

Visual Studio 2015
Cookbook
Second Edition

Over 50 new and improved recipes to put Visual Studio
2015 to work in your crucial development projects

Jeff Martin

BIRMINGHAM - MUMBAI

Visual Studio 2015 Cookbook
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Second edition: August 2016

Production reference: 1110816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-726-0

www.packtpub.com

www.packtpub.com

Credits

Author
Jeff Martin

Reviewer
Ahmed Ilyas

Commissioning Editor
Edward Gordon

Acquisition Editor
Denim Pinto

Content Development Editor
Anish Sukumaran

Technical Editor
Sunith Shetty

Copy Editor
Sonia Mathur

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Jeff Martin has been a contributing writer for InfoQ (http://www.infoq.com) for over
four years, focusing on .NET and Microsoft-based platforms. Experienced in writing, testing,
and designing software, he enjoys learning about new technologies and explaining them to
a broader audience. You can follow his work at InfoQ as .NET lead editor.

I would like to express my sincere gratitude to my wife, Carolyn, for her
support and encouragement as I set out to write another book. Additionally,
I would like to thank the team at Packt Publishing for their efforts to make
this book a success.

http://www.infoq.com

About the Reviewer

Ahmed Ilyas has a BEng degree from Napier University in Edinburgh, Scotland. He has
majored in software development and has 17 years of professional experience in the field.

After leaving Microsoft, he ventured into setting up his own consultancy company, which offers
the best possible solutions for a multitude of industries and provides real-world answers to
those problems. He uses the Microsoft stack to build these technologies and to bring in the
best practices, patterns, and software to his client base to enable long-term stability and
compliance in the ever-changing software industry, improve software developers around the
globe, pushing the limits in technology, and to enable the developers to better themselves.

This has been awarded the MVP in C# by Microsoft thrice for providing excellence and
independent real-world solutions to problems faced by developers.

With 90% of the world using at least one form of Microsoft technology, his motivation and
inspiration come from the breadth and depth of knowledge he has obtained from his research
and the valuable wealth of information and research at Microsoft.

He has worked for a number of clients and employers. The reputation that he has earned has
resulted in him having a large client base for his consultancy company, Sandler Ltd (UK) and
Sandler Software (USA). His client base includes clients from different industries, ranging from
digital media to medical and beyond. Some of his clients have included him on their approved
contractors/consultants list; these include ICS Solution Ltd, who have placed him on their
"DreamTeam" portal, and CODE Consulting/EPS Software (www.codemag.com) based in
the USA.

Previously, he has contributed as a reviewer to books by Packt Publishing and wishes to thank
them once again for this great opportunity.

I would like to thank the author and publisher of this book for giving me the
great honor and privilege of reviewing this book. I would also like to thank
my client base and, especially, Microsoft Corporation and my colleagues
over there for enabling me to become a reputable leader as a software
developer in the industry, which is my joy, passion, and pride.

www.codemag.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface	 v
Chapter 1: Exploring Visual Studio 2015	 1

Introduction	 1
Synchronizing settings	 2
Touring the VS2015 IDE	 4
Managing the editor windows	 14
Finding Visual Studio commands	 18
Searching and navigating	 21
Navigating in depth	 24

Chapter 2: Getting Started with Universal Windows Platform Apps	 29
Introduction	 30
Enabling UWP app development on Windows 10	 31
Creating a UWP app	 34
Customizing your UWP app	 38
Using the UWP app simulator	 45
Defining capabilities and contracts	 53
Analyzing your app's performance	 62
Packaging your UWP app	 65
Validating your Windows Store app	 71
Submitting your app to the Windows Store	 74
Distributing your UWP app through sideloading	 77

Chapter 3: Web Development	 81
Introduction	 81
Getting started with a Bootstrap-based SPA	 82
Making the most of Browser Link	 87
Adding bundling and minification to JavaScript and CSS files	 91

ii

Table of Contents

Managing packages with NuGet	 96
Fortifying JavaScript applications with TypeScript	 104
Using Visual Studio for Node.js development	 108

Chapter 4:.NET Framework Development	 115
Introduction	 115
Creating a task-based WCF service	 116
Unit testing .NET applications	 120
Sharing class libraries across different runtimes	 126
Detecting duplicate code	 131
Exploring C# through the Immediate window	 136

Chapter 5: Debugging Your .NET Application	 141
Introduction	 141
Putting Diagnostic Tools to work	 142
Maximizing everyday debugging	 149
Debugging on remote machines and tablets	 156
Debugging code in production with IntelliTrace	 166
Debugging parallel code	 174
Visualizing concurrency	 179

Chapter 6: Asynchrony in .NET	 185
Introduction	 185
Making your code asynchronous	 186
Understanding asynchrony and Universal Windows Platform apps	 193
Using asynchrony with web applications	 199
Working with actors and the TPL Dataflow library	 203

Chapter 7: Unwrapping C++ Development	 209
Introduction	 209
Using XAML with C++	 210
Unit testing C++ applications	 215
Analyzing your C++ code	 221
Using a custom ruleset	 225
Edit and Continue C++ style	 227
Working with DirectX in Visual Studio 2015	 230
Creating a shader using DGSL	 235
Creating and displaying a 3D model	 240
Using the Visual Studio Graphics Diagnostics	 243

iii

Table of Contents

Chapter 8: Working with Team Foundation Server 2015	 249
Introduction	 249
Creating a new TFS project	 251
Managing your work	 259
Using local workspaces for source control	 268
Performing code reviews	 276
Getting feedback from your users	 283
Using Git for source control	 290
Taking Advantage of Git's command line	 299

Chapter 9: Languages	 305
Introduction	 305
Fortifying JavaScript applications with TypeScript	 306
Integrating Python into Visual Studio	 309
Integrating Python with .NET	 313
Targeting Linux with Visual Studio 2015	 316

Chapter 10: Final Polish	 323
Introduction	 323
Creating installer packages with InstallShield LE	 323
Creating custom installer packages	 328
Submitting UWP apps to the Windows Store	 335
Creating Visual Studio add-ins and extensions	 338
Creating your own snippets	 342

Index	 347

v

Preface
The release of the Visual Studio 2015 Cookbook marks the third edition of a book series
devoted to provide the reader with an informative tour of how Visual Studio 2015 (VS2015)
can make your development work easier. This newest release of Visual Studio demonstrates
Microsoft's renewed drive to make the best programming tools it can, regardless of the device
and platforms that a developer is targeting. If that target happens to run Windows, then all the
better—but it is no longer a hindrance if it does not.

This book is significantly updated and rewritten so that the reader can make use of the
incredible array of new tools and devices supported by VS2015. With the greater number of
platforms supported, it can be easy to overlook the new features offered in VS2015. One of
the main goals of this book is to show developers the new ways in which they can put VS2015
to work in their daily development.

This book will begin by providing a guided tour of the main editor windows used in VS2015,
which should be of interest to all users regardless of their desired language. After that, the
book will show how different platforms can get work done faster with VS2015, whether it is for
web programming, .NET, or classic C++ application development.

VS2015 lets you use the languages you are comfortable with while you target the platforms
needed to support your customers. Taking advantage of the information provided in this book
will help you maximize the tools VS2015 provides.

Choosing the right version of Visual Studio 2015
With V2015, Microsoft has greatly simplified the different offerings it provides. If you work on
open source projects or independent developers, Visual Studio Community 2015 is free of
charge and probably your best choice. Professional developers working in corporate settings
or larger software companies should choose between Visual Studio Professional and Visual
Studio Enterprise. If the price is of no concern, then Enterprise is a better choice as it includes
all the available features. Note that Visual Studio Premium is no longer available for VS2015.

Preface

vi

Different editions of VS2015 can be installed side by side, so feel free
to install any/all of the above as needed for your work.

What this book covers
Chapter 1, Exploring Visual Studio 2015, starts us off by taking a tour of the new features
found in the editor itself. VS2015 makes some key refinements, and this chapter covers them
all, ranging from logging in to project navigation.

Chapter 2, Getting Started with Universal Windows Platform Apps, examines the development
process for UWP apps for Windows 10 powered systems. The full process of obtaining a
developer license to build, test, and publish an app is covered here.

Chapter 3, Web Development, covers several areas of web development and how VS2015 can
assist you. Here, we'll cover the multi-browser preview, as well as editor enhancements that
can benefit HTML5, CSS, and JavaScript programmers.

Chapter 4, .NET Framework Development, focuses on developing applications that run on
.NET. Desktop application development is still a key market, and this chapter shows different
ways in which VS2015 can help.

Chapter 5, Debugging Your .NET Application, profiles the various ways to debug your .NET-
based code. This includes dealing with troubleshooting the code running on a device other
than your development workstation.

Chapter 6, Asynchrony in .NET, deals with the use of asynchronous code to provide more
responsive applications and discusses how it may benefit your applications.

Chapter 7, Unwrapping C++ Development, tackles the elder statesman of languages served
by VS2015. Several recipes are provided to benefit your C++ usage—some of the areas
covered include unit testing, DirectX, and the Visual Studio Graphics Debugger.

Chapter 8, Working with Team Foundation Server 2015, describes how Team Foundation
Server can benefit your productivity. As modern source control continues to evolve,
information on using Git is included.

Chapter 9, Languages, takes a moment to look at some languages other than .NET and C++,
which include TypeScript and Python. Python has a long and successful history, and it is now a
first-class citizen of Visual Studio. A new capability for VS2015 is Linux-based targets, and this
is also explored here.

Chapter 10, Final Polish, in this final chapter, we will cover some ways to extend Visual
Studio's abilities, and we will get your app ready for consumption by end users.

Preface

vii

What you need for this book
To follow the recipes in this book, you will need a copy of Visual Studio 2015. Some of the
features covered in the recipes may only be available in specific editions of Visual Studio.
Thanks to Microsoft's new product lineup, most of the recipes are compatible with the freely
available Visual Studio Community. It will be noted if a given recipe has additional requirements.

If you wish to follow one of these recipes, and you do not have the right edition, trial versions
for premium versions can be downloaded from the Microsoft website, which enables you to
check whether a particular feature will benefit your project.

For any of the recipes that deal with Universal Windows Platform (UWP) applications, you will
need to use Windows 10 as your operating system.

Who this book is for
If you already know your way around the previous versions of Visual Studio, if you are familiar
with Microsoft development, and if you're looking to quickly get up to speed with the latest
improvements in the 2015 edition of Microsoft's number one development tool, this book is
for you.

If you are an experienced developer who has used Eclipse or XCode, you should also be able
to find this book useful to explore the differences between your tools and the latest ones that
Microsoft has to offer.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

viii

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

var http = require('http')
var finalhandler = require('finalhandler')
var serveStatic = require('serve-static')

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

class BankVault
{
 public:
 BankVault();
 ~BankVault();
 int AddFunds(int amount);
 void StageHeist();
 int CurrentFunds();
};

Preface

ix

Any command-line input or output is written as follows:

print('Hello World')

a=32

b=64

print("Results: " + (b+a))

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The arrow in the following
screenshot indicates where the Sign in option is located."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/VisualStudio2015CookbookSecondEdition_ColorImages.pdf.

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/VisualStudio2015CookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/VisualStudio2015CookbookSecondEdition_ColorImages.pdf

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Exploring Visual

Studio 2015

In this chapter, we will cover the following topics:

ff Synchronizing settings

ff Touring the VS2015 IDE

ff Managing the editor windows

ff Finding Visual Studio commands

ff Searching and navigating

ff Navigating in depth

Introduction
The user interface in Visual Studio 2015 (VS2015) is very similar to that of Visual Studio
2013 (VS2013) from an appearance standpoint. However, existing users will still want to
browse this chapter to make sure they don't overlook subtle changes. New users will want to
read this chapter carefully so that they are able to easily navigate the Integrated Development
Environment (IDE).

The goal of this chapter is to provide all users of VS2015 with the various tools that will
benefit developers working on any project type. Having an in-depth familiarity with the IDE
will make learning the language-specific functionality much easier.

Exploring Visual Studio 2015

2

Synchronizing settings
Given the prevalence of cloud computing, and the central role the Internet has in daily life,
it should be no surprise that nearly all Microsoft products utilize some form of an online
account, and VS2015 is no exception. If you have an MSDN account, Microsoft recommends
that you use it to log in to Visual Studio. If you don't have one, or would prefer to use a new
account, you can create one at https://login.live.com/. A new account can be useful
if you wish to separate your personal and professional settings.

Settings synchronized under Visual Studio are shared by all applicable product types, so if
changes are made in the Visual Studio Community edition, they would replicate to Visual
Studio Enterprise edition when synchronized. Similarly, if changes were made in Visual Studio
Express for Web, they would propagate to Visual Studio Community if so enabled.

Settings receive a one-time migration from VS2013 to VS2015. Any
subsequent changes made under VS2015 will not propagate back to
VS2013 products.

New to VS2015 is the implementation of single sign-on. Now from the
moment a user first authenticates with an account on one of Microsoft's
cloud services (VS2015, Azure, Visual Studio Team Services, and others),
additional log-in requests will be reduced or eliminated where possible.

In this recipe, we will look at how this synchronization works, and what it will coordinate on
your behalf.

Getting ready
To explore, launch your copy of Visual Studio 2015.

How to do it…
If you are not prompted to sign in at start-up, you can always sign in from within Visual Studio.
The arrow in the following screenshot indicates where the Sign in option is located:

https://login.live.com/

Chapter 1

3

VS2015 will synchronize the following settings for you:

ff Environment: This section consists of several sub-items.

ff General: This includes settings for the chosen color theme (blue, dark, light, and so
on), and case styling for the menu bar (whether VS2015 should use title case styling
or all capital letters).

ff Fonts and Colors: This includes preferences for the display text used throughout the
editor.

ff Keyboard: This includes user-defined keyboard shortcuts and the selected keyboard-
mapping scheme.

ff Startup: This indicates what should display when VS2015 opens (startup page, last
solution, nothing, and so on).

ff Tabs and Windows: All settings shown here are for tool windows and editor tabs.

ff Text Editor: A multitude of settings, including whether to use tabs versus spaces,
word wrap, scroll bar placement, and so on.

ff XAML Designer: Not seen in the screenshot that follows Document view, orientation,
and other settings used with XAML Designer.

ff Environment Aliases: Not seen in the screenshot that follows; applies to premium
versions only. Commands defined in the command window (Ctrl + Alt + A).

Custom-defined window layouts defined under Window | Manage Window Layouts are also
synchronized. The following screenshot highlights the synchronized categories as shown
under Tools | Options:

Exploring Visual Studio 2015

4

Take advantage of the usability enhancements in the Options dialog. Use
the integrated search box (once Options is opened, the hotkey is Ctrl + E)
for specifically searching within the Options dialog box. Also note that the
dialog is now resizable, making it much more useful for viewing settings
that have lengthy configuration options.

How it works…
Microsoft stores a copy of your settings on their servers. A constant Internet connection is not
required to use Visual Studio, but your settings will not synchronize until you are reconnected.
If a connection is not available, you cannot log in until Internet access is restored, but Visual
Studio will still be usable. Taking it one step further, VS2015 remembers if you were logged
in the last time when you closed the program, so your last known settings will be available, as
they are stored locally.

There's more…
All synchronization options are configurable by navigating to Options | Environment |
Synchronized Settings, and you may opt to have any combination of the preceding categories
synced. Choosing what to sync is specific to each machine, and is not transferred. By default,
VS2015 will attempt to synchronize all settings if you are logged in with a Microsoft account.

Touring the VS2015 IDE
It is a great idea to familiarize yourself with the main components of the VS2015 IDE, since
that is where you will spend most of your time. Users coming from VS2013 will see many
similarities, but there some new details that you will find useful to review. Let's take a look at
what is available in this recipe.

Getting ready
All you will need for this recipe is a copy of VS2015 so that you can follow the location of the
different options. The next screenshot provides an overview of what will be covered:

Chapter 1

5

The legend for the highlighted items in the preceding screenshot is as follows:

ff The user's account entry/selection is indicated by 1

ff The notification center is indicated by 2

ff The Send Feedback menu is indicated by 3

ff The scrollbar thumbnail is indicated by 4

ff CodeLens (Professional and Enterprise editions only) is indicated by 5

ff The editor window controls are indicated by 6

ff Git version control indicators (for Git-based projects; not available on Community)
are represented by 7

Exploring Visual Studio 2015

6

How to do it…
Over the next few pages, we will take a first-hand look at how these areas of the Visual Studio
IDE can be used. You may follow along with your own project, or just create a new project
using one of the templates provided with VS2015.

Send Feedback
This screenshot shows the choices available when the Send Feedback menu is accessed by
clicking on the Send Feedback icon (represented by a person with a chat balloon):

The menu shown in the preceding screenshot provides an immediate way to send feedback to
Microsoft from within VS2015. From this menu, you can choose from the following actions:

ff Report a Problem...: Provides Microsoft with information about a bug you have
experienced. (See the next screenshot for this dialog box.)

ff Provide a Suggestion...: Uses your current web browser to navigate to the VS2015
area on Microsoft's UserVoice site to request a new feature or change to V2015.

ff Rate This Product...: Uses your current web browser to navigate to a web-based
product survey for VS2015.

ff Settings...: Allows you to view and change whether or not you will send information to
Microsoft as part of the Visual Studio Experience Improvement Program.

Chapter 1

7

Notifications
On the far left of the Quick Launch field is a flag icon that indicates product notifications
(if any):

In the preceding screenshot, you can see that three updates are pending. The notification
flag is designed to provide an unobtrusive alert when updates are available to VS2015 and
its installed packages. Notifications listed in the sidebar are color-coded with yellow and red,
which are used to indicate medium and high priority respectively.

Exploring Visual Studio 2015

8

Examples of notifications that could appear include the presence of Visual Studio updates,
updates to installed extensions or samples, or notice indicating that the VS2015 product
license is invalid. Notifications may be dismissed en masse, and once dismissed, they do
not reappear:

If you would like to review dismissed Notifications, navigate to
Tools | Extensions and Updates. Select Updates and review
the Product Updates that are available, as shown in the
preceding screenshot.

User account
If you have already signed in to VS2015 with a Microsoft account (refer to the Synchronizing
settings recipe), this area displays the graphical avatar, along with your account's display
name. The following screenshot shows the difference in the display that occurs when you
log in:

The Sign in command provides a way to sign in if you have not done so, or if you wish to
change the active account being used. In the preceding screenshot, the left-hand side has the
text Sign in, and a grey icon indicates that the user has yet to log in. On the right-hand side,
you can see the difference after the user has logged in, as the user's name and avatar has
replaced the Sign in text.

Chapter 1

9

Scroll bar thumbnail
Similar to other code editors that you may be familiar with, VS2015 has a configurable
scroll bar in its main editor window. It can be customized to show your overall position in a
source file, and provide a tool tip that lets you examine code elsewhere in your current file
without changing your current location. The new option is called map mode, as opposed
to the historical behavior, which is called bar mode (which follows the traditional scrollbar
appearance and behavior). All aspects of map mode are customizable, including whether it
appears at all, its width (narrow, medium, or wide), and the ability to show the preview tool tip.

The following screenshot shows these features in action:

The preceding screenshot shows the scroll bar configured to be in map mode. The first arrow
(marked as 2) indicates what is being displayed in the editor relative to the overall source file.
The second arrow (marked as 3) points to the preview tool tip that appears when your mouse
cursor hovers over the scroll bar.

Exploring Visual Studio 2015

10

The scroll bar's pull-down feature (marked as 1) remains, and when used to split the main
window, it allows for two independent viewing panes of the same file, each of which can have
its own independent vertical scroll bar. In split view mode, both the vertical scroll bars share
the same options (width, bar mode versus map mode, and so on).

The following screenshot lists all the options available for configuring the scroll bar's
functionality. It can be accessed directly by right-clicking on the vertical scroll bar and
selecting Scroll Bar Options…. Alternatively, it is accessible in the main Options dialog box of
VS2015 by navigating to Tools | Options with the scroll bar settings listed under Text Editor
| All Languages | Scroll Bars. For additional customizations, you may set language-specific
settings (C/C++, C#, and so on) for the scroll bar in the Options dialog box if desired:

Peek Definition
Visual Studio has had the Go To Definition (F12) option for several versions now. When we
right-click on a method or move the cursor to it, selecting the Go To Definition option will
automatically bring you directly to the file with the corresponding definition. While you can
easily navigate back and forth with (Ctrl + -) and (Ctrl + Shift + -), sometimes changing the
open file is not what you would like to do.

Chapter 1

11

Enter Peek Definition (Alt + F12). This allows you to select a method and look it up, but
instead of switching to the appropriate file, VS2015 will create a mini window within your
current editor. The following screenshot shows the results of using the Peek Definition
option on the PasswordSignInAsync() method:

Sequential peeks can be performed, each opening via a tabbed interface. Navigation between
these tabs (represented by circles / marked by the arrow in the preceding screenshot) can be
done via the mouse or keyboard: peek forward (Ctrl + Alt + =) and peek backward (Ctrl + Alt +
-). The Peek Definition window uses the same scroll bar behavior as that of the parent editing
window, and this behavior can be changed in either window by right-clicking on the scroll bar
and selecting Scroll Bar Options...

CodeLens (Visual Studio Professional and Enterprise only)
CodeLens, also known as code information indicators, debuted in VS2013 but was limited to
the Ultimate edition. In response to user feedback, Microsoft has made it available to both
VS2015 Professional and Enterprise. Activated by default, CodeLens provides real-time
meta-information about the file you open in your main editor window:

Exploring Visual Studio 2015

12

As illustrated in the preceding screenshot, shown in line with your code will be light-colored
term references, and the name of the developer with the time since the most recent commit.
The references term indicates the number of places a method is used, and can also display a
pop-up window upon hovering the mouse over the term that shows where it has been used. If
unit testing is part of the project, the number of passing and failing tests can be shown.

VS2015 provides additional functionality using either the source control provided by Team
Foundation Server (TFS) or Git. This enables CodeLens to display the most recent author of
the method in question, and clicking on that name will pop up a details window listing the
change history.

If you would prefer to keep your hands on the keyboard, holding down Alt will bring up hotkeys
that can be used to select among the features discussed earlier. The following screenshot
illustrates these options, with Alt + 2 opening a pop-up dialog box listing references for the
selected method, and Alt + 5 displaying information about who last modified the code. Alt + 7
provides the revision history:

New in VS2015 is the addition of file-level indicators for supported file types. When Visual
Studio isn't able to offer details at the code element level, file-level indicators provide similar
(although, not identical) functionality. A file-level indicator is shown at the bottom of the editor
window when available, as indicated by the arrow in the following screenshot:

CodeLens provides code element-level indicators for C# and Visual
Basic files. All other source file types receive file-level indicators.

Chapter 1

13

The display options for CodeLens are labeled as Code Information Indicators in the Options
dialog box, and can be found under Text Editor | All Languages | Code Information
Indicators. Alternatively, you may simply right-click on the indicator line, and choose the
CodeLens options:

Code Maps (Visual Studio Enterprise only)
VS2015 Enterprise provides the ability to generate and use a code visualization tool, which
Microsoft calls Code Maps, to provide a representation of the open project. The following
screenshot shows Code Maps in action:

Exploring Visual Studio 2015

14

Code Maps can be created and used in VS2015 Enterprise, but VS2015 Professional and
VS2015 Community can only consume them. This means that users of Professional and
Community can interact with the maps, and add comments/flags as they are reviewed. Code
Maps can be activated in an editor window via Ctrl + `, which is Ctrl plus the back quote key
(typically found sharing a key with tilde). It may be also called by right-clicking in the editor
window on a particular method or class that you want to map.

Once generated, the map may be manipulated in several ways, including zooming and the
ability to expand to show related elements. Individual elements may be double-clicked so
that they are brought up in the code editor for closer analysis. An element may also be right-
clicked when in the Code Map for further navigation options (Go To Definition, Show Base
Types, and so on) or to be commented on. This is particularly helpful for large or complex code
bases where a map can assist in comprehension by visualizing the relationships and adding
commentary external to the source code.

The Code Map indicates your position on the map from the active editor window with a green
arrow icon. In the preceding example's screenshot, the editor is in the Vehicle class, which
is pointed to on the Code Map by the green chevron (relationship marked in the preceding
screenshot).

See also
ff Refer to the Choosing the right version of Visual Studio 2015 section in the Preface

Managing the editor windows
One of the advantages of using a graphical IDE is the ability to have multiple windows open,
so learning how to customize their size and layout in Visual Studio is important for maximizing
their productivity. Given the multitude of windows (editors, debugger output, and so on) Visual
Studio has open, it can be helpful to learn how to place them where you want so that you can
focus on your work without being slowed down by clutter.

Tab pinning allows you to mark individual windows so that they stay open while you
navigate through the editor. Previewing documents is a useful way to navigate across
several files without cluttering your tabs with several open documents. This recipe will
explore both options.

Getting ready
To follow along, open a solution of your choice. The following walkthrough uses a brand new
Single Page Application ASP.NET 4.6.1 Template, but the concepts apply to any project.
Ensure that the Solution Explorer window is open.

Chapter 1

15

How to do it…
The following steps will show how the position of open windows can be changed to your liking.
Let's get started:

1.	 In the Solution Explorer window, locate the AccountViewModels.cs file in the
project folder (under Models), and double-click on it. The source file will open in the
main window area, as in the previous versions of Visual Studio; however, you will now
notice that the document tab features a pin icon next to the tab name, as you can
see in the following screenshot. You'll use that pin in just a few steps:

2.	 Using the Solution Explorer window, open both the IdentityModels.cs and
ManageViewModels.cs files by double-clicking on them. You should now have
three documents open with their tabs showing in the tab well (this refers to the row of
tabs for each open document in the editor), as shown in the following screenshot:

3.	 Click on the ManageViewModels.cs tab to select it, and then click on the pin. The
pin will change to point downwards, indicating that the document is now pinned.
Visual Studio will always keep pinned tabs visible in the tab well. These pinned tabs
will remain visible, even when Visual Studio has to start hiding unpinned tabs to save
screen display space. The pinned document tab will be moved to the left next to any
other pinned documents you may have open:

Exploring Visual Studio 2015

16

4.	 Right-click on the AccountViewModels.cs document tab, and click on the
Close All But This option to close all open documents except for the one currently
selected. This will include closing any pinned documents, which are shown in the
following screenshot:

There is a related option Close All But Pinned, which is useful when
you would like to only keep pinned files open.

5.	 Reopen both files, ManageViewModels.cs and IdentityModels.cs by
double-clicking on them in Solution Explorer.

6.	 Notice that in VS2015, like in VS2013, double-clicking on a document tab of your
choice gives that tab focus, the same as single-clicking on it. Previously, double-
clicking on a document tab would cause it to float.

7.	 Now lets see how the preview window works in conjunction with the tabs we already
have open. Press Ctrl + Shift + F to open the Find in Files dialog box. Enter some
search text (we will use login) in the Find what field, and ensure that Look in is set
to solution; then click on the Find All button.

8.	 In the Find Results 1 window, select a result from a file that is not already open; we
will use AccountController.cs.

9.	 The file will open in the preview tab located on the right-hand side of the tab well.

10.	 The preview tab shows the contents of the currently selected document if it is not
already open. In the Find Results 1 window, select a different file. This new file will
now appear in the preview tab, rather than clutter your tab well with open files as you
search for the exact file that you want.

11.	 Assuming you now have found what you are looking for, and want to keep the current
file in the preview tab open, either click on the Keep Open icon on the preview tab,
or start making changes to the contents of the file. Any document that is changed in
the preview tab is automatically promoted to a normal tab. The following screenshot
illustrates using the Keep Open icon to promote a document in the preview tab:

Chapter 1

17

Visual Studio will move the document from the preview tab area into the main tab area. The
color of the tab will also be changed from blue to yellow (exact colors depend on the theme
that you have selected) indicating that the tab is now a normal document tab.

How it works...
Pinning documents works much like pinning does in any other part of Visual Studio, and is
very handy for keeping the documents that you are working on regularly within easy reach,
especially when you have many documents open at once.

The preview document tab is a great way to prevent tab clutter, and is very useful while
debugging deeply-nested code. You may recall that Go To Definition is one function that uses
the preview document tab. For example, multiple source files may be opened as you trace a
program's operation across methods and classes. The preview document tab helps you cycle
quickly through these files, while preventing the tab well from filling up with documents that
aren't needed for more than a few moments.

There's more...
As you may expect, there are more ways to use and customize the behavior of the document
tabs in Visual Studio.

Single-click preview in Solution Explorer
The preview tab isn't restricted to just the Find Results window. It can also be used from
within Solution Explorer. If you activate the Preview Selected Items button in the Solution
Explorer toolbar, then every item you click on will be opened in the preview tab automatically.
The Preview Selected Items button is a toggle button. If you want to disable the behavior,
then you only need to click on the button to deselect it, and the preview behavior will be
turned off:

Exploring Visual Studio 2015

18

Customizing tab and window behavior
Navigating to Tools | Options | Tabs and Windows in Visual Studio will show the following
dialog box:

There are a number of options here that let you control how the tabs behave. Choices like
Show pinned tabs in a separate row or Insert new tabs to the right of existing tabs may
be helpful to you. Feel free to experiment with the Tabs and Windows settings to get Visual
Studio working the way you like it most.

Finding Visual Studio commands
The goal of the Quick Launch box is to provide a keyboard-friendly way of accessing the
extended features of Visual Studio without having to clutter the central interface. Keyboard
shortcuts are a great way to speed up tasks, but it can be difficult to learn and remember
while first starting out or while exploring a new area of Visual Studio. The Quick Launch option
addresses this by providing a way to locate different areas of the program and learn keyboard
shortcuts, and providing a keyboard-centric way to access commands.

Getting ready
Simply start VS2015.

Chapter 1

19

How to do it…
To try it out, start with pressing Ctrl + Q, then begin typing the topic/subject that you are
looking for, as shown in the following screenshot:

What is important to notice is that Quick Launch can do even more than what may be obvious
at first glance. In this example, notice that open was the term entered as a search term.
Quick Launch produces a list of results to this query, grouped by the following categories:
Most Recently Used, Menus, Options, and NuGet Packages. As you can see, this list of
results is more than just commands; it includes various areas in the Options dialog as well as
NuGet Packages.

You can immediately navigate through the search results with the arrow keys on the keyboard
if the desired result is immediately available. You can access a command directly from this
list, and where available, the accompanying keyboard hotkey for a command will be listed. In
this way, you can learn new shortcuts while doing your daily work.

Exploring Visual Studio 2015

20

In the next example, jquery was entered into Quick Launch, producing a list of results that
includes context-specific file menu commands (Save and Save As), the option to switch to an
open editor window with jquery in the file name (jquery-1.10.2.js), or to search NuGet
for packages using jquery as the search term.

The following screenshot shows the availability of these various options:

There's more…
The Quick Launch option can go further; let's return to the results of the open term.
Note that at the bottom, the Quick Launch option indicates that Ctrl + Q can index through
additional views. Additional presses of Ctrl + Q will toggle the list of results to show only
results from an individual category, in this case Menus, Options, or NuGet Packages. A
final press of Ctrl + Q will return to displaying all of the available results. This ability to toggle
through categories is of particular usefulness when your Quick Launch list is lengthy, and you
would like to ignore unnecessary categories that are cluttering the list of results. Pressing Esc
once will clear the search results in Quick Launch, and pressing Esc again will return you to
the open file in your editor.

Using the Command Window / Command Aliases
The Command Window (accessible via Ctrl + Alt + A, and available on
premium editions of VS2015) in the preceding screenshot, allows you to
keep your hands on the keyboard while quickly accessing commands via
an integrated command prompt window. As Microsoft ships Visual Studio
preloaded with command definitions, entering an alias will display all of the
currently defined commands, and the alias cmd action (where cmd is the
desired name of your alias, and action defines what should happen) will allow
you to define your own. You can see from the following screenshot that typing
bl is much faster than typing Debug.Breakpoints. Note that, by default,
command aliases are stored as part of your synchronized profile.

Chapter 1

21

Searching and navigating
Visual Studio provides many ways to make maneuvering through your code easier and more
efficient. Let's take a look at a few of them.

Getting ready
To best see this in action, open a project that has multiple files available for editing. This can
be the sample project or one of your own choice. Once it is open, simply open a couple of
source files.

How to do it…
Pressing Ctrl + Tab provides easy access to a couple of different ways to navigate around
Visual Studio. If Ctrl + Tab is pressed and immediately released, Visual Studio will alternate
between the two most recent files that you have opened in the editor window, providing a
quick way to move back and forth. If Ctrl + Tab is pressed and Tab is released, a pop-up
window will appear. Continue to hold down Ctrl when it appears, and then arrow keys can be
used to maneuver around the list of all active files and windows. To make a selection, either
release Ctrl while highlighting the desired target, or while holding Ctrl, press Enter.

Exploring Visual Studio 2015

22

This is shown in the following example screenshot, where active files currently open in Visual
Studio are shown in the right-hand side column, while open tool windows are shown in the
left-hand side column:

There's more…
If you would rather use a keyboard mouse hybrid approach, the window Ctrl + Tab produces,
and also supports, selection by mouse. Start in the same manner as done earlier in this
recipe, holding down Ctrl + Tab to bring up the window. Release Tab while holding down the
Ctrl key, and then use your mouse to left-click directly on the file you would like to switch to.

Quickly searching your code
Searching a project file to find specific strings of text is a common task regularly performed by
developers. Visual Studio tries to make this easy by offering specific tools to find and replace
text at various levels of your code base. Several options are available under Edit | Find and
Replace, including Quick Find, Quick Replace, Find In Files, and Replace In Files.

The Incremental Search option (Ctrl + I) is a quick way to search within the
file you are currently editing. When activated, a Find dialog box appears in
your active editor window, allowing you to enter search terms.

Chapter 1

23

The Quick Find (Ctrl + F) and Quick Replace (Ctrl + H) options share a common dialog
box. Both provide the ability to search the current code block, the current project, all open
documents, or the entire solution. If your search options include the currently open file, the
vertical scroll bar will highlight any matches found. This provides quick visual feedback on
the frequency of a search item:

Another feature that Quick Find and Quick Replace share is the ability to set the following
search options: match case, match whole word, and whether or not regular expressions can
be used. The use of regular expressions allows for more complex queries to be used, allowing
users to extract more detailed information from their searches.

The Find In Files (Ctrl + Shift + F) and Replace In Files (Ctrl + Shift + H) options provide a
more advanced method of conducting searches across a code base. They expand on the
functionality offered by the quick tools by allowing you to specify the file types that should be
searched (for example, all HTML and JavaScript files), and provide the ability to display the
results of an operation in a separate window.

When using Quick Find/Replace or Find/Replace in Files, Visual
Studio will automatically prefill the word or character nearest your
cursor into the search box.

Exploring Visual Studio 2015

24

In the preceding example screenshot, a text string was used to search the entire solution
using the specified file mask. The results were outputted to Find Results 1, which is a live
window. This means that you can click on a line with a particular search result, and you will go
directly to that file where the match was made. Notice that some of the details provided in the
results include the line number and context of the value being searched for.

Navigating in depth
Solution Explorer in VS2015 provides a range of features intended to make navigating and
searching within your solution effective without overcomplication. Knowing how to efficiently
move among solution files will only help your productivity, so let's take a look at what is
available.

Getting ready
Open the same web application solution that we have been using for the other recipes in this
chapter, or choose a solution of your own. The concepts here will be of use in any project type.

How to do it...
1.	 We'll begin by navigating through our solution. Locate the Global.asax file in the

web app solution, and click on the arrow next to it so that its contents are displayed.
As you would expect, there is a code-behind file:

2.	 Look at the Global.asax.cs file. You can see that there is a small arrow next to it,
just as there was for the Global.asax page. Click on the arrow:

Chapter 1

25

3.	 VS2015 expands the file to show its contents, and in the case of a code-behind
file, these contents are the class definitions it contains. Classes have methods and
properties in them, so click on the arrow next to the MvcApplication class to see
the methods inside it. In this case, there is a method called Application_Start(),
as shown in the following screenshot:

4.	 Now select the AccountController.cs file from the project, and expand it to see
its contents. You will see that there is a class definition (AccountController), as
shown in the following screenshot:

5.	 Right-click on the AccountController class, and click on the Base Types option to
see what class this is based on:

Exploring Visual Studio 2015

26

6.	 The Solution Explorer window will change views to show you the classes that
AccountController is derived from, as shown in the following screenshot
(with class hierarchy fully expanded). Click on the back button (as marked by
the arrow) to return to the standard Solution Explorer view:

7.	 Right-click on the AccountController class, and choose the Is Used By
option to see where the interface is currently being used. As with the Base Types
or Derived Types options, you will see Solution Explorer change its context to only
show the interface and where that interface is used in the solution, including line
and column numbers:

8.	 Return to the regular Solution Explorer view by clicking on the home button:

Chapter 1

27

9.	 At this point, you know how to navigate using Solution Explorer, and you have already
used the existing Navigate To feature in the Finding Visual Studio commands recipe
while opening a file. With the enhancements to Solution Explorer, you can locate files
in much the same way as with the Navigate To command, albeit with a slightly different
user experience. Click on the Search Solution Explorer textbox at the top of the
Solution Explorer window, or use the default shortcut key: Ctrl + ; (Ctrl + semicolon).

10.	 Enter models in the textbox, and wait a moment for the search results to display. The
results should look similar to the following screenshot if you are using the sample
project. You can see, not only the filenames that match the search term, but also
any matching references, classes, and methods:

How it works…
The Solution Explorer search tool provides similar results to the Navigate To feature, but
having the location of a match represented in the tree view makes it very easy to quickly
identify the specific match you are interested in.

There's more...
It's worth mentioning a few other things about searching within your solution.

Exploring Visual Studio 2015

28

Navigation behavior
Assuming you have the Preview icon enabled for Solution Explorer, as you navigate using
Solution Explorer to various classes and methods, you may have noticed that the document
preview tab updates and shows exactly where the selected class, method, or property was
declared. This makes it easy to see what the code is doing without the need to specifically
open the file, or scroll through a source file to see the code which is actually inside a method,
class, or property. The Preview icon's location in the Solution Explorer window is shown in the
following screenshot:

CSS, HTML, and JavaScript files
Even though it's possible to extract the structure from CSS, HTML, and JavaScript files,
Solution Explorer doesn't show the internal structure of these files. You can navigate to the
source file, but not to any of its contents.

29

2
Getting Started with

Universal Windows
Platform Apps

In this chapter, we will cover the following topics:

ff Enabling UWP app development on Windows 10

ff Creating a UWP app

ff Customizing your UWP app

ff Using the UWP app simulator

ff Defining capabilities and contracts

ff Analyzing your app's performance

ff Packaging your UWP app

ff Validating your Windows Store app

ff Submitting your app to the Windows Store

ff Distributing your UWP app through sideloading

Getting Started with Universal Windows Platform Apps

30

Introduction
Windows 10 marks the second radical departure from the traditional Windows desktop
applications in as many releases. Whereas Windows 8.x saw the introduction of the modern
interface and major support for touch-based apps through Windows Runtime (WinRT),
Windows 10 has introduced the Universal Windows Platform (UWP). An evolutionary change
from the Windows 8 apps, UWP apps run on any device that runs Windows 10. This includes
tablets, desktop PCs, hybrid systems, and phones. Taking advantage of UWP will let you
focus on writing solid code while having your app automatically benefit from the multitude of
hardware devices that exist.

The UWP approach works by targeting one or more device families rather than a specific
operating system. Your app can elect to only use the base APIs provided by UWP that are
found on all devices, or it can augment those with the additional device-specific APIs.
Choosing which APIs to use can be a decision made during design (such as targeting the
Xbox specifically), or it can be done at runtime, adjusting functionality to suit the device that
your app is currently running on. This means that a single UWP app could be run across the
desktop, phone, and tablet environments, and dynamically adjust its user interface to its
current host device.

By targeting the UWP, developing an app that can be used across multiple device families
is easier. And providing this flexibility makes it more valuable to your users, who can access
the app on the device that they prefer. When you decide to support a new device family, core
functionality can be used as is, shortening your development time as only APIs specific to that
platform have to be considered for implementation.

The UWP supports several device families. That includes the following:
ff Traditional Windows PC (laptop, desktop, touch-enabled devices,

and the like)
ff Mobile (Windows Phone)
ff Xbox
ff Internet of Things (IoT)
ff Microsoft HoloLens
ff Raspberry Pi 2 (via Windows 10 IoT Core)

Developing UWP apps is rather straightforward: install Windows 10 on your development
machine (or VM), and then install VS2015. Both VS Community and VS Express for Windows
10 support UWP app development, so a paid edition of VS2015 is not required. What's more,
UWP supports several languages so that you can get started using what you already know: C#,
Visual Basic, C++, or JavaScript.

Chapter 2

31

The net result is that Microsoft has positioned UWP both as their response to the
shortcomings of their Windows 8.X app strategy, and as a proactive attempt at allowing
developers a streamlined way to support the wide variety of devices that end-users have
at their disposal. As a developer, you should benefit from the ability to support a number
of different devices from a single code base using a language that you are already
comfortable with.

While Microsoft strongly encourages developers to distribute their
UWP apps through Microsoft's app store, keep in mind this is not
required. You target the devices you want through UWP, and deploy
the finished app the way you want.

In this chapter, we will explore the world of UWP apps from top to bottom. By the end of this
chapter, you should have a solid understanding of the major UWP concepts, and how to
get started with UWP app creation, whether you are building them from scratch or from an
existing codebase.

Enabling UWP app development on
Windows 10

To get started with UWP app development, you must first enable app development for your
Windows 10 device. If you are familiar with app development on Windows 8.X, you will recall
the need to possess a developer license that had to be periodically renewed with Microsoft.
That is no longer the case for UWP apps—once you have enabled development support, you
are good to go. Let's look at how to do that.

Getting ready
Have Windows 10 installed on your computer. VS Express for Windows 10 will install
all the necessary tools for you by default, so if you are running a different version of
VS2015, make sure you have opted to install the Universal Windows App Development Tools
for your particular installation of VS2015. You can rerun the VS2015 installer, if needed, to
install them.

Getting Started with Universal Windows Platform Apps

32

The following screenshot shows the items that should be installed. Note that specific version
numbers may change between the time of writing this and when you read it, but that is okay.
You will want the latest of the following:

How to do it…
Now that we have successfully installed a version of VS2015 suitable for UWP development,
we will enable Developer Mode on our computer running Windows 10. If you are using VS
Express for Windows 10, you will be prompted to do this when you start Visual Studio. If
running Community Edition or one of the premium editions, you will be prompted to do so
when you begin a UWP project. The following screenshot provides an example of this prompt:

Chapter 2

33

To enable Developer mode, you will actually need to make some changes in your system
settings (formerly known as the Control Panel). You can get there by clicking the settings for
developers link shown in the preceding screenshot, or look for Update & Security in your
Windows 10 settings page, and then click on For developers. Once there, you will want to
select Developer mode, as shown in the following screenshot:

For security purposes, Windows 10 will present a confirmation box when you make the
selection, so confirm your intent and proceed.

How it works…
UWP app development simply requires the host device to be in Developer mode. This greatly
simplifies a process that was needlessly convoluted when developing apps for Windows 8.X,
whereby a specific Developer License had to be obtained and renewed. Now a single set-
and-forget setting change can be made, and your system is ready for UWP app development.
Besides your day-to-day development, this makes testing your app easier, as you can easily
enable this setting on test machines (including tablets, virtual machines, and others) without
having to get (and renew) developer licenses for those environments too.

There's more…
When you publish your UWP app to the Windows Store, a user can download and use it
without any system modification. Distributing your UWP app outside of the Windows Store is
possible via the method described in this recipe or via sideloading.

Getting Started with Universal Windows Platform Apps

34

In some Windows upgrade scenarios, upgrading a developer machine
from Windows 8.1 to Windows 10 can result in a situation where the
now-unnecessary Windows Developer License remains. To ensure your
Windows 10 development is hassle free, open a PowerShell command
prompt with Administrator privileges, and run the following command:

unregister-windowsdeveloperlicense

Creating a UWP app
One of Microsoft's goals for UWP apps is to truly make them universal so that they run on any
system based on the core Windows 10 technology—not only traditional desktop computers,
but devices ranging from Raspberry Pi, to Xbox One, to Microsoft's new HoloLens.

In this recipe, we will begin by creating a brand new UWP app to see how the process differs
from Windows 8.X app creation, and the new capabilities made available to us.

Getting ready
Windows 10 is required for this recipe. Visual Studio Community will be used to provide the
example screenshots, but of course, a premium edition or VS Express for Windows 10 would
also be suitable.

How to do it...
The types of app templates available has changed with VS2015 and Windows 10. Let's begin
by creating a Blank App. For our example, we will use C#:

1.	 From Visual Studio's File menu, navigate to New | Project…

2.	 A dialog showing the available project templates will appear. From the Installed
templates category, navigate to the Visual C# | Windows | Universal | Blank App
template:

Chapter 2

35

3.	 You may leave the default project name or change it to one of your choosing, and
click on OK to create the app.

4.	 If you chose to use a source control system, make your selection now. (We will cover
this in greater detail in a later chapter.)

5.	 The newly created project will appear in Solution Explorer, and App.xaml.cs will
open in the document area.

Getting Started with Universal Windows Platform Apps

36

6.	 Press F5 to run the application in the Debug mode. Visual Studio will package and
launch the app for you. As you might expect, we are presented with a blank app window
(marked by 1 in the next screenshot). However, note that in VS2015, executing an app
under debugging mode also runs Diagnostic Tools (marked by the 2):

7.	 When you have finished exploring the app, you can use Shift + F5 as a direct
command to stop debugging. However, you may find that the best approach is to
use Alt + Tab to switch back to Visual Studio, and stop debugging from there.

How it works…
Those familiar with app development under Windows 8.X and VS2013 are no doubt wondering
what happened to the usual templates. Those of you new to UWP app creation are wondering
why the app is blank. In VS2015, the various types of templates with predefined GUI elements
have been removed, in favor of some key starting points to which different layouts and GUI
elements can be added. Different templates are available, based on the language you wish
to develop with.

There's more…
Let's take a look at the available project templates, and what they can provide us. JavaScript
developers will find only the Blank App template provided to them, while C#, Visual Basic,
and C++ developers find a larger selection to choose from.

Choosing the right project type…
There are several Universal Windows app templates available. We are going to provide
a brief overview so that you can decide what template would make a good starting point
for your next project.

Chapter 2

37

Blank App
The Blank App template is exactly what we have seen in this recipe—an empty shell ready for
your customizations. It is available for JavaScript, C#, C++, and Visual Basic.

Class Library
The Class Library project creates a DLL for use with UWP apps, which is automatically set to
use the .NET Framework. This promotes code reuse, and allows you to separate business logic
from app-specific code. This is available for C# and Visual Basic.

Windows Runtime Component
The Windows Runtime Component is a project template for creating code in one language
that can be shared or consumed in other languages. C#/VB/C++ can all create and
consume these components for UWP apps. JavaScript can only consume these components.
Components let you take advantage of the features of each language, and then combine
them into a single application.

For example, code requiring high performance can be written into a C++ component, and
consumed by a JavaScript app. Or perhaps you have existing business logic written in Visual
Basic, but want to use it in a brand new C++ app written to take advantage of the UWP
features. These types of scenarios are facilitated with this project type, which uses exposed
Windows Metadata (.winmd file) information to facilitate this interoperability. This is
available for C#, C++, and Visual Basic.

