarthmore College for two years before transferring to MIT in 1942.
Upon receiving his B.S. in business and engineering management in 1944, he enlisted
in the United States Navy and served as a radio technician instructor. After he was
discharged in 1946 with the rank of electronic technician’s mate first class, he earned
an M.A., a M.Eng and Sci., and a Ph.D. from Harvard University. He was a member of
the MIT faculty from 1953 to 1991, at which time he assumed emeritus rank and
became a senior lecturer.

Elias was a real bigwig when it comes to error-correcting codes (which are not cov‐
ered in this book). In 1955, he introduced convolutional codes as an alternative to
block codes. He also established the binary erasure channel and proposed list decoding
of error-correcting codes as an alternative to unique decoding. If you want some heavy
reading before dinner, taking a look at his original work is highly recommended. (It’s
also fascinating.)

Unary codes
Unary coding represents a positive integer, n, with n - 1 ones followed by a zero. For
example, 4 is encoded as 1110.2 The length of a unary code for the integer n, is there‐
fore n bits.

It’s easy to see that the unary code satisfies the prefix property, so you can use it as a
variable-length code.

The length of the codewords grows linearly by 1 for increasing numbers n, such that
L is always equal to n. In binary, the number of numbers we can represent with each
additional bit grows exponentially by 2n. (Remember those 21, 22, etc. columns?)

As such, this code works best when you use it on a data set for which each symbol is
twice as probable as the previous. (So, A is two times more frequent than B, which is
two times more frequent than C.). Or, if you like math, we can say: in cases for which

46 | Chapter 4: Variable-Length Codes

http://en.wikipedia.org/wiki/Peter_Elias
http://www.genealogy.ams.org/id.php?id=64297
http://newsoffice.mit.edu/2001/elias
http://en.wikipedia.org/wiki/Convolutional_code
http://en.wikipedia.org/wiki/Block_code
http://en.wikipedia.org/wiki/Binary_erasure_channel
http://en.wikipedia.org/wiki/List_decoding
http://en.wikipedia.org/wiki/Decoding_methods

the input data consists of integers N with exponential probabilities P(n) ~2–n: 1/2, 1/4,
1/8, 1/16, 1/32, and so on.

Here is an example of simple unary encoding with ideal probabilities.

Number Code Ideal probability
0 • (not representable)

1 0 0.5

2 10 0.25

3 110 0.125

4 1110 0.0625

To decode unary encoding, simply read and count value bits from the stream until
you hit a delimiter. Add one and output that number.

Elias gamma encoding
Elias gamma encoding is used most commonly for encoding integers whose upper
bound cannot be determined beforehand; that is, we don’t know what the largest
number is going to be.

The main idea is that instead of encoding the integer directly, we prefix it with an
encoded representation of its order of magnitude. This creates a codeword compris‐
ing two sections, the largest power of two that fits into the integer plus the remainder,
like so:

1. Find the largest integer N, such that 2N < n < 2N + 1 and write n = 2N + L (where L
= n - 2N).

2. Encode N in unary.
3. Append L as an N-bit number to this representation. (This is really important

because this symmetry is what allows us to decode the string later.)

For example, let’s encode the number n = 12:

1. N is 3, because 23 is 8, and 24 is 16, so that 8 < 12 < 16.
2. L is thus 12 - 8 = 4.
3. N = 3 in unary is 110.
4. L = 4 in binary written with 3 bits is 100.
5. So, our concatenated output is 110100.

To encode a slightly larger number, let’s say 42:

Variable-Length Codes | 47

1. N is 5, because 25 is 32, and 32 < 42 < 64.
2. L is thus 42 – 32 = 10.
3. N = 5 in unary is 11110.
4. L = 10 written in 5 bits is 01010.
5. So, our final output is 1111001010.

Elias gamma coding, like simple unary encoding, is ideal for applications for which
the probability of n is P(N) = 1/(2n2).

Here is a table with some example Elias gamma codes (note the L part in italics).

n 2N + L Code
1 20+0 0

2 21+0 101

8 23+0 110000

12 23+4 110100

42 25+10 1111001010

Decoding Elias gamma is also straightforward:

1. Let’s take the number 12, which we encoded as 110100.
2. Read values until we get to the delimiter: 1, 1, 0. This gives us N = 3.
3. Read 3 more bits 1,0,0 and convert from binary, which gives us L = 4.
4. Combine 2N + L = 23 + 4 = 12.

Elias delta coding
Elias delta is another variation on the same theme. In this code, Elias prepends the
length in binary, making this code slightly more complex.

It works like this:

1. Write your original number, n, in binary.
2. Count the bits in binary n, and convert that count to binary, which gives us C.
3. Remove the leftmost bit of binary n, which is always one and thus can be implied.
4. Prepend the count C, in binary, to what is left of n after its leftmost bit has been

removed.
5. Subtract 1 from the length of the count of C and prepend that number of zeros to

the code.

48 | Chapter 4: Variable-Length Codes

For example, let’s again encode the number n = 12:

1. Write n = 12 in binary, which is n = 1100.
2. The binary version of 12 has 4 bits, and converted to binary, that is C = 100.
3. Remove the leftmost bit of n = 1100, leaving you with 100.
4. Prepend C = 100 to what’s left of n, which is 100, giving you 100100.
5. Subtract 1 from the length of C, 3 – 1 = 2, and prepend that many zeros to the

code, giving you a final encoding of 00100100 for 12.

Elias delta is ideal for data for which n occurs with a probability of 1/[2n(log2(2n))2].

Here is a table with some example Elias delta codings:

n in decimal 2N + L Code
1 20+0 0

2 21+0 0100

8 23+0 00100000

12 23+4 00100100

18 24+2 001010010

314 28 + 58 000100100111010

To decode Elias delta, do the following:

1. Read and count 0s until you hit 1.
2. Add 1 to the count of zeros, which gives you the length of C.
3. Read length of C many more bits, which gives you C.
4. Read C - 1 more bits, prepend 1, and convert to decimal.

Using our handy number 00100100:

1. Read and count 0s until you hit 1, which is 2 zeros.
2. Add 1, yielding a length of C = 3.
3. Read 3 more bits, giving you C = 100 = 4
4. Read 4 - 1 more bits, which is 100, and prepend 1, yielding 1100, which is 12.

If you don’t believe this works, encode and decode the provided value 314 as an
example.

Variable-Length Codes | 49

3 L. Thiel and H. Heaps, “Program Design for Retrospective Searches on Large Data Bases,” Information Storage
and Retrieval 1972; 8(1):1–20

And so many more!
So, now that you have worked your way through a couple of the simpler variable-
length encoding algorithms, and get the gist of it, we need to tell you that there are
literally hundreds of unique VLCs that have been created over the past 40 years, and
we can’t cover every single one of them in this book.

Google’s VarInt
There are a few dominant issues with variable-length codes that keep them from
being used outside of compressed data-stream representations:

• They don’t align to byte/word/integer boundaries.
• For large values of n, they tend to grow past log2(n) bits in order to be decodable.
• They are slow to decode (one bit read at a time).

For systems that deal with a great load of large integers, this makes VLCs impossible
to use. However, during the early 2000s, a model of variable-length integers became a
popular solution in search engines and other massive-data systems. Although it was
popularized by Google as VarInt, the basic concept was first described back in 1972,3

and was reintroduced as “escaping for compressed integers” in 2010.

VarInt is a method of serializing integers using one or more bytes. Smaller values take
fewer bytes, and larger values, of course, take more.

The process works by stringing together byte values and using the most significant bit
(MSB) as a Boolean flag to denote whether it’s the last byte needed to represent the
number. As such, the lower 7 bits of each byte are used to store the two’s complement
representation of the number. Let’s take a look at this.

The number 1 can be encoded as a single byte, so its MSB is not set:

00000001

However, the value 300 is a bit more complicated.

10101100 00000010

How do you determine that this is 300?

50 | Chapter 4: Variable-Length Codes

http://goo.gl/trqn7J
http://bit.ly/29Hb2qN
http://bit.ly/29Hb2qN

First, you drop the MSB from each byte, as this is just there to tell us whether we’ve
reached the end of the number (as you can see, it’s set in the first byte because there is
more than one byte in the VarInt):

10101100 00000010

→ 0101100 0000010

Next, you reverse the order of the two groups of 7 bits because VarInts store numbers
with the least significant group first. Convert to decimal. Done.

The VarInt method represents a nice hybrid approach between the flexibility of VLCs,
and the efficiency of modern architectures. It lets you represent a variable integer
range, but it also aligns itself with performance to decode. Double win!

Finding the Right Code for Your Data Set
The biggest difference between the codes we introduced is that each of these code sets
behaves differently, given their expectation of the frequency distribution of the sym‐
bols.

So, when choosing a VLC code for your data set, you first must consider its size and
range, and calculate the probabilities of its symbols. If you don’t do that, encoding
your data might end up not only not compressing it—you might actually end up with
a much larger stream.

To get a sense of how different this is, per code, the following table shows that for a
given symbol, and a probability matching each of the encodings, how many bits per
symbol are needed.

Number of symbols Elias gamma
Number of bits needed for a
probability distribution matching
each encoding
1 / (2n2)

Elias delta
1 / [2n(log2(2n))2]

Elias omegaa

Largest encoded value is not known
ahead of time, and small values are
much more frequent than large
values

1 1 1 2

2 3 4 3

3 3 4 4

8–15 7 8 6–7

64–88 13 11 10

100 13 11 11

1000 19 16 16
a More information on Elias omega.

Variable-Length Codes | 51

https://en.wikipedia.org/wiki/Elias_omega_coding

What You Need to Remember

VLCs assign bits to codewords based upon the expected frequency
of occurrence of a value. As such, each VLC is built with its own
expectation as to how the probabilities of symbols are distributed
in the data set. The trick, then, is finding the right VLC, the one
that’s built with a statistical model that matches your data. If you
diverge from that, you’ll end up with a bloated data stream.

For the first 15 or so years of information theory, compression technology was com‐
pletely limited to VLCs. Basically, to compress a data set, an engineer would need to
find the right code to match their set, and use it appropriately.

Thankfully, this isn’t how things are done anymore.

In the next chapter, we are going to talk about how you can generate your very own
VLCs using nothing but sticky notes and a pen.

52 | Chapter 4: Variable-Length Codes

1 Of course, where explicit VLCs are used in modern compressors is where the probabilities of the transformed
input stream is pretty known. As such, the encoder and decoder can just agree on what VLC to use, and move
forward.

CHAPTER 5

Statistical Encoding

Statistically Compressing to Entropy
A variable-length code (VLC) takes a given symbol from your input stream and
assigns it a codeword that has a variable number of bits. When you apply this to a
long-enough data set, you end up with an average bit-stream length that is close to
the entropy of the data set—as long as the probability of your symbol distribution
matches the probability table of the encoding scheme you used to build your VLC.

But let’s clear something up: apart from a few situations, the VLCs discussed in Chap‐
ter 4 aren’t used much in the mainstream compression world. As we mentioned in
that chapter, each code is built making different assumptions about the statistical
probabilities of each symbol.

Consider the chaos of using these VLCs in the real world: you’re given an arbitrary
data set, and you need to pick the best VLC to encode it, such that the final stream is
close to the entropy size. Picking the wrong code for your data set can be disastrous,
as you might end up with a compressed data stream that is bigger than the original!

So, you’d need to calculate your stream’s symbol probabilities and then test against all
the known VLC codes to determine which one best matches the symbol distribution
for your data set. And even then, there’s a chance that your data set might have a
probability distribution that doesn’t match exactly with an existing VLC.1

The answer to this is a class of algorithms called statistical encoders, which, instead of
mapping a specific integer to a specific codeword, take the probability of your set and

53

use that to define new, unique variable-length codewords for your output stream. The
result is that, given any input data, you can uniquely construct a custom set of code‐
words for it, rather than trying to match an existing VLC.

A more accurate way to describe these algorithms might be that “they excel at using
the symbol probability in a data set to encode it as close to entropy as possible.”

Wait, I Thought This Was Called “Entropy Coding”?
It’s worth pointing out that you’ll sometimes hear “entropy coding” used to describe
these statistical types of compression algorithms (Wikipedia being a notable exam‐
ple).

Although the term entropy coding is nowadays interchangeable with “statistical cod‐
ing,” historically, the term has been muddled and misused in academia.

The first time that entropy coding legitimately appears might be a paper by O’Neal
(1967) that stated the following:

Therefore, the technique of entropy coding (also called “Shannon–Fano coding” or
“Huffman coding”) can be used either to increase the [signal-to-noise ratio] for a given
bit rate or to decrease the bit rate for a given ratio.

In 1971, the same author published an article that has “entropy coding” in the paper
title. The text contains the plural: “entropy coding techniques (Huffman or Shannon–
Fano coding).” But sadly, no reference to a previous usage or specific definition is
given.

O’Neal was trying to group together coders that used statistics to assign VLCs under a
single umbrella (which makes sense) but never exactly said that much. However, from
1972 onward, many papers contain the term “entropy coding,” but problematically
didn’t follow O’Neal’s implicitly suggested definition.

For example, ITU recommendation H.82 (ITU-T, 1993) defines an entropy coder to
be “any lossless method for compressing or decompressing data.” This is a bad defini‐
tion, because it could be used to describe transforms such as LZ77, a dictionary
encoder (which we cover later in this book).

In summary, entropy coding doesn’t seem a clearly defined or distinguished concept,
so for the sake of clarity, this book avoids using the term for anything at all. We use
the term statistical encoding to define an algorithm that uses the frequency of sym‐
bols in a stream as a data point in assigning variable numbers of bits to symbols in
that stream, resulting in a smaller, compressed output.

Still note, however, that many folks will use statistical encoding and entropy encoding
interchangeably. When they do, feel free to positively correct them on the ambiguity
of the vocabulary (it’s a great conversation starter...for intense nerds).

54 | Chapter 5: Statistical Encoding

https://en.wikipedia.org/wiki/Entropy_encoding
http://bit.ly/29H9QDK
https://goo.gl/Ge6hhA
http://bit.ly/29Hb8ij

Huffman Coding
After all that heavy talk about symbol probabilities that match specific distribution
patterns, we now return to real life and, yes, sticky notes. If you do all the tedious
work and the probability distribution of symbols in your data stream matches up
with any good existing compression algorithm, and there are hundreds of these, you
are in luck.

But what if not?

Well, that’s when you need to build your very own. And to produce small, custom
VLCs for a given data set, you need an algorithm that takes a list of probabilities and
produces codewords.

Enter Huffman coding.

Huffman coding is probably the most straightforward and best-known way to build
custom VLCs. Given a set of symbols and their frequencies of occurrence, the
method constructs a set of variable-length codewords with the shortest average
length for the symbols. It works by setting up a decision tree where the data is sorted
and then (we’re almost back to 20 Questions again!) you record the yes/no decisions
that get you down the “branches” of the tree to the “leaves”—the individual symbol
you’re looking for.

Shannon–Fano
Although it’s not relevant to most modern systems, Shannon–Fano coding was one of
the first techniques for constructing VLCs based on symbols and their probabilities.
The reason that it’s not relevant is that it doesn’t achieve the lowest possible expected
codeword length, but it does get pretty close. Although Shannon first proposed this
technique in 1948, he attributed it to Robert Fano, who later went on to publish it
officially as a technical report.

As an example, the PKZIP/IMPLODE format ignores using Huffman encoding, and
instead, chooses two to three Shannon–Fano trees.

Building a Huffman Tree
In summary, Huffman discovered that if he used a binary tree, he could use the prob‐
abilities from the symbol table alongside the branches of the binary tree to create an
optimal binary code.

Here’s a tiny—and incomplete—example table:

Huffman Coding | 55

http://bit.ly/29H9Un6
https://en.wikipedia.org/wiki/PKZIP

Symbol Frequency of
occurrence

A 4

B 1

C 1

So, let’s put these on sticky notes, sort them by probability, and call them the leaves of
the binary Huffman tree that we are going to build from the bottom up (see
Figure 5-1).

Figure 5-1. The starter nodes sorted by their frequency of occurrence.

First, take the two symbols with the smallest probabilities, move them one level
deeper, and create a parent that is a combination of the two symbols and their proba‐
bilities, as depicted in Figure 5-2.

Figure 5-2. Creating a combined parent node for B and C.

Second, repeat this process for the remaining A and combine it with BC to create the
new root ABC, which represents our complete set of symbols (see Figure 5-3).

Figure 5-3. Combining A and BC to create the ABC root tree.

56 | Chapter 5: Statistical Encoding

2 Guilty admission: this isn’t entirely accurate. The traditional Huffman code works by traversing bottom up (as
opposed to the Shannon–Fano method, which works from the top down). For programmers: in practice,
we’ve found that traversing top-down yields a more efficient code-wise implementation, because it’s simpler to
keep child pointers and tree traversals that way.

Generating Codewords
To set up the tree for generating codewords, assign 0s to all left branches, and 1s to all
right branches (Figure 5-4).

Figure 5-4. Assigning 0s and 1s to the branches.

Finally, to find a code for a given symbol/leaf node, “walk the tree” from the top
down,2 and line up the 1s and 0s from most significant bit (MSB) to least significant
bit (LSB)—that is, left to right.

For example, to determine the code for B, start at the root, traverse to the right (1),
then to the left (0), resulting in 10 as the encoded representation (Figure 5-5).

Figure 5-5. Walking the tree to find B’s code.

Finally, repeat this same process for all the remaining symbols/leaves of the tree
(Figure 5-6).

Huffman Coding | 57

3 Balancing data transmission with computing resources is a theme we’ll return to at the end of this book; it’s a
recurrent challenge.

Figure 5-6. Codes for all symbols (leaf nodes) in the tree.

Encoding and Decoding
Congratulations! You now have constructed a VLC assignment for your unique data
set, which you can use to encode your data. Walk through the input stream, and for
each symbol, write the appropriate codeword to the output.

As with other VLCs, for decoding purposes, you need to transfer the symbol-to-
codeword table along with your compressed content and mirror the standard VLC
decoding process

Because creating the tree takes more “effort” (uses compute resources) than passing
the symbol-to-codeword table (increases data stream size), you should always pre‐
pend your data stream with the codeword table, not re-create it at the destination.3

Practical Implementations
Folks have done a crazy amount of amazing analysis on Huffman codes over the past
50 years or so, and have come up with variants to ensure that they operate within
some performance or memory threshold, or produce various codes that are skewed
toward a specific probability. Entire books have been written about this algorithm
and its complexity and optimizations.

58 | Chapter 5: Statistical Encoding

4 He was also one of the pioneers in the field of mathematical origami, the wonders of which you can begin
exploring with Robert Lang’s TED talk “The Math and Magic of Origami”.

5 Inna Pivkina, “Discovery of Huffman Codes”.

But that’s all we’re going to say about it—you’ve got enough of the mechanics to
understand how your data is interacting with algorithms when you begin to try them.

Meet David Huffman
David Albert Huffman (August 9, 1925–October 7, 1999) was a pioneer in computer
science, known for his Huffman coding.4

In 1951, David A. Huffman and his classmates in an electrical engineering graduate
course on information theory were given the choice of a term paper or a final exam.
For the term paper, Huffman’s professor, Robert M. Fano, had assigned what at first
appeared to be a simple problem. Students were asked to find the most efficient
method of representing numbers, letters, or other symbols using a binary code.
Besides being a nimble intellectual exercise, finding such a code would make it possi‐
ble for information to be compressed for transmission over a computer network, or
for storage in a computer’s memory.

Huffman worked on the problem for months, developing a number of approaches,
but none that he could prove to be the most efficient. Finally, he despaired of ever
reaching a solution and decided to begin studying for the final. Just as he was throw‐
ing his notes in the garbage, the solution came to him. “It was the most singular
moment of my life,” Huffman says. “There was the absolute lightning of sudden reali‐
zation.”5

That epiphany added Huffman to the legion of largely anonymous engineers whose
innovative thinking forms the technical underpinnings for the accoutrements of
modern living—in his case, from facsimile machines to modems and a myriad other
devices. “Huffman code is one of the fundamental ideas that people in computer sci‐
ence and data communications are using all the time,” says Donald E. Knuth of Stan‐
ford University, who is the author of the multivolume series The Art of Computer
Programming (Addison-Wesley, 1997).

Like so many other early breakthroughs, Huffman might never have found this solu‐
tion without the help of his professor, Fano, who noted that Claude Shannon had also
struggled with the same issue. “It was my luck to be there at the right time, and also
not have my professor discourage me by telling me that other good people had strug‐
gled with this problem,” Huffman says.

Huffman Coding | 59

http://goo.gl/288I0W
https://goo.gl/3jv5xg
http://bit.ly/297Nzv5
http://bit.ly/29HbaH3

Arithmetic Coding
The Huffman method is simple, efficient, and produces the best codes for individual
data symbols. However, it doesn’t always produce the most effective codewords for a
given set.

In fact, the only case for which Huffman produces ideal VLCs (codes whose average
size equals the entropy) is when the symbols occur at probabilities that are negative
powers of 2 (i.e., numbers such as 1/2, 1/4, or 1/8). This is because the Huffman
method assigns a codeword with an integer number of bits to each symbol in the
given symbol set.

Information theory shows that a symbol with probability 0.4 should ideally be
assigned a 1.32-bit code, because −log2(0.4) ≈ 1.32. The Huffman method, however,
assigns such a symbol a code of 1 or 2 bits.

Sadly, as long as the number of bits we assign to a codeword are integer-based, there
will always be a bloated difference between the number of encoded bits and the actual
bits required by entropy. So, to fix that, we must move away from assigning integer-
based codewords to symbols at a 1:1 ratio.

This is where arithmetic coding comes in. Rather than assigning codewords to sym‐
bols in a 1:1 fashion, this algorithm transforms the entire input stream from a set of
symbols to one (excessively long) numeric value, whose log2 representation is closer
to the true value of entropy for the stream.

The magic of arithmetic compression is a transform that it applies to the source data
in order to create a single output number, which takes fewer bits to represent than the
source data itself.

Story Time: Where Arithmetic Coding Originated
Peter Elias first proposed the concept behind arithmetic compression in the early
1960s. But, it wasn’t until a decade later that Jorma Rissanen from IBM published
some of the first suitable research for its implementation—alongside a massive patent.

As a result, for the next couple of decades, arithmetic compression pretty much fell
off the map, due to an impossibly aggressive patent strategy enforced by IBM. The
patent problem was so enormous and arithmetic compression so good, a different
algorithm called Range Coding was invented in 1979. It basically did the same thing as
arithmetic compression but was free from patents.

In the early 2000s, the patent finally expired. Arithmetic compression took off again
and achieved status as the gold standard for the current generation of statistical
encoders.

60 | Chapter 5: Statistical Encoding

https://en.wikipedia.org/wiki/Range_encoding

6 It actually isn’t. This is just an example number to show you the general steps.
7 The [0,1) notation indicates that the number 0 is included in the range, and 1 is not, making the range 0

through 0.99999…, with as many 9s as you need.

In fact, the majority of modern compression formats for archives (such as LZMA and
BZIP) and audio and video (such as JPEG, WebP, webM, and H.264) all work with an
arithmetic compression system as their statistical encoding step.

Finding the Right Number
Arithmetic coding works by transforming a single string into a number that requires
fewer bits to represent than the original string. For example, “TOBEORNOT” could
be represented by 2367126, whose ceil(–log2(236712)) = 18 bits. Compare this with
the ASCII version of “TOBEORNOT,” which sits at 56 bits.

But this isn’t as easy as just picking a number at random, as we did earlier. Arithmetic
coding goes through a complex process of calculating this number from an input
stream. The trick is that choosing the number is actually a modification on the binary
search algorithm that we introduced in Chapter 2 (you know, the chapter you were
not supposed to skip).

If you recall from that chapter, you can use a binary search to output 0/1 bits to cata‐
log the search’s no/yes decision process as we were checking whether a number fit
into one of two spaces against a pivot value. But what if we had four spaces? Each
decision would then output 2 bits (for one-fourth of the number range, respectively).
Still makes pretty good sense, right?

Arithmetic coding kinda works along this path, but with some serious modifications.

Arithmetic coding creates a number space [0,1)7 and subdivides it based on the prob‐
ability of symbols in the data stream. So, “A” would be given [0,0.25) if its probability
were 25%, and B, with a probability of 10%, would then be given [0.25,0.35), and so
on, as shown here:

When the encoder reads a symbol, it finds the range for that symbol. For example, if
A were read, the range [0.0,0.25) would be used. After a symbol is read, the encoder
will subdivide that symbol range and assign new range values for symbols propor‐
tionally.

Arithmetic Coding | 61

http://bit.ly/28KCeka
https://en.wikipedia.org/wiki/Bzip2
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/WebP
https://en.wikipedia.org/wiki/WebM
https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

For example, if our stream provided three A symbols in a row, the encoder would
subdivide the A range three times, as illustrated here:

Basically, each symbol recursively divides its range until we reach the end of the input
stream. After that’s done, we have a final range of values, such as [0.253212, 0.25421).
The number you output, is a value in this range. So for our example, for an input
string of AAA, the output could be anything in the range [0,0.015625).

Encoding
Let’s encode a complete example with three symbols, R, G, and B, with respective
probabilities of 0.4, 0.5, and 0.1. We assign them ranges in the interval [0,1) according
to their probability, as shown in the following table (note that the entropy of this table
is 1.36):

Symbol Probability Interval
R 0.4 [0,0.4)

G 0.5 [0.4,0.9)

B 0.1 [0.9,1)

The following diagram shows the same information represented in number-line form
of the ranges for three symbols, R, G, and B:

Using this probability setup, let’s encode the string “GGB.”

The first symbol we read from the input stream is “G.” Because the interval of G,
according to our table, is [0,4,0.9), we subdivide the number space between the values
of 0.4 and 0.9 according to probabilities, which gives us a new range of intervals, as
shown in the updated figure and table that follow.

62 | Chapter 5: Statistical Encoding

Symbol Probability Updated interval
R 0.4 [0.4,0.6)

G 0.5 [0.6,0.85)

B 0.1 [0.85,0.9)

We now read the second symbol from the input stream. It’s another G, so we again
subdivide the G range of numbers, which is between 0.6 and 0.85, and update the
intervals as shown in the following figure and the table.

Symbol Probability Updated interval
R 0.4 [0.6,0.7)

G 0.5 [0.7,0.825)

B 0.1 [0.825,0.85)

And finally, we read and subdivide again for the letter B, and update the figure and
table once more.

Arithmetic Coding | 63

Symbol Probability Updated interval
R 0.4 [0.825,0.835)

G 0.5 [0.835,0.8475)

B 0.1 [0.8475,0.85)

Congratulations! You just arithmetically encoded a stream!

Picking the Right Output Value
So, we’ve subdivided the range intervals, but what number do we output as the final
result?

Our final interval for B is [0.825,0.85), and any number from that range will serve the
purpose of letting us reconstruct the original string, giving us some choices between
0.825 and 0.849999.... This being a book about compression, we want to use the num‐
ber that we can represent with the fewest bits (and as close to our 1.36 bits entropy
goal) as possible.

The number in this range that requires the fewest bit is 0.83.

Finally, because the decoder “knows” that this is a floating-point number, we can drop
the leading 0 for additional savings and end up with 83, which with log2(83) = 7 bits,
gives us 1.42 bits per symbol, which is almost at entropy.

Decoding
Decoding from this final number is pretty straightforward—basically the encoding
process in reverse. Just as with encoding, we begin by creating the segmented range
between [0,1) based on the probabilities, as demonstrated here:

64 | Chapter 5: Statistical Encoding

We then take our input value, 83, add the leading “0” to get 0.83, and find which
interval it falls into. We output the symbol associated with that interval.

In our case, 0.83 falls in the range 0.4,0.9, giving us the value G to output.

We then subdivide the G space according to the probabilities (same as when we were
encoding).

To get our second symbol, we repeat the process. Our input value is still 0.83, which
falls (again) in G’s range, so we output another G, and subdivide again, as shown
here:

Continuing one more time, 0.83 falls in the range 0.825,0.85, which is the range for
the symbol B, so we output B.

Arithmetic Coding | 65

This gives us our final decoded stream as GGB.

Pretty nifty, eh? Our decoding process basically works by drawing a line through each
recursive space and outputting whatever symbol we land in at that time.

How Subdividing the Range Intervals Based on Probability Results in
Compression

As an initial state, let’s subdivide our space between [0,1) evenly among 10 values.
This is equivalent to an input stream for which all symbols have equal probabilities.

Then, we read a symbol and subdivide the space between [0.2,0.3) into 10 equal buck‐
ets, as well.

Now, let’s pause for a second. At this point, we’ve read in a single symbol. If we stop‐
ped encoding at this point, we’d be selecting a number in the 0.2x range and our out‐
put would be two digits long.

66 | Chapter 5: Statistical Encoding

As this pattern continues, each subdivision adds another digit to our final output
number. So a third subdivision would give us 0.XXX, and a fourth 0.XXXX, as shown
here:

The problem with this is that because each subdivision adds more digits to the out‐
put, we end up with one extra digit for each symbol read.

However, even with this, we can already achieve compression. For example, if we’re
reading in ASCII data, each symbol uses 8 bits, but each subdivision only adds
–log2(10), which rounds to ~3.3 bits to our output number (because it’s increasing by
a power of 10 at each step).

But we can do better.

Rather than subdividing the space evenly, let’s give some spaces more size. Suppose
that the first space goes from [0,91) and the other 9 spaces are crammed between
[0.91,1). This is equivalent to an input stream for which one symbol is seriously more
probable than the other nine.

Arithmetic Coding | 67

After reading the first symbol, we subdivide the space between [0.0,0.9), keeping our
same weighting, as shown here:

So, if we stopped encoding at this point, we’d have the ability to have either a one-digit
number “0” or a three-digit number “90x.” And if we assign the one-digit number
range to our most probable symbol, we gain enormous savings—bingo!

Improving Decoding Performance
Now, for you performance buffs out there, it’s worth pointing out that the illustrated
decoding process might not be as performant as you’d like. If you have a 1 MB stream,
you’re going to need to subdivide your interval, each time, into as many separate sub‐
sections as you have unique symbols. That can be a lot of floating-point math and
division.

Here’s an alternate way to do this: rather than subdividing the space, remove the
spaces’ influence from our code.

For example, given our previous frequency and intervals table, and the final output
value 83, we can set up our number interval.

We begin by setting our input number to 0.83, which falls in the interval of 0.4 and
0.9, so we know the first output symbol is G.

But now, we need to remove the influence of the first symbol G from our number. We
do this by subtracting the lower limit of G (0.4) from 0.83, and dividing the interval
by the width of G (0.5)—the result number is 0.86, as demonstrated here:

(0.83–0.4) / 0.5 = 0.86

68 | Chapter 5: Statistical Encoding

8 Especially the tANS variant, which is designed to be a direct replacement to Huffman encoding. See the paper
“The Use of Asymmetric Numeral Systems as an Accurate Replacement for Huffman Coding” or “Asymmetric
Numeral Systems: Entropy Coding Combining Speed of Huffman Coding with Compression Rate of Arith‐
metic Coding”.

Now we continue. 0.86 which falls in the interval of 0.4 and 0.9, so we know the next
output symbol is G. We output that, and then we remove the influence of the second
G from the number. We do this by subtracting the lower limit of G (0.4) from 0.86,
and dividing the interval by the width of G (0.5), the result number is 0.92.

(0.86 – 0.4) / 0.5 = 0.92

0.92 sits between 0.9 and 1.0, which we know is the value of B.

We can output that to the stream, and we’re done.

Practical Implementations
The adoption and dominance of arithmetic coding since its patent expiration in the
2000s has led to a plethora of topics that relate to practical implementations of this
algorithm. More impressive is how many of them have been modified for specific
codecs, such as the binary-only versions used by JPG and H.264 codecs. Those lossy
compression methods are out of scope for this book, but there are plenty of resources
out there if you’d like to investigate more.

Asymmetric Numeral Systems
After a 40-year battle between Huffman and arithmetic encodings, it would seem as
though both might have been usurped by a brand new class of statistical encoder.

In 2007, Jarek Duda presented a new information theory concept called asymmetric
numeral systems (ANS) that had direct relations to data compression. Effectively, ANS
is a new approach to accurate entropy coding, which can get arbitrarily close to opti‐
mal Shannon entropy, provides compression ratios similar to arithmetic coding, and
has performance similar to Huffman coding.

Although Jarek Duda’s papers detail a lot of cool mathematical revelations, you can
apply the algorithm itself much like other statistical encoders:8

1. A numerical space is subdivided based on symbol frequencies.
2. A table is created, which maps subspaces to discrete integer values.
3. Each symbol is processed by reading and responding to values in the table.
4. Variable bits are written to the output stream.

Asymmetric Numeral Systems | 69

http://goo.gl/D9DW88
http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://www.cc.gatech.edu/~jarek/courses/7491/Arithmetic2.pdf
http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540

9 Worth noting that 1 is always the initial state.

The two parts that are unique to this algorithm are in step 2 (the table) and step 4
(variable bits).

So, let’s take a look at those more closely.

