
www.allitebooks.com

http://www.allitebooks.org

Unity 5.x 2D Game
Development Blueprints

Explore the features of Unity 5 for 2D game development by
building three amazing game projects

Francesco Sapio
Abdelrahman Saher

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Unity 5.x 2D Game Development Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1230916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78439-310-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Francesco Sapio

Abdelrahman Saher

Project Coordinator

Devanshi Doshi

Reviewers

Elizabeth Keegan

Melody Kaye Cariaga

Proofreader

Safis Editing

Acquisition Editor

Larissa Pinto

Indexer

Mariammal Chettiyar

Content Development Editor

Shali Deeraj

Graphics

Disha Haria

Technical Editor

Sachit Bedi

Production Coordinator

Arvindkumar Gupta

Copy Editor

Safis Editing

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Francesco Sapio obtained his computer science and control engineering degree from
Sapienza University of Rome, Italy, a couple of semesters in advance, scoring summa cum
laude. Now, he is studying a master of science in engineering in artificial intelligence and
robotics.

He is a Unity3D and Unreal expert, a skilled game designer, and an experienced user of the
major graphics programs.

Recently, he authored the book Unity UI Cookbook (Packt Publishing) which teaches readers
how to develop exciting and practical user interfaces for games within Unity, and a short e-
guide What you need to know about Unity (Packt Publishing). Furthermore, he has also been a
reviewer for the following books: Unity Game Development Scripting (Packt Publishing) and
Unity 5.x by Example (Packt Publishing).

Francesco is also a musician and a composer, especially of soundtracks for short films and
video games. For several years, he worked as an actor and dancer. He was a guest of honor
at the theater Brancaccio in Rome.

In addition, he is a very active person, having volunteered as a children's entertainer at the
Associazione Culturale Torraccia in Rome. He also gives private lessons in mathematics and
music to high school and university students.

Finally, Francesco loves math, philosophy, logic, and puzzle solving, but most of all,
creating video games, thanks to his passion for game designing and programming.

You can find him at www.francescosapio.com

I'm deeply thankful to my parents for their infinite patience, enthusiasm, and support
throughout my life. Moreover, I'm thankful to the rest of my family, in particular my
grandparents, since they always encouraged me to do better in my life with the Latin
expressions "ad maiora" and "per aspera ad astra." Finally, a huge thanks to all the special
people around me whom I love, in particular to my girlfriend; I'm grateful for all your help
in everything.

www.allitebooks.com

http://www.francescosapio.com
http://www.allitebooks.org

Abdelrahman Saher graduated with a BSc in Computer Science in 2012. After
graduation, he worked for the video game company EverylPlays, where he participated in
the programming of a couple of mobile games. Later, in 2013, he moved into the
challenging role of lead programmer with the video game company Appslnnovate. Apart
from his full-time job, Abdelrahman recently started his own start-up video game company
called Robonite.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers
Elizabeth Keegan is a practitioner in the field of game design and art. She obtained her
bachelors degree from Cleveland's very own Institute of Art and masters degree from UC
Berkeley in Fine Art. Currently, she's heading the continued growth of the Game Design
program at Notre Dame College. Game design has been her primary focus for many years
and spans a range of disciplines. She has worked both collaboratively and independently on
many projects concerning topics such as Artificial Intelligence, Air Pollution, Autism, and
Mental Therapy. More importantly, Elizabeth has taught across a range of age groups and
classrooms. She has worked alongside high school students in summer camps, 9th grade
year, round programs, and college classrooms. All of these experiences have taught her the
power of game development and its ability to facilitate critical thinking and creative
problem solving among many other crucial skills in today’s workplace.
She is the current a game design instructor at Notre Dame College in South Euclid, Ohio,
and has worked alongside Rachel Morris who is the head of the art department.

I would like to thank both Abdelrahman Saher and Francesco Sapio,for providing yet
another accessible resource to those interested in game development. I would also like to
thank Sanchita Mandal and Paushali Desai for including me in the review process.

www.allitebooks.com

http://www.allitebooks.org

Melody Kaye Cariaga graduated from De La Salle College of St. Benilde with a BS in
Information Technology and a specialization in game design and development. This
program was a first in the Philippines; on February 2013, she was a part of the very first
batch of graduates with the title of cum laude under her name.

Since February 2013, she has been working as a game developer. On her first job, she
developed HTML5 games for three major American cable and satellite television networks
aimed mainly at the child and adolescent demographic. In May 2015, she started working
for Xurpas Inc., the first tech startup in Southeast Asia to go on initial public offering, as one
of their Unity developers that create Android games.

Melody is a strong, hardworking woman, who always aims to do better and be better in life.
She is a well-organized individual who never fails to give more than 100% in her work and
never loses sight of her goal. Even though she is driven, she still has time to enjoy playing
games, listening to music, and watching movies. She never loses sight of who she really is.

For all the success and achievements I have received throughout my career, I would like to
thank God Almighty for His everlasting grace, my family for their never-ending guidance
and support, and my special someone for his trust in everything I do.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Sprites 6

2D mode 6
Custom packages 10
Dealing with sprites 10

Importing sprites 11
The Sprite Renderer component 12
The Sprite Editor 16

Our character makes its first steps 19
Summary 24

Chapter 2: Animations 25

Animating sprites 25
Automatic clip creation 25
Manual clip creation 29

The Animator 31
The game 41
Summary 46

Chapter 3: Physics 47

2D physics 47
Rigid bodies 47
Colliders 2D 49

Box Collider 2D 50
Letting the character move 52

Adjusting the Platformer 2D controller 52
Defining a physical shape for the character 56
Improving the Animator 57

Testing the character movement 59
Building a cool level 60
Summary 71

Chapter 4: Level Design 72

Tiled for 2D level design 72
Approaching UI 90
Game handler 96

www.allitebooks.com

http://www.allitebooks.org

[ii]

Adding enemies 99
Summary 105

Chapter 5: Creating Our Own RPG 106

Role-Playing Games 106
Getting ready 106
Importing the level 110
Slicing the sprites for our hero 116
Creating our hero 120
Dressing up our hero 121
Giving the power of movement to our hero 122
Animating the hero 126
Summary 130

Chapter 6: AI and Pathfinding 131

Pathfinding 131
AStar Algorithm in Unity 132

A tool for Unity 133
Setting up the tool 135

Using pathfinding for enemies 140
Shaping our soldier 141
Giving intelligence to the soldier 143
Final notes 149

Summary 151

Chapter 7: Tower Defense Basics 152

Tower Defense games 152
Getting ready 153
Setting up the scene and creating the map 155
Bullets 157

Creating the bullet prefab 157
Scripting the bullet 161

Towers 162
Creating the tower prefab 162
Scripting the towers 164

Enemies 167
Creating the enemy prefab 167
Scripting the enemies 171

Moving along the designed path 171
Detecting towers' bullets 173

Summary 174

[iii]

Chapter 8: User Interface for the Tower Defense Game 175

Getting ready 175
Designing the UI 176
Creating a lives counter 178

Creating and placing the lives counter 178
Scripting the lives counter 180

Implementing a money system 182
Creating and placing the money counter 182
Scripting the money counter 184

The tower seller 186
Creating and placing the tower seller 186
Scripting the tower seller 189
Finishing the tower seller 190

Upgrading the towers 191
How it works 192
Creating and placing the tower menu 192
Scripting the tower menu 194
Finalizing the tower menu 198

Summary 201

Chapter 9: Finishing the Tower Defense Game 202

Getting ready 203
Waypoints for enemies 203

Getting the waypoint coordinates 204
Implementing waypoints in the Game Manager 205
Passing waypoints to the enemies 208

Integrating the UI into the game 208
Integrating the Lives Counter 209
Integrating the Money Counter 210

Placing the towers 211
Allowed areas 212
Scripting the placement script 217
Final tweaking of the Tower prefab 219

Creating an enemy spawner 220
Finishing the gameplay 222

Winning conditions 222
Losing conditions 223

Upgrading towers 224
Finishing the TowerScript 224

[iv]

Final adjustments to the TowerMenuScript 226
Practice makes perfect 226
Summary 228
Goodbye 229

Index 230

Preface
In this book, there are three projects presented: a Platformer game, an RPG-style game, and
a Tower Defense game. Their purpose is to teach you Unity 2D game development with a
practical approach.

What this book covers
Chapter 1, Sprites, introduces the reader to the basic elements of 2D game development in
Unity, Sprites. Furthermore, it gets the reader to start building the platform game.

Chapter 2, Animations, explains how to animate a Sprite in Unity and how to trigger
different animations depending on the state of the character.

Chapter 3, Physics, teaches how to deal with 2D physics in Unity and how to use it to
achieve believable movements.

Chapter 4, Level Design, introduces the reader to the Tiled Map Editor by showing the
workflow from the creation of the map, and how to import it into Unity. Furthermore, it
concludes the platform game.

Chapter 5, Creating Our Own RPG, starts with the foundations for creating the RPG game,
by explaining the basic concepts needed for it.

Chapter 6, AI and Pathfinding, introduces the reader to basic Artificial Intelligence
techniques, such as Pathfinding, and completes the RPG game.

Chapter 7, Tower Defense Basics, explains the basics for the creation of a Tower Defense
game, using all the concepts learned so far.

Chapter 8, User Interface for the Tower Defense Game, dives into more in detail about creating
a user interface for your games, with particular focus on the Tower Defense game.

Chapter 9, Finishing Tower Defense Game, wraps everything up and completes the Tower
Defense game by explaining gameplay elements and how to make all the elements of before
they interact with each other.

Preface

[2]

What you need for this book
For this book, you will need Unity 5.x and Tiled Map Editor 0.16.1.

Who this book is for
If you’ve got the basics of 2D development down, push your skills with the projects in this
hands-on guide. Diversify your portfolio and learn the skills to build a range of awesome
2D games in different genres.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We only
need the base pack folder."

A block of code is set as follows:

 // The Player's speed
 public float speed = 10.0f;

 //Game boundaries
 private float leftWall = -4f;
 private float rightWall = 4f;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

void Awake () {

 moneyCounter =
GameObject.Find("MoneyCounter").GetComponent<MoneyCounterScript>();
 uiImage = GetComponent<Image>();
 TowerScript.towerMenu = this.gameObject;
 }

Preface

[3]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on Asset packages
and select 2D."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / U n i t y - 5 x - 2 D - G a m e - D e v e l o p m e n t - B l u e p r i n t s. We also have other code bundles
from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h

i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s / d o w n

l o a d s / U n i t y 5 x 2 D G a m e D e v e l o p m e n t B l u e p r i n t s _ C o l o r I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/Unity-5x-2D-Game-Development-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Unity5x2DGameDevelopmentBlueprints_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[5]

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Sprites

As we start our journey into the world of 2D game development, let's start this chapter by
talking about the most important elements of creating 2D games. A 2D sprite is a two-
dimensional image that is rendered on your screen while the game is still running.

In this chapter, we will start working on our own Platformer game. It consists of a character
that must navigate through a platform level by jumping and running to achieve certain
tasks. Along the way, we will learn how to use sprites and how Unity handles them. In this
particular chapter, we will cover:

Using the 2D mode within Unity
Importing and rendering sprites
Creating sprite sheets and atlases
Beginning to use scripting

2D mode
Unity has a 2D mode that allows us to quickly set up the project for 2D game development.
In fact, the main reason to use this mode is to automatically import new assets as Sprites.

Sprites

[7]

When creating a new project, you have the option to choose between the 3D and the 2D
mode. Let's select the 2D mode, as shown in the following image:

Now, we need to import the standard assets that we will use to build our game. Click on
Asset packages and select 2D.

Unity doesn't come with the standard packages, you need to download
them from the official website.

Sprites

[8]

Finally, we can click on Create project. If you have used Unity before for 3D game
development, you will notice a few differences in the default interface. In particular, the 2D
view is already selected:

Sprites

[9]

Furthermore, the camera in new scenes will always be orthographic, which is exactly what
we want:

Having selected the 2D mode doesn't mean that you cannot change it any more. In fact, you
can change it to 3D mode whenever you want by going to Edit | Project Settings | Editor
and selecting 3D under Default Behavior Mode.

This can come in handy when adding 3D models to your 2D project and vice versa. It is
recommended that you switch before importing 2D sprites or 3D models to the appropriate
mode since Unity will import textures accordingly.

Sprites

[10]

Custom packages
During the course of this book, we will use custom packages, since we don't have time to
create all the graphics on our own.

For our first game, we are going to use a package from h t t p : / / k e n n e y . n l, which is a
website full of interesting graphic packages, and free to use in any project. In particular, you
need to download the following package: h t t p : / / k e n n e y . n l / a s s e t s / p l a t f o r m e r - a r t - d e

l u x e.

Once the file has been downloaded, it is compressed, so we will need to open it with a
software for decompression.

As you can see, there are many folders containing different expansions of the pack. We only
need the basepack folder. We need to copy this folder into the Asset folder in Unity. You
can do this by just dragging and dropping it in the Project panel. Finally, we can rename it
PlatformerPack, so our project will be better organized.

Dealing with sprites
When working on our 2D game, we need sprites to fill in our environment, and also to
display characters. Several sprites can be used to create an animation, like a walking
character: each sprite represents a certain frame in the animation.

http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe
http://kenney.nl/assets/platformer-art-deluxe

Sprites

[11]

Importing sprites
If we don't import the package when we have created the project, we can
do it at any moment by clicking on Assets | Import Package.

In the Project panel, click on p1_front to see its setting in the Inspector. It can be found
under Platformer Pack | Player, or can be searched by using the small search box in the
right upper corner of the Project panel. Once selected, the Inspector looks like the
following:

Sprites

[12]

You can control the properties of the sprites by changing the values in the Inspector. In
order to understand them, let's break them down:

Sprite Mode: This mode consists of two options Single and Multiple. Single
should be selected when the image contains only a single object or character that
will be used as a single sprite. Multiple, instead, it should be selected when
multiple elements are contained within the same image .These may include
different variations of the same object or its animation sheet.

Packing Tag: This is an optional variable used to specify the name of the Sprite
Sheet in which this texture will be packed. This is useful when we need to
optimize our game.
Pixels Per Unit: This controls the scale of the sprite. This variable defines how
many pixels correspond to one world space unit. The default value for this is 100.
Pivot: This allows us to change the pivot point for our sprite, which, by default, is
set to Center. When required, you can change it to one of the other predefined
points or place it in a custom position by selecting Custom.

Choosing Multiple instead of Single in the sprite mode will remove the
pivot option. In fact, the pivot point for each sprite in the image can be
selected by using the Sprite Editor.

The Sprite Renderer component
Since we already have the p1_front sprite selected, let's drag it into the Hierarchy panel.

You can place it in the scene by dragging it directly inside the Scene view.

Sprites

[13]

When we add a sprite in our scene, a game object is created with a Sprite Renderer
component attached to it. This component is responsible for rendering a Sprite in the
game; without it, the game object would be empty.

Sprites

[14]

Let's explore the options in this component. First, Sprite is the variable that will store the
sprite to render on screen. In this case, it is automatically with the sprite we have dragged
in. The Color variable controls the color of the Sprite along with its alpha channel. If we
click on it, a color picker shows up; we can see the effect of our change immediately in the
Scene view:

The Material variable stores information about the material of the sprite. By default, it is set
to Default Sprite Material. Usually, we don't want to change this during 2D game
development; however, it may be necessary in particular cases, for instance when the sprite
needs to be affected by lights.

Sprites

[15]

Then, the Sorting Layer and Order In Layer variables are used to define the order of
visualization of the sprites in the scene. In fact, not all the sprites are on the same level.
Think about a background, a cloud, and our character. The cloud should be located on top
of the background and the character should be on top of both of them. By default, the
Sorting Layer is set to Default and Order In Layer to 0. So far, Default is the only layer
available. Since we want to order our sprites later, let's create a few more layers. Click on
Add Sorting Layer under Sorting Layer. As a result, the Inspector shows us the Tags &
Layers settings. By clicking on the + button in the right bottom corner, we are able to add
other sorting layers. Let's add two more layers, and name them respectively Background
and Foreground, as shown in the following image:

The order of these layers is important. We can easily change it by clicking on the designated
layer and dragging it above or below another one.
Now, select the game object we have created in the Hierarchy panel again. In the Inspector,
we are able to change its sorting layer to Foreground.

Before going forward, create a new folder in the Project panel named Scenes and save the
scene inside it as Scene1. We can do this by clicking on File | Save Scene.

Sprites

[16]

The Sprite Editor
In the importing settings, we can find the Sprite Editor button. After we have selected
p1_spritesheet again from Platformer Pack | Player, we can now click on the button. As
a result, the Sprite Editor window shows up.

The Sprite Editor should be used when dealing with a sprite that contains multiple
elements (If this is the case, don't forget to set Multiple in the Sprite Mode). So, we should
see something like the following:

Sprites

[17]

Our goal is to slice all the single positions of the character in the image, so that we can use
them as an individual sprites in our scene. There are different ways to achieve this. Let's
discuss some of them:

Click and drag: This allows you to simply click and drag over the desired
elements to create rectangular selections that will define each sprite. You can
change each selection as preferred. You are able to change the position by
dragging the rectangle, its size by clicking on the corners of each rectangle, and
the Pivot point by clicking and dragging it. Furthermore, clicking on the trim
button in the sprite window will change the size of the rectangle to fit the selected
sprite.

By clicking on the slice button in the top left of the Sprite Editor, a new
window appears. This allows you to select other ways to slice your Sprite
Sheets. The default slicing type is set to Automatic, but you can also choose
different kinds of grids too.

Automatic: When using the automatic method, Unity will detect each sprite and
draw a trimmed rectangle around it. With Automatic selected, you can also
change the Pivot position for each sprite. We can also select a Method to tell
Unity what should happen to the sprites that are already defined. The Delete
Existing method deletes all the previous selections and creates new ones from
scratch. The Smart method attempts to create new selections for undefined
sprites, while adjusting them to fit with the older selections. Finally, the Safe
method adds new selections over the previous ones without changing them.
Grid: This allows you to create equal size selections for all the sprites in the
image. Once we have set Grid as slicing type, then we will be able to change the
size used for the slicing, and eventually adjust the position of the Pivot point for
each sprite.

www.allitebooks.com

http://www.allitebooks.org

Sprites

[18]

In particular, for our project, we can just use the Automatic method – it will work fine.

By clicking on the Revert button, we can restart from scratch, removing all
the previous selections.

After closing the Sprite Editor, let's check the image file in the Project panel. As you can
see, a little icon appeared and it allows us to expand the file and see all the single Sprites
we have created in the Sprite Editor. Now, these can be used as normal Sprites in our
game and can be placed in our scenes and scripts.

Having a single image with different Sprites is a technique called Sprite
sheets. When importing sprites to your game project, it is preferred to
group them into one image. This is because Unity can send a single file in
the graphic card, and, as a result, enhance the performance by saving both
memory and computational time.
Furthermore, sprite sheets are useful for creating 2D animations (such as
walking, jumping, breathing, and explosions). In fact, it allows us to keep
everything organized and easy to use. In the next chapter, we will discuss
the process of animation in more detail.

Sprites

[19]

Our character makes its first steps
Starting from this chapter, and continuing in the next two, we will work on our first project.
It is a Platformer game that resembles the original Mario game.

In this chapter our objective is to create a character that will move on a platform across the
x-axis. We can achieve this by using the player input. Now, let's continue from where we
stopped. We should have a game object named p1_front, now we can rename it as
Player. As a result, your scene should look like the following:

However, our character is now floating in the middle of nowhere. Therefore, adding some
ground for him to move on is a good start. To achieve this, go to the Project panel and from
the Platformer Pack folder select tiles_spritesheet. We can see its Import Settings in
the Inspector. We need to change the Sprite Mode to Multiple and then click on Apply.