Unit Test App
The Unit Test App project template creates a Unit Test Framework or a test assembly based
on CppUnit for unit testing your code. It is available for C#, C++, and Visual Basic.

Coded UI Test Project (Windows Phone)
The Coded UI Test Project (Windows Phone) template allows you to test your Windows
Phone-targeted app via the GUI, rather than underneath the hood as in the Unit Test App.
It is available for C# and Visual Basic.

Coded UI Test Project (Windows)
The Coded UI Test Project (Windows) template allows you to test your app via the GUI, rather
than underneath the hood as in the Unit Test App. Unlike the preceding template, this is not
Windows Phone-specific. This is available for C# and Visual Basic.

C++ specific UWP templates
Developers using C++ have several unique UWP templates available for their use. They focus
on DirectX, but also include some key infrastructure components:

ff DirextX11 App and DirectX 12 App: Used to create a new project that uses
the indicated DirectX features. Perfect for games or applications requiring
high-performance graphics.

Getting Started with Universal Windows Platform Apps

38

ff DirectX11 and XAML App: A template that provides DirectX 11 support along with
XAML. This allows XAML controls to be used for controlling your app, while using
DirectX to provide rendering.

ff DLL: Lets you write a DLL using C++, and then makes it available to other UWP apps.

ff Static Library: Similar to a DLL, with the notable exception that this is for static
linking. Can be consumed by other UWP-based apps.

Veterans of Windows 8.X app development will notice that Portable
Class Libraries are not part of the UWP, but those templates remain
available for use with other projects.

Language interoperability
UWP apps written in JavaScript can call Windows Runtime Components written in either C++
or .NET when that function is contained in libraries or DLLs that expose Windows Metadata
(WinMD) information. Unfortunately, the reverse is not the case—.NET and C++ apps cannot
call a function contained in JavaScript libraries. C++ UWP apps can, however, call a function
in .NET WinMD files (which are created using the Windows Runtime Component project type),
and .NET code can call C++.

Customizing your UWP app
We saw in the previous recipe that creating a new UWP app is pretty simple, but in VS2015,
the choices are limited to some basic types. Rather than provide some pre-made templates
around common design themes (such as Hub, Split, Items, and so on) as was done previously
in VS2013, Microsoft has instead decided to provide us with a blank canvas with which to
work. Let's see how we can spruce it up a bit.

Getting ready
Windows 10 is required for this recipe. Visual Studio Community will be used to provide the
example screenshots, but of course, a premium edition or VS Express for Windows 10 would
also be suitable. If you still have the UWP app created in the previous recipe, open that
solution file.

Chapter 2

39

How to do it...
We are going to start with a brand new UWP app, so create a Blank App template. For our
example, we will use C#:

1.	 Create a new UWP app using the Blank App template.

2.	 Once the project has opened, open the file MainPage.xaml, as shown in the
following screenshot:

3.	 Once that file opens, your display should resemble the following screenshot. Next,
click on the Toolbox label, indicated by the arrow:

Getting Started with Universal Windows Platform Apps

40

4.	 After opening the Toolbox, you will observe that the items previously separated into
distinct templates are available in addition to several more XAML controls that can be
used to implement your app's design. The following screenshot provides an excerpt:

5.	 In our example, we will add a Button control and proceed. The following screenshot
shows this addition:

Chapter 2

41

6.	 Now that we have a control added (or more, if you choose to do so), let's see what
other design tools are available to us. The following screenshot illustrates the
different sections that we will examine:

The following is the legend for the highlighted items in the preceding screenshot:

1.	 This drop-down menu allows you to set the display for a particular device form
factor. In this preceding screenshot, it is set to a 5" screen running at a 1920x1080
resolution. Options include various tablets, phone, desktop, Xbox, Surface Hub, and
IoT style devices.

2.	 The next two options allow you to toggle between portrait and landscape layout. In
this screenshot, portrait has been chosen.

3.	 There are several options in this section. Starting from the left, the drop-down
menu allows you to set the zoom. The screenshot shows a zoom of 16.67%—several
more are available, including Fit All. Next is the option to toggle the grid (for aligning
controls), a toggle as to whether controls should be snapped to the grid, a toggle as
to whether controls should align to snap lines, and whether or not the project code
should be disabled.

Snap lines are the red guidelines that appear when aligning controls in
a similar region (left margin, top margin, and so on).

Getting Started with Universal Windows Platform Apps

42

4.	 After you have set the preview settings that you want, and possibly added some more
design elements, you can view the changes by pressing F5 (debugging mode).

If you lose track of the Toolbox palette, you can return it to view via
Ctrl + Alt + X, or through View | Toolbox.

5.	 The following screenshot shows a running sample with a couple of controls:

How it works…
With VS2015, UWP app development has been streamlined so that creating a user-facing
project (as opposed to a Class Library or Windows Runtime Component) is started with a
Blank App template. Then you can add the components needed for your app, and select the
layout that best fits the device(s) you are targeting:

Chapter 2

43

The Toolbox can be put to work for your needs. Right-clicking
within the Toolbox lets you Sort Items Alphabetically. If you
would like to make the list of controls more manageable to fit
your particular workflow, you can create a new tab with a unique
name (Example Toolbox was used here), as shown in the
preceding screenshot. Controls can then be dragged from the
existing tabs to your new grouping.

There's more…
As you have probably noticed from the tool box, there are numerous XAML controls available
for use in your app. This includes the expected button and checkbox controls similar to those
introduced with Windows 8.X app development, including Flyout and Hub controls.

Let's take a look at the some of the new controls added with Windows 10 for UWP apps.

SplitView
This is used to define a main content area for the most common presentation/interaction
with your app, while also creating a work area for controls that can display on demand (if
desired). Typically, this lets controls to be available as needed without clogging the view when
they are not:

As of VS2015 Update 1, when using SplitView, be sure to wrap the
content with <SplitView.Content> the same way as the pane
content is wrapped with <SplitView.Pane>.

Getting Started with Universal Windows Platform Apps

44

RelativePanel
RelativePanel is a more flexible layout, which can be used when the app's style isn't
compatible with more linear layouts like Grid or StackPanel. With a RelativePanel,
relative alignments of XAML controls can be specified so that they maintain the desired
positioning during resizing or different device form factors. The following screenshot
demonstrates an example of this panel:

In the RelativePanel shown in the preceding screenshot, the Left button anchors the
design, and is placed in the top-left corner. The Right button is located on its right, and its
position is defined to be to the right of the Left button, wherever that will be. Then the text
block below is defined to be below the Left button, aligned with that button's left edge, while
its right edge is aligned with that of the Right button. This allows the TextBlock (containing
the lorem ipsum text) position to be dynamic based on the positioning of the buttons.

CalendarView
CalendarView is a calendar control that provides data picking for the user while allowing
the developer to specify various options to configure blackout dates, acceptable date ranges,
and how the dates are formatted. Unlike the CalendarDatePicker, the calendar is always
displayed. The following screenshot illustrates this control:

Chapter 2

45

CalendarDatePicker
CalendarDatePicker is similar to the CalendarView in that it lets a user select a date;
the difference is that this control is used to choose a specific date rather than a range.
Unlike the DatePicker, a familiar calendar display is used for date selection. The following
screenshot illustrates this control:

MediaTransportControls
MediaTransportControls provides the ability to give your app the traditional media file
playback controls: play/pause, seek bar, stop, rewind, and so on. Developers can customize
which of these various components are displayed:

See also
ff Creating a UWP app recipe

ff Microsoft MSDN documentation on XAML controls at https://msdn.microsoft.
com/en-us/library/windows/apps/windows.ui.xaml.controls.aspx

Using the UWP app simulator
The design behind the UWP architecture has been established so that your app can
easily be deployed to any device that runs Windows 10. There may be some minor
customizations needed depending on the capabilities that various platforms offer, but
UWP will not limit you unnecessarily. As a reader of this book though, you are probably
developing your UWP on a traditional computer that most likely has a keyboard and a mouse.
While this is great for development (and usually, a keyboard is a needed component), this
means that your workstation doesn't always match what is available to your app's users. Enter
the Windows 10 simulator.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.aspx

Getting Started with Universal Windows Platform Apps

46

The Windows 10 simulator, available under VS2015, provides the ability to run your UWP app
in your choice of Debug or Release builds, so that you can see how it runs and appears on a
machine outside of your regular development machine configuration.

This recipe will show how to use the simulator to assist in developing your own apps.

Getting ready
For this recipe, you may use a project of your choosing if you have one available, but we
are going to use one of Microsoft's publicly provided sample UWP apps for the examples.
Specifically, we are going to use the RSSReader app listed at http://microsoft.github.
io/windows/. If you are familiar with Git, you may clone the repo, but for brevity, we will just
download the project's ZIP file to our machine and open the solution file.

How to do it…
The steps for using the Windows 10 simulator are as follows:

1.	 Go to the properties page of your UWP project (the properties page is available under
the Project menu).

2.	 Select the Debug tab, and change the target machine to Simulator, as shown in the
following screenshot:

3.	 Start debugging the app by either pressing F5 or navigating to the Debug | Start
Debugging menu option.

http://microsoft.github.io/windows/
http://microsoft.github.io/windows/

Chapter 2

47

4.	 Visual Studio will start the Windows 10 simulator and launch the app for you, as
shown in the following screenshot:

5.	 On the right-hand side of the simulator are a number of icons that control the
simulator's behavior. By default, the simulator starts in the mouse mode so that
you can navigate within the app using the keyboard and mouse. However, you aren't
limited to those methods of input—touch is also available regardless of whether your
physical PC supports it.

For reference, the toolbar icon functions are, from top to bottom:
Minimize, Always on top, Mouse mode, Basic touch mode, Pinch/
Zoom touch mode, Rotation touch mode, Rotate clockwise, Rotate
counterclockwise, Change resolution, Copy screenshot, Screenshot
settings, Change network properties, and Help.

Getting Started with Universal Windows Platform Apps

48

6.	 With the initial defaults, you can interact directly with the UWP app running. For
our example, click on the plus icon to add the default feed. This will add it to this
app's favorites, making the article headlines available for reading. Clicking on the
hamburger icon (three horizontal lines) in the top-left corner lets you experiment
with closing and opening the navigation pane:

7.	 Switch to the basic touch mode by selecting the icon on the simulator toolbar.

8.	 As you move your mouse over the simulator, you will see that the cursor has now
changed to a small crosshair in a circle icon.

9.	 You can simulate scroll with touch by left-clicking and dragging upward or downward
with your mouse to scroll the content pane. The cursor will change form while you are
holding the mouse button to reflect that touch input is being simulated.

10.	 Touch mode is very similar to receiving mouse input, so let's now try some simulator-
specific functionality. Click on the Rotate clockwise (90 degrees) icon.

Chapter 2

49

11.	 The simulator will now reflect a change in orientation, as if you had physically turned
your tablet clockwise. The following screenshot illustrates this change:

Getting Started with Universal Windows Platform Apps

50

12.	 When the simulator has focus, it will capture the keyboard and handle key
combinations such as Alt + Tab or Alt + F4. Close the simulator using Ctrl + Alt + F4.
You can stop the debugging process with Shift + F5.

13.	 Now let's see how the simulator works with the debugger. Open the
FeedsArticlesViewModel.cs file, and locate the AddRssFeed method.

14.	 Set a breakpoint in the AddRssFeed method by either pressing F9 on the
declaration, or by clicking in the gutter to the left of the code. This method may be
found easily by searching for its name in Quick Find (found approximately at line
229). Once located, set a breakpoint, as shown in the following screenshot:

15.	 Restart the simulator and debug this app by pressing F5. The program will execute
until it has two add feeds—so if you have previously added two feeds, it will stop at
the breakpoint twice. Resume by clicking on Continue in the IDE or by pressing F5.
After the app is fully loaded, try adding another feed, at which point the breakpoint
will be immediately hit. Deleting an existing feed and then re-adding it will also
demonstrate the effects of the breakpoint.

16.	 Feel free to add breakpoints in other areas of the code to experiment with how the
debugger will operate in conjunction with your app.

How it works…
The Windows 10 app simulator actually connects to your local machine via a remote desktop
connection, and this is why the start screen in the simulator looks the same as the start
screen on your Windows 10 development machine, and the reason why you are signed in
automatically.

Since it's simply a remote desktop connection running on the local machine, the debugger
is simply connecting to a local process running in a different session. If you open the Attach
to Process window via the Debug | Attach to Process menu, you can see the details of the
process that Visual Studio has connected to.

Chapter 2

51

The following screenshot highlights the details of the running RSSReader.exe executable,
and shows that it is in session 2, which is the Windows 10 app simulator session:

There's more…
There are a few more things to note about the simulator that we didn't touch upon in the
recipe, including some items that will make using it much more useful.

Resolution and resizing
You can adjust the resolution the simulator is running at, allowing you to experience your app
at different predefined resolutions and device sizes, as shown in the following screenshot:

Along with changing the resolution, you can also change the onscreen display size of the
simulator by dragging the bottom-right corner of the simulator just like a normal desktop
window. This can help if you are simulating a device on a high-resolution desktop, and you
have the screen real estate to spare. It may also point out areas that are just too small for
the end user and require a rework.

Change network properties
This dialog lets you set the simulator to use different network settings than what is actually
being used by your development machine. This lets your app react to events such as roaming,
data limits, and the cost of the network so that it behaves appropriately if the user is not on a
no-limit network connection. A user near their wireless plan limits would be very upset if your
app improperly used up all of their bandwidth, or causes them to incur unexpected charges.

Getting Started with Universal Windows Platform Apps

52

Note that the icon on the simulator is titled Change network properties, while the dialog is
labeled Set Network Properties.

Remote debugging
You may have noticed that when you set the Debug option for using the simulator, there
was also an option to use a Remote Machine as the target device. Remote debugging is
straightforward under Visual Studio 2015 when developing UWP apps. For the Remote
Machine option to work, you need to have Remote Debugging Monitor running on the
remote machine; the firewall needs to allow connections, and you need a reasonable
network connection between the two machines.

On your development machine, you simply specify the machine name of the remote machine
you are targeting, and start debugging. Visual Studio connects to the remote machine,
prompts for credentials if required, deploys the app, and connects the remote debugging
monitor for you.

From that point forward, the debug experience is almost the same as if it were a local process.
As long as you have a stable network connection, you should find the experience very useful.

Taking screenshots
When you want to take screenshots of your Windows Store apps for creating your store listing,
for example, then you can do so via the simulator. Simply click on the copy screenshot button
on the toolbar (represented by a camera icon), and the screenshot will be placed on the
clipboard, and optionally, in a file on your hard drive. You can control this behavior using the
screenshot settings button (represented by a gear icon below the camera icon) on the toolbar.

Fresh app install
When a UWP app is running on your development workstation or the simulator, it will of course
be saving files and settings on your system in its local storage area. While this is very useful to
maintain state between app sessions, while debugging you may find it necessary to run your
app as though it has been freshly installed, without any existing settings.

Chapter 2

53

The following start option under the project's properties lets you do this. As a reminder,
properties for your project are found in the Properties window located under the Project menu:

How to find locally stored app data:
When your app uses a StorageFolder object as RSSReader does,
it is storing data on the system for which the app is installed. For a
Windows 10 system, this information is typically stored under the
directory C:\Users\USERNAME\AppData\Local\Packages,
where each installed app will have its own subdirectory that is based
on its official package name. The app's package name is defined in
Package.appxmanifest, and additionally, viewable under the
Packaging tab in the manifest editor.

See also
ff The Creating a UWP app recipe

ff The Defining capabilities and contracts recipe

Defining capabilities and contracts
Windows 10 provides UWP apps the ability to communicate with any other app on the computer,
without prior knowledge of what those apps might be, through a concept called contracts. A
contract is an operating system level interface that is implemented by consumers or providers of
information. The operating system then keeps track of which apps support which contracts, and
coordinates the information between apps using those contracts.

Getting Started with Universal Windows Platform Apps

54

Windows 10, as part of its focus on maintaining a trust level in the apps it runs, expects UWP
apps to communicate the capabilities they need. A capability is a permission or access right
that a UWP app requires for it to run correctly, for example, an app that requires Internet
access or local network permissions. There is a range of capabilities that the operating
system can provide to UWP apps. An app that doesn't request capabilities from the operating
system will be provided minimum level access, which means that it will run in its own isolated
process space with no access to any external resources at all.

Similarly, an app may have one or more declarations. A declaration is an attribute of the app
that provides extra information, which the operating system can use to further integrate the
app into the standard operating system experience. For instance, an app declaring the file
picker contract tells the operating system that it can be a source of files when the user is
using a file picker.

In this recipe, you will add a contract declaration, and adjust the capabilities of a UWP app.

Getting ready
For our example, we will continue to use the RSSReader app that was exhibited in the
Using the UWP app simulator recipe. Feel free to substitute a UWP app of your choosing
if you prefer.

How to do it...
In order to add a contract declaration and adjust the capabilities of a UWP app, perform the
following steps:

1.	 Open the Package.appxmanifest file shown in Solution Explorer (found at the
top level of your app's project folder). This manifest file will open up in the manifest
designer within VS2015, as shown in the following screenshot:

Chapter 2

55

If you want to look at the raw XML that is manipulated by the manifest
designer, right-click on the Package.appxmanifest file in Solution
Explorer, and then select View Code. Using XML for this file has the
added benefit that it is easily storable in source control.

Getting Started with Universal Windows Platform Apps

56

2.	 Select the Capabilities tab, as shown in the following screenshot:

3.	 In the preceding screenshot, you can see that our app has Internet (Client)
capability, as you might expect from an app that needs to use the Internet to read
RSS feeds. Additional capabilities can be added or removed here—but your app
should only specify those it actually needs to do its job.

Chapter 2

57

4.	 Next let's visit the Declarations tab. In the following screenshot, you will see the
various functions that your app can offer. For this example, please select File Type
Associations:

Declarations are also referred to as extensions. Microsoft describes an
Extension as an agreement between your app and Windows.

Getting Started with Universal Windows Platform Apps

58

5.	 Now we will demonstrate how to register RSSReader to handle and be available
for opening XML files. In order for our app to do so, make the changes shown in
the following screenshot:

6.	 As shown in the last screenshot, there are several fields where we need to
provide details. The Display name property is used to identify the app making the
declaration. Logo can be used to specify a custom logo for this file association to
easily identify your app—if left blank, the app logo will be used. Name is a lower-
case identifier for a group of files that share the same characteristics (logo, info, tip,
edit flags, and so on). The Edit flags are used to regulate how files opened from an
untrusted source are handled. Since we are dealing with XML, the preceding example
specifies that content should be treated as Always unsafe. Finally, we have set up
this declaration to address XML files ending in .xml.

7.	 You're not going to implement a full app as part of this recipe; so, for now,
just click on the Remove button next to File Type Associations in the Supported
Declarations section.

Chapter 2

59

How it works…
One of the design goals for UWP apps is, of course, that they should be universal, which
means that it should be easy to download them from the Windows Store, and run them on
any computer the user desires without needing any special permissions. By requiring an App
Manifest to be bundled with every app, Windows itself can manage the app's installation
without allowing the user to unknowingly compromise their system's security.

The App Manifest is a critical file for any Windows Store app, and you need to pay attention to
it. It contains all the declarative information for informing Windows of the capabilities it needs,
as well as the contracts that it satisfies. This lets Windows enforce the app's behavior on
behalf of the user, and prevent it from overstepping its boundaries.

There's more…
There are numerous capabilities and contracts you can declare, but instead of describing all
of the possible contracts that you can implement, let's have a look at the more interesting
ones that you are most likely to consider for your apps.

Declarations
As noted earlier, declarations provide a way for an app to inform the system of how it intends
to operate.

Background tasks
This is a very useful declaration that allows your app to run code, and react to events when it
is suspended. This declaration may be used multiple times in your app, and will let it perform
actions that include playing audio in the background, operating on a timer, or responding to
a change in the device's physical location. There are eight tasks available in total, so this is
worth reviewing as you write your app.

Update task
Most likely, your app will support updates, and your user's will want to ensure they always
receive the latest features that your app has to offer. This task lets your app react to being
updated, and make any configuration changes it needs to provide its new features. This differs
from a preinstalled config task, which is code designated to execute immediately after your
app has been installed.

Getting Started with Universal Windows Platform Apps

60

Search contract
The Search contract allows the end user to search for information from within your program.
Any program that implements the Search contract item template will be listed as a search
source when the system's Search tool is used—which means that in order for your app to
search, it must also agree to share searchable information with other apps. Note that in
Windows 8.1, an app using the Search contract will only show on the Search charm from
within that app. For example, as shown in the following screenshot, the Wikipedia app
implements the Search contract:

File Type Associations
This declaration allows you to specify one or more file types that your app will work with. For
example, a photo app may specify types such as .jpg or .png, while a music app may specify
.mp3 (This is also known as File activation).

Certain file types are prohibited, because they are reserved, or for
security reasons. For a list of prohibited file types, refer to: http://
msdn.microsoft.com/en-us/library/windows/apps/
hh452684.aspx. Forbidden filename extensions include system files
and executables, to reduce security risks.

Certificates
This declaration provides the ability to package a digital certificate with your app. This is useful
when your app intends to use communications over SSL. It is also known as SSL/Certificates.

Capabilities
As with the contracts, not all capabilities are of interest for most developers. The following are
some of the more important ones that you should be aware of.

http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452684.aspx

Chapter 2

61

Internet (Client)
The internetClient capability lets Windows know that your app will be making requests
to Internet-based resources, but it will not be receiving any connections. It is for outbound
connections on public networks only.

Given that most Windows Store apps are expected to have some level of Internet connectivity,
this is enabled by default in the project templates.

Internet (Client & Server)
The internetClientServer capability informs Windows that your app will not only request
data but will also be serving data, and can accept inbound connections. Even if you specify
this capability, you cannot accept inbound connections on critical ports. Specifying this
capability means you do not need to specify the internetClient capability, and if you
do, it will have no effect.

Home or work networking
The home and work networks are considered to be private networks with separate security
profiles from the public Internet. The privateNetworkClientServer capability allows
you to make both inbound and outbound connections on these trusted networks.

As with the internetClientServer capability, you cannot accept connections on
critical ports.

Library access
UWP apps have limited access to the underlying file system, and must request access as
part of their capabilities. The musicLibrary, picturesLibrary, and videosLibrary
capabilities must be selected in order to access files programmatically in each of those
locations.

When accessing a library, only files with the appropriate extensions for the content will be
available. For example, the picturesLibrary capability will provide access to files in that
library with common image file extensions (.jpg, .gif, and the like), but not to videos,
music, or system files even if files with those extensions are in the library.

For a complete list of app contracts, refer to the MSDN article, App
contracts and extensions (Windows Store apps) at the following
link: http://msdn.microsoft.com/en-us/library/
windows/apps/hh464906.aspx.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464906.aspx

Getting Started with Universal Windows Platform Apps

62

See also
ff This recipe provides an introduction to using Visual Studio's tools for editing an

.appxmanifest file. As previously noted, this can also be edited directly within
Visual Studio outside of the GUI-based editor. Indeed, there are certain situations
where specific capabilities may need to be specified manually. For more information,
consult this link:
http://msdn.microsoft.com/en-us/library/windows/apps/br211476.
aspx.

Analyzing your app's performance
Given the wide variety of devices that your UWP app can run on, it is important to track
performance to ensure you are not being wasteful. Users appreciate improved battery life, and
a responsive app is always appreciated by users. VS2015 has several app performance and
diagnostic tools available that can help you measure and review its performance to ensure it
is as efficient as needed.

The Diagnostic Tools menu provides the following tools:

ff Application Timeline: See where your app spends most of its time.

ff CPU Sampling: Analyze which of the functions being used by your app are using the
most CPU time.

ff CPU Usage: Examine where the CPU is spending its time. Helpful when the CPU is
the limiting factor.

ff GPU Usage: Review and monitor GPU usage. Helpful when the GPU is the limiting
factor.

ff Memory Usage: Used to help find memory leaks, and examine how your app is using
memory.

ff Network: Provides for the monitoring of all network traffic used by your app.

ff Energy Consumption: Information about an app's energy usage. Helpful when writing
an app whose primary platform is battery-dependent.

ff HTML UI Responsiveness: Helpful when dealing with apps or websites that use HTML
to provide their user interface, so that inefficient areas can be identified.

ff JavaScript Memory: Focuses on the JavaScript heap, and how it is being used.

Getting ready
For this recipe, we will continue to use the RSSReader app referenced in the Using the UWP
app simulator recipe. Feel free to substitute an app of your choice if you have one available.

http://msdn.microsoft.com/en-us/library/windows/apps/br211476.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211476.aspx

Chapter 2

63

How to do it…
The following steps will demonstrate how to examine your app's performance:

1.	 Open the RSSReader project. Then, open the Diagnostic Tools window via Debug |
Start Diagnostic Tools Without Debugging (or use the keyboard shortcut Alt + F2).

2.	 On the next screen labelled Analysis Target, you will be able to select from the
different diagnostic tools that are available for use with your app. These tools are
shown in the following screenshot:

3.	 You will notice that VS2015 alerts you when you are about to run the app in the
Debug mode. Switch your app configuration from Debug to Release if it is not already
in the Release mode. (You can do this without leaving the Analysis Target page.)

4.	 While on the Analysis Tools screen, select Application Timeline, CPU Usage, and
Network. Then click on Start.

Getting Started with Universal Windows Platform Apps

64

5.	 You may be prompted by Windows to let VsStandardCollector.exe make
changes to your computer. Be sure to click Yes so that the data collection process
can continue, as shown in the following screenshot:

6.	 The RSSReader app will now launch, and VS2015 will monitor its performance via
the selected tools. Operate it as you expect a typical user would if you would like an
overall report, or focus on a specific area if you feel something is especially draining.
When you are done, close your app as usual (Ctrl + Alt + F4).

7.	 VS2015 will then collect the performance information and prepare the results for
your review, as shown in the following screenshot:

Chapter 2

65

How it works…
Visual Studio attaches to your app's process, and is able to track the performance details that
you've selected during its operation. These tools let you focus on the areas of your app that
you wish to improve, and also bring to light areas that you may not have previously realized
need attention.

There's more…
While the Application Timeline tool is selected in the previous screenshot, the other two tools
are also available for review. Given that RSSReader relies on a network connection to obtain
data, the Network tab is very helpful, as it shows exactly what is being sent and received by
the app. Each network request can be reviewed, as you can see in the next screenshot:

Similarly, the CPU Usage tab will provide information on the various methods used by the app,
and how much CPU activity they utilized.

Packaging your UWP app
Similar to the apps distributed for Windows 8, UWP apps are packaged and distributed in a
specific format. Once packaged, they can be uploaded to the Windows Store, or distributed
to a non-developer workstation. The information contained in the package includes the
capabilities and contracts that your app uses as well as information on the app user tile,
the splash screen, and more.

This recipe will show you what you need to do to package your UWP app so that it is ready
for the outside world to use.

Getting ready
As before, we will continue to use the RSSReader app referenced in the Using the UWP app
simulator recipe. Feel free to substitute an app of your choice if you have one available.

Getting Started with Universal Windows Platform Apps

66

How to do it...
Perform the following steps to package your UWP app:

1.	 Open the Package.appxmanifest file from Solution Explorer.

2.	 Examine the fields in the Application tab. Add a space in the Display name
field so that it reads as RSS Reader instead of SplitApp.

3.	 Add a useful description in the Description field. For example, A simple but
useful RSS feed reader.

4.	 Moving to the Visual Assets tab, under the Tile section, confirm that the
Show name field is set to Square 150x150 Logo as shown in the following
screenshot. This setting will make the name of the app appear on the Tile on
the Windows Start screen:

5.	 In the Packaging tab, adjust the Package Display name to include a space so that
the package name is Split App, matching your earlier entry on the Application tab.

6.	 Save your changes to the manifest file.

Chapter 2

67

7.	 Build the solution via Build | Build Solution, or press F7.

8.	 In Visual Studio, right-click on the solution in Solution Explorer, and select
Deploy Solution. This will deploy the Split App template to your local machine
ready for use.

9.	 In Solution Explorer, select the RSSReader project (not solution), and then click on
the Show All Files icon, as shown in the following screenshot:

10.	 Navigate to the bin\Debug folder so that you can see the output from the build. This
is the output that will be uploaded to the Windows Store when you publish your app.
It should look something like the following screenshot:

Getting Started with Universal Windows Platform Apps

68

11.	 Press the Windows key to bring up the Start menu, and scroll as needed to locate
your new app under All apps. (Alternatively, you can start typing the app's name
in the Start menu to search for it.) You should see an icon for the RSS Reader
template, as shown in the following screenshot:

12.	 Deploying locally is fine for what it is, but if you want to test your app on another
machine, you will need to create a package. Right-click on the RSSReader project in
Solution Explorer, and navigate to the Store | Create App Packages… option from
the context menu. Depending on your version of Visual Studio, you may have to be
signed in for this option to be available, and you may also find it directly on the main
menu Store | Create App Packages…. It may also be found under Project | Store |
Create App Pacakges…. If you choose the context menu route, it will look similar to
the following:

Chapter 2

69

13.	 Select No when asked to build packages for the Windows Store, as shown in the
following screenshot, and click on Next. Packaging and submitting your app for the
Windows Store is discussed in the recipe Submitting your app to the Windows Store:

14.	 For the Create App Packages dialog box, the default settings are OK with the
exception of the Solution Configuration—ensure that all are set to Release. (If you
like, you can only choose the architectures supported by your specific workstation to
save time.) After you have reviewed the screen, click on the Create button, as shown
in the following screenshot:

Getting Started with Universal Windows Platform Apps

70

15.	 The build and packaging process may take a few minutes. When it is complete, you
can verify the location of the packages by clicking on the Output location hyperlink.
At this point, you can close the dialog, as we will cover certification in the next recipe.

16.	 You can also see that packages were created from within VS2015 if you refresh
Solution Explorer—you will now see an AppPackages folder that contains the
packages ready for local deployment, as shown in the following screenshot:

How it works…
You may notice that there are a few extra files generated in the bin\Debug folder, namely the
resources.pri, AppxManifest.xml, and RSSReader.build.appxrecipe files. The
AppxManifest.xml file is simply a renamed copy of the package.appxmanifest file.

The resources.pri file contains the app resources in a binary format, and the
RSSReader.build.appxrecipe file is used for incremental builds of the package. So,
each time the package is rebuilt, the package version number is automatically incremented.

Moving to the AppPackages folder, there is a file with an .appxbundle extension, which is
a ZIP archive containing the app and any debug symbols, and there is a layout folder with a
name based on the app, the CPU type, and so on.

Deploying an app to a test machine is simply a matter of copying this layout folder to the test
machine, and running the Add-AppDevPackage.ps1 PowerShell script from that folder.

There's more...
Packages need to be signed in order to be uploaded to the Windows Store. When developing
locally, Visual Studio uses a temporary certificate. However, deploying to the Windows Store
will require a certificate that is not self-signed.

Chapter 2

71

See also
ff The Submitting your app to the Windows Store recipe

Validating your Windows Store app
Every UWP app submitted to the Windows Store will be validated by Microsoft before
being listed for the general public. Part of that validation process involves running the app
through an automatic certification tool that Microsoft has included with Visual Studio. You
should verify that your app passes the certification tool before beginning the Windows Store
submission process.

Getting ready
You will need a packable UWP app to complete this recipe. You may either reuse the
RSSReader app described in the Packaging your UWP app recipe, or use a UWP app of
your own choice. Either way, ensure that you have a UWP app that is working correctly and
deployable in Release mode.

How to do it…
The following steps need to be performed in order to validate your app for the Windows Store:

1.	 From the Windows Start screen, launch the Windows App Cert Kit. (If you are
following directly from the Packaging your UWP app recipe, you can launch the kit
from the Package Creation Completed dialog.) The following screenshot shows the
app as found in the Start menu:

Getting Started with Universal Windows Platform Apps

72

2.	 Once executed, the app will prompt for privilege elevation. Click on Yes; at this point,
the application wizard will appear, as shown in the following screenshot:

3.	 Select the Validate Store App option. The tool will search for Windows Store apps
installed on your machine and list them.

4.	 Packages are listed by display name listed in each app's manifest file (manifest files
have the extension .appxmanifest). Microsoft has added the option to browse for
your app directly, but you should be able to find it in the app list. Locate your app and
highlight it, then click on Next as shown in the following screenshot:

Chapter 2

73

5.	 The kit will then allow you to select the tests you would like to run. The default
technique to test everything is what we will use here, so click on Next.

6.	 The certification process will then proceed by running your app multiple times to test
its various characteristics. You may notice that your system opens and closes your
app during the validation process, so it is best to not try and do other activities while
it is operating.

7.	 When the certification process completes, you will be immediately prompted to save
an XML file containing the report. Choose a location to save the file to, and once the
file is saved, you will see the completion dialog.

8.	 Click on the link in the dialog to view the report. Windows will prompt for a program
with which to view the report; pick an editor of your choice, or use Internet Explorer.
Scan the file for warnings and errors.

9.	 In this case, since RSSReader began life as a UWP app, it does have a few errors
that will need to be addressed before it can be submitted. Your specific errors may
vary depending on any changes you may have made, but our results include some
simple ones (for instance, the lack of the app's logo for branding) to using a Windows
API that is not supported in the Windows SDK for Windows Store apps. Validation can
be rerun as many times as needed until your app has passed all the tests.

How it works...
The certification kit runs your app in order to verify that it follows the rules defined for each of
the selected tests. It does not perform tests of your app's functionality, but validates how well
the app behaves within the context of the Windows operating system, and whether the rules
for listing the app in the store are satisfied. This is intended to prevent apps using a capability
that they haven't defined, and to identify any possible weaknesses in the package that may
allow it to be used as an attack vector for malicious code.

When your app passes the certification kit tests with no warnings or errors, it is ready for
submission to the Windows Store, where Microsoft will perform additional content and
behavioral checks.

See also
ff The Submitting your app to the Windows Store recipe
ff The Packaging your UWP app recipe
ff The Defining capabilities and contracts recipe
ff Microsoft's official guide, Windows Store Policies, is available online at https://

msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx

ff Further background on The app certification process and tips for a successful
distribution are available at https://msdn.microsoft.com/library/
windows/apps/mt148554.aspx

https://msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx
https://msdn.microsoft.com/library/windows/apps/mt148554.aspx
https://msdn.microsoft.com/library/windows/apps/mt148554.aspx

Getting Started with Universal Windows Platform Apps

74

Submitting your app to the Windows Store
Similar to other vendors (Google, Apple, and others), Microsoft has designated their Windows
Store to the preferred method of distributing apps to their users. Corporate developers can
utilize company-specific areas, and sideloading is available in special circumstances, but the
typical way the average user will obtain your app is through the Windows Store.

Certification is the process by which Microsoft ensures that the apps available in the Windows
Store meet certain performance and quality standards. As a developer, the Windows Store
makes it easy for customers to obtain and install your app. A user obtaining an app from
the Windows Store can be reasonably confident that anything they download will behave
according to the capabilities it has declared, and can be easily installed or uninstalled as
desired without unexpected consequences.

In this recipe, we'll look at how the certification process works. We will take a look at how
your candidate UWP app can be submitted to the Windows Store, and made available to your
potential customers.

Getting ready
To start, you need to be using Windows 10, and either VS Express for Windows 10, or the
Community Edition or higher of VS2015. If you have been following along in this chapter, you
may continue to use the RSSReader app. Otherwise, feel free to use one of your own choice.
Since we are focusing on the registration process, a blank UWP app is used for this recipe.

How to do it…
To submit an app to the Windows Store, we will perform the following steps:

1.	 Start a new Visual C# | Windows | Universal | Blank App (Universal Windows)
project.

2.	 From the menu, select Project | Store | Open Developer Account. (For VS Express,
the menu is Store | Open Developer Account.)

There are two types of Developer Accounts—individual and company. If
you are an independent developer or just experimenting, the individual
account will work fine. Before registering, be sure to sign in with the
Microsoft account that you intend to associate with your Windows Store
submissions. You can find more information in the article Account types,
locations, and fees located at https://msdn.microsoft.com/en-
us/library/windows/apps/jj863494.aspx.

https://msdn.microsoft.com/en-us/library/windows/apps/jj863494.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj863494.aspx

Chapter 2

75

3.	 A browser window opens, and you can apply for a developer account using the
process as outlined on the page. Windows Store accounts may require a payment
of a small license fee, so have a credit card handy when you perform this step.

4.	 From the Visual Studio menu, select Project | Store | Edit App Manifest, and use
the information from the app name reservation to populate the appropriate fields.
Take particular note of the fields in the Packaging tab.

5.	 Then select Project | Store | Associate App with the Store, and follow the steps of
the wizard to automatically populate the Packaging tab with the appropriate values.
This option will let you choose from a reserved app name, as well as reserve a new
name if needed:

6.	 At this point, you are ready to write your application.

Current Microsoft guidelines will allow an app name to be reserved
for a year. If your app is not submitted by this deadline, the
reservation will expire.

7.	 Package your application for uploading to the store by choosing Project | Store |
Create App Package...

8.	 Verify your application using the Windows App Certification Kit. Refer to the Validating
your Windows Store app recipe to learn how to do this.

9.	 Then upload the resulting package to the store by selecting Project | Store | Upload
App Package from the menu, and following the steps presented in the ensuing
upload wizard. Note that your packages have to pass validation before they can be
uploaded.

Getting Started with Universal Windows Platform Apps

76

10.	 Once the upload completes, you can monitor the progress of your package
through the approval process using the tools provided by the store. (Your Developer
Dashboard available through your Microsoft Developer account is a good place to
do this.)

How it works...
The Store submenu is only available when running Visual Studio on Windows 10, and when
you have opened the solution for a UWP app. When you upload a package to the store, there
are a number of basic sanity checks to verify your package is acceptable, and meets the
requirements of the Windows Store. These checks include running the certification toolkit on
your app and verifying the manifest information against the information you supplied when
you registered the app name. Using Visual Studio's Associate app with the store wizard is
an easy way to make sure you don't have any typographical errors in your manifest, and it
improves the chances of a successful first time submission.

There's more…
Earning money with Windows Store apps is not limited solely to upfront purchase
revenues. You may also distribute your app using a trial mode that encourages a
try-before-you-buy approach. Apps may include the ability to support in-app purchases,
in-app advertising using your choice of ad platforms, and it may implement a custom
transaction system if you so desire.

For in-app purchases and trial versions of your product,
Microsoft bundles supporting functionality in the Windows.
ApplicationModel.Store namespace to make it easier for you
to build applications with these features, as well as to simulate the
Windows Store functions prior to official submission. A sample app
using these features is available here: https://github.com/
Microsoft/Windows-universal-samples/tree/master/
Samples/Store.

If you want to confirm the details of the Windows Store Policies, refer to the Microsoft
documentation on the subject at https://msdn.microsoft.com/en-us/library/
windows/apps/dn764944.aspx.

See also
ff The Packaging your UWP app recipe

ff The Validating your Windows Store app recipe

https://github.com/Microsoft/Windows-universalsamples/tree/master/Samples/Store
https://github.com/Microsoft/Windows-universalsamples/tree/master/Samples/Store
https://github.com/Microsoft/Windows-universalsamples/tree/master/Samples/Store
https://msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx

Chapter 2

77

Distributing your UWP app through
sideloading

With Windows 8.X, Microsoft heavily promoted the idea of app distribution through their
Windows Store. Indeed, we have covered this concept, because it is an easy way to sell and/
or distribute your app to new and existing users. However, longtime Windows developers are
used to the idea of controlling their application's distribution from start to finish. Additionally,
there may be business reasons that make it impractical, if not impossible, to distribute a
program through an outside vendor.

To address these and other concerns, Windows 10 supports the concept of sideloading
apps. This term refers to the concept of taking a properly packaged UWP app and distributing
it to end users outside of the Windows Store. While this capability existed to some extent
in Windows 8.1, it is no longer so obscure in Windows 10. Outside of business and privacy
concerns, how you distribute your app is entirely up to you.

Even if you intend to ultimately distribute your app through the Windows
Store, sideloading provides the ability to distribute your app to a select
group of users for testing or demo purposes, if so desired.

Getting ready
You will need to be running Windows 10 for this recipe, as we are dealing with UWP apps.

How to do it…
There are a few different areas to review when employing app sideloading. We will discuss
them all in the following steps:

1.	 To review your current system settings as they apply to app sideloading, visit your
system's All settings screen. From there, select Update & security, then click on
For developers.

Getting Started with Universal Windows Platform Apps

78

2.	 This is the same screen where Developer mode is enabled for our UWP app
development. You will want to verify that this is enabled, as shown in the following
screenshot:

System administrators can set this via Group Policy and using the
setting ApplicationManagement/AllowAllTrustedApps. The value
of 0 is an explicit denial of this ability, whereas a value of 1 is an
explicit allow.

3.	 You will need a packaged app to continue, so if you haven't got one already, you can
create one by following the recipe Packaging your UWP app.

4.	 The resulting files can be distributed to your users for installation on their own
machine. You can make them available via network file share, or USB stick, or any
other traditional distribution method.

5.	 The following screenshot provides an example of the app package distribution files:

6.	 To install the app, you should execute the Add-AppDevPackage PowerShell script
highlighted in the previous screenshot.

Chapter 2

79

How it works…
Since your application has been packaged, all of the metadata needed for its installation and
operation is available. The PowerShell script that Microsoft provides enables your app to be
easily installed. Thanks to this script, you can use the app package on the target machines
that you want.

There's more…
Users can avoid security warnings that may occur during app installation by first installing
the certificate generated by the packaging process, which is included with your app package.
To do this, right-click on the certificate, and select Install Certificate. This will present the
Certificate Import Wizard, as shown in the following screenshot:

You can have the certificate stored in the current user location (specific to the user that
is currently logged in to the machine), or the local machine location, which would grant it
recognition to all the users using that specific Windows 10 machine. For a one-off installation,
it may make sense to just install it as current user.

Getting Started with Universal Windows Platform Apps

80

In a corporate setting, you will probably have an existing certificate infrastructure for your app
distribution to be a part of. While creating the infrastructure is outside the scope of this book,
you can specify that your app uses a specific certificate (as opposed to the default Microsoft
created one) by editing your app's Package.appxmanifest, and selecting a specific
certificate to sign your app's package, as shown in the following screenshot:

From here, you can choose a certificate that already exists in your machine's certificate
store, or pick a certificate stored in a PFX file. Thus, if your corporate users already recognize
a corporate certificate, you can use that to sign your app so that their machines recognize
its legitimacy.

See also
ff Distributing line-of-business apps through the Windows Store for Business. Refer to

https://msdn.microsoft.com/library/windows/apps/mt608995.aspx.

ff Generating Personal Information Exchange certificates. Refer to https://
technet.microsoft.com/en-us/library/dd261744.aspx.

https://msdn.microsoft.com/library/windows/apps/mt608995.aspx
https://technet.microsoft.com/en-us/library/dd261744.aspx
https://technet.microsoft.com/en-us/library/dd261744.aspx

81

3
Web Development

In this chapter, we will cover the following topics:

ff Getting started with a Bootstrap-based SPA

ff Making the most of Browser Link

ff Adding bundling and minification to JavaScript and CSS files

ff Managing packages with NuGet

ff Fortifying JavaScript applications with TypeScript

ff Using Visual Studio for Node.js development

Introduction
The Internet remains a critical focus for modern application development. When its popularity
began to skyrocket in the 1990s, the focus was on users who usually accessed the Internet
via their web browsers and e-mail clients. The proliferation of devices beyond a traditional
desktop computer (smart phones, tablets, dedicated gaming consoles, and more) in the 21st
century has brought about the current situation where users expect to be able to access their
data from anywhere on any device.

As developers, we need to support as many of these devices as we can to provide the best
user experience. Users on a desktop expect a full-featured application that takes advantage
of the larger screen and the typical peripherals (keyboard, mouse, and so on), whereas mobile
users expect a touch-centric application that is sensitive to bandwidth limitations.

Web Development

82

Web development in VS2015 has been further improved to support all of these use cases.
Whether you are writing client-facing code or the server technology to support them, VS2015
has improved the tools available to you. And while the focus of this chapter is that of Internet-
facing applications, many familiar languages that originated for the Web (HTML5 and
JavaScript) have found a place across the full spectrum of application development, so you
will be able to use them to write code for websites, UWP apps, or desktop applications.

In this chapter, we will look at different areas where VS2015 can help make your web
development tasks easier for wherever you are putting these technologies to use.

Getting started with a Bootstrap-based SPA
VS2015 ships with numerous templates and project types available for creating web
applications. Since the rest of the chapter will be much more useful with a sample project
available, we will use this recipe to create a new ASP.NET Single Page Application using C#
and Bootstrap.

Bootstrap is a popular open source framework for frontend web development. It provides
a dynamic, mobile-first design, which automatically reacts in a useful way to the resizing of
browser windows, thus lending itself to easily accommodate the wide range of phones and
tablets in use today.

A default Bootstrap-themed web application will look similar to the following screenshot:

Chapter 3

83

In this recipe, we will create a new ASP.NET single page application to see Bootstrap in action.

Getting ready
You can use Visual Studio Express 2015 for Web, Visual Studio 2015 Community Edition, or
any of the premium editions for this recipe.

How to do it…
We'll start off by creating a new project to see what is provided out of the box, and then look
at the options available for customization. This is performed with the following steps:

1.	 Start your copy of VS2015.

2.	 Create a new project by navigating to the template for Visual C# | Web | ASP.NET
Web Application, and either accept the default project name, or enter one of your
own.

3.	 In the next dialog box, choose the Single Page Application template, as shown in the
following screenshot:

4.	 After Visual Studio finishes creating the project files, you may be prompted to select a
source control system: Team Foundation Version Control or Git. For the purposes of
this recipe, we will just click on the Cancel button, but if you have a preference, feel
free to make your choice.

5.	 At this point, you can preview your application if you want to see what you are starting
with. Pressing F5 or navigating to Debug | Start Debugging will bring up the default
Bootstrap template, as shown in the introduction to this recipe. If you decide to
review/debug the app, please stop debugging before continuing.

Web Development

84

6.	 The default MVC application that we've created uses the default Bootstrap theme.
It's not a bad theme, but you will probably want to customize it a bit so that your site
obtains some personality. The CSS files that define your site's theme are located in
the Content directory, as shown in the following image:

7.	 As you may surmise from the filenames, the bootstrap.css file contains a more
human-friendly definition of the site, while the bootstrap.min.css file is the
minimized version intended to reduce loading time when used in production.

8.	 Before replacing the bootstrap.css file, it is always good to make a backup.
Rename it to avoid overwriting it, by right-clicking on the file in the Solution Explorer
window and clicking on the Rename option. Feel free to use a name of your choice.

9.	 Let's find a new theme from Bootswatch to personalize our site. Navigate to
http://bootswatch.com/.

10.	 You can review the themes there, and pick one that appeals to you. For this recipe,
we'll choose Journal. The CSS file is found at http://bootswatch.com/journal/
bootstrap.css.

11.	 Download this new theme file to the Content directory of your Visual Studio project.
(If you are using the defaults, your project will be in the Documents\Visual
Studio 2015\Projects\directory, where Documents should be adjusted
depending on your version of Windows.)

