
1

www.allitebooks.com

http://www.allitebooks.org


Unity 5.x Shaders and 
Effects Cookbook

Master the art of Shader programming to bring life to your 
Unity projects

Alan Zucconi

Kenneth Lammers

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Unity 5.x Shaders and Effects Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First Published: February 2016

Production reference: 1220216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-524-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Authors
Alan Zucconi

Kenneth Lammers

Reviewer
Kenneth Lammers

Commissioning Editor
Priya Singh

Acquisition Editors
Rahul Nair

Erol Staveley

Content Development Editor
Mehvash Fatima

Technical Editors
Pranil Pathare

Danish Shaikh

Copy Editor
Tasneem Fatehi

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Kirk D'Penha

Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org


About the Authors

Alan Zucconi is a passionate developer, author, and motivational speaker, recognized as 
one of Develop's "30 under 30." His expertise has been built over the past 10 years, while he 
dedicated his time to academia and the gaming industry. He started his independent career 
to fully explore his creativity, tearing down the wall between art and gaming. Prior to that, he 
worked at Imperial College London, where he discovered his passion for teaching and writing. 
His titles include the gravity puzzle, 0RBITALIS, and the upcoming time travel platformer,  
Still Time.

Kenneth Lammers has over 15 years of experience in the gaming industry, working as 
a character artist, technical artist, technical art director, and programmer. Throughout his 
career, he has worked on titles such as Call of Duty 3, Crackdown 2, Alan Wake, and Kinect 
Star Wars. He currently owns and operates Ozone Interactive along with his business partner, 
Noah Kaarbo. Together, they have worked with clients such as Amazon, Eline Media, IGT,  
and Microsoft.

Kenny has worked for Microsoft Games Studios, Activision, and Surreal, and has recently gone 
out on his own, operating CreativeTD and Ozone Interactive.

Kenny authored the first version of Unity Shaders and Effects Cookbook by Packt Publishing, 
and was very happy to be a part of the writing, updating and reviewing of this book.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for 
a range of free newsletters and receive exclusive discounts and offers on Packt books and 
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


i

Table of Contents
Preface	 v
Chapter 1: Creating Your First Shader	 1

Introduction	 1
Creating a basic Standard Shader	 2
Migrating Legacy Shaders from Unity 4 to Unity 5	 7
Adding properties to a shader	 10
Using properties in a Surface Shader	 14

Chapter 2: Surface Shaders and Texture Mapping	 21
Introduction	 22
Diffuse shading	 23
Using packed arrays	 25
Adding a texture to a shader	 28
Scrolling textures by modifying UV values	 32
Normal mapping	 35
Creating a transparent material	 40
Creating a Holographic Shader	 43
Packing and blending textures	 46
Creating a circle around your terrain	 51

Chapter 3: Understanding Lighting Models	 55
Introduction	 55
Creating a custom diffuse lighting model	 56
Creating a Toon Shader	 60
Creating a Phong Specular type	 63
Creating a BlinnPhong Specular type	 68
Creating an Anisotropic Specular type	 72

www.allitebooks.com

http://www.allitebooks.org


ii

Table of Contents

Chapter 4: Physically Based Rendering in Unity 5	 79
Introduction	 80
Understanding the metallic setup	 81
Adding transparency to PBR	 83
Creating mirrors and reflective surfaces	 87
Baking lights in your scene	 90

Chapter 5: Vertex Functions	 95
Introduction	 95
Accessing a vertex color in a Surface Shader	 96
Animating vertices in a Surface Shader	 100
Extruding your models	 104
Implementing a snow shader	 107
Implementing a volumetric explosion	 111

Chapter 6: Fragment Shaders and Grab Passes	 117
Introduction	 117
Understanding Vertex and Fragment Shaders	 118
Using grab pass	 122
Implementing a Glass Shader	 125
Implementing a Water Shader for 2D games	 127

Chapter 7: Mobile Shader Adjustment	 133
Introduction	 134
What is a cheap shader?	 134
Profiling your shaders	 140
Modifying our shaders for mobile	 146

Chapter 8: Screen Effects with Unity Render Textures	 151
Introduction	 151
Setting up the screen effects script system	 152
Using brightness, saturation, and contrast with screen effects	 161
Using basic Photoshop-like Blend modes with screen effects	 167
Using the Overlay Blend mode with screen effects	 173

Chapter 9: Gameplay and Screen Effects	 177
Introduction	 177
Creating an old movie screen effect	 178
Creating a night vision screen effect	 189

www.allitebooks.com

http://www.allitebooks.org


iii

Table of Contents

Chapter 10: Advanced Shading Techniques	 199
Introduction	 199
Using CgInclude files that are built into Unity	 200
Making your shader world modular with CgInclude	 203
Implementing a Fur Shader	 207
Implementing heatmaps with arrays	 212

Index	 217

www.allitebooks.com

http://www.allitebooks.org




v

Preface
Unity 5.x Shaders and Effects Cookbook is your guide to becoming familiar with the creation 
of shaders and post effects in Unity 5. You will start your journey at the beginning, creating 
the most basic shaders and learning how the shader code is structured. This foundational 
knowledge will arm you with the means to progress further through each chapter, learning 
advanced techniques such as volumetric explosions and fur shading. This edition of the book 
is written specifically for Unity 5 and will help you to master physically-based rendering and 
global illumination to get as close to photorealism as possible.

By the end of each chapter, you will have gained new skill sets that will increase the quality of 
your shaders and even make your shader writing process more efficient. These chapters have 
been tailored so that you can jump into each section and learn a specific skill from beginner 
to expert. For those who are new to shader writing in Unity, you can progress through each 
chapter, one at a time, to build on your knowledge. Either way, you will learn the techniques 
that make modern games look the way they do.

Once you have completed this book, you will have a set of shaders that you can use in your 
Unity 3D games as well as the understanding to add to them, accomplish new effects, and 
address performance needs. So let's get started!

What this book covers
Chapter 1, Creating Your First Shader, introduces you to the world of shader coding in  
Unity 4 and 5.

Chapter 2, Surface Shaders and Texture Mapping, covers the most common and useful 
techniques that you can implement with Surface Shaders, including how to use textures and 
normal maps for your models.

Chapter 3, Understanding Lighting Models, gives you an in-depth explanation of how shaders 
model the behavior of light. The chapter teaches you how to create custom lighting models 
used to simulate special effects such as toon shading.



Preface

vi

Chapter 4, Physically Based Rendering in Unity 5, shows you that physically-based rendering 
is the standard technology used by Unity 5 to bring realism to your games. This chapter 
explains how to make the most out of it, mastering transparencies, reflective surfaces, and 
global illumination.

Chapter 5, Vertex Functions, teaches you how shaders can be used to alter the geometry of an 
object; this chapter introduces vertex modifiers and uses them to bring volumetric explosions, 
snow shaders, and other effects to life.

Chapter 6, Fragment Shaders and Grab Passes, explains how to use grab passes to make 
materials that emulate the deformations generated by these semi-transparent materials.

Chapter 7, Mobile Shader Adjustment, helps you optimize your shaders to get the most out of 
any devices.

Chapter 8, Screen Effects with Unity Render Textures, shows you how to create special effects 
and visuals that would otherwise be impossible to achieve.

Chapter 9, Gameplay and Screen Effects, tells you how post-processing effects can be used to 
complement your gameplay, simulating, for instance, a night vision effect.

Chapter 10, Advanced Shading Techniques, introduces the most advanced techniques in this 
book, such as fur shading and heatmap rendering.

What you need for this book
The following is a list of the required and optional software to complete the recipes in  
this book:

ff Unity 5

ff A 3D application such as Maya, Max, or Blender (optional)

ff A 2D image editing application such as Photoshop or Gimp (optional)

Who this book is for
This book is written for developers who want to create their first shaders in Unity 5 or wish to 
take their game to a whole new level by adding professional post-processing effects. A solid 
understanding of Unity is required.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).



Preface

vii

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous 
section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Enter the 
following code into the Properties block of your shader."

A block of code is set as follows:

void surf (Input IN, inout SurfaceOutput o)
{
  float4 c;
  c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);
  o.Albedo = c.rgb;
  o.Alpha = c.a;
}



Preface

viii

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

void surf (Input IN, inout SurfaceOutputStandard o) {
  fixed4 c = pow((_Color + _AmbientColor), _MySliderValue);
  o.Albedo = c.rgb;
  o.Metallic = _Metallic;
  o.Smoothness = _Glossiness;
  o.Alpha = c.a;
}

New terms and important words are shown in bold. Words that you see on the screen, for 
example, in menus or dialog boxes, appear in the text like this: "In the Project tab in your Unity 
editor, right-click on the Assets folder and select Create | Folder."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us develop 
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

www.packtpub.com/authors


Preface

ix

Downloading the example code
You can download the example code files for this book from your account at  
http://www.packtpub.com. If you purchased this book elsewhere, you can visit  
http://www.packtpub.com/support and register to have the files e-mailed directly  
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used 
in this book. The color images will help you better understand the changes in the output. You 
can download this file from https://www.packtpub.com/sites/default/files/
downloads/Unity5xShadersAndEffectsCookbook_SecondEdition_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details of your errata. Once your errata are 
verified, your submission will be accepted and the errata will be uploaded to our website or 
added to any list of existing errata under the Errata section of that title.

http://www.packtpub.com
http://www.packtpub.com/support
 https://www.packtpub.com/sites/default/files/downloads/Unity5xShadersAndEffectsCookbook_SecondEdition_Graphics.pdf
 https://www.packtpub.com/sites/default/files/downloads/Unity5xShadersAndEffectsCookbook_SecondEdition_Graphics.pdf
http://www.packtpub.com/submit-errata


Preface

x

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you valuable 
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


1

Creating Your First 
Shader

This chapter will cover some of the more common diffuse techniques found in today's Game 
Development Shading Pipelines. In this chapter, you will learn about the following recipes:

ff Creating a basic Standard Shader

ff Migrating Legacy Shaders from Unity 4 to Unity 5

ff Adding properties to a shader

ff Using properties in a Surface Shader

Introduction
Let's imagine a cube that has been painted white uniformly. Even if the color used is the 
same on each face, they will all have different shades of white depending on the direction 
that the light is coming from and the angle that we are looking at it. This extra level of realism 
is achieved in 3D graphics by shaders, special programs that are mostly used to simulate 
how light works. A wooden cube and a metal one may share the same 3D model, but what 
makes them look different is the shader that they use. Recipe after recipe, this first chapter 
will introduce you to shader coding in Unity. If you have little to no previous experience with 
shaders, this chapter is what you need to understand what shaders are, how they work, and 
how to customize them.

By the end of this chapter, you will have learned how to build basic shaders that perform  
basic operations. Armed with this knowledge, you will be able to create just about any  
Surface Shader.

1



Creating Your First Shader

2

Creating a basic Standard Shader
Every Unity game developer should be familiar with the concept of components. All the 
objects that are part of a game contain a number of components that affect their look and 
behavior. While scripts determine how objects should behave, renderers decide how they 
should appear on the screen. Unity comes with several renderers, depending on the type of 
object that we are trying to visualise; every 3D model typically has MeshRenderer. An object 
should have only one renderer, but the renderer itself can contain several materials. Each 
material is a wrapper for a single shader, the final ring in the food chain of 3D graphics. The 
relationships between these components can be seen in the following diagram:

Understanding the difference between these components is essential to understand how 
shaders work.



Chapter 1

3

Getting ready
To get started with this recipe, you will need to have Unity 5 running and must have created a 
new project. There will also be a Unity project included with this cookbook, so you can use that 
one as well and simply add your own custom shaders to it as you step through each recipe. 
With this completed, you are now ready to step into the wonderful world of real-time shading!

How to do it…
Before getting into our first shader, let's create a small scene for us to work with. This can be 
done by navigating to GameObject | Create Empty in the Unity editor. From here, you can 
create a plane to act as a ground, a couple of spheres to which we will apply our shader, and 
a directional light to give the scene some light. With our scene generated, we can move on to 
the shader writing steps:

1.	 In the Project tab in your Unity editor, right-click on the Assets folder and select 
Create | Folder.

If you are using the Unity project that came with the cookbook, 
you can skip to step 4.

2.	 Rename the folder that you created to Shaders by right-clicking on it and selecting 
Rename from the drop-down list or selecting the folder and hitting F2 on the keyboard.

3.	 Create another folder and rename it to Materials.

4.	 Right-click on the Shaders folder and select Create | Shader. Then right-click on the 
Materials folder and select Create | Material.

5.	 Rename both the shader and material to StandardDiffuse.

6.	 Launch the StandardDiffuse shader in MonoDevelop (the default script editor 
for Unity) by double-clicking on it. This will automatically launch the editor for you and 
display the shader code.

You will see that Unity has already populated our shader with 
some basic code. This, by default, will get you a basic Diffuse 
shader that accepts one texture. We will be modifying this base 
code so that you can learn how to quickly start developing your 
own custom shaders.



Creating Your First Shader

4

7.	 Now let's give our shader a custom folder from which it's selected. The very first 
line of code in the shader is the custom description that we have to give the shader 
so that Unity can make it available in the shader drop-down list when assigning 
to materials. We have renamed our path to Shader "CookbookShaders/
StandardDiffuse", but you can name it to whatever you want and rename it at 
any time. So don't worry about any dependencies at this point. Save the shader in 
MonoDevelop and return to the Unity editor. Unity will automatically compile the 
shader when it recognizes that the file has been updated. This is what your shader 
should look like at this point:
Shader "CookbookShaders/StandardDiffuse" {
  Properties {
    _Color ("Color", Color) = (1,1,1,1)
    _MainTex ("Albedo (RGB)", 2D) = "white" {}
    _Glossiness ("Smoothness", Range(0,1)) = 0.5
    _Metallic ("Metallic", Range(0,1)) = 0.0
  }
  SubShader {
    Tags { "RenderType"="Opaque" }
    LOD 200
    
    CGPROGRAM
    // Physically based Standard lighting model, and enable  
      shadows on all light types
    #pragma surface surf Standard fullforwardshadows

    // Use shader model 3.0 target, to get nicer looking  
      lighting
    #pragma target 3.0

    sampler2D _MainTex;

    struct Input {
      float2 uv_MainTex;
    };

    half _Glossiness;
    half _Metallic;
    fixed4 _Color;

    void surf (Input IN, inout SurfaceOutputStandard o) {
      // Albedo comes from a texture tinted by color
      fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
      o.Albedo = c.rgb;
      // Metallic and smoothness come from slider variables
      o.Metallic = _Metallic;
      o.Smoothness = _Glossiness;



Chapter 1

5

      o.Alpha = c.a;
    }
    ENDCG
  } 
  FallBack "Diffuse"
}

8.	 Technically speaking, this is a Surface Shader based on physically-based rendering, 
which Unity 5 has adopted as its new standard. As the name suggests, this type of 
shader achieves realism by simulating how light physically behaves when hitting 
objects. If you are using a previous version of Unity (such as Unity 4), your code will 
look very different. Prior to the introduction of physically-based shaders, Unity 4 
used less sophisticated techniques. All these different types of shader will be further 
explored in the next chapters of this book.

9.	 After your shader is created, we need to connect it to a material. Select the material 
called StandardDiffuse that we created in step 4 and look at the Inspector tab. 
From the Shader drop-down list, select CookbookShaders | StandardDiffuse. (Your 
shader path might be different if you chose to use a different path name.) This will 
assign your shader to your material and make it ready for you to assign to an object.

To assign a material to an object, you can simply click and drag 
your material from the Project tab to the object in your scene. 
You can also drag a material on to the Inspector tab of an 
object in the Unity editor to assign a material.

The screenshot of an example is as follows:

Not much to look at at this point, but our shader development environment is set up and we 
can now start to modify the shader to suit our needs.



Creating Your First Shader

6

How it works…
Unity has made the task of getting your shader environment up and running, which is very 
easy for you. It is simply a matter of a few clicks and you are good to go. There are a lot of 
elements working in the background with regard to the Surface Shader itself. Unity has taken 
the Cg shader language and made it more efficient to write by doing a lot of the heavy Cg 
code lifting for you. The Surface Shader language is a more component-based way of writing 
shaders. Tasks such as processing your own texture coordinates and transformation matrices 
have already been done for you, so you don't have to start from scratch any more. In the 
past, we would have to start a new shader and rewrite a lot of code over and over again. As 
you gain more experience with Surface Shaders, you will naturally want to explore more of 
the underlying functions of the Cg language and how Unity is processing all of the low-level 
graphics processing unit (GPU) tasks for you.

All the files in a Unity project are referenced independently from the 
folder that they are in. We can move shaders and materials from 
within the editor without the risk of breaking any connection. Files, 
however, should never be moved from outside the editor as Unity 
will not be able to update their references.

So, by simply changing the shader's path name to a name of our choice, we have got our basic 
Diffuse shader working in the Unity environment, with lights and shadows and all that by just 
changing one line of code!

See also
The source code of the built-in shaders is typically hidden in Unity 5. You cannot open this 
from the editor like you do with your own shaders.

For more information on where to find a large portion of the built-in Cg functions for Unity, 
go to your Unity install directory and navigate to Unity45\Editor\Data\CGIncludes. In 
this folder, you can find the source code of the shaders shipped with Unity. Over time, they 
have changed a lot; UNITY DOWNLOAD ARCHIVE (https://unity3d.com/get-unity/
download/archive) is the place to go if you need to access the source codes of a shader 
used in a different version of Unity. After choosing the right version, select Built in shaders 
from the drop-down list, as shown in the following image. There are three files that are of note 
at this point—UnityCG.cginc, Lighting.cginc, and UnityShaderVariables.cginc. 
Our current shader is making use of all these files at the moment:

https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive


Chapter 1

7

Chapter 10, Advanced Shading Techniques, will explore in-depth how to use GcInclude for a 
modular approach to shader coding.

Migrating Legacy Shaders from Unity 4  
to Unity 5

It is undeniable that graphics in videogames have changed massively over the last 10 years. 
Every new game comes with cutting-edge techniques that are getting us closer to achieving 
real-time photorealism. We should not be surprised by the fact that shaders themselves 
have changed massively throughout the lifetime of Unity. This is one of the major sources of 
confusion when approaching shaders for the first time. Prior to Unity 5, mainly two different 
shaders were adopted: Diffuse and Specular. As the names suggest, they were used for 
matte and shiny materials, respectively. If you are already using Unity 5, you can skip this 
recipe. This recipe will explain how to replicate these effects using Unity 5.

Getting ready
The starting point of this recipe is having a workspace made in Unity 4, which uses some 
of the built-in shaders that were originally provided. If you are to start a new game, there is 
no doubt that you should use the latest version of Unity. However, if your project is already 
in the later stages of development with an older version, you should be very careful before 
migrating. Many things have changed behind the curtains of the engine, and even if your 
built-in shaders will most likely work without any problem, your scripts might not. If you are to 
migrate your entire workspace, the first thing that you should do is take backup. It is important 
to remember that saving assets and scenes is not enough as most of the configuration in 
Unity is stored in its metadata files. The safest option to survive a migration is to duplicate the 
entire folder that contains your project. The best way of doing this is by physically copying the 
folder from File Explorer (Windows) or Finder (Mac).



Creating Your First Shader

8

How to do it...
There are two main options if you want to migrate your built-in shaders: upgrading your project 
automatically or switching to Standard Shaders instead.

Upgrading automatically
This option is the easiest one. Unity 5 can import a project made with an earlier version and 
upgrade it. You should notice that once the conversion is done, you will not be able to use 
Unity 4; even if none of your assets may have changed directly, Unity metadata has been 
converted. To proceed with this, open Unity 5 and click on OPEN OTHER to select the folder 
of your old project. You will be asked if you want to convert it; click on Upgrade to proceed. 
Unity will reimport all of your assets and recompile all of your scripts. The process might last 
for several hours if your project is big. Once the conversion is done, your built-in shaders from 
Unity 4 should have been replaced with their legacy equivalent. You can check this from the 
inspector of your materials that should have changed (for instance) from Bumped Diffuse to 
Legacy Shader/Bumped Diffuse.

Even if Diffuse, Specular, and the other built-in shaders from 
Unity 4 are now deprecated, Unity 5 keeps them for backward 
compatibility. They can be found in the drop-down menu of a 
material under the Legacy Shaders folder.

Using Standard Shaders
Instead of using the Legacy Shaders, you might decide to replace them with the new Standard 
Shaders from Unity 5. Before doing this, you should keep in mind that as they are based on a 
different lighting model, your materials will most likely look different. Unity 4 came with more 
than eighty different built-in shaders divided in six different families (Normal, Transparent, 
Transparent Cutout, Self-Illuminated, and Reflective). In Unity 5, they are all replaced by the 
Standard Shader introduced in the previous recipe. Unfortunately, there is no magic recipe to 
convert your shaders directly. However, you can use the following table as a starting point to 
understand how the Standard Shader can be configured to simulate Unity 4 Legacy Shaders:

Shader Unity 4 Unity 4 (Legacy) Unity 5

Diffuse Diffuse

Lambert

Legacy Shader/Diffuse

Lambert

Standard

Physically-based rendering: 
Metallic Workflow

Specular Specular

Blinn-Phong

Legacy Shader/Specular

Blinn-Phong

Standard (Specular setup)

Physically-based rendering: 
Specular Workflow



Chapter 1

9

Shader Unity 4 Unity 4 (Legacy) Unity 5

Transparent Transparent 
Vertex-Lit

Legacy Shader/Transparent 
Vertex-Lit

Standard

Rendering Mode: Transparent
Transparent 
Cutout Vertex-Lit

Legacy Shader/Transparent 
Cutout Vertex-Lit

Standard

Rendering Mode: Cutout

You can change the shader used by your old material using the Shader drop-down menu in 
Inspector. All you need to do is simply select the appropriate Standard Shader. If your old 
shader used textures, colours, and normal maps, they will be automatically used in the new 
Standard Shader. You might still have to configure the parameters of the Standard Shader 
to get as close to your original lighting model as possible. The following picture shows the 
ubiquitous Stanford bunny rendered with a Legacy Diffuse Shader (right), converted Standard 
Shader (left), and Standard Shader with Smoothness set to zero (middle):

Migrating custom shaders
If you have written custom shaders in Unity 4, chances are that this will work straightaway in 
Unity 5. Despite this, Unity has made some minor changes in the way shaders work, which can 
cause both errors and inconsistencies. The most relevant and important one is the intensity 
of the light. Lights in Unity 5 are twice as bright. All the Legacy Shaders have been rewritten 
to take this into account; if you have upgraded your shaders or switched to Standard Shaders, 
you will not notice any difference. If you have written your own lighting model, you will have to 
be sure that the intensity of the light is not multiplied by two any more. The following code is 
used to ensure this:

// Unity 4
c.rgb = s.Albedo * _LightColor0.rgb * (diff * atten * 2);
// Unity 5
c.rgb = s.Albedo * _LightColor0.rgb * (diff * atten);



Creating Your First Shader

10

If you haven't written a shader yet, don't panic: lighting models will be extensively explained in 
Chapter 3, Understanding Lighting Models.

There are several other changes in the way Unity 5 handles 
shaders compared to Unity 4. You can see all of them in Shaders 
in Unity 5.0 at http://docs.unity3d.com/Manual/
UpgradeGuide5-Shaders.html.

How it works...
Writing shaders is always a trade-off between realism and efficiency; realistic shaders require 
intensive computation, potentially introducing a significant lag. It's important to use only 
those effects that are strictly required: if a material does not need specular reflections, then 
there is no need to use a shader that calculates them. This has been the main reason why 
Unity 4 has been shipped with so many different shaders. The new Standard Shader of Unity 
5 can potentially replace all of the previous shaders as it incorporates normal mapping, 
transparency, and reflection. However, it has been cleverly optimized so that only the effects 
that are really necessary are calculated. If your standard material does not have reflections, 
they will not be calculated.

Despite this, the Standard Shader is mainly designed for realistic materials. The Legacy 
Diffuse and Specular shaders, in comparison, were not really designed for realistic materials. 
This is the reason switching from Legacy to Standard Shaders will mostly introduce slight 
changes in the way your objects are rendered.

See also
ff Chapter 3, Understanding Lighting Models, explores in-depth how the Diffuse 

and Specular shaders work. Even if deprecated in Unity 5, understanding them is 
essential if you want to design new lighting models.

ff Chapter 4, Physically Based Rendering in Unity 5, will show you how to unlock the 
potential of the Standard Shader in Unity 5.

Adding properties to a shader
Properties of a shader are very important for the shader pipeline as they are the method that 
you use to let the artist or user of the shader assign textures and tweak your shader values. 
Properties allow you to expose GUI elements in a material's Inspector tab without you having 
to use a separate editor, which provides visual ways to tweak a shader.

http://docs.unity3d.com/Manual/UpgradeGuide5-Shaders.html
http://docs.unity3d.com/Manual/UpgradeGuide5-Shaders.html


Chapter 1

11

With your shader opened in MonoDevelop, look at the block of lines 2 through 7. This is  
called the Properties block. Currently, it will have one property in it called _MainTex.  
If you look at your material that has this shader applied to it, you will notice that there is one 
texture GUI element in the Inspector tab. These lines of code in our shader are creating this 
GUI element for us.

Again, Unity has made this process very efficient in terms of coding and the amount of time it 
takes to iterate through changing your properties.

Getting ready
Let's see how this works in our current shader called StandardDiffuse, by creating our 
own properties and learning more about the syntax involved. For this example, we will refit the 
shader previously created. Instead of using a texture, it will only use its color and some other 
properties that we will be able to change directly from the Inspector tab. Start by duplicating 
the StandardDiffuse shader. You can do this by selecting it in the Inspector tab and 
pressing Ctrl + D. This will create a copy called StandardDiffuse2.

You can give a friendlier name to your shader in its first line. For 
instance, Shader "CookbookShaders/StandardDiffuse" 
tells Unity to call this StandardDiffuse shader and move it 
to a group called CookbookShaders. If you duplicate a shader 
using Ctrl + D, your new file will share the same name. To avoid 
confusion, make sure to change the first line of each new shader 
so that it uses a unique alias.

How to do it…
Once the StandardDiffuse2 shader is ready, we can start changing its properties:

1.	 In our Properties block of our shader, remove the current property by deleting the 
following code from our current shader:
_MainTex ("Albedo (RGB)", 2D) = "white" {}

2.	 As we have removed an essential property, this shader will not compile until the other 
references to _MainTex are removed. Let's remove this other line:
sampler2D _MainTex;

3.	 The original shader used _MainTex to color the model. Let's change this by replacing 
the first line of code of the surf() function with this:
fixed4 c = _Color;



Creating Your First Shader

12

4.	 When you save and return to Unity, the shader will compile, and you will see that now 
our material's Inspector tab doesn't have a texture swatch anymore. To complete 
the refit of this shader, let's add one more property and see what happens. Enter the 
following code:
_AmbientColor ("Ambient Color", Color) = (1,1,1,1)

5.	 We have added another color swatch to the material's Inspector tab. Now let's add 
one more to get a feel for other kinds of properties that we can create. Add the 
following code to the Properties block:
_MySliderValue ("This is a Slider", Range(0,10)) = 2.5

6.	 We have now created another GUI element that allows us to visually interact with our 
shader. This time, we created a slider with the name This is a Slider, as shown in the 
following screenshot:

Properties allow you to create a visual way to tweak shaders without having to change values 
in the shader code itself. The next recipe will show you how these properties can actually be 
used to create a more interesting shader.

While properties belong to shaders, the values associated with 
them are stored in materials. The same shader can be safely 
shared between many different materials. On the other hand, 
changing the property of a material will affect the look of all the 
objects that are currently using it.



Chapter 1

13

How it works…
Every Unity shader has a built-in structure that it is looking for in its code. The Properties 
block is one of those functions that are expected by Unity. The reason behind this is to give 
you, the shader programmer, a means of quickly creating GUI elements that tie directly into 
your shader code. These properties that you declare in the Properties block can then 
be used in your shader code to change values, colors, and textures. The syntax to define a 
property is as follows:

Let's take a look at what is going on under the hood here. When you first start writing a new 
property, you will need to give it a Variable Name. The variable name is going to be the name 
that your shader code is going to use in order to get the value from the GUI element. This 
saves us a lot of time because we don't have to set up this system ourselves.

The next elements of a property are the Inspector GUI Name and Type of the property, which 
is contained within parentheses. The Inspector GUI Name is the name that is going to appear 
in the material's Inspector tab when the user is interacting with and tweaking the shader. The 
Type is the type of data that this property is going to control. There are many types that we 
can define for properties inside of Unity shaders. The following table describes the types of 
variables that we can have in our shaders:

Surface Shader property types
Range (min, max) This creates a float property as a slider from the minimum value to 

the maximum value
Color This creates a color swatch in the Inspector tab that opens up a 

color picker = (float,float,float,float)

2D This creates a texture swatch that allows a user to drag a texture in 
the shader

Rect This creates a non-power-of-2 texture swatch and functions the 
same as the 2D GUI element

Cube This creates a cube map swatch in the Inspector tab and allows a 
user to drag and drop a cube map in the shader

Float This creates a float value in the Inspector tab but without a slider
Vector This creates a four-float property that allows you to create directions 

or colors

www.allitebooks.com

http://www.allitebooks.org


Creating Your First Shader

14

Finally, there is the Default Value. This simply sets the value of this property to the value that 
you place in the code. So, in the previous example image, the default value for the property 
named _AmbientColor, which is of the Color type, is set to a value of 1,1,1,1. As this is 
a color property expecting a color that is RGBA or float4 or r, g, b, a = x, y, z, w, 
this color property, when first created, is set to white.

See also
The properties are documented in the Unity manual at http://docs.unity3d.com/
Documentation/Components/SL-Properties.html.

Using properties in a Surface Shader
Now that we have created some properties, let's actually hook them up to the shader so that we 
can use them as tweaks to our shader and make the material process much more interactive.

We can use the properties' values from the material's Inspector tab because we have 
attached a variable name to the property itself, but in the shader code, you have to set up a 
couple of things before you can start calling the value by its variable name.

How to do it…
The following steps show you how to use the properties in a Surface Shader:

1.	 To begin, let's remove the following lines of code, as we deleted the property called 
_MainTex in the Creating a basic Standard Shader recipe of this chapter:
_MainTex ("Albedo (RGB)", 2D) = "white" {}
sampler2D _MainTex;
fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

2.	 Next, add the following lines of code to the shader, below the CGPROGRAM line:
float4 _AmbientColor;
float _MySliderValue;

3.	 With step 2 complete, we can now use the values from the properties in our shader. 
Let's do this by adding the value from the _Color property to the _AmbientColor 
property and giving the result of this to the o.Albedo line of code. So, let's add the 
following code to the shader in the surf() function:
void surf (Input IN, inout SurfaceOutputStandard o) {
  fixed4 c = pow((_Color + _AmbientColor),  
    _MySliderValue);
  o.Albedo = c.rgb;
  o.Metallic = _Metallic;

http://docs.unity3d.com/Documentation/Components/SL-Properties.html
http://docs.unity3d.com/Documentation/Components/SL-Properties.html


Chapter 1

15

  o.Smoothness = _Glossiness;
  o.Alpha = c.a;
}

4.	 Finally, your shader should look like the following shader code. If you save your 
shader in MonoDevelop and re-enter Unity, your shader will compile. If there were no 
errors, you will now have the ability to change the ambient and emissive colors of the 
material as well as increase the saturation of the final color using the slider value. 
Pretty neat, huh!
Shader "CookbookShaders/StandardDiffuse3" {
  // We define Properties in the properties block
  Properties {
    _Color ("Color", Color) = (1,1,1,1)
    _AmbientColor("Ambient Color", Color) = (1,1,1,1)
    _MySliderValue("This is a Slider", Range(0,10)) = 2.5
  }
  SubShader {
    Tags { "RenderType"="Opaque" }
    LOD 200
    
    // We need to declare the properties variable type  
      inside of the
    // CGPROGRAM so we can access its value from the  
      properties block.
    CGPROGRAM
    #pragma surface surf Standard fullforwardshadows
    #pragma target 3.0

    struct Input {
      float2 uv_MainTex;
    };

    fixed4 _Color;
    float4 _AmbientColor;
    float _MySliderValue;

    void surf (Input IN, inout SurfaceOutputStandard o) {
      // We can then use the properties values in our  
        shader 
      fixed4 c = pow((_Color + _AmbientColor),  
        _MySliderValue);
      o.Albedo = c.rgb;
      o.Alpha = c.a;
    }



Creating Your First Shader

16

    ENDCG
  } 
  FallBack "Diffuse"
}

Downloading the example code

You can download the example code files for all Packt 
books you have purchased from your account at 
http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
files e-mailed directly to you.

The pow(arg1, arg2) function is a built-in function that will perform 
the equivalent math function of power. So, argument 1 is the value that 
we want to raise to a power and argument 2 is the power that we want to 
raise it to.
To find out more about the pow() function, look at the Cg tutorial. It 
is a great free resource that you can use to learn more about shading 
and get a glossary of all the functions available to you in the Cg shading 
language:
http://http.developer.nvidia.com/CgTutorial/cg_
tutorial_appendix_e.html

The following screenshot demonstrates the result obtained using our properties to control our 
material's colors and saturation from within the material's Inspector tab:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html


Chapter 1

17

How it works…
When you declare a new property in the Properties block, you are providing a way for the 
shader to retrieve the tweaked value from the material's Inspector tab. This value is stored 
in the variable name portion of the property. In this case, _AmbientColor, _Color, and 
_MySliderValue are the variables in which we are storing the tweaked values. In order 
for you to be able to use the value in the SubShader{} block, you need to create three new 
variables with the same names as the property's variable name. This automatically sets up a 
link between these two so that they know they have to work with the same data. Additionally, it 
declares the type of data that we want to store in our subshader variables, which will come in 
handy when we look at optimizing shaders in a later chapter.

Once you have created the subshader variables, you can then use the values in the surf() 
function. In this case, we want to add the _Color and _AmbientColor variables together 
and take it to a power of whatever the _MySliderValue variable is equal to in the material's 
Inspector tab.

The vast majority of shaders start out as Standard Shaders and get modified until they match 
the desired look. We have now created the foundation for any Surface Shader you will create 
that requires a diffuse component.

Materials are assets. This means that any change made to them 
while your game is running in the editor are permanent. If you 
have changed the value of a property by mistake, you can undo it 
using Ctrl + Z.

There's more…
Like any other programming language, Cg does not allow mistakes. As such, your shader will 
not work if you have a typo in your code. When this happens, your materials are rendered in 
unshaded magenta:



Creating Your First Shader

18

When a script does not compile, Unity prevents your game from being exported or even 
executed. Conversely, errors in shaders do not stop your game from being executed.