Encoding and Decoding Using a Transform Table
The tANS variant of ANS works by moving around a table of values.

As an example, let’s just assume that you’re given the table that follows. Ignore how
we’ve created it, we’ll get to table creation in a moment.

State/row A B C
1 2 3 5

2 4 6 10

3 7 8 15

4 9 11 20

5 12 14 25

6 13 17 30

7 16 21

8 18 22

9 19 26

10 23 28

11 24

12 27

13 29

14 31

Given the preceding table, let’s walk through how to encode the input string BAA:

1. Given an input stream BAA, we begin with a pair of [row index, input symbol],
which is [1,B].9

2. We use this pair to reference a location in the table from which to read our next
value. We grab the value at cell [1,B] in the table, which is 3, and make that our
new row index for [3,?].

3. To get the column index, we then read the next symbol, which is A, completing
the new table index [3,A].

4. Again, we grab the value at that cell in the table, which is 7.

70 | Chapter 5: Statistical Encoding

5. We read the next symbol, which is also A, we end up with [7,A].
6. And the value at that index is 16.
7. We can continue forward with this until we hit the end of the table (or the end of

the string).
8. The transform of this table takes BAA and results in [3,7,16].

Decoding works in the exact opposite way.

1. We begin with the last value, 16.
2. We then search the entire table and find that 16 sits at row 7, column A.
3. We output A as our symbol and 7 becomes the new current value.
4. We search the table again and find that 7 is at row 3, column A.
5. We output A, again, and set 3 as our new value.
6. When we search for our last 3, we see that it’s at row 1, column B. Because we’re

in row 1, we know we can’t move further, so we’re done decoding.
7. The decoded stream is [A,A,B] because we were decoding the list from back to

front.
8. Our last step is to reverse to get to the original BAA.

You can see that this table lets us encode an input string and decode it properly, given
a nifty way to move around it.

Creating the Reference Table
The core of this algorithm is the magical reference table, which makes it possible for
these types of transforms to occur. The table itself is created by first assigning each
symbol a column in the table, such that the symbols are sorted by probability, left to
right from highest to lowest.

In the previous table, the symbols A, B, C have the probabilities P([A,B,C]) =
[0.45,0.35,0.2], and are each assigned a column of the table.

From here, we must fill in values into the table, adhering to a few specific properties:

• Every value in the table is unique (no repeats)
• Numbers in each column are sorted from lowest to highest
• Numbers in every row are larger than the number (index) of that row

If you can adhere to these principles, the encoding/decoding transform that we’ve
shown should work just fine. But for tANS to become a true entropy encoder, there
are two more properties that we must consider:

Asymmetric Numeral Systems | 71

10 We haven’t talked about maxVal yet. We’ll get into choosing the proper maxVal in a moment.
11 Note that if you’re creating this as a full 2D table (rather than letting the height of each column be variable),

you’ll need to insert some value in the column positions greater than its column height (–1 or something) to
signify that those cells are empty/invalid.

Determining the number of values in a column
The number of values in a column is equal to the probability of the column-
symbol, multiplied by maxVal.10

Determining the numbers in each row
Numbers in a row are selected to align with the probability of occurrence for a
symbol, such that if we divide the row-number by a value in a column, the result‐
ing value is (roughly) equal to the probability of that column’s symbol.

Let’s take a closer look at these properties for our example.

The first property is somewhat straightforward. The largest value in the table is
maxVal = 31. In accordance with the property, we subdivide the space of maxVal =
31, assigning P(s) * maxVal numbers to each symbol-column. For our example:

• B has P(B) = 0.35, which results in a column that is floor(0.35 * 31) = 10 elements
high.

• The same goes for C (0.2 * 31 = 6).
• However, the most-probable symbol, in the leftmost column A, has P(A) *

maxVal + 1 = 0.45 * 31 + 1 = 14 rows. That’s because the most probable symbol
adds an extra row for the maxVal.

This has the effect of subdividing the maxVal space, giving slots for each symbol,
equal to its probability.11

The second property defines that values in a row can be calculated by multiplying the
row number by the probability of each symbol.

For our example table, the probabilities for the symbols S = [A,B,C] are P(S) =
[0.45,0.35,0.2], and picking a row, say row 5, the values are 12, 14, 25.

When we divide those values by the row index, we get a result that’s pretty close to
the symbol probabilities: [5 / 12, 5 / 14 , 5 / 25] = [0.41666.,0.357,0.2] ~= P(S).

This second property must remain true for all rows. You can see that for column A,
each row has a value that’s about right with regard to P(A) = 0.45.

Row # P(A) Row #/P(A) Actual table
value

Row #/value

1 0.45 2.2223… 2 0.5

2 0.45 4.4444… 4 0.5

72 | Chapter 5: Statistical Encoding

12 With respect to performance, there’s a bunch of different ways to accomplish this type of marking of used
variables. We suggest checking out the “bingo board” method by Andrew Polar.

Row # P(A) Row #/P(A) Actual table
value

Row #/value

3 0.45 6.6666… 7 0.42

4 0.45 8.8888… 9 0.444…

5 0.45 11.1111… 12 0.416…

So, why is there sometimes a discrepancy between the assigned table value and the
numerically calculated table value? It’s to avoid collisions.

Each value in the table must be unique. However, because we are rounding numbers
up and down, we can end up with collisions at a few spots. For example, 1 / P(C) = 5,
whereas 2 / P(B) = 5.714.

We resolve collisions by iterating forward to find the next highest value that is not yet
used in the table. For example, in the case of assigning a symbol to column B, for row
2 we can’t use the value 5 (because it’s already used in row 1), so we try the next
greater value, 6, which hasn’t been used in the table yet, and assign12 that value.

By adhering to these two properties, you can create the entire preceding table that
will properly encode/decode values and compress your data.

Choosing a maxVal
Choosing maxVal directly affects your compression output, which is directly related
to the amount of integer precision that your encoding allows.

The goal, therefore, is to assign each symbol a subspace whose size matches the prob‐
ability of the symbol itself. Now, if the encoding process and table were computed in
floating-point space, this wouldn’t be that big of a deal: simply assign each symbol a
space equal to its frequency. However, our encode/decode works with integers. As
such, we need to create an integer space of some size (between 2 and maxVal) such
that we can assign subranges of it to each symbol without running into precision
problems.

Suppose that your data set contains 28 unique symbols. At the bare minimum, you
then need LOG2(28) = 5 bits, space size, giving you a maxVal of 25 - 1 = 31.

However, because not every symbol is equally probable, this doesn’t give us enough
space to assign different symbols different space sizes. To accommodate, this we need
to increase our number of bits.

Asymmetric Numeral Systems | 73

http://www.ezcodesample.com/abs/abs_article.html

As such, choosing a maxVal should be a function of the minimum number of bits you
need, plus a few extra bits to help with precision:

numPrecisionBits = LOG2(numSymbols) + magicExtraBits

maxVal = (2numPrecisionBits) - 1

Where magicExtraBits is some value between 2 and 8, or whatever works for your
data set. The number of magicExtraBits, as we will show in a moment, trades off
quality for processing time; the higher the value, the better compression but the
longer it takes to compress.

Using ANS for Compression
We previously identified how to move around our reference table; however, the out‐
put didn’t result in statistical compression. To achieve compression, we need to tweak
our algorithm just a tad:

• First, instead of starting with row 1, our starting state/row is going to be maxVal.
• Second, for each symbol we read from the stream:

— Set targetRow to the column height for that symbol.
— Bitshift the state value right until it is smaller than the targetRow.
— Each bit that is dropped from state during the shift, should be output to our

encoded bitstream.

Let’s walk through an example encoding of the string “ABAC”, given the above modi‐
fications and the table we previously presented:

1. Because the state = maxVal = 31 (binary 11111), that is what we start with.
2. Read the first symbol, which is A, giving us [31,A], and setting targetRow to 14.
3. Because 31 > 14, we start shifting and outputting bits.

a. We shift state right once, to 1111, truncating the rightmost 1 to our output
stream→1.

b. State is now 15, which is still larger than 14; thus, we shift right again, making
state 111 and outputting another 1 bit to the output stream. →1

c. State is now 7, and we’ve truncated and written out two bits (11).
4. We now assign state to the table value at [7,A], which is 16 (binary 10000).
5. Read the next symbol, which is B, resulting in [16,B], and setting targetRow to

10.

74 | Chapter 5: Statistical Encoding

6. Because 16 > 10, we start shifting and outputting bits.
a. We shift 16 right once to set state = 8 (binary 1000), emitting a 0 to the output.

→0
b. Because 8 <10, we can move to the next symbol.

7. We set state to the table value at [8,B], which is 22 (binary 10110).
8. Read the next symbol, which is A, resulting in [22,A], and setting targetRow to

14.
9. Because 22 > 14, we shift and output bits. We shift right to get state = 1011, emit‐

ting 0. →0
10. We set state to the table value at [11,A], which is 24 (binary 11000).
11. Read the next symbol, which is C, resulting in [24,C], and targetRow to 6.
12. Because 24 > 6, we start shifting and outputting bits. We shift twice to get state =

110, emitting 00. →0 0
13. We set state to the table value at [6,C], which is 30 (11110).
14. Because our stream is now empty, we output our state value (11110) to the

stream. →11110
15. Our final stream is thus: 11000011110 and 11 bits long. Plus the bits taken up by

the symbol probabilities table.

Decoding Example
Decoding works in the opposite order:

1. Read in our frequency data from the compressed stream.
2. Create the table from the symbol frequency information.
3. Read a value from the stream.
4. Find its location in the table.
5. Output the column as the symbol.
6. Make value = row.
7. Read in some new bits.

It’s worth noting that in this example our maxVal = 31, or 5 bits of precision.

After creating the table, we work through our encoded 11000011110 stream back‐
ward as follows:

1. Working with 5 bits for our state targeted, read the last 5 bits 11110(30) of the
stream.

Asymmetric Numeral Systems | 75

2. We find the only number 30 in the table at location [C,6].
3. Output the symbol C.
4. 6 or 110 is only 3 bits, so we need to read 2 more from the stream (always try to

make 5 bits).
5. Read the last 2 bits, 00, and append them to 110, resulting in 11000 24
6. Find the only location of 24 in the table at [A,11].
7. Output the symbol A.
8. 11 (binary 1011) is only 4 bits, so read 1 more bit from the stream, giving you

10110 (22).
9. Find 22 in the table at [B,8].

10. Output the symbol B.
11. 8 (binary 1000) is only 4 bits, so read 1 more, giving you 10000 (16).
12. Find 16 in the table at [A,7].
13. Output the symbol A.
14. 7 (binary 111) is only 3 bits, so read 2 more, giving you 11111(31).
15. Because this value now equals our maxValue (11111), we know this to be the

end-of-message marker, so we quit decoding.
16. We reverse the string and have returned to ABAC.

So Where Does the Compression Come From?
Compression comes from the bit-wise output.

Because the least probable symbols have shorter columns, the valid row values are
farther removed (in bit distance) from the max-symbol. Therefore, more right-shifts
are required to get to the lower row indexes, which means more bits are pushed to
the stream for each iteration. So, less probable symbols result in more bits being out‐
put to the final stream.

As we mentioned previously, giving more bits produces a higher precision for your
space (and thus, a larger maxVal). This causes the values in the reference table to have
fewer precision collisions, because the larger space allows for integers to more closely
match the value given by P(s) * maxVal. Recall that collisions in the table result in
linearly searching for a larger value that hasn’t been used yet. When encoding, this
difference between the computed value and the actual value can result in more bit-
shifts to get the state value below the target row value. When precision is high, there
are fewer collisions, producing less bloat per value and fewer bits being shifted to the
output stream.

76 | Chapter 5: Statistical Encoding

The downside, though, is that larger precision produces a larger reference table,
which takes significant time to create and significant amounts of memory to hold. So
ensure that you find the right trade-off between performance and memory for your
particular implementation.

Practical Compression: Which Statistical Algorithm
Do I Choose?
So, you’ve got some awesome data set, and three awesome algorithms to apply statisti‐
cal compression to them. Which one do you choose?

This is a common problem, and for the majority of the past 20 years, there’s been a
massive nerd-fight going on in the compression world between Huffman and arith‐
metic coding. This debate first came to light in 1993, when Bookstein and Klein pub‐
lished a paper called “Is Huffman Coding Dead?”

Although it’s been more than 20 years since that paper was released, the arguments
are still held strongly by both sides of the debate.

Because computers are getting faster and faster (and the patent on arithmetic com‐
pression has expired), arithmetic compression has become the more dominantly
implemented version. It has taken over in most multimedia encoders, and is even
being implemented into hardware effectively.

But ANS has changed all that. In its short time in the world of compression, it has
already begun to take over the majority of positions held by Huffman and arithmetic
encoders for the past 20 years.

For example, the ZHuff, LZTurbo, LZA, Oodle and LZNA compressors have already
made the move over to ANS. Given its speed and performance, it seems only a matter
of time before it will become the dominant form of encoding. In fact, in 2013, a more
performance-focused version of the algorithm called Finite State Entropy (FSE),
which only uses additions, masks, and shifts, came onto the scene, making ANS even
more attractive for developers. It’s so powerful, that a Gzip-variant, dubbed LZFSE,
was unveiled in 2015 as a core API in Apple’s next iOS release.

The road forward seems pretty clear at this point: ANS and FSE might usher the end
of the decades that Huffman and arithmetic have enjoyed on the top of the charts.

Practical Compression: Which Statistical Algorithm Do I Choose? | 77

http://bit.ly/29aVr0Y
http://fastcompression.blogspot.com/p/zhuff.html
https://sites.google.com/site/powturbo/
http://bit.ly/29H5VXB
http://www.radgametools.com/oodlecompressors.htm
https://github.com/Cyan4973/FiniteStateEntropy
http://apple.co/297T1y7

www.allitebooks.com

http://www.allitebooks.org

1 We totally made up this term.

CHAPTER 6

Adaptive Statistical Encoding

Locality Matters for Entropy
All the statistical encoders mentioned in Chapter 5 require an initial pass through the
data to compute probabilities before encoding can start. This leaves us with a few
shortcomings: you always need to do an extra pass through the data to calculate the
probabilities, and after you have calculated the probabilities for the entire data set,
you are stuck with those numbers. Neither of those is a problem for relatively small
data sets.

However, the larger the size of the data set that you’re compressing, the more bloated
your statistical encoding will be with respect to entropy. This is because different sub‐
sections of the data set will have different probability characteristics. And if you’re
dealing with streaming data—a video or audio stream, for example—there’s no “end”
to the data set, so you just can’t “take two passes.”

These concepts, then, will apply to streaming data, but let’s look at them in the con‐
text of a relatively simple example data set. The first third of your stream might con‐
tain an excessive number of Q’s, whereas the last two thirds might have exactly none.
The probability tables for your statistical encoder would not account for this locality.
If the symbol Q has a probability of 0.01, it is expected to appear more or less evenly
along the entirety of the stream; that is, about every 0.01th value would be Q.

This is not how real data works. There’s always some sort of locality-dependent skew‐
ing1 that bundles symbols, thoughts, or words together in subsections of your data set.

79

2 Making up terms is fun. Using those made up terms a bunch of times is funner. We should do this more
often...

3 At face value, the discrepancy between these two numbers (entropy and actual bits-per-symbol) has every‐
thing to do with the same integer patterns that we covered in Chapter 5 (the difference between Huffman and
arithmetic coders, specifically).

4 Actually #PERFMATTERS, but that’s a different book...

As a consequence, the probability information that the statistical encoders are built
on creates codes that are bloated with respect to entropy: they don’t take into account
local shifts in the statistics. If, for example, you broke up a stream into N chunks and
compressed each one individually, you might end up with a smaller output than by
compressing the entire input as one (if there’s lots of locality-dependent skewing2).

Let’s consider a simple example data set:

AAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBCDEFGHIJKLMNOPQRSTUVWXYZ

This stream has an entropy of ~3.48, suggesting that we should, on average, use about
3.48 bits per symbol, and expect a final encoded size of 198.36 bits. The Huffman-
encoded version of this set is about 202 bits, which puts us at about 3.54 bits per sym‐
bol,3 which is not too shabby.

But let’s be honest here. We can do better than that. We can plainly see that the first
half of the stream is made up of only two characters, highly repeated. In reality, we’d
love to find a way to split the stream, so that we could get better encoding for the first
half of the stream. Wouldn’t it be great, if instead of creating one variable-length code
(VLC) for the entire stream, we could break it in half, and assign the first half 1 bit
per symbol, and the second half 5 bits per symbol? The net result would be 122 bits,
giving us 2.1 bits per symbol. (And just to point this out, this has us beating Shannon.
In a blowout.)

This leads us to a very important place in the compression world, the concept that
locality matters.4 As data is created in a linear fashion, there’s a high probability that
parts of the stream will have characteristics that are completely different from other
parts of the stream.

The real challenge of implementing this type of optimization is in how to optimally
divide the stream. Scanning ahead as we go, and trying to find the right segments, will
only lead you to madness and something that feels like an NP-complete problem. So,
instead of trying to scan ahead and find the right split points as we are encoding, we
instead allow our statistical encoders to “reset” themselves.

This process is pretty simple in concept: As we’re encoding our stream, if the variance
between the “expected” entropy and the “actual encoded bits” begins to diverge by a
significant amount, the encoder resets the probability tables, and then continues
using the reset tables.

80 | Chapter 6: Adaptive Statistical Encoding

5 When you talk to people who are obnoxiously smart about data compression, they typically say that statistical
encoding comprises two phases: modeling and prediction. There. Are you happy now, John Brooks?

This ability of adapting to the locality of the entropy of a stream is often called a
“dynamic” or “adaptive” variant of a statistical encoder. And these variants make up
the majority of all important, high-performance, high-compression algorithms for
most media streams, such as images, video, and audio.

Adaptive VLC Encoding
Let’s look at perhaps one of the simplest versions of an adaptive algorithm, just to
understand the basic workings.

Typically, there are three stages to statistical compression:5

1. Walk through the stream and calculate probabilities.
2. Assign variable-length codes to symbols based on their probability.
3. Walk through the stream again and output the appropriate codewords.

Basically, you do two passes through the data stream and have one VLC set for the
entire set of data. The issue here is the static nature of the VLC table.

Now the adaptive version of this process collapses these three steps into a single, very
complex, pass through the data set. The key lies in our symbol-to-codeword table not
being set in stone; rather, it can update as it encounters symbols.

The trick to adaptive statistical encoding has to do with not having
a set-in-stone VLC table. Instead, the VLC is constructed on the fly
as symbols are encountered. The dynamic nature of this process
lets us do other stuff to the table as we see fit; like, reset it.

Dynamically Building a VLC Table
Dynamically building your VLC table follows this pattern:

As the encoder processes the data stream, for each symbol it encounters, it asks the
following:

• Have we encountered this symbol yet?
— If so, then output its currently assigned codeword, and update the probabili‐

ties.
— If not, then do something special. (We will get to this part in a bit.)

Adaptive VLC Encoding | 81

So, with that in mind, suppose that as you begin processing your stream, you’ve been
given some expected probabilities and symbols to start with. As such, you currently
have a VLC table that looks like this:

Symbol Probability Code
A 0.5 0

B 0.4 10

C 0.1 11

Now, let’s read the next symbol off the input stream, which happens to be the symbol
B:

1. Output the currently assigned codeword for B, which is 10.
2. Update the probabilities table because B has just become a little bit more proba‐

ble (and the other symbols a little bit less).

Symbol Updated probability Code
A 0.45 0

B 0.45 10

C 0.1 11

3. The next symbol is a B again, so we output a 10 again, and update our probabili‐
ties.

Symbol Updated probability Updated code
A 0.4 10

B 0.5 0

C 0.1 11

Notice the important thing that happened here. Because B has become the most prob‐
able symbol in our stream, it is now assigned the shortest codeword. If the next sym‐
bol we read is another B, the output will now be 0 instead of the previous 10.

By dynamically updating the probabilities of symbols as we come across them, we can
adjust the sizes of the codewords that are assigned to them, if necessary.

Decoding
Just to ensure that this actually works, let’s take a look at the decoding process.

82 | Chapter 6: Adaptive Statistical Encoding

6 Note that these starting frequencies are being provided simply as an educational aid. In the real world, you
won’t get information like this and will have to build your tables from scratch.

Let’s begin again with our setup frequencies6 and the following VLC table:

Symbol Probability Code
A 0.45 0

B 0.45 10

C 0.1 11

We take the next bits of the input stream, see 10, and output B. We also update our
probability table, because we’ve seen another B.

Symbol Updated probability Updated code
A 0.4 10

B 0.5 0

C 0.1 11

Lo and behold, the table is evolving in the same way as when we were encoding.

Everything works!

And, as long as our decoder is updating its symbol table in the same fashion as the
encoder, the two will always be in synchronization.

Check it out:

Encoding
1. Read symbol from input stream.
2. Output that symbol’s codeword to the output stream.
3. Update the symbol table probabilities and regenerate codewords.

Decoding
1. Read the codeword from the input stream.
2. Output that codeword’s symbol to the output stream.
3. Update the symbol table probabilities and regenerate codewords.

This is the basic process of how adaptive statistical encoding works. The encoder and
decoder are both dynamically updating their probability tables for symbols, which
affects the compression, usually in a positive way.

Adaptive VLC Encoding | 83

Literals
But now we run into two challenges:

• What does our VLC table look like at the start, before we have encoded anything?
• What happens during decoding, when we read in a symbol that doesn’t yet exist

in our VLC table?

They are actually variations on the same problem, and the answer is: literal tokens.

A literal token is a unique “fake” symbol that the encoder and decoder use to signal
that it’s time to read/write a symbol from the literal stream. The literal stream is a sec‐
ond stream that only holds literal values; that is, the actual, encoded symbols in the
order in which they are encountered first in the data stream.

For example, for the datastream “AAAAABCABC” the literal stream would be “LIT‐
ERAL/A/B/C,” and the encoded stream might look like 00 1010 01 00 00 00 01 1011
01 1100 00 10 11, as shown in Figure 6-1.

Figure 6-1. Example illustrating how literal tokens, reading from the literal stream, and
changed probabilities appear in an encoded data stream.

During encoding, when the encoder reads a symbol it hasn’t come across before, it
does two things:

1. It emits the LITERAL codeword to the output bit stream.
2. It appends the new symbol to the literal stream.

And during decoding, when the decoder reads a LITERAL codeword, it does these
two things:

84 | Chapter 6: Adaptive Statistical Encoding

1. It reads the next literal from the literal stream.
2. It adds that literal to the output and updates its VLC table.

Let’s take a look at an example.

When we start encoding our stream, we haven’t seen any symbols yet, so we know
that for the very first symbol we read, we’ll need to emit a literal. It’s our only option.
As such, we begin our VLC table with LITERAL being the only symbol present, with
100% probability, and a single bit codeword.

Symbol Probability Code
<LITERAL> 1.0 00

When we encounter a new symbol from the input stream, we first output the VLC for
the LITERAL codeword, followed by the bits for the new symbol. And just like
before, we then update our table and probabilities accordingly.

Symbol Probability Code
<LITERAL> 0.5 00

A 0.5 01

Suppose that after that we read another A. And then we read B, another new symbol,
and having arrived at <LITERAL> A A <LITERAL> B, our probabilities now are:

Symbol Probability Code
<LITERAL> 0.4 01

A 0.4 00

B 0.2 10

So, for our input string AAAAABCABC, here is the complete algorithmic example.
(You can refer back to Figure 6-1 for visual cues.)

The unencoded 4-bit values for our literals are:

A = 1010

B = 1011

C = 1100

Note that, for our VLC codes, we’re just using 00, 01, 10, 11 to keep the explanation
simple.

Adaptive VLC Encoding | 85

1. Our VLC table contains LITERAL with a 1.0 probability, and its VLC is 00.
2. Read the first symbol, A.

a. The symbol is not in our table, so we must emit a literal token (which is 00)
and then the value of A: 1010.

b. Add A to our VLC table and update it based upon frequency. Since A and
LITERAL have both been seen once, their probability is 0.5 each, and we
assign them the codes: LIT=00, A=01.

3. Read the next symbol, A.
a. Since A is in the table, emit its VLC (01).
b. Update the table. A is now the most dominant symbol, and thus the VLCs get

reassigned: A=00, LIT=01.
4. Read the next symbol, A.

a. Emit A’s VLC (00) and update the probabilities in the table.
5. Read the next symbol, A.

a. Emit A’s VLC (00) and update the table.
6. Read the next symbol, A.

a. Emit A’s VLC (00) and update the table.
7. Read the next symbol, C.

a. C is not in our table, so emit a literal token (01) and then the value of C,
which is 1100.

b. Add C to our VLC table, and update; A=00, LIT=01, B=10, C=11.
8. Read the next symbol, A.

a. Emit A’s VLC (00) and update the table.
9. Read the next symbol, B.

a. Emit B’s VLC (10) and update the table.
10. Read the next symbol, C.

a. Emit C’s VLC (11) and update the table.

And voilà, the resulting stream is: 00 1010 01 00 00 00 01 1011 01 1100 00 10 11 (see
Figure 6-2.)

86 | Chapter 6: Adaptive Statistical Encoding

Figure 6-2. Final encoded stream.

Next, can you decode this by reversing the steps?

Resets
The real power of adaptive statistical encoding comes from being able to reset the
stream when the output entropy gets out of hand.

Let’s take [AAABBBBBCCCCCC] and represent literals as their values in angle brack‐
ets, such as <A>.

As we encode this stream, we end up with the following:

<A>,0,0,,1,1,1,0,<C>,11,11,11,11,0

Note that the last 0 for the last C is when the probabilities finally shifted to change the
code for C. You can see how with more symbols, and more runs of symbols, the over‐
all bits-per-symbol for output will suffer. It would have been ideal instead to some‐
how reset our VLC table when we got to C so that we could use 0 for all Cs for a
better result and end up with something like this:

<A>,0,0,,1,1,1,0,<C>, <RESET>0,0,0,0,0

As it turns out, we can employ the same tactic that we used with literals and create a
<RESET> token, as shown in the example table that follows. Whenever the decoder
encounters this token, it resets its symbol table and begins decoding afresh. The
encoding and decoding algorithms work the same as before.

The <RESET> and <LITERAL> tokens stay in the symbol table (like any other sym‐
bol) and over time, become lower probabilities as they become less frequent.

Following is an example table showing that <RESET> and <LITERAL> tokens will
eventually become lower-probability symbols.

Adaptive VLC Encoding | 87

Symbol Probability Original interval
<LITERAL> 0.05 1110

<RESET> 0.05 1111

A 0.4 00

B 0.3 10

C 0.2 110

Knowing When to Reset
But how do you know when to emit a reset token?

To make the decision to reset, we need to do three things:

• Choose a threshold for resetting; that is, at how many bits-per-symbol (BPS) we
are going to pull the plug and start from scratch.

• Measure roughly the average BPS that we have emitted to the output stream so
far and compare that to our threshold.

• Calculate the current entropy for the input stream we’ve read so far.

When the BPS for the output stream exceeds a chosen threshold, say, 5 bits greater
than BPS, we can assume that the stream has significantly changed, and we should
reset all our statistics.

Specifically, if we track the entropy for the input symbols, we’ll find that the number
of bits in the output stream will generally be larger than that entropy value. Or, stated
formally:

Entropy * numSymbolsSoFar > len(outputbits)

This is because we can’t represent fractional bits in modern hardware. Instead, we can
divide the number of output bits by the number of input symbols to give us the “aver‐
age output BPS,” as shown here:

aobp = len(outputbits)/numSymbolsSoFar

When we compare entropy to aopb, the result shows us how much the output stream
is drifting from the estimated desired number of BPS.

When we drift past our threshold (abs(aopb-Entropy) > threshold), we should reset,
because the output bitstream is getting too bloated.

88 | Chapter 6: Adaptive Statistical Encoding

Threshold isn’t a hard-and-fast rule and varies depending on the data stream/
encoder. Each encoder that supports this type of reset has fine-tuned these parame‐
ters for the particular data it is designed to handle.

Using This in Practice
So, it’s worth pointing out that no one uses this simplified version of adaptive VLCs in
any real capacity. The same problems with the static version of VLCs follow over to
the streaming adaptation. Instead, most modern compressors have jumped entirely to
using adaptive versions of Huffman and arithmetic coders that allow for dynamic
probability table generation and updated codeword selection.

However, these last few sections were not in vain. The same concepts that power
dynamic VLCs—that is, dynamic probability tables, resets, and literals—are all very
much present in the adaptive Huffman and adaptive arithmetic coders.

Adaptive Arithmetic Coding
Arithmetic coding is quite easy to make adaptive. This is mostly due to the simplicity
of the interaction between the coding step and the probability table. As long as the
encoder and decoder agree about how to update the probabilities in the correct order,
we can change these tables as we see fit.

Here is a very simple example. Our assumed probability table is as follows, so far:

Symbol Probability Original interval
R 0.4 [0, 0.4)

G 0.5 [0.4, 0.9)

B 0.1 [0.9, 1.0)

1. We read in the next input symbol; let’s assume that it’s the letter G.
2. We encode the symbol using the current probabilities.
3. We update the probability tables with the new information. (We are just going to

assume values for the table that follows for this example because we didn’t define
the preceding stream.)

4. We reassign the intervals.

Symbol Updated probability Updated interval
R 0.3 [0.4,0.55)

G 0.6 [0.55, 0.85)

B 0.1 [0.85, 0.9)

Adaptive Arithmetic Coding | 89

7 Newton Faller, “An Adaptive System for Data Compression,” in Record of the 7th Asilomar Conference on Cir‐
cuits, Systems, and Computers (IEEE, 1973), 593–597.

8 Donald E. Knuth, “Dynamic Huffman Coding,” Journal of Algorithms, 6 (1985): 163–180.

And here is how this plays out as a diagram:

The decoder works in the opposite way. Given the current probability, find the sym‐
bol that corresponds to the current numeric output value, update the tables, and reas‐
sign the intervals.

Adding literal and reset tokens works in the same way as adaptive VLC. You desig‐
nate these tokens types as additional symbols, and adjust their weights accordingly.

Adaptive Huffman Coding
Making Huffman coding adaptive isn’t as straightforward as it was for arithmetic.
This is mainly due to the complexity that arises when dealing with the Huffman tree
data structure.

Consider the problem: to properly output a codeword, a full Huffman tree is
required. A naive implementation would simply recompute the entire Huffman tree
for each symbol that’s encountered. This would work, although at the cost of a huge
amount of compute performance.

So, rather than rebuilding the entire tree each time, the adaptive Huffman version
modifies the existing tree as symbols are being read and processed. Which is where
things get a little crazy, because for each symbol read you must do the following:

• Update the probabilities.
• Shuffle and reorder a large number of nodes in the tree to keep them accurate

with respect to the changing probabilities.
• Stay compliant with the required structure of the Huffman tree.

The original versions of this adaptive Huffman method were developed in 1973 by
Faller,7 and substantially improved by Knuth in 1985.8 But modern variants are all

90 | Chapter 6: Adaptive Statistical Encoding

9 Jeffrey S. Vitter, “Design and Analysis of Dynamic Huffman Codes,” Journal of the ACM, 34: 4 (1987): 825,
October.

built on Vitter’s method, introduced in 1987.9 Refer to the papers referenced in the
footnotes, if you’d like to dig into the specifics.

The Modern Choice
These dynamic adaptations have a few benefits over their static counterparts:

• Ability to generate the symbol-to-codeword table rather than storing it explicitly
in the stream. This can trade data-stream size for additional compute perfor‐
mance, but more important, this enables the next two benefits.

• Ability to compress data as it arrives, rather than needing to process the set as a
whole. This lets you process much larger data sets efficiently, and you don’t even
need to know ahead of time how large your stream is going to be.

• Ability to adapt to locality of information; that is, adjacency can influence code
lengths. This can significantly improve the compression rate.

These three points are very important for modern statistical encoding. As the amount
of data is growing, more and more of it is sent over the Internet, and increasingly,
people consume data on mobile devices, which have limited storage and stingy data
plans. As such, the majority of statistical encoders concern themselves with com‐
pressing images (WebP) and video (WebM, H.264).

What this means for you, however, is that for small data sets, the simplicity of static
statistical encoders might work fine, and help you to achieve entropy with very low
complexity. If you’re working on larger data sets, or multimedia ones for which run‐
time performance is critical, adopting the adaptive versions is the right choice.

The Modern Choice | 91

https://en.wikipedia.org/wiki/WebP
https://en.wikipedia.org/wiki/WebM
http://bit.ly/29H5NHH

1 Seriously though, Peter Elias had like 30+ VLCs credited to him.

CHAPTER 7

Dictionary Transforms

Even though information theory was created in the 1940s, Huffman encoding in the
1950s, and the Internet in the 1970s, it wasn’t until the 1980s that data compression
truly became of practical interest.

As the Internet took off, people began to share images and other data formats that are
considerably larger than text. This was during a time when bandwidth and storage
were either limited, expensive, or both, and data compression became the key to alle‐
viating these bottlenecks.

With mobile devices on the march to world dominance, we are
actually experiencing these same bottlenecks all over again today.