An easy way to navigate directly to your Content folder and to
determine its location is to simply right-click on Content in the
Solution Explorer, and select Open Folder in File Explorer, as
shown in the following screenshot:

http://bootswatch.com/
http://bootswatch.com/journal/bootstrap.css
http://bootswatch.com/journal/bootstrap.css

Chapter 3

85

12.	 Once downloaded, it will have to be added to your project. Right-click on the Content
directory in Solution Explorer, and navigate to Add | Existing Item…, as shown in
the following screenshot:

13.	 Locate your newly downloaded file, and add it to the project.

Web Development

86

14.	 Preview the changes by pressing F5 or navigating to Debug | Start Debugging as
described in Step 5, which is shown in the following screenshot:

Note that you will want to download the minimized version of your chosen
theme and add it to your project when you are ready for a production
release. Otherwise, VS2015 will use the minimized version of the original
Bootstrap theme. Certainly not what you would expect—or want!

There's more…
You will notice that templates based on older ASP.NET versions (such as ASP.NET MVC 4)
are no longer available with VS2015. As part of the price of progress, older templates have
been removed—but this doesn't mean that VS2015 cannot help you. Any projects started in
VS2013 can, of course, be opened and continued under VS2015. Even better, as long you do
not invoke newer ASP.NET features, you can continue to work in VS2015 while a colleague still
uses VS2013. This is due to project round-tripping, which lets you use your tools independent
of your source code.

Chapter 3

87

See also
ff For more information on the Bootstrap framework, and to examine the source

code, visit the project's home page at http://getbootstrap.com/. Specifically,
customization is described at http://getbootstrap.com/customize/.

ff See the Adding bundling and minification to JavaScript and CSS files recipe later in
this chapter.

Making the most of Browser Link
A common task faced by web designers is dealing with the constant workflow of editing web
pages and reviewing their changes. With the large number of web browsers in the market, it
can be tedious to keep them all in sync as changes are made. VS2015 seeks to address this
with the advent of the Browser Link feature. The Browser Link feature allows you to select any
number of browsers available on your development machine, and have them refreshed after
making changes to your web pages. This feature makes it very easy to make changes to your
website, and to preview them across your site's supported browsers in a streamlined way.

In this recipe, we will look at how to set up Browser Link, and how it can help you with
your projects.

Getting ready
You can use Visual Studio Express 2015 for Web, Visual Studio 2015 Community Edition, or
any of the premium editions for this recipe. You should also make available all of the web
browsers you plan to use (Google Chrome, Mozilla Firefox, and so on) before we start. If you
would like to just see how the feature works first, Internet Explorer will work fine.

How to do it…
We will start this recipe by enabling support for Browser Link, and then we will see it in action
by performing the following steps:

1.	 Open up a web-based project in Visual Studio. (The one created in this chapter's
Getting started with a Bootstrap-based SPA recipe will work great.)

http://getbootstrap.com/
http://getbootstrap.com/customize/

Web Development

88

2.	 Browser Link should be supported by default in a new project if you are running in the
Debug (not Release) mode. If this is not set in your Web.config file, you will see the
following error message on your Browser Link Dashboard window:

3.	 VS2015 can enable debugging for you automatically, but you can also do this yourself
by ensuring that the compilation element is set to true, as shown in the following
screenshot:

4.	 As soon as you save the changes, Browser Link will be available for use, so let's see
what it can do. Open an HTML or CSHTML page in your editor. Then to browse with
Browser Link, you will have to open the web browsers in the following manner. Select
Browse With… as shown in the following screenshot:

Chapter 3

89

5.	 Clicking on Browse With... will open the dialog box shown in the next image. Click on
Firefox while holding down Ctrl. If Internet Explorer is not selected, Ctrl + click on its
title as well. The following screenshot shows the desired selections:

6.	 After making those selections, click on the Browse button. This will open up your web
page in each browser selected.

7.	 You can verify this connection by leaving the browsers open and switching back to
Visual Studio. Then open the Browser Link Dashboard window (if it is not already
open) using the menu shown here:

Web Development

90

8.	 Once the dashboard is open, it will show that two connections are, in fact, present:

9.	 Returning to your main editor window, make a change, such as adding a few lines of
text. You can instantly view the changes by reloading your website across all browsers
with the hot key Ctrl + Alt + Enter, or by clicking on the Browse button under the
Browser Link menu, as shown in Step 5.

How it works…
Visual Studio is able to make this feature work by injecting a snippet of JavaScript into the web
pages served by Visual Studio's internal web server. This code is added transparently behind
the scenes, and does not affect your source in any way (it is not saved to the disk or entered
into your source control system). The following screenshot shows the code that is added:

There's more…
Browser Link is tied to running your site through Visual Studio in the Debug mode; it turns
itself off when switching to the Release mode.

The configuration demonstrated here works with dynamic files,
including CSHTML and ASPX files. For best results with static HTML
files, read on to the next section.

Chapter 3

91

However, there may be situations where you want to absolutely guarantee that Browser Link is
not running—perhaps you are tracking down a particularly nasty bug, and want to eliminate all
outside factors. The following code fragments added to your project's Web.Config file under
the appSettings tag can force Browser Link to always be ON (true) or always OFF (false),
depending on your needs:

<system.web>
 <compilation debug="false" targetFramework="4.6.1" />
</system.web>

Separately, the following change to appSettings should be paired with the preceding
change:

<appSettings>
 <add key="vs:enableBrowserLink" value="false"/>
</appSettings>

VS2015 will notify you on the Browser Link Dashboard if either of
these is set to true, but knowing the code behind the settings allows
you to ensure it is set the way you want, especially if sharing files with
coworkers or version control systems.

Supporting static HTML files
To ensure that Browser Link correctly displays the static HTML files, add the following to your
Web.config file in the handlers section under system.webServer:

<add name="Browser Link for HTML" path="*.html" verb="*"
type="System.Web.StaticFileHandler, System.Web, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
resourceType="File" preCondition="integratedMode" />

Note that you should only include this while developing, as it should not be enabled for
production use due to performance considerations.

Adding bundling and minification to
JavaScript and CSS files

One of the most common techniques for improving website performance is to reduce the
number of requests a browser needs to make in order to get the resources required for the
page, and to reduce the size of the data requested.

Web Development

92

When it comes to both JavaScript and CSS, this generally means combining all of the files of
the same type into a single large file (bundling), removing unnecessary whitespace from them,
and renaming variables to use the minimum amount of space possible while still leaving the
functionality unchanged (minification).

Since version 4.5, ASP.NET supports automatic bundling and minification. By having these
processes applied in an automatic way, you can work with the unmodified files to make
development easier, while your users get the benefit of the optimized files.

In this recipe, you'll add bundling and minification to a site, and see how it impacts your
development activities.

Getting ready
You can use Visual Studio Express 2015 for Web, Visual Studio 2015 Community Edition, or
any of the premium editions for this recipe. We are going to use the project created in the
Getting started with a Bootstrap-based SPA recipe, but feel free to substitute your own.

This recipe assumes that your browser of choice has developer tools that are able to capture
network traffic. If you use Internet Explorer, you will need Internet Explorer 11 or higher, which
is what this recipe assumes you are using.

How to do it…
Bundling and minification are important steps to remember when moving your code into
production (even if just testing for production-like environments). Let's see how to do it:

1.	 Build the application, and run it without the debugger by pressing Ctrl + F5 or
navigating to Debug | Start Without Debugging from the menu.

2.	 Navigate to the http://localhost:37271/Manage page in your browser, and
open the browser's developer tools. If you are using Internet Explorer 11, you can
press F12 to open them.

Chapter 3

93

3.	 Go to the Network tab (Ctrl + 4), and click on the Start Capturing (F5) button. In the
browser window, press Ctrl + F5 to force a complete refresh of the page. The network
trace should show that a lot of files are required to load the page. This can be seen in
the following screenshot:

4.	 Look at all those requests! If you want a faster loading page, you need to reduce this.
Leaving the browser open, switch back to Visual Studio, and in the Solution Explorer
window, find and open the BundleConfig.cs file. (It is located in the project's
App_Start folder.)

5.	 In this file, you will see the bundles defined for the project. Existing JavaScript files for
this project are already configured. For example, look at how Bootstrap is bundled:

Web Development

94

6.	 When you add custom JavaScript to your project (typically, in the project's Scripts
folder), you will undoubtedly want the bundles file for your own custom JavaScript.
To do that, you can define your own bundle by adding a new statement to the
RegisterBundles() method as follows:
bundles.Add(new ScriptBundle("~/bundles/customjs").
Include("~/Scripts/myJavaScript.js"));

7.	 The preceding code assumes that you have added a JavaScript file to your project
using the name shown in bold (myJavaScript.js).

8.	 Now is a good time for a checkpoint. Rebuild the solution, switch over to your
browser, and perform a full page refresh (that is, press Ctrl + F5 in Internet Explorer).
Assuming that the Network tab is still open in the developer tools, you should see
that everything is still operating as expected.

9.	 While you have defined the bundles, they still aren't actually being bundled or
minified. Switch back to Visual Studio, and find and open the Global.asax.cs
file in Solution Explorer. In the Application_Start() method, add the following
highlighted line of code to enable optimizations, as shown in the following image:

The EnableOptimizations property forces bundling to occur.
Without this call, bundling only occurs when running the site in the
Release mode. In other words, when the debug = true attribute of
the system.web.compilation tag of the web.config file is
specified, bundling optimizations are disabled.

10.	 Rebuild the application, switch over to the browser, and perform a full page refresh
again. The network trace will now show that JavaScript bundles are being downloaded
instead of individual script files, and that the download size of the bundle files is
less than the download size of the original JavaScript files, as shown in the following
screenshot:

Chapter 3

95

The bundled files are now sourced from /bundles/ rather than
/Scripts/.

11.	 It's worth confirming that the scripts are not only bundled, but also minified.
Navigate to the Debugger tab (Ctrl + 3) in the browser developer tools, and select
the bootstrap file from the script's' drop-down list, as shown in the following
screenshot:

Web Development

96

Once the file is open, as you can see in the following screenshot, not only has the whitespace
been removed, but the variable names have also been shortened, and the code optimized.
Exactly what you should expect minification to do:

How it works…
Inside the ASP.NET runtime, when a browser requests a page with a bundle in it, ASP.NET
will either render the names of the individual files in the bundle or the bundle name itself,
depending on whether optimizations are turned on or not. When optimizations are on,
browsers will request bundles by their name, and ASP.NET will group the individual bundled
files into a single larger file before minifying them and sending the result back to the browser.
The resulting minified file is cached by ASP.NET so that future requests do not impact site
performance.

You can create your own custom bundle types by subclassing the Bundle class. This allows
you to provide your own minification rules and bundling mechanisms, which is useful if you
want to support web technologies such as LESS, Sass, or CoffeeScript.

Managing packages with NuGet
Watching the software releases that Microsoft has made in recent years, it is hard to miss
the great strides that the firm has made in moving towards embracing open source software.
Microsoft's approach to open source software and open source projects, in general, has
softened over the years to the point where open source is now valued, embraced, and
recognized as an integral part of the development ecosystem.

Microsoft is now so committed to open source that they are developing a number of
projects, starting with .NET Core and ASP.NET Core, to providing contributions for a number
of third-party open source projects such as jQuery, Node.js, and Git.

Chapter 3

97

Developers using VS2015 need an easy way to locate and find open source packages that
could be used in their own projects. To help facilitate this, Microsoft supports an open source
project to create a package manager for Visual Studio called the NuGet package manager.
NuGet (https://www.nuget.org/) allows developers to download packages of libraries
that install themselves into a project, configure themselves, and then are ready for use by the
developer. The package manager also does the work of looking for new updates, and applying
those updates when they are available.

In this recipe, you'll see the ways to use the NuGet package manager in Visual Studio.

This recipe uses a web application, but NuGet can be used across
Visual Studio.

Getting ready
You can use Visual Studio Express 2015 for Web, Visual Studio 2015 Community Edition, or
any of the premium editions for this recipe.

How to do it…
For this recipe, we will create a new ASP.NET web application, and then see how NuGet will let
us easily add new packages to assist our application. Let's get started:

1.	 Start your copy of VS2015.

2.	 Create a new project by navigating to the template for Visual C# | Web | ASP.NET Web
Application, and either accept the default project name, or enter one of your own.

3.	 In the next dialog box, choose the MVC template, as shown in the following
screenshot:

https://www.nuget.org/

Web Development

98

4.	 If prompted for a version control system, select your preference, or just click on
Cancel to skip. For a quick check, make sure everything is in order, press F5, or
navigate to Debug | Start Debugging. After a brief review, stop debugging and return
to VS2015.

5.	 Let's add some packages. In Solution Explorer, right-click on the References node
for the project, and select Manage NuGet Packages.

6.	 The NuGet Package Manager dialog box will appear. The default package source
is nuget.org, which you can verify for your local environment, as shown in the
following screenshot:

7.	 Enter entityframework into the search box on the bottom-left corner, and then
review the results, as shown in the following screenshot:

8.	 As you can see, EntityFramework appears as the first result. Note the green check
mark that indicates that the package is already installed.

9.	 Now let's add a new package. Replace the entityframework search text
with json.

Chapter 3

99

10.	 The first result should be the Newtonsoft.Json .NET package. Click on the Install
button. If it is already installed, you can instead Update your copy, as shown in the
following screenshot:

11.	 Once the package has been installed or updated, close the NuGet Package
Manager.

12.	 Close the NuGet window, and then expand the References node for the project
in Solution Explorer. You should see not only the EntityFramework and Json.NET
assemblies, but also assemblies for other packages that the bundler relies on. A
partial listing of the References are shown in the following screenshot:

Web Development

100

13.	 Now let's review how to update all of the installed NuGet packages that you may
have. Open the NuGet Package Manager again by right-clicking on the References
node, and selecting Manage NuGet Packages. Select the Updates tab, as shown in
the following screenshot:

14.	 In the preceding screenshot, you can see that the Updates tab shows packages
installed on your local system. It also provides an option to let you quickly update all
of the installed packages from nuget.org, or individually choose the packages you
would like to update.

15.	 The NuGet Package Manager is not the only way to use NuGet. So we will continue,
and show you how to do a bulk update from the Package Manager Console.

16.	 From the main menu in Visual Studio, navigate to Tools | NuGet Package Manager |
Package Manager Console.

17.	 The console will appear at the bottom of the screen. Click inside it, and enter the
command Get-Package -updates before pressing Enter, as shown in the
following screenshot:

Chapter 3

101

18.	 Since a particular package is not specified, NuGet will iterate over all installed
packages to see if any updates exist. This will list all the packages that have updates
available. To update all of them, execute the command Update-Package. NuGet
will then locate and install updates for all packages automatically. Because package
installation in web projects often affects the Web.config file, you may get prompted
to reload it a number of times. Each time you do, just click on Yes.

19.	 Alternatively, you may enter a specific package to check for updates on that single
package (for example, Update-Package jquery).

20.	 The results of the update will be shown in Package Manager Console, as shown
in the following screenshot (note you may receive a notice to restart Visual Studio
depending on the scope of the update):

21.	 Compile and run the application to check that everything still works as expected.

How it works…
NuGet uses a central, well-known location for storing packages, located at http://www.
nuget.org. Anyone can create and upload packages to this site, and the site features
a gallery allowing you to search and browse all the available packages. For many people,
the NuGet site is the first port of call when looking for a package to help them in their
development efforts.

Apart from independent software packages being provided through NuGet, Microsoft itself
is using NuGet to deliver their own packages. This provides Microsoft with an easier way to
deliver updates, and provides you with an easier way to install them on your system, thereby
keeping your software packages current.

There's more…
We just scratched the surface of what NuGet can do, but it offers a couple of more useful
abilities. Let's take a look.

http://www.nuget.org
http://www.nuget.org

Web Development

102

Automatically loading packages
If you are sharing solutions with different developers—perhaps you would like to try
an open source project, or you may have recently changed your programming environments,
for example—you will inevitably run into a situation where packages needed by your project
are missing.

Visual Studio provides an option to automatically retrieve these packages for you, which can
be especially helpful in situations when you want to focus on learning the code, and not be
mired in troubleshooting build settings. To turn this feature ON or verify your current settings,
navigate to Tools | NuGet Package Manager | Package Manager Settings, as shown in the
following screenshot:

Selecting both the options (as shown in the preceding screenshot) will allow NuGet to
download the missing packages automatically.

About binding redirects:
Binding redirects are used to help with versioning the packages provided
by NuGet. For example, say you desire to install package A, which requires
version 3.0.1 of package B. If the newest the version of package B is 3.2,
that is what NuGet will install by default. Checking Skip applying binding
redirects will enforce strict versioning, so a requirement to install version
3.0.1 means that is exactly what will be installed. For most purposes, you
will want to leave this unchecked as shown.

Using custom package locations
A lot of organizations build their own utilities, frameworks, and libraries for use in
their development, and wish to share them across various projects. Managing these
dependencies can become difficult over time. Fortunately, NuGet can be configured to use
custom locations for packages by either using a filesystem location, or your own network
accessible NuGet server.

Chapter 3

103

If you wish to host your own NuGet server, instructions can be
found at http://github.com/NuGet/NuGetGallery/
wiki/Hosting-the-NuGet-Gallery-Locally-in-IIS.
If you wish to host just your own project-specific server via a
custom feed, or take advantage of some advanced functionality,
check out http://docs.nuget.org/create/hosting-
your-own-nuget-feeds.

To configure Visual Studio to use a custom location for NuGet packages, go to Tools | NuGet
Package Manager | Package Manager Settings, and add entries by filling in the Name and
Source fields, and then clicking on the add button. The following screenshot shows two extra
entries; one is configured to point to a local on-disk NuGet repository, and the other is pointing
to a network share:

http://github.com/NuGet/NuGetGallery/wiki/Hosting-the-NuGet-Gallery-Locally-in-IIS
http://github.com/NuGet/NuGetGallery/wiki/Hosting-the-NuGet-Gallery-Locally-in-IIS
http://docs.nuget.org/create/hosting-your-own-nuget-feeds
http://docs.nuget.org/create/hosting-your-own-nuget-feeds

Web Development

104

Fortifying JavaScript applications with
TypeScript

JavaScript's role in web development has gone from being considered a starter language
for hobbyist programmers to being regarded as a serious tool for building modern web
applications on both the client and server. This change means that the size and scope of
JavaScript applications has grown tremendously, and with that growth, the costs for managing
the complexity have also increased. To address this, Microsoft has developed the open source
project TypeScript, which is a superset of JavaScript that adds static type checking.

The result is that TypeScript can be used to build a new web application from the ground up
just as well as it can be used on-demand to replace or refactor code in an existing JavaScript
project. TypeScript can help depending on the needs of your project. Let's take a look at how
TypeScript can benefit your web application.

Getting ready
You can use Visual Studio Express 2015 for Web, Visual Studio 2015 Community Edition,
or any of the premium editions for this recipe. Please ensure Update 1 has been installed,
regardless of the edition that you choose.

How to do it…
Let's perform the following steps to see how TypeScript can fortify your JavaScript applications:

1.	 Open Visual Studio 2015 and create a new project of HTML Application with
TypeScript type, as shown in the following screenshot:

Chapter 3

105

2.	 Accept the default project name, and create the project.

3.	 When executed, the default project will open with a small sample that will produce a
web page that shows a simple clock. When you look at the source, it is pretty sparse,
as shown in the following screenshot:

4.	 If you notice, beyond some HTML, there is not much except for a reference to a
file called app.js. Returning to Visual Studio, it would seem that the only source
code file is app.ts. So where did the app.js file come from? Going back to our
original explanation of TypeScript, remember that it is a superset of the JavaScript
language. This means that all valid JavaScript code is also valid TypeScript code.
When TypeScript is compiled, JavaScript is generated. In this case, our file app.ts is
compiled by Visual Studio to app.js. You can find the app.js file if you look inside
your project folder; it is at the same location as your project's web config files.

5.	 Enable Show All Files in Solution Explorer to see the generated app.js file from
within Visual Studio, as shown in the following screenshot:

Web Development

106

How it works…
Since TypeScript ultimately compiles down to JavaScript, you may be wondering about the
advantages of using it. First, using TypeScript allows meaningful IntelliSense support. For
example, examine the app.ts file that is part of our project. The following screenshot shows
one of the available IntelliSense menus that can appear while editing:

Second, TypeScript (as its name implies) provides type checking. Consider the greeter class,
and how Visual Studio is able to help by comparing the differences, as shown here:

Since TypeScript is being used, Visual Studio detects an error with the assignment, as shown
in the preceding screenshot. Conversely, in the JavaScript code (which is shown in the
following screenshot), Visual Studio did not detect the error:

The lack of type checking creates a bug that is easy to overlook. In smaller applications,
the lack of type checking can usually be managed by the programmer. However, with larger
applications or unfamiliar code bases, it becomes much more difficult. Catching the error
immediately saves debugging time later.

Chapter 3

107

Visual Studio works with the TypeScript compiler (tsc.exe) to produce valid JavaScript that
works on any browser or platform that supports JavaScript. Since the nature of the TypeScript
language is more specific than JavaScript, you can catch errors sooner and increase the
power of IntelliSense. This allows you to keep the good parts of JavaScript (fast and powerful
design capabilities) while increasing its safety and usability in large projects.

There's more…
You don't have to create a brand new project just to take advantage of TypeScript; it can be
easily added to your existing web projects. From within an existing web project, add a new item
(Ctrl + Shift + A), or right-click on your project name or directory within the Solution Explorer
window and select TypeScript File, as shown in this screenshot:

If you would like to try TypeScript but are wondering about all the existing JavaScript
code that would have to be converted, don't worry. Library types for many popular
JavaScript projects including Backbone.js, Node.js, and jQuery are available at DefinitelyTyped
(http://definitelytyped.org/).

http://definitelytyped.org/

Web Development

108

Using Visual Studio for Node.js development
The open source Node.js platform has become a popular way to deploy server-side
applications written in JavaScript. Node.js can be hosted by numerous operating systems:
Linux, Mac OS X, Unix variants, and Windows. If you are interested in developing for Node.js,
you will be pleased to learn that you can use your existing Visual Studio knowledge with
Node.js Tools for Visual Studio (NTVS).

This toolset provides a powerful new way to write Node.js applications while using Visual
Studio to provide important features—including an IntelliSense-powered editor, debugging and
profiling, and the Node.js package manager npm. In this recipe, we will see how VS2015 can
be expanded to support Node.js development.

Getting ready
This recipe will require a bit more preparation than usual. The good news is that the NTVS
supports VS2015 Community, premium editions, and VS2015 Express for Web—which
means that a paid version of VS2015 is not required.

You can obtain NTVS from the project's GitHub page, or directly by using the link
http://aka.ms/getntvs. Once that is installed, you will need to install Node.js. This
is obtainable from https://nodejs.org/, and you should download the newest version
to be sure that you have all the appropriate security patches.

Both NTVS and Node.js should be installed on the same machine where you have installed
VS2015. For this recipe, we have installed v0.12.10 (LTS) using the 64-bit installer for
Windows. (Be sure to download and install the installation package and not the binary
runtime.) The default installation paths are acceptable to use for both NTVS and Node.js.

How to do it…
Let's see how NTVS can provide new capabilities to VS2015 by taking the following steps:

1.	 After installing NTVS and Node.js, start VS2015.

http://aka.ms/getntvs
https://nodejs.org/

Chapter 3

109

2.	 Upon startup, Visual Studio will automatically detect that NTVS has been installed.
Create a new Node.js-based project by navigating to the template for JavaScript |
Node.js | Blank Node.js Web Application, and either accept the default project
name, or enter one of your own:

3.	 Once the project has been created, you can test it out to ensure that everything is in
order. You may do so via the usual Debug | Start Debugging or F5. As the program
starts, you may be prompted by the Windows Firewall. For proper operation, be sure
to click on Allow access, as shown in the following screenshot:

Web Development

110

4.	 After accepting the firewall changes, a debugging window starts, and your web
browser displays the initial welcome page for the project, as shown in the following
screenshot:

5.	 As you can see in the preceding screenshot, the debugging window is marked by
the number 1, while the web browser is marked with the number 2. After confirming
everything is in order, stop debugging and return to VS2015. (You can do this by
closing your browser window and the debugger window.)

6.	 So far this makes sense, and we have a generic website. Let's see what else NTVS
can do by using npm.

npm is the Node.js package manager. Extensive documentation and
a listing of the numerous packages available for installation can be
found at https://www.npmjs.com/.

7.	 There are several ways to access npm. The easiest way to get a command prompt is
to simply right-click on your project in Solution Explorer, and select Open Command
Prompt Here. For this recipe, we will use an alternate method, which is found by
right-clicking on the npm object in Solution Explorer and selecting Install New
npm Packages. Note that the first time this is selected, the package catalog will be
downloaded; while it is cached for subsequent requests, its download will introduce
a brief delay.

8.	 After the catalog has downloaded, you will have a dialog box that will allow you to
search for packages to install. It also provides an indication as to when it was last
updated, so if it has been a while since it was downloaded, you can click Refresh.
We will now install the finalhandler package, so enter that into the search box,
as shown in the following screenshot:

https://www.npmjs.com/

Chapter 3

111

9.	 After installation has finished, you will note that the package catalog refreshes to
reflect that finalhandler has been installed, as shown here:

10.	 We will also need the package serve-static (also created by Douglas Christopher
Wilson). The hyphen in the title is important, so make sure you get the right package.
Install this using the process described in Step 8. Installation should also be
verifiable, as shown in the following screenshot:

Web Development

112

11.	 We are done with the package installer, so after verifying installation, click on Close.

12.	 Now that we have these packages installed and available for use with our Node.js
project, it is able to serve static files. Let's add the finishing touches. First, replace the
existing server.js code with this example based on the project's sample code:
var http = require('http')
var finalhandler = require('finalhandler')
var serveStatic = require('serve-static')

var port = process.env.port || 1337;
var serve = serveStatic('./')

// Create server
http.createServer(function (req, res) {
 var done = finalhandler(req, res)
 serve(req, res, done)
}).listen(port)

13.	 Next, add a new HTML file to your project by right-clicking on the project in the
Solution Explorer, and selecting Add | New Item (or use Ctrl + Shift + A). Be sure to
name the file index.html.

14.	 After you add the new HTML file, it will open in your editor. The default code is fine
for what it is, but doesn't include any visible output. Add some text, as shown in the
following code excerpt:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8" />
 <title>Hello from Node.js</title>
 </head>
 <body>
 Hello from Node.js
 </body>
</html>

Chapter 3

113

15.	 Save your work, and now run the debugger (F5). If there are no errors, you will receive
a welcome message, as shown in the following screenshot:

How it works…
NTVS provides a full-featured environment for developing Node.js applications, while enabling
you to continue to use the familiar Visual Studio interface. The bundled Node.js templates
allow you to start writing code quickly, and the inclusion of npm support means that you can
take advantage of the same Node.js packages available to non-VS2015 users, so you don't
have to reinvent the wheel.

There's more…
NTVS includes a remote debug proxy tool (RemoteDebug.js) that can be used to provide
debugging capabilities in conjunction with a remote server. This means you can run your
application in an environment more typical of a production-like setting (such as Linux server
or virtual machine) while debugging it on your local workstation running VS2015.

NTVS also provides an interactive window for use with Node.js, which is accessible via
Tools | Node.js Tools | Node.js Interactive Window (shortcut key Ctrl + K, N).

See also
ff Full instructions on how to use remote debugging are available at https://

github.com/Microsoft/nodejstools/wiki/Remote-Debugging-Node.js-
running-on-Linux

https://github.com/Microsoft/nodejstools/wiki/Remote-Debugging-Node.js-running-on-Linux
https://github.com/Microsoft/nodejstools/wiki/Remote-Debugging-Node.js-running-on-Linux
https://github.com/Microsoft/nodejstools/wiki/Remote-Debugging-Node.js-running-on-Linux

115

4
.NET Framework

Development

In this chapter, we will cover the following topics:

ff Creating a task-based WCF service

ff Unit testing .NET applications

ff Sharing class libraries across different runtimes

ff Detecting duplicate code

ff Exploring C# through the Immediate window

Introduction
In Chapter 3, Web Development, we looked at web development, and how Visual Studio
supports web developers. Of course, the .NET Framework is also useful for writing traditional
desktop applications and server-side programming.

In this chapter, we turn the spotlight on Visual Studio 2015's support for the .NET platform
for non-web applications. We will look specifically at functionality that has been added or
enhanced. This chapter will start by discussing what was included with the .NET Framework
4.5, and then move on to discuss the new features found in 4.6.1.

You should be aware that like its previous version, .NET Framework 4.5, Framework 4.6.1 is an
in-place upgrade of its 4.x predecessors. This means that while you may have only one version
of the 4.x series installed, they will run side by side with the earlier versions of the framework
(version 3.5 SP1 and its predecessors).

.NET Framework Development

116

Be aware that, like the previous 4.5 release, .NET Framework 4.6.1 is not
supported on Windows XP, Windows Vista, or Windows Server 2003. .NET
Framework 4.6.1 ships with VS2015. The Framework is also available for
use on Windows Vista SP2, Windows 7 SP1, and Windows Server 2008
R2 SP1. Your application's targeted audience should be a consideration
when choosing which framework to use, but most new applications
should use the latest version of the framework available.

Creating a task-based WCF service
Windows Communication Foundation (WCF) remains a mature technology, so there is
little difference in developing these applications and services with VS2015. Since WCF is a
technology focused on network communications, the visible changes in Visual Studio are quite
small. However, with .NET Framework 4.6.2, there have been many bug fixes and stability
enhancements to ensure that it performs as expected.

WCF is Microsoft's framework designed for use in creating applications
based on service-oriented architecture. Some of the features provided
by WCF include interoperability, service metadata, data contracts, and
security. For in-depth information on using WCF, refer to Microsoft's
introduction at https://msdn.microsoft.com/en-us/
library/ms731082(v=vs.110).aspx, and the general reference
guide at http://msdn.microsoft.com/en-us/library/
dd456779(v=vs.110).aspx.

In this recipe, you'll create a task-based WCF service so that you can see what has changed.
A sample WPF application will call this sample WCF service.

Getting ready
Simply start a premium version of VS2015 (or Visual Studio Community), and you will be
ready to go.

http://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd456779(v=vs.110).aspx

Chapter 4

117

How to do it...
As you create these WCF applications, you will see how Visual Studio simplifies the process.
Let's get started:

1.	 Create a new project by navigating to Visual C# | WCF | WCF Service Application,
and give it the default name.

2.	 Add another project to the solution by navigating to Visual C# | Windows | WPF
Application, also giving it the default name. Be sure to select Add to solution in the
Solution field.

3.	 Compile the solution and start the WCF service to make sure it starts correctly so
that you have a working service for the next few steps. Stop the application once you
are satisfied that it's working. Since you added the WCF project first, it should be the
default project.

4.	 Back in Visual Studio, right-click on the WPF application, and select Add Service
Reference.

5.	 Click on the Discover button. The Service1 web service should be discovered, as
shown in the following screenshot:

.NET Framework Development

118

6.	 Click on the Advanced button in the bottom-left corner of the Add Service Reference
dialog box. Ensure that in the options for service generation, Generate task-based
operations is selected, and Allow generation of asynchronous operations is turned
on, as shown in the following screenshot:

7.	 Click on OK in this option's dialog box (Service Reference Settings), and then again
in the Add Service Reference dialog box to generate the service proxy. (In some
cases, Visual Studio may erroneously throw an error here, such as Unable to check
out the current file. If you get bitten by this bug, simply restart Visual Studio, and try
again. Note that this is less likely in VS2015.)

8.	 Use Solution Explorer to open the app.config file for the WPF application, locate
the <endpoint> configuration section, and hover the mouse over the name attribute.
A tooltip will appear to explain what this attribute is for, as shown in the following
screenshot. Given the issues people have historically had with understanding the
details in WCF configuration, this IntelliSense information is very welcome.

9.	 Start adding a new endpoint configuration to the <client /> section by typing
<endpoint binding=. IntelliSense will kick in to show you the values that can be
placed inside the quotes. That makes editing WCF configurations much simpler than
trying to remember what all the valid values are. Select the basicHttpBinding
value, as shown in the following screenshot:

Chapter 4

119

The recipe asks you to add it here so you can see the new IntelliSense
support for WCF configurations. A complete WCF tutorial is outside the
scope of this book, but once you finish the recipe, try manually adding
support for https using the basicHttpsBinding class. For now, we
will comment out the second endpoint that we just added.

10.	 Returning to the WPF project, open the MainWindow.xaml file, and change the
<Grid> element to a <StackPanel> element. Add a button and a textbox to the
<StackPanel> element, as listed in the following code:
<StackPanel>
 <Button x:Name="btnAsync" Click="btnAsync_Click_1">
 click!</Button>
 <TextBlock x:Name="txtText">Not yet populated
 </TextBlock>
</StackPanel>

11.	 Navigate to the code-behind file, MainWindow.xaml.cs, and add code for the
button click event handler so that it calls out to the WCF service, as follows:
async private void btnAsync_Click_1(object sender,
RoutedEventArgs e){
 using (var client = new
 ServiceReference1.Service1Client())
 {
 var result = await client.GetDataAsync(3);
 txtText.Text = result;
 }
}

12.	 In Solution Explorer, right-click on the solution, and select the Set as StartUp
Project option.

13.	 Choose Multiple startup projects, and set Action to Start for both projects. Click on
OK to save the changes:

.NET Framework Development

120

14.	 Press F5 to start debugging, and when the WPF application appears, click on the
click! button to make the async call to the WCF service. The text below the button
should update to say You entered: 3, proving that the call to the service worked.

How it works...
As mentioned earlier, the Add Service Reference dialog box can generate task-based proxy
classes that you can call from your code with an await keyword. This makes asynchronous
calls to services much easier to write, though you can still call the blocking, synchronous
methods if you need to. The generated code contains both the synchronous method call as
well as the task-based call.

WCF's ServiceModel Metadata Utility Tool (svcutil.exe) can also be used to generate task-
based proxies if you prefer to use the command-line tool instead of Visual Studio.

Unit testing .NET applications
Unit testing represents the practice of writing code to test other code. The term "unit" refers
to identifying pieces of code (classes, methods, and so on) that represent useful functionality
and can be tested by separate pieces of code. As a developer, establishing these tests allows
you to easily verify that your code continues to work as changes and additions are made.

Visual Studio historically has been tightly tied to the MSTest framework when it comes to unit
testing. The inclusion of a unit test framework inside Visual Studio has been excellent. It has
encouraged developers to improve their quality by writing tests to prove code functions as
expected. On the flip side, many developers regard MSTest as an inferior unit test framework
when compared to NUnit, XUnit, and other frameworks.

The problem stems from the fact that MSTest does so much more than unit testing, and as a
result, suffers from poor speed and bloat. Additionally, its assertion methods are fragmented
across multiple classes, and it has a cumbersome approach to data-driven tests and expected
exceptions. MSTest has also been tied to the release cycle of Visual Studio, so updates have
been very slow, and it lags behind when compared to the other test frameworks.

Microsoft has ended the tight coupling between Visual Studio and MSTest by making the
unit test framework pluggable. MSTest is still provided out of the box, but now developers
can choose the framework that they like the most as long as their choice of framework
implements a Visual Studio adapter.

Chapter 4

121

Microsoft previously removed Test Impact Analysis from Visual Studio (it still exists in
Microsoft Test Manager), and replaced it with a continuous testing style feature instead.
Continuous testing is an approach that has been gaining popularity because of the incredibly
rapid feedback cycle it gives developers. The idea is that each time a change is saved in the
source files, the unit tests are run to see if anything has broken. This works well with dynamic
languages such as Ruby; however, as .NET is a static language, this approach is not so simple.
With Visual Studio 2015, instead of having all tests run whenever the source is saved, you can
have them run automatically each time the code is compiled.

This overall testing functionality is viewed and controlled by Test Explorer. In this recipe, we
will use the built-in test framework in a test-first manner to implement a very simple calculator,
and you'll see how the continuous testing feature works. The important part of this recipe isn't
so much the code you will write, but to see how Visual Studio can change your development
practices when it comes to unit testing. Let's get to it!

Getting ready
You are going to need a premium version of Visual Studio (Professional or higher) for this
recipe for best results. However, the basics of writing code and unit tests can be performed
with Visual Studio Community.

How to do it…
1.	 Open Visual Studio and create a new Unit Test Project under Visual C# | Test;

accept the default name, UnitTestProject1.

2.	 In the newly created solution, rename UnitTest1.cs as CalculatorTests.cs.
You will be prompted to rename all references to UnitTest1. Click on Yes so that
Visual Studio renames UnitTest1 as CalculatorTests in the code itself.

3.	 In the CalculatorTests class file, add the following test method. Don't worry if the
code doesn't compile yet—it will not. In a test-driven approach, the tests are written
first to establish how your code should behave before you implement anything. Then,
you write the following implementation code to make the test(s) succeed:
public class CalculatorTests
{
 [TestMethod]
 public void TestAdd()
 {
 Calculator calc = new Calculator();
 int result = calc.Add(3, 1);
 Assert.AreEqual(4, result);
 }

.NET Framework Development

122

 [TestMethod]
 public void TestMultiply()
 {
 Calculator calc = new Calculator();
 int result = calc.Multiply(6, 6);
 Assert.AreEqual(36, result);
 }
}

4.	 Now let's write some code so our tests will pass. To do this, we need to add a
Calculator class, but good practice dictates that you shouldn't place it in your
test assembly project.

5.	 Add a new C# Class Library to the Unit Test solution by right-clicking on your solution,
then select Add | New Project, and then select Visual C# | Windows | Class
Library. Name this project CalculationEngine.

6.	 In your newly created project, rename the Class1.cs file as Calculator.cs,
and when prompted, allow Visual Studio to rename Class1 as Calculator
across the project.

7.	 Return to the UnitTestProject1 project, and add a project reference to
the Calculator project. To do this, right-click on the References node for
UnitTestProject1, and select Add Reference…. Make sure Projects is
selected in the right-hand side column, and then click on the checkbox for
CalculationEngine, as shown in the following screenshot:

Chapter 4

123

8.	 In the CalculatorTests.cs file, place the cursor on the Calculator()
constructor call in the unit test. Then use the mouse to hover and click on the actions
drop-down menu, or press Ctrl + . (Ctrl + Period) to show the available actions. Select
the using CalculationEngine; option to add the required using statement to
your test code, as shown in the following screenshot:

9.	 Now place the cursor on the Add() method in the next line, and bring up the
available tasks. Again, do this either by hovering over the code with the mouse and
then clicking on the options drop-down menu when it appears, or by pressing Ctrl +
. (Ctrl + Period) and selecting the only available option to generate the method stub.
Do the same for the Multiply() method.

10.	 Now let's see what happens when we haven't written any new tests. Open Test
Explorer by navigating to Test | Windows | Test Explorer.

11.	 Select the Run All option in the Test Explorer window to compile the code, and run
the tests in the project for the first time.

12.	 The unit tests should fail at this point, because the method stubs you generated
for the Add() and Multiply() methods both simply throw the exception,
NotImplementedException. The following screenshot shows the results for Add():

.NET Framework Development

124

13.	 Let's fix our errors. Switch to the Calculator.cs file, and implement the Add()
method by using the following code:
public int Add(int v1, int v2)
{
 return (v1 + v2);
}

14.	 Next, do the same for the Multiply() method, as shown in the following code:
public int Multiply(int v1, int v2)
{
 return (v1 * v2);
}

15.	 Now let's see what the passing tests look like. Update the Test Explorer screen by
clicking on Run All. After rebuilding the solution, your unit tests will run, and this
indicates that they passed successfully. This is shown in the following screenshot:

How it works…
When using projects and unit testing frameworks supported by test adapters, they will take
care of the discoverability aspects for you. The adapter-driven approach has also allowed
Microsoft to create a unit-test-optimized version of MSTest that is fast and light, and can be
used in standard class libraries without a problem.

You can also mix and match your unit test frameworks. It is entirely valid to have MSTest,
xUnit, and NUnit tests in one assembly. For example, you may have a suite of older tests in
one framework, and may want to transit to a new framework without reworking all those old
tests. Now you can, without any problem at all.

Chapter 4

125

Out of the box, Visual Studio only supports the MSTest framework; however, adapters are
available in the Visual Studio Gallery for the major test frameworks. The Chutzpah test
adapter adds support for the QUnit and Jasmine unit test frameworks, which can be helpful
when writing JavaScript or TypeScript. (Chutzpah is available at http://chutzpah.
codeplex.com/.)

As mentioned previously, MSTest no longer requires a TestSettings file
for unit test projects. Test settings files can still be used with MSTest
unit test projects; however, if they are included, MSTest reverts to
the Visual Studio 2010 compatibility mode, and you will have a much
slower execution of unit tests.

There's more…
The changes in the test runner are fairly dramatic, and with it come a number of other
changes you should be aware of.

Can I restrict the unit tests that automatically execute?
In many projects, it is common to have unit tests in one test project and integration tests in
a second project. Unit tests are considered to be those tests that execute entirely in memory,
and have no interactions with external systems such as the network, filesystem, screen, or
database. Integration tests are those tests that interact with external systems.

If you want to restrict the tests that run such that only unit tests run, and slower integration
tests are excluded, you will need to use the Test Explorer filter to limit the tests to run. If you
have your unit and integration tests in separate assemblies, then the Fully Qualified Name
filter is likely to be the filter that will help you the most. Another option is to create playlists
of different tests. This can be helpful if you are focusing on a specific area, and wish to
temporarily avoid the default of All Tests.

Asynchronous tests
MSTest does support asynchronous tests that make use of the await keyword. You can see
this in the following code where the method signature is no longer a public void method,
but rather an async task:

[TestMethod]
async public Task Can_load_Bing_home_page()
{
 var client = new System.Net.WebClient();
 var page= await
 client.DownloadStringTaskAsync("http://www.bing.com");
 StringAssert.Contains(page, "bing");
}

http://chutzpah.codeplex.com/
http://chutzpah.codeplex.com/

.NET Framework Development

126

The asynchronous test ensures that the test runner will wait for the test to end before starting
the next test. It does not mean that multiple tests will be run in parallel; it is just that you can
test methods that use the async and await keywords.

Automatically trigger test execution
With Visual Studio Enterprise, the Test Explorer window presents an additional feature:
automatically executing tests every time a build is made. To select this, use the icon in the
Test Explorer that is shown in the following screen:

See also
ff For information on how to invoke MSTest from the command line (such as for

automation purposes), consult https://msdn.microsoft.com/en-us/
library/ms182487.aspx

ff Beyond MSTest, there is NUnit http://www.nunit.org/ and xUnit
https://github.com/xunit/xunit

Sharing class libraries across different
runtimes

There are a number of managed runtimes and profiles for .NET development including the
.NET Framework, Silverlight, Windows Phone, Windows 8.X, and the Universal Windows
Platform (UWP). When you have to write code that can be shared across more than one of
these runtimes, various options are available. Frequently, it can involve either the use of copy-
and-paste development, or multiple versions of the same project and the use of linked files.
Neither approach is ideal as they introduce greater possibilities for errors and make updating
difficult. It is all too easy to make changes to a piece code during an intensive debugging
session, and then forget to copy them over to the other files.

The solution to all of these issues is to use Portable Class Libraries (PCL). The idea here
is that you can build a class library that works across all desired runtimes by ensuring that
all code that is general to all platforms is used. So whether you have business logic or math
functions used for a game engine, this common code can be located in one or more PCLs.
Then code that is platform-specific can be contained in its own projects and references these
PCLs. Further, the compiler only builds the project once regardless of the number of runtimes
supported, making the overall solution faster to build.

https://msdn.microsoft.com/en-us/library/ms182487.aspx
https://msdn.microsoft.com/en-us/library/ms182487.aspx
http://www.nunit.org/
https://github.com/xunit/xunit

Chapter 4

127

Let's look at a quick example of how a Silverlight application might talk to a .NET application
using this approach. To keep the recipe focused, we're only going to look at the connection
between the two runtimes, not at building a full application.

Getting ready
This recipe assumes you are using Visual Studio Community or one of the premium editions.
Start the one that you have available, and you will be ready to go.

Note some differences emerge depending on what version of Windows you
are using, and so we will illustrate the differences.

How to do it...
1.	 Create a standard WPF Application project by navigating to Visual Basic | Windows

| Classic Desktop and accepting the default name.

2.	 Right-click on the solution, and add a Portable Class Library project under Visual
Basic; name it PortableClassLibrary1.

3.	 When you are prompted to choose Targets, change the selections so that only .NET
Framework 4.6 and ASP.NET Core 5.0 are selected, and then click on the OK button,
as shown in the following screenshot:

.NET Framework Development

128

4.	 Navigate to the Class1.vb file in the PortableClassLibrary1 project, and add a
method to the Class1 class, as shown:
Public Class Class1
 Public Function checkUser() As Boolean
 Return True
 End Function
End Class

5.	 Right-click on the WpfApplication1 project in Solution Explorer, and select Add
Reference. In the Reference Manager dialog box, navigate to Solution | Projects,
and select the checkbox next to PortableClassLibrary1. Click on OK to add the
reference to the project, as shown in the following screenshot:

6.	 Build the solution, and ensure everything is in order.

7.	 Return to WpfApplication1. Double-click on MainWindow.xaml to open the
XAML editor. We are going to add a default Label control and a default Button
control. To do this, simply expand the Toolbox, and drag and drop the two controls.
The following screenshot shows the open Toolbox and placement of the two controls:

Chapter 4

129

8.	 If you look carefully, the text for the button control has been changed. If you would
like to do the same, simply right-click on the button in the editor, and select Edit Text.
This is only the display name, so feel free to use whatever text you prefer.

9.	 Now we are going to put all of the pieces together. Double-click the button you have
added to the editor so that a code stub is generated for it. Enter the following code
into MainWindow.xaml.vb:
Class MainWindow
 Dim portable As New PortableClassLibrary1.Class1()
 Dim result = portable.checkUser()

 Private Sub button1_Click(sender As Object, e As
 RoutedEventArgs) Handles button1.Click
 label.Content = result
 End Sub
End Class

10.	 Compile the solution to confirm that there are no compiler errors, and confirm that
the references are made successfully.

11.	 When you run the program, the label control will begin by showing its name, Label.
Then, when the button control is clicked, the text will change, as shown in the
following screenshot:

How it works...
The portable libraries themselves are just standard .NET class libraries with restrictions on
the framework calls that can be made from within them. The set of calls that can be made
is determined by the methods that are supported across all target runtimes selected in the
project's properties.

.NET Framework Development

130

A good practice to follow, when writing your portable libraries, is to avoid adding references to
other libraries. Instead, try and design your PCLs as standalone libraries. Since most people
tend to use portable library classes for WCF contracts, data transfer objects, or calculation
libraries, this is unlikely to be too limiting. As you can see from our example, the business logic
is separated from the presentation. Assuming this was a real application under development,
a separate ASP.NET project could also use the same PCL. This code reuse simplifies
development, and reduces errors.

At the time of writing, it was announced that Microsoft has purchased
Xamarin. This arrangement should only increase the range of cross-
platform targets that will be available to us as developers.

One example that demonstrates the advantages that PCLs provide is the HttpClient library
(https://www.nuget.org/packages/Microsoft.Net.Http) published by Microsoft.
This library allows an application to have a uniform way of making web calls without having to
write specific code for each platform.

Viewing defined targets
If you would like to see which target(s) were selected for an existing project, or to change
them, you can do so via Solution Explorer. For the Visual Basic-based project shown in
this recipe, right-click on the my project file. This will provide the details as shown in the
following screenshot:

https://www.nuget.org/packages/Microsoft.Net.Http

Chapter 4

131

C#-based projects can find PCL details by right-clicking on the
Properties file for their PCL project.