If one of your shaders appears as magenta, it is time to investigate where the problem is. If 
you select the incriminated shader, you will see a list of errors displayed in its Inspector tab:

Despite showing the line that raised the error, it rarely means that this is the line that has 
to be fixed. The error message shown in the previous image is generated by deleting the 
sampler2D _MainTex variable from the SubShader{} block. However, the error is raised 
by the first line that tries to access such a variable.

Finding and fixing what's wrong with code is a process called debugging. The most common 
mistakes that you should check for are as follows:

ff A missing bracket. If you forgot to add a curly bracket to close a section, the compiler 
is likely to raise errors at the end of the document, at the beginning, or a new section.

ff A missing semicolon. One of the most common mistakes but luckily one of the 
easiest to spot and fix. Errors are often raised by the following line.

ff A property that has been defined in the Properties section but has not been 
coupled with a variable in the SubShader{} block.

ff Conversely to what you might be used to in C# scripts, floating point values in Cg do 
not need to the followed by an f: it's 1.0, not 1.0f.



Chapter 1

19

The error messages raised by shaders can be very misleading, especially due to their strict 
syntactic constraints. If you are in doubt about their meaning, it's best to search the Internet. 
Unity forums are filled with other developers who are likely to have encountered (and fixed) 
your problem before.

See also
More information on how to master Surface Shaders and their properties can be found in 
Chapter 2, Surface Shaders and Texture Mapping. If you are curious to see what shaders can 
actually do when used at their full potential, have a look at Chapter 10, Advanced Shading 
Techniques, for some of the most advanced techniques covered in this book.





21

Surface Shaders and 
Texture Mapping

In this chapter, we will explore Surface Shaders. We will start from a very simple matte 
material and end with holographic projections and advanced terrains blending. We can also 
use textures to animate, blend, and drive any other property that we want. In this chapter, you 
will learn about the following methods:

ff Diffuse shading

ff Using packed arrays

ff Adding a texture to a shader

ff Scrolling textures by modifying UV values

ff Normal mapping

ff Creating a transparent material

ff Creating a Holographic Shader

ff Packing and blending textures

ff Creating a circle around your terrain

2



Surface Shaders and Texture Mapping

22

Introduction
Surface Shaders have been introduced in Chapter 1, Creating Your First Shader, as the main 
type of shader used in Unity. This chapter will show in detail what these actually are and how 
they work. Generally speaking, there are two essential steps in every Surface Shader. First, 
you have to specify certain physical properties of the material that you want to describe, 
such as its diffuse color, smoothness, and transparency. These properties are initialized in a 
function called surface function and stored in a structure called surface output. Secondly, 
the surface output is passed to a lighting model. This is a special function that will also take 
information about the nearby lights in the scene. Both these parameters are then used to 
calculate the final color for each pixel of your model. The lighting function is where the real 
calculations of a shader take place as it's the piece of code that determines how light should 
behave when it touches a material.

The following diagram loosely summarizes how a Surface Shader works. Custom lighting 
models will be explored in Chapter 3, Understanding Lighting Models, while Chapter 5, Vertex 
Functions, will focus on vertex modifiers:



Chapter 2

23

Diffuse shading
Before starting our journey into texture mapping, it is important to understand how diffuse 
materials work. Certain objects might have a uniform color and smooth surface, but not smooth 
enough to shine on reflected light. These matte materials are best represented with a Diffuse 
shader. While in the real world, pure diffuse materials do not exist; Diffuse shaders are relatively 
cheap to implement and find a large application in games with low-poly aesthetics.

Getting ready
There are several ways in which you can create your own Diffuse shader. A quick way is to 
start with the Standard Shader in Unity 5 and edit it to remove any texture, similarly to what 
was previously done in Chapter 1, Creating Your First Shader.

How to do it...
Let's start with our Standard Shader, and apply the following changes:

1.	 Remove all the properties except _Color:
_Color ("Color", Color) = (1,1,1,1)

2.	 From the SubShader{} section, remove the _MainTex, _Glossiness, and 
_Metallic variables. You should not remove the reference to uv_MainTex as Cg 
does not allow the Input struct to be empty. The value will be simply ignored.

3.	 Remove the content of the surf() function and replace it with the following:
o.Albedo = _Color.rgb;

4.	 Your shader should look as follows:
Shader "CookbookShaders/Diffuse" {
  Properties {
    _Color ("Color", Color) = (1,1,1,1)
  }
  SubShader {
    Tags { "RenderType"="Opaque" }
    LOD 200
    
    CGPROGRAM
    #pragma surface surf Standard fullforwardshadows
    #pragma target 3.0
    struct Input {
      float2 uv_MainTex;
    };



Surface Shaders and Texture Mapping

24

    fixed4 _Color;

    void surf (Input IN, inout SurfaceOutputStandard o) {
      o.Albedo = _Color.rgb;
    }
    ENDCG
  } 
  FallBack "Diffuse"
}

As this shader has been refitted from a Standard Shader, it will use physically-based  
rendering to simulate how light behaves on your models. If you are trying to achieve a  
non-photorealistic look, you can change the first #pragma directive so that it uses Lambert 
rather than Standard. If you do so, you should also replace SurfaceOutputStandard with 
SurfaceOutput.

How it works...
The way shaders allow you to communicate the rendering properties of your material to their 
lighting model is via a surface output. It is basically a wrapper around all the parameters that 
the current lighting model needs. It should not surprise you that different lighting models have 
different surface output structs. The following table shows the three main output structs used 
in Unity 5 and how they can be used:

Type of shaders Unity 4 Unity 5
Diffuse Any Surface Shader

SurfaceOutput

Standard

SurfaceOutputStandard

Specular Any Surface Shader

SurfaceOutput

Standard (Specular setup)

SurfaceOutputStandardSpecular

The SurfaceOutput struct has the following properties:

ff fixed3 Albedo;: This is the diffuse color of the material

ff fixed3 Normal;: This is the tangent space normal, if written

ff fixed3 Emission;: This is the color of the light emitted by the material (this 
property is declared as half3 in the Standard Shaders)

ff fixed Alpha;: This is the transparency of the material

ff half Specular;: This is the specular power from 0 to 1

ff fixed Gloss;: This is the specular intensity



Chapter 2

25

The SurfaceOutputStandard struct has the following properties:

ff fixed3 Albedo;: This is the base color of the material (whether it's diffuse  
or specular)

ff fixed3 Normal;

ff half3 Emission;: This property is declared as half3, while it was defined as 
fixed3 in SurfaceOutput

ff fixed Alpha;

ff half Occlusion;: This is the occlusion (default 1)

ff half Smoothness;: This is the smoothness (0 = rough, 1 = smooth)

ff half Metallic;: 0 = non-metal, 1= metal

The SurfaceOutputStandardSpecular struct has the following properties:

ff fixed3 Albedo;.

ff fixed3 Normal;.

ff half3 Emission;.

ff fixed Alpha;.

ff half Occlusion;.

ff half Smoothness;.

ff fixed3 Specular;: This is the specular color. This is very different from the 
Specular property in SurfaceOutput as it allows specifying a color rather than a 
single value.

Using a Surface Shader correctly is a matter of initializing the surface output with the  
correct values.

Using packed arrays
Loosely speaking, the code inside a shader has to be executed for at least every pixel in 
your screen. This is the reason why GPUs are highly optimized for parallel computing. This 
philosophy is also evident in the standard type of variables and operators available in Cg. 
Understanding them is essential not just to use shaders correctly, but also to write highly 
optimized ones.



Surface Shaders and Texture Mapping

26

How to do it...
There are two types of variables in Cg: single values and packed arrays. The latter can be 
identified because their type ends with a number such as float3 or int4. As their names 
suggest, these types of variables are similar to structs, which means that they each contain 
several single values. Cg calls them packed arrays, though they are not exactly arrays in the 
traditional sense.

The elements of a packed array can be accessed as a normal struct. They are typically called 
x, y, z, and w. However, Cg also provides you with another alias for them, that is, r, g, b, and 
a. Despite there being no difference between using x or r, it can make a huge difference for 
the readers. Shader coding, in fact, often involves calculation with positions and colors. You 
might have seen this in the Standard Shaders:

o.Alpha = _Color.a;

Here, o was a struct and _Color was a packed array. This is also why Cg prohibits the mixed 
usage of these two syntaxes: you cannot use _Color.xgz.

There is also another important feature of packed arrays that has no equivalent in C#: 
swizzling. Cg allows addressing and reordering elements within packed arrays in just a single 
line. Once again, this appears in the Standard Shader:

o.Albedo = _Color.rgb;

Albedo is fixed3, which means that it contains three values of the fixed type. However, _
Color is defined as fixed4. A direct assignment would result in a compiler error as _Color 
is bigger than Albedo. The C# way of doing this would be as follows:

o.Albedo.r = _Color.r;
o.Albedo.g = _Color.g;
o.Albedo.b = _Color.b;

However, it can be compressed in Cg:

o.Albedo = _Color.rgb;

Cg also allows reordering elements, for instance, using _Color.bgr to swap the red and  
blue channels.



Chapter 2

27

Lastly, when a single value is assigned to a packed array, it is copied to all of its fields:

o.Albedo = 0; // Black =(0,0,0)
o.Albedo = 1; // White =(1,1,1)

This is referred to as smearing.

Swizzling can also be used on the left-hand side of an expression, allowing only certain 
components of a packed array to be overwritten:

o.Albedo.rg = _Color.rg;

In which case, it is called masking.

Packed matrices
Where swizzling really shows its full potential is when applied to packed matrices. Cg allows 
types such as float4x4, which represents a matrix of floats with four rows and four columns. 
You can access a single element of the matrix using the _mRC notation, where R is the row 
and C is the column:

float4x4 matrix;
// ...
float first = matrix._m00;
float last = matrix._m33;

The _mRC notation can also be chained:

float4 diagonal = matrix._m00_m11_m22_m33;

An entire row can be selected using squared brackets:

float4 firstRow = matrix[0];
// Equivalent to
float4 firstRow = matrix._m00_m01_m02_m03;

See also
Packed arrays are one of the nicest features of Cg. You can discover more about them here:

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter02.html

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter02.html


Surface Shaders and Texture Mapping

28

Adding a texture to a shader
Textures can bring our shaders to life very quickly in terms of achieving very realistic effects. 
In order to effectively use textures, we need to understand how a 2D image is mapped to a 3D 
model. This process is called texture mapping, and it requires some work to be done on the 
shader and 3D model that we want to use. Models, in fact, are made out of triangles; each 
vertex can store data that shaders can access. One of the most important information stored 
in vertices is the UV data. It consists of two coordinates, U and V, ranging from 0 to 1. They 
represent the XY position of the pixel in the 2D image that will be mapped to the vertices. UV 
data is present only for vertices; when the inner points of a triangle have to be texture-mapped, 
the GPU interpolates the closest UV values to find the right pixel in the texture to be used. The 
following image shows you how a 2D texture is mapped to a triangle from a 3D model:

The UV data is stored in the 3D model and requires a modeling software to be edited. Some 
models lack the UV component, hence they cannot support texture mapping. The Stanford 
bunny, for example, was not originally provided with one.

Getting ready
For this recipe, you'll need a 3D model with UV data and its texture. They both need to be 
imported to Unity before starting. You can do this simply by dragging them to the editor. As the 
Standard Shader supports texture mapping by default, we'll use this and then explain in detail 
how it works.



Chapter 2

29

How to do it...
Adding a texture to your model using the Standard Shader is incredibly simple, as follows:

1.	 Create a new Standard Shader called TexturedShader.

2.	 Create a new material called TexturedMaterial.

3.	 Assign the shader to the material by dragging over it.

4.	 After selecting the material, drag your texture to the empty rectangle called Albedo 
(RGB). If you have followed all these steps correctly, your material Inspector tab 
should look like this:

The Standard Shader knows how to map a 2D image to a 3D model using its UV data.

How it works…
When the Standard Shader is used from the inspector of a material, the process behind texture 
mapping is completely transparent to developers. If we want to understand how it works, it's 
necessary to take a closer look at TexturedShader. From the Properties section, we can 
see that the Albedo (RGB) texture is actually referred to in the code as _MainTex:

_MainTex ("Albedo (RGB)", 2D) = "white" {}

In the CGPROGRAM section, this texture is defined as sampler2D, the standard type for  
2D textures:

sampler2D _MainTex;



Surface Shaders and Texture Mapping

30

The next line shows a struct called Input. This is the input parameter for the surface function 
and contains a packed array called uv_MainTex:

struct Input {
  float2 uv_MainTex;
};

Every time the surf()surface function is called, the Input structure will contain the UV 
of _MainTex for the specific point of the 3D model that needs to be rendered. The Standard 
Shader recognizes that the name uv_MainTex refers to _MainTex and initializes it 
automatically. If you are interested in understanding how the UV is actually mapped from a 3D 
space to a 2D texture, you can check Chapter 3, Understanding Lighting Models.

Finally, the UV data is used to sample the texture in the first line of the surface function:

fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

This is done using the tex2D() function of Cg; it takes a texture and UV and returns the color 
of the pixel at that position.

The U and V coordinates go from 0 to 1, where (0,0) and (1,1) 
correspond to two opposite corners. Different implementations 
associate UV with different corners; if your texture happens to 
appear reversed, try inverting the V component.

There's more...
When you import a texture to Unity, you are setting up some of the properties that sampler2D 
will use. The most important is the Filter mode, which determines how colors are interpolated 
when the texture is sampled. It is very unlikely that the UV data will point exactly to the  
center of a pixel; in all the other cases, you might want to interpolate between the closest 
pixels to get a more uniform color. The following is the screenshot of the Inspector tab of an 
example texture:



Chapter 2

31

For most applications, Bilinear provides an inexpensive yet effective way to smooth the 
texture. If you are creating a 2D game, however, Bilinear might produce blurred tiles. In this 
case, you can use Point to remove any interpolation from the texture sampling.

When a texture is seen from a steep angle, texture sampling is likely to produce visually 
unpleasant artifacts. You can reduce them by setting Aniso Level to a higher value. This is 
particular useful for floor and ceiling textures, where glitches can break the illusion of continuity.

See also
If you would like to know more about the inner working of how textures are mapped to a 3D 
surface, you can read the information available at http://http.developer.nvidia.
com/CgTutorial/cg_tutorial_chapter03.html.

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter03.html
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter03.html


Surface Shaders and Texture Mapping

32

For a complete list of the options available when importing a 2D texture, you can refer to the 
following website:

http://docs.unity3d.com/Manual/class-TextureImporter.html

Scrolling textures by modifying UV values
One of the most common texture techniques used in today's game industry is the process 
of allowing you to scroll the textures over the surface of an object. This allows you to create 
effects such as waterfalls, rivers, lava flows, and so on. It's also a technique that is the basis 
to create animated sprite effects, but we will cover this in a subsequent recipe of this chapter. 
Let's first see how we will create a simple scrolling effect in a Surface Shader.

Getting ready
To begin this recipe, you will need to create a new shader file and material. This will set us up 
with a nice clean shader that we can use to study the scrolling effect by itself.

How to do it…
To begin with, we will launch our new shader file that we just created and enter the code 
mentioned in the following steps:

1.	 The shader will need two new properties that will allow us to control the speed of 
the texture scrolling. So, let's add a speed property for the X direction and a speed 
property for the Y direction, as shown in the following code:
Properties {
  _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
  _MainTex ("Base (RGB)", 2D) = "white" {}
  _ScrollXSpeed ("X Scroll Speed", "Range(0,10)) = 2
  _ScrollYSpeed ("Y Scroll Speed", "Range(0,10)) = 2
}

2.	 Modify the Cg properties in the CGPROGRAM section and create new variables so that 
we can access the values from our properties:
fixed4 _MainTint;
fixed _ScrollXSpeed;
fixed _ScrollYSpeed;
sampler2D _MainTex;

3.	 Modify the surface function to change the UVs given to the tex2D() function. Then, 
use the built-in _Time variable to animate the UVs over time when the play button is 
pressed in the editor:
void surf (Input IN, inout SurfaceOutput o) 

http://docs.unity3d.com/Manual/class-TextureImporter.html


Chapter 2

33

{
  // Create a separate variable to store our UVs 
  // before we pass them to the tex2D() function
  fixed2 scrolledUV = IN.uv_MainTex;
      
  // Create variables that store the individual x and y 
  // components for the UV's scaled by time
  fixed xScrollValue = _ScrollXSpeed * _Time;
  fixed yScrollValue = _ScrollYSpeed * _Time;
      
  // Apply the final UV offset
  scrolledUV += fixed2(xScrollValue, yScrollValue);
      
  // Apply textures and tint
  half4 c = tex2D (_MainTex, scrolledUV);
  o.Albedo = c.rgb * _MainTint;
  o.Alpha = c.a;
}

The following image demonstrates the result of utilizing the scrolling UV system to create 
a simple river motion for your environments. You can notice this effect in the scene called 
ScrollingUVs from the code files provided with this book:

www.allitebooks.com

http://www.allitebooks.org


Surface Shaders and Texture Mapping

34

How it works…
The scrolling system starts with the declaration of a couple of properties, which will allow the 
user of this shader to increase or decrease the speed of the scrolling effect itself. At their 
core, they are float values being passed from the material's Inspector tab to the surface 
function of the shader. For more information on shader properties, see Chapter 1, Creating 
Your First Shader.

Once we have these float values from the material's Inspector tab, we can use them to offset 
our UV values in the shader.

To begin this process, we first store the UVs in a separate variable called scrolledUV. This 
variable has to be float2/fixed2 because the UV values are being passed to us from the 
Input structure:

struct Input
{
  float2 uv_MainTex;
}

Once we have access to the mesh's UVs, we can offset them using our scroll speed variables 
and built-in _Time variable. This built-in variable returns a variable of the float4 type, 
meaning that each component of this variable contains different values of time as it pertains 
to game time.

A complete description of these individual time values are described at the following link: 
http://docs.unity3d.com/Manual/SL-UnityShaderVariables.html

This _Time variable will give us an incremented float value based on Unity's game time clock. 
So, we can use this value to move our UVs in a UV direction and scale that time with our scroll 
speed variables:

// Create variables that store the individual x and y 
// components for the uv's scaled by time
fixed xScrollValue = _ScrollXSpeed * _Time;
fixed yScrollValue = _ScrollYSpeed * _Time;

With the correct offset being calculated by time, we can add the new offset value back to the 
original UV position. This is why we are using the += operator in the next line. We want to take 
the original UV position, add the new offset value, and then pass this to the tex2D() function 
as the texture's new UVs. This creates the effect of the texture moving on the surface. We are 
really manipulating the UVs, so we are faking the effect of the texture moving:

scrolledUV += fixed2(xScrollValue, yScrollValue);
half4 c = tex2D (_MainTex, scrolledUV);

http://docs.unity3d.com/Manual/SL-UnityShaderVariables.html


Chapter 2

35

Normal mapping
Every triangle of a 3D model has a facing direction, which is the direction that it is pointing 
toward. It is often represented with an arrow placed in the center of the triangle and 
orthogonal to the surface. The facing direction plays an important role in the way light reflects 
on a surface. If two adjacent triangles face different directions, they will reflect lights at 
different angles, hence they'll be shaded differently. For curved objects, this is a problem: it is 
obvious that the geometry is made out of flat triangles.

To avoid this problem, the way the light reflects on a triangle doesn't take into account its facing 
direction, but its normal direction instead. As stated in Adding a texture to a shader recipe, 
vertices can store data; the normal direction is the most used information after the UV data. This 
is a vector of unit length that indicates the direction faced by the vertex. Regardless of the facing 
direction, every point within a triangle has its own normal direction that is a linear interpolation 
of the ones stored in its vertices. This gives us the ability to fake the effect of high-resolution 
geometry on a low-resolution model. The following image shows the same geometric shape 
rendered with different per-vertex normals. In the image on the left, normals are orthogonal to 
the face represented by its vertices; this indicates that there is a clear separation between each 
face. On the right, normals are interpolated along the surface, indicating that even if the surface 
is rough, light should reflect as if it's smooth. It's easy to see that even if the three objects in the 
following image share the same geometry, they reflect light differently. Despite being made out 
of flat triangles, the object on the right reflects light as if its surface was actually curved:

Smooth objects with rough edges are a clear indication that per-vertex normals have been 
interpolated. This can be seen if we draw the direction of the normal stored in every vertex, as 
shown in the following image. You should note that every triangle has only three normals, but 
as multiple triangles can share the same vertex, more than one line can come out of it:



Surface Shaders and Texture Mapping

36

Calculating the normals from the 3D model is a technique that has rapidly declined in favor of 
a more advanced one—normal mapping. Similar to what happens with texture mapping, the 
normal directions can be provided using an additional texture, usually called normal map or 
bump map. Normal maps are usually RGB images, where the RGB components are used to 
indicate the X, Y, and Z components of the normal direction. There are many ways to create 
normal maps these days. Some applications such as CrazyBump (http://www.crazybump.
com/) and NDO Painter (http://quixel.se/ndo/) will take in 2D data and convert it to 
normal data for you. Other applications such as Zbrush 4R7 (http://www.pixologic.
com/) and AUTODESK (http://usa.autodesk.com) will take 3D sculpted data and create 
normal maps for you. The actual process of creating normal maps is definitely out of the scope 
of this book, but the links in the previous text should help you get started.

Unity makes the process of adding normals to your shaders quite an easy process in the 
Surface Shader realm using the UnpackNormals() function. Let's see how this is done.

Getting ready
Create a new material and shader and set them up on a new object in the Scene view. This 
will give us a clean workspace in which we can look at just the normal mapping technique.

You will need a normal map for this recipe, but there is also one in the Unity project included 
with this book.

An example normal map included with this book's contents is shown here:

http://www.crazybump.com/
http://www.crazybump.com/
http://quixel.se/ndo/
http://www.pixologic.com/
http://www.pixologic.com/
http://usa.autodesk.com


Chapter 2

37

How to do it…
The following are the steps to create a normal map shader:

1.	 Let's get the Properties block set up in order to have a color tint and texture:
Properties
{
  _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
  _NormalTex ("Normal Map", 2D) = "bump" {}
}

By initializing the texture as bump, we are telling Unity that 
_NormalTex will contain a normal map. If the texture is 
not set, it will be replaced by a grey texture. The color used 
(0.5,0.5,0.5,1) indicates no bump at all.

2.	 Link the properties to the Cg program by declaring them in SubShader{} below the 
CGPROGRAM statement:
CPROGRAM
#pragma surface surf Lambert

// Link the property to the CG program
sampler2D _NormalTex;
float4 _MainTint;

3.	 We need to make sure that we update the Input struct with the proper variable 
name so that we can use the model's UVs for the normal map texture:
// Make sure you get the UVs for the texture in the struct
struct Input
{
  float2 uv_NormalTex;
}

4.	 Finally, we extract the normal information from the normal map texture using the 
built-in UnpackNormal() function. Then, you only have to apply these new normals 
to the output of the Surface Shader:

// Get the normal data out of the normal map texture
// using the UnpackNormal function
float3 normalMap = UnpackNormal(tex2D(_NormalTex,  
  IN.uv_NormalTex));

// Apply the new normal to the lighting model
o.Normal = normalMap.rgb;



Surface Shaders and Texture Mapping

38

The following image demonstrates the result of our normal map shader:

Shaders can have both a texture map and normal map. It is not 
uncommon to use the same UV data to address both. However, it is 
possible to provide a secondary set of UVs in the vertex data (UV2) 
specifically used for the normal map.

How it works…
The actual math to perform the normal mapping effect is definitely beyond the scope of this 
chapter, but Unity has done it all for us already. It has created the functions for us so that we 
don't have to keep doing it over and over again. This is another reason why Surface Shaders 
are a really efficient way to write shaders.

If you look in the UnityCG.cginc file found in the Data folder in your Unity installation 
directory, you will find the definitions for the UnpackNormal() function. When you declare 
this function in your Surface Shader, Unity takes the provided normal map and processes it 
for you and gives you the correct type of data so that you can use it in your per-pixel lighting 
function. It's a huge time-saver! When sampling a texture, you get RGB values from 0 to 1; 
however, the directions of a normal vector range from -1 to +1. UnpackNormal() brings 
these components in the right range.



Chapter 2

39

Once you have processed the normal map with the UnpackNormal() function, you send it 
back to your SurfaceOutput struct so that it can be used in the lighting function. This is 
done by o.Normal = normalMap.rgb;. We will see how the normal is actually used to 
calculate the final color of each pixel in Chapter 3, Understanding Lighting Models.

There's more…
You can also add some controls to your normal map shader that lets a user adjust the 
intensity of the normal map. This is easily done by modifying the x and y components of 
the normal map variable and then adding it all back together. Add another property to the 
Properties block and name it _NormalMapIntensity:

_NormalMapIntensity("Normal intensity", Range(0,1)) = 1

Multiply the x and y components of the unpacked normal map and reapply this value to the 
normal map variable:

fixed3 n = UnpackNormal(tex2D(_BumpTex, IN.uv_ uv_MainTex)).rgb;
n.x *= _NormalMapIntensity;
n.y *= _NormalMapIntensity;
o.Normal = normalize(n);

Normal vectors are supposed to have lengths equal to one. 
Multiplying them for _NormalMapIntensity changes their 
length, making normalization necessary.

Now, you can let a user adjust the intensity of the normal map in the material's Inspector tab. 
The following image shows the result of modifying the normal map with our scalar values:



Surface Shaders and Texture Mapping

40

Creating a transparent material
All the shaders seen so far have something in common—they are used for solid materials. 
If you want to improve the look of your game, transparent materials are often a good way to 
start. They can be used for anything from a fire effect to a window glass. Working with them, 
unfortunately, is slightly more complicated. Before rendering solid models, Unity orders them 
according to the distance from the camera (Z ordering) and skips all the triangles that are 
facing away from the camera (culling). When rendering transparent geometries, there are 
instances in which these two aspects can cause problems. This recipe will show you how to 
solve some of these issues when it comes to creating a transparent Surface Shader. This topic 
will be heavily revisited in Chapter 6, Fragment Shaders and Grab Passes, where realistic 
glass and water shaders will be provided.

Getting ready
This recipe requires a new shader, which we'll be calling Transparent, and a new material 
so that it can be attached to an object. As this is going to be a transparent glass window, 
a quad or plane is perfect. We will also need several other non-transparent objects to test 
the effect. In this example, we will use a PNG for the glass texture. The alpha channel of the 
image will be used to determine the transparency of the glass. The process of creating such 
an image depends on the software that you are using. However, these are the main steps that 
you will need to follow:

1.	 Find the image of the glass you want for your windows.

2.	 Open it with a photoediting software, such as GIMP or Photoshop.

3.	 Select the parts of the image that you want to be semi-transparent.

4.	 Create a white (full opacity) layer mask on your image.

5.	 Use the selection previously made to fill the layer mask with a darker color.

6.	 Save the image and import it to Unity.

The toy image used in this recipe is a picture of a stained glass from the Meaux Cathedral  
in France (https://en.wikipedia.org/wiki/Stained_glass). If you have followed  
all the steps, your image should look like this (RGB channels on the left, and A channel on  
the right):

https://en.wikipedia.org/wiki/Stained_glass


Chapter 2

41

How to do it…
As mentioned previously, there are a few aspects that we need to take care of while using a 
Transparent Shader:

1.	 In the SubShader{} section of the shader, add the following tags that signal the 
shader is transparent:
Tags
{
  "Queue" = "Transparent"
  "IgnoreProjector" = "True"
  "RenderType" = "Transparent"
}

2.	 As this shader is designed for 2D materials, make sure that the back geometry of 
your model is not drawn by adding the following:
Cull Back

3.	 Tell the shader that this material is transparent and needs to be blended with what 
was drawn on the screen before:
#pragma surface surf Standard alpha:fade



Surface Shaders and Texture Mapping

42

4.	 Use this Surface Shader to determine the final color and transparency of the glass:
void surf(Input IN, inout SurfaceOutputStandard o)
{
  float4 c = tex2D(_MainTex, IN.uv_MainTex) * _Color;
  o.Albedo = c.rgb;
  o.Alpha = c.a;
}

How it works…
This shader introduces several new concepts. First of all, Tags are used to add information 
about how the object is going to be rendered. The really interesting one here is Queue. Unity, 
by default, will sort your objects for you based on the distance from the camera. So, as an 
object gets nearer to the camera, it is going to be drawn over all the objects that are further 
away from the camera. For most cases, this works out just fine for games, but you will find 
certain situations where you will want to have more control over the sorting of your objects in 
your scene. Unity has provided us with some default render queues, each with a unique value 
that directs Unity when to draw the object to the screen. These built-in render queues are 
called Background, Geometry, AlphaTest, Transparent, and Overlay. These queues 
weren't just created arbitrarily; they actually serve a purpose to make our lives easier when 
writing shaders and interacting with the real-time renderer. Refer to the following table for 
descriptions on the usage of each of these individual render queues:

Render queue Render queue description Render queue 
value

Background This render queue is rendered first. It is used for skyboxes 
and so on.

1000

Geometry This is the default render queue. This is used for most 
objects. Opaque geometry uses this queue.

2000

AlphaTest Alpha-tested geometry uses this queue. It's different from 
the Geometry queue as it's more efficient to render 
alpha-tested objects after all the solid objects are drawn.

2450

Transparent This render queue is rendered after Geometry and 
AlphaTest queues in back-to-front order. Anything alpha-
blended (that is, shaders that don't write to the depth 
buffer) should go here, for example, glass and particle 
effects.

3000

Overlay This render queue is meant for overlay effects. Anything 
rendered last should go here, for example, lens flares.

4000

So, once you know which render queue your object belongs to, you can assign its 
built-in render queue tag. Our shader used the Transparent queue, so we wrote 
Tags{"Queue"="Trasparent"}.



Chapter 2

43

The fact that the Transparent queue is rendered after Geometry 
does not mean that our glass will appear on top of all the other solid 
objects. Unity will draw the glass last, but it will not render pixels that 
belong to pieces of geometry hidden behind something else. This 
control is done using a technique called ZBuffering. More information 
on how models are rendered can be found at http://docs.
unity3d.com/Manual/SL-CullAndDepth.html.

The IgnoreProjector tag makes this object unaffected by Unity's projectors. Lastly, 
RenderType plays a role in shader replacement, a topic that will be covered briefly in 
Chapter 9, Gameplay and Screen Effects.

The last concept introduced is alpha:fade. This indicates that all the pixels from this 
material have to be blended with what was on the screen before according to their alpha 
values. Without this directive, the pixels will be drawn in the correct order, but they won't have 
any transparency.

Creating a Holographic Shader
More and more space-themed games are being released every year. An important part of a 
good sci-fi game is the way futuristic technology is presented and integrated in the gameplay. 
There's nothing that screams futuristic more than holograms. Despite being present in 
many flavors, holograms are often represented as semi-transparent, thin projections of an 
object. This recipe shows you how to create a shader that simulates such effects. Take this 
as a starting point: you can add noise, animated scanlines, and vibrations to create a truly 
outstanding holographic effect. The following image shows an example of a holographic effect:

http://docs.unity3d.com/Manual/SL-CullAndDepth.html
http://docs.unity3d.com/Manual/SL-CullAndDepth.html


Surface Shaders and Texture Mapping

44

Getting ready
As the holographic effects shows only the outlines of an object, we'll call this shader 
Silhouette. Attach it to a material and assign it to your 3D model.

How to do it…
The following changes will modify our existing shader into a holographic one:

1.	 Add the following property to the shader:
_DotProduct("Rim effect", Range(-1,1)) = 0.25

2.	 Add its respective variable to the CGPROGRAM section:
float _DotProduct;

3.	 As this material is transparent, add the following tags:
Tags
{
  "Queue" = "Transparent"
  "IgnoreProjector" = "True"
  "RenderType" = "Transparent"
}

According to the type of object that you will use, you might want its 
backside to appear. If this is the case, add Cull Off so that the 
back of the model won't be removed (culled).

4.	 This shader is not trying to simulate a realistic material, so there is no need to use 
the PBR lighting model. The Lambertian reflectance, which is very cheap, is used 
instead. Additionally, we should disable any lighting with nolighting and signal to 
Cg that this is a Transparent Shader using alpha:fade:
#pragma surface surf Lambert alpha:fade nolighting

5.	 Change the Input structure so that Unity will fill it with the current view direction and 
world normal direction:
struct Input
{
  float2 uv_MainTex;
  float3 worldNormal;
  float3 viewDir;
};



Chapter 2

45

6.	 Use the following surface function. Remember that as this shader is using 
the Lambertian reflectance as its lighting function, the name of the surface 
output structure should be changed accordingly to SurfaeOutput instead of 
SurfaceOutputStandard:
void surf(Input IN, inout SurfaceOutput o)
{
  float4 c = tex2D(_MainTex, IN.uv_MainTex) * _Color;
  o.Albedo = c.rgb;

  float border = 1 - (abs(dot(IN.viewDir,  
    IN.worldNormal)));
  float alpha = (border * (1 - _DotProduct) + _DotProduct);
  o.Alpha = c.a * alpha;
}

You can now use the Rim effect slider to choose the strength of the holographic effect.

How it works…
As mentioned before, this shader works by showing only the silhouette of an object. If we look 
at the object from another angle, its outline will change. Geometrically speaking, the edges 
of a model are all those triangles whose normal direction is orthogonal (90 degrees) to the 
current view direction. The Input structure declares these parameters, worldNormal and 
viewDir, respectively.

The problem of understanding when two vectors are orthogonal can be solved using the dot 
product. It's an operator that takes two vectors and returns zero if they are orthogonal. We 
use _DotProduct to determine how close to zero the dot product has to be for the triangle to 
fade completely.

The second aspect that is used in this shader is the gentle fading between the edge of 
the model (fully visible) and the angle determined by _DotProduct (invisible). This linear 
interpolation is done as follows:

float alpha = (border * (1 - _DotProduct) + _DotProduct);

Finally, the original alpha from the texture is multiplied with the newly calculated coefficient to 
achieve the final look.



Surface Shaders and Texture Mapping

46

There's more…
This technique is very simple and relatively inexpensive. Yet, it can be used for a large variety 
of effects, such as the following:

ff The slightly colored atmosphere of a planet in sci-fi games

ff The edge of an object that has been selected or is currently under the mouse

ff A ghost or specter

ff Smoke coming out of an engine

ff The shockwave of an explosion

ff The bubble shield of a spaceship under attack

See also
The dot product plays an important role in the way reflections are calculated. Chapter 3, 
Understanding Lighting Models, will explain in detail how it works and why it is widely used in 
so many shaders.

Packing and blending textures
Textures are useful to store not only loads of data, not just pixel colors as we generally tend 
to think of them, but also for multiple sets of pixels in both the x and y directions and RGBA 
channels. We can actually pack multiple images into one single RGBA texture and use each of 
the R, G, B, and A components as individual textures themselves by extracting each of these 
components in the shader code.