Although variable-length coding (VLC) was churning away at content, the fact that it
was locked to entropy produced a limiting gate on the future of compression. So,
while the majority of researchers were trying to find more efficient variable-length
encodings,1 a few researchers found new ways for preprocessing a stream to make the
statistical compression more impactful.

The result was what’s called “dictionary transforms,” which completely changed the
mentality and value of data compression with respect to the masses. Suddenly, com‐
pression became a useful algorithm for all sorts of data types. So useful, in fact, that
all of today’s dominant compression algorithms (think gzip or 7-Zip) use a dictionary
transform as their core transformation step. So, let’s see what it’s all about.

93

http://www.gzip.org/#intro
http://www.7-zip.org

2 If you wonder why this made-up table doesn’t add up to 1, it’s because of rounding errors. 1/L is 16.66666....
3 Or perhaps more specifically, statistical compressors just accept whatever symbols you throw at them. Dictio‐

nary transforms take a given set of symbols and redefine what symbols to use to produce lower entropy for
the stream.

A Basic Dictionary Transform
Statistical compression mostly focuses on a single symbol’s probability in a stream,
independent of adjacent symbols that might exist around it. This is great for com‐
pressing Pi to the Nth digit, but does not take into account an essential property of
real data: context, groupings, or simply put, phrases.

There are “phrases” in other contexts, too: the rules of music, color
composition in images, or the beating of your heart. Basically, any
place where there’s a grouping of similar content that’s available to
be repeated later.

For example, rather than encoding each letter of the phrase “TO BE OR NOT TO
BE” as a unique symbol, we could, instead, use actual English words as our tokens.
The result would create a symbol-to-codeword table that could look something like
this (ignoring spaces):2

Symbol Frequency Codeword
TO 0.33 00

BE 0.33 01

OR 0.16 10

NOT 0.16 11

Which would give us 000110110011 for the encoded string. An original, per-letter
encoding would have produced 104 bits, where the word-specific version was com‐
pressed to 12 bits.

When we stop considering single symbols, and instead begin considering groups of
adjacent symbols,3 we move out of statistical compression and into the world of dic‐
tionary transforms.

Dictionary transforms work much like you’d expect. Given a source stream, first con‐
struct some dictionary of words (rather than symbols), and then apply statistical
compression based on the words in the dictionary.

94 | Chapter 7: Dictionary Transforms

4 We’re using the terms “letter” and “word” here to mean “single symbol” and “multiple adjacent symbols,”
respectively. To be clear, you can use dictionary transforms on any type of data, not just text.

Dictionary transforms are not meant to be a replacement for statistical encoding, but
rather a transform that you first apply to your stream, so that it can be encoded more
effectively by a statistical encoder, as shown in Figure 7-1.

Figure 7-1. Applying a dictionary transform first can produce a data stream that can
then be compressed more effectively by statistical encoding.

As such, dictionary transforms represent a preprocessing stage that’s applied to a data
stream to produce a data set that is smaller and more compressible than the source
stream.

A dictionary transform is most effective when it can identify long often-repeated sub‐
strings of the data, and assign them the smallest codewords.

Finding the Right “Words”
One big question is, “What represents the best words?” Well, the best words are those
that in combination result in the smallest entropy. The bigger question is: How do we
determine what those words are?4

Our previous example might have been a bit too easy, given that we could split on the
spaces in the string and use our very eyes to identify the duplicates.

What about this next string? Looks a bit tougher, maybe?

TOBEORNOTTOBEORTOBEORNOT

Given that there’s no simple way to separate words out in this string (without teach‐
ing your computer the English language), how do you go about finding them?

You do it by using a process known as tokenization, which is parsing a set of data to
find the ideal “words.” Tokenization is so complex that it has its very own branch of

A Basic Dictionary Transform | 95

research (and associated patents) in the information theory field. For this book, we
are going to stick with the basics.

As a baseline, let’s first take a look at what our example stream would look like, if we
tokenized with single-symbol values—that is, by the letters:

Tokenizing by the letters, we end up with an entropy of about 2.38, given that the let‐
ters “O” and “T” are duplicated often.

So that’s good to know, but let’s go the other way. Instead of the smallest symbols, let’s
tokenize around the longest substring that repeats in the string:

The longest string is “TOBEORNOT”, and it is matched twice in the input string. If
we assign it a single codeword, the entropy of such a tokenization is about 2.5, which
is larger than just using our single-symbol stream, so not a win for our data.

96 | Chapter 7: Dictionary Transforms

The reason for the increase in entropy is that now there is no clear skewing of the
data toward a single dominant symbol. [O,T,B,E,R,TOBEORNOT] are roughly
equally probable in this scenario, and thus, are assigned (roughly) the same number
of bits.

We could instead parse around the most frequent substrings, which would yield the
tokens TOBEOR and NOT. This results in an entropy that’s better at 2.2, but not par‐
ticularly impressive:

So, let’s try a different approach and tokenize by finding the shortest words with a
length greater than 1: TO, BE, OR, NOT and an entropy of 1.98, which is the best
we’ve found for this example:

Ah, so we’re back to parsing the string based on English words. Although this setup
produces the lowest entropy, it’s difficult to see how you would properly parse a string
to create these optimal sizes.

A brute-force method would read in a group of symbols (“TO”) and search the rest of
the string to determine its frequency. If the frequency was a good match for the exist‐
ing symbol table, the algorithm could continue on to the next symbol group and
repeat the process. Otherwise, it would try a different group of symbols (such as
“TOB”). Sadly though, this would not only require a lot of memory, but take a very

A Basic Dictionary Transform | 97

long time for any real-life data stream. As such, it’s not really suited to any type of
real-time processing.

The truth is that to find the ideal tokenization for a stream, we need some way to pro‐
cess symbols we haven’t come across before and those that we have, alongside the
ability to combine them into the longest symbol sets possible, in some sort of per‐
formant manner.

The Lempel-Ziv Algorithm
In 1977, researchers Abraham Lempel and Jacob Ziv invented a few solutions to this
“ideal tokenization” problem. The algorithms were named LZ77 and LZ78 and are so
good at finding optimal tokenization, that in 30+ years, there hasn’t been another
algorithm to replace them.

Meet Lempel and Ziv
Lempel and Ziv represent a powerhouse duo in the world of data compression.

Jacob Ziv grabbed his undergraduate degrees at the Israeli Institute of Technology
(Technion) before earning his doctorate in Information Theory at MIT in 1961. Ziv
chose MIT for his doctorate after finding a passion for communications engineering,
and seeing that Claude Shannon, Peter Elias, and Bob Gallager were all collecting
there; basically, he saw the rockstars of information theory all converging at one
place, and wanted to be in the center of that research world. After working at Bell
Labs for some time, he went back to become a professor at Technion.

Abraham Lempel has a similar story. He fetched his BS, MS, and Doctorate all at the
same Technion institute. He then went on to become a professor there, where he met
Ziv, and work began on information theory research.

Lempel and Ziv’s contributions to the world of information theory have been tremen‐
dous and were recognized as such when they received the 1997 Claude E. Shannon
Award from the IEEE Information Theory Society.

The LZ77 and LZ78 algorithms authored by Lempel and Jacob Ziv have led to a num‐
ber of derivative works, including the Lempel–Ziv–Welch algorithm, used in the GIF
image format, and the Lempel–Ziv–Markov chain algorithm, used in the 7-Zip and xz
compressors. The algorithms have also been used as originally published in formats
such as DEFLATE, which is used in the PNG image format, PKZIP, gzip, and zlib.

For the full interactive story, check out this Compressor Head video.

98 | Chapter 7: Dictionary Transforms

http://ethw.org/Oral-History:Jacob_Ziv
https://en.wikipedia.org/wiki/Claude_E._Shannon_Award
https://en.wikipedia.org/wiki/Claude_E._Shannon_Award
https://en.wikipedia.org/wiki/IEEE_Information_Theory_Society
http://bit.ly/29H66SO
http://bit.ly/29H66SO
https://en.wikipedia.org/wiki/Abraham_Lempel
https://en.wikipedia.org/wiki/Jacob_Ziv
http://bit.ly/29H5X1R
https://en.wikipedia.org/wiki/GIF
http://bit.ly/28KCeka
https://en.wikipedia.org/wiki/7-Zip
https://en.wikipedia.org/wiki/Xz
https://en.wikipedia.org/wiki/DEFLATE
http://bit.ly/29H5JYv
https://en.wikipedia.org/wiki/PKZIP
http://www.gzip.org
http://www.zlib.net
https://www.youtube.com/watch?v=Jqc418tQDkg

How LZ Works
LZ creates a tokenization by trying to match a current word with a previous occur‐
rence of that same word. Rather than reading in a few symbols and then searching
ahead to see if there might be duplicates, LZ works by instead looking behind to see if
this word has been seen before. This has two main ramifications to the encoding pro‐
cess (see Figure 7-2):

• Earlier in the stream, you’ll have seen fewer words, so incoming words will more
likely be new. Later in the stream, you’ll have a larger buffer to pull from, and
matches are more likely.

• Looking backward lets you find the “longest matching word.”

Figure 7-2. The LZ algorithm looks backward to find the longest previously encountered
matching word.

The search buffer
The backbone of the LZ algorithm works by splitting the stream into two segments.

• The left side of the stream is dubbed the “search buffer”; it contains the symbols
that we’ve already encountered and processed.

• The right side of the stream is dubbed the “look ahead buffer”; it contains the
symbols we’re looking to encode.

As such, the current “reading” position in the stream is at the point between the two
buffers, as demonstrated in Figure 7-3.

The Lempel-Ziv Algorithm | 99

Figure 7-3. The search buffer and look ahead buffer are separated by the current reading
location in the stream.

Finding matches
Finding matches is a bit of an organic interplay between the look ahead and search
buffers.

Figures 7-4 through 7-9 show how this works.

Figure 7-4. From the current location, read one symbol, which is T.

Figure 7-5. Search backward in the search buffer. The first symbol we see is a matching
T.

100 | Chapter 7: Dictionary Transforms

Figure 7-6. Because we are looking for the longest possible match, we now read a second
symbol from the look ahead, which is O.

Figure 7-7. There is no O after our matched T in the search buffer, so we go further
backward, until eventually we find TO.

Figure 7-8. We now read the next symbol B, and we still have a match…and the next
symbol E, and we are still matching, but looking at the next symbol T, it no longer
matches, so we have found the longest match for this sequence of symbols.

The Lempel-Ziv Algorithm | 101

Figure 7-9. We encode this match (as described in the next section) and shift the “current
position” of the stream to the end of the longest matched word in our look ahead buffer,
and … GOTO 1.

The “sliding window”
Now, in practical implementations, where the stream may be millions of tokens long,
we can’t look back at the entirety of our already processed stream. Keeping an indefi‐
nite search buffer would run into memory and performance problems. As such, the
search buffer typically only includes the last 32 KB of processed symbols. So, as we
move the current location, we also move a sliding window search buffer along our
stream, as illustrated in Figure 7-10.

Figure 7-10. After we find a match and encode it, we shift the “current position” to the
end of the longest matched word in the look ahead buffer, and the sliding window search
buffer moves up to the new current location.

Having a sliding window puts an upper limit on the performance required to find a
match. It also makes assumptions about locality, namely that there is a higher chance
of correlated data existing at locally similar points in the given data set.

In general, the sliding window search buffer is some tens-of-
thousands of bytes long, whereas the look ahead buffer is only tens
of bytes long.

102 | Chapter 7: Dictionary Transforms

5 It’s worth noting that in the original LZ77 and LZ78 papers, the token was a triplet, where the third value was
the next symbol in the look-ahead stream, which helped with recovery and processing during decoding. Most
modern variants of LZ have done away with the need for this third value, so we generally ignore it in the
description.

Marking a match with a token
When a match is finally settled on, the encoder will generate a fixed-length token to
an output stream. A token is made up of primarily two parts: offset and length.5

Offset value
This represents the position of the start of the matched word in the current
search buffer, working backward from the current position. In our example, the
matched string was found nine symbols back from the current position mark.

Length value
This represents the length of the matched word. In our example, the match was
four symbols long.

Because for our example we found a match 9 symbols back in the search buffer, with
a match-length of 4, the pair [9,4] is emitted to the output as our token, as shown in
Figure 7-11.

Figure 7-11. Tokens in the look-ahead buffer that match tokens in the search buffer are
encoded with their offset from the matching token and their length.

The decoder will un-transform these values in very simple ways:

1. Read the next token
2. From the current position, count offset symbols backward in the search buffer
3. Grab the length number of symbols and append them to the data stream

The Lempel-Ziv Algorithm | 103

When no match is found
There are situations for which no match is found in the search buffer for the symbol
in the look ahead buffer. In this case, we need to emit some information that lists this
new token, so that the decoder can recover it properly.

To do this, we emit a modified token that signifies that our output is a literal value,
which the decoder can read and recover to the stream. How this token is constructed
is entirely up to the flavor of LZ implementation. As a most basic approach, the algo‐
rithm would output a token that has 0 for its offset and 0 for its length [0,0], followed
by the literal symbol, as shown in Figure 7-12.

Figure 7-12. Tokens for nonmatched symbols are unique and typically include the literal
symbol for the decoder to read.

Encoding
Given our input stream “TOBEORNOTTOBE”, let’s walk through an example encod‐
ing (see also the table that follows).

1. The first four symbols have no match in the search buffer, and are easily output
to literal tokens.

2. When we get to the second letter “O” in the look ahead, we find a single match‐
ing symbol in the search buffer, giving us a token of (3,1).

3. This process continues on for a while, finding either nonmatches or single-value
matches.

4. Where things get interesting, is when we get to the end of the string, and see
TOBE matched, back at the beginning of the search buffer, at location 9 and with
a length of 4.

104 | Chapter 7: Dictionary Transforms

Search buffer Look ahead buffer Output
 TOBEORNOTTOBE 0,0,T

T OBEORNOTTOBE 0,0,O

TO BEORNOTTOBE 0,0,B

TOB EORNOTTOBE 0,0,E

TOBE ORNOTTOBE 3,1

TOBEO RNOTTOBE 0,0,R

TOBEOR NOTTOBE 0,0,N

TOBEORN OTTOBE 3,1

TOBEORNO TTOBE 8,1

TOBEORNOT TOBE 9,4

 <eos>

Decoding
The decoding process works off of the tokens:

• When the decoder finds a literal token, it emits the value directly to the search
buffer.

• If it finds a “match” token, it will count from the current position to the offset
and append the number of characters indicated by the length to the end of the
recovered buffer.

Input token Recovered buffer
0,0,T

0,0,O T

0,0,B TO

0,0,E TOB

3,1 TOBE

0,0,R TOBEO

0,0,N TOBEOR

3,1 TOBEORN

8,1 TOBEORNO

9,4 TOBEORNOT

<eos>

There you go, pretty straightforward, eh?

The Lempel-Ziv Algorithm | 105

6 As the authors, this is our book, so yeah…wins all around.

Compressing LZ output
It’s pretty easy to see that the LZ transform produces (in most cases) a smaller enco‐
ded form of the data stream than the source form. (We think that any opportunity to
replace a 12-symbol word with a 2-symbol token is a win in our book.6) That’s the
main draw here, that for streams with lots of duplicate words, you can encode them
in much smaller sets of tokens.

However, what makes LZ truly attractive is that you can combine it with a statistical
encoder. You do this by separating the offset, length, and literal values from the
tokens into their own contiguous sets, and then apply a statistical compressor to each
of them.

For example, you can separate our example token set [0,0,T][0,0,O][0,0,B][0,0,E][3,1]
[0,0,R][0,0,N][3,1][8,1][9,4] into these three data sets:

Offsets 0,0,0,0,3,0,0,3,8,9

Lengths 0,0,0,0,1,0,0,1,1,4

Literals T,O,B,E,R,N

Now, each of these streams has different properties and can be approached differ‐
ently.

Offsets
Firstly, we know that offsets will always be in the range of [0,X], where X is the length
of the search buffer. So in the worst case, offsets are encoded with log2(X) bits per
value, allowing you to index any byte in the sliding window.

Sadly, offsets tend to be all over the place, so there’s not a lot of duplicated content in
large streams. However, applying a statistical encoder could still yield good results.
For example, the offsets listed in our stream have an entropy of 1.57, but expect that
to get worse as your data set gets larger. A worst case scenario here is a match at every
location in your buffer, which produces every unique, nonduplicated value in this
stream.

Lengths
Lengths have a similar problem. They can generally be any size, so our only hope to
compress this data further is to take advantage of duplicate symbols by using a statis‐
tical encoder. This value set tends to skew itself toward duplicates around the type of
language and input you’re using. For example, if you’re encoding a book written in

106 | Chapter 7: Dictionary Transforms

English, there will be lots of length 2, 3, and 4 tokens in your set. For our previous
example, the lengths set has an entropy of 1.30, which would give us ~13 bits to
encode the length data.

Literals
For our small example, literals don’t seem to have any better compression than the
offsets and lengths. However, as the size of the input stream grows, the entropy of the
literal stream drops slightly, as duplicate literal values might exist (because of the slid‐
ing window). Whether this can happen also depends on the size of the search buffer.
For example, if you have two B tokens that are separated by exactly 32,000 other
tokens, they may be too far apart to create a valid match. As such, the literal stream
would have two B symbols in it.

LZ Variants
The LZ algorithm is excessively powerful, but equally impressive is how many var‐
iants of the algorithm have been created over the past 40 years (see Figure 7-13). Each
one tweaks the basic LZ77 just slightly, depending on the specific need, performance,
or use case. We’ll cover a few of the important ones here and let you search for the
rest on your own.

The Lempel-Ziv Algorithm | 107

Figure 7-13. A lineage of the LZ77 and LZ78 algorithms that shows the variants and the
years they were created.

LZ77
The basic LZ77 algorithm (sometimes called LZ1) works much like what we’ve
described previously; however, each token will always output, as its third value, the
literal of the next character in the look-ahead buffer.

LZSS
The main difference between LZ77 and LZSS is that in LZ77 the dictionary reference
could actually be longer than the string it is replacing. In LZSS, such references are
omitted, if the length of the string is less than the “break even” point. Furthermore,
LZSS uses one-bit flags to indicate whether the next chunk of data is a literal (byte) or
a reference to an offset-length pair.

Many popular archivers like PKZip, ARJ, RAR, ZOO, and LHarc used LZSS as their
primary compression algorithm. And as a nostalgia moment: The Game Boy

108 | Chapter 7: Dictionary Transforms

https://en.wikipedia.org/wiki/PKZip
https://en.wikipedia.org/wiki/ARJ
http://bit.ly/29H64dK
http://bit.ly/29H69y1
http://bit.ly/29H6pgB
http://bit.ly/29H6j8L

Advance BIOS had built-in functionality to decode a modified LZSS format for
patching and so on.

LZ78 or LZ2
The core LZ algorithms published back in 1977 and 1978 are sometimes called LZ1
and LZ2. LZ78 works mostly as we’ve just described, but rather than using an offset to
the search buffer, LZ78 will create references to a dictionary that is built based on the
input stream.

LZW (Lempel–Ziv–Welch)
LZW was published in 1984 by Terry Welch and builds on the idea of the LZ78 algo‐
rithm. Here’s how it works:

1. LZW initializes a dictionary with all the possible input characters, as well as clear
and stop codes, if they’re used.

2. The algorithm scans through the input string for successively longer substrings
until it finds one that is not in the dictionary.

3. When such a string is found, the index for the string without the last character
(i.e., the longest substring that is in the dictionary) is retrieved from the dictio‐
nary and sent to output.

4. The new string (now including the last character) is added to the dictionary.
5. And the same last input character is then used as the starting point to scan for the

next substring.

In this way, successively longer strings are registered in the dictionary and made
available for subsequent encoding as single output values. The algorithm works best
on data with repeated patterns, because the initial parts of a message will see little
compression. As the message grows, however, the compression ratio tends asymptoti‐
cally to the maximum.

LZW compression became the first widely used universal data compression method
on computers. LZW was used in the public-domain program “compress”, which
became a more or less standard utility in Unix systems circa 1986. It has since disap‐
peared from many distributions, both because it infringed the LZW patent and
because gzip produced better compression ratios using the LZ77-based DEFLATE
algorithm.

The Lempel-Ziv Algorithm | 109

http://bit.ly/29H6j8L
https://en.wikipedia.org/wiki/Terry_Welch
https://en.wikipedia.org/wiki/Compress

Collect Them All!
The point being that, again, there’s a huge number of potential input data sets, and
each one responds to each algorithm in a specific way. Knowing your data set can
help you pick the best LZ transform for it.

110 | Chapter 7: Dictionary Transforms

CHAPTER 8

Contextual Data Transforms

Before we begin with this chapter, let’s take a moment to recap.

Statistical encoders work by assigning a variable-length codeword to a symbol. Com‐
pression comes from smaller codewords being given to more frequently occurring
symbols. The tokenization process of dictionary transforms works by identifying the
longest, most probable symbols for a data set. Effectively, they find the best symbols
for a set so that it can be encoded more efficiently. Technically speaking, we could just
use the process to identify the best symbols and then plug that back into a statistical
encoder to get some compression. However, the real power of the LZ method is that
we don’t do that; instead, we represent matching information as a series of output
pairs with lower entropy, which we then compress.

In addition to dictionary transforms, there’s an entire suite of other great transforms
that work on the same principle: given some set of adjacent symbols, transform them
in a way that makes them more compressible. We like to call these kinds of trans‐
forms “contextual,” because they all take into account preceding or adjacent symbols
when considering ideal ways to encode the data.

The goal is always to transform the information in such a way that statistical encoders
can come through and compress the results in a more efficient manner.

You could transform your data in lots of different ways, but there are three big ones
that matter the most to modern data compression: run-length encoding, delta coding,
and Burrows–Wheeler transform.

Let’s pick them apart.

111

1 According to “every CS class ever made” and Wikipedia, RLE encoding is typically introduced not as a pair-
wise transform, but instead would inline the length with symbol values, giving A4B1C4. Truth is, though, that
no one actually uses RLE in this form due to the interweaving of literal symbols and numeric values; so it’s a
complete waste of time to introduce it that way. In fact, we are somewhat sad to have distracted you enough
with this footnote by it—sorry about that.

Run-Length Encoding
Run-length encoding (RLE) is one of the most deceptively simple and powerful
encoding techniques for various data types over the past 40+ years. RLE takes advan‐
tage of the adjacent clustering of symbols that occur in succession. It replaces a “run”
of symbols with a tuple that contains the symbol and the number of times it is
repeated. For example, as Figure 8-1 demonstrates, AAAABBBBBBBBCCCCCCCC is
encoded as [A,4][B,8][C,8].1

Figure 8-1. RLE identifies runs of identical symbols in a stream. It then transforms the
stream into a set of pairs containing the symbol and the length of its run.

From a conceptual level, that’s really it. Nothing special after that. Encoding means
finding a symbol and scanning ahead to see how long the run is.

Decoding works in the inverse. Given a pair containing the symbol and the length,
simply append the proper number of symbols to the output stream.

Dealing with Short Runs
However, not all data is as uniform as our first example. Following the simplistic algo‐
rithm, AAAABCCCC would be encoded as [A,4][B,1][C,4]. Because the single B in
the middle of the run was expanded from one symbol to a symbol-and-length pair,
we have just created bloat in the data stream, as illustrated in Figure 8-2.

112 | Chapter 8: Contextual Data Transforms

2 If your eyes just glazed over, that’s 7 bits of ASCII per literal, so 1000001|100|1000010|1000011|100.
3 This is a problem we’ve already had to tackle in this book for adaptive statistical encodings and dictionary

transforms: interleaving the literal values in the numeric stream is just asking for trouble.

Figure 8-2. Small runs represent large problems for RLE as an algorithm. The overhead
of storing short runs impacts the compression size significantly. Take this example,
where the many nonduplicated symbols bloat the output.

Now if you’re lucky, across your entire stream the amount of overhead from these
single symbols will easily be covered by the savings from long runs.

For all other situations, you need a way of identifying runs of characters that are
worse off being encoded with RLE, and perhaps should be left alone in the stream,
instead. For example, you could encode only runs with two or more symbols.

With that premise, AAAABCCCC would be encoded as [A,4] B [C,4]. Thus, if many
characters are not repeated, you will rarely use an unnecessary counter. The problem
with this method is that decoding is properly ambiguous. If we translate the trans‐
formed stream into binary, we could end up with 100000110010000101000011100,2

and no real way of distinguishing where the B run ends and the C run begins. Basi‐
cally, the literal values being interwoven into the data stream is problematic.3

As such, we need a way to denote what runs have pairs and what runs don’t. A com‐
mon solution to this is to add to the data set a second bit stream that denotes whether
a given stream is long or repeated (Figure 8-3). Thus, the stream of
100000110010000101000011100 would be prepended by a bit stream of 101, denoting
that the first symbol is a run, the second is not, and the third is. This helps save you
the overhead of small-run streams by instead deferring a single bit-per-run.

Run-Length Encoding | 113

4 LZ is fun to apply, because now you get to look at how often runs of symbols can be duplicated.
5 Even compressors that have multiple algorithms in their arsenal might choose in this manner.

Figure 8-3. By combining a bit stream denoting which literals are runs, we can properly
decode the stream. In this example, the second literal has a 0 for run control, so we don’t
attempt to read the 3 bit code afterward, which would denote how long the run is.

Important

RLE works best on data sets with looooooooong runs of similar
symbols. If your data set does not exhibit those characteristics, RLE
won’t work for you, and you might want to keep reading and learn
about MTF or delta coding, instead.

Compressing
Compressing an RLE’d stream is a bit of a trick. First, split your data set into two sets:
a literal stream, and a run-length stream. (Remember the bit stream you prepended?
It will tell you from which stream to read during decoding.) You can encode the lit‐
eral stream by using an encoder of your choice.4 The run-length stream is really
where the compression problems lie. So, using the very real-world method of trial
and error, let’s find a suitable encoding for it.5

Given the lengths [4,3,1,1,1,3,1,2,1,2,1], we could encode them with binary 2 bits per
value, giving us 22 bits total. However, this falls over if we get one run of long length,
such as [256,3,1,1,1,3,1,2,1,2,1]. In this case, we’d need to encode all the values with
the same number of bits as the largest value in the set. So in this case, we’d need to
encode every value with 8 bits, making the set 88 bits total. Not ideal.

So, let’s move from that to static VLCs. In a naive model, we could assign a run-length
integer with the number of bits from the representing VLC. So, if we had the lengths
[4,3,1,1,1,3,1,2,1,2,1], we could end up with a unary encoding of
[11110,1110,10,10,10,1110,10,110,10,110,10], or 31 bits. As you can see, this method
fails directly. It assigns the smallest value to the smallest codeword (assuming that it
appears most often in the data). RLE lengths are opposite, however, and we want to
assign the largest values (representing the longest runs) with the smallest codewords.

114 | Chapter 8: Contextual Data Transforms

6 S. W. Golomb, “Run-length encodings”, IEEE Trans. Information Theory, vol. IT-12, pp. 399–401, July 1966.

Applying a statistical encoder (such as Huffman or arithmetic compression) might be
better. We can get a sense of the impact of those values on our data set by calculating
the set’s entropy, which is 1.69, giving us an encoded size of ~19 bits (about 13% sav‐
ings). We could find a lower entropy by applying an adaptive version of a statistical
encoder, which might take into account locality, if there is any.

Nerds on the Loose
RLE was originally introduced in a 1966 paper in which Solomon W. Golomb6 first
described his now-famous Golomb codes using a novel and informative James Bond–
style metaphor:

Secret Agent 00111 is back at the casino again, playing a game of chance, while the
fate of mankind hangs in the balance.

The peer-reviewed and cornerstone paper then went on to describe the probability of
symbol occurrences with a metaphor for playing a roulette table, even including a
nod to the bartender’s influence on the whole thing. This is one of the great examples
of true, interesting people inside the world of compression. It’s so easy to focus on the
algorithms for this type of science that we forget the people who are involved. But the
truth is, they were all nerds. Math nerds mostly, but still, silly, quirky nerds who loved
numbers and found humorous ways to talk about complex problems.

RLE is considered a single-context model, in that any given symbol considers the pre‐
vious symbol during encoding. If it’s the same, you continue on with the run, and if
it’s different, you terminate the current run. Even though it’s not used often for
modern compressors, more efficient RLE methods continue to be researched. For
example, a new RLE compressor, TurboRLE, has been published recently, and it
claims to be the fastest, most efficient RLE encoder of all time.

It’s sometimes helpful to think of RLE lengths as a form of delta-
encoded values. If you imagined noting the beginning of each run
in absolute value, the lengths represent the distance (in symbols)
between changes in symbol in the stream.

Delta Coding
We touched on delta coding a bit earlier, but it’s time to go into some deeper details.
Numeric data must be some of the most annoying types of data to compress. This is
because most of the time, there’s no statistical information to exploit. And you run

Delta Coding | 115

https://urchin.earth.li/~twic/Golombs_Original_Paper/
https://github.com/powturbo/TurboRLE

into numerical data everywhere. Think GPS coordinates, inverted indexes from a
search engine, and returning user IDs. Consider this lovely block of awesome as an
example:

[51, 12, 8, 321, 0, 0, 12, 18, 9, 255, 0, 18, 64]

From an entropy perspective, there’s not a lot to work with here. Only a few values
are duplicated, and the rest tend to have a high entropy value. In general, we’d need to
store this data set in its full 8 bits per value. Thankfully, there’s a way to transform this
data into a different set of numbers that might have better entropy.

Delta coding is the process of storing a data stream as the relative differences (deltas)
between subsequent (i.e., adjacent) values. The idea is that, given a set of data, corre‐
lated or similar data tends to cluster around itself. If so, determining the difference
between two adjacent values might be able to define one value as the difference from
the other. Basically, you subtract the current value from the previous value and store
that difference to your output stream.

Delta coding is one of the most important algorithms in modern computing. Given
the fact that numeric data is so prevalent in our systems and its entropy is so high,
delta coding offers a transform that’s not based on statistics; rather, it’s based on adja‐
cency. It’s most helpful in time-series data (such as a sensor checking the differences
in temperature once every 10 seconds), or in media, like audio and images, where
locally there’s temporal correlation between data.

Take this set of numbers:

[1,3,6,8,10]

Perform the subtractions → and receive this delta-encoded set:

[1,3–1,6–3,8–6,10–8] → [1,2,3,2,2]

The source data roughly needed to be stored using 4 bits each (because log2(10) = 4).
After delta coding, the resulting stream requires only 2 bits per symbol. The result?
10 bits instead of 20.

You can reconstruct the original stream by reversing the process. Adding the previous
value to the current offset.

Start with the encoded set:

[1,2,3,2,2]

116 | Chapter 8: Contextual Data Transforms

Perform the additions → and receive this original set:

[1,1+2,3+3,6+2,8+2] → [1,3,6,8,10]

In general, the goal of delta coding is to reduce the dynamic range of the data set.
That is, reduce the number of bits needed to represent every value in the data. Which
means that Delta coding is most effective when the differences between subsequent
values are relatively small. If the differences between values become large, things
break down.

Observe this set:

[1,2,10,256]

Perform delta coding → and receive this:

[1,2–1,10–2,256–10] → [1,1,8,246]

Applying delta coding here didn’t produce a less dynamic range, and we still need to
encode the entire set with log2(maxValue).

But things could become even worse than that. Consider this sequence of woe:

[1,3,10,8,6]

Perform Delta coding → and cry:

[1,3–1,10–3,8–10,6–8] → [1,2,7,–2,–2]

In this set, we have subsequent values that are larger than their predecessors, and we
end up with negative values in the transformed set. The largest positive value is 7, so
we could store the positive values as LOG2(7) = 3 bits each. Sadly though, we now
need to represent those negative values, meaning that we need to store an extra bit
per symbol, requiring 4 bits.

These kinds of situations are extremely common and are exactly where delta coding
falls over and becomes less effective. But there’s a whole slew of modifications you can
apply to make this algorithm more robust, regardless of the data to which you’re
applying it.

Let’s take a look at a few simple examples.

Delta Coding | 117

XOR Delta Coding
The issue with subtractive delta coding is that you can end up with negative values,
which causes all sorts of problems. Negative values require you to store an extra lead
bit, and they also increase the dynamic range of your data, like so:

[1,3,10,8,6] → [1,3–1,10–3,8–10,6–8] → [1,2,7,–2,–2]

We can improve this result by replacing subtractions with bitwise exclusive OR
(XOR) operations.

Bitwise Exclusive OR (XOR) Operations

Bitwise operates on each bit independently. Exclusive OR (XOR) is
a logical operation that outputs TRUE only when both inputs differ
(one is TRUE, the other is FALSE).
Example:

 0101 (decimal 5)
XOR 0011 (decimal 3)
 = 0110 (decimal 6)

Note that you can use XORing with bit strings of 1 to flip bits.
 0101 (decimal 5)
XOR 1111 (decimal 15)
 = 1010 (decimal 10)

Also note that XORing any value with itself always yields 0.
In times long gone, when registers were flipped and cleared man‐
ually, this was indeed essential knowledge.