There's more…
Microsoft has loosened the license restrictions on the portable class library reference
assemblies. From a licensing standpoint, this increases the utility of using PCLs across
all of your target platforms for your client software. Take advantage of PCLs to make your
development process more efficient—you can even add a Windows 10 target (Windows
Universal 10) so that you can prepare for the future while you write your current applications.

Xamarin offers products to add support to Visual Studio for the iOS
and Android platforms. This includes support for writing PCLs. For more
information on the integration, see http://blog.xamarin.com/
pcl-projects-and-vs2013/, and for information on PCLs, check
out http://docs.xamarin.com/guides/cross-platform/
application_fundamentals/pcl/.

Detecting duplicate code
Copy and paste development is generally regarded as a bad practice, because bug fixes or
enhancements in one area of code have to be repeated in all the other copies of the same
code. Not only is this time consuming and tedious, but in large code bases, it's very easy to
miss a change, leading to bugs and lower overall quality.

Frequently, code duplication can be unavoidable, especially on larger projects with
multiple contributors. Not to mention that using an unfamiliar code base can make it
easy to unintentionally write duplicate code. With Visual Studio, Microsoft has provided
a way to detect these duplicates so that you can take remedial action to clean it up.
Let's see how this is done.

Getting ready
You will need Visual Studio Enterprise 2015 for this recipe. Start it up, and you're ready to go.

Visual Studio 2013 Premium and Ultimate also support this feature.

http://blog.xamarin.com/pcl-projects-and-vs2013/
http://blog.xamarin.com/pcl-projects-and-vs2013/
http://docs.xamarin.com/guides/cross-platform/application_fundamentals/pcl/
http://docs.xamarin.com/guides/cross-platform/application_fundamentals/pcl/

.NET Framework Development

132

How to do it…
1.	 Create a new Class Library project under Visual C#, and name the project

OriginalLibrary.

2.	 Rename the Class1.cs file as OriginalClass.cs, and allow Visual Studio to
rename the class itself when prompted.

3.	 In OriginalClass.cs, add the following method:
public string StringWithCheckDigit(int x, int y)
{
 if (x <= 0)
 throw new ArgumentOutOfRangeException("x", "must be
 positive");
 if (y <= 0)
 throw new ArgumentException("I don't like negatives", "y");

 var counter = "";
 for (int i = 0; i < x; i++)
 {
 counter += y;
 }

 var checkDigits = new List<char>() { 'a', 'b', 'c', 'd', 'e'
 };
 var checkDigit = checkDigits[y % 5];
 counter += checkDigit;
 return counter;
}

4.	 Add a second C# based Class Library project to the solution, giving it the name
DuplicateLibrary.

5.	 Rename the Class1.cs file as DuplicateClass.cs, and, as in Step 2, allow
Visual Studio to rename all references when prompted.

6.	 Copy and paste the code you just added into DuplicateClass, renaming the
method as DuplicatedCheckDigit.

7.	 Rename the parameters in the DuplicatedCheckDigit method as p1 and p2.

8.	 Rename i as loop and counter as outString. Your duplicated method should
now look like the following code:
public string DuplicatedCheckDigit(int p1, int p2)
{
 if (p1 <= 0)

Chapter 4

133

 throw new ArgumentOutOfRangeException("p1", "must be
 positive");
 if (p2 <= 0)
 throw new ArgumentException("I don't like negatives",
 "p2");

 var outString = "";
 for (int loop = 0; loop < p1; loop++)
 {
 outString += p2;
 }
 var checkDigits = new List<char>() { 'a', 'b', 'c', 'd',
 'e' };
 var checkDigit = checkDigits[p2 % 5];
 outString += checkDigit;
 return outString;
}

9.	 From the Visual Studio menu, navigate to Analyze | Analyze Solution for Code
Clones. The Code Clone Analysis Results window will be displayed, and will show
you where the duplication exists; this is shown in the following screenshot:

10.	 Right-click on the Weak Match 1(2 Files) result and select Compare, as shown in the
following screenshot:

.NET Framework Development

134

11.	 The two sections of duplicated code are shown in Visual Studio's new diff viewer, and
you can decide what remedial action to take from there:

How it works...
This code would have been hard to find using just the Find in Files, and looking for variable
names or a single line of code. The clone detection algorithm in Visual Studio ignores the
differences in variable names, and instead, looks at the structure of the code itself. It also
limits searches to duplicates that are a minimum of 10 statements long to prevent detection
from taking a very long time.

Chapter 4

135

If you do want to search for smaller or specific sections of code, you can highlight the code
in the editor, right-click on it, and select Find Matching Clones in Solution, as shown in the
following screenshot:

There's more…
There are a number of items that get ignored by the detection algorithm to help improve the
speed of detection, and to exclude files that you are unlikely to be interested in. The following
files can be ignored or excluded:

ff Type declarations are ignored. Two classes with the same properties are not
considered to be clones, nor are classes with the same method signatures. Only the
code within the methods and properties is examined.

ff The *.designer.cs and *.designer.vb files are automatically excluded, as is
code within any InitializeComponent methods.

.NET Framework Development

136

You can add a .codeclonesettings file to your project to exclude certain paths or file types
from comparison. For example, if you are using T4 code generation, you may want to place all
the generated code in a subfolder, and then exclude that folder from the clone detection engine
by adding an entry for it in the settings file. Alternatively, you may be working on an external
project or third-party code, for which you have no intention (or ability) to modify. Excluding
those files would make sense to save time and avoid warnings that you will always ignore.

A sample exclusion could be like the following code snippet. This file was named sample.
codeclonesettings, and placed at the top level of the project DuplicateLibrary used
in the previous recipe. In this case, it blocks our DuplicateClass file from being examined.

<CodeCloneSettings>
 <Exclusions>
 <File>DuplicateClass.cs</File>
 </Exclusions>
</CodeCloneSettings>

It can be modified to use wildcards, and also ignore a whole directory, as shown in the
following code snippet:

<CodeCloneSettings>
 <Exclusions>
 <File>ExcludeTheseFiles*.cs</File>

Exploring C# through the Immediate window
Scripting languages enjoy great popularity, in part due to the immediate feedback they provide
the developer. Rather than have to write code, compile it, and then execute it to see if the
desired behavior occurs, many scripting languages offer a read-eval-print-loop (REPL). A REPL
gives the developer the ability to watch their code execute about as fast as they can write it.

There are several advantages to this approach. First, you can explore a library or code
fragment without having to first set up a new solution. Second, it allows one to experiment
with different possible approaches when problem solving. By being able to quickly iterate, it
can bring about a working solution more quickly.

Visual Studio had carried this feature in the past, but it disappeared in VS2013. Fortunately, it
has returned in VS2015, and this is what we will explore in this recipe.

Chapter 4

137

Getting ready
You can use any version of VS2015 that you like, although do make sure that you have applied
Update 2. Without it, the Immediate Window will not be available in the manner described
here. (A limited form of the Immediate Window functionality is provided by Update 1, but
Update 2 is recommended.)

How to do it…
1.	 Open up your copy of VS2015. Then start the REPL by navigating to View | Other

Windows | C# Interactive.

2.	 A new window, with a blank command prompt, will then appear, as shown in the
following screenshot:

3.	 This is ready to go immediately, and so, for our first test, try entering the following at
the prompt 3 * Math.PI.

4.	 As you type, notice that you have IntelliSense support, and that this REPL is able to
easily process your C# snippet. The following screenshot shows the results:

.NET Framework Development

138

When you press Enter to execute a command, make sure you are
at the end of the line. To easily navigate your command history,
use Alt + Up Arrow or Alt + Down Arrow.

5.	 A C#-powered calculator is neat, but let's keep moving. Next, we will define a method
from within the REPL. Let's add the following code:
public Boolean isEvenNumber(int x) { if (x % 2 == 0)
return true; return false; }

6.	 Once added, we can then use our new method, as shown in the following screenshot:

7.	 Once again, notice that after defining our method, we get IntelliSense support for it in
the REPL, and can begin using it immediately.

8.	 Now let's expand our repertoire to take advantage of code outside the REPL. Create
a new project on VS2015 via Visual C# | Class Library. The default project name
is acceptable, but after the project has opened, rename Class1.cs in Solution
Explorer as InteractiveClass.cs.

9.	 Once your class has been renamed, add the following method:
public int returnGreater(int x, int y)
{
 if (x > y)
 {
 return x;
 }
 else return y;
}

10.	 Build your solution to ensure there no errors, and so that a DLL will be available. Take
note of the newly produced DLL—you will need the full path including filename. The
easiest way to do this is to right-click on your project, and select Open File in File
Explorer. Then, navigate to the bin folder, and from there to the Debug folder. For our
example, the full path is D:\Users\Jeff\Documents\Visual Studio 2015\
Projects\SolutionName\ClassLibrary1\bin\Debug\ClassLibrary1.dll.

Chapter 4

139

11.	 Now return to your C# Interactive window. To ensure it is at a good starting point,
click on the Reset icon, which is the far left icon shown in the following screenshot:

12.	 To make your newly compiled DLL available in the REPL, we will use the r command.
Enter #r plus your local path.

13.	 Then you can introduce your DLL's name space, instantiate a new class, and then use
its method, as shown in the following screenshot:

14.	 As you can see, our code is available to us in the REPL, and we can interact with it
with minimal effort.

How it works…
The C# Interactive window runs your code in a completely independent process from any
open solutions or projects that you may have. This makes it easy to write C# without first
creating a skeleton project. If you do have an open project, you can easily explore with
different concepts without affecting your work.

There's more…
While the default, isolated nature of the C# Interactive window is very beneficial, what if you
would like the window to have greater awareness of what is happening in a project that you
have open? Thanks to VS2015 Update 2, there is a new context menu option called Execute
in Interactive. As the name suggests, this will send the text you select in your editor window to
the Interactive window for execution.

.NET Framework Development

140

To see this in action, let's return to our previous example. Our returnGreater() method
appears in the editor window, and is ready for us to manipulate. Simply highlight the method
body and right-click on the selection (1), then select Execute in Interactive (2), as shown in
the following screenshot:

After doing this, the results of executing the selected method will appear in the Immediate
Window, where the method can then be accessed the same as if you entered it by hand.
Being able to select code and send it directly is much easier. The following screenshot
shows the results:

141

5
Debugging Your .NET

Application

In this chapter, we will cover the following recipes:

ff Putting Diagnostic Tools to work

ff Maximizing everyday debugging

ff Debugging on remote machines and tablets

ff Debugging code in production with IntelliTrace

ff Debugging parallel code

ff Visualizing concurrency

Introduction
It's an unfortunate reality, but modern software development still requires developers to
identify and correct bugs in their code. The familiar edit-compile-test cycle is as familiar as a
text editor, and now the rise of portable devices has added the need to measure for battery
consumption and optimization for multiple architectures. Fortunately, our development tools
continue to evolve to combat this rise in complexity, and Visual Studio continues to improve
its arsenal.

Multithreaded code and asynchronous code are probably the two most difficult areas for most
developers to work with, and also the hardest to debug when you have a problem such as a
race condition. A race condition occurs when multiple threads perform an operation at the
same time, and the order in which they execute makes a difference to how the software runs
or the output is generated. Race conditions often result in deadlocks, incorrect data being
used in other calculations, and random, unrepeatable crashes.

Debugging Your .NET Application

142

The other painful area to debug involves code running on other machines, whether it is
running locally on your development machine or running in production. Hooking up a remote
debugger in previous versions of Visual Studio has been less than simple, and the experience
of debugging code in production was similarly frustrating. In this chapter, we will examine the
improvements to the debugging experience in Visual Studio 2015, and how it can help you
diagnose the root cause of a problem faster so that you can fix it properly, and not just patch
over the symptoms.

Putting Diagnostic Tools to work
In Visual Studio 2013, Microsoft debuted a new set of tools called the Performance and
Diagnostics hub. With VS2015, these tools have revised further, and in the case of Diagnostic
Tools, promoted to a central presence on the main IDE window, and is displayed, by default,
during debugging sessions. This is great for us as developers, because now it is easier than
ever to troubleshoot and improve our code. In this recipe, we will explore how Diagnostic Tools
can be used to explore our code, identify bottlenecks, and analyze memory usage.

Getting ready
The changes didn't stop when VS2015 was released, and succeeding updates to VS2015
have further refined the capabilities of these tools. So for this recipe, ensure that Update 2
has been installed on your copy of VS2015. We will be using Visual Studio Community 2015,
but of course, you may use one of the premium editions too.

How to do it…
For this recipe, we will put together a short program that will generate some activity for us
to analyze:

1.	 Create a new C# console application, and give it a name of your choice.

2.	 In your project's new Program.cs file, add the following method, which will generate
a large quantity of strings:
static List<string> makeStrings()
{
 List<string> stringList = new List<string>();
 Random random = new Random();

 for (int i = 0; i < 1000000; i++)
 {
 string x = "String details: " + (random.Next(1000,
 100000));
 stringList.Add(x);

Chapter 5

143

 }
 return stringList;
}

3.	 Next, we will add a second static method that produces an SHA256-calculated
hash of each string that we generated. This method reads in each string that was
previously generated, creates an SHA256 hash for it, and returns the list of computed
hashes in hex format:
static List<string> hashStrings(List<string> srcStrings)
 {
 List<string> hashedStrings = new List<string>();
 SHA256 mySHA256 = SHA256Managed.Create();

 StringBuilder hash = new StringBuilder();
 foreach (string str in srcStrings)
 {
 byte[] srcBytes =
 mySHA256.ComputeHash(Encoding.UTF8.GetBytes(str), 0,
 Encoding.UTF8.GetByteCount(str));
 foreach (byte theByte in srcBytes)
 {
 hash.Append(theByte.ToString("x2"));
 }
 hashedStrings.Add(hash.ToString());
 hash.Clear();
 }
 mySHA256.Clear();
 return hashedStrings;
}

4.	 After adding these methods, you may be prompted to add using statements for
System.Text and System.Security.Cryptography. These are definitely
needed, so go ahead and take Visual Studio's recommendation to have them added.

5.	 Now we need to update our Main method to bring this all together. Update your Main
method to contain the following code:
static void Main(string[] args)
{
 Console.WriteLine("Ready to create strings");
 Console.ReadKey(true);
 List<string> results = makeStrings();
 Console.WriteLine("Ready to Hash " + results.Count() + "
 strings ");
 //Console.ReadKey(true);
 List<string> strings = hashStrings(results);
 Console.ReadKey(true);
}

Debugging Your .NET Application

144

6.	 Before proceeding, build your solution to ensure everything is in working order.

7.	 Now run the application in Debug mode (F5), and watch how our program operates.

By default, the Diagnostic Tools window will only appear while
debugging. Feel free to reposition your IDE windows to make their
presence more visible or use Ctrl + Alt + F2 to recall it as needed.

8.	 When you first launch the program, you will see the Diagnostic Tools window appear.
Its initial display resembles the following screenshot. Thanks to the first ReadKey
method, the program will wait for us to proceed, so we can easily see the initial state.
Note that CPU usage is minimal, and memory usage holds constant.

9.	 Before going any further, click on the Memory Usage tab, and then the Take
Snapshot command as indicated in the preceding screenshot. This will record the
current state of memory usage by our program, and will be a useful comparison point
later on. Once a snapshot is taken, your Memory Usage tab should resemble the
following screenshot:

Chapter 5

145

10.	 Having a forced pause through our ReadKey() method is nice, but when working
with real-world programs, we will not always have this luxury. Breakpoints are typically
used for situations where it is not always possible to wait for user input, so let's take
advantage of the program's current state, and set two of them. We will put one to the
second WriteLine method, and one to the last ReadKey method, as shown in the
following screenshot:

11.	 Now return to the open application window, and press a key so that execution
continues.

12.	 The program will stop at the first break point, which is right after it has generated a
bunch of strings and added them to our List object. Let's take another snapshot
of the memory usage using the same manner given in Step 9. You may also notice
that the memory usage displayed in the Process Memory gauge has increased
significantly, as shown in this screenshot:

Debugging Your .NET Application

146

13.	 Now that we have completed our second snapshot, click on Continue in Visual
Studio, and proceed to the next breakpoint.

14.	 The program will then calculate hashes for all of the generated strings, and when
this has finished, it will stop at our last breakpoint. Take another snapshot of the
memory usage. Also take notice of how the CPU usage spiked as the hashes were
being calculated:

15.	 Now that we have these three memory snapshots, we will examine how they can help
us. You may notice how memory usage increases during execution, especially from
the initial snapshot to the second. Click on the second snapshot's object delta, as
shown in the following screenshot:

Chapter 5

147

16.	 On clicking, this will open the snapshot details in a new editor window. Click on the
Size (Bytes) column to sort by size, and as you may suspect, our List<String> object
is indeed the largest object in our program. Of course, given the nature of our sample
program, this is fairly obvious, but when dealing with more complex code bases,
being able to utilize this type of investigation is very helpful. The following screenshot
shows the results of our filter:

If you would like to know more about the object itself (perhaps there
are multiple objects of the same type), you can use the Referenced
Types option as indicated in the preceding screenshot. If you would
like to try this out on the sample program, be sure to set a smaller
number in the makeStrings() loop, otherwise you will run the risk
of overloading your system.

Debugging Your .NET Application

148

17.	 Returning to the main Diagnostic Tools window, we will now examine CPU utilization.
While the program is executing the hashes (feel free to restart the debugging session
if necessary), you can observe where the program spends most of its time:

Again, it is probably no surprise that most of the hard work was done in the hashStrings()
method. But when dealing with real-world code, it will not always be so obvious where the
slowdowns are, and having this type of insight into your program's execution will make it
easier to find areas requiring further improvement.

When using the CPU profiler in our example, you may find it easier
to remove the first breakpoint and simply trigger a profiling by
clicking on Break All as shown in this screenshot:

Chapter 5

149

How it works...
Microsoft wanted more developers to be able to take advantage of their improved technology,
so they have increased its availability beyond the Professional and Enterprise editions to also
include Community. Running your program within VS2015 with the Diagnostic Tools window
open lets you examine your program's performance in great detail.

By using memory snapshots and breakpoints, VS2015 provides you with the tools needed to
analyze your program's operation, and determine where you should spend your time making
optimizations.

There's more…
Our sample program does not perform a wide variety of tasks, but of course, more complex
programs usually perform well. To further assist with analyzing those programs, there is a
third option available to you beyond CPU Usage and Memory Usage: the Events tab. As
shown in the following screenshot, the Events tab also provides the ability to search events
for interesting (or long-running) activities.

Different event types include file activity, gestures (for touch-based apps), and program
modules being loaded or unloaded.

See also
ff The Debugging code in production with IntelliTrace recipe

ff The Debugging parallel code recipe

ff The Visualizing concurrency recipe

Maximizing everyday debugging
Given the frequency of debugging, any refinement to these tools can pay immediate dividends.
VS2015 brings the popular Edit and Continue feature into the 21st century by supporting
a 64-bit code. Added to that is the new ability to see the return value of functions in your
debugger. The addition of these features combine to make debugging code easier, allowing
to solve problems faster.

Debugging Your .NET Application

150

Getting ready
For this recipe, you can use VS2015 Community or one of the premium editions. Be sure to
run your choice on a machine using a 64-bit edition of Windows, as that is what we will be
demonstrating in the recipe.

Don't worry, you can still use Edit and Continue with 32-bit C#
and Visual Basic code.

How to do it…
Both features are now supported by C#/VB, but we will be using C# for our examples. The
features being demonstrated are compiler features, so feel free to use code from one of your
own projects if you prefer. To see how Edit and Continue can benefit 64-bit development,
perform the following steps:

1.	 Create a new C# console application using the default name.

2.	 To ensure the demonstration is running with 64-bit code, we need to change the
default solution platform.

3.	 Click on the drop-down arrow next to Any CPU and select Configuration Manager...

4.	 When the Configuration Manager dialog opens, we can create a new project
platform targeting a 64-bit code. To do this, click on the drop-down menu for
Platform, and select <New...>:

Chapter 5

151

5.	 When <New...> is selected, it will present the New Project Platform dialog box.
Select x64 as the new platform type:

6.	 Once x64 has been selected, you will return to Configuration Manager. Verify that
x64 remains active under Platform, and then click on Close to close this dialog. The
main IDE window will now indicate that x64 is active:

7.	 With the project settings out of the way, let's add some code to demonstrate the
new behavior. Replace the existing code in your blank class file so that it looks like
the following listing:
class Program
{
 static void Main(string[] args)
 {
 int w = 16;
 int h = 8;
 int area = calcArea(w, h);
 Console.WriteLine("Area: " + area);
 }

 private static int calcArea(int width, int height)
 {
 return width / height;
 }
}

Debugging Your .NET Application

152

8.	 Let's set some breakpoints so that we are able to inspect during execution. First, add
a breakpoint to the Main method's Console line. Add a second breakpoint to the
calcArea method's return line. You can do this by either clicking on the left side of
the editor window's border, or by right-clicking on the line, and selecting Breakpoint |
Insert Breakpoint:

9.	 If you are not sure where to click, use the right-click method, and then practice
toggling the breakpoint by left-clicking on the breakpoint marker. Feel free to use
whatever method you find most convenient. Once the two breakpoints are added,
Visual Studio will mark their location as shown in the following screenshot (the arrow
indicates where you may click to toggle the breakpoint):

Chapter 5

153

10.	 With the breakpoint marker now set, let's debug the program. Begin debugging by
either pressing F5 or by clicking on the Start button on the toolbar:

11.	 Once debugging starts, the program will quickly execute until stopped by the first
breakpoint. Let's first take a look at Edit and Continue. Visual Studio will stop at the
calcArea method's return line. Astute readers will notice an error (marked by 1
in the following screenshot) present in the calculation, as the area value returned
should be width * height. Make the correction.

12.	 Before continuing, note the variables listed in the Autos window (marked by 2 in the
following screenshot). (If you don't see Autos, it can be made visible by pressing Ctrl
+ D, A, or through Debug | Windows | Autos while debugging.)

Debugging Your .NET Application

154

13.	 After correcting the area calculation, advance the debugging step by pressing F10
twice. (Alternatively make the advancement by selecting the menu item Debug | Step
Over twice). Visual Studio will advance to the declaration for the area. Note that you
were able to edit your code and continue debugging without restarting.

14.	 The Autos window will update to display the function's return value, which is 128
(the value for area has not been assigned yet in the following screenshot—Step Over
once more if you would like to see that assigned):

There's more…
Programmers who write C++ have already had the ability to see the return values of
functions—this just brings .NET developers into the fold. The result is that your development
experience won't have to suffer based on the language you have chosen to use for
your project.

Chapter 5

155

The Edit and Continue functionality is also available for ASP.NET projects. New projects
created on VS2015 will have Edit and Continue enabled by default. Existing projects imported
to VS2015 will usually need this to be enabled if it hasn't been done already. To do so, open
the Options dialog via Tools | Options, and look for the Debugging | General section. The
following screenshot shows where this option is located on the properties page:

Whether you are working with an ASP.NET project or a regular
C#/VB .NET application, you can verify Edit and Continue is
set via this location.

Debugging Your .NET Application

156

Debugging on remote machines and tablets
For most developers, debugging an application means setting a breakpoint with F9 on a line
of code, and then pressing F5 (or Debug | Start Debugging), and stepping into and over
statements with F10 and F11.

This experience can work well when you are debugging code on your local machine, but what
if you need to debug code running on a different machine that does not have Visual installed?
This is where remote debugging tools come into play.

Even though many developers may not be aware of the functionality, debugging code on
remote machines with Visual Studio isn't anything new. It's just that until now the debugging
experience has been limited and unrefined. VS2015 builds on its predecessors, and the
experience it provides is much improved as it combines improvement in speed with broader
support for the wide range of devices that today's applications need to support.

Remote debugging is something every developer should know how to do, and this recipe
shows you how to configure a machine for remote debugging, and then debug an application
you have deployed to that machine.

Getting ready
For this recipe, you will need a second machine to act as your remote machine. It doesn't
matter if it's a virtual or physical machine as long as your development machine and the
remote machine can communicate over a network connection. This recipe assumes that
you are running on VS2015.

The remote machine will need Remote Tools for Visual Studio 2015 installed before we
begin. If you don't have Remote Tools already installed, download them from the Microsoft
website at https://www.visualstudio.com/downloads/download-visual-
studio-vs (look under the section Tools for Visual Studio 2015 | Remote Tools for Visual
Studio 2015), and then install them. Versions exist for each CPU architecture that Windows
supports: X86, X64, and ARM. This recipe assumes that your local machine has a premium
edition of VS2015, but note that Remote Tools does support Express for Windows Desktop
and Express for Windows.

Match the architecture of the Remote Tools to that of the remote
machine's operating system. For best results, your development
machine's OS should match that of the remote device.

https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/downloads/download-visual-studio-vs

Chapter 5

157

There are several advantages to using Remote Tools. You will be able to debug on a remote
machine that does not have Visual Studio installed, especially important for ARM-based
devices such as the Surface RT where a native version of Visual Studio is not available.
It also saves time and the hassle of maintaining a working development environment on
each end-device you are targeting. Finally, remote debugging makes it easier to see how
your application performs for end users by minimizing the influence of your development
environment on your application's operation.

At the time of this writing, those seeking to use the ARM-version
of Remote Tools should use Remote Tools for Visual Studio
2015 Update 1. You can use Remote Tools Update 1 with
VS2015 Update 2.

How to do it...
Now that our tools are in order, let's see how to perform remote debugging in practice through
the following steps:

1.	 Create a new C# console application using the default name.

2.	 Open the Program.cs file, and fill in the body of the Main() method as shown in
the following code excerpt (there is an intentional bug in the code):
static void Main(string[] args)
{
 Console.Out.WriteLine("Press any key to begin");
 Console.ReadKey(); // Wait for keypress to start
 var charCode = 97;
 var outputBuilder = new StringBuilder();
 for (int i = 1; i < 26; i++)
 {
 outputBuilder.Append((char)(charCode + i));
 }
 var output = outputBuilder.ToString();
 Console.WriteLine(output); // should write "abcd...z"
 Console.ReadKey();
}

3.	 Run the program locally by pressing F5. When the console window appears, press any
key and you should see a string of characters appear. Press any key again to close
the program.

Debugging Your .NET Application

158

4.	 You should now check if it works on the remote machine. On your remote machine,
start Remote Debugger Configuration Wizard, and ensure that the Run the Visual
Studio 2015 Remote Debugger service checkbox is deselected.

Since our recipe uses a Console application, we do not need to run
the remote debugger as a service. The Remote Debugger service
is useful when working with web applications or in a known secure
environment. More on this later.

5.	 Also ensure that the firewall configuration is set as appropriate for your network, and
then complete the remaining steps of the wizard by taking the default values. The
following screenshot illustrates the firewall settings we have selected:

Chapter 5

159

6.	 Now that you have finished configuring it, start the Remote Debugger on your
remote machine.

7.	 When the debugger appears, you should see a message showing the machine name
and port number that the debugger is listening on. Take a note of the machine name
as you'll be using it later on. In the following screenshot, the machine is named
DESKTOP-SVJA20M, and it is running on port 4020:

8.	 For the smoothest development and debugging experience, the remote machine
should be configured to run the code from your development machine via a network
share. Either add a specific share to the bin\debug folder of your development
machine, or access it via the inbuilt C$ share, for example,
\\dev-machine\C$\Users\Jeff\Documents\Visual Studio 2013\
Projects\ConsoleApplication1\bin\debug (your location will vary).

Debugging Your .NET Application

160

Ensure that you can connect to your network share from the
remote machine. Code Access Security is not applied to .NET
4.0 applications by default, but it is for .NET 2.0 applications.
To debug a .NET 2.0 application on a remote machine via a file
share, you need to make sure the share is a trusted location.
Use the caspol.exe utility for both the x86 and x64 versions
of the framework to modify the security settings of your machine
(settings are maintained separately for each CPU architecture). For
more details, refer to https://msdn.microsoft.com/en-
us/library/cb6t8dtz(v=vs.110).aspx.

9.	 In Visual Studio on your development machine, open the project properties by
right-clicking on the project in Solution Explorer and selecting Properties. Select
the Build tab.

10.	 Under the Output section, set Output path to the network share on your remote
machine, as shown in the following screenshot:

https://msdn.microsoft.com/en-us/library/cb6t8dtz(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/cb6t8dtz(v=vs.110).aspx

Chapter 5

161

11.	 Build your solution so that the debug build of the application is deployed. Then return
to the Properties dialog, and switch to the Debug tab.

12.	 Change Start Action to Start external program, and enter the path to the
compiled application using the path that will be used by the remote machine
to start the application, for example, \\dev-machine\sharename\
ConsoleApplication1.exe.

13.	 In the Start Options section, check the Use remote machine checkbox and enter the
name of the remote machine. This is the machine name you noted in Step 6. Your
Debug tab should now look similar to the following screenshot:

14.	 On your development machine, press F5 to start debugging. Assuming there are no
firewall issues and your permissions are okay, Visual Studio will communicate with
the remote machine and launch the application for you automatically. Note that,
depending on the accounts used on each machine, you may be prompted for login
credentials. If that happens, enter the details of the user running the debugging
monitor on the remote machine.

15.	 If you have a problem communicating with the remote machine, check that the
firewall on the remote machine is allowing incoming connections. If it isn't, you
can either rerun Remote Debugger Configuration Wizard to confirm the firewall
settings, or manually add a rule to allow a connection on the port number the
Remote Debugger is using (the port number is shown in Step 6).

Debugging Your .NET Application

162

16.	 If you switch to your remote machine, you should see that the application is running
and displaying a console window with its output, and Visual Studio 2015 Remote
Debugger reflects that a debugging connection has been made. The following
screenshot shows the updated debugger:

17.	 The application is now waiting for you to press a key. Before you do, set a breakpoint
on your development machine in the Main() method of Program.cs, somewhere
after the ReadKey() method. A good place would be where the outputBuilder
variable is initialized.

18.	 Return to the remote machine, and press a key to continue program execution.

19.	 Switch back to the development machine. You should find that your breakpoint has
been hit, and that the application is ready for you to continue debugging.

20.	 Step through the code in Visual Studio to get a feel of how quick the remote
debugging experience is, and then continue execution down to the second Console.
ReadKey() statement. The easiest way to do this, rather than looping through the
for loop 26 times, is to right-click on that second Console.ReadKey() statement,
and select Run to Cursor.

21.	 You may notice that the output has dropped the a at the start of the output string.
Is that a display problem or a bug in the code? You can check the string length to be
sure. Navigate to the Immediate window and type ?output.Length to see how long
the output string is.

22.	 If the Immediate window isn't visible, you can display it by pressing Ctrl + Alt + I or
choosing Debug | Windows | Immediate from the menu.

23.	 You should see the value 25 displayed, as shown in the following screenshot:

Chapter 5

163

24.	 Note that this value is not from a process on the local machine, it is from the
process running on your remote machine. To verify this, navigate to Debug |
Attach to Process from the menu bar. In the Qualifier drop-down menu, select the
remote machine. (If it does not appear, use the neighboring Find... button). It will
be suffixed by the port number that the remote debugger is listening on. When the
Available Processes list is populated, you should see that your application is the
only process on the remote machine that the debugger is attached to (titled Ch5-
RemoteDebuggingWin10.exe in the following screenshot):

25.	 Stop debugging by either pressing Shift + F5, clicking on the stop button in the
debugging toolbar, or choosing Debug | Stop Debugging from the menu. This will
also terminate the process on the remote machine.

26.	 Since we have the project open already, fix the bug in the for loop by altering the
loop variable to start from 0 instead of 1. Your for loop should now look like the
following code:
for (int i = 0; i < 26; i++)
{
 outputBuilder.Append((char)(charCode + i));
}

27.	 After making the changes and saving your work, press F5 to start debugging again.
Visual Studio will compile the application, and launch it on your remote machine for you.

28.	 Complete the execution of the application to verify that the output is now correct.

How it works...
The main thing to keep in mind when using the remote debugger is that you are looking at
data from the remote machine. The debug experience can feel so smooth and transparent
that it's easy at times to forget that a path name for a file, for example, is a path relative to
the remote machine and not your local machine.

Debugging Your .NET Application

164

Normally, the debugger runs using Windows Authentication; however, it can be switched over
to the No Authentication mode. The No Authentication mode enables debugging scenarios
for managed and native debugging across versions of Windows that were previously not
possible. The danger of this approach is that it opens up a security hole including allowing
attackers to launch any application they choose. Be sure not to run the remote debugger on
production machines in this way. The remote debugger is a developer tool, and should only be
run when developers require it.

There's more…
If you don't want to install the remote debugger on the remote machine, you can run it directly
from a file share. However, you won't be able to debug Universal Windows applications in the
Windows Store or debug JavaScript this way.

Another thing to note is that when you are debugging a UWP app on Windows 10, you will not
need to change the Start Action section of the project to start an external program. Leaving
it set to Start project, and then ticking the checkbox and setting the value of the Use remote
machine field will tell Visual Studio that the project should be packaged and deployed to the
remote machine before debugging commences.

Debugging an ASP.NET process
To debug ASP.NET websites running under IIS, you do not need to make any changes
to the project properties to configure the remote debugger. In fact, you can't. The options
aren't available.

For remote debugging, you will either need to run the remote debugger as a service, or run the
application as an administrator. On your development machine, you then use the Attach to
Process dialog to connect to the ASP.NET worker process, and begin the debugging session.

To configure the remote debugger as a service, rerun Remote Debugger Configuration
Wizard, and check the option to run it as a service.

Much like you did in this recipe, for the best debugging experience, you should configure
the IIS application on the remote machine to run from a network share pointing to the web
application's source folder on your development machine.

Once the web application is running in Visual Studio, select the Debug | Attach to Process
menu option. The Qualifier drop-down menu is the name of the debugger instance you are
connected to, and this should be the remote machine. If your target machine is not already
listed, you can use the Find... button to locate the available debuggers.

Once you are connected to the correct machine, locate the ASP.NET worker process (w3wp)
from the list, select Attach, and then close the window. You are now connected to the remote
debugger for the web application, and can set breakpoints in your pages and step through
code just as you would expect.

Chapter 5

165

Deploying directly to a remote machine
The suggestion to run the programs on the remote machine via a file share is just a tip to
make the development process simpler, and to eliminate the time it takes to redeploy the
application you are trying to debug each time you make a change.

If you don't want to run the application from a file share, then you will need to deploy the
application to the remote machine, and use the Attach to Process dialog to connect the
debugging session each time.

Missing symbols
When debugging remote processes, you may find that after you attach to a process and set a
breakpoint, it will look similar to the following screenshot:

This message seen in the preceding screenshot appears because Visual Studio either
can't load the symbol information (the PDB file) of the executable file, or the version that is
running on the remote machine is not the same as the one on your development machine.
For example, you may have recompiled the code on your development machine since you last
deployed to the remote machine, causing the two environments to no longer match.

Fortunately, there is a way to fix this. Follow these steps:

1.	 Navigate to the Debug | Windows | Modules menu entry to display the Modules
window. (You have to be actively running the debugger for this option to be available.)

2.	 The following screenshot shows a list of open modules, and whether or not a symbol
file has been loaded for them. To load a symbol file, right-click on the entry from
which you want to load them, and from the resulting menu, choose Load Symbols
From | Symbol Path.

3.	 From the file selection dialog box, locate the correct symbol file (PDB file) to load.
Once you do this, the debug breakpoints will change to show filled-in red dots, as
expected, and the Modules window will indicate that symbols are loaded.

Debugging Your .NET Application

166

Debugging code in production with
IntelliTrace

Frequently, applications seem to have the frustrating characteristic of performing very well
during the development and test cycle, only to be followed up by randomly misbehaving in
production environments for no apparent reason. This results in a frantic effort to try and
figure out what's going wrong from bug reports that range from "it just stopped working" to "it
works on my machine". Diagnosing these problems in a production environment can be rather
tricky, especially if you are in an environment where you do not have production access. This
is where IntelliTrace can help.

While a traditional dump file only provides a capture of the runtime environment as a
moment in time, a more lengthy and detailed record is made with IntelliTrace. IntelliTrace was
originally introduced in Visual Studio 2010 as a way for developers and testers to record what
they'd just done leading up to a bug, and then step back through those actions to make a
diagnosis of the bug simpler. In Visual Studio 2012, this feature was extended so that system
administrators could capture IntelliTrace information from live, running production systems,
and send the logs to developers for diagnosis.

IntelliTrace has continued to evolve over the years. It can be used directly to debug apps
within VS2015, used to monitor a session in Test Manager, or it can be used in conjunction
with Microsoft Monitoring Agent on production systems.

This recipe will show you how to gather information from a live application running in a
production environment, and then diagnose and debug problems.

Getting ready
You will need a machine to use as your production machine. Of course, it doesn't have to
be a genuine production machine—just a second machine without Visual Studio installed.
A virtual machine is perfectly acceptable. For this recipe, a Windows Server 2012 R2
environment was used. The recipe does require VS2015 Enterprise to be installed on
your development machine.

If you are really tight for machines, and can't even run a virtual
machine, then you can use your development machine as your
production server for the purposes of this recipe.

Chapter 5

167

Your nominated production machine will need to have .NET Framework 4.5, PowerShell,
and—since you will be diagnosing a web application—Internet Information Server installed
on it.

If you would like to have a lighter footprint on your production
machine, IntelliTrace Collector has been once again released
as an individual software package. It can be downloaded from
Microsoft via https://www.microsoft.com/en-us/
download/details.aspx?id=44909.

How to do it...
1.	 On your development machine, create a new application with the default name by

selecting Visual Basic | ASP.NET Web Application, and in the ensuing dialog, select
Web Forms as the type of project.

2.	 Open the Default.aspx page, and add a button to the bottom of the page (just
before closing the asp:Content tag). Give it an id of ClickMe, set the text attribute
to Click Me, and ensure that a button click event is created as shown in the
following code excerpt:
<div>
 <asp:Button ID="ClickMe" runat="server"
 OnClick="ClickMe_Click" Text="Click Me"
 CssClass="btn btn-default" />
</div>
</asp:Content>

3.	 In the code-behind file, add code for the button's click event handler, as shown in the
following code excerpt:
Protected Sub ClickMe_Click(sender As Object, e As
EventArgs)
Dim second As Integer = DateTime.Now.Second
If (second Mod 2 = 0) Then
Throw New ApplicationException("Even second click triggered
exception")
Else
ClickMe.Text = "current second: " & second.ToString()
End If
End Sub

https://www.microsoft.com/en-us/download/details.aspx?id=44909
https://www.microsoft.com/en-us/download/details.aspx?id=44909

Debugging Your .NET Application

168

4.	 Now when you run the application and click on the button, an exception will be
thrown whenever the current time has an even-numbered second. The following
screenshot demonstrates a lucky click that occurred on an odd second, avoiding
the exception (note some of the template's default code was removed for clarity):

5.	 Deploy your web application to your production server. Confirm that it runs, and that it
throws exceptions randomly when the button is clicked. You will want to note the Site
name and the Application Name that you use here. In the following screenshot, the
Default Web Site name was used, and the application was installed as VS2015:

Chapter 5

169

6.	 Create a directory on the production server to store the log files that we will be
generating. For this example, we will use C:\IntelliTraceLogs. In an actual
production environment, it is important to choose a secure location, since information
in the IntelliTrace files can reveal potentially sensitive data from your application.
Ideally, a physical disk, separate from your application's disk, should be used to
record the IntelliTrace log files. This is to minimize I/O contention, as the server has to
respond to application requests while simultaneously writing IntelliTrace logs.

7.	 Download the latest version of Microsoft Monitoring Agent 2013, available at
http://www.microsoft.com/en-us/download/details.aspx?id=40316,
and install it on your production environment.

8.	 Open a PowerShell prompt as an administrator, and enter the following command:
Start-WebApplication-Monitoring.

9.	 You will be prompted for the name of the application to monitor, but you must also
include the site it is located on. In our example, it is Default Web Site\VS2015.
Next, you will be prompted for the mode of monitoring—enter Trace. Finally, you will
be prompted for where the output should be logged. Enter C:\IntelliTraceLogs.
The following screenshot shows the results of running the command:

10.	 If you want to now verify the status of your monitor, enter
Get-WebApplicationMonitoringStatus, which will display the information
we just entered. Verify that your monitor is operational, and then load your website
and generate both, some successful and some unsuccessful clicks.

http://www.microsoft.com/en-us/download/details.aspx?id=40316

Debugging Your .NET Application

170

11.	 In true production environments, logging should minimize its interference with an
application's performance as much as possible. To obtain a trace file while the monitor
continues to run, you can enter CheckPoint-WebApplicationMonitoring.
This will prompt for the name of the site whose performance you want to record,
and once entered, the log file will be saved to the previously stated output
directory. In this case, we will stop the monitor, and review our logs. Enter Stop-
WebApplicationMonitoring–all, which will stop the monitoring service and a
final log. The file will end in .itrace, and will be found in C:\IntelliTraceLogs.
The following screenshot demonstrates the execution of both commands:

12.	 Copy the log file back to your development machine. Double-click on the .iTrace file
to open it in Visual Studio. Alternately, if Visual Studio is already open, you can either
press Ctrl + O, or use the File | Open | File menu option to load it. Once the file
loads, you should be able to see a Web Requests section that looks a little like the
following screenshot:

Chapter 5

171

13.	 In the request list, find a request with a return code of 500, select it, and then click
on the Request Details button below the list:

Debugging Your .NET Application

172

14.	 The details of the individual request are shown along with the actions that occurred
and any exceptions that were thrown:

15.	 Select the entry in the list where the exception is first thrown, as in the previous
screenshot in Step 14, and click on the Debug This Event button.

16.	 The code will be displayed, and the execution point will be positioned where the
exception was thrown:

17.	 You can then use the IntelliTrace debugging controls to move around the code, and
diagnose what occurred by following the execution path and inspecting parameters.

Chapter 5

173

How it works...
No recompilation of code was required for this to work. The application is untouched, and the
website didn't need to be restarted. Collecting IntelliTrace data is something that your systems
administrators can do on your behalf, safe in the knowledge that the application will be
unchanged, and that existing web requests will complete normally. This makes debugging and
diagnosing those tricky production problems a much more viable prospect, since checkpoints
can be made periodically at intervals that minimize server disruption.

Is your application in break mode?
When using VS2015 and IntelliTrace, you may not see your code highlighted as shown in Step
16. Instead, you will see a dialog similar to the following screenshot:

This occurs because the debugging feature Just My Code is enabled. To work around this
situation, uncheck this feature in the Options dialog box, as shown in the following screenshot:

This can be useful if it's enabled under other circumstances, so feel free to re-enable it when
you are finished with your IntelliTrace session.

Debugging Your .NET Application

174

There's more…
The IntelliTrace settings used in the recipe are the detailed trace settings (as configured in
Step 9). They will record the execution flow as well as events, and will have some impact on
production performance. The alternative option is to use the monitor setting, which has a
minimal impact on performance as it focuses on exceptions and performance.

Don't forget that IntelliTrace files can get very big, very quickly. Make sure that the location you
place them in has plenty of space if you want to capture data over a reasonable time period,
and more so if you have a busy production server. Logging directly to the system drive like we
did in the recipe is generally not recommended, since filling your system drive will bring your
server to a grinding halt.

Finding the variable values
If you haven't used it before, you might expect IntelliTrace to be equivalent to the normal
debugging experience. Unfortunately, the performance impact of recording all the data
needed to simulate the full debugging experience makes this prohibitive.

By default, variable values are not recorded by IntelliTrace unless a breakpoint has been set
or an event occurs. In the recipe, if during the debugging session you hovered your mouse
over the second variable in the code window, you would see an indication that the data was
not collected.

If you wanted to capture that information, you could configure IntelliTrace to record the tracing
information and add trace statements for your code, or you could write custom IntelliTrace
events (outside the scope of this book) and add them to the IntelliTrace configuration. In
either case, it would require recompiling and redeploying code to production, so there is an
assumption that you know the level of trace information you will need ahead of time.

Debugging parallel code
With the prevalence of multicore CPUs we are seeing more and more applications taking
advantage of parallel processing to improve performance. A number of features such as Task
Parallel Library (TPL) and Parallel LINQ (PLINQ) were added by .NET Framework 4.0 to make
developing applications that take advantage of multicore CPUs much simpler to write.

The debugging experience for threaded applications in Visual Studio has gotten better with
each release, and VS2013 is no exception. Let's take a look at what is available.

Getting ready
Start a premium edition of VS2015, and create a new C# console application with a name of
your choice.

Chapter 5

175

How to do it…
In order to debug a program with parallel code, perform the following steps:

1.	 Use the following code to populate the body of Program.cs. It's a pretty simple
program that starts a parallel for loop, which, in turn, calls a method that performs
meaningless calculations intended to keep the CPU busy:
class Program
{
 static void Main(string[] args)
 {
 Parallel.For(0, 100000, i => SlowMethod(i + 1));
 }

 private static void SlowMethod(int i)
 {
 var total = 0;
 for (int loop = 0; loop < 1000000; loop++)
 {
 total += loop;
 total /= i;
 }
 }
}

2.	 Press F5 to run the program, and after a second or two, break into the debugger
either by pressing the pause button in Visual Studio or by pressing Ctrl + Alt + Break.

3.	 You will most likely break inside SlowMethod(). When you do, you should be able to
see the current value of the variable i by hovering over the variable name, as shown
in the following screenshot:

Debugging Your .NET Application

176

4.	 So far, this is standard behavior when debugging. However, you can only see the
value of i for a single thread (in our screenshot, that value is 212). What about the
value of i on all the other threads? From the menu, navigate to Debug | Windows |
Threads, and you will see all the threads in the application including the threads
that the parallel for loop has created. The following screenshot lists some of the
threads present:

5.	 Right-click on a different thread from the one you are currently on, and select Switch
To Thread from the context menu. Now look at the values of i, loop, and total, and
you will see they are different.

6.	 This is useful for what it is, but still fairly cumbersome if you want to see the value
of i across all threads. For a more useful holistic view, use the menu to navigate to
Debug | Windows | Parallel Watch | Parallel Watch 1 (or use the keyboard shortcut
Ctrl + Shift + D, 1). This will bring up a new window with all of the current threads
listed, and an area in the header of the last column for adding watch expressions. Any
expression entered will be evaluated automatically across all threads for you.

7.	 Add watch expressions for i and 1000000-loop as shown in the following
screenshot, so you can see how this works (to enter a watch for each variable,
click on the <Add Watch> column header):

Chapter 5

177

8.	 Stop debugging. Return to Visual Studio, and add a second console application
named Parallel2 to the current solution. In the new project's Program.cs file,
use the following code for the body of the file:
class Program
{
 static void Main(string[] args)
 {
 Parallel.For(0, 100000, i => AnotherSlowMethod(i + 1));
 }

 private static void AnotherSlowMethod(int i)
 {
 var total = 0;
 var sb = new StringBuilder(1000 * i);
 for (int loop = 0; loop < 1000 * i; loop++)
 {
 sb.Append(loop);
 }
 total = sb.ToString().Length;
 }
}

9.	 Right-click on the solution in Solution Explorer, and select Set Startup Projects in
the context menu. Select Multiple startup projects, and ensure that the Action value
for both console applications is Start.

10.	 Click on OK to save the changes, and then press F5 to start debugging.

11.	 Wait for a short period of time, and then again break into the debugger using the
same process as explained in Step 2.