Sprites

[20]

Open the Sprite Editor for our selected asset by clicking on the Sprite Editor button. As we
did before, we can slice the image by using the Automatic method and it will work fine.
Now that each sprite has been sliced, click on Apply and close the editor. You will now
notice that more sprites have been generated under tiles_spritesheet, as shown here:

In order to keep things organized, let's create a new empty game object. It can be done by
right-clicking in the Hierarchy panel, and then selecting Empty game object. In the
Inspector, we can rename this Floor and change its position in (0,0,0), as shown in the
following image:

Sprites

[21]

Now we can drag the sprite named tiles_spritesheet_9 onto the Floor object we just
created. Rename the file to Floor_1 and set its position to (-2,-0.65, 0). Now we also
need to change the sorting layer to Foreground and the sorting order to 1 so it doesn't
overlap with our player.

As you can see, we have the first tile of our floor under the player and now we want to
create more tiles in order to create a floor that the player can walk on. We could scale the
Floor_1 object to make it larger. However, the advantage to having titles is the possibility
to use more of them next to each other in a seamless way. Therefore, let's duplicate it. To
achieve this, select the Floor_1 object and then you can duplicate either by right-clicking
and selecting Duplicate, or by using Ctrl + D (for Mac users cmd + D). You will notice that
the new object is automatically named Floor_2, which is what we would like to have to
keep things organized. Click on the new object and by using the Rect tool, move it to the
left from the scene view, next to the original object. Now, to get our floor, let's repeat this
procedure and move the tiles, until we have something like the following:

If you want to reproduce the scene like in the previous image, the last tile on the right is
positioned at (2,-0.65,0).

You can duplicate groups of objects when you need to duplicate large
pieces of the map.

Sprites

[22]

After finishing the floor tiles, let's check the game view. It appears that the objects are rather
small. We can fix this by scaling the game objects. This is not best practice, because usually
the graphics should already be created without the need to scale. On the other hand, we
may want to change the camera settings to look at our world more closely. However, for the
purpose of learning something new, we can change the scale of the player to (2, 2, 1).
This way, we can make our player bigger. Repeat the same with the Floor game object by
setting its scale to (2, 2, 1). As a result, all of its children (for example, the single tiles of
the floor) will be scaled. As a result, the game view should look like the following:

Our next step is allowing the player to move the character, in this case, along the x-axis. To
achieve this, we need to create a script. In the Project panel, create a new folder and rename
it as Scripts. In this new folder, let's create a new C# script by right-clicking and then
selecting Create | C# Script. Rename it to PlayerMovement and then attach the script to
our player by dragging and dropping it onto the player object. Double-click on the script to
open it.

First, we need to add some variables to control the movement. In particular, one for the
speed, and another two for the boundary of our world. Let's add the following variables:

 // The Player's speed
 public float speed = 10.0f;

 //Game boundaries
 private float leftWall = -4f;
 private float rightWall = 4f;

Sprites

[23]

Now, in the Update() function we first need to calculate how far it will be translated and
where, based on the input of the player. In this case, we take the horizontal axis, which, by
default, is bound to the arrow keys. In order to calculate this, we need to take into
consideration how much time is passed from the last frame. This can be done by adding
Time.deltaTime into the equation. Then, we need to translate the character so it doesn't
fall off the boundary after the translation. So we will write the following:

 // Update is called once per frame
 void Update () {
 // Get the horizontal axis that by default is bound to the arrow
keys
 // The value is in the range -1 to 1
 // Make it move per seconds instead of frames
 float translation = Input.GetAxis("Horizontal") * speed *
Time.deltaTime;
 // Move along the object's x-axis within the floor bounds
 if (transform.position.x + translation < rightWall &&
 transform.position.x + translation > leftWall)
 transform.Translate(translation, 0, 0);
 }

Save the changes and hit the play button. By using the left and right arrow (alternatively A
and D), you will be able to move the character across the platform. You can change the
speed of the player by adjusting the speed value from the Inspector, as shown here:

Sprites

[24]

Now, our scene needs a background. In the Project panel in the Platformer Pack folder
drag the file bg into the scene. Rename the game object to Background and set the scale to
(5,3,0). As a result, the game view should look like the following:

Summary
In this chapter, we covered 2D sprites and started working on our first project. In particular,
we have discussed the 2D mode, importing Sprites, the Sprite Renderer component,
and the Sprite Editor. We also learned how to use sprites in our game and how to script a
character to make it move along the x-axis.

In the next chapter, we will bring our character to life by adding animations into our game!

2
Animations

Animating sprites is what makes them and the game come to life. Some 2D games are made
just with static images by design. However, in our case, we will make animations and go
through the process of animating 2D characters in Unity.

In this chapter, we will learn how to create and play animations for the player character to
see as Unity controls the player and other elements in the game. This is what we will go
through:

Animating sprites
Integrating animations into animators
Continuing our platform game

Animating sprites
Creating and using animations for sprites is a bit easier than other parts of the development
stage. By using animations and tools to animate our game, we have the ability to breathe
some life into it. Let's start by creating a running animation for our player. There are two
ways of creating animations in Unity: automatic clip creation and manual clip creation.

Automatic clip creation
This is the recommended method for creating 2D animations. Here, Unity is able to create
the entire animation for you with a single click.

Animations

[26]

If you navigate in the Project Panel to Platformer Pack | Player | p1_walk, you can find an
animation sheet as a single file p1_walk.png and a folder of a PNG image for each frame of
the animation. We will use the latter. The reason for this is because the single sprite sheet
will not work perfectly as it is not optimized for Unity.

In the Project Panel, create a new folder and rename it as Animations. Then, select all the
PNG images in Platformer Pack | Player | p1_walk | PNG and drop them into the
Hierarchy Panel:

Animations

[27]

A new window will appear that will give us the possibility to save them as a new animation
in a folder that we choose. Let's save the animation in our new folder, titled Animations, as
WalkAnim:

After saving the animation, look in the Project Panel next to the animation file. Now, there
is another asset with the name of one of the dropped sprites. This is an Animator
Controller and, as the name suggests, it is used to control the animation. Let's rename it
to PlayerAnimator so that we can distinguish it later on.

Animations

[28]

In the Hierarchy panel, a game object has been automatically created with the original
name of our controller. If we select it, the Inspector should look like the following:

You can always add an Animator component to a game object by clicking
on Add Component | Miscellaneous | Animator.

As you can see, below the Sprite Renderer component there is an Animator component.
This component will control the animation for the player and is usually accessed through a
custom script to change the animations. We will do this later on. So, for now, delete this
new object that we have created, since we will use our character from the previous chapter.

For now, drag and drop the new controller PlayerAnimator on to our Player object.

Animations

[29]

Manual clip creation
Now, we also need a jump animation for our character. However, since we only have one
sprite for the player jumping, we will manually create the animation clip for it.

To achieve this, select the Player object in the Hierarchy panel and open the Animation
window from Window | Animation. The Animation window will appear, as shown in the
following image:

As you can see, our animation WalkAnim is already selected. To create a new animation
clip, click on where you see the text WalkAnim. As a result, a drop-down menu appears and
here you can select Create New Clip. Save the new animation in the Animations folder as
JumpAnim.

On the right, you can find the animation timeline. Select from the Project Panel the folder
Platformer Pack/Player. Drag and drop the sprite p1_jump on the timeline. You can
see that the timeline for the animation has changed. In fact, now it contains the jumping
animation, even if it is made out of only one sprite. Finally, save what we have done so far.

The Animation window's features are best used to make fine tunes for the animation or
even merging two or more animations into one.

Animations

[30]

Now the Animations folder should look like this in the Project panel:

By selecting the WalkAnim file, you will be able to see the Preview panel, which is
collocated at the bottom of the Inspector when an object that may contain animation is
selected. To test the animation, drag the Player object and drop it in the Preview panel and
hit play:

Animations

[31]

In the Preview panel, you can check out your animations without having to test them
directly from code. In addition, you can easily select the desired animation and then drag
the animation into a game object with the corresponding Animator Controller and drop
it into the Preview panel.

The Animator
In order to display an animation on a game object, you will be using both Animator
Components and Animator Controllers. These two work hand in hand to control the
animation of any animated object that you might have, and are described below:

Animator Controller uses a state-machine to manage the animation states and
the transitions between one another, almost like a flow chart of animations.
Animator Component uses an Animator Controller to define which
animation clips to use and applies them on the game object when needed. It also
controls the blending and the transitions between them.

Let's start modifying our controller to make it right for our character animations. Click on
the Player and then open the Animator window from Window | Animator. We should see
something like this:

Although it is automatically generated, this is a state machine. To move around the grid,
hold the middle mouse button and drag around.

Animations

[32]

First, let's understand how all the different kinds of nodes work:

Entry node (marked green): This is used when transitioning into a state machine,
provided the required conditions were met.
Exit node (marked red): This is used to exit a state machine when the conditions
have been changed or completed. By default it is not present, as there isn't one in
the previous image.
Default node (marked orange): This is the default state of the Animator and is
automatically transitioned to from the entry node.
Sub-state nodes (marked grey): These are also called custom nodes. They are
used typically to represent a state for an object where an event will occur (in our
case, an animation will be played).
Transitions (arrows): These allow state machines to switch between one another
by setting the conditions that will be used by Animator to decide which state will
be activated.

To keep things organized, let's reorder the nodes in the grid. Drag the three sub-states right
under the Entry node. Order them from left to right WalkAnim, New Animation, and
JumpAnim. Then, right-click on New Animation and choose Set as Layer Default State.
Now, our Animator window should look like the following:

Animations

[33]

To edit a node, we need to select it and modify it as needed in the Inspector. So, select New
Animation, and the Inspector should look like the following image:

Animations

[34]

Here, we can have access to all the properties of the state or node New Animation. Let's
change its name to Idle. Next, we need to change the speed of the state machine, which
controls how fast the animation will be played. Next, we have Motion, which refers to the
animation that will be used for this state. After we have changed the name, save the scene,
and this is what everything should look like now:

We can test what we have done so far, by hitting play. As we can see in the Game view, the
character is not animated. This is because the character is always in the Idle state and there
are no transitions to let him change state. While the game is in runtime, we can see in the
Animator window that the Idle state is running. Stop the game, and right-click on the
WalkAnim node in the Animator window. Select from the menu
SetasLayerDefaultState. As a result, the walking animation will be played
automatically at the beginning of the game.

Animations

[35]

If we press the play button again, we can see that the walk animation is played, as shown in
the following image:

You can experiment with the other states of the Animator. For example, you can try to set
JumpAnim as the default animation, or even tweak the speed of each state to see how they
will be affected.

Now that we know the basics of how the Animator works, let's stop the playback and
revert the default state to the Idle state.

Animations

[36]

To be able to connect our states together, we need to create transitions. To achieve this,
right-click on the Idle state and select Make Transition, which turns the mouse cursor into
an arrow. By clicking on other states, we can connect them with a transition. In our case,
click on the WalkAnim state to make a transition from the Idle state to the WalkAnim state.
The animator window should look like the following:

Animations

[37]

If we click on the arrow, we can have access to its properties in the Inspector, as shown in
the following image:

The main properties that we might want to change are:

Name (optional): We can assign a name to the transition. This is useful to keep
everything organized and easy to access. In this case, let's name this transition
StartWalking.
Has Exit Time: Whether or not the animation should be played to the end before
exiting its state when the conditions are not being met any more.
Conditions: The conditions that should be met so that the transition takes place.

www.allitebooks.com

http://www.allitebooks.org

Animations

[38]

Let's try adding a condition and see what happens:

When we try to create a condition for our transition, the following message appears next to
Parameter does not exist in Controller which means that we need to add parameters that
will be used for our condition.

To create a parameter, switch to Parameters in the top left of the Animator window and
add a new float using the + button and name it PlayerSpeed, as shown in the following
image:

Animations

[39]

Any parameters that are created in the Animator are usually changed from code and those
changes affect the state of animation. In the following image, we can see the PlayerSpeed
parameter on the left side:

Now that we have created a parameter, let's head back to the transition.

Animations

[40]

Click the drop down button next to the condition we created earlier and choose the
parameter PlayerSpeed. After choosing the parameter, another option appears next to it.
You can either choose Greater or Less, which means that the transition will happen when
this parameter is respectively less than X or greater than X. Don't worry, as that X will be
changed by our code later on.

For now, choose Greater and set the value to 1, which means that when the player speed is
more than one, the walk animation starts playing.

You can test what we have done so far and change the PlayerSpeed parameter in runtime.

Animations

[41]

The game
In this chapter, the goal for our game is to apply the walk animation when the player is
moving. Furthermore, we will prepare the jump animation for the next chapter. To achieve
that, we need to set up the rest of the transitions.

In the Animator window, let's add a new transition from WalkAnim to Idle and name it
StopWalking. Then, we need to add a condition that will trigger the transition. This
transition will use the parameter PlayerSpeed so that when its value becomes less than one
the transition is triggered.

Now that the transitions between Idle and WalkAnim are ready, let's do the same to the
JumpAnim state.

Animations

[42]

We need to make a transition from the Idle state to the JumpAnim state and vice-versa; we
will name them StartJump and EndJump, respectively.

However, we are going to need another parameter to see if the player is currently jumping.
We can do this by adding another parameter named Jump as a Boolean in the Animator
window and set it to false.

This is what the Animator window should look like right now:

After adding the new Jump parameter we can configure the two new transitions for
JumpAnim:

For the first transition, name it Start Jump, add a condition, and choose the
Jump parameter with its value as true
For the second transition, name it Stop Jump, add a condition, and choose the
Jump parameter with its value as false

Animations

[43]

What this means is that when the Jump variable is set to true, our player will play the jump
animation and then it will stop once the variable changes to false, which will be done
through code.

Animations

[44]

A good edit to do in this instance is to change the Has Exit Time variable in all the
transitions to false in order to avoid waiting for the states to finish their transitions.

The next step is to apply the walk animation to the player movement and prepare the jump
controls. In the project panel, double-click on the script we created in the previous chapter,
PlayerMovement, inside the Scripts folder to open it.

We need to add another variable to store the reference to the Animator Component
attached to the Player game object:

 //Reference to the Animator
 private Animator anim;

Animations

[45]

In the Start() function, we need to get the reference to the Animator by calling the
GetComponent() function:

 void Start() {
 anim = GetComponent<Animator>();
 }

We need to change the Update() function so that we can take care of the Animator and
change its parameters accordingly. As a result, our character will be animated. Let's start to
add this piece of code between the two lines of code we had before, just before the if-
statement:

 float translation = Input.GetAxis("Horizontal") * speed *
Time.deltaTime;

 //Change direction if needed
 if (translation > 0) {
 transform.localScale = new Vector3(1, 1, 1);
 }
 else if (translation < 0) {
 transform.localScale = new Vector3(-1, 1, 1);
 }

 // Move along the object's x-axis within the floor bounds
// ...

In this way, we flip the character according to its direction. Now, we need to take care of the
Animator so it can change the animation accordingly. To do this, let's add this at the end of
the Update() function:

 // Switching between Idle and Walk states in the animator
 if (translation != 0) {
 anim.SetFloat("PlayerSpeed", speed);
 }
 else {
 anim.SetFloat("PlayerSpeed", 0);
 }

Furthermore, we may want to switch to the Jump animation. For the sake of learning, we
can just switch between the Jump animation and the walking animation every time the
player presses the space bar. So, after what we have written before, let's add:

 // Switching between Jump and Walk animation
 if (Input.GetKeyUp(KeyCode.Space)) {
 anim.SetBool("Jump", !(anim.GetBool("Jump")));
 }

Animations

[46]

Save the changes and press the play button. When moving the player using the left and
right arrow (alternatively A and D), you see the character playing the Walk animation. Also,
when pressing the Jump (space) button, the character changes from the Idle sprite to the
Jump sprite (Animation). Here is a screenshot of the game while playing after saving the
changes:

Summary
This wraps up everything that we will cover in this chapter. So far, we have added
animations to our character to be played according to the player controls. A brief summary
of what we have discussed would be creating animations, animator controllers, state
machines for Animation, and using animations in our game through the use of Scripts.

In the next chapter, we will make things even more realistic by using physics and applying
it to our game.

3
Physics

Adding physics to any game adds realism and makes it more convincing to the player. You
can still make games without the use of physics, but you will be giving up an opportunity
to make your game a lot more awesome!

In this chapter, we will learn how to apply Unity's 2D physics to our game and cover some
of the basics of Unity, such as:

Getting to know colliders
Controlling the character
Continuing our game

2D physics
Unity's 2D physics engine is very similar to its 3D one. Almost all of the physics
components have been integrated into the 2D engine with a slight difference in names (Box
Collider 2D, Circle Collider 2D, Rigidbody 2D, and so on…).

It is important to understand that 2D physics components will not interact with 3D physics
components if both exist within the same scene. Even though they both share a lot of
similarities, 2D physics only occur on the X and Y axis, and rotating an object using physics
will only occur on the X axis.

If you wish to change any of the settings of the 2D physics engine, you can find all of its
properties by navigating to Edit | Project Settings | Physics 2D.

Physics

[48]

Rigid bodies
Just like the 3D engine, the Rigidbody2D component controls the physical behavior of any
game object it is attached to inside the scene. It also defines its physical properties, such as
mass, and how gravity should affect an object.

To begin with rigid bodies, let's add this component to our Player object by clicking on
Add Component | Physics 2D | Rigidbody 2D. The Inspector should look like the
following:

Let's see the main features of this component:

Mass: Mass of the rigid body; the greater the value the greater the force that will
be required to move the object.
Liner Drag: This is the amount of friction that a force has to work against to make
an object move.

Physics

[49]

Angular Drag: This is the amount of rotational friction that a force has to work
against to make an object rotate.
Gravity Scale: This is the amount of gravity that affects a game object. The
greater the value, the stronger the gravitational force.
Fixed Angle: When marked true, the rigid body will continue to respond
normally to the physics forces, but without rotating.
Is Kinematic: When marked true, the object will not respond to any physics
forces around it. This is typically used when an object needs a special type of
physics behavior that can be created by a custom script.

In order to test the effects of the component, let's press the play button. At the moment, our
player keeps falling down passing through every object on its way, as we can see in the
following image:

To prevent this from happening, we need to start using Unity's 2D colliders!

Colliders 2D
In order to define the dimension of an object in the scene, we need to add a collider
component that defines its shape and that reacts if a rigid body is attached to it.

There are four types of 2D colliders in Unity:

Box Collider 2D: This type of collider works better with rectangular objects
Circle Collider 2D: As given by its name, this collider works better with circular
objects

Physics

[50]

Polygon Collider 2D: Its shape is defined by a freeform edge made by line
segments that surround the sprite
Edge Collider 2D: It is used to define a surface without using a series of other
colliders

When the first three colliders are added to a game object, they are automatically adjusted to
best fit the sprite attached to the object.

Box Collider 2D
Let's try to add a box collider to the objects in our scene and see what happens. Similar to
adding a rigid body, we can add a collider by clicking on Add Component | Physics 2D |
BoxCollider2D. We can start to add this component to the Player object. The Inspector
should now look as follows:

Physics

[51]

Let's explore the main features of this component:

Edit Collider: This is a button that allows us to manually adjust the shape of the
collider. This can also be done in the Scene view.
Material: This is a reference to the 2D physics material that will define the object's
behavior when colliding with other objects.
Is Trigger: When checked, the collider will act as a trigger to fire events from the
code.
Used By Effector: If marked true, this collider will be used by an attached effector
to define it. We will see them later in the chapter.
Offset: This allows us to change the center or pivot point of the collider.
Size: This allows us to change the size of the collider for each axis.

Now that the player object is physically defined, we should do the same for the floor tiles.
We can avoid repeating this operation for each of them, by multi-editing them. We just need
to select all the floor objects and then add the BoxCollider2D as we did before in the
Inspector:

As a result, all of the objects in our game can interact using the Unity Physics engine. In fact,
now, our player will not fall through the floor when walking on it. In the Scene view, the
colliders look like green boxes surrounding the objects, as seen in the following image:

Physics

[52]

If we press the play button, we can see that our player doesn't fall through the floor
anymore. However, he stands still in the middle of the scene without the possibility for us
to control his movement. So, let's change that!