XORing bypasses the issue of negatives entirely, because XORing integers never gen‐
erates negative values.

Starting with: [1,3,10,8,6]

XOR Delta encoded =

1 ⊕ 1 = 0

3 ⊕ 1 = 11 ⊕ 01 = 10 = 2

10 ⊕ 3 = 1010 ⊕ 0011 = 1001 = 9

8 ⊕ 10 = 1000 ⊕ 1010 = 0010 = 2

6 ⊕ 8 = 0110 ⊕ 1000 = 1110 = 14

Yields: [1,2,9,2,14]

118 | Chapter 8: Contextual Data Transforms

https://en.wikipedia.org/wiki/Bitwise_operation#XOR
https://en.wikipedia.org/wiki/Bitwise_operation#XOR
https://en.wikipedia.org/wiki/Bitwise_operation#XOR
https://en.wikipedia.org/wiki/Logical_connective

So, this didn’t quite reduce the dynamic range, because we still need 4 bits per value,
but it did keep all our values positive, regardless of the relative ordering of the data.

Frame of Reference Delta Coding
Consider the following sequence:

[107,108,110,115,120,125,132,132,131,135]

We could store these 10 numbers as 8-bit integers using 80 bits in total. But that
seems a waste because all those numbers below 107 are just padding space. We’re
including bits to potentially represent them, but our data set does not include any of
those values.

The frame-of-reference approach addresses this problem by subtracting the smallest
value from the rest of the numbers. In the example, the numbers range from 107 to
135. Thus, instead of coding the original sequence, we can subtract 107 from each
value and delta encode this difference:

[0,1,3,8,13,18,25,25,24,28]

As a result, we can code each offset value using no more than 5 bits.

Of course, we still need to store the minimum value 107 using 8 bits, and we need at
least 3 bits to record the fact that only 5 bits per value are used. Nevertheless, the total
8 + 3 + 9 * 5 = 45 is much less than the original 80 bits.

The “frame” part of “frame of reference” (also called “FOR”) has to do with the fact
that to apply this transform to your data set properly, you need to subdivide it into
smaller blocks (or frames) of numbers.

For instance, we could split our previous set of numbers into these two sets:

[107,108,110,115,120] [125,132,132,131,135]

We’d end up with the following:

[107,0,1,3,8,13] [125,0,7,7,6,10]

Delta Coding | 119

7 The elephant in the room is, of course, how to determine the optimal frame. So far, most implementations
have used 32-bit to 128-bit windows, because…well, that fits into a single integer.

8 We know, you’ve already considered it once in this chapter. So this time, consider it harder.

And framing our data has helped produce smaller dynamic ranges, and thus it
requires fewer bits per value to represent.7

Sadly, outliers can still cause problems.

What’s This “Frame” Thing?
FOR was originally designed to fit as many numerical values into a single integer
space as possible (typically a 32-bit or 128-bit integer). This is ideal for a couple of
reasons:

• It makes the values easier to handle with runtime code (because computers prefer
word-aligned, power-of-two numeric values), and it also acts as a nifty in-
memory compressed representation of things.

• It provides a pretty straightforward compression method. Packing 10 integers
into a 32-bit space gives pretty good compression. The result is a massively per‐
formant method for decoding billions of integer values in a second at the cost of
some additional overhead for integers that don’t have a bit space that’s fully uti‐
lized.

Patched Frame of Reference Delta Coding
Consider the following number set:8

[1,2,10,256]

Delta encoded =

[1,2–1,10–2,256–10] = [1, 1, 8, 246]

That outlier is basically breaking compression for the rest of the data.

120 | Chapter 8: Contextual Data Transforms

9 M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-Scalar RAM-CPU Cache Compression,” Proceedings of
the 22nd International Conference on Data Engineering, ICDE ’06, IEEE Computer Society: Washington, DC,
USA, 2006; 59–71, doi:10.1109/ICDE.2006.150

10 It’s worth noting that PFOR could, technically be applied to a data set independent of Delta coding, which is
why you see this algorithm sometimes written as PFD, PFor or PForDelta when used in conjunction with
delta coding. Which is how we like to use it, and why it’s in this section—it’s good to be the authors.

To alleviate this problem, Zukowski et al.9 proposed a method of patching that they
called PFOR.10

It works like this:

1. Choose a bit width b.
2. Walk through the data and encode numbers with b bits.
3. When you come to a number that requires more than b bits to encode, store this

exception in a separate location.

The exceptions part of PFOR is where the magic comes in.

1. Consider our delta encoded example [1,1,8,246].
2. In a simplistic form, we could split the data into two sets, those values that

require b bits and those that don’t. With b = 4 bits, we’d then get [1,1,8][246].
3. We can now encode the first set with 4 bits, and then the exception in 8 bits.
4. To know where the exceptions get merged back into the source list, we also need

a position value, giving us [1,1,8][246][3].

During the decoding phase, we take the exception values and insert them back into
the source stream before undoing the delta decoding.

Of course, there are two main questions at this point:

• How do we find the value b?
• What do we do with the exceptions?

Finding b
The goal is to determine the proper bit width b that encodes the most numbers in our
set and lets us identify outliers.

You can generally do this incrementally. Begin with 1 bit, test how many values in
your set are less than 21. If 90% of your data is less than this value, set b = 1. Other‐
wise, increment b to 2, test for < 22. If necessary, repeat with b = 3 and 23, and con‐
tinue until you find the b that works for 90% of your data set.

Delta Coding | 121

What do we do with exceptions?
One of the interesting problems with PFOR is that, along with your modified delta
information, you now end up with a second data set that represents exception data.
This second set can have a large dynamic range, and can be difficult to directly com‐
press. According to the original papers, rather than just throwing the entire exception
list into a new list, raw, PFOR can instead leave the lowest “b” bits in the source
stream, and store the difference in the exception list.

For example, in the following list, the upper three most-significant bits are zeros,
except in one number.

1010010

0001010

0001100

0001011

Now, rather than storing an exception set of 101,000,000,000, we can just note that
the first location is the only exception we need to care about. The result, is that we
now get three new sets.

The first set is the lowest 4 bits of our data:

[0010,1010,1100,1011]

Followed by an index to which values have an exception:

[0]

Followed by the actual exception bits, for those locations:

[101]

The result is that the exception array has a much lower dynamic range and can then
be compressed a little better, potentially.

122 | Chapter 8: Contextual Data Transforms

http://oai.cwi.nl/oai/asset/15564/15564B.pdf

11 In fact, if you reread the previous sections, you’ll note that we were very clear to call this technique “delta
coding” instead of “delta compression,” because technically speaking, the latter is incorrect; there’s no com‐
pression going on.

Compressing Delta-Encoded Data
Note that at this point, we haven’t actually compressed anything; we’ve merely trans‐
formed the data in such a way that things can potentially be more compressible.11

Delta coding produces a more compressible data set when it can do the following:

• Reduce the maximum value in the stream, reducing the dynamic range.
• Produce lots of duplicate values, which allows for more effective statistical com‐

pression.

The second is most likely more important because it fits in better with common stat‐
istical compression systems. However, if the results of delta coding don’t produce
statistically variant data, you end up needing to take advantage of the first, which
basically moves toward trying to reduce the overall LOG2 for the entire data set.

In general, taking the produced data and then throwing it at any statistical encoder
should produce good compression.

Does It Work on Text?
Not really. I mean, it can work, but given that English text oscillates between early
sections of the alphabet and later sections of the alphabet, you end up with a lot of
positive-negative switches in the data. Plus, other systems like LZ are going to do a
ton better.

Move-to-Front Coding
Contextual data transforms operate on the basic philosophy that the linearity of the
data (that is, its order) contains some information that helps us encode future sym‐
bols. Move-to-front (MTF) is such an encoding. But rather than considering immedi‐
ate adjacency, like RLE and dictionary encoders do, MTF is more concerned with the
general occurrence of a symbol over short windows of data.

The MTF step reflects the expectation that after a symbol has been read from the
input stream, it will be read many more times, and will, at least for a while, be a com‐
mon symbol. The MTF method is locally adaptive because it adapts itself to the fre‐
quencies of symbols in local areas of the input stream. The method produces good
results if the input stream satisfies this expectation; that is, if it contains concentra‐

Move-to-Front Coding | 123

12 For nonprogrammers: array indices start at 0, so the second position in SortedArray is 1.

tions of identical symbols (if the local frequency of symbols changes significantly
from area to area in the input stream).

Figure 8-4 shows that the entire process works by keeping a second array of data,
which contains the unique values that exist in the data set. Let’s call this the SortedAr‐
ray. As a value is read from the input stream, we find its location in the SortedArray
and output that index to the output stream. Then, we update the SortedArray by
moving that value to the front of the array, giving it an index of 0.

Figure 8-4. A general diagram detailing how MTF works. As a value is met in the input
stream multiple times, it will move toward the front of the SortedArray, resulting in
lower values being emitted to the output stream.

Here’s a simple example. Assume for simplicity’s sake that the symbols in the data are
lowercase ASCII characters, that our input stream is “banana”, and that the symbols
in our initial SortedArray are in alphabetical order:

1. Read the letter “b.”
2. “b” is at index 112 in SortedArray, so we output 1 to the output stream.

124 | Chapter 8: Contextual Data Transforms

13 This really should give Shannon a headache. This is the lowest entropy we have seen in this book, so far.

3. Move “b” to the front of SortedArray.
4. Read the letter “a,” which is now at index 1, output 1, and move “a” back to the

front.
5. Continue with the remaining letters, moving through the table.

Input symbol Output stream Re-SortedArray
 abcdefghijklmnopqrstuvwxyz

b 1 bacdefghijklmnopqrstuvwxyz

a 1,1 abcdefghijklmnopqrstuvwxyz

n 1,1,14 nabcdefghijklmopqrstuvwxyz

a 1,1,14,1 anbcdefghijklmopqrstuvwxyz

n 1,1,14,1,1 nabcdefghijklmopqrstuvwxyz

a 1,1,14,1,1,1 anbcdefghijklmopqrstuvwxyz

The final output stream is 1,1,14,1,1,1, which has an entropy of 0.65,13 as opposed to
the source stream entropy of 1.46.

The decoder can recover this stream by reversing the process. Given [1,1,14,1,1,1], it
starts with a SortedArray of [a,b,...z]. For each symbol the decoder reads from the
input stream, it outputs the value at that index in the SortedArray, and then moves
that symbol to the front of the SortedArray.

Avoiding Rogue Symbols
One of the issues with MTF is that a few rogue symbols can interrupt a nice stream of
symbols that exist at the front. This is one of the more detrimental issues because it
can seriously mess up your encoding, and in truth, it’s quite common in real-life data.

One solution to this is to not let symbols go to the very front of the list as soon as they
are matched; instead, you need to employ some heuristic that slowly moves them to
the front. The following example demonstrates how heuristics work quite well in
practice.

Move-ahead-k
In this variant, the element of SortedArray that matches the current symbol is moved
k positions toward the front, instead of all the way.

You need to figure out the optimal value for k; however, there are two easy choices:

Move-to-Front Coding | 125

• Setting k = n (the number of symbols) is identical to the original MTF.
• Setting k = 1 allows symbols to move to the front only one step at a time.

Setting k = 1 tends to reduce performance for inputs that have local concentrations of
symbols, but works better for other inputs. Implementing the algorithm with k = 1 is
especially simple because updating SortedArray only requires swapping an element
with the one preceding it. This variant deals somewhat better with rogue symbols
because they must slowly work their way to the front of the stream, rather than going
there immediately.

Wait-c-and-move
In this variant, an element of SortedArray is moved to the front only after it has been
matched c times to symbols from the input stream (not necessarily consecutive
times). Each element of SortedArray has a counter associated with it to count the
number of matches. This makes it possible for you to consider a threshold of occur‐
rence before a symbol can approach the front of the stream. When used on text, this
will tend to produce a SortedArray that mirrors the commonness of the letters in the
language you’re encoding.

Compressing MTF
MTF creates a stream of symbols that is expected to have a lower entropy than the
source stream. This makes its output a prime candidate to pass off to a statistical
compressor for further compression. Because MTF should produce a stream with
more 0s and 1s, a simple statistical encoder would work fine.

MTF is unique in that it reassigns a shorter value to symbols as they recur within a
short time. RLE, on the other hand, assigns the shortest codes to symbols that occur
in clusters. In practice, MTF is one of the simplest forms of dynamic statistical trans‐
forms.

Burrows–Wheeler Transform
Every family has a black sheep. Burrows–Wheeler transform (BWT) is one of them.
You see, all of the other compression algorithms can generally be categorized as stat‐
istical compressors (i.e., VLCs) or dictionary compressors (such as LZ78), which in
different ways exploit the statistical redundancies present in a given data stream.

126 | Chapter 8: Contextual Data Transforms

BWT does not work this way. Instead, it works by shuffling the data stream to cluster
symbols together. This does not provide compression in and of itself, but it lets you
hand off the transformed stream to other compression systems.

How BWT Came to Be
As far as compression algorithms go, BWT must have one of the most interesting
genesis stories of the lot.

Back around 1978, David Wheeler stumbled across the first iteration of this trans‐
form while visiting Bell Labs. However, at the time, he didn’t think much of it. His
original vision for the transform was to use it as a benchmark against which to com‐
pare other algorithms, because he deemed it too slow to use in practice. In addition,
Wheeler’s work at the Computer Lab in Cambridge didn’t have an aggressive publica‐
tion requirement, so the algorithm mostly went undiscovered and unreported for the
better part of a decade.

Mike Burrows was taught this algorithm by Wheeler while he was a graduate student
at the Computer Lab in Cambridge. Burrows just assumed that this was another crazy
algorithm you learned while writing your thesis. When Burrows asked Wheeler how
he had created the algorithm, he couldn’t really remember. There had been some
research related to grouping values based on their context, but how the realization
was made that the transform was invertible, was never revealed.

It wasn’t until years later that Burrows recognized the importance and significance of
what the transform did, along with the realization that unless he wrote up the algo‐
rithm, it might never be published. So, in 1994, Burrows began working with Wheeler
to create a performant implementation, taking advantage of new techniques and the
latest computer hardware.

Colt had the pleasure of meeting Dr. Burrows while filming Episode 4 of Compressor
Head, a YouTube series about compression algorithms, and he told him how the orig‐
inal algorithm was published.

“There’s a funny story about that. We first sent the paper to the annual Data Com‐
pression Conference, but they rejected it. There were no comments as to why. And
when I asked, they said that it was their policy not to explain why they rejected
papers. So, we just published it as a technical report. The algorithm became more well
known when someone saw the technical report and published an article about it in
Dr. Dobbs Journal. The next year, the people at the same conference asked me to sub‐
mit the paper again, so that they could publish it. And I said, ‘No, and I’m not going
to explain why, because it’s my policy not to explain that sort of thing.’”

Can you imagine that? Had Burrows never taken the effort to make this algorithm
publishable, it might never have seen the light of day. More proof that the world of
compression is crazy, a little weird, and certainly holds a grudge.

Burrows–Wheeler Transform | 127

https://www.youtube.com/watch?v=4WRANhDiSHM
https://www.youtube.com/watch?v=4WRANhDiSHM
http://www.cs.brandeis.edu/~dcc/
http://www.cs.brandeis.edu/~dcc/

Ordering Is Important!
One of the issues with entropy as a unit of measure is that it fails to take into account
the order of the symbols. Regardless of how we shuffle [1234567890], it always has an
entropy of 4.

But we know that order does, in fact, matter greatly. For example, the LZ family of
dictionary compressors takes ordering very seriously, as do the other contextual
transforms we’ve shown in this section.

So if order matters, it stands to reason that if we transform the order of a data stream,
we can make it more compressible.

The simplest reordering here is to simply sort our data. For example, converting
[9,2,1,3,4,8,0,6,7,5] to [0,1,2,3,4,5,6,7,8,9] makes it possible for us to delta encode it as
[0,1,1,1,1,1,1,1,1,1], which has a lower entropy than the source.

Sadly though, pure sorts are one-directional. That is, after you sort the data, you can’t
get it back into its unsorted form without a ton of extra information to specify where
it goes.

So we can’t purely sort our data, but we can get close.

BWT shuffles the data stream and attempts to cluster groups of the same symbol near
one another, which is what we call a lexicographical permutation. Or rather, with BWT
you can find a permutation of the original data set that might be more compressible
based on its ordering.

And here’s the best part: we can encode to and decode from BWT without having to
add significant additional data to our stream. Let’s take a look.

How BWT Works
The “transform” part of Burrows–Wheeler transform begins by creating a table with
all the shifted permutations of the input stream.

For example, we have the word BANANA, again, and write that in the first row of our
table. Then, on each following line we perform a rotational shift to the right by one
character of that word. That is, shift all the letters over to the right, and prepend the
rightmost character at the front. We continue with this shifting, until we’ve touched
each letter in our input string, as shown here:

BANANA

ABANAN

NABANA

ANABAN

NANABA

128 | Chapter 8: Contextual Data Transforms

ANANAB

BANANA

Next, the BWT algorithm sorts this table lexicographically by the bolded letters as
shown in the example that follows. Feels good to have things back in order, doesn’t it?

ABANAN

ANABAN

ANANAB

BANANA

NABANA

NANABA

Now, we want to draw your attention to the last column of characters in the preced‐
ing example (highlighted in italics). From top to bottom, they form the string
NNBAAA, which interestingly enough, is a permutation of BANANA, and has a
much better clustering of letters.

And this is exactly the permutation that we’re looking for. You see, by generating our
rotated permutations and then lexicographically sorting them, the final column gen‐
erally produces a permutation with a better symbol clustering than the original
source string.

As such, NNBAAA is what BWT should return as its output.

But before you run off, there’s one other piece of data we need to grab as well. Notice
in the sorted table that follows, that the input string sits at index 3.

0 ABANAN

1 ANABAN

2 ANANAB

3 BANANA

4 NABANA

5 NANABA

We’ll need that row index during the decode phase of the BWT transform because it
will allow us to bridge from our more-compressible permutation back to the source
string.

Burrows–Wheeler Transform | 129

14 This is not just because BANANA is an oddly shaped word. It’s an observed property of BWT that we exploit,
and even the BWT authors don’t know why it exists.

Inverse BWT
The remarkable thing about the BWT is not that it generates a more compressible
output—an ordinary sort could do that—but that this particular transform is
reversible, with minimal data overhead.

Let’s illustrate this to confirm that it’s true. So, we want to decode a BWT, and we’re
given the string NNBAAA and the row-index 3.

The first thing we need to do is regenerate the permutation table. To do this, we iter‐
ate on a combination of sorting and string appending.

We begin by writing our output string, which represents the last column, into a table.

Output string/last column
[N]
[N]
[B]
[A]
[A]
[A]

Oddly enough, if we sort this column, it is the same as the first column in our origi‐
nal, sorted table.14

Output string Sorted
[N]
[N]
[B]
[A]
[A]
[A]

[A]
[A]
[A]
[B]
[N]
[N]

So, let’s merge these two columns to get a pair of letters for each row:

[NA]
[NA]
[BA]
[AB]
[AN]
[AN]

130 | Chapter 8: Contextual Data Transforms

Let’s sort that:

[AB]
[AN]
[AN]
[BA]
[NA]
[NA]

Next, we prepend the original output string (NNBAAA) to it again:

[NAB]

[NAN]

[BAN]

[ABA]

[ANA]

[ANA]

Then, we sort again and continue prepending and sorting columns, until the width of
the matrix equals the length of the output string.

3 4 5 6 7 8 9 10

[ABA]
[ANA]
[ANA]
[BAN]
[NAB]
[NAN]

[NABA]
[NANA]
[BANA]
[ABAN]
[ANAB]
[ANAN]

[ABAN]
[ANAB]
[ANAN]
[BANA]
[NABA]
[NANA]

[ABAN]
[ANAB]
[ANAN]
[BANA]
[NABA]
[NANA]

[NABAN]
[NANAB]
[BANAN]
[ABANA]
[ANABA]
[ANANA]

[ABANA]
[ANABA]
[ANANA]
[BANAN]
[NABAN]
[NANAB]

[NABANA]
[NANABA]
[BANANA]
[ABANAN]
[ANABAN]
[ANANAB]

[ABANAN]
[ANABAN]
[ANANAB]
[BANANA]
[NABANA]
[NANABA]

You should immediately notice two amazing properties of this final matrix:

• This final matrix is identical to the post-sorted permutation matrix that we gen‐
erated in the encoder. This means that if we’re given the final column of our sor‐
ted matrix, NNBAAA, we can recover the entire post-sorted matrix that was used
to generate it.

• Remember that row index 3 that we output during the encoding phase? Because
this matrix is identical to the post-sorted one from the encoder, we simply need
to look at the row at that index the fourth row to recover our source input string
BANANA.

Burrows–Wheeler Transform | 131

Practical Implementations
Be warned!

Even with all this wonderfulness, sadly you can’t just execute BWT on your entire 50
GB file. The way this permutation transform works, you’d have to store that same 50
GB, shifted left one symbol, for each row. That’s an awful lot of extra gigabytes.

As such, BWT is what we call a block sorting transform. It breaks the file into 1 MB
chunks and applies the algorithm to each of them independently. The result is an
algorithm that can practically fit in the memory of most modern devices and is some‐
what performant.

BWT and DNA
BWT has always been an edge-case of compression. Its initial existence showed really
good results for text-based data, but it could never compete from a performance per‐
spective with other algorithms such as GZIP. As such, BWT (or bzip2, the dominant
BWT encoder) never really took the compression world by storm.

That is, until humans began sequencing deoxyribonucleic acid, or DNA.

Human DNA has a pretty simple setup with only four basic nucleotide bases, labeled
A, C, G, and T. A given genome is basically a massive string containing these four
symbols in various orderings. How much? Well, the human genome contains about
3.1647 billion DNA base pairs.

It turns out that BWT’s block-sorting algorithm is an ideal transform that could be
applied to DNA to make it more compressible, searchable, and retrievable. (There’s
actually a boat-load of papers proving this.) The reduction in size and availability for
fast reads are of high importance when aligning reads of new genomes against a refer‐
ence.

This just goes to show how there’s no single silver bullet when it comes to data com‐
pression. Each stream of information has its own variable characteristics and
responds differently to different transforms and encoders. Although BWT might not
have taken the web away from its cousin, GZIP, it stands alone as an important factor
in the next few decades of bioinformatics.

Compressing BWT
So, it’s apparent that BWT doesn’t actually compress the data, it just transforms it. To
practically use BWT, you need to apply another transform that is going to yield a
stream with lower entropy, and then compress that.

132 | Chapter 8: Contextual Data Transforms

http://bit.ly/29H7CUQ
http://bit.ly/29H7CUQ

The most common algorithm is to take the output of BWT and pass it to MTF, which
is then followed by a statistical encoder. That’s basically the inner workings of BZIP2,
folks.

Why not RLE?
Why use MTF instead of RLE? Remember that RLE is very sensitive to disruptions in
runs. BWT doesn’t produce enough contiguous long runs to ensure optimal RLE
transform. MTF is more tolerant to this type of problem.

Why not LZ?
Why can’t we use, say, LZ for this data? Well, let’s take a look at a simple example.
Remember that LZ works best when it can find duplicate symbol groupings for long
chains.

TOBEORNOTTOBEORTOBEORNOT works well because TOBEORNOT is the
longest duplicated symbol found. However, this doesn’t work too well for runs of sim‐
ilar symbols.

Consider that if we ended up with “OBTTTTTTOOEER”:

1. The LZ algorithm would look at the first T and encode it as a literal.
2. The second T would be encoded as a previous reference of 1, and length of one.
3. The third T will look ahead 1 and encode the TT pair as a previous ref of 2, and

length of two. The result, is that our 6 “T” values would generate: Literal
T,<–1,1>,<–2,2>,<–2,2> as tokens.

Later on, if we hit a stride of “T” values again, we can hope for a long stride match;
but sadly, because BWT groups these symbols so far apart, the distance reference
would be quite large, which will affect how we encoded that stream.

Burrows–Wheeler Transform | 133

https://en.wikipedia.org/wiki/Bzip2

1 But it is the Internet, so there could be a place where you’re washing cops and running from cups... *shrug*

CHAPTER 9

Data Modeling

Anyone who’s played the game “telephone” knows how important context is to the
human brain. The words “cup” and “cop” taken by themselves are pretty likely to
occur equally in most situations. However, if it’s a loud party, and you hear a word
that you believe is either “cup” or “cop,” your brain will use the previous context to
decide which one it was. For example, if your new friend said, “Wash the,” the next
word is most likely “cup.” However, if they said, “Run from the”, it might be “cop.”1

This is the basic concept behind multicontext encoders. They take into account the
last few observed symbols in order to identify the ideal number of bits for encoding
the current symbol.

Perhaps a more concrete example is how symbol pairs influence the probability of
subsequent letters in the English language.

For example, in “typical” English text, we expect to see the letter “h” about 5% of the
time, on average. However, if the current symbol is a letter “t”, there is a high proba‐
bility, actually about 30%, that the next symbol will be “h”, because the pair “th” is
common in English. Similarly, the letter “u” has a general probability of about 2%.
When a “q” is encountered, however, the probability is more than 99% that the next
letter will be a “u”. In this case, the current symbol “q” predicts that the next letter will
be “u”, and thus can use fewer bits assigned to it. This type of adjacency, based on stat‐

135

2 Note that in every common piece of compression literature, these are called “Prediction” coders. We really
don’t like this terminology, because “predict” implies “can be wrong.” Which seems to run counterintuitive to
compression; if your encoding or decoding is wrong in predicting what symbol is next, you end up with a
broken compression system. Instead, we prefer to refer to these algorithms as multicontext, in that they weave
together multiple symbols and statistical tables/models in order to identify the least number of bits needed to
encode the next symbol.

3 Decision support systems have a long history going back to Pascal.
4 Evaluation of summer vacation is a totally common thing to do for people that read books on compression.

istical observance, has also dubbed this group of encoders “predictive”, which you’ll
most likely see as the “proper” term in most official compression literature.2

This group can also be considered the “on-steroids” version of statistical compressors.
They combine adaptive models (Chapter 3) and multiple symbol-to-codeword tables
(Chapter 2) to produce the smallest codeword possible for the current symbol, based
on previously observed symbols.

But this isn’t a new concept. It turns out that it was first presented back in the 1700s3

as one of the most powerful statistical computations to date.

The Chains of Markov
Markov chains are interesting creatures. Here’s the super-confusing technical defini‐
tion:

A Markov chain is a discrete stochastic process in which the future depends only on
the present and not on past history.

Given this definition, suppose for instance that we want to know the probability that
a student will get an A in their math class in the fourth year of high school, and they
have completed their third year. In general, we might expect that such a prediction
will depend upon what grades they got in their first, second, and third years. How‐
ever, if only the third (current) year had any bearing, and the grades in the previous
two years could be ignored, this would be a Markov process.

Let’s work out a more detailed example.

You’ve just completed the most awesome 104 days of summer vacation of all time. As
a post-mortem,4 you’ve decided to analyze how things went. You also decided to
break down the analysis by days of the week. You found that on Mondays for the
summer, there was a 50/50 split between activities, as shown here:

Day Activity Probability
Monday Spelunking 50%

Monday Bocce Ball 50%

136 | Chapter 9: Data Modeling

https://en.wikipedia.org/wiki/Blaise_Pascal
https://en.wikipedia.org/wiki/Markov_chain

You could describe this revelation in the following terms:

Given that today is Monday, there’s a 50/50 probability that we’ll either do spelunking,
or bocce ball.

You find Tuesday has a more varied analysis.

Day Activity Probability
Tuesday Lounging at the pool 10%

Tuesday Sock hopa 20%

Tuesday Mowing lawns 30%

Tuesday Spelunking 40%
a It’s a Thing. Or rather, it used to be a Really Big Thing.

Tuesday has a similar form, in that you could say, “If today is Tuesday, Sock Hop has a
20% chance of being our activity.”

Effectively, this is what we call a “second-order context.” We take two pieces of data
and use them to define the probability of an activity. The day of the week acts as our
“first order” or “context-1” data, the activity responds as the “second order” or
“context-2” data, and the result is our percentage probability.

So, let’s try a third-order context:

Day First activity Second activity Probability of second activity
Monday Bocce Ball Pedicures 5%

Monday Bocce Ball Smoothies 95%

Monday Spelunking SFHTML5 meetup 50%

Monday Spelunking Pizza 25%

Monday Spelunking Sewing class 25%

This example is a little more complex. Basically, “Given that today is Monday, AND
we just did Bocce Ball, there’s a 25% chance we’re going to get some pizza.”

Each context describes a transition between states, to some known depth.

You could visualize this as a tree (Figure 9-1), where each node is an activity, and each
transition has a probability.

The Chains of Markov | 137

https://en.wikipedia.org/wiki/Sock_hop

Figure 9-1. A tree diagram of how a Markov chain would work

Meet Andrey Markov
In 1913, Andrey Andreyevich Markov founded a new branch of probability theory by
combining mathematics and poetry.

Delving into the text of the Alexander Pushkin novel Eugene Onegin, Markov spent
hours sifting through patterns of vowels and consonants. On January 23, 1913, he
published his work, creating a statistical model detailing that, given a letter, there was
a finite and reproducible probability associated with what letter would follow it.

By most accounts, Markov was a mettlesome character. He was fiercely combative
with rivals, often involved in public protests and quarrels with authority, and known
for spending a number of nights recovering from fisticuffs. When he published his
research, he was already 50 years old and had been retired for a number of years. How
fitting that the creator of one of the most powerful statistical models in history was a
rebel without a cause.

Markov’s concept of probabilistic event selection was massively contrary to the world
of statistics at the time, which mostly involved modeling coin-flipping and dice-

138 | Chapter 9: Data Modeling

https://en.wikipedia.org/wiki/Alexander_Pushkin

5 Actually, this is the one paragraph in the book where the coauthors were not in agreement. Because, obvi‐
ously, it would be cute kittens who saved the day.

rolling. Markov chains help us ask questions about associated probability; for exam‐
ple, “If it’s cloudy today, what is the probability of rain two days from now?”—a
concept that in 1913 was as predictable with mathematics as it was by casting chicken
bones.

Recent years have seen the construction of truly enormous Markov chains. For exam‐
ple, the PageRank algorithm devised by Larry Page and Sergey Brin, the founders of
Google, is based on a Markov chain whose states are the pages of the World Wide
Web—perhaps 40 billion of them. The transitions are links between pages. The aim of
the algorithm is to calculate for each web page the probability that a reader following
links at random will arrive at that page.

Amazon uses Markov chains to determine what types of recommendations to give
you. For example, if other people viewed A, and then bought B, we can recommend B
to you at a high percentage when you view A.

Markov chains are big in games promotion now, where a company will say, “You liked
an action game before, and you’ve liked games about puppies, so chances are, you’ll
like a new action game where puppies fight alien invaders.”5

Basically, the power of these algorithms is limitless for searching and finding, predict‐
ing weather, and matching user preference. Heck, one might even be able to predict
the next military conflict using them!

Markov and Compression
The concept of Markov chains fits nicely into our existing models because we can
view statistical encoders as single-context Markov chains. Given one table of proba‐
bility for the symbols of a stream, we assign codewords accordingly.

A second-context Markov chain could be created by adding a symbol-to-codeword
table for each preceding symbol, such as that illustrated in Figure 9-2. Let’s see how
this works.

The Chains of Markov | 139

http://bit.ly/29H7IvG

Figure 9-2. A second-order or 2-context Markov chain uses a tree of symbol tables, as
could be built for our summer vacation example.

Given the graph in Figure 9-2, to encode “Monday, Spelunking; Tuesday, Pool” we’d
produce 0 1 10 1110 for a total of 8 bits. In contrast, if we were to enumerate each of
the 10 states, we’d end up with something along the lines of 12+ bits to encode the
same data.

From a technical standpoint, creating Markov chains for compression follows many
of the rules we covered in adaptive statistical encoding (see Chapter 2); that is, read‐
ing in a symbol, dynamically updating a frequency table, and so on.

Encoding
For example, let’s create a Markov chain for the string “TOTOTO”.

1. We begin by creating a context-1 table containing the <literal> symbol only at
100% probability.

Context-1 (overall probability of symbol)

Symbol Frequency Codeword

<literal> 100% 0

140 | Chapter 9: Data Modeling

2. We read our first symbol, which is “T” and a new symbol.
3. We update the context-1 table to include “T” and adjust probabilities.

Context-1

Symbol Frequency Codeword

T 50% 1

<literal> 50% 0

4. We output <literal> and “T”.

Stream: 0 T

5. We read the next symbol from the stream, which is “O” and a new symbol.
6. We update context-1 to include “O” and updated probabilities.
7. We adjust the codewords to account for all symbols and satisfy the prefix prop‐

erty.

Context-1

Symbol Frequency Codeword

T 33% 0001

O 33% 001

<literal> 33% 01

8. We output <literal> and “O”.

Stream: 0 T 01 O

9. We read the next symbol from the stream, which is “T” and already in context-1.
10. We update context-1 to reflect the changed probabilities.
11. We swap the codewords so that the shortest one is for the symbol with the high‐

est probability.