Debugging Your .NET Application

178

12.	 From the menu, navigate to Debug | Windows | Tasks. You will now see that you
have multiple processes, each with multiple tasks. You can also see what thread
each task is running on, as shown in the following screenshot:

13.	 Now we will utilize a view that will let us visualize how the processes have been
created. From the menu, navigate to Debug | Windows | Parallel Stacks. As can
be seen in the following screenshot, you now have two processes being displayed,
each with a main thread and the spawned threads created by the parallel for loops
of each process:

Chapter 5

179

Note that the Parallel Stacks window has useful controls located
in the top corner of the screen to assist in navigation (including
zoom), and there is the minimap located on the bottom right. Both
sets of controls are very helpful when dealing with larger diagrams.

How it works…
Apart from the debugging improvements themselves, Microsoft has worked hard on TPL,
PLINQ, and other multithreading-related framework features, and gained some serious
performance improvements for .NET 4.5. Since .NET 4.5+ is an in-place replacement of
the .NET 4.0 runtime, it means that any of your .NET 4.0 code that uses these libraries will
automatically benefit from the performance improvements without requiring you to make code
changes or manage lengthy recompilations.

See also
ff The Visualizing concurrency recipe

ff For more information on TPL, refer to the MSDN documentation at https://msdn.
microsoft.com/en-us/library/dd460717(v=vs.110).aspx

ff Information on PLINQ is available at https://msdn.microsoft.com/en-us/
library/dd460688(v=vs.110).aspx

Visualizing concurrency
The Concurrency Visualizer is another tool that was added in Visual Studio 2010 to assist with
multithreaded code and, just like the other features of Visual Studio related to threading in
Visual Studio 2012, it too has been the subject of a number of improvements. Starting with
VS2013, it has been pulled out of the default installation, but is available on the Visual
Studio Gallery.

In this recipe, we'll take a look at these improvements, and see how you can better
understand what is happening inside your application when it runs.

Getting ready
You will need to use VS2015 or one of the premium editions for this recipe. Download and
install the Concurrency Visualizer from the Visual Studio Gallery available at https://
visualstudiogallery.msdn.microsoft.com/a6c24ce9-beec-4545-9261-
293061436ee9. Once installed, reopen Visual Studio, and create a new C# console
application named Concurrency.

https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx
https://visualstudiogallery.msdn.microsoft.com/a6c24ce9-beec-4545-9261-293061436ee9
https://visualstudiogallery.msdn.microsoft.com/a6c24ce9-beec-4545-9261-293061436ee9
https://visualstudiogallery.msdn.microsoft.com/a6c24ce9-beec-4545-9261-293061436ee9

Debugging Your .NET Application

180

This recipe is based on VS2015, but the VS2013 extension
remains available at https://visualstudiogallery.
msdn.microsoft.com/24b56e51-fcc2-423f-b811-
f16f3fa3af7a.

How to do it...
1.	 Open the Program.cs file, and add the following statements to the using

statements at the top of the file:
using System.Threading;
using System.Diagnostics.Tracing;

2.	 The following sample code is fairly straightforward. It will simply build up a list of tasks
to run, and then execute them. Each task then calls SpinWait on the thread for a
period of time. It's much the same as a Thread.Sleep method, but instead of the
thread yielding back to the operating systems task scheduler, it keeps the CPU busy (to
better assist with our demo). To proceed, add this code to the body of Program.cs:
static void Main(string[] args)
{
 var taskList = new List<Task>();
 for (int i = 0; i < 10; i++)
 {
 taskList.Add(Task.Run(() =>
 {
 MyEventSource.Log.RecordAnEvent(DateTime.Now.Second);
 Thread.SpinWait(10000000);
 }));
 }
 Task.WaitAll(taskList.ToArray());
}

3.	 Next, add a custom event source as shown in the following code excerpt. It will be
called whenever a new task is created in the main program loop:
[EventSource(Guid = "EE8B671C-90FA-4D6F-A238-F779DBCA6128")]
class MyEventSource : EventSource
{
 internal static MyEventSource Log = new MyEventSource();

 [Event(1)]
 public void RecordAnEvent(int data)
 {
 WriteEvent(1, data);
 }
}

https://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-423f-b811-f16f3fa3af7a
https://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-423f-b811-f16f3fa3af7a
https://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-423f-b811-f16f3fa3af7a

Chapter 5

181

4.	 Launch the Concurrency Visualizer, either by pressing the keyboard shortcut of Alt
+ Shift + F5, or from the menu by navigating to Analyze | Concurrency Visualizer |
Start with Current Project.

For the purpose of this recipe, if you are prompted to configure
a symbol cache or you see a warning about running without
executive paging on an x64 machine, you can select No in
each case.
If you are prompted for elevation, then select Yes since the
collection analyzer requires administrative privileges.

5.	 When the process completes and the data collection ends, you will see a window like
the following screenshot:

6.	 At the very top of the window is an overview area with drag handles that you can use
to limit the amount of data displayed. Move the red drag handles toward each other
so that the selected area contains the high activity area of the trace file.

Debugging Your .NET Application

182

7.	 Navigate to the Threads view by clicking on the button just under the overview area.
The following screenshot shows the Threads view:

8.	 You will be shown what has been happening in each thread, and you can
also see that your custom event isn't displaying yet. Let's figure out why.

9.	 Navigate to the Analyze | Concurrency Visualizer | Advanced Settings
menu entry, and select the Markers tab.

10.	 Click on the green plus icon to add a new marker. Enter RecordAnEvent as the
Name of the marker, and in the Provider GUID field, enter the GUID you used in the
MyEventSource Event attribute (refer to Step 3). The following screenshot shows
how this should look. Click on OK to close the dialog box.

To make this step a little easier, copy the GUID from the code and paste
it into the dialog. It'll help prevent errors when entering the GUID.

Chapter 5

183

11.	 Repeat Step 4 to reanalyze the application and collect updated results,
including your newly-added event marker.

12.	 When Concurrency Visualizer opens, switch to the Threads view as before.
You should be able to find the custom event information as shown in the
following screenshot:

Debugging Your .NET Application

184

How it works...
The Concurrency Visualizer exists to help you understand what the CPU is doing when your
application runs, and where performance issues may be originating from. The ability to
add your own custom markers is very useful when you want to tie events specific to your
application to the visualizer. Apart from custom event data, the visualizer also understands
the events from TPL, PLINQ, synchronized data structures, and more. This information
gives you great insight into your code, and will hopefully help you isolate the points where
performance bottlenecks and bugs might be originating from.

See also
ff The Debugging parallel code recipe

ff Information on PLINQ is available at http://msdn.microsoft.com/en-us/
library/dd460688(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd460688(v=vs.110).aspx

185

6
Asynchrony in .NET

In this chapter, we will cover the following topics:

ff Making your code asynchronous

ff Understanding asynchrony and Universal Windows Platform apps

ff Using asynchrony with web applications

ff Working with actors and the TPL Dataflow library

Introduction
The use of asynchronous code has become more popular as programmers seek ways to deal
with latency and blocking operations in their applications. For example, an application running
with the benefit of significant local resources is still at the mercy of the response time of other
systems that it has to communicate with. In many cases, applications wait for their users to
respond, and they shouldn't consume all available system resources while they wait for the
users to react.

To deal with these and similar challenges, multithreaded code has been used. With this
approach, the work that needs to be done is handled by multiple threads, so while one
thread is handling network communication, another may update the display. Sometimes,
this approach has its own limitations, as additional threads increase complexity for the
programmer, and there are practical limitations on how many threads can be effectively
created and utilized.

Whether your code is currently multithreaded or not, the use of asynchronous techniques can
be beneficial, as they eliminate blocking on an executing thread. This applies whether it is the
sole main execution thread, or a particular thread devoted to the task at hand.

Asynchrony in .NET

186

Microsoft realized that while most developers understand the benefits of asynchronous code
and the improvements it can bring about in their applications, the programming models
involved in asynchrony were fairly cumbersome, verbose, and in some cases, quite difficult
to get right. As a result, most developers ignored asynchrony unless circumstances forced
it upon them. The extra complexity, effort, time, higher chance of bugs, and difficulty of
debugging meant that it simply wasn't worth it for most developers.

To ensure reading and writing asynchronous code is no longer restricted to domain experts,
Visual Studio 2012 and .NET 4.5 introduced the async and await keywords for both the C#
and Visual Basic languages. These keywords make asynchronous code as easy to read, write,
and debug as normal synchronous code.

As you saw in Chapter 5, Debugging Your .NET Application, the debugging experience for .NET
code has been greatly improved. When this is combined with the improved language features,
the implementation cost of asynchronous code is made much easier, and so, should be
considered for use to see if it is appropriate for your projects.

In this chapter, you'll be looking specifically at the async and await keywords, and see how
VS2015 supports them.

Making your code asynchronous
Let's begin by examining a scenario where you have an application that might be lacking
in the performance department. While users feel it is very unresponsive, yet when the
performance counters on the host machine are examined, it doesn't seem to be doing all that
much. The odds are high that your existing code is performing a slow operation and blocking
the execution thread while it waits for this operation to complete, which prevents other code
from executing.

It gets even worse in web applications that come under heavy load. Soon, every request
thread that gets blocked becomes a point where other requests can get queued, and before
long, your application server starts throwing 503 Service Unavailable errors.

Time to take that synchronous code, stick an a at the front, and take advantage of your
production system's hardware more efficiently. Keep in mind that before you make all of your
code asynchronous, you should understand where it blocks, and where it doesn't (refer to
Chapter 5, Debugging Your .NET Application, for some tips on getting started with this).

The overhead of using asynchronous code everywhere can actually make
your application run slower if you aren't careful (this is similar to the fact
that you cannot improve application performance solely through adding
dozens of execution threads). While techniques such as multithreading
and asynchronous programming can help in many situations, they do not
represent a magical cure-all that is appropriate in every situation.

Chapter 6

187

The sample application we are about to build will read RSS feeds from a number of sites and
display them on the console. At the end of the display, the total time required for the feeds to
be fetched and displayed will be shown.

Getting ready
You will need an Internet connection for this recipe to work, since you will be loading data from
various RSS feeds and displaying the results.

So ensure you have a working connection, then simply start one of the Premium editions of
VS2015 or VS2015 Community, and you will be ready to begin.

How to do it...
Perform the following steps:

1.	 Create a C# console application named FeedReader.

2.	 In the program, classes from a number of different namespaces will be used. To
save some time, add the following code to the using statements at the top of
Program.cs:
using System.Diagnostics;
using System.Net;
using System.Net.Cache;
using System.Xml.Linq;

3.	 Before you implement the main method, you need to create some supporting
methods. Add a ReadFeed() private method, as shown after the Main() method.
It creates a web client to read an RSS feed with the cache setting turned off. This will
ensure that we always pull data from the Internet and not a local cached copy.
private static string ReadFeed(string url)
{
 var client = new WebClient()
 {
 CachePolicy = new
 RequestCachePolicy(RequestCacheLevel.NoCacheNoStore)
 };
 var contents = client.DownloadString(url);
 return contents;
}

Asynchrony in .NET

188

4.	 Add a PublishedDate() method below the ReadFeed() method. It will convert
dates in the feed that System.DateTime doesn't handle into dates that can
be parsed:
public static DateTime PublishedDate(XElement item)
{
 var s = (string)item.Element("pubDate");
 if (s != null)
 {
 s = s.Replace("EST", "-0500");
 s = s.Replace("EDT", "-0400");
 s = s.Replace("CST", "-0600");
 s = s.Replace("CDT", "-0500");
 s = s.Replace("MST", "-0700");
 s = s.Replace("MDT", "-0600");
 s = s.Replace("PST", "-0800");
 s = s.Replace("PDT", "-0700");
 }
 DateTime d;
 if (DateTime.TryParse(s, out d)) return d;
 return DateTime.MinValue;
}

5.	 Now return to the Main() method and create a variable for the list of feeds to read
from (feel free to customize to suit your personal tastes):
static void Main(string[] args)
{
 var feedUrls = new List<string>() {
 "http://www.engadget.com/rss.xml",
 "http://www.wired.com/feed/",
 "http://apod.nasa.gov/apod.rss",
 "http://arstechnica.com/feed/",
 };
}

6.	 Continuing in Main(), create a Stopwatch so that you can start timing how long the
execution takes, and then add the code to load the data from the feeds:
var stopwatch = Stopwatch.StartNew();
var feeds = (from url in feedUrls select
ReadFeed(url)).ToArray();

7.	 You need to parse the feed so you can extract something to show on screen. Add the
following code to the Main() method to do so:
var items = from feed in feeds
from channel in XElement.Parse(feed).Elements("channel")

Chapter 6

189

from item in channel.Elements("item").Take(2)
let date = PublishedDate(item)
orderby date descending
select new
{
 Title = (string)channel.Element("title"),
 Link = (string)channel.Element("link"),
 PostTitle = (string)item.Element("title"),
 PostLink = (string)item.Element("link"),
 Date = date
};

8.	 Complete the Main() method by adding the following code to display an item from
each feed on the console, and to show the total time it took to process all feeds:
foreach (var item in items)
{
 Console.WriteLine("Title: {0} [{1}]", item.Title,
 item.Link);
 Console.WriteLine(" Post: {0}[{1}]", item.PostTitle,
 item.PostLink);
 Console.WriteLine(" Date: " + item.Date);
 Console.WriteLine("---------");
}
Console.WriteLine("Total Time: " + stopwatch.Elapsed);
Console.ReadKey(); // this line will be removed in Step 17

9.	 Compile the program, and check that it runs. Don't panic if the console takes a little
while to show some text—you've got some slow code running here. When it does
eventually complete, you should see output similar to the following screenshot:

Asynchrony in .NET

190

10.	 As you can see, since each request is being made in a synchronous manner, this
does not execute very quickly. This program contacts each site sequentially, waits
for a response, and then contacts the next site in the list. Even though they are
independent servers, each delayed response increases the overall execution time.
This isn't very efficient, so let's introduce the await and async keywords in an effort
to speed this thing up. First, locate the ReadFeed() method, and change the return
type from string to Task<string>.

11.	 You will then need to return a Task<string> object from the method, but you can't
just cast the contents variable to that type. Fortunately, the WebClient class includes
a task-based version of DownloadString called DownloadStringTaskAsync
that returns a Task<string> object. Perfect for our needs. Change the code to use
client.DownloadStringTaskAsync(url):
private static Task<string> ReadFeed(string url)
{
 var client = new WebClient()
 {
 CachePolicy = new
 RequestCachePolicy(RequestCacheLevel.NoCacheNoStore)
 };
 var contents = client.DownloadStringTaskAsync(url);
 return contents;
}

12.	 Navigate back up to the Main() method, and you will see a problem with the
Parse() method in the LINQ statement. The root cause is that the feeds variable is
now an array of the Task<string> objects, and not string objects.

13.	 Change the code where feeds is assigned to wrap the LINQ statement in a Task.
WhenAll() call instead of using .ToArray(). The Task.WhenAll method creates
a task that waits until all of the inner tasks returned by the enclosed LINQ statement
are complete. The await keyword tells the compiler that the task should be executed
asynchronously and the result assigned to the feeds variable. The variable feeds is
now defined as follows:
var feeds = await Task.WhenAll(from url in feedUrls select
ReadFeed(url));

14.	 There is still a problem. The compiler now complains about the await keyword not
being valid, as shown in the following screenshot:

Chapter 6

191

15.	 Any method where the await keyword is used must have the async keyword in
its declaration. Go to the declaration of the Main() method and add the async
keyword, as shown in the following code:
static async void Main(string[] args)

You can also accept the change recommended by VS2015 in
the preceding screenshot.

16.	 Attempt to compile the application. You will get an error indicating that the Main
method can't be made asynchronous, as it is the program entry point.

17.	 This is easy enough to work around. Retitle the Main() method static async
Task ProcessFeedsAsync(), and insert a new Main() method above it, using
the following code. Also, remove the ReadKey() method from the end of the
ProcessFeedsAsync() method so that you are not prompted for user input twice.
The result should be like the following code:
static void Main(string[] args)
{
 Console.WriteLine("starting...");
 ProcessFeedsAsync().Wait();
 Console.WriteLine("finished...");
 Console.ReadKey();
}
static async Task ProcessFeedsAsync()

18.	 Compile and run the program. You should see an output somewhat similar to the
following screenshot, and the elapsed time should be shorter than before:

Asynchrony in .NET

192

How it works...
The final version of the program written using asynchronous techniques provides better results
based on the nature of the work we are trying to accomplish (I/O dependent processing). The
primary impediment to timely execution is the wait imposed by each server's response time.
In the original program, even one slow server can impede the results, as the delay cascades
through each request. The asynchronous version avoids this by making each request in a
non-blocking manner, so each request can be started without waiting for the preceding
request to complete.

The DownloadStringTaskAsync() method shows off an important convention to be aware
of in the .NET 4.5 Framework design. There is a naming convention to help you locate the
asynchronous versions of methods, where methods that are asynchronous all have an async
suffix to their names. In situations where an asynchronous method exists from previous
framework versions, the newer, task-based, asynchronous methods are named with the
TaskAsync suffix instead.

The line ProcessFeedsAsync().Wait(); calls the Wait() method so that the program
does not terminate before receiving a response from all the asynchronous tasks that were
started. This use of Wait() is what allows the overall program flow to run as we would expect:
the phrase starting... is displayed, the RSS feeds are retrieved and displayed, and then upon
completion the program displays the total execution time.

As you've seen, Visual Studio offers enough warnings and errors through IntelliSense to make
the conversion of synchronous code to asynchronous reasonably straightforward, as long as
you make changes in small, incremental steps. Large scale changes of code, regardless of
what those changes may be, are always difficult and error prone, especially if you lack unit
tests or other mechanisms to verify that your changes haven't broken any functionality.

There's more…
It's possible to overdo it. Every piece of asynchronous code comes with a certain amount
of overhead. There is a CPU cost to context switching, and a higher memory footprint used
for maintaining the memory state of each asynchronous task/method, and it is possible to
reduce the performance of your application when they are used inappropriately.

The original design guideline for the Windows Runtime (WinRT) libraries in Windows 8
was that any method that was likely to take more than 50 ms to complete was changed to
be asynchronous. This is a good rule of thumb to continue following as you work on your
applications whether they are Universal Windows Platform (UWP)-based or traditional .NET
applications. Before attempting to improve all the methods in your application at once, start
by determining which of your current methods are the slowest. Also take into consideration
what a function is trying to do.

Chapter 6

193

An initial guideline would be to start by only improving methods that take more than 500 ms
to complete, and resolving those before targeting faster methods. Using asynchronous code
for this example was ideal, since each feed is located on a separate server, and obtaining
results from one server isn't dependent on another.

Whenever determining the appropriate balance between synchronous and asynchronous
code, you should be doing performance and load testing on your application to determine
what the current performance profile is, and what effect your changes will have on it. Because
each and every application is different, finding the right mix can be an art. As a tip, identify
the slowest areas of your application, and target them first. I/O-based methods are good
candidates for consideration. As you improve performance, keep an eye on how much time
it costs you to make your code asynchronous versus the improvement you are seeing in the
overall application performance.

See also
ff Stephen Cleary has written an informative article for MSDN Magazine, Best Practices

in Asynchronous Programming, available at http://msdn.microsoft.com/en-
us/magazine/jj991977.aspx

Understanding asynchrony and Universal
Windows Platform apps

When developing the original Windows Runtime for Windows 8.x, Microsoft followed a design
guideline in which any synchronous method that might take longer than 50 ms to complete
was to be removed and replaced with an asynchronous version. The goal behind this design
decision is to dramatically improve the chances of developers building applications that feel
smooth and fluid by not blocking threads on framework calls.

In this recipe, you're going to revisit the RSS feed reader concept, just as you did in the
Making your code asynchronous recipe, though this time you're going to be creating a
UWP application.

There are a few differences between a UWP application and a console one, including
differences in the classes available. For example, the WebClient class doesn't exist in
WinRT, so you'll be using the HttpClient class instead.

For additional variety, we will be writing this app using Visual Basic, but of course, the
concepts are applicable to any UWP application.

Getting ready
Ensure you are running Windows 10, and then launch VS2015. You will need either one of the
Premium editions or Visual Studio Community 2015.

http://msdn.microsoft.com/en-us/magazine/jj991977.aspx
http://msdn.microsoft.com/en-us/magazine/jj991977.aspx

Asynchrony in .NET

194

How to do it...
Perform the following steps to create the UWP version of our FeedReader program:

1.	 Create a new project by navigating to Visual Basic | Windows | Universal | Blank
App (Universal Windows) and name it FeedReaderApp.

2.	 Depending on your particular installation of Windows 10 and VS2015, you may
be prompted to define platform versions. For this recipe, we will use a Target
Version of Build 10586 and a Minimum Version of Build 10240, as shown in
the following screenshot:

3.	 Add a class named Post by right-clicking on your project and then selecting Add |
New Item | Class.

4.	 After Post.vb is created, insert the following code. This class will be used to hold the
details of each post from the RSS feed that we will show on screen:
Public Class Post
 Public Property Title As String
 Public Property Link As String
 Public Property PostTitle As String
 Public Property PostLink As String
 Public Property PostDate As DateTime
End Class

5.	 Open MainPage.xaml and add the following XAML to the existing <Grid/> element
to define the markup of how the results should appear. The layout consists of a
button to start the feed loading and a ListBox element in which the results are
displayed. You also have a TextBlock element in which you'll post the time it takes
to read the feeds:
<Grid Background="{ThemeResource
ApplicationPageBackgroundThemeBrush}">
 <Button Name="LoadFeeds" Margin="116,60,0,0"
 VerticalAlignment="Top">

Chapter 6

195

 Load Feeds
 </Button>
 <TextBlock Name="TimeTaken" HorizontalAlignment="Left"
 Height="36" Margin="257,60,0,0" TextWrapping="Wrap"
 VerticalAlignment="Top" Width="360" FontSize="32">
 Waiting for click
 </TextBlock>
 <ListBox Height="450" HorizontalAlignment="Left"
 Margin="116,140,0,0" Name="PostsListBox"
 VerticalAlignment="Top" Width="500" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Vertical" Height="110">
 <TextBlock Text="{Binding Title}" />
 <TextBlock Text="{Binding Link}" />
 <TextBlock Text="{Binding PostTitle}" />
 <TextBlock Text="{Binding PostLink}" />
 <TextBlock Text="{Binding PostDate}" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

Feel free change to the selected device in the XAML
designer so that there is enough room for our layout. This
setting is located in the top-left corner of the designer
window. For our recipe, we will target an 8" Tablet, as shown
in the following screenshot:

6.	 Next, navigate to the code behind the file MainPage.xaml.vb, and add a couple of
Imports statements that you will need later:
Imports System.Net.Http
Imports System.Net.Http.Headers

7.	 Now add some initial code to define the RSS feeds to use and a collection to hold the
Post objects:
Public NotInheritable Class MainPage
 Inherits Page

 Public Property Posts As List(Of Post)

Asynchrony in .NET

196

 Dim feedUrls As New List(Of String)

 Public Sub New()
 InitializeComponent()
 feedUrls = New List(Of String) From {
 "http://www.engadget.com/rss.xml",
 "http://apod.nasa.gov/apod.rss",
 "http://arstechnica.com/feed/"
 }
 Posts = New List(Of Post)
 End Sub
End Class

8.	 Add the PublishedDate() helper method to the class after the New() method:
Public Function PublishedDate(item As XElement) As DateTime
 Dim s As String = ""

 If item.Element("pubDate") IsNot Nothing Then
 s = CType(item.Element("pubDate"), String)
 s = s.Replace("EST", "-0500")
 s = s.Replace("EDT", "-0400")
 s = s.Replace("CST", "-0600")
 s = s.Replace("CDT", "-0500")
 s = s.Replace("MST", "-0700")
 s = s.Replace("MDT", "-0600")
 s = s.Replace("PST", "-0800")
 s = s.Replace("PDT", "-0700")
 End If
 Dim d As DateTime
 If DateTime.TryParse(s, d) Then
 Return d
 End If
 Return DateTime.MinValue
End Function

9.	 Add the ReadFeed() helper method below the PublishedDate() method using
the following code:
Private Async Function ReadFeed(url As String) As Task(Of
String)
 Dim client As New HttpClient
 Dim cacheControl As New CacheControlHeaderValue With {
 .NoCache = True,
 .NoStore = True
 }

Chapter 6

197

 client.DefaultRequestHeaders.CacheControl = cacheControl
 client.MaxResponseContentBufferSize = Integer.MaxValue
 Dim response As HttpResponseMessage = Await
 client.GetAsync(url)
 Dim content As String = Await
 response.Content.ReadAsStringAsync()

 Dim _posts = From channel In
 XElement.Parse(content).Elements("channel")
 From item In channel.Elements("item").Take(1)
 Let _date = PublishedDate(item)
 Order By _date Descending
 Select New Post With {
 .Title = CType(channel.Element("title"), String),
 .Link = CType(channel.Element("link"), String),
 .PostTitle = CType(item.Element("title"), String),
 .PostLink = CType(item.Element("link"), String),
 .PostDate = _date
 }
 Dim post = _posts.First
 Posts.Add(post)
 Return content
End Function

10.	 It's now time to add some functionality to the button that loads the feeds. Write a
handler for the LoadFeeds button's click event using the following code:
Private Async Sub LoadFeeds_Click(sender As Object, e As
RoutedEventArgs) Handles LoadFeeds.Click
 Dim _stopwatch = Stopwatch.StartNew
 Await Task.WhenAll(From url In feedUrls Select
 ReadFeed(url))
 Dim _timespan As TimeSpan = _stopwatch.Elapsed
 TimeTaken.Text = _timespan.ToString
 PostsListBox.ItemsSource = Posts
End Sub 'End of method

Asynchrony in .NET

198

11.	 Compile and run the program. When the UI appears, click on (or press if your
machine is touch-enabled) the Load Feeds button, wait a few seconds, and you
should see the results of your work appear, as in the following screenshot:

How it works...
In Step 10, you added a LoadFeeds.Click event handler. The important thing to note
about this method is that it is an async method, and that await is used with the Task.
WhenAll method. When the application runs and you click on the button, the click event
fires the event handler, which in turn starts the background processing that reads the feeds.
While the application is waiting for that background process to complete, control is returned
to the main application for any other work that needs to be done, ensuring you do not block
the application while waiting for the feeds to be retrieved. When the feed retrieval completes,
execution returns back to the click event handler, which then updates the UI with the results.

In Step 9, the ReadFeed() method looks similar to what you used in the console application
in the Making your code asynchronous recipe; however, you will now see that you are using
the HttpClient class instead of the WebClient class for asynchronous support. The
HttpClient class also requires different code to set up the cache control values, and you have
to specify the response buffer size, otherwise you can get runtime exceptions on long feeds.

Chapter 6

199

Since you are targeting the UWP, it is a good idea to use asynchronous code whenever
possible. This makes using the await and async keywords critical for UWP apps. Without
these keywords, developing asynchronous applications that meet UWP design guidelines
would be so much harder to do, and probably, more fragile and difficult to debug. These
two little keywords will make asynchronous programming much easier.

Using asynchrony with web applications
Internet Information Server (IIS) has limits on the number of requests and I/O threads it
can use. Blocking any of these threads means IIS is forced to wait until the thread is released
before another request can be processed. When there are no threads available to process
requests (because of blocking or high-server load), requests start to queue up, and over
time, that queue can grow until it reaches its maximum size, at which point the dreaded 503
Service Unavailable message will be displayed to your site's visitors. This is not a good thing.

Historically, developers may have overlooked the benefits of using an asynchronous design
when it came to web application design. This oversight may have been due to mindset,
or have been limited by available technology. In any case, the rise of Node.js and similar
asynchronous-based technologies demonstrates that this mentality is quickly changing. Most
developers want a responsive, scalable web application that can support hundreds, if not
thousands, of users, and are willing to consider new approaches if it means better results.

High server load due to a large volume of visitors is not something you can control. What is
in your control, however, is your ability to write code that doesn't block threads, and allows
IIS to scale and process more requests than would have been possible otherwise. If you want
a responsive, scalable web application that supports hundreds or thousands of users per
server, you need to make the best use of the hardware you are on, and you must consider the
problems that are caused by blocking threads.

Once again, you'll use the feed reader scenario, but for simplicity, you'll just make the network
calls to retrieve the RSS feeds and then display the time it took to do so.

Getting ready
Simply start a Premium edition of Visual Studio or Visual Studio Community 2015, and you're
ready to go.

How to do it...
We will create an asynchronous web application by taking the following steps:

1.	 Start a new C# ASP.NET Web Application, and then choose the Web Form project
type. Keep the default project name, or pick one of your own.

Asynchrony in .NET

200

2.	 Right click on the project, select Add | New Item (Ctrl + Shift + A), and add a new
Web Form item to the project using the default name of WebForm1.

3.	 In the newly created WebForm1.aspx file, add Async="true" to the end of the
page directive. This tells ASP.NET to allow the page life cycle events prior to the
PreRender event to execute asynchronous tasks. This insertion is shown in the
following screenshot:

4.	 Further down in the page body, add an id attribute to the <div> element and a
runat="server" attribute so that you can place the timing results in it when the
page executes:
<body>
 <form id="form1" runat="server">
 <div id="timeTaken" runat="server" />
 <div>
 </div>
 </form>
</body>

5.	 Now navigate to the WebForm1.aspx.cs code-behind file, and add the following
using statements to what is already listed:
using System.Diagnostics;
using System.Threading.Tasks;
using System.Net;
using System.Net.Cache;

6.	 In the same file, that is, WebForm1.aspx.cs, add the supporting ReadFeed()
method to read a single RSS feed:
private async static Task<string> ReadFeed(string url)
{
 var client = new WebClient()
 {
 CachePolicy = new
 RequestCachePolicy(RequestCacheLevel.NoCacheNoStore)
 };
 return await client.DownloadStringTaskAsync(url);
}

Chapter 6

201

7.	 Now that you have the ReadFeed() method implemented, you should override the
Page_Init() method in WebForm1.aspx.cs so that it will read all of the feed
information during page startup. Because you want the page to load asynchronously,
you will need to register a PageAsyncTask object. This lets ASP.NET know that you
are performing an asynchronous operation, which is important since page life cycle
events themselves are not asynchronous, and without them the page would render
before your tasks were complete:
private TimeSpan duration;

protected void Page_Init(object sender, EventArgs e)
{
 var feedUrls = new List<string>() {
 "http://www.engadget.com/rss.xml",
 "http://apod.nasa.gov/apod.rss",
 "http://arstechnica.com/feed/"
 };

 RegisterAsyncTask(new PageAsyncTask(async (ct) =>
 {
 var stopwatch = Stopwatch.StartNew();
 var feeds = await Task.WhenAll(
 from url in feedUrls select ReadFeed(url));
 foreach (var feed in feeds)
 {
 Debug.WriteLine(feed.Length);
 }
 duration = stopwatch.Elapsed;
 timeTaken.InnerText = duration.ToString();
 }));
}

8.	 Finally, add the Page_PreRender() method so that the duration of the entire
page life cycle, inclusive of the RSS reading, can be seen in the debug console in
Visual Studio:
protected void Page_PreRender(object sender, EventArgs e)
{
 Debug.WriteLine("Duration: {0}", duration);
}

Asynchrony in .NET

202

9.	 Press F5 to start debugging the application. After a few seconds, the page load
should complete and render a screen similar to the following screenshot:

10.	 Leaving the web page open, switch back to Visual Studio, which should still be in
debug mode. Look at the contents of the Output window and the Debug messages
in particular. As shown in the following screenshot, you should see that the debug
message from the PreRender event is displayed before the three numbers, which
indicate the size of data pulled from the RSS feeds.

The duration shows as zero, because the Page_Init method has been completed,
but PageAsyncTask that you registered has not yet been executed by the time the
PreRender method is called.

How it works...
It's important to keep in mind that with ASP.NET Web Forms, the page methods are executed
synchronously even if you put the async keyword on the method declarations. You must use
RegisterAsyncTask, just as you needed to in the previous versions of .NET.

Because of the async keyword, the registering of tasks is now simply a matter of including
a lambda in the code. You don't need to follow the old style of asynchronous programming
anymore, and you don't have to write any begin and end methods for the framework to call.

You will also notice that the page itself still takes a while to load. The asynchronous approach
you used allows the web server as a whole to scale and process more requests concurrently.
But this approach doesn't have the ability to make those slow network calls to the RSS feeds
any faster, so other methods will have to be used to indicate to your users that something is
happening, and that they are waiting for a reason.

Chapter 6

203

There's more…
When it comes to ASP.NET MVC-based applications, things are even easier. Your controller
still inherits from the AsyncController class, however, instead of having to write method
pairs for the beginning and ending of an asynchronous operation, you simply have to create
a controller method that returns Task<T>.

For example:

public async Task<ActionResult> Index()
{
 await LongRunningMethod();
 return View();
}

As you can see, this is much better than the way asynchronous controllers worked in previous
versions of ASP.NET MVC.

See also
ff The Making your code asynchronous recipe at the beginning of this chapter

Working with actors and the TPL Dataflow
library

With Visual Studio 2010 and .NET 4.0, we were given the Task Parallel Library (TPL),
which allowed us to process a known set of data or operations over multiple threads
using constructs such as the Parallel.For loop.

Coinciding with the release of Visual Studio 2012, Microsoft provided the ability to take data
that you may have and process it in chunks through a series of steps, where each step can be
processed independently of the others. This library is called the TPL Dataflow Library.

An interesting thing to note about this library is that it was originally included as part of .NET
Framework in the pre-release versions, but the team moved it to a NuGet distribution model
so that changes and updates to the package could be made outside of the normal .NET life
cycle. A similar approach has been taken with the Managed Extensibility Framework (MEF)
for web and Windows 8.x apps. This change to the distribution model shows a willingness from
Microsoft to change their practices so that they can be more responsive to developer needs.

From a terminology perspective, the processing steps are called actors, because they "act" on
the data they are presented with, and the series of steps performed are typically referred to as
a pipeline.

Asynchrony in .NET

204

A fairly common example of this is in image processing where a set of images needs to be
converted in some way, such as adding sepia tones, ensuring all images are in portrait mode,
or doing facial recognition. Another scenario might be taking streaming data, such as sensor
feeds, and processing that to determine the actions to take.

This recipe will show you how the library works. To do this, we will take some keyboard
input, and display it back on the screen after having converted it to upper case and Base64
encoding it. If you would like to explore further after completing this recipe, you will find some
references to more information listed later in this recipe.

In order to do this, we will use an ActionBlock object and a TransformBlock object. An
ActionBlock object is a target block that calls a user-provided delegate when it receives
data, while a TransformBlock object can be both a source and a target. In this recipe, you
will use a TransformBlock object to convert characters to upper case, and encode them
before passing them to an ActionBlock object to display them on screen.

Getting ready
Simply start a Premium of edition VS2015 or use Visual Studio Community 2015, and you're
ready to go.

How to do it...
Create a Dataflow-powered application using the following steps:

1.	 Create a new application targeting .NET Framework 4.5 by navigating to Visual C# |
Console Application and name it DataFlow.

2.	 Using NuGet, add the TPL Dataflow Library to the project. The package name to use
for installation when using the Package Manager Console is Microsoft.Tpl.
Dataflow; otherwise, search for TPL on the Manage NuGet Packages for Solution
dialog. (Refer to the Managing packages with NuGet recipe in Chapter 3, Web
Development, if you need a refresher on how to do this.)

3.	 Open Program.cs, and at the top of the file, add the following using statements:
using System.Threading;
using System.Threading.Tasks;
using System.Threading.Tasks.Dataflow;

4.	 In the Main() method of Program.cs, add the following code to define
ActionBlock. The method in the ActionBlock object displays a string on the
console and has a Sleep method call in it to simulate long-running work. This gives
you a way to slow down processing, and force data to be queued between steps in
the pipeline:
var slowDisplay = new ActionBlock<string>(async s =>

Chapter 6

205

 {
 await Task.Run(() => Thread.Sleep(1000));
 Console.WriteLine(s);
 }
 new ExecutionDataflowBlockOptions {
 MaxDegreeOfParallelism = 4 }
);

5.	 In the Main() method again, continue by adding the code for TransformBlock.
The TransformBlock object will take a char as input, and return an upper
case Base64-encoded string. The TransformBlock object is also linked to the
ActionBlock object to create a two-step pipeline.
var transformer = new TransformBlock<char, string>(c =>
{
 var upper = c.ToString().ToUpperInvariant();
 var bytes = ASCIIEncoding.ASCII.GetBytes(upper);
 var output = Convert.ToBase64String(bytes);
 return output;
});
transformer.LinkTo(slowDisplay);

6.	 Now add code to take input from the console, and pass it to the first step of the
pipeline (the TransformBlock object in this case). You also need to close and
flush the pipeline when you hit Enter so that you can exit the program:
while (true)
{
 var key = Console.ReadKey();
 if (key.Key == ConsoleKey.Enter)
 {
 transformer.Complete();
 Console.WriteLine("waiting for the queue to flush");
 transformer.Completion.Wait();
 slowDisplay.Complete();
 slowDisplay.Completion.Wait();
 Console.WriteLine("press any key");
 Console.ReadKey();
 break;
 }
 transformer.Post(key.KeyChar);
}

Asynchrony in .NET

206

7.	 Run the program. When the console window appears, just randomly press characters,
and hit Enter when you are done. You should see an output similar to the following
screenshot. How the encoded strings appear (typically batches of 1-4) will depend
on the number of CPU cores in your machine:

How it works...
Let's look at what just happened. First, you defined two actors, the first being the
ActionBlock object that takes a string and displays it on screen, and the second, the
TransformBlock object, which takes a character as input and returns an encoded string as
output. You then linked the TransformBlock object to the ActionBlock object to create
the pipeline for the data to flow through.

Next, you took data that was streaming to you (the console key presses), and passed each
key press to the pipeline as soon as it arrived. This continued until the user hit Enter, at
which point the Complete() method is used to tell the actors that they should expect no
more data. Once the queues have been flushed, the user is prompted to hit a key to close the
program. (If you don't flush the queues, you will lose the data that is still in them when the
program completes—never a good thing.)

You can watch the queue flushing process by entering a bunch of characters,
and then immediately pressing Enter. Depending on the speed of your
machine, you will see the waiting for the queue to flush message scroll past
followed by the remaining characters.

Chapter 6

207

Now when you ran the program, the TransformBlock object did its work very quickly and
passed its output to the ActionBlock. The interesting thing to note is that even though
the data was queuing up to be processed by the ActionBlock object, the amount of code
you had to write to do that was zero. The TPL Dataflow Library takes care of all the difficult
plumbing code, thread management, and the communication of data between actors as well
as determining how many actors it can run at once.

There's more…
You may also be wondering what happens in less straightforward scenarios, such as when you
want to conditionally pass data or messages to the next actor. Fortunately, the TPL Dataflow
Library is quite powerful, and this recipe is just an introduction to what it offers. For example,
the LinkTo() method has a predicate parameter that you can use to filter the messages and
decide which actors should do what.

You could also batch data for processing in the later steps by adding data to a buffer using the
BufferBlock object and only passing buffered data to subsequent pipeline steps when the
buffer is full. There are lots of possibilities, so feel free to go and explore what the library has
to offer.

The eagle-eyed among you may also have noticed that the lambda function used by the
ActionBlock object featured the async keyword. This was done so that the action block
doesn't itself block execution of the program when performing the long-running task and
prevent any more input from being processed.

See also
ff For more information about TPL, visit http://msdn.microsoft.com/en-us/

library/dd460717(v=vs.110).aspx

ff For more information on Dataflow, visit http://msdn.microsoft.com/en-us/
library/hh228603(v=vs.110).aspx

ff The Making your code asynchronous recipe

ff The Debugging parallel coded with IntelliTrace recipe in Chapter 5, Debugging Your
.NET Applications

http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/hh228603(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/hh228603(v=vs.110).aspx

209

7
Unwrapping C++

Development

In this chapter, we will cover the following topics:

ff Using XAML with C++

ff Unit testing C++ applications

ff Analyzing your C++ code

ff Using a custom ruleset

ff Edit and Continue C++ style

ff Working with DirectX in Visual Studio 2015

ff Creating a shader using DGSL

ff Creating and displaying a 3D model

ff Using the Visual Studio Graphics Diagnostics

Introduction
Before the rise of .NET, Java, and newer languages, C++ occupied a dominant position as
the go-to choice for development of Windows applications. As the 21st century progressed,
the use and popularity of these other languages grew, while C++ seemed to suffer somewhat
without a vocal champion. This led to C++ becoming more of a specialist language to the point
where it is now commonly seen as the language for writing operating systems, device drivers,
game engines, and similar applications where speed is of the essence.

Unwrapping C++ Development

210

In recent years, this decline has somewhat moderated due to a renewed push in C++
support by Microsoft as well as renewed interest by developers who find that so called bare
metal programming may provide better performance for applications running on portable
devices. Microsoft has contributed to this resurgence by increasing Visual Studio's C++
standards compliance and improving the C++ toolset. VS2013 began this trend by including
several components of the C++11 language standard and some long-requested pieces of
the C99 standard.

Now with the arrival of VS2015, Microsoft is continuing these advances with the introduction
of C++ concepts from the C++14 and C++17 language standards. The result is that C++
development is now easier and more efficient than with the previous editions of Visual Studio.

This chapter will cover a variety of areas to show how VS2015 can make your C++
development more productive. We will start by looking at XAML, spend some time on some
useful diagnostic tools, and then conclude with a look at some DirectX-based features.

As you may be aware, Microsoft has increased the pace of the updates
it makes to Visual Studio. The most obvious of these are the usual
quarterly "Update X for Visual Studio". But there can also be smaller
specific updates such as KB3151378 available at https://msdn.
microsoft.com/en-us/library/mt695655.aspx. So stay
informed, and keep your system patched.

Using XAML with C++
User interface development with C++ for Windows applications can be a challenging
experience. When Visual Basic first appeared all those years ago, developers flocked to it, in
part, because building a user interface in it was so much more productive than building the
equivalent UI using C++ at that time, and C++ has never really caught up since.

Over recent years, with Microsoft moving away from WinForms, and the rise of declarative
interface design with XAML, building a flexible yet powerful user interface has never been
easier. The functionality offered by XAML based UI technologies is impressive, with data
binding, in particular, being a genuine productivity enhancement.

Meanwhile, C++ developers have been left further and further behind, with the mainstream
interface development typically found in the work being done by game studios and some in-
house Microsoft product teams. Starting with VS2012, the power and flexibility of the XAML
based user interface design is now available for C++ developers, making C++ a legitimate
choice for business applications.

https://msdn.microsoft.com/en-us/library/mt695655.aspx
https://msdn.microsoft.com/en-us/library/mt695655.aspx

Chapter 7

211

C++ can use XAML only when creating Universal Windows Platform (UWP)
applications. You cannot use this combination together to create traditional
Windows desktop applications.

It's not just business applications that benefit though. Developers of DirectX applications can
use XAML to render interface elements, compositing them with their application's DirectX
output. For game developers, this might be things such as application menus, score displays,
and so on. Alternatively, you can have XAML-based applications interspersed with portions of
DirectX code in them, allowing developers of applications with a need for 3D imaging, such as
medical or geospatial systems, to mix and match DirectX and XAML as required.

The choice and flexibility is up to you. For this recipe, you'll create a simple XAML-based
interface with data binding to see how it all fits together.

Getting ready
Ensure that you are on a Windows 10 machine. UWP app development is not supported on
prior versions of Windows.

Start a premium version of VS2015 or use VS2015 Community, and you will be ready to go.

As noted elsewhere, keep your copy of Visual Studio current, and be sure
the latest updates are applied. For this recipe, ensure you have applied
Update 2 or newer.

How to do it...
Create the app by following these steps:

1.	 Create a new Blank App (Universal Windows) project by navigating to Visual C++ |
Windows | Universal, and name it CppDataBinding.

For this recipe, the project name is important, as it is referenced below in
the sample code. If you pick a different name, be sure to update the code
accordingly!

2.	 Open the MainPage.xaml file, and add the following code inside the <Grid>
element:
<Border BorderBrush="LightBlue" BorderThickness="4"
CornerRadius="20" Margin="5">
 <StackPanel Margin="5">
 <TextBlock Text="Red level" Margin="5" />

Unwrapping C++ Development

212

 <Slider x:Name="redLevelSlider" Minimum="0"
 Maximum="255" Value="{Binding Path=RedValue,
 Mode=TwoWay}"
 Margin="5" Width="255" HorizontalAlignment="Left" />
 <TextBlock Text="Numeric value:" Margin="5"/>
 <TextBox x:Name="tbValueConverterDataBound"
 Text="{Binding Path=RedValue, Mode=TwoWay}"
 Margin="5" Width="150" HorizontalAlignment="Left"/>
 </StackPanel>
</Border>

3.	 For the data binding to work, you will need an object to bind to. Add a new header
file to your project, and call it MyColor.h. The header can be added by right-clicking
on your project name, selecting Add | New Item from the context menu, and then
choosing Header File. Be sure to hold off compiling the code until you get to Step 9,
as compiling before that will result in compiler errors.

4.	 Enter the following code as the content of the MyColor.h source file:
#pragma once
#include "pch.h"
using namespace Platform;
using namespace Windows::UI::Xaml::Data;
namespace CppDataBinding
{
 [Bindable]
 public ref class MyColor sealed : INotifyPropertyChanged
 {
 public:
 MyColor(void);
 virtual ~MyColor(void);
 virtual event PropertyChangedEventHandler^
 PropertyChanged;
 property String^ RedValue
 {
 String^ get() { return _redValue; }
 void set(String^ value)
 {
 _redValue = value;
 RaisePropertyChanged("RedValue");
 }
 }
 protected:
 void RaisePropertyChanged(String^ name);
 private:
 String^ _redValue;
 };
}

Chapter 7

213

5.	 Next, we will need to add a new C++ file named MyColor.cpp. Similar to the header
file, right-click on the project, and select Add | New Item—only this time, choose C++
File. Once it has been created, enter the following code as its content:
#include "pch.h"
#include "MyColor.h"
using namespace CppDataBinding;
using namespace Windows::UI::Xaml::Data;
MyColor::MyColor(void) {}
MyColor::~MyColor(void) {}
void MyColor::RaisePropertyChanged(String^ name)
{
 PropertyChanged(this, ref new
 PropertyChangedEventArgs(name));
}

6.	 Now go to the MainPage.xaml.h file, and add the MyColor.h file to the #include
list.

7.	 While in the MainPage.xaml.h file, go to the public members of the MainPage
class, and add the following line of code that is highlighted:
public:
 MainPage();
 property MyColor^ _myColor;

8.	 Next, navigate to the code-behind file for the MainPage class (MainPage.xaml.
cpp), and add the following highlighted lines of code to the constructor:
MainPage::MainPage()
{
 InitializeComponent();
 _myColor = ref new MyColor();
 this->DataContext = _myColor;
}

9.	 Compile and run the application. You should see a screen similar to the following
screenshot. As you enter values in the text field or move the slider, the two fields
should remain in sync, as shown in the following screenshot:

Unwrapping C++ Development

214

How it works...
The C++ code you have been writing is C++/CX, an extension of normal C++. You can
still use normal C++ (without extensions) if you prefer, but it will mean dealing with the
IInspectable interface and writing more COM code than would otherwise be the case.