The result of packing individual grayscale images into a single RGBA texture can be seen in 
the following image:

Why is this helpful? Well, in terms of the amount of actual memory that your application takes 
up, textures are a large portion of your application's size. So, to begin reducing the size of your 
application, we can look at all of the images that we are using in our shader and see if we can 
merge these textures into a single texture.



Chapter 2

47

Any texture that is grayscale can be packed into one of the RGBA channels of another texture. 
This might sound a bit odd at first, but this recipe is going to demonstrate one of the uses of 
packing a texture and using these packed textures in a shader.

One example of using these packed textures is when you want to blend a set of textures 
together onto a single surface. You see this most often in terrain type shaders, where you 
need to blend into another texture nicely using some sort of control texture or the packed 
texture, in this case. This recipe covers this technique and shows you how you can construct 
the beginnings of a nice four-texture blended terrain shader.

Getting ready
Let's create a new shader file in your Shaders folder and then create a new material for this 
shader. The naming convention is entirely up to you for your shader and material files, so try 
your best to keep them organized and easy to reference later on.

Once you have your shader and material ready, create a new scene in which we can test  
our shader.

You will also need to gather up four textures that you would want to blend together. These can 
be anything, but for a nice terrain shader, you will want grass, dirt, rocky dirt, and  
rock textures.

These are the color textures that we will be using for this recipe, which are included with  
this book.

Finally, we will also need a blending texture that is packed with grayscale images. This will give 
us the four blending textures that we can use to direct how the color textures will be placed on 
the object surface.

We can use very intricate blending textures to create a very realistic distribution of terrain 
textures over a terrain mesh, as seen in the following image:



Surface Shaders and Texture Mapping

48

How to do it…
Let's learn how to use packed textures by entering the code shown in the following steps:

1.	 We need to add a few properties to our Properties block. We will need five 
sampler2D objects, or textures, and two color properties:
Properties
{
_MainTint ("Diffuse Tint", Color) = (1,1,1,1)
    
//Add the properties below so we can input all of our  
  textures
  _ColorA ("Terrain Color A", Color) = (1,1,1,1)
  _ColorB ("Terrain Color B", Color) = (1,1,1,1)
  _RTexture ("Red Channel Texture", 2D) = ""{}
  _GTexture ("Green Channel Texture", 2D) = ""{}
  _BTexture ("Blue Channel Texture", 2D) = ""{}
  _ATexture ("Alpha Channel Texture", 2D) = ""{}
  _BlendTex ("Blend Texture", 2D) = ""{}
}

2.	 We then need to create the SubShader{} section variables that will be our link to 
the data in the Properties block:
CGPROGRAM
#pragma surface surf Lambert

float4 _MainTint;
float4 _ColorA;
float4 _ColorB;
sampler2D _RTexture;
sampler2D _GTexture;
sampler2D _BTexture;
sampler2D _BlendTex;
sampler2D _ATexture;

3.	 So, now we have our texture properties and we are passing them to our 
SubShader{} function. In order to allow the user to change the tiling rates on a per-
texture basis, we will need to modify our Input struct. This will allow us to use the 
tiling and offset parameters on each texture:
struct Input 
{
  float2 uv_RTexture;
  float2 uv_GTexture;
  float2 uv_BTexture;



Chapter 2

49

  float2 uv_ATexture;
  float2 uv_BlendTex;
};

4.	 In the surf() function, get the texture information and store them in their own 
variables so that we can work with the data in a clean, easy-to-understand way:
//Get the pixel data from the blend texture
//we need a float 4 here because the texture 
//will return R,G,B,and A or X,Y,Z, and W
float4 blendData = tex2D(_BlendTex, IN.uv_BlendTex);
      
//Get the data from the textures we want to blend
float4 rTexData = tex2D(_RTexture, IN.uv_RTexture);
float4 gTexData = tex2D(_GTexture, IN.uv_GTexture);
float4 bTexData = tex2D(_BTexture, IN.uv_BTexture);
float4 aTexData = tex2D(_ATexture, IN.uv_ATexture);

5.	 Let's blend each of our textures together using the lerp() function. It takes three 
arguments, lerp(value : a, value : b, blend: c). The lerp() function 
takes in two textures and blends them with the float value given in the last argument:
//No we need to contruct a new RGBA value and add all 
//the different blended texture back together
float4 finalColor;
finalColor = lerp(rTexData, gTexData, blendData.g);
finalColor = lerp(finalColor, bTexData, blendData.b);
finalColor = lerp(finalColor, aTexData,  
  blendData.a);finalColor.a = 1.0;

6.	 Finally, we multiply our blended textures with the color tint values and use the red 
channel to determine where the two different terrain tint colors go:
//Add on our terrain tinting colors
float4 terrainLayers = lerp(_ColorA, _ColorB, blendData.r);
finalColor *= terrainLayers;
finalColor = saturate(finalColor);
        
o.Albedo = finalColor.rgb * _MainTint.rgb;
o.Alpha = finalColor.a;



Surface Shaders and Texture Mapping

50

The result of blending together four terrain textures and creating a terrain tinting technique 
can be seen in the following image:

How it works…
This might seem like quite a few lines of code, but the concept behind blending is actually 
quite simple. For the technique to work, we have to employ the built-in lerp() function from 
the CgFX standard library. This function allows us to pick a value between argument one and 
argument two using argument three as the blend amount:

Function Description

lerp( a , b, 
f )

This involves linear interpolation:

(1 – f )* a + b * f

Here, a and b are matching vector or scalar types. The f parameter can be 
either a scalar or vector of the same type as a and b.

So, for example, if we wanted to find the mid-value between 1 and 2, we could feed the value 
0.5 as the third argument to the lerp() function and it would return the value 1.5. This 
works perfectly for our blending needs as the values of an individual channel in an RGBA 
texture are single float values, usually in the range of 0 to 1.



Chapter 2

51

In the shader, we simply take one of the channels from our blend texture and use it to drive the 
color that is picked in a lerp() function for each pixel. For instance, we take our grass texture 
and dirt texture, use the red channel from our blending texture, and feed this to a lerp() 
function. This will give us the correct blended color result for each pixel on the surface.

A more visual representation of what is happening when using the lerp() function is shown 
in the following image:

The shader code simply uses the four channels of the blend texture and all the color textures 
to create a final blended texture. This final texture then becomes our color that we can 
multiply with our diffuse lighting.

Creating a circle around your terrain
Many RTS games display distances (range attack, moving distance, sight, and so on) by 
drawing a circle around the selected unit. If the terrain is flat, this can be done simply by 
stretching a quad with the texture of a circle. If that's not the case, the quad will most likely be 
clipped behind a hill or another piece of geometry. This recipe will show you how to create a 
shader that allows you to draw circles around an object of arbitrary complexity. If you want to 
be able to move or animate your circle, we will need both a shader and C# script. The following 
image shows an example of drawing a circle in a hilly region using a shader:



Surface Shaders and Texture Mapping

52

Getting ready
Despite working with every piece of geometry, this technique is oriented to terrains. Hence, 
the first step is setting up a terrain in Unity.

1.	 Let's start by creating a new shader called RadiusShader and the respective 
material, Radius.

2.	 Have the character for your object ready; we will draw a circle around it.

3.	 From the menu, navigate to GameObject | 3D Object | Terrain to create a  
new terrain.

4.	 Create the geometry for your terrain. You can either import an existing one or  
draw your own using the tools available (Raise/Lower Terrain, Paint Height,  
Smooth Height).

5.	 Terrains are special objects in Unity, and the way texture mapping works on them is 
different from traditional 3D models. You cannot provide _MainTex from a shader as 
it needs to be provided directly from the terrain itself. To do this, select Paint Texture 
and then click on Add Texture…:



Chapter 2

53

6.	 Now that the texture is set, you have to change the material of the terrain so that a 
custom shader can be provided. From Terrain Settings, change the Material property 
to Custom, and then drag the Radius material to the Custom Material box.

You are now ready to create your shader.

How to do it…
Let's start by editing the RadiusShader file:

1.	 In the new shader, add these four properties:
_Center("Center", Vector) = (0,0,0,0)
_Radius("Radius", Float) = 0.5
_RadiusColor("Radius Color", Color) = (1,0,0,1)
_RadiusWidth("Radius Width", Float) = 2

2.	 Add their respective variables to the CGPROGRAM section:
float3 _Center;
float _Radius;
fixed4 _RadiusColor;
float _RadiusWidth;

3.	 Input to our surface function requires not only the UV of the texture, but also the 
position (in world coordinates) of every point of the terrain. We can retrieve this 
parameter by changing the Input struct as follows:
struct Input
{
  float2 uv_MainTex; // The UV of the terrain texture
  float3 worldPos;   // The in-world position
};

4.	 Lastly, we use this surface function:
void surf(Input IN, inout SurfaceOutputStandard o)
{
  float d = distance(_Center, IN.worldPos);
  if (d > _Radius && d < _Radius + _RadiusWidth)
    o.Albedo = _RadiusColor;
  else
    o.Albedo = tex2D(_MainTex, IN.uv_MainTex).rgb;
}

These steps are all it takes to draw a circle on your terrain. You can use the material's 
Inspector tab to change the position, radius, and color of the circle.



Surface Shaders and Texture Mapping

54

Moving the circle
If you want the circle to follow your character, other steps are necessary:

1.	 Create a new C# script called Radius.

2.	 Add these properties to the script:
public Material radiusMaterial;
public float radius = 1;
public Color color = Color.white;

3.	 In the Update() method, add these lines of code:
radiusMaterial.SetVector("_Center", transform.position);
radiusMaterial.SetFloat("_Radius", radius);
radiusMaterial.SetColor("_RadiusColor", color);

4.	 Attach the script to your character.

5.	 Finally, drag the Radius material to the Radius Material slot of the script.

You can now move your character around and this will create a nice circle around it. Changing 
the properties of the Radius script will change the radius as well.

How it works…
The relevant parameters to draw a circle are its center, radius, and color. They are all available 
in the shader with the names _Center, _Radius, and _RadiusColor. By adding the 
worldPos variable to the Input structure, we are asking Unity to provide us with the position 
of the pixel that we are drawing expressed in world coordinates. This is the actual position of 
an object in the editor.

The surf() function is where the circle is actually drawn. It calculates the distance from the 
point being drawn and center of the radius, then it checks whether it is between _Radius 
and _Radius + _RadiusWidth; if this is the case, it uses the chosen color. In the other 
case, it just samples the texture map like all the other shaders seen so far.



55

3
Understanding Lighting 

Models

In the previous chapters, we introduced Surface Shaders and explained how we can change 
physical properties (such as Albedo and Specular) to simulate different materials. How 
does this really work? At the heart of every Surface Shader, there is its lighting model. It's 
the function that takes these properties and calculates the final shade of each pixel. Unity 
usually hides this from the developers because in order to write a lighting model, you have 
to understand how light reflects and refracts onto surfaces. This chapter will finally show you 
how lighting models work and give you the basics to create your own.

In this chapter, you will learn the following recipes:

ff Creating a custom diffuse lighting model

ff Creating a Toon Shader

ff Creating a Phong Specular type

ff Creating a BlinnPhong Specular type

ff Creating an Anisotropic Specular type

Introduction
Simulating the way light works is a very challenging and resource-consuming task. For many 
years, video games have used very simple lighting models that, despite lacking realism, were 
very believable. Even if most 3D engines are now using physically-based renderers, it is worth 
exploring some simpler techniques. The ones presented in this chapter are reasonably realistic 
and widely adopted on devices with low resources such as mobile phones. Understanding 
these simple lighting models is also essential if you want to create your own one.



Understanding Lighting Models

56

Creating a custom diffuse lighting model
If you are familiar with Unity 4, you may know that the default shader it provided was 
based on a lighting model called Lambertian reflectance. This recipe will show you how it is 
possible to create a shader with a custom lighting model and explain the mathematics and 
implementation behind it. The following image shows the same geometry rendered with a 
Standard Shader (right) and diffuse Lambert one (left):

Shaders based on the Lambertian reflectance are classified as non-photorealistic; no object in 
the real world really looks like this. However, Lambert Shaders are still often used in low poly 
games as they produce a neat contrast between the faces of complex geometries. The lighting 
model used to calculate the Lambertian reflectance is also very efficient, making it perfect for 
mobile games.

Unity has already provided us with a lighting function that we can use for our shaders. It 
is called the Lambertian lighting model. It is one of the more basic and efficient forms of 
reflectance, which you can find in a lot of games even today. As it is already built in the Unity 
Surface Shader language, we thought it is best to start with this first and build on it. You can 
also find an example in the Unity reference manual, but we will go into more depth with it and 
explain where the data is coming from and why it is working the way it is. This will help you get 
a nice grounding in setting up custom lighting models so that we can build on this knowledge 
in the future recipes in this chapter.



Chapter 3

57

Getting ready
Let's start by carrying out the following steps:

1.	 Create a new shader and give it a name.

2.	 Create a new material, give it a name, and assign the new shader to its  
shader property.

3.	 Then, create a sphere object and place it roughly in the center of the scene.

4.	 Finally, let's create a directional light to cast some light on our object.

When your assets have been set up in Unity, you should have a scene that resembles the 
following screenshot:



Understanding Lighting Models

58

How to do it…
The Lambertian reflectance can be achieved with the following changes to the shader:

1.	 Begin by adding the following properties to the shader's Properties block:
_MainTex("Texture", 2D) = "white"

2.	 Change the #pragma directive of the shader so that, instead of Standard, it uses 
our custom lighting model:
#pragma surface surf SimpleLambert

3.	 Use a very simple surface function, which just samples the texture according to  
its UV data:
void surf(Input IN, inout SurfaceOutput o) {
  o.Albedo = tex2D(_MainTex, IN.uv_MainTex).rgb;
}

4.	 Add a function called LightingSimpleLambert() that will contain the following 
code for the Lambertian reflectance:
half4 LightingSimpleLambert (SurfaceOutput s, half3  
  lightDir, half atten) {
  half NdotL = dot (s.Normal, lightDir);
  half4 c;
  c.rgb = s.Albedo * _LightColor0.rgb * (NdotL * atten *  
    1);
  c.a = s.Alpha;
  return c;
}

How it works…
As previously seen in Chapter 1, Creating Your First Shader, the #pragma directive is used to 
specify which surface function to use. Choosing a different lighting model works in a similar 
fashion: SimpleLambert forces Cg to look for a function called LightingSimpleLambert(). 
Note Lighting at the beginning, which is omitted in the directive.

The lighting function takes three parameters: the surface output (which contains the physical 
properties such as the albedo and transparency), the direction the light is coming from, and 
its attenuation.



Chapter 3

59

According to the Lambertian reflectance, the amount of light a surface reflects depends on 
the angle between the incident light and surface normal. If you have played pool billiards, 
you are surely familiar with this concept; the direction of a ball depends on its incident angle 
against the wall. If you hit a wall at a 90 degree angle, the ball will come back at you; if you 
hit it with a very low angle, its direction will be mostly unchanged. The Lambertian model 
makes the same assumption; if the light hits a triangle with a 90 degree angle, all the light 
gets reflected back. The lower the angle, the less light is reflected back to you. This concept is 
shown in the following image:

This simple concept has to be translated into a mathematical form. In vector algebra, the 
angle between two unit vectors can be calculated via an operator called dot product. When 
the dot product is equal to zero, two vectors are orthogonal, which means that they make a 90 
degree angle. When it is equal to one (or minus one), they are parallel to each other. Cg has a 
function called dot(), which implements the dot product extremely efficiently.

The following picture shows a light source (sun) shining on a complex surface. L indicates the 
light direction (called lightDir in the shader) and N is the normal to the surface. The light is 
reflected with the same angle that it hits the surface:



Understanding Lighting Models

60

The Lambertian reflectance simply uses the NdotL dot product as a multiplicative coefficient 
for the intensity of light:

I N L= ⋅

When N and L are parallel, all the light is reflected back to the source, causing the  
geometry to appear brighter. The _LightColor0 variable contains the color of the  
light that is calculated.

Prior to Unity 5, the intensity of the lights were different. If you are 
using an old Diffuse shader based on the Lambertian model, you 
may notice that NdotL was multiplied by two:(NdotL * atten 
* 2) rather than (NdotL * atten). If you are importing a 
custom shader from Unity 4, you will need to correct this manually. 
Legacy Shaders, however, have already been designed taking this 
aspect into account.

When the dot product is negative, the light is coming from the opposite side of the triangle. 
This is not a problem for opaque geometries as triangles that are not facing the camera 
frontally are culled (discarded) and not rendered.

This basic Lambert is a great starting point when you are prototyping your shaders as you can 
get a lot accomplished in terms of writing the core functionality of the shader while not having 
to worry about the basic lighting functions.

Unity has provided us with a lighting model that has already taken the task of creating 
a Lambert lighting for you. If you look at the UnityCG.cginc file found in your Unity's 
installation directory under the Data folder, you will notice that you have Lambert and 
BlinnPhong lighting models available for you to use. The moment you compile your shader 
with #pragma surface surf Lambert, you are telling the shader to utilize Unity's 
implementation of the Lambert lighting function in the UnityCG.cginc file so that we don't 
have to write that code over and over again. We will explore how the BlinnPhong model works 
later in this chapter.

Creating a Toon Shader
One of the most used effects in games is the toon shading, which is also known as cel 
shading (short for celluloid). It is a non-photorealistic rendering technique that makes 3D 
models appear flat. Many games use it to give the illusion that the graphics are being  
hand-drawn rather than being 3D-modeled. You can see, in the following picture, a sphere 
rendered with a Standard Shader (right) and Toon Shader (left):



Chapter 3

61

Achieving this effect using just surface functions is not impossible, but it would be extremely 
expensive and time-consuming. The surface function, in fact, only works on the properties of 
the material, not its actual lighting condition. As toon shading requires to change the way light 
reflects, we need to create our custom lighting model instead.

Getting ready
Let's start this recipe by creating a shader and its material and importing a special texture,  
as follows:

1.	 Start by creating a new shader; in this example, we will extend the one made in the 
previous recipe.

2.	 Create a new material for the shader and attach it to a 3D model. The toon shading 
works best on curved surfaces.

3.	 This recipe requires an additional texture called ramp map. It is important that you 
change its Wrap Mode to Clamp. If you want the edges between the colors to be 
sharp, the Filter Mode should also be set to Point:

How to do it…
The toon aesthetic can be achieved with the following changes to the shader:

1.	 Add a new property for a texture called _RampTex:
_RampTex ("Ramp", 2D) = "white" {}

2.	 Add its relative variable in the CGPROGRAM section:
sampler2D _RampTex;



Understanding Lighting Models

62

3.	 Change the #pragma directive so that it points to a function called 
LightingToon():
#pragma surface surf Toon

4.	 Use this lighting model:
fixed4 LightingToon (SurfaceOutput s, fixed3 lightDir,  
  fixed atten)
{
  half NdotL = dot(s.Normal, lightDir); 
  NdotL = tex2D(_RampTex, fixed2(NdotL, 0.5));

  fixed4 c;
  c.rgb = s.Albedo * _LightColor0.rgb * NdotL * atten;
  c.a = s.Alpha;

  return c;
}

How it works…
The main characteristic of the toon shading is the way the light is rendered; surfaces are not 
shaded uniformly. To achieve this effect, we need a ramp map. Its purpose is to remap the 
Lambertian light intensity NdotL to another value. Using a ramp map without a gradient, we 
can force the lighting to be rendered in steps. The following image shows how the ramp map 
is used to correct the light intensity:



Chapter 3

63

There's more…
There are many different ways one can achieve a toon shading effect. Using different ramps 
can produce dramatic changes in the way your models look, so you should experiment in 
order to find the best one.

An alternative to ramp textures is to snap the light intensity NdotL so that it can only assume 
a certain number of values equidistantly sampled from 0 to 1:

half4 LightingCustomLambert (SurfaceOutput s, half3 lightDir,  
  half3 viewDir, half atten) {
half NdotL = dot (s.Normal, lightDir);  
half cel = floor(NdotL * _CelShadingLevels) / (_CelShadingLevels  
  -0.5); // Snap

half4 c;
  c.rgb = s.Albedo * _LightColor0.rgb * cel * atten;
  c.a = s.Alpha;

  return c;
}

The snapping code multiplies NdotL times _CelShadingLevels, rounds it to an 
integer, and then divides it back. By doing this, the cel quantity is forced to assume one 
of the _CelShadingLevels equidistant values from 0 to 1. This removes the need for 
a ramp texture and makes all the color steps of the same size. If you are going for this 
implementation, remember to add a property called _CelShadingLevels to your shader.

Creating a Phong Specular type
The specularity of an object surface simply describes how shiny it is. These types of effects 
are often referred to as view-dependent effects in the shader world. This is because in order to 
achieve a realistic Specular effect in your shaders, you need to include the direction that the 
camera or user is facing the object's surface. The most basic and performance-friendly Specular 
type is the Phong Specular effect. It is the calculation of the light direction reflecting off of the 
surface compared to the user's view direction. It is a very common Specular model used in 
many applications, from games to movies. While it isn't the most realistic in terms of accurately 
modeling the reflected Specular, it gives a great approximation that performs well in most 
situations. Additionally, if your object is further away from the camera and there is no need for a 
very accurate Specular, this is a great way to provide a Specular effect to your shaders.

In this recipe, we will be covering how to implement the per-vertex version of the shader 
and also the per-pixel version using some new parameters in the Surface Shader's Input 
struct. We will see the difference and discuss when and why to use these two different 
implementations for different situations.



Understanding Lighting Models

64

Getting ready
To start with this recipe, perform the following steps:

1.	 Create a new shader, material, and object, and give them appropriate names so that 
you can find them later.

2.	 Attach the shader to the material and the material to the object. To finish off your  
new scene, create a new directional light so that we can see our Specular effect as 
we code it.

How to do it…
Follow the following steps to create a Phong lighting model:

1.	 You might be seeing a pattern at this point, but we always like to start out with our 
most basic part of the shader writing process: the creation of properties. So, let's add 
the following properties to the shader:
Properties
{
  _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
  _MainTex ("Base (RGB)", 2D) = "white" {}
  _SpecularColor ("Specular Color", Color) = (1,1,1,1)
  _SpecPower ("Specular Power", Range(0,30)) = 1
}

2.	 We then have to make sure to add the corresponding variables to our CGPROGRAM 
block in our SubShader{} block:
float4 _SpecularColor;
sampler2D _MainTex;
float4 _MainTint;
float _SpecPower;

3.	 Now we have to add our custom lighting model so that we can compute our own 
Phong Specular. Don't worry if it doesn't make sense at this point; we will cover each 
line of code in the How it works… section. Add the following code to the shader's 
SubShader{} function:
fixed4 LightingPhong (SurfaceOutput s, fixed3 lightDir,  
  half3 viewDir, fixed atten)
{
  // Reflection
  float NdotL = dot(s.Normal, lightDir);
  float3 reflectionVector = normalize(2.0 * s.Normal *  
    NdotL - lightDir);



Chapter 3

65

  // Specular
  float spec = pow(max(0, dot(reflectionVector, viewDir)),  
    _SpecPower);
  float3 finalSpec = _SpecularColor.rgb * spec;

  // Final effect
  fixed4 c;
  c.rgb = (s.Albedo * _LightColor0.rgb * max(0,NdotL) *  
    atten) + (_LightColor0.rgb * finalSpec);
  c.a = s.Alpha;
  return c;
}

4.	 Finally, we have to tell the CGPROGRAM block that it needs to use our custom lighting 
function instead of one of the built-in ones. We do this by changing the #pragma 
statement to the following:
CPROGRAM
#pragma surface surf Phong

The following screenshot demonstrates the result of our custom Phong lighting model using 
our own custom reflection vector:



Understanding Lighting Models

66

How it works…
Let's break down the lighting function by itself, as the rest of the shader should be pretty 
familiar to you at this point.

In the previous recipes, we have used a lighting function that provided only the light direction, 
lightDir. Unity comes with a set of lighting functions that you can use, including one that 
provides the view direction, viewDir. Refer to the following table or go to http://docs.
unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html:

Not view-
dependent

half4 Lighting Name You choose (SurfaceOutput s, half3 
lightDir, half atten);

View-
dependent

half4 Lighting Name You choose (SurfaceOutput s, half3 
lightDir, half3 viewDir, half atten);

In our case, we are doing a Specular shader, so we need to have the view-dependent lighting 
function structure. So, we have to write the following:

CPROGRAM
#pragma surface surf Pong
fixed4 LightingPhong (SurfaceOutput s, fixed3 lightDir, half3 viewDir, 
fixed atten)
{
  // ...
}

This will tell the shader that we want to create our own view-dependent shader. Always make 
sure that your lighting function name is the same in your lighting function declaration and the 
#pragma statement, or Unity will not be able to find your lighting model.

The components that play a role in the Phong model are described in the following image. We 
have the light direction L (coupled with its perfect reflection R) and normal direction N. They 
have all been encountered before in the Lambertian model, with the exception of V, which is 
the view direction:

http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html
http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html


Chapter 3

67

The Phong model assumes that the final light intensity of a reflective surface is given by two 
components: its diffuse color and Specular value, as follows:

I D S= +

The diffuse component D remains unchanged from the Lambertian model:

D N L= ⋅

The Specular component S is defined as follows:

( ) pS R V= ⋅

Here, p is the Specular power defined as _SpecPower in the shader. The only unknown 
parameter is R, which is the reflection of L according to N. In vector algebra, this can be 
calculated as follows:

( )2R N N L L= ⋅ ⋅ −

This is exactly what is calculated in the following:

float3 reflectionVector = normalize(2.0 * s.Normal * NdotL -  
  lightDir);



Understanding Lighting Models

68

This has the effect of bending the normal towards the light; as a vertex normal is pointing 
away from the light, it is forced to look at the light. Refer to the following screenshot for a more 
visual representation. The script that produces this debug effect is included in the book's 
support page at https://www.packtpub.com/books/content/support:

The following screenshot displays the final result of our Phong Specular calculation isolated in 
the shader:

Creating a BlinnPhong Specular type
Blinn is another more efficient way of calculating and estimating specularity. It is done by 
getting the half vector from the view direction and light direction. It was brought into the world 
of Cg by Jim Blinn. He found that it was much more efficient to just get the half vector instead 
of calculating our own reflection vectors. It cut down on the code and processing time. If you 
actually look at the built-in BlinnPhong lighting model included in the UnityCG.cginc file, 
you will notice that it is using the half vector as well, hence it is named BlinnPhong. It is just a 
simpler version of the full Phong calculation.

https://www.packtpub.com/books/content/support


Chapter 3

69

Getting ready
To start with this recipe, perform the following steps:

1.	 This time, instead of creating a whole new scene, let's just use the objects and scene 
that we have, and create a new shader and material and name them BlinnPhong.

2.	 Once you have a new shader, double-click on it to launch MonoDevelop so that we 
can start editing our shader.

How to do it…
Perform the following steps to create a BlinnPhong lighting model:

1.	 First, we need to add our own properties to the Properties block so that we can 
control the look of the Specular highlight:
Properties
{
  _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
  _MainTex ("Base (RGB)", 2D) = "white" {}
  _SpecularColor ("Specular Color", Color) = (1,1,1,1)
  _SpecPower ("Specular Power", Range(0.1,60)) = 3
}

2.	 Then, we need to make sure that we have created the corresponding variables in our 
CGPROGRAM block so that we can access the data from our Properties block, in 
our subshader:
sampler2D _MainTex;
float4 _MainTint;
float4 _SpecularColor;
float _SpecPower;

3.	 Now it's time to create our custom lighting model that will process our Diffuse and 
Specular calculations. The code is as follows:
fixed4 LightingCustomBlinnPhong (SurfaceOutput s, fixed3  
  lightDir, half3 viewDir, fixed atten)
{
  float NdotL = max(0,dot(s.Normal, lightDir));

  float3 halfVector = normalize(lightDir + viewDir);
  float NdotH = max(0, dot(s.Normal, halfVector));
  float spec = pow(NdotH, _SpecPower) * _SpecularColor;

  float4 c;



Understanding Lighting Models

70

  c.rgb = (s.Albedo * _LightColor0.rgb * NdotL) +  
    (_LightColor0.rgb * _SpecularColor.rgb * spec) * atten;
  c.a = s.Alpha;
  return c;
}

4.	 To complete our shader, we will need to tell our CGPROGRAM block to use our custom 
lighting model rather than a built-in one by modifying the #pragma statement with 
the following code:
CPROGRAM
#pragma surface surf CustomBlinnPhong

The following screenshot demonstrates the results of our BlinnPhong lighting model:

How it works…
The BlinnPhong Specular is almost exactly like the Phong Specular, except that it is more 
efficient because it uses less code to achieve almost the same effect. Before the introduction 
of physically-based rendering, this approach was the default choice for Specular reflection in 
Unity 4.



Chapter 3

71

Calculating the reflection vector R is generally expensive. The BlinnPhong Specular replaces it 
with the half vector H between the view direction V and light direction L:

Instead of calculating our own reflection vector, we are simply going to get the vector halfway 
between the view direction and light direction, basically simulating the reflection vector. It has 
actually been found that this approach is more physically accurate than the last approach, but 
we thought it necessary to show you all the possibilities:

( ) ( ),p p
Phong BlinnPhongS R V S N H= ⋅ = ⋅

According to vector algebra, the half vector can be calculated as follows:

V LH
V L
+
+

Here, V L+  is the length of the vector V L+ . In Cg, we simply need to add the view direction 
and light direction together and then normalize the result to a unity vector:

float3 halfVector = normalize(lightDir + viewDir);

Then, we simply need to dot the vertex normal with this new half vector to get our main 
Specular value. After this, we just take it to a power of _SpecPower and multiply it by the 
Specular color variable. It's much lighter on the code and math, but still gives us a nice 
Specular highlight that will work for a lot of real-time situations.



Understanding Lighting Models

72

See also
The light models seen in this chapter are extremely simple; no real material is perfectly matte 
or perfectly specular. Moreover, it is not uncommon for complex materials such as clothing, 
wood, and skin to require knowledge of how light scatters in the layers beneath the surface.

Use the following table to recap the different lighting models encountered so far:

Technique Type Unity 5 shader Light Intensity (I)
Lambertian Diffuse Legacy Shaders | Diffuse I N L= ⋅

Phong Specular ( ) pI N L R V= ⋅ + ⋅

( )2R N N L L= ⋅ ⋅ −

BlinnPhong Specular Legacy Shaders | Specular ( ) pI N L N H= ⋅ + ⋅

V LH
V L
+

=
+

There are other interesting models such as the Oren-Nayar lighting model for rough surfaces: 
https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_reflectance_model

Creating an Anisotropic Specular type
Anisotropic is a type of Specular or reflection that simulates the directionality of grooves in a 
surface and modifies/stretches the Specular in the perpendicular direction. It is very useful 
when you want to simulate brushed metals, not a metal with a clear, smooth, and polished 
surface. Imagine the Specular that you see when you look at the data side of a CD or DVD or 
the way Specular is shaped at the bottom of a pot or pan. You will notice that if you carefully 
examine the surface, you will see that there is a direction to the grooves in the surface, 
usually in the way the metal was brushed. When you apply a Specular to this surface, you get 
a Specular stretched in the perpendicular direction.

This recipe will introduce you to the concept of augmenting your Specular highlights to achieve 
different types of brushed surfaces. In future recipes, we will look at ways in which we can 
use the concepts of this recipe to achieve other effects such as stretched reflections and hair, 
but here, you are going to learn the fundamentals of the technique first. We will be using this 
shader as a reference for our own custom Anisotropic Shader:

http://wiki.unity3d.com/index.php?title=Anisotropic_Highlight_Shader

https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_reflectance_model
http://wiki.unity3d.com/index.php?title=Anisotropic_Highlight_Shader 


Chapter 3

73

The following screenshot shows examples of different types of Specular effects one can 
achieve using Anisotropic Shaders in Unity:

Getting ready
Let's start this recipe by creating a shader, its material, and some lights for our scene:

1.	 Create a new scene with some objects and lights so that we can visually debug  
our shader.

2.	 Then create a new shader and material, and hook them up to our objects.

3.	 Lastly, we will need some sort of normal map that will indicate the directionality of 
our Anisotropic Specular highlight.

The following screenshot shows the Anisotropy normal map we will be using for this recipe. 
It is available from the book's support page at https://www.packtpub.com/books/
content/support:

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Understanding Lighting Models

74

How to do it…
To create an Anisotropic effect, we need to make the following changes to the shader 
previously created:

1.	 We first need to add the properties that we are going to need for our shader. These 
will allow a lot of artistic control over the final appearance of the surface:
Properties
{
  _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
  _MainTex ("Base (RGB)", 2D) = "white" {}
  _SpecularColor ("specular Color", Color) = (1,1,1,1)
  _Specular ("Specular Amount", Range(0,1)) = 0.5
  _SpecPower ("Specular Power", Range(0,1)) = 0.5
  _AnisoDir ("Anisotropic Direction", 2D) = "" {}
  _AnisoOffset ("Anisotropic Offset", Range(-1,1)) = -0.2
}

2.	 We then need to make the connection between our Properties block and  
our SubShader{} block so that we can use the data being provided by the 
Properties block:
sampler2D _MainTex;
sampler2D _AnisoDir;
float4 _MainTint;
float4 _SpecularColor;
float _AnisoOffset;
float _Specular;
float _SpecPower;

3.	 Now we can create our lighting function that will produce the correct Anisotropic 
effect on our surface. We will use the following code for this:
fixed4 LightingAnisotropic(SurfaceAnisoOutput s, fixed3  
  lightDir, half3 viewDir, fixed atten)
{
  fixed3 halfVector = normalize(normalize(lightDir) +  
    normalize(viewDir));
  float NdotL = saturate(dot(s.Normal, lightDir));

  fixed HdotA = dot(normalize(s.Normal + s.AnisoDirection),  
    halfVector);
  float aniso = max(0, sin(radians((HdotA + _AnisoOffset) *  
    180)));



Chapter 3

75

  float spec = saturate(pow(aniso, s.Gloss * 128) *  
    s.Specular);

  fixed4 c;
  c.rgb = ((s.Albedo * _LightColor0.rgb * NdotL) +  
    (_LightColor0.rgb * _SpecularColor.rgb * spec)) *  
    atten;
  c.a = s.Alpha;
  return c;
}

4.	 In order to use this new lighting function, we need to tell the subshader's #pragma 
statement to look for it instead of using one of the built-in lighting functions. We are 
also telling the shader to target shader model 3.0 so that we can have more space 
for textures in our program:
CGPROGRAM
#pragma surface surf Anisotropic
#pragma target 3.0

5.	 We have also given the Anisotropic normal map its own UVs by declaring the following 
code in the Input struct. This isn't entirely necessary as we could just use the UVs 
from the main texture, but this gives us independent control over the tiling of our 
brushed metal effect so that we can scale it to any size we want:
struct Input 
{
  float2 uv_MainTex;
  float2 uv_AnisoDir;
};

6.	 We also need to add the SurfaceAnisoOutput struct:
struct SurfaceAnisoOutput
{
  fixed3 Albedo;
  fixed3 Normal;
  fixed3 Emission;
  fixed3 AnisoDirection;
  half Specular;
  fixed Gloss;
  fixed Alpha;
};

7.	 Finally, we need to use the surf() function to pass the correct data to our lighting 
function. So, we will get the per-pixel information from our Anisotropic normal map 
and set our Specular parameters as follows:
void surf(Input IN, inout SurfaceAnisoOutput o)
{



Understanding Lighting Models

76

  half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;
  float3 anisoTex = UnpackNormal(tex2D(_AnisoDir,  
    IN.uv_AnisoDir));

  o.AnisoDirection = anisoTex;
  o.Specular = _Specular;
  o.Gloss = _SpecPower;
  o.Albedo = c.rgb;
  o.Alpha = c.a;
}

The Anisotropic normal map allows us to give the surface direction and helps us disperse the 
Specular highlight around the surface. The following screenshot demonstrates the result of 
our Anisotropic Shader:

How it works…
Let's break down this shader into its core components and explain why we are getting the 
effect. We will mostly be covering the custom lighting function here, as the rest of the shader 
should be pretty self-explanatory at this point.