The Chains of Markov | 141

Context-1

Symbol Frequency Codeword

T 50% 01

O 25% 001

<literal> 25% 0001

12. We output the codeword for “T” to the stream, which is 01.

Stream: 0 T 01 O 01

13. We read the next symbol from the stream, which is “O”.
14. We update the context-1 probabilities and leave our codewords unchanged.

Context-1

Symbol Frequency Codeword

T 40% 01

O 40% 001

<literal> 20% 0001

15. We output 001 to the stream.

Stream: 0 T 01 O 01 001

16. We can now create the second link in our Markov chain by starting a second
symbol-to-codeword table that represents the characters following a “T” value.

Context-2, following “T” probabilities

Symbol Frequency Codeword

O 50% 0

<literal> 50% 1

142 | Chapter 9: Data Modeling

17. We read the next symbol from the stream, which is another “T”.
18. We update the context-1 probabilities and leave the codewords unchanged.

Context-2 for “following T” does not change.

Context-1

Symbol Frequency Codeword

T 33% 01

O 33% 001

<literal> 33% 0001

19. We output 01.

Stream: 0 T 01 O 01 001 01

20. We can now build a context-2 table for symbols following “O”.

Context-2, following O probabilities

Symbol Frequency Codeword

T 100% 0

21. We read the final symbol, which is “O”.
22. We can now take advantage of the context-2 table created for “following T” and

output 0 as our final symbol.

Final stream: 0 T 01 O 01 001 01 0

And voilá, compression!

Decoding
To prove that this is reversible and works, let’s decode our stream:

1. Read 0. We know this is the literal symbol, so we build our context-1 table with it
(100%).

The Chains of Markov | 143

0 T 01 O 01 001 01 0

2. Read “T”. Literal. Add this to context-1 and adjust probabilities (50/50).

Output: T

3. Read “01”. According to context-1, this announces another literal.
4. Read “O”. Update context-1 (33/33/33).

Output: O

5. Read “01”. According to context-1, this is “T”. Update context-1 (50/25/25).

Output: T

6. Read “001”. According to context-1, this is “O”. Update context-1 (40/40/20).

Output: O

7. Build context-2 for following “T”.
8. Read “01”, which is “T”. Update context-1 (33/33/33).

Output: T

9. Build context-2 for following “O”.
10. Read “0”. Preceding context is “T”, looking 0 up in context-2 “following T”, we get

“O”.

Output: O

And there you have it.

You can do the same thing with more symbols and longer strings, and as you can see,
it gets pretty complex pretty fast.

Compression
For all that complexity, how do we win in terms of compression?

144 | Chapter 9: Data Modeling

6 Or 17,179,869,184 GB.
7 This sentence was written in 2015, when dual-core mobile devices ruled the earth like vengeful gods.
8 J. Cleary, and I. Witten, “Data Compression Using Adaptive Coding and Partial String Matching,” IEEE Trans‐

actions on Communications 21:4 (1984): 390–402.

When applied to compression, Markov makes it possible for you to encode adjacent
symbols with fewer bits.

Look at the two context-2 tables. They both contain 0, the shortest possible encoding.
Because we are using the preceding symbol as disambiguation context, we can use the
same short VLC twice, thus saving bits. Another way of saying this is that each con‐
text has its own VLC space, and thus we can use the same VLC.

After we have more symbols and longer input streams, we can build up multiple con‐
texts. Using the English language as an example, T could be a context, with H follow‐
ing, and TH could be another context, with E, I, U, O, and A following.

Although U on its own has a frequency of 2.7%, which would assign it a pretty long
code, in the particular context of “following Q”, it would get a much shorter code.

And this makes Markov chains exceptionally powerful.

Practical Implementations
It’s worth pointing out that no one really uses Markov chains for compression. At
least not in the way just described.

Consider a worst-case—but not implausible—scenario, in which you have an 8-
context chain.

This means that for each node, you’re going to end up with 256 other child nodes, 8
deep. This means that you will need 2568 (two-hundred-fifty-six-to-the-power-of-
eight!) or 16 exabytes of memory6 to represent your tables. Which is crazy, even by
modern computing standards.7 As such, various derivative algorithms have been cre‐
ated that are just a little more practical about memory and performance than a gen‐
eral Markov chain. The most notable ones are prediction by partial matching and
Context Mixing, which we are going to take a look at next.

Prediction by Partial Matching
A practical implementation of Markov is all about understanding memory and
quickly being able to encode the most optimal chain. A memory- and computation‐
ally efficient approach to Markov chains was created by John Cleary and Ian Witten
back in 1984,8 called prediction by partial matching (PPM). Much like Markov chains,

Prediction by Partial Matching | 145

https://en.wikipedia.org/wiki/Letter_frequency

9 Yes, you’re absolutely correct. This means that if a symbol has never been encountered before, PPM can emit
N “escape codes” to the stream before the final literal symbol. Most of the differences between variants of this
algorithm (PPMA and PPMB, PPMC, PPMP and PPMX) have to do with how they handle nuances in this
escape-code process.

PPM uses an N-symbol context to determine the most efficient way to encode the N
+ 1th symbol.

Whereas a simple Markov implementation works in a forward manner by reading the
current symbol and seeing if it’s a continuation of the existing chain, PPM works in
reverse. Given the current symbol in the input stream, PPM scans back N symbols
and determines the probability of the current symbol from the N previous symbol
context. If the current symbol has a zero probability with the N-context, PPN will try
an N - 1 context. If no matches are found in any context, a fixed prediction is made.

For example:

1. Suppose that the word “HERE” has been seen several times while compressing an
input stream, so context has been established.

2. Somewhere later, the encoder starts compressing “THERE” and is currently com‐
pressing the R symbol.

3. In a 3-symbol context, the previous symbols of R are “THE”.
4. However, this encoder has never seen “THER”, only “THE ” (with a space).
5. As such, the current R has “zero probability”. (That is, R hasn’t been encountered

before, given the previous 3–symbol context.)
6. At this point, PPM would try a 2-symbol context, attempting to match “HER” as

a chain.
7. This results in a success because “HERE” has been seen many times before,

which among others, created a 2-context for “HE”.
8. Thus “R” has a “nonzero probability” based on the 2-context chain “HE.”

Here’s a more formal version:

1. The encoder reads the next symbol “S” from the input stream.
2. The encoder looks at the last N symbols read; that is, the order-N context.
3. Based on this input data that has been seen in the past, the encoder determines

the probability P that “S” will appear following the particular context.
4. If the probability is zero, the encoder emits an escape token for the decoder so

that the decoder can mirror the process.9

146 | Chapter 9: Data Modeling

10 This is the proper spelling: stick with us and find out why.
11 Limiting the number of context levels is one way of controlling complexity.

5. Then, the encoder repeats from step 2 with N = N – 1, until the probability is
nonzero, or it runs out of symbols.

6. If the encoder runs out of symbol, a fixed (e.g., based on character frequency)
probability is assigned.

7. The encoder then invokes a statistical encoder to encode “S” with probability P.

The Search Trie
The main problem with any practical implementation of PPM has to do with the cre‐
ation of a data structure where all contexts (0 through N) of every symbol read from
the input stream are stored and can be located quickly. In simplistic cases, this can be
implemented with a special tree data structure called a trie,10 for which each branch
represents a context.

For example, let’s build a PPM trie for the string “ABAC”, with a maximum11 allowed
context of 2, as depicted in Figure 9-3.

1. Reading in the first value, “A”, appends a new node [A,1] to the root of the tree.
This represents that “A” has been seen 1 time so far at context 1. (Children of the
root node are context 1, grandchildren are context 2, and so on).

2. Reading the second value, “B”, adds two nodes to the tree.
a. First, it adds an order-1 context node, [B,1]. This is useful in the case where

“B” is the start of its own context chain.
b. Second, it adds an order-2 context node [B,1] under the [A,1] node. This is to

represent the chain “AB” that we’ve read through the input stream so far.
3. Reading the next “A” value has a few tricks.

a. First, it updates the count value of the order-1 context node, (because “A” has
already been encountered at that context).

b. Next, it adds an [A,1] node as a child of each [B,1] nodes. This represents both
the order 1 and order 2 contexts of “BA” and “ABA”, respectively.

4. The final symbol, “C” follows a similar process, but with a small change.
a. We add the order-1 context node [C,1].
b. The next step would be to add 4-order [C,1] nodes to all 3-order [A,*] nodes.

You can see that on the lefthand side, this is completed fine with the [B,1]-

Prediction by Partial Matching | 147

>[A,1] chain. However, on the right side, adding the new node would violate
our context height restriction. So, we append nothing.

c. As a final step, we have a valid [A,1] node at order-1, and add a [C,1] node as
a child there.

Figure 9-3. Building a PPM trie with an N-context of 2. Each level of the tree represents
a context. The children of the root are the first-order context. The number next to the
character denotes how many times that symbol has been encountered, at that context.

This trie is beneficial, in that we can quickly query the N-minus-X contexts, given a
current state. For example, given a symbol “C”, our 2-order context is “BA”, our 1-
order context is “A”. This fits perfectly because it represents a sliding window of the
previous one and two symbols from “C” in the “ABAC” string we encoded.

We can use this trie to represent all of the following substrings of the input, given a 2-
context limit (Figure 9-4): B, BA, BAC, C, A, AB, AC, and ABA.

Figure 9-4. Strings represented by this trie: B, BA, BAC, C, A, AB, AC, and ABA.

148 | Chapter 9: Data Modeling

Compressing a Symbol
In addition to providing efficient storage and fetching of substrings, the trie structure
also contains counts per level. A statistical encoder can use these to build probability
tables and assign encodings for each symbol, as shown in Figure 9-5.

Figure 9-5. The PPM trie, and an example of the symbol-to-codeword tables you could
use for encoding.

Effectively, given a level, we only need to consider the siblings at this level and nor‐
malize their values to arrive at probabilities. For example, the context-1 counts of [B,
1], [C,1], and [A,2] would represent probabilities of 25%, 25%, and 50%, respectively.

Prediction by Partial Matching | 149

Also, note that because we can use 1-bit encodings in context-2, for every symbol
encountered in context, we save 1 bit, for potentially substantial savings.

You can implement this in a straightforward fashion as a modification to the data
structures we covered in Chapter 3.

Choosing a Sensible N Value
So what is the value of N supposed to be? PPM selects a value N and tries to make
matches based on that context length. If no match is found, a shorter context length is
chosen. As such, it seems that a long context (large value of N) would result in the
best prediction. However most PPM implementations skew toward an N value of 5 or
6, trading off memory, processing speed, and compression ratio.

There are variants of PPM, such as PPM*, which try to extend the value of N and
make it exceptionally large. You can do this with a new type of trie data structure, and
significantly more computational resources than PPM. This usually results in about
6% better savings than straight-up PPM.

Dealing with Unknown Symbols
Much of the work in optimizing a PPM model is handling inputs that have not
already occurred in the input stream. The obvious way to handle them is to create a
“never-seen” symbol which triggers the escape sequence. But what probability should
be assigned to a symbol that has never been seen? This is called the zero-frequency
problem.

One variant of PPM uses the Laplace estimator, which assigns the “never-seen” sym‐
bol a fixed pseudo-count of one. A variant called PPMD increments the pseudo-
count of the “never-seen” symbol every time the “never-seen” symbol is used. (In
other words, PPMD estimates the probability of a new symbol as the ratio of the
number of unique symbols to the total number of symbols observed.)

PPMZ presents one of the more interesting variants. It starts in the same way as
PPM* does, by trying to match a N-context probability for the current symbol. How‐
ever, if a probability isn’t found, it switches to a separate algorithm called a Local-
Order-Estimator and uses the basic PPM model, with a completely separate predictor.

Context Mixing
Trying to improve PPM algorithms has led to the PAQ series of data compression
algorithms—in particular, work in the PPMZ area, where multiple types of context
tries are used, based on how a symbol responds to matching.

This concept evolved over time into context missing; that is, using two or more statis‐
tical models of the data in order to determine the optimal encoding for a given sym‐

150 | Chapter 9: Data Modeling

https://en.wikipedia.org/wiki/Laplace_operator
http://bit.ly/29H6QaF
http://bit.ly/29H6QaF

bol. For example, using a statistical model of how often you visit “The Gym” against
all your regular activities (like rescuing kittens), and another statistical model of
probability of visiting “The Gym” within 12 hours of eating too much spaghetti.
Given the question of “What’s the probability that I will go to the gym right now?”,
each model will yield a different probability. Because there is a 20% chance that you
go to the gym generally, and because it’s been six hours since indulging in Italian cui‐
sine, you’re 50% likely to go to the gym right now. The combination of those proba‐
bilities is what context mixing is all about.

Context mixing brings two interesting questions to the table with respect to data
compression:

• What types of models should you use on the data?
• How should you combine those models?

Types of Models
As we discussed earlier, adjacency is a very important topic to data compression.
Algorithms such as LZ, RLE, delta, and BWT all work from the assumption that the
adjacency of our data has something to do with the optimal way to encode it.

When introducing Markov, it’s easy to present it in this same light. Creating an
adjacency-based context is easy to do (“if A follows B”, etc.). But in reality, this is just
one way to create a contextual correlation between symbols. For instance, you might
create a context as all values in an even index, or context might be derived from val‐
ues which are clustered around a certain numerical range. Basically, adjacency and
locality are the simplest forms of contextuality, but by no means are they the only
ones.

With this mentality, it makes logical sense that there might be other signals in the
data stream that could help us identify the right way to encode the current symbol,
signals that have nothing to do with context or adjacency. Identifying and describing
the relationships between symbols is what we call models. By modeling the data, we
understand more about the various attributes it contains, and can we better describe
the current symbol.

In reality, models can be anything and can change depending on the type of data you
have.

For example, images care a lot about two-dimensional locality; that is, a pixel color
generally has something to do with the adjacent colors above, below, and on each side
of it, and we can take advantage of that for compression. This model doesn’t work for

Context Mixing | 151

12 ...unless you are compressing word games or some very wacky poetry.

text though. There’s generally no observance that a character has any proper relation
to one below or above it.12

In programming, after compiling your high-level instructions into bytecode, there’s a
completely separate model. A single byte can describe an instruction, followed by a
set of variable-length bytes that describe the input to that function. Because code
tends to have common patterns, you could model that if you see a “Jump to this
instruction” command, there’s most likely going to be a “push the variables onto the
call stack” command around here somewhere, as well. So in this case, it’s not impor‐
tant to note the adjacent bytes, but the commands themselves.

Music is a completely different beast. You could create models to represent the bass
line, or guitar riffs, and take into account the lengths of courses or bridges that are
involved.

The point here is that there’s thousands of different ways to model your data if you
just know enough about it to ask the right questions. So the problem becomes more
difficult in some cases, because now, we’re not talking about generic algorithms, but
more asking the question, “Do you understand enough about your data to model it
properly?”

One of the pioneering compressors in the context mixing space, PAQ, includes the
following models:

• N-grams. The context is the last N bytes before the predicted symbol (as in
PPM).

• Whole-word n-grams, ignoring case and nonalphabetic characters (useful in text
files).

• “Sparse” contexts. For example, the second and fourth bytes preceding the pre‐
dicted symbol (useful in some binary formats).

• “Analog” contexts, consisting of the high-order bits of previous 8- or 16-bit
words (useful for multimedia files).

• Two-dimensional contexts (useful for images, tables, and spreadsheets). The row
length is determined by finding the stride length of repeating byte patterns.

• Specialized models that are only active when a particular file type is detected,
such as x86 executables, or BMP, TIFF, or JPEG images.

And PAQ is no joke. It’s constantly at the top of the Large Text Compression bench‐
mark, and one of the newer versions, ZPAQ, attained second place in a contest com‐
pressing human DNA.

152 | Chapter 9: Data Modeling

https://en.wikipedia.org/wiki/N-gram
http://bit.ly/29H6z7C
https://en.wikipedia.org/wiki/TIFF
https://en.wikipedia.org/wiki/JPEG
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/zpaq.html
http://www.mattmahoney.net/dc/fastqz/

13 We are totally going to the gym next week. We hear there’s a new spin class we should check out.

Types of Mixing
Just off the cuff, how would you mix two given values? Average them? Add them
together? Maybe weigh them differently based upon user preference or prior input?
And these questions become more complex as you start using multiple models. After
you have a set of 50 inputs, how do you combine models to pick the best compres‐
sion?

Thankfully, statistics have mostly solved this problem for us. There are two types of
approaches to mixing the outputs from different models together.

Linear mixing is a process of using the weighted average of the predictions, where the
value comes from the weight of the evidence.

In our previous example, we were trying to figure out the probability of you going to
the gym given how often you go to the gym, and how often you eat pasta. Now, these
two values have a different evidence weight, in that one might be proving a more reli‐
able value due to more tests/samples taken. For example, if you’re considering how
pasta influences your gym attendance at a lifetime level, it would have more sample
data and thus be a more reliable form of predictor than, say, your frequency of going
to the gym in the last week.13 As such, we give one more weight in the mixed model
due to it having more evidence.

Logistic mixing, on the other hand, is crazy.

You see, with linear mixing, there’s really no feedback loop to indicate to you whether
the weight you assigned to a model was correct toward predicting how to compress
this data. So, if your input stream changes, and the weighting of your models stays the
same, you can end up bloating your output stream.

To address this, logistic mixing uses a neural network (artificial intelligence!) to
update weights and reassign them based upon what models have given the most accu‐
rate predictions in the past. The trick here is with correcting the current weightings.
Suppose that the current weight selects model A to encode this symbol in 12 bits. But
model B would have been the correct choice, with an 8-bit encoding. The encoder
outputs the 12 bits and then updates its weights so that when all of these models pro‐
duce these same values next time, model B has a higher chance of being chosen.

The only downside to this is the massive amount of memory and running time it
takes to compress the data. If you look at ZPAQ on the LTCB, it took 14 GB of mem‐
ory to compress a 1 GB file. All that modeling data has to go somewhere, right?

Context Mixing | 153

http://mattmahoney.net/dc/text.html

The Next Big Thing?
Context mixing shines a light on the future of data compression. Basically, with
unlimited memory and running time, combined with enough modeling knowledge of
the data, optimal compression is a solved problem. This might be the next big solu‐
tion to data compression at a cloud-computing level. Companies that have tons of
compute resources and time to spend on them, could be able to aggressively com‐
press data, given that their data-science team has properly identified all the models for
it.

But this hasn’t yet made its way to the consumer market. The high overhead of mem‐
ory and runtime make context mixing improbable for mobile devices (at the time of
writing this book). But the reality is that it’s a completely different data target. If
you’re only dealing with 1 MB to 50 MB of data, the results of compressing using con‐
text modeling are pretty similar to a lot of other algorithms out there. It’s when your
data is large, complex, and ever-changing that context mixing begins to shine.

So, this goes back to the same thing again: there’s no silver bullet when it comes to
compression. Each data set needs a unique thought process and analysis on how to
define and approach the information. Even context modeling, which is built to adapt
to the data, still relies on humans creating models for the information.

Which means there’s one thing for certain: data compression is far from a solved
problem, and there is so much more awesomeness left to discover there.

154 | Chapter 9: Data Modeling

CHAPTER 10

Switching Gears

Until now, this book has focused mainly on specific data compression algorithms and
how they generally work. Even though it’s all highly informative, unless you’re trying
to write your own breakthrough data compressor, it’s primarily useful as a foundation
for understanding and compressing your data. So, we’d like to switch gears and talk
about the pragmatic points of data compression, and how they relate to you, the
projects you develop, and the world at hand.

There are two types of compression out there right now: media-specific and general-
purpose. Let’s look at each of them.

Media-Specific Compression
Media specific compressors are designed specifically for media data such as images,
audio, video, and the like. Most likely, these types of files and compressors make up
the majority of content your applications send, receive, manipulate, store, and display
to users. The old saying, “A picture is worth a thousand words,” is quite literally true
when it comes to data compression: a 1024 x 1024 RGB image is 3 MB of data. If you
assume ASCII-encoded letters, you could display 3,145,728 letters for that same size.
To put that into context, the famous book The Hobbit is made up of 95,022 words. If
you assume an average word size of 5 letters, that’s roughly 475,110 characters. You
could fit that book about 6 times into a single 1024 × 1024 image.

This is why most media compressors employ lossy compression algorithms. Lossy
compression algorithms are types of data transforms that reduce the quality of the
media in an attempt to make the content more compressible. For example, a 1024 ×
1024 image, using 8 bits each for the red, green, and blue channels, comes to 24 bits
per pixel, and hence 3 MB. However, if you used only 4 bits per channel, you’d end up

155

1 We are basically reducing the number of possible colors from about 16 million to 4,096. The human eye can
distinguish more than a million colors. For more on this, see the Wikipedia entry “Trichromacy”.

2 Not convinced? Go read up on how the JPG format works, or brush up on the new WebM format.
3 Basically, a Swiss bakery shop of algorithms.

with 12 bits per pixel, bringing the total footprint to 1.5 MB, while also reducing the
color-quality of the image.1

There is an unending horde of lossy data-transforms out there, each one specialized
for a specific media type (what works on images won’t work nearly as well on audio)
and content type (grayscale images can use a different compressor than full-color
images). Ignoring that the transforms are lossy, media-specific compressors pretty
much follow what we have discussed so far. After the content is transformed into a
more compressible state, you can apply all the standard transforms, such as LZ, BWT,
RLE, Delta compression, and even Huffman/arithmetic/ANS. The trick is (again)
finding the right transforms for the right type of data to produce the best results.

We haven’t spent much time talking about lossy transforms in this book. That’s inten‐
tional. There are so many of these transforms, and each one is so content-specific,
that you’d really need a book per mediatype.2 But don’t worry, Chapter 12 covers
some important details of how you can optimize your image compression, without
having to go too deep into the details.

General-Purpose Compression
General-purpose compressors, on the other hand, are built for everything else. These
are algorithms like DEFLATE, GZIP, BZIP2, LZMA, and PAQ, which combine vari‐
ous lossless transforms to produce savings for nonmedia files like text, source code,
serialized data, and other binary content that won’t tolerate lossy data compression.
There’s a healthy amount of research in this area. Stopping by the Large Text Com‐
pression Benchmark shows a gaggle of general-purpose compressors that have all
been tasked with compressing huge text files, to measure how they stack up against
each other. And new algorithms continue to be developed. Google’s stabs at improv‐
ing the GZIP algorithm produced a family of compressors called Snappy, Zopfli, Gip‐
feli, and Brotli,3 with each one focusing on either better compression, lower memory
requirements, or faster decompression.

Most of the Internet content you download each day has been compressed with one
of these algorithms. The standard HTTP stack allows for data packets to be encoded
with GZIP, BZIP, and now, Brotli compressors (as long as the server and client sup‐
port it), which means webpages, JavaScript files, tweets, and store listings are most
likely showing up on your device after being decompressed.

156 | Chapter 10: Switching Gears

https://en.wikipedia.org/wiki/Trichromacy
https://en.wikipedia.org/wiki/JPEG
https://www.youtube.com/watch?v=K6JshvblIcM
https://en.wikipedia.org/wiki/DEFLATE
https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Bzip2
http://bit.ly/28KCeka
https://en.wikipedia.org/wiki/PAQ
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
https://en.wikipedia.org/wiki/Snappy_(software)
https://en.wikipedia.org/wiki/Zopfli
https://github.com/google/gipfeli
https://github.com/google/gipfeli
https://en.wikipedia.org/wiki/Brotli

It’s worth pointing out that many in the compression community, including the
authors of this book, believe that these algorithms are caught in a race to a point of
diminishing returns. Looking at the most recent, successful encoders (Brotli,
LZHAM, LZFSE, ZSTD), they all show a similar trend: minor variations on a theme.
New tricks and modifications to existing transforms are applied to existing algorithm
types in order to get small savings in compression. And they require more resources
to begin producing marginal savings. Looking at various benchmarks, we’re not see‐
ing breakthroughs in 30%–50% savings; rather, lots of sweat and effort is being
expended to get 2%–10% improvement over existing algorithms.

Compression in Practice
We hope that with all the awesome knowledge in this book, applying all of this to the
development of your applications will be pretty straightforward. But there are a few
things we specifically want to cover, which can help you understand more about
addressing the lowest-hanging fruit in your application development. The next few
chapters will focus on understanding how to evaluate various types of data compres‐
sion options, and then give you some tips on images and serialized data, followed by
some bigger-picture thinking about the importance of data compression over the
next decade.

Fun stuff!

Compression in Practice | 157

https://github.com/richgel999/lzham_codec
http://apple.co/28MjogJ
http://bit.ly/28KBN9C
https://quixdb.github.io/squash-benchmark/

CHAPTER 11

Evaluating Compression

Before bounding off into the weeds and jamming compression into every part of your
fancy application, it’s important to note all of the trade-offs and use cases involved.
Not every algorithm is suited for every use case, and in some instances, a different
implementation of the same compression format might better match your need.

So, when it comes to data compression, what matters?

Compression Usage Scenarios
Let’s begin this discussion by setting the stage on where data is compressed, stored,
and decompressed. This is critical for understanding where the data is coming from
and where it’s going, because of the important interplay between encoder and
decoder, which we’ll talk about more in a bit. First, let’s look at four common scenar‐
ios.

Compressed Offline, Decompressed On-Client
In this first scenario, the data is compressed somewhere unrelated to the client, and
then distributed to the client, where it’s decompressed for use.

This scenario is most common for things like packaged applications or video games,
and the resources often include copious amounts of images, videos, and music.
Another use case is artists creating and sharing their work. In both cases, the original
art is created by using high-resolution, high-fidelity tools, and then exported and
compressed for distribution.

Compression aims to optimize for the smallest possible media files.

The trade-off is one of quality.

159

1 This is changing while we are writing this book.

Compressed On-Client, Decompressed In-Cloud
Most modern social media applications generate a lot of content on the client and
then push it up to the cloud for processing and distribution to other fellow social
users. In these situations, some mild compression is usually done on the client, in
order to reduce the amount of overhead in the outbound communication. For exam‐
ple, taking a packet of social data, and serializing it with a binary serialization format,
and then gzip compressing it before sending it up to the server.

The primary goal here is to reduce cost for the user. Although many in North Amer‐
ica (still) have the benefit of being on an unlimited data plan,1 much of the rest of the
world doesn’t enjoy this luxury, so most clients are on pay-for-transfer plans. This
means that every bit they transfer to the server is paid for by them.

The trade-off is that on mobile, you spend battery resources compressing this data.

Compressed In-Cloud, Decompressed On-Client
Data that is compressed in the cloud falls into two primary buckets, which have
entirely different characteristics.

Dynamic data that is generated by the cloud resource
On the flip-side of users sending data to the cloud is data that originates in the cloud
that the user downloads.

For example, when a client requests the results of some database operation, or the
server sends dynamic layout data, the client is waiting for content to be generated.
The time it takes for the server to generate and compress that data is critically impor‐
tant; otherwise, the client will experience network latency.

What’s essential here is balancing size and compression time. It is worth pointing out
that in some high-latency environments, users might be willing to wait the extra time
in return for a smaller payload.

Compression aims to minimize what’s being sent over the network.

The trade-off is one of time.

Large data that’s passed off to the cloud for efficient computing
The importance in this scenario is often pushed toward ensuring minimization of bits
for the medium at hand. For example, imagine having two gigabytes of PNG files that

160 | Chapter 11: Evaluating Compression

need to be converted to WebP images at 10 different resolutions, or 1,200 hours of
video that must be converted to H.264 before being displayed.

Remember every bit sent from the cloud must be paid for by the cloud owner, and in
effect, each bit that the client has to consume from the cloud also has to be paid for by
the client. Using cloud-compute resources is ideal in situations for which you want to
minimize those bits in the most compute-effective way possible.

The goal is to efficiently compress large amounts of data into the fewest possible bits.

The trade-off is one of cost versus efficiency (that is, the price of compute resources.)

Compressed On-Client, Decompressed On-Client
Finally, there are many client applications that need to communicate with one
another. They might send peer-to-peer network packets, or photos, or GPS informa‐
tion.

In these cases, the client generates the data, compresses it, and then sends it to the
other client to decompress.

What’s difficult about these situations is that the client machine, often a mobile
device, typically doesn’t have the massive amount of resources required to optimally
transform and compress data. However, these devices usually have specialized graph‐
ics hardware, which can be used to compress things like JPG and H.264, and you end
up with a win for images and video. For other types of data, this means that the qual‐
ity of the data compression will be lower (due to less time available to optimize), and
that the decompression time can be slower as well (due to less power on client devi‐
ces).

As such, algorithms that communicate client-to-client often settle on fixed-bit com‐
pression, such as manually packing serialized structures rather than compressing
them.

There isn’t a trade-off as such; instead, there’s a balancing act between the capabilities
of the device, the time it takes to compress and decompress, and the immediacy of
the need for the data.

Compression Need
As we’ve already hinted while exploring the different algorithms, it’s exceptionally
important to understand that not all compression algorithms and formats apply to all

Compression Need | 161

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

2 Algorithms that lose information during the compression process. See Chapter 14 for some words on lossy
compression.

3 More specifically, algorithms that work for blocks of text might not compress numerical data well, and vice
versa.

data types. For example, applying Huffman to image data won’t produce the level of
savings that applying a lossy image2 compression algorithm will.

As a developer, matching the right algorithm to the right data type is critical for maxi‐
mizing the compression results you want, with the trade-offs you’ll need to make.
And there is no silver bullet. It comes down to this:

• Know your data—not just what type of data, but also its internal structure, and in
particular, how it’s used.

• Know your algorithm options so that you can chose from the right family of
compressors.3

• Most important, know what you need for the given circumstance, because you
might find surprising savings there.

What does this mean in practice?

For instance, thumbnail images may be able to tolerate a lower quality level than, say,
full-screen versions. As such, they could be compressed with a lossy JPEG encoder,
whereas the higher-quality version should be encoded by using a lossless WebP
codec.

Compression Ratio
Compression ratio, that is, the amount by which the content is compressed, is often
the most important factor when evaluating compression options. Because the pri‐
mary goal of compression is to produce the most compact form of the data, because
the smallest number of bits on the wire will always win.

Except...there are always exceptions. You might be willing to to settle for less com‐
pression savings when performance or memory take priority. Here is a perfect exam‐
ple: ZPAQ will generally produce the smallest compressed files for 1 GB text files. But
it also generally requires around 2 GB of memory and 3 hours to compress this on a
desktop machine, and similarly for decompression. So yes, ZPAQ is a great when it
comes to file size, but it’s not very applicable to compressing data on a mobile device.

Now, for services that can do compression offline, or in the cloud, compression ratio
is one of the most important considerations. You do have the extra resources and
time for compressing your data to its smallest form, and there is cold, hard cash
involved in sending around the bits.

162 | Chapter 11: Evaluating Compression

https://en.wikipedia.org/wiki/ZPAQ

Users Get the Short End

It’s worth pointing out that users always get the short end of the
stick in this equation. Most of the world isn’t on “unlimited data”
plans, and the cost for the users to bring down 1 GB of data, com‐
pared to the cost for someone to serve 1 GB of data, are monumen‐
tally different.
If you want to build an app that keeps users happy, try to shoulder
the cost of transfer on behalf of your users.

Compression Performance
Compression performance is all about how long it takes to get data into a compressed
form. Compression performance is critically important in any latency-sensitive envi‐
ronments, whether the client is responsible for compression, or the server is com‐
pressing data for which the client is waiting.

There are generally two evaluation metrics to care about in this regard: CPU speed
and memory. The CPU speed of the encoding system is important because this deter‐
mines how fast the data can be compressed. And the amount of available memory
matters as soon as it’s very limited, as happens to be the case on mobile devices.

For example, the LZMA algorithm achieves really impressive compression results,
but at the cost of large memory footprints. This makes the algorithm less than attrac‐
tive to use on mobile devices, on which there might be only 256 MB of RAM avail‐
able.

Most client technologies (mobile devices anyway) have built-in support for hardware
compressor codecs (coder-decoder technology), at least for some lossy data types.
Things like JPG and H.264 are easily transferred to hardware, and as such, client-side
compression here is easier than on servers, which typically don’t have that specialized
hardware.

On the lossless side, we’ve even seen a few GZIP chips out there, too. Because these
are dedicated hardware components, they tend to be lightning fast compared to their
software implementation counterparts, and you should take advantage of them any
chance you get. Remember that client-side compression has much more limited
resources, and if you can shift around your strategy to optimize for this performance,
it usually results in a net win. Especially in places where serialized data that has to be
sent around for peer-to-peer (P2P) networking, updating packet and position data
every frame results in a load of data, and utilizing GZIP hardware can result in large
wins.

Compression Performance | 163

Decompression Performance
For any performance-sensitive environments, decompression speed is the metric that
rules all things. In modern application development, decompression is usually done
on a client device that is quite underpowered compared to its server-side counter‐
parts. Compression algorithms that can produce the smallest size can also come with
the penalty of taking the longest time to decompress, and that makes them unusable
if the data is sent to mobile devices.