The ref keyword you used for creating an instance of the MyColor class tells the compiler
that you are using a Windows runtime object. The carat (^) symbol on variable declarations
is a reference counting smart pointer to a Windows runtime object. It is similar to a normal
pointer, but performs reference counting and automatic cleanup of resources when the last
reference is cleared.

Data binding in C++ kicks into action when you insert the [Bindable] attribute into
a class. When the compiler sees this, it automatically generates code in a file called
xamltypeinfo.g.cpp, which implements the appropriate binding behaviors for
interacting with the XAML markup.

In your code, you implemented the INotifyPropertyChanged interface. This was done so
that you could use the two-way binding between the data class and the UI elements on the
screen. The implementation of the interface should look familiar to anyone who has worked
with the INotifyPropertyChanged interface in either WPF or Silverlight.

If you were compiling the code after each step of the recipe, you may have seen a few
compiler errors, some of which might have not made much sense.

If you compiled the application after Step 5, you may have seen a number of errors in the
XamlTypeInfo.g.cpp file.

This occurs because of the way the compiler handles the [Bindable] attribute and the
generation of the code. The generated code not only includes the .h files from the XAML
pages in the application, but also includes generated code for any types that are bindable.
This means that if you have a bindable type, but no references to it in any of the .xaml.h
files, you will have undeclared identifier errors. Adding the #include statement for the
bindable class' header file as you did in Step 6 fixes this compiler error.

There's more…
Microsoft continues to add functionality to the XAML toolset, and with Update 2, there are
some additional tools available to us when the project is compiled in Debug mode beyond
the frame rate counters.

Chapter 7

215

The following screenshot shows the expanded XAML toolbar:

The toolbar provides three different functions (from left to right): Go to Live Visual Tree,
Enable selection, and Display layout adorners. The first opens a new dialog in Visual Studio
that lists the hierarchical relationship of the XAML controls present in your app, and provides
a two-way connection between this dialog window and the control(s) on your application. From
the application side, you can click on a particular control and locate it within the hierarchy,
or you can pick an element from the hierarchy and see it highlighted in your application.

Enable selection is a toggle that lets you highlight and select various XAML elements for
inspection. Finally, Display layout adorners is a toggle that will show the various borders
of the XAML elements, as shown in the following screenshot:

\

These tools provide another way to examine your application's appearance, and to
troubleshoot any layout issues you may be experiencing.

Unit testing C++ applications
Previously, we saw the .NET-based Unit testing .NET applications recipe in Chapter 4, .NET
Framework Development, but C++ developers have not been forgotten, and VS2015 includes
built-in support for unit testing with CppUnit.

Unwrapping C++ Development

216

C++ developers can choose from several types of unit test projects, including the Native Unit
Test Project, the Managed Unit Test Project, and the Unit Test App (Universal Windows)
project. The first applies exclusively to desktop C++ development, the second applies
exclusively to managed (C++/CX) code, and the third is for UWP-based apps.

In this recipe, we'll create a simple piece of code, and add some unit tests to it, which take
advantage of the Native Unit Test Project.

Getting ready
Simply start VS2015 (Community or a Premium version), and you're ready to go. You can
do this in any version of modern Windows, since you're going to be creating a Native Unit
Test Project.

How to do it...
To unit test your code, perform the following steps:

1.	 Create a new Native Unit Test Project by navigating to Visual C++ | Test and
accepting the default project name.

2.	 In the Solution Explorer window, right-click on the project, and select Class Wizard...
from the menu to create a new class.

3.	 Click on the Add Class... button in the dialog box to add a new class to the project.
Use the class name BankVault, and click on the Finish button as shown in the
following screenshot:

Chapter 7

217

4.	 The Class Wizard will update its context to the newly-added BankVault class. Click
on the Methods tab, and then click on the Add Method... button within that tab.

5.	 In the Add Member Function Wizard, set Function name to AddFunds, and add a
Parameter name as amount of type int (yes, this bank vault only accepts whole
units of currency). Be sure to click on the Add button to add the parameter, which is
shown in the following screenshot:

6.	 Click on Finish in the Add Member Function Wizard, and then click on OK in the
Class Wizard window.

7.	 Open the unittest1.cpp file under the Source Files folder from Solution
Explorer, and at the top of the file, add a #include statement for the BankVault.h
file:
#include "BankVault.h"

8.	 Update the body of the TestMethod1 method as follows:
TEST_METHOD(TestMethod1)
{
 // TODO: Your test code here
 auto vault = new BankVault();
 auto totalFunds = vault->AddFunds(100);
 Assert::AreEqual(100, totalFunds);
}

9.	 From the Visual Studio menu, select Test | Run | All Tests (or press Ctrl + R, A).

Unwrapping C++ Development

218

10.	 The code will compile. The Test Explorer screen will then appear and show the
results of running the test, as shown in the following screenshot:

If you are using Visual Studio Enterprise, Test Explorer can be configured to
automatically run after each build. To do this, select Test | Test Settings |
Run Tests After Build so that the unit tests runs automatically each time the
solution is built.

11.	 Switch back to the BankVault.cpp file, and navigate to the line after the
BankVault destructor. Add the following code, as shown:
int total = 0;
int BankVault::AddFunds(int amount)
{
 total += amount;
 return total;
}

12.	 Once again, select Test | Run | All Tests (or press Ctrl + R, A). As soon as the build
completes, the test results will be executed, and the Test Explorer window should
refresh to show the results of the unit test. Assuming you made the correct changes,
the code should now look like the following screenshot:

Chapter 7

219

13.	 Let's continue to examine what Test Explorer can do by adding a few more methods.
In the BankVault.h file, add the following lines of code that are highlighted:
class BankVault
{
 public:
 BankVault();
 ~BankVault();
 int AddFunds(int amount);
 void StageHeist();
 int CurrentFunds();
};

14.	 In the BankVault.cpp file, add the implementation for the two methods as follows:
void BankVault::StageHeist()
{
 total = 0;
}
int BankVault::CurrentFunds()
{
 return total;
}

15.	 Now, add another test to the unittest1.cpp file just after the TestMethod1
parameter for these new methods by adding the following code:
TEST_METHOD(RobTheBank)
{
 auto vault = new BankVault();
 auto totalFunds = vault->AddFunds(200);
 Assert::AreEqual(200, totalFunds);
 vault->StageHeist();
 totalFunds = vault->CurrentFunds();
 Assert::AreEqual(0, totalFunds);
}

Unwrapping C++ Development

220

16.	 Compile the solution, and wait for Test Explorer to rerun the tests. You should
now see one failing test result and one passing result, as shown in the following
screenshot:

17.	 There's a small mistake in your code (originally inserted for illustrative purposes), and
clicking on the first line of the stack trace in the error detail (indicated by the arrow in
the preceding screenshot) should help you isolate the problem (the initial funds aren't
as expected). Let's begin to fix the problem by first navigating to the BankVault.h
file and adding a private int variable named total:
class BankVault
{
 public:
 BankVault();
 ~BankVault();
 int AddFunds(int amount);
 void StageHeist();
 int CurrentFunds();
 private:
 int total;
};

18.	 In the BankVault.cpp file, remove the int total = 0; declaration, and change
the class constructor to initialize total to zero.

19.	 Compile the code one last time, and rerun the unit tests. Test Explorer will show all
tests working as expected.

Chapter 7

221

How it works...
The test project you created already includes a reference to the CppUnit test framework as
well as the necessary header files to define the various Assert methods available and the
macros for creating the test methods.

You could build all of this by hand, but there's really no need to do so when the project
template has defined it for you up front.

When writing UWP apps, do make use of the specific Unit Test App project
type to ensure that the proper references are available and have been
configured correctly.

There's more…
For those using Visual Studio Enterprise, there is an option to run unit tests with code
coverage within Test Explorer; however, for unit test library projects of a UWP app, you will
not get any results as the diagnostic data adapters are not supported for unit tests of UWP
app libraries.

Coverage information is only supported for native unit test projects, and the results of the
analysis will be displayed in the Code Coverage Results window.

Debugging unit tests
In the .NET languages, you can right-click inside a test method in the code window and select
the option to run and debug a unit test. This isn't available for C++ unit tests.

To debug C++ unit tests, you must select them from Test Explorer, and either right-click on
them and choose the Debug Selected Tests context menu option, or select Test | Debug |
Selected Tests from the Visual Studio menu.

See also
ff The Unit testing .NET applications recipe in Chapter 4, .NET Framework Development

Analyzing your C++ code
Static analysis of C++ code is a feature offered in VS2015 Community and the Premium
editions of Visual Studio. Static analysis is a useful way to locate potential problems in your
code, and provides a way to catch a wide range of problems early in the development cycle.

In this recipe, we will show you how to use Visual Studio's built-in static analysis tools.

Unwrapping C++ Development

222

Getting ready
Start Visual Studio, and create a new project using the Empty Project template under Visual
C++, giving it a name of your choice.

How to do it…
For this project, perform the following steps:

1.	 Right-click on the project, and select Properties.

2.	 Navigate to Configuration Properties | General, change Configuration Type to
Static Library (.lib), and click on OK.

3.	 Add a new Header File to the project, and name it AnalyzeThis.h.

4.	 Enter the following code in the body of the header file:
class AnalyzeThis {
 public:
 int LookHere(int param);
};

5.	 Add a new C++ File to the project, and name it AnalyzeThis.cpp.

6.	 Enter the following code to the body of the file:
include "AnalyzeThis.h"
int AnalyzeThis::LookHere(int param)
{
 int x;
 int y;
 if (param > 0) x = param;
 if (param < 0) y = param;
 return x + y;
}

7.	 Compile the project. There should be no errors or warnings.

8.	 Right-click on the project and select Properties again. Select the Code Analysis
group and ensure that Enable Code Analysis on Build is checked. Click on OK
to close the window.

9.	 Right-click on the solution in the Solution Explorer window and select Analysis | Run
Code Analysis on Solution (Alt + F11). This option is also available in the menu by
navigating to Build | Run Code Analysis on Solution.

Chapter 7

223

10.	 The Code Analysis results will be displayed, and it will show a single warning about
the use of uninitialized memory, as shown in the following screenshot:

11.	 Double-click on the entry to receive more details. The reasons for the analysis
warning will be shown, and the code where the warning occurs will be highlighted,
as shown in the following screenshot:

12.	 To address these details, change the code in the LookHere method so that both x
and y are initialized correctly with zero values.

13.	 Rerun the analysis. No messages should be displayed.

How it works…
Visual Studio ships with a set of predefined rules to examine your project for common
mistakes and poorly written code. In our example, the code may have compiled cleanly, but
it could cause problems in operation, as the x and y variables are not initialized. Static code
analysis seeks to find these types of mistakes earlier in the development cycle rather than
waiting and hoping for them to be caught later by unit tests or the QA department.

Unwrapping C++ Development

224

There's more…

Selecting Active ruleset
The ruleset used by the analyzer can be modified to suit your preferences. The Rule Set
setting, which can be accessed by going to Settings in the Code Analysis window, offers
several choices based on the level of details required or the type of application being
developed, as shown in the following screenshot:

Improving C++ source navigation speed
Update 2 has added a new SQLite-based system that is designed to speed up source code
navigation tools including Go To Definition and Find All References. To make sure it is
enabled for your project, open the Options menu, then navigate to Text Editor | C/C++ |
Advanced, and ensure the Enable New Database Engine option is set to True, as shown in
the following screenshot:

See also
ff The Using a custom ruleset recipe

Chapter 7

225

Using a custom ruleset
The built-in rulesets that come with Visual Studio cover a variety of usage scenarios, and
provide a way to use the Code Analysis tool in your projects immediately. They are also
of great value when exploring an unfamiliar code base, as you can take advantage of
the static analysis tools to identify areas where code should be rewritten to meet your in-
house standards. All this means that the existing default rules may need to be customized
depending on the needs and complexity of your project as this recipe will demonstrate.

Getting ready
We are going to continue with the project we created in the Analyzing your C++ code recipe.
You will need VS2015 Community or higher in order to modify rulesets.

How to do it…
To use a custom ruleset, perform the following steps:

1.	 Open the project created in the previous recipe.

2.	 Open the AnalyzeThis.cpp file, and add the following highlighted code:
include "AnalyzeThis.h"
int x = 0;

3.	 Right-click on the project (not solution) in Solution Explorer and select Properties.
Then navigate to the Code Analysis section.

4.	 As shown in the following screenshot, the Microsoft Native Recommended Rules are
highlighted by default. You may use this or select another. There is also the option to
select multiple rulesets. For our purposes, take the default, and click on Open.

Unwrapping C++ Development

226

By convention, rulesets have the .ruleset extension, and are stored at the
following location:
C:\Program Files (x86)\Microsoft Visual Studio 14.0\
Team Tools\Static Analysis Tools\Rule Sets.

5.	 The ruleset editor will open. Go to Microsoft.VC.AmbiguousIntent or enter
C6244 in the search box. The rule we will enable is C6244: Local declaration hides
global, which is shown in the following screenshot:

6.	 After enabling the rule, save it by pressing Ctrl + S. Since the base Microsoft rulesets
are read-only, the changes will be saved in a new file based on your project name and
made a part of the project. If desired, you can rename this by right-clicking on it in the
Solution Explorer, and selecting Rename.

7.	 Verify that your new rules are being used by right-clicking on the project, choosing
Properties, and selecting your newly created ruleset under Configuration Properties
| Code Analysis | General (the same process as in Step 3).

8.	 Rebuild the solution (Ctrl + Shift + B), and then rerun the code analyzer (Alt + F11).
With our new rule activated, our second variable's declaration was detected, as
shown in the following screenshot:

Chapter 7

227

How it works…
This preceding recipe shows how existing rulesets can be combined and/or modified to suit
the needs of your project. If you are inheriting a legacy code base, this analysis can provide
a great starting point for where improvements can be made. The customization allows you
to focus on items of a particular importance or, just as easily, minimize the clutter from rules
that don't concern you. If you are starting a new project, you may opt for a rigorous approach
so that best practices are followed from the start. Finally, having the ability to save these
changes into an external file allows them to be stored with a project so that all developers
can follow the same practices.

You may have noticed that in the screenshot for Step 4, the dialog box
indicates that VS2015 Professional or higher is required—but don't worry,
they work just fine on VS2015 Community.

There's more…
There are two rulesets provided for native code in VS2015:

ff The Microsoft Native Minimum Rules ruleset contains rules for basic correctness,
such as potential security holes and application crashes (invalid memory access,
buffer overruns, and so on)

ff The Microsoft Native Recommended Rules ruleset is a superset of the minimum
rules, and provides a more in-depth set of rules to evaluate, and also includes rule
checks for lock problems, race conditions, and other concurrency-related issues

To get an understanding of the rules that each ruleset uses, go to the project's properties, and
select the Code Analysis settings. Clicking on the Open button will display the rules that are
enabled for the ruleset. In order to see all available rules, click on the red down arrow in the
toolbar. For Microsoft's official definitions of all available rulesets, consult Code analysis rule
set reference at http://msdn.microsoft.com/en-us/library/dd264925.aspx.

Edit and Continue C++ style
As demonstrated in Chapter 5, Debugging Your .NET Application, C# and Visual Basic support
the Edit and Continue (EnC) functionality under Visual Studio. While users of those languages
have had a pleasant experience, the situation has been a little bit different for C++ users.
VS2013 had EnC for C++, although it had some restrictions that limited its usefulness.
Fortunately, the EnC support for C++ code is much improved in VS2015. Microsoft has
updated the component that provides debugging services, which combined with some other
modernization ensures that EnC is supported for both 32-bit and 64-bit C++ code. The end result
is that now C++ programmers can use this ability to save time while debugging their programs.

http://msdn.microsoft.com/en-us/library/dd264925.aspx

Unwrapping C++ Development

228

For best results, be sure that your copy of VS2015 has applied
Update 2 or newer.

Getting ready
Simply start VS2015 Community or one of the premium editions, and you're ready to go.

How to do it...
To observe Edit and Continue in action, take the following steps:

1.	 Create a new Win32 Console Application under Visual C++ | Win32 Console
Application with the default name.

2.	 If the Win32 Application Wizard appears, accept the default settings by clicking
on Finish.

3.	 Next, ensure that Edit and Continue has been enabled for your project. Under the
Debug menu, select Options.

4.	 Select Debugging | General, and make sure that Enable Native Edit and Continue
is checked, as shown in the following screenshot:

5.	 After clicking on OK to close the Options dialog box, return to your open C++ file.

Chapter 7

229

Microsoft ultimately plans to make Enable/Disable Native Edit and
Continue support as a single option, so the multiple options shown
here could be removed in a future update.

6.	 Change the target to x64, as shown in the following screenshot:

7.	 Start with the following code:
#include <iostream>
using namespace std;
int main()
{
 int x = 2;
 int y = 16;
 cout << "Computed answer: " << (x*y) << endl;
 cout << "Processing... " << endl;	
 cout << "Computed answer 2: " << (x*y) << endl;
 return 0;
}

8.	 Add a breakpoint to the Processing… and return 0 lines, as shown in the
following screenshot:

9.	 Start debugging. The program will be compiled, and will stop at the first breakpoint;
the output will display Computed answer: 32.

10.	 While the debugger remains stopped at the first breakpoint, add a new line y=8;,
before the last cout statement, as shown in the following screenshot:

Unwrapping C++ Development

230

11.	 Click on Continue (or press F5) to move to the next breakpoint. As soon as you
do this, you may notice (depending on the speed of your computer) the Edit and
Continue informational dialog appear as your new statement is included in the
executable. This is shown in the following screenshot:

12.	 After the recompile, the second output of the program will display 16 rather than 32.

How it works…
VS2015 uses additional compiler options and an improved debugger to provide us with the
ability to modify C++ code while debugging it. This saves debugging time, because a complete
project recompilation is not required, as is the case when EnC is not enabled. EnC is available
on UWP apps and those using DirectX, removing some restrictions that previously limited its
usefulness.

Ultimately, the usefulness of this feature depends on the size of your codebase. In the sample
shown here, the presence of EnC is negligible, because the file is only a few lines long. In a
more realistically sized code base, EnC will be much more useful, as it will reduce the amount
of time spent waiting for dozens or hundreds of files to recompile.

Working with DirectX in Visual Studio 2015
C++ and DirectX are being promoted by Microsoft as the primary way to build
high-performance games in Windows 10.

Developers looking for the spiritual (if not outright) successor to the popular
XNA Framework are encouraged to check out MonoGame, an open source
implementation of XNA at http://www.monogame.net/.

As a DirectX developer, you will be pleased to know that there is no longer a separate DirectX
download required for Windows 10. The DirectX SDK is now incorporated into the Windows
SDK, and the DirectX runtime is built into the Windows 10 operating system. For older
versions of Windows, the current requirement to download a separate SDK and runtime
remains in place.

http://www.monogame.net/

Chapter 7

231

Windows 10 includes two major versions of DirectX—DirectX 11.x representing the latest
evolution of a higher-level API, and the new DirectX 12, which is a lower-level API providing
much greater control in an effort to provide greater performance. When designing a project,
you will have to choose the one that best fits the goals of your project. A project based around
reusing an existing DirectX code could probably stick to the DirectX 11 series, while one being
created from scratch may take advantage of DirectX 12's focus on greater performance.

If you have used previous versions of DirectX and C++, then you will find VS2015 somewhat
different, as you will be using C++/CX. Many of the DirectX calls have differences in them,
not only due to the use of ref pointers but also in the way displays are referenced, and
restrictions are enforced by the UWP app sandbox. It will most likely require some tweaking
to the approaches you may have used in the past.

For this recipe, we'll use the default application template to display a rotating cube on the
screen, and then alter the code to stop and start the rotation when we touch the screen,
click the mouse, or press a key.

Getting ready
Start VS2015 with update on Windows 10, and you're ready to go. You will need to use
VS2015 Community or one of the premium editions, as we are creating a UWP app.

How to do it...
Create the app by performing the following steps:

1.	 Create a new DirectX App project by navigating to Visual C++ | Windows | DirectX
11 App (Universal Windows), and name it RotatingCube.

2.	 The default project template includes all the code to display a cube, apply shaders to
it, and then rotate it. Before you go any further, ensure that the application works by
compiling and running it. You should see a screen similar to the following screenshot:

Unwrapping C++ Development

232

3.	 Stop the application by pressing Alt + F4, and then switch back to Visual Studio. In the
App.h file, add the following code block to the protected event handler declarations:
void OnPointerReleased(Windows::UI::Core::CoreWindow^
sender, Windows::UI::Core::PointerEventArgs^ args);
void OnKeyDown(Windows::UI::Core::CoreWindow^ sender,
Windows::UI::Core::KeyEventArgs^ args);

4.	 To the private variables in that same header file, add the bool m_isRotating;
statement.

5.	 In the RotatingCubeMain.cpp file, locate the RotatingCubeMain method. Add
the following highlighted code to register the event handlers for the user input events
and to set the m_isRotating flag:
// Start receiving touch/mouse events and keyboard events
window->PointerReleased +=
ref new TypedEventHandler<CoreWindow^,
PointerEventArgs^>(this, &App::OnPointerReleased);
window->KeyDown +=
ref new TypedEventHandler<CoreWindow^,
KeyEventArgs^>(this, &App::OnKeyDown);
m_isRotating = true;

6.	 Now add the following code for the event handlers at the end of the App.cpp file.
The handlers simply toggle the m_isRotating flag to indicate whether to rotate the
cube or not:
void App::OnPointerReleased(Windows::UI::Core::CoreWindow^
sender, Windows::UI::Core::PointerEventArgs^ args)
{
 m_isRotating = !m_isRotating;
}
void App::OnKeyDown(Windows::UI::Core::CoreWindow^ sender,
Windows::UI::Core::KeyEventArgs^ args)
{
 m_isRotating = !m_isRotating;
}

7.	 While still in the App.cpp file, locate the App::Run() method, and wrap the
m_main->Update(); call in an if statement that checks the m_isRotating flag,
as shown in the following code snippet:
if (m_isRotating) {
 m_main->Update();
}

8.	 Run the application, and notice that you can start and stop the rotation by pressing
any key, clicking with the mouse, or tapping on the screen.

Chapter 7

233

9.	 Stop the application when you have finished testing.

10.	 The colors on the cube are determined by a combination of a vertex shader and a
pixel shader. The vertex shader uses the color assigned to each vertex in the cube's
definition, in the Sample3DSceneRenderer::CreateDeviceDependentReso
urces() method. Each pixel shader is shaded based on blending the colors of the
vertices nearest to it. Open the SamplePixelShader.hlsl file in the project's
Content folder to look at the pixel shader.

11.	 At the moment, the shader simply takes the color passed to it, and sets the alpha
channel to 1.0f, making it opaque. Alter the shader to remove all traces of red from
the cube by changing the body of the main() method to the following code snippet:
float4 main(PixelShaderInput input) : SV_TARGET
{
 float3 removedRed;
 removedRed = float3(0.0f, input.color.g, input.color.b);
 return float4(removedRed, 1.0f);
}

12.	 Rebuild and run the application. The cube should now look similar to the following
screenshot, with no red color visible:

Unwrapping C++ Development

234

How it works...
The key areas to focus on in this application involve creating the drawing surface and the
handling of the user input. You saw how the user input can be handled via the event listeners,
and that the PointerEventArgs class is used for both touch- and mouse-based input.

Most of the work done while creating the rendering surface is encapsulated in
the Direct3DBase class (DeviceResources). It is in here that the call to the
D3D11CreateDevice method is made as is the call to the CreateSwapChainForCore
Window method, which is needed in order to get DirectX up and running correctly.

It is also useful to note that an application manifest is included in the project, and that the
linker has prepopulated references to the required DirectX libraries so that you don't have
to remember to add them yourself.

There's more…
The pixel and vertex shaders used in the application are written using High-Level Shading
Language (HLSL), a C++ style Domain Specific Language (DSL) for describing how the color
should be calculated for each rendered pixel in an object.

When the compiler sees an HLSL file, it compiles it into a .cso file that you can then use in
your application. You can see this in the Sample3DSceneRenderer::CreateDeviceDepe
ndentResources() method where the .cso files of the two shaders are read into memory,
and then passed to the DirectX calls to create shader instances. The shaders are then used
later in the Sample3DSceneRenderer::Render() method, with the vertex shader being
called before the pixel shader to ensure that the cube renders correctly.

Is managed DirectX supported?
Microsoft's suggested approach is to use C++ with DirectX 11 or 12 on Windows 10, and
this recipe shows one way to do that. But this isn't the only way, and third-party libraries
exist that enable using DirectX with a managed language such as C#. If you are interested in
accessing DirectX in this fashion, you may want to keep an eye on open source projects such
as SharpDX (http://sharpdx.org/).

Just keep in mind that this approach is not supported by Microsoft, and that DirectX
applications written in .NET will run a little slower than native C++ applications; but in many
cases, the benefits of using C# outweigh these concerns. In any event, applications built
using third-party libraries should still be able to pass the verification process, and be listed
in the store.

http://sharpdx.org/

Chapter 7

235

See also
ff The Creating a UWP app recipe in Chapter 2, Getting Started with Universal Windows

Platform Apps

ff The Creating a shader using DGSL recipe

ff The Using the Visual Studio Graphics Diagnostics recipe

Creating a shader using DGSL
Starting with Visual Studio 2012, Microsoft has added a new mechanism for building shaders
using a language called Directed Graph Shader Language (DGSL). This language can be
used to create very complex shaders that are still easily understandable at a high level,
and are thus more maintainable than shaders written in pure HLSL.

In this recipe, we'll create a shader that applies a texture to an object and colors it.

Getting ready
Ensure that you are running Windows 10, and start either VS2015 Community or one of the
premium versions.

How to do it…
Create a shader by performing the following steps:

1.	 Create a new DirectX 12 App (Universal Windows) project by navigating to Visual
C++ | Windows, and give it a name of your choice.

2.	 Right-click on the project, select Add | New Item, and then choose Graphics | Visual
Shader Graph (.dgsl). Leave the name as the default one, Shader.dgsl, and click
on Add.

Unwrapping C++ Development

236

3.	 The shader will be added to the project, and the design surface will be displayed.
Open the toolbox (located on the left-hand side of the screen, or use Ctrl + Alt + X) to
see all the nodes that can be used in your shader. Click on the black background of
the design surface to see the properties of the shader. In the following screenshot,
the Toolbox is marked on the left (first (1) arrow), and the Properties window is
marked on the right (second (2) arrow):

4.	 From the Toolbox window, drag a Texture Sample node onto the design surface.

If you have trouble finding the Texture Sample node in the Toolbox, use the
search box at the top of the Toolbox to filter the items displayed.

5.	 In the properties for the Texture Sample node you just added, set the Filename
property to the full path (not relative path) of the StoreLogo.png file in the Assets
folder. You can do this fairly easily by selecting the image file in Solution Explorer,
copying the full path from the Properties window for the file, and then pasting that
value into the Filename property of the Texture Sample node.

6.	 Drag a Texture Coordinate node from the Toolbox window onto the design surface.

Chapter 7

237

7.	 On the side of each of the shader nodes are connectors, the small circles that
represent the input and output variables for each node. Drag the Output connector
of the Texture Coordinate node to the UV input connector of the Texture Sample
node to link the two nodes together, as shown in the following screenshot:

8.	 Next, you should color the texture based on the color of the point at which it will be
applied. To do this, drag a Multiply node (found under Math) onto the designer, and
connect the RGB output of both the Point Color and Texture Sample nodes to the X
and Y inputs of the Multiply node.

Unwrapping C++ Development

238

9.	 Then, drag the output of the Multiply node to the RGB input of the Final Color
node. In doing so, the RGB link from the Point Color node to the Final Color node
will be removed, as inputs can only have one source; this is shown in the following
screenshot:

10.	 In the document toolbar, click on the Preview with teapot. button so that we can see
the results using the classic object in 3D rendering demos:

11.	 In the shader designer, select the Final Color node, and then hold down the Ctrl key
while you move the mouse scroll wheel forward to zoom in on the element until you
can zoom no further. You will now see a better 3D representation of what the shader
will do to a model, as shown in the following screenshot:

Chapter 7

239

12.	 If you want to rotate the object itself, press and hold Alt and then click and drag on
the teapot to rotate it.

We used StoreLogo.png only because it is guaranteed to be available
on all systems. Feel free to use a graphic file of your own choice for a
more interesting display.

13.	 Save the Shader.dgml file by pressing Ctrl + S.

14.	 On the left side of the designer toolbar, click on the Advanced icon. It will display a
menu where you can choose to export the shader as HLSL, a compiled pixel shader
(.cso), or a C++ header file (.h). Select the HLSL file option, and save the shader
into your Documents folder. The following screenshot shows where the Export As…
command is located:

15.	 From the Visual Studio menu, select File | Open | File or press Ctrl + O, and then
open the file you just saved. You can now see the HLSL version of the shader
you created.

Unwrapping C++ Development

240

How it works...
Shaders are, effectively, a pipeline of instructions that affect the rendering of an object on the
screen. They can be applied to vertices, pixels, and geometries to produce varying effects. The
key to all shaders is to try and do as few operations as possible, since the higher the number
of nodes in a shader, the more computationally expensive they will be, and the slower your
overall frame rate in the application.

In this particular recipe, the shader we built was fairly rudimentary, since the intent was to
show how a shader can be built in Visual Studio. For complex shaders such as flame or smoke,
there are parameter nodes for Time and Normalized Time that you may want to use. For
geometry shaders, you can consider using nodes such as World Position and Mask Vector.

See also
ff The Creating and displaying a 3D model recipe

ff The Working with DirectX in Visual Studio 2015 recipe

Creating and displaying a 3D model
In the previous Creating a shader using DGSL recipe, you created a shader that applies a
texture to a predefined model. However, most applications will need more variety than the
default models offered. Fortunately, Visual Studio provides a mechanism for creating your
own 3D models.

Visual Studio offers a fairly basic 3D modeling tool, and while it's nowhere near as fully
featured as Maya or other specialist modeling tools, it does come in the box, and it meets the
needs of the homebrew developer, or those simply wanting to rough in some models or tweak
some properties of a model supplied by a designer.

Getting ready
This recipe uses the shader from the previous Creating a shader using DGSL recipe. So, if you
haven't already completed that, go ahead and do so now. If you have already completed it,
then open up the solution you created, as you're ready to get started.

How to do it...
Create a 3D model using the following steps:

1.	 Right-click on the project, and select Add | New Item.

2.	 In the dialog box, choose Graphics | 3D Scene (.fbx), and leave the name as
Scene.fbx before clicking on Add.

Chapter 7

241

3.	 Visual Studio will open the scene editor where you can create your model. Ensure
that the Toolbox and Properties panes are visible, and then add a cylinder to the
scene by double-clicking on the Cylinder node in the Toolbox window.

4.	 Select the cylinder in the designer by clicking on it. In the scene editor toolbar on the
left-side of the design surface, click on the Scale icon. The cylinder will be overlaid
with x, y, and z drag handles (the red, green, and blue boxes) that you can use to
resize the object in any single direction, and a central drag handle (a white box)
for scaling the object evenly in all directions. Resize the cylinder to make it larger
by clicking on the central white handle and dragging it to the right, as shown in the
following screenshot:

5.	 In the Properties window, locate the Effect property:

Unwrapping C++ Development

242

6.	 Click on the plus next to the Effect property to expand its details, as shown in
the preceding screenshot. Now click on the ellipsis (…) on the Filename property
to open the file selection dialog box.

7.	 Browse to the Shader.dgsl file you created in the previous recipe, and click on OK.

8.	 Change the value of the Name property in the shader's property group to MyShader.

9.	 In some cases, the change will not take place immediately, but it will refresh the next
time the Properties window is asked to display properties for the cylinder. You can
force this by clicking on a file in Solution Explorer, and then clicking on the cylinder
again. You should also see that the scene has been updated to show the effects of
the shader on the cylinder.

10.	 A common way of looking at 3D models is to look at the wireframe. To view the
scene in wireframe mode, click on the wireframe icon on the main toolbar (not the
embedded toolbar). It's the last icon in the list, as shown in the following screenshot:

How it works...
At this point, you now have a model that is ready to be used. As mentioned in the introduction,
the modeling tool is not meant to compete with full-featured 3D modeling tools, and is,
instead, offered only as an entry-level modeling toolkit.

Given that the packaging of models is typically application-specific, Visual Studio provides
neither an inbuilt method for packing models into a data file nor a method to load them.
The choice of how you package models depends on your application, its performance
characteristics, and any of the restrictions you have to work within. Because of that diversity,
Visual Studio provides a single, simple method for editing a model, and for everything else,
it's up to you.

There's more…
There are many more features available in the model viewer than were covered in this recipe.
Most of these features are self-explanatory, and deal with the basics of moving and rotating
objects within the scene, changing selection modes, and changing view modes. Advanced
functionality such as merging objects is contained under the Advanced menu on the left side
of the designer's toolbar.

See also
ff The Creating a shader using DGSL recipe

Chapter 7

243

Using the Visual Studio Graphics
Diagnostics

One of the hard things to do in DirectX applications is to determine the cause of a visual glitch
or bug on the screen. Despite the best efforts of developers to avoid bugs, there are many
websites featuring screenshots taken by gamers of weird things happening in a game.

Visual Studio addresses some of the debugging issues for DirectX applications by including a
new Graphics Diagnostics toolset that lets you look at pixel history to determine just how a
specific pixel came to be rendered on the screen. Let's see how it works.

Getting ready
Simply start VS2015 Community or one of the premium editions on Windows 10, and you're
ready to go.

Unlike VS2013, a paid version is no longer required to use the Graphics
Diagnostics toolset.

How to do it...
For this recipe, perform the following steps:

1.	 Create a new DirectX 12 App (Universal Windows) project by navigating to Visual
C++ | Windows, and leave the default name as it is.

2.	 The project template includes code to display a spinning cube, so build the
application to ensure it compiles.

3.	 Start the diagnostics by pressing Alt + F5 or by choosing Debug | Graphics |
Start Diagnostics from the Visual Studio menu.

4.	 When the application starts, you should see the debugger's HUD displayed in
the top-left corner of the application.

5.	 While the application is running, press Print Screen (PrtSc) a few times to
capture some frames from the application. The debugger HUD should update
to display the captured frame indicating the capture was successful.

Unwrapping C++ Development

244

6.	 Stop debugging when you are ready (by closing the app or using the stop button in
Visual Studio), and you should see something similar to the following screenshot:

7.	 Select one of the frames you captured from the Frame List window, and in the frame
view, click on one of the pixels in the cube. If you can't see the entire frame, you can
hold Ctrl and drag with the left mouse button to pan around the frame. (In our previous
screenshot, this would be Frame 189, Frame 335, and so on.)

8.	 After selecting a frame, the Visual Studio Graphics Analyzer window should appear.
Your screen will then resemble the following screenshot:

Chapter 7

245

9.	 In the center Render Target window, click on a pixel for your cube. The history for
that pixel will then be displayed, as shown in the following screenshot:

10.	 In the preceding screenshot, this selected pixel was initially green, then blue, and
then returned to green. Your color will most likely be different. Click on the expansion
arrow for the event when the color changes to expand it.

Unwrapping C++ Development

246

11.	 Expand the triangle further to show all of its component's details, as shown in the
following screenshot:

12.	 Clicking either on the Vertex Shader or Pixel Shader links will take you to the
HLSL source for the shader so that you can see the shader calculation.

13.	 You can examine how the shader values were calculated even after normal debugging
has concluded. Click on the debug icon (the play button) for one of the vertices in the
Vertex Shader link or for the Pixel Shader link to debug it using the captured values.
Step through the shader code until the debugger finishes, as shown in the following
screenshot:

Chapter 7

247

14.	 You can click on one of the triangles (shown in the previous screenshot) to jump
directly to the code responsible for that shader. One window shows the HLSL source,
while the second pane shows the output from the HLSL compiler, as shown in the
following screenshot:

How it works...
The Graphics Diagnostics toolset featured in VS2015 has seen several improvements over
the previous versions. Moving the tools from a minor overlay to a separate mini application
window allows you to see more information at once, and really focus on examining how
graphics are being rendered in your application. The level of detail presented by these tools is
extensive, and should help you track down the root cause of many of your rendering problems.

There's more…
One thing that wasn't touched on in the recipe was the rendering pipeline. If you want to look
at the way a frame was built up, then understanding how the object meshes were used can be
very useful.

Unwrapping C++ Development

248

If you select a DirectX Draw event from the Events List window and then select Pipeline
Stages from the menu, you will see how the frame was put together. Clicking on one of the
stages in the Graphics Pipeline Stages window will show you the details of that stage in a
document preview tab, as shown in the following screenshot:

249

8
Working with Team

Foundation Server 2015

In this chapter, we will cover the following topics:

ff Creating a new TFS project

ff Managing your work

ff Using local workspaces for source control

ff Performing code reviews

ff Getting feedback from your users

ff Using Git for source control

ff Taking Advantage of Git's command line

Introduction
Team Foundation Server (TFS) is a popular companion for users of Visual Studio, which
provides Microsoft's approach to source control and project management. Developers working
in traditional corporate software development will frequently use TFS as a way to coordinate
their activity with that of product owners, quality assurance, and release engineers.

TFS is a separate product from VS2015, and exists in both paid and free (TFS Express)
versions. The primary difference between the two is that TFS Express is designed for smaller
developer teams and thus supports five users, while the full version has no such restrictions.
Day to day usage will typically involve connecting to TFS from within Visual Studio or through
the TFS web browser interface.

Working with Team Foundation Server 2015

250

A couple of years ago when VS2013 launched, Microsoft created Visual Studio Online (VSO).
This has since been renamed as Visual Studio Team Services (VSTS). VSTS can best be
thought of as the cloud-based, hosted version of TFS. It provides developers with an area to
create and store their projects without having to also take on the task of administrating a
server. VSTS is also free for up to five users just like TFS Express.

Those who have a subscription to Visual Studio Professional or Enterprise can
join any number of VSTS projects as a benefit of their subscription.

When deciding on what type of TFS to use, you should first consider the benefits (if any)
provided by your copy of Visual Studio as well as the type of environment you will be a part
of. For example, larger corporations typically have an existing source code repository and
build system that you will utilize. Smaller teams or individual developers will be able to set
up something new.

Beyond TFS, there is also the option to use a Git based repository from within Visual Studio.
Providers such as GitHub make it easy to have a cloud-based Git instance, and using Git with
TFS is also an option. Finally, as Git is an open source, freely available tool, it is also possible
to run a private Git server.

The key takeaway is that using a source code repository system is an important part
of modern software development, and should be used regardless of the size of your
development team. Since the focus of this book is on Visual Studio, this chapter will look
at how to utilize these various systems from within Visual Studio to promote good practices
and improve your workflow. The recipes in this chapter will walk you through using these
new improvements and features, so let's get started.

Just what is source control anyway? For those readers who are unfamiliar
with source control, read on. Source control is a way to manage the changes
made to source code files. (It may also be called version control). Since most
development files are text, it is relatively easy for software tools to track
changes between files, who made the changes, optional user-entered notes,
and when the changes were made. Rather than keep track of this by hand,
these software tools assist in automating the process. As a developer, you can
still work with familiar filenames like Program.cs or HelperClass.cs,
but to the tool, the changes are tracked as distinct versions. This allows you to
compare the current file to its history, and if you make an unworkable change
on the current copy, replace it with something from the source control's
archive. Two of the more common tools for source code management, TFS
and Git, are discussed in this chapter.

Chapter 8

251

Creating a new TFS project
As this book focuses on VS2015 and not TFS administration, we are going to use VSTS to host
a new development project that we can then connect to via any version of VS2015. Using
VSTS will let us focus on project setup while Microsoft can handle the server administration
and configuration. The concepts for creating a new project are similar whether you are using
VSTS or standalone TFS. Since, in many cases, corporate users merely access a previously
configured TFS environment, this example will let all readers follow along to focus on the
bits that are pertinent to Visual Studio.

Getting ready
You will need a Microsoft account ID, and you can either create a new ID for this chapter, or
use one of your existing IDs. You will also need a copy of VS2015 available. We
will be using Visual Studio Community, but the concepts are applicable across all versions.

How to do it…
Perform the following steps:

1.	 Connect to VSO (http://www.visualstudio.com/), and create a VSO account.
(If you already have a Microsoft account, you will be adding VSO capabilities.)

2.	 The account URL is something you will be using as the access point to your projects,
so pick something meaningful—or, at least something you won't mind reading
everyday. (Your URL will ultimately have a form similar to https://teamname.
visualstudio.com.)

Multiple projects can be housed at the same URL, so you may want
to avoid using a name that is project-specific.

http://www.visualstudio.com/
https://teamname.visualstudio.com
https://teamname.visualstudio.com

Working with Team Foundation Server 2015

252

3.	 After account creation, you can enter the details for a new project. Enter Project
name of your choice. For the purposes of the recipe, select Team Foundation Version
Control, and select Agile as your Process template; then click on Create project, as
shown in the following screenshot:

4.	 Once created, you will be able to connect to this project with Visual Studio. For easy
access, you can have VSTS open your local copy of Visual Studio (2013 or newer)
directly via the link on the lower-right side of the project page as shown in the
following screenshot. However, for this recipe, we will continue by showing how to
connect to a TFS/VSTS project from within Visual Studio.

Chapter 8

253

5.	 Open your copy of VS2015. The Team Explorer window should be on the right, but
if it is not, you can open it through View | Team Explorer or Ctrl + \, Ctrl + M. Once
visible, click on Manage Connections, as shown in the following screenshot:

6.	 In the next screenshot, you will see that the Team Explorer window title has changed
to Connect. As you will see, there is an ad-like prompt recommending Visual Studio
Team Services and another option to Manage Connections. Click on Manage
Connections (1) and then on the Connect to Team Project (2) menu option,
as that will work for both VSTS and TFS connection types.

Working with Team Foundation Server 2015

254

7.	 After completing Step 6, a new dialog box will appear, listing the available Team
Foundation Servers and the Collections available from each server. The Servers...
button allows you to add or remove the servers displayed. For our recipe, select the
name of the Team Project you created in Step 3, and then click on Connect.

8.	 After making a Team Project selection, Team Explorer will update. Double-click on the
name of your Team Project (in our example, it would be VSCookbook2015), and then
you will receive a prompt to configure your workspace if it is a brand new TFS project,
as is the case with our example. Click on Configure your workspace, as shown in the
following screenshot:

9.	 The Configure Workspace dialog area will then open. To complete the process, click
on the Map & Get button, as shown in the following screenshot:

Chapter 8

255

10.	 To add an existing solution or create a new one, you can either click New... or Open...,
as shown in the following screenshot:

11.	 Let's continue by assuming you want to add a brand new solution. Click on New...,
which will open Visual Studio's New Project window. For the purposes of this recipe,
you can pick whatever project type you want, but the point is to make sure you select
the Add to Source Control option before clicking OK, as shown in the following
screenshot:

Working with Team Foundation Server 2015

256

12.	 Visual Studio will then prompt you to determine where the solution should be stored.
Typically, the defaults will suffice, but if you have reason to change them, you can do
so now. We will continue with the defaults, as shown in the following screenshot:

13.	 At this point, your new solution is associated with your VSTS project, but it has yet to
be committed. This means that, while version control information has been defined,
none of your source files have been uploaded to the server, so nothing is actually
protected yet. To commit your changes, click on the Pending Changes tile, as shown
in the following screenshot:

Chapter 8

257

Clicking on the icon of the House at the top of the Team Explorer toolbar will
always return you to the home page, where you can find the main functional
areas such as Settings or Pending Changes.

14.	 On the Pending Changes screen, we are shown several key pieces of information.
First, there is a Check In button (marked by 1 in the following screenshot), which
will actually send our changes to the VSTS or TFS server associated with our project.
Next, there is a field to enter comments that describe what has been done (marked
by 2). It is always a good idea to leave a brief, but informative, description of what has
been changed and why so that both you and other developers can understand why
the changes were made. Finally, the last section (marked by 3) indicates the files that
will be included with this check-in. You should review this list to ensure you have not
modified something that you did not intend to.

15.	 For the purposes of this recipe, enter a brief comment, and then click on Check In.

Working with Team Foundation Server 2015

258

16.	 At this point, your project and its accompanying new files have been checked in, and
are considered committed. This means they are safely stored on the VSTS server, and
should something happen to your local computer, you will be able to retrieve a copy of
your work. It is also at this point that fellow developers on your project could retrieve a
copy of your changes.

17.	 To confirm the check-in was successful, you can open up your instance of VSTS and
refresh to see the newly added files, as shown in the following screenshot:

How it works…
VSTS provides all of the functionality of standalone TFS, but with the added benefit that the
details of server management are handled by Microsoft. In our example, a new site and Team
Project were created to hold your project's source code and work items. By using version
control, you will benefit from the ability to track changes to your source code and simplify
maintenance. Working with other developers on a common project is easier, as everyone
involved can always obtain the most current version of the source code from a centralized
location that doesn't require e-mailing zip files around. Better still, the details of your project
are not going to be lost if your local developer machine crashes.

There's more…
Going back to Step 10, let's assume you have an existing project to add versus creating a new
one as shown earlier. In this case, when you click on Open, you will be prompted to select an
existing project on your local system. Choose the Visual Studio solution and/or project you
wish to add. This may require you to reauthenticate with VSTS, so enter your Microsoft ID
if prompted.

Chapter 8

259

Once your existing solution has been opened, right-click on it in Solution Explorer and select
Add Solution to Source Control..., as shown in the following screenshot:

This will produce a dialog similar to the one in Step 12, and you can follow the remaining
steps of the recipe to check-in and view the changes.

See also
ff The Using Git for source control recipe in this chapter

Managing your work
Whether you work in a team or as an independent developer, the odds are good that you
will have a lengthy list of requirements describing what you need to build. Scrum teams use
product backlogs, traditional teams use functional specifications, and other teams will have
their own variations of these. Even as an independent developer, you probably maintain, at
minimum, a to-do list of features to add and bugs to fix. Using TFS, this information can be
stored in the team project.

TFS provides several different ways you can classify your outstanding tasks, which are called
work items, and include bug, feature, issue, task, and several more. As you may expect, these
let you indicate the type of item being described. A minor bug (say incorrect font sizing) may
be passed over in favor of a new feature to implement or a more serious bug (application
keeps crashing).

You may recall that in the Creating a new TFS project recipe, you were able to select a
Process template while creating a new team project (note that a Process template may
also just be called Process.) The template choice indicates the type of work items that
are provided.

Processes available and the work items provided:

ff Scrum: Epic, feature, product backlog item, task, bug, and
impediment

ff Agile: Epic, feature, user story, task, bug, and issue
ff Capability Maturity Model Integration (CMMI): Epic, feature,

requirement, task, bug, change request, issue, and review

In this recipe, we'll show you how to manage your work using VS2015 and TFS.

Working with Team Foundation Server 2015

260

Getting ready
You will need to have access to a TFS project like the sample one created in the Creating a
new TFS project recipe, or another that you have access to.

The recipe also requires that your team project be based on the Agile process template. If
your project uses a different process template, the work item types may be different from
those in the recipe, but the concepts remain the same.

Once you have identified the connection to TFS or VSTS that you will be using, start your copy
of VS2015, and you're ready to go.

How to do it...
Perform the following steps:

1.	 When you first connect to TFS, you will need to set up the connection if you have
not already done so. From the Visual Studio menu, navigate to Team | Manage
Connections…. Then click on Manage Connections within Team Explorer to connect
to TFS. If your server is not already available in the drop-down menu (do note that the
default can be blank), use the Servers... button in the connection dialog to add a new
connection for the TFS. Then connect to the project collection and the specific team
project you wish to use for this recipe.