Chapter 3

77

We first start by declaring our own SurfaceAnisoOutput struct. We need to do this in order 
to get the per-pixel information from the Anisotropic normal map, and the only way we can do 
this in a Surface Shader is to use a tex2D() function in the surf() function. The following 
code shows the custom surface output structure used in our shader:

struct SurfaceAnisoOutput
{
  fixed3 Albedo;
  fixed3 Normal;
  fixed3 Emission;
  fixed3 AnisoDirection;
  half Specular;
  fixed Gloss;
  fixed Alpha;
};

We can use the SurfaceAnisoOutput struct as a way of interacting between the lighting 
function and surface function. In our case, we are storing the per-pixel texture information 
in the variable called anisoTex in our surf() function and then passing this data to the 
SurfaceAnisoOutput struct by storing it in the AnisoDirection variable. Once we have 
this, we can use the per-pixel information in the lighting function using s.AnisoDirection.

With this data connection set up, we can move on to our actual lighting calculations. This 
begins by getting the usual out of the way, the half vector, so that we don't have to do the 
full reflection calculation and diffuse lighting, which is the vertex normal dotted with the light 
vector or direction. This is done in Cg with the following lines:

fixed3 halfVector = normalize(normalize(lightDir) +  
  normalize(viewDir));
float NdotL = saturate(dot(s.Normal, lightDir));

Then, we start the actual modification to the Specular to get the right look. We first dot the 
normalized sum of the vertex normal and per-pixel vectors from our Anisotropic normal 
map with halfVector calculated in the previous step. This gives us a float value that 
gives a value of 1 as the surface normal, which is modified by the Anisotropic normal map 
as it becomes parallel with halfVector and 0 as it is perpendicular. Finally, we modify 
this value with a sin() function so that we can basically get a darker middle highlight and 
ultimately a ring effect based off of halfVector. All the previously mentioned operations are 
summarized in the following two lines of Cg code:

fixed HdotA = dot(normalize(s.Normal + s.AnisoDirection),  
  halfVector);
float aniso = max(0, sin(radians((HdotA + _AnisoOffset) * 180)));



Understanding Lighting Models

78

Finally, we scale the effect of the aniso value by taking it to a power of s.Gloss, and then 
globally decrease its strength by multiplying it by s.Specular:

float spec = saturate(pow(aniso, s.Gloss * 128) * s.Specular);

This effect is great to create more advanced metal type surfaces, especially the ones that are 
brushed and seem to have directionality to them. It also works well for hair or any sort of soft 
surface with directionality to it. The following screenshot shows the result of displaying the 
final Anisotropic lighting calculation:



79

4
Physically Based 

Rendering in Unity 5

One of the biggest changes introduced in Unity 5 is physically-based rendering, which is also 
known as PBR. Previous chapters have repeatedly mentioned it without revealing too much 
about it. If you want to understand not only how PBR works, but how to make the most out of 
it, this is the chapter you should read.

In this chapter, you will learn the following recipes:

ff Understanding the metallic setup

ff Adding transparency to PBR

ff Creating mirrors and reflective surfaces

ff Baking lights in your scene



Physically Based Rendering in Unity 5

80

Introduction
All the lighting models encountered in Chapter 3, Understanding Lighting Models, were 
very primitive descriptions of how light behaves. The most important aspect during their 
making was efficiency. Real-time shading is expensive, and techniques such as Lambertian 
or BlinnPhong are a compromise between computational cost and realism. Having a more 
powerful graphics processing unit (GPU) has allowed us to write progressively more 
sophisticated lighting models and rendering engines, with the aim of simulating how light 
actually behaves. This is, in a nutshell, the philosophy behind PBR. As the name suggests, it 
tries to get as close as possible to the physics behind the processes that give a unique look to 
each material. Despite this, the term PBR has been widely used in marketing campaigns and 
is more of a synonym for state-of-the-art rendering rather than a well-defined technique. Unity 
5 implements PBR by introducing two important changes. The first is a completely new lighting 
model (called Standard). Surface Shaders allow developers to specify the physical properties 
of a material, but they do not impose actual physical constraints on them. PBR fills this 
gap using a lighting model that enforces principles of physics such as energy conservation 
(an object cannot reflect more light than the amount it receives), microsurface scattering 
(rough surfaces reflect light more erratically compared to smooth ones), Fresnel reflectance 
(specular reflections appear at grazing angles), and surface occlusion (the darkening of 
corners and other geometries that are hard to light). All these aspects, and many others, are 
used to calculate the Standard lighting model. The second aspect that makes PBR so realistic 
is called Global Illumination (GI) and is the simulation of physically-based light transport. 
It means that objects are not drawn in the scene as if they were separate entities. They all 
contribute to the final rendering as light can reflect on them before hitting something else. 
This aspect is not captured in the shaders themselves but is an essential part of how the 
rendering engine works. Unfortunately, accurately simulating how light rays actually bounce 
over surfaces in real time is beyond the capabilities of modern GPUs. Unity 5 makes some 
clever optimizations that allow retaining visual fidelity without sacrificing performance. Some 
of the most advanced techniques (such as reflections), however, require the user input. All of 
these aspects will be covered in this chapter. It is important to remember that PBR and GI do 
not automatically guarantee that your game will be photorealistic. Achieving photorealism is a 
very challenging task and, like every art, it requires great expertize and exceptional skills.



Chapter 4

81

Understanding the metallic setup
Unity 5 provides two different types of PBR shaders; they are referred to in the drop-down 
menu of the material's Inspector tab as Standard and Standard (Specular setup). The main 
difference is that the former exposes the Metallic property, while the latter replaces it with 
Specular. Both these metallic and specular setups represent different ways in which one 
can initialize PBR materials. One of the concepts that has driven PBR is the ability to provide 
meaningful, physically-related properties that artists and developers can tweak and play with. 
The properties of some materials are easier to represent indicating how metallic they are, 
while for some, the other is more important in order to define how they reflect lights directly. 
If you have used Unity 4 in the past, Standard (Specular setup) might look more familiar 
to you. This recipe will show you how to use the metallic setup effectively. It's important to 
remember that the metallic workflow is not just for metallic materials; it is a way to define how 
materials will look according to how metallic or non-metallic their surface is. Despite being 
presented as two different types of shaders, both Metallic and Specular setups are generally 
equally expressive. As shown in the Unity documentation at http://docs.unity3d.com/
Manual/StandardShaderMetallicVsSpecular.html, the same materials can usually 
be recreated with both setups (see the following image):

http://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html
http://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html


Physically Based Rendering in Unity 5

82

Getting ready
This recipe will use the Standard Shader provided in Unity 5, so there is no need to create a 
new one. The steps to start the recipe are as follows:

1.	 Create a new material.

2.	 From its Inspector, make sure that Standard is selected from its Shader  
drop-down menu.

You will also need a textured 3D model.

How to do it…
There are two main textures that need to be configured in the Standard Shader: Albedo and 
Metallic. To use the metallic workflow effectively, we need to initialize these maps correctly:

1.	 The Albedo map should be initialized with the unlit texture of the 3D model.

2.	 To create the Metallic map, start by duplicating the file for your Albedo map. You can 
do this by selecting the map from the Project tab and pressing Ctrl + D.

3.	 Use white (#ffffff) to color the regions of the map that correspond to materials 
that are made of pure metal. Use black (#000000) for all the other colors. Shades of 
grey should be used for dusty, weathered, or worn out metal surfaces, rust, scratched 
paint, and so on. As a matter of fact, Unity uses only the red channel to store the 
metallic value; the green and blue ones are ignored.

4.	 Use the alpha channel of the image to provide information about the Smoothness of 
the material.

5.	 Assign the Metallic map to the material. Both Metallic and Smoothness sliders will 
disappear as these two properties are now controlled by the map.

How it works…
Legacy Shaders allow artists to create materials that easily break the illusion of photorealism 
by having lighting conditions that are impossible in reality. This happens because all the 
properties of a material exposed in a Legacy Surface Shader are uncorrelated. By introducing 
the metallic workflow, Unity 5 imposes more constraints on the way objects look, making it 
harder for artists to create illogical materials.

Metals are known for the conducting of electricity; light is in the form of electromagnetic 
waves, meaning that almost all metals behave in a similar way compared to non-conductors 
(often referred as insulators). Conductors tend to reflect most photons (70-100%), resulting 
in high reflectance. The remaining light is absorbed, rather than diffused, suggesting that 
conductors have a very dark diffuse component. Insulators, conversely, have a low reflectance 
(4%); the rest of the light is scattered on the surface, contributing to their diffused looks.



Chapter 4

83

In the Standard Shader, purely metallic materials have dark diffuse components and the 
color of their specular reflections is determined by the Albedo map. Conversely, the diffuse 
component of purely non-metallic materials is determined by the Albedo map; the color of 
their specular highlights is determined by the color of the incoming light. Following these 
principles allows the metallic workflow to combine the albedo and specular into the Albedo 
map, enforcing physically-accurate behaviors. This also allows saving more space, resulting in 
a significant speed up at the expenses of reduced control over the look of your materials.

See also
For more information about the metallic setup, you can refer to these links:

ff Calibration chart: How to calibrate a metallic material (http://blogs.unity3d.
com/wp-content/uploads/2014/11/UnityMetallicChart.png)

ff Material chart: How to initialize the Standard Shader parameters 
for common materials (http://docs.unity3d.com/Manual/
StandardShaderMaterialCharts.html)

ff Quixel MEGASCANS: A vast library of materials, including textures and PBR 
parameters (http://quixel.se/megascans)

ff PBR Texture Conversion: How traditional shaders can be converted to PBR shaders 
(http://www.marmoset.co/toolbag/learn/pbr-conversion)

ff Substance Designer: A node-based software to work with PBR (https://www.
allegorithmic.com/products/substance-designer)

ff The Theory of Physically-based Rendering: A complete guide about PBR (https://
www.allegorithmic.com/pbr-guide)

Adding transparency to PBR
Transparency is such an important aspect in games that the Standard Shader supports 
three different ways of doing it. This recipe is useful if you need to have realistic materials 
with transparent or semi-transparent properties. Glasses, bottles, windows, and crystals 
are good candidates for PBR transparent shaders. This is because you can still have all the 
realism introduced by PBR with the addition of a transparent or translucent effect. If you need 
transparency for something different such as UI elements or pixel art, there are more efficient 
alternatives that are explored in the Creating a transparent material recipe in Chapter 2, 
Surface Shaders and Texture Mapping.

In order to have a transparent Standard material, changing the 
alpha channel of its Albedo color property is not enough. Unless 
you properly set its Rendering Mode, your material will not 
appear transparent.

www.allitebooks.com

http://blogs.unity3d.com/wp-content/uploads/2014/11/UnityMetallicChart.png
http://blogs.unity3d.com/wp-content/uploads/2014/11/UnityMetallicChart.png
http://docs.unity3d.com/Manual/StandardShaderMaterialCharts.html
http://docs.unity3d.com/Manual/StandardShaderMaterialCharts.html
http://quixel.se/megascans
http://www.marmoset.co/toolbag/learn/pbr-conversion
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/pbr-guide
https://www.allegorithmic.com/pbr-guide
http://www.allitebooks.org


Physically Based Rendering in Unity 5

84

Getting ready
This recipe will use the Standard Shader, so there is no need to create a new one:

1.	 Create a new material.

2.	 Make sure that the Shader property is set to either Standard or Standard (Specular 
setup) from the material's Inspector tab.

3.	 Assign the newly created material to the 3D object that you want to be transparent.

How to do it…
The Standard Shader provides three different types of transparencies. Despite being very 
similar, they have subtle differences and fit different contexts.

Semi-transparent materials
Some materials such as clear plastics, crystal, and glass are semi-transparent. This means 
that they both require all the realistic effects of PBR (such as specular highlights and Fresnel 
refraction and reflection) but allow the geometry behind to be seen. If this is what you need, 
perform the following steps:

1.	 From the material's Inspector tab, set Rendering Mode to Transparent.

2.	 The amount of transparency is determined by the alpha channel of the Albedo color 
or the Albedo map (if any).

The following picture shows the Unity 5 calibration scene with four different highly polished 
plastic spheres. From left to right, their transparency is increased. The last sphere is fully 
transparent, but retains all the added effects of PBR:



Chapter 4

85

The Transparent rendering mode is perfect for windows, bottles, gems, and headsets.

You should notice that many transparent materials don't usually 
project shadows. On top of this, the Metallic and Smoothness 
properties of a material can interfere with the transparency 
effect. A mirror-like surface can have the alpha set to zero, but if it 
reflects all the incoming light, it won't appear transparent.

Fading objects
Sometimes, you want an object to fully disappear with a fading effect. In this case, specular 
reflections and Fresnel refraction and reflection should disappear as well. When a fading 
object is fully transparent, it should also be invisible. To do this, perform the following steps:

1.	 From the material's Inspector tab, set Rendering Mode to Fade.

2.	 As before, use the alpha channel of the Albedo color or map to determine the final 
transparency.

The following picture shows fading spheres. It is clear from the picture that the PBR effects 
fade with the sphere as well. As you can see in the following image, the last one on the right is 
almost invisible:

This rendering mode works best for non-realistic objects, such as holograms, laser rays, faux 
lights, ghosts, and particle effects.



Physically Based Rendering in Unity 5

86

Solid geometries with holes
Most of the materials encountered in a game are solid, meaning that they don't allow light to 
pass through them. At the same time, many objects have a very complex (yet flat) geometry. 
Modeling leaves and grass with 3D objects is often overkill. A more efficient approach is to 
use a quad (rectangle) with a leaf texture. While the leaf itself is solid, the rest of the texture 
should be fully transparent. If this is what you want, then perform the following steps:

1.	 From the material's Inspector tab, set Rendering Mode to Cutout.

2.	 Use the Alpha Cutoff slider to determine the cutoff threshold. All the pixels in the 
Albedo map with an alpha value equal to or less than Alpha Cutoff will be hidden.

The following image, taken from the Unity Official Tutorials on PBR (https://www.
youtube.com/watch?v=fD_ho_ofY6A), shows you how the effect of the Cutout rendering 
mode can be used to create a hole in the geometry:

It's worth noticing that Cutout does not allow the back of the geometry to be seen. In the 
previous example, you could not see the inner volume of the sphere. If you require such an 
effect, you need to create your own shader and make sure that the back geometry is not culled.

https://www.youtube.com/watch?v=fD_ho_ofY6A
https://www.youtube.com/watch?v=fD_ho_ofY6A


Chapter 4

87

See also
ff The examples in these recipe have been created using the Unity 5 Shader 

Calibration Scene, which is freely available in the Asset Store at https://www.
assetstore.unity3d.com/en/#!/content/25422.

ff More information about albedo and transparency can be found at  
http://docs.unity3d.com/Manual/
StandardShaderMaterialParameterAlbedoColor.html.

Creating mirrors and reflective surfaces
Specular materials reflect lights when objects are viewed from certain angles. Unfortunately, 
even the Fresnel reflection, which is one of the most accurate models, does not correctly 
reflect lights from nearby objects. The lighting models examined in the previous chapters 
took into account only light sources, but ignored light that is reflected from other surfaces. 
With what you've learned about shaders so far, making a mirror is simply not possible. Global 
illumination makes this possible by providing PBR shaders with information about their 
surroundings. This allows objects to have not just specular highlights, but also real reflections, 
which depend on the other objects around them. Real-time reflections are very costly and 
require manual setting up and tweaking in order to work. When done properly, they can be 
used to create mirror-like surfaces, as seen in the following picture:

https://www.assetstore.unity3d.com/en/#!/content/25422
https://www.assetstore.unity3d.com/en/#!/content/25422
http://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html
http://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html


Physically Based Rendering in Unity 5

88

Getting ready
This recipe will not feature any new shader. Quite the opposite; most of the work is done 
directly in the editor. Perform the following steps:

1.	 Create a new scene.

2.	 Create a quad, which will serve as a mirror.

3.	 Create a new material and attach it to the mirror.

4.	 Place the quad in a scene with other objects.

5.	 Create a new reflection probe from GameObject | Light | Reflection Probe and 
place it in front of the quad.

How to do it…
If the preceding steps have been followed correctly, you should have a quad in the middle of your 
scene, close to a reflection probe. In order to make it in a mirror, some changes need to be made:

1.	 Change the shader of the material to Standard and its Rendering Mode to Opaque.

2.	 Change its Metallic and Smoothness properties to one. You should see the material 
reflecting the sky more clearly.

3.	 Select the reflection probe and change its Size and Probe Origin until it is in front of 
the quad and it encloses all the objects that you want to reflect.

4.	 Finally, change its Type to Realtime. Make sure that Culling Mask is set to Everything.

Your reflection probe should be configured, as shown in the following image:



Chapter 4

89

If your probe is used for a real mirror, you should check the Box Projection flag. If it is used for 
other reflective surfaces, such as shiny pieces of metal or glass tables, you can uncheck it.

How it works…
When a shader wants information about its surroundings, it is usually provided in a structure 
called cube maps. They have been briefly mentioned in Chapter 1, Creating Your First Shader, 
as one of the shader property types, among Color, 2D, Float, and Vector. Loosely 
speaking, cube maps are the 3D equivalent of 2D textures; they represent a 360-degree 
view of the world, as seen from a center point. Unity 5 previews cube maps with a spherical 
projection, as seen in the following picture:

When cube maps are attached with a camera, they are referred to as skyboxes as they are 
used to provide a way to reflect the sky. They can be used to reflect geometries that are not in 
the actual scene, such as nebulae, clouds, stars, and so on.

The reason why they are called cube maps is because of the way they are created: a cube 
map is made up of six different textures, each one attached to the face of a cube. You can 
create a cube map manually or delegate it to a reflection probe. You can imagine a reflection 
probe as a collection of six cameras, creating a 360 mapping of the surrounding area. This 
also gives you an idea why probes are so expensive. By creating one in our scene, we allow 
Unity to know which objects are around the mirror. If you need more reflective surfaces, you 
can add multiple probes. You need no further action for the reflection probes to work. The 
Standard Shaders will use them automatically.



Physically Based Rendering in Unity 5

90

You should notice that when they are set to Realtime, they render their cube map at the 
beginning of every frame. There is a trick to make this faster; if you know that part of the 
geometry that you want to reflect does not move, you can bake the reflection. This means 
that Unity can calculate the reflection before starting the game, allowing more precise (and 
computationally expensive) calculations. In order to do this, your reflection probe must be set 
to Baked and will work only for objects that are flagged as Static. Static objects cannot move 
or change, which makes them perfect for terrains, buildings, and props. Every time a static 
object is moved, Unity will regenerate the cube maps for its baked reflection probes. This 
might take a few minutes to several hours.

You can mix Realtime and Baked probes to increase the realism of your game. Baked probes 
will provide very high-quality reflections environmental reflections, while the real-time ones 
can be used to move objects such as cars or mirrors. The next Baking lights in your scene 
recipe will explain in detail how light baking works.

See also
If you are interested in learning more about reflection probes, you should check these links:

ff Unity 5 manual about Reflection Probe: http://docs.unity3d.com/Manual/
class-ReflectionProbe.html

Baking lights in your scene
Rendering lighting is a very expensive process. Even with state-of-the-art GPUs, accurately 
calculating the light transport (which is how light bounces between surfaces) can take hours. 
In order to make this process feasible for games, real-time rendering is essential. Modern 
engines compromise between realism and efficiency; most of the computation is done 
beforehand in a process called light baking. This recipe will explain how light baking works 
and how you can get the most out of it.

Getting ready
Light baking requires you to have a scene ready. It should have geometries and, obviously, 
lights. For this recipe, we will rely on Unity's standard features so there is no need to create 
additional shaders or materials. For a better control, you might want to access the Lighting 
window. If you don't see it, select Window | Lighting from the menu and dock it where it is 
more convenient for you.

http://docs.unity3d.com/Manual/class-ReflectionProbe.html
http://docs.unity3d.com/Manual/class-ReflectionProbe.html


Chapter 4

91

How to do it…
Light baking requires some manual configuration. There are three essential, yet independent, 
steps that you need to take.

Configuring the static geometry
These steps must be followed for the configuration:

1.	 Identify all the objects in your scene that do not change position, size, and material. 
Possible candidates are buildings, walls, terrains, props, trees, and others.

2.	 Select these objects, and check the Static box from the Inspector tab, as shown 
in the following image. If any of the selected objects has children, Unity will ask if 
you want them to be considered static as well. If they meet the requirements (fixed 
position, size, and material), select Yes, change children in the pop-up box:

3.	 If a light qualifies as a static object but illuminates non-static geometry, make sure that 
its Baking property is set to Mixed. If it will affect only static objects, set it to Baked.

Configuring the light probes
There are objects in your game that will move, such as the main character, enemies, and the 
other non-playable characters (NPCs). If they enter a static region that is illuminated, you 
might want to surround it with light probes. To do this, follow the given steps:

1.	 From the menu, navigate to GameObject | Light | Light Probe Group. A new object 
called Light Probe Group will appear in Hierarchy.



Physically Based Rendering in Unity 5

92

2.	 Once selected, four interconnected spheres will appear. Click and move them around 
the scene so that they enclose the static region in which your characters can enter. 
The following picture shows an example of how light probes can be used to enclose 
the volume of a static office space:

3.	 Select the moving objects that will enter the light probe region.

4.	 From their Inspector, expand their renderer component (usually Mesh Renderer) 
and make sure that Use Light Probes is checked (see the following image):

Deciding where and when to use light probes is a critical problem; more information about this 
can be found in the How it works…section.



Chapter 4

93

Baking the lights
To bake the lights, follow the given steps:

1.	 To finally bake the lights, open the Lighting window and select its Lightmaps tab.

2.	 If the Auto checkbox is enabled, Unity will automatically execute the baking process 
in the background. If not, click on Build.

Light baking can take several hours even for a relatively small 
scene. If you are constantly moving static objects or lights, Unity 
will restart the process from scratch causing a severe slowdown  
in the editor. You can uncheck the Auto checkbox from the 
Lighting | Lightmaps tab to prevent this so that you can decide 
when to start the process manually.

How it works…
The most complicated part of the rendering is the light transport. During this phase, the GPU 
calculates how the rays of light bounce between objects. If an object and its lights don't move, 
this calculation can be done only once as it will never change during the game. Flagging an 
object as Static is how you are telling Unity that such an optimization can be made.

Loosely speaking, light baking refers to the process of calculating the global illumination of a 
static object and saving it in what is called a lightmap. Once baking is completed, lightmaps 
can be seen in the Lightmaps tab of the Lighting window:



Physically Based Rendering in Unity 5

94

Light baking comes at a great expense: memory. Every static surface is, in fact, retextured so 
that it already includes its lighting condition. Let's imagine that you have a forest of trees, all 
sharing the same texture. Once they are made static, each tree will have its very own texture. 
Light baking not only increases the size of your game, but can take a lot of texture memory if 
used indiscriminately.

The second aspect introduced in this recipe is light probing. Light baking produces extremely 
high-quality results for static geometries but does not work on moving objects. If your 
character is entering in a static region, it can look somehow detached from the environment. 
Its shading will not match the surrounding, resulting in an aesthetically unpleasant result. 
Other objects, such as skinned mesh renderers, will not receive global illumination even 
if made static. Baking lights in real time is not possible, although light probes offer an 
effective alternative. Every light probe samples the global illumination at a specific point in 
space. A light probe group can sample several points in space, allowing to interpolate global 
illumination within a specific volume. This allows us to cast a better light on moving objects, 
even despite the fact that global illumination has been calculated only for a few points. It is 
important to remember that light probes need to enclose a volume in order to work. It is best 
to place light probes in regions where there is a sudden change in the light condition. Similar 
to lightmaps, probes consume memory and should be placed wisely; remember that they exist 
only for non-static geometry.

Even while using light probes, there are a few aspects that Unity's global illumination cannot 
capture. Non-static objects, for instance, cannot reflect light on other objects.

See also
You can read more about light probes at http://docs.unity3d.com/Manual/
LightProbes.html.

http://docs.unity3d.com/Manual/LightProbes.html
http://docs.unity3d.com/Manual/LightProbes.html


95

5
Vertex Functions

The term shader originates from the fact that Cg has been used mainly to simulate realistic 
lighting conditions (shadows) on 3D models. Despite this, shaders are now much more 
than that. They not only define the way the objects are going to look, they can also redefine 
their shapes entirely. If you want to learn how to manipulate the geometry of a 3D object via 
shaders, this is the chapter for you.

In this chapter, you will learn the following recipes:

ff Accessing a vertex color in a Surface Shader

ff Animating vertices in a Surface Shader

ff Extruding your models

ff Implementing a snow shader

ff Implementing a volumetric explosion

Introduction
In Chapter 1, Creating Your First Shader, we explained that 3D models are not just a collection 
of triangles. Each vertex can contain data that is essential to render the model itself correctly. 
This chapter will explore how to access this information in order to use it in a shader. We will 
also explore in detail how the geometry of an object can be deformed simply using Cg code.



Vertex Functions

96

Accessing a vertex color in a Surface 
Shader

Let's begin this chapter by taking a look at how we can access the information of a model's 
vertex using the vertex function in a Surface Shader. This will arm us with the knowledge 
to start utilizing the elements contained within a model's vertex to create really useful and 
visually appealing effects.

A vertex in a vertex function can return information about itself that we need to be aware of. 
You can actually retrieve the vertices' normal directions as a float3 value, the position of the 
vertex as float3, and you can even store color values in each vertex and return that color as 
float4. This is what we will take a look at in this recipe. We need to see how to store color 
information and retrieve this stored color information inside each vertex of a Surface Shader.

Getting ready
In order to write this shader, we need to prepare a few assets. The following steps will set us 
up to create this Vertex Shader:

1.	 In order to view the colors of a vertex, we need to have a model that has had color 
applied to its vertices. While you could use Unity to apply colors, you would have  
to write a tool to allow an individual to apply the colors or write some scripts to 
achieve the color application. In the case of this recipe, we simply utilized Maya to 
apply the colors to our model. This model is available on the book's Support page at 
https://www.packtpub.com/books/content/support.

2.	 Create a new scene and place the imported model in the scene.

3.	 Create a new shader and material. When completed, assign the shader to the 
material and then the material to the imported model.

https://www.packtpub.com/books/content/support


Chapter 5

97

Your scene should now look similar to the following screenshot:

How to do it…
With our scene, shader, and material created and ready to go, we can begin to write the code 
for our shader. Launch the shader by double-clicking on it in the Project tab in the Unity 
editor. Perform the following steps:

1.	 As we are creating a very simple shader, we will not need to include any properties in 
our Properties block. We will still include a global tint color, just to stay consistent 
with the other shaders in this book. Enter the following code in the Properties 
block of your shader:
Properties 
{
  _MainTint("Global Color Tint", Color) = (1,1,1,1)
}

2.	 This next step tells Unity that we will be including a vertex function in our shader:
CGPROGRAM
#pragma surface surf Lambert vertex:vert



Vertex Functions

98

3.	 As usual, if we have included properties in our Properties block, we must make 
sure to create a corresponding variable in our CGPROGRAM statement. Enter the 
following code just below the #pragma statement:
float4 _MainTint;

4.	 We now turn our attention to the Input struct. We need to add a new variable in 
order for our surf() function to access the data given to us by our vert() function:
struct Input 
{
  float2 uv_MainTex;
  float4 vertColor;
};

5.	 Now, we can write our simple vert() function to gain access to the colors stored in 
each vertex of our mesh:
void vert(inout appdata_full v, out Input o)
{
  o.vertColor = v.color;
}

6.	 Finally, we can use the vertex color data from our Input struct to be assigned to the 
o.Albedo parameters in the built-in SurfaceOutput struct:
void surf (Input IN, inout SurfaceOutput o) 
{
  o.Albedo = IN.vertColor.rgb * _MainTint.rgb;
}

7.	 With our code completed, we can now re-enter the Unity editor and let the shader 
compile. If all goes well, you should see something similar to the following screenshot:



Chapter 5

99

How it works…
Unity provides us with a way to access the vertex information of the model to which a shader 
is attached. This gives us the power to modify things such as the vertices' position and color. 
With this recipe, we have imported a mesh from Maya (though just about any 3D software 
application can be used), where vertex colors were added to Verts. You'll notice that by 
importing the model, the default material will not display the vertex colors. We actually have 
to write a shader to extract the vertex color and display it on the surface of the model. Unity 
provides us with a lot of built-in functionality when using Surface Shaders, which make the 
process of extracting this vertex information quick and efficient.

Our first task is to tell Unity that we will be using a vertex function when creating our 
shader. We do this by adding the vertex:vert parameter to the #pragma statement of 
CGPROGRAM. This automatically makes Unity look for a vertex function named vert() when it 
goes to compile the shader. If it doesn't find one, Unity will throw a compiling error and ask you 
to add a vert() function to your shader.

This brings us to our next step. We have to actually code the vert() function, as  
seen in step 5. By having this function, we can access the built-in data struct called 
appdata_full. This built-in struct is where the vertex information is stored. So, we then 
extract the vertex color information by passing it to our Input struct by adding the code, 
o.vertColor = v.color.

The o variable represents our Input struct and the v variable is our appdata_full vertex 
data. In this case, we are simply taking the color information from the appdata_full struct 
and putting it in our Input struct. Once the vertex color is in our Input struct, we can use it 
in our surf() function. In the case of this recipe, we simply apply the color to the o.Albedo 
parameter to the built-in SurfaceOutput struct.

There's more…
One can also access a fourth component from the vert color data. If you notice, the vertColor 
variable we declared in the Input struct is of the float4 type. This means that we are also 
passing the alpha value of the vertex colors. Knowing this, you can use it to your advantage for 
the purpose of storing a fourth vertex color to perform effects such as transparency or giving 
yourself one more mask to blend two textures. It's really up to you and your production to 
determine if you really need to use the fourth component, but it is worth mentioning here.



Vertex Functions

100

With Unity 5, we now have the ability to target shaders to DirectX 11. This is great, but it 
means that the compiling process for the shaders is now a bit pickier. This means that we 
need to include one more line of code to our shader to initialize the output of the vertex 
information properly. The following code shows what the vertex function code looks like, if you 
are using DirectX 11 in your shader:

void vert(inout appdata_full v, out Input o)
{
  UNITY_INITIALIZE_OUTPUT(Input, o);
  o.vertColor = v.color;
}

By including this line of code, your Vertex Shader will not throw any warnings, which say that it 
won't compile to DirectX 11 appropriately.

Animating vertices in a Surface Shader
Now that we know how to access data on a per-vertex basis, let's expand our knowledge set to 
include other types of data and position of a vertex.

Using a vertex function, we can access the position of each vertex in a mesh. This allows us to 
actually modify each individual vertex while the shader does the processing.

In this recipe, we will create a shader that will allow us to modify the positions of each vertex 
on a mesh with a sine wave. This technique can be used to create animations for objects such 
as flags or waves on an ocean.

Getting ready
Let's gather our assets together so that we can create the code for our Vertex Shader:

1.	 Create a new scene and place a plane mesh in the center of the scene.

2.	 Then create a new shader and material.

3.	 Finally, assign the shader to the material and the material to the plane mesh.



Chapter 5

101

Your scene should look similar to the following screenshot:

How to do it…
With our scene ready to go, let's double-click on our newly created shader to open it in 
MonoDevelop:

1.	 Let's begin with our shader by populating the Properties block:
Properties 
{
  _MainTex ("Base (RGB)", 2D) = "white" {}
  _tintAmount ("Tint Amount", Range(0,1)) = 0.5
  _ColorA ("Color A", Color) = (1,1,1,1)
  _ColorB ("Color B", Color) = (1,1,1,1)
  _Speed ("Wave Speed", Range(0.1, 80)) = 5
  _Frequency ("Wave Frequency", Range(0, 5)) = 2
  _Amplitude ("Wave Amplitude", Range(-1, 1)) = 1
}

2.	 We now need to tell Unity that we are going to be using a vertex function by adding 
the following to the #pragma statement:
CGPROGRAM
#pragma surface surf Lambert vertex:vert



Vertex Functions

102

3.	 In order to access the values that have been given to us by our properties, we need to 
declare a corresponding variable in our CGPROGRAM block:
sampler2D _MainTex;
float4 _ColorA;
float4 _ColorB;
float _tintAmount;
float _Speed;
float _Frequency;
float _Amplitude;
float _OffsetVal;

4.	 We will be using the vertex position modification as a vert color as well. This will 
allow us to tint our object:
struct Input 
{
  float2 uv_MainTex;
  float3 vertColor;
}

5.	 At this point, we can perform our vertex modification using a sine wave and vertex 
function. Enter the following code after the Input struct:
void vert(inout appdata_full v, out Input o)
{
  float time = _Time * _Speed;
  float waveValueA = sin(time + v.vertex.x * _Frequency) *  
    _Amplitude;
      
  v.vertex.xyz = float3(v.vertex.x, v.vertex.y + waveValueA,  
    v.vertex.z);
  v.normal = normalize(float3(v.normal.x + waveValueA,  
    v.normal.y, v.normal.z));
  o.vertColor = float3(waveValueA,waveValueA,waveValueA);
}

6.	 Finally, we complete our shader by performing a lerp() function between two  
colors so that we can tint the peaks and valleys of our new mesh, modified by our 
vertex function:
void surf (Input IN, inout SurfaceOutput o) 
{
  half4 c = tex2D (_MainTex, IN.uv_MainTex);
  float3 tintColor = lerp(_ColorA, _ColorB, IN.vertColor).rgb; 
      
  o.Albedo = c.rgb * (tintColor * _tintAmount);
  o.Alpha = c.a;
}



Chapter 5

103

After completing the code for your shader, switch back to Unity and let the shader compile. 
Once compiled, you should see something similar to the following screenshot:

How it works…
This particular shader uses the same concept from the last recipe, except that this time, we 
are modifying the positions of the vertices in the mesh. This is really useful if you don't want 
to rig up simple objects, such as a flag, and then animate them using a skeleton structure or 
hierarchy of transforms.