Letting the character move
In the following section, we will learn how to use the 2D controller and the physic engine of
Unity to let our character move.

Adjusting the Platformer 2D controller
Before we start to add a new controller, we need to remove the previous one. So, select the
Player object, and in the Inspector, right-click on the PlayerMovement script and then
Remove Component. As a result, our script will no longer be attached to the Player object.

Since we are going to use the Character Controller inside the
Standard Assets, we need to have it in our project. If you haven't
downloaded it yet, you can do so by going in the Asset Store: Window |
Asset Store or alternatively, Ctrl + 9. If you have already downloaded
them, but not imported them into this project, you can do so by by clicking
on Assets | Import Package or again, using the Asset Store. At the end,
you should have everything that you need in the 2D folder.

Physics

[53]

Let's add the components PlatformerCharacter2D and Platformer2DUserControl to
the Player object. You can use either the search tool in the Project panel and then drag and
drop them, or click on Add Component | Scripts in the Inspector when the Player object
is selected.

At the end, the PlatformerCharacter2D component should look as follows:

Let's see what the main features of this controller component are:

Max Speed: This is the maximum speed that the player can reach when moving
along the X axis
Jump Force: This is the force that will be applied to the player's rigid body when
he jumps
Crouch Speed: This is the player's speed while crouching (crouching is done by
pressing Ctrl)

Physics

[54]

Air Control: If marked true, the player can also be controlled in air, when he is
not being grounded
What Is Ground: These are the layers that will be treated as the ground

The PlatformerCharacter2D component makes use of the rigid body attached to the
object to move the character in a Platformer fashion. It still allows us to use the other
physical forces in the scene, making the character even more believable.

However, before we use it, we need to make some changes to the controller. As a result, we
can achieve exactly what we want:

Let's start by changing the values in the PlatformerCharacter2D component to1.
match the values shown in the following image:

Physics

[55]

Now we need to define which are the top and bottom ends of the Player object.2.
This is because they are used by the PlatformerCharacter2D component to
understand the dimensions of the character. We can easily do this by adding two
empty child game objects to the Player, as shown in the following image:

Now we also need to adjust their positions. Here are the CeilingCheck settings:

Here are the GroundCheck ones:

Physics

[56]

Defining a physical shape for the character

For the next step, we have to give a physical shape to our character. So, let's add another
collider: CircleCollider2D. Now, we need to adjust the values on both the colliders that
are attached to the player, as shown in the following image:

Physics

[57]

This is how the colliders will look in the Scene view after the changes:

Finally, in the RigidBody2D component, we need to change Fixed Angle to True. As a
result, our character will not rotate. Also, in the Interpolate variable, choose the
Interpolate method in order to smooth the character movement.

Improving the Animator
In the Animator component, choose Animate Physics inside the Update Mode. We use
this option to keep the animator in sync with the FixedUpdate calls in the code. As a result,
our character is animated properly.

In the next step, we have to change the Animator parameters in order to match the variables
in the PlatformerCharacter2D class. Select the Player object and open the Animator
window by double-clicking on it. Now, we need to apply the following changes:

Rename the parameter PlayerSpeed to Speed. This is the speed of the player.1.
Rename the parameter Jump to Ground. This stores information about whether2.
the character is grounded or not.

Physics

[58]

Add a new parameter of type Boolean and name it Crouch. This stores if the3.
player is crouched or not.
Add a new parameter of type float and name it vSpeed. This is the vertical4.
speed.

So, in the end, we should have the following parameters set in the Parameters tab:

Now that we have set the parameters, we can use them in our state machine. So, let's start to
modify it by following these steps:

Delete the transition from the Idle state to the Jump state.1.
Add a new transition from Any State to Jump and name it StartJump. Then,2.
add a new condition that uses the Ground parameter with the value False.
In the transition from Jump to Idle, change the Transition Duration to 0, so to3.
minimize the time between the two states. Also, make sure that the condition
uses the Ground parameter with the value True.
In the transition from Idle to Walk, the condition should use the Speed4.
parameter with a value greater than 0.1, and not the old parameter we have
erased.
Finally, in the transition from Walk to Idle, again the condition has to use the5.
Speed parameter with a value less than 0.1.

Physics

[59]

After we have made the above changes, the Animator screen should look as follows:

Testing the character movement
As the last step, we can press the play button and see what we have achieved so far. As you
move the character, you can see that he moves along the X axis and he can jump!

Physics

[60]

Building a cool level
Now that we have the character fully animated and controllable, it's time to build a cool
level to let him move in. In order to organize the level, we can follow these steps:

Delete both Floor_1 and Floor game objects (since we start from scratch).1.
Create two new objects, Level and Floors_1. Reset their position (all zeros) and2.
scale (all ones).
Create a Floor_1 game object from the tile we want to use. Furthermore, set its3.
scale to (2.15,2,1). Finally, add a Box Collider 2D.
Parent them to each other in the following order: Floor | Floors_1 | Floor_1,4.
as shown in the following image:

Physics

[61]

This is what the Inspector should look like:

Add the component PlatformEffector2D to the object Floor_1. To easily find5.
it, you can use the search tool or navigate to Component | Physics 2D.
Check the Used By Effector variable in the collider to True.6.

Physics

[62]

Change the PlatformEffector2D component to match the following image:7.

In the Box Collider 2D component of Floor_1, use Slippery as the physics8.
material. It can be found in the Standard Assets.

Physics

[63]

Duplicate the child floor object until you achieve the following appearance (leave9.
a distance of 1.5 between each block on the X axis):

This is the appearance in the Scene view.10.

Physics

[64]

Change the position of the object Floor_1 to (-5,-1.5,0).11.

Keep duplicating the floor objects until you achieve the following result:12.

To quickly duplicate game objects, you can use prefabs. They are real
time savers.

Final result achieved by duplicating (or using Prefabs). How it appears in the Project panel.

Physics

[65]

Change the position of the player object to the following (-4,0,0) and make13.
sure that its tag is set to Player:

Select the Camera object and add the Camera2DFollow component. To add the14.
component, use the search tool or navigate to Component | Scripts.

Physics

[66]

Inside the Camera2DFollow component, set the target to the player object, then15.
set both Damping and Look Ahead Factor to 0:

Physics

[67]

Now, let's try to play this level and see what we have so far!

Physics

[68]

As you can see, we now have a nice Platformer level. But, before going further, we need to
understand the changes that we have made to our scene. They are explained as follows:

PlatformEffector2D: This built-in component, when added to an object with a
collider, can apply various platform behaviors such as the One Way Collision
which enables the player to go through a platform when jumping upwards but
doesn't let him pass through when falling down.
Camera2DFollow: This script controls the camera to track the player when he
moves. It can be found in the 2D package in the StandardAssets folder.

Now the level is okay, but we can still add a few touches to spice things up! For instance,
you can try the following:

Under the Floors_4 object, change the OneWay variable in its children1.
PlatformEffector2D component to True:

Here is where it is located in the Scene View.

Physics

[69]

And here is how the components appear in the Inspector.

Under the Floors_4 object, remove the componentPlatformEffector2D from2.
its children.
Under the Floors_4 object, add the component SurfaceEffector2D to its3.
children and set the Speed variable to 5. To add this component, use the search
tool or navigate to Component | Physics 2D. Here it is in the Scene view:

Physics

[70]

Here it is in the Scene view:

The SurfaceEffector2D component applies a force along the surface of the collider,
which in turn moves the physical bodies on top of it accordingly.

Physics

[71]

Let's see what we have accomplished so far in this chapter! So, make sure to save the scene
first and then hit play:

That's it! Now that we have changed the player movement to respond to the physical forces
in the scene, which added more realism to our game. You can play around and build
different scenarios so you can be confident with the concepts explained in this chapter.

Summary
In this chapter, we covered 2D Physics Engine and the use of 2D colliders and the platform
controller. After that, we applied what we learned to our game. In the next chapter, get
ready, because we are going to finish this game!

4
Level Design

Great games are often games that contain beautiful environments. However, creating a nice
looking level is not an easy task to accomplish, even in 2D.

In this chapter, we will learn how to create a proper level. The following is what we will
cover:

Level design with tiled images
Approaching UI
Implementing game logic
Scripting and placing enemies in the level

Tiled for 2D level design
In this chapter, we are going to finish the game that we started in the previous chapters. To
begin, let's start by designing an even cooler level!

Before we start creating our level, it's good practice to design our level on
paper, even if it's some sketches of different ideas.

We will be using a third-party tool named Tiled for this purpose. Tiled is a free 2D map
editor that will save you a lot of time working on your levels. It is a tool that makes it much
easier to create a 2D level, instead of doing it within Unity by duplicating game objects.
Here is the download link for it: h t t p : / / w w w . m a p e d i t o r . o r g / d o w n l o a d . h t m l.

http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html
http://www.mapeditor.org/download.html

Level Design

[73]

Lastly, in order to use what you will create in Tiled, you also need to download another
program called Tiled2Unity. It is a utility that allows us to import levels that have been
created in Tiled, as prefabs into Unity. Here is the link to download Tiled2Unity: h t t p : / / w w

w . s e a n b a . c o m / t i l e d 2 u n i t y.

After installing both programs, we can start by opening Tiled. This is what it looks like
when it is opened:

http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity
http://www.seanba.com/tiled2unity

Level Design

[74]

Click on the New button in the top-left corner. A box will appear on screen, where we can
set the new map properties, as shown in the following image:

From the Tilesets panel in the bottom-right corner, click on New Tileset:

Level Design

[75]

Link the source to the Tiles sprite sheet we have in our project PlatformerPack |
tiles_spritesheet.png and configure the rest, as shown in the following image:

A new map will be created with our tiles being available for selection in the Tilesets panel:

Level Design

[76]

Before we start drawing, a good rule of thumb is to select Snap to Grid and Snap to Fine
Grid in the View menu:

Level Design

[77]

Click on any of the tiles and left-click and drag your mouse inside the map. Here, you will
see that the tile is being placed in each grid you pass over:

Now, let's try to make something a little more pleasing to the eye than the preceding image.
An example can be using a mixture of the tiles that we've got:

Level Design

[78]

While painting your way through the level, you may have noticed the Layers panel and that
the current layer we have been working on is called TileLayer1. Let's call it Ground and
then add another layer called Water:

Level Design

[79]

Layers allow you to improve the organization of your level. All the work we've done so far
has been put on the Ground layer, which is good. But now we need to add some water.
Therefore, select the Water layer and add some water tiles. Make sure to leave the top three
tiles empty; we will use them next. Now, to finish the water area of our map off, add the
wave tiles to the top in the empty space above the original water area, as shown in the
following image:

Each layer has its own properties, and the cool thing is that when we import the map using
Tiled2Unity, it will apply each layer's properties to the soon to be in-game objects. This can
save a lot of time later on.

Select the Ground layer and navigate to the Properties panel on the left-hand side of the
screen and add the following Custom Properties:

Level Design

[80]

Now, let's repeat these steps again for the the Water layer, but change the unity:isTrigger
property to true instead of false. In fact, we will use this trigger later in the game to check
if the player falls into the water gap.

The next step is to add some colliders to our tiles in the map. To add a collider to a tile, you
need to select that tile from the Tilesets panel and navigate to View | Tile Collision Editor.

After opening the Tile Collision Editor, use the rectangle tool to fully enclose our tile, as
shown in the following image:

Level Design

[81]

Repeat the previous steps for all of the tiles we have added into the map, except for any
decorative tiles such as grass or rocks. When you are done, make sure to save the file. In our
case, we will name it Platformer. Before going any further, make sure that our Unity
project is opened!

In order to import what we have done so far in Tiled to Unity, we will need to use the
Tiled2Unity tool that we installed earlier. After you have opened the program, you will
see a window like the one in the following image:

As you can see, this tool is pretty straight-forward. Click on Help | Import Unity Package
To Project and inside Unity, click on Import.

Level Design

[82]

What this will do is import the plugin into Unity so that we will be able to use the files that
come next in our scene. Next, go to File | Open Tiled File and select the saved file
Platformer.tmx.

Next, click on the ExportTo button and make sure it is set to the Tiled2Unity.export file
inside the folder Assets/Tiled2Unity. Finally, set the Vertex Scale to 0.018 and then
click on Export.

The files will be imported to Unity and the program will display the stats for the
conversion, as seen in the following image:

You can close Tiled and Tiled2Unity, as we do not need them, and head back to Unity.

Level Design

[83]

A new folder has been created inside our project called Tiled2Unity. Inside it, our map is
set as a ready-to-use prefab in the Prefabs folder under the same name we saved it as. In
this case, Platformer:

Disable the Floor object then drag and drop the Platformer prefab into the scene. Modify
its transform position, as shown in the following image:

Level Design

[84]

Next, modify the scale of the Background object to (5,3,1) and then parent it to the
Camera object, so that the background will follow our character as well. Now the scene
should look as follows:

Here, we can have an idea of how to organize everything in the Project panel:

Level Design

[85]

Press the play button to see what we have accomplished so far!

Our scene looks much better, but we can still improve it.

Let's start by adding some clouds to the Background object under Main Camera:

Level Design

[86]

This is how the scene should look afterwards:

Level Design

[87]

Remove the old Floor_# objects and add some new floor tiles. Then, assign colliders to
them and platform effectors. Finally, parent them to the Floors game object, as shown in
the following image:

You will notice that we assigned the collider and the effector to each group of floor tiles
instead of the tiles directly. This is something that I recommend, as it will be easier to
organize and edit along the way, especially when your scene starts getting bigger. Also,
make sure that the One Way Boolean inside the Platform Effectors is true, as it will be
better for our intended gameplay.

www.allitebooks.com

http://www.allitebooks.org

Level Design

[88]

Let's add some coins to the scene just above the top floor so that the player can increase his
score by collecting each one. We will configure their behavior later, but for now, don't
forget to add a collider to each coin and set the IsTrigger property to true:

Level Design

[89]

Now, let's add an exit area in our scene so that the player can finish the level and end the
game. Grab a ladder sprite and add it at the end of the scene and then attach a collider to it
with the IsTrigger option turned on:

Level Design

[90]

We should group our scene items now so that everything will be kept neat and clean for
future changes. Create a new game object named SceneObjects. We have finally finished
designing our scene! The next step is to implement the User Interface.

Approaching UI
We will learn about some more advanced features of User Interfaces (UI) in Chapter 8,
User Interface for the Tower Defense Game. However, I recommend that you read a specific
book about UI, if you want to master it. For instance, Unity UI Cookbook, Packt Publishing.

To make our level a little more enjoyable, we should add some UI elements to indicate the
player's health and score. So let's do that!

In order to add some UI elements, we need a canvas. Usually, every time we create a UI
element for the first time in the scene, a canvas is created as well. However, you can also
create one by right-clicking in the Hierarchy panel and then clicking on UI | Canvas. A new
object is added to our scene, with the name Canvas.

A canvas is an area that all UI elements must be children of. Let's start by adding some UI
text under it. We can add it by right-clicking on the Hierarchy panel and then UI | Text. As
a result, a new object named Text under Canvas has been created.

Level Design

[91]

First, let's rename our Text object to HealthText and then adjust its position so that it is
positioned at the top-left of the game view. We can achieve this by choosing the top-left
anchor:

Level Design

[92]

Next, adjust the Rect Transform accordingly, as shown in the following image:

Next, change the Text component attached to the HealthText object to match the
properties, as shown in the following image:

Level Design

[93]

As a result, we will have this in our Game view:

We need to add three more text objects, which are all parented to the canvas, as shown in
the following image:

Level Design

[94]

The HealthText and ScoreText texts should be Health: and Score: respectively; as for
HealthValue and ScoreValue texts, they should be 2 and 0, respectively. Note that the last
two texts will be referenced later, in a script, so that they can be changed in-game to show
the player stats.

As a result, our Game view should look as follows:

Level Design

[95]

Let's add two more texts to our canvas, named GameOver and YouWin, which will be shown
to the player when one of the two events occur. Don't forget to disable both objects so that
they don't appear while we are playing the level! You can disable them by unchecking the
box, located next to their name in the Inspector. We will enable them again, in-game, when
they are needed:

For the Game Over screen, we could create something like this:

Level Design

[96]

Whereas, for the Winning screen, we could have the following:

Game handler
Now that we have all the elements in our game, we need a script that makes our character
intractable with the other elements in the level, and that takes care of the level logic.

To do this, create a new C# script and name it GameHandler under the folder Scripts.
Then, attach the script to our Player object. Double-click on the script in order to open it.

First, we need to define a lot of variables. Let's start with two to keep track of the player's
score and health:

 public float health = 2;
 public float score = 0;

Now we need a variable to check if the game is over:

 public bool gameover = false;

Level Design

[97]

Finally, we need the reference to our UI elements:

 public UnityEngine.UI.Text healthUI;
 public UnityEngine.UI.Text ScoreUI;
 public GameObject gameOverUI;
 public GameObject youWinUI;

The next step is to implement the logic behind the collision of the character with an object.
This can be done by using a function called OnTriggerEnter2D(). Inside this function, we
can check which kind of object the player has crossed. If it is a coin, then the score is
updated and the coin is destroyed. If it is water, then the player dies. If it is the end of the
level, we need to show the winning screen:

 void OnTriggerEnter2D(Collider2D c) {
 if (c.name == "Coin") {
 AddScore();
 Destroy(c.gameObject);
 }
 else if (c.tag == "Water") {
 health = 0;
 healthUI.text = health.ToString();
 gameOverUI.SetActive(true);
 StopGame();
 }
 else if (c.tag == "Ending") {
 youWinUI.SetActive(true);
 StopGame();
 }
 }

Now we need a function to subtract the health of the player and update the UI as well:

 public void SubtractHealth() {
 health -= 1;
 healthUI.text = health.ToString();
 if (health == 0) {
 gameOverUI.SetActive(true);
 StopGame();
 }
 }

Another function is needed to increase the score of the player:

 public void AddScore() {
 score += 10;
 ScoreUI.text = score.ToString();
 }

Level Design

[98]

Finally, the following function is for when the game is over:

 public void StopGame() {
 gameover = true;
 gameObject.SetActive(false);
 }

Save the changes and head back to the scene. Make sure that the object Collision in Scene
| Platformer | Water_01 is tagged as Water and the ladder object is tagged as Eding.
Finally, assign all the references in GameHandler with the respective objects, as shown in
the following image:

Level Design

[99]

Adding enemies
To make our level more exciting, we need to add some enemies to the level. We can use the
sprites under Platformer Pack | Enemies and start by creating the snail enemy.

Just like how we animated our player, we will do almost the same for the enemies; drag and
drop both snailWalk1 and snailWalk2 into the scene to create the animation. Then,
rename the object to Enemy1, scale the object to (-3,3,3), so that it fits the dimensions of
our game level, and then place it on the first platform of the level. Finally, add a box collider
that fully encloses the sprite and a rigid body with its FixedAngle variable set to true. As a
result, the Inspector should look like the following:

Level Design

[100]

Before going forward with the enemies and their code, we first need to create some
obstacles to place in their way. In fact, our enemies will change direction every time they
collide with an obstacle.

We can achieve this by dragging boxAlt from the Project panel under Platformer Pack |
Tiles inside the scene. Then, change the tag to Obstacle and add a collider to the object
with the IsTrigger variable set to true. Also, name the object ObstacleUp_1 and duplicate
it. The duplicated object should be ObstacleUp_2.

To quickly reuse obstacles, you can create and use prefabs too.

Finally, parent them to Scene | Floors and place them along the path of our snail enemy, as
shown in the following image:

Now, we need to script the behavior of the enemy. So, let's create a new C# script and name
it EnemyScript inside the folder Scripts. Then, attach the script to the snail object.
Double-click on the script to open it.