The trade-off then, is that sometimes you must choose a compression algorithm
based upon its decompression performance rather than just its compressed size. For
example, ZPAQ, a very efficient compressor, uses a neural net as its codec and thus
requires an enormous amount of runtime resources to decompress. Such require‐
ments make it off-limits for mobile devices with smaller CPUs and battery con‐
straints.

The WebP image format is another perfect example of this. The first few versions of
WebP boasted better-quality images at smaller data sizes than JPG, but the decoding
speed was almost doubled. Because of this, many companies hesitated to adopt the
format. Performance improved in later versions, and mass adoption eventually hap‐
pened.

Hardware decoders, which are common in laptops and mobile devices, are picking up
some of the slack. Hardware JPG, OGG, and H.264 chips are boosting decode perfor‐
mance for their specific algorithms, making them a preferred choice under some cir‐
cumstances.

Decode performance is actually one of the dominant reasons why GZIP is one of the
most common archival compression algorithms on the planet right now. GZIP pro‐
duces good general compression sizes at really fast decompression speeds, making it
applicable for all sorts of embedded and nonembedded devices. Over the past 20+
years since its creation, the GZIP algorithm has constantly been improved to take
decompression performance to new levels.

Ability to Decode-Stream
Data streaming is often an overlooked aspect of decompression. We generally think
of compression algorithms as working with a “whole package,” meaning that all the
data needs to be in memory before any decoding can occur.

But that’s actually far from the truth. Think of listening to an entire opera or watching
Kenneth Branagh’s Hamlet in one session: taking in all of it at once can be too much
—better to process parts of it at a time.

164 | Chapter 11: Evaluating Compression

https://developers.google.com/speed/webp/?hl=en
https://en.wikipedia.org/wiki/Ogg

Luckily, some general compression algorithms, such as GZIP, BZIP2, alongside most
media compressors, like H.264, also work in a streaming mode. Data can be sent to
the client in chunks that are decoded as they arrive (i.e., block encoding). For many
client-side applications, this ability is highly sought after. Imagine a user scrolling
through the beginning of a social media stream, and having to download the last 10
years of “what I ate for breakfast today” posts before being able to decode the “I
finally planked Stonehenge” announcement.

Comparing Compressors
There are so many compression formats and algorithms out there, it’s sometimes
good to get them in a head-to-head battle to see which ones win on a given type of
data.

Fortunately, you don’t have to do this yourself. For example, the Large Text Compres‐
sion Benchmark regularly pits algorithms head-to-head for 1 GB files of text data.
The Squash Compression Benchmark tests various types of XML, text, images, and
other data formats. And Squeeze Chart compares all sorts of text, audio, and bitmap
content.

The main point of all this is that various compressors with various settings will influ‐
ence the amount of compression quality your app can take advantage of. So, in all
cases, try to test a handful of options based upon your restrictions and goals, and pick
the right one for you.

The “Weissman Score”
I gotta hand it to Mike Judge, who really helped out the compression industry. Since
the 1980s, attention and gains in compression have been relatively small and slow.
Sure, we had BWT in the ’90s, and LZMA in the ’00s, and ZPAQ in the ’10s, but other
than that, it’s been pretty quiet. However, in a single burst of laughter, suddenly the
nerd world is interested in compression again. What happened?

In 2014, the TV show Silicon Valley burst onto the scene with much hilarity. The show
follows a programmer’s journey into the startup world as he tries to build a company
around a revolutionary new compression algorithm. While satire, at its core, the
impact on the compression community has been pretty amazing. Suddenly, it’s cool to
care about compression again. The media has been eating it up, and any story of a
company doing something interesting with compression immediately gets compared
to the TV show. So when Google released a new algorithm, the media took the oppor‐
tunity to discuss art, imitating life, imitating art, and all that jazz.

Although the compression algorithm presented in the show is all fiction, the produc‐
ers wanted to have a hint of truth in things, so they contacted professor Tsachy Weiss‐
man at the University of Stanford to help them walk that line. Now, Prof. Weissman

Comparing Compressors | 165

https://en.wikipedia.org/wiki/Planking_(fad)
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
https://quixdb.github.io/squash-benchmark/
http://squeezechart.com/index.html
https://en.wikipedia.org/wiki/Mike_Judge
https://en.wikipedia.org/wiki/Silicon_Valley_(TV_series)
http://bit.ly/28KJmwJ
http://bit.ly/28KJlsA
http://bit.ly/28KJpIV
http://bit.ly/28KJpZs

created a method for measuring the performance of data compression, which takes
the compression ratio of the data set and divides it by the encoding speed of the data
set. The intention is to test out the performance of new compression algorithms by
normalizing their ratio/encode speed by known existing encoders (like GZIP). This
normalization provides some ability to compare algorithms against universal stan‐
dard compressors, which can be helpful in the evaluation of the right system for the
right data type.

This new metric was named in his honor by the show creators as the Weissman Score,
and since has become the stuff of legend on the Internet, although it’s not clear
whether the score has found roots in practical use in the compression world. (Or, at
least no one on encode.ru seems to be using it yet…)

The takeaway here is that with a great new attention in the data compression space,
we’re hopeful to see a new generation of algorithms and research focused on this area
to help move compression into a new generation of breakthroughs.

166 | Chapter 11: Evaluating Compression

http://bit.ly/28KJpsz
http://bit.ly/28KJsV4
http://encode.ru

1 You might recognize this concept: when you save a JPG file out of Photoshop, it usually asks you what “quality
level” you want.

CHAPTER 12

Compressing Image Data Types

If you’re an application developer, chances are that the bulk of your app content is
actually image data. Social media streams, shopping pages, even mapping informa‐
tion are all image content that must be sent down to your users, constantly.

Image compression is a really tricky subject. The individual lossy algorithms inside
the compressors are gnarly (at best) and really should not be touched. But don’t lose
hope. Although these compressors are mostly treated as black-box systems, there’s
still a lot that your development team can do to influence the size of image content,
and make it smaller.

Understanding Quality Versus File Size
Typically, image compressors provide an integer parameter that lets you define a
quality metric for the image.1

As this value gets lower, so does the file size—and the image quality.

You see, this value mostly controls how aggressive the lossy algorithms are in trans‐
forming the data for better compression. So, lower quality means that more colors are
discarded or more edge information is ignored, all to generate more duplicate sym‐
bols for subsequent statistical encoding stages.

Choosing the value for this quality metric should be a huge, important, time-
consuming decision. Picking a value that is too low results in bad image artifacts, and
users might complain about a lack of quality. Picking a value that is too high means

167

you’re sending around larger files than you need to, and paying the cost for that as
well. Figure 12-1 illustrates this progression.

Figure 12-1. A set of images with different quality compression ratios—high, medium,
and low; as the image size becomes smaller, the image quality degrades as well.

For small numbers of images, an artist or designer can pick the value of the quality
metric manually. When they export the images from their tools, they can typically
slide around the quality metric and find the right balance between image quality and
final file size.

But this absolutely does not scale. If you have got 15 million users who upload pic‐
tures of their food creations to your backend, you can’t employ an army of artists to
find that sweet spot. What’s worse: that sweet spot changes for each image. A really
smooth icon or picture of a sunset will need a different quality value than a picture of
a forest or someone’s face. The human brain is really tricky like that, and notices
image quality errors differently in different types of situations.

So, the million-dollar question is: how do you find the right value, per image, at scale?

Sadly, most developers today don’t attempt to approach that problem and end up
choosing one quality setting that they apply to all images in their service.

As the imgmin project points out, there’s generally only a small change in user-
perceived quality for JPG compression between levels 75 and 100:

For an average JPEG, there is a very minor, mostly insignificant change in “apparent”
quality from 100–75, but a significant file size difference for each step down. This
means that many images look good to the casual viewer at quality 75, but are half as
large than they would be at quality 95. As quality drops below 75, there are larger appa‐
rent visual changes and reduced savings in file size.

168 | Chapter 12: Compressing Image Data Types

https://github.com/rflynn/imgmin

2 When we look at a picture, we intuitively know whether it’s good quality. So, while “quality” is kinda fuzzy, it
includes stuff such as color accuracy, sharpness, contrast, and distortion. But what we really want is to be able
to measure that quality, and we’ll get to that in just a minute.

And imgmin further goes to show that most large websites tend to oscillate their
images around this quality of 75 mark for almost all of their JPG images:

Company image JPG quality
Google Images thumbnails 74–76

Facebook full-size images 85

Yahoo frontpage JPGs 69–91

YouTube frontpage JPGs 70-82

Wikipedia images 80

Windows Live backgrounds 82

Twitter user JPG images 30–100

The issue here is that the values chosen aren’t ideal. They are usually the result of a
single quality value chosen in a vacuum and then applied to all images coming
through the system. In reality, some images could be compressed further with negli‐
gent quality loss, whereas other images will be compressed too much and not look
good.

What Reduces Image Quality?
The human eye is pretty sensitive to a number of things when viewing images,
including edges and gradients.2

Any time there’s an error with an edge between two known values, or a mismatch in
what the brain thinks a smooth color should look like, it’s pretty noticeable (see
Figure 12-2).

Understanding Quality Versus File Size | 169

https://en.wikipedia.org/wiki/Image_quality

Figure 12-2. A gradient image at full smoothness (left) and compressed (right). The
source image has almost 128 unique colors, whereas the compressed version has only 32.
This lack of unique colors creates what is called “banding,” and it reduces the smooth
quality of gradient images.

Quantization and blocking are some of the most common forms of image compres‐
sion that result in visual issues. Most image compression algorithms break the data
into blocks of pixels, quantized to reduce the number of unique colors involved in an
image, and then make modifications based on locality of the image.

For example, JPG will group pixels into 8 x 8 blocks and attempt to find similar colors
for that region. This works, because image data tends to have local regions of interest.
That is, in a truly random image, there would be no correlation between two adjacent
pixels; however, in a photograph, there tend to be gradients and similar colors. The
result of this blocking process is that adjacent blocks might not share the same colors,
and edges will be visible between the blocks, as demonstrated in Figure 12-3.

170 | Chapter 12: Compressing Image Data Types

Figure 12-3. A close up of the Lena image that demonstrates the effect of blocking arti‐
facts.

In fact, there’s an entire subset of research in understanding the types of visual arti‐
facts that can result from compression.

Measuring Image Quality
Although the human brain can instinctively notice and define bad image quality, it
doesn’t help when you’re trying to automate the process of determining whether a
compressor is “good.” As such, it’s important to have a mathematical, measurable, and
thus programmable concept of “image quality.”

Today, there are two competing ratios that tend to be used for evaluating image data:
peak signal-to-noise ratio and structural similarity.

Peak signal-to-noise ratio (PSNR), in general terms, expresses the relationship
between the maximum possible power of a signal and the power of corrupting noise
that affects the fidelity of its representation (in logarithmic decibel scale). This meas‐
urement is built on the mean-square error (MSE) of the compressed image. Or rather,
how much the values of the original image differ from the compressed image.

PSNR and the MSE term work in inverse relationship. When the amount of error is
low, quality (and thus PSNR) will be high, and vice versa. The only catch here is that
if you try to compute the MSE between two identical images, the value will be zero
and hence the PSNR will be undefined (division by zero).

But there are a few problems with the PSNR measurement. Because it computes the
mean-squared reconstruction error after denoising it, it is slightly biased toward

Understanding Quality Versus File Size | 171

https://en.wikipedia.org/wiki/Compression_artifact
https://en.wikipedia.org/wiki/Compression_artifact
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

over-smoothed (that is, blurry) results. In plain English, this means that if part of the
texture is also removed, scores can be high (ignoring that part of the image is miss‐
ing). So, PSNR is not always consistent with respect to the source image or the types
of effects applied to it. In addition, the PSNR metric relies strictly on numeric com‐
parison and does not take into account any of the biological factors of the human
vision system. So what looks good from a numbers perspective might exhibit substan‐
tial quality issues when viewed by a human eye.

The structural similarity (SSIM) index was developed to address the PSNR issues and
take human perception into account when comparing the compression quality of
images. This is done by looking at the similarity of the edges between the source and
the compressed image. SSIM might look like a better quality measurement, but it is
more complicated to compute.

The value of SSIM ranges from [0,1], where 1 represents that the compressed image is
identical to the source image, and 0 means that there is no viable similarity between
the compressed image and the source image.

The images in Figure 12-4 show the calculated MSE (PSNR) and SSIM side by side
for a series of pictures.

Figure 12-4. Showing off MSE (PSNR) and SSIM side by side: (a) is the original image;
(b) adds white-noise to it; (c) is a blur effect; (d) is a result of low-quality JPG compres‐
sion; and (e) is high-quality JPG compression. Notice how b, c, and d all have very simi‐
lar MSE, despite the images being completely different from a visual perspective.

The idea here is that both PSNR and SSIM are numerical metrics that you can use to
evaluate how good your image looks, post compression. This is much different than
what most developers are doing, which is having an artist/designer hand-check the

172 | Chapter 12: Compressing Image Data Types

https://en.wikipedia.org/wiki/Structural_similarity

3 They took a picture of some Klingon blood pudding that they had for lunch.

quality of a few samples and then choose a compression level for all of the rest of the
images based on that.

Making This Work
It’s apparent, then, that different types of images will require different export settings
to achieve the same level of visual quality perceived by the end user. A picture of a
forest will have lots of edges and unique colors, and thus will need more bits to be
able to represent it adequately, whereas a hand-drawn cartoon has lots of simple col‐
ors, and thus won’t create so many gradient problems. So, each image type should use
a different set of export metrics. How you achieve this in your development environ‐
ment is left to you, however.

Obviously, creating a cloud-compute resource to iteratively find the ideal quality is a
straightforward path, but not all developers have access to the time and financial
resources to achieve that.

Image Dimensions Are Important
In today’s mobile world, there’s a plethora of devices with many different screen sizes
and varying processing power. This represents a huge problem for modern develop‐
ers: What resolution should I use for my images?

Consider this: a user uploads an eight-megapixel photo from their phone.3

It makes sense that another user with the same screen resolution would want to see
the image in the same size. But what about a user whose screen is only half or a quar‐
ter that size? This would be similar to the difference between viewing the image on a
laptop monitor and a phone. Obviously, the smaller screen will display the image
using fewer physical pixels because it has fewer of them to use, after all, but where
should the resizing occur?

Sending the full-resolution image to the device and resizing it before rendering is cer‐
tainly the easiest in terms of developer workload, but you are sending a lot of extra
bits to a user who will never use them (or see them!). That’s basically money thrown
down the drain.

A better solution is to resize the image in your cloud, or cache a resized image some‐
where so that you can send a smaller image to a smaller screen. This isn’t too far-
fetched a notion. Chances are, you already have the same image in multiple
resolutions (Figure 12-5): a low-resolution thumbnail, a super-high one for full‐
screen, and perhaps some in between for previews. You can use automation tools,

Image Dimensions Are Important | 173

locally or in the cloud, to generate all the resolutions you need with a single invoca‐
tion rather than having your artists generate them by hand in an image editor.

Figure 12-5. Image dimensions also open the door to being craftier with image quality.
Fullscreen images have more visual real estate where users can identify quality problems.
In smaller images, like thumbnails, you can accept a lot more quality format problems,
because users might not notice or complain.

Sending appropriately sized images has multiple benefits:

• You are sending less data to your users, which is faster and respects their data
plans.

• Your data takes up less space on the device, which is polite.
• No image resizing is required. (Yes, yes, we know that the GPU could do that for

you, but then you’re dealing with hacking a 4 MB image in GPU space, when it’s
only being rendered as a thumbnail.)

• Decoding is faster, loading is faster, displaying...well, you get the idea.

174 | Chapter 12: Compressing Image Data Types

4 Most photo-editing programs that export to PNG can strip out this information. There’s also a plethora of
PNG-specific compressors that can do that for you.

Choosing the Correct Image Format
As mentioned earlier, there’s an entire set of different kinds of image algorithms and
formats out there today. Each one has unique trade-offs and use cases that you should
be aware of when developing your image compression pipeline. Let’s talk about the
big image formats that are used for mobile app and web development today: PNG,
JPG, GIF, and WebP.

PNG
Portable Network Graphics (PNG) format is a lossless image format that uses a GZIP-
style compressor to make its data smaller. Because the image format is lossless, the
compressed image quality will be identical to your source image. This is great because
you can maintain high quality while still achieving some compression, but not nearly
as much compression as with lossy formats.

One of the biggest attractions of PNG is that it supports transparency. In addition to
the red, green, and blue channels, it supports an alpha channel that defines which
pixels to alpha-blend during rendering. This transparency support makes PNG quite
attractive to the Web, and to applications where you might want an image on screen
that isn’t exactly rectangular. However, you are paying to have a fourth color channel,
as it increases the size of your uncompressed file.

The PNG format also allows for chunks of metadata in a file. This makes it possible
for image editors (and client-side devices that create images) to attach extra data to
the file. Although helpful as a format, this is a common source of bloat, and most of
the time, including a data chunk that describes what program exported the image, is
just irrelevant junk to a user. As such, it’s critically important that before sending
these images around, you strip out this unneeded data.4

In truth, the lossless nature of the PNG file format can be a blessing and a curse.
From a quality perspective, you achieve pixel-perfect results compared to your source
image, but from a file-size perspective, complex images that don’t contain a lot of
like-colored pixels will not compress very well. If you are required to use PNG files,
for example, for Android asset bundles, or a transparent image for a web page, you
can improve your image compression by applying a lossy preprocess to the image file
before you save it in the PNG format.

Thankfully for you, you won’t need to write that crazy lossy preprocessing code on
your own. There’s a plethora of applications that will do it on your behalf. A web
search for “Lossy PNG compressor” will yield more results than you’ll know what to

Choosing the Correct Image Format | 175

http://bit.ly/29H5JYv

do with. Which preprocessor you choose depends heavily on your needs and the
properties of your data set.

JPG
If you have no explicit need for transparency, the Joint Photographic Experts Group
(JPEG or JPG for short) format will be a much better option. JPG is a format built for
photographic images; it does not support alpha transparency. It contains a powerful
lossy compressor that’s controlled by a quality metric which lets you trade off between
file size and image quality.

The compression format behind JPG is built on block encoding. As illustrated in
Figure 12-6, an image is broken into small 8 × 8 blocks, and various transforms are
applied to each block. The transformed blocks are then combined and thrown at a
statistical encoder.

Figure 12-6. A high-level view of how the JPG algorithm works.

Blocking Is for Photos

Note that this blocking process is geared toward photographic
images. If you were to compress an image with a much flatter color
palette, such as a hand-drawn cartoon, the lossless compressor in
PNG would perform better because it can collapse runs of similar
colors into single compressed tokens.

176 | Chapter 12: Compressing Image Data Types

https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/JPEG

5 This is how photos you take on your cellphone can be geo-tagged in your social media stream.

Much like PNG, JPG files can also include metadata blocks, which means sneaky
image editors or cameras can insert unneeded data into the files.5

JPG also brings the benefit that most mobile devices now come with hardware JPG
encoders and decoders that the platforms take advantage of. This means that decode
times for a JPG file can be significantly faster than for an equivalent PNG image.

GIF
GIF is another format that supports transparency, alongside with animation (which is
the direct reason for the whole cats on the Internet thing...). The GIF format contains
two stages of compression, a lossy palletization step that reduces the color pallette for
the entire image to only 256 colors, followed by a lossless LZW compressor. Quantiz‐
ing the colors of the image down to only 256 results in an aggressive quality reduc‐
tion at the benefit of better compression sizes, which tends to produce better
compression from the LZW end of things. GIF tends to be pretty well supported on
the Web; however, native platforms don’t have uniform support for it.

WebP
The WebP format offers a middle ground between PNG and JPG. WebP supports a
lossless mode and transparency as well as a lossy mode. Basically, you can choose
between the best parts of JPG and PNG. Although that sounds like the Holy Grail of
image formats, there are a few caveats with WebP; mainly, that it’s not 100% sup‐
ported across all image browsers. Also, for mobile development, you typically need to
include a library for it (except for Android, which supports it natively). In addition
to that, the advanced nature of the lossy compression mode means that the perfor‐
mance of decompression on image load is a little slower than with JPG or PNG.

And Now for Choosing...
Given all these data points, there emerges a pretty clear flow diagram to decide what
format to use for any given image.

1. Do you need transparency?

• Yes → Does the client support WebP?
— Yes → use WebP
— No → use PNG

2. No → Does the client support WebP?

Choosing the Correct Image Format | 177

http://en.wikipedia.org/wiki/Graphics_Interchange_Format
http://bit.ly/28KNL2Q
http://en.wikipedia.org/wiki/Palette_(computing)
http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

6 With that resolved, the debate has shifted to the proper pronunciation of “GIF.”

• Yes → Use WebP (unless the performance becomes a problem)
• No → Use JPG

Image Format Wars on the Internet
When it comes to the relentless bulk of web content, images are by far the largest load
bearer today (although there’s an argument to be made that videos have become king
as of late).

But what’s truly interesting is that as much as compression information can help solve
some of the congestion, there’s a massive amount of human problems that keep com‐
pression from making its way into everyone’s hands.

Let’s take a trip back to 1985, when Unisys filed a patent for the LZW compression
algorithm.

A few years later, when CompuServe invented the 89a format (which later became the
GIF format), they used LZW as its backbone, not realizing that it was patented. Uni‐
sys didn’t care about this until 1993, when the Netscape browser added support for
the IMG HTML tag, alongside support for the 89a format. Within a year, animated
images became all the craze on the Internet, and Unisys began enforcing its patent.
CompuServe and Unisys eventually reached a court agreement in December 1994,
announcing that Unisys would begin collecting royalties from all software that used
the 89a graphics format. In the months following this decision, a group of seven engi‐
neers developed an entirely new, patent-free format known as the Portable Network
Graphics or PNG format. Within another few weeks, PNG was fully supported by the
Netscape browser.

In 2004, the patent on LZW finally expired, but for an entire decade, the GIF/PNG
image format debate was a hot one among Internet folks.6

JPG has been a standard for some time now, and is generally accepted by most image-
editing programs and Internet browsers. In 2013, Google and a set of other open
source contributors were able to create a new image codec algorithm named WebP,
which aimed to compress images smaller than JPG while keeping the same image
quality. WebP’s savings aren’t huge, maybe 5%–30%, depending on the size of the
image. However, these are massive savings for companies that operate in the big
image business (e.g., shopping and social sites). To these companies, a 30% reduction
in size means a significant reduction in cost as well as faster transfer and loading
times.

178 | Chapter 12: Compressing Image Data Types

But there was one huge challenge with the WebP format: getting it adopted by every
browser. Chrome (being developed by Google) was the first to adopt it. However, the
real drama comes from the fact that the largest competitor at the time, Mozilla’s Fire‐
fox, wanted nothing to do with with WebP and openly rejected it, stating that it wasn’t
powerful enough, and that it didn’t compress as well as JPG variants. In fact, the
Mozilla engineering team even open-sourced a new MozJPEG codec to improve the
lossless preprocessor phase of JPG, all in an attempt to rebuke further WebP adop‐
tion.

This pushback didn’t stop Google from implementing the codec for Google+ and its
Google Play store. Facebook soon followed with support for their own implementa‐
tion, all the time praising the gains in compression and image quality. Since then,
WebP adoption has been expanding, even becoming a dominant part of some com‐
pression for video games.

Mozilla’s hold-out didn’t last. In 2015, the company had a change of heart about the
WebP format and stated publicly that “technology decisions often are the result of
personal predilection, political scheming, and inter-company rivalries. But cold hard
data still can win the day.”

And there’s a lot of wisdom in that statement. These stories of image formats on the
Web help shed light on some interesting truths about technology adoption, program‐
mer mentality, and customer benefit around compression. Even though an algorithm
might be technically superior, it’s still subject to the same product biases that relate to
all types of technology output. It still must fight for acceptance and approval among a
world of engineers who are generally skeptical by nature.

GPU Texture Formats
Because the computer can’t draw images to the screen directly from their compressed
formats, they first need to be loaded into memory and decompressed to a format that
the system can use for rendering. By default, images are decompressed into 32–bits-
per-pixel formats, with 8 bits going to each of the red, green, blue, and alpha channels
(RGBA_8888 representations). Then the images need to be transferred to the GPU as
textures, which means each bitmap you create requires CPU and GPU memory at the
same time. The result of this is that regardless of the compression quality of your
images on the wire, on your device these images still take up big chunks of memory.

The good news is that there exist compressed pixel formats from which the GPU can
render. You take advantage of these by decompressing what comes over the wire into
one of these alternate compressed formats that the GPU can render directly without a
decompression step. Some of these formats are DXT, ETC, and PVR with different
profiles for lossy compression (Figure 12-7).

GPU Texture Formats | 179

http://bit.ly/28NQnkB
http://muizelaar.blogspot.com/2011/04/webp.html
https://mzl.la/28NQs7R
https://github.com/mozilla/mozjpeg
http://cnet.co/28NQuwk
http://cnet.co/28NQuwk
http://cnet.co/28MJTCG
http://cnet.co/28MJTCG
http://bit.ly/29H7fdc
http://bit.ly/29H7cOl
http://bit.ly/29H7hBJ

Figure 12-7. The lossy GPU formats DXT1, ETC1, and PVR are all smaller in bit-size to
their RGBA_8888 counterparts, and retain high quality for many situations.

You can imagine that these compressed GPU texture formats are incredibly useful for
video game developers. Not only do video games include a lot of imagery, it needs to
be available in GPU memory somewhat persistently. So, any savings in memory foot‐
print is a huge win for application smoothness and stability.

Vector Formats
Typically, images are arranged in a 2D grid of pixels, which represent the colors of the
image itself. When viewed from a distance, the edging between the pixels disappears,
and the human eye can see (is tricked into perceiving) smooth color gradients. This
type of image is called a raster format image, and it can be rendered (relatively
directly) to the screen.

But what if instead of sending around the final image, we send around a description
of how that image was made? This is the concept behind vector image formats. Basi‐
cally, these formats contain commands that when executed procedurally generate a
final output image.

Figure 12-8 shows the same image in raster and vector format; some trade-offs are
clearly evident.

180 | Chapter 12: Compressing Image Data Types

http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Procedural_generation

Figure 12-8. An example raster image (left) compared to a vector image (right). Notice
that the vector image is much simpler and contains less per-pixel detail. This is because
the format type does not lend itself to producing high-quality data.

Vector formats have some interesting benefits. For example, for some types of com‐
plex images—think technical drawings that primarily consist of lines—a list of points
and how to connect them is much more efficient than sending every pixel. (It’s basi‐
cally a form of compression right there). Second, vector images can be scaled accu‐
rately, and that can be a huge win if you need to provide assets for thumbnails and
icons and fullscreen images on a gazillion different devices.

There is a price in load time, however, because you need to create the rasterized
image for the GPU by executing the commands. So, this type of format trades file size
for client speed, saving bits on the wire, but incurring more client-side overhead to
reconstruct the image when it’s being rendered.

One commonly used vector format is SVG. Think of SVG as a file format that makes
it possible for you to store an image description at a very low memory footprint and
generate a high-quality, resolution-independent image on the client, regardless of the
size of the source data. One of the limitations of the SVG format is that it can repre‐
sent only a certain type of image quality; that is to say that vector images tend to be
simplistic, only using a set of primitive types to define how to generate colors on the
screen. A field of grass in a prairie, for instance, would require too many complex
shapes to yield compression savings.

Vector images are great for things like logos, technical drawings, or simple image pat‐
terns, whereas raster images are best for photos and other information-dense images.

Here is an example for your enjoyment. The following SVG produces the graphic in
Figure 12-9:

Vector Formats | 181

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

<svg height="140" width="140">
 <defs>
 <filter id="f1" x="0" y="0" width="200%" height="200%">
 <feOffset result="offOut" in="SourceGraphic" dx="20" dy="20" />
 <feColorMatrix result = "matrixOut" in = "offOut"
 type = "matrix"
 values = "0.2 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0 0 1 0"/>
 <feGaussianBlur result="blurOut" in="matrixOut"
 stdDeviation="10" />
 <feBlend in="SourceGraphic" in2="blurOut" mode="normal" />
 </filter>
 </defs>
 <rect width="90" height="90" stroke="green" stroke-width="3"
 fill="yellow" filter="url(#f1)" />
</svg>

Figure 12-9. The graphic produced by the sample SVG file.

Eyes on the Prize
For modern applications, image content makes up the bulk of data that’s sent back
and forth to users. Companies constantly send down thumbnails, news images, social
media feeds, friend photos, and advertisements. Users, on the other hand, constantly
upload pictures and content that they’ve created throughout their days. When you’re
looking at decreasing the footprint of data in your applications, images are where you
should begin. It’s the lowest-hanging fruit, and often small changes here can result in
big wins elsewhere.

182 | Chapter 12: Compressing Image Data Types

CHAPTER 13

Serialized Data

Next to image data, serialized content is the second most common data format you’ll
be sending around in your networked applications. And even though the lowest-
hanging data compression fruit will clearly come from image data, it’s equally impor‐
tant to take a hard look at serialized content.

What do we mean by “serialized”? Serialization is the process of taking a high-level
data object and converting it to a binary string (the inverse is deserialization). This
transform can be applied to a plethora of different data types, but it’s most accurate
when describing the conversion from an in-memory structure or class to a file or
memory binary large object (BLOB) to send over a network.

This particular use case dominates the mountain of data transfers we see from
modern mobile and web applications. Consider your favorite social media app. When
you load it for the first time, a flurry of serialized data is passed between the client
and the server in order to show you the right information on the screen. And this
continues as you receive updates, news, and messages. When you post your own
updated status, this input has to go into memory, be serialized to a format, uploaded
to the server, which will deserialize it, add it to its database, and then serialize it again
in order to send updates to all of your friends.

Although images take up the bulk of your data compression footprint by size, serial‐
ized content makes up for it in volume.

This means that performance is critical for serialization speed, deserialization speed,
and the resulting file sizes that need to be sent around to millions of users. To provide
some assistance here, we’re going to look at the common serialized file formats XML
and JSON, and discuss some techniques you can apply to make them smaller for your
users.

183

Understanding Common Use Cases
It’s important to have a clear understanding of how your serialized content is being
used, because this can have a large impact on decisions you make vis-à-vis compress‐
ing that data. Here are the most common use cases.

Dynamically Server-Built Data
This is the most common type of serialized data that exists in modern mobile applica‐
tions. A client object typically queries a server, perhaps asking for the results of a
database operation, to which the server computes the results, serializes the content,
and sends it back to the client for deserialization. In this process, the serialized data is
typically compressed further by the HTTP protocol stack (for example, using GZIP),
which helps to reduce the overall file size. The overhead of this decompression time
on the client is well worth it, given the size savings.

Statically Built Server-Owned Data
Although dynamically built data is common, applications typically use static serial‐
ized content as well; for example, sending the client configuration files for the latest
build. The author can update these files on the server on a semiregular basis, and
that’s usually done offline. As such, the server simply views these files as static and
passes them off to the client upon request. Again, these files tend to be further com‐
pressed by the HTTP stack.

Dynamically Client-Built Data
In many situations, the client will send information to some server, in which case the
creation of this serialized information occurs on the client. This means that the over‐
head for performing serialization and the data compression process reside entirely on
the client device. For laptops or desktops, this might not be an issue, but for mobile
phones, tablets, and wearable devices, this can spell big trouble over time. In addition,
because those devices tend to be lower powered, there’s typically less of a desire to
spend client resources on hyper-compressing data further for upload. This creates a
unique balancing act that developers will need to work out for their specific applica‐
tions

Statically Client-Owned Data
Finally, there is data that resides on and is used locally by the client; for example, lay‐
out information that’s authored once and then loaded many times without further
changes. This information is quite easy to compress, typically during the build-time
of an application, while extra machine power is available. The only thing the client

184 | Chapter 13: Serialized Data

needs to do is keep the data resident (on persistent storage) and load its content into
memory on demand.

Issues with Serialized Formats
The two biggest serialization formats used today are JSON and XML. This is mostly
due to their adoption by the web platform over the past 20 years. Although easy to
use, and hugely popular, these formats present some very specific compression issues.

Human-Readable Text
One of the draws of JSON and XML is that they are (more or less) human readable.
That is, if you opened the post-serialized file in your text editor, you’d be able to read
the entire thing, as demonstrated in this random JSON snippet:

{
 "base": {
 "reboot": { ...omitted for brevity... },
 "updateBaseConfiguration": { ...omitted for brevity... }
 },
 "robot": {
 "jump": {
 "parameters": {
 "height": {
 "type": "integer",
 "minimum": 0,
 "maximum": 100
 },
 "_jumpType": {
 "type": "string",
 "enum": ["_withAirFlip", "_withSpin", "_withKick"]
 }
 }
 },
 "speak": {
 "parameters": {
 "phrase": {
 "type": "string",
 "enum": ["beamMeUpScotty", "iDontDigOnSwine", "iPityDaFool",
 "dangerWillRobinson"]
 },
 "volume": {
 "type": "integer",
 "minimum": 0,
 "maximum": 10
 }
 }
 }
 }
}

Issues with Serialized Formats | 185

http://www.json.org/
https://en.wikipedia.org/wiki/XML

As you can see, this is done by representing the entire file as a set of string values,
cobbled together by tokens, to define how everything is related.