If the Team Explorer tool window isn't visible, open it by navigating
to View | Team Explorer from the menu by pressing Ctrl + \, Ctrl +
M, or by using the Quick Launch tool.

2.	 To ensure you are connected to TFS, navigate to the Home hub, and confirm that it is
displaying the correct team project name, as shown in the following screenshot:

Chapter 8

261

In the preceding screenshot, 1 marks the TFS project name, 2 marks both
the project name and its corresponding URL, and 3 marks the location of any
solutions for this project. Your Home hub may look slightly different if your
team project has a team portal, or reporting is enabled.

3.	 This recipe needs some work for you to track, so start out by creating a new work
item. Click on the Work Items entry in Team Explorer to navigate to the Work Items
hub.

4.	 Click on the New Work Item drop-down menu from the Work Items hub, and click on
User Story from the list, as shown in the following screenshot:

5.	 A new Work Item form will be displayed in the Visual Studio document area. Enter a
title of your choice, and set the Assigned To user to yourself. You can set the value of
any of the other fields as you wish, and when you are ready, click on the Save Work
Item button in the form's toolbar, or press Ctrl + S to save the work item.

6.	 Right-click on the background of the Product Backlog Item form (that is, right-click
on the white space), and select the New Linked Work Item... option (Shift + Alt + L).

Working with Team Foundation Server 2015

262

7.	 In Work Item Type, select Task from the list, and enter a Title for the item before
clicking on OK, as shown in the following screenshot:

8.	 Since this is a linked work item, several fields, including the Assigned To field, will
automatically be set for you. So, just hit Ctrl + S to save the work item, or click on the
Save Work Item button.

9.	 In Team Explorer, double click on Unfinished Work under Queries | Shared Queries
| Product Planning, which will now display the newly created work item, as shown in
the following screenshot:

Chapter 8

263

In this screenshot, the User Story we created in Step 5 has been selected and
is displayed. Within that User Story, we clicked on the LINKS tab (marked by
1) to show the linked Task created in Step 7 (marked by the 2).

10.	 To start work, click on Task that you created in Step 7. Then, change the state to
Active, and click on Save Work Item, as shown in the following screenshot:

Something to remember about states under TFS
Depending on the configuration, states are typically changed in sequence.
That means, a newly created item cannot always be changed directly to
Closed. Saving a work item after each state change will usually allow you to
advance the choices for available states.

11.	 If you look at Shared Queries | Current Iteration | Active Tasks query, this task will
now show as the result.

12.	 Open up one of the solutions you have previously checked in to TFS. (If using
the Team Project from the first recipe in this chapter, the solution was titled
Ch8-Console-BrandNew.) Solutions can be accessed from the Home hub
under the Solutions heading.

13.	 Modify one of the files in the solution; for this example, a comment was added to
Ch8-Console-BrandNew.cpp. (For this recipe, the exact changes made aren't
important, just that the file has been modified.)

14.	 Navigate to Pending Changes by clicking on the House icon on the Team Explorer
tab and clicking on the Pending Changes tile. (Also available under View | Other
Windows | Pending Changes.)

Working with Team Foundation Server 2015

264

15.	 To include this task with your commit, you can either drag it onto Team Explorer, or
you add it by ID (both methods are highlighted in the following screenshot).

If actual source code changes were made, these would be included by Visual
Studio under the Included Changes heading. If they were missed for some
reason, you could manually add them in the same fashion as this work item.

16.	 Once a work item and changed source file(s) are associated, you will be able to enter
a Comment and click on Check In, as shown in the following screenshot:

Chapter 8

265

17.	 Visual Studio may prompt you when you click on Check In, and if it does, just click on
Yes, as shown in this screenshot:

18.	 After making the check-in, Visual Studio will provide a message indicating the results,
as shown in the next screenshot:

19.	 The changeset text is a link, and if clicked, it will show you the details of what was just
checked in.

How it works...
The Team Explorer window provides an overview of the common tasks available for working
with projects stored in TFS (regardless of if it is locally hosted, or part of VSTS). Pending
Changes keeps track of outstanding modifications made since the last commit was made.
Work Items keeps track of the work items available in TFS, with those marked In Progress
appearing in the Work in Progress query.

You can check the details of a query by selecting the query, right-clicking on it, and selecting
Edit Query. The task category doesn't have to be limited to just the Task work item type, but
can also incorporate any custom work item types you include in the task category.

If you double-click on a work item in Team Explorer that isn't already open, it is opened, by
default, in the preview pane in Visual Studio to prevent window clutter.

Working with Team Foundation Server 2015

266

There's more…
A couple more areas of Team Explorer are available for use to increase the effectiveness of
the tool for your development work.

Using Favorites
A key part to effectiveness in using Team Explorer is creating and using queries. Making a
copy of an existing query and editing it to suit your needs is a quick way to customize the tool.
Whether you use custom queries or the standard ones, drag your frequently used queries into
My Favorites or Team Favorites, as shown in the following screenshot:

My Favorites are queries that only appear to you, while Team Favorites are
queries that are usable by anyone that is part of the project.

Shelving active work
Team Explorer generally encourages you to only have one logical task in progress at a time.
This can help you limit the amount of work in progress you have, and push you towards
finishing a task completely before starting the next one. If you want to improve your personal
productivity and work smarter, not harder, then this is a good practice to follow.

Chapter 8

267

Unfortunately, if you plan to only work on one thing at a time, then what happens when you
have to pause what you are doing and deal with an unexpected issue? If you have used
previous versions of TFS, you may be familiar with the concept of shelving and unshelving
code. Shelving takes a copy of the changes you have made, stores them on the server, and
then optionally resets your local workspace. Unshelving is just the reverse of that. This lets
you deal with the emergency, and then return to your previous work without commingling the
two separate items. Shelving is available in all editions of VS2015.

Suspending active work
With Visual Studio Community or higher, you also have the added ability to suspend work.
This automatically shelves your current changes, and the current state of your Visual Studio
windows when you hit the button. It then resets your workspace, clears the work items that
were in progress, and puts you back in a state ready to start another work item.

To access this, click on My Work, expand In Progress Work, and then click on the Suspend
button, as shown in the following screenshot:

You will notice that previously suspended work is also available under
Suspended Work, allowing you to continue a previously suspended work item.

Working with Team Foundation Server 2015

268

See also
ff MSDN documentation on choosing a TFS process: https://www.visualstudio.

com/docs/work/guidance/choose-process

ff The Using local workspaces for source control recipe

ff The Performing code reviews recipe

Using local workspaces for source control
Long-time users of TFS may recall an era where using it required that their development
machine have constant contact with the TFS server, even for relatively benign operations. This
was because the TFS server would track the files you had on your development machine, which
meant that all check-in and check-out operations required communication with the server.

The consequence of this behavior is that it makes offline work very difficult. In areas of poor
network connectivity (on a plane, café, and the like), it may even mean work is prevented.
Since the use of source control is something to be encouraged, this behavior is very
frustrating, especially when conflicts emerge during check-ins and "get latest" operations.

In an effort to mitigate this, TFS sets the read-only flag on all files that are under source
control, which only frustrates developers more, since they can't easily edit files unless they
use a tool that is aware of this behavior and can properly communicate with TFS.

While there can be valid reasons to the historical approach, it would be best if the tools fit
your workflow rather than adjusting your behavior to fit your tools. Local workspaces provide
that exact flexibility. TFS is still the sole source of truth for source control, and is the only place
where check-ins can occur. However, the decision over which files have been changed now
occurs on your development machine, not on TFS.

Another benefit is that Visual Studio no longer needs to ask TFS if it can open a file for editing
or not. Also, you can use any program you want to edit files, because the read-only flag is no
longer applied to files. This change also improves the offline editing scenario, and you no
longer need to mess around with the "go offline" and "go online" operations.

In this recipe, we'll make some changes to the source code so that you can see how this
refined approach to source control works.

Getting ready
As before, you will need to have access to TFS in order to follow this recipe. It would be best
if you also had a sandbox team project—a project where you can try things and change data
without worrying about it affecting your normal work.

Start VS2015, connect to your team project, and you're ready to go.

https://www.visualstudio.com/docs/work/guidance/choose-process
https://www.visualstudio.com/docs/work/guidance/choose-process

Chapter 8

269

How to do it...
Perform the following steps:

1.	 Create a new Visual Basic-based Class Library using the default name. Ensure that
the Add to source control option is checked.

2.	 You may be prompted to choose a source control system; if so, pick Team Foundation
Version Control.

3.	 If you choose a local path for your project that is not already mapped to a folder in
source control, you will be prompted for a location in TFS where it should be stored.
Select a folder in your source control tree in which to store the project, and click on
OK as shown in the following screenshot:

Working with Team Foundation Server 2015

270

4.	 In Team Explorer, navigate to the Pending Changes tile. The files that will be added
to source control are shown in the Included Changes section. Since this is a brand
new project, all of the files are scheduled to be added, as shown in the following
screenshot:

5.	 Enter a check-in Comment to describe what you are doing, and then click on
Check In to submit the changes to TFS. If you are asked to confirm your check-in,
click on Yes.

6.	 The files will be checked in and a confirmation of the changes will be displayed in Team
Explorer. If you wish to look at the contents of the changeset, you can click on the
changeset number displayed in the notification, as shown in the following screenshot
(the changeset number will vary based on your particular TFS server history):

Chapter 8

271

7.	 In Solution Explorer, right-click on the class library project, and select Open Folder in
File Explorer.

8.	 Right-click on Class1.vb, and open the file with Notepad or a favorite text editor
that is not Visual Studio.

9.	 Add some comments to the body of the class, save your changes, and then close
Notepad. The following screenshot shows an example of some brief modifications
made to Class1.vb:

10.	 Switch back to Visual Studio, and, if prompted to reload any files, select Yes to All.

11.	 In Solution Explorer, you should now see that Class1.vb has been modified (it will
have a checkmark next to it). Navigate to Team Explorer and within that, go to the
Pending Changes tile. You should now see that Class1.vb is listed as a pending
change, as shown in the following screenshot:

12.	 Before checking anything, switch back to File Explorer (formerly Windows Explorer in
Windows 7), and make a copy of Class1.vb. Edit the file in Notepad and change the
class name to Class2. Alter the comments in the body of the class to differentiate
it further from the original before saving it and closing Notepad. Rename the copy as
Class2.vb.

Working with Team Foundation Server 2015

272

13.	 Switch back to Visual Studio, and navigate to the Team Explorer | Pending Changes
tile. The new file you just added won't be listed as an included change, but it has
been detected as a change. Since it's not part of the solution, you will only see it by
looking at the Excluded Changes section and clicking on the Detected link. Instead
of including the file into source control directly, you'll want to first properly add it to
the solution. To do so, navigate to Solution Explorer, and click on the Show All Files
button (marked by 1 in the screenshot succeeding Step 14) on the toolbar.

14.	 Right-click on Class2.vb, and click on Include in Project (marked by 2), as shown
in the following screenshot:

15.	 Navigate to Team Explorer and the Pending Changes tile again, and confirm that
Class2.vb file is now included as a pending change. Add a check-in Comment,
and then click on Check In to reflect the changes, as shown in this screenshot:

16.	 In the preceding steps, we renamed the file before we committed it. Let's look at
what happens if you use Windows (File) Explorer to rename a file outside of Visual
Studio. Rename Class2.vb to a name of your choice (our example will use
SecondClass.vb).

Chapter 8

273

17.	 Switch back to Visual Studio, and navigate to the Pending Changes tile in Team
Explorer. The rename isn't detected automatically, since it wasn't made in Visual
Studio, however, you may notice that there are two changes in the Detected Changes
section (one add and 1 delete).

18.	 Click on the Detected link, and you will see that the rename is detected as a delete
of the old filename and an add of the new filename. You can let Visual Studio know
that this change is actually a rename by selecting both changes (Ctrl click on each
item) in the add/delete pair, right-clicking on and choosing the Promote as Rename
option. If prompted to rename all instances of Class2, click on Yes. When this is
done, just click on the Cancel button to close the Promote Candidate Changes
window. The following is the screenshot of the Promote Candidate Changes window:

19.	 Not only is the rename now listed in the Included Changes section, but the solution file
has also been updated to reflect the change and is also included as a pending change.
The Pending Changes tile should now look similar to the following screenshot:

20.	 Check-in your changes when you have finished.

How it works...
When using a local workspace, Visual Studio creates a hidden local folder named $tf, and
stores within it zipped copies of the workspace version of your source files. Visual Studio
detects changes by comparing the contents of your local files and folders to the contents
of the $tf folder, and adds any differences as pending changes.

Working with Team Foundation Server 2015

274

It might be an obvious warning, but don't delete the $tf folder or any of
its contents, not even if you are short on disk space. Doing so will cause
significant problems. If you want to examine this folder, a typical location
would be C:\Users\username\Source\Workspaces\TFS_
Repository_Name\$tf. Change username and TFS_Repository_
Name to reflect your specific situation.

You might have noticed that at no time during the recipe did you have to change the read-only
flag on any of the files, nor did you have to check-out any files for edit. In fact, the only time
Visual Studio communicated with TFS was during the check-in process. All other changes were
managed and tracked locally.

This should alleviate a lot of pain for people who have been used to older versions of TFS and
the way server tracked workspaces operated.

You cannot check-in when offline. Check-in operations are still server-based,
and require that you be online and connected to TFS.

The detected changes list can grow quite large over time, and you may want to ignore certain
folders or files (for example, the /obj and /bin folders). You can either create .tfignore
files to specify the files and paths to ignore, or in Team Explorer, you can open the list of
detected changes and exclude files either individually, by extension, or by folder path. Doing so
will create or alter .tfignore files for you, and add them to the Pending Changes list so that
they can be checked in and shared with all the other developers on the team.

There's more…
Be aware that when using a local workspace, you will no longer have any real visibility on the
server over who has checked out a file. The exception to this is locking files. If you lock a file,
the server is notified and can report that you have locked it.

Unshelving a shelveset now merges any shelveset changes with your local edits. Any conflicts
between the shelveset and your local version will cause a merge conflict, and you will need to
resolve it in the normal manner.

When might a local workspace not be appropriate? For many users, it is a good choice. But
sometimes, you may have a large number of files in your TFS project (100,000+), or your
personal workflow might be such that you use two or more open instances of VS2015 with
the same project. In those situations, you will not want to use a local workspace.

Chapter 8

275

Viewing or changing local workplace settings
By default, the partnership of VS2015 and TFS/VSTS will be set such that you are using a
local workplace as described in this recipe. But if you would like to change your workplace
setting for your project, or verify that it is in fact configured as you intend, you can take the
following quick steps to view the settings.

1.	 Select Team Explorer. Then select the active workspace title and click on Manage
Workspaces..., as shown in the following screenshot:

2.	 In the resulting Manage Workspaces dialog, select the workspace you would like to
view and/or change, and click on Edit.

3.	 The Edit Workspace dialog will then appear. Select your folder from Working folders,
and then click on Advanced to see full details. An excerpt of this dialog is shown in
the following screenshot:

Working with Team Foundation Server 2015

276

4.	 From this dialog, Location can be changed to indicate whether the workspace should
be Local or Server. Other options include setting the File Time and Permissions for
the workspace.

See also
ff The Managing your work recipe

Performing code reviews
When developing in a team, one of the more widely recommended practices for improving
code quality and overall consistency is to conduct code reviews. VS2015 combines with TFS
to support the code review process and make it as efficient as possible.

In this recipe, you'll see just how this works.

What are code reviews? By default, it is common to let any developer with
access to a source code repository check-in whatever changes they would
like, whenever they like. In an effort to improve code quality, a code review
can be used where a second developer reviews what has been changed by
the first. In this way, the odds of committing broken or poorly thought-out code
is minimized, if not eliminated.

Getting ready
You will need to have access to TFS in order to follow this recipe. It would be best if you use a
sandbox team project, a project where you can try things and change data without worrying
about it affecting your normal work.

You will also need to have two accounts you can use: one for the submitter of the code review
and one for the reviewer. If you don't personally have two accounts, that's okay. Create a test
account or get a colleague to act as your reviewer. Note that you should create this second
account before beginning the recipe, and ensure it can access VSTS if you are not using a
local TFS account.

Open your copy of VS2015, and connect to your team project using the submitter's account.

Starting with VS2015, code review is available in Visual Community,
Professional, and Enterprise.

Chapter 8

277

How to do it...
Perform a code review using the following steps:

1.	 We need to make sure the test account that you have created has access to our
sample project. Your local TFS administrator can assist you with this if you are using a
local server, but for those using VSTS (as we are, in this example), proceed to login to
VSTS with your primary account.

2.	 When you have logged in, select the VSTS project that you will be working with. Add
your second account to the project by navigating to your project's Overview page,
then click on Invite a Friend, as shown in the following screenshot:

3.	 In the ensuing dialog, add the user by clicking on Add… and then entering the name
of that user; click on Save changes when complete:

Working with Team Foundation Server 2015

278

4.	 Returning to VS2015, start a new C# ASP.NET Web Application project using
the ASP.NET 4.6.1 MVC template, and add the solution to source control (Team
Foundation). Refer to the Using local workspaces for source control recipe if you're
not sure how to do this.

If you are not currently connected to TFS, you can re-establish your
connection under Team | Manage Connections, and then select the
appropriate TFS instance on Team Explorer.

5.	 Ensure that your new solution is part of TFS by right-clicking on the solution in
Solution Explorer and selecting Add Solution to Source Control. The suggested
defaults are acceptable. (If the solution is already part of TFS, this option will
not be available and you may proceed to Step 3.)

6.	 Go to the Pending Changes tile in Team Explorer, and check-in the code.

7.	 Open the HomeController.cs file under the Controllers folder, change the
contents of the message text for About() and Contact(), and change the name of
the About method to AboutUs. (VS2015 will suggest further edits for the renamed
method, but for the sake of this recipe, do not accept the recommendations even
though under normal circumstances you would want to take advantage of them.)

8.	 Open the Index.cshtml view under the Views\Home folder, and alter the text
of the page to something you like. Then switch to the Pending Changes tile, which
should now look similar to the following screenshot but don't make a check-in
just yet:

Chapter 8

279

9.	 Click on the Actions drop-down menu, and select Request Review as shown in the
following screenshot:

10.	 In the New Code Review pane, enter the name of your reviewer and press Enter.
The reviewer should be the second user account you are using in this recipe, as
mentioned in the Getting ready section. Add a subject for the code review, and
then click on Submit Request, as shown in the following screenshot:

11.	 Team Explorer will then switch to the My Work display and show the code review
request as an outgoing request.

Working with Team Foundation Server 2015

280

12.	 Now we will handle the code review with the second account. Log out of VS2015
with your current account, and restart VS2015. Restart VS2012 and login with the
second user account that you assigned to the Code Review, and connect to your
TFS/VSTS project.

13.	 In Team Explorer, open the My Work tile. You should see a code review request
displayed. Note the arrow next to the review indicating it is an incoming request for
you to look at. This is shown in the following screenshot:

14.	 Double-click on the code review task to begin the review process. Team Explorer
will switch to the Code Review pane, and display the details of the review and
information on the files that have been modified.

15.	 Click on the HomeController.cs file in the Code Review, as shown in the following
screenshot:

Chapter 8

281

16.	 You will see both the original and modified versions of the file displayed using Visual
Studio's diff viewer as follows:

17.	 As noted earlier in Step 7, we renamed AboutUs() in HomeController.cs but not
in View. So we will make note of that in the comments.

A diff tool (short for differences) is used to compare the changes
between the two text files. They are a popular way to easily see the
differences between files.

18.	 Select the entire AboutUs method from the right-hand side pane, right-click on the
selection, and then choose Add Comment from the context menu, as shown in the
following screenshot:

Working with Team Foundation Server 2015

282

19.	 The focus switches to the comment box in the Code Review pane. Enter a comment,
as shown in the following screenshot, and then click on Save (Ctrl + Enter):

20.	 Click on the checkbox next to the HomeController.cs file in the Code Review
pane to indicate that there are no further comments to make on that file.

21.	 Click on the Add Overall Comment link in the Code Review pane, and supply
a general comment on the code review; then click on Save (Ctrl + Enter).

22.	 After saving the comment, a checkbox will appear to the right of your comment. Be
sure to check this.

23.	 Make further comments on the review as you wish and, when you are done, click on
the checkbox next to Index.cshtml. When you have entered all the comments that
you wish to make, click on the Send & Finish link, choosing the Needs Work option
from the drop-down menu that appears.

Chapter 8

283

24.	 Switch back to the first user's account that submitted the request for a Code Review.
In Team Explorer, go to the My Work tile, and click on the refresh button (assuming
you left Visual Studio running). Click on the arrow next to the review request to see
the status of the review, and if the review is complete, double-click on it to display
the Code Review hub.

25.	 Click on the HomeController.cs file in the Code Review hub and the diff viewer
will be displayed.

26.	 As the submitter, you would then take action on the review comments as appropriate,
but for the purpose of this recipe, you're going to close the code review. Click on the
Close Review drop-down link, and select Complete from the list of options to close
the entire code review request.

How it works...
If you noticed, the code review occurred on code that wasn't even checked in to source
control. The advantage of doing so is that this allows for code to be shared for reviewing
purposes before it is entered into the main repository. Behind the scenes, asking for a code
review automatically creates a shelveset for the reviewer to look at. Unlike the Suspend and
Shelve operation, requesting a code review doesn't reset your workspace or clear any of the
work items you have marked as "in progress".

You can also request reviews for changesets that have already been checked in and other
shelvesets that have been manually created.

See also
ff The Managing your work recipe

ff The Using local workspaces for source control recipe

Getting feedback from your users
When working on a product, one of the most valuable things you can do is get feedback
from your users as to whether the software you have built meets their requirements or not,
and their opinions about the software. You will notice that in TFS terminology, the word
"stakeholder" is used over "user", representing the diverse sources of feedback that exist.
Besides traditional end-users, several additional groups should have their voices heard—
including design, QA, and the product owners funding development.

Even if you have a process that defines clear acceptance criteria for requirements, and
you have a clear definition of what it means to be done with a piece of work, you still want
feedback from these stakeholders to determine whether there are any other points that may
have been missed when the requirement was first discussed, or if new ideas have occurred
now that they have seen the latest build of the software running.

Working with Team Foundation Server 2015

284

A normal feedback process involves telling your users that the software is available, asking
them to please go and try it, and let you know what they think. The feedback you get can
often be incomplete, verbally reported, and hard to turn into actionable items for improving
the software. Fortunately, there are steps that can be taken to improve communication and
reduce confusion.

Let's take a look at how gathering feedback can be improved by using TFS.

Getting ready
Just make sure you have access to TFS and a team project. As before, we will be using VSO for
our demonstration screenshots.

How to do it...
Gather feedback from people by following these steps:

1.	 Go to the Web Portal site for your team project, and look for the Other Links widget
on the dashboard. If it is not present, you will first need to add it. There is a blue
pencil icon in the lower-right corner of the dashboard. When you hover your mouse
cursor over it, a green plus sign appears. Click on this green icon, as shown in the
following screenshot:

2.	 After clicking on the plus icon, an Add Widget dialog box will pop up. Search for the
Other Links widget and it to your dashboard by clicking on Add, as shown in the
following screenshot:

Chapter 8

285

3.	 After clicking on Add, click on Close (as each time you click Add, another copy
of the widget is added.) Your dashboard will still be in an editable state once the
widget has been added, so, to save changes, click on the blue checkmark icon in
the lower-right corner.

4.	 Now you should see a Request feedback link under the Other Links widget we just
added. Click on this link to start the feedback gathering process, as shown in the
following screenshot:

Working with Team Foundation Server 2015

286

5.	 A dialog will appear asking you to fill in the information in three distinct sections.
Section 1 is named Select Stakeholders, and you must enter the details of the
people you want feedback from. They must be valid TFS or VSTS users in order
to be selected. For this recipe, you can just enter your own account here.

6.	 In section 2, supply the details of how users should access the application. This
would typically be the details of a test site or application to install and run. For
example, enter www.packtpub.com as the address of the web application/site.

7.	 In section 3, add details for the specific feedback you want from your users. Note that
the Add feedback item link is available to add extra items for feedback, as shown in
the following screenshot:

Chapter 8

287

8.	 After completing all three sections, you can either send the request immediately, or
you can preview the message that will be sent. Feel free to view the preview message
on your system, but for this recipe, we will just go ahead and hit Send.

9.	 You should then receive an e-mail similar to the following:

10.	 Depending on how your system is configured, you may need to install the feedback
tool. Fortunately, a link to this tool is included in the e-mail. After installing the
tool, you can just click on the Start your feedback session link in the e-mail. The
feedback client will then launch.

11.	 Click on the application link to launch the website, and then click on the Next button
in the feedback client.

Working with Team Foundation Server 2015

288

12.	 The feedback client is now ready to accept feedback from the users, and the specific
instructions you entered for the feedback session are shown to the recipient. The next
screenshot shows our sample question to the reviewer, and provides a rich text editor.
This allows the reviewer to clearly document their work and provide screenshots or
other attachments.

13.	 In the comments section, enter some text and then click on the Screenshot button.
Select a section of the screen for your snapshot by dragging the mouse to create a
rectangle. Notice that the screenshot you take is inserted wherever the cursor is in
the comments box. Click on the Next button to continue.

Chapter 8

289

14.	 A summary of the feedback will be shown, and you can rate each item using a five
star approach. If you are happy with the feedback you have provided, click on Submit
and Close to complete the feedback session.

15.	 Switch back to Visual Studio and, in Team Explorer, navigate to the Work Items tile
and double-click on the Feedback query (under Shared Queries) to run it, as shown
in the following screenshot:

16.	 The query results will display all the feedback responses received from your users.
Select one of the items in the list to view the specific details of the feedback along
with any images and attachments that may have been created by the feedback tool.
This screenshot shows the results of the query for our sample project:

Working with Team Foundation Server 2015

290

17.	 At this point, you can create new work items based on the feedback or close the
items, just as you would for any other work item.

How it works...
Under the hood, all feedback requests are stored as work items in TFS. The feedback client
adds all the responses as child work items linked to the feedback request. If your users record
feedback using audio or video, then that data will be included as an attachment to the work
item so that you can replay it when you review the responses.

Using Git for source control
Git has become a popular choice for source control as an alternative to the classical
centralized source control approach. Originating in the open source world for use in
development of the Linux kernel, it has since spread in the software development
world to be used on a variety of platforms.

While nothing prevents one from installing the Git toolset on their Windows system, a few
years ago, Microsoft decided to add native Git support to Visual Studio. Since its arrival in
VS2012 Update 2, Microsoft has continued to refine their offering, and given Git a prominent
role within Visual Studio.

The basic concept of Git is that it takes the approach of decentralized source control—rather
than having a central server that serves as the sole repository, Git facilitates distributed
repositories. In practice, this means that each developer can have a full copy of the repository
on their local developer machine that contains the entire project history. Developers can
perform their normal workflow of code editing, compiling, and debugging, all while committing
code to their local repository. This promotes experimentation, and makes it easier to roll back
undesired changes.

When a developer considers their work to be complete for a particular feature or milestone,
they can then, at this point, upload their code and the associated development history to a
remote Git repository as needed. This repository can be anything from a fellow developer to
a designated corporate source control server. It also facilitates multiplatform development,
as Git clients exist for Mac and Linux. So, you can easily interact with developers on those
platforms while still using your familiar Visual Studio tools.

Unlike TFS, you can use Git on your local development workstation without any other server or
online service. Git is very popular in the open source community, and has a vast set of tools
available for most mainstream operating systems, ensuring that you can easily share code
with these developers without requiring them all to have Windows or Visual Studio.

This recipe will show how Git can be used with your projects, and will be a useful tool even if
you are a solo developer.

Chapter 8

291

Getting ready
For this recipe, we will be using Visual Studio Community 2015 Update 2, but any of the
premium editions may also be used. The concepts are applicable to any version of Visual
Studio Version 2012 Update 2 or later.

To keep things simple, we will not involve TFS for this recipe. If you have been following along
with the previous recipes in this chapter, make sure you are not still connected to TFS or
VSTS by clicking on Disconnect from Team Foundation Server under the Team menu
before starting this recipe.

How to do it...
Take advantage of Git by following these steps:

1.	 We will begin by creating a new C#-based Console Application. The default name
may be used, but before closing the New Project dialog box, be sure that the
checkbox for Create new Git repository has been checked, as shown in the
following screenshot:

Working with Team Foundation Server 2015

292

2.	 After clicking on OK on the New Project dialog box, Visual Studio may then prompt
you to choose a source control system (depending on your particular Visual Studio
configuration). If this dialog appears, pick Git as shown in the following screenshot,
and click on the OK button:

3.	 Visual Studio will set up your project, and then present you with the familiar main
editing screen. If it is not already open, click on the Team Explorer tab. Alternatively,
you may open it via View | Team Explorer.

4.	 Once Team Explorer is open, click on the Settings tile, as shown in the following
screenshot:

5.	 The resulting screen will provide two main choices: Global Settings and Repository
Settings. We will start with Global Settings, so click on that first.

Chapter 8

293

6.	 As you may surmise, Global Settings are applied to all Git based projects that you are
using. For proper operation and as a matter of best practice, ensure that your name
and e-mail address are entered here. They will be used to identify all of your commits
(check-ins) to Git. If you have a specific diff or merge tool installed that you would
like to use instead of VS2015's built-in tools, you can also choose those here. Before
proceeding, be sure to enter your User Name and Email Address, and then click on
Update. The following screenshot illustrates all of these fields:

You may have noticed the Default Repository Location field in the preceding
screenshot . By default, VS2015 will use your C: drive for this, but if you
would like to pick a different drive, perhaps one with more space, you can
make that change here.

Working with Team Foundation Server 2015

294

7.	 After entering your name and e-mail, you will return to the prior Git settings screen.
Navigate back to the main Team Explorer page by clicking on the back arrow or
home icon on the toolbar. Then choose Repository Settings, as shown in the
following screenshot:

8.	 Repository Settings are specific to each Git based project that you have. They allow
you to make customizations that best suit the task at hand. For example, you may be
working on a personal project that you would like to associate with a separate identity
from that of your day job. Under Repository Settings, you can set a specific User
Name and Email Address. For our purposes, we will stick with the defaults, but this is
where to find them should you need to change them. The following screenshot shows
what is available:

Chapter 8

295

You may also have noticed the presence of the fields Ignore File and
Attributes File in the preceding screenshot . By default, each Git repository
has these two files, and they allow for project-specific customization. The
Ignore File is used to indicate files that should be ignored by Git, such as
temporary files or private user data. The Attributes File is used to configure
how Git handles line endings and what files should be treated as binary
objects (versus text). Both are simple text files that can be edited within
VS2015.

9.	 With VS2015, a new project using Git will automatically check-in your initial project
files as part of its setup process. You can see this default setup by clicking on Team
Explorer, and then clicking on the Changes tile. On the Changes screen, click on the
Actions menu and select View History..., as shown in the following screenshot:

10.	 This brings up the History for the entire project, showing all commits for the entire
project and not just a specific file. You can see in the following screenshot that this
project has the initial two commits made, and includes the author, date/time stamp,
and a brief description of what was done:

Working with Team Foundation Server 2015

296

Commit is the term used in Git to describe the action of your recording
changes to the repository. This can be considered as similar to the TFS
check-in command.

11.	 Now that the required settings have been configured, let's see what happens
when we make some changes and add a commit of our own to the project.

12.	 Switch back to the VS2015 main editor window, and open your project's Program.
cs file. We're going to make a small edit so that we have something to commit to the
repository. Update the main method as shown:
static void Main(string[] args)
{
 int x = 2;
 int y = 16;
 Console.WriteLine("The original Pentium CPU is "
 + x * y + " bits.");
}

13.	 After this change, be sure to save your work and then open Team Explorer. There you
should see that Git has noticed the change to Program.cs, and it will be included
with the next commit. Before continuing, enter a commit message and then commit
the changes as shown in the following screenshot (note that Commit All will be active
once a message is entered):

Chapter 8

297

14.	 After making the commit, you will then see the Commit Details appear on Team
Explorer, as shown in the following screenshot:

15.	 The Commit Details shows us the name of the committer, date and time stamp,
commit message, and the files that were part of the commit. If you made a
mistake in committing, note that you can also undo the commit by clicking on the
Revert link. Also available under Actions is the ability to copy the full commit ID to
the clipboard should you need to use it elsewhere (that is, —for a search or with a
command-line tool).

Every commit made to a Git repository is assigned a unique ID string
generated by an SHA-1 hash. Rather than showing the full ID, Visual
Studio displays a portion for easy reference.

16.	 Now navigate to home on the Team Explorer, select the Changes tile, click on the
Actions link, and select View History (repeating the steps taken in Step 9). Now we
can see that our Local History has been updated to reflect the changes. Selecting a
given commit will present the details of the commit on Team Explorer. The following
screenshot shows this updated history:

Hovering over a given row will provide all details of the commit,
including its full commit ID.

Working with Team Foundation Server 2015

298

17.	 Clicking on one of these commit messages will provide more details about what
the commit included. When the project is fresh in your mind, the details are easy to
remember, and the changes are obvious. When working with multiple contributors or
when dealing with long-term projects, Git's organized recording of changes can make
new development much easier.

How it works...
Git is an advanced piece of software that provides many powerful features in exchange for
its complexity. It uses the SHA-1 algorithm to provide a checksum of the data header being
committed. Using this algorithm provides for accurate tracking while continuously ensuring the
integrity of your repositories, since discrepancies in checksums will alert you to inconsistencies.
They also provide a unique way to identify each commit made.

There's more...

Staging files
Prior to VS2015 Update 2, using Git on Visual Studio also meant that pending changes had
various states: Included Changes, Excluded Changes, and Untracked Files. With VS2015
Update 2, everything is just listed under Changes, as this recipe showed. Those of you familiar
with the old way may then wonder if it is possible to only commit a subset of the files changed.
Fortunately, the answer is yes, and one of the benefits is that you can use a specific commit to
highlight changes.

The way to do this is via Staging. After you have made a series of changes/additions to your
source code, the changed files will appear in Team Explorer under Changes. To only commit
a portion, select those that you would like to have committed, and then click on Stage. This
will separate the changed files, allowing you to commit only the ones you want. The following
screenshot shows files in these two states:

Chapter 8

299

In this case, the Class1.cs and the project file will be committed while the new bitmap file
won't. Prior to making a commit, you can always change your mind, and add more files to the
staging or remove existing ones.

Looking ahead
We have only scratched the surface of what Git can do and the value it can provide in your
software development efforts. You can use these tools to clone (make a local copy) of a
remote repository into your local development environment. For example, the Bootstrap
framework described in Chapter 3, Web Development, maintains its project files in a Git
repository at https://github.com/twbs/bootstrap. This project is hosted on GitHub,
which offers an alternative to TFS for code sharing and team collaboration.

Git also has a multitude of features for branching and merging. Branching has many uses,
and is almost a necessity when supporting existing software. For example, you can create
a development branch that lets you work on the next version of your application while
keeping the current branch available for the version currently in production use. Exploring
new concepts or making risky changes can be done in the development branch, allowing
the release branch to remain in a bug-free, buildable state.

See also
ff Git has an extensive online manual available at https://git-scm.com/

ff If you would like to use Git on your development machine, but still need to interact
with external TFS severs, consider visiting http://gittf.codeplex.com/ or
https://github.com/git-tfs/git-tfs

ff The recipe Taking Advantage of Git's command line

Taking Advantage of Git's command line
Using Git directly through VS2015 is one of the most common ways for you to incorporate it
into your daily workflow to easily accomplish your most frequent tasks. However, at its roots,
Git is a command-line tool, and in some cases, it can be advantageous to access Git in this
manner.

Throughout the previous recipe Using Git for source control, you may have noticed that
VS2015 was prompting you to install the 3rd-party command-line tools. In this recipe, we are
going to do just that so that all of Git's functionality is available to you when Git is used with
your projects.

https://github.com/twbs/bootstrap
https://git-scm.com/
http://gittf.codeplex.com/
https://github.com/git-tfs/git-tfs

Working with Team Foundation Server 2015

300

Getting ready
This recipe will pick up directly from the previous one, but feel free to substitute your own
Git-based project should you have one available. This recipe will assume you are using Visual
Studio Community 2015 Update 2, but the important thing is for you to be using a version of
VS2015 with Update 2 or newer applied.

How to do it...
To use Git on the command line, take the following steps:

1.	 Start your copy of VS2015. Under Team Explorer, you will see a prompt to install 3rd-
party Git command prompt tools, as shown in the following screenshot:

2.	 Click on Install. On the next screen, you will be prompted to read a short license
agreement. Again, click on Install. This second click will then take you to
the official Git webpage where the download of the latest Git tools will be installed.
If you are looking for them outside of VS2015, go to https://git-scm.com/
download/win.

3.	 After downloading the tools, run the installation program. The default options
are okay, and no changes are needed. Restart VS2015.

4.	 While you can open Git outside of VS2015, this recipe will explore how to do
so from within Visual Studio. Using the project from the previous recipe or a similar
Git-based project, click on the Changes tile under Team Explorer. Then click on
the Actions menu, and select Open Command Prompt, as shown in the following
screenshot:

https://git-scm.com/download/win
https://git-scm.com/download/win

Chapter 8

301

Alternatively, you can select a local repository to work with from Team
Explorer – Connect. Click on the menu Team | Manage Connections or
use the hot key Ctrl + 0, C (that is, the number zero, followed by the letter C).
Once that is open, right-click on the desired Git repository and select Open
Command Prompt, as shown in the following screenshot:

5.	 Once you have opened the Git command prompt, you will find that you are currently
located in the base directory of the solution you have selected. From there you
have access to all of Git's commands, and we will take a look at some of the
common ones.

Working with Team Foundation Server 2015

302

6.	 The command git status will indicate whether or not you have any
outstanding files to commit, and indicate the branch you are on. The following
listing is an example:
c:\users\jemar\documents\visual studio 2015\Projects\Ch8-Git-
ConsoleApplication1>git status

On branch master

nothing to commit, working directory clean

7.	 The command git log will show the commit history for the project you
are working on. The following excerpt shows a portion of the history from our
previous project:
commit 5ac2388506970f3283c2a364c620f6537534f4ae

Author: Jeff Martin <jemartin>

Date: Sat Jun 25 13:07:16 2016 -0400

 Adding new class

commit bf162194b618b5a7c3166655be72d5c5dbe47c8f

Author: Jeff Martin <jemartin>

Date: Sat Jun 25 13:04:05 2016 -0400

 Revert "Just project file"

 This reverts commit 2494dc217b7e752124b5a4bcf3b144720fea7248.

commit 2494dc217b7e752124b5a4bcf3b144720fea7248

Author: Jeff Martin <jemartin>

Date: Sat Jun 25 13:03:35 2016 -0400

 Just project file

How it works…
Installing the Git command-line tool allows VS2015 to work with the official project tools, and
provide you with an additional option beyond the GUI based approach provided in VS2015.
Since Git is a multiplatform tool, various tutorials and scripts will assume it is present, and
this allows you to make use of them without being constrained by VS2015.

Not all of the Git commands are available through VS2015. There are a few
that require you to use the command line, including stash and reset. For a
complete list, go to https://www.visualstudio.com/en-us/docs/
git/command-prompt.

https://www.visualstudio.com/en-us/docs/git/command-prompt
https://www.visualstudio.com/en-us/docs/git/command-prompt

Chapter 8

303

There's more…
While Microsoft recommends that you start the Git command prompt from within VS2015 as
we have shown in this recipe, that isn't the only way. As part of the Git tools installation, you
may also use the included Git Bash program. Git Bash is accessible through your Windows
Start menu. This uses the familiar Bash shell environment to interface with your file system.
The biggest immediate difference to using this via the approach in the recipe is that you will
start in your Windows user's base directory rather than within your VS2015 project folder.
Those of you familiar with Bash and its associated commands may prefer this method.

305

9
Languages

In this chapter, we will cover the following recipes:

ff Fortifying JavaScript applications with TypeScript

ff Integrating Python into Visual Studio

ff Integrating Python with .NET

ff Targeting Linux with Visual Studio 2015

Introduction
Historically, Visual Studio has focused on specific Microsoft-centric languages, including C++,
C#, and Visual Basic. Between the Internet, mobile devices, and the ever-increasing rapid
pace of change, new computer languages are being created in an effort to ease development,
and present new solutions to problems. In view of these changes, it is easy to see that
Microsoft seeks to position VS2015 as the tool of choice for any development work taking
place on Windows, regardless of the ultimate target platform.

The benefit to us as users of VS2015 is that as we improve our understanding and usage of
this platform, we can then make use of it in a greater number of situations. In this chapter,
we will look at TypeScript, Python, and IronPython, a few languages that offer some unique
capabilities when compared to the traditional languages offered in Visual Studio. Then we will
conclude this chapter by learning about VS2015's capability to target non-Windows platforms
when writing C++ code, giving you the ability to use your VS2015 skills in a new environment
on devices ranging from the Raspberry Pi to powerful Linux supercomputers.

Languages

306

Fortifying JavaScript applications with
TypeScript

JavaScript's role in web development has gone from being considered a starter language
for hobbyist programmers to being regarded as a serious tool for building modern web
applications on both the client and the server. This change means that the size and scope of
JavaScript applications has grown tremendously, and with that growth, the costs of managing
the complexity have also increased. To address this, Microsoft has developed the open source
project TypeScript, which is a superset of JavaScript that adds static type checking.

TypeScript is not limited to Windows, and is a fully open source project
that is capable of running on any JavaScript engine that supports
ECMAScript 3 or greater.

VS2015 includes integrated support for TypeScript projects, making it easy to get started with
the language. Let's take a look at how TypeScript can benefit your web application.

Getting ready
For this specific recipe, we will be using Visual Studio Community 2015.

How to do it…
Let's perform the following steps to see how TypeScript can fortify your JavaScript applications:

1.	 Open VS2015, and create a new HTML Application with TypeScript project,
as shown in the following screenshot:

Chapter 9

307

2.	 Accept the default project name, and create the project.

3.	 The default project will open with a small sample that, when executed, will produce a
web page that shows a simple clock. When you look at the source, it is pretty sparse,
as shown in the following screenshot:

4.	 As you can see, beyond some HTML, there is not much except for a reference to a
file called app.js. Returning to Visual Studio, the most closely related source file is
app.ts. So where did the app.js file come from?

5.	 Going back to our original explanation of TypeScript, remember that it is a superset
of the JavaScript language. This means that all valid JavaScript code is also valid
TypeScript code. When TypeScript is compiled, JavaScript is generated. In this case,
our file app.ts is compiled by Visual Studio to app.js. You can find the app.js file
if you look inside your project folder, as shown in the following screenshot:

6.	 At this point, you are ready to start writing your application, and can use NuGet to add
TypeScript aware packages such as jQuery.

Languages

308

How it works…
Since TypeScript ultimately compiles down to JavaScript, you may be wondering about the
advantages of using it. Firstly, using TypeScript allows meaningful IntelliSense support. For
example, examine the app.ts file that is part of our project. The following screenshot shows
one of the available IntelliSense menus that can appear while editing:

Secondly, TypeScript (as its name suggests) allows type checking. Consider the greeter
class, and how Visual Studio is able to help by comparing the differences, as shown in the
following screenshot:

Since TypeScript is being used, Visual Studio detects an error with the assignment, as shown
in the preceding screenshot. Conversely, in the JavaScript code (shown in the following
screenshot), Visual Studio did not detect the error:

This creates a bug that is easy to overlook. In smaller applications, the lack of type checking
can usually be managed by the programmer. However, with larger applications or unfamiliar
code bases, it becomes much more difficult. Catching the error immediately saves debugging
time later.

The third and perhaps the best advantage of using TypeScript is that the TypeScript compiler
(tsc.exe) produces valid JavaScript that works on any browser or platform that supports
JavaScript. This compatibility means you can use TypeScript in your projects without requiring
your users to install something new. Since the nature of the TypeScript language is more
specific than JavaScript, you can catch errors sooner, and increase the power of IntelliSense.
This allows you to keep the good parts of JavaScript (fast and powerful design capabilities)
while increasing its safety and usability in large projects.

Chapter 9

309

There's more…
You don't have to create a brand new project just to take advantage of TypeScript; it can be
easily added to your existing web projects. From within an existing web project, add a new item
(Ctrl + Shift + A) or right-click on your project name or directory within the Solution Explorer
window, and select TypeScript File. Similarly, you can use NuGet to add TypeScript aware
packages to both new and existing projects, allowing you to phase in a manner that fits your
development schedule.

If you would like to try TypeScript, but are wondering about all the existing JavaScript code that
would have to be converted, don't worry. Library types for many popular JavaScript projects,
including Backbone.js, Node.js, and jQuery, are available at DefinitelyTyped (https://
github.com/DefinitelyTyped/DefinitelyTyped).

Integrating Python into Visual Studio
Python was created by Guido van Rossum in the early 1990s, and quickly developed a
following among developers across the world. Python is a dynamic, general purpose language,
well suited for all types of projects. Among its many features are support for multiple
paradigms (object-oriented, functional, and so on), a rapid development cycle (thanks to its
interpretive nature), and its structured approach to syntax.

Microsoft has released Python Tools for Visual Studio (PTVS) so that those of us on the
Microsoft platform can easily try and use Python within Visual Studio. Whether you would
like to sample Python or create a new application from the ground up, you will be able to do
so while using tools with which you are already familiar. In this recipe, we will see how Visual
Studio can become a highly tuned Python development environment.

Getting ready
For this recipe, we first need to install PTVS. A link to the PTVS installer is included in VS2015.
Open New Project, and select Python | Install Python Tools for Visual Studio. VS2015 will
then prompt for confirmation, so grant it by clicking on Install. During installation, you will be
prompted to close Visual Studio, which you should do to provide for an orderly upgrade. The
latest available version of PTVS will then be applied to your system.

If you are installing Visual Studio from scratch, you can also opt to install
PTVS in the installation program, saving time later.

https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/DefinitelyTyped/DefinitelyTyped

Languages

310

Next, you need to install a version of Python for PTVS to work with. You can find the latest
versions of Python at https://python.org. There, you will find the two main releases (at
the time of writing), 2.7.11 and 3.5.1. The Python home page provides a good description of
the differences between the two versions. For this recipe, choose 3.5.1, and install it with the
default options. After both PTVS and your copy of Python has been installed, load VS2015.
For this recipe, we will assume that you are using Visual Studio Community 2015.

How to do it…
Once you have installed PTVS and Python, open Visual Studio, and perform the following
steps:

1.	 We will begin by ensuring that everything is installed correctly. Open the menu item
View | Other Windows | Python Environments.

2.	 A new window will appear in the Solution Explorer area. This provides information
on the installed Python Environments that VS2015 finds. You should see the version
of Python that you installed is present. While you are there, click on the refresh
button, as shown in the following screenshot, to update the Completion Database
for IntelliSense:

3.	 Let's take a look at the new project types that are available. Open the New Project
dialog box (Ctrl + Shift + N). Under Templates | Python, you will see several
Python-based options, as shown in the following screenshot:

https://python.org

Chapter 9

311

4.	 Proceed by selecting the Python Application project type and accepting the
default name.

5.	 Now that this project is open, let's explore what other Python tools are available.
One very helpful window is the interactive prompt. One of Python's strengths is read-
evaluate-print-loop (REPL). PTVS provides an easy way to access this from within
Visual Studio. Activate this by navigating to View | Other Windows | Python 3.5
Interactive, as shown in this screenshot:

6.	 This window shown in the preceding screenshot lets you enter Python code directly
for immediate execution. If you need to test a command or run a quick experiment,
you can do so from within your editor. Also, because you are within the VS2015,
you get all of the IDE features that you are familiar with: the navigation scroll bar,
IntelliSense, and the ability to easily cut and paste results back into your main
editor window.