Level Design

[101]

We first need to add some variables to store the speed of the enemy, its velocity vector, and
scale:

 public float speed = 1;
 Vector2 curVelocity;
 Vector3 curScale;

In the Start() function, we need to initialize its velocity in the rigid body:

 void Start () {
 //Set initial direction and speed
 GetComponent<Rigidbody2D>().velocity = new Vector2(-1 * speed, 0);
 }

In the Update() function, instead, we need to check if the enemy stops, and make it resume
its walking:

 void Update() {
 //get the current velocity
 curVelocity = GetComponent<Rigidbody2D>().velocity;
 //Resume walking if the enemy stops
 if (curVelocity.x == 0) {
 transform.position = new Vector2(transform.position.x,
transform.position.y + 0.01f);
 GetComponent<Rigidbody2D>().velocity = new Vector2(curScale.x >
0 ? -1 : 1 * speed, 0);
 }
 }

Then, we need to create the OnTriggerEnter2D() function to detect if the enemy touched
an obstacle, so it needs to change direction, or if the player killed it by jumping on it:

 void OnTriggerEnter2D(Collider2D c) {
 if (c.tag == "Obstacle") {
 GetComponent<Rigidbody2D>().velocity = new Vector2(-1 *
curVelocity.x, 0);
 curScale = transform.localScale;
 curScale.x *= -1;
 transform.localScale = curScale;
 }
 else if (c.name == "GroundCheck") {
 print("Killed By Jump!");
 Destroy(gameObject);
 }
 }

Level Design

[102]

Similarly, we need to do it if the enemy collides with a collider, and again, we need to check
if it is an obstacle or the player. However, in this case, the player's collider is not
GroundCheck, therefore, in this case, it is the enemy that subtracts a life to the player before
they die:

 void OnCollisionEnter2D(Collision2D c) {
 if (c.collider.tag == "Obstacle") {
 GetComponent<Rigidbody2D>().velocity = new Vector2(-1 *
curVelocity.x, 0);
 curScale = transform.localScale;
 curScale.x *= -1;
 transform.localScale = curScale;
 }
 else if (c.collider.tag == "Player") {
 c.transform.GetComponent<GameHandler>().SubtractHealth();
 Destroy(gameObject);
 }
 }

Save the changes and head back to the scene. In the GroundCheck object under Player,
add a collider and set its IsTrigger variable to true. Then, center it directly under the
player, as shown in the following image:

Level Design

[103]

In this way, we can detect if the player has jumped on the enemy and killed it, or if they
touched it and have been hurt.

We can finally test the scene and see what we have accomplished so far:

As you can see, a lot of features have been added to the game, which is great! However, we
still need to add another couple of enemies. Since the enemy logic is the same for all of
them, we can choose different enemies, instead of always using the snail. Some good
options could be the fly, the fish, or the slime.

After we have added three more enemies into the scene, we must add some obstacles at the
end of their path in order to keep them in place, just like we did with the snail. Therefore,
we can add five obstacles on the ground. However, instead of using them as triggers, we
can leave them as normal colliders. As a result, the player will be able to properly interact
with them:

Level Design

[104]

Let's see what we accomplished so far in this chapter. Don't forget to save the scene before
every test!

Level Design

[105]

Here, in the preceding image, the game is running.

The preceding image is when the player has reached the end and won.

Summary
In this chapter, we covered level design for 2D games and used Tiled to achieve this. Then,
we touched on some concepts related to Unity's UI, which we will see in more detail in
Chapter 8, User Interface for the Tower Defense Game. Finally, we implemented the game logic
and have scripted enemies, which we added in the level.

In the next chapter, we will head towards creating our second game!

5
Creating Our Own RPG

For our second game, we will work on creating a two-dimensional RPG. We will start
working on the game, and begin paving the way for the next chapters.

In this chapter, we will walk through the creation of the game base; the following is what
we will go through:

Role-Playing Games
Getting the project ready
Designing the level
Adding our player

Role-Playing Games
In previous chapters, we worked on our platformer game while tinkering with the Unity 2D
engine. Now, we will continue doing the same while creating our own Role-Playing Games
(RPG).

RPGs can always be fun to create and play; that's one of the reasons as to why they are so
popular, regardless of whether they are 2D or 3D. One of the main differences between a 2D
platform and 2D RPGs is that the second one has the top view rather than the side one. This
has a big impact on both designing maps and programming the physics and movement of
our characters.

Before starting to create our RPG, we need to get our assets ready that we will use in the
game.

Creating Our Own RPG

[107]

Getting ready
Let's open up Unity and create a new project, as shown in the following image:

Creating Our Own RPG

[108]

Make sure that the 2D mode is selected, click on Asset packages…, and select 2D, as shown
in the following image:

Keep in mind that the Standard Assets need to be downloaded from
the Asset Store, as we did in Chapter 1, Sprites.

Creating Our Own RPG

[109]

Press the Done button, and as a result the project is created. In the Project panel, create two
new folders named Scripts and Scenes. Inside Scenes save an empty scene and name it
Scene1, as shown in the following image:

One last thing to do is to import our assets. As we did in Chapter 1, Stripes, we can use the
free assets from the h t t p : / / k e n n e y . n l website (just remember that we will also need
software to decompress). In particular, we need the RPG packs. You can find them at the
following link: h t t p : / / k e n n e y . n l / a s s e t s ? s = r p g.

Of course, don't forget to import them into Unity before continuing on with the chapter.
Furthermore, you can also reorder them, so that they are easier to find later. For instance,
you can start to place all the packages into one folder called RPGPack. Then, divide this
folder into sub-folders such as Characters and Environment. You will see this done
throughout the rest of the chapter.

http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg
http://kenney.nl/assets?s=rpg

Creating Our Own RPG

[110]

Importing the level
In order to create our scene, we will need to play around with our new assets in Tiled, but
luckily, a lot has already been set up for us. Open roguelike-pack/Map/sample_map in
Tiled. If you missed the previous chapter where we discussed Tiled, you should at least
read that section before you continue. In fact, it is another software, separate from Unity:

Creating Our Own RPG

[111]

As you can see, the scene is almost complete. We will not need to spend much time to make
it game-ready:

Now, we need to set up the colliders for our scene and it's best to do it from here. This task
can be tiring and boring, but it's definitely worth it.

Creating Our Own RPG

[112]

Let's start by selecting the lake's top-left sprite inside the tileset:

Now go to View | Tile Collision Editor and enclose it with the rectangular tool so that it
looks as follows:

Creating Our Own RPG

[113]

Unfortunately, we need to do the same to every sprite object that should be a collider to the
player inside the game; these include: tree trunks, houses, roofs, tents, crosses, and so on…

After all the Colliders have been properly set up, save the map and open the file from
Tiled2Unity, as shown in the following image:

Creating Our Own RPG

[114]

Go to: Help | Import Unity Package To Project then click on Import inside Unity:

You can make sure the colliders are properly set up by clicking on Preview. Adjust the scale
to 0.018 and make sure that Export To is pointing at the Tiled2Unity.export file inside
our project at Assets/Tiled2Unity. Finally, press Export to add the map to our project.

Creating Our Own RPG

[115]

After the map has been imported, drag the sample_map prefab from Tiled2Unity | Prefabs
to our scene and rename it Map. Furthermore, set its Rect Transform, as follows:

Now, we need to rename the camera object from MainCamera to Camera and set the camera
size to 3.5. The scene should look like this now:

Creating Our Own RPG

[116]

Slicing the sprites for our hero
Now that the scene is ready to go, we need to create our Player object. However, before
doing so, we need to slice our Spritesheet.

Open the file roguelikeChar_transparent, which you can find inside the roguelike-
pack/Map/Spritesheet folder. As you can see, this file includes everything that can be
used by the character in our game:

Creating Our Own RPG

[117]

The image contains seven sections of sprites, which are:

Bodies (undressed and some dressed examples)
Bottoms
Tops
Hair
Helmets
Shields
Weapons

To smoothly slice the sprites in Unity's Sprite Editor, we will need to manually divide the
image to seven files using your favorite image editor. By doing this, each file will only
contain one of the sections in a nicely enclosed manner.

For future reference, the image files should be named as follows:

Bodies: roguelikeChar_transparent1
Bottoms: roguelikeChar_transparent2
Tops: roguelikeChar_transparent3
Hair: roguelikeChar_transparent6
Helmets: roguelikeChar_transparent7
Shields: roguelikeChar_transparent4
Weapons: roguelikeChar_transparent5

By importing them into Unity again, we will have the Project panel, as shown in the
following image:

Creating Our Own RPG

[118]

Now that the files are ready, let's start slicing the sprites. In the Project panel, choose
roguelikeChar_transparent1 and then from the Inspector, change the sprite mode to
Multiple. Finally, click on Sprite Editor.

Creating Our Own RPG

[119]

In the Sprite Editor, open the Slice menu. Set the properties as shown in the following
image, and press Slice:

The spritesheet should now look as follows (you can erase the two empty sprites):

We need to repeat the same process for the other six spritesheets.

After the necessary changes have been made, we can create our player object.

Creating Our Own RPG

[120]

Creating our hero
Let's navigate to the roguelikeChar_transparent1 spritesheet and drag its first sprite
roguelikeChar_transparent1_0 into our scene. Rename the object to Player, set the
Order in Layer in the Sprite Renderer component to 10, and then modify the Rect
Transform, as shown in the following image:

Creating Our Own RPG

[121]

Next, parent the Camera object inside the Player object so that it will follow the player in the
game. The scene should look as follows:

Dressing up our hero
To make our character more interesting, let's add some items to the player. Drag the
following sprites from the Project panel onto the Player object:

roguelikeChar_transparent6_0, rename it to Hair and set the Order in
Layer variable to 11
roguelikeChar_transparent3_0, rename it to Top and set the Order in Layer
variable to 12
roguelikeChar_transparent2_0, rename it to Bottoms and set the Order in
Layer variable to 11
roguelikeChar_transparent5_0, rename it to Weapon and set the Order in
Layer variable to 13

Creating Our Own RPG

[122]

roguelikeChar_transparent4_0, rename it to Shield and set the Order in
Layer variable to 14
roguelikeChar_transparent7_8, rename it to Helmet and set the Order in
Layer variable to 12

Reset the Rect Transform for all of the preceding objects, and as a result, our hero should
be cool, as below:

Giving the power of movement to our hero
Our hero won't move unless we do something about it. We can start by adding a Circle
Collider 2D to the player object and then a Rigid Body 2D too.

Creating Our Own RPG

[123]

There are two main things that we are going to change in the rigid body. The first is setting
the Gravity Scale to 0. As a result, our hero will not go downward in the map. Then, we
will set the Fixed Angle variable to true. By doing this, our hero won't rotate when he or
she collides with something. You can see the properties set in the following image:

Creating Our Own RPG

[124]

Our hero is now ready to deal with the physics engine of Unity. However, some extra
custom code is still needed to move him or her according to the player's input. Let's create a
new C# script and call it HeroMovement inside the folder Scripts. Then, attach the script
to our hero. As usual, double-click on the script to open it.

The first thing that we need to do is to add two variables. One is needed to store the speed
of our hero and another one to get the reference to his RigidBody2D:

 public float speed = 4.0f;
 Rigidbody2D playerRigidBody2D;

In the Start() function, we can get the reference to the RigidBody2D by calling the
GetComponent() function, as follows:

 void Start() {
 // Get the RigidBody component
 playerRigidBody2D = GetComponent<Rigidbody2D>();
 }

Finally, in the Update() function, similar to what we did in Chapter 1, Sprites, we need to
give a velocity to his RigidBody based on the player input. However, in this case, we are
going to use both axes, the vertical and the horizontal:

 void Update() {
 float movePlayerX = Input.GetAxis("Horizontal");
 float movePlayerY = Input.GetAxis("Vertical");
 playerRigidBody2D.velocity = new Vector2(movePlayerX * speed,
movePlayerY * speed);
 }

Save the changes and head back to Unity.

Creating Our Own RPG

[125]

We can test the scene and see what we have accomplished so far by pressing the play
button:

Once we have pressed play, we can move our hero:

Creating Our Own RPG

[126]

Take your time to explore the map with your hero, to test that all the colliders are properly
set.

As you can see, now we can move the player while it is reacting to the level physics.
However, our hero looks a little static, since it doesn't animate, and we would like to change
that. In the next section, we can give him or her a little bit of life from inside the script itself.

Animating the hero
We are now going to create a script that moves the weapon and the shield items upward
then in a downward fashion to simulate a simple breathing look. Let's create another C#
script and name it Breather inside the Scripts folder. Next, attach the script to both the
weapon and shield object under the player. Double-click on the script to open it.

First we need to add a couple of variables to store the local position to make our hero
breath:

 public Vector2 position1;
 public Vector2 position2;

Then, a third variable stores the time between the two positions defined before:

 public float waitTime;

In the Start() function, we start the coroutine we are going to implement:

 void Start() {
 StartCoroutine(Mover());
 }

Finally, in our coroutine, we start at a random moment and then there is a main loop that
changes between the two positions:

 IEnumerator Mover() {
 yield return new WaitForSeconds(Random.Range(0, 10) / 10);
 while (true) {
 transform.localPosition = position1;
 yield return new WaitForSeconds(waitTime);
 transform.localPosition = position2;
 yield return new WaitForSeconds(waitTime);
 }
 }

Creating Our Own RPG

[127]

Save the changes and head back to the scene. Modify the breather component in both
objects, Weapon and Shield, to look as shown in the following image:

Creating Our Own RPG

[128]

We can now test the scene and see how the character looks as it simulates a simple
breathing animation:

Creating Our Own RPG

[129]

Once we have pressed play, we can see our hero breathing:

The effect of breathing is achieved by moving the Weapon and the Shield.

Creating Our Own RPG

[130]

Summary
In this chapter, we started the RPG project, imported the game level, and added our hero to
the map. After that, we tweaked the hero's equipment in order to make the character look a
bit more hero-like. Lastly, we gave our hero life by creating a breathing animation.

In the next chapter, we will be adding more features to our game, in particular other
characters!

6
AI and Pathfinding

A good RPG requires some enemies and, therefore, their AI. In this chapter, we will create
an enemy script in order to understand the basics of AI in RPGs.

In particular, we will learn about pathfinding and how this can be used to create our enemy
character. The following is what we will go through:

Pathfinding
The AStar Algorithm
Using pathfinding for enemies

In the previous chapter, we worked on our player and designed the game level. Now we
need to learn how to add enemy characters to our game.

Pathfinding
Pathfinding is a fundamental part of making video games. Over the past few years, it has
become an even more important part of video games. The main purpose of pathfinding is to
navigate a certain game object (AI character) around the scene by finding paths to overcome
any obstacle in the way.

There are many algorithms used to compute a proper path, but the most common is the
AStar Algorithm (also referred to as A*), which accomplishes exactly that, with efficiency.

AI and Pathfinding

[132]

In the following example, you can see a calculated path starting from the green circle, which
connects it to the red circle while navigating around the obstacles in the scene. This is
mainly what pathfinding is all about:

AStar Algorithm in Unity
The AStar Algorithm is famous for being one of the most reliable pathfinding algorithms
out there. It is mainly used to find a proper traversable path between two points, as shown
in the preceding figure.

We won't be diving into the specifics of the AStar Algorithm, but we will use it in our game
to plan the paths of AI characters.

AI and Pathfinding

[133]

A tool for Unity
Luckily, a great tool to make the process of implementing AStar in Unity already exists, and
it is also freely available. It can be downloaded here:
http://arongranberg.com/astar/download. I suggest downloading the latest stable release
and avoid any beta version for any bugs that it may have, as shown in the following image:

http://arongranberg.com/astar/download

AI and Pathfinding

[134]

After extracting the downloaded archive, double-click on the package in order to import the
necessary files inside Unity. The following screen should appear, and then click on Import:

Afterwards, a new folder will be created, named AstarPathfindingProject, containing
all of the files we are going to use for the pathfinding.

If you feel like learning more about this tool, there is very good
documentation at the following link:
http://arongranberg.com/astar/docs.

http://arongranberg.com/astar/docs

AI and Pathfinding

[135]

Setting up the tool
Now, in order to start using this tool in our game, we need to create an empty game object
called AStar and add the Pathfinder component. This can be achieved by clicking on
Add Component | Pathfinding | Pathfinder.

The AStar object should look like this in the Inspector window:

One of the first steps in pathfinding is marking path ways and any obstacles in the scene, so
that the AI character will know where it's okay to move and where it's not. In order to
accomplish this, we need to create a grid graph.

AI and Pathfinding

[136]

To create a grid graph, first navigate to the scene view and return to 3D mode. Next, click
on Graphs under the Astar Path component and choose Grid Graph, as shown in the
following image:

As you can see, a grid has been generated with nodes covering it. These nodes will be used
to mark objects that will interfere with the player path and to generate paths around them.
However, first we need to rotate the grid since it's on the wrong axis:

AI and Pathfinding

[137]

As shown in the preceding screenshot, inside the Inspector, we should change the grid
graph's rotation around the X-axis to -90, since they describe the same rotation. Then, click
on Scan at the bottom of the component. This, is the final result in our Scene view:

AI and Pathfinding

[138]

In fact, you will find that the graph is now aligned properly with our scene. Now, let's get a
better look at our graph properties in the following screenshot, followed by an explanation
of each parameter and which values to set for our scene:

In the preceding screenshot, the parameter are as follows:

Width: The number of nodes defining the grid's width. We can set it to 65.
Depth: The number of nodes defining the grid's height. Set it to 65 as well.
Center: The center point of the grid, which should be set at (10,-5,0).
Rotation: Defines the rotation of the grid, which we already set to (270,0,0).
Connections: Number of connections between each node and its neighbor nodes.
Leave this value at 8, so that the AI character can also move diagonally.

AI and Pathfinding

[139]

Max Climb: Determines the ability of the character to climb certain objects.
However, since our game is in 2D, we do not need it. So, change the value to 0
and the Climb Axis to Z.
Use 2D Physics: A flag to determine whether the components should use the 2D
physics or not. Of course, set it to true.

Collider type: Defines which kind of collision should be used. Since we are in 2D
mode, the Ray collider will be sufficient.
Mask: Determines which kind of object should be taken into account. Change it
to Everything, which means that any object with proper colliders attached to it
will be treated as an obstacle.

After you have made all the above changes, click on Scan and don't forget to save the scene.
At the end, the component should look like the one in the following image:

AI and Pathfinding

[140]

You can double-check with the previous image to make sure that all the values are properly
set:

Now, if you look closely at the grid, you should be able to see that the nodes are
surrounding the obstacles in the scene by marking them for the path, which is exactly what
we wanted.

Using pathfinding for enemies
Since our scene is AI ready, we can start adding AI characters in order to test what we have
done so far.

AI and Pathfinding

[141]

Shaping our soldier
First, drag the sprite of the enemy character into the scene. For instance, you can use
roguelikeChar_transparent 1_21, which resembles a soldier figure and can be found
in the RPG Pack/Characters/Spritesheet/roguelikeChar_transparent 1 folder.
You can see it in the following image:

This is the sprite that we will use in this chapter. Once we are in the scene, rename the
gameObject to Soldier, and set its position to (-0.4,2.25,0) and its scale to (3,3,3).

AI and Pathfinding

[142]

Then, add a circle collider and a rigid body to our soldier by setting the same variable
values that we already set in our player object. The only difference is that we need to set
the rigid body's IsKinematic value to true, since we will be moving the character by a
script that doesn't require any input from the player, unlike the player gameObject. You
can see the final settings in the following image:

Every brave soldier needs a weapon. Therefore, let's make a copy of the weapon and the
shield objects inside the player object and parent these copies to our soldier. Then, be sure
to reset the position of the two objects to (0,0,0), because they probably still hold their old
positions.

AI and Pathfinding

[143]

You can change the weapon and armor sprites to better suit our soldier, as you can see in
the following screenshot:

In order to start using the paths created on the grid by the pathfinding tool, we need to
attach the Seeker component to our soldier. Click on Add Component | Pathfinding |
Seeker.