The benefit is an amazingly flexible format (almost any data structure can find a way
to be properly serialized to these formats), but the downside is a massive amount of
overhead in order to include all that human-readable information.

Looking at the preceding JSON snippet, a large number of spaces, line breaks, and
string quotes are included, simply to make this file more human readable. As a result,
the encoded file is larger, in bits, than it needs to be. The problem becomes worse
with numerical data. For example, if your serialized JSON file contains the string
“3.141592653589793”, it would be 17 bytes long (or even longer, depending on your
character encoding). This is completely insane, considering that the actual floating-
point number used to represent this number is only 8 bytes (or 64 bits) long. The
human-readable version is more than twice the size of the binary one.

Slow Decode Times
It’s important to note that decode times can often be problematic for these text for‐
mats. The reason for this is multifold:

• String-based input must be converted to memory objects using heavy-handed
operations (for example, converting ASCII symbols to integer numbers is not
cheap).

• Holding data in temporary memory during load time isn’t always efficient.
• Backward compatibility to older formats can slow encoding and decoding.

The takeaway is that formats like XML and JSON, by default, skew toward longer
load times in order to properly deserialize on the client. In fact, there’s an array of
XML and JSON encoders out there that are entirely focused on reducing load times
for specifically organized file types.

Smaller Serialized Data
With all of this in mind, there’s a few tricks you can employ to help reduce the size of
JSON and XML data as it’s being sent to your users.

Use a Binary Serialization Format
Easily, the biggest bang for the buck is kicking JSON and XML to the curb, and find‐
ing a binary serialization format to go with instead. Binary formats lack the human-
readable nature of JSON and XML, but they ensure that the data is encoded in a
compact and efficient binary form. The results are smaller files and faster load times.

186 | Chapter 13: Serialized Data

Even though binary serialization formats are in abundance, some of our favorites lie
in the middle ground between wire-size format and decompression time. If you’re
willing to define your own schema Protobufs, Flatbuffers, or Cap’n Proto should be
the first formats you evaluate for these benefits.

But suppose that you are not ready to abandon the XML or JSON ship, or your boss
won’t let you get off the text-based serialization wagon. There are ways in which you
can improve your JSON data to serialize it more efficiently and also make it more
compressible. Formats such as BSON and MSGPACK keep the correct JSON schema
but provide binary sizes for encoding. This would let you get better file size but not
have to lift so much of your code to do so.

The real joy of these binary formats is that they produce better compression than
their human-readable counterparts, and in some cases, they can actually be com‐
pressed further by general-purpose encoders such as GZIP.

Restructure Lists for Better Compression
Here’s an interesting point. When you’re serializing your data, most of the time,
you’re doing so to mirror the in-memory object form of the content. Looking at the
next code snippet, consider the structure on the left, and how it’s serialized to JSON
on the right.

struct {
 int id;
 char* name;
 int gender;
 int age;
 char* address;
 int employeeID;
}

{
 "id": 25,
 "name": "Hooty McOwlface",
 "gender": 27,
 "age": 88,
 "address": "1600 Amphitheatre Pkwy, Mountain View, CA 94043"
 "employeeID": 3025
},

The ordering of attributes in the JSON file tends to follow the in-memory representa‐
tion of the corresponding structure. Although this is fine for ease of programmer
maintenance, it doesn’t produce the best compression results after you get an entire
list of structures.

First, consider that a JSON object (picking on JSON for a minute) is made up of key-
value pairs, where the key portion is repeated for each instance of the structure in the
file, adding bloat. In the following list of people and their countries, you need to
repeat the “name” and “country” keywords for every single person:

...
{
 "name": "Joanna",
 "country": "USA"
}{

Smaller Serialized Data | 187

https://developers.google.com/protocol-buffers/
https://google.github.io/flatbuffers/
https://capnproto.org
http://bsonspec.org
http://msgpack.org
http://bit.ly/29H72Xz
http://bit.ly/29H72Xz

1 Which, technically is called “array of structs” or rather, “a list of data objects.”
2 It’s worth pointing out that this is not a concept unique to serialized content. If you’ve ever had to deal with

runtime performance relating to a CPUs L2 Cache residency, the solution is the same.

 "name": "Alex",
 "country": "AUS"
},
{
 "name": "Colt",
 "country": "USA"
}
...

For large JSON files that list many elements in this form, the amount of overhead per
each occurrence of “name” and “country” contributes a great deal to the final byte
size.

Second, recall that encoders like GZIP and its brethren are all based on the LZ algo‐
rithm for their primary transform step, meaning that they are most powerful when
they can find repeated data patterns in their search window.

Imagine an entire file of such employee data and realize that there are gaps between
values that are potential duplicates. For example, the “age” value might be further
than the 1 K to 2 K search window away from the next “age” value in the serialized
file.

You can address both repetition of keys and distance of similar values by a simple
reordering of the list content. You can transpose the previous array structure1 such
that all the values for a given key are held in a single array and close together, as
demonstrated in the following example:2

{
 "name": ["Joanna", "Alex", "Colt"],
 "country": ["USA", "AUS", "USA"]
}

This reduces bloat and makes it easier for the LZ algorithm to find matches.

In programming-speak, the truth is that converting from array-of-structs to struct-
of-arrays can be a critically important transform for large serialized content. So, if
you’re dealing with big JSON or XML files, seriously consider this type of transform.

Organize for Efficient Fetching
We can extend the concept of transposing structures a bit further. Do you really need
to fetch fully structured data from the server? Or could you instead request each data
type separately (and assemble them in the client, if necessary)?

188 | Chapter 13: Serialized Data

https://goo.gl/2HSyOJ

There is a tendency for backend applications to provide a general-purpose API for all
of their clients. Although this is a reasonable strategy for backend systems, it’s not
good for the client, because the application ends up transferring and processing a lot
of data on a small device when some calculations could be made more efficiently on
the server farms.

If your application displays a feed of mixed content, ensure that the client can fetch
that information in a single request and that the returned data is suitable for caching
in pieces. You generally want your client to be able to identify entities so that it can
store them persistently, and also avoid duplicates of the same objects in memory.

While doing this type of data fetching, many APIs return hierarchical data where all
relations are denormalized. Although this is the preferred approach for most web cli‐
ents, it is not good for mobile clients for which persisting data and serving it from
local storage is important.

Instead of returning hierarchical data, it is better to return normalized data.

Take a look at the following bad example. The same user_id and user_name is dupli‐
cated in many places. The client will need to decompose this one big object, extract
nested user objects, get rid of duplicates, and store what’s left in the local database or
memory cache.

{
"messages" : [{
 "from" : {
 "user_id" : 1,
 "user_name" : "claude",

 },
 "text" : "hello
hello",
 "date" : "123"
 },
 {
 "from" : {
 "user_id" : 1,
 "user_name" : "claude",

 },
 "text" : "how are you",
 "date" : "124"
 },
 {
 "from" : {
 "user_id" : 1,
 "user_name" : "claude",

 },
 "text" : "you there",

Smaller Serialized Data | 189

 "date" : "125"
 },
 {
 "from" : {
 "user_id" : 1,
 "user_name" : "claude",

 },
 "text" : "hello
hello",
 "date" : "126"
 }]
}

Now look at this better example:

{
"users" : {
 "1" : {
 "user_id" : 1,
 "user_name" : "claude",

 }
},
"messages" : [{
 "from" : 1,
 "text" : "hello
hello",
 "date" : "123"
 },
 {
 "from" : 1,
 "text" : "how are you",
 "date" : "124"
 },
 {
 "from" : 1,
 "text" : "you there",
 "date" : "125"
 },
 {
 "from" : 1,
 "text" : "hello
hello",
 "date" : "126"
 }]
}

This is much easier for the client because each object is passed only once. The
returned “users” hash in the response can easily be used to update the database and
in-memory cache.

190 | Chapter 13: Serialized Data

But we can do even better and completely flatten our hierarchy. Check out this final
solution. It’s all the same information, without duplication; compact, and straightfor‐
ward to process.

 {
"users" : {
 "1" : {
 "user_id" : 1,
 "user_name" : "claude",

 }
},
"messages" : {
“from”: [1,1,1,1],
“text”: ["hello
hello","how are you","you there","hello
hello"],
}

The more information the client has about the data it is displaying, the more efficient
it can be. The application can decide which data to cache or prune and, for example,
how to invalidate the layout when new data arrives. A mobile client is a lot more
sophisticated than a simple HTML renderer, and you give it due respect by handing it
the best possible structured data.

Segment Out Data into the Proper Compression Format
Typically these types of serialized formats, such as JSON and XML, are “junk draw‐
ers” for multiple types of data. You can combine integers, strings, floats, even images
and sound data, all encoded right into the silly little serialized format.

However, separating out these large data types into their own compressed chunks will
yield better compression than letting them be in-line in the file. Think about it. If you
have a JSON file with 2,600 inverted indexes, GZIP isn’t going to help you much.
However, separating out the indexes, and delta-compressing them first, can yield sig‐
nificant improvements.

It goes likewise for images. There was a scary trend for a while to base64-encode PNG
files (that is, to represent the binary data in an ASCII string format) inside of CSS files
for doing responsive web design. The use case made sense: It costs more “load time”
to make the extra network transfer for the thumbnail than the overhead from trans‐
ferring the bloated image content inside the CSS file. We don’t condone this action for
mobile applications, except in rare cases.

When you are busy figuring out how to create that moment of utter delight for your
users, thinking about data compression is probably not at the forefront of your mind.
We would like to argue that it should be, at least for a few moments every day. Like
with every other bit of app infrastructure, building it into your app development pro‐

Smaller Serialized Data | 191

https://en.wikipedia.org/wiki/Base64
http://www.mobify.com/blog/data-uris-are-slow-on-mobile/

cess ultimately takes less work for better results. That will translate pretty directly into
happier users, and perhaps, a sweeter bottom line.

Whether you are going to use built-in compressors or no compression at all, or a cus‐
tomized pipeline for each type of data, the important thing is that you make your
choices consciously, and based on as much data as you can get your hands on.

Building a strong pipeline for image compression and data serialization can help sup‐
port your application through its lifetime. Starting with the right mentality for data
compression in your development helps keep things slim and thin for your users as
you carry on. So do this in the beginning, rather than at the end...OK?

192 | Chapter 13: Serialized Data

CHAPTER 14

Lossy Data Compression

You’ve probably noticed that this book has spent a lot of time dealing with algorithms
that are lossless in nature. That is, the decoded version of the data is bit-identical to
the source version of the data.

However, most of the content you’re really worried about in the day-to-day operation
of your application is compressed by lossy compressors. Things like images, sounds,
and video contain far more information than the human visual and audio systems
can process—or need—to fully enjoy the experience. Lossy compression formats get
rid of those extra bits.

Lossy compressors are typically applied to the data first, to reduce its dynamic range,
in preparation for further lossless compression.

Let’s be clear about this: there is an unlimited number of lossy compressors out there,
depending on your data type, needs, and how much error your users are willing to
tolerate. In reality, it’s one of the most fertile grounds for data compression science
because there’s just so much left undone there.

So, why didn’t we talk more about lossy compression algorithms in this book?

Because...well...that’s a different book.

193

CHAPTER 15

Making the World a Little Smaller

Data Compression and You
So, we’ve finally reached the end of this book, which details algorithms that began in
the 1960s and have had a clear and pronounced influence on computing and technol‐
ogy to the present time. But where are things going from here? Many engineers will
happily throw up their hands and say that compression is a solved problem, or that it
is not significant to their skill set. The truth is that over the next few decades, data
compression will remain as important as it was back then. So, it’s perhaps worthwhile
to take a look at how interconnected data compression is with you, your company,
and the future of technology.

Data Compression and the Bottom Line
When it comes down to you and your company, it’s all about the money. Hard, cold,
fast cash. Data compression is so interwoven to your bottom line that companies who
can get this part of their tech stack right save when it comes to the following things:

• User acquisition and retention
• Running costs
• Planning ahead

Let’s dig in a bit.

User Acquisition and Retention
There is a direct relationship between how fast web pages load and conversion rates.
If pages don’t load fast enough, users will abandon whatever they are doing, including
buying your products. On the other hand, the slimmer the data you pack into your

195

product page, the faster it will load, and the more likely users will buy and return in
the future.

The average statistics show that one in four users will abandon a mobile page load
that takes longer than four seconds. It’s worth testing your pages, because this could
mean massive impact on the bottom line, just from page loads. If you need convinc‐
ing, here are some real-life stories:

• Amazon has shown that for every 100 milliseconds of slowdown, it experienced a
1% drop in revenue. Or, to take a different turn on stats, a giant, such as Amazon,
would suffer an annual loss of $1.6 billion if its pages loaded just 1 second slower.
On the other hand, Amazon increased revenue by 1% for every 100 milliseconds
of improved page load speed.

• Walmart’s latest reports show that for every 1 second of page load improvement,
it experienced up to a 2% increase in conversions. For every 100 milliseconds of
improvement, it grew incremental revenue by up to 1%.

• Shopzilla sped up its average page load time from 6 seconds to 1.2 seconds and
increased revenue by 12%, as well as page views by 25%.

• Small sites, such as AutoAnything, cut their load time in half and saw revenue
grow by 13%.

• President Obama’s 2012 presidential campaign based its entire fundraising suc‐
cess on making its website load instantly.

In addition, better site reviews, more word-of-mouth downloads, and better retention
can probably save your marketing departments lots of money.

Running Costs
The content of your websites has to be stored somewhere, and that somewhere is usu‐
ally a bunch of hard drives in a big fat cloud. Hard drives cost money. Shipping data
to and from the cloud costs money. Renting (or building and running) data center
space and bandwidth costs money. And even though cloud technology is normalizing
and costs are coming down significantly, bandwidth and storage remain challenging
financial problems for big companies.

In 2015, Netflix announced that it was going to begin modifying the compression
technology for its video streams; adjusting which algorithm was used on what video
depending on the noisiness of the content itself. This move was projected to save the
company massive amounts in terms of bandwidth costs, and allowed it to accommo‐
date to the performance of specific devices.

Also in 2015, Facebook published details on how it serves preview images, which are
only 200 bytes each. Considering how many images the social media network sends

196 | Chapter 15: Making the World a Little Smaller

http://bit.ly/29H7qFb
http://bit.ly/29H7oNL
http://www.slideshare.net/devonauerswald/walmart-pagespeedslide
https://en.wikipedia.org/wiki/AutoAnything
https://en.wikipedia.org/wiki/AutoAnything
http://bit.ly/29H7lBr
http://bit.ly/29H7lBr
http://nflx.it/29H7FQD
http://bit.ly/28L1JBD

around on a daily basis, this was a huge win for them, especially for users on 2G devi‐
ces.

You don’t need an advanced degree in mathematics to understand this one: smaller
data results in smaller outbound costs, less inbound costs, and fewer storage costs.

Planning Ahead
Web pages are getting bigger. An independent website, HTTPArchive, has been
downloading, cataloging, and gathering statistics on the top 1,000 web pages since
about 2011. One of the interesting stats gathered during analysis is the average size of
these websites. This statistic sums the bytes required to display the page information,
including JavaScript, HTML, CSS, JPG, and video. This page size reportedly grew by
24% in 2013, landing at about 1.5 MB per page, and in 2015, it hit 2 MB in size.

One reason why websites are growing larger is because they contain more images,
and those images are increasing in size. In addition, there is more code as websites
are becoming more complex overall. This problem is becoming so bad for users on
2G, that big companies like Google launched a new framework called Accelerated
Mobile Pages, which specifically targets sites to reduce their dependency graph, image
sizes, and basically tries to offer leaner, faster content to users on bad bandwidth.

Making Your Users’ Lives a Little More Magical and Less
Expensive
Mobile devices make up a surprisingly important part of modern life. It’s madness to
think that the user experience of that hinges so critically on how fast pictures of cats
can be streamed from a server to a phone.

And while you’re trying to cut costs for outbound data, users are trying to do the
same for inbound data. Let’s be clear here: users pay for everything. And most of
them pay for data, by the megabyte, and at outrageous rates.

mobiForge did a nice little analysis in 2013 that showed the costs for connecting to
data on high-tariff data plans. At that time, AT&T’s roaming rates charged $12 per
megabyte. Users who browsed to microsoft.com ended up paying AT&T $17.50 each
time.

But it’s not just the money cost. Consider battery overhead as well. Users who are on
slower connections take longer to download content, which means that their battery
is on longer for the same piece of content than on a faster connection. The result is
that users on slower connections drain batteries faster.

Making Your Users’ Lives a Little More Magical and Less Expensive | 197

http://httparchive.org
http://bit.ly/28L1JBL
http://bit.ly/28L1JBL
http://bit.ly/29H7816
http://bit.ly/28L1IxD
http://bit.ly/28L1IxD
http://bit.ly/28L2734

Data compression is directly related to all these issues. Smaller assets means less time
to download on worse connections, and less battery drain. The end result? Faster cat
pictures to your users.

Thinking About What’s Next in Technology
If you’re lucky enough to live in a country with amazingly well-adopted connectivity,
congrats to you! Chances are you’re paying pretty sane rates for a pretty good mobile
connection. Worldwide, however, this isn’t the case. More humans on the planet have
bad connections than good ones. Looking forward, the future of mobile computing is
going to be defined by the next five billion humans who are about to jump online for
the first time, and the quality of their mobile networks.

The Next Five Billion Users
There are 7.4 billion humans on the planet right now. About 2 billion of them are
currently connected to the Internet. Most of the rest live in countries that are rapidly
expanding their connectivity. This means that your largest growth potential is in the
emerging markets of Asia and Africa. The advancement in mobile computing tech‐
nology over the last decade means that the next billion humans will be coming
online, for the first time, from a mobile phone rather than a desktop or laptop device.

In their book, New Digital Age (Penguin Random House), authors Eric Schmidt and
Jared Cohen lay out the topic well:

There are already more than 650 million mobile phone users in Africa, and close to 3
billion across Asia. The majority of these people are using basic-feature phones—voice
calls and text messages only—because the cost of data service in their countries is often
prohibitively expensive, so that even those who can buy web-enabled phones or smart‐
phones cannot use them affordably. This will change, and when it does, the smart‐
phone revolution will profoundly benefit these populations.

Mobile Networks
Building networks for these high-saturation-potential countries will not be cheap. If
you consider that Verizon had to shell out $50 billion to simply upgrade its network
to 4G, the cost of building an entirely new network for such a massive population
must be astronomical. Such costs will often be inflated due to government entangle‐
ment (as is common for government and telecom companies), and this generally will
result in passing off all costs to the end customer.

The world has been seeing great improvement in network speeds over the past few
years. However, it’s important to see how this improvement is not uniform in terms of
numbers, or geolocation. Google Analytics has a set of fantastic charts showing the
trends in connectivity, worldwide. It’s easy to see that the idea of improvement is not

198 | Chapter 15: Making the World a Little Smaller

http://www.worldometers.info/world-population/
http://cnnmon.ie/28L2z1a
http://analytics.blogspot.com/2013/04/is-web-getting-faster.html

homogeneous. For instance, China saw an 8% increase in median page load time for
desktop computers (things got slower), whereas their mobile performance time
decreased 33% (things got faster), but still landing at >3.5 seconds load time. This is a
pretty big number, considering 42% of their 1.53 billion population is online.

The short form is this: mobile networks will continue to grind their way to increase
speed, slowly, unevenly, and at great expense. If you’re waiting for the mobile web to
suddenly get faster, you might need to find a more comfortable chair to wait around
in.

For example, a 2G network has ~0.021 MB/sec transfer speed, whereas GZIP can
compress 61 MB/sec. Even a reduction of 10 times in GZIP speed would still access a
single megabyte faster than the network could transfer it. Colt’s analysis of these data
points suggests that it would be cheaper to invest in a better compressing-slower decom‐
pression codec than it would be to invest millions of dollars upgrading the network hard‐
ware.

...Starting Now
The picture painted here should be immediately clear. The next great computing rev‐
olution will come from areas of massive populations that tend to be skewed toward
the entry-level economic ladder, meaning that their choices in mobile hardware and
cell provider will be skewed toward slower hardware and slower networks.

But there will be the same demand for fast data, and there will be the same competi‐
tion between developers for the attention of those users. The trends in mobile com‐
puting continue, and average app data costs continue to skyrocket; however, these
individuals are playing a catch-up game in which they are already far behind. The
user cost to send down 25 thumbnails or load a page of news headlines with images
might be too much and too slow for these users, causing them to abandon slow expe‐
riences for much faster ones.

This problem is so important in 2015 that even large developers like Facebook have
rolled out slimmed down, 2G-friendly versions of their experience, just to reduce
barriers for acquiring users in this budding mobile market.

And as a developer, you can’t really control the networks, and you can’t control the
hardware. But you can control the data, and with that, you can do a great amount to
ensure that it is compressed aggressively so that it arrives to users with a speed and
quality that lets them have a valid computing experience and remain faithful to your
application over time.

What are you waiting for?

...Starting Now | 199

http://en.wikipedia.org/wiki/LTE_(telecommunication)
http://en.wikipedia.org/wiki/LTE_(telecommunication)
https://www.facebook.com/lite/

Glossary of Compression Words

7zip
A file archiver with a high compression
ratio.

Alpha blending
The process of combining an image with a
background to create the appearance of
partial or full transparency.

Alpha channel
An additional channel (in addition to
RGB) that contains a value between 0 and
1 that designates the transparency for
each pixel.

Alpha transparency
The transparency value for a pixel as
transmitted in the Alpha channel.

Arithmetic coding
An algorithm for encoding data, wherein
frequently used characters are stored with
fewer bits and not-so-frequently occur‐
ring characters are stored with more bits,
resulting in fewer bits used in total. Rather
than assigning codewords to symbols in a
1:1 fashion, this algorithm transforms the
entire input stream from a set of symbols
to one (excessively long) numeric value,
whose LOG2 representation is closer to
the true value of entropy for the stream.

See Chapter 5.

Asymmetric numeral systems (ANS)
A modern variant of statistical compres‐
sion, which has shown early promise in

achieving close to entropy compression
with performance comparable to Huffman
coding.

See Chapter 5.

Binary or base 2 number system
A way of representing numbers using only
the digits 0 and 1, and each shift in posi‐
tion is by a power of 2. For example, the
decimal number 5 would be 101 or 20 +
22.

See Chapter 2.

Binary erasure channel
A communications channel model used
for analysis in information theory. The
idea is that a bit is never wrong. It either
exists and is correct or it is “erased.”

Binary search
An algorithm for finding a target value in
a sorted array.

Bitwise exclusive OR (XOR)
bitwise = operates on each bit independ‐
ently

exclusive OR (XOR) = a logical operation
that outputs TRUE only when both inputs
differ (one is TRUE, the other is FALSE).

Block codes
Any error-correcting code that encodes
data in blocks.

201

http://www.7-zip.org
http://arxiv.org/abs/1311.2540

Blocking
The act of subdividing a set of data into
smaller “blocks” for the purpose of better
compression.

Block sorting compression
The name for a performant application of
the Burrows–Wheeler transform, which
will block separate the data stream, and
apply BWT to each block, rather than the
entire stream.

BMP file
A file format for bitmaps (simple raster,
encoded images with RGB channels).

BSON
A binary version of the JSON serialization
format.

Burrows–Wheeler transform (BWT), block-sorting com-
pression

Example of a reversible transform that
rearranges a character string into runs of
similar characters.

See Chapter 8.

BZIP/BZIP2
Free and open source file compression
program that uses the Burrows–Wheeler
transform to compress single files.

Bytecode
Instruction set made up of compact
numeric codes designed for efficient exe‐
cution by a software interpreter.

Cap’n Proto
A binary serialization format.

Channel
The means by which information is trans‐
mitted.

Claude Shannon
An American mathematician, known as
the “father of information theory.” He is
also the reason why this book exists. So,
read this Wikipedia article to find out
what a mess he got us into.

Coder
See encoder.

Codec
Short for coder-decoder. A device or com‐
puter program capable of encoding or
decoding a digital data stream or signal.

Coding theory
Science of finding explicit methods, called
codes, for increasing the efficiency and
reducing the error rate of data communi‐
cation over noisy channels to near the
channel capacity. These codes can be
roughly subdivided into data compression
(source coding) and error-correction
(channel coding) techniques. A third class
of information theory codes are crypto‐
graphic algorithms.

Communication
The purposeful activity of information
exchange between two or more partici‐
pants in order to convey or receive the
intended meanings through a shared sys‐
tem of signs and semiotic rules. The fun‐
damental problem of communication is
that of reproducing at one point, either
exactly or approximately, a message
selected at another point.

Context modeling
The process of using multiple information
signals about a piece of data to infer what
the best type of compression algorithm is
to apply to it.

Contextual compressor
Compressor that determines the output
symbol based on the probability of the
input symbol in the current context.

See Chapter 8.

Convolutional code
A type of error-correction code used to
increase the reliability of data transfers.

Cryptographic algorithms
Algorithms to encode information with
the purpose of making transmission more
secure: keeping the content secret.

Blocking

202 | Glossary

http://bsonspec.org
https://capnproto.org

Data compression
Representing the information in a data
stream with fewer bits than the original
stream. For example, writing “Rolling on
the floor laughing” as “ROFL” compresses
the original from 29 to 4 characters, which
is a savings of 86%. (This also hints at the
fact that having context can increase com‐
pression rate.)

Data stream
A block of data that’s intended to be con‐
sumed in small groups at a time rather
than having access to every part of the
stream at once. A real-life example is lis‐
tening to music on a radio.

Decoder
Part of compression software that is
responsible for translating the compressed
stream back into uncompressed data.

DEFLATE
A popular compression algorithm that
utilizes LZ and statistical encoding to ach‐
ieve compression.

Dictionary encoding
The process of transforming your data
stream based upon most common symbol
groupings.

See Chapter 7.

Dynamic range of data set
For the purpose of this book, the number
of bits needed to represent every value in
the data.

Encoder
Part of compression software that is
responsible for translating the source
information into compressed data form.

Entropy
See information entropy.

Error-correcting code
A code attached to a chunk of information
that can be as simple as confirmation that
the information is correct, or complex
enough to “fix” errors.

Error correction
Attaching a code to a chunk of informa‐
tion that makes it possible to detect and
correct errors in transmitted data. Error
detection and correction codes increase
the reliability of information and make it
more resilient to noise. Error correction is
orthogonal to compression.

Finite state entropy (FSE)
A practical implementation of asymmetric
numeral systems, which is focused more
dominantly on improved performance.

Flatbuffers
An efficient open source cross-platform
serialization library originally created at
Google for game development and other
performance-critical applications.

Grouping
In the context of compression, assigning
bits to a group of symbols instead of to
individual symbols. For example, in text,
you could encode the 100 most common
words. Finding out which strings/
substrings to group is its own challenge.

GIF
An image compression format known for
its Alpha transparency support and ani‐
mated image usage.

gzip (GNU zip)
Unpatented compression utility widely
used on the Internet.

H.264
Video coding format that is currently one
of the most commonly used formats for
the recording, compression, and distribu‐
tion of video content. H.264 is perhaps
best known as being one of the video
encoding standards for Blu-ray discs and
video streaming. The format is patented.
H.264 is typically used for lossy data com‐
pression in the strict mathematical sense,
although the amount of loss can some‐
times be imperceptible. It is also possible
to create truly lossless data compression
using it—e.g., to have localized lossless-
coded regions within lossy-coded pic‐

H.264

Glossary | 203

https://github.com/Cyan4973/FiniteStateEntropy
https://google.github.io/flatbuffers/
http://www.gzip.org/#intro

tures, or to support rare use cases for
which the entire encoding is lossless.

Histogram
A diagram consisting of rectangles whose
area is proportional to the frequency of a
variable, and whose width is equal to the
class interval.

HTTP protocol stack
The suite of protocols that make up the
HyperText Transport Protocol (HTTP).

Huffman coding
Prefix-based lossless data compression
encoding.

See Chapter 5.

Information
For our purposes, the content of a mes‐
sage. Information can be encoded into
various forms for transmission and inter‐
pretation (for example, information can
be encoded into a sequence of symbols or
transmitted via a sequence of signals).

Information resolves uncertainty. The
uncertainty of an event is measured by its
probability of occurrence and is inversely
proportional to that. The more uncertain
an event, the more information is
required to resolve uncertainty of that
event.

Information content
The actual information contained in a
datastream (versus noise). See also infor‐
mation entropy.

Information entropy
The average number of bits needed to
store or communicate one symbol in a
message.

See Chapter 3.

Information theory
The branch of mathematics, electrical
engineering, and computer science
involving quantification of information.
Information theory studies the transmis‐

sion, processing, utilization, and extrac‐
tion of information.

ITU
Short for International Telecommunica‐
tion Union.

JPG/JPEG
Lossy data compression format widely
used for digital images.

JSON format
JavaScript Object Notation (JSON) is a
data-interchange format that in addition
to being easy for machines to parse and
generate, is easy for humans to read and
write.

Key-value pairs
Representing data as collection of pairs—
for example, [word, definition] or [row,
value].

Laplace estimator
A formula used to estimate underlying
probabilities when there are few observa‐
tions, or for events that have not been
observed to occur at all in (finite) sample
data.

Lempel–Ziv and Lempel–Ziv–Welch algorithms
A family of lossless algorithms for toke‐
nizing data streams.

See Chapter 7.

Least significant bit (LSB)
The bit in a binary number that has the
smallest numerical value.

For example, in the binary number 1000,
the LSB is the right-most digit with the
value 0.

Lexicographic order
A generalization of the way the alphabeti‐
cal order of words is based on the alpha‐
betical order of their component letters.

Lexicographic permutation
Clustering groups of the same symbol
near each other. See also BWT.

Histogram

204 | Glossary

List decoding
The main idea behind list decoding is that
the decoding algorithm, instead of out‐
putting a single possible message, outputs
a list of possibilities, one of which is cor‐
rect. This allows for handling a greater
number of errors than that allowed by
unique decoding.

Linear correlation
A relationship or connection between two
things based on co-occurrence or pattern
of change, where if one of them changes,
the other one changes linearly. For exam‐
ple: if the temperature increases, ice cream
sales also increase. Most important: corre‐
lation does not imply causation.

Literal stream
A data stream that only holds literal
(unencoded) values for symbols.

See Chapter 6.

Literal token
An output token that indicates that the
next symbol should be read/written
from/to the literal stream.

See Chapter 6.

Lossless data compression
Applying compression techniques where
no information is lost during compres‐
sion, and the original information can be
fully and exactly reconstructed.

Logic synthesis
In electronics, a process by which an
abstract form of desired circuit behavior is
turned into a design implementation in
terms of logic gates.

Lossy data compression
Refers to compression techniques wherein
some information is lost during compres‐
sion, and the original information cannot
be fully and exactly reconstructed. The
goal of lossy compression is to find a bal‐
ance between maximum compression and
sufficient fidelity to the original data.

LZA
Archiver based on the LZ77 algorithm.

LZMA
Archiver based on the LZ77 algorithm.

LZ77, LZ78
A family of algorithms that achieves com‐
pression by replacing repeated occur‐
rences of data with references to a single
copy of that data existing earlier in the
uncompressed data stream. Other imple‐
mentations include LZFSE (download),
LZHAM, and LZTurbo.

Locality-dependent skewing
We totally made this term up, and what
we mean by it is skewing that is different
at different locations of the data stream.

Markov chain
Named after Andrey Markov, a random
process that undergoes transitions from
one state to another on a state space. It
must possess a property that is usually
characterized as “memorylessness”: the
probability distribution of the next state
depends only on the current state and not
on the sequence of events that preceded it.

Mathematical origami
The mathematical study of origami.

Most significant bit (MSB)
The bit in a binary number that has the
highest numerical value. In the binary
number 1000, the MSB on the left-most
side of the number has a value 8.

Move-to-front (MTF)
A data transformation algorithm that is
locally adaptive.

See Chapter 8.

MSGPACK
Small and fast binary serializaton format.

Mumbo jumbo
What’s inside Fibonacci encodings.

Mumbo jumbo

Glossary | 205

http://encode.ru/threads/1969-LZA-archiver
http://apple.co/28MjogJ
https://github.com/richgel999/lzham_codec
https://sites.google.com/site/powturbo/
http://msgpack.org
https://goo.gl/gAqC02

Multicontext coders
Algorithms that weave together multiple
symbols and statistical tables or models in
order to identify the least number of bits
needed to encode the next symbol.

See Chapter 9.

Multiset
A set where multiple occurrences of the
same element are considered.

Mutual information
A measure of information that is in com‐
mon between two random variables.

n-grams
A contiguous sequence of n items from a
given sequence of text or speech.

Noise
Anything that corrupts a signal or infor‐
mation between the source and the recipi‐
ent.

Nonsingular codes
A code is nonsingular if each source sym‐
bol is mapped to a different non-empty bit
string.

Normalization
Adjusting values measured on different
scales to a notionally common scale.

Permutation
In mathematics, the notion of permuta‐
tion relates to the act of rearranging, or
permuting, all the members of a set into
some sequence or order.