We simply create a sine wave value using the sin() function that is built into the Cg 
language. After calculating this value, we add it to the y value of each vertex position, creating 
a wave-like effect.

We also did a little bit of modification to the normal on the mesh just to give it a more realistic 
shading based on the sine wave value.

You will see how easy it is to perform more complex vertex effects by utilizing the built-in 
vertex parameters that Surface Shaders give us.



Vertex Functions

104

Extruding your models
One of the biggest problems in games is repetitions. Creating new content is a time-consuming 
task, and when you have to face thousands of enemies, chances are that they will all look the 
same. A relatively cheap technique to add variations to your models is using a shader that alters 
its basic geometry. This recipe will show you a technique called normal extrusion, which can be 
used to create a chubbier or skinnier version of a model, as shown in the following picture with 
the soldier from the Unity camp demo:

Getting ready
For this recipe, we need to have access to the shader used by the model that you want to 
alter. Once you have it, we duplicate it so that we can edit it safely. It can be done as follows:

1.	 Find the shader your model is using and once selected, duplicate it by  
pressing Ctrl + D.

2.	 Duplicate the original material of the model and assign the cloned shader to it.

3.	 Assign the new material to your model, and start editing it.

In order for this effect to work, your model should have normals.

How to do it…
To create this effect, start by modifying the duplicated shader:

1.	 Let's start by adding a property to our shader, which will be used to modulate its 
extrusion. The range presented here goes from -1 to +1, but you might have to adjust 
this according to your own needs:
_Amount ("Extrusion Amount", Range(-1,+1)) = 0

2.	 Couple the property with its respective variable:
float _Amount;



Chapter 5

105

3.	 Change the #pragma directive so that it now uses a vertex modifier. You can do this 
by adding vertex:function_name at the end of it. In our case, we have called the 
function, vert:
#pragma surface surf Lambert vertex:vert

4.	 Add the following vertex modifier:
void vert (inout appdata_full v) {
  v.vertex.xyz += v.normal * _Amount;
}

5.	 The shader is now ready; you can use the Extrusion Amount slider in the material's 
Inspector tab to make your model skinnier or chubbier.

How it works…
Surface Shaders works in two steps. In all the previous chapters, we only explored its last 
one: the surface function. There is another function that can be used: the vertex modifier. 
It takes the data structure of a vertex (which is usually called appdata_full) and applies 
a transformation to it. This gives us the freedom to do virtually everything with the geometry 
of our model. We signal the graphics processing unit (GPU) that such a function exists by 
adding vertex:vert to the #pragma directive of the Surface Shader. You can refer to 
Chapter 6, Fragment Shaders and Grab Passes, to learn how vertex modifiers can be defined 
in a Vertex and Fragment Shader instead.

One of the most simple, yet effective, techniques that can be used to alter the geometry of 
a model is called normal extrusion. It works by projecting a vertex along its normal direction. 
This is done by the following line of code:

v.vertex.xyz += v.normal * _Amount;

The position of a vertex is displaced by _Amount units toward the vertex normal. If _Amount 
gets too high, the results can be quite unpleasant. With smaller values, however, you can add 
a lot of variations to your models.

There's more…
If you have multiple enemies and want each one to have its own weight, you have to create a 
different material for each one of them. This is necessary as materials are normally shared 
between models and changing one will change all of them. There are several ways in which 
you can do this; the quickest one is to create a script that automatically does it for you. The 
following script, once attached to an object with a Renderer, will duplicate its first material 
and set the _Amount property automatically:

using UnityEngine;
public class NormalExtruder : MonoBehaviour {



Vertex Functions

106

  [Range(-0.0001f, 0.0001f)]
  public float amount = 0;

  // Use this for initialization
  void Start () {
    Material material = GetComponent<Renderer>().sharedMaterial;
    Material newMaterial = new Material(material);
    newMaterial.SetFloat("_Amount", amount);
    GetComponent<Renderer>().material = newMaterial;
  }
}

Adding extrusion maps
This technique can actually be improved even further. We can add an extra texture (or use the 
alpha channel of the main one) to indicate the amount of the extrusion. This allows a much 
better control over which parts are raised or lowered. The following code shows you how it is 
possible to achieve such an effect:

sampler2D _ExtrusionTex;
void vert(inout appdata_full v) {
float4 tex = tex2Dlod (_ExtrusionTex, float4(v.texcoord.xy,0,0));
  float extrusion = tex.r * 2 - 1;
  v.vertex.xyz += v.normal * _Amount * extrusion;
}

The red channel of _ExtrusionTex is used as a multiplying coefficient for normal extrusion. 
A value of 0.5 leaves the model unaffected; darker or lighter shades are used to extrude 
vertices inward or outward, respectively. You should notice that to sample a texture within a 
vertex modifier, tex2Dlod should be used instead of tex2D.

In shaders, color channels go from 0 to 1, although sometimes 
you need to represent negative values as well (such as inward 
extrusion). When this is the case, treat 0.5 as zero, having smaller 
values considered as negative and higher values as positive. This 
is exactly what happens with normals, which are usually encoded 
in RGB textures. The UnpackNormal() function is used to map 
a value in the range (0,1) on the range (-1,+1). Mathematically 
speaking, this is equivalent to tex.r * 2 -1.

Extrusion maps are perfect to zombify characters by shrinking the skin to highlight the shape 
of the bones underneath. The following picture shows you how a healthy soldier can be 
transformed into a corpse using just a shader and extrusion map. Compared to the previous 
example, you can notice how the clothing is unaffected. The shader used in the following 
picture also darkens the extruded regions to give an even more emaciated look to the soldier:



Chapter 5

107

Implementing a snow shader
The simulation of snow has always been a challenge in games. The vast majority of games 
simply includes snow directly in the model's textures so that their tops look white. However, 
what if one of these objects starts rotating? Snow is not just a lick of paint on a surface; it is a 
proper accumulation of material and should be treated as such. This recipe shows you how to 
give a snowy look to your models using just a shader.

This effect is achieved in two steps. First, a white color is used for all the triangles facing the 
sky. Second, their vertices are extruded to simulate the effect of snow accumulation. You can 
see the result in the following picture:



Vertex Functions

108

Keep in mind that this recipe does not aim to create a photorealistic 
snow effect. It provides a good starting point, but it is up to an artist 
to create the right textures and find the right parameters to make it 
fit your game.

Getting ready
This effect is purely based on shaders. We will need the following:

1.	 Create a new shader for the snow effect.

2.	 Create a new material for the shader.

3.	 Assign the newly created material to the object that you want to be snowy.

How to do it…
To create a snowy effect, open your shader and make the following changes:

1.	 Replace the properties of the shader with the following ones:
_MainColor("Main Color", Color) = (1.0,1.0,1.0,1.0)
_MainTex("Base (RGB)", 2D) = "white" {}
_Bump("Bump", 2D) = "bump" {}
_Snow("Level of snow", Range(1, -1)) = 1
_SnowColor("Color of snow", Color) = (1.0,1.0,1.0,1.0)
_SnowDirection("Direction of snow", Vector) = (0,1,0)
_SnowDepth("Depth of snow", Range(0,1)) = 0

2.	 Complete them with their relative variables:
sampler2D _MainTex;
sampler2D _Bump;
float _Snow;
float4 _SnowColor;
float4 _MainColor;
float4 _SnowDirection;
float _SnowDepth;

3.	 Replace the Input structure with the following one:
struct Input {
  float2 uv_MainTex;
  float2 uv_Bump;
  float3 worldNormal;
  INTERNAL_DATA
};



Chapter 5

109

4.	 Replace the surface function with the following one. It will color the snowy parts of 
the model white:
void surf(Input IN, inout SurfaceOutputStandard o) {
  half4 c = tex2D(_MainTex, IN.uv_MainTex);
  o.Normal = UnpackNormal(tex2D(_Bump, IN.uv_Bump));

  if (dot(WorldNormalVector(IN, o.Normal),  
    _SnowDirection.xyz) >= _Snow)
    o.Albedo = _SnowColor.rgb;
  else
    o.Albedo = c.rgb * _MainColor;
  o.Alpha = 1;
}

5.	 Configure the #pragma directive so that it uses vertex modifiers:
#pragma surface surf Standard vertex:vert

6.	 Add the following vertex modifiers, which extrude the vertices covered in snow:
void vert(inout appdata_full v) {
  float4 sn = mul(UNITY_MATRIX_IT_MV, _SnowDirection);
  if (dot(v.normal, sn.xyz) >= _Snow)
    v.vertex.xyz += (sn.xyz + v.normal) * _SnowDepth * _Snow;
}

You can now use the material's Inspector tab to select how much of your model is going to be 
covered and how thick the snow should be.

How it works…
This shader works in two steps.

Coloring the surface
The first one alters the color of the triangles that are facing the sky. It affects all the 
triangles with a normal direction similar to _SnowDirection. As seen before in Chapter 3, 
Understanding Lighting Models, comparing unit vectors can be done using the dot product. 
When two vectors are orthogonal, their dot product is zero; it is one (or minus one) when they 
are parallel to each other. The _Snow property is used to decide how aligned they should be to 
be considered facing the sky.



Vertex Functions

110

If you look closely at the surface function, you can see that we are not dotting the normal and 
snow direction directly. This is because they are usually defined in a different space. The snow 
direction is expressed in world coordinates, while the object normals are usually relative to the 
model itself. If we rotate the model, its normals will not change, which is not what we want. 
To fix this, we need to convert the normals from their object coordinates to world coordinates. 
This is done with the WorldNormalVector() function, as seen in the following code:

if (dot(WorldNormalVector(IN, o.Normal), _SnowDirection.xyz) >=  
  _Snow)
  o.Albedo = _SnowColor.rgb;
else
  o.Albedo = c.rgb * _MainColor;

This shader simply colors the model white; a more advanced one should initialize the 
SurfaceOutputStandard structure with textures and parameters from a realistic  
snow material.

Altering the geometry
The second effect of this shader alters the geometry to simulate the accumulation of snow. 
Firstly, we identify which triangles have been colored white by testing the same condition used 
in the surface function. This time, unfortunately, we cannot rely on WorldNormalVector() 
as the SurfaceOutputStandard structure is not yet initialized in the vertex modifier. We 
use this other method instead, which converts _SnowDirection to object coordinates:

float4 sn = mul(UNITY_MATRIX_IT_MV, _SnowDirection);

Then, we can extrude the geometry to simulate the accumulation of snow:

if (dot(v.normal, sn.xyz) >= _Snow)
v.vertex.xyz += (sn.xyz + v.normal) * _SnowDepth * _Snow;

Once again, this is a very basic effect. One could use a texture map to control the 
accumulation of snow more precisely or give a peculiar, uneven look.

See also
If you need high-quality snow effects and props for your game, you can also check these 
resources on the Unity Asset Store:

ff Winter Suite ($30): A much more sophisticated version of the snow shader 
presented in this recipe can be found at https://www.assetstore.unity3d.
com/en/#!/content/13927

ff Winter Pack ($60): A very realistic set of props and materials for snowy environments 
can be found at https://www.assetstore.unity3d.com/en/#!/
content/13316

https://www.assetstore.unity3d.com/en/#!/content/13927
https://www.assetstore.unity3d.com/en/#!/content/13927
https://www.assetstore.unity3d.com/en/#!/content/13316
https://www.assetstore.unity3d.com/en/#!/content/13316


Chapter 5

111

Implementing a volumetric explosion
The art of game development is a clever trade-off between realism and efficiency. This is 
particularly true for explosions; they are at the heart of many games, yet the physics behind 
them is often beyond the computational power of modern machines. Explosions are, essentially, 
nothing more than very hot balls of gas; hence, the only way to correctly simulate them is by 
integrating a fluid simulation into your game. As you can imagine, this is infeasible for runtime 
application, and many games simulate them simply with particles. When an object explodes, it is 
common to simply instantiate many fire, smoke, and debris particles that, together, can achieve 
believable results. This approach, unfortunately, is not very realistic and is easy to spot. There is 
an intermediate technique that can be used to achieve a much more realistic effect: volumetric 
explosions. The idea behind this concept is that explosions are not treated any more like a 
bunch of particles; they are evolving 3D objects, not just flat 2D textures.

Getting ready
Start this recipe with the following steps:

1.	 Create a new shader for this effect.

2.	 Create a new material to host the shader.

3.	 Attach the material to a sphere. You can create one directly from the editor, 
navigating to GameObject | 3D Object | Sphere.

This recipe works well with the standard Unity Sphere, but if you need 
big explosions, you might need to use a more high-poly sphere. In 
fact, a vertex function can only modify the vertices of a mesh. All the 
other points will be interpolated using the positions of the nearby 
vertices. Fewer vertices mean a lower resolution for your explosions.

4.	 For this recipe, you will also need a ramp texture that has, in a gradient, all the colors 
your explosions will have. You can create a texture like the following image using 
GIMP or Photoshop:

5.	 Once you have the picture, import it to Unity. Then, from its Inspector, make sure that 
Filter Mode is set to Bilinear and Wrap Mode to Clamp. These two settings make 
sure that the ramp texture is sampled smoothly.

6.	 Lastly, you will need a noisy texture. You can search on the Internet for freely available 
noise textures. The most commonly used ones are generated using Perlin noise.



Vertex Functions

112

How to do it…
This effect works in two steps: a vertex function to change the geometry and surface function 
to give it the right color. The steps are as follows:

1.	 Add the following properties to the shader:
_RampTex("Color Ramp", 2D) = "white" {}
_RampOffset("Ramp offset", Range(-0.5,0.5))= 0

_NoiseTex("Noise tex", 2D) = "gray" {}
_Period("Period", Range(0,1)) = 0.5

_Amount("_Amount", Range(0, 1.0)) = 0.1
_ClipRange("ClipRange", Range(0,1)) = 1

2.	 Add their relative variables so that the Cg code of the shader can actually  
access them:
sampler2D _RampTex;
half _RampOffset;

sampler2D _NoiseTex;
float _Period;

half _Amount;
half _ClipRange;

3.	 Change the Input structure so that it receives the UV data of the ramp texture:
struct Input {
  float2 uv_NoiseTex;
};

4.	 Add the following vertex function:
void vert(inout appdata_full v) {
  float3 disp = tex2Dlod(_NoiseTex,  
    float4(v.texcoord.xy,0,0));
  float time = sin(_Time[3] *_Period + disp.r*10);
  v.vertex.xyz += v.normal * disp.r * _Amount * time;
}

5.	 Add the following surface function:
void surf(Input IN, inout SurfaceOutput o) {
  float3 noise = tex2D(_NoiseTex, IN.uv_NoiseTex);
  float n = saturate(noise.r + _RampOffset);
  clip(_ClipRange - n);
  half4 c = tex2D(_RampTex, float2(n,0.5));



Chapter 5

113

  o.Albedo = c.rgb;
  o.Emission = c.rgb*c.a;
}

6.	 We specify the vertex function in the #pragma directive, adding the nolightmap 
parameter to prevent Unity from adding realistic lightings to our explosion:
#pragma surface surf Lambert vertex:vert nolightmap

7.	 The last step is selecting the material, and from its Inspector, attaching the two 
textures in the relative slots. This is an animated material, meaning that it evolves 
over time. You can watch the material changing in the editor by clicking on Animated 
Materials from the Scene window:

How it works…
If you are reading this recipe, you should already be familiar with how Surface Shaders and 
vertex modifiers work. The main idea behind this effect is to alter the geometry of the sphere 
in a seemingly chaotic way, exactly like it happens in a real explosion. The following picture 
shows you how such an explosion will look inside the editor. You can see that the original 
mesh has been heavily deformed:



Vertex Functions

114

The vertex function is a variant of the technique called normal extrusion introduced in the 
Extruding your models recipe of this chapter. The difference here is that the amount of the 
extrusion is determined both by the time and noise texture.

When you need a random number in Unity, you can rely on the 
Random.Range() function. There is no standard way to get 
random numbers in a shader, so the easiest way is to sample a 
noise texture.

There is no standard way to do this, so take this as an example only:

float time = sin(_Time[3] *_Period + disp.r*10);

The built-in _Time[3] variable is used to get the current time from within the shader, and 
the red channel of the noise texture disp.r is used to make sure that each vertex moves 
independently. The sin() function makes the vertices go up and down, simulating the 
chaotic behavior of an explosion. Then, the normal extrusion takes place:

v.vertex.xyz += v.normal * disp.r * _Amount * time;

You should play with these numbers and variables until you find a pattern of movement that 
you are happy with.

The last part of the effect is achieved by the surface function. Here, the noise texture is used 
to sample a random color from the ramp texture. However, there are two more aspects that 
are worth noticing. The first one is the introduction of _RampOffset. Its usage forces the 
explosion to sample colors from the left or right side of the texture. With positive values, the 
surface of the explosion tends to show more grey tones; exactly what happens when it is 
dissolving. You can use _RampOffset to determine how much fire or smoke there should be in 
your explosion. The second aspect introduced in the surface function is the usage of clip(). 
What clip() does is it clips (removes) pixels from the rendering pipeline. When invoked with 
a negative value, the current pixel is not drawn. This effect is controlled by _ClipRange, which 
determines which pixels of the volumetric explosions are going to be transparent.

By controlling both _RampOffset and _ClipRange, you have full control to determine how 
the explosion behaves and dissolves.

There's more…
The shader presented in this recipe makes a sphere look like an explosion. If you really want to 
use it, you should couple it with some scripts in order to get the most out of it. The best thing to 
do is to create an explosion object and make it into a prefab so that you can reuse it every time 
you need. You can do this by dragging the sphere back into the Project window. Once it is done, 
you can create as many explosions as you want using the Instantiate() function.



Chapter 5

115

It is worth noticing, however, that all the objects with the same material share the same look. 
If you have multiple explosions at the same time, they should not use the same material. 
When you are instantiating a new explosion, you should also duplicate its material. You can do 
this easily with this piece of code:

GameObject explosion = Instantiate(explosionPrefab) as GameObject;
Renderer renderer = explosion.GetComponent<Renderer>();
Material material = new Material(renderer.sharedMaterial);
renderer.material = material;

Lastly, if you are going to use this shader in a realistic way, you should attach a script to it that 
changes its size, _RampOffset, and _ClipRange according to the type of explosion that you 
want to recreate.

See also
Much more can be done to make explosions realistic. The approach presented in this recipe 
only creates an empty shell; inside it, the explosion is actually empty. An easy trick to improve 
this is to create particles inside it. However, you can only go that far with this. The short 
movie, The Butterfly Effect (http://unity3d.com/pages/butterfly) created by Unity 
Technologies in collaboration with Passion Pictures and Nvidia, is the perfect example. It 
is based on the same concept of altering the geometry of a sphere, but it renders it with a 
technique called volume ray casting. In a nutshell, it renders the geometry as if it's full. You 
can see an example in the following picture:

If you are looking for high-quality explosions, check out Pyro Technix (https://www.
assetstore.unity3d.com/en/#!/content/16925) on the Asset Store. It includes 
volumetric explosions and couples them with realistic shockwaves.

http://unity3d.com/pages/butterfly
https://www.assetstore.unity3d.com/en/#!/content/16925
https://www.assetstore.unity3d.com/en/#!/content/16925




117

Fragment Shaders and 
Grab Passes

So far, we have relied on Surface Shaders. They have been designed to simplify the way 
shader coding works, providing meaningful tools for artists. If we want to push our knowledge 
of shaders further, we need to venture into the territory of Vertex and Fragment Shaders.

In this chapter, you will learn the following recipes:

ff Understanding Vertex and Fragment Shaders

ff Using grab pass

ff Implementing a Glass Shader

ff Implementing a Water Shader for 2D games

Introduction
Compared to Surface Shaders, Vertex and Fragment Shaders come with little to no 
information about the physical properties that determine how light reflects on surfaces. What 
they lack in expressivity, they compensate with power: Vertex and Fragment Shaders are not 
limited by physical constraints and are perfect for non-photorealistic effects. This chapter will 
focus on a technique called grab pass, which allows these shaders to simulate deformations.

6



Fragment Shaders and Grab Passes

118

Understanding Vertex and Fragment 
Shaders

The best way to understand how Vertex and Fragment Shaders work is by creating one 
yourself. This recipe will show you how to write one of these shaders, which will simply apply a 
texture to a model and multiply it by a given color, as shown in the following image:

The shader presented here is very simple, and it will be used as a starting base for all the 
other Vertex and Fragment Shaders.

Getting ready
For this recipe, we will need a new shader. Follow these steps:

1.	 Create a new shader.

2.	 Create a new material and assign the shader to it.



Chapter 6

119

How to do it…
In all the previous chapters, we have always been able to refit Surface Shaders. This is not the 
case anymore as Surface and Fragment Shaders are structurally different. We will need the 
following changes:

1.	 Delete all the properties of the shader, replacing them with the following:
_Color ("Color", Color) = (1,0,0,1) // Red
_MainTex ("Base texture", 2D) = "white" {}

2.	 Delete all the code in the SubShader block and replace it with this one:
Pass {
    CGPROGRAM

    #pragma vertex vert             
    #pragma fragment frag

    half4 _Color;
sampler2D _MainTex;

    struct vertInput {
        float4 pos : POSITION;
float2 texcoord : TEXCOORD0;
    };

    struct vertOutput {
        float4 pos : SV_POSITION;
float2 texcoord : TEXCOORD0;

    };

    vertOutput vert(vertInput input) {
        vertOutput o;
        o.pos = mul(UNITY_MATRIX_MVP, input.pos);
        o.texcoord = input.texcoord;
        return o;
    }

    half4 frag(vertOutput output) : COLOR{
        half4 mainColour = tex2D(_MainTex, output.texcoord);
        return mainColour * _Color;
}
    
ENDCG
}

This will also be the base for all future Vertex and Fragment Shaders.



Fragment Shaders and Grab Passes

120

How it works…
As the name suggests, Vertex and Fragment Shaders work in two steps. The model is first 
passed through a vertex function; the result is then inputted to a fragment function. Both 
these functions are assigned using pragma directives:

#pragma vertex vert             
#pragma fragment frag

In this case, they are simply called vert and frag.

Conceptually speaking, fragments are closely related to pixels; the term fragment is often 
used to refer to the collection of data necessary to draw a pixel. This is also why Vertex and 
Fragment Shaders are often called Pixel Shaders.

The vertex function takes the input data in a structure that is defined as vertInput in  
the shader:

struct vertInput {
    float4 pos : POSITION;
float2 texcoord : TEXCOORD0;
};

Its name is totally arbitrary, but its content is not. Each field of struct must be decorated 
with a binding semantic. This is a feature of Cg that allows us to mark variables so that they 
will be initialized with certain data, such as normal vectors and vertex position. The binding 
semantic POSITION indicates that when vertInput is inputted to the vertex function, 
pos will contain the position of the current vertex. This is similar to the vertex field of the 
appdata_full structure in a Surface Shader. The main difference is that pos is represented 
in model coordinates (relative to the 3D object), which we need to convert to view coordinates 
manually (relative to the position on the screen).

The vertex function in a Surface Shader is used to alter 
the geometry of the model only. In a Vertex and Fragment 
Shader, instead, the vertex function is necessary to project 
the coordinates of the model to the screen.

The mathematics behind this conversion is beyond the scope of this chapter. However, this 
transformation can be achieved by multiplying pos by a special matrix provided by Unity: 
UNITY_MATRIX_MVP. It is often referred to as the model-view-projection matrix, and it is 
essential to find the position of a vertex on the screen:

vertOutput o;
o.pos = mul(UNITY_MATRIX_MVP, input.pos);



Chapter 6

121

The other piece of information initialized is textcoord, which uses the TEXCOORD0 binding 
semantics to get the UV data of the first texture. No further processing is required and this 
value can be passed directly to the fragment function:

o.texcoord = input.texcoord;

While Unity will initialise vertInput for us, we are responsible for the initialization of 
vertOutput. Despite this, its fields still need to be decorated with binding semantics:

struct vertOutput {
    float4 pos : SV_POSITION;
float2 texcoord : TEXCOORD0;
};

Once the vertex function has initialised vertOutput, the structure is passed to the fragment 
function. This samples the main texture of the model and multiplies it by the color provided.

As you can see, the Vertex and Fragment Shader has no knowledge of the physical properties 
of the material; compared to a Surface Shader, it works closer to the architecture of the 
graphics processing unit (GPU).

There's more…
One of the most confusing aspects of Vertex and Fragment Shaders is binding semantics. 
There are many others that you can use and their meaning depends on the context.

Input semantics
The binding semantics in the following table can be used in vertInput, which is the 
structure that Unity provides to the vertex function. The fields decorated with these semantics 
will be initialized automatically:

Binding semantics Description
POSITION, SV_POSITION The position of a vertex in world coordinates (object 

space)
NORMAL The normal of a vertex, relative to the world (not to 

the camera)
COLOR, COLOR0, DIFFUSE, SV_
TARGET

The color information stored in the vertex

COLOR1, SPECULAR The secondary color information stored in the vertex 
(usually the specular)

TEXCOORD0, TEXCOORD1, …, 
TEXCOORDi

The i-th UV data stored in the vertex



Fragment Shaders and Grab Passes

122

Output semantics
When binding, semantics are used in vertOutput; they do not automatically guarantee that 
fields will be initialized. Quite the opposite; it's our responsibility to do so. The compiler will 
make its best to ensure that the fields are initialized with the right data:

Binding semantics Description
POSITION, SV_POSITION, HPOS The position of a vertex in camera coordinates 

(clip space, from zero to one for each dimension)
COLOR, COLOR0, COL0, COL, SV_
TARGET

The front primary color

COLOR1, COL1 The front secondary color
TEXCOORD0, TEXCOORD1, …, 
TEXCOORDi, TEXi

The i-th UV data stored in the vertex

WPOS The position, in pixels, in the window (origin in 
the lower left corner)

If, for any reason, you need a field that will contain a different type of data, you can decorate 
it with one of the many TEXCOORD data available. The compiler will not allow fields to be left 
undecorated.

See also
You can refer to the NVIDIA Reference Manual to check the other binding semantics that are 
available in Cg:

http://developer.download.nvidia.com/cg/Cg_3.1/Cg-3.1_April2012_
ReferenceManual.pdf

Using grab pass
In the Adding transparency to PBR recipe of Chapter 4, Creating Test Cases and Writing 
Scenarios for Behavior Driven Development in Symfony, we have seen how a material can be 
made transparent. Even if a transparent material can draw over a scene, it cannot change 
what has been drawn underneath it. This means that those Transparent Shaders cannot 
create distortions such as the ones typically seen in glass or water. In order to simulate them, 
we need to introduce another technique called grab pass. This allows us to access what has 
been drawn on screen so far so that a shader can use it (or alter it) with no restrictions. To 
learn how to use grab passes, we will create a material that grabs what's rendered behind it 
and draws it again on the screen. It's a shader that, paradoxically, uses several operations to 
show no changes at all.

http://developer.download.nvidia.com/cg/Cg_3.1/Cg-3.1_April2012_ReferenceManual.pdf
http://developer.download.nvidia.com/cg/Cg_3.1/Cg-3.1_April2012_ReferenceManual.pdf


Chapter 6

123

Getting ready
This recipe requires the following operations:

1.	 Create a shader that we will initialize later.

2.	 Create a material to host the shader.

3.	 Attach the material to a flat piece of geometry, such as a quad. Place it in front 
of some other object so that you cannot see through it. The quad will appear 
transparent as soon as the shader is complete.

How to do it…
To use grab pass, you need to follow these steps:

1.	 Remove the Properties section; this shader will not use any of them.

2.	 In the SubShader section, add grab pass:
GrabPass{  }

3.	 After the grab pass, we will need to add this extra pass:
Pass {
    CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

    sampler2D _GrabTexture;

    struct vertInput {
        float4 vertex : POSITION;
    };

    struct vertOutput {
        float4 vertex : POSITION;
        float4 uvgrab : TEXCOORD1;
    };

    // Vertex function 
    vertInput vert(vertexInput v) {
        vertexOutput o;
        o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
        o.uvgrab = ComputeGrabScreenPos(o.vertex);
        return o;
    }



Fragment Shaders and Grab Passes

124

    // Fragment function
    half4 frag(vertexOutput i) : COLOR {
        fixed4 col = tex2Dproj(_GrabTexture, UNITY_PROJ_COORD(i.
uvgrab));
        return col + half4(0.5,0,0,0);
    }
    ENDCG
}

How it works…
This recipe not only introduces grab passes but also Vertex and Fragment Shaders; for this 
reason, we have to analyze the shader in detail.

So far, all the code has always been placed directly in the SubShader section. This is 
because our previous shaders required only a single pass. This time, two passes are required. 
The first one is the grab pass, which is defined simply by GrabPass{}. The rest of the code is 
placed in the second pass, which is contained in a Pass block.

The second pass is not structurally different from the shader shown in the first recipe of this 
chapter; we use the vertex function vert to get the position of the vertex and then we give it a 
color in the fragment function frag. The difference is that vert calculates another important 
detail: the UV data for the grab pass. The grab pass automatically creates a texture that can 
be referred to as follows:

sampler2D _GrabTexture;

In order to sample this texture, we need its UV data. The ComputeGrabScreenPos function 
returns data that we can use later to sample the grab texture correctly. This is done in the 
Fragment Shader using the following line:

fixed4 col = tex2Dproj(_GrabTexture, UNITY_PROJ_COORD(i.uvgrab));

This is the standard way in which a texture is grabbed and applied to the screen in its correct 
position. If everything has been done correctly, this shader will simply clone what has been 
rendered behind the geometry. We will see in the following recipes how this technique can be 
used to create materials such as water and glass.

There's more…
Every time you use a material with GrabPass {}, Unity will have to render the screen to a 
texture. This operation is very expensive and limits the number of grab passes that you can 
use in a game. Cg offers a slightly different variation:

GrabPass {"TextureName"}



Chapter 6

125

This line not only allows you to give a name to the texture, but it also shares the texture with 
all the materials that have a grab pass called TextureName. This means that if you have 
ten materials, Unity will only do a single grab pass and share the texture to all of them. The 
main problem of this technique is that it doesn't allow effects that can be stacked. If you are 
creating a glass with this technique, you won't be able to have two glasses one after the other.

Implementing a Glass Shader
Glass is a very complicated material; it should not be a surprise that other chapters have 
already created shaders to simulate it in the Adding transparency to PBR recipe of Chapter 
4, Creating Test Cases and Writing Scenarios for Behavior Driven Development in Symfony. 
However, there is an effect that transparency cannot reproduce deformations. Most glasses 
are not perfect, hence they create distortions when we look through them. This recipe will 
teach you how to do this. The idea behind this effect is to use a Vertex and Fragment Shader 
with a grab pass, and then sample the grab texture with a little change to its UV data to create 
a distortion. You can see the effect in the following image, using the glass-stained textures 
from the Unity Standard Assets:

Getting ready
The setup for this recipe is similar to the one presented in the previous chapter:

1.	 Create new Vertex and Fragment Shaders. You can start by copying the one used in 
the previous recipe, Using grab pass, as a base.

2.	 Create a material that will use the shader.

3.	 Assign the material to a quad or another flat geometry that will simulate your glass.

4.	 Place some objects behind it so that you can see the distortion effect.



Fragment Shaders and Grab Passes

126

How to do it…
Let's start by editing the Vertex and Fragment Shaders:

1.	 Add these two properties to the Properties block:
_MainTex("Base (RGB) Trans (A)", 2D) = "white" {}
_BumpMap("Noise text", 2D) = "bump" {}
_Magnitude("Magnitude", Range(0,1)) = 0.05

2.	 Add their variables in the second pass:
sampler2D _MainTex;
sampler2D _BumpMap;
float  _Magnitude;

3.	 Add the texture information in the input and output structures:
float2 texcoord : TEXCOORD0;

4.	 Transfer the UV data from the input to the output structure:
o.texcoord = v.texcoord;

5.	 Use the following fragment function:
half4 frag(vertOutput i) : COLOR {
        half4 mainColour = tex2D(_MainTex, i.texcoord);

    half4 bump = tex2D(_BumpMap, i.texcoord);
    half2 distortion = UnpackNormal(bump).rg;

    i.uvgrab.xy += distortion * _Magnitude;

    fixed4 col = tex2Dproj(_GrabTexture, UNITY_PROJ_COORD(i.
uvgrab));
    return col * mainColour * _Colour;
}

6.	 This material is transparent so it changes its tags in the SubShader block:
Tags{ "Queue" = "Transparent" "IgnoreProjector" = "True" 
"RenderType" = "Opaque" }

7.	 What's left now is to set the texture for the glass and a normal map to displace the 
grab texture.



Chapter 6

127

How it works…
The core that this shader uses is a grab pass to take what has already been rendered on the 
screen. The part where the distortion takes place is in the fragment function. Here, a normal 
map is unpacked and used to offset the UV data of the grab texture:

half4 bump = tex2D(_BumpMap, i.texcoord);
half2 distortion = UnpackNormal(bump).rg;

i.uvgrab.xy += distortion * _Magnitude;

The _Magnitude slide is used to determine how strong the effect is.

There's more…
This effect is very generic; it grabs the screen and creates a distortion based on a normal map. 
There is no reason why it shouldn't be used to simulate more interesting things. Many games use 
distortions around explosions or other sci-fi devices. This material can be applied to a sphere and, 
with a different normal map, it would simulate the heat wave of an explosion perfectly.

Implementing a Water Shader for 2D games
The Glass Shader introduced in the previous recipe is static; its distortion never changes. 
It takes just a few changes to convert it to an animated material, making it perfect for 2D 
games, which feature water. This recipe uses a similar technique to the one shown in Chapter 
5, Animating Vertices in a Surface Shader:



Fragment Shaders and Grab Passes

128

Getting ready
This recipe is based on the Vertex and Fragment Shaders described in the Using grab pass 
recipe as it will rely heavily on grab pass.

1.	 Create a new grab pass shader; you can write your own or start with the one 
presented in the Using grab pass recipe.

2.	 Create a new material for your shader.

3.	 Assign the material to a flat geometry that will represent your 2D water. In order for 
this effect to work, you should have something rendered behind it so that you can see 
the water-like displacement.