Languages

312

7.	 Let's explore how this interactive window provides these benefits. Add the
following code to your blank Python file (if using the defaults, it is titled
PythonApplication1.py):
print('Hello World')

a=32

b=64

print("Results: " + (b+a))

8.	 After entering the code, run the program using F5 or through the Debug | Start
Debugging menu. As you will see, this code displays the following TypeError error:
Can't convert 'int' to str implicitly.

9.	 Now we will see how the Interactive Window can help solve this. Highlight the added
lines of code, right-click on them, and choose Send to Interactive, as shown in the
following screenshot:

10.	 Once sent, the Interactive Window will rerun the code, and you will see the same
error again. We can use this window to quickly work through solutions. With your
cursor at the >>> prompt, just press the up arrow key to cycle through the program's
lines. Edit the print line so that it now reads as follows:
print("Results: " + str(b+a))

When you add the str type, your cursor will still be in the middle of the line,
so be sure to get to the end of the statement before pressing Enter.

Chapter 9

313

11.	 Now that we are explicitly declaring the type, the correction will produce the following
code:
>>> print("Results: " + str(b+a))

Results: 96

12.	 This solved the problem, so we can now add the str type to our source file, and
continue with development.

How it works…
PTVS turns Visual Studio into a real, fully fledged developing environment for Python.
In conjunction with the Python interpreter, PTVS allows you to use Python in a familiar
setting without having to learn new tools.

There's more…
Since PTVS integrates the full Python language, covering all of the benefits it provides cannot
be accomplished in a single recipe or even in a single book. Some of the additional features
that PTVS supports include integration with the test runner, profiling, and remote debugging.
As is the case for many of their open source tools, Microsoft uses GitHub to host the Python
Tools for Visual Studio's home page (https://microsoft.github.io/PTVS/), which is
a great source of information.

Integrating Python with .NET
We've just explored how PTVS can easily integrate Python into VS2015. Now we will look at
IronPython, which integrates Python with the .NET and Mono platforms.

IronPython provides the ability to write applications that use WPF and WinForms as well as
easily call the .NET code from within your Python program. Whether you want to do some rapid
prototyping using IronPython as a glue language or build a full application, IronPython can be
a useful addition to your developer toolbox.

Getting ready
IronPython is available for download at http://ironpython.net/, and should be installed
before opening Visual Studio. This recipe assumes you have installed PTVS as described in
the Integrating Python into Visual Studio recipe.

The Python 2.7 series is different than the IronPython 2.7 series. Make sure
you have the correct version installed!

https://microsoft.github.io/PTVS/
http://ironpython.net/

Languages

314

How to do it…
Once you have installed PTVS and IronPython, open VS2015, and perform the following steps:

1.	 Create a new project using the IronPython Windows Forms Application template
under Python.

2.	 The project will open with a Python listing in the editor window. This gives us an
application skeleton that we can easily extend. Press F5 to see what it looks like in
its initial form. Once compilation has finished, a simple plain Windows form appears.
After verifying it's presence, close the window, and return to the VS2015 editor.

3.	 Now, we are going to add some code to show a little bit more interactivity. Edit the
MyForm class so that it matches the following code:
class MyForm(Form):
def __init__(self):
Create child controls and initialize form
 self.Text="Iron Python"
 goButton = Button()
 goButton.Text = "Go"
 goButton.Click += self.goButtonPressed
 self.label = Label()
 self.label.Text = "Ready to go!"
 self.label.Location = Point(40,40)
 self.label.Height = 25
 self.label.Width = 200
 self.Controls.Add(goButton)
 self.Controls.Add(self.label)
 pass
 def goButtonPressed(self, sender, args):
 self.label.Text = "Go button pressed"

As with any Python program, whitespace is significant. If you have difficulty
running the code sample, verify your formatting (including indentation).

4.	 Once entered, view the results by running the application again (press F5). The result
is shown in the following screenshot:

Chapter 9

315

5.	 As mentioned in the introduction to this recipe, one of the advantages of using the
integration that PTVS and IronPython provides is the ability to rapidly prototype the
.NET code. We will continue this recipe by showing how this can work with a C# DLL.

6.	 Right-click on your open solution, and select Add | New Project. Select the Class
Library template under Visual C#. Use the default project name of ClassLibrary1.

7.	 Add the following method to the Class1 body of your new class library:
public static int generate(int a, int b)
{
 Random rand = new Random((int)DateTime.Now.Ticks);
 return (rand.Next(a)+b);
}

8.	 Build the library through Build | Build ClassLibrary1. This will produce a DLL that
includes our method, and makes a pseudo-random number available for our use.
Now, we will use the next couple of steps to update our Python code and make use
of it.

9.	 In the Python file, add the highlighted line in the following code snippet:
clr.AddReference('System.Drawing')
clr.AddReference('System.Windows.Forms')
clr.AddReferenceToFileAndPath(r"..\ClassLibrary1\bin\Debug\
ClassLibrary1.dll")

If you have changed the default project names, you will need to
adjust the reference to the DLL file path accordingly.

10.	 Similarly, add the following highlighted import statement:
from System.Drawing import *
from System.Windows.Forms import *
from ClassLibrary1 import *

11.	 Change the method for the button press action, as shown in the following code:
def goButtonPressed(self, sender, args):
classy = Class1()
self.label.Text = "Random number received: " +
str(classy.generate(10,4))

12.	 Run the application, and click on the Go button. You should see something similar to
the following screenshot:

Languages

316

How it works…
By directly targeting the .NET and Mono runtimes, IronPython offers a different way to take
advantage of Python. IronPython is able to do this as it runs on a Dynamic Language Runtime
(DLR), which, in turn, runs on the CLR used by .NET languages. The conventional CPython
interpreter (the Python environment that is the most widely used) is written in C, and typically
runs standalone.

In our example, we first demonstrated how IronPython lets you build a WinForms application
easily. Then, we created a proof of concept C# library to show how the resulting DLL can be
accessed from Python with very little cost of time and effort. This gives you a lot of freedom,
whether you want to add more functionalities to your Python-based programs or test the .NET
code without having to spend a lot of time writing routine setup code.

Targeting Linux with Visual Studio 2015
The Linux operating system has been a popular alternative to Windows for many years. It has
found great popularity in server environments, as well as powering many familiar systems,
such as Google's Android. With the rise of new devices such as the Raspberry Pi and the
staying power of non-Windows operating systems, many developers have found themselves
looking for a way to pair their experience with Visual Studio onto these other systems.

Thanks to a new component of VS2015, it is now possible to use Visual Studio to write C++
code that can be compiled and debugged on a Linux- or UNIX-based system. The Visual C++
for Linux extension opens up the world of Linux development while enabling you to use the
VS2015 tools you are already familiar with.

In this recipe, you will see how easy it is to use your copy of VS2015 to develop for Linux.

Getting ready
For this recipe, you need to make sure that you have a copy of Visual Studio Community 2015
(or higher) with the most recent update. Then you need to install the Visual C++ for Linux
extension, which is available for download at the Visual Studio Gallery. At the time of writing,
we will be using version 1.0.3, which is found at https://visualstudiogallery.msdn.
microsoft.com/725025cf-7067-45c2-8d01-1e0fd359ae6e.

This extension is undergoing rapid development, so despite being labeled a
technical preview, it is still possible to use it today to accomplish useful work.

https://visualstudiogallery.msdn.microsoft.com/725025cf-7067-45c2-8d01-1e0fd359ae6e
https://visualstudiogallery.msdn.microsoft.com/725025cf-7067-45c2-8d01-1e0fd359ae6e

Chapter 9

317

You will also need access to a system or virtual machine running Linux. These can be created
on Azure or another system that you have access to. Our recipe assumes that you have a
Debian- or Debian-based system (such as Ubuntu). If the necessary utilities are present, root
access is not needed.

The extension supports most Linux and UNIX systems as long as they have the following
programs installed:

ff OpenSSH server (sshd)

ff The g++ compiler (GNU C++ compiler)

ff gdb (GNU Debugger)

ff gdbserver (remote server for the GNU Debugger)

If you have root (administrator) access, you can usually install these on your Linux system
with the following command: sudo apt-get install openssh-server g++ gdb
gdbserver.

Other Linux-based systems (RedHat, SUSE, and so on) as well as UNIX-based
operating systems (FreeBSD, Mac OS X, and the like) should also work with
this extension as long as you have the previously described tools installed.

Be sure to make note of the username and password for your account on the Linux-based
machine before proceeding. After installing the extension, start Visual Studio.

How to do it…
With the successful installation of the extension, we can begin developing for Linux by taking
the following steps:

1.	 The extension has provided some new project types. Create a new project using the
Console Application (Linux) template, which is located under Visual C++ | Cross
Platform | Linux, as shown in the following screenshot. You may use the default
project name or one of your choice.

Languages

318

2.	 Open the main.cpp file to see the default skeleton file that will be used. You will
see that it is a basic HelloWorld type program, but it will be sufficient to test our
connections.

3.	 Clicking on Remote GDB Debugger in the toolbar (or pressing F5) will start a new
build for your application.

4.	 If you have reinstalled the extension, your settings will remain on your VS2015 system
and be reused. If you are running the extension for the first time, you will be prompted
to set up a new connection to your Linux machine. To view or set up a connection,
navigate to Options | Cross Platform | C++ | Linux | Connection Manager, and
then click on Add, as shown in the following screenshot:

5.	 After clicking on Add, the Connect to Linux dialog appears. This lets you define the
Host name (domain name or IP address of the machine you would like to connect to),
the Port to use (typically, the default SSH port of 22 is correct), and the User name
and Password of your user.

Chapter 9

319

6.	 Complete the prompts for your system, and click on Connect. When you do so,
VS2015 will test the connection to confirm that everything works. After successfully
entering a connection, the Connection Manager updates to include the entry, as
shown in the following screenshot:

Be sure to use the Host Name and User name for your environment.

7.	 Now when you build the application, it should connect to the remote machine you
have specified, copy over your code, compile it, and then execute the resulting
binary. Initially, a successful build may not look very exciting, as you can see in
this screenshot of the Output window:

8.	 To view something more useful, we will check out Linux Console. This can be found
under Debug | Linux Console, and you can see its output in the following screenshot:

Languages

320

9.	 You can view the name of the executable created (Ch9-ConsoleApplication1.
out) in the Linux Console window. You can also view the output from both the
program and the debugger as it runs on the remote machine.

10.	 This Linux Console is not limited to output—it can also accept input and give that
input to your running program. Rewrite the code in your main.cpp as follows:
#include <cstdio>
#include <iostream>
int main()
{
 char str[128];
 printf("hello from Ch9_ConsoleApplication1!\n");
 std::cout << "Enter string: ";
 std::cin.get(str, 128);
 std::cout << "You entered: " << str;
 return 0;
}

11.	 Run your program again (F5). Return to Linux Console Window, where you will be
prompted to enter some text. Enter some characters, and then hit Enter. The program
will then repeat your text back to you, as shown in the next screenshot:

12.	 If you would like to view the settings for your application, you can do so by opening
the properties for your project. There, under Configuration Properties, you can view
or modify several changes including file paths or the remote machine you wish to use.
The following screenshot shows a few of these settings:

Chapter 9

321

How it works…
The Visual C++ for Linux extension makes VS2015 aware of non-Windows environments,
and of how to interact with their development tools over SSH. SSH is a popular protocol in
the Linux and UNIX environments that provides secure connections. For more information on
SSH, check out the multiplatform open source implementation, OpenSSH at http://www.
openssh.com/.

To compile your code, VS2015 copies it over to your remote machine, runs that machine's
compiler, and then shows you the output. For larger and more powerful systems, this
extension gives you a way to harness their CPU cores and large amounts of memory from the
comfort of your familiar VS2015 toolset. For smaller systems, such as the Raspberry Pi, you
are able to develop for the device without having to worry about manually deploying files and
connecting a display or keyboard.

There's more…
Our recipe demonstrated how the extension works by generating a 64-bit code for the x64
architecture, but you are not limited to this CPU type. You can also target different CPU types,
such as the ARM based processors found in the Raspberry Pi family of devices, since the
extension uses common open source tools and connections, allowing you to target several
different major operating systems today, with more sure to follow.

http://www.openssh.com/
http://www.openssh.com/

323

10
Final Polish

In this chapter, we will cover the following recipes:

ff Creating installer packages with InstallShield LE

ff Creating custom installer packages

ff Submitting UWP apps to the Windows Store

ff Creating Visual Studio add-ins and extensions

ff Creating your own snippets

Introduction
There are many little details that contribute to the success of a program. In this chapter, we
will look at several different topics that don't fit into a specific category, but are useful to
many different projects, and could be the missing ingredient your application needs. The first
few recipes deal with some ways of getting your application ready for distribution to your end
users, while the remainder provide some ways to improve your productivity with the Visual
Studio IDE.

Creating installer packages with
InstallShield LE

The need for an installer depends on the type of application you are working on. If you are
creating a Universal Windows Platform (UWP) app, then you don't need an installer, as
the new deployment model makes installers obsolete. If you are creating a web application,
then Microsoft suggest you either use XCopy deployment or the MSDeploy web deployment
technology.

Final Polish

324

But when it comes to traditional Win32-style applications, Microsoft seems to be in a conflict
over whether to include a project for creating installer programs with Visual Studio. The
release of VS2012 marked the removal of the popular Visual Studio Installer project type,
which continues to remains absent in VS2015. There is still a way to construct an installer
though, as the third-party publisher InstallShield has an arrangement with Microsoft to make
the InstallShield Limited Edition available to developers using VS2015 Professional or greater.

In this recipe, we will use InstallShield to create an installer package for a simple application.

Getting ready
The recipe assumes you haven't yet installed InstallShield Limited Edition. If you have, then
some of the early steps in this recipe will be different.

Simply start VS2015 (Professional or higher), and you're ready to go.

How to do it…
Create an installer using these steps:

1.	 Create a new Visual C# | WPF Application project, and name it Basic WPF
Application.

2.	 Go to the project properties page by right-clicking on the project in Solution Explorer
and selecting Properties. In the Application tab, set the icon for the application to
either an icon of your choice, or to the icon located at C:\Program Files (x86)\
Microsoft Visual Studio 14.0\Common7\IDE\ItemTemplates\CSharp\
General\1033\Icon.ico.

3.	 Build the solution to make sure it compiles and executes properly. If you have already
installed InstallShield Limited Edition, you can jump down to Step 7.

4.	 Right-click on the solution, and add a new project using the Other Project Types |
Setup and Deployment | Enable InstallShield Limited Edition template, as shown
in the following screenshot:

Chapter 10

325

5.	 A browser window will appear with instructions on how to enable InstallShield in
VS2015. Click on the link to redirect to the InstallShield website, register your details,
and download the file as directed. When the download completes, save your solution,
close VS2015, and then run the InstallShield setup executable.

6.	 Restart VS2013, and open the solution you created in Step 1.

7.	 Right-click on the solution in Solution Explorer, and choose Add | New Project from
the context menu. In the Add New Project dialog, choose Other Project Types |
Setup and Deployment | InstallShield Limited Edition Project, give it the default
name, and then click on OK.

8.	 If this is the first time you have used InstallShield since it was installed, you will be
asked whether you wish to evaluate or register. Choose to register, and activate the
product using the serial number you should have received in your e-mail.

Final Polish

326

9.	 The InstallShield Project Assistant will appear in the document window, as shown
in the following screenshot:

10.	 Click on the right arrow (the next button) at the bottom of the project assistant to
advance to the Application Information page. On this screen, you may enter values
for company name, application name, and so on. For our purposes, the defaults are
acceptable. Enter a company web address, such as www.company.com, and then
click on the next arrow.

11.	 Advance through the project assistant until you get to the Application Files page.
Select the My Product Name node from the tree, and then click on Add Project
Outputs:

Chapter 10

327

12.	 In the Visual Studio Output Selector dialog, select the Primary output item and click
on OK:

13.	 Click on the next button to go to the Application Shortcuts page. Click on
the New button to add a shortcut to your application. Choose the [Program
FilesFolder]\My Company Name\My Product Name\Simple WPF
Application.Primary output from the dialog, and click on Open.

14.	 The shortcut is named Built by default. That's not very useful, so click the shortcut
name to edit it and rename it to Simple WPF Application.

15.	 Additional menu options are available to make changes to the Registry or display a
license agreement to the user, but we will skip them in this example. The required
settings are now entered, so right-click on the Setup1 project in Solution Explorer,
and select Install from the menu. If prompted to build out-of-date projects, click
on Yes.

Final Polish

328

16.	 Step through the setup wizard to install the program. Verify that the program is
installed correctly by looking for the application in your Start Menu or Start Page.

17.	 After verifying a successful installation, remove the program from your system
by right-clicking on the Setup1 project (from within Visual Studio) and selecting
Uninstall.

How it works...
InstallShield reduces the complexity in creating installers by providing a set of sensible default
configuration options and an easy-to-use user interface. It also understands exactly how the
Windows installer system works, and warns when there are problems in how the installation
process is configured. Any discrepancies can then be fixed so that your end users have a
trouble-free installation.

A license for Limited Edition is provided free of charge with VS2015, and will be sufficient
for basic installation purposes. If you need a heavily customized installation process, then
you should investigate the more advanced versions of InstallShield, or competing offerings
such as Nullsoft's NSIS or WiX (Windows Installer XML toolset) available at http://
wixtoolset.org/.

See also
ff The Creating custom installer packages recipe in this chapter.

ff Microsoft has developed ClickOnce, which can also be used to deploy Windows-
based applications. More information is available at http://msdn.microsoft.
com/en-us/library/t71a733d.aspx. Developers using writing application in
C++ should also review the ClickOnce information at http://msdn.microsoft.
com/en-us/library/ms235287.aspx.

ff Nullsoft Scriptable Install System (NSIS) at http://nsis.sourceforge.net/
Main_Page.

Creating custom installer packages
The previous section detailed how to get started with the freely available InstallShield LE
software. While this approach can be helpful in some cases, for users of the Visual Studio
Community, it is not an available option. Another consideration is for those projects where
greater control of the installation process is required over what is available in Limited Edition.
Finally, developers just may not want to rely on a third-party vendor for their project to be
successful.

http://wixtoolset.org/
http://wixtoolset.org/
http://msdn.microsoft.com/en-us/library/t71a733d.aspx
http://msdn.microsoft.com/en-us/library/t71a733d.aspx
http://msdn.microsoft.com/en-us/library/ms235287.aspx
http://msdn.microsoft.com/en-us/library/ms235287.aspx
http://nsis.sourceforge.net/Main_Page
http://nsis.sourceforge.net/Main_Page

Chapter 10

329

For these reasons and any that you may have, it is good to know that an alternative exists.
Thanks to the freely available VS2015 Installer Projects extension provided by Microsoft,
there is a way to develop your own custom installer with VS2015.

Getting ready
For this recipe, you can use Visual Studio Community 2015 or one of the Premium editions.
If you have an existing project with an executable, you can use that with the recipe, or follow
along as we create a sample one to help illustrate the concepts.

How to do it...
Perform the following steps to create a custom installer for your project:

1.	 Download the Microsoft VS2015 Installer Projects extension from the Visual Studio
Gallery or directly via the following URL: https://visualstudiogallery.msdn.
microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9.

2.	 After installing the extension, restart VS2015.

3.	 Create a new project that will represent the program you wish to install. If you have
one of your own, feel free to use it. For the purposes of this recipe, we will create a
new project using the Visual C# | Console Application template.

4.	 To provide us with something to look at, add the following code to the existing Main
method as shown:
static void Main(string[] args)
{
 Console.WriteLine("Hello Cookbook");
 Console.WriteLine("Press any key to exit...");
 Console.ReadKey(true);
}

5.	 Build your project to ensure everything is in working order before continuing.

https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9
https://visualstudiogallery.msdn.microsoft.com/f1cc3f3e-c300-40a7-8797-c509fb8933b9

Final Polish

330

6.	 Now we will see what the Installer Projects extension can do for us. Right-click on
your solution in the Solution Explorer, and select Add | New Project. Under Other
Project Types, look for the Visual Studio Installer group, as shown in the following
screenshot. Select the Setup Wizard template, accepting the default project name,
or using one of your own choice:

7.	 A Setup Wizard will then appear. The first screen will be introductory, so after reading
it, click on Next and proceed to the second.

8.	 The second screen offers four available choices that correspond to the various
project types that we saw in Step 6. For this recipe, choose the default option
and click on Next, as shown in the following screenshot:

Chapter 10

331

9.	 The third screen lets us select the files or groups that should be part of the installer.
For our project, we will select Primary output (which includes our project's executable)
as shown in the following screenshot, and click on Next:

If you are adding an installer to one of your own projects, you may want to add
additional groups such as Content Files or Documentation Files.

10.	 The fourth screen of the wizard allows you to install any extra files that you may
require for your project. For this recipe, we will proceed as is, so click on Next to
continue.

11.	 The fifth screen of the wizard provides a summary of your selections, and the
opportunity to turn back and make any changes. For our recipe, we are ready to
continue, so click on Finish.

12.	 The wizard will now create a new Setup project, and add it to your solution. A new
screen appears with details about the project. The following screenshot shows the
outcome of this recipe:

Final Polish

332

13.	 While the wizard has produced a valid installer for us, there are a few more things
we should configure for best results. Let's create a shortcut for our program. Click on
the User's Programs Menu folder for your Setup project, and then right-click on
the right menu pane. Then select Create New Shortcut, as shown in the following
screenshot:

14.	 In the resulting dialog, select Application Folder and then Primary Output…, as
shown in the following screenshot. Then click on OK to proceed:

15.	 When using an installer, it is important for the installer to be aware of the
requirements for the executable that you are deploying. Since C# projects default to
.NET Framework 4.6.1, let's make sure that our installer is aware of this. Right-click
on the Setup project in Solution Explorer, and select Properties.

16.	 In the project's Property Pages dialog, click on Prerequisites..., as shown in the
following screenshot:

Chapter 10

333

17.	 In the Prerequisites dialog, uncheck the currently selected Microsoft .NET
Framework, and instead, select the one corresponding to your project, which, in our
case, is Microsoft .NET Framework 4.6.1, as shown in the following screenshot:

18.	 After making the change in Prerequisites, click on OK to return to the Property
Pages. Then click on OK again.

Final Polish

334

In our example, the build Configuration in Step 16 was set to
Active(Release). When modifying Prerequisites, you will have to
repeat Steps 16 through 18 for each target you are working with.

19.	 Finally, double-click on the Microsoft .NET Framework under Detected
Dependencies in the Solution Explorer. Change the Version setting to reflect
the proper .NET Framework, as shown in the following screenshot:

20.	 We are now ready to see the results. Right-click on the Setup project in Solution
Explorer, and select Build Solution. This creates an MSI installer file for your project.

21.	 Right-click on the Setup project again, this time selecting Open Folder in File
Explorer. File Explorer opens the directory containing the output from the Setup
project. Depending on whether you selected a Debug or Release build, choose the
appropriate folder. You will find the installer that you just built for your application
within, ready for you to install.

Chapter 10

335

How it works...
The Installer Project's Setup Wizard provides a guide through the various options available
to us. Thanks to the wizard, it is easy to get started with a working installer. The resulting file
packages our project's application, and assists with any required files that are needed.

There's more…
This extension has more than just the Setup project that we chose in this recipe. Based on
the application you are developing, it is also possible to create a web application installer or
redistribution packages for either a CAB file or a merge module, as shown in the screenshot
accompanying Step 8.

For more information on Merge Modules, visit https://msdn.
microsoft.com/en-us/library/windows/desktop/
aa369820(v=vs.85).aspx on MSDN.

Submitting UWP apps to the Windows Store
While existing legacy desktop-style applications can be distributed using the traditional
methods (as described in Creating installer packages with InstallShield LE), the only way
to distribute Windows Store apps will be via the Windows Store, and they must pass a
certification process for that to happen.

Certification is the process by which Microsoft ensures that apps available in the Windows
Store will meet certain performance and quality standards. As a developer, the Store makes
it easy for customers to obtain and install your app. In this recipe, we'll look at how the
certification process works. Since apps for Windows 8 can only be maintained at this point,
we'll focus on creating a new app for Windows 8.1.

Getting ready
Since we will be working with UWP apps, you will need to use Windows 10 with Visual Studio
Community 2015 or one of the Premium editions. We will use a blank UWP app for this recipe,
but feel free to substitute one of your UWP apps if you have one available.

How to do it...
Perform the following steps to submit your UWP app:

1.	 Start a new Visual C# | Windows | Blank App (Universal Windows) project.

2.	 From the menu, select Project | Store | Open Developer Account.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa369820(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa369820(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa369820(v=vs.85).aspx

Final Polish

336

3.	 A browser window will open, and you can apply for a developer account using the
process as outlined on the page. Establishing a developer's account may require
a payment of a small license fee, so have a supported payment method available
(credit card, PayPal, or any other) when you perform this step.

4.	 Once you have an account, switch back to Visual Studio, and from the menu, choose
Project | Store | Reserve app name.

5.	 Again a browser window will open, and you will be directed to the Windows Dev
Center dashboard where you may register the name for your application. Follow the
process as described on that page.

6.	 From the Visual Studio menu, select Project | Store | Edit App Manifest, and use
the information from the app name reservation to populate the appropriate fields.
Take particular note of the fields on the packaging tab.

7.	 Alternatively, you can select the Project | Store | Associate App with the Store menu
entry, and follow the steps of the wizard to automatically populate the packaging tab
with the appropriate values as shown in the following screenshot. This is helpful if you
have started entering the metadata for your app online outside of Visual Studio:

8.	 At this point, you are ready to write your application.

Current Microsoft guidelines allow an app name to be reserved
for a year. If your app is not submitted by this deadline, the
reservation expires.

9.	 Verify your application using the Windows App Certification Kit. Refer to the
Validating your Windows Store app recipe in Chapter 2, Getting Started with
Universal Windows Platform Apps, to do this.

Chapter 10

337

10.	 Package your application for uploading to the store by choosing Project | Store |
Create App Package.

11.	 Then, upload the resulting package to the store by selecting Project | Store | Upload
App Package from the menu. This will open a new web browser window and take
you to the Windows Dev Center where you can complete an app submission form.
This form allows you to enter details on your app's pricing, description, properties,
and so on.

12.	 After completing the submission form, you can upload your app package. Once
the upload completes, you can monitor the progress of your package through the
approval process using the tools provided by the Windows Dev Center dashboard.

How it works...
The Store submenu is only available when running Visual Studio in Windows 10, and when
you have opened the solution for a UWP app. When you upload a package to the store, there
are a number of basic sanity checks to verify that your package is acceptable and meets the
requirements of the Windows Store. These checks include running the certification toolkit on
your app, and verifying the manifest information against the information you supplied when
you registered the app name. Using Visual Studio's Associate app with the store wizard is an
easy way to make sure you don't have any errors in your manifest, and it improves the chances
of a successful first-time submission.

There's more…
Earning money with Windows Store apps is not limited solely to upfront purchase revenues.
You may also distribute your app using a trial mode that encourages a try-before-you-buy
approach. Apps may include the ability to support in-app purchases, in-app advertising
using your choice of ad platforms, and it may implement a custom transaction system if
you so desire.

For in-app purchases and trial versions of your product, Microsoft bundles
supporting functionality in the Windows.ApplicationModel.Store
namespace to make it easier for you to build applications with these features.
A sample UWP app is available using these features at https://github.
com/Microsoft/Windows-universal-samples/tree/master/
Samples/Store.

If you want to confirm the requirements for App certification, refer to the Microsoft
documentation on the subject at https://msdn.microsoft.com/en-us/library/
windows/apps/dn764944.aspx.

https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/Store
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/Store
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/Store
https://msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/dn764944.aspx

Final Polish

338

See also
ff The Packaging your UWP app recipe, Chapter 2, Getting Started with Universal

Windows Platform Apps

ff The Validating your Windows Store app recipe, Chapter 2, Getting Started with
Universal Windows Platform Apps

Creating Visual Studio add-ins and
extensions

When Microsoft released Visual Studio 2010, they changed the approach to extensibility by
introducing the VSIX format, and the number of extensions in the Visual Studio gallery is a
testament to how successful this change has been.

Thanks to this accessible framework, you can make your own add-ins and extensions in Visual
Studio to fill in any missing functionality that you want for your particular workflow. This recipe
will show you how to configure your copy of VS2015 for extension development.

Getting ready
To create extensions, you will need to have the VS2015 SDK installed. In prior versions of
Visual Studio, this was a standalone product, but it is now available from the main VS2015
installer. Even better, the Professional edition is no longer required, so you can create
extensions using Visual Studio Community.

To verify that you have the SDK installed, and to install it if necessary, you will need to run
the installer for your copy of VS2015. This can be found by going to the Control Panel for
Add / Remove Programs. In Windows 10, you can find this in System Settings, under Apps
& features. Once the installer is open, you will need to install the Visual Studio Extensibility
Tools Update (the exact version, appropriate to your copy of Visual Studio) as shown in the
following screenshot:

Chapter 10

339

Once the SDK is installed, start VS2015, and you're ready to go.

How to do it...
Perform the following steps:

1.	 Start a new project using the Visual C# | Extensibility | VSIX Project template and
the default name.

Additional extensibility templates exist for Visual Basic and C++ too.

Final Polish

340

2.	 Pressing F5 will start a new instance of Visual Studio in the debug mode (it may take
a while to start), where you can use the Add-in manager (Tools | Add-in Manager…)
to enable your add-in and check its functionality. For this recipe, no changes
are needed. The following screenshot shows our recipe's extension installed
and enabled:

Because a debugger is attached, starting the experimental instance of
Visual Studio may take longer than you are used to. It will have Experimental
Instance in the title bar to help distinguish it from your regular instance of
Visual Studio.

3.	 Close the Experimental Instance, and return to your original instance of
Visual Studio.

4.	 From the Solution Explorer, open the source.extension.vsixmanifest file,
and populate the Author field with your name. You can also use this file to provide
a Description, Product Name, and set a custom icon for your extension. When
preparing an actual extension, you will want to ensure that these are filled in to be
helpful for your users.

5.	 Now we will see how to add an item to our extension, and make it do something.
Right-click on your project in Solution Explorer, and select Add | New Item (Ctrl +
Shift + A). Under Visual C# Items | Extensibility, select Editor Viewport Adornment.

6.	 You can see the code for this adornment in the file ViewportAdornment1.cs. This
is now part of our extension package, so execute the project to see the results.

Chapter 10

341

7.	 When Visual Studio has finished loading, it will automatically instantiate the extension
making it active and available. From the Visual Studio menu, select File | New File
| File, select General | Text File, and click Open. You should see a purple box in
the top-right corner of the editor surface, as shown in the following screenshot; this
proves that the extension is working as expected:

8.	 Close the experimental instance of Visual Studio to return to your project.

How it works…
The Experimental Instance of Visual Studio is launched using an experimental hive. The
experimental hive is a separate set of Visual Studio settings you can use when testing
extensions that won't affect your normal development settings. You may have noticed proof of
this separation when it launches, as you are prompted to set your settings, just as you did the
first time you launched VS2015 after installing it.

With VS2015, extensions are now the official way to extend Visual Studio, as add-ins have
been deprecated. An extension implements a Managed Extensibility Framework (MEF)
contract, and is not as restricted in the APIs it can access or in the way it is implemented.

There's more…
There is a lot more flexibility in building extensions over add-ins, and this also applies to
the update and distribution mechanism. Beyond the template we looked at in this recipe,
there are many areas of Visual Studio that can be customized, including defining custom
commands, tool windows, and so on. This provides you with the opportunity to reshape
Visual Studio to fit your needs.

The Extension Manager complements the NuGet package system described in the Managing
packages with NuGet recipe in Chapter 3, Web Development. The difference is that Extension
Manager focuses on enhancements to Visual Studio, while NuGet is used
to obtain libraries to be distributed with your application.

Final Polish

342

Creating your own snippets
Visual Studio snippets are a great way to quickly write repetitive chunks of code that follow the
same basic structure—potentially, saving you from a lot of time and typing. Snippets have been
extended to work on more than just standard code files, and should be considered whenever
you find yourself writing similar code over and over. Using snippets can save time and reduce
the possibility of bugs—simply write the code correctly once, and then reuse.

For example, you may want to generate a class signature that inherits from a specific base
class you use in your application, or you may have a certain attribute that needs to be placed
above method calls to enable logging, or you may have specific IDs you want to use in HTML
elements to ensure CSS styles can be consistently applied to your web pages. Unfortunately,
out-of-the-box Visual Studio still doesn't have an inbuilt way of authoring snippets, so you will
have to write some XML. Fortunately, it only takes a few minutes to create a snippet and the
time you can save once it exists makes it worth doing.

This recipe will show you how to create your own snippets, and then utilize them from inside
Visual Studio.

Getting ready
Simply start VS2015, and you're ready to go.

How to do it...
Create your own snippet using the following steps:

1.	 From the menu, choose File | New | File, select XML File, and click on Open.

2.	 Edit the file, adding the following XML code:
<?xml version="1.0" encoding="utf-8"?>
<CodeSnippets
xmlns="http://schemas.microsoft.com/VisualStudio/2005/
CodeSnippet">
 <CodeSnippet Format="1.0.0.">
 <Header>
 <Title>Wrap text in a span</Title>
 <Shortcut>spanned</Shortcut>
 <SnippetTypes>
 <SnippetType>Expansion</SnippetType>
 <SnippetType>SurroundsWith</SnippetType>
 </SnippetTypes>
 </Header>
 <Snippet>

Chapter 10

343

 <Declarations>
 <Literal>
 <ID>id</ID>
 <Default>elementId</Default>
 </Literal>
 </Declarations>
 <Code Language="HTML">
 <![CDATA[$selected$ is now
 in a span!]]>
 </Code>
 </Snippet>
 </CodeSnippet>
</CodeSnippets>

3.	 Save the file as spanned text.snippet in your Documents folder.

4.	 From the menu, select Tools | Code Snippets Manager (shortcut Ctrl+K, Ctrl+B).

If you are using VS Express for Windows and cannot locate the Code Snippets
Manager on your menu, enable Expert Settings via Tools | Settings | Expert
Settings.

5.	 Click on the Import button. Select the file you saved in Step 3, and click on Open.

6.	 Leave the location as My HTML Snippets, as suggested, and click on Finish, as
shown in the following screenshot:

7.	 The snippet file will be automatically copied to the appropriate location in
Documents\Visual Studio 2015\Code Snippets.

Final Polish

344

8.	 In the Code Snippets Manager, change the Language to HTML, and expand the My
HTML Snippets location to confirm your snippet has been loaded. After confirming
this, click on OK to close the dialog:

9.	 From the menu, select File | New | File, select General | HTML Page, and click on
Open.

10.	 In the contents of the body tag, enter <p>this is some text</p>.

11.	 Select the words is some. Right-click on the selection, choose Surround With, then
My HTML Snippets | Wrap text in a span, and hit Enter as shown in the following
screenshot:

12.	 The snippet will be expanded, and the contents of the id attribute for the span will be
selected. Enter the text myId to replace the highlighted elementId placeholder and
hit Enter. The cursor will move to the end of the closing span tag.

Chapter 10

345

How it works...
The Header section is where the display title of the snippet, a shortcut name (in this case,
spanned), the human-friendly description, and the type of snippet is being defined. Our
example is in the Expansion and SurroundsWith categories. This means our snippet can
be used with the selected text (SurroundsWith) or at the cursor's current position in the
editor (Expansion).

The Snippet section is where the bulk of the work is done. Visual Studio automatically scans
the code body of the snippet for an identifier placeholder of id so that it can populate it
with the default value and prompt you for your own value.

By declaring the snippet as a SurroundsWith snippet, the selected text is passed to the
$selected$ placeholder in the body. Since Expansion is also supported, if you enter the
snippet on a blank line, Visual Studio will still just generate the following text:

 is now in a span!

There's more…
There is a Snippet Designer project on GitHub (https://github.com/mmanela/
snippetdesigner) from Matthew Manela that provides a GUI tool to make creating of
snippets much easier. It also enables you to select a section of code and export that as a
snippet so that you have an easy starting point for making your own custom snippets.

Remember that snippets are more than just a simple text entry/replacement mechanism,
and it's worth spending a little time looking through the full schema reference for snippets on
MSDN at https://msdn.microsoft.com/en-us/library/ms171418(v=vs.140).
aspx to get a better idea of what they can do for you.

https://github.com/mmanela/snippetdesigner
https://github.com/mmanela/snippetdesigner
https://msdn.microsoft.com/en-us/library/ms171418(v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/ms171418(v=vs.140).aspx

347

Index
Symbols
3D model

creating 240-242
displaying 240-242

.NET
Python, integrating with 314, 315

.NET applications
unit testing 120-124

A
Active Ruleset

selecting 224
active work

shelving 266
suspending 267

agile 259
application

in break mode 173
ASP.NET process

debugging 164
ASP.NET Single Page Application 82
asynchronous code

creating 186-192
asynchrony

about 193-199
using, with web applications 199-202

B
bare metal programming 210
Binding Redirects 102
Bootstrap

about 82
reference 87

Bootstrap-based SPA 83-85
Bootstrap-themed web application 82
Bootswatch

reference 84
Browser Link

about 87
setting up 87-90
using 90

bundling
adding, to CSS files 91-96
adding, to JavaScript 91-96

C
C#

exploring, through immediate
 window 136-139

C++
XAML, using with 210-214

capabilities
about 60
defining 53-59
Home or Work networking 61
internetClient capability 61
internetClientServer capability 61

Capability Maturity Model
Integration (CMMI) 259

C++ applications
unit testing 216-220

C++ code
analyzing 221-223

class libraries
different runtimes, viewing 130
sharing, across different runtimes 126-129

ClickOnce
about 328
reference 328

348

code in production
debugging, with IntelliTrace 166-173

CodeLens 11-13
Code Maps 13, 14
code reviews

performing 276-282
concurrency

visualizing 179-184
Concurrency Visualizer

about 179
reference 179

contracts
defining 54-59

CppUnit 37, 215
CPython 316
CSHTML page 88
C++ source navigation speed

improving 224
C++ Specific UWP templates

DirectX11 and XAML App 38
DirectX 12 App 37
DirextX11 App 37
DLL 38
Static Library 38

CSS files
bundling, adding to 92-96
minification, adding to 92-96

custom installer packages
creating 328-335

custom package locations
using 102

custom rule set
using 225-227

D
Dataflow-powered application

creating 204-207
debugging

everyday debugging, maximizing 149-154
on remote machines 156-164
on tablets 156-164

declarations
background tasks 59
certificates 60
File Type Associations 60

Search contract 60
update task 59

DefinitelyTyped
reference 107, 309

Diagnostic Tools
about 142
implementing 142-149

Directed Graph Shader Language (DGSL)
used, for creating shader 235-240

DirectX
working with 230-234

Domain Specific Language (DSL) 234
duplicate code

detecting 131-136
Dynamic Language Runtime (DLR) 316

E
Edit and Continue (EnC) functionality

about 227
working 228-230

editor windows
managing 14-17

F
favorites

using 266
feedback

getting, from users 283-290
File activation 60
files

staging 298, 299

G
Git

using, for source control 290-298
Git command-line

using 299-302

H
High-Level Shading Language (HLSL) 234

349

I
installer packages

creating, with InstallShield LE 323-328
IntelliTrace

about 166
code in production, debugging with 166-173

Internet Information Server (IIS) 199
IronPython

about 313
reference 313

J
JavaScript

bundling, adding to 92-96
minification, adding to 92-96

JavaScript applications
fortifying, with TypeScript 104-106, 306-308

Journal
reference 84

Just My Code feature 173

K
KB3151378 updates

reference 210

L
Linux

targeting, with Visual Studio 2015 316-320
local workplace settings

modifying 275, 276
viewing 275, 276

local workspaces
using, for source control 268-273

M
Managed Extensibility Framework

 (MEF) 203, 341
Maya 240
minification

adding, to CSS files 91-96
adding, to JavaScript 91-96

MonoGame
reference 230

MSDeploy 323
MSTest framework 120

N
navigating 24-27
Node.js

reference 108
Node.js development

Visual Studio, using for 108-113
Node.js Tools for Visual Studio (NTVS) 108
npm

about 110
reference 110

NuGet
packages, managing with 96-101
reference 97

NuGet server
reference 103

Nullsoft Scriptable Install System (NSIS)
reference 328

O
OpenSSH

reference 321

P
packages

loading, automatically 102
managing, with NuGet 96-101

parallel code
debugging 174-179

Parallel LINQ (PLINQ) 174
Portable Class Libraries (PCL) 126
preview document tab

about 17
single-click preview, in Solution Explorer 17
tab and window behavior, customizing 18

prohibited file types
reference 60

project round-tripping 86
project type, selecting

Blank App template 37
Class Library project 37
Coded UI Test Project (Windows) 37

350

Coded UI Test Project (Windows Phone)
template 37

C++ Specific UWP templates 37
Unit Test App project template 37
Windows Runtime Component 37

Python
about 309
integrating, into Visual Studio 309-313
integrating, with .NET 314, 315
reference 310

Python Tools for Visual Studio (PTVS) 309

R
read-evaluate-print-loop (REPL) 311
remote debugging

reference 113
Remote Debugging Monitor

fresh app install 52
rendering pipeline 247
RSSReader app

reference 46
rulesets

for native code, in VS2015 227

S
scrum 259
shader

creating, Directed Graph Shader Language
(DGSL) used 235-240

SharpDX
reference 234

sideloading 33
sideloading apps 77
Snippet Designer project 345
snippets

creating 342-345
Solution Explorer

CSS files 28
HTML files 28
JavaScript files 28
navigating 24
navigation behavior 28

source control
Git, using for 290-298
local workspaces, using for 268-273

SSL/Certificates 60

staging 298
static HTML files

supporting 91

T
tab pinning 14
task-based WCF service

about 116
creating 116-120

Task Parallel Library (TPL) 174, 203
Team Foundation Server (TFS) 12, 249
TFS project

creating 251-258
TPL Dataflow Library 203
TypeScript

JavaScript applications, fortifying
with 104-106, 306-308

U
unit testing

.NET applications 120-124
asynchronous tests 125
automatic execution, restricting 125
C++ applications 216-220
test execution, triggering automatically 126

unit tests
debugging 221

Universal Windows Platform apps 193-199
Universal Windows Platform (UWP) 211, 323
users

feedback, getting from 283-290
UWP app

CalendarDatePicker 45
CalendarView 44
creating 34-36
customizing 38-43
developing 30
distributing, through sideloading 77-80
language interoperability 38
library access 61
MediaTransportControls 45
packaging 65-70
project type, selecting 36
RelativePanel 44
SplitView 43
submitting, to Windows Store 74-76

351

UWP app development
enabling, on Windows 10 31-33

UWP app performance
analyzing 62-65

UWP app simulator
fresh app install 52
network properties, changing 51
remote debugging 52
resizing 51
resolution 51
screenshots, capturing 52
using 45-51

V
variable values

finding 174
Visual Studio

code, searching quickly 22-24
Python, integrating into 309-313
searching and navigating 21, 22
using, for Node.js development 108-113

Visual Studio 2013 (VS2013) 1
Visual Studio 2015

about 82
Linux, targeting with 316-320
settings, synchronizing 2-4

Visual Studio add-ins
creating 338-341

Visual Studio commands
searching 18-20

Visual Studio extensions
creating 338-341

Visual Studio Gallery
reference 316

Visual Studio Graphics Diagnostics
using 243-247

Visual Studio Online (VSO) 250

Visual Studio Team Services (VSTS) 250
VS2015 IDE

CodeLens 11-13
Code Maps 13, 14
notifications 7, 8
Peek Definition 10, 11
scroll bar thumbnail 9, 10
Send Feedback menu 6
touring 4-6
user account 8

W
web applications

asynchrony, using with 199-202
Windows 10

UWP app development, enabling 31-33
Windows Communication

Foundation (WCF) 116
Windows Metadata (WinMD) 38
Windows Runtime (WinRT) 30, 192
Windows Store

UWP apps, submitting to 335-337
UWP app, submitting 74-76

Windows Store app
validating 71-73

work
managing 259-265

work items 259

X
XAML

using, with C++ 210-214
XAML toolbar 215
XAML toolset

with Update 2 214
XCopy 323

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Exploring Visual
Studio 2015
	Introduction
	Synchronizing settings
	Touring the VS2015 IDE
	Managing the editor windows
	Finding Visual Studio commands
	Searching and navigating
	Navigating in depth

	Chapter 2: Getting Started with Universal Windows Platform Apps
	Introduction
	Enabling UWP app development on
Windows 10
	Creating a UWP app
	Customizing your UWP app
	Using the UWP app simulator
	Defining capabilities and contracts
	Analyzing your app's performance
	Packaging your UWP app
	Validating your Windows Store app
	Submitting your app to the Windows Store
	Distributing your UWP app through sideloading

	Chapter 3: Web Development
	Introduction
	Getting started with a Bootstrap-based SPA
	Making the most of Browser Link
	Adding bundling and minification to JavaScript and CSS files
	Managing packages with NuGet
	Fortifying JavaScript applications with TypeScript
	Using Visual Studio for Node.js development

	Chapter 4: .NET Framework Development
	Introduction
	Creating a task-based WCF service
	Unit testing .NET applications
	Sharing class libraries across different runtimes
	Detecting duplicate code
	Exploring C# through the Immediate window

	Chapter 5: Debugging Your .NET Application
	Introduction
	Putting Diagnostic Tools to work
	Maximizing everyday debugging
	Debugging on remote machines and tablets
	Debugging code in production with IntelliTrace
	Debugging parallel code
	Visualizing concurrency

	Chapter 6: Asynchrony in .NET
	Introduction
	Making your code asynchronous
	Understanding asynchrony and Universal Windows Platform apps
	Using asynchrony with web applications
	Working with actors and the TPL Dataflow library

	Chapter 7: Unwrapping C++ Development
	Introduction
	Using XAML with C++
	Unit testing C++ applications
	Analyzing your C++ code
	Using a custom ruleset
	Edit and Continue C++ style
	Working with DirectX in Visual Studio 2015
	Creating a shader using DGSL
	Creating and displaying a 3D model
	Using the Visual Studio Graphics Diagnostics

	Chapter 8: Working with Team Foundation Server 2015
	Introduction
	Creating a new TFS project
	Managing your work
	Using local workspaces for source control
	Performing code reviews
	Getting feedback from your users
	Using Git for source control
	Taking Advantage of Git's command line

	Chapter 9: Languages
	Introduction
	Fortifying JavaScript applications with TypeScript
	Integrating Python into Visual Studio
	Integrating Python with .NET
	Targeting Linux with Visual Studio 2015

	Chapter 10: Final Polish
	Introduction
	Creating installer packages with InstallShield LE
	Creating custom installer packages
	Submitting UWP apps to the Windows Store
	Creating Visual Studio add-ins and extensions
	Creating your own snippets

	Index