Prediction by Partial Matching (PPM)
An algorithm based on Markov chains
with many variants, including PPM*,
PPMD, and PPMZ.

See Chapter 9.

Prefix code
A code is a prefix code if no target bit
string in the mapping is a prefix of the tar‐
get bit string of a different source symbol
in the same mapping. This means that
symbols can be decoded instantaneously

after their entire codeword is received.
Prefix codes are always nonsingular and
uniquely decodable.

Prefix property
This property prescribes that after a code
has been assigned to a symbol, no other
code can start with that bit pattern. A
required property for variable-length
codes.

Probability distribution
A statistical function that describes all the
possible values and likelihoods that a ran‐
dom variable can take within a given
range. This range will be between the
minimum and maximum statistically pos‐
sible values, but where the possible value
is likely to be plotted on the probability
distribution depends on a number of fac‐
tors, including the distributions mean,
standard deviation, and skewness.

Program synthesis
Automatically generating a program that
satisfies a set of requirements.

Protocol buffers, protobuffs
Google’s language-neutral, platform-
neutral, extensible mechanism for serializ‐
ing structured data.

Quantization
The procedure of constraining something
from a continuous set of values (such as
the real numbers) to a relatively small dis‐
crete set (such as the integers).

Quantification
The act of counting and measuring that
maps human sense observations and
experiences into members of some set of
numbers. For example, expressing the
level of noise at a concert in decibels.

Qbit, qubit
Short for quantum bit. The basic unit of
information in a quantum computer. Also
used to designate a very, very small
amount of something.

Multicontext coders

206 | Glossary

http://www.investopedia.com/terms/s/skewness.asp
https://developers.google.com/protocol-buffers/

Rate
The average entropy per symbol.

Range coding
An algorithm that does basically the same
as arithmetic coding but is free of patents.

Redundancy
Words or data that could be omitted
without loss of meaning or function; repe‐
tition or superfluity of information. For
example, in “there were ten (10) ducks in
the pond,” “(10)” is redundant.

In information theory, the number of bits
used to transmit a message minus the
number of bits of actual information in
the message.

Run-length encoding (RLE)
RLE takes advantage of the adjacent clus‐
tering of symbols that occur in succession.
It replaces a “run” of symbols with a tuple
containing the symbol and the number of
times it is repeated.

See Chapter 8.

Serialization
The process of converting objects or data
structures into strings of bits that can be
stored or transmitted. It is implied that
the original object can be reconstructed
using deserialization.

Shannon–Fano coding
Technique for constructing a prefix code
based on a set of symbols and their proba‐
bilities (estimated or measured). It is sub‐
optimal in the sense that it does not
achieve the lowest possible expected code‐
word length like Huffman coding; how‐
ever, unlike Huffman coding, it does
guarantee that all codeword lengths are
within one bit of their theoretical ideal.

Sources
Objects that encode message data and
transmit the information, via a channel, to
one or more receivers. Any process that
generates successive messages. Also called
the “sender.”

Statistical compression
Compression that determines the output
symbol based on the probability of the
input symbol.

See Chapter 5.

Statistical skewing
In probability theory and statistics, skew‐
ness is a measure of the asymmetry of the
probability distribution of a real-valued
random variable about its mean. Or in
plain language, a measure for how much
more probable some symbols are than
others. For example, the English alphabet
is skewed in that the letter “e” is a lot more
common than the letter “q”. For compres‐
sion, skewing is a good thing, and some
data transforms manipulate the set of
symbols to increase skewing.

tANS
A variant of ANS or arithmetic numerical
systems described in Jarek Duda’s paper
“Asymmetric Numeral Systems: Entropy
Coding Combining Speed of Huffman
Coding with Compression Rate of Arith‐
metic Coding”.

See Chapter 5.

Tokenizing a stream
Assigning symbols to the contents of a
stream. For example, in lexical analysis,
tokenization is the process of breaking a
stream of text into words, phrases, sym‐
bols, or other meaningful elements called
tokens. In the context of compression, it’s
about finding best way of assigning a dic‐
tionary of “words” to a stream.

Transformation of data
In the context of compression, making
changes to a data stream (without chang‐
ing the information content) to make it
more compressible. For example, in
[123456,123457,123458], the delta from
number N to number N + 1 might require
fewer bits than N + 1, such as
[123456,1,1]. Finding the right transfor‐
mation for a given datastream is in itself a
big challenge.

Transformation of data

Glossary | 207

http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540

Trie
In computer science, a trie, also called
“digital tree” and sometimes “radix tree”
or “prefix tree” (as they can be searched by
prefixes), is an ordered tree data structure
that is used to store a dynamic set or asso‐
ciative array where the keys are usually
strings.

Unary encoding
An entropy encoding that represents a
natural number, n, with n ones followed
by a zero (if natural number is understood
as non-negative integer) or with n−1 ones
followed by a zero (if natural number is
understood as strictly positive integer). For
example, 5 is represented as 111110 or
11110. The ones and zeros are inter‐
changeable.

Unicode
Unicode is a computing industry standard
for the consistent encoding, representa‐
tion, and handling of text expressed in
most of the world’s writing systems. The
latest version of Unicode contains a reper‐
toire of more than 120,000 characters cov‐
ering 129 modern and historic scripts, as
well as multiple symbol sets.

Uniquely decodable codes
A code is uniquely decodable if its exten‐
sion is nonsingular—which means that
the target symbols are uniquely identifia‐
ble.

Universal code
A way of creating variable-length codes
for positive integers by mapping each

integer to a unique binary encoding. In
general, the smallest integers are assigned
the fewest bits.

Variable-length codes or VLC
Codes that use encodings that vary in
length. Usually the shortest encodings are
applied to the most common symbols in
the data set.

See Chapter 4.

Video codec
An electronic circuit or software that
compresses or decompresses digital video,
thus converting raw (uncompressed) digi‐
tal video to a compressed format or vice
versa. In the context of video compres‐
sion, “codec” is a concatenation of
“encoder” and “decoder”; a device that can
only compress is typically called an
encoder, and one that can only decom‐
press is known as a decoder.

XML
XML, which stands for Extensible
Markup Language, defines a set of rules
for encoding documents in a format that
is both human-readable and machine-
readable.

XOR
See bitwise exclusive OR operation.

ZIP file format
An archive file format that supports loss‐
less data compression. It is not a compres‐
sion algorithm.

Trie

208 | Glossary

Index

Symbols
#PERFMATTERS, 79
7-Zip compression, 93

A
adaptive Huffman coding, 90
adaptive statistical encoding, 79-91

adaptive arithmetic coding, 89-90
adaptive Huffman coding, 90
adaptive VLC encoding, 81-89

adaptive VLC encoding, 81-89
decoding, 82
dynamically building a VLC table, 81
knowing when to reset, 88
literals, 84
real-world compression and, 89
resets, 87

adjacency
and contextuality, 151
in delta coding, 116
in dictionary transforms, 94

algorithms, data compression, 1
Amazon

use of Markov chains, 139
web page loading speed and conversion

rates, 196
analog contexts, 152
ANS (see asymmetric numeral systems)
arithmetic coding, 60-69

adaptive, 89-90
decoding, 64

improving performance of, 68
encoding, 62
finding the right number, 61

Huffman coding versus, 77
origins of, 60
picking the right output value, 64
practical implementations, 69

ARJ archiver, 108
asymmetric numeral systems (ANS), 69-77

creating the reference table, 71
decoding example, 75
encoding and decoding, using a transform

table, 70
source of the compression, 76
using for compression, 74

B
base 10 number system, 9
base 2 number system, 10
base64-encoding PNG images in CSS files, 191
binary code, 45
binary number system, 10
binary numbers, 9

converting from binary to decimal, 11
converting from decimal to binary, 12

binary search, 14, 61
binary serialization formats, 186
binary trees (in Huffman encoding)

building, 55
setting up to generate codewords, 57

bits
fixed-length buckets of bits for numbers, 17
number required to represent numbers,

LOG2 and, 17
bits-per-symbol (BPS) reset threshold, 88
bitwise exclusive OR (XOR) and delta coding,

118

209

block sorting transforms, 132
blocking in image compression, 170, 176
Brin, Sergey, 139
Brotli compressor, 156
browsers

IMG HTML tags and 89a image format, 178
WebP image format, adoption of, 179

BSON, 187
Burrows, Michael, 127
Burrows-Wheeler transform (BWT), 8, 126-133

compressing output, 132
how it works, 128
ordering, importance of, 128
origins of, 127
practical implementations, 132

use with DNA, 132
reversible, 130

BZIP2 algorithm, 132, 156
streaming mode, 165

C
Cleary, John, 146
client-side compression, 160, 161

compression performance and, 163
cloud computing

compression ratio and, 162
dynamic data generated by cloud resource,

160
large data passed to cloud for processing,

160
codecs, 69

support by client technologies, 163
codewords

assigning symbols to, in VLCs, 39
generating in Huffman coding, 57
probability, entropy, and codeword size,

36-38
Cohen, Jared, 198
columns (ANS reference table), determining

number of values in, 71
compress utility, 109
compressed offline, decompressed on-client,

159
compressed on-client, decompressed in-cloud,

160
compression

algorithm classifications, 1
and future trends in technology, 198
and the bottom line, 195

planning ahead, 197
running costs, 196
user acquisition and retention, 195

as rebellion against information entropy, 3
compressing a run-length encoded stream,

114
compressing BWT output, 132
compressing delta-encoded data, 123
compressing Lempel-Ziv output, 106
compressing move-to-front output, 126
compressing permutations, 26
computing world built on, 4
economic importance of, 8
entropy in information theory versus, 31
future of data compression, 195
general purpose, 156
in practice, 157
main ideas of, 3
Markov chains and, 144
media-specific, 155
serialized data, 191
Shannon's research, application to, 2

compression ratio, 162
Compressor Head (YouTube series), 127
context, 135

(see also contextual transforms; multicon‐
text encoders)

importance of, 135
context mixing, 150-154

and future of data compression, 154
types of mixing, 153
types of models, 151

context modeling, 2
contextual transforms, 111-133

Burrows-Wheeler transform, 126-133
delta coding, 115-123
move-to-front coding, 123-126
run-length encoding, 112-115

conversion rates, web page loading speed and,
195

CSS files, base64-encoding PNG files in, 191
current reading location in the stream (LZ), 99

D
data modeling, 135-154

and future of data compression, 154
context mixing, 150-154
Markov chains, 136-145
prediction by partial matching, 145-150

210 | Index

decimal numbers, 9
converting from binary to, 11
converting from decimal to binary, 12

decision trees, 55
decoding, 30

in adaptive VLC encoding, 82
in ANS, using transform table, 71
in arithmetic coding, 64

improving performance, 68
in asymmetric numeral systems, 75
in Burrows-Wheeler transform, 130
in Huffman coding, 58
in Lempel-Ziv algorithm, 105
in Markov chains, 143
in move-to-front coding, 125
in run-length encoding, 112
of encoded data in VLCs, 41
slow decode time with serialized formats,

186
decompression

images, 179
performance, 164

DEFLATE algorithm, 109, 156
delta coding, 24, 115-123

compressing delta-encoded data, 123
frame of reference, 119
patched frame of reference, 120
text and, 123
XOR, 118

deserialization, 183
of dynamically server-built data, 184

dictionary encodings, 2
dictionary transforms, 93-110, 111

basic, 94-98
finding the right words, 95

Lempel-Ziv algorithm, 98-109
divide-by-the-base method, 13
DNA, use of Burrows-Wheeler transforms

with, 8, 132
Duda, Jarek, 69
DXT compressed texture format, 179

E
economic importance of compression, 8

(see also finances, data compression and)
edges, errors in, 169
Elias delta coding, 48
Elias gamma encoding, 47
Elias, Peter, 46, 60

elimination coding, using to compress permu‐
tations, 27

encoding
in adaptive VLC encoding, 83
in ANS, using transform table, 70
in arithmetic coding, 62
in Huffman coding, 58
in Lempel-Ziv algorithm, 104
in Markov chains, 140
in prediction by partial matching, 149
in run-length encoding, 112
in VLCs, 40

entropy, 17, 19-32
breaking, 23-30

example 1, delta coding, 24
example 2, symbol grouping, 25
permutations, 26

defined, 19
failure to take order of symbols into

account, 128
how it's used, 21
in move-to-front coding, 125
in tokenization, 96
information theory versus data compres‐

sion, 31
Kolmogorov Complexity and, 32
locality, adapting to in statistical coding, 79
numeric data compression and, 116
probability and codeword size, 36-38
statistically compressing to, 53-54
understanding probability, 22

entropy coding, 54
(see also statistical coding)

Entropy of a Set formula, 19
ETC compressed texture format, 179
evaluating compression, 159-166

ability to decode streaming data, 164
comparing compressors, 165
compression performance, 163
compression ratio, 162
decompression performance, 164
matching compression algorithm to data

type, 162
usage scenarios, 159

compressed in-cloud, decompressed on-
client, 160

compressed offline, decompressed on-
client, 159

Index | 211

compressed on-client, decompressed in-
cloud, 160

compressed on-client, decompressed on-
client, 161

exclusive OR (XOR), 118
exponents, 10

F
Facebook

preview images and running costs, 196
slimmed down, 2G friendly version, 199

Fano, Robert, 55
finances, data compression and, 195-197

cutting costs for mobile users, 197
planning ahead, 197
running costs, 196
user acquisition and retention, 195

finite state entropy (FSE), 77
fixed-length buckets of bits for numbers, 17
FOR (frame of reference), 119
fractions, bits and, 16
frame of reference delta coding, 119
frames, 119
frequency or probability P of a symbol v, 20
FSE (finite state entropy), 77

G
Game Boy Advance BIOS, 109
general purpose compression, 156
genome mapping, 8
GIF image format, 177, 178
Golomb codes, 115
Golomb, Solomon W., 115
Google

Accelerated Mobile Pages framework, 197
attempts at improving GZIP compression,

156
PageRank algorithm, use of Markov chains,

139
VarInt codes, 50

GPU texture formats, 179
gradients, 169
GZIP algorithm

2G mobile network transfer speed and, 199
decode performance, 164
Google's attempts at improving, 156
LZ algorithm for primary transform step,

188
streaming mode, 165

gzip compression, 93

H
hardware compressor codecs, client support

for, 163
hardware decoders, 164
Henry, Joseph, 33
hexadecimal numbers, 13
HTTPArchive website, 197
Huffman coding, 55-60

adaptive, 90
arithmetic coding versus, 77
building a Huffman tree, 55
encoding and decoding, 58
generating codewords, 57
practical implementations, 58

Huffman, David Albert, 59

I
IBM patents, arithmetic coding and, 60
image compression, 5, 91, 167-182

choosing correct image format, 175-179
flow diagram for, 177
GIF, 177
image format wars on the Internet, 178
PNG, 175
WebP, 177

GPU texture formats, 179
importance of image dimensions, 173
quality versus file size, 167-173

factors that reduce image quality, 169
maintaining visual quality, 173
measuring image quality, 171

vector formats, 180-182
images

contribution to growing website size, 197
segmenting data into proper compression

format, 191
indexes, encoding, 30
information entropy, 2, 19

(see also entropy)
data compression as rebellion against, 3

information theory, 2, 13-18
data compression versus, 31
entropy, 16

Internet connectivity, 198
ITU definition of entropy coder, 54

212 | Index

J
Joint Photographic Experts Group (see JPG file

format)
JPG file format, 7, 176, 178

user-perceived quality for compression lev‐
els, 168

JSON, 185
distance of similar values, 188
formats providing binary sizes for encoding,

187
human-readable text, 185
list serialized to, 187
repetition of keys, 187
restructuring of list content, 188
segmenting data into proper compression

format, 191
slow decode times, 186
using binary serialization format instead of,

186
Judge, Mike, 165

K
Kodak, image test suite, 7
Kolmogorov Complexity, 31
Kolmogorov, Andrey, 31

L
Laplace estimator, 150
Large Text Compression Benchmark, 165

general purpose compressors used on huge
text files, 156

least significant bit (LSB), 12
Lempel, Abraham, 98
Lempel-Ziv algorithm, 98-109

BWT compression and, 133
compressing output, 106
decoding, 105
encoding, 104
GZIP and other encoders based on, 188
how it works, 99
variants, 107-109

LZ77 algorithm, 108
LZ78 algorithm, 109
LZSS algorithm, 108
LZW algorithm, 109

LENA image, 6
lengths

LZ algorithm, 103, 105, 106

RLE, 115
standard number lengths, 17

lexicographical pemutations, 128
LHarc archiver, 109
linear mixing, 153
lists, restructuring for better compression, 187
literals

for non-matches in LZ, 104
in adaptive VLC encoding, 84
in LZ, applying statistical compressor to,

107
in run-length encoding, problem with, 113

local-order-estimator algorithm, 150
locality and contextuality, 151
locality of entropy of a stream, adapting to, 81
locality-dependent skewing, 79
LOG2 form of numbers, 16

and number of bits required to represent
numbers, 17

logic synthesis, using for compression, 32
logistic mixing, 153
look ahead buffer (in Lempel-Ziv), 99
lossless image format (PNG), 175
lossy compression, 69, 167, 193

used in media compressors, 155
lossy image formats, 176
LZ (see Lempel-Ziv algorithm)
LZ1 (see LZ77 algorithm)
LZ2 (see LZ78 algorithm)
LZ77 algorithm, 107
LZ78 algorithm, 109
LZMA algorithm, 61

performance and, 163
LZSS algorithm, 108
LZW (Lempel-Ziv-Welch) algorithm, 109, 177

Unisys patent on, 178

M
Markov chains, 136-145

and compression, 139, 144
creating a second-order or 2-context chain,

139
decoding, 143
encoding, 140
practical implementations, 145
tree diagram of how they work, 137

Markov, Andrey Andreyevich, 138
matches in LZ algorithm

finding, 100

Index | 213

marking a match with a token, 103
situations when no match is found, 104

A Mathematical Theory of Communication
(Shannon), 2

maxVal, choosing for ANS reference table, 73,
76

mean-square error (MSE) of compressed
images, 171

media compressors, steaming mode, 165
media-specific compression, 81, 155
mobile computing

future of, 198
compressing data aggressively, 199
mobile networks, 198

improving users' experience and cutting
costs, 197

Morse code, 33-35
deciphering, 42

Morse, Samuel F.B., 33
most significant bit (MSB), 12, 51
MOV file format, 7
move-to-front (MTF) coding, 123-126

avoiding rogue symbols, 125
move-ahead-k, 125
wait-c-and-move, 126

compressing, 126
using in BWT compression, 133

Mozilla Firefox, WebP image fomat and, 179
MozJPEG codec, 179
MP3 file format, 4
MSE (mean-square error) of compressed

images, 171
MSGPACK, 187
multicontext encoders, 135
multicontext modeling, 2
multisets, encoding, 25
music compression, 4

N
N value, choosing in PPM, 150
n-grams, 152
Napster, 5
Netflix, compression technology and running

costs, 196
neural network, use in logistic mixing, 153
never-seen symbol in PPM, 150
New Digital Age (Schmidt and Cohen), 198
NP-complete problems, 80
number lengths, standard, 17

numeric data, compression of, 115

O
O'Neal, J.B., Jr., 54
Obama campaign, fundraising, 196
offsets (LZ), 103

applying statistical compressor to, 106
ordering of symbols

in delta coding, 25
no effect on entropy, 24

P
Page, Larry, 139
PageRank algorithm, 139
palletization, 177
PAQ series of compression algorithms, 150

models, 152
patched frame of reference delta coding, 120

exceptions and, 122
finding b, 121

peak signal to noise ratio (PSNR), 171
SSIM and, 172

performance
#PERFMATTERS, 79
compression, 163

measuring with Weissman Score, 166
decompression, 164
serialization/deserialization, 183

permutations, 26
compressing by using elimination coding,

27
in Burrows-Wheeler transform, 128

PFOR (see patched frame of reference delta
coding)

phrases, 94
PKZip, 108
PNG image format, 175, 178

base64-encoding in CSS files, 191
Portable Network Graphics (see PNG image

format)
PPM (see prediction by partial matching)
PPM*, 150
PPMD, 150
PPMZ, 150
prediction by partial matching (PPM), 145-150

choosing a sensible N value, 150
compressing a symbol, 149-150
search trie, 147
unknown symbols, dealing with, 150

214 | Index

predictive encoders, 135
prefix property, 43

and binary code, 45
probability

calculating symbol probabilities in VLCs, 38
entropy and codeword size, 36-38
Markov's concept of probabilistic event

selection, 138
subdividing range intervals based on, result‐

ing in compression, 66
understanding, 22

program synthesis, using for compression, 32
PSNR (peak signal to noise ratio), 171

SSIM and, 172
PVR compressed texture format, 179

Q
quality versus file size (image compression),

167-173
export metrics, maintaining quality, 173
factors that reduce image quality, 169
importance of image dimensions, 173
measuring image quality, 171
quality metrics in compressors, 167

quantization and blocking in image compres‐
sion, 170

R
range coding, 60
range intervals

in arithmetic encoding, 62
subdivision based on probability, resulting

in compression, 66
RAR archiver, 108
raster format images, 180
reference tables

creating for asymmetric numeral systems,
71
choosing maxVal, 73

resets in adaptive statistical encoding
adaptive VLC encoding, 87
knowing when to reset, 88

reversible transforms, 130
RGBA_8888 representations, 179
Rissanen, Jorma, 60
RLE (see run-length encoding)
rogue symbols in MTF coding, 125
rows (ANS reference table), determining num‐

bers in, 72

run-length encoding (RLE), 112-115
Burrows-Wheeler transform and, 133
compressing, 114
short runs, dealing with, 112

running costs, 196

S
Schmidt, Eric, 198
search buffer (in Lempel-Ziv), 99
search trie in PPM, 147
second-order context, 137
serialized data, 183-192

common use cases, 184-185
dynamically client-built data, 184
dynamically server-built data, 184
static client-owned data, 184
statically built server-owned data, 184

issues with serialized formats, 185
human-readable text, 185
slow decode times, 186

reducing size of, 186-192
organizing for efficient fetching, 188
restructuring lists for better compres‐

sion, 187
segmenting data into proper compres‐

sion format, 191
sets, Entropy of a Set formula, 19
Shannon entropy H of the set G, 21
Shannon, Claude, 2, 19
Shannon-Fano coding, 54, 55
Shopzilla, web page loading speed and conver‐

sion rates, 196
short runs in RLE, 112
Silicon Valley (TV show), 165
skewed data, 4
sliding window search buffer (LZ), 102
Soderberg, Lena, 6
SortedArray (MTF coding), 124
sparse contexts, 152
specialized models for different file types

(PAQ), 152
Squash Compression Benchmark, 165
Squeeze Chart, 165
statistical compression, 2
statistical encoders, 53
statistical encoding, 53-77

adaptive, 81
(see also adaptive statistical encoding)

Index | 215

applying a statistical compressor to run-
length encoding, 115

applying statistical compressor to BWT out‐
put, 133

arithmetic coding, 60-69
combining LZ with, 106
deciding which algorithm to use, 77
how it works, 111
Huffman coding, 55-60
limitations of, 94
move-to-front coding and, 126
statistical coders as single-context Markov

chains, 139
statistically compressing to entropy, 53-54
using dictonary transforms as preprocessing

stage, 95
streaming data, 79

(see also adaptive statistical encoding)
ability to decode, 164

structural similarity (SSIM) index, 172
PSNR and, 172

SVG image format, 181
symbol groupings, 25
"A Symbolic Analysis of Relay and Switching

Circuits", 2
symbols

assigning codewords to in VLCs, 39
encoding with VLCs, 40

T
tANS variant of ANS, 70

(see also asymmetric numeral systems)
telegraph, invention of, 33
text

delta coding and, 123
encoding text data, 34

third-order context, 137
tokenization, 95, 111

optimal, with Lempel-Ziv algorithm, 98
tokens

for non-match, 104
marking a match with a token (LZ), 103

transform tables, encoding and decoding with,
70

trie, 147
TurboRLE, 115
two-dimensional contexts, 152

U
unary codes, 46, 114
universal codes, 45
Unix systems, compress utility, 109
users

acquisition and retention, with good data
compression, 195

and costs for compression, 163
making their lives more magical and less

expensive, 197

V
Vail, Alfred, 33
variable-length codes (VLCs), 2, 33-52

adaptive VLC encoding, 81-89
dynamically building VLC table, 81
knowing when to reset, 88
literals, 84
real-world compression and, 89
resets, 87

applying a static VLC to run-length encod‐
ing, 114

creating, 42
prefix property, 43

examples of, 44
binary code, 45
Elias delta coding, 48
Elias gamma encoding, 47
unary codes, 46

finding the right code for your data set,
51-52

how they were built, 45
infrequent use in modern compression, 53
Morse code, 33-35
probability, entropy, and codeword size,

36-38
using to encode data, 38

assigning codewords to symbols, 39
calculating symbol probabilities, 38
decoding, 41
encoding, 40

using with Markov chains, 145
VarInt codes, 50
vector image formats, 180-182
video compression, 7, 91
VLCs (see variable length codes)

216 | Index

W
Walmart, web page loading speed and conver‐

sion rates, 196
WAV file format, 4
web page loading speed and conversion rates,

195
WebP image format, 177

decompression performance and, 164
websites, increasing size of, 197
Weissman Score, 166
Weissman, Tsachy, 165
Welch, Terry, 109
Wheeler, David, 127
whole-word n-grams, 152
Witten, Ian, 146
words, finding the right words in dictionary

transforms, 95

X
XML, 185

converting from array-of-structs to struct-
of-arrays, 188

human-readable text, 185
segmenting data into proper compression

format, 191
slow decode times, 186
using binary serialization format instead of,

186
XOR delta coding, 118

Y
YouTube, 7
YouTube series, Compressor Head, 127

Z
zero-frequency problem, 150
Ziv, Jacob, 98
ZOO archiver, 109
ZPAQ algorithm, 152

compression ratio and, 162
decompression performance, 164
memory use and running time, 153

Index | 217

About the Authors
Colt McAnlis is a developer advocate at Google focusing on games, compression, and
performance. Before that, he was a graphics programmer in the games industry
working at Blizzard, Microsoft (Ensemble), and Petroglyph. He’s been an adjunct pro‐
fessor at SMU Guildhall, a UDACITY instructor (twice), and a book author. Recently,
he’s been teaching Android devs the zen of performance. When he’s not working with
developers, Colt spends his time preparing for an invasion of giant ants from outer
space. He’s also got a whole plethora of publications, videos, and other things,
accounting for over 600,000 views.

Aleks Haecky is a developer advocate, training developer, and writer at Google with a
passion for bridging the language gap between experts and their audience. He has
worked behind the scenes of performance, Udacity, the Google Developer Channel,
and documentation. In a previous life, he translated herpetological books and taught
kayaking. Needless to say, he’s also working on the next Great American Novel and
lurks on LinkedIn.

Colophon
The animal on the cover of Understanding Compression is a Brazilian three-banded
armadillo (Tolypeutes tricinctus).

This armadillo is indigenous to Brazil, as its name suggests. They live primarily in
open savannahs and dry woodlands, preferring habitats with tall, woody grasses, scat‐
tered bushes, and gnarled trees. They are generally nocturnal, but have been known
to forage during the day. They eat mainly ants and termites, which they find while
shuffling along with their nose to the ground; they can smell prey through 20 cm of
soil. Three-banded armadillos are great diggers, but they prefer to rest under bushes
rather than in burrows. They do not rely on digging burrows for defense either, but
instead roll into a ball and lock their armor. It is one of two species of armadillo that
can roll into a ball.

Armadillos are usually solitary animals, but the three-banded armadillo occasionally
travels in small families of up to three members. Mating season is October to January,
with a brief courtship before mating. The gestation period lasts 120 days, resulting in
a single, blind offspring. Newborn armadillo armor is soft, but its claws are fully
developed and it can walk and roll into a ball within hours of birth. The Brazilian
three-banded armadillo has undergone a 30% decrease in population in the last dec‐
ade. Its only natural predators are adult pumas and jaguars, but its main threat is the
destruction of its habitat to make room for livestock.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Beeton’s Dictionary. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword
	Preface
	How to Read This Book
	How to Read This Book Backwards
	Chapter Synopsis

	Chapter 1. Let’s Not Be Boring
	The Five Buckets of Compression Algorithms
	Claude Shannon Is Infuriating!
	The Only Thing You Need to Know about Data Compression
	A World Built on Data Compression

	Chapter 2. Do Not Skip This Chapter
	Understanding Binary
	Base 10 System
	Binary Number System

	Information Theory
	An Excursion into Binary Search
	Entropy: The Minimum Bits Needed to Represent a Number
	Standard Number Lengths

	Chapter 3. Breaking Entropy
	Understanding Entropy
	What This Entropy Stuff Is Good For
	Understanding Probability
	Breaking Entropy
	Example 1: Delta Coding
	Example 2: Symbol Grouping
	Example 3: Permutations

	Information Theory Versus Data Compression

	Chapter 4. Variable-Length Codes
	Morse Code
	Probability, Entropy, and Codeword Size
	Variable-Length Codes
	Using VLCs
	Creating VLCs
	A Handful of Example VLCs
	Finding the Right Code for Your Data Set

	Chapter 5. Statistical Encoding
	Statistically Compressing to Entropy
	Huffman Coding
	Building a Huffman Tree
	Generating Codewords
	Encoding and Decoding
	Practical Implementations

	Arithmetic Coding
	Finding the Right Number
	Encoding
	Picking the Right Output Value
	Decoding
	Practical Implementations

	Asymmetric Numeral Systems
	Encoding and Decoding Using a Transform Table
	Creating the Reference Table
	Using ANS for Compression
	Decoding Example
	So Where Does the Compression Come From?

	Practical Compression: Which Statistical Algorithm Do I Choose?

	Chapter 6. Adaptive Statistical Encoding
	Locality Matters for Entropy
	Adaptive VLC Encoding
	Dynamically Building a VLC Table
	Literals
	Resets
	Knowing When to Reset
	Using This in Practice

	Adaptive Arithmetic Coding
	Adaptive Huffman Coding
	The Modern Choice

	Chapter 7. Dictionary Transforms
	A Basic Dictionary Transform
	Finding the Right “Words”

	The Lempel-Ziv Algorithm
	How LZ Works
	Encoding
	Decoding
	Compressing LZ output
	LZ Variants

	Collect Them All!

	Chapter 8. Contextual Data Transforms
	Run-Length Encoding
	Dealing with Short Runs
	Compressing

	Delta Coding
	XOR Delta Coding
	Frame of Reference Delta Coding
	Patched Frame of Reference Delta Coding
	Compressing Delta-Encoded Data
	Does It Work on Text?

	Move-to-Front Coding
	Avoiding Rogue Symbols
	Compressing MTF

	Burrows–Wheeler Transform
	Ordering Is Important!
	How BWT Works
	Inverse BWT
	Practical Implementations
	Compressing BWT

	Chapter 9. Data Modeling
	The Chains of Markov
	Markov and Compression
	Practical Implementations

	Prediction by Partial Matching
	The Search Trie
	Compressing a Symbol
	Choosing a Sensible N Value
	Dealing with Unknown Symbols

	Context Mixing
	Types of Models
	Types of Mixing

	The Next Big Thing?

	Chapter 10. Switching Gears
	Media-Specific Compression
	General-Purpose Compression
	Compression in Practice

	Chapter 11. Evaluating Compression
	Compression Usage Scenarios
	Compressed Offline, Decompressed On-Client
	Compressed On-Client, Decompressed In-Cloud
	Compressed In-Cloud, Decompressed On-Client
	Compressed On-Client, Decompressed On-Client

	Compression Need
	Compression Ratio
	Compression Performance
	Decompression Performance
	Ability to Decode-Stream
	Comparing Compressors

	Chapter 12. Compressing Image Data Types
	Understanding Quality Versus File Size
	What Reduces Image Quality?
	Measuring Image Quality
	Making This Work

	Image Dimensions Are Important
	Choosing the Correct Image Format
	PNG
	JPG
	GIF
	WebP
	And Now for Choosing...

	GPU Texture Formats
	Vector Formats
	Eyes on the Prize

	Chapter 13. Serialized Data
	Understanding Common Use Cases
	Dynamically Server-Built Data
	Statically Built Server-Owned Data
	Dynamically Client-Built Data
	Statically Client-Owned Data

	Issues with Serialized Formats
	Human-Readable Text
	Slow Decode Times

	Smaller Serialized Data
	Use a Binary Serialization Format
	Restructure Lists for Better Compression
	Organize for Efficient Fetching
	Segment Out Data into the Proper Compression Format

	Chapter 14. Lossy Data Compression
	Chapter 15. Making the World a Little Smaller
	Data Compression and You
	Data Compression and the Bottom Line
	User Acquisition and Retention
	Running Costs
	Planning Ahead

	Making Your Users’ Lives a Little More Magical and Less Expensive
	Thinking About What’s Next in Technology
	The Next Five Billion Users
	Mobile Networks

	...Starting Now

	Glossary of Compression Words
	Index
	About the Authors
	Colophon