4.	 This recipe requires a noise texture, which is used to get pseudo-random values. It is 
important that you choose a seamless noise texture, such as the ones generated by 
tileable 2D Perlin noise, as shown in the following image. This ensures that when the 
material is applied to a large object, you will not see any discontinuity. In order for this 
effect to work, the texture has to be imported in the Repeat mode. If you want a smooth 
and continuous look for your water, you should also set it to Bilinear from Inspector. 
These settings ensure that the texture is sampled correctly from the shader:



Chapter 6

129

How to do it…
To create this animated effect, you can start by refitting the shader. Follow these steps:

1.	 Add the following properties:
_NoiseTex("Noise text", 2D) = "white" {}
_Colour ("Colour", Color) = (1,1,1,1)

_Period ("Period", Range(0,50)) = 1
_Magnitude ("Magnitude", Range(0,0.5)) = 0.05
_Scale ("Scale", Range(0,10)) = 1

2.	 Add their respective variables to the second pass of the shader:
sampler2D _NoiseTex;    
fixed4 _Colour;

float _Period;
float _Magnitude;
float _Scale;

3.	 Define the following output structure for the vertex function:
struct vertInput {
    float4 vertex : POSITION;
    fixed4 color : COLOR;
    float2 texcoord : TEXCOORD0;

    float4 worldPos : TEXCOORD1;
    float4 uvgrab : TEXCOORD2;
};

4.	 This shader needs to know the exact position of the space of every fragment. To do 
this, add the following line to the vertex function:
o.worldPos = mul(_Object2World, v.vertex);

5.	 Use the following fragment function:
fixed4 frag (vertInput i) : COLOR {
        float sinT = sin(_Time.w / _Period);
    float2 distortion = float2(
 tex2D(_NoiseTex, i.worldPos.xy / _Scale + float2(sinT, 0) ).r - 
0.5,
     tex2D(_NoiseTex, i.worldPos.xy / _Scale + float2(0, sinT) ).r 
- 0.5
    );



Fragment Shaders and Grab Passes

130

    i.uvgrab.xy += distortion * _Magnitude;

    fixed4 col = tex2Dproj( _GrabTexture, UNITY_PROJ_COORD(i.
uvgrab));
    return col * _Colour;
}

How it works…
This shader is very similar to the one introduced in the Implementing a Glass Shader recipe. 
The major difference is that this is an animated material; the displacement is not generated 
from a normal map but takes into account the current time in order to create a constant 
animation. The code that displaces the UV data of the grab texture seems quite complicated; 
let's try to understand how it has been generated. The idea behind it is that a sinusoid 
function is used to make the water oscillate. This effect needs to evolve over time; to achieve 
this effect, the distortion generated by the shader depends on the current time that is 
retrieved with the built-in variable, _Time. The _Period variable determines the period of the 
sinusoid, which means how fast the waves appear:

float2 distortion = float2( sin(_Time.w/_Period), sin(_Time.w/_Period) 
) – 0.5;

The problem with this code is that you have the same displacement on the X and Y axes; as 
a result, the entire grab texture will rotate in a circular motion, which looks nothing like water. 
We obviously need to add some randomness to this.

The most common way to add random behaviors to shaders is by including a noise texture. 
The problem now is to find a way to sample the texture at seemingly random positions. The 
best way to avoid seeing an obvious sinusoid pattern is to use the sine waves as an offset in 
the UV data of the noise texture:

float sinT = sin(_Time.w / _Period);
float2 distortion = float2
(    tex2D(_NoiseTex, i.texcoord / _Scale + float2(sinT, 0) ).r - 0.5,
    tex2D(_NoiseTex, i.texcoord / _Scale + float2(0, sinT) ).r - 0.5
);



Chapter 6

131

The _Scale variable determines the size of the waves. This solution is closer to the final 
version, but has a severe issue—if the water quad moves, the UV data follows it and you can 
see the water waves following the material rather than being anchored to the background. To 
solve this, we need to use the world position of the current fragment as the initial position for 
the UV data:

float sinT = sin(_Time.w / _Period);
float2 distortion = float2
(    tex2D(_NoiseTex, i.worldPos.xy / _Scale + float2(sinT, 0) ).r - 
0.5,
    tex2D(_NoiseTex, i.worldPos.xy / _Scale + float2(0, sinT) ).r - 
0.5
);
i.uvgrab.xy += distortion * _Magnitude;

The result is a pleasant, seamless distortion, which doesn't move in any clear direction.

As it happens with all these special effects, there is no perfect solution. 
This recipe shows you a technique to create water-like distortion, but 
you are encouraged to play with it until you find an effect that fits the 
aesthetics of your game.





133

7
Mobile Shader 

Adjustment

In the next two chapters, we are going to take a look at making the shaders that we write 
performance-friendly for different platforms. We won't be talking about any one platform 
specifically, but we are going to break down the elements of shaders we can adjust to make 
them more optimized for mobiles and efficient on any platform in general. These techniques 
range from understanding what Unity offers in terms of built-in variables that reduce the 
overhead of the shaders memory to learning about ways in which we can make our own 
shader code more efficient. This chapter will cover the following recipes:

ff What is a cheap shader

ff Profiling your shaders

ff Modifying our shaders for mobile



Mobile Shader Adjustment

134

Introduction
Learning the art of optimizing your shaders will come up in just about any game project that 
you work on. There will always come a point in any production where a shader needs to be 
optimized, or maybe it needs to use less textures but produce the same effect. As a technical 
artist or shader programmer, you have to understand these core fundamentals to optimize 
your shaders so that you can increase the performance of your game while still achieving the 
same visual fidelity. Having this knowledge can also help in setting the way in which you write 
your shader from the start. For instance, by knowing that the game built using your shader 
will be played on a mobile device, we can automatically set all our lighting functions to use 
a half vector as the view direction or set all of our float variable types to fixed or half. These, 
and many other techniques, all contribute to your shaders running efficiently on your target 
hardware. Let's begin our journey and start learning how to optimize our shaders.

What is a cheap shader?
When first asked the question, what is a cheap shader, it might be a little tough to answer as 
there are many elements that go into making a more efficient shader. It could be the amount 
of memory used up by your variables. It could be the amount of textures the shader is using. 
It could also be that our shader is working fine, but we can actually produce the same visual 
effect with half the amount of data by reducing the amount of code we are using or data we 
are creating. We are going to explore a few of these techniques in this recipe and show how 
they can be combined to make your shader fast and efficient but still produce the high-quality 
visuals everyone expects from games today, whether on a mobile or PC.

Getting ready
In order to get this recipe started, we need to gather a few resources together. So let's perform 
the following tasks:

1.	 Create a new scene and fill it with a simple sphere object and single directional light.

2.	 Create a new shader and material and assign the shader to the material.

3.	 We then need to assign the material we just created to our sphere object in our  
new scene.



Chapter 7

135

4.	 Finally, modify the shader so that it uses a diffuse texture and normal map and 
includes your own custom lighting function. The following image shows the result of 
modifying our default shader that we created in step 1:



Mobile Shader Adjustment

136

You should now have a setup similar to the following image. This setup will allow us to take  
a look at some of the basic concepts that go into optimizing shaders using Surface Shaders  
in Unity:

How to do it…
We are going to build a simple Diffuse shader to take a look at a few ways in which you can 
optimize your shaders in general.

First, we'll optimize our variable types so that they use less memory when they are  
processing data:

1.	 Let's begin with the struct Input in our shader. Currently, our UVs are being stored 
in a variable of the float2 type. We need to change this to use half2 instead:



Chapter 7

137

2.	 We can then move to our lighting function and reduce the variable's memory footprint 
by changing their types to the following:

3.	 Finally, we can complete this optimization pass by updating the variables in our 
surf() function:

Now that we have our variables optimized, we are going to take advantage of a built-in lighting 
function variable so that we can control how lights are processed by this shader. By doing 
this, we can greatly reduce the amount of lights the shader processes. Modify the #pragma 
statement in your shader with the following code:

We can optimize this further by sharing UVs between the normal map and diffuse texture. To 
do this, we simply change the UV lookup in our UnpackNormal() function to use _MainTex 
UVs instead of the UVs of _NormalMap:



Mobile Shader Adjustment

138

4.	 As we have removed the need for the normal map UVs, we need to make sure that we 
remove the normal map UV code from the Input struct:

5.	 Finally, we can further optimize this shader by telling the shader that it only works 
with certain renderers:

The result of our optimization passes show us that we really don't notice a difference in the 
visual quality, but we have reduced the amount of time it takes for this shader to be drawn 
to the screen. You will learn about finding out how much time it takes for a shader to render 
in the next recipe, but the idea to focus on here is that we achieve the same result with less 
data. So keep this in mind when creating your shaders. The following image shows us the final 
result of our shader:



Chapter 7

139

How it works…
Now that we have seen the ways in which we can optimize our shaders, let's dive in a bit 
deeper and really understand why all of these techniques are working and look at a couple of 
other techniques that you can try for yourself.

Let's first focus our attention on the size of the data each of our variables is storing when we 
declare them. If you are familiar with programming, then you will understand that you can 
declare values or variables with different sizes of types. This means that a float actually  
has a maximum size in memory. The following description will describe these variable types  
in much more detail:

ff Float: A float is a full 32-bit precision value and is the slowest of the three  
different types we see here. It also has its corresponding values of float2, float3, 
and float4.

ff Half: The half variable type is a reduced 16-bit floating point value and is suitable to 
store UV values and color values and is much faster than using a float value. It has its 
corresponding values like the float type, which are half2, half3, and half4.

ff Fixed: A fixed value is the smallest in size of the three types, but can be used for 
lighting calculations and colors and has the corresponding values of fixed2, 
fixed3, and fixed4.

Our second phase of optimizing our simple shader was to declare the noforwardadd value 
to our #pragma statement. This is basically a switch that automatically tells Unity that any 
object with this particular shader receives only per-pixel light from a single directional light. 
Any other lights that are calculated by this shader will be forced to be processed as per-vertex 
lights using Spherical Harmonic values produced internally by Unity. This is especially obvious 
when we place another light in the scene to light our sphere object because our shader is 
doing a per-pixel operation using the normal map.

This is great, but what if you wanted to have a bunch of directional lights in the scene and 
control over which of these lights is used for the main per-pixel light? Well, if you notice, each 
light has a Render Mode drop-down. If you click on this drop-down, you will see a couple of 
flags that can be set. These are Auto, Important, and Not Important. By selecting a light, you 
can tell Unity that a light should be considered more as a per-pixel light than a per-vertex light, 
by setting its render mode to Important and vice versa. If you leave a light set to Auto, then 
you will let Unity decide the best course of action.



Mobile Shader Adjustment

140

Place another light in your scene and remove the texture that is currently in the main texture 
for our shader. You will notice that the second point light does not react with the normal 
map, only the directional light that we created first. The concept here is that you save on 
per-pixel operations by just calculating all extra lights as vertex lights, and save performance 
by just calculating the main directional light as a per-pixel light. The following image visually 
demonstrates this concept as the point light is not reacting with the normal map:

Finally, we did a bit of cleaning up and simply told the normal map texture to use the main 
texture's UV values, and we got rid of the line of code that pulled in a separate set of UV 
values specifically for the normal map. This is always a nice way to simplify your code and 
clean up any unwanted data.

We also declared exclude_pass: prepass in our #pragma statement so that this  
shader wouldn't accept any custom lighting from the deferred renderer. This means that we 
can really use this shader effectively in the forward renderer only, which is set in the main 
camera's settings.

By taking a bit of time, you will be amazed at how much a shader can be optimized. You have 
seen how we can pack grayscale textures into a single RGBA texture as well as use lookup 
textures to fake lighting. There are many ways in which a shader can be optimized, which is 
why it is always an ambiguous question to ask in the first place, but knowing these different 
optimization techniques, you can cater your shaders to your game and target platform, 
ultimately resulting in very streamlined shaders and a nice steady framerate.

Profiling your shaders
Now that we know how we can reduce the overhead that our shaders might take, let's take 
a look at how to find problematic shaders in a scene where you might have a lot of shaders 
or a ton of objects, shaders, and scripts, all running at the same time. To find a single object 
or shader among a whole game can be quite daunting, but Unity provides us with its built-in 
Profiler. This allows us to actually see, on a frame-by-frame basis, what is happening in the 
game and each item being used by the GPU and CPU.



Chapter 7

141

Using the Profiler, we can isolate items such as shaders, geometry, and general rendering 
items using its interface to create blocks of profiling jobs. We can filter out items till we are 
looking at the performance of just a single object. This then lets us see the effects on the CPU 
and GPU that the object has while it is performing its functions at runtime.

Let's take a look through the different sections of the Profiler and learn how to debug our 
scenes and, most importantly, our shaders.

Getting ready
Let's use our Profiler by getting a few assets ready and launching the Profiler window:

1.	 Let's use the scene from the last recipe and launch the Unity Profiler from 
Window|Profiler or Ctrl + 7.

2.	 Let's also duplicate our sphere a couple more times to see how that affects our 
rendering.

You should see something similar to the following image:



Mobile Shader Adjustment

142

How to do it…
To use the Profiler, we will take a look at some of the UI elements of this window. Before we hit 
play, let's take a look at how to get the information we need from the profiler:

1.	 First, click on the larger blocks in the Profiler window called GPU Usage, CPU Usage, 
and Rendering. You will find these blocks on the left-hand side of the upper window:

Using these blocks, we can see different data specific to those major functions of our 
game. The CPU Usage is showing us what most of our scripts are doing as well as 
physics and overall rendering. The GPU Usage block is giving us detailed information 
about the elements that are specific to our lighting, shadows, and render queues. 
Finally, the Rendering block is giving us information about the drawcalls and amount 
of geometry we have in our scene at any one frame.

By clicking on each of these blocks, we can isolate the type of data we see during our 
profiling session.

2.	 Now, click on the tiny colored blocks in one of these Profile blocks and hit play or Ctrl 
+ P to run the scene.



Chapter 7

143

This lets us dive down even deeper into our profiling session so that we can filter out 
what is being reported back for us. While the scene is running, uncheck all of the 
boxes, except for Opaque in the GPU Usage block. Notice that we can now see just 
how much time is being used to render the objects that are set to the Render Queue 
of Opaque:

3.	 Another great function of the Profiler window is the action of clicking and dragging 
in the graph view. This will automatically pause your game so that you can further 
analyze a certain spike in the graph to find out exactly which item is causing the 
performance problem. Click and drag around in the graph view to pause the game 
and see the effect of using this functionality:



Mobile Shader Adjustment

144

4.	 Turning our attention now towards the lower half of the Profiler window, you will 
notice that there is a drop-down item available when we have the GPU Block selected. 
We can expand this to get even more detailed information about the current active 
profiling session and, in this case, more information about what the camera is 
currently rendering and how much time it is taking up:

This gives us a complete look at the inner workings of what Unity is processing in this 
particular frame. In this case, we can see that our three spheres with our optimized 
shader are taking roughly 0.14 milliseconds to draw to the screen, they are taking 
up seven drawcalls, and this process is taking 3.1 percent of the GPU's time in every 
frame. It's this type of information we can use to diagnose and solve performance 
issues with regard to shaders. Let's conduct a test to see the effects of adding one 
more texture to our shader and blending two diffuse textures together using a lerp 
function. You will see the effects in the profiler pretty clearly.

5.	 Modify the Properties block of your shader with the following code to give us 
another texture to use:



Chapter 7

145

6.	 Then let's feed our texture to CGPROGRAM:

7.	 Now it's time to update our surf() function accordingly so that we blend our texture 
diffuse textures together:

Once you save your modifications in your shader and return to Unity's editor, we can run our 
game and see the increase in milliseconds of our new shader. Press play once you have 
returned to Unity and let's take a look at the results in our profiler:



Mobile Shader Adjustment

146

You can see now that the amount of time to render our Opaque Shaders in this scene is 
taking 0.179 milliseconds, up from 0.140 milliseconds. By adding another texture and using 
the lerp() function, we increased the render time for our spheres. While it's a small change, 
imagine having 20 shaders all working in different ways on different objects.

Using the information given here, you can pinpoint areas that are causing performance 
decreases more quickly and solve these issues using the techniques from the previous recipe.

How it works…
While it's completely out of scope of this book to describe how this tool actually works 
internally, we can surmise that Unity has given us a way to view the computer's performance 
while our game is running. Basically, this window is tied very tightly to the CPU and GPU to give 
us real-time feedback of how much time is being taken for each of our scripts, objects, and 
render queues. Using this information, we have seen that we can track the efficiency of our 
shader writing to eliminate problematic areas and code.

There's more…
It is also possible to profile specifically for mobile platforms. Unity provides us with a couple of 
extra features when the Android or IOS build target is set in the Build Settings. We can actually 
get real-time information from our mobile devices while the game is running. This becomes 
very useful because you are able to profile directly on the device itself instead of profiling 
directly in your editor. To find out more about this process, refer to Unity's documentation at 
the following link:

http://docs.unity3d.com/Documentation/Manual/MobileProfiling.html

Modifying our shaders for mobile
Now that we have seen quite a broad set of techniques to make really optimized shaders, let's 
take a look at writing a nice, high-quality shader targeted for a mobile device. It is actually 
quite easy to make a few adjustments to the shaders we have written so that they run faster 
on a mobile device. This includes elements such as using the approxview or halfasview 
lighting function variables. We can also reduce the amount of textures we need and even 
apply better compression for the textures we are using. By the end of this recipe, we will have 
a nicely optimized normal-mapped, Specular shader for use in our mobile games.

http://docs.unity3d.com/Documentation/Manual/MobileProfiling.html


Chapter 7

147

Getting ready
Before we begin, let's get a fresh new scene and fill it with some objects to apply our  
Mobile shader:

1.	 Create a new scene and fill it with a default sphere and single directional light.

2.	 Create a new material and shader, and assign the shader to the material.

3.	 Finally, assign the material to our sphere object in our scene.

When completed, you should have a scene similar to the one in the following image:

How to do it…
For this recipe, we will write a mobile-friendly shader from scratch and discuss the elements 
that make it more mobile-friendly:

1.	 Let's first populate our Properties block with the needed textures. In this case, we 
are going to use a single Diffuse texture with the gloss map in its alpha channel, 
normal map, and slider for specular intensity:



Mobile Shader Adjustment

148

2.	 Our next task is to set up our #pragma declarations. This will simply turn certain 
features of the Surface Shader on and off, ultimately making the shader cheaper or 
more expensive:

3.	 We then need to make the connection between our Properties block and 
CGPROGRAM. This time, we are going to use the fixed variable type for our specular 
intensity slider to reduce its memory usage:

4.	 In order for us to map our textures to the surface of our object, we need to get some 
UVs. In this case, we are going to get only one set of UVs to keep the amount of data 
in our shader down to a minimum:

5.	 The next step is to fill in our lighting function using a few new input variables that are 
available to us using the new #pragma declarations:



Chapter 7

149

6.	 Finally, we complete the shader by creating the surf() function and processing the 
final color of our surface:

When completed with the code portion of this recipe, save your shader and return to the Unity 
editor to let the shader compile. If no errors occurred, you should see a result similar to the 
following image:

How it works…
So, let's begin the description of this shader by explaining what it does and doesn't do. First, it 
excludes the deferred lighting pass. This means that if you created a lighting function that was 
connected to the deferred renderer's prepass, it wouldn't use that particular lighting function 
and would look for the default lighting function like the ones that we have been creating thus 
far in this book.

This particular shader does not support Lightmapping by Unity's internal light-mapping 
system. This just keeps the shader from trying to find light maps for the object that the shader 
is attached to, making the shader more performance friendly because it is not having to 
perform the lightmapping check.



Mobile Shader Adjustment

150

We included the noforwardadd declaration so that we process only per-pixel textures with 
a single directional light. All other lights are forced to become per-vertex lights and will not be 
included in any per-pixel operations you might do in the surf() function.

Finally, we are using the halfasview declaration to tell Unity that we aren't going to use the 
main viewDir parameter found in a normal lighting function. Instead, we are going to use the 
half vector as the view direction and process our specular with this. This becomes much faster 
for the shader to process as it will be done on a per-vertex basis. It isn't completely accurate 
when it comes to simulating specular in the real world, but visually on a mobile device, it looks 
just fine and the shader is more optimized.

Its techniques like these that make a shader more efficient and cleaner, codewise. Always 
make sure that you are using only the data you need while weighing this against your target 
hardware and the visual quality that the game requires. In the end, it becomes a cocktail of 
these techniques that ultimately make up your shaders for your games.



151

8
Screen Effects with 

Unity Render Textures

In this chapter, you will learn the following recipes:

ff Setting up the screen effects script system

ff Using brightness, saturation, and contrast with screen effects

ff Using basic Photoshop-like Blend modes with screen effects

ff Using the Overlay Blend mode with screen effects

Introduction
One of the most impressive aspects of learning to write shaders is the process of creating 
your own screen effects, also known as post effects. With these screen effects, we can create 
stunning real-time images with Bloom, Motion Blur, HDR effects, and so on. Most modern 
games out in the market today make heavy use of these Screen effects for their depth of field 
effects, bloom effects, and even color correction effects.

Throughout this chapter, you will learn how to build up the script system that gives us the 
control to create these screen effects. We will cover Render Textures, what the depth buffer is, 
and how to create effects that give you Photoshop-like control over the final rendered image 
of your game. By utilizing screen effects for your games, you not only round out your shader 
writing knowledge, but you will also have the power to create your own incredible real-time 
renders with Unity.



Screen Effects with Unity Render Textures

152

Setting up the screen effects script system
The process of creating screen effects is one in which we grab a fullscreen image (or texture), 
use a shader to process its pixels on the GPU, and then send it back to Unity's renderer to apply 
it to the whole rendered image of the game. This allows us to perform per-pixel operations on 
the rendered image of the game in real time, giving us a more global artistic control.

Imagine if you had to go through and adjust each material on each object in your game to 
just adjust the contrast of the final look of your game. While not impossible, this would take a 
bit of labor to perform. By utilizing a screen effect, we can adjust the screen's final look as a 
whole, thereby giving us a more Photoshop-like control over our game's final appearance.

In order to get a Screen effect system up and running, we have to set up a single script to act 
as the courier of the game's current rendered image or, what Unity calls, the Render Texture. 
By utilizing this script to pass the Render Texture to a shader, we can create a flexible system 
to create screen effects. For our first screen effect, we are going to create a very simple 
grayscale effect, where we can make our game look black and white. Let's take a look at how 
this is done.

Getting ready
In order to get our Screen Effects system up and running, we need to create a few assets  
for our current Unity project. By doing this, we will set ourselves up for the steps in the 
following sections:

1.	 In the current project, we need to create a new C# script and call it 
TestRenderImage.cs.

2.	 Create a new shader and call it ImageEffect.shader.

3.	 Create a simple sphere in the scene and assign it a new material. This new material 
can be anything, but for our example, we will make a simple red, specular material.

4.	 Finally, create a new directional light and save the scene.



Chapter 8

153

With all of our assets ready, you should have a simple scene setup, which looks similar to the 
following image:

How to do it…
In order to make our grayscale screen effect work, we need a script and shader. So, we will 
complete these two new items here and fill them in with the appropriate code to produce our 
first screen effect. Our first task is to complete the C# script. This will get the whole system 
running. After this, we will complete the shader and see the results of our Screen Effect. Let's 
complete our script and shader with the following steps:

1.	 Open the TestRenderImage.cs C# script and let's begin by entering a few 
variables that we will need to store important objects and data. Enter the following 
code at the very top of the TestRenderImage class:



Screen Effects with Unity Render Textures

154

2.	 In order for us to edit the Screen Effect in real time, when the Unity editor isn't 
playing, we need to enter the following line of code just above the declaration of the 
TestRenderImage class:

3.	 As our Screen Effect is using a shader to perform the pixel operations on our Screen 
image, we have to create a material to run the shader. Without this, we can't access 
the properties of the shader. For this, we will create a C# property to check for a 
material, and create one if it doesn't find one. Enter the following code just after the 
declaration of the variables from step 1:

4.	 We now want to set up some checks in our script to see if the current target platform 
that we are building the Unity game on actually supports image effects. If it doesn't 
find anything at the start of this script, then the script will disable itself:



Chapter 8

155

5.	 To actually grab the Rendered Image from the Unity Renderer, we need to make use 
of the following built-in function that Unity provides us, called OnRenderImage(). 
Enter the following code so that we can have access to the current Render Texture:

6.	 Our Screen effect has a variable called grayScaleAmount with which we can 
control how much grayscale we want for our final Screen Effect. So, in this case, we 
need to make the value go from 0 – 1, where 0 is no grayscale effect and 1 is full 
grayscale effect. We will perform this operation in the Update() function so that it 
sets every frame this script is running:

7.	 Finally, we complete our script by doing a little bit of clean up on objects we created 
when the script started:

At this point, we can now apply this script to the camera, if it compiled without errors, 
in Unity. Let's apply the TestRenderImage.cs script to our main camera in our 
scene. You should see the grayScaleAmount value and a field for a shader, but the 
script throws an error to the console window. It says that it is missing an instance to 
an object and so won't process appropriately. If you recall from step 4, we are doing 
some checks to see whether we have a shader and the current platform supports the 
shader. As we haven't given the Screen Effect script a shader to work with, then the 
curShader variable is just null, which throws the error. Let's continue our Screen 
Effects system by completing the shader.



Screen Effects with Unity Render Textures

156

8.	 To begin our shader, we will populate our properties with some variables so that we 
can send data to this shader:

9.	 Our shader is now going to utilize pure CG shader code instead of utilizing Unity's 
built-in Surface Shader code. This will make our Screen Effect more optimized as we 
need to work only with the pixels of the Render Texture. So, we will create a new Pass 
block in our shader and fill it with some new #pragma statements that we haven't 
seen before:

10.	 In order to access the data being sent to the shader from the Unity editor, we need to 
create the corresponding variables in our CGPROGRAM:

11.	 Finally, all we need to do is set up our pixel function, in this case, called frag(). This 
is where the meat of the Screen Effect is. This function will process each pixel of the 
Render Texture and return a new image to our TestRenderImage.cs script:



Chapter 8

157

Once the shader is complete, return to Unity and let it compile to see if any errors occurred. If 
not, assign the new shader to the TestRenderImage.cs script and change the value of the 
grayscale amount variable. You should see the game view go from a colored version of the game 
to a grayscale version of the game. The following image demonstrates this Screen Effect:

With this complete, we now have an easy way to test out new Screen Effect shaders without 
having to write our whole Screen Effect system over and over again. Let's dive in a little deeper 
and learn about what's going on with the Render Texture and how it is processed throughout 
its existence.

How it works…
To get a screen effect up and running inside of Unity, we need to create a script and shader. 
The script drives the real-time update in the editor and is also responsible for capturing the 
Render Texture from the main camera and passing it to the shader. Once the render texture 
gets to the shader, we can use the shader to perform per-pixel operations.

At the start of the script, we perform a few checks to make sure that the current selected build 
platform actually supports screen effects and the shader itself. There are instances where 
a current platform will not support Screen Effects or the shader that we are using. So the 
checks that we do in the Start() function make sure we don't get any errors if the platform 
doesn't support the screen system.

Once the script passes these checks, we initiate the Screen Effects system by calling the built-
in function, OnRenderImage(). This function is responsible for grabbing the renderTexture, 
giving it to the shader using the Graphics.Blit() function, and returning the processed 
image to the Unity renderer. You can find more information on these two functions at the 
following URLs:

ff OnRenderImage:http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.OnRenderImage.html

ff Graphics.Blit:http://docs.unity3d.com/Documentation/
ScriptReference/Graphics.Blit.html

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnRenderImage.html
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnRenderImage.html
http://docs.unity3d.com/Documentation/ScriptReference/Graphics.Blit.html
http://docs.unity3d.com/Documentation/ScriptReference/Graphics.Blit.html


Screen Effects with Unity Render Textures

158

Once the current render texture reaches the shader, the shader takes it, processes it through 
the frag() function, and returns the final color for each pixel.

You can see how powerful this becomes as it gives us Photoshop-like control over the final 
rendered image of our game. These screen effects work sequentially like Photoshop layers in 
the camera. When you place these screen effects one after the other, they will be processed 
in that order. These are just the bare bones steps to get a screen effect working, but it is the 
core of how the screen effects system works.

There's more…
Now that we have our simple Screen Effect system up and running, let's take a look at some 
of the other useful information we can obtain from Unity's renderer:

We can actually get the depth of everything in our current game by turning on Unity's built-in 
Depth mode. Once this is turned on, we can use the depth information for a ton of different 
effects. Let's take a look at how this is done:

1.	 Create a new shader and call it SceneDepth_Effect. Then double-click on this 
shader to open it in the MonoDevelop editor.

2.	 We will create the Main Texture property and a property to control the power of the 
scene depth effect. Enter the following code in your shader:



Chapter 8

159

3.	 Now we need to create the corresponding variables in our CGPROGRAM. We are going 
to add one more variable called _CameraDepthTexture. This is a built-in variable 
that Unity has provided us with through the use of the UnityCG cginclude file. It 
gives us the depth information from the camera:

4.	 We will complete our depth shader by utilizing a couple of built-in functions that 
Unity provides us with, the UNITY_SAMPLE_DEPTH() and linear01Depth() 
functions. The first function actually gets the depth information from our 
_CameraDepthTexture and produces a single float value for each pixel. The 
Linear01Depth() function then makes sure that the values are within the 0-1 
range by taking this final depth value to a power we can control, where the mid-value 
on the 0-1 range sits in the scene based off of the camera position:

5.	 With our shader complete, let's turn our attention to our Screen Effects script. We 
need to add the depthPower variable to the script so that we can let users change 
the value in the editor:



Screen Effects with Unity Render Textures

160

6.	 Our OnRenderImage() function then needs to be updated so that it is passing the 
right value to our shader:

7.	 To complete our depth Screen effect, we need to tell Unity to turn on the depth 
rendering in the current camera. This is done by simply setting the main camera's 
depthTextureMode:

With all the code set up, save your script and shader and return to Unity to let them both 
compile. If no errors are encountered, you should see a result similar to the following image:



Chapter 8

161

Using brightness, saturation, and contrast 
with screen effects

Now that we have our screen effects system up and running, we can explore how to create 
more involved pixel operations to perform some of the more common Screen Effects found in 
games today.

To begin, using a screen effect to adjust the overall final colors of your game is crucial in giving 
artists a global control over the final look of the game. Techniques such as color adjustment 
sliders to adjust the intensity for the reds, blues, and greens of the final rendered game or 
techniques like putting a certain tone of color over the whole screen as seen in something like 
a sepia film effect.

For this particular recipe, we are going to cover some of the more core color adjustment 
operations we can perform on an image. These are brightness, saturation, and contrast. Learning 
how to code these color adjustments gives us a nice base to learn the art of screen effects.

Getting ready
We will need to create a couple of new assets. We can utilize the same scene as our test 
scene, but we will need a new script and shader:

1.	 Create a new script and call it BSC_ImageEffect.

2.	 Create a new shader called BSC_Effect.

3.	 Now we simply need to copy the code we had from the C# script in the previous 
recipe to our new C# script. This will allow us to focus just on the mathematics for the 
brightness, saturation, and contrast effect.

4.	 Copy the code from the shader in the previous recipe to our new shader.

5.	 Create a couple of new objects in the scene, set up some different colored diffuse 
materials, and randomly assign them to the new objects in the scene. This will give us 
a good range of colors to test with our new screen effect.



Screen Effects with Unity Render Textures

162

When completed, you should have a scene similar to the following image:

How to do it…
Now that we have completed our scene setup and created our new script and shader, we can 
begin to fill in the code necessary to achieve the brightness, saturation, and contrast Screen 
Effect. We will be focusing on just the pixel operation and variable setup for our script and 
shader, as getting a Screen Effect system up and running is described in the Setting up the 
screen effects script system recipe:

1.	 Let's begin by launching our new shader and script in MonoDevelop. Simply double-
click on the two files in the project view to perform this action.

2.	 Editing the shader first makes more sense so that we know what kind of variables 
we will need for our C# script. Let's begin this by entering the appropriate properties 
for our brightness, saturation, and contrast effect. Remember, we need to keep 
the _MainTex property in our shader as this is the property that the RenderTexture 
targets when creating Screen Effects:



Chapter 8

163

3.	 As usual, in order for us to access the data coming in from our properties in our 
CGPROGRAM, we need to create the corresponding variables in the CGPROGRAM:

4.	 Now we need to create the operations that will perform the brightness, saturation, 
and contrast effects. Enter the following new function in our shader, just above the 
frag() function. Don't worry if it doesn't make sense just yet; all the code will be 
explained in the next recipe:



Screen Effects with Unity Render Textures

164

5.	 Finally, we just need to update our frag() function to actually use the 
ContrastSaturationBrightness() function. This will process all the pixels of 
our Render Texture and pass it back to our script:

With the code entered in the shader, return to the Unity editor to let the new shader compile. 
If there are no errors, we can return to MonoDevelop to work on our script. Let's begin this by 
creating a couple of new lines of code that will send the proper data to our shader:

1.	 Our first step in modifying our script is to add the proper variables that will drive the 
values of our Screen Effect. In this case, we will need a slider for brightness, a slider 
for saturation, and a slider for contrast:

2.	 With our variables set up, we now need to tell the script to pass their data to the 
shader. We do this in the OnRenderImage() function:



Chapter 8

165

3.	 Finally, all we need to do is clamp the values of the variables within a range that is 
reasonable. These clamp values are entirely preferential, so you can use whichever 
values you see fit:

With the script completed and shader finished, we simply assign our script to our main 
camera and our shader to the script, and you should see the effects of brightness, saturation, 
and contrast by manipulating the slider values. The following image shows a result you can 
achieve with this screen effect:



Screen Effects with Unity Render Textures

166

The following image shows another example of what can be done by adjusting the colors of 
the render image:

How it works…
Since we now know how the basic Screen Effects system works, let's just cover the per-pixel 
operations we created in the ContrastSaturationBrightness() function.

The function starts by taking a few arguments. The first and most important is the current 
render texture. The other arguments simply adjust the overall effect of the screen effect and 
are represented by sliders in the screen effects' Inspector tab. Once the function receives the 
render texture and the adjustment values, it declares a few constant values that we use to 
modify and compare against the original render texture.

The luminanceCoeff variable stores the values that will give us the overall brightness of 
the current image. These coefficients are based on the CIE color matching functions and are 
pretty standard throughout the industry. We can find the overall brightness of the image by 
getting the dot product of the current image dotted with these luminance coefficients. Once 
we have the brightness, we simply use a couple of lerp functions to blend from the grayscale 
version of the brightness operation and the original image multiplied by the brightness value, 
being passed into the function.

The screen effects, like this one, are crucial to achieve high-quality graphics for your games 
as it lets you tweak the final look of your game without having to edit each material in your 
current game scene.



Chapter 8

167

Using basic Photoshop-like Blend modes 
with screen effects

The screen effects aren't just limited to adjusting the colors of a rendered image from 
our game. We can also use them to combine other images with our Render Texture. This 
technique is no different than creating a new layer in Photoshop and choosing a blend mode 
to blend two images together or, in our case, a texture with a Render Texture. This becomes a 
very powerful technique as it gives the artists in a production environment a way to simulate 
their blending modes in the game rather than just in Photoshop.