Giving intelligence to the soldier
Now that our soldier is prepared to navigate through the scene using the grid graph, we
have to implement a new script to control its behavior. In particular, we want the soldier to
chase the player. When the soldier is too close to the player, then the soldier stops.

Let's create a new C# script and name it EnemyAI under the folder Scripts. Then, attach
the script to the soldier object. Open the script in the editor.

AI and Pathfinding

[144]

The first thing to do is to add the following line at the beginning of the script:

using Pathfinding;

This allows us to use the Pathfinding package that we have imported.

Then, we need to create some variables; first of all, our target. This variable contains the
Transform that the enemy is chasing; in our case, the player. Therefore, we can write:

 // The target to follow or chase
 public Transform target;

The next four variables are needed to describe the behavior of our soldier. In particular, one
determines the speed of the character, another one how often the soldier should update its
path. The third describes how close he or she needs to be a waypoint before changing
direction; and finally, how far the character should be from the player to chase him or her.
These variables are written in the following code:

 // Character's movement speed
 public float speed = 85;
 // How often the path is updated every second
 public float updateRate = 2;
 // Required distance to be reached before continuing the path
 public float nextWaypointDistance = 0.3f;
 // Required distance to the target before stopping
 public float endDistance = 0.8f;

Now, we need some variables to handle the internal logic. One variable is a flag to check
whether the path has come to an end. Another one stores the path itself. We need a couple
of variables to reference the soldier components to the RigidBody and the Seeker,
respectively. Finally, we need to add an index to iterate on the path. Thus, we can add the
following variables:

 // Flag to check if the path has ended
 public bool pathEnded = false;
 // The calculated path
 public Path path;
 // Character's RigidBody component
 Rigidbody2D charRigidBody2D;
 // Character's Seeker component
 Seeker seeker;
 // Current waypoint
 int curWaypointIndex=0;

AI and Pathfinding

[145]

The next step is to assign these references in the Start() function, and start a coroutine,
which we are going to implement soon:

 void Start () {
 // Assign the required components
 seeker=GetComponent<Seeker>();
 charRigidBody2D=GetComponent<Rigidbody2D>();
 // Start the path
 StartCoroutine(UpdatePath());
 }

Then, in the Update() function, we need to make our character move. First, we need to
check whether the path is completed; if not, we move the character accordingly, as written
in the following code:

 void Update () {
 if(path==null) return;
 // On reaching the end of the path
 if(curWaypointIndex==path.vectorPath.Count)
 {
 if(pathEnded) return;
 charRigidBody2D.velocity=Vector3.zero;
 pathEnded=true;
 }
 else
 {
 // If we approached the end distance
 if(Vector3.Distance(transform.position,target.position)
 <endDistance)
 {
 // Finish the path
 curWaypointIndex=path.vectorPath.Count;
 }
 else
 {
 // Move towards the current waypoint
 pathEnded=false;
 float
dist=Vector3.Distance(transform.position,path.vectorPath[curWaypointIndex])
;
 Vector3 dir=(path.vectorPath[curWaypointIndex]-
transform.position).normalized;
 charRigidBody2D.velocity=dir*speed*Time.fixedDeltaTime;
 if(dist<nextWaypointDistance) curWaypointIndex++;
 }
 }
 }

AI and Pathfinding

[146]

In the coroutine we started in the Start() function, we need to update the path at the rate
specified in our variables. We can compute a new path by using the Seeker component.
Therefore, we can write:

 // Update the path then wait before updating again
 IEnumerator UpdatePath () {
 if(Vector3.Distance(transform.position,target.position)>endDistance)
 {
 seeker.StartPath(transform.position,target.position,OnPathComplete);
 }
 yield return new WaitForSeconds(1/updateRate);
 StartCoroutine(UpdatePath());
 }

Lastly, we have a function named OnPathCompleted(), which is called when the path has
been computed. Here, we just assign the path computed to the path variable of our script,
so to make the character move along this new path. Of course, don't forget to reset the index
as well:

 void OnPathComplete (Path p) {
 if(p.error)
 {
 // Report error
 print (p.error);
 }
 else
 {
 // Assign to the new calculated path
 path=p;
 curWaypointIndex=0;
 }
 }

AI and Pathfinding

[147]

Save the changes and head back to the scene. If you haven't yet, attach the EnemyAI script
that we just created to the soldier object. Then assign the player object to the target variable
inside our script, as shown in the following screenshot:

AI and Pathfinding

[148]

As for the other variables, it's better to leave their default values. However, feel free to
change them if needed. Now, save the scene and click play to see what we have
accomplished so far:

AI and Pathfinding

[149]

Final notes
As you can see, right after playing the scene, the soldier moves towards our player until he
is close enough and then stops. You can also watch the console for details on the path
generated from the Pathfinder class, as shown in the following image:

AI and Pathfinding

[150]

Additionally, if you have enabled gizmos, in the Scene view, you should be able to see
green lines generated by the pathfinder class to indicate the path to the target object, as
shown in the following image:

You can use this feature to understand how pathfinding works by moving the player object
across the scene and looking at the gizmos indicating the generated path.

What you will also notice is that the soldier will move around all obstacles in the scene until
it arrives at the player object:

AI and Pathfinding

[151]

If you are passionate or just want to learn more about AI in games, you
can regularly check the following website, where you will also find
advanced pathfinding techniques, which are still developing in the
academic environment: francescosapio.com.

Summary
In this chapter, we walked through basic pathfinding techniques and the AStar Algorithm,
by adding our very first AI character, which in turn added more life to our game. We
discussed pathfinding, the AStar Algorithm, and how to apply AI in Unity.

Unluckily, this is it for our RPG. In fact, to develop an entire game with all the features
would require several books. However, in these last two chapters we gave a good
foundation for learning more.

In the next chapter, we will move onto our last project, where we will use all of the skills
that we have learnt so far to create a strategy game.

http://francescosapio.com

7
Tower Defense Basics

For our last game, we will work on creating a 2D strategic game. In particular, we will
create a Tower Defense game in which the player is able to place towers along the path
where the enemies head toward the player's fortress. Since the entire process will take some
time, we will spend the next three chapters creating this game.

In this chapter, we will go through the creation of the basic elements for the game. The
following is what we will see in detail:

Setting up the scene
Creating bullets for the towers
Implementing the towers
Giving life to the enemies

Tower Defense games
In the previous chapters, we worked on both our Platformer game and the RPG. Here,
instead, we will see how we can use Unity to create a Tower Defense game.

Usually, in these kinds of games, there is a road along which the players have to place
towers. This is in order to stop a horde of terrible enemies that try relentlessly to reach the
end of the path to apply some damage to the player.

Creating a Tower Defense game with many levels can be done relatively easily, once all the
main logic behind the game has been implemented. In fact, due to the modularity of each
component, creating a new map is very easy, and also the re-playability of the game is high,
since in every level the player can decide to use different strategies.

Tower Defense Basics

[153]

In this chapter, we will see how to implement the basic elements, which we will use in
further chapters to create our Tower Defense game.

Before jumping into the action, we need to get our assets ready to be used in the game.

Getting ready
Let's open up Unity and create a new project. We can call it Tower Defense, and after we
have checked the 2D setting, let's click on create.

We have seen how it's possible to quickly create a tiled map in Chapter 4, Level Design,
so feel free to create your map in that way. However, in this chapter, we will use a free
package, which we can download at the following link: player26.com.

The package, created by Lauren S. Ferro, includes all the basic assets to create our Tower
Defense game, including a very nice map that perfectly fulfills our requirements. In
particular, we will find:

A map with a road for Tower Defense games
A set of different slime enemies
Three levels of upgraded towers
Multiple icons for each object of the package
An arrow as a bullet
Other interesting graphics (that we are not going to use) such as decorations,
trees, and so on

http://player26.com

Tower Defense Basics

[154]

The following image can give us a better idea of which kind of graphics this package
contains:

Tower Defense Basics

[155]

Once imported, we may want to change the settings of our graphics, such
as setting the quality to Truecolor.

So, after we have imported all of them, let's start.

If our project is set to 3D, or if for some other reason the assets that we
have imported are not set as Sprites, we have to do this in order to use
them in this chapter. It is possible to change this setting by selecting them
from the Project panel and changing the Texture Type to Sprite (2D
and UI) in the Inspector.

Setting up the scene and creating the map
The first thing to do is to create the map where the game will take place. This can be easily
done by creating a new Sprite by right-clicking on the Hierarchy panel and then selecting
2D Object/Sprite.

Now, we can assign the map in the package to the Sprite variable by dragging and
dropping it on the variable. The name of the asset should be map-01. Moreover, we should
set all the components of its position to 0, especially the Z-axis, and rename it, Map. Our
Inspector should appear like this:

Tower Defense Basics

[156]

The next step is to set the camera. To do this, we need to select it and then change its Size
variable to fit our map. In this case, we can set its value to 22.5. As a result, the whole map
is visible by the camera, as in the following image:

Keep in mind that some of the space could be needed to create the UI,
which we will see in the next chapter. However, the position and the size
of the camera can be changed later, when we will have a better idea of
which kind of UI will fill that extra space.

Finally, if we have some other nice assets or particle effects, we can add them to the scene to
decorate it even more. For instance, in the package, there is also a tree, or an extra texture
that can be placed on top of the map to improve the road.

Now that we have the scene ready with the map, let's start to build the main elements for
our strategic game, starting with the bullets.

Tower Defense Basics

[157]

Bullets
In this section, we will learn how to create the bullets that our towers will shoot against the
enemies.

Creating the bullet prefab
Since these bullets are going to be thrown by the towers, we need to create a prefab that
allows us to quickly instantiate one of these. In our game environment, the bullets will be
arrows. Feel free to use your own graphics, if you have any.

By right-clicking on the Hierarchy panel, we can select 2D Object/Sprite in order to
create a new Sprite. Of course, we need to assign the graphic of the arrow, which can be
found in the graphic package, and adjust its scale to fit our game environment. In this case,
we can set 1.5 to the whole scale vector. Furthermore, we need to set the Z-axis of the
position to -2. In the end, the arrow should look like this:

Tower Defense Basics

[158]

Next, we need to assign a tag to it. Therefore let's click, in the Inspector, on Tag/New Tag.
Now the Inspector should display the Tags and Layers menu. Since we are interested in
tags, expand the Tags menu and by clicking on the + we are able to add new tags. In
particular, we should add both Bullet and Enemy. We will use the last one later on, when
we create the enemy. In the end, our screen should look like this:

Now, come back to our bullet, and finally we can assign the right tag. Furthermore, it's
good practice to change the name to Bullet. As a result, the Inspector should appear like
this:

Tower Defense Basics

[159]

Since the bullet will collide with the enemies, it needs to have a collider attached to it. We
can add this by navigating to Add Component | Physics 2D | Box Collider 2D. Of course,
if we are using different graphics to the one in the package, we may need to adjust the
collider in order to wrap the bullet. In this case, since the graphic is just a rectangle, it is
automatically done correctly:

If we are using our own graphic for the bullet and it has a complex shape,
we can also use another kind of collider, such as a Circle collider or a
Polygon one. Later in the chapter, the enemy's collider can be easily done
by using an Edge collider. However, for the sake of simplicity, we will use
the Box collider 2D throughout the entire project.

Since we want the arrows to be detected from the enemies, inside the collider, we need to
set the Is Trigger variable to true, as shown in the picture below:

Tower Defense Basics

[160]

Another component that we need to detect the collision with the enemies is a
Rigidbody2D. We can add it by navigating to Add Component | Physics 2D | Rigidbody
2D. Furthermore, we need to set its Gravity Scale to zero, since our game is top view and
we don't want to see our bullet fall off the map. We could also change the gravity in the
Physics settings, but since we are not going to use it, just keep the Gravity Scale at 0. The
whole Inspector should now look like the following:

Tower Defense Basics

[161]

Another interesting feature that can make our bullet/arrow more realistic
is a Trailer Renderer. In this way, when it is thrown, we can easily
implement a small tail that, by adjusting the setting properly, could be
made to look like the air movement behind the arrow, typical of any
comic/toon graphics.

Finally, we need to create a new Prefab by right-clicking on the Project panel and then
selecting Create | Prefab. Drag the arrow inside it, and erase the old one from the scene.

Scripting the bullet
After having selected the prefab that we created in the previous section, let's add a new C#
script to it by clicking on Add Component | New Script. The main aim of this script is to
move the bullet along a direction, and this can be done in a few lines of code.

First, we need to create two variables. One is for the speed and the other one is for the
direction.

Please note that the direction will be assigned dynamically from the tower
when it shoots, whereas the value of the speed will be stored in the prefab
and doesn't change at runtime, at least in this implementation. Of course,
you can play with this speed value and add more lines to make it change
so you have different kinds of bullets.

Therefore, we can write the following:

 public float speed = 1f;
 public Vector3 direction;

Tower Defense Basics

[162]

If our bullet cannot hit an enemy, we should prevent it from going on forever. We can
achieve this by delaying the destruction of the bullet by 10 seconds. This means that after an
amount of time, the bullet will be destroyed. Furthermore, we need to properly rotate the
bullet toward the direction where it is heading, so the arrow will point toward that
direction. To do this, we first normalize the direction, in case it isn't already, and then we
calculate the angle. In doing this, we need to flip both the X and Y-axes, since our arrow is
pointing left. Thus, let's write in the Start() function the following lines:

 void Start () {
 direction = direction.normalized;
 float angle = Mathf.Atan2(-direction.y, -direction.x) * Mathf.Rad2Deg;
 transform.rotation = Quaternion.AngleAxis(angle, Vector3.forward);
 Destroy(gameObject, 10);
 }

Finally, in the Update() function, we need to move the bullet in that direction:

 void Update () {
 transform.position += direction * Time.deltaTime * speed;
 }

And that's all for the bullet. So, after we have saved the prefab, since we added our script
and we therefore need to update it, let's move to the next section to learn how to build the
towers that will shoot these bullets.

Towers
In this section, we will learn how to create the towers of our game. In fact, these are so
important that they even give their name to this sub-genre of games.

Creating the tower prefab
As we did for the bullet, the first thing to do is to create the prefab for our tower. Therefore,
again we need to create a new Sprite by right-clicking on the Hierarchy panel and then
clicking on 2D Object | Sprite.

Tower Defense Basics

[163]

We have to assign the graphic to the tower, and it can be found in the package. Since there
is more than one tower, because the player has the ability to upgrade the tower, we can
choose the starting one. It can be found with the following filename: castle_1. This is
what it looks like:

Probably, we will need to scale it to fit the map. By using the assets of this chapter, we can
set all the scale vectors to 2. Furthermore, we have to set the Z-axis of the position to -3. As
usual, it's good practice to rename the GameObject to Tower, and thus, in the end, the
Inspector should appear like the following:

Tower Defense Basics

[164]

Finally, we need to save the tower as a prefab. Therefore, let's create one by right-clicking
on the Project panel and then selecting Create | Prefab. Drag the tower inside it, and erase
the old one from the scene.

Scripting the towers
The next step is to give behaviors to our towers. In particular, they have to shoot at the
enemies when they get close. There are different ways to do this and different strategies that
the tower itself could choose, starting with which enemy it should target. Here, we are
going to implement that the nearest enemy to the tower will be the one targeted.

Other examples that can inspire you to implement different behaviors for
the towers are the furthest enemy from the tower, the first enemy
with respect to the path or, also, the last enemy.

Tower Defense Basics

[165]

The first thing to do after creating a new script on the Tower prefab is to add some
variables. We need three public variables to store, respectively, the bullet prefab that is used
to instantiate bullets, the range radius of the tower, and the reload time. Furthermore, we
need a fourth private variable to store the time elapsed since the last bullet shot in order to
respect the firing rate of the tower. Therefore, we can write the following:

 public float rangeRadius;
 public float reloadTime;
 public GameObject bulletPrefab;
 private float elapsedTime;

In the Update() function, we need to first check whether the time that has elapsed is
enough to shoot again and then reset the time. Otherwise, we just increment the variable:

 void Update () {
 if(elapsedTime >= reloadTime){
 elapsedTime = 0;
 //Rest of the code
 }
 elapsedTime += Time.deltaTime;
 }

Now, after resetting the timeElapsed variable, we verify whether there is some enemy in
range of the tower. Actually, for now, we are searching for everything that has a collider:

 Collider2D[] hitColliders =
Physics2D.OverlapCircleAll(transform.position, rangeRadius);
 if(hitColliders.Length != 0){
 //Rest of the code
 }

Tower Defense Basics

[166]

If we detect different colliders, we need to check which one is an enemy by using tags and
then to find which one of these (if there is more than one) is the closest to the tower. This
can be done by looping over all of them and taking the minimum distance among all of
them, after having verified that they are enemies:

 float min = int.MaxValue;
 int index = -1;

 for(int i=0; i<hitColliders.Length; i++){
 if(hitColliders[i].tag == "Enemy"){
 float distance =
Vector2.Distance(hitColliders[i].transform.position,transform.position);
 if (distance < min){
 index = i;
 min = distance;
 }
 }
 }

Then, we can check to see if there is an enemy among all of our collisions. If so, we
instantiate a bullet and give to it the direction of the target we found:

 if(index == -1)
 return;
 Transform target = hitColliders[index].transform;
 Vector2 direction = (target.position -
transform.position).normalized;
 //Create Bullet
 GameObject bullet = GameObject.Instantiate(bulletPrefab,
transform.position, Quaternion.identity) as GameObject;
 bullet.GetComponent<BulletScript>().direction = direction;

Now, we can save the script.

One last thing to do is to drag the prefab of the bullet in the bulletPrefab variable and set
the other variables as we need for the game. For instance, we can set the reloadTime to 2
and the rangeRadius to 10. Finally, save the tower prefab before we remove it from the
scene.

Tower Defense Basics

[167]

Enemies
In this section, we will learn how to create the enemies for our Tower Defense game.

Creating the enemy prefab
Since we will see how the game manager will spawn a lot of enemies later, in Chapter 9,
Finishing the Game, we need to create a prefab to store all the data for one enemy, including
its graphics, components, and scripts.

By right-clicking on the Hierarchy panel, we can select 2D Object/Sprite in order to create a
new Sprite. Of course, we need to assign the graphic and adjust its dimensions to fit our
game environment. In this case, we can chose the slime_red as our enemy. Like the
previous components, towers and bullets, it also needs to be scaled. In this case, we can set
the whole scale vector to 0.8. Furthermore, we should set the value of the Z-axis, for the
position, to -1. Once we have done this, it should look like this:

Tower Defense Basics

[168]

In order to be detected by the towers, our enemy should have the enemy tag. Since we have
already created this tag in the bullet section, it can easily be assigned to our enemy. As
usual, it's always a good practice to rename the GameObject as Enemy. The Inspector
should look like the following:

Tower Defense Basics

[169]

Then, we need to add a Box Collider 2D by clicking on Add Component | Physics 2D |
Box Collider 2D and setting the size variable to get the box to fit our enemy as closely as
possible. In the case of our graphic, this is done automatically, since the slime is almost a
rectangle. In the end, we should see something like the following image:

Tower Defense Basics

[170]

However, we should always consider other kinds of colliders if we want to achieve more
precise behaviors. For instance, by using an Edge collider (you can find this by clicking on
Add Component | Physics 2D | Edge Collider 2D), we can achieve something like this:

In addition, besides deciding on the type of collider that we have chosen, we need to set Is
Trigger to true, since we are going to use this collider as a trigger to detect bullets (there's
more information about this in the next section).

Next, we can create a new Prefab by right-clicking on the Project panel and then Create |
Prefab. Finally, drag the enemy inside it and erase it from the scene.

Tower Defense Basics

[171]

Scripting the enemies
Now it's time to script our enemy. Let's create a new script by right-clicking on the Project
panel and then selecting Create | C# Script (or also directly on the enemy prefab) and
renaming it EnemyScript. Finally, double-click on the file to open it.