For this particular recipe, we are going to take a look at some of the more common blend 
modes, such as Multiply, Add, and Overlay. You will see how simple it is to have the power  
of Photoshop Blend modes in your game.

Getting ready
To begin, we have to get our assets ready. So let's follow the next few steps to get our screen 
effects system up and running for our new Blend mode screen effect:

1.	 Create a new script and call it BlendMode_ImageEffect.

2.	 Create a new shader called BlendMode_Effect.

3.	 Now we simply need to copy the code we had from the C# script in the first recipe of 
this chapter to our new C# script. This will allow us to focus on just the mathematics 
for the brightness, saturation, and contrast effect.

4.	 Copy the code from the shader in the first recipe in this chapter to our new shader.

5.	 Finally, we will need another texture to perform our blend mode effect. In this recipe, 
we will use a grunge type texture. This will make the effect very obvious when we are 
testing it out.

The following image is the grunge map used in the making of this effect. Finding a texture  
with enough detail and a nice range of grayscale values will make for a nice texture to test  
our new effect:



Screen Effects with Unity Render Textures

168

How to do it…
Our first blend mode that we will implement is the Multiply blend mode as seen in Photoshop. 
Let's begin by modifying the code in our shader first.

1.	 Launch the shader in MonoDevelop by double-clicking on it in Unity's project view.

2.	 We need to add some new properties so that we have a texture to blend with and a 
slider for an opacity value. Enter the following code in your new shader:

3.	 Enter the corresponding variables in our CGPROGRAM so that we can access the data 
from our Properties block:

4.	 Finally, we modify our frag() function so that it performs the multiply operation on 
our two textures:



Chapter 8

169

5.	 Save the shader and return to the Unity editor to let the new shader code compile 
and check for errors. If no errors occurred, then double-click on the C# script file to 
launch it in the MonoDevelop editor.

6.	 In our script file as well, we need to create the corresponding variables. So we will 
need a texture so that we can assign one to the shader and a slider to adjust the final 
amount of the blend mode we want to use:

7.	 We then need to send our variable data to the shader through the 
OnRenderImage() function:

8.	 To complete the script, we simply fill in our Update() function so that we can clamp 
the value of the blendOpacity variable between a value of 0.0 and 1.0:



Screen Effects with Unity Render Textures

170

With this complete, we assign the screen effect script to our main camera and our screen 
effect shader to our script so that it has a shader to use for the per-pixel operations. Finally, in 
order for the effect to be fully functional, the script and shader is looking for a texture. You can 
assign any texture to the texture field in the Inspector for the screen effect script. Once this 
texture is in place, you will see the effect of multiplying this texture over the game's rendered 
image. The following image demonstrates the screen effect:

The following image demonstrates a higher intensity of opacity, making the multiplied image 
much more apparent over our render image:

With our first blend mode set up, we can begin to add a couple of simpler blend modes to 
get a better understanding of how easy it is to add more effects and really fine-tune the final 
result in your game. However, first let's break down what is happening here.



Chapter 8

171

How it works…
Now we are starting to gain a ton of power and flexibility in our Screen Effects programming. 
I am sure that you are now starting to understand how much one can do with this simple 
system in Unity. We can literally replicate the effects of Photoshop layer blending modes in our 
game to give artists the flexibility they need to achieve high-quality graphics in a short amount 
of time.

With this particular recipe, we looked at how to multiply two images together, add two images 
together, and perform a screen blending mode, using just a little bit of mathematics. When 
working with blend modes, one has to think on a per-pixel level. For instance, when we are 
using a multiply blend mode, we literally take each pixel from the original render texture and 
multiply them with each pixel of the blend texture. The same goes for the add blend mode. 
It is just a simple mathematical operation of adding each pixel from the source texture, or 
render texture, to the blend texture.

The screen blend mode is definitely a bit more involved, but it is actually doing the same 
thing. It takes each image, render texture, and blend texture, inverts them, then multiplies 
them together, and inverts them again to achieve the final look. Just like Photoshop blends its 
textures together using blend modes, we can do the same with screen effects.

There's more…
Let's continue this recipe by adding a couple of more blend modes to our screen effect.

In the screen effect shader, let's add the following code to our frag() function and change 
the value we are returning to our script. We will also need to comment out the multiply blend 
so that we don't return that as well:



Screen Effects with Unity Render Textures

172

1.	 Save the shader file in MonoDevelop and return to the Unity editor to let the shader 
compile. If no errors occurred, you should see a result similar to the following image. 
This is a simple add blending mode:

As you can see, this has the opposite effect of multiply because we are adding the 
two images together.

2.	 Finally, let's add one more blend mode called a Screen Blend. This one is a little bit 
more involved, from a mathematical standpoint, but still simple to implement. Enter 
the following code in the frag() function of our shader:



Chapter 8

173

The following image demonstrates the results of using a Screen type blend mode to blend two 
images together in a screen effect:

Using the Overlay Blend mode with screen 
effects

For our final recipe, we are going to take a look at another type of blend mode, the Overlay 
Blend mode. This blending actually makes use of some conditional statements that determine 
the final color of each pixel in each channel. So, the process of using this type of blend mode 
needs a bit more coding to work. Let's take a look at how this is done in the next few recipes.

Getting ready
For this last Screen Effect, we will need to set up our two scripts as we have in the previous 
recipes in this chapter. For this recipe, we will be using the same scene we have been using, 
so we don't have to create a new one:

1.	 Create a new script file called Overlay_ImageEffect and shader file called 
Overlay_Effect.

2.	 Copy the code from the previous C# script file to our new script file.

3.	 Copy the code from the previous shader file to our new shader file.

4.	 Assign the Overlay_ImageEffect script to the main camera and Overlay_Effect 
to the script component in the Inspector.

5.	 Finally, double-click on the script and shader files to open them in the  
MonoDevelop editor.



Screen Effects with Unity Render Textures

174

How to do it…
To begin our Overlay Screen Effect, we will need to get the code of our shader up and running 
without errors. We can then modify our script file to feed the correct data to the shader.

1.	 We first need to set up our properties in our Properties block. We will use the 
same properties from the previous few recipes in this chapter:

2.	 We then need to create the corresponding variables in our CGPROGRAM:

3.	 In order for the Overlay Blend effect to work, we will have to process each pixel from 
each channel individually. To do this in a shader, we have to write a custom function 
that will take in a single channel, for instance, the red channel, and perform the 
Overlay operation. Enter the following code in the shader just below the variable 
declarations:



Chapter 8

175

4.	 Finally, we need to update our frag() function to process each channel of our 
textures to perform the blending:

5.	 With the code completed in the shader, our effect should be working. Save the shader 
and return to the Unity editor to let the shader compile. Our script is already set up, 
so we don't have to modify it any further. Once the shader compiles, you should see a 
result similar to the following image:



Screen Effects with Unity Render Textures

176

How it works…
Our Overlay blend mode is definitely a lot more involved, but if you really break down the 
function, you will notice that it is simply a multiply blend mode and screen blend mode. It's 
just that, in this case, we are doing a conditional check to apply one or the other blend mode 
to a pixel.

With this particular Screen Effect, when the Overlay function receives a pixel, it checks to see 
whether it is less than 0.5. If it is, then we apply a modified multiply blend mode to that pixel; 
if it's not, then we apply a modified screen blend mode to the pixel. We do this for each pixel 
for each channel, giving us the final RGB pixel values for our Screen effect.

As you can see, there are many things that can be done with screen effects. It really just 
depends on the platform and amount of memory you have allocated for screen effects. 
Usually, this is determined throughout the course of a game project, so have fun and get 
creative with your screen effects.



177

9
Gameplay and Screen 

Effects

When it comes to creating believable and immersive games, material design is not the only 
aspect that we need to take into account. The overall feeling can be altered using screen 
effects. This is very common in movies, for instance, when colors are corrected in the 
post-production phase. You can implement these techniques in your games too, using the 
knowledge from Chapter 8, Screen Effects with Unity Render Texture. Two interesting effects 
are presented in this chapter; you can, however, adapt them to fit your needs and create your 
very own screen effect.

In this chapter, you will learn the following recipes:

ff Creating an old movie screen effect

ff Creating a night vision screen effect

Introduction
If you are reading this book, you are most likely a person who has played a game or two in 
your time. One of the aspects of real-time games is the effect of immersing a player into a 
world to make it feel as if they were actually playing in the real world. The more modern games 
make heavy use of screen effects to achieve this immersion.

With screen effects, we can turn the mood of a certain environment from calm to scary, just by 
changing the look of the screen. Imagine walking into a room that is contained within a level, 
then the game takes over and goes into a cinematic moment. Many modern games will turn 
on different screen effects to change the mood of the current moment. Understanding how to 
create effects triggered by gameplay is next in our journey of shader writing.



Gameplay and Screen Effects

178

In this chapter, we are going to take a look at some of the more common gameplay screen 
effects. You are going to learn how to change the look of the game from normal to an old 
movie effect, and we are going to take a look at how many first-person shooter games apply 
their night vision effects to the screen. With each of these recipes, we are going to look at how 
to hook these up to game events so that they are turned on and off as the game's current 
presentation needs.

Creating an old movie screen effect
Many games are set in different times. Some take place in fantasy worlds or future sci-
fi worlds, and some even take place in the old west, where film cameras were just being 
developed and the movies that people watched were black and white or sometimes tinted 
with what is called a sepia effect. The look is very distinct, and we are going to replicate this 
look using a screen effect in Unity.

There are a few steps to achieve this look, and just to make the whole screen black and white 
or grayscale, we need to break down this effect into its component parts. If we analyze some 
reference footage of an old movie, we can begin to do this. Let's take a look at the following 
image and break down the elements that make up the old movie look:

We constructed this image using a few reference images found online. It is always a good 
idea to try and utilize Photoshop to construct images like this to aid you in creating a plan for 
your new screen effect. Performing this process not only tells us the elements we will have 
to code in, but it also gives us a quick way to see which blending modes work and how we 
will construct the layers of our screen effect. The Photoshop file we created for this recipe 
is included in this book's support page at www.packtpub.com/support and is called 
OldFilmEffect_Research_Layout.psd.

www.packtpub.com/support


Chapter 9

179

Getting ready
Now that we know what we have to make, let's take a look at how each of the layers is 
combined to create the final effect and gather some resources for our shader and screen 
effect script.

ff Sepia tone: This is a relatively simple effect to achieve, as we just need to bring all 
the pixel colors of the original render texture to a single color range. This is easily 
achieved using the luminance of the original image and adding a constant color. Our 
first layer will look like the following image:

ff Vignette effect: We can always see some sort of soft border around old films when they 
are being projected with an old movie projector. This is caused because the bulb being 
used for the movie projector has more brightness in the middle than it does at the edges 
of the film. This effect is generally called the vignette effect and is our second layer in our 
screen effect. We can achieve this with an overlaid texture over the whole screen. The 
following image demonstrates what this layer looks like, isolated as a texture:



Gameplay and Screen Effects

180

ff Dust and scratches: The third and final layer in our old movie screen effect is dust 
and scratches. This layer will utilize two different tiled textures, one for scratches 
and one for dust. The reason is that we will want to animate these two textures over 
time at different tiling rates. This will give the effect that the film is moving along and 
there are small scratches and dust on each frame of the old film. The following image 
demonstrates this effect isolated to its own texture:

Let's get our screen effect system ready with the preceding textures. Perform the  
following steps:

1.	 Gather up a vignette texture and dust and scratches texture, like the ones we  
just saw.

2.	 Create a new script called OldFilmEffect.cs and a new shader called 
OldFilmEffectShader.shader.

3.	 With our new files created, fill in the code necessary to get the screen effect system 
up and running. For references on how to do this, see Chapter 8, Screen Effects with 
Unity Render Textures.

Finally, with our screen effect system up and running and our textures gathered, we can begin 
the process of recreating this old film effect.



Chapter 9

181

How to do it…
Our individual layers for our old film screen effect are quite simple, but when combined, 
we get some very visually stunning effects. Let's run through how to construct the code for 
our script and shader, then we can step through each line of code and learn why things are 
working the way they are. At this point, you should have the screen effects system up and 
running, as we will not be covering how to set this up in this recipe.

1.	 We will begin by entering the code in our script. Our first block of code that we will 
enter will define our variable that we want to expose to Inspector in order to let the 
user of this effect adjust it as they see fit. We can also use our mocked-up Photoshop 
file as a reference when deciding what we will need to expose to the Inspector of this 
effect. Enter the following code in your effect script:
    #region Variables
    public Shader oldFilmShader;
    
    public float OldFilmEffectAmount = 1.0f;
    
    public Color sepiaColor = Color.white;
    public Texture2D vignetteTexture;
    public float vignetteAmount = 1.0f;
    
    public Texture2D scratchesTexture;
    public float scratchesYSpeed = 10.0f;
    public float scratchesXSpeed = 10.0f;
    
    public  Texture2D dustTexture;
    public float dustYSpeed = 10.0f;
    public float dustXSpeed = 10.0f;
    
    private Material curMaterial;
    private float randomValue;
    #endregion

2.	 Next, we need to fill in the contents of our OnRenderImage() function. Here, we will 
be passing the data from our variables to our shader so that the shader can then use 
this data in the processing of the render texture:
void OnRenderImage(RenderTexture sourceTexture, RenderTexture 
destTexture)
    {
        if(oldFilmShader != null)
        {    
            material.SetColor("_SepiaColor", sepiaColor);
            material.SetFloat("_VignetteAmount", vignetteAmount);



Gameplay and Screen Effects

182

            material.SetFloat("_EffectAmount", 
OldFilmEffectAmount);
            
            if(vignetteTexture)
            {
                material.SetTexture("_VignetteTex", 
vignetteTexture);
            }
            
            if(scratchesTexture)
            {
                material.SetTexture("_ScratchesTex", 
scratchesTexture);
                material.SetFloat("_ScratchesYSpeed", 
scratchesYSpeed);
                material.SetFloat("_ScratchesXSpeed", 
scratchesXSpeed);
            }
            
            if(dustTexture)
            {
                material.SetTexture("_DustTex", dustTexture);
                material.SetFloat("_dustYSpeed", dustYSpeed);
                material.SetFloat("_dustXSpeed", dustXSpeed);
                material.SetFloat("_RandomValue", randomValue);
            }
            
            Graphics.Blit(sourceTexture, destTexture, material);
        }
        else
        {
            Graphics.Blit(sourceTexture, destTexture);
        }
    }

3.	 To complete the script portion of this effect, we simply need to make sure that we 
clamp the values of the variables that need to have a clamped range instead of being 
any value:
void Update()
    {
        vignetteAmount = Mathf.Clamp01(vignetteAmount);
        OldFilmEffectAmount = Mathf.Clamp(OldFilmEffectAmount, 0f, 
1.5f);
        randomValue = Random.Range(-1f,1f);
    }



Chapter 9

183

4.	 With our script complete, let's turn our attention to our shader file. We need to create 
the corresponding variables, which we created in our script in our shader. This will 
allow the script and shader to communicate with one another. Enter the following 
code in the Properties block of the shader:
Properties 
    {
        _MainTex ("Base (RGB)", 2D) = "white" {}
        _VignetteTex ("Vignette Texture", 2D) = "white"{}
        _ScratchesTex ("Scartches Texture", 2D) = "white"{}
        _DustTex ("Dust Texture", 2D) = "white"{}
        _SepiaColor ("Sepia Color", Color) = (1,1,1,1)
        _EffectAmount ("Old Film Effect Amount", Range(0,1)) = 1.0
        _VignetteAmount ("Vignette Opacity", Range(0,1)) = 1.0
        _ScratchesYSpeed ("Scratches Y Speed", Float) = 10.0
        _ScratchesXSpeed ("Scratches X Speed", Float) = 10.0
        _dustXSpeed ("Dust X Speed", Float) = 10.0
        _dustYSpeed ("Dust Y Speed", Float) = 10.0
        _RandomValue ("Random Value", Float) = 1.0
        _Contrast ("Contrast", Float) = 3.0
    }

5.	 Then, as usual, we need to add these same variable names to our CGPROGRAM block 
so that the Properties block can communicate with the CGPROGRAM block:
CGPROGRAM
#pragma vertex vert_img
#pragma fragment frag
#pragma fragmentoption ARB_precision_hint_fastest
#include "UnityCG.cginc"
            
uniform sampler2D _MainTex;
uniform sampler2D _VignetteTex;
uniform sampler2D _ScratchesTex;
uniform sampler2D _DustTex;
fixed4 _SepiaColor;
fixed _VignetteAmount;
fixed _ScratchesYSpeed;
fixed _ScratchesXSpeed;
fixed _dustXSpeed;
fixed _dustYSpeed;
fixed _EffectAmount;
fixed _RandomValue;
fixed _Contrast;



Gameplay and Screen Effects

184

6.	 Now, we simply fill in the guts of our frag() function so that we process the pixels 
for our screen effect. To start with, let's get the render texture and vignette texture 
passed to us by the script:
fixed4 frag(v2f_img i) : COLOR
{
    //Get the colors from the RenderTexture and the uv's
    //from the v2f_img struct
    half2 distortedUV = barrelDistortion(i.uv);
    distortedUV = half2(i.uv.x, i.uv.y + (_RandomValue * _
SinTime.z * 0.005));
    fixed4 renderTex = tex2D(_MainTex, i.uv);
                
    //Get the pixels from the Vignette Texture
    fixed4 vignetteTex = tex2D(_VignetteTex, i.uv);

7.	 We then need to add the process for the dust and scratches by entering the  
following code:
//Process the Scratches UV and pixels
half2 scratchesUV = half2(i.uv.x + (_RandomValue * _SinTime.z * 
_ScratchesXSpeed), i.uv.y + (_Time.x * _ScratchesYSpeed));
fixed4 scratchesTex = tex2D(_ScratchesTex, scratchesUV);
        
//Process the Dust UV and pixels
half2 dustUV = half2(i.uv.x + (_RandomValue * (_SinTime.z 
* _dustXSpeed)), i.uv.y + (_RandomValue * (_SinTime.z * _
dustYSpeed)));
fixed4 dustTex = tex2D(_DustTex, dustUV);

8.	 The sepia tone process is next on our list:
// get the luminosity values from the render texture using the YIQ 
values.
fixed lum = dot (fixed3(0.299, 0.587, 0.114), renderTex.rgb);
                
//Add the constant color to the lum values
fixed4 finalColor = lum + lerp(_SepiaColor, _SepiaColor +
 fixed4(0.1f,0.1f,0.1f,1.0f), _RandomValue);
finalColor = pow(finalColor, _Contrast);

9.	 Finally, we combine all of our layers and colors and return the final screen  
effect texture:
//Create a constant white color we can use to adjust opacity of 
effects
fixed3 constantWhite = fixed3(1,1,1);
                



Chapter 9

185

//Composite together the different layers to create finsl Screen 
Effect
finalColor = lerp(finalColor, finalColor * vignetteTex, _
VignetteAmount);
finalColor.rgb *= lerp(scratchesTex, constantWhite, (_
RandomValue));
finalColor.rgb *= lerp(dustTex.rgb, constantWhite, (_RandomValue * 
_SinTime.z));
finalColor = lerp(renderTex, finalColor, _EffectAmount);
                
return finalColor;

10.	 With all of our code entered and no errors, you should have a result very similar to 
the following image. Hit play in the Unity editor to see the effects of the dust and 
scratches and the slight image shift that we gave the screen effect:



Gameplay and Screen Effects

186

How it works…
Now, let's walk through each of the layers in this screen effect, break down why each of the 
lines of code is working the way it is, and get more insight as to how we can add more to this 
screen effect.

Now that our old film screen effect is working, let's step through the lines of code in our frag() 
function as all the other code should be pretty self-explanatory at this point in the book.

Just like our Photoshop layers, our shader is processing each layer and then compositing them 
together, so while we go through each layer, try to imagine how the layers in Photoshop work. 
Keeping this concept in mind always helps when developing new screen effects.

Here, we have the first set of lines of code in our frag() function:

fixed4 frag(v2f_img i) : COLOR
{
    //Get the colors from the RenderTexture and the uv's
    //from the v2f_img struct
    half2 distortedUV = barrelDistortion(i.uv);
    fixed4 renderTex = tex2D(_MainTex, i.uv);
    fixed4 vignetteTex = tex2D(_VignetteTex, i.uv);

The first line of code, just after the frag() function declaration, is the definition of how the 
UVs should work for our main render texture or the actual rendered frame of our game. As 
we are looking to fake the effect of an old film style, we want to adjust the UVs of our render 
texture, every frame, such that they flicker. This flickering simulates how the winding of the 
film's projector is just a bit off. This tells us that we need to animate the UVs and this is what 
this first line of code is doing.

We used the built-in _SinTime variable, which Unity provides, to get a value between -1 and 
1. We then multiply this by a very small number, in this case, 0.005, to reduce the intensity 
of the effect. The final value is then multiplied again by the _RandomValue variable, which 
we generated in the effect script. This value bounces back and forth between -1 and 1 to 
basically flip the direction of the motion back and forth.

Once our UVs are built and stored in the renderTexUV variable, we can sample the render 
texture using a tex2D() function. This operation then gives us our final render texture, which 
we can use to process further in the rest of the shader.

Moving on to the last line in the previous image, we simply do a straight sample of the vignette 
texture using the tex2D() function. We don't need to use the animated UVs we already 
created, as the vignette texture will be tied to the motion of the camera itself and not to the 
flickering of the camera film.



Chapter 9

187

The following code snippet illustrates the second set of lines of code in our frag() function:

//Process the Scratches UV and pixels
half2 scratchesUV = half2(i.uv.x + (_RandomValue * _SinTime.z * _
ScratchesXSpeed),
        i.uv.y + (_Time.x * _ScratchesYSpeed));
fixed4 scratchesTex = tex2D(_ScratchesTex, scratchesUV);
                
//Process the Dust UV and pixels
half2 dustUV = half2(i.uv.x + (_RandomValue * (_SinTime.z * _
dustXSpeed)), 
        i.uv.y + (_RandomValue * (_SinTime.z * _dustYSpeed)));
fixed4 dustTex = tex2D(_DustTex, dustUV);

These lines of code are almost exactly like the previous lines of code in which we need to 
generate unique animated UV values to modify the position of our screen effect layers. We 
simply use the built-in _SinTime value to get a value between -1 and 1, multiply it by our 
random value, and then by another multiplier to adjust the overall speed of the animation. 
Once these UV values are generated, we can then sample our dust and scratches texture 
using these new animated values.

Our next set of code handles the creation of the colorizing effect for our old film screen effect. 
The following code snippet demonstrates these lines:

// get the luminosity values from the render texture using the YIQ 
values.
fixed lum = dot (fixed3(0.299, 0.587, 0.114), renderTex.rgb);
                
//Add the constant color to the lum values
fixed4 finalColor = lum + lerp(_SepiaColor, _SepiaColor + 
    fixed4(0.1f,0.1f,0.1f,1.0f), _RandomValue);

With this set of code, we are creating the actual color tinting of the entire render texture. To 
accomplish this, we first need to turn the render texture into the grayscale version of itself. 
To do this, we can use the luminosity values given to us by the YIQ values. YIQ values are 
the color space used by the NTSC color TV system. Each letter in YIQ actually stores color 
constants that are used by TVs to adjust the color for readability.

While it is not necessary to actually know the reasons for this color scale, it should be known 
that the Y value in YIQ is the constant luminance value for any image. So, we can generate a 
grayscale image of our render texture by taking each pixel of the render texture and dotting it 
with our luminance values. This is what the first line in this set is doing.



Gameplay and Screen Effects

188

Once we have the luminance values, we can simply add the color we want to tint the image 
with. This color is passed from our script to our shader, then to our CGPROGRAM block,  
where we can add it to our grayscale render texture. Once completed, we will have a perfectly 
tinted image.

Finally, we create the blending between each of our layers in our screen effect. The following 
code snippet shows the set of code we are looking at:

//Create a constant white color we can use to adjust opacity of 
effects
fixed3 constantWhite = fixed3(1,1,1);
                
//Composite together the different layers to create finsl Screen 
Effect
finalColor = lerp(finalColor, finalColor * vignetteTex, _
VignetteAmount);
finalColor.rgb *= lerp(scratchesTex, constantWhite, (_RandomValue));
finalColor.rgb *= lerp(dustTex.rgb, constantWhite, (_RandomValue * 
_SinTime.z));
finalColor = lerp(renderTex, finalColor, _EffectAmount);
                
return finalColor

Our last set of code is relatively simple and doesn't really need a ton of explanation. In short, it 
is simply multiplying all the layers together to reach our final result. Just like we multiplied our 
layers together in Photoshop, we multiply them together in our shader. Each layer is processed 
through a lerp() function so that we can adjust the opacity of each layer, which gives more 
artistic control over the final effect. The more tweaks one can offer, the better when it comes 
to screen effects.

See also
For more information on the YIQ values, refer to the following links:

ff http://en.wikipedia.org/wiki/YIQ

ff http://www.blackice.com/colorspaceYIQ.htm

http://en.wikipedia.org/wiki/YIQ
http://www.blackice.com/colorspaceYIQ.htm


Chapter 9

189

Creating a night vision screen effect
Our next screen effect is definitely a more popular one. The night vision screen effect is  
seen in Call of Duty Modern Warfare, Halo, and just about any first-person shooter out in  
the market today. It is the effect of brightening the whole image using that very distinct lime 
green color.

In order to achieve our night vision effect, we need to break down our effect using Photoshop. 
It is a simple process of finding some reference images online and composing a layered image 
to see what kind of blending modes you will need or in which order we will need to combine 
our layers. The following image shows the result of performing just this process in Photoshop:

Let's begin to break down our rough Photoshop composite image into its component parts 
so that we can better understand the assets we will have to gather. In the next recipe, we will 
cover the process of doing this.



Gameplay and Screen Effects

190

Getting ready
Let's begin this screen effect by again breaking down our effect into its component layers. 
Using Photoshop, we can construct a layered image to better illustrate how we can go about 
capturing the effect of night vision:

ff Tinted green: Our first layer in our screen effect is the iconic green color, found in 
just about every night vision image. This will give our effect that signature night vision 
look, as shown in the following image:

ff Scan lines: To increase the effect of this being a new type of display for the player, we 
include scan lines over the top of our tinted layer. For this, we will use a texture created 
in Photoshop and let the user tile it so that the scan lines can be bigger or smaller.

ff Noise: Our next layer is a simple noise texture that we tile over the tinted image and 
scan lines to break up the image and add even more detail to our effect. This layer 
simply emphasizes that digital read-out look:



Chapter 9

191

ff Vignette: The last layer in our night vision effect is the vignette. If you look at the night 
vision effect in Call of Duty Modern Warfare, you will notice that it uses a vignette that 
fakes the effect of looking down a scope. We will do that for this screen effect:

Let's create a screen effect system by gathering our textures. Perform the following steps:

1.	 Gather up a vignette texture, noise texture, and scan line texture, like the ones  
we just saw.

2.	 Create a new script called NightVisionEffect.cs and a new shader called 
NightVisionEffectShader.shader.

3.	 With our new files created, fill in the code necessary to get the screen effect system 
up and running. For instructions on how to do this, refer to Chapter 8, Screen Effects 
with Unity Render Textures.

Finally, with our screen effect system up and running and our textures gathered, we can begin 
the process of recreating this old film effect.

How to do it…
With all of our assets gathered and screen effect system running smoothly, let's begin to 
add the code necessary to both the script and shader. We will begin our coding with the 
NightVisionEffect.cs script, so double-click on this file now to open it in MonoDevelop.

1.	 We need to create a few variables that will allow the user of this effect to adjust it in the 
script's Inspector. Enter the following code in the NightVisionEffect.cs script:
#region Variables
    public Shader nightVisionShader;
    



Gameplay and Screen Effects

192

    public float contrast = 2.0f;
    public float brightness = 1.0f;
    public Color nightVisionColor = Color.white;
    
    public Texture2D vignetteTexture;
    
    public Texture2D scanLineTexture;
    public float scanLineTileAmount = 4.0f;
    
    public Texture2D nightVisionNoise;
    public float noiseXSpeed = 100.0f;
    public float noiseYSpeed = 100.0f;
    
    public float distortion = 0.2f;
    public float scale = 0.8f;
    
    private float randomValue = 0.0f;
    private Material curMaterial;
    #endregion

2.	 Next, we need to complete our OnRenderImage() function so that we are passing 
the right data to the shader in order for the shader to process the screen effect 
properly. Complete the OnRenderImage() function with the following code:
void OnRenderImage(RenderTexture sourceTexture, RenderTexture 
destTexture)
    {
        if(nightVisionShader != null)
        {    
            material.SetFloat("_Contrast", contrast);
            material.SetFloat("_Brightness", brightness);
            material.SetColor("_NightVisionColor", 
nightVisionColor);
            material.SetFloat("_RandomValue", randomValue);
            material.SetFloat("_distortion", distortion);
            material.SetFloat("_scale",scale);
            
            if(vignetteTexture)
            {
                material.SetTexture("_VignetteTex", 
vignetteTexture);
            }
            
            if(scanLineTexture)
            {
                material.SetTexture("_ScanLineTex", 
scanLineTexture);



Chapter 9

193

                material.SetFloat("_ScanLineTileAmount", 
scanLineTileAmount);
            }
            
            if(nightVisionNoise)
            {
                material.SetTexture("_NoiseTex", 
nightVisionNoise);
                material.SetFloat("_NoiseXSpeed", noiseXSpeed);
                material.SetFloat("_NoiseYSpeed", noiseYSpeed);
            }
            
            Graphics.Blit(sourceTexture, destTexture, material);
        }
        else
        {
            Graphics.Blit(sourceTexture, destTexture);
        }
    }

3.	 To complete the NightVisionEffect.cs script, we simply need to make sure 
that we clamp certain variables so that they stay within a range. These ranges are 
arbitrary and can be changed at a later time. These are just values that worked well:
void Update()
    {
        contrast = Mathf.Clamp(contrast, 0f,4f);
        brightness = Mathf.Clamp(brightness, 0f, 2f);
        randomValue = Random.Range(-1f,1f);
        distortion = Mathf.Clamp(distortion, -1f,1f);
        scale = Mathf.Clamp(scale, 0f, 3f);
    }

4.	 We can now turn our attention over to the shader portion of this screen effect. Open 
the shader, if you haven't already, and begin by entering the following properties in 
the Properties block:
Properties 
    {
        _MainTex ("Base (RGB)", 2D) = "white" {}
        _VignetteTex ("Vignette Texture", 2D) = "white"{}
        _ScanLineTex ("Scan Line Texture", 2D) = "white"{}
        _NoiseTex ("Noise Texture", 2D) = "white"{}
        _NoiseXSpeed ("Noise X Speed", Float) = 100.0
        _NoiseYSpeed ("Noise Y Speed", Float) = 100.0
        _ScanLineTileAmount ("Scan Line Tile Amount", Float) = 4.0
        _NightVisionColor ("Night Vision Color", Color) = 
(1,1,1,1)



Gameplay and Screen Effects

194

        _Contrast ("Contrast", Range(0,4)) = 2
        _Brightness ("Brightness", Range(0,2)) = 1
        _RandomValue ("Random Value", Float) = 0
        _distortion ("Distortion", Float) = 0.2
        _scale ("Scale (Zoom)", Float) = 0.8
    }

5.	 To make sure that we are passing the data from our Properties block to our 
CGPROGRAM block, we need to make sure to declare them with the same name  
in the CGPROGRAM block:
CGPROGRAM
#pragma vertex vert_img
#pragma fragment frag
#pragma fragmentoption ARB_precision_hint_fastest
#include "UnityCG.cginc"
            
uniform sampler2D _MainTex;
uniform sampler2D _VignetteTex;
uniform sampler2D _ScanLineTex;
uniform sampler2D _NoiseTex;
fixed4 _NightVisionColor;
fixed _Contrast;
fixed _ScanLineTileAmount;
fixed _Brightness;
fixed _RandomValue;
fixed _NoiseXSpeed;
fixed _NoiseYSpeed;
fixed _distortion;
fixed _scale;

6.	 Our effect is also going to include a lens distortion to further convey the effect that 
we are looking through a lens and the edges of the image are being distorted by the 
angle of the lens. Enter the following function just after the variable declarations in 
the CGPROGRAM block:
float2 barrelDistortion(float2 coord) 
    {
        // lens distortion algorithm
        // See http://www.ssontech.com/content/lensalg.htm

        float2 h = coord.xy - float2(0.5, 0.5);
        float r2 = h.x * h.x + h.y * h.y;
        float f = 1.0 + r2 * (_distortion * sqrt(r2));

        return f * _scale * h + 0.5;
    }



Chapter 9

195

7.	 We can now concentrate on the meat of our NightVisionEffect shader. Let's 
start this by entering the code that is necessary to get the render texture and vignette 
texture. Enter the following code in the frag() function of our shader:
fixed4 frag(v2f_img i) : COLOR
    {
        //Get the colors from the RenderTexture and the uv's
        //from the v2f_img struct
        half2 distortedUV = barrelDistortion(i.uv);
        fixed4 renderTex = tex2D(_MainTex, distortedUV);
        fixed4 vignetteTex = tex2D(_VignetteTex, i.uv);

8.	 The next step in our frag() function is to process the scan lines and noise textures 
and apply the proper animated UVs to them:
//Process scan lines and noise
        half2 scanLinesUV = half2(i.uv.x * _ScanLineTileAmount, 
i.uv.y * _ScanLineTileAmount);
        fixed4 scanLineTex = tex2D(_ScanLineTex, scanLinesUV);
                
        half2 noiseUV = half2(i.uv.x + (_RandomValue * _SinTime.z 
* _NoiseXSpeed),
                                         i.uv.y + (_Time.x * _
NoiseYSpeed));
        fixed4 noiseTex = tex2D(_NoiseTex, noiseUV);

9.	 To complete all of our layers in the screen effect, we simply need to process the 
luminance value of our render texture, and then apply the night vision color to it to 
achieve that iconic night vision look:
// get the luminosity values from the render texture using the YIQ 
values.
        fixed lum = dot (fixed3(0.299, 0.587, 0.114), renderTex.
rgb);
        lum += _Brightness;
        fixed4 finalColor = (lum *2) + _NightVisionColor;

10.	 Lastly, we will combine all the layers together and return the final color of our night 
vision effect:
//Final output
        finalColor = pow(finalColor, _Contrast);
        finalColor *= vignetteTex;
        finalColor *= scanLineTex * noiseTex;
                
        return finalColor;



Gameplay and Screen Effects

196

When you have finished entering the code, return to the Unity editor to let the script and 
shader compile. If there are no errors, hit play in the editor to see the results. You should see 
something similar to the following image:

How it works…
The night vision effect is actually very similar to the old film screen effect, which shows us just 
how modular we can make these components. Just by simply swapping the textures that we 
are using for overlays and changing the speed at which our tiling rates are being calculated, 
we can achieve very different results using the same code.