In order to make the slime alive, we need to create a script that it is able to make the enemy
do the following:

Move along the designed path on the map
Damage the player's fortress if he reaches the end (we will see this in Chapter 9,
Finishing the Tower Defense Game)
Detect whether a bullet from the player's towers hit him

Moving along the designed path
To achieve this behavior, we are going to use a technique called waypoints. This is very
useful if the enemy has to follow a set of designed paths, as in this case. In contrast to the
previous chapter, where we needed an online pathfinding algorithm to decide where the
enemy should move next, here, since the path is fixed, the waypoints technique is both
easier to implement and also faster from a computational point of view.

In its basic implementation, the waypoint technique consists of storing all the key waypoints
of the path, and makes the enemy move along them.

In more complex implementations, waypoints can be connected in
different ways and these connections can also be created automatically by
letting the waypoints find each other. Furthermore, they can also contain
other information, such as which is the closest waypoint to the player.
Here, the enemy can ask the waypoints where to head toward in order to
find the player without running a complete pathfinding algorithm on the
map itself.

We need to create four variables. The first is to specify the speed of this particular enemy,
and two are needed to store, respectively, the path to follow and an internal counter to
know which piece of the path the enemy is traversing. The last variable is just a constant
threshold to detect whether an enemy has reached a waypoint. It is needed only for
numerical robustness, since the distance from the waypoint will never be exactly zero.

Tower Defense Basics

[172]

Therefore, let's start to add the following variables:

 public float speed = 1f;
 private Vector3[] waypoints;
 private int counter = 0;
 private const float changeDist = 0.001f;

Now, in the Update() function, we should implement this movement. The first thing to do
is to check whether the counter has reached the last waypoint, which means that the enemy
has reached the player's fortress and we should apply damage to it. But, since we will see
how to create the game manager for this game in the last chapter, for now we can just
destroy the enemy with the following lines:

 if(counter==waypoints.Length){
 Destroy(gameObject);
 return;
 }

Then, we need to calculate the distance to the next waypoint where the enemy is heading. If
the distance is less than the changeDist variable, we need to update the counter, which
means changing the waypoint. Otherwise, just move the enemy closer to the next waypoint
according to its speed:

else{
 float dist = Vector3.Distance(transform.position,
waypoints[counter]);
 if(dist < changeDist){
 counter++;
 }else{
 float step = speed * Time.deltaTime;
 transform.position = Vector3.MoveTowards(transform.position,
waypoints[counter], step);
 }
 }

We have used the Vector3.MoveTowards() function that allows us to move a
GameObject toward another one, specifying a step. More information about this can be
found in the official documentation on Unity. Here is the link:

h t t p : / / d o c s . u n i t y 3 d . c o m / S c r i p t R e f e r e n c e / V e c t o r 3 . M o v e T o w a r d s . h t m l.

Now we have finished implementing the movement of our little slimes; however, we still
need to set the waypoints. We will do this in the last chapter of this book.

http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
http://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html

Tower Defense Basics

[173]

Detecting towers' bullets
While our enemy is trying to head toward the player's fortress to destroy it, at the same
time he is being shot with bullets by the towers. Therefore, in some way, we have to detect
when a bullet hits our enemy. In order to do this, we can use the collision system already
implemented in Unity. In this case, we should use the 2DCollision since our game is in 2D.
In particular, we are going to implement an OnTriggerEnter2D() function. More can be
found here:
http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnTriggerEnter2D.html.

First, we need to check whether the object that hit the enemy is really a bullet. This can be
done by checking whether the bullet has the Bullet tag. If so, we destroy both the enemy
and the bullet in the following way:

 void OnTriggerEnter2D(Collider2D other) {
 if(other.tag == "Bullet"){
 Destroy(other.gameObject);
 Destroy(gameObject);
 }
 }

As a result, every time a bullet hits the enemy, both will be destroyed.

Finally, we have finished scripting our enemy. Now, save the script and attach it to the
enemy prefab.

http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnTriggerEnter2D.html

Tower Defense Basics

[174]

Summary
In this chapter, we started the Tower Defense game, designed the game level, and created
the prefabs. Inside these latter ones, we already have most of the logic of our game
implemented in the scripts attached to the prefabs.

Before progressing further, we should take some time to put all the pieces together, to have
an overview of how the game will appear. It should look something like the following:

So, let's move into the next chapter, where we will integrate the UI into our game!

8
User Interface for the Tower

Defense Game
In Tower Defense games, the User Interface (UI) often provides a way for the player to
interact with the game. Through the UI, it is possible to build, sell, or upgrade towers.
Furthermore, the UI is also important to visualize stats such as money and lives.

Since this is a big topic, we will not have enough time to cover everything here. However,
we will see all the basics we need to implement our UI by recapping and extending the
ideas seen in Chapter 4, Level Design. Some suggestions on how to implement it will be
given later in the chapter as well.

Lastly, you should definitely consider buying a book that is specifically about UIs. For
instance, the Unity UI Cookbook, Packt Publishing, has a perfect set of recipes ready to use.
There you will find all the concepts treated here in more depth, and much more.

In this chapter, we will learn how to implement the UI for our Tower Defense game by
looking specifically at:

Creating a lives counter
Implementing a money system
The tower seller
Upgrading the tower

Getting ready
We will use the graphics from the same package as the previous chapter to build our UI too.
Therefore, be sure to have them imported, and as Sprites, in order to use them in the UI.

User Interface for the Tower Defense Game

[176]

Designing the UI
A very important step in game development is to design the UI. This doesn't mean to just
create the graphics, but to decide where and how it will appear on the game screen. For
instance, take a look at the following design:

As you can see, the design could be great for some games, but it doesn't fit in our game.
Because of the map, we should definitely avoid placing some of the components along the
path that our enemies will follow.

User Interface for the Tower Defense Game

[177]

A much better design is the following:

We will actually implement this one, but feel free to design your UI according to your own
game. As you can see, the UI components do not overlap with the path.

There are some other elements that should be taken into account. For
instance, a menu can appear and disappear, like a pop-up menu. This is
something that is done to improve the design of our UI. However, these
go beyond the scope of this chapter. Therefore, the topics can be referred
to in more specific books, such as the one mentioned at the beginning of
the chapter.
Another suggestion is to create a UI image with the background, the one
with the path, and enlarge it to the all canvas. By doing this, we will be
able to immediately see how our UI feels with respect to our level.
However, once the UI is finished, we should remember to remove it.

User Interface for the Tower Defense Game

[178]

Creating a lives counter
The first thing to create is a lives counter, in order to keep track of the number of lives of the
player. In fact, the goal of the player is to not allow his or her life to reach zero.

What we are going to do here is to create a more stable and flexible framework than the
lives counter created in Chapter 4, Level Design. This is because we need a solution that can
be scalable and easily extended if we are planning to create a great Tower Defense game.

Creating and placing the lives counter
Let's start by creating a new image, by right-clicking on the Hierarchy panel and then
UI/Image. We should also rename it LivesCounter and assign to the Source Image the
health_square image in our package. We may want to press the Set Native Size button
and later scale it down to fit the screen. Also, we can make it just a tiny bit transparent, by
reducing the alpha channel of the color variable, let's say to 232. Finally, we can drag and
drop it in the top-right corner, as shown in the following image:

User Interface for the Tower Defense Game

[179]

Now, we need to add some text to our counter, so the player can understand how many
lives are remaining. Right-click on LivesCounter and then UI/Text. Also, rename it
LivesCounterText. We need to change its setting as shown in the following image:

User Interface for the Tower Defense Game

[180]

In particular, we have set the color variable to white and the size to 17. In this way, it has
the right dimensions and color to fit in our design for the UI. As text, we used a placeholder
with just the number 100. At the end, we have to place it just under the heart, but still
inside the box, as in the following image:

It looks nice so far, but it won't change if we press play. We still need to add a script on it.
This will handle the interaction with the counter, by updating it automatically when the
number of lives changes. To create the script, select LivesCounter and, in the Inspector,
navigate to Add Component | New Script. Name it LivesCounterScript, and then click
on Create and Add.

Scripting the lives counter
Let's open the script by double-clicking on it. In order to be able to use the UI classes, we
need to import a namespace. This can be done by adding the following line at the beginning
of our code:

using UnityEngine.UI;

User Interface for the Tower Defense Game

[181]

Now that we can also use the UI classes, we need three variables. One is a public variable
that allows us to decide the maximum number of lives. The other two are private, to keep
track of the uiText, in order to write the number of lives, and the number of lives itself:

 private Text uiText;
 public int maxLives;
 private int lives;

Since the number of lives is a private variable and we need to retrieve its value, we need to
also implement a get function, like the following one:

 public int getLives(){
 return lives;
 }

Next, we have to set a couple of variables in our Start() function, in particular, the
reference to the uiText, by using the GetComponent() function and setting the number of
lives equal to the maximum. Finally, we call a function to update the counter graphic, but
we will see it in a few steps:

 void Start () {
 lives = maxLives;
 uiText = this.GetComponentInChildren<Text>();
 updateLivesCounter();
 }

Then, we need to expose a public method that the Game Manager, which we will build in
the next chapter. In this method, it is possible to reduce the number of lives and check
whether it has reached zero. By doing this, we need to keep in mind that the function will
return true if the player has no lives. Of course, we also need to update the graphic and
keep the number of lives to zero as minimum, as robustness of our code:

 public bool loseLife(int damage){
 lives -= damage;
 if (lives > 0){
 updateLivesCounter();
 return false;
 }
 lives = 0;
 updateLivesCounter();
 return true;
 }

User Interface for the Tower Defense Game

[182]

Finally, we can write the update function that we have called in the previous function. It
just updates the graphic of the uiText by using the current number of lives:

 private void updateLivesCounter(){
 uiText.text = lives.ToString();
 }

After we have saved the script, it is ready to be used. Also, remember to assign a maximum
number of lives. In this example, we will set it to 100. Our script will be like the following:

Implementing a money system
The player will earn money by killing enemies, and he is able to spend it by buying new
towers to defend his fortress. By doing this, we need a game element that is able to handle a
money system, in which the amount of money can increase and decrease according to the
player's actions. This section will teach us how to create a money system and integrate it in
the UI.

Creating and placing the money counter
As we previously did in the Lives Counter, we need to create the UI structure. So, let's
create a new UI Image by right-clicking on the Hierarchy panel and then UI/Image. Rename
it MoneyCounter and assign to the Source Image the currency_square image of our
package. Also, we should press the Set Native Size button and then scale it down. As
before, make it a tiny bit transparent by setting the alpha channel of the color variable to
232. Finally, place it just under the LivesCounter, as in the following image:

User Interface for the Tower Defense Game

[183]

Similarly to the LivesCounter, let's create a uiText and rename it MoneyCounterText.
Its settings are the same as the LivesCounterText, except the text placeholder:

User Interface for the Tower Defense Game

[184]

As a result, our scene will be like this:

Again, it looks nice, but it won't change if we press play. We still need to add a script on it.
This will handle the interaction with all the rest of the game, by updating the amount of
money. To create the script, select MoneyCounter and, in the Inspector, navigate to Add
Component | New Script. Name it MoneyCounterScript, and then click on Create and
Add. Double-click to open it.

Scripting the money counter
The money counter works similarly to the lives counter we already built in the previous
section. Since we are going to use the UI classes once more, we need to add the following at
the beginning of our script:

using UnityEngine.UI;

User Interface for the Tower Defense Game

[185]

Again, we need two public variables to store the reference to the uiText and the money of
the player. However, we don't need a maximum, since the player is supposed to increase
his money as much as he can:

 private Text uiText;
 private int money = 0;

In the Start() function, just get the reference to the uiText and update the graphic
through a function. We can write it in a few steps:

 void Start () {
 uiText = this.GetComponentInChildren<Text>();
 updateMoneyCounter();
 }

Now, we need a generic function to increase or decrease money by a certain amount. We
have to take into account that it is not possible to have a negative amount of money, and the
graphic needs to be updated:

 public void changeMoney(int ammount){
 money += ammount;
 if (money < 0){
 money = 0;
 }
 updateMoneyCounter();
 }

Furthermore, a function to get the amount of money is useful for many reasons, such as
checking to see whether the player can afford a tower. We need this function, since the
amount of money is a private variable, and we don't want to make it public since it can only
change with the changeMoney() function, which updates the graphic too:

 public int getMoney() {
 return money;
 }

Finally, the function to update the graphic, which is very similar to the one used for the
lives counter:

 private void updateMoneyCounter(){
 uiText.text = "$" + money.ToString();
 }

We don't have any parameters to set, so just save the script and our money system is ready
to go.

User Interface for the Tower Defense Game

[186]

The tower seller
One of the key gameplay elements of a tower defense game is, of course, the ability to buy
and place towers. Buying a tower is something that the player should be able to do through
the UI. In this section, we will learn how to create a button for the player to buy towers. In
the next chapter, we will also see how to place it in the map.

Creating and placing the tower seller
Let's start by creating a new Image by right-clicking on the Hierarchy panel and then
UI/Image. We should also rename it TowerSeller and assign to the Source Image the
tower_rect image in our package. We may want to press Set Native Size and then scale it
down to fit the screen. Finally, we can drag and drop it next to the LivesCounter, as
shown in the following picture:

User Interface for the Tower Defense Game

[187]

Now, we need to add text where the price of our tower will be shown. Right-click
on TowerSeller and then UI/Text. Rename it PriceText, and we need to change its setting
to the following:

In particular, we have set its color to white and the Font Size to 17. In this way, it has the
right dimensions and color to fit in our UI. Finally, we have to place it just next to the
LivesCounter, but still inside the box, as in the next image:

User Interface for the Tower Defense Game

[188]

The next step is to add a button where the player can click to buy the tower. Right-click on
TowerSeller again and then UI/Button. We have to assign the Source Image to the
empty_rect image in our package. Also, we should adjust the text inside the button by
clicking on its child, called Text, as default. Similar settings to the price text apply here too,
and change the text into buy. At the end, we should have something similar to this:

If we did everything right, our scene should look like the following:

User Interface for the Tower Defense Game

[189]

Now, we need to add a script to it. This will handle the interaction with the player, by
giving him the possibility to buy a tower. To create the script, select TowerSeller and, in the
Inspector, navigate to Add Component | New Script. Name it BuyTowerScript, and then
click on Create and Add. Double-click to open it.

Scripting the tower seller
The first thing to do is to add the following line at the beginning of our script:

using UnityEngine.UI;

As result, we will be able to use the UI classes.

We need a private variable to store our MoneyCounter, since we need to get how much
money the player has. In fact, we need to compare that value with the price to check
whether the player has enough money to actually buy the tower:

 MoneyCounterScript moneyCounter;

On the other hand, we need three public variables. One is needed to store the uiText to
show the price. Another one is the price itself, since you may want to adjust it without
changing the script. The last one is the towerprefab, to instantiate it if the player buys it:

 public Text uiPrice;
 public int price;
 public GameObject towerPrefab;

In the Start() function, we can set our private variable by finding the MoneyCounter in
the scene. Furthermore, we need to update the uiText that shows the price, since we
suppose it won't change over time:

 void Start () {
 moneyCounter =
GameObject.Find("MoneyCounter").GetComponent<MoneyCounterScript>();
 uiPrice.text = "$" + price;
 }

User Interface for the Tower Defense Game

[190]

Now, we need to create a function that is called every time the button is pressed. The first
thing to do here is to get the current money for the player and then compare this to the
price. If the player has enough money, then we need to reduce the amount of money by
calling the changeMoney() function we have created in the previous section of this chapter.
We need to pass to it a negative value, since we are reducing the player's money. Finally,
instantiate a new tower on the mouse position:

 public void OnClick() {
 int money = moneyCounter.getMoney();
 if (money >= price) {
 moneyCounter.changeMoney(-price);
 Instantiate(towerPrefab,Input.mousePosition,Quaternion.identity);
 }
 }

Here, we are not giving any feedback to the player when he presses the
buy button. In fact, when he or she hasn't got enough money, there is
nothing set to relay this information back to the player. Since, in general,
it's a good practice to give feedback to the player, we need to add an else
statement. Inside this branch, we can implement a way to warn the player
that he or she hasn't enough money. For instance, it could be a sound or
voice, red text on the screen, or both. This depends also on the kind of
atmosphere you want to give to your game.

We can save the script and return back to the Unity Editor. In fact, we haven't finished yet,
since we need to assign our variables to the script, and call the OnClick() function every
time the buy button is pressed.

Finishing the tower seller
In order to finalize our seller, we need to link the OnClick()function with the event of
pressing the buy button. This can be done by using the UI events integrated into Unity.
Select BuyButton from the Hierarchy panel. In the Inspector, at the bottom of the Button
component, there is a tab called On Click (). To add a new event, press the + in the lower-
right corner. Now, in the Object variable, we have to drag the script that is just below the
tab, BuyTowerScript. Then, click on the drop-down menu where no function is written
and select BuyTowerScript | On Click (). Once we have done all of this, the Button
component should appear like the following:

User Interface for the Tower Defense Game

[191]

Now, we still have to assign the variable to the script that we have just created.

Drag and drop the PriceText from the Hierarchy panel into the uiPrice variable. Then, set
a price for your tower, for instance, 1200. Finally, drag and drop from the Project panel the
towerprefab we created in the previous chapter. However, keep in mind that we are going
to modify it in the next chapter. In the end, our script should be like the following, in the
Inspector:

Upgrading the towers
Upgrading and selling the towers might be a little bit tricky. For this reason, this section is
completely optional and you can feel free to skip it. Furthermore, the code here could be
optimized, but it has been left without optimization for the sake of learning. In fact, this
way it is easier to understand. Once all the key concepts that have been covered in this
section are clear, the reader is invited to improve the code as an exercise.

User Interface for the Tower Defense Game

[192]

How it works
Every time the player selects a tower, a menu appears and gives the player the possibility of
upgrading or selling the tower. Therefore, the menu that we are going to create in this
section will be disabled from the beginning, and it will be enabled when a tower is selected.
We will see how a tower is selected in the next chapter, but the key idea is that every time a
tower is selected, it has to be communicated to our menu which tower it is. In this way, our
menu can correctly upgrade the tower, or destroy it if the player decides to sell it.

Creating and placing the tower menu
As for the previous UI elements that we have created so far, let's start by creating an UI
Image and renaming it TowerMenu. Change its Source Image to tower1_rect from our
package. Scale it properly and place it in the screen as in the following image:

Next, we need to create two buttons, one for upgrading the tower and the other for selling
it. Rename UpgradeButton, along with its text, as UpgradeButtonText, and SellButton,
along with its text, as SellButtonText. For both, we should use as Source Image the
empty_rect from the package. As for the text, we can use the same settings we used for the
BuyButton, and replace the text variable with upgrade and sell. It should now appear
like this:

User Interface for the Tower Defense Game

[193]

Please note that the text of the two buttons has moved slightly up. This is because we now
have to add a UI text to each button and rename them, respectively, UpgradePriceText
and SellPriceText. Their font size should be smaller than the other one, a good value
being 12. So our Tower Menu should appear like the following:

User Interface for the Tower Defense Game

[194]

Since we have added a lot of components, here is the recap on how the Hierarchy Panel
should be:

Now, we need to add a script to it. This will handle all the interaction with the player, by
giving him or her the possibility to upgrade or sell a tower, and with the towers themselves.
To create the script, select TowerMenu and, in the Inspector, navigate to Add Component
| New Script. Name it TowerMenuScript, and then click on Create and Add. Double-click
to open it.

Scripting the tower menu
Since we are going to use the UI, as we did with the other sections in this chapter, we need
to add the following line at the beginning of our script:

using UnityEngine.UI;

As result, we will be able to use the UI classes.

This script has many variables, so let's break them down. The first one is a variable to store
the MoneyCounter, as we did in the TowerBuyScript. We need this reference, since by
upgrading or selling the player's tower, his amount of money will change:

 MoneyCounterScript moneyCounter;

Then, we need a public variable that is the current selected tower. It has to be public, since it
will be set by another script that we will see in the next chapter. However, since we don't
need to change it through the Inspector, we can hide it using an attribute:

 [HideInInspector]
 public TowerScript currentTower;

User Interface for the Tower Defense Game

[195]

Next, we need some variables to store our UI components. In particular, we need a private
variable to store the Image where this script is attached. Since it is easy to get, we will leave
this to the Awake() function. The other two are for the two prices, the upgrade price and
the selling price:

 private Image uiImage;
 public Text upgradePriceText;
 public Text sellPriceText;

Now, we need all the different settings for each level of the upgrades. These include the
graphic needed to change the menu and the price values. Since there are three different
levels of upgrade, we need to repeat these variables three times. To visualize them better in
the Inspector, we could use a Header attribute for each group. So, this is the first one:

 [Header("Level 0 Settings")]
 public Sprite menuLevel0;
 public int upgradePriceLevel0;
 public int sellPriceLevel0;

And this is the second one:

 [Header("Level 1 Settings")]
 public Sprite menuLevel1;
 public int upgradePriceLevel1;
 public int sellPriceLevel1;

Finally, this is the third group of variables. Of course, we don't need the price to upgrade it,
since it is the maximum level:

 [Header("Level 2 Settings")]
 public Sprite menuLevel2;
 public int sellPriceLevel2;

The last variables we need are just internal values to store and take into account the current
situation of the tower. Their names are quite self-explanatory:

 private int level;
 private int currentUpgradePrice;
 private int currentSellPrice;

User Interface for the Tower Defense Game

[196]

After so many variables, its time to start to writing our functions. The first one is the
Awake() one. We don't use Start(), since this component will start disabled. Here, we
just take the references to the MoneyCounter and the Image component where this script is
attached:

 void Awake () {
 moneyCounter =
GameObject.Find("MoneyCounter").GetComponent<MoneyCounterScript>();
 uiImage = GetComponent<Image>();
 }

Then, we need to write an OnEnable() function, which is called every time the component
is enabled again. This happens when a tower is selected. Here, we need to retrieve the
current level of upgrading of the tower and update all the graphics of the component,
including the prices. This can be done using a switch statement:

 void OnEnable() {
 if (!currentTower)
 return;
 level = currentTower.upgradeLevel;
 switch (level) {
 case 0:
 uiImage.sprite = menuLevel0;
 upgradePriceText.text = "$" +
upgradePriceLevel0.ToString();
 currentUpgradePrice = upgradePriceLevel0;
 sellPriceText.text = "$" + sellPriceLevel0.ToString();
 currentSellPrice = sellPriceLevel0;
 break;
 case 1:
 uiImage.sprite = menuLevel1;
 upgradePriceText.text = "$" +
upgradePriceLevel1.ToString();
 currentUpgradePrice = upgradePriceLevel1;
 sellPriceText.text = "$" + sellPriceLevel1.ToString();
 currentSellPrice = sellPriceLevel1;
 break;
 case 2:
 uiImage.sprite = menuLevel2;
 upgradePriceText.text = "-";
 sellPriceText.text = "$" + sellPriceLevel2.ToString();
 currentSellPrice = sellPriceLevel2;
 break;
 }
 }

User Interface for the Tower Defense Game

[197]

The next function we have to write is called when the UpgradeButton has been pressed.
Here, we just have to check whether the player has enough money, and eventually call the
Upgrade() function on the tower. Probably, the compiler will give you an error, because
that function is not defined yet in the TowerScript. We will create it in the next chapter:

 public void upgrade() {
 if (level == 2)
 return;
 int money = moneyCounter.getMoney();
 if (money >= currentUpgradePrice) {
 moneyCounter.changeMoney(-currentUpgradePrice);
 currentTower.Upgrade();
 gameObject.SetActive(false);
 }
 }

The last function is called when the SellButton has been pressed to sell the tower. Here,
we just give the player the money back and destroy the tower:

 public void sell() {
 moneyCounter.changeMoney(currentSellPrice);
 Destroy(currentTower.gameObject);
 gameObject.SetActive(false);
 }

Finally, we have finished this long script. Let's save it and come back to Unity, where we
still have to set all its values.

User Interface for the Tower Defense Game

[198]

Finalizing the tower menu
If we look at the Inspector, we should see our script with all the visible variables:

Let's start to drag and drop inside the Upgrading Price Text, our UpgradePriceText from
the Hierarchy panel and inside our Sell Price Text, our SellPriceText, always from the
Hierarchy panel. Now, our script should look like the following:

User Interface for the Tower Defense Game

[199]

The next step is to fill, for each level, the graphic for the menu. Of course, for level zero we
use the one we used as placeholder, the tower1_rect from our package. For the other two
levels, we always use tower2_rect and tower3_rect respectively, from our package:

Here, we can fill the remaining variables according to our game. In this example, we are
going to use the following values:

User Interface for the Tower Defense Game

[200]

Finally, we need to disable the entire TowerMenu, by unchecking the small box next to its
name in the Inspector:

The last thing to do is to assign the right functions to the buttons that we have created.

Select UpgradeButton, and, in the Inspector, add a new event in the On Click () tab. Drag
the TowerMenu into the Object variable and, from the drop-down menu, select
TowerMenuScript.upgrade. As a result, we should see this in the Inspector:

User Interface for the Tower Defense Game

[201]

Similarly, select SellButton and add a new event in the On Click () tab. Drag the
TowerMenu again into the Object variable, and this time, from the drop-down menu, select
TowerMenuScript.sell. Here is the final result in the Inspector:

Congratulations on having completed this optional section to integrate the possibility of
selling and upgrading the towers into your game. Of course, to finish what we have started
in this section, we have to follow the optional section in the next chapter as well.

Summary
In this chapter, we created the UI for the Tower Defense project. Inside this, we have
implemented the logic to keep a lives counter, a money counter, and a tower seller.
Furthermore, for those who wanted to challenge themselves, we have also seen how to
implement a menu for the towers to make them sellable and upgradable.

In the next chapter, we are going to polish the project and finalize it by implementing a
game manager and wrapping everything together.

9
Finishing the Tower Defense

Game
Now that we have created all the single game elements for our Tower Defense game, we
need to bring them all together. We will do this by creating a Game Manager that will
control the entire flow of the game.

In particular, we will learn how to exchange information from the Game Manager to other
elements, such as indicating to enemies the way to go, or decreasing the number of lives
that the player has when the enemies have reached the end of their path. This also requires
that we integrate the UI which we created in the previous chapter.

Later, we will see how to allow the player to place their own towers where they want in the
map, but still having some constraints about the areas.

Then, we will learn how we can spawn enemies and how to set the game over conditions,
both for winning and losing.

Finally, for those who have finished the optional section in the previous chapter about how
to upgrade the tower, here they will learn how to finish what they started by modifying the
TowerScript.

At the end of this chapter, there is a section with some suggestions about how you might
improve your game on your own while improving your skills along the way. As the saying
goes: practice makes perfect.

Finishing the Tower Defense Game

[203]

To summarize, this chapter will deal with the following topics:

Creating waypoints to move enemies
Integrating the UI that was developed in the previous chapter into the game
Using colliders to implement constraints for different areas of the map
Allowing the player to place their own towers, with respect to some constraints
Creating a spawn system to generate enemies
Finishing the gameplay by imposing game over conditions
Upgrading the towers (optional section only for those who followed the previous
optional section)
Reading about different ways to keep improving your skills after you have
finished with this book

Getting ready
During this chapter, we are going to handle most of the logic remaining within a single
script. Let's start by creating a game object to hold it. Right-click on the Hierarchy panel and
then click on Create Empty. Rename it GameManager. This name is important because we
will use it to find this game object in other scripts. Next, click on Add Component | New
Script and call it GameManagerScript. As a result, we are ready to implement the finishing
touches to our game.

Waypoints for enemies
Now, the first thing to finish is how the enemies move around the map. In Chapter 7,
Tower Defense Basics, we saw how to script them in order to make them move from one
waypoint to another. As a short recap, a waypoint is a special point on the map where the
enemies change their direction to move towards another waypoint. They can contain logic
to actually lead the character to specific places that change over time, such as next to the
player. They can also perform part of the decision-making process. For example, imagine a
Tower Defense game where the path of the enemies splits in two. In this case, the waypoints
can be used to decide which direction a particular enemy should take. The advantage of
waypoints is that, in some cases, they can be more efficient than implementing a complete
Pathfinding algorithm.

Here, we don't need to implement a particular logic behind the waypoints. However, they
are a useful tool since they allow us to move enemies around the map easily. In this section,
we will learn how to create waypoints.

Finishing the Tower Defense Game

[204]

Getting the waypoint coordinates
Before we start creating waypoints, we first need to decide where to place them on the map.
Therefore, we need to find all the places where our enemies change their direction. In this
simple case, they are located in all the corners of our path. In the following screenshot, they
are indicated by the red dots:

As we can see, there are nine dots and we need one waypoint that is slightly outside the
map. This final waypoint is the finishing spot, where the enemy succeeds in his mission – to
damage the player. In fact, in the EnemyScript, when the enemy reaches the end, we just
destroy it. For this reason, this spot must be outside the visible area.

Now that we have marked them with red dots, we need to take note of their coordinates on
the map. A fast way to do it is to drag an enemy prefab around the map in the Scene view
and then to take note of the position of our waypoints. In this case, we could obtain the
following data:

Waypoint number: X-coordinate Y-coordinate

1 -18 15

2 -18 -17

3 -6 -17

Finishing the Tower Defense Game

[205]

4 -6 -7

5 5 -4

6 5 11

7 22 11

8 23 -15

9 42 -15

Implementing waypoints in the Game Manager
The next step is to actually add them into our Game Manager. Therefore, let's start by
opening our GameManagerScript so we can create a new transform array variable to insert
those values. Of course, we need to set this variable to public, so we can set the values in the
Inspector:

public Vector3[] waypoints;

Save the code, and you should see something like this in the Inspector:

Finishing the Tower Defense Game

[206]

We need to set the number of elements of our array with the number of waypoints that we
have found, in this case, nine. Therefore, our Inspector should now look as follows:

Finishing the Tower Defense Game

[207]

Finally, we can fill all those values with our waypoint positions. But what about the Z-axis?
Since we don't want the enemies to change their Z-axis, we can just set its value to the same
Z-axis value of our Enemy prefab, which is -1. In the end, we should have something like
this:

Finishing the Tower Defense Game

[208]

Passing waypoints to the enemies
One last step to complete in order to fully integrate the waypoints into our game is to
actually give them to the enemies. If you remember from Chapter 7, Tower Defense Basics,
we created a variable called waypoints, but we never set its value. Also, for this reason, we
got so many errors if we tried to press the play button. Let's fix this by finally assigning this
variable to our enemies.

To begin, open the EnemyScript. Since the waypoints change with the map that we are
playing, we don't want to set them all the time for each enemy. Therefore, we can get them
from the Game Manager, which is specific for a particular level. The first thing to do is to
get a reference to it. We can do this by adding the following variable type of
GameMangerScript:

private GameManagerScript gameManager;

Then, in the Start() function, we can get a reference to it, by using the Find() and the
GetComponent() functions together:

 void Start () {
 gameManager =
GameObject.Find("GameManager").GetComponent<GameManagerScript>();
 }

Now we can finally get all the waypoints by copying the array on the GameManager into the
local variables of the enemy by using this line:

 void Start () {
 gameManager =
GameObject.Find("GameManager").GetComponent<GameManagerScript>();
 waypoints = gameManager.waypoints;
 }

Let's save our script so that we can finish dealing with the waypoints.

Integrating the UI into the game
Now that we have our enemies ready to challenge the player, let's integrate the UI that we
have created in the previous chapter into the game.

In particular, we are going to see how to integrate the Lives Counter and the Money
Counter since they are the two core gameplay elements.

Finishing the Tower Defense Game

[209]

Integrating the Lives Counter
We need to integrate the lives counter for situations such as when an enemy reaches the end
of its path, the number of lives of the player is decreased. This happens in the following
way: the enemy triggers a function in the Game Manager when it has reached the end, and
the Game Manager updates the number of lives in the Lives Counter.

Therefore, let's start by opening our GameManagerScript and adding another variable.
This is required to store the LivesCounterScript reference, so that we can have access to
the lives of the player:

private LivesCounterScript livesCounter;

To get the reference, we can set the variable inside the Start() function:

 void Start () {
 livesCounter =
GameObject.Find("LivesCounter").GetComponent<LivesCounterScript>();
 }

Now we need to add a function that is called from the enemy and updates the number of
lives:

 public void enemyHasReachedTheFortress() {
 livesCounter.loseLife(10);
 }

As you can see, there is a 10 in the code. This is the number of lives that the
player loses for every enemy that has reached the end of its path. A much
better solution is to create a public variable that can be freely set in the
Inspector of the Game Manager, so that we can change this value more
quickly. As a result, your code will be more flexible. However, there is also
a more flexible solution, where this value is stored inside the Enemy
prefab. In this way, it changes with different enemies, and it can be passed
as a parameter to the enemyHasReachedTheFortress() function. The
implementation of both alternatives is left as an exercise.

Save the script and then open the EnemyScript. Here, we have to call the function that we
have just created. From the previous section, we saw how this script receives a reference to
the Game Manager inside the variable gameManager, so we don't need to get the reference
again.

Finishing the Tower Defense Game

[210]

Now, immediately after if(counter==waypoints.Length){ and before
Destroy(gameObject);, we need to add the following line of code that just calls the
function in the GameManager:

 void Update () {
 if(counter==waypoints.Length){
 gameManager.enemyHasReachedTheFortress();
 Destroy(gameObject);
 return;
 }else{
 //...

Finally, save this script so that the Lives Counter is integrated in our game.

Integrating the Money Counter
Integrating the Money Counter is easier than the previous UI element. This is because we
don't have to pass through the GameManagerScript. This is due to the fact that the money
doesn't deal directly with the Game Over conditions, but we will see this in a little while.

Open the EnemyScript and let's add a variable to keep track of our Money Counter:

private MoneyCounterScript moneyCounter;

To get the reference of the MoneyCounterScript and store it in the variable, as we did for
the Lives Counter, we need to add a line in the Start() function of the enemy:

 void Start () {
 gameManager =
GameObject.Find("GameManager").GetComponent<GameManagerScript>();
 moneyCounter =
GameObject.Find("MoneyCounter").GetComponent<MoneyCounterScript>();
 waypoints = gameManager.waypoints;
 }

Finishing the Tower Defense Game

[211]

Now, inside the OnTriggerEnter2D() function, and immediately after the if(other.tag
== "Bullet"), we can call a changeMoney() function to increase the amount of money
that the player has:

 void OnTriggerEnter2D(Collider2D other) {
 if(other.tag == "Bullet"){
 moneyCounter.changeMoney(80);
 Destroy(other.gameObject);
 Destroy(gameObject);
 }
 }

As you can see, there is an 80 in the code. This is the amount of money that
the player has earned when they kill an enemy. A much better solution is
to create a public variable. Therefore, it is easily adjusted in the Inspector
of the prefab for this specific enemy. In addition, we can have different
instances of this script with different values. This means having different
enemies that give a different amount of money to the player. Furthermore,
another interesting way to do this is to set a random value. As a result,
your code will be more flexible to improve your gameplay. The
implementation of the two alternatives is left as an exercise.

Save the script, and now the Money Counter is integrated into our game.

Placing the towers
When the player buys a tower, they have the possibility to place it where they want. In
order to include this feature inside our game, we need to make some changes to our towers.

Finishing the Tower Defense Game

[212]

Allowed areas
To begin with, we should notice that the player is not free to place their towers wherever
they want to on the map. In fact, they cannot place them along the path where the enemies
are moving or in areas where there is water. Therefore, we need to implement this
constraint.

Thus, we need to look at our map and find all the spots where the player can place the
tower. In our case, the spots that we are looking for are the following:

Finishing the Tower Defense Game

[213]

As we can see, it has a custom shape. Even if it is possible to implement a custom shape, it
can be much more convenient to think in terms of rectangles and then to split our shape
into rectangles. Of course, this can be done in more than one way; however, using fewer
rectangles to cover the entire area is better. On the other hand, by using more rectangles
you are able to better approximate your areas. A possible choice can be the following:

In the end, we have found eleven areas.

The idea here is that the placing script, which we will write in the next section, will look at a
flag that is inside our Game Manager to see if the mouse is inside an allowed position to
place a tower. We can implement this very easily by using a Box Colliders 2D on the
GameManager object.

Finishing the Tower Defense Game

[214]

Let's start by adding a Box Collider 2D on the GameManager by clicking on Add
Component | Physics 2D | Box Collider 2D. Then, we need to resize it to the same
dimensions as one of the rectangles we have found, and by using the offset parameter, place
it onto the map. For instance, by using this data:

We should have a scene that looks something like this:

To speed up the process of placing the rectangles, you could use the Edit
Collider button on the Box Collider 2D component.

Finishing the Tower Defense Game

[215]

We need to repeat this for all the areas that we have found, and so, in the end, the Inspector
will look like the following (in the image, the Inspector has been split in two in order to fit
all the components in one image):

Finishing the Tower Defense Game

[216]

And our map will have our rectangles represented as colliders, as follows:

Now, the second part of the story is to actually trigger the flag inside our
GameMangerScript, so let's open it.

To begin with, we need to add a new private variable that holds the flag:

private bool isAreaAllowed;

It is just a Boolean that indicates whether the position of the mouse is inside an allowed area
or not.

Since it is a private variable, we need to also expose a get method to retrieve its value:

 public bool GetIsAreaAllowed() {
 return isAreaAllowed;
 }

Finishing the Tower Defense Game

[217]

The next step is to detect when the mouse enters into one of these areas. Since they are
colliders, this can be done by using two special functions in Unity: OnMouseEnter() and
OnMOuseExit(). The engine calls them every time the mouse enters or exits respectively
from one of the colliders attached to the GameObject of the script. In this case, to the
colliders attached to the GameManager.

So, we can implement OnMouseEnter() in order to change the flag to a positive value:

 void OnMouseEnter() {
 isAreaAllowed = true;
 }

And the OnMouseExit(), instead, to set it to false:

 void OnMouseExit() {
 isAreaAllowed = false;
 }

Just save our script, and we are done with defining the allowed areas. We will see how to
let the player place the towers in the next section.

Scripting the placement script
Now that we have our areas, we can proceed by selecting the tower prefab and then
clicking on Add Component | New Script and naming it PlacingTowerScript.

The key concept of this section is that a new tower should follow the mouse of the player
until they click on the screen to place it.

Before we start with this, we need to take the references to the GameManager. Let's add the
following variable:

private GameManagerScript gameManager;

Finishing the Tower Defense Game

[218]

And in the Start() function we can get the reference to store in the variable:

 void Start () {
 gameManager =
GameObject.Find("GameManager").GetComponent<GameManagerScript>();
 }

Now we can focus on the Update() function. Here, we need to get the mouse coordinates
and convert them into a point in the map by using the ScreenToWorldPoint() function
from our main camera. This ensures that the point will be exactly the one that the player is
pointing to. Since this is inside the Update() function, it will move at each frame to the
mouse position. In the end, we will add an if statement that checks whether the player
clicks, and whether the click is inside an allowed area. If so, we can get rid of this script by
destroying it:

 void Update () {
 float x = Input.mousePosition.x;
 float y = Input.mousePosition.y;
 transform.position = Camera.main.ScreenToWorldPoint(new Vector3(x,
y, 7));
 if (Input.GetMouseButtonDown(0) && gameManager.GetIsAreaAllowed())
{
 Destroy(this);
 }
 }

Please note that number 7 is the new vector. We decided in Chapter 7, Tower Defense Basics,
which of the Z-axes of the towers should be at -3. This function starts from the Main
Camera that we have placed at -10, on the Z-axis, thus we need to add 7 in order to reach
-3.