The only difference with this effect is the fact that we are including a lens distortion to our screen 
effect. So let's break this down so that we can get a better understanding of how it works.

The following code snippet illustrates the code used in processing our lens distortion. It is a 
snippet of code provided to us by the makers of SynthEyes, and the code is freely available to 
use in your own effects:

float2 barrelDistortion(float2 coord) 
{
    // lens distortion algorithm
    // See http://www.ssontech.com/content/lensalg.htm
    float2 h = coord.xy - float2(0.5, 0.5);
    float r2 = h.x * h.x + h.y * h.y;



Chapter 9

197

    float f = 1.0 + r2 * (_distortion * sqrt(r2));

    return f * _scale * h + 0.5;
}

There's more...
It is not uncommon in video games to have the need to highlight certain objects. For instance, 
a thermal visor should apply a post-processing effect only to people and other sources of 
heat. Doing this is already possible with the knowledge gathered so far in this book; you can, 
in fact, change the shader or material of an object by code. However, this is often laborious 
and has to be replicated on all the objects.

A more effective way is using replaced shaders. Each shader has a tag called RenderType 
that has never been used so far. This property can be used to force a camera to apply a 
shader only to certain objects. You can do this by attaching the following script to the camera:

using UnityEngine;

public class ReplacedShader : MonoBehaviour {

    public Shader shader;
    void Start () {
        GetComponent<Camera>().SetReplacementShader(shader, "Heat");
    }
}

After entering the play mode, the camera will query all the objects that it has to render. If 
they don't have a shader decorated with RenderType = "Heat", they will not be rendered. 
Objects with such a tag will be rendered with the shader attached to the script.





199

Advanced Shading 
Techniques

In this chapter, you will learn the following recipes:

ff Using CgInclude files that are built into Unity

ff Making your shader world modular with CgInclude

ff Implementing a Fur Shader

ff Implementing heatmaps with arrays

Introduction
This final chapter covers some advanced shader techniques that you can use for your game. 
You should remember that many of the most eye-catching effects you can see in games are 
made by testing the limit of what shaders can do. This book provides you with the technical 
basis to modify and create shaders, but you are strongly encouraged to play and experiment 
with them as much as you can. Making a good game is not a quest for photorealism; you 
should not approach shaders with the intention of replicating reality because this is unlikely to 
happen. Instead, you should try to use shaders as a tool to make your game truly unique. With 
the knowledge of this final chapter, you will be able to create the materials that you want.

10



Advanced Shading Techniques

200

Using CgInclude files that are built  
into Unity

Our first step in writing our own CgInclude files is to understand what Unity is already providing 
us with for shaders. By writing Surface Shaders, there is a lot happening under the hood, 
which makes the process of writing Surface Shaders so efficient. We can see this code in the 
included CgInclude files found in your Unity install folder at Editor | Data | CGIncludes. 
All the files contained within this folder do their part to render our objects with our shaders to 
the screen. Some of these files take care of shadows and lighting, some take care of helper 
functions, and some manage platform dependencies. Without them, our shader writing 
experience would be much more laborious.

You can find a list of information that Unity has provided us with at the following link:  
http://docs.unity3d.com/Documentation/Components/SL-BuiltinIncludes.
html

Let's begin the process of understanding these built-in CgInclude files, using some of the built-
in helper functions from the UnityCG.cginc file.

Getting ready
Before we start diving into the meat of writing the shader, we need to get a few items set up in 
our scene. Let's create the following and then open the shader in MonoDevelop:

1.	 Create a new scene and fill it with a simple sphere model.

2.	 Create a new shader and material.

3.	 Attach the new shader to the new material and assign the material to the sphere.

4.	 Then, let's create a directional light and position it above our sphere.

5.	 Finally, we are going to want to open the UnityCG.cginc file from Unity's 
CgInclude folder located in Unity's install directory. This will let us analyze some of 
the helper function's code so that we can understand better what is happening when 
we use them.

http://docs.unity3d.com/Documentation/Components/SL-BuiltinIncludes.html
http://docs.unity3d.com/Documentation/Components/SL-BuiltinIncludes.html


Chapter 10

201

6.	 You should have a simple scene set up to work on the shader. Refer to the following 
screenshot as an example:

How to do it…
With the scene prepared, we can now begin the process of experimenting with some of the 
built-in helper functions included with the UnityCG.cginc file. Double-click on the shader 
that was created for this scene in order to open it in MonoDevelop and insert the code given 
in the following steps:

1.	 Add the following code to the Properties block of the new shader file. We will need 
a single texture and slide for our example shader:
Properties
{
    _MainTex ("Base (RGB)", 2D) = "white" {}
    _DesatValue ("Desaturate", Range(0,1)) = 0.5
}

2.	 We then need to make sure that we create the data connection between our 
Properties and CGPROGRAM blocks, with the following code placed after the 
CGPROGRAM declaration and #pragma directives:
sampler2D _MainTex;
fixed _DesatValue;



Advanced Shading Techniques

202

3.	 Finally, we just have to update our surf() function to include the following code. 
We introduce a new function that we haven't seen yet, which is built into Unity's 
UnityCG.cginc file:
void surf (Input IN, inout SurfaceOutput o)
{
    half4 c = tex2D (_MainTex, IV.uv_MainTex);
    c.rgb = lerp(c.rgb, Luminance(r.rgb), _DesatValue);

    o.Albedo = c.rgb;
    o.Alpha = c.a;
}

With the shader code modified, you should see something similar to the following screenshot. 
We have simply used a helper function, built into Unity's CgInclude file, to give us an effect of 
desaturating the main texture of our shader:

How it works…
Using the built-in helper function named Luminance(), we are able to quickly get a 
desaturation or grayscale effect on our shaders. This is all possible because the UnityCG.
cginc file is brought automatically to our shader as we are using a Surface shader.



Chapter 10

203

If you search through the UnityCG.cginc file, opened in MonoDevelop, you will find the 
implementation of this function at line 276. The following snippet is taken from the file:

inline fixed Luminance (fixed3 c)
{
    return dot(c, fixed3(0.22, 0.707, 0.071));
}

As this function is included in the file and Unity automatically compiles with this file, we can 
use the function in our code as well, thereby reducing the amount of code that we have to 
write over and over again.

If you notice there is also a Lighting.cginc file that Unity comes with. This file houses all 
the lighting models that we use when we declare something like #pragma Surface surf 
Lambert. Sifting through this file reveals that all the built-in lighting models are defined here 
for reuse and modularity.

Making your shader world modular with 
CgInclude

Knowing about the built-in CgInclude files is great, but what if we wanted to build our own 
CgInclude files to store our own lighting models and helper functions? We can, in fact, create 
our own CgInclude files, but we need to learn a little more code syntax before we can start 
using them efficiently in our shader writing pipelines. Let's take a look at the process of 
creating a new CgInclude file from scratch.

Getting ready
Let's walk through the process of generating a new item for this recipe.

1.	 Begin by creating a new text file and call it something like MyCgInclude.txt.

2.	 Then change its file extension to .cginc. Windows will give you a warning message 
saying that the file may become unusable, but it will still work.

3.	 Import this new .cginc file to your Unity project and let it compile. If all goes well, 
you will see that Unity knew to compile it to a CgInclude file.

We are now ready to begin creating our own custom CgInclude code. Simply double-click on 
the CgInclude file that you created in order to open it in MonoDevelop.



Advanced Shading Techniques

204

How to do it…
With our CgInclude file open, we can begin to enter the code that will get it working with 
our Surface Shaders. The following code will get our CgInclude file ready for use within our 
Surface Shaders and allow us to continually add more code to it as we develop more shaders:

1.	 We begin our CgInclude file with what is called a preprocessor directive. These are 
statements such as #pragma and #include. In this case, we want to define a 
new set of code that will be executed if our shader includes this file in its compiler 
directives. Enter the following code at the top of your CgInclude file:
#ifndef MY_CG_INCLUDE
#define MY_CG_INCLUDE

2.	 We always need to make sure that we close #ifndef or #ifdef with #endif to 
close the definition check, just like an if statement needs to be closed with two 
brackets in C#. Enter the following code just after the #define directive:
#endif

3.	 At this point, we just need to fill in the guts of the CgInclude file. So we finish off our 
CgInclude file by entering the following code:
fixed4 _MyColor;

inline fixed4 LightingHalfLamber (SurfaceOutput s, fixed3 
lightDir, fixed atten)
{
    fixed diff = max(0, dot(s.Normal, lightDir));
    diff = (diff + 0.5)*0.5;

    fixed c;
    c.rgb = s.Albedo * _LightColor0.rgb * ((diff * _MyColor.rgb) * 
atten);
    c.a = s.Alpha;
    return c;
}
#endif

4.	 With this completed, you now have your very first CgInclude file. With just this little bit 
of code, we can greatly reduce the amount of code that we have to rewrite, and we 
can begin to store lighting models that we use all the time here so that we never lose 
them. Your CgInclude file should look similar to the following code shown:
#ifndef MY_CG_INCLUDE
#define MY_CG_INCLUDE

fixed4 _MyColor;



Chapter 10

205

inline fixed4 LightingHalfLamber (SurfaceOutput s, fixed3 
lightDir, fixed atten)
{
    fixed diff = max(0, dot(s.Normal, lightDir));
    diff = (diff + 0.5)*0.5;

    fixed c;
    c.rgb = s.Albedo * _LightColor0.rgb * ((diff * _MyColor.rgb) * 
atten);
    c.a = s.Alpha;
    return c;
}
#endif

There are a couple more steps that we need to complete before we can fully utilize this 
CgInclude file. We simply need to tell the current shader we are working with to use this file 
and its code. To complete the process of creating and using CgInclude files, let's complete  
the next set of steps:

1.	 If we turn our attention to our shader, we need to tell our CGPROGRAM block to  
include our new CgInclude file so that we can access the code it contains. Modify  
the directives of our CGPROGRAM block to include the following code:
CGPROGRAM
#include "MyCGInclude.cginc"
#pragma surface surf Lambert

2.	 Our current shader is currently using the built-in Lambert lighting model, but we 
want to use the Half Lambert lighting model that we created in our CgInclude. As 
we included the code from our CgInclude file, we can use the Half Lambert lighting 
model with the following code:
CGPROGRAM
#include "MyCGInclude.cginc"
#pragma surface surf HalfLambert

3.	 Finally, we have also declared a custom variable in our CgInclude file to show that we 
can set up default variables for our shaders to use. To see this in action, enter the 
following code in the Properties block of your shader:
Properties
{
    _MainTex ("Base (RGB)", 2D) = "white" {}
    _DesatValue ("Desaturate", Range(0,1)) = 0.5
    _MyColor ("My Color", Color) = (1,1,1,1)
}



Advanced Shading Techniques

206

4.	 When we return to Unity, the shader and CgInclude file will compile, and if you do not 
see any errors, you will notice that in fact we are using our new Half Lambert lighting 
model and a new color swatch appears in our material's Inspector. The following 
screenshot shows the result of using our CgInclude file:

How it works…
When using shaders, we can include other sets of code using the #include preprocessor 
directive. This tells Unity that we want to let the current shader use the code from within the 
included file in the shader; this is the reason why these files are called CgInclude files. We are 
including snippets of Cg code using the #include directive.

Once we declare the #include directive and Unity is able to find the file in the project, Unity 
will then look for code snippets that have been defined. This is where we start to use the 
#ifndef and #endif directives. When we declare the #ifndef directive, we are simply 
saying, if not defined, define something with a name. In this recipe's case, we said we wanted 
to #define MY_CG_INCLUDE. So if Unity doesn't find a definition called MY_CG_INCLUDE, it 
goes and creates it when the CgInclude file is compiled, thereby giving us access to the code 
that follows. The #endif method simply says that this is the end of this definition, so stop 
looking for more code.

You can now see how powerful this becomes as we can now store all of our lighting models 
and custom variables in one file and greatly reduce the amount of code that we have to write. 
The real power is when you can begin to give your shaders the flexibility by defining multiple 
states of functions in the CgInclude files.



Chapter 10

207

Implementing a Fur Shader
The look of a material depends on its physical structure. The shaders attempt to simulate 
them, but in doing so, they oversimplify the way light behaves. Materials with a complex 
macroscopic structure are particularly hard to render. This is the case for many textile 
fabrics and animal furs. This recipe will show you how it is possible to simulate fur and other 
materials (such as grass) that are more than just a flat surface. In order to do this, the same 
material is drawn multiple times over and over, increasing its size every time. This creates the 
illusion of fur.

The shader presented here is based on the work of Jonathan Czeck and Aras Pranckevičius:

Getting ready
In order for this recipe to work, you will need two things. The first one is the texture of the fur 
as it appears from the outside. The second texture will be used to control the distribution of 
the fur and is deeply connected to the original one. The following image shows a leopard fur 
(left) and possible control mask (right):



Advanced Shading Techniques

208

The white pixels in the control mask will be extruded from the original material, simulating 
a fur. It is important that the distribution of these white pixels is sparse in order to give an 
illusion that the material is made out of many small hair strands. A loose way to create such a 
texture is as follows:

1.	 Apply a threshold to your original texture to better capture patches where the fur is 
less dense.

2.	 Apply a noise filter that pixelates the image. The RGB channels of noise must not be 
dependent in order to produce a black and white result.

3.	 For a more realistic look, overlay a Perlin noise filter that adds to the variability of  
the fur.

4.	 Finally, apply a threshold filter again to better separate the pixels in your texture.

Like all the other shaders before, you will need to create a new standard shader and material 
to host it.

How to do it…
For this recipe, we can start modifying a Standard shader:

1.	 Add the following Properties:
_FurLength ("Fur Length", Range (.0002, 1)) = .25
_Cutoff ("Alpha cutoff", Range(0,1)) = 0.5
_CutoffEnd ("Alpha cutoff end", Range(0,1)) = 0.5
_EdgeFade ("Edge Fade", Range(0,1)) = 0.4
_Gravity ("Gravity direction", Vector) = (0,0,1,0)
_GravityStrength ("G strenght", Range(0,1)) = 0.25

2.	 This shader requires you to repeat the same pass several times. We will use the 
technique introduced in the Making your shader world modular with CgIncludes 
section to group all the code necessary from a single pass in an external file. Let's 
start creating a new CgInclude file called FurPass.cginc with the following code:
#pragma target 3.0

fixed4 _Color;
sampler2D _MainTex;
half _Glossiness;
half _Metallic;

uniform float _FurLength;
uniform float _Cutoff;
uniform float _CutoffEnd;
uniform float _EdgeFade;



Chapter 10

209

uniform fixed3 _Gravity;
uniform fixed _GravityStrength;

void vert (inout appdata_full v)
{
    fixed3 direction = lerp(v.normal, _Gravity * _GravityStrength 
+ v.normal * (1-_GravityStrength), FUR_MULTIPLIER);
    v.vertex.xyz += direction * _FurLength * FUR_MULTIPLIER * 
v.color.a;
}

struct Input {
    float2 uv_MainTex;
    float3 viewDir;
};

void surf (Input IN, inout SurfaceOutputStandard o) {
    fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
    o.Albedo = c.rgb;
    o.Metallic = _Metallic;
    o.Smoothness = _Glossiness;

    //o.Alpha = step(_Cutoff, c.a);
    o.Alpha = step(lerp(_Cutoff,_CutoffEnd,FUR_MULTIPLIER), c.a);

    float alpha = 1 - (FUR_MULTIPLIER * FUR_MULTIPLIER);
    alpha += dot(IN.viewDir, o.Normal) - _EdgeFade;

    o.Alpha *= alpha;
}

3.	 Get back to your original shader and add this extra pass after the ENDCG section:
CGPROGRAM
#pragma surface surf Standard fullforwardshadows alpha:blend 
vertex:vert
#define FUR_MULTIPLIER 0.05
#include "FurPass.cginc"
ENDCG

4.	 Add more passes, progressively increasing FUR_MULTIPLIER. You can get decent 
results with 20 passes, from 0.05 to 0.95.



Advanced Shading Techniques

210

Once the shader is compiled and attached to a material, you can change its appearance from 
the Inspector. The Fur Length property determines the space between the fur shells, which 
will be altering the length of the fur. A longer fur might require more passes to look realistic. 
Alpha Cutoff and Alpha Cutoff End are used to control the density of the fur and 
how it gets progressively thinner. Edge Fade determines the final transparency of the fur, 
resulting in a fuzzier look. Softer materials should have a high Edge Fade. Finally, Gravity 
Direction and Gravity Strength curve the fur shells to simulate the effect of gravity.

How it works…
The technique presented in this recipe is known as Lengyel's concentric fur shell technique or, 
simply, shell technique. It works by creating progressively bigger copies of the geometry that 
needs to be rendered. With the right transparency, it gives the illusion of a continuous thread 
of hair:

The shell technique is extremely versatile and relatively easy to implement. Realistic, real fur 
requires not only extruding the geometry of the model, but also altering its vertices. This is 
possible with tessellation shaders, which are much more advanced and not covered in this book.

Each pass in this Fur Shader is contained in FurPass.cginc. The vertex function creates 
a slightly bigger version of the model, which is based on the principle of normal extrusion. 
Additionally, the effect of gravity is taken into account so that it gets more intense the further 
we are from the centre:

void vert (inout appdata_full v)
{
    fixed3 direction = lerp(v.normal, _Gravity * _GravityStrength + 
v.normal * (1-_GravityStrength), FUR_MULTIPLIER);



Chapter 10

211

    v.vertex.xyz += direction * _FurLength * FUR_MULTIPLIER * 
v.color.a;
}

In this example, the alpha channel is used to determine the final length of the fur. This allows 
for a more precise control.

Finally, the surface function reads the control mask from the alpha channel. It uses the cutoff 
value to determine which pixels to show and which ones to hide. This value changes from the 
first to the final fur shell to match Alpha Cutoff and Alpha Cutoff End:

o.Alpha = step(lerp(_Cutoff,_CutoffEnd,FUR_MULTIPLIER), c.a);

float alpha = 1 - (FUR_MULTIPLIER * FUR_MULTIPLIER);
alpha += dot(IN.viewDir, o.Normal) - _EdgeFade;

o.Alpha *= alpha;

The final alpha value of the fur also depends on its angle from the camera, giving it a  
softer look.

There's more…
The Fur Shader has been used to simulate fur. However, it can be used for a variety of other 
materials. It works very well for materials that are naturally made of multiple layers, such as 
forest canopies, fuzzy clouds, human hair, and even grass.

There are many other improvements that can dramatically increase its realism. You can add  
a very simple wind animation by changing the direction of the gravity depending on the 
current time. If calibrated correctly, this can give the impression that the fur is moving 
because of the wind.

Additionally, you can make your fur move when the character is moving. All these little tweaks 
contribute to the believability of your fur, giving the illusion that it is not just a static material 
drawn on the surface. Unfortunately, this shader comes at a price: 20 passes are very heavy 
to compute. The number of passes roughly determines how believable the material is. You 
should play with fur length and passes in order to get the effect that works best for you. Given 
the performance impact of this shader, it is advisable to have several materials with different 
numbers of passes; you can use them at different distances and save a lot of computation.



Advanced Shading Techniques

212

Implementing heatmaps with arrays
One characteristic that makes shaders hard to master is the lack of a proper documentation. 
Most developers learn shaders by messing up with the code, without having a deep 
knowledge of what's going on. The problem is amplified by the fact that Cg/HLSL makes a 
lot of assumptions, some of which are not properly advertised. Unity3D allows C# scripts to 
communicate with shaders using methods such as SetFloat, SetInt, SetVector, and so on. 
Unfortunately, Unity3D doesn't have a SetArray method, which led many developers to believe 
that Cg/HLSL doesn't support arrays either. This is not true. This post will show you how it's 
possible to pass arrays to shaders. Just remember that GPUs are highly optimized for parallel 
computations, and using for loops in a shader will dramatically drop its performance.

For this recipe, we will implement a heatmap, as shown in the following image:

Getting ready
The effect in this recipe creates a heatmap from a set of points. This heatmap can be overlaid 
on top of another picture, like in the preceding image. The following steps are necessary:

1.	 Create a quad with the texture that you want to use for the heatmap. In this example, 
a map of London has been used.

2.	 Create another quad, and place it on top of the previous one. Our heatmap will 
appear on this quad.

3.	 Attach a new material and shader to the second quad.



Chapter 10

213

How to do it…
This shader is quite different from the ones created before, yet it is relatively short. For this 
reason, the entire code is provided in the following points:

1.	 Copy this code to the newly created shader:
shader " Heatmap" {
    Properties {
        _HeatTex ("Texture", 2D) = "white" {}
    }
    Subshader {
        Tags {"Queue"="Transparent"}
        Blend SrcAlpha OneMinusSrcAlpha // Alpha blend

        Pass {
            CGPROGRAM
            #pragma vertex vert             
            #pragma fragment frag

            struct vertInput {
                float4 pos : POSITION;
            };  

            struct vertOutput {
                float4 pos : POSITION;
                fixed3 worldPos : TEXCOORD1;
            };

            vertOutput vert(vertInput input) {
                vertOutput o;
                o.pos = mul(UNITY_MATRIX_MVP, input.pos);
                o.worldPos = mul(_Object2World, input.pos).xyz;
                return o;
            }

            uniform int _Points_Length = 0;
            uniform float3 _Points [20];         
// (x, y, z) = position
            uniform float2 _Properties [20];     
// x = radius, y = intensity
            
            sampler2D _HeatTex;

            half4 frag(vertOutput output) : COLOR {
                // Loops over all the points
                half h = 0;



Advanced Shading Techniques

214

                for (int i = 0; i < _Points_Length; i ++)
                {
                    // Calculates the contribution of each point
                    half di = distance(output.worldPos, _ 
    Points[i].xyz);

                    half ri = _Properties[i].x;
                    half hi = 1 - saturate(di / ri);

                    h += hi * _Properties[i].y;
                }

                // Converts (0-1) according to the heat texture
                h = saturate(h);
                half4 color = tex2D(_HeatTex, fixed2(h, 0.5));
                return color;
            }
            ENDCG
        }
    } 
    Fallback "Diffuse"
}

2.	 Once you have attached this script to your material, you should provide a ramp 
texture for the heatmap. It's important to configure it so that its Wrap Mode is set to 
Clamp. The following one has been used for this example:

If your heatmap is going to be used as an overlay, then make sure 
that the ramp texture has an alpha channel and the texture is 
imported with the option, Alpha is Transparency.

3.	 Create a new script called Heatmaps using the following code:
using UnityEngine;
using System.Collections;

public class Heatmap : MonoBehaviour {

    public Vector3[] positions;
    public float[] radiuses;
    public float[] intensities;



Chapter 10

215

    public material material;

    void Start ()
    {
        material.SetInt("_Points_Length", positions.Length);
        for (int i = 0; i < positions.Length; i ++)
        {
            material.SetVector("_Points" + i.ToString(), 
positions[i]);

            Vector2 properties = new Vector2(radiuses[i], 
intensities[i]);
            material.SetVector("_Properties" + i.ToString(), 
properties);
        }
    }
}

4.	 Attach the script to an object in your scene, preferably to the quad. Then, drag the 
material created for this effect to the material slot of the script. By doing this, the 
script will be able to access the material and initialize it.

5.	 Lastly, expand the positions, radiuses, and intensities fields of your script and 
fill them with the values of your heatmap. Positions indicate the points (in world 
coordinates) of your heatmaps, radii indicate their size, and intensities indicate how 
strongly they affect the surrounding area:



Advanced Shading Techniques

216

How it works…
This shader relies on things that have never been introduced before in this book; the first one 
is arrays. Cg allows arrays that can be created with the following syntax:

uniform float3 _Points [20];    

Cg doesn't support arrays with an unknown size: you must preallocate all the space that you 
need beforehand. The preceding line of code creates an array of 20 elements.

Unity does not expose any method to initialize these arrays directly. However, single elements 
are accessible using the name of the array (_Points) followed by the position, such as 
_Points0 or _Points10. This currently works only for certain types of arrays, such as 
float3 and float2. The script attached to the quad initializes the shader's arrays, element 
by element.

In the fragment function of the shader, there is a similar for loop that, for each pixel of the 
material, queries all the points to find their contribution to the heatmap:

half h = 0;
for (int i = 0; i < _Points_Length; i ++)
{
    // Calculates the contribution of each point
    half di = distance(output.worldPos, _Points[i].xyz);

    half ri = _Properties[i].x;
    half hi = 1 - saturate(di / ri);

    h += hi * _Properties[i].y;
}

The h variable stores the heat from all the points, given their radii and intensities. It is then 
used to look up which color to use from the ramp texture.

The shaders and arrays are a winning combination, especially as very few games are using 
them at their full potential. However, they introduce a significance bottleneck as for each pixel, 
the shader has to loop through all the points.



217

Index
Symbols
2D games

Water Shader, implementing for  127-131
2D texture

URL  32
3D surface

URL  31

A
albedo and transparency

URL  87
Anisotropic Specular type

creating  72-77
URL  72

arrays
heatmaps, implementing with  212-216

assets  17
AUTODESK

URL  36

B
basic Standard Shader

creating  2-6
binding semantics

about  120
URL  122

Blinn  68
BlinnPhong Specular type

creating  68-72
Butterfly Effect

URL  115

C
calibration chart

URL  83

cel shading  60
CgInclude

files built into Unity, using  200-203
used, for making shader world  

modular  203-206
Cg shading language

URL  16
cheap shader  134-140
circle

creating, around terrain  51-53
moving  54

component  2
CrazyBump

URL  36
cube maps  89
culling  40
custom diffuse lighting model

creating  56-60
custom shaders

migrating  9, 10

D
debugging  18
Default Value  14
Diffuse Shader  7, 136-139
Diffuse shading  23-25
dot product  45, 59, 109

E
extrusion maps

adding  106



218

F
Fur Shader

implementing  207-211

G
Gimp  40
Glass Shader

implementing  125-127
Global Illumination (GI)  80
grab pass

about  117
using  122-125

Graphics.Blit
URL  158

graphics processing  
unit (GPU)  6, 80, 105, 121

H
heatmaps

implementing, with arrays  212-216
Holographic Shader

creating  43-46

I
individual time values

URL  34
Inspector GUI Name  13
insulators  82

L
Lambertian reflectance  44, 56, 60
Legacy Shaders

automatic upgrade option  8
custom shaders, migrating  9, 10
migrating, from Unity 4 to Unity 5  7
Standard Shaders, using  8, 9

light baking  90
lighting functions

URL  66
lighting model  22, 55
lightmap  93
light probes

configuring  91, 92

URL  94
lights

baking  93, 94
baking, in scene  90, 91
light probes, configuring  91, 92
static geometry, configuring  91

light transport  90

M
masking  27
material chart

URL  83
materials  2
Maya  96
metallic setup  81, 82
mirrors

creating  87, 88
models

extruding  104, 105
extrusion maps, adding  106

model-view-projection matrix  120
MonoDevelop  3

N
NDO Painter

URL  36
night vision screen effect

creating  189-197
noise texture  190
scan lines  190
tinted green  190
vignette effect  191

noise textures  111
non-playable characters (NPCs)  91
normal extrusion  104, 114
normal mapping  35-39
normals  104
Nvidia  115

O
old movie screen effect

creating  178-188
dust and scratches  180
sepia tone  179
vignette effect  179



219

OnRenderImage
URL  157

Oren-Nayar lighting model
URL  72

Overlay Blend mode
with screen effects  173-176

P
packed arrays

about  26
URL  27
using  25, 26

packed matrices  27
Passion Pictures  115
PBR Texture Conversion

URL  83
Perlin noise  111
Phong Specular type

creating  63-68
Photoshop  40, 111
physically-based rendering (PBR)

about  5, 79
transparency, adding  83, 84
URL  83

Pixel Shaders  120
post effects  151
Profiler

URL  146
using  141-146

properties
adding, to shader  10-14
URL  14
using, in Surface Shader  14-19

Pyro Technix
URL  115

Q
Quixel MEGASCANS

URL  83

R
ramp map  61
real-time shading  80
reflection probe

URL  88, 90

reflective surfaces
creating  87, 88

renderer component  92
renderers  2
render queues  42
RGB channels  40

S
scene

lights, baking  90, 91
screen effects

blend modes, basic Photoshop like  167-172
brightness  161-166
contrast  161-166
overlay Blend mode with  173-176
saturation  161-166
script system, setting up  152-160

scripts  2
shader

about  1, 95
Fur Shader, implementing  207-211
making modular, CgInclude used  203-206
modifying, for mobile  146-150
profiling  140-146
properties, adding  10-14
textures, adding  28-31
URL  10

Shader Calibration Scene
URL  87

skinned mesh renderers  94
skyboxes  89
smearing  27
snow shader

geometry, altering  110
implementing  107-109
surface, coloring  109

Specular Shader  7
standard  80
StandardDiffuse  5
Standard Shaders

using  8, 9
static geometry

configuring  91
substance designer

URL  83
surface function  22



220

surface output  22
SurfaceOutputStandardSpecular struct

properties  25
SurfaceOutputStandard struct

properties  25
SurfaceOutput struct

properties  24
Surface Shader

about  5
properties, using  14-19
vertex color, accessing  96-99
vertices, animating  100-103
working  22

swizzling  26

T
terrain

circle, creating around  51-53
texture GUI element  11
texture mapping  28
textures

adding, to shader  28-31
blending  46-51
packing  46-51
scrolling, by modifying UV values  32-34

Toon Shader
creating  60-63

transparency
adding, to PBR  83, 84
objects, fading  85
semi-transparent materials  84, 85
solid geometries, with holes  86

transparent material
creating  40-43

Type  13

U
Unity

documentation, URL  81
URL  200

Unity 4
to Unity 5, Legacy Shaders migrating from  7

Unity Asset Store
URL  110

UNITY DOWNLOAD ARCHIVE
URL  6

Unity Official Tutorials
URL  86

UV data  28
UV values

modifying, to scroll textures  32-34

V
Variable Name  13
Vertex and Fragment Shaders

about  118-121
binding semantic  120
binding semantics  121, 122
fragment  120
fragment function  120
graphics processing unit (GPU)  121
input semantics  121
model-view-projection matrix  120
output semantics  122
Pixel Shaders  120

vertex color
in Surface Shader, accessing  96-99

vertex modifier  105
vertices

in Surface Shader, animating  100-103
volume ray casting  115
volumetric explosion

implementing  111-115

W
Water Shader

implementing, for 2D games  127-131

Y
YIQ values

URL  188

Z
Zbrush 4R7

URL  36
ZBuffering  43
Z ordering  40



Thank you for buying  
Unity 5.x Shaders and Effects Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com


Unity 5.x Cookbook
ISBN: 978-1-78439-136-2              Paperback: 570 pages

Over 100 recipes exploring the new and exciting 
features of Unity 5 to spice up your Unity skill set

1.	 2D and 3D game development skills covered.

2.	 The authors are very experienced and give you 
a plethora of knowledge in this book.

3.	 This book will be useful for both base level and 
skilled developers.

Learning Unity iOS Game 
Development
ISBN: 978-1-78439-980-1              Paperback: 230 pages

Build exciting games with Unity on iOS and publish 
them on the App Store

1.	 Coming from an eminent author, this book 
offers you the fine technicalities of how 
iTunes and Unity can be used to build a fully 
interactive and reliable game for the App Store.

2.	 This book will not only help you learn to build 
and deploy the App but also give it for review 
to the App store.

3.	 The approach of moving from basic to advance 
skills, will help you catch learn easily.

 
Please check www.PacktPub.com for information on our titles



Unreal Engine Lighting and 
Rendering Essentials
ISBN: 978-1-78528-906-4              Paperback: 242 pages

Learn the principles of lighting and rendering in 
Unreal Engine

1.	 This book will not only help you build and 
deploy the app, but will also help you maintain 
the game performance on cross platforms.

2.	 The author is eminent, so you will learn tips 
and tricks to build cross-platform mobile and 
desktop apps from scratch.

3.	 Easy-to-follow examples with images to create 
stunning visual effects.

Unreal Development Kit Game 
Programming with UnrealScript 
[Video]
ISBN: 978-1-84969-632-6            Duration: 02:23 hrs

Kick-start your career in game development with 
UnrealScript and the UDK 

1.	 Step-by-step guide on how to set up the UDK 
and create a game with UnrealScript.

2.	 Explore core UnrealScript features  
and configurations.

3.	 Ideal for newcomers to UnrealScript.

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	www.PacktPub.com
	Preface
	Chapter 1: Creating Your First Shader
	Introduction
	Creating a basic Standard Shader
	Migrating Legacy Shaders from Unity 4 
to Unity 5
	Adding properties to a shader
	Using properties in a Surface Shader

	Chapter 2: Surface Shaders and Texture Mapping
	Introduction
	Diffuse shading
	Using packed arrays
	Adding a texture to a shader
	Scrolling textures by modifying UV values
	Normal mapping
	Creating a transparent material
	Creating a Holographic Shader
	Packing and blending textures
	Creating a circle around your terrain

	Chapter 3: Understanding Lighting Models
	Introduction
	Creating a custom diffuse lighting model
	Creating a Toon Shader
	Creating a Phong Specular type
	Creating a BlinnPhong Specular type
	Creating an Anisotropic Specular type

	Chapter 4: Physically Based Rendering in Unity 5
	Introduction
	Understanding the metallic setup
	Adding transparency to PBR
	Creating mirrors and reflective surfaces
	Baking lights in your scene

	Chapter 5: Vertex Functions
	Introduction
	Accessing a vertex color in a Surface Shader
	Animating vertices in a Surface Shader
	Extruding your models
	Implementing a snow shader
	Implementing a volumetric explosion

	Chapter 6: Fragment Shaders and Grab Passes
	Introduction
	Understanding Vertex and Fragment Shaders
	Using grab pass
	Implementing a Glass Shader
	Implementing a Water Shader for 2D games

	Chapter 7: Mobile Shader Adjustment
	Introduction
	What is a cheap shader?
	Profiling your shaders
	Modifying our shaders for mobile

	Chapter 8: Screen Effects with Unity Render Textures
	Introduction
	Setting up the screen effects script system
	Using brightness, saturation, and contrast with screen effects
	Using basic Photoshop-like Blend modes with screen effects
	Using the Overlay Blend mode with screen effects

	Chapter 9: Gameplay and Screen Effects
	Introduction
	Creating an old movie screen effect
	Creating a night vision screen effect

	Chapter 10: Advanced Shading Techniques
	Introduction
	Using CgInclude files that are built 
into Unity
	Making your shader world modular with CgInclude
	Implementing a Fur Shader
	Implementing heatmaps with arrays

	Index