We can save the script, and now our tower, once created, moves along with the mouse
button until a click is performed.

Finishing the Tower Defense Game

[219]

Final tweaking of the Tower prefab
There are still a few things to fix. First, we don't want the tower being able to shoot at the
enemies while it is in placing mode, when the player is still deciding where to place it.
Therefore, we need to go into our prefab and disable the TowerScript as follows:

In this way, when a tower is created, it will not act as a tower.

Finishing the Tower Defense Game

[220]

Now, the problem is that when it is placed, we want it to act again. In order to do this, we
need to change our script. Let's open the PlacingTowerScript again and just after the if-
statement in the Update() function, add this line of code:

 if (Input.GetMouseButtonDown(0) && gameManager.GetIsAreaAllowed())
{
 GetComponent<TowerScript>().enabled = true;
 Destroy(this);
 }

As a result, when the tower is placed, the TowerScript is also enabled again.

Furthermore, we want to add a collider to the tower when it is placed. As a result, the
player will not be able to place another tower over an existing one. Inside the same if-
statement, let's add the following line:

 if (Input.GetMouseButtonDown(0) && gameManager.GetIsAreaAllowed())
{
 GetComponent<TowerScript>().enabled = true;
 gameObject.AddComponent<BoxCollider2D>();
 Destroy(this);
 }

Creating an enemy spawner
The next thing to do is to actually spawn enemies against the player. This can be done in
many different ways. Here, we are going to see a simple way to do that.

The key concept is that we have a coroutine that gradually spawns enemies.

If you are not familiar with coroutines, you can check out the following
documentation: h t t p : / / d o c s . u n i t y 3 d . c o m / M a n u a l / C o r o u t i n e s . h t m l.

Let's get started with opening the EnemyScript and adding a new variable that holds the
position where we want to spawn the enemies. Since we want to set this in the Inspector,
we need to set it to public:

public Vector3 SpawnPoint;

http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html
http://docs.unity3d.com/Manual/Coroutines.html

Finishing the Tower Defense Game

[221]

Furthermore, we need one more variable, public again, that stores the prefab for the enemy
in order to spawn all the enemies:

public GameObject enemyPrefab;

Also, we need some other variables that we are going to use to set how many enemies the
coroutine is going to spawn and how fast:

public int numberOfEnemiesToSpawn = 50;
public float minSpawnTime = 1f;
public float maxSpawnTime = 3f;

Now, in the Start() function, we need to start this coroutine, which we are going to create
in the next step, and we pass the number of enemies to spawn as the parameter:

 void Start () {
 livesCounter =
GameObject.Find("LivesCounter").GetComponent<LivesCounterScript>();
 StartCoroutine("SpawnEnemies", numberOfEnemiesToSpawn);
 }

Let's create our coroutine by paying attention to use the same name that we have used in
the Start() function. We need to loop over all the number of enemies and spawn the same
number. Since we don't want them all together, we need to use a WaitForSeconds()
function to create a delay. We need to be careful when setting a value for this delay as it can
change the balance of the game a lot, so we need to consider how to design and implement
this in order to maintain balance. In this case, we are going to use a simple linear
interpolation to decrease the delay over time (so the more the game goes on, the faster the
enemies are spawned):

 IEnumerator SpawnEnemies(int number) {
 for (int i = 0; i < number; i++) {
 Instantiate(enemyPrefab, SpawnPoint, Quaternion.identity);
 float ratio = i*1f / (number-1);
 float timeTowait = Mathf.Lerp(minSpawnTime, maxSpawnTime, 1 -
ratio);
 yield return new WaitForSeconds(timeTowait);
 }
 }

There are really lots of ways to implement this delay, and you should find
the one that best suits your game. However, our implementation allows us
to tweak its value by regulating the maximum and the minimum time that
an enemy is spawned.

Finishing the Tower Defense Game

[222]

Finally, we can save our script. In the Inspector, we still need to set the values of the new
variables that we have just created. Therefore, good values to set could be as follows:

Finishing the gameplay
We are almost there!

There are a few things to take into account in order to finally complete this project. If we
press play, the game works, but there are no game over conditions. In particular, our game
can have two outcomes: the player wins, by destroying all the enemies, or he fails in
defending his fortress.

Winning conditions
Sometimes games go in our favor and the player rises victorious! In this case, he has
managed to destroy all the enemies, taken away resources from his opponents, and left
them with the bitterness of defeat.

Finishing the Tower Defense Game

[223]

A very easy way to see whether the player has destroyed all the enemies is to perform this
check inside the coroutine of the previous section. At the end of the for loop, we can have a
while loop where every second it checks whether there are no more enemies. In this case,
we just run our game over screen (win). So, after we have opened the GameManager, let's
add this to the end of our coroutine:

 IEnumerator SpawnEnemies(int number) {
 for (int i = 0; i < number; i++) {
 //...
 }
 //GameOverConditions
 bool isGameOver = false;
 while (!isGameOver) {
 if (GameObject.FindGameObjectsWithTag("Enemy").Length == 0) {
 isGameOver = true;
 //GameOver Screen (win)
 }
 else {
 yield return new WaitForSeconds(1);
 }
 }
 }

This is not the best way to implement such a coroutine, since we are using
a very expensive function, Find(). However, it is called only every
second and not every frame. In any case, a better implementation would
be to have a counter which, once the spawning process has finished, keeps
track of how many enemies are left. Every time that an enemy dies, it
decreases. The implementation of this other method is left as an exercise.

By doing this, we have finally given the player the possibility to win the game.

Losing conditions
Nevertheless, the life for our player is not always be good, especially with a horde of slimes
at the door of his fortress. When too many enemies cross the end of the path and the
number of lives of the player goes to zero, there is nothing he can do, this is game over and
the player has lost.

Finishing the Tower Defense Game

[224]

In order to implement this sad scenario, we need to check whether the number of lives of
the player has reached zero. This can be done every time that an enemy reaches the end of
the path. For this reason, we passed this through the GameManagerScript to decrease the
number of lives in the Integrating the UI in the game section. Therefore, let's open the
GameMangerScript, and modify the enemyHasReachedTheFortress() function to check
whether the number of lives goes to or below zero. If so, we need to stop the coroutine that
spawns enemies and check the winning conditions and display the game over screen:

 public void enemyHasReachedTheFortress() {
 livesCounter.loseLife(10);

 //GAMEOVER CONDITIONS
 if (livesCounter.getLives() <= 0) {
 StopCoroutine("SpawnEnemies");
 //GameOver Screen (loose)
 }
 }

By doing this, we have just allowed the terrible slimes to overcome the player.

Upgrading towers
If you have reached this point, it means that there is just one thing missing from your game.
However, this is an optional section, and it is only for those who have done the optional
section of the previous chapter, since we are going to finish what we started.

Finishing the TowerScript
In the previous chapter, we created a TowerMenuScript that interacts with one instance of
the TowerScript stored inside the currentTower variable. In particular, it has access to
one variable of the tower called upgradeLevel; however, we have never created this
variable. So, open the TowerScript and let's add this one line:

public int upgradeLevel = 0;

It starts with the value 0, since now we have set the TowerMenuScript, the levels of our
towers start from 0 up to 2.

Finishing the Tower Defense Game

[225]

Furthermore, TowerMenuScript calls the Upgrade() function of our tower, that we don't
have. In this function, we need to increase the stats of the tower, including the level, and
then we can also close the TowerMenuScript. To do this, we need to reference it, but for
now, assume that it is stored inside the towerMenu variable. Of course, feel free to change
how the stats are improved as you like. Therefore, we can write:

 public void Upgrade() {
 rangeRadius += 1f;
 reloadTime -= 0.5f;
 upgradeLevel++;
 towerMenu.SetActive(false);
 }

As we already have seen, having values inside the code is not a good
practice. Replacing them with variables is left again, as an exercise.

Now we would like to open the Tower Menu when a tower is selected. As we have seen for
the allowed areas to place the tower, we can use the function OnMouseDown(). So let's write
it down, keeping in mind that it is called when the mouse clicks on our tower. We need to
disable the TowerMenu, update its currentTower variable, and then enable it again:

 void OnMouseDown() {
 towerMenu.SetActive(false);
 towerMenu.GetComponent<TowerMenuScript>().currentTower = this;
 towerMenu.SetActive(true);
 }

As we already know, this function works only with a collider attached. But every time a
tower is placed by the PlacingTowerScript, a collider is added. Therefore, we don't need
to worry about it.

Now, everything seems to work, but we haven't yet defined the variable towerMenu! Since
the TowerMenu is only one, we can share this variable among all the TowerScript
instances by making it static. So, let's write:

public static GameObject towerMenu;

We have now declared it, but it is not set yet. This is because we will set this from the
TowerMenuScript, and thus it has to be public.

Finishing the Tower Defense Game

[226]

Final adjustments to the TowerMenuScript
We need to open our TowerMenuScript again, because when the game starts it has to set
the towerMenu variable to all the TowerScript instances. We can achieve this by adding
the following line to the Awake() function:

 void Awake () {
 moneyCounter =
GameObject.Find("MoneyCounter").GetComponent<MoneyCounterScript>();
 uiImage = GetComponent<Image>();
 TowerScript.towerMenu = this.gameObject;
 }

As a result, we will have the towerMenu variable set, ready to use in the function written in
the previous section.

Furthermore, we also need to disable the game object related to the TowerMenuScript
from the beginning, because we don't want to show it from the beginning:

 void Awake () {
 moneyCounter =
GameObject.Find("MoneyCounter").GetComponent<MoneyCounterScript>();
 uiImage = GetComponent<Image>();
 TowerScript.towerMenu = this.gameObject;
 gameObject.SetActive(false);
 }

By doing this, we have finished implementing our upgrade and selling tower system. Even
if this was harder than the rest of the game elements, it was definitely worth it.

Practice makes perfect
Now your game is ready! Congratulations!

However, there is always space to improve your skills. Thus, the aim of this section is to
give you some directions on how you can improve your game and continue developing
your skills.

Finishing the Tower Defense Game

[227]

The first thing that you can do is to extend the game into more than one level. This means
creating a new map and loading it when the player wins the current one. Also, you need to
redo some of the steps completed in this chapter, such as tweaking the GameManager to
adapt it to the map. This includes setting waypoints and the allowed areas again.

In order to add a bit more fun to the game, you can create other kinds of enemies. Actually,
the package used in this book has different enemies that you can use. They will use the
same EnemyScript we have written, but with different parameters, such as moving faster.
Also, remember to change the spawning system to spawn them too, maybe to spawn more
than one enemy per time and organize them into waves as well.

Another interesting thing you could do is to create a map with different paths for the
enemies, and use waypoints to decide which one the enemy will take. Additionally, you can
implement the closure of the Tower menu when the player clicks on an empty spot in the
map.

If you are thinking of publishing your game, then you shouldn't forget about audio and
music. They are nice additions, and can create a great atmosphere for gameplay.
Furthermore, audio can be used to give some feedback to the player of what is going on. For
instance, when they try to place a tower in an area where they cannot, a sound may help
them to understand that they cannot place it there. Moreover, you can complement audio
feedback with visuals, which are also important for a game's success.

Finally, if you really want to push your skills and challenge yourself, you should try to
optimize the code presented in this book to make it run more efficiently. Some suggestions
on how to make some improvements have been left in the text as tips.

Finishing the Tower Defense Game

[228]

Summary
In this chapter, we finished creating our Tower Defense game. We have implemented a
GameManager to wrap all the single pieces created inside the last two chapters together. In
particular, we have integrated the UI as well as the game over conditions, along with a
script to place the towers inside our game:

Finally, don't forget to have fun with your own video game!

Finishing the Tower Defense Game

[229]

Goodbye
Unfortunately, this beautiful journey into the world of game development by examples in
Unity has come to an end, and we have learned a lot.

Index

2
2D colliders
 about 49
 Box Collider 2D 49
 Circle Collider 2D 49
 Edge Collider 2D 50
 Polygon Collider 2D 50
2D level design
 creating, with Tiled 72, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
2D mode
 about 6
 selecting 7, 9
2D physics
 about 47
 rigid bodies, adding 48, 49
2D sprite 6

A
animations
 creating 25
 creating, via automatic clip creation 25, 26, 27,

28

 creating, via manual clip creation 29, 30, 31
Animator Component 31
Animator Controller 31
Animator
 using 31, 32, 33, 34, 35, 36, 37, 38, 40
AStar Algorithm
 about 132
 implementing 133, 134
 setting up 135, 136, 138, 139, 140
 URL 133, 134
automatic clip creation 25, 26, 27, 28

B
Box Collider 2D
 about 49, 50, 52
 features 51
bullets, Tower Defense game
 bullet prefab, creating 157, 158, 159, 160, 161
 creating 157
 scripting 161, 162

C
canvas 90
character movement
 adjusting 52
 Animator, improving 57, 58, 59
 level, building 60, 61, 62, 63, 64, 65, 66, 68, 69,

70, 71
 physical shape, defining 56, 57
 Platformer 2D controller, adjusting 52, 53, 54, 55
 testing 59
character
 creating, for Platformer game 19, 20, 21, 22, 23,

24

 interacting, with other elements 96, 97, 98
 physical shape, defining 56, 57
Circle Collider 2D 49
coroutines
 reference link 220
custom packages
 reference link 10
 using 10

E
Edge Collider 2D` 50
enemies, Tower Defense game
 enemy spawner, creating 220, 221, 222
 waypoint coordinates, obtaining 204

[231]

 waypoints, creating 203
 waypoints, implementing in Game Manager 205,

206, 207
 waypoints, passing 208
enemies
 adding 99, 100, 102, 103, 105
 pathfinding, using 140
 soldier movement, implementing 149, 150
 soldier, controlling 143, 144, 145, 146, 147,

148

 soldier, creating 141, 142, 143

L
lives counter, Tower Defense game
 creating 178, 179, 180
 placing 178, 179, 180
 scripting 180, 181, 182

M
manual clip creation 29, 30, 31
money system, Tower Defense game
 implementing 182
 money counter, creating 182, 184
 money counter, scripting 184, 185

O
OnTriggerEnter2D() function
 URL 173

P
pathfinding
 about 131, 132
 used, for enemies 140
Platformer 2D controller
 adjusting 52, 53, 54, 55
Platformer game
 about 6
 character, creating 19, 20, 21, 22, 23, 24
 walk animation, creating 41, 42, 43, 45, 46
Polygon Collider 2D 50

R
rigid bodies
 adding 48, 49

Role-Playing Games (RPG)
 character movement, implementing 122, 123,

124, 125, 126
 creating 106
 hero, animating 126, 127, 128, 129
 hero, creating 120, 121
 hero, dressing up 121, 122
 level, importing 110, 111, 112, 113, 114, 115
 project, creating 107, 108, 109
 sprites, slicing 116, 117, 119

S
sprite, properties
 Packing Tag 12
 Pivot 12
 Pixels Per Unit 12
 Sprite Mode 12
sprites
 adding, with Sprite Renderer component 12, 13,

14, 15
 animating 25
 creating 10
 editing, with Sprite Editor 16, 17, 18
 importing 11

T
Tiled2Unity
 about 73
 URL 73
Tiled
 about 72
 used, for creating 2D level design 72, 74, 75, 76,

77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90

Tower Defense game, enemies
 bullet, detecting 173
 enemy prefab, creating 167, 168, 169, 170
 moving, along designed path 171, 172
 scripting 171
Tower Defense game
 bullets, creating 157
 creating 152, 153
 enemies, creating 167
 gameplay, finishing 222
 improving 226, 227

 lives counter, creating 178
 logic, handling 203
 losing conditions 223, 224
 map, creating 155, 156
 money system, implementing 182
 project, creating 153, 155
 scene, setting up 155, 156
 tower prefab, creating 162, 163
 tower seller, creating 186
 towers, creating 162
 towers, scripting 164, 165, 166
 towers, upgrading 191
 User Interface (UI), creating 175
 winning conditions 222, 223
tower seller, Tower Defense game
 completing 190
 creating 186, 187, 188, 189
 placing 186, 187, 188, 189
 scripting 189, 190
towers, Tower Defense game
 placement script, scripting 217, 218
 placing 211
 placing, in allowed areas 212, 213, 214, 215,

216, 217
 tower menu, creating 192
 tower menu, finalizing 198, 199, 200, 201
 tower menu, placing 192
 tower menu, scripting 194, 195, 196, 197
 tower prefab, tweaking 219, 220
 TowerMenuScript, modifying 226

 TowerScript, modifying 224, 225
 upgrading 191, 192, 224

U
Unity
 AStar Algorithm 133, 134
User Interface (UI) 175
User Interface (UI), Tower Defense game
 designing 176, 177
 integrating 208
 lives counter, integrating 209, 210
 money counter, integrating 210, 211
User Interfaces (UI)
 about 90
 adding 90, 91, 92, 93, 94, 95, 96

V
Vector3.MoveTowards() function
 about 172
 URL 172

W
walk animation
 creating 41, 42, 43, 45, 46
waypoints
 about 171
 coordinates, obtaining 204
 creating, for enemies 203
 implementing, in Game Manager 205, 206, 207
 passing, to enemies 208

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Sprites
	2D mode
	Custom packages
	Dealing with sprites
	Importing sprites
	The Sprite Renderer component
	The Sprite Editor

	Our character makes its first steps
	Summary

	Chapter 2: Animations
	Animating sprites
	Automatic clip creation
	Manual clip creation

	The Animator
	The game
	Summary

	Chapter 3: Physics
	2D physics
	Rigid bodies
	Colliders 2D
	Box Collider 2D

	Letting the character move
	Adjusting the Platformer 2D controller
	Defining a physical shape for the character
	Improving the Animator
	Testing the character movement

	Building a cool level
	Summary

	Chapter 4: Level Design
	Tiled for 2D level design
	Approaching UI
	Game handler
	Adding enemies
	Summary

	Chapter 5: Creating Our Own RPG
	Role-Playing Games
	Getting ready
	Importing the level
	Slicing the sprites for our hero
	Creating our hero
	Dressing up our hero
	Giving the power of movement to our hero
	Animating the hero
	Summary

	Chapter 6: AI and Pathfinding
	Pathfinding
	AStar Algorithm in Unity
	A tool for Unity
	Setting up the tool

	Using pathfinding for enemies
	Shaping our soldier
	Giving intelligence to the soldier
	Final notes

	Summary

	Chapter 7: Tower Defense Basics
	Tower Defense games
	Getting ready
	Setting up the scene and creating the map
	Bullets
	Creating the bullet prefab
	Scripting the bullet

	Towers
	Creating the tower prefab
	Scripting the towers

	Enemies
	Creating the enemy prefab
	Scripting the enemies
	Moving along the designed path
	Detecting towers' bullets

	Summary

	Chapter 8: User Interface for the Tower Defense Game
	Getting ready
	Designing the UI
	Creating a lives counter
	Creating and placing the lives counter
	Scripting the lives counter

	Implementing a money system
	Creating and placing the money counter
	Scripting the money counter

	The tower seller
	Creating and placing the tower seller
	Scripting the tower seller
	Finishing the tower seller

	Upgrading the towers
	How it works
	Creating and placing the tower menu
	Scripting the tower menu
	Finalizing the tower menu

	Summary

	Chapter 9: Finishing the Tower Defense Game
	Getting ready
	Waypoints for enemies
	Getting the waypoint coordinates
	Implementing waypoints in the Game Manager
	Passing waypoints to the enemies

	Integrating the UI into the game
	Integrating the Lives Counter
	Integrating the Money Counter

	Placing the towers
	Allowed areas
	Scripting the placement script
	Final tweaking of the Tower prefab

	Creating an enemy spawner
	Finishing the gameplay
	Winning conditions
	Losing conditions

	Upgrading towers
	Finishing the TowerScript
	Final adjustments to the TowerMenuScript

	Practice makes perfect
	Summary
	Goodbye

	Index

